Algorithms for finding optimal paths in network games with p players
R. Boliac
1997-08-01
Full Text Available We study the problem of finding optimal paths in network games with p players. Some polynomial-time algorithms for finding optimal paths and optimal by Nash strategies of the players in network games with p players are proposed.
The Global Optimal Algorithm of Reliable Path Finding Problem Based on Backtracking Method
Liang Shen
2017-01-01
Full Text Available There is a growing interest in finding a global optimal path in transportation networks particularly when the network suffers from unexpected disturbance. This paper studies the problem of finding a global optimal path to guarantee a given probability of arriving on time in a network with uncertainty, in which the travel time is stochastic instead of deterministic. Traditional path finding methods based on least expected travel time cannot capture the network user’s risk-taking behaviors in path finding. To overcome such limitation, the reliable path finding algorithms have been proposed but the convergence of global optimum is seldom addressed in the literature. This paper integrates the K-shortest path algorithm into Backtracking method to propose a new path finding algorithm under uncertainty. The global optimum of the proposed method can be guaranteed. Numerical examples are conducted to demonstrate the correctness and efficiency of the proposed algorithm.
Comparison of some evolutionary algorithms for optimization of the path synthesis problem
Grabski, Jakub Krzysztof; Walczak, Tomasz; Buśkiewicz, Jacek; Michałowska, Martyna
2018-01-01
The paper presents comparison of the results obtained in a mechanism synthesis by means of some selected evolutionary algorithms. The optimization problem considered in the paper as an example is the dimensional synthesis of the path generating four-bar mechanism. In order to solve this problem, three different artificial intelligence algorithms are employed in this study.
Interactive Learning Environment for Bio-Inspired Optimization Algorithms for UAV Path Planning
Duan, Haibin; Li, Pei; Shi, Yuhui; Zhang, Xiangyin; Sun, Changhao
2015-01-01
This paper describes the development of BOLE, a MATLAB-based interactive learning environment, that facilitates the process of learning bio-inspired optimization algorithms, and that is dedicated exclusively to unmanned aerial vehicle path planning. As a complement to conventional teaching methods, BOLE is designed to help students consolidate the…
Comparison of Genetic Algorithm and Hill Climbing for Shortest Path Optimization Mapping
Fronita Mona
2018-01-01
Full Text Available Traveling Salesman Problem (TSP is an optimization to find the shortest path to reach several destinations in one trip without passing through the same city and back again to the early departure city, the process is applied to the delivery systems. This comparison is done using two methods, namely optimization genetic algorithm and hill climbing. Hill Climbing works by directly selecting a new path that is exchanged with the neighbour’s to get the track distance smaller than the previous track, without testing. Genetic algorithms depend on the input parameters, they are the number of population, the probability of crossover, mutation probability and the number of generations. To simplify the process of determining the shortest path supported by the development of software that uses the google map API. Tests carried out as much as 20 times with the number of city 8, 16, 24 and 32 to see which method is optimal in terms of distance and time computation. Based on experiments conducted with a number of cities 3, 4, 5 and 6 producing the same value and optimal distance for the genetic algorithm and hill climbing, the value of this distance begins to differ with the number of city 7. The overall results shows that these tests, hill climbing are more optimal to number of small cities and the number of cities over 30 optimized using genetic algorithms.
Optimal path planning for a mobile robot using cuckoo search algorithm
Mohanty, Prases K.; Parhi, Dayal R.
2016-03-01
The shortest/optimal path planning is essential for efficient operation of autonomous vehicles. In this article, a new nature-inspired meta-heuristic algorithm has been applied for mobile robot path planning in an unknown or partially known environment populated by a variety of static obstacles. This meta-heuristic algorithm is based on the levy flight behaviour and brood parasitic behaviour of cuckoos. A new objective function has been formulated between the robots and the target and obstacles, which satisfied the conditions of obstacle avoidance and target-seeking behaviour of robots present in the terrain. Depending upon the objective function value of each nest (cuckoo) in the swarm, the robot avoids obstacles and proceeds towards the target. The smooth optimal trajectory is framed with this algorithm when the robot reaches its goal. Some simulation and experimental results are presented at the end of the paper to show the effectiveness of the proposed navigational controller.
Zhou Feng
2013-09-01
Full Text Available A based on Rapidly-exploring Random Tree(RRT and Particle Swarm Optimizer (PSO for path planning of the robot is proposed.First the grid method is built to describe the working space of the mobile robot,then the Rapidly-exploring Random Tree algorithm is used to obtain the global navigation path,and the Particle Swarm Optimizer algorithm is adopted to get the better path.Computer experiment results demonstrate that this novel algorithm can plan an optimal path rapidly in a cluttered environment.The successful obstacle avoidance is achieved,and the model is robust and performs reliably.
An Adaptive Multi-Objective Particle Swarm Optimization Algorithm for Multi-Robot Path Planning
Nizar Hadi Abbas
2016-07-01
Full Text Available This paper discusses an optimal path planning algorithm based on an Adaptive Multi-Objective Particle Swarm Optimization Algorithm (AMOPSO for two case studies. First case, single robot wants to reach a goal in the static environment that contain two obstacles and two danger source. The second one, is improving the ability for five robots to reach the shortest way. The proposed algorithm solves the optimization problems for the first case by finding the minimum distance from initial to goal position and also ensuring that the generated path has a maximum distance from the danger zones. And for the second case, finding the shortest path for every robot and without any collision between them with the shortest time. In order to evaluate the proposed algorithm in term of finding the best solution, six benchmark test functions are used to make a comparison between AMOPSO and the standard MOPSO. The results show that the AMOPSO has a better ability to get away from local optimums with a quickest convergence than the MOPSO. The simulation results using Matlab 2014a, indicate that this methodology is extremely valuable for every robot in multi-robot framework to discover its own particular proper path from the start to the destination position with minimum distance and time.
Calibration of neural networks using genetic algorithms, with application to optimal path planning
Smith, Terence R.; Pitney, Gilbert A.; Greenwood, Daniel
1987-01-01
Genetic algorithms (GA) are used to search the synaptic weight space of artificial neural systems (ANS) for weight vectors that optimize some network performance function. GAs do not suffer from some of the architectural constraints involved with other techniques and it is straightforward to incorporate terms into the performance function concerning the metastructure of the ANS. Hence GAs offer a remarkably general approach to calibrating ANS. GAs are applied to the problem of calibrating an ANS that finds optimal paths over a given surface. This problem involves training an ANS on a relatively small set of paths and then examining whether the calibrated ANS is able to find good paths between arbitrary start and end points on the surface.
Zamirian, M.; Kamyad, A.V.; Farahi, M.H.
2009-01-01
In this Letter a new approach for solving optimal path planning problems for a single rigid and free moving object in a two and three dimensional space in the presence of stationary or moving obstacles is presented. In this approach the path planning problems have some incompatible objectives such as the length of path that must be minimized, the distance between the path and obstacles that must be maximized and etc., then a multi-objective dynamic optimization problem (MODOP) is achieved. Considering the imprecise nature of decision maker's (DM) judgment, these multiple objectives are viewed as fuzzy variables. By determining intervals for the values of these fuzzy variables, flexible monotonic decreasing or increasing membership functions are determined as the degrees of satisfaction of these fuzzy variables on their intervals. Then, the optimal path planning policy is searched by maximizing the aggregated fuzzy decision values, resulting in a fuzzy multi-objective dynamic optimization problem (FMODOP). Using a suitable t-norm, the FMODOP is converted into a non-linear dynamic optimization problem (NLDOP). By using parametrization method and some calculations, the NLDOP is converted into the sequence of conventional non-linear programming problems (NLPP). It is proved that the solution of this sequence of the NLPPs tends to a Pareto optimal solution which, among other Pareto optimal solutions, has the best satisfaction of DM for the MODOP. Finally, the above procedure as a novel algorithm integrating parametrization method and fuzzy aggregation to solve the MODOP is proposed. Efficiency of our approach is confirmed by some numerical examples.
A new multiple robot path planning algorithm: dynamic distributed particle swarm optimization.
Ayari, Asma; Bouamama, Sadok
2017-01-01
Multiple robot systems have become a major study concern in the field of robotic research. Their control becomes unreliable and even infeasible if the number of robots increases. In this paper, a new dynamic distributed particle swarm optimization (D 2 PSO) algorithm is proposed for trajectory path planning of multiple robots in order to find collision-free optimal path for each robot in the environment. The proposed approach consists in calculating two local optima detectors, LOD pBest and LOD gBest . Particles which are unable to improve their personal best and global best for predefined number of successive iterations would be replaced with restructured ones. Stagnation and local optima problems would be avoided by adding diversity to the population, without losing the fast convergence characteristic of PSO. Experiments with multiple robots are provided and proved effectiveness of such approach compared with the distributed PSO.
Optimization of IBF parameters based on adaptive tool-path algorithm
Deng, Wen Hui; Chen, Xian Hua; Jin, Hui Liang; Zhong, Bo; Hou, Jin; Li, An Qi
2018-03-01
As a kind of Computer Controlled Optical Surfacing(CCOS) technology. Ion Beam Figuring(IBF) has obvious advantages in the control of surface accuracy, surface roughness and subsurface damage. The superiority and characteristics of IBF in optical component processing are analyzed from the point of view of removal mechanism. For getting more effective and automatic tool path with the information of dwell time, a novel algorithm is proposed in this thesis. Based on the removal functions made through our IBF equipment and the adaptive tool-path, optimized parameters are obtained through analysis the residual error that would be created in the polishing process. A Φ600 mm plane reflector element was used to be a simulation instance. The simulation result shows that after four combinations of processing, the surface accuracy of PV (Peak Valley) value and the RMS (Root Mean Square) value was reduced to 4.81 nm and 0.495 nm from 110.22 nm and 13.998 nm respectively in the 98% aperture. The result shows that the algorithm and optimized parameters provide a good theoretical for high precision processing of IBF.
Bakar, Sumarni Abu; Ibrahim, Milbah
2017-08-01
The shortest path problem is a popular problem in graph theory. It is about finding a path with minimum length between a specified pair of vertices. In any network the weight of each edge is usually represented in a form of crisp real number and subsequently the weight is used in the calculation of shortest path problem using deterministic algorithms. However, due to failure, uncertainty is always encountered in practice whereby the weight of edge of the network is uncertain and imprecise. In this paper, a modified algorithm which utilized heuristic shortest path method and fuzzy approach is proposed for solving a network with imprecise arc length. Here, interval number and triangular fuzzy number in representing arc length of the network are considered. The modified algorithm is then applied to a specific example of the Travelling Salesman Problem (TSP). Total shortest distance obtained from this algorithm is then compared with the total distance obtained from traditional nearest neighbour heuristic algorithm. The result shows that the modified algorithm can provide not only on the sequence of visited cities which shown to be similar with traditional approach but it also provides a good measurement of total shortest distance which is lesser as compared to the total shortest distance calculated using traditional approach. Hence, this research could contribute to the enrichment of methods used in solving TSP.
Tran, Huu-Khoa; Chiou, Juing -Shian; Peng, Shou-Tao
2016-01-01
In this paper, the feasibility of a Genetic Algorithm Optimization (GAO) education software based Fuzzy Logic Controller (GAO-FLC) for simulating the flight motion control of Unmanned Aerial Vehicles (UAVs) is designed. The generated flight trajectories integrate the optimized Scaling Factors (SF) fuzzy controller gains by using GAO algorithm. The…
Optimal multigrid algorithms for the massive Gaussian model and path integrals
Brandt, A.; Galun, M.
1996-01-01
Multigrid algorithms are presented which, in addition to eliminating the critical slowing down, can also eliminate the open-quotes volume factorclose quotes. The elimination of the volume factor removes the need to produce many independent fine-grid configurations for averaging out their statistical deviations, by averaging over the many samples produced on coarse grids during the multigrid cycle. Thermodynamic limits of observables can be calculated to relative accuracy var-epsilon r in just O(var-epsilon r -2 ) computer operations, where var-epsilon r is the error relative to the standard deviation of the observable. In this paper, we describe in detail the calculation of the susceptibility in the one-dimensional massive Gaussian model, which is also a simple example of path integrals. Numerical experiments show that the susceptibility can be calculated to relative accuracy var-epsilon r in about 8 var-epsilon r -2 random number generations, independent of the mass size
Hardware Genetic Algorithm Optimization by Critical Path Analysis using a Custom VLSI Architecture
Farouk Smith
2015-07-01
Full Text Available This paper propose a Virtual-Field Programmable Gate Array (V-FPGA architecture that allows direct access to its configuration bits to facilitate hardware evolution, thereby allowing any combinational or sequential digital circuit to be realized. By using the V-FPGA, this paper investigates two possible ways of making evolutionary hardware systems more scalable: by optimizing the system’s genetic algorithm (GA; and by decomposing the solution circuit into smaller, evolvable sub-circuits. GA optimization is done by: omitting a canonical GA’s crossover operator (i.e. by using a 1+λ algorithm; applying evolution constraints; and optimizing the fitness function. A noteworthy contribution this research has made is the in-depth analysis of the phenotypes’ CPs. Through analyzing the CPs, it has been shown that a great amount of insight can be gained into a phenotype’s fitness. We found that as the number of columns in the Cartesian Genetic Programming array increases, so the likelihood of an external output being placed in the column decreases. Furthermore, the number of used LEs per column also substantially decreases per added column. Finally, we demonstrated the evolution of a state-decomposed control circuit. It was shown that the evolution of each state’s sub-circuit was possible, and suggest that modular evolution can be a successful tool when dealing with scalability.
Welding Robot Collision-Free Path Optimization
Xuewu Wang
2017-02-01
Full Text Available Reasonable welding path has a significant impact on welding efficiency, and a collision-free path should be considered first in the process of welding robot path planning. The shortest path length is considered as an optimization objective, and obstacle avoidance is considered as the constraint condition in this paper. First, a grid method is used as a modeling method after the optimization objective is analyzed. For local collision-free path planning, an ant colony algorithm is selected as the search strategy. Then, to overcome the shortcomings of the ant colony algorithm, a secondary optimization is presented to improve the optimization performance. Finally, the particle swarm optimization algorithm is used to realize global path planning. Simulation results show that the desired welding path can be obtained based on the optimization strategy.
Anish Pandey
2017-02-01
Full Text Available This article introduces a singleton type-1 fuzzy logic system (T1-SFLS controller and Fuzzy-WDO hybrid for the autonomous mobile robot navigation and collision avoidance in an unknown static and dynamic environment. The WDO (Wind Driven Optimization algorithm is used to optimize and tune the input/output membership function parameters of the fuzzy controller. The WDO algorithm is working based on the atmospheric motion of infinitesimal small air parcels navigates over an N-dimensional search domain. The performance of this proposed technique has compared through many computer simulations and real-time experiments by using Khepera-III mobile robot. As compared to the T1-SFLS controller the Fuzzy-WDO algorithm is found good agreement for mobile robot navigation.
Euclidean shortest paths exact or approximate algorithms
Li, Fajie
2014-01-01
This book reviews algorithms for the exact or approximate solution of shortest-path problems, with a specific focus on a class of algorithms called rubberband algorithms. The coverage includes mathematical proofs for many of the given statements.
Multi-AGV path planning with double-path constraints by using an improved genetic algorithm.
Zengliang Han
Full Text Available This paper investigates an improved genetic algorithm on multiple automated guided vehicle (multi-AGV path planning. The innovations embody in two aspects. First, three-exchange crossover heuristic operators are used to produce more optimal offsprings for getting more information than with the traditional two-exchange crossover heuristic operators in the improved genetic algorithm. Second, double-path constraints of both minimizing the total path distance of all AGVs and minimizing single path distances of each AGV are exerted, gaining the optimal shortest total path distance. The simulation results show that the total path distance of all AGVs and the longest single AGV path distance are shortened by using the improved genetic algorithm.
Ehsan Zakeri
Full Text Available Abstract In this research, generation of a short and smooth path in three-dimensional space with obstacles for guiding an Unmanned Underwater Vehicle (UUV without collision is investigated. This is done by utilizing spline technique, in which the spline control points positions are determined by Imperialist Competitive Algorithm (ICA in three-dimensional space such that the shortest possible path from the starting point to the target point without colliding with obstacles is achieved. Furthermore, for guiding the UUV in the generated path, an Interval Type-2 Fuzzy Logic Controller (IT2FLC, the coefficients of which are optimized by considering an objective function that includes quadratic terms of the input forces and state error of the system, is used. Selecting such objective function reduces the control error and also the force applied to the UUV, which consequently leads to reduction of energy consumption. Therefore, by using a special method, desired signals of UUV state are obtained from generated three-dimensional optimal path such that tracking these signals by the controller leads to the tracking of this path by UUV. In this paper, the dynamical model of the UUV, entitled as "mUUV-WJ-1" , is derived and its hydrodynamic coefficients are calculated by CFD in order to be used in the simulations. For simulation by the method presented in this study, three environments with different obstacles are intended in order to check the performance of the IT2FLC controller in generating optimal paths for guiding the UUV. In this article, in addition to ICA, Particle Swarm Optimization (PSO and Artificial Bee Colony (ABC are also used for generation of the paths and the results are compared with each other. The results show the appropriate performance of ICA rather than ABC and PSO. Moreover, to evaluate the performance of the IT2FLC, optimal Type-1 Fuzzy Logic Controller (T1FLC and Proportional Integrator Differentiator (PID controller are designed
R Goudarzi
2018-03-01
Full Text Available Introduction The demand of pre-determined optimal coverage paths in agricultural environments have been increased due to the growing application of field robots and autonomous field machines. Also coverage path planning problem (CPP has been extensively studied in robotics and many algorithms have been provided in many topics, but differences and limitations in agriculture lead to several different heuristic and modified adaptive methods from robotics. In this paper, a modified and enhanced version of currently used decomposition algorithm in robotics (boustrophedon cellular decomposition has been presented as a main part of path planning systems of agricultural vehicles. Developed algorithm is based on the parallelization of the edges of the polygon representing the environment to satisfy the requirements of the problem as far as possible. This idea is based on "minimum facing to the cost making condition" in turn, it is derived from encounter concept as a basis of cost making factors. Materials and Methods Generally, a line termed as a slice in boustrophedon cellular decomposition (BCD, sweeps an area in a pre-determined direction and decomposes the area only at critical points (where two segments can be extended to top and bottom of the point. Furthermore, sweep line direction does not change until the decomposition finish. To implement the BCD for parallelization method, two modifications were applied in order to provide a modified version of the boustrophedon cellular decomposition (M-BCD. In the first modification, the longest edge (base edge is targeted, and sweep line direction is set in line with the base edge direction (sweep direction is set perpendicular to the sweep line direction. Then Sweep line moves through the environment and stops at the first (nearest critical point. Next sweep direction will be the same as previous, If the length of those polygon's newly added edges, during the decomposition, are less than or equal to the
Optimal Paths in Gliding Flight
Wolek, Artur
Underwater gliders are robust and long endurance ocean sampling platforms that are increasingly being deployed in coastal regions. This new environment is characterized by shallow waters and significant currents that can challenge the mobility of these efficient (but traditionally slow moving) vehicles. This dissertation aims to improve the performance of shallow water underwater gliders through path planning. The path planning problem is formulated for a dynamic particle (or "kinematic car") model. The objective is to identify the path which satisfies specified boundary conditions and minimizes a particular cost. Several cost functions are considered. The problem is addressed using optimal control theory. The length scales of interest for path planning are within a few turn radii. First, an approach is developed for planning minimum-time paths, for a fixed speed glider, that are sub-optimal but are guaranteed to be feasible in the presence of unknown time-varying currents. Next the minimum-time problem for a glider with speed controls, that may vary between the stall speed and the maximum speed, is solved. Last, optimal paths that minimize change in depth (equivalently, maximize range) are investigated. Recognizing that path planning alone cannot overcome all of the challenges associated with significant currents and shallow waters, the design of a novel underwater glider with improved capabilities is explored. A glider with a pneumatic buoyancy engine (allowing large, rapid buoyancy changes) and a cylindrical moving mass mechanism (generating large pitch and roll moments) is designed, manufactured, and tested to demonstrate potential improvements in speed and maneuverability.
Lane, John S
1977-01-01
The overall purpose of this monograph is to integrate and critically evaluate the existing literature in the area of optimal joint savings population programs. The existing diverse presentations are all seen to be discussions within a unified framework. The central problem is to compare the desirability of alternative inter-temporal sequences of total savings and population sizes. Of critical importance is whether one regards persons as the fundamental moral entities or whether one takes Sidgwick's viewpoint that something good being the result of one's action is the baSic reason for dOing anything. The latter viewpoint is consistent with defining a complete social preference ordering over these alternative sequences. Since part of one's interest is to evaluate the consequences of various ethical beliefs a com parative study of several such orderings is presented; in particular the Mill-Wolfe average utilitarian, and Sidgwick-Meade classical utilitarian) formulations. A possible problem with the social pref...
Quad-rotor flight path energy optimization
Kemper, Edward
Quad-Rotor unmanned areal vehicles (UAVs) have been a popular area of research and development in the last decade, especially with the advent of affordable microcontrollers like the MSP 430 and the Raspberry Pi. Path-Energy Optimization is an area that is well developed for linear systems. In this thesis, this idea of path-energy optimization is extended to the nonlinear model of the Quad-rotor UAV. The classical optimization technique is adapted to the nonlinear model that is derived for the problem at hand, coming up with a set of partial differential equations and boundary value conditions to solve these equations. Then, different techniques to implement energy optimization algorithms are tested using simulations in Python. First, a purely nonlinear approach is used. This method is shown to be computationally intensive, with no practical solution available in a reasonable amount of time. Second, heuristic techniques to minimize the energy of the flight path are tested, using Ziegler-Nichols' proportional integral derivative (PID) controller tuning technique. Finally, a brute force look-up table based PID controller is used. Simulation results of the heuristic method show that both reliable control of the system and path-energy optimization are achieved in a reasonable amount of time.
Optimization algorithms and applications
Arora, Rajesh Kumar
2015-01-01
Choose the Correct Solution Method for Your Optimization ProblemOptimization: Algorithms and Applications presents a variety of solution techniques for optimization problems, emphasizing concepts rather than rigorous mathematical details and proofs. The book covers both gradient and stochastic methods as solution techniques for unconstrained and constrained optimization problems. It discusses the conjugate gradient method, Broyden-Fletcher-Goldfarb-Shanno algorithm, Powell method, penalty function, augmented Lagrange multiplier method, sequential quadratic programming, method of feasible direc
Primal-dual path-following algorithms for circular programming
Baha Alzalg
2017-06-01
Full Text Available Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003 3--51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan algebras associated with the circular cones to derive primal-dual path-following interior point algorithms for circular programming problems. We prove polynomial convergence of the proposed algorithms by showing that the circular logarithmic barrier is a strongly self-concordant barrier. The numerical examples show the path-following algorithms are simple and efficient.
A Minimum Path Algorithm Among 3D-Polyhedral Objects
Yeltekin, Aysin
1989-03-01
In this work we introduce a minimum path theorem for 3D case. We also develop an algorithm based on the theorem we prove. The algorithm will be implemented on the software package we develop using C language. The theorem we introduce states that; "Given the initial point I, final point F and S be the set of finite number of static obstacles then an optimal path P from I to F, such that PA S = 0 is composed of straight line segments which are perpendicular to the edge segments of the objects." We prove the theorem as well as we develop the following algorithm depending on the theorem to find the minimum path among 3D-polyhedral objects. The algorithm generates the point Qi on edge ei such that at Qi one can find the line which is perpendicular to the edge and the IF line. The algorithm iteratively provides a new set of initial points from Qi and exploits all possible paths. Then the algorithm chooses the minimum path among the possible ones. The flowchart of the program as well as the examination of its numerical properties are included.
Time optimal paths for high speed maneuvering
Reister, D.B.; Lenhart, S.M.
1993-01-01
Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature of the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.
Survey of Robot 3D Path Planning Algorithms
Liang Yang
2016-01-01
Full Text Available Robot 3D (three-dimension path planning targets for finding an optimal and collision-free path in a 3D workspace while taking into account kinematic constraints (including geometric, physical, and temporal constraints. The purpose of path planning, unlike motion planning which must be taken into consideration of dynamics, is to find a kinematically optimal path with the least time as well as model the environment completely. We discuss the fundamentals of these most successful robot 3D path planning algorithms which have been developed in recent years and concentrate on universally applicable algorithms which can be implemented in aerial robots, ground robots, and underwater robots. This paper classifies all the methods into five categories based on their exploring mechanisms and proposes a category, called multifusion based algorithms. For all these algorithms, they are analyzed from a time efficiency and implementable area perspective. Furthermore a comprehensive applicable analysis for each kind of method is presented after considering their merits and weaknesses.
Path Planning Algorithms for Autonomous Border Patrol Vehicles
Lau, George Tin Lam
This thesis presents an online path planning algorithm developed for unmanned vehicles in charge of autonomous border patrol. In this Pursuit-Evasion game, the unmanned vehicle is required to capture multiple trespassers on its own before any of them reach a target safe house where they are safe from capture. The problem formulation is based on Isaacs' Target Guarding problem, but extended to the case of multiple evaders. The proposed path planning method is based on Rapidly-exploring random trees (RRT) and is capable of producing trajectories within several seconds to capture 2 or 3 evaders. Simulations are carried out to demonstrate that the resulting trajectories approach the optimal solution produced by a nonlinear programming-based numerical optimal control solver. Experiments are also conducted on unmanned ground vehicles to show the feasibility of implementing the proposed online path planning algorithm on physical applications.
Nature-inspired optimization algorithms
Yang, Xin-She
2014-01-01
Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning
Group leaders optimization algorithm
Daskin, Anmer; Kais, Sabre
2011-03-01
We present a new global optimization algorithm in which the influence of the leaders in social groups is used as an inspiration for the evolutionary technique which is designed into a group architecture. To demonstrate the efficiency of the method, a standard suite of single and multi-dimensional optimization functions along with the energies and the geometric structures of Lennard-Jones clusters are given as well as the application of the algorithm on quantum circuit design problems. We show that as an improvement over previous methods, the algorithm scales as N 2.5 for the Lennard-Jones clusters of N-particles. In addition, an efficient circuit design is shown for a two-qubit Grover search algorithm which is a quantum algorithm providing quadratic speedup over the classical counterpart.
Combinatorial optimization theory and algorithms
Korte, Bernhard
2018-01-01
This comprehensive textbook on combinatorial optimization places special emphasis on theoretical results and algorithms with provably good performance, in contrast to heuristics. It is based on numerous courses on combinatorial optimization and specialized topics, mostly at graduate level. This book reviews the fundamentals, covers the classical topics (paths, flows, matching, matroids, NP-completeness, approximation algorithms) in detail, and proceeds to advanced and recent topics, some of which have not appeared in a textbook before. Throughout, it contains complete but concise proofs, and also provides numerous exercises and references. This sixth edition has again been updated, revised, and significantly extended. Among other additions, there are new sections on shallow-light trees, submodular function maximization, smoothed analysis of the knapsack problem, the (ln 4+ɛ)-approximation for Steiner trees, and the VPN theorem. Thus, this book continues to represent the state of the art of combinatorial opti...
A bat algorithm with mutation for UCAV path planning.
Wang, Gaige; Guo, Lihong; Duan, Hong; Liu, Luo; Wang, Heqi
2012-01-01
Path planning for uninhabited combat air vehicle (UCAV) is a complicated high dimension optimization problem, which mainly centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. Original bat algorithm (BA) is used to solve the UCAV path planning problem. Furthermore, a new bat algorithm with mutation (BAM) is proposed to solve the UCAV path planning problem, and a modification is applied to mutate between bats during the process of the new solutions updating. Then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic BA. The realization procedure for original BA and this improved metaheuristic approach BAM is also presented. To prove the performance of this proposed metaheuristic method, BAM is compared with BA and other population-based optimization methods, such as ACO, BBO, DE, ES, GA, PBIL, PSO, and SGA. The experiment shows that the proposed approach is more effective and feasible in UCAV path planning than the other models.
Optimal Quadratic Programming Algorithms
Dostal, Zdenek
2009-01-01
Quadratic programming (QP) is one technique that allows for the optimization of a quadratic function in several variables in the presence of linear constraints. This title presents various algorithms for solving large QP problems. It is suitable as an introductory text on quadratic programming for graduate students and researchers
Algorithm for shortest path search in Geographic Information Systems by using reduced graphs.
Rodríguez-Puente, Rafael; Lazo-Cortés, Manuel S
2013-01-01
The use of Geographic Information Systems has increased considerably since the eighties and nineties. As one of their most demanding applications we can mention shortest paths search. Several studies about shortest path search show the feasibility of using graphs for this purpose. Dijkstra's algorithm is one of the classic shortest path search algorithms. This algorithm is not well suited for shortest path search in large graphs. This is the reason why various modifications to Dijkstra's algorithm have been proposed by several authors using heuristics to reduce the run time of shortest path search. One of the most used heuristic algorithms is the A* algorithm, the main goal is to reduce the run time by reducing the search space. This article proposes a modification of Dijkstra's shortest path search algorithm in reduced graphs. It shows that the cost of the path found in this work, is equal to the cost of the path found using Dijkstra's algorithm in the original graph. The results of finding the shortest path, applying the proposed algorithm, Dijkstra's algorithm and A* algorithm, are compared. This comparison shows that, by applying the approach proposed, it is possible to obtain the optimal path in a similar or even in less time than when using heuristic algorithms.
On algorithm for building of optimal α-decision trees
Alkhalid, Abdulaziz; Chikalov, Igor; Moshkov, Mikhail
2010-01-01
The paper describes an algorithm that constructs approximate decision trees (α-decision trees), which are optimal relatively to one of the following complexity measures: depth, total path length or number of nodes. The algorithm uses dynamic
Cooperative path planning for multi-USV based on improved artificial bee colony algorithm
Cao, Lu; Chen, Qiwei
2018-03-01
Due to the complex constraints, more uncertain factors and critical real-time demand of path planning for multiple unmanned surface vehicle (multi-USV), an improved artificial bee colony (I-ABC) algorithm were proposed to solve the model of cooperative path planning for multi-USV. First the Voronoi diagram of battle field space is conceived to generate the optimal area of USVs paths. Then the chaotic searching algorithm is used to initialize the collection of paths, which is regard as foods of the ABC algorithm. With the limited data, the initial collection can search the optimal area of paths perfectly. Finally simulations of the multi-USV path planning under various threats have been carried out. Simulation results verify that the I-ABC algorithm can improve the diversity of nectar source and the convergence rate of algorithm. It can increase the adaptability of dynamic battlefield and unexpected threats for USV.
Honing process optimization algorithms
Kadyrov, Ramil R.; Charikov, Pavel N.; Pryanichnikova, Valeria V.
2018-03-01
This article considers the relevance of honing processes for creating high-quality mechanical engineering products. The features of the honing process are revealed and such important concepts as the task for optimization of honing operations, the optimal structure of the honing working cycles, stepped and stepless honing cycles, simulation of processing and its purpose are emphasized. It is noted that the reliability of the mathematical model determines the quality parameters of the honing process control. An algorithm for continuous control of the honing process is proposed. The process model reliably describes the machining of a workpiece in a sufficiently wide area and can be used to operate the CNC machine CC743.
Optimal Path Planner for Mobile Robot in 2D Environment
Valeri Kroumov
2004-06-01
Full Text Available The problem of path planning for the case of a mobile robot moving in an environment filled with obstacles with known shapes and positions is studied. A path planner based on the genetic algorithm approach, which generates optimal in length path is proposed. The population member paths are generated by another algorithm, which uses for description of the obstacles an artificial annealing neural network and is based on potential field approach. The resulting path is piecewise linear with changing directions at the corners of the obstacles. Because of this feature, the inverse kinematics problems in controlling differential drive robots are simply solved: to drive the robot to some goal pose (x, y, theta, the robot can be spun in place until it is aimed at (x, y, then driven forward until it is at (x, y, and then spun in place until the required goal orientation
Optimization of educational paths for higher education
Tarasyev, Alexandr A.; Agarkov, Gavriil; Medvedev, Aleksandr
2017-11-01
In our research, we combine the theory of economic behavior and the methodology of increasing efficiency of the human capital to estimate the optimal educational paths. We provide an optimization model for higher education process to analyze possible educational paths for each rational individual. The preferences of each rational individual are compared to the best economically possible educational path. The main factor of the individual choice, which is formed by the formation of optimal educational path, deals with higher salaries level in the chosen economic sector after graduation. Another factor that influences on the economic profit is the reduction of educational costs or the possibility of the budget support for the student. The main outcome of this research consists in correction of the governmental policy of investment in human capital based on the results of educational paths optimal control.
A Method of Forming the Optimal Set of Disjoint Path in Computer Networks
As'ad Mahmoud As'ad ALNASER
2017-04-01
Full Text Available This work provides a short analysis of algorithms of multipath routing. The modified algorithm of formation of the maximum set of not crossed paths taking into account their metrics is offered. Optimization of paths is carried out due to their reconfiguration with adjacent deadlock path. Reconfigurations are realized within the subgraphs including only peaks of the main and an adjacent deadlock path. It allows to reduce the field of formation of an optimum path and time complexity of its formation.
Path planning algorithms for assembly sequence planning. [in robot kinematics
Krishnan, S. S.; Sanderson, Arthur C.
1991-01-01
Planning for manipulation in complex environments often requires reasoning about the geometric and mechanical constraints which are posed by the task. In planning assembly operations, the automatic generation of operations sequences depends on the geometric feasibility of paths which permit parts to be joined into subassemblies. Feasible locations and collision-free paths must be present for part motions, robot and grasping motions, and fixtures. This paper describes an approach to reasoning about the feasibility of straight-line paths among three-dimensional polyhedral parts using an algebra of polyhedral cones. A second method recasts the feasibility conditions as constraints in a nonlinear optimization framework. Both algorithms have been implemented and results are presented.
Warehouse stocking optimization based on dynamic ant colony genetic algorithm
Xiao, Xiaoxu
2018-04-01
In view of the various orders of FAW (First Automotive Works) International Logistics Co., Ltd., the SLP method is used to optimize the layout of the warehousing units in the enterprise, thus the warehouse logistics is optimized and the external processing speed of the order is improved. In addition, the relevant intelligent algorithms for optimizing the stocking route problem are analyzed. The ant colony algorithm and genetic algorithm which have good applicability are emphatically studied. The parameters of ant colony algorithm are optimized by genetic algorithm, which improves the performance of ant colony algorithm. A typical path optimization problem model is taken as an example to prove the effectiveness of parameter optimization.
Sequential Optimization of Paths in Directed Graphs Relative to Different Cost Functions
Abubeker, Jewahir Ali
2011-05-14
This paper is devoted to the consideration of an algorithm for sequential optimization of paths in directed graphs relative to di_erent cost functions. The considered algorithm is based on an extension of dynamic programming which allows to represent the initial set of paths and the set of optimal paths after each application of optimization procedure in the form of a directed acyclic graph.
Sequential Optimization of Paths in Directed Graphs Relative to Different Cost Functions
Abubeker, Jewahir Ali; Chikalov, Igor; Hussain, Shahid; Moshkov, Mikhail
2011-01-01
This paper is devoted to the consideration of an algorithm for sequential optimization of paths in directed graphs relative to di_erent cost functions. The considered algorithm is based on an extension of dynamic programming which allows
New Optimization Algorithms in Physics
Hartmann, Alexander K
2004-01-01
Many physicists are not aware of the fact that they can solve their problems by applying optimization algorithms. Since the number of such algorithms is steadily increasing, many new algorithms have not been presented comprehensively until now. This presentation of recently developed algorithms applied in physics, including demonstrations of how they work and related results, aims to encourage their application, and as such the algorithms selected cover concepts and methods from statistical physics to optimization problems emerging in theoretical computer science.
A Novel Quad Harmony Search Algorithm for Grid-Based Path Finding
Saso Koceski
2014-09-01
Full Text Available A novel approach to the problem of grid-based path finding has been introduced. The method is a block-based search algorithm, founded on the bases of two algorithms, namely the quad-tree algorithm, which offered a great opportunity for decreasing the time needed to compute the solution, and the harmony search (HS algorithm, a meta-heuristic algorithm used to obtain the optimal solution. This quad HS algorithm uses the quad-tree decomposition of free space in the grid to mark the free areas and treat them as a single node, which greatly improves the execution. The results of the quad HS algorithm have been compared to other meta-heuristic algorithms, i.e., ant colony, genetic algorithm, particle swarm optimization and simulated annealing, and it was proved to obtain the best results in terms of time and giving the optimal path.
Laser Cutting Tool Path Optimization
Dewil, Reginald; Cattrysse, Dirk; Vansteenwegen, Pieter
2011-01-01
Given a set of irregular parts nested on a metal sheet, minimize the total non- cutting time for the cutter head, cutting all the required elements and returning to the starting location. The problem is modeled as a generalized traveling sales- person problem with special precedence constraints. An initial feasible solution is generated and improved by local moves embedded in a tabu search framework. The proposed algorithm shows promising results in comparison with a commercial...
Thermodynamic metrics and optimal paths.
Sivak, David A; Crooks, Gavin E
2012-05-11
A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.
Solving fuzzy shortest path problem by genetic algorithm
Syarif, A.; Muludi, K.; Adrian, R.; Gen, M.
2018-03-01
Shortest Path Problem (SPP) is known as one of well-studied fields in the area Operations Research and Mathematical Optimization. It has been applied for many engineering and management designs. The objective is usually to determine path(s) in the network with minimum total cost or traveling time. In the past, the cost value for each arc was usually assigned or estimated as a deteministic value. For some specific real world applications, however, it is often difficult to determine the cost value properly. One way of handling such uncertainty in decision making is by introducing fuzzy approach. With this situation, it will become difficult to solve the problem optimally. This paper presents the investigations on the application of Genetic Algorithm (GA) to a new SPP model in which the cost values are represented as Triangular Fuzzy Number (TFN). We adopts the concept of ranking fuzzy numbers to determine how good the solutions. Here, by giving his/her degree value, the decision maker can determine the range of objective value. This would be very valuable for decision support system in the real world applications.Simulation experiments were carried out by modifying several test problems with 10-25 nodes. It is noted that the proposed approach is capable attaining a good solution with different degree of optimism for the tested problems.
Sequential Optimization of Paths in Directed Graphs Relative to Different Cost Functions
Mahayni, Malek A.
2011-01-01
developed to solve the optimal paths problem with different kinds of graphs. An algorithm that solves the problem of paths’ optimization in directed graphs relative to different cost functions is described in [1]. It follows an approach extended from
Gems of combinatorial optimization and graph algorithms
Skutella, Martin; Stiller, Sebastian; Wagner, Dorothea
2015-01-01
Are you looking for new lectures for your course on algorithms, combinatorial optimization, or algorithmic game theory? Maybe you need a convenient source of relevant, current topics for a graduate student or advanced undergraduate student seminar? Or perhaps you just want an enjoyable look at some beautiful mathematical and algorithmic results, ideas, proofs, concepts, and techniques in discrete mathematics and theoretical computer science? Gems of Combinatorial Optimization and Graph Algorithms is a handpicked collection of up-to-date articles, carefully prepared by a select group of international experts, who have contributed some of their most mathematically or algorithmically elegant ideas. Topics include longest tours and Steiner trees in geometric spaces, cartograms, resource buying games, congestion games, selfish routing, revenue equivalence and shortest paths, scheduling, linear structures in graphs, contraction hierarchies, budgeted matching problems, and motifs in networks. This ...
Aircraft path planning for optimal imaging using dynamic cost functions
Christie, Gordon; Chaudhry, Haseeb; Kochersberger, Kevin
2015-05-01
Unmanned aircraft development has accelerated with recent technological improvements in sensing and communications, which has resulted in an "applications lag" for how these aircraft can best be utilized. The aircraft are becoming smaller, more maneuverable and have longer endurance to perform sensing and sampling missions, but operating them aggressively to exploit these capabilities has not been a primary focus in unmanned systems development. This paper addresses a means of aerial vehicle path planning to provide a realistic optimal path in acquiring imagery for structure from motion (SfM) reconstructions and performing radiation surveys. This method will allow SfM reconstructions to occur accurately and with minimal flight time so that the reconstructions can be executed efficiently. An assumption is made that we have 3D point cloud data available prior to the flight. A discrete set of scan lines are proposed for the given area that are scored based on visibility of the scene. Our approach finds a time-efficient path and calculates trajectories between scan lines and over obstacles encountered along those scan lines. Aircraft dynamics are incorporated into the path planning algorithm as dynamic cost functions to create optimal imaging paths in minimum time. Simulations of the path planning algorithm are shown for an urban environment. We also present our approach for image-based terrain mapping, which is able to efficiently perform a 3D reconstruction of a large area without the use of GPS data.
Path optimization method for the sign problem
Ohnishi Akira
2018-01-01
Full Text Available We propose a path optimization method (POM to evade the sign problem in the Monte-Carlo calculations for complex actions. Among many approaches to the sign problem, the Lefschetz-thimble path-integral method and the complex Langevin method are promising and extensively discussed. In these methods, real field variables are complexified and the integration manifold is determined by the flow equations or stochastically sampled. When we have singular points of the action or multiple critical points near the original integral surface, however, we have a risk to encounter the residual and global sign problems or the singular drift term problem. One of the ways to avoid the singular points is to optimize the integration path which is designed not to hit the singular points of the Boltzmann weight. By specifying the one-dimensional integration-path as z = t +if(t(f ϵ R and by optimizing f(t to enhance the average phase factor, we demonstrate that we can avoid the sign problem in a one-variable toy model for which the complex Langevin method is found to fail. In this proceedings, we propose POM and discuss how we can avoid the sign problem in a toy model. We also discuss the possibility to utilize the neural network to optimize the path.
Z-Q. Luo; J.F. Sturm; S. Zhang (Shuzhong)
1996-01-01
textabstractThis paper establishes the superlinear convergence of a symmetric primal-dual path following algorithm for semidefinite programming under the assumptions that the semidefinite program has a strictly complementary primal-dual optimal solution and that the size of the central path
Determination of Optimal Flow Paths for Safety Injection According to Accident Conditions
Yoo, Kwae Hwan; Kim, Ju Hyun; Kim, Dong Yeong; Na, Man Gyun [Chosun Univ., Gwangju (Korea, Republic of); Hur, Seop; Kim, Changhwoi [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-05-15
In case severe accidents happen, major safety parameters of nuclear reactors are rapidly changed. Therefore, operators are unable to respond appropriately. This situation causes the human error of operators that led to serious accidents at Chernobyl. In this study, we aimed to develop an algorithm that can be used to select the optimal flow path for cold shutdown in serious accidents, and to recover an NPP quickly and efficiently from the severe accidents. In order to select the optimal flow path, we applied a Dijkstra algorithm. The Dijkstra algorithm is used to find the path of minimum total length between two given nodes and needs a weight (or length) matrix. In this study, the weight between nodes was calculated from frictional and minor losses inside pipes. That is, the optimal flow path is found so that the pressure drop between a starting node (water source) and a destination node (position that cooling water is injected) is minimized. In case a severe accident has happened, if we inject cooling water through the optimized flow path, then the nuclear reactor will be safely and effectively returned into the cold shutdown state. In this study, we have analyzed the optimal flow paths for safety injection as a preliminary study for developing an accident recovery system. After analyzing the optimal flow path using the Dijkstra algorithm, and the optimal flow paths were selected by calculating the head loss according to path conditions.
A focussed dynamic path finding algorithm with constraints
Leenen, L
2013-11-01
Full Text Available heuristic to focus the search for an optimal path. Existing approaches to solving path planning problems tend to combine path costs with various other criteria such as obstacle avoidance in the objective function which is being optimised. The authors...
Experiments with the auction algorithm for the shortest path problem
Larsen, Jesper; Pedersen, Ib
1999-01-01
The auction approach for the shortest path problem (SPP) as introduced by Bertsekas is tested experimentally. Parallel algorithms using the auction approach are developed and tested. Both the sequential and parallel auction algorithms perform significantly worse than a state-of-the-art Dijkstra-l......-like reference algorithm. Experiments are run on a distributed-memory MIMD class Meiko parallel computer....
Calculating Graph Algorithms for Dominance and Shortest Path
Sergey, Ilya; Midtgaard, Jan; Clarke, Dave
2012-01-01
We calculate two iterative, polynomial-time graph algorithms from the literature: a dominance algorithm and an algorithm for the single-source shortest path problem. Both algorithms are calculated directly from the definition of the properties by fixed-point fusion of (1) a least fixed point...... expressing all finite paths through a directed graph and (2) Galois connections that capture dominance and path length. The approach illustrates that reasoning in the style of fixed-point calculus extends gracefully to the domain of graph algorithms. We thereby bridge common practice from the school...... of program calculation with common practice from the school of static program analysis, and build a novel view on iterative graph algorithms as instances of abstract interpretation...
Optimally stopped variational quantum algorithms
Vinci, Walter; Shabani, Alireza
2018-04-01
Quantum processors promise a paradigm shift in high-performance computing which needs to be assessed by accurate benchmarking measures. In this article, we introduce a benchmark for the variational quantum algorithm (VQA), recently proposed as a heuristic algorithm for small-scale quantum processors. In VQA, a classical optimization algorithm guides the processor's quantum dynamics to yield the best solution for a given problem. A complete assessment of the scalability and competitiveness of VQA should take into account both the quality and the time of dynamics optimization. The method of optimal stopping, employed here, provides such an assessment by explicitly including time as a cost factor. Here, we showcase this measure for benchmarking VQA as a solver for some quadratic unconstrained binary optimization. Moreover, we show that a better choice for the cost function of the classical routine can significantly improve the performance of the VQA algorithm and even improve its scaling properties.
A hybrid metaheuristic DE/CS algorithm for UCAV three-dimension path planning.
Wang, Gaige; Guo, Lihong; Duan, Hong; Wang, Heqi; Liu, Luo; Shao, Mingzhen
2012-01-01
Three-dimension path planning for uninhabited combat air vehicle (UCAV) is a complicated high-dimension optimization problem, which primarily centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. A new hybrid metaheuristic differential evolution (DE) and cuckoo search (CS) algorithm is proposed to solve the UCAV three-dimension path planning problem. DE is applied to optimize the process of selecting cuckoos of the improved CS model during the process of cuckoo updating in nest. The cuckoos can act as an agent in searching the optimal UCAV path. And then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic CS. The realization procedure for this hybrid metaheuristic approach DE/CS is also presented. In order to make the optimized UCAV path more feasible, the B-Spline curve is adopted for smoothing the path. To prove the performance of this proposed hybrid metaheuristic method, it is compared with basic CS algorithm. The experiment shows that the proposed approach is more effective and feasible in UCAV three-dimension path planning than the basic CS model.
Kinetic constrained optimization of the golf swing hub path.
Nesbit, Steven M; McGinnis, Ryan S
2014-12-01
This study details an optimization of the golf swing, where the hand path and club angular trajectories are manipulated. The optimization goal was to maximize club head velocity at impact within the interaction kinetic limitations (force, torque, work, and power) of the golfer as determined through the analysis of a typical swing using a two-dimensional dynamic model. The study was applied to four subjects with diverse swing capabilities and styles. It was determined that it is possible for all subjects to increase their club head velocity at impact within their respective kinetic limitations through combined modifications to their respective hand path and club angular trajectories. The manner of the modifications, the degree of velocity improvement, the amount of kinetic reduction, and the associated kinetic limitation quantities were subject dependent. By artificially minimizing selected kinetic inputs within the optimization algorithm, it was possible to identify swing trajectory characteristics that indicated relative kinetic weaknesses of a subject. Practical implications are offered based upon the findings of the study. Key PointsThe hand path trajectory is an important characteristic of the golf swing and greatly affects club head velocity and golfer/club energy transfer.It is possible to increase the energy transfer from the golfer to the club by modifying the hand path and swing trajectories without increasing the kinetic output demands on the golfer.It is possible to identify relative kinetic output strengths and weakness of a golfer through assessment of the hand path and swing trajectories.Increasing any one of the kinetic outputs of the golfer can potentially increase the club head velocity at impact.The hand path trajectory has important influences over the club swing trajectory.
Optimal Path Determination for Flying Vehicle to Search an Object
Heru Tjahjana, R.; Heri Soelistyo U, R.; Ratnasari, L.; Irawanto, B.
2018-01-01
In this paper, a method to determine optimal path for flying vehicle to search an object is proposed. Background of the paper is controlling air vehicle to search an object. Optimal path determination is one of the most popular problem in optimization. This paper describe model of control design for a flying vehicle to search an object, and focus on the optimal path that used to search an object. In this paper, optimal control model is used to control flying vehicle to make the vehicle move in optimal path. If the vehicle move in optimal path, then the path to reach the searched object also optimal. The cost Functional is one of the most important things in optimal control design, in this paper the cost functional make the air vehicle can move as soon as possible to reach the object. The axis reference of flying vehicle uses N-E-D (North-East-Down) coordinate system. The result of this paper are the theorems which say that the cost functional make the control optimal and make the vehicle move in optimal path are proved analytically. The other result of this paper also shows the cost functional which used is convex. The convexity of the cost functional is use for guarantee the existence of optimal control. This paper also expose some simulations to show an optimal path for flying vehicle to search an object. The optimization method which used to find the optimal control and optimal path vehicle in this paper is Pontryagin Minimum Principle.
On algorithm for building of optimal α-decision trees
Alkhalid, Abdulaziz
2010-01-01
The paper describes an algorithm that constructs approximate decision trees (α-decision trees), which are optimal relatively to one of the following complexity measures: depth, total path length or number of nodes. The algorithm uses dynamic programming and extends methods described in [4] to constructing approximate decision trees. Adjustable approximation rate allows controlling algorithm complexity. The algorithm is applied to build optimal α-decision trees for two data sets from UCI Machine Learning Repository [1]. © 2010 Springer-Verlag Berlin Heidelberg.
Path Planning with a Lazy Significant Edge Algorithm (LSEA
Joseph Polden
2013-04-01
Full Text Available Probabilistic methods have been proven to be effective for robotic path planning in a geometrically complex environment. In this paper, we propose a novel approach, which utilizes a specialized roadmap expansion phase, to improve lazy probabilistic path planning. This expansion phase analyses roadmap connectivity information to bias sampling towards objects in the workspace that have not yet been navigated by the robot. A new method to reduce the number of samples required to navigate narrow passages is also proposed and tested. Experimental results show that the new algorithm is more efficient than the traditional path planning methodologies. It was able to generate solutions for a variety of path planning problems faster, using fewer samples to arrive at a valid solution.
Multiple Object Tracking Using the Shortest Path Faster Association Algorithm
Zhenghao Xi
2014-01-01
Full Text Available To solve the persistently multiple object tracking in cluttered environments, this paper presents a novel tracking association approach based on the shortest path faster algorithm. First, the multiple object tracking is formulated as an integer programming problem of the flow network. Then we relax the integer programming to a standard linear programming problem. Therefore, the global optimum can be quickly obtained using the shortest path faster algorithm. The proposed method avoids the difficulties of integer programming, and it has a lower worst-case complexity than competing methods but better robustness and tracking accuracy in complex environments. Simulation results show that the proposed algorithm takes less time than other state-of-the-art methods and can operate in real time.
Optimizing learning path selection through memetic algorithms
Acampora, G.; Gaeta, M.; Loia, V.; Ritrovato, P.; Salerno, S.
2008-01-01
e-Learning is a critical support mechanism for industrial and academic organizations to enhance the skills of employees and students and, consequently, the overall competitiveness in the new economy. The remarkable velocity and volatility of modern knowledge require novel learning methods offering
Optimized path planning for soft tissue resection via laser vaporization
Ross, Weston; Cornwell, Neil; Tucker, Matthew; Mann, Brian; Codd, Patrick
2018-02-01
Robotic and robotic-assisted surgeries are becoming more prevalent with the promise of improving surgical outcomes through increased precision, reduced operating times, and minimally invasive procedures. The handheld laser scalpel in neurosurgery has been shown to provide a more gentle approach to tissue manipulation on or near critical structures over classical tooling, though difficulties of control have prevented large scale adoption of the tool. This paper presents a novel approach to generating a cutting path for the volumetric resection of tissue using a computer-guided laser scalpel. A soft tissue ablation simulator is developed and used in conjunction with an optimization routine to select parameters which maximize the total resection of target tissue while minimizing the damage to surrounding tissue. The simulator predicts the ablative properties of tissue from an interrogation cut for tuning and simulates the removal of a tumorous tissue embedded on the surface of healthy tissue using a laser scalpel. We demonstrate the ability to control depth and smoothness of cut using genetic algorithms to optimize the ablation parameters and cutting path. The laser power level, cutting rate and spacing between cuts are optimized over multiple surface cuts to achieve the desired resection volumes.
Kinetic Constrained Optimization of the Golf Swing Hub Path
Steven M. Nesbit
2014-12-01
Full Text Available This study details an optimization of the golf swing, where the hand path and club angular trajectories are manipulated. The optimization goal was to maximize club head velocity at impact within the interaction kinetic limitations (force, torque, work, and power of the golfer as determined through the analysis of a typical swing using a two-dimensional dynamic model. The study was applied to four subjects with diverse swing capabilities and styles. It was determined that it is possible for all subjects to increase their club head velocity at impact within their respective kinetic limitations through combined modifications to their respective hand path and club angular trajectories. The manner of the modifications, the degree of velocity improvement, the amount of kinetic reduction, and the associated kinetic limitation quantities were subject dependent. By artificially minimizing selected kinetic inputs within the optimization algorithm, it was possible to identify swing trajectory characteristics that indicated relative kinetic weaknesses of a subject. Practical implications are offered based upon the findings of the study.
ESHOPPS: A COMPUTATIONAL TOOL TO AID THE TEACHING OF SHORTEST PATH ALGORITHMS
S. J. de A. LIMA
2015-07-01
Full Text Available The development of a computational tool called EShoPPS – Environment for Shortest Path Problem Solving, which is used to assist students in understanding the working of Dijkstra, Greedy search and A*(star algorithms is presented in this paper. Such algorithms are commonly taught in graduate and undergraduate courses of Engineering and Informatics and are used for solving many optimization problems that can be characterized as Shortest Path Problem. The EShoPPS is an interactive tool that allows students to create a graph representing the problem and also helps in developing their knowledge of each specific algorithm. Experiments performed with 155 students of undergraduate and graduate courses such as Industrial Engineering, Computer Science and Information Systems have shown that by using the EShoPPS tool students were able to improve their interpretation of investigated algorithms.
Path Planning Algorithms for the Adaptive Sensor Fleet
Stoneking, Eric; Hosler, Jeff
2005-01-01
The Adaptive Sensor Fleet (ASF) is a general purpose fleet management and planning system being developed by NASA in coordination with NOAA. The current mission of ASF is to provide the capability for autonomous cooperative survey and sampling of dynamic oceanographic phenomena such as current systems and algae blooms. Each ASF vessel is a software model that represents a real world platform that carries a variety of sensors. The OASIS platform will provide the first physical vessel, outfitted with the systems and payloads necessary to execute the oceanographic observations described in this paper. The ASF architecture is being designed for extensibility to accommodate heterogenous fleet elements, and is not limited to using the OASIS platform to acquire data. This paper describes the path planning algorithms developed for the acquisition phase of a typical ASF task. Given a polygonal target region to be surveyed, the region is subdivided according to the number of vessels in the fleet. The subdivision algorithm seeks a solution in which all subregions have equal area and minimum mean radius. Once the subregions are defined, a dynamic programming method is used to find a minimum-time path for each vessel from its initial position to its assigned region. This path plan includes the effects of water currents as well as avoidance of known obstacles. A fleet-level planning algorithm then shuffles the individual vessel assignments to find the overall solution which puts all vessels in their assigned regions in the minimum time. This shuffle algorithm may be described as a process of elimination on the sorted list of permutations of a cost matrix. All these path planning algorithms are facilitated by discretizing the region of interest onto a hexagonal tiling.
Real-time Collision Avoidance and Path Optimizer for Semi-autonomous UAVs.
Hawary, A. F.; Razak, N. A.
2018-05-01
Whilst UAV offers a potentially cheaper and more localized observation platform than current satellite or land-based approaches, it requires an advance path planner to reveal its true potential, particularly in real-time missions. Manual control by human will have limited line-of-sights and prone to errors due to careless and fatigue. A good alternative solution is to equip the UAV with semi-autonomous capabilities that able to navigate via a pre-planned route in real-time fashion. In this paper, we propose an easy-and-practical path optimizer based on the classical Travelling Salesman Problem and adopts a brute force search method to re-optimize the route in the event of collisions using range finder sensor. The former utilizes a Simple Genetic Algorithm and the latter uses Nearest Neighbour algorithm. Both algorithms are combined to optimize the route and avoid collision at once. Although many researchers proposed various path planning algorithms, we find that it is difficult to integrate on a basic UAV model and often lacks of real-time collision detection optimizer. Therefore, we explore a practical benefit from this approach using on-board Arduino and Ardupilot controllers by manually emulating the motion of an actual UAV model prior to test on the flying site. The result showed that the range finder sensor provides a real-time data to the algorithm to find a collision-free path and eventually optimized the route successfully.
Toward solving the sign problem with path optimization method
Mori, Yuto; Kashiwa, Kouji; Ohnishi, Akira
2017-12-01
We propose a new approach to circumvent the sign problem in which the integration path is optimized to control the sign problem. We give a trial function specifying the integration path in the complex plane and tune it to optimize the cost function which represents the seriousness of the sign problem. We call it the path optimization method. In this method, we do not need to solve the gradient flow required in the Lefschetz-thimble method and then the construction of the integration-path contour arrives at the optimization problem where several efficient methods can be applied. In a simple model with a serious sign problem, the path optimization method is demonstrated to work well; the residual sign problem is resolved and precise results can be obtained even in the region where the global sign problem is serious.
Computing the optimal path in stochastic dynamical systems
Bauver, Martha; Forgoston, Eric; Billings, Lora
2016-01-01
In stochastic systems, one is often interested in finding the optimal path that maximizes the probability of escape from a metastable state or of switching between metastable states. Even for simple systems, it may be impossible to find an analytic form of the optimal path, and in high-dimensional systems, this is almost always the case. In this article, we formulate a constructive methodology that is used to compute the optimal path numerically. The method utilizes finite-time Lyapunov exponents, statistical selection criteria, and a Newton-based iterative minimizing scheme. The method is applied to four examples. The first example is a two-dimensional system that describes a single population with internal noise. This model has an analytical solution for the optimal path. The numerical solution found using our computational method agrees well with the analytical result. The second example is a more complicated four-dimensional system where our numerical method must be used to find the optimal path. The third example, although a seemingly simple two-dimensional system, demonstrates the success of our method in finding the optimal path where other numerical methods are known to fail. In the fourth example, the optimal path lies in six-dimensional space and demonstrates the power of our method in computing paths in higher-dimensional spaces.
Algorithms for optimizing drug therapy
Martin Lene
2004-07-01
Full Text Available Abstract Background Drug therapy has become increasingly efficient, with more drugs available for treatment of an ever-growing number of conditions. Yet, drug use is reported to be sub optimal in several aspects, such as dosage, patient's adherence and outcome of therapy. The aim of the current study was to investigate the possibility to optimize drug therapy using computer programs, available on the Internet. Methods One hundred and ten officially endorsed text documents, published between 1996 and 2004, containing guidelines for drug therapy in 246 disorders, were analyzed with regard to information about patient-, disease- and drug-related factors and relationships between these factors. This information was used to construct algorithms for identifying optimum treatment in each of the studied disorders. These algorithms were categorized in order to define as few models as possible that still could accommodate the identified factors and the relationships between them. The resulting program prototypes were implemented in HTML (user interface and JavaScript (program logic. Results Three types of algorithms were sufficient for the intended purpose. The simplest type is a list of factors, each of which implies that the particular patient should or should not receive treatment. This is adequate in situations where only one treatment exists. The second type, a more elaborate model, is required when treatment can by provided using drugs from different pharmacological classes and the selection of drug class is dependent on patient characteristics. An easily implemented set of if-then statements was able to manage the identified information in such instances. The third type was needed in the few situations where the selection and dosage of drugs were depending on the degree to which one or more patient-specific factors were present. In these cases the implementation of an established decision model based on fuzzy sets was required. Computer programs
On the efficiency of chaos optimization algorithms for global optimization
Yang Dixiong; Li Gang; Cheng Gengdong
2007-01-01
Chaos optimization algorithms as a novel method of global optimization have attracted much attention, which were all based on Logistic map. However, we have noticed that the probability density function of the chaotic sequences derived from Logistic map is a Chebyshev-type one, which may affect the global searching capacity and computational efficiency of chaos optimization algorithms considerably. Considering the statistical property of the chaotic sequences of Logistic map and Kent map, the improved hybrid chaos-BFGS optimization algorithm and the Kent map based hybrid chaos-BFGS algorithm are proposed. Five typical nonlinear functions with multimodal characteristic are tested to compare the performance of five hybrid optimization algorithms, which are the conventional Logistic map based chaos-BFGS algorithm, improved Logistic map based chaos-BFGS algorithm, Kent map based chaos-BFGS algorithm, Monte Carlo-BFGS algorithm, mesh-BFGS algorithm. The computational performance of the five algorithms is compared, and the numerical results make us question the high efficiency of the chaos optimization algorithms claimed in some references. It is concluded that the efficiency of the hybrid optimization algorithms is influenced by the statistical property of chaotic/stochastic sequences generated from chaotic/stochastic algorithms, and the location of the global optimum of nonlinear functions. In addition, it is inappropriate to advocate the high efficiency of the global optimization algorithms only depending on several numerical examples of low-dimensional functions
Tien, Nguyen Xuan; Kim, Semog; Rhee, Jong Myung; Park, Sang Yoon
2017-07-25
Fault tolerance has long been a major concern for sensor communications in fault-tolerant cyber physical systems (CPSs). Network failure problems often occur in wireless sensor networks (WSNs) due to various factors such as the insufficient power of sensor nodes, the dislocation of sensor nodes, the unstable state of wireless links, and unpredictable environmental interference. Fault tolerance is thus one of the key requirements for data communications in WSN applications. This paper proposes a novel path redundancy-based algorithm, called dual separate paths (DSP), that provides fault-tolerant communication with the improvement of the network traffic performance for WSN applications, such as fault-tolerant CPSs. The proposed DSP algorithm establishes two separate paths between a source and a destination in a network based on the network topology information. These paths are node-disjoint paths and have optimal path distances. Unicast frames are delivered from the source to the destination in the network through the dual paths, providing fault-tolerant communication and reducing redundant unicast traffic for the network. The DSP algorithm can be applied to wired and wireless networks, such as WSNs, to provide seamless fault-tolerant communication for mission-critical and life-critical applications such as fault-tolerant CPSs. The analyzed and simulated results show that the DSP-based approach not only provides fault-tolerant communication, but also improves network traffic performance. For the case study in this paper, when the DSP algorithm was applied to high-availability seamless redundancy (HSR) networks, the proposed DSP-based approach reduced the network traffic by 80% to 88% compared with the standard HSR protocol, thus improving network traffic performance.
Aristeidis Antonakis
2017-04-01
Full Text Available In this article, a new multi-objective approach to the aircraft climb path optimization problem, based on the Particle Swarm Optimization algorithm, is introduced to be used for aircraft–engine integration studies. This considers a combination of a simulation with a traditional Energy approach, which incorporates, among others, the use of a proposed path-tracking scheme for guidance in the Altitude–Mach plane. The adoption of population-based solver serves to simplify case setup, allowing for direct interfaces between the optimizer and aircraft/engine performance codes. A two-level optimization scheme is employed and is shown to improve search performance compared to the basic PSO algorithm. The effectiveness of the proposed methodology is demonstrated in a hypothetic engine upgrade scenario for the F-4 aircraft considering the replacement of the aircraft’s J79 engine with the EJ200; a clear advantage of the EJ200-equipped configuration is unveiled, resulting, on average, in 15% faster climbs with 20% less fuel.
Optimization of the Critical Diameter and Average Path Length of Social Networks
Haifeng Du
2017-01-01
Full Text Available Optimizing average path length (APL by adding shortcut edges has been widely discussed in connection with social networks, but the relationship between network diameter and APL is generally ignored in the dynamic optimization of APL. In this paper, we analyze this relationship and transform the problem of optimizing APL into the problem of decreasing diameter to 2. We propose a mathematic model based on a memetic algorithm. Experimental results show that our algorithm can efficiently solve this problem as well as optimize APL.
Genetic algorithms and fuzzy multiobjective optimization
Sakawa, Masatoshi
2002-01-01
Since the introduction of genetic algorithms in the 1970s, an enormous number of articles together with several significant monographs and books have been published on this methodology. As a result, genetic algorithms have made a major contribution to optimization, adaptation, and learning in a wide variety of unexpected fields. Over the years, many excellent books in genetic algorithm optimization have been published; however, they focus mainly on single-objective discrete or other hard optimization problems under certainty. There appears to be no book that is designed to present genetic algorithms for solving not only single-objective but also fuzzy and multiobjective optimization problems in a unified way. Genetic Algorithms And Fuzzy Multiobjective Optimization introduces the latest advances in the field of genetic algorithm optimization for 0-1 programming, integer programming, nonconvex programming, and job-shop scheduling problems under multiobjectiveness and fuzziness. In addition, the book treats a w...
Path searching in switching networks using cellular algorithm
Koczy, L T; Langer, J; Legendi, T
1981-01-01
After a survey of the important statements in the paper A Mathematical Model of Path Searching in General Type Switching Networks (see IBID., vol.25, no.1, p.31-43, 1981) the authors consider the possible implementation for cellular automata of the algorithm introduced there. The cellular field used consists of 5 neighbour 8 state cells. Running times required by a traditional serial processor and by the cellular field, respectively, are compared. By parallel processing this running time can be reduced. 5 references.
Ahmet Demir
2017-01-01
Full Text Available In the fields which require finding the most appropriate value, optimization became a vital approach to employ effective solutions. With the use of optimization techniques, many different fields in the modern life have found solutions to their real-world based problems. In this context, classical optimization techniques have had an important popularity. But after a while, more advanced optimization problems required the use of more effective techniques. At this point, Computer Science took an important role on providing software related techniques to improve the associated literature. Today, intelligent optimization techniques based on Artificial Intelligence are widely used for optimization problems. The objective of this paper is to provide a comparative study on the employment of classical optimization solutions and Artificial Intelligence solutions for enabling readers to have idea about the potential of intelligent optimization techniques. At this point, two recently developed intelligent optimization algorithms, Vortex Optimization Algorithm (VOA and Cognitive Development Optimization Algorithm (CoDOA, have been used to solve some multidisciplinary optimization problems provided in the source book Thomas' Calculus 11th Edition and the obtained results have compared with classical optimization solutions.
The concept of 'optimal' path in classical mechanics
Passos, E.J.V. de; Cruz, F.F. de S.
1986-01-01
The significance of the concept of 'optimal' path in the framework of classical mechanics is discussed. The derivation of the local harmonic approximation and self-consistent collective coordinate method equations of the optimal path is based on a careful study of the concepts of local maximal decoupling and global maximal decoupling respectively. This exhibits the nature of the differences between these two theories and allows one to establish the conditions under which they become equivalent. (author)
FIREWORKS ALGORITHM FOR UNCONSTRAINED FUNCTION OPTIMIZATION PROBLEMS
Evans BAIDOO
2017-03-01
Full Text Available Modern real world science and engineering problems can be classified as multi-objective optimisation problems which demand for expedient and efficient stochastic algorithms to respond to the optimization needs. This paper presents an object-oriented software application that implements a firework optimization algorithm for function optimization problems. The algorithm, a kind of parallel diffuse optimization algorithm is based on the explosive phenomenon of fireworks. The algorithm presented promising results when compared to other population or iterative based meta-heuristic algorithm after it was experimented on five standard benchmark problems. The software application was implemented in Java with interactive interface which allow for easy modification and extended experimentation. Additionally, this paper validates the effect of runtime on the algorithm performance.
An analysis of 3D particle path integration algorithms
Darmofal, D.L.; Haimes, R.
1996-01-01
Several techniques for the numerical integration of particle paths in steady and unsteady vector (velocity) fields are analyzed. Most of the analysis applies to unsteady vector fields, however, some results apply to steady vector field integration. Multistep, multistage, and some hybrid schemes are considered. It is shown that due to initialization errors, many unsteady particle path integration schemes are limited to third-order accuracy in time. Multistage schemes require at least three times more internal data storage than multistep schemes of equal order. However, for timesteps within the stability bounds, multistage schemes are generally more accurate. A linearized analysis shows that the stability of these integration algorithms are determined by the eigenvalues of the local velocity tensor. Thus, the accuracy and stability of the methods are interpreted with concepts typically used in critical point theory. This paper shows how integration schemes can lead to erroneous classification of critical points when the timestep is finite and fixed. For steady velocity fields, we demonstrate that timesteps outside of the relative stability region can lead to similar integration errors. From this analysis, guidelines for accurate timestep sizing are suggested for both steady and unsteady flows. In particular, using simulation data for the unsteady flow around a tapered cylinder, we show that accurate particle path integration requires timesteps which are at most on the order of the physical timescale of the flow
Simulated annealing algorithm for optimal capital growth
Luo, Yong; Zhu, Bo; Tang, Yong
2014-08-01
We investigate the problem of dynamic optimal capital growth of a portfolio. A general framework that one strives to maximize the expected logarithm utility of long term growth rate was developed. Exact optimization algorithms run into difficulties in this framework and this motivates the investigation of applying simulated annealing optimized algorithm to optimize the capital growth of a given portfolio. Empirical results with real financial data indicate that the approach is inspiring for capital growth portfolio.
Combinatorial optimization algorithms and complexity
Papadimitriou, Christos H
1998-01-01
This clearly written, mathematically rigorous text includes a novel algorithmic exposition of the simplex method and also discusses the Soviet ellipsoid algorithm for linear programming; efficient algorithms for network flow, matching, spanning trees, and matroids; the theory of NP-complete problems; approximation algorithms, local search heuristics for NP-complete problems, more. All chapters are supplemented by thought-provoking problems. A useful work for graduate-level students with backgrounds in computer science, operations research, and electrical engineering.
Li, Bai; Gong, Li-gang; Yang, Wen-lun
2014-01-01
Unmanned combat aerial vehicles (UCAVs) have been of great interest to military organizations throughout the world due to their outstanding capabilities to operate in dangerous or hazardous environments. UCAV path planning aims to obtain an optimal flight route with the threats and constraints in the combat field well considered. In this work, a novel artificial bee colony (ABC) algorithm improved by a balance-evolution strategy (BES) is applied in this optimization scheme. In this new algorithm, convergence information during the iteration is fully utilized to manipulate the exploration/exploitation accuracy and to pursue a balance between local exploitation and global exploration capabilities. Simulation results confirm that BE-ABC algorithm is more competent for the UCAV path planning scheme than the conventional ABC algorithm and two other state-of-the-art modified ABC algorithms.
Bai Li
2014-01-01
Full Text Available Unmanned combat aerial vehicles (UCAVs have been of great interest to military organizations throughout the world due to their outstanding capabilities to operate in dangerous or hazardous environments. UCAV path planning aims to obtain an optimal flight route with the threats and constraints in the combat field well considered. In this work, a novel artificial bee colony (ABC algorithm improved by a balance-evolution strategy (BES is applied in this optimization scheme. In this new algorithm, convergence information during the iteration is fully utilized to manipulate the exploration/exploitation accuracy and to pursue a balance between local exploitation and global exploration capabilities. Simulation results confirm that BE-ABC algorithm is more competent for the UCAV path planning scheme than the conventional ABC algorithm and two other state-of-the-art modified ABC algorithms.
Robust Video Stabilization Using Particle Keypoint Update and l1-Optimized Camera Path
Semi Jeon
2017-02-01
Full Text Available Acquisition of stabilized video is an important issue for various type of digital cameras. This paper presents an adaptive camera path estimation method using robust feature detection to remove shaky artifacts in a video. The proposed algorithm consists of three steps: (i robust feature detection using particle keypoints between adjacent frames; (ii camera path estimation and smoothing; and (iii rendering to reconstruct a stabilized video. As a result, the proposed algorithm can estimate the optimal homography by redefining important feature points in the flat region using particle keypoints. In addition, stabilized frames with less holes can be generated from the optimal, adaptive camera path that minimizes a temporal total variation (TV. The proposed video stabilization method is suitable for enhancing the visual quality for various portable cameras and can be applied to robot vision, driving assistant systems, and visual surveillance systems.
On benchmarking Stochastic Global Optimization Algorithms
Hendrix, E.M.T.; Lancinskas, A.
2015-01-01
A multitude of heuristic stochastic optimization algorithms have been described in literature to obtain good solutions of the box-constrained global optimization problem often with a limit on the number of used function evaluations. In the larger question of which algorithms behave well on which
Optimal Fungal Space Searching Algorithms.
Asenova, Elitsa; Lin, Hsin-Yu; Fu, Eileen; Nicolau, Dan V; Nicolau, Dan V
2016-10-01
Previous experiments have shown that fungi use an efficient natural algorithm for searching the space available for their growth in micro-confined networks, e.g., mazes. This natural "master" algorithm, which comprises two "slave" sub-algorithms, i.e., collision-induced branching and directional memory, has been shown to be more efficient than alternatives, with one, or the other, or both sub-algorithms turned off. In contrast, the present contribution compares the performance of the fungal natural algorithm against several standard artificial homologues. It was found that the space-searching fungal algorithm consistently outperforms uninformed algorithms, such as Depth-First-Search (DFS). Furthermore, while the natural algorithm is inferior to informed ones, such as A*, this under-performance does not importantly increase with the increase of the size of the maze. These findings suggest that a systematic effort of harvesting the natural space searching algorithms used by microorganisms is warranted and possibly overdue. These natural algorithms, if efficient, can be reverse-engineered for graph and tree search strategies.
An Efficient Algorithm for Unconstrained Optimization
Sergio Gerardo de-los-Cobos-Silva
2015-01-01
Full Text Available This paper presents an original and efficient PSO algorithm, which is divided into three phases: (1 stabilization, (2 breadth-first search, and (3 depth-first search. The proposed algorithm, called PSO-3P, was tested with 47 benchmark continuous unconstrained optimization problems, on a total of 82 instances. The numerical results show that the proposed algorithm is able to reach the global optimum. This work mainly focuses on unconstrained optimization problems from 2 to 1,000 variables.
Privacy Preservation in Distributed Subgradient Optimization Algorithms
Lou, Youcheng; Yu, Lean; Wang, Shouyang
2015-01-01
Privacy preservation is becoming an increasingly important issue in data mining and machine learning. In this paper, we consider the privacy preserving features of distributed subgradient optimization algorithms. We first show that a well-known distributed subgradient synchronous optimization algorithm, in which all agents make their optimization updates simultaneously at all times, is not privacy preserving in the sense that the malicious agent can learn other agents' subgradients asymptotic...
The Robot Path Planning Based on Improved Artificial Fish Swarm Algorithm
Yi Zhang
2016-01-01
Full Text Available Path planning is critical to the efficiency and fidelity of robot navigation. The solution of robot path planning is to seek a collision-free and the shortest path from the start node to target node. In this paper, we propose a new improved artificial fish swarm algorithm (IAFSA to process the mobile robot path planning problem in a real environment. In IAFSA, an attenuation function is introduced to improve the visual of standard AFSA and get the balance of global search and local search; also, an adaptive operator is introduced to enhance the adaptive ability of step. Besides, a concept of inertia weight factor is proposed in IAFSA inspired by PSO intelligence algorithm to improve the convergence rate and accuracy of IAFSA. Five unconstrained optimization test functions are given to illustrate the strong searching ability and ideal convergence of IAFSA. Finally, the ROS (robot operation system based experiment is carried out on a Pioneer 3-DX mobile robot; the experiment results also show the superiority of IAFSA.
Sequential Optimization of Paths in Directed Graphs Relative to Different Cost Functions
Mahayni, Malek A.
2011-07-01
Finding optimal paths in directed graphs is a wide area of research that has received much of attention in theoretical computer science due to its importance in many applications (e.g., computer networks and road maps). Many algorithms have been developed to solve the optimal paths problem with different kinds of graphs. An algorithm that solves the problem of paths’ optimization in directed graphs relative to different cost functions is described in [1]. It follows an approach extended from the dynamic programming approach as it solves the problem sequentially and works on directed graphs with positive weights and no loop edges. The aim of this thesis is to implement and evaluate that algorithm to find the optimal paths in directed graphs relative to two different cost functions ( , ). A possible interpretation of a directed graph is a network of roads so the weights for the function represent the length of roads, whereas the weights for the function represent a constraint of the width or weight of a vehicle. The optimization aim for those two functions is to minimize the cost relative to the function and maximize the constraint value associated with the function. This thesis also includes finding and proving the relation between the two different cost functions ( , ). When given a value of one function, we can find the best possible value for the other function. This relation is proven theoretically and also implemented and experimented using Matlab®[2].
Optimal Path Choice in Railway Passenger Travel Network Based on Residual Train Capacity
Fei Dou
2014-01-01
Full Text Available Passenger’s optimal path choice is one of the prominent research topics in the field of railway passenger transport organization. More and more different train types are available, increasing path choices from departure to destination for travelers are unstoppable. However, travelers cannot avoid being confused when they hope to choose a perfect travel plan based on various travel time and cost constraints before departure. In this study, railway passenger travel network is constructed based on train timetable. Both the generalized cost function we developed and the residual train capacity are considered to be the foundation of path searching procedure. The railway passenger travel network topology is analyzed based on residual train capacity. Considering the total travel time, the total travel cost, and the total number of passengers, we propose an optimal path searching algorithm based on residual train capacity in railway passenger travel network. Finally, the rationale of the railway passenger travel network and the optimal path generation algorithm are verified positively by case study.
A Collision-Free G2 Continuous Path-Smoothing Algorithm Using Quadratic Polynomial Interpolation
Seong-Ryong Chang
2014-12-01
Full Text Available Most path-planning algorithms are used to obtain a collision-free path without considering continuity. On the other hand, a continuous path is needed for stable movement. In this paper, the searched path was converted into a G2 continuous path using the modified quadratic polynomial and membership function interpolation algorithm. It is simple, unique and provides a good geometric interpretation. In addition, a collision-checking and improvement algorithm is proposed. The collision-checking algorithm can check the collisions of a smoothed path. If collisions are detected, the collision improvement algorithm modifies the collision path to a collision-free path. The collision improvement algorithm uses a geometric method. This method uses the perpendicular line between a collision position and the collision piecewise linear path. The sub-waypoint is added, and the QPMI algorithm is applied again. As a result, the collision-smoothed path is converted into a collision-free smooth path without changing the continuity.
Chemical optimization algorithm for fuzzy controller design
Astudillo, Leslie; Castillo, Oscar
2014-01-01
In this book, a novel optimization method inspired by a paradigm from nature is introduced. The chemical reactions are used as a paradigm to propose an optimization method that simulates these natural processes. The proposed algorithm is described in detail and then a set of typical complex benchmark functions is used to evaluate the performance of the algorithm. Simulation results show that the proposed optimization algorithm can outperform other methods in a set of benchmark functions. This chemical reaction optimization paradigm is also applied to solve the tracking problem for the dynamic model of a unicycle mobile robot by integrating a kinematic and a torque controller based on fuzzy logic theory. Computer simulations are presented confirming that this optimization paradigm is able to outperform other optimization techniques applied to this particular robot application
A Novel Particle Swarm Optimization Algorithm for Global Optimization.
Wang, Chun-Feng; Liu, Kui
2016-01-01
Particle Swarm Optimization (PSO) is a recently developed optimization method, which has attracted interest of researchers in various areas due to its simplicity and effectiveness, and many variants have been proposed. In this paper, a novel Particle Swarm Optimization algorithm is presented, in which the information of the best neighbor of each particle and the best particle of the entire population in the current iteration is considered. Meanwhile, to avoid premature, an abandoned mechanism is used. Furthermore, for improving the global convergence speed of our algorithm, a chaotic search is adopted in the best solution of the current iteration. To verify the performance of our algorithm, standard test functions have been employed. The experimental results show that the algorithm is much more robust and efficient than some existing Particle Swarm Optimization algorithms.
Lavrenov Roman
2017-01-01
Full Text Available Our research focuses on operation of a heterogeneous robotic group that carries out point-to point navigation in GPS-denied dynamic environment, applying a combined local and global planning approach. In this paper, we introduce a homotopy-based high-level planner, which uses a modified splinebased path-planning algorithm. The algorithm utilizes Voronoi graph for global planning and a set of optimization criteria for local improvements of selected paths. The simulation was implemented in Matlab environment.
Distributed Algorithms for Time Optimal Reachability Analysis
Zhang, Zhengkui; Nielsen, Brian; Larsen, Kim Guldstrand
2016-01-01
. We propose distributed computing to accelerate time optimal reachability analysis. We develop five distributed state exploration algorithms, implement them in \\uppaal enabling it to exploit the compute resources of a dedicated model-checking cluster. We experimentally evaluate the implemented...... algorithms with four models in terms of their ability to compute near- or proven-optimal solutions, their scalability, time and memory consumption and communication overhead. Our results show that distributed algorithms work much faster than sequential algorithms and have good speedup in general.......Time optimal reachability analysis is a novel model based technique for solving scheduling and planning problems. After modeling them as reachability problems using timed automata, a real-time model checker can compute the fastest trace to the goal states which constitutes a time optimal schedule...
Optimal recombination in genetic algorithms for combinatorial optimization problems: Part II
Eremeev Anton V.
2014-01-01
Full Text Available This paper surveys results on complexity of the optimal recombination problem (ORP, which consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. In Part II, we consider the computational complexity of ORPs arising in genetic algorithms for problems on permutations: the Travelling Salesman Problem, the Shortest Hamilton Path Problem and the Makespan Minimization on Single Machine and some other related problems. The analysis indicates that the corresponding ORPs are NP-hard, but solvable by faster algorithms, compared to the problems they are derived from.
Genetic algorithms in loading pattern optimization
Yilmazbayhan, A.; Tombakoglu, M.; Bekar, K. B.; Erdemli, A. Oe
2001-01-01
Genetic Algorithm (GA) based systems are used for the loading pattern optimization. The use of Genetic Algorithm operators such as regional crossover, crossover and mutation, and selection of initial population size for PWRs are discussed. Antithetic variates are used to generate the initial population. The performance of GA with antithetic variates is compared to traditional GA. The results of multi-cycle optimization are discussed for objective function taking into account cycle burn-up and discharge burn-up
Scaling Sparse Matrices for Optimization Algorithms
Gajulapalli Ravindra S; Lasdon Leon S
2006-01-01
To iteratively solve large scale optimization problems in various contexts like planning, operations, design etc., we need to generate descent directions that are based on linear system solutions. Irrespective of the optimization algorithm or the solution method employed for the linear systems, ill conditioning introduced by problem characteristics or the algorithm or both need to be addressed. In [GL01] we used an intuitive heuristic approach in scaling linear systems that improved performan...
Evolutionary Algorithm for Optimal Vaccination Scheme
Parousis-Orthodoxou, K J; Vlachos, D S
2014-01-01
The following work uses the dynamic capabilities of an evolutionary algorithm in order to obtain an optimal immunization strategy in a user specified network. The produced algorithm uses a basic genetic algorithm with crossover and mutation techniques, in order to locate certain nodes in the inputted network. These nodes will be immunized in an SIR epidemic spreading process, and the performance of each immunization scheme, will be evaluated by the level of containment that provides for the spreading of the disease
Optimizing Raytracing Algorithm Using CUDA
Sayed Ahmadreza Razian
2017-11-01
The results show that one can generate at least 11 frames per second in HD (720p resolution by GPU processor and GT 840M graphic card, using trace method. If better graphic card employ, this algorithm and program can be used to generate real-time animation.
Ting Kuo
2015-05-01
Full Text Available We propose a linear time algorithm, called G2DLP, for generating 2D lattice L(n1, n2 paths, equivalent to two-item multiset permutations, with a given number of turns. The usage of turn has three meanings: in the context of multiset permutations, it means that two consecutive elements of a permutation belong to two different items; in lattice path enumerations, it means that the path changes its direction, either from eastward to northward or from northward to eastward; in open shop scheduling, it means that we transfer a job from one type of machine to another. The strategy of G2DLP is divide-and-combine; the division is based on the enumeration results of a previous study and is achieved by aid of an integer partition algorithm and a multiset permutation algorithm; the combination is accomplished by a concatenation algorithm that constructs the paths we require. The advantage of G2DLP is twofold. First, it is optimal in the sense that it directly generates all feasible paths without visiting an infeasible one. Second, it can generate all paths in any specified order of turns, for example, a decreasing order or an increasing order. In practice, two applications, scheduling and cryptography, are discussed.
Belief Propagation Algorithm for Portfolio Optimization Problems.
Shinzato, Takashi; Yasuda, Muneki
2015-01-01
The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007)]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm.
Belief Propagation Algorithm for Portfolio Optimization Problems.
Takashi Shinzato
Full Text Available The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm.
Optimization of the Flight Path of an Unmanned Aerial Vehicle
Vasyl Myklukha
2017-09-01
Full Text Available The article describes the features of optimizing the flight path of an unmanned aerial vehicle. The paper analyzes the composition and designation of main equipment and payload of unmanned aerial vehicle. In particular, attention is drawn to the basic requirements that relate to the unmanned aerial vehicle today.
Algorithms for optimal dyadic decision trees
Hush, Don [Los Alamos National Laboratory; Porter, Reid [Los Alamos National Laboratory
2009-01-01
A new algorithm for constructing optimal dyadic decision trees was recently introduced, analyzed, and shown to be very effective for low dimensional data sets. This paper enhances and extends this algorithm by: introducing an adaptive grid search for the regularization parameter that guarantees optimal solutions for all relevant trees sizes, revising the core tree-building algorithm so that its run time is substantially smaller for most regularization parameter values on the grid, and incorporating new data structures and data pre-processing steps that provide significant run time enhancement in practice.
An algorithm for online optimization of accelerators
Huang, Xiaobiao [SLAC National Accelerator Lab., Menlo Park, CA (United States); Corbett, Jeff [SLAC National Accelerator Lab., Menlo Park, CA (United States); Safranek, James [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wu, Juhao [SLAC National Accelerator Lab., Menlo Park, CA (United States)
2013-10-01
We developed a general algorithm for online optimization of accelerator performance, i.e., online tuning, using the performance measure as the objective function. This method, named robust conjugate direction search (RCDS), combines the conjugate direction set approach of Powell's method with a robust line optimizer which considers the random noise in bracketing the minimum and uses parabolic fit of data points that uniformly sample the bracketed zone. Moreover, it is much more robust against noise than traditional algorithms and is therefore suitable for online application. Simulation and experimental studies have been carried out to demonstrate the strength of the new algorithm.
Heterogeneous architecture to process swarm optimization algorithms
Maria A. Dávila-Guzmán
2014-01-01
Full Text Available Since few years ago, the parallel processing has been embedded in personal computers by including co-processing units as the graphics processing units resulting in a heterogeneous platform. This paper presents the implementation of swarm algorithms on this platform to solve several functions from optimization problems, where they highlight their inherent parallel processing and distributed control features. In the swarm algorithms, each individual and dimension problem are parallelized by the granularity of the processing system which also offer low communication latency between individuals through the embedded processing. To evaluate the potential of swarm algorithms on graphics processing units we have implemented two of them: the particle swarm optimization algorithm and the bacterial foraging optimization algorithm. The algorithms’ performance is measured using the acceleration where they are contrasted between a typical sequential processing platform and the NVIDIA GeForce GTX480 heterogeneous platform; the results show that the particle swarm algorithm obtained up to 36.82x and the bacterial foraging swarm algorithm obtained up to 9.26x. Finally, the effect to increase the size of the population is evaluated where we show both the dispersion and the quality of the solutions are decreased despite of high acceleration performance since the initial distribution of the individuals can converge to local optimal solution.
Food processing optimization using evolutionary algorithms | Enitan ...
Evolutionary algorithms are widely used in single and multi-objective optimization. They are easy to use and provide solution(s) in one simulation run. They are used in food processing industries for decision making. Food processing presents constrained and unconstrained optimization problems. This paper reviews the ...
Glowworm swarm optimization theory, algorithms, and applications
Kaipa, Krishnanand N
2017-01-01
This book provides a comprehensive account of the glowworm swarm optimization (GSO) algorithm, including details of the underlying ideas, theoretical foundations, algorithm development, various applications, and MATLAB programs for the basic GSO algorithm. It also discusses several research problems at different levels of sophistication that can be attempted by interested researchers. The generality of the GSO algorithm is evident in its application to diverse problems ranging from optimization to robotics. Examples include computation of multiple optima, annual crop planning, cooperative exploration, distributed search, multiple source localization, contaminant boundary mapping, wireless sensor networks, clustering, knapsack, numerical integration, solving fixed point equations, solving systems of nonlinear equations, and engineering design optimization. The book is a valuable resource for researchers as well as graduate and undergraduate students in the area of swarm intelligence and computational intellige...
A Direct Search Algorithm for Global Optimization
Enrique Baeyens
2016-06-01
Full Text Available A direct search algorithm is proposed for minimizing an arbitrary real valued function. The algorithm uses a new function transformation and three simplex-based operations. The function transformation provides global exploration features, while the simplex-based operations guarantees the termination of the algorithm and provides global convergence to a stationary point if the cost function is differentiable and its gradient is Lipschitz continuous. The algorithm’s performance has been extensively tested using benchmark functions and compared to some well-known global optimization algorithms. The results of the computational study show that the algorithm combines both simplicity and efficiency and is competitive with the heuristics-based strategies presently used for global optimization.
Optimization in engineering models and algorithms
Sioshansi, Ramteen
2017-01-01
This textbook covers the fundamentals of optimization, including linear, mixed-integer linear, nonlinear, and dynamic optimization techniques, with a clear engineering focus. It carefully describes classical optimization models and algorithms using an engineering problem-solving perspective, and emphasizes modeling issues using many real-world examples related to a variety of application areas. Providing an appropriate blend of practical applications and optimization theory makes the text useful to both practitioners and students, and gives the reader a good sense of the power of optimization and the potential difficulties in applying optimization to modeling real-world systems. The book is intended for undergraduate and graduate-level teaching in industrial engineering and other engineering specialties. It is also of use to industry practitioners, due to the inclusion of real-world applications, opening the door to advanced courses on both modeling and algorithm development within the industrial engineering ...
Cloud Service Scheduling Algorithm Research and Optimization
Hongyan Cui
2017-01-01
Full Text Available We propose a cloud service scheduling model that is referred to as the Task Scheduling System (TSS. In the user module, the process time of each task is in accordance with a general distribution. In the task scheduling module, we take a weighted sum of makespan and flowtime as the objective function and use an Ant Colony Optimization (ACO and a Genetic Algorithm (GA to solve the problem of cloud task scheduling. Simulation results show that the convergence speed and output performance of our Genetic Algorithm-Chaos Ant Colony Optimization (GA-CACO are optimal.
Space mapping optimization algorithms for engineering design
Koziel, Slawomir; Bandler, John W.; Madsen, Kaj
2006-01-01
A simple, efficient optimization algorithm based on space mapping (SM) is presented. It utilizes input SM to reduce the misalignment between the coarse and fine models of the optimized object over a region of interest, and output space mapping (OSM) to ensure matching of response and first...... to a benchmark problem. In comparison with SMIS, the models presented are simple and have a small number of parameters that need to be extracted. The new algorithm is applied to the optimization of coupled-line band-pass filter....
Loading pattern optimization using ant colony algorithm
Hoareau, Fabrice
2008-01-01
Electricite de France (EDF) operates 58 nuclear power plants (NPP), of the Pressurized Water Reactor type. The loading pattern optimization of these NPP is currently done by EDF expert engineers. Within this framework, EDF R and D has developed automatic optimization tools that assist the experts. LOOP is an industrial tool, developed by EDF R and D and based on a simulated annealing algorithm. In order to improve the results of such automatic tools, new optimization methods have to be tested. Ant Colony Optimization (ACO) algorithms are recent methods that have given very good results on combinatorial optimization problems. In order to evaluate the performance of such methods on loading pattern optimization, direct comparisons between LOOP and a mock-up based on the Max-Min Ant System algorithm (a particular variant of ACO algorithms) were made on realistic test-cases. It is shown that the results obtained by the ACO mock-up are very similar to those of LOOP. Future research will consist in improving these encouraging results by using parallelization and by hybridizing the ACO algorithm with local search procedures. (author)
Globally Optimal Path Planning with Anisotropic Running Costs
2013-03-01
Eikonal equation and has numerous applications, for exam- ple, in path planning, computational geometry, computer vision, and image enhancement...Sethian 1999b]. Numerical methods for solving the Eikonal equation include Tsitsiklis’ control-theoretic algorithm [Tsitsiklis 1995], Fast Marching Methods...methods for Eikonal equations on triangular meshes, SIAM J. Numer. Anal. 45(1), 83—107. Rowe, M. P., Sidhu, H. S. & Mercer, G. N. (2009) Military
Petruseva Silvana
2006-01-01
Full Text Available This paper discusses the comparison of the efficiency of two algorithms, by estimation of their complexity. For solving the problem, the Neural Network Crossbar Adaptive Array (NN-CAA is used as the agent architecture, implementing a model of an emotion. The problem discussed is how to find the shortest path in an environment with n states. The domains concerned are environments with n states, one of which is the starting state, one is the goal state, and some states are undesirable and they should be avoided. It is obtained that finding one path (one solution is efficient, i.e. in polynomial time by both algorithms. One of the algorithms is faster than the other only in the multiplicative constant, and it shows a step forward toward the optimality of the learning process. However, finding the optimal solution (the shortest path by both algorithms is in exponential time which is asserted by two theorems. It might be concluded that the concept of subgoal is one step forward toward the optimality of the process of the agent learning. Yet, it should be explored further on, in order to obtain an efficient, polynomial algorithm.
External Memory Algorithms for Diameter and All-Pair Shortest-Paths on Sparse Graphs
Arge, Lars; Meyer, Ulrich; Toma, Laura
2004-01-01
We present several new external-memory algorithms for finding all-pairs shortest paths in a V -node, Eedge undirected graph. For all-pairs shortest paths and diameter in unweighted undirected graphs we present cache-oblivious algorithms with O(V · E B logM B E B) I/Os, where B is the block-size a...
Exact and Heuristic Algorithms for Routing AGV on Path with Precedence Constraints
Liang Xu
2016-01-01
Full Text Available A new problem arises when an automated guided vehicle (AGV is dispatched to visit a set of customers, which are usually located along a fixed wire transmitting signal to navigate the AGV. An optimal visiting sequence is desired with the objective of minimizing the total travelling distance (or time. When precedence constraints are restricted on customers, the problem is referred to as traveling salesman problem on path with precedence constraints (TSPP-PC. Whether or not it is NP-complete has no answer in the literature. In this paper, we design dynamic programming for the TSPP-PC, which is the first polynomial-time exact algorithm when the number of precedence constraints is a constant. For the problem with number of precedence constraints, part of the input can be arbitrarily large, so we provide an efficient heuristic based on the exact algorithm.
Path planning of decentralized multi-quadrotor based on fuzzy-cell decomposition algorithm
Iswanto, Wahyunggoro, Oyas; Cahyadi, Adha Imam
2017-04-01
The paper aims to present a design algorithm for multi quadrotor lanes in order to move towards the goal quickly and avoid obstacles in an area with obstacles. There are several problems in path planning including how to get to the goal position quickly and avoid static and dynamic obstacles. To overcome the problem, therefore, the paper presents fuzzy logic algorithm and fuzzy cell decomposition algorithm. Fuzzy logic algorithm is one of the artificial intelligence algorithms which can be applied to robot path planning that is able to detect static and dynamic obstacles. Cell decomposition algorithm is an algorithm of graph theory used to make a robot path map. By using the two algorithms the robot is able to get to the goal position and avoid obstacles but it takes a considerable time because they are able to find the shortest path. Therefore, this paper describes a modification of the algorithms by adding a potential field algorithm used to provide weight values on the map applied for each quadrotor by using decentralized controlled, so that the quadrotor is able to move to the goal position quickly by finding the shortest path. The simulations conducted have shown that multi-quadrotor can avoid various obstacles and find the shortest path by using the proposed algorithms.
A path-following driver/vehicle model with optimized lateral dynamic controller
Behrooz Mashadi
Full Text Available Reduction in traffic congestion and overall number of accidents, especially within the last decade, can be attributed to the enormous progress in active safety. Vehicle path following control with the presence of driver commands can be regarded as one of the important issues in vehicle active safety systems development and more realistic explanation of vehicle path tracking problem. In this paper, an integrated driver/DYC control system is presented that regulates the steering angle and yaw moment, considering driver previewed path. Thus, the driver previewed distance, the heading error and the lateral deviation between the vehicle and desired path are used as inputs. Then, the controller determines and applies a corrective steering angle and a direct yaw moment to make the vehicle follow the desired path. A PID controller with optimized gains is used for the control of integrated driver/DYC system. Genetic Algorithm as an intelligent optimization method is utilized to adapt PID controller gains for various working situations. Proposed integrated driver/DYC controller is examined on lane change manuvers andthe sensitivity of the control system is investigated through the changes in the driver model and vehicle parameters. Simulation results show the pronounced effectiveness of the controller in vehicle path following and stability.
Ant colony search algorithm for optimal reactive power optimization
Lenin K.
2006-01-01
Full Text Available The paper presents an (ACSA Ant colony search Algorithm for Optimal Reactive Power Optimization and voltage control of power systems. ACSA is a new co-operative agents’ approach, which is inspired by the observation of the behavior of real ant colonies on the topic of ant trial formation and foraging methods. Hence, in the ACSA a set of co-operative agents called "Ants" co-operates to find good solution for Reactive Power Optimization problem. The ACSA is applied for optimal reactive power optimization is evaluated on standard IEEE, 30, 57, 191 (practical test bus system. The proposed approach is tested and compared to genetic algorithm (GA, Adaptive Genetic Algorithm (AGA.
Algorithms for worst-case tolerance optimization
Schjær-Jacobsen, Hans; Madsen, Kaj
1979-01-01
New algorithms are presented for the solution of optimum tolerance assignment problems. The problems considered are defined mathematically as a worst-case problem (WCP), a fixed tolerance problem (FTP), and a variable tolerance problem (VTP). The basic optimization problem without tolerances...... is denoted the zero tolerance problem (ZTP). For solution of the WCP we suggest application of interval arithmetic and also alternative methods. For solution of the FTP an algorithm is suggested which is conceptually similar to algorithms previously developed by the authors for the ZTP. Finally, the VTP...... is solved by a double-iterative algorithm in which the inner iteration is performed by the FTP- algorithm. The application of the algorithm is demonstrated by means of relatively simple numerical examples. Basic properties, such as convergence properties, are displayed based on the examples....
Planning of optimal work path for minimizing exposure dose during radiation work in radwaste storage
Kim, Yoon Hyuk; Park, Won Man; Kim, Kyung Soo; Whang, Joo Ho
2005-01-01
Since the safety of nuclear power plant has been becoming a big social issue, the exposure dose of radiation for workers has been one of the important factors concerning the safety problem. The existing calculation methods of radiation dose used in the planning of radiation work assume that dose rate dose not depend on the location within a work space, thus the variation of exposure dose by different work path is not considered. In this study, a modified numerical method was presented to estimate the exposure dose during radiation work in radwaste storage considering the effects of the distance between a worker and sources. And a new numerical algorithm was suggested to search the optimal work path minimizing the exposure dose in pre-defined work space with given radiation sources. Finally, a virtual work simulation program was developed to visualize the exposure dose of radiation during radiation works in radwaste storage and provide the capability of simulation for work planning. As a numerical example, a test radiation work was simulated under given space and two radiation sources, and the suggested optimal work path was compared with three predefined work paths. The optimal work path obtained in the study could reduce the exposure dose for the given test work. Based on the results, the developed numerical method and simulation program could be useful tools in the planning of radiation work
Izumi, K. H.; Thompson, J. L.; Groce, J. L.; Schwab, R. W.
1986-01-01
The design requirements for a 4D path definition algorithm are described. These requirements were developed for the NASA ATOPS as an extension of the Local Flow Management/Profile Descent algorithm. They specify the processing flow, functional and data architectures, and system input requirements, and recommended the addition of a broad path revision (reinitialization) function capability. The document also summarizes algorithm design enhancements and the implementation status of the algorithm on an in-house PDP-11/70 computer. Finally, the requirements for the pilot-computer interfaces, the lateral path processor, and guidance and steering function are described.
Firefly Mating Algorithm for Continuous Optimization Problems
Amarita Ritthipakdee
2017-01-01
Full Text Available This paper proposes a swarm intelligence algorithm, called firefly mating algorithm (FMA, for solving continuous optimization problems. FMA uses genetic algorithm as the core of the algorithm. The main feature of the algorithm is a novel mating pair selection method which is inspired by the following 2 mating behaviors of fireflies in nature: (i the mutual attraction between males and females causes them to mate and (ii fireflies of both sexes are of the multiple-mating type, mating with multiple opposite sex partners. A female continues mating until her spermatheca becomes full, and, in the same vein, a male can provide sperms for several females until his sperm reservoir is depleted. This new feature enhances the global convergence capability of the algorithm. The performance of FMA was tested with 20 benchmark functions (sixteen 30-dimensional functions and four 2-dimensional ones against FA, ALC-PSO, COA, MCPSO, LWGSODE, MPSODDS, DFOA, SHPSOS, LSA, MPDPGA, DE, and GABC algorithms. The experimental results showed that the success rates of our proposed algorithm with these functions were higher than those of other algorithms and the proposed algorithm also required fewer numbers of iterations to reach the global optima.
Exploring chemical reaction mechanisms through harmonic Fourier beads path optimization.
Khavrutskii, Ilja V; Smith, Jason B; Wallqvist, Anders
2013-10-28
Here, we apply the harmonic Fourier beads (HFB) path optimization method to study chemical reactions involving covalent bond breaking and forming on quantum mechanical (QM) and hybrid QM∕molecular mechanical (QM∕MM) potential energy surfaces. To improve efficiency of the path optimization on such computationally demanding potentials, we combined HFB with conjugate gradient (CG) optimization. The combined CG-HFB method was used to study two biologically relevant reactions, namely, L- to D-alanine amino acid inversion and alcohol acylation by amides. The optimized paths revealed several unexpected reaction steps in the gas phase. For example, on the B3LYP∕6-31G(d,p) potential, we found that alanine inversion proceeded via previously unknown intermediates, 2-iminopropane-1,1-diol and 3-amino-3-methyloxiran-2-ol. The CG-HFB method accurately located transition states, aiding in the interpretation of complex reaction mechanisms. Thus, on the B3LYP∕6-31G(d,p) potential, the gas phase activation barriers for the inversion and acylation reactions were 50.5 and 39.9 kcal∕mol, respectively. These barriers determine the spontaneous loss of amino acid chirality and cleavage of peptide bonds in proteins. We conclude that the combined CG-HFB method further advances QM and QM∕MM studies of reaction mechanisms.
Genetic Optimization Algorithm for Metabolic Engineering Revisited
Tobias B. Alter
2018-05-01
Full Text Available To date, several independent methods and algorithms exist for exploiting constraint-based stoichiometric models to find metabolic engineering strategies that optimize microbial production performance. Optimization procedures based on metaheuristics facilitate a straightforward adaption and expansion of engineering objectives, as well as fitness functions, while being particularly suited for solving problems of high complexity. With the increasing interest in multi-scale models and a need for solving advanced engineering problems, we strive to advance genetic algorithms, which stand out due to their intuitive optimization principles and the proven usefulness in this field of research. A drawback of genetic algorithms is that premature convergence to sub-optimal solutions easily occurs if the optimization parameters are not adapted to the specific problem. Here, we conducted comprehensive parameter sensitivity analyses to study their impact on finding optimal strain designs. We further demonstrate the capability of genetic algorithms to simultaneously handle (i multiple, non-linear engineering objectives; (ii the identification of gene target-sets according to logical gene-protein-reaction associations; (iii minimization of the number of network perturbations; and (iv the insertion of non-native reactions, while employing genome-scale metabolic models. This framework adds a level of sophistication in terms of strain design robustness, which is exemplarily tested on succinate overproduction in Escherichia coli.
Energy Optimal Path Planning: Integrating Coastal Ocean Modelling with Optimal Control
Subramani, D. N.; Haley, P. J., Jr.; Lermusiaux, P. F. J.
2016-02-01
A stochastic optimization methodology is formulated for computing energy-optimal paths from among time-optimal paths of autonomous vehicles navigating in a dynamic flow field. To set up the energy optimization, the relative vehicle speed and headings are considered to be stochastic, and new stochastic Dynamically Orthogonal (DO) level-set equations that govern their stochastic time-optimal reachability fronts are derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding distribution of time-optimal paths. An optimization is then performed on the vehicle's energy-time joint distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal paths for that arrival time. The accuracy and efficiency of the DO level-set equations for solving the governing stochastic level-set reachability fronts are quantitatively assessed, including comparisons with independent semi-analytical solutions. Energy-optimal missions are studied in wind-driven barotropic quasi-geostrophic double-gyre circulations, and in realistic data-assimilative re-analyses of multiscale coastal ocean flows. The latter re-analyses are obtained from multi-resolution 2-way nested primitive-equation simulations of tidal-to-mesoscale dynamics in the Middle Atlantic Bight and Shelbreak Front region. The effects of tidal currents, strong wind events, coastal jets, and shelfbreak fronts on the energy-optimal paths are illustrated and quantified. Results showcase the opportunities for longer-duration missions that intelligently utilize the ocean environment to save energy, rigorously integrating ocean forecasting with optimal control of autonomous vehicles.
Optimized Bayesian dynamic advising theory and algorithms
Karny, Miroslav
2006-01-01
Written by one of the world's leading groups in the area of Bayesian identification, control, and decision making, this book provides the theoretical and algorithmic basis of optimized probabilistic advising. Starting from abstract ideas and formulations, and culminating in detailed algorithms, the book comprises a unified treatment of an important problem of the design of advisory systems supporting supervisors of complex processes. It introduces the theoretical and algorithmic basis of developed advising, relying on novel and powerful combination black-box modelling by dynamic mixture models
Maximal Sensitive Dependence and the Optimal Path to Epidemic Extinction
2010-01-01
1996; Elgart and Kamenev, 2004). Instead, in this article, we will employ an eikonal approximation to recast the problem in terms of an effective...a control strategy on the extinction rate can be determined by its effect on the optimal path (Dykman et al., 2008). Through the use of the eikonal ...the solution of Eqs. (6a)–(6b) in the eikonal form (Elgart and Kamenev, 2004; Doering et al., 2005; Kubo et al., 1973; Wentzell, 1976; Gang, 1987
Autonomous path planning solution for industrial robot manipulator using backpropagation algorithm
PeiJiang Yuan
2015-12-01
Full Text Available Here, we propose an autonomous path planning solution using backpropagation algorithm. The mechanism of movement used by humans in controlling their arms is analyzed and then applied to control a robot manipulator. Autonomous path planning solution is a numerical method. The model of industrial robot manipulator used in this article is a KUKA KR 210 R2700 EXTRA robot. In order to show the performance of the autonomous path planning solution, an experiment validation of path tracking is provided. Experiment validation consists of implementation of the autonomous path planning solution and the control of physical robot. The process of converging to target solution is provided. The mean absolute error of position for tool center point is also analyzed. Comparison between autonomous path planning solution and the numerical methods based on Newton–Raphson algorithm is provided to demonstrate the efficiency and accuracy of the autonomous path planning solution.
Meng, Luming; Sheong, Fu Kit; Zeng, Xiangze; Zhu, Lizhe; Huang, Xuhui
2017-07-01
Constructing Markov state models from large-scale molecular dynamics simulation trajectories is a promising approach to dissect the kinetic mechanisms of complex chemical and biological processes. Combined with transition path theory, Markov state models can be applied to identify all pathways connecting any conformational states of interest. However, the identified pathways can be too complex to comprehend, especially for multi-body processes where numerous parallel pathways with comparable flux probability often coexist. Here, we have developed a path lumping method to group these parallel pathways into metastable path channels for analysis. We define the similarity between two pathways as the intercrossing flux between them and then apply the spectral clustering algorithm to lump these pathways into groups. We demonstrate the power of our method by applying it to two systems: a 2D-potential consisting of four metastable energy channels and the hydrophobic collapse process of two hydrophobic molecules. In both cases, our algorithm successfully reveals the metastable path channels. We expect this path lumping algorithm to be a promising tool for revealing unprecedented insights into the kinetic mechanisms of complex multi-body processes.
Rethinking exchange market models as optimization algorithms
Luquini, Evandro; Omar, Nizam
2018-02-01
The exchange market model has mainly been used to study the inequality problem. Although the human society inequality problem is very important, the exchange market models dynamics until stationary state and its capability of ranking individuals is interesting in itself. This study considers the hypothesis that the exchange market model could be understood as an optimization procedure. We present herein the implications for algorithmic optimization and also the possibility of a new family of exchange market models
Hybrid Microgrid Configuration Optimization with Evolutionary Algorithms
Lopez, Nicolas
This dissertation explores the Renewable Energy Integration Problem, and proposes a Genetic Algorithm embedded with a Monte Carlo simulation to solve large instances of the problem that are impractical to solve via full enumeration. The Renewable Energy Integration Problem is defined as finding the optimum set of components to supply the electric demand to a hybrid microgrid. The components considered are solar panels, wind turbines, diesel generators, electric batteries, connections to the power grid and converters, which can be inverters and/or rectifiers. The methodology developed is explained as well as the combinatorial formulation. In addition, 2 case studies of a single objective optimization version of the problem are presented, in order to minimize cost and to minimize global warming potential (GWP) followed by a multi-objective implementation of the offered methodology, by utilizing a non-sorting Genetic Algorithm embedded with a monte Carlo Simulation. The method is validated by solving a small instance of the problem with known solution via a full enumeration algorithm developed by NREL in their software HOMER. The dissertation concludes that the evolutionary algorithms embedded with Monte Carlo simulation namely modified Genetic Algorithms are an efficient form of solving the problem, by finding approximate solutions in the case of single objective optimization, and by approximating the true Pareto front in the case of multiple objective optimization of the Renewable Energy Integration Problem.
Wei, Kun; Ren, Bingyin
2018-02-13
In a future intelligent factory, a robotic manipulator must work efficiently and safely in a Human-Robot collaborative and dynamic unstructured environment. Autonomous path planning is the most important issue which must be resolved first in the process of improving robotic manipulator intelligence. Among the path-planning methods, the Rapidly Exploring Random Tree (RRT) algorithm based on random sampling has been widely applied in dynamic path planning for a high-dimensional robotic manipulator, especially in a complex environment because of its probability completeness, perfect expansion, and fast exploring speed over other planning methods. However, the existing RRT algorithm has a limitation in path planning for a robotic manipulator in a dynamic unstructured environment. Therefore, an autonomous obstacle avoidance dynamic path-planning method for a robotic manipulator based on an improved RRT algorithm, called Smoothly RRT (S-RRT), is proposed. This method that targets a directional node extends and can increase the sampling speed and efficiency of RRT dramatically. A path optimization strategy based on the maximum curvature constraint is presented to generate a smooth and curved continuous executable path for a robotic manipulator. Finally, the correctness, effectiveness, and practicability of the proposed method are demonstrated and validated via a MATLAB static simulation and a Robot Operating System (ROS) dynamic simulation environment as well as a real autonomous obstacle avoidance experiment in a dynamic unstructured environment for a robotic manipulator. The proposed method not only provides great practical engineering significance for a robotic manipulator's obstacle avoidance in an intelligent factory, but also theoretical reference value for other type of robots' path planning.
Zhang, Zili; Gao, Chao; Liu, Yuxin; Qian, Tao
2014-01-01
Ant colony optimization (ACO) algorithms often fall into the local optimal solution and have lower search efficiency for solving the travelling salesman problem (TSP). According to these shortcomings, this paper proposes a universal optimization strategy for updating the pheromone matrix in the ACO algorithms. The new optimization strategy takes advantages of the unique feature of critical paths reserved in the process of evolving adaptive networks of the Physarum-inspired mathematical model (PMM). The optimized algorithms, denoted as PMACO algorithms, can enhance the amount of pheromone in the critical paths and promote the exploitation of the optimal solution. Experimental results in synthetic and real networks show that the PMACO algorithms are more efficient and robust than the traditional ACO algorithms, which are adaptable to solve the TSP with single or multiple objectives. Meanwhile, we further analyse the influence of parameters on the performance of the PMACO algorithms. Based on these analyses, the best values of these parameters are worked out for the TSP. (paper)
Visibility-based optimal path and motion planning
Wang, Paul Keng-Chieh
2015-01-01
This monograph deals with various visibility-based path and motion planning problems motivated by real-world applications such as exploration and mapping planetary surfaces, environmental surveillance using stationary or mobile robots, and imaging of global air/pollutant circulation. The formulation and solution of these problems call for concepts and methods from many areas of applied mathematics including computational geometry, set-covering, non-smooth optimization, combinatorial optimization and optimal control. Emphasis is placed on the formulation of new problems and methods of approach to these problems. Since geometry and visualization play important roles in the understanding of these problems, intuitive interpretations of the basic concepts are presented before detailed mathematical development. The development of a particular topic begins with simple cases illustrated by specific examples, and then progresses forward to more complex cases. The intended readers of this monograph are primarily studen...
Advances in metaheuristic algorithms for optimal design of structures
Kaveh, A
2017-01-01
This book presents efficient metaheuristic algorithms for optimal design of structures. Many of these algorithms are developed by the author and his colleagues, consisting of Democratic Particle Swarm Optimization, Charged System Search, Magnetic Charged System Search, Field of Forces Optimization, Dolphin Echolocation Optimization, Colliding Bodies Optimization, Ray Optimization. These are presented together with algorithms which were developed by other authors and have been successfully applied to various optimization problems. These consist of Particle Swarm Optimization, Big Bang-Big Crunch Algorithm, Cuckoo Search Optimization, Imperialist Competitive Algorithm, and Chaos Embedded Metaheuristic Algorithms. Finally a multi-objective optimization method is presented to solve large-scale structural problems based on the Charged System Search algorithm. The concepts and algorithms presented in this book are not only applicable to optimization of skeletal structures and finite element models, but can equally ...
Advances in metaheuristic algorithms for optimal design of structures
Kaveh, A
2014-01-01
This book presents efficient metaheuristic algorithms for optimal design of structures. Many of these algorithms are developed by the author and his colleagues, consisting of Democratic Particle Swarm Optimization, Charged System Search, Magnetic Charged System Search, Field of Forces Optimization, Dolphin Echolocation Optimization, Colliding Bodies Optimization, Ray Optimization. These are presented together with algorithms which were developed by other authors and have been successfully applied to various optimization problems. These consist of Particle Swarm Optimization, Big Bang-Big Crunch Algorithm, Cuckoo Search Optimization, Imperialist Competitive Algorithm, and Chaos Embedded Metaheuristic Algorithms. Finally a multi-objective optimization method is presented to solve large-scale structural problems based on the Charged System Search algorithm. The concepts and algorithms presented in this book are not only applicable to optimization of skeletal structures and finite element models, but can equally ...
Path generation algorithm for UML graphic modeling of aerospace test software
Qu, MingCheng; Wu, XiangHu; Tao, YongChao; Chen, Chao
2018-03-01
Aerospace traditional software testing engineers are based on their own work experience and communication with software development personnel to complete the description of the test software, manual writing test cases, time-consuming, inefficient, loopholes and more. Using the high reliability MBT tools developed by our company, the one-time modeling can automatically generate test case documents, which is efficient and accurate. UML model to describe the process accurately express the need to rely on the path is reached, the existing path generation algorithm are too simple, cannot be combined into a path and branch path with loop, or too cumbersome, too complicated arrangement generates a path is meaningless, for aerospace software testing is superfluous, I rely on our experience of ten load space, tailor developed a description of aerospace software UML graphics path generation algorithm.
Analysis of Known Linear Distributed Average Consensus Algorithms on Cycles and Paths
Jesús Gutiérrez-Gutiérrez
2018-03-01
Full Text Available In this paper, we compare six known linear distributed average consensus algorithms on a sensor network in terms of convergence time (and therefore, in terms of the number of transmissions required. The selected network topologies for the analysis (comparison are the cycle and the path. Specifically, in the present paper, we compute closed-form expressions for the convergence time of four known deterministic algorithms and closed-form bounds for the convergence time of two known randomized algorithms on cycles and paths. Moreover, we also compute a closed-form expression for the convergence time of the fastest deterministic algorithm considered on grids.
Cost optimization model and its heuristic genetic algorithms
Liu Wei; Wang Yongqing; Guo Jilin
1999-01-01
Interest and escalation are large quantity in proportion to the cost of nuclear power plant construction. In order to optimize the cost, the mathematics model of cost optimization for nuclear power plant construction was proposed, which takes the maximum net present value as the optimization goal. The model is based on the activity networks of the project and is an NP problem. A heuristic genetic algorithms (HGAs) for the model was introduced. In the algorithms, a solution is represented with a string of numbers each of which denotes the priority of each activity for assigned resources. The HGAs with this encoding method can overcome the difficulty which is harder to get feasible solutions when using the traditional GAs to solve the model. The critical path of the activity networks is figured out with the concept of predecessor matrix. An example was computed with the HGAP programmed in C language. The results indicate that the model is suitable for the objectiveness, the algorithms is effective to solve the model
An improved particle filtering algorithm for aircraft engine gas-path fault diagnosis
Qihang Wang
2016-07-01
Full Text Available In this article, an improved particle filter with electromagnetism-like mechanism algorithm is proposed for aircraft engine gas-path component abrupt fault diagnosis. In order to avoid the particle degeneracy and sample impoverishment of normal particle filter, the electromagnetism-like mechanism optimization algorithm is introduced into resampling procedure, which adjusts the position of the particles through simulating attraction–repulsion mechanism between charged particles of the electromagnetism theory. The improved particle filter can solve the particle degradation problem and ensure the diversity of the particle set. Meanwhile, it enhances the ability of tracking abrupt fault due to considering the latest measurement information. Comparison of the proposed method with three different filter algorithms is carried out on a univariate nonstationary growth model. Simulations on a turbofan engine model indicate that compared to the normal particle filter, the improved particle filter can ensure the completion of the fault diagnosis within less sampling period and the root mean square error of parameters estimation is reduced.
Development of GPT-based optimization algorithm
White, J.R.; Chapman, D.M.; Biswas, D.
1985-01-01
The University of Lowell and Westinghouse Electric Corporation are involved in a joint effort to evaluate the potential benefits of generalized/depletion perturbation theory (GPT/DTP) methods for a variety of light water reactor (LWR) physics applications. One part of that work has focused on the development of a GPT-based optimization algorithm for the overall design, analysis, and optimization of LWR reload cores. The use of GPT sensitivity data in formulating the fuel management optimization problem is conceptually straightforward; it is the actual execution of the concept that is challenging. Thus, the purpose of this paper is to address some of the major difficulties, to outline our approach to these problems, and to present some illustrative examples of an efficient GTP-based optimization scheme
Yuniarto, Budi; Kurniawan, Robert
2017-03-01
PLS Path Modeling (PLS-PM) is different from covariance based SEM, where PLS-PM use an approach based on variance or component, therefore, PLS-PM is also known as a component based SEM. Multiblock Partial Least Squares (MBPLS) is a method in PLS regression which can be used in PLS Path Modeling which known as Multiblock PLS Path Modeling (MBPLS-PM). This method uses an iterative procedure in its algorithm. This research aims to modify MBPLS-PM with Back Propagation Neural Network approach. The result is MBPLS-PM algorithm can be modified using the Back Propagation Neural Network approach to replace the iterative process in backward and forward step to get the matrix t and the matrix u in the algorithm. By modifying the MBPLS-PM algorithm using Back Propagation Neural Network approach, the model parameters obtained are relatively not significantly different compared to model parameters obtained by original MBPLS-PM algorithm.
Configurable intelligent optimization algorithm design and practice in manufacturing
Tao, Fei; Laili, Yuanjun
2014-01-01
Presenting the concept and design and implementation of configurable intelligent optimization algorithms in manufacturing systems, this book provides a new configuration method to optimize manufacturing processes. It provides a comprehensive elaboration of basic intelligent optimization algorithms, and demonstrates how their improvement, hybridization and parallelization can be applied to manufacturing. Furthermore, various applications of these intelligent optimization algorithms are exemplified in detail, chapter by chapter. The intelligent optimization algorithm is not just a single algorit
Genetic algorithm optimization of atomic clusters
Morris, J.R.; Deaven, D.M.; Ho, K.M.; Wang, C.Z.; Pan, B.C.; Wacker, J.G.; Turner, D.E.; Iowa State Univ., Ames, IA
1996-01-01
The authors have been using genetic algorithms to study the structures of atomic clusters and related problems. This is a problem where local minima are easy to locate, but barriers between the many minima are large, and the number of minima prohibit a systematic search. They use a novel mating algorithm that preserves some of the geometrical relationship between atoms, in order to ensure that the resultant structures are likely to inherit the best features of the parent clusters. Using this approach, they have been able to find lower energy structures than had been previously obtained. Most recently, they have been able to turn around the building block idea, using optimized structures from the GA to learn about systematic structural trends. They believe that an effective GA can help provide such heuristic information, and (conversely) that such information can be introduced back into the algorithm to assist in the search process
Algorithm 896: LSA: Algorithms for Large-Scale Optimization
Lukšan, Ladislav; Matonoha, Ctirad; Vlček, Jan
2009-01-01
Roč. 36, č. 3 (2009), 16-1-16-29 ISSN 0098-3500 R&D Pro jects: GA AV ČR IAA1030405; GA ČR GP201/06/P397 Institutional research plan: CEZ:AV0Z10300504 Keywords : algorithms * design * large-scale optimization * large-scale nonsmooth optimization * large-scale nonlinear least squares * large-scale nonlinear minimax * large-scale systems of nonlinear equations * sparse pro blems * partially separable pro blems * limited-memory methods * discrete Newton methods * quasi-Newton methods * primal interior-point methods Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.904, year: 2009
Optimal algorithmic trading and market microstructure
Labadie , Mauricio; Lehalle , Charles-Albert
2010-01-01
The efficient frontier is a core concept in Modern Portfolio Theory. Based on this idea, we will construct optimal trading curves for different types of portfolios. These curves correspond to the algorithmic trading strategies that minimize the expected transaction costs, i.e. the joint effect of market impact and market risk. We will study five portfolio trading strategies. For the first three (single-asset, general multi-asseet and balanced portfolios) we will assume that the underlyings fo...
Optical flow optimization using parallel genetic algorithm
Zavala-Romero, Olmo; Botella, Guillermo; Meyer-Bäse, Anke; Meyer Base, Uwe
2011-06-01
A new approach to optimize the parameters of a gradient-based optical flow model using a parallel genetic algorithm (GA) is proposed. The main characteristics of the optical flow algorithm are its bio-inspiration and robustness against contrast, static patterns and noise, besides working consistently with several optical illusions where other algorithms fail. This model depends on many parameters which conform the number of channels, the orientations required, the length and shape of the kernel functions used in the convolution stage, among many more. The GA is used to find a set of parameters which improve the accuracy of the optical flow on inputs where the ground-truth data is available. This set of parameters helps to understand which of them are better suited for each type of inputs and can be used to estimate the parameters of the optical flow algorithm when used with videos that share similar characteristics. The proposed implementation takes into account the embarrassingly parallel nature of the GA and uses the OpenMP Application Programming Interface (API) to speedup the process of estimating an optimal set of parameters. The information obtained in this work can be used to dynamically reconfigure systems, with potential applications in robotics, medical imaging and tracking.
Autonomous guided vehicles methods and models for optimal path planning
Fazlollahtabar, Hamed
2015-01-01
This book provides readers with extensive information on path planning optimization for both single and multiple Autonomous Guided Vehicles (AGVs), and discusses practical issues involved in advanced industrial applications of AGVs. After discussing previously published research in the field and highlighting the current gaps, it introduces new models developed by the authors with the goal of reducing costs and increasing productivity and effectiveness in the manufacturing industry. The new models address the increasing complexity of manufacturing networks, due for example to the adoption of flexible manufacturing systems that involve automated material handling systems, robots, numerically controlled machine tools, and automated inspection stations, while also considering the uncertainty and stochastic nature of automated equipment such as AGVs. The book discusses and provides solutions to important issues concerning the use of AGVs in the manufacturing industry, including material flow optimization with A...
Genetic algorithm based separation cascade optimization
Mahendra, A.K.; Sanyal, A.; Gouthaman, G.; Bera, T.K.
2008-01-01
The conventional separation cascade design procedure does not give an optimum design because of squaring-off, variation of flow rates and separation factor of the element with respect to stage location. Multi-component isotope separation further complicates the design procedure. Cascade design can be stated as a constrained multi-objective optimization. Cascade's expectation from the separating element is multi-objective i.e. overall separation factor, cut, optimum feed and separative power. Decision maker may aspire for more comprehensive multi-objective goals where optimization of cascade is coupled with the exploration of separating element optimization vector space. In real life there are many issues which make it important to understand the decision maker's perception of cost-quality-speed trade-off and consistency of preferences. Genetic algorithm (GA) is one such evolutionary technique that can be used for cascade design optimization. This paper addresses various issues involved in the GA based multi-objective optimization of the separation cascade. Reference point based optimization methodology with GA based Pareto optimality concept for separation cascade was found pragmatic and promising. This method should be explored, tested, examined and further developed for binary as well as multi-component separations. (author)
Optimized Data Indexing Algorithms for OLAP Systems
Lucian BORNAZ
2010-12-01
Full Text Available The need to process and analyze large data volumes, as well as to convey the information contained therein to decision makers naturally led to the development of OLAP systems. Similarly to SGBDs, OLAP systems must ensure optimum access to the storage environment. Although there are several ways to optimize database systems, implementing a correct data indexing solution is the most effective and less costly. Thus, OLAP uses indexing algorithms for relational data and n-dimensional summarized data stored in cubes. Today database systems implement derived indexing algorithms based on well-known Tree, Bitmap and Hash indexing algorithms. This is because no indexing algorithm provides the best performance for any particular situation (type, structure, data volume, application. This paper presents a new n-dimensional cube indexing algorithm, derived from the well known B-Tree index, which indexes data stored in data warehouses taking in consideration their multi-dimensional nature and provides better performance in comparison to the already implemented Tree-like index types.
Optimal configuration of power grid sources based on optimal particle swarm algorithm
Wen, Yuanhua
2018-04-01
In order to optimize the distribution problem of power grid sources, an optimized particle swarm optimization algorithm is proposed. First, the concept of multi-objective optimization and the Pareto solution set are enumerated. Then, the performance of the classical genetic algorithm, the classical particle swarm optimization algorithm and the improved particle swarm optimization algorithm are analyzed. The three algorithms are simulated respectively. Compared with the test results of each algorithm, the superiority of the algorithm in convergence and optimization performance is proved, which lays the foundation for subsequent micro-grid power optimization configuration solution.
A Novel Chaotic Particle Swarm Optimization Algorithm for Parking Space Guidance
Na Dong
2016-01-01
Full Text Available An evolutionary approach of parking space guidance based upon a novel Chaotic Particle Swarm Optimization (CPSO algorithm is proposed. In the newly proposed CPSO algorithm, the chaotic dynamics is combined into the position updating rules of Particle Swarm Optimization to improve the diversity of solutions and to avoid being trapped in the local optima. This novel approach, that combines the strengths of Particle Swarm Optimization and chaotic dynamics, is then applied into the route optimization (RO problem of parking lots, which is an important issue in the management systems of large-scale parking lots. It is used to find out the optimized paths between any source and destination nodes in the route network. Route optimization problems based on real parking lots are introduced for analyzing and the effectiveness and practicability of this novel optimization algorithm for parking space guidance have been verified through the application results.
An Efficient Shortest Path Routing Algorithm for Directed Indoor Environments
Sultan Alamri
2018-03-01
Full Text Available Routing systems for outdoor space have become the focus of many research works. Such routing systems are based on spatial road networks where moving objects (such as cars are affected by the directed roads and the movement of traffic, which may include traffic jams. Indoor routing, on the other hand, must take into account the features of indoor space such as walls and rooms. In this paper, we take indoor routing in a new direction whereby we consider the features that a building has in common with outdoor spaces. Inside some buildings, there may be directed floors where moving objects must move in a certain direction through directed corridors in order to reach a certain location. For example, on train platforms or in museums, movement in the corridors may be directed. In these directed floor spaces, a routing system enabling a visitor to take the shortest path to a certain location is essential. Therefore, this work proposes a new approach for buildings with directed indoor spaces, where each room can be affected by the density of the moving objects. The proposed system obtains the shortest path between objects or rooms taking into consideration the directed indoor space and the capacity of the objects to move within each room/cell.
A numerical scheme for optimal transition paths of stochastic chemical kinetic systems
Liu Di
2008-01-01
We present a new framework for finding the optimal transition paths of metastable stochastic chemical kinetic systems with large system size. The optimal transition paths are identified to be the most probable paths according to the Large Deviation Theory of stochastic processes. Dynamical equations for the optimal transition paths are derived using the variational principle. A modified Minimum Action Method (MAM) is proposed as a numerical scheme to solve the optimal transition paths. Applications to Gene Regulatory Networks such as the toggle switch model and the Lactose Operon Model in Escherichia coli are presented as numerical examples
An improved hierarchical A * algorithm in the optimization of parking lots
Wang, Yong; Wu, Junjuan; Wang, Ying
2017-08-01
In the parking lot parking path optimization, the traditional evaluation index is the shortest distance as the best index and it does not consider the actual road conditions. Now, the introduction of a more practical evaluation index can not only simplify the hardware design of the boot system but also save the software overhead. Firstly, we establish the parking lot network graph RPCDV mathematical model and all nodes in the network is divided into two layers which were constructed using different evaluation function base on the improved hierarchical A * algorithm which improves the time optimal path search efficiency and search precision of the evaluation index. The final results show that for different sections of the program attribute parameter algorithm always faster the time to find the optimal path.
Advanced metaheuristic algorithms for laser optimization
Tomizawa, H.
2010-01-01
A laser is one of the most important experimental tools. In synchrotron radiation field, lasers are widely used for experiments with Pump-Probe techniques. Especially for Xray-FELs, a laser has important roles as a seed light source or photo-cathode-illuminating light source to generate a high brightness electron bunch. The controls of laser pulse characteristics are required for many kinds of experiments. However, the laser should be tuned and customized for each requirement by laser experts. The automatic tuning of laser is required to realize with some sophisticated algorithms. The metaheuristic algorithm is one of the useful candidates to find one of the best solutions as acceptable as possible. The metaheuristic laser tuning system is expected to save our human resources and time for the laser preparations. I have shown successful results on a metaheuristic algorithm based on a genetic algorithm to optimize spatial (transverse) laser profiles and a hill climbing method extended with a fuzzy set theory to choose one of the best laser alignments automatically for each experimental requirement. (author)
Ailian Jiang
2018-03-01
Full Text Available Low cost, high reliability and easy maintenance are key criteria in the design of routing protocols for wireless sensor networks (WSNs. This paper investigates the existing ant colony optimization (ACO-based WSN routing algorithms and the minimum hop count WSN routing algorithms by reviewing their strengths and weaknesses. We also consider the critical factors of WSNs, such as energy constraint of sensor nodes, network load balancing and dynamic network topology. Then we propose a hybrid routing algorithm that integrates ACO and a minimum hop count scheme. The proposed algorithm is able to find the optimal routing path with minimal total energy consumption and balanced energy consumption on each node. The algorithm has unique superiority in terms of searching for the optimal path, balancing the network load and the network topology maintenance. The WSN model and the proposed algorithm have been implemented using C++. Extensive simulation experimental results have shown that our algorithm outperforms several other WSN routing algorithms on such aspects that include the rate of convergence, the success rate in searching for global optimal solution, and the network lifetime.
Dual Schroedinger Equation as Global Optimization Algorithm
Huang Xiaofei; eGain Communications, Mountain View, CA 94043
2011-01-01
The dual Schroedinger equation is defined as replacing the imaginary number i by -1 in the original one. This paper shows that the dual equation shares the same stationary states as the original one. Different from the original one, it explicitly defines a dynamic process for a system to evolve from any state to lower energy states and eventually to the lowest one. Its power as a global optimization algorithm might be used by nature for constructing atoms and molecules. It shall be interesting to verify its existence in nature.
Deriving the Normalized Min-Sum Algorithm from Cooperative Optimization
Huang, Xiaofei
2006-01-01
The normalized min-sum algorithm can achieve near-optimal performance at decoding LDPC codes. However, it is a critical question to understand the mathematical principle underlying the algorithm. Traditionally, people thought that the normalized min-sum algorithm is a good approximation to the sum-product algorithm, the best known algorithm for decoding LDPC codes and Turbo codes. This paper offers an alternative approach to understand the normalized min-sum algorithm. The algorithm is derive...
An improved algorithm for finding all minimal paths in a network
Bai, Guanghan; Tian, Zhigang; Zuo, Ming J.
2016-01-01
Minimal paths (MPs) play an important role in network reliability evaluation. In this paper, we report an efficient recursive algorithm for finding all MPs in two-terminal networks, which consist of a source node and a sink node. A linked path structure indexed by nodes is introduced, which accepts both directed and undirected form of networks. The distance between each node and the sink node is defined, and a simple recursive algorithm is presented for labeling the distance for each node. Based on the distance between each node and the sink node, additional conditions for backtracking are incorporated to reduce the number of search branches. With the newly introduced linked node structure, the distances between each node and the sink node, and the additional backtracking conditions, an improved backtracking algorithm for searching for all MPs is developed. In addition, the proposed algorithm can be adapted to search for all minimal paths for each source–sink pair in networks consisting of multiple source nodes and/or multiple sink nodes. Through computational experiments, it is demonstrated that the proposed algorithm is more efficient than existing algorithms when the network size is not too small. The proposed algorithm becomes more advantageous as the size of the network grows. - Highlights: • A linked path structure indexed by nodes is introduced to represent networks. • Additional conditions for backtracking are proposed based on the distance of each node. • An efficient algorithm is developed to find all MPs for two-terminal networks. • The computational efficiency of the algorithm for two-terminal networks is investigated. • The computational efficiency of the algorithm for multi-terminal networks is investigated.
Optimal hydrogenerator governor tuning with a genetic algorithm
Lansberry, J.E.; Wozniak, L.; Goldberg, D.E.
1992-01-01
Many techniques exist for developing optimal controllers. This paper investigates genetic algorithms as a means of finding optimal solutions over a parameter space. In particular, the genetic algorithm is applied to optimal tuning of a governor for a hydrogenerator plant. Analog and digital simulation methods are compared for use in conjunction with the genetic algorithm optimization process. It is shown that analog plant simulation provides advantages in speed over digital plant simulation. This speed advantage makes application of the genetic algorithm in an actual plant environment feasible. Furthermore, the genetic algorithm is shown to possess the ability to reject plant noise and other system anomalies in its search for optimizing solutions
Research and application of genetic algorithm in path planning of logistics distribution vehicle
Wang, Yong; Zhou, Heng; Wang, Ying
2017-08-01
The core of the logistics distribution system is the vehicle routing planning, research path planning problem, provide a better solution has become an important issue. In order to provide the decision support for logistics and distribution operations, this paper studies the problem of vehicle routing with capacity constraints (CVRP). By establishing a mathematical model, the genetic algorithm is used to plan the path of the logistics vehicle to meet the minimum logistics and transportation costs.
Queue and stack sorting algorithm optimization and performance analysis
Qian, Mingzhu; Wang, Xiaobao
2018-04-01
Sorting algorithm is one of the basic operation of a variety of software development, in data structures course specializes in all kinds of sort algorithm. The performance of the sorting algorithm is directly related to the efficiency of the software. A lot of excellent scientific research queue is constantly optimizing algorithm, algorithm efficiency better as far as possible, the author here further research queue combined with stacks of sorting algorithms, the algorithm is mainly used for alternating operation queue and stack storage properties, Thus avoiding the need for a large number of exchange or mobile operations in the traditional sort. Before the existing basis to continue research, improvement and optimization, the focus on the optimization of the time complexity of the proposed optimization and improvement, The experimental results show that the improved effectively, at the same time and the time complexity and space complexity of the algorithm, the stability study corresponding research. The improvement and optimization algorithm, improves the practicability.
Jianwen Guo
2016-01-01
Full Text Available All equipment must be maintained during its lifetime to ensure normal operation. Maintenance is one of the critical roles in the success of manufacturing enterprises. This paper proposed a preventive maintenance period optimization model (PMPOM to find an optimal preventive maintenance period. By making use of the advantages of particle swarm optimization (PSO and cuckoo search (CS algorithm, a hybrid optimization algorithm of PSO and CS is proposed to solve the PMPOM problem. The test functions show that the proposed algorithm exhibits more outstanding performance than particle swarm optimization and cuckoo search. Experiment results show that the proposed algorithm has advantages of strong optimization ability and fast convergence speed to solve the PMPOM problem.
Instrument design and optimization using genetic algorithms
Hoelzel, Robert; Bentley, Phillip M.; Fouquet, Peter
2006-01-01
This article describes the design of highly complex physical instruments by using a canonical genetic algorithm (GA). The procedure can be applied to all instrument designs where performance goals can be quantified. It is particularly suited to the optimization of instrument design where local optima in the performance figure of merit are prevalent. Here, a GA is used to evolve the design of the neutron spin-echo spectrometer WASP which is presently being constructed at the Institut Laue-Langevin, Grenoble, France. A comparison is made between this artificial intelligence approach and the traditional manual design methods. We demonstrate that the search of parameter space is more efficient when applying the genetic algorithm, and the GA produces a significantly better instrument design. Furthermore, it is found that the GA increases flexibility, by facilitating the reoptimization of the design after changes in boundary conditions during the design phase. The GA also allows the exploration of 'nonstandard' magnet coil geometries. We conclude that this technique constitutes a powerful complementary tool for the design and optimization of complex scientific apparatus, without replacing the careful thought processes employed in traditional design methods
Instrument design and optimization using genetic algorithms
Hölzel, Robert; Bentley, Phillip M.; Fouquet, Peter
2006-10-01
This article describes the design of highly complex physical instruments by using a canonical genetic algorithm (GA). The procedure can be applied to all instrument designs where performance goals can be quantified. It is particularly suited to the optimization of instrument design where local optima in the performance figure of merit are prevalent. Here, a GA is used to evolve the design of the neutron spin-echo spectrometer WASP which is presently being constructed at the Institut Laue-Langevin, Grenoble, France. A comparison is made between this artificial intelligence approach and the traditional manual design methods. We demonstrate that the search of parameter space is more efficient when applying the genetic algorithm, and the GA produces a significantly better instrument design. Furthermore, it is found that the GA increases flexibility, by facilitating the reoptimization of the design after changes in boundary conditions during the design phase. The GA also allows the exploration of "nonstandard" magnet coil geometries. We conclude that this technique constitutes a powerful complementary tool for the design and optimization of complex scientific apparatus, without replacing the careful thought processes employed in traditional design methods.
Global optimal path planning of an autonomous vehicle for overtaking a moving obstacle
B. Mashadi
Full Text Available In this paper, the global optimal path planning of an autonomous vehicle for overtaking a moving obstacle is proposed. In this study, the autonomous vehicle overtakes a moving vehicle by performing a double lane-change maneuver after detecting it in a proper distance ahead. The optimal path of vehicle for performing the lane-change maneuver is generated by a path planning program in which the sum of lateral deviation of the vehicle from a reference path and the rate of steering angle become minimum while the lateral acceleration of vehicle does not exceed a safe limit value. A nonlinear optimal control theory with the lateral vehicle dynamics equations and inequality constraint of lateral acceleration are used to generate the path. The indirect approach for solving the optimal control problem is used by applying the calculus of variation and the Pontryagin's Minimum Principle to obtain first-order necessary conditions for optimality. The optimal path is generated as a global optimal solution and can be used as the benchmark of the path generated by the local motion planning of autonomous vehicles. A full nonlinear vehicle model in CarSim software is used for path following simulation by importing path data from the MATLAB code. The simulation results show that the generated path for the autonomous vehicle satisfies all vehicle dynamics constraints and hence is a suitable overtaking path for the following vehicle.
A Feedback Optimal Control Algorithm with Optimal Measurement Time Points
Felix Jost
2017-02-01
Full Text Available Nonlinear model predictive control has been established as a powerful methodology to provide feedback for dynamic processes over the last decades. In practice it is usually combined with parameter and state estimation techniques, which allows to cope with uncertainty on many levels. To reduce the uncertainty it has also been suggested to include optimal experimental design into the sequential process of estimation and control calculation. Most of the focus so far was on dual control approaches, i.e., on using the controls to simultaneously excite the system dynamics (learning as well as minimizing a given objective (performing. We propose a new algorithm, which sequentially solves robust optimal control, optimal experimental design, state and parameter estimation problems. Thus, we decouple the control and the experimental design problems. This has the advantages that we can analyze the impact of measurement timing (sampling independently, and is practically relevant for applications with either an ethical limitation on system excitation (e.g., chemotherapy treatment or the need for fast feedback. The algorithm shows promising results with a 36% reduction of parameter uncertainties for the Lotka-Volterra fishing benchmark example.
Optimal parallel algorithms for problems modeled by a family of intervals
Olariu, Stephan; Schwing, James L.; Zhang, Jingyuan
1992-01-01
A family of intervals on the real line provides a natural model for a vast number of scheduling and VLSI problems. Recently, a number of parallel algorithms to solve a variety of practical problems on such a family of intervals have been proposed in the literature. Computational tools are developed, and it is shown how they can be used for the purpose of devising cost-optimal parallel algorithms for a number of interval-related problems including finding a largest subset of pairwise nonoverlapping intervals, a minimum dominating subset of intervals, along with algorithms to compute the shortest path between a pair of intervals and, based on the shortest path, a parallel algorithm to find the center of the family of intervals. More precisely, with an arbitrary family of n intervals as input, all algorithms run in O(log n) time using O(n) processors in the EREW-PRAM model of computation.
Applications of metaheuristic optimization algorithms in civil engineering
Kaveh, A
2017-01-01
The book presents recently developed efficient metaheuristic optimization algorithms and their applications for solving various optimization problems in civil engineering. The concepts can also be used for optimizing problems in mechanical and electrical engineering.
A Scheduling Algorithm for Cloud Computing System Based on the Driver of Dynamic Essential Path.
Xie, Zhiqiang; Shao, Xia; Xin, Yu
2016-01-01
To solve the problem of task scheduling in the cloud computing system, this paper proposes a scheduling algorithm for cloud computing based on the driver of dynamic essential path (DDEP). This algorithm applies a predecessor-task layer priority strategy to solve the problem of constraint relations among task nodes. The strategy assigns different priority values to every task node based on the scheduling order of task node as affected by the constraint relations among task nodes, and the task node list is generated by the different priority value. To address the scheduling order problem in which task nodes have the same priority value, the dynamic essential long path strategy is proposed. This strategy computes the dynamic essential path of the pre-scheduling task nodes based on the actual computation cost and communication cost of task node in the scheduling process. The task node that has the longest dynamic essential path is scheduled first as the completion time of task graph is indirectly influenced by the finishing time of task nodes in the longest dynamic essential path. Finally, we demonstrate the proposed algorithm via simulation experiments using Matlab tools. The experimental results indicate that the proposed algorithm can effectively reduce the task Makespan in most cases and meet a high quality performance objective.
AntStar: Enhancing Optimization Problems by Integrating an Ant System and A⁎ Algorithm
Mohammed Faisal
2016-01-01
Full Text Available Recently, nature-inspired techniques have become valuable to many intelligent systems in different fields of technology and science. Among these techniques, Ant Systems (AS have become a valuable technique for intelligent systems in different fields. AS is a computational system inspired by the foraging behavior of ants and intended to solve practical optimization problems. In this paper, we introduce the AntStar algorithm, which is swarm intelligence based. AntStar enhances the optimization and performance of an AS by integrating the AS and A⁎ algorithm. Applying the AntStar algorithm to the single-source shortest-path problem has been done to ensure the efficiency of the proposed AntStar algorithm. The experimental result of the proposed algorithm illustrated the robustness and accuracy of the AntStar algorithm.
Yong Ma
2013-01-01
Full Text Available We present one algorithm based on particle swarm optimization (PSO with penalty function to determine the conflict-free path for mobile objects in four-dimension (three spatial and one-time dimensions with obstacles. The shortest path of the mobile object is set as goal function, which is constrained by conflict-free criterion, path smoothness, and velocity and acceleration requirements. This problem is formulated as a calculus of variation problem (CVP. With parametrization method, the CVP is converted to a time-varying nonlinear programming problem (TNLPP. Constraints of TNLPP are transformed to general TNLPP without any constraints through penalty functions. Then, by using a little calculations and applying the algorithm PSO, the solution of the CVP is consequently obtained. Approach efficiency is confirmed by numerical examples.
Optimal path planning for video-guided smart munitions via multitarget tracking
Borkowski, Jeffrey M.; Vasquez, Juan R.
2006-05-01
An advent in the development of smart munitions entails autonomously modifying target selection during flight in order to maximize the value of the target being destroyed. A unique guidance law can be constructed that exploits both attribute and kinematic data obtained from an onboard video sensor. An optimal path planning algorithm has been developed with the goals of obstacle avoidance and maximizing the value of the target impacted by the munition. Target identification and classification provides a basis for target value which is used in conjunction with multi-target tracks to determine an optimal waypoint for the munition. A dynamically feasible trajectory is computed to provide constraints on the waypoint selection. Results demonstrate the ability of the autonomous system to avoid moving obstacles and revise target selection in flight.
Qingyang Zhang
2015-02-01
Full Text Available Bird Mating Optimizer (BMO is a novel meta-heuristic optimization algorithm inspired by intelligent mating behavior of birds. However, it is still insufficient in convergence of speed and quality of solution. To overcome these drawbacks, this paper proposes a hybrid algorithm (TLBMO, which is established by combining the advantages of Teaching-learning-based optimization (TLBO and Bird Mating Optimizer (BMO. The performance of TLBMO is evaluated on 23 benchmark functions, and compared with seven state-of-the-art approaches, namely BMO, TLBO, Artificial Bee Bolony (ABC, Particle Swarm Optimization (PSO, Fast Evolution Programming (FEP, Differential Evolution (DE, Group Search Optimization (GSO. Experimental results indicate that the proposed method performs better than other existing algorithms for global numerical optimization.
Mathematical optimization for planning and design of cycle paths
LiÑan Ruiz, R.J.; Perez Aracil, J.; Cabrera Cañizares, V.
2016-07-01
The daily need for citizens to move for different activities, whatever its nature, has been greatly affected by the changes. The advantages resulting from the inclusion of the bicycle as a mode of transport and the proliferation of its use among citizens are numerous and extend both in the field of urban mobility and sustainable development.Currently, there are a number of programs for the implementation, promotion or increased public participation related to cycling in cities. But ultimately, each and every one of these initiatives have the same goal, to create a mesh of effective, useful and cycling trails that allow the use of bicycles in preferred routes with high guarantees of security, incorporating bicycle model intermodal urban transport.With the gradual implementation of bike lanes, many people have begun to use them to get around the city. But everything again needs a period of adaptation, and the reality is that the road network for these vehicles is full of obstacles to the rider. The current situation has led to the proposal that many kilometers of cycle paths needed to supply the demand of this mode of transport and, if implemented and planned are correct and sufficient.This paper presents a mathematical programming model for optimal design of a network for cyclists is presented. Specifically, the model determines a network of bicycle infrastructure, appropriate to the characteristics of a network of existing roads.As an application of the proposed model, the result of these experiments give a number of useful conclusions for planning and designing networks of cycle paths from a social perspective, applied to the case in the city of Malaga. (Author)
Evaluation of a New Backtrack Free Path Planning Algorithm for Manipulators
Islam, Md. Nazrul; Tamura, Shinsuke; Murata, Tomonari; Yanase, Tatsuro
This paper evaluates a newly proposed backtrack free path planning algorithm (BFA) for manipulators. BFA is an exact algorithm, i.e. it is resolution complete. Different from existing resolution complete algorithms, its computation time and memory space are proportional to the number of arms. Therefore paths can be calculated within practical and predetermined time even for manipulators with many arms, and it becomes possible to plan complicated motions of multi-arm manipulators in fully automated environments. The performance of BFA is evaluated for 2-dimensional environments while changing the number of arms and obstacle placements. Its performance under locus and attitude constraints is also evaluated. Evaluation results show that the computation volume of the algorithm is almost the same as the theoretical one, i.e. it increases linearly with the number of arms even in complicated environments. Moreover BFA achieves the constant performance independent of environments.
Khasawneh, Mohammed A., E-mail: mkha@ieee.org [Department of Electrical Engineering, Jordan University of Science and Technology (Jordan); Al-Shboul, Zeina Aman M., E-mail: xeinaaman@gmail.com [Department of Electrical Engineering, Jordan University of Science and Technology (Jordan); Jaradat, Mohammad A., E-mail: majaradat@just.edu.jo [Department of Mechanical Engineering, Jordan University of Science and Technology (Jordan); Malkawi, Mohammad I., E-mail: mmalkawi@aimws.com [College of Engineering, Jadara University, Irbid 221 10 (Jordan)
2013-06-15
Highlights: ► A new navigation algorithm for Radiation Evasion around nuclear facilities. ► An optimization criteria minimized under algorithm operation. ► A man-borne device guiding the occupational worker towards paths that warrant least radiation × time products. ► Benefits of using localized navigation as opposed to global navigation schemas. ► A path discrimination function for finding the navigational paths exhibiting the least amounts of radiation. -- Abstract: In this extension from part I (Khasawneh et al., in press), we modify the navigation algorithm which was presented with the objective of optimizing the “Radiation Evasion” Criterion so that navigation would optimize the criterion of “Nearest Exit”. Under this modification, algorithm would yield navigation paths that would guide occupational workers towards Nearest Exit points. Again, under this optimization criterion, algorithm leverages the use of localized information acquired through a well designed and distributed wireless sensor network, as it averts the need for any long-haul communication links or centralized decision and monitoring facility thereby achieving a more reliable performance under dynamic environments. As was done in part I, the proposed algorithm under the “Nearest Exit” Criterion is designed to leverage nearest neighbor information coming in through the sensory network overhead, in computing successful navigational paths from one point to another. For comparison purposes, the proposed algorithm is tested under the two optimization criteria: “Radiation Evasion” and “Nearest Exit”, for different numbers of step look-ahead. We verify the performance of the algorithm by means of simulations, whereby navigational paths are calculated for different radiation fields. We, via simulations, also, verify the performance of the algorithm in comparison with a well-known global navigation algorithm upon which we draw our conclusions.
Khasawneh, Mohammed A.; Al-Shboul, Zeina Aman M.; Jaradat, Mohammad A.; Malkawi, Mohammad I.
2013-01-01
Highlights: ► A new navigation algorithm for Radiation Evasion around nuclear facilities. ► An optimization criteria minimized under algorithm operation. ► A man-borne device guiding the occupational worker towards paths that warrant least radiation × time products. ► Benefits of using localized navigation as opposed to global navigation schemas. ► A path discrimination function for finding the navigational paths exhibiting the least amounts of radiation. -- Abstract: In this extension from part I (Khasawneh et al., in press), we modify the navigation algorithm which was presented with the objective of optimizing the “Radiation Evasion” Criterion so that navigation would optimize the criterion of “Nearest Exit”. Under this modification, algorithm would yield navigation paths that would guide occupational workers towards Nearest Exit points. Again, under this optimization criterion, algorithm leverages the use of localized information acquired through a well designed and distributed wireless sensor network, as it averts the need for any long-haul communication links or centralized decision and monitoring facility thereby achieving a more reliable performance under dynamic environments. As was done in part I, the proposed algorithm under the “Nearest Exit” Criterion is designed to leverage nearest neighbor information coming in through the sensory network overhead, in computing successful navigational paths from one point to another. For comparison purposes, the proposed algorithm is tested under the two optimization criteria: “Radiation Evasion” and “Nearest Exit”, for different numbers of step look-ahead. We verify the performance of the algorithm by means of simulations, whereby navigational paths are calculated for different radiation fields. We, via simulations, also, verify the performance of the algorithm in comparison with a well-known global navigation algorithm upon which we draw our conclusions
A Hybrid Algorithm for Optimizing Multi- Modal Functions
Li Qinghua; Yang Shida; Ruan Youlin
2006-01-01
A new genetic algorithm is presented based on the musical performance. The novelty of this algorithm is that a new genetic algorithm, mimicking the musical process of searching for a perfect state of harmony, which increases the robustness of it greatly and gives a new meaning of it in the meantime, has been developed. Combining the advantages of the new genetic algorithm, simplex algorithm and tabu search, a hybrid algorithm is proposed. In order to verify the effectiveness of the hybrid algorithm, it is applied to solving some typical numerical function optimization problems which are poorly solved by traditional genetic algorithms. The experimental results show that the hybrid algorithm is fast and reliable.
Time-optimal path planning in uncertain flow fields using ensemble method
Wang, Tong
2016-01-06
An ensemble-based approach is developed to conduct time-optimal path planning in unsteady ocean currents under uncertainty. We focus our attention on two-dimensional steady and unsteady uncertain flows, and adopt a sampling methodology that is well suited to operational forecasts, where a set deterministic predictions is used to model and quantify uncertainty in the predictions. In the operational setting, much about dynamics, topography and forcing of the ocean environment is uncertain, and as a result a single path produced by a model simulation has limited utility. To overcome this limitation, we rely on a finitesize ensemble of deterministic forecasts to quantify the impact of variability in the dynamics. The uncertainty of flow field is parametrized using a finite number of independent canonical random variables with known densities, and the ensemble is generated by sampling these variables. For each the resulting realizations of the uncertain current field, we predict the optimal path by solving a boundary value problem (BVP), based on the Pontryagin maximum principle. A family of backward-in-time trajectories starting at the end position is used to generate suitable initial values for the BVP solver. This allows us to examine and analyze the performance of sampling strategy, and develop insight into extensions dealing with regional or general circulation models. In particular, the ensemble method enables us to perform a statistical analysis of travel times, and consequently develop a path planning approach that accounts for these statistics. The proposed methodology is tested for a number of scenarios. We first validate our algorithms by reproducing simple canonical solutions, and then demonstrate our approach in more complex flow fields, including idealized, steady and unsteady double-gyre flows.
Jiang Zhao
2016-01-01
Full Text Available This paper presents an improved ant colony algorithm for the path planning of the omnidirectional mobile vehicle. The purpose of the improved ant colony algorithm is to design an appropriate route to connect the starting point and ending point of the environment with obstacles. Ant colony algorithm, which is used to solve the path planning problem, is improved according to the characteristics of the omnidirectional mobile vehicle. And in the improved algorithm, the nonuniform distribution of the initial pheromone and the selection strategy with direction play a very positive role in the path search. The coverage and updating strategy of pheromone is introduced to avoid repeated search reducing the effect of the number of ants on the performance of the algorithm. In addition, the pheromone evaporation coefficient is segmented and adjusted, which can effectively balance the convergence speed and search ability. Finally, this paper provides a theoretical basis for the improved ant colony algorithm by strict mathematical derivation, and some numerical simulations are also given to illustrate the effectiveness of the theoretical results.
Optimizing doped libraries by using genetic algorithms
Tomandl, Dirk; Schober, Andreas; Schwienhorst, Andreas
1997-01-01
The insertion of random sequences into protein-encoding genes in combination with biologicalselection techniques has become a valuable tool in the design of molecules that have usefuland possibly novel properties. By employing highly effective screening protocols, a functionaland unique structure that had not been anticipated can be distinguished among a hugecollection of inactive molecules that together represent all possible amino acid combinations.This technique is severely limited by its restriction to a library of manageable size. Oneapproach for limiting the size of a mutant library relies on `doping schemes', where subsetsof amino acids are generated that reveal only certain combinations of amino acids in a proteinsequence. Three mononucleotide mixtures for each codon concerned must be designed, suchthat the resulting codons that are assembled during chemical gene synthesis represent thedesired amino acid mixture on the level of the translated protein. In this paper we present adoping algorithm that `reverse translates' a desired mixture of certain amino acids into threemixtures of mononucleotides. The algorithm is designed to optimally bias these mixturestowards the codons of choice. This approach combines a genetic algorithm with localoptimization strategies based on the downhill simplex method. Disparate relativerepresentations of all amino acids (and stop codons) within a target set can be generated.Optional weighing factors are employed to emphasize the frequencies of certain amino acidsand their codon usage, and to compensate for reaction rates of different mononucleotidebuilding blocks (synthons) during chemical DNA synthesis. The effect of statistical errors thataccompany an experimental realization of calculated nucleotide mixtures on the generatedmixtures of amino acids is simulated. These simulations show that the robustness of differentoptima with respect to small deviations from calculated values depends on their concomitantfitness. Furthermore
Fast exploration of an optimal path on the multidimensional free energy surface
Chen, Changjun
2017-01-01
In a reaction, determination of an optimal path with a high reaction rate (or a low free energy barrier) is important for the study of the reaction mechanism. This is a complicated problem that involves lots of degrees of freedom. For simple models, one can build an initial path in the collective variable space by the interpolation method first and then update the whole path constantly in the optimization. However, such interpolation method could be risky in the high dimensional space for large molecules. On the path, steric clashes between neighboring atoms could cause extremely high energy barriers and thus fail the optimization. Moreover, performing simulations for all the snapshots on the path is also time-consuming. In this paper, we build and optimize the path by a growing method on the free energy surface. The method grows a path from the reactant and extends its length in the collective variable space step by step. The growing direction is determined by both the free energy gradient at the end of the path and the direction vector pointing at the product. With fewer snapshots on the path, this strategy can let the path avoid the high energy states in the growing process and save the precious simulation time at each iteration step. Applications show that the presented method is efficient enough to produce optimal paths on either the two-dimensional or the twelve-dimensional free energy surfaces of different small molecules. PMID:28542475
Moharam Habibnejad Korayem
2012-10-01
Full Text Available In this work, a computational algorithm is developed for the smooth-jerk optimal path planning of tricycle wheeled mobile manipulators in an obstructed environment. Due to a centred orientable wheel, the tricycle mobile manipulator exhibits more steerability and manoeuvrability over traditional mobile manipulators, especially in the presence of environmental obstacles. This paper presents a general formulation based on the combination of the potential field method and optimal control theory in order to plan the smooth point-to-point path of the tricycle mobile manipulators. The nonholonomic constraints of the tricycle mobile base are taken into account in the dynamic formulation of the system and then the optimality conditions are derived considering jerk restrictions and obstacle avoidance. Furthermore, by means of the potential field method, a new formulation of a repulsive potential function is proposed for collision avoidance between any obstacle and each part of the mobile manipulator. In addition, to ensure the accurate placement of the end effector on the target point an attractive potential function is applied to the optimal control formulation. Next, a mixed analytical-numerical algorithm is proposed to generate the point-to-point optimal path. Finally, the proposed method is verified by a number of simulations on a two-link tricycle manipulator.
Narinder Singh
2018-03-01
Full Text Available The quest for an efficient nature-inspired optimization technique has continued over the last few decades. In this paper, a hybrid nature-inspired optimization technique has been proposed. The hybrid algorithm has been constructed using Mean Grey Wolf Optimizer (MGWO and Whale Optimizer Algorithm (WOA. We have utilized the spiral equation of Whale Optimizer Algorithm for two procedures in the Hybrid Approach GWO (HAGWO algorithm: (i firstly, we used the spiral equation in Grey Wolf Optimizer algorithm for balance between the exploitation and the exploration process in the new hybrid approach; and (ii secondly, we also applied this equation in the whole population in order to refrain from the premature convergence and trapping in local minima. The feasibility and effectiveness of the hybrid algorithm have been tested by solving some standard benchmarks, XOR, Baloon, Iris, Breast Cancer, Welded Beam Design, Pressure Vessel Design problems and comparing the results with those obtained through other metaheuristics. The solutions prove that the newly existing hybrid variant has higher stronger stability, faster convergence rate and computational accuracy than other nature-inspired metaheuristics on the maximum number of problems and can successfully resolve the function of constrained nonlinear optimization in reality.
Ahmet Demir; Utku Kose
2016-01-01
ABSTRACT In the fields which require finding the most appropriate value, optimization became a vital approach to employ effective solutions. With the use of optimization techniques, many different fields in the modern life have found solutions to their real-world based problems. In this context, classical optimization techniques have had an important popularity. But after a while, more advanced optimization problems required the use of more effective techniques. At this point, Computer Sc...
Ahmet Demir; Utku kose
2017-01-01
In the fields which require finding the most appropriate value, optimization became a vital approach to employ effective solutions. With the use of optimization techniques, many different fields in the modern life have found solutions to their real-world based problems. In this context, classical optimization techniques have had an important popularity. But after a while, more advanced optimization problems required the use of more effective techniques. At this point, Computer Science took an...
Modified artificial bee colony algorithm for reactive power optimization
Sulaiman, Noorazliza; Mohamad-Saleh, Junita; Abro, Abdul Ghani
2015-05-01
Bio-inspired algorithms (BIAs) implemented to solve various optimization problems have shown promising results which are very important in this severely complex real-world. Artificial Bee Colony (ABC) algorithm, a kind of BIAs has demonstrated tremendous results as compared to other optimization algorithms. This paper presents a new modified ABC algorithm referred to as JA-ABC3 with the aim to enhance convergence speed and avoid premature convergence. The proposed algorithm has been simulated on ten commonly used benchmarks functions. Its performance has also been compared with other existing ABC variants. To justify its robust applicability, the proposed algorithm has been tested to solve Reactive Power Optimization problem. The results have shown that the proposed algorithm has superior performance to other existing ABC variants e.g. GABC, BABC1, BABC2, BsfABC dan IABC in terms of convergence speed. Furthermore, the proposed algorithm has also demonstrated excellence performance in solving Reactive Power Optimization problem.
Filter Pattern Search Algorithms for Mixed Variable Constrained Optimization Problems
Abramson, Mark A; Audet, Charles; Dennis, Jr, J. E
2004-01-01
.... This class combines and extends the Audet-Dennis Generalized Pattern Search (GPS) algorithms for bound constrained mixed variable optimization, and their GPS-filter algorithms for general nonlinear constraints...
Application of colony complex algorithm to nuclear component optimization design
Yan Changqi; Li Guijing; Wang Jianjun
2014-01-01
Complex algorithm (CA) has got popular application to the region of nuclear engineering. In connection with the specific features of the application of traditional complex algorithm (TCA) to the optimization design in engineering structures, an improved method, colony complex algorithm (CCA), was developed based on the optimal combination of many complexes, in which the disadvantages of TCA were overcame. The optimized results of benchmark function show that CCA has better optimizing performance than TCA. CCA was applied to the high-pressure heater optimization design, and the optimization effect is obvious. (authors)
Hybrid Firefly Variants Algorithm for Localization Optimization in WSN
P. SrideviPonmalar
2017-01-01
Full Text Available Localization is one of the key issues in wireless sensor networks. Several algorithms and techniques have been introduced for localization. Localization is a procedural technique of estimating the sensor node location. In this paper, a novel three hybrid algorithms based on firefly is proposed for localization problem. Hybrid Genetic Algorithm-Firefly Localization Algorithm (GA-FFLA, Hybrid Differential Evolution-Firefly Localization Algorithm (DE-FFLA and Hybrid Particle Swarm Optimization -Firefly Localization Algorithm (PSO-FFLA are analyzed, designed and implemented to optimize the localization error. The localization algorithms are compared based on accuracy of estimation of location, time complexity and iterations required to achieve the accuracy. All the algorithms have hundred percent estimation accuracy but with variations in the number of firefliesr requirements, variation in time complexity and number of iteration requirements. Keywords: Localization; Genetic Algorithm; Differential Evolution; Particle Swarm Optimization
Analytical optimal pulse shapes obtained with the aid of genetic algorithms
Guerrero, Rubén D.; Arango, Carlos A.; Reyes, Andrés
2015-01-01
We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding the interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions
Analytical optimal pulse shapes obtained with the aid of genetic algorithms
Guerrero, Rubén D., E-mail: rdguerrerom@unal.edu.co [Department of Physics, Universidad Nacional de Colombia, Bogota (Colombia); Arango, Carlos A. [Department of Chemical Sciences, Universidad Icesi, Cali (Colombia); Reyes, Andrés [Department of Chemistry, Universidad Nacional de Colombia, Bogota (Colombia)
2015-09-28
We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding the interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions.
Optimal Pid Controller Design Using Adaptive Vurpso Algorithm
Zirkohi, Majid Moradi
2015-04-01
The purpose of this paper is to improve theVelocity Update Relaxation Particle Swarm Optimization algorithm (VURPSO). The improved algorithm is called Adaptive VURPSO (AVURPSO) algorithm. Then, an optimal design of a Proportional-Integral-Derivative (PID) controller is obtained using the AVURPSO algorithm. An adaptive momentum factor is used to regulate a trade-off between the global and the local exploration abilities in the proposed algorithm. This operation helps the system to reach the optimal solution quickly and saves the computation time. Comparisons on the optimal PID controller design confirm the superiority of AVURPSO algorithm to the optimization algorithms mentioned in this paper namely the VURPSO algorithm, the Ant Colony algorithm, and the conventional approach. Comparisons on the speed of convergence confirm that the proposed algorithm has a faster convergence in a less computation time to yield a global optimum value. The proposed AVURPSO can be used in the diverse areas of optimization problems such as industrial planning, resource allocation, scheduling, decision making, pattern recognition and machine learning. The proposed AVURPSO algorithm is efficiently used to design an optimal PID controller.
Improved hybrid optimization algorithm for 3D protein structure prediction.
Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang
2014-07-01
A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins.
Optimization algorithm based on densification and dynamic canonical descent
Bousson, K.; Correia, S. D.
2006-07-01
Stochastic methods have gained some popularity in global optimization in that most of them do not assume the cost functions to be differentiable. They have capabilities to avoid being trapped by local optima, and may converge even faster than gradient-based optimization methods on some problems. The present paper proposes an optimization method, which reduces the search space by means of densification curves, coupled with the dynamic canonical descent algorithm. The performances of the new method are shown on several known problems classically used for testing optimization algorithms, and proved to outperform competitive algorithms such as simulated annealing and genetic algorithms.
An Optimization Routing Algorithm for Green Communication in Underground Mines
Heng Xu
2018-06-01
Full Text Available With the long-term dependence of humans on ore-based energy, underground mines are utilized around the world, and underground mining is often dangerous. Therefore, many underground mines have established networks that manage and acquire information from sensor nodes deployed on miners and in other places. Since the power supplies of many mobile sensor nodes are batteries, green communication is an effective approach of reducing the energy consumption of a network and extending its longevity. To reduce the energy consumption of networks, all factors that negatively influence the lifetime should be considered. The degree constraint minimum spanning tree (DCMST is introduced in this study to consider all the heterogeneous factors and assign weights for the next step of the evaluation. Then, a genetic algorithm (GA is introduced to cluster sensor nodes in the network and balance energy consumption according to several heterogeneous factors and routing paths from DCMST. Based on a comparison of the simulation results, the optimization routing algorithm proposed in this study for use in green communication in underground mines can effectively reduce the network energy consumption and extend the lifetimes of networks.
Palmisano, Fabrizio; Elia, Angelo
2017-10-01
One of the main difficulties, when dealing with landslide structural vulnerability, is the diagnosis of the causes of crack patterns. This is also due to the excessive complexity of models based on classical structural mechanics that makes them inappropriate especially when there is the necessity to perform a rapid vulnerability assessment at the territorial scale. This is why, a new approach, based on a ‘simple model’ (i.e. the Load Path Method, LPM), has been proposed by Palmisano and Elia for the interpretation of the behaviour of masonry buildings subjected to landslide-induced settlements. However, the LPM is very useful for rapidly finding the 'most plausible solution' instead of the exact solution. To find the solution, optimization algorithms are necessary. In this scenario, this article aims to show how the Bidirectional Evolutionary Structural Optimization method by Huang and Xie, can be very useful to optimize the strut-and-tie models obtained by using the Load Path Method.
Comparison of Greedy Algorithms for Decision Tree Optimization
Alkhalid, Abdulaziz; Chikalov, Igor; Moshkov, Mikhail
2013-01-01
This chapter is devoted to the study of 16 types of greedy algorithms for decision tree construction. The dynamic programming approach is used for construction of optimal decision trees. Optimization is performed relative to minimal values
Design Optimization of Space Launch Vehicles Using a Genetic Algorithm
Bayley, Douglas J
2007-01-01
.... A genetic algorithm (GA) was employed to optimize the design of the space launch vehicle. A cost model was incorporated into the optimization process with the goal of minimizing the overall vehicle cost...
Baek, Jieun; Choi, Yosoon
2017-04-01
Most algorithms for least-cost path analysis usually calculate the slope gradient between the source cell and the adjacent cells to reflect the weights for terrain slope into the calculation of travel costs. However, these algorithms have limitations that they cannot analyze the least-cost path between two cells when obstacle cells with very high or low terrain elevation exist between the source cell and the target cell. This study presents a new algorithm for least-cost path analysis by correcting digital elevation models of natural landscapes to find possible paths satisfying the constraint of maximum or minimum slope gradient. The new algorithm calculates the slope gradient between the center cell and non-adjacent cells using the concept of extended move-sets. If the algorithm finds possible paths between the center cell and non-adjacent cells with satisfying the constraint of slope condition, terrain elevation of obstacle cells existing between two cells is corrected from the digital elevation model. After calculating the cumulative travel costs to the destination by reflecting the weight of the difference between the original and corrected elevations, the algorithm analyzes the least-cost path. The results of applying the proposed algorithm to the synthetic data sets and the real-world data sets provide proof that the new algorithm can provide more accurate least-cost paths than other conventional algorithms implemented in commercial GIS software such as ArcGIS.
Algorithm comparison for schedule optimization in MR fingerprinting.
Cohen, Ouri; Rosen, Matthew S
2017-09-01
In MR Fingerprinting, the flip angles and repetition times are chosen according to a pseudorandom schedule. In previous work, we have shown that maximizing the discrimination between different tissue types by optimizing the acquisition schedule allows reductions in the number of measurements required. The ideal optimization algorithm for this application remains unknown, however. In this work we examine several different optimization algorithms to determine the one best suited for optimizing MR Fingerprinting acquisition schedules. Copyright © 2017 Elsevier Inc. All rights reserved.
PROPOSAL OF ALGORITHM FOR ROUTE OPTIMIZATION
Robert Ramon de Carvalho Sousa; Abimael de Jesus Barros Costa; Eliezé Bulhões de Carvalho; Adriano de Carvalho Paranaíba; Daylyne Maerla Gomes Lima Sandoval
2016-01-01
This article uses “Six Sigma” methodology for the elaboration of an algorithm for routing problems which is able to obtain more efficient results than those from Clarke and Wright´s (CW) algorithm (1964) in situations of random increase of product delivery demands, facing the incapability of service level increase . In some situations, the algorithm proposed obtained more efficient results than the CW algorithm. The key factor was a reduction in the number of mistakes (on...
Rao, Akshay; Elara, Mohan Rajesh; Elangovan, Karthikeyan
This paper aims to develop a local path planning algorithm for a bio-inspired, reconfigurable crawling robot. A detailed description of the robotic platform is first provided, and the suitability for deployment of each of the current state-of-the-art local path planners is analyzed after an extensive literature review. The Enhanced Vector Polar Histogram algorithm is described and reformulated to better fit the requirements of the platform. The algorithm is deployed on the robotic platform in crawling configuration and favorably compared with other state-of-the-art local path planning algorithms.
Vivek Patel
2012-08-01
Full Text Available Nature inspired population based algorithms is a research field which simulates different natural phenomena to solve a wide range of problems. Researchers have proposed several algorithms considering different natural phenomena. Teaching-Learning-based optimization (TLBO is one of the recently proposed population based algorithm which simulates the teaching-learning process of the class room. This algorithm does not require any algorithm-specific control parameters. In this paper, elitism concept is introduced in the TLBO algorithm and its effect on the performance of the algorithm is investigated. The effects of common controlling parameters such as the population size and the number of generations on the performance of the algorithm are also investigated. The proposed algorithm is tested on 35 constrained benchmark functions with different characteristics and the performance of the algorithm is compared with that of other well known optimization algorithms. The proposed algorithm can be applied to various optimization problems of the industrial environment.
Automatic Circuit Design and Optimization Using Modified PSO Algorithm
Subhash Patel
2016-04-01
Full Text Available In this work, we have proposed modified PSO algorithm based optimizer for automatic circuit design. The performance of the modified PSO algorithm is compared with two other evolutionary algorithms namely ABC algorithm and standard PSO algorithm by designing two stage CMOS operational amplifier and bulk driven OTA in 130nm technology. The results show the robustness of the proposed algorithm. With modified PSO algorithm, the average design error for two stage op-amp is only 0.054% in contrast to 3.04% for standard PSO algorithm and 5.45% for ABC algorithm. For bulk driven OTA, average design error is 1.32% with MPSO compared to 4.70% with ABC algorithm and 5.63% with standard PSO algorithm.
An Improved Routing Optimization Algorithm Based on Travelling Salesman Problem for Social Networks
Naixue Xiong
2017-06-01
Full Text Available A social network is a social structure, which is organized by the relationships or interactions between individuals or groups. Humans link the physical network with social network, and the services in the social world are based on data and analysis, which directly influence decision making in the physical network. In this paper, we focus on a routing optimization algorithm, which solves a well-known and popular problem. Ant colony algorithm is proposed to solve this problem effectively, but random selection strategy of the traditional algorithm causes evolution speed to be slow. Meanwhile, positive feedback and distributed computing model make the algorithm quickly converge. Therefore, how to improve convergence speed and search ability of algorithm is the focus of the current research. The paper proposes the improved scheme. Considering the difficulty about searching for next better city, new parameters are introduced to improve probability of selection, and delay convergence speed of algorithm. To avoid the shortest path being submerged, and improve sensitive speed of finding the shortest path, it updates pheromone regulation formula. The results show that the improved algorithm can effectively improve convergence speed and search ability for achieving higher accuracy and optimal results.
Zhiteng Wang
2014-01-01
Full Text Available Service oriented modeling and simulation are hot issues in the field of modeling and simulation, and there is need to call service resources when simulation task workflow is running. How to optimize the service resource allocation to ensure that the task is complete effectively is an important issue in this area. In military modeling and simulation field, it is important to improve the probability of success and timeliness in simulation task workflow. Therefore, this paper proposes an optimization algorithm for multipath service resource parallel allocation, in which multipath service resource parallel allocation model is built and multiple chains coding scheme quantum optimization algorithm is used for optimization and solution. The multiple chains coding scheme quantum optimization algorithm is to extend parallel search space to improve search efficiency. Through the simulation experiment, this paper investigates the effect for the probability of success in simulation task workflow from different optimization algorithm, service allocation strategy, and path number, and the simulation result shows that the optimization algorithm for multipath service resource parallel allocation is an effective method to improve the probability of success and timeliness in simulation task workflow.
JingRui Zhang
2015-03-01
Full Text Available In this article, we focus on safe and effective completion of a rendezvous and docking task by looking at planning approaches and control with fuel-optimal rendezvous for a target spacecraft running on a near-circular reference orbit. A variety of existent practical path constraints are considered, including the constraints of field of view, impulses, and passive safety. A rendezvous approach is calculated by using a hybrid genetic algorithm with those constraints. Furthermore, a control method of trajectory tracking is adopted to overcome the external disturbances. Based on Clohessy–Wiltshire equations, we first construct the mathematical model of optimal planning approaches of multiple impulses with path constraints. Second, we introduce the principle of hybrid genetic algorithm with both stronger global searching ability and local searching ability. We additionally explain the application of this algorithm in the problem of trajectory planning. Then, we give three-impulse simulation examples to acquire an optimal rendezvous trajectory with the path constraints presented in this article. The effectiveness and applicability of the tracking control method are verified with the optimal trajectory above as control objective through the numerical simulation.
Multimodal optimization by using hybrid of artificial bee colony algorithm and BFGS algorithm
Anam, S.
2017-10-01
Optimization has become one of the important fields in Mathematics. Many problems in engineering and science can be formulated into optimization problems. They maybe have many local optima. The optimization problem with many local optima, known as multimodal optimization problem, is how to find the global solution. Several metaheuristic methods have been proposed to solve multimodal optimization problems such as Particle Swarm Optimization (PSO), Genetics Algorithm (GA), Artificial Bee Colony (ABC) algorithm, etc. The performance of the ABC algorithm is better than or similar to those of other population-based algorithms with the advantage of employing a fewer control parameters. The ABC algorithm also has the advantages of strong robustness, fast convergence and high flexibility. However, it has the disadvantages premature convergence in the later search period. The accuracy of the optimal value cannot meet the requirements sometimes. Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is a good iterative method for finding a local optimum. Compared with other local optimization methods, the BFGS algorithm is better. Based on the advantages of the ABC algorithm and the BFGS algorithm, this paper proposes a hybrid of the artificial bee colony algorithm and the BFGS algorithm to solve the multimodal optimization problem. The first step is that the ABC algorithm is run to find a point. In the second step is that the point obtained by the first step is used as an initial point of BFGS algorithm. The results show that the hybrid method can overcome from the basic ABC algorithm problems for almost all test function. However, if the shape of function is flat, the proposed method cannot work well.
HEURISTIC OPTIMIZATION AND ALGORITHM TUNING APPLIED TO SORPTIVE BARRIER DESIGN
While heuristic optimization is applied in environmental applications, ad-hoc algorithm configuration is typical. We use a multi-layer sorptive barrier design problem as a benchmark for an algorithm-tuning procedure, as applied to three heuristics (genetic algorithms, simulated ...
New preconditioned conjugate gradient algorithms for nonlinear unconstrained optimization problems
Al-Bayati, A.; Al-Asadi, N.
1997-01-01
This paper presents two new predilection conjugate gradient algorithms for nonlinear unconstrained optimization problems and examines their computational performance. Computational experience shows that the new proposed algorithms generally imp lone the efficiency of Nazareth's [13] preconditioned conjugate gradient algorithm. (authors). 16 refs., 1 tab
Parallel Evolutionary Optimization Algorithms for Peptide-Protein Docking
Poluyan, Sergey; Ershov, Nikolay
2018-02-01
In this study we examine the possibility of using evolutionary optimization algorithms in protein-peptide docking. We present the main assumptions that reduce the docking problem to a continuous global optimization problem and provide a way of using evolutionary optimization algorithms. The Rosetta all-atom force field was used for structural representation and energy scoring. We describe the parallelization scheme and MPI/OpenMP realization of the considered algorithms. We demonstrate the efficiency and the performance for some algorithms which were applied to a set of benchmark tests.
Teaching learning based optimization algorithm and its engineering applications
Rao, R Venkata
2016-01-01
Describing a new optimization algorithm, the “Teaching-Learning-Based Optimization (TLBO),” in a clear and lucid style, this book maximizes reader insights into how the TLBO algorithm can be used to solve continuous and discrete optimization problems involving single or multiple objectives. As the algorithm operates on the principle of teaching and learning, where teachers influence the quality of learners’ results, the elitist version of TLBO algorithm (ETLBO) is described along with applications of the TLBO algorithm in the fields of electrical engineering, mechanical design, thermal engineering, manufacturing engineering, civil engineering, structural engineering, computer engineering, electronics engineering, physics and biotechnology. The book offers a valuable resource for scientists, engineers and practitioners involved in the development and usage of advanced optimization algorithms.
Engineering local optimality in quantum Monte Carlo algorithms
Pollet, Lode; Van Houcke, Kris; Rombouts, Stefan M. A.
2007-08-01
Quantum Monte Carlo algorithms based on a world-line representation such as the worm algorithm and the directed loop algorithm are among the most powerful numerical techniques for the simulation of non-frustrated spin models and of bosonic models. Both algorithms work in the grand-canonical ensemble and can have a winding number larger than zero. However, they retain a lot of intrinsic degrees of freedom which can be used to optimize the algorithm. We let us guide by the rigorous statements on the globally optimal form of Markov chain Monte Carlo simulations in order to devise a locally optimal formulation of the worm algorithm while incorporating ideas from the directed loop algorithm. We provide numerical examples for the soft-core Bose-Hubbard model and various spin- S models.
A novel hybrid algorithm of GSA with Kepler algorithm for numerical optimization
Soroor Sarafrazi
2015-07-01
Full Text Available It is now well recognized that pure algorithms can be promisingly improved by hybridization with other techniques. One of the relatively new metaheuristic algorithms is Gravitational Search Algorithm (GSA which is based on the Newton laws. In this paper, to enhance the performance of GSA, a novel algorithm called “Kepler”, inspired by the astrophysics, is introduced. The Kepler algorithm is based on the principle of the first Kepler law. The hybridization of GSA and Kepler algorithm is an efficient approach to provide much stronger specialization in intensification and/or diversification. The performance of GSA–Kepler is evaluated by applying it to 14 benchmark functions with 20–1000 dimensions and the optimal approximation of linear system as a practical optimization problem. The results obtained reveal that the proposed hybrid algorithm is robust enough to optimize the benchmark functions and practical optimization problems.
Particle swarm optimization - Genetic algorithm (PSOGA) on linear transportation problem
Rahmalia, Dinita
2017-08-01
Linear Transportation Problem (LTP) is the case of constrained optimization where we want to minimize cost subject to the balance of the number of supply and the number of demand. The exact method such as northwest corner, vogel, russel, minimal cost have been applied at approaching optimal solution. In this paper, we use heurisitic like Particle Swarm Optimization (PSO) for solving linear transportation problem at any size of decision variable. In addition, we combine mutation operator of Genetic Algorithm (GA) at PSO to improve optimal solution. This method is called Particle Swarm Optimization - Genetic Algorithm (PSOGA). The simulations show that PSOGA can improve optimal solution resulted by PSO.
An adaptive dual-optimal path-planning technique for unmanned air vehicles
Whitfield Clifford A.
2016-01-01
Full Text Available A multi-objective technique for unmanned air vehicle path-planning generation through task allocation has been developed. The dual-optimal path-planning technique generates real-time adaptive flight paths based on available flight windows and environmental influenced objectives. The environmentally-influenced flight condition determines the aircraft optimal orientation within a downstream virtual window of possible vehicle destinations that is based on the vehicle’s kinematics. The intermittent results are then pursued by a dynamic optimization technique to determine the flight path. This path-planning technique is a multi-objective optimization procedure consisting of two goals that do not require additional information to combine the conflicting objectives into a single-objective. The technique was applied to solar-regenerative high altitude long endurance flight which can benefit significantly from an adaptive real-time path-planning technique. The objectives were to determine the minimum power required flight paths while maintaining maximum solar power for continual surveillance over an area of interest (AOI. The simulated path generation technique prolonged the flight duration over a sustained turn loiter flight path by approximately 2 months for a year of flight. The potential for prolonged solar powered flight was consistent for all latitude locations, including 2 months of available flight at 60° latitude, where sustained turn flight was no longer capable.
PROPOSAL OF ALGORITHM FOR ROUTE OPTIMIZATION
Robert Ramon de Carvalho Sousa
2016-06-01
Full Text Available This article uses “Six Sigma” methodology for the elaboration of an algorithm for routing problems which is able to obtain more efficient results than those from Clarke and Wright´s (CW algorithm (1964 in situations of random increase of product delivery demands, facing the incapability of service level increase . In some situations, the algorithm proposed obtained more efficient results than the CW algorithm. The key factor was a reduction in the number of mistakes (one way routes and in the level of result variation.
Genetic algorithms applied to nuclear reactor design optimization
Pereira, C.M.N.A.; Schirru, R.; Martinez, A.S.
2000-01-01
A genetic algorithm is a powerful search technique that simulates natural evolution in order to fit a population of computational structures to the solution of an optimization problem. This technique presents several advantages over classical ones such as linear programming based techniques, often used in nuclear engineering optimization problems. However, genetic algorithms demand some extra computational cost. Nowadays, due to the fast computers available, the use of genetic algorithms has increased and its practical application has become a reality. In nuclear engineering there are many difficult optimization problems related to nuclear reactor design. Genetic algorithm is a suitable technique to face such kind of problems. This chapter presents applications of genetic algorithms for nuclear reactor core design optimization. A genetic algorithm has been designed to optimize the nuclear reactor cell parameters, such as array pitch, isotopic enrichment, dimensions and cells materials. Some advantages of this genetic algorithm implementation over a classical method based on linear programming are revealed through the application of both techniques to a simple optimization problem. In order to emphasize the suitability of genetic algorithms for design optimization, the technique was successfully applied to a more complex problem, where the classical method is not suitable. Results and comments about the applications are also presented. (orig.)
Evolutionary Algorithms for Boolean Queries Optimization
Húsek, Dušan; Snášel, Václav; Neruda, Roman; Owais, S.S.J.; Krömer, P.
2006-01-01
Roč. 3, č. 1 (2006), s. 15-20 ISSN 1790-0832 R&D Projects: GA AV ČR 1ET100300414 Institutional research plan: CEZ:AV0Z10300504 Keywords : evolutionary algorithms * genetic algorithms * information retrieval * Boolean query Subject RIV: BA - General Mathematics
Boolean Queries Optimization by Genetic Algorithms
Húsek, Dušan; Owais, S.S.J.; Krömer, P.; Snášel, Václav
2005-01-01
Roč. 15, - (2005), s. 395-409 ISSN 1210-0552 R&D Projects: GA AV ČR 1ET100300414 Institutional research plan: CEZ:AV0Z10300504 Keywords : evolutionary algorithms * genetic algorithms * genetic programming * information retrieval * Boolean query Subject RIV: BB - Applied Statistics, Operational Research
An optimization framework for process discovery algorithms
Weijters, A.J.M.M.; Stahlbock, R.
2011-01-01
Today there are many process mining techniques that, based on an event log, allow for the automatic induction of a process model. The process mining algorithms that are able to deal with incomplete event logs, exceptions, and noise typically have many parameters to tune the algorithm. Therefore, the
Analog Circuit Design Optimization Based on Evolutionary Algorithms
Mansour Barari
2014-01-01
Full Text Available This paper investigates an evolutionary-based designing system for automated sizing of analog integrated circuits (ICs. Two evolutionary algorithms, genetic algorithm and PSO (Parswal particle swarm optimization algorithm, are proposed to design analog ICs with practical user-defined specifications. On the basis of the combination of HSPICE and MATLAB, the system links circuit performances, evaluated through specific electrical simulation, to the optimization system in the MATLAB environment, for the selected topology. The system has been tested by typical and hard-to-design cases, such as complex analog blocks with stringent design requirements. The results show that the design specifications are closely met. Comparisons with available methods like genetic algorithms show that the proposed algorithm offers important advantages in terms of optimization quality and robustness. Moreover, the algorithm is shown to be efficient.
Decoherence in optimized quantum random-walk search algorithm
Zhang Yu-Chao; Bao Wan-Su; Wang Xiang; Fu Xiang-Qun
2015-01-01
This paper investigates the effects of decoherence generated by broken-link-type noise in the hypercube on an optimized quantum random-walk search algorithm. When the hypercube occurs with random broken links, the optimized quantum random-walk search algorithm with decoherence is depicted through defining the shift operator which includes the possibility of broken links. For a given database size, we obtain the maximum success rate of the algorithm and the required number of iterations through numerical simulations and analysis when the algorithm is in the presence of decoherence. Then the computational complexity of the algorithm with decoherence is obtained. The results show that the ultimate effect of broken-link-type decoherence on the optimized quantum random-walk search algorithm is negative. (paper)
Optimization of Pressurizer Based on Genetic-Simplex Algorithm
Wang, Cheng; Yan, Chang Qi; Wang, Jian Jun
2014-01-01
Pressurizer is one of key components in nuclear power system. It's important to control the dimension in the design of pressurizer through optimization techniques. In this work, a mathematic model of a vertical electric heating pressurizer was established. A new Genetic-Simplex Algorithm (GSA) that combines genetic algorithm and simplex algorithm was developed to enhance the searching ability, and the comparison among modified and original algorithms is conducted by calculating the benchmark function. Furthermore, the optimization design of pressurizer, taking minimization of volume and net weight as objectives, was carried out considering thermal-hydraulic and geometric constraints through GSA. The results indicate that the mathematical model is agreeable for the pressurizer and the new algorithm is more effective than the traditional genetic algorithm. The optimization design shows obvious validity and can provide guidance for real engineering design
A Fuzzy Gravitational Search Algorithm to Design Optimal IIR Filters
Danilo Pelusi
2018-03-01
Full Text Available The goodness of Infinite Impulse Response (IIR digital filters design depends on pass band ripple, stop band ripple and transition band values. The main problem is defining a suitable error fitness function that depends on these parameters. This fitness function can be optimized by search algorithms such as evolutionary algorithms. This paper proposes an intelligent algorithm for the design of optimal 8th order IIR filters. The main contribution is the design of Fuzzy Inference Systems able to tune key parameters of a revisited version of the Gravitational Search Algorithm (GSA. In this way, a Fuzzy Gravitational Search Algorithm (FGSA is designed. The optimization performances of FGSA are compared with those of Differential Evolution (DE and GSA. The results show that FGSA is the algorithm that gives the best compromise between goodness, robustness and convergence rate for the design of 8th order IIR filters. Moreover, FGSA assures a good stability of the designed filters.
Floyd-warshall algorithm to determine the shortest path based on android
Ramadiani; Bukhori, D.; Azainil; Dengen, N.
2018-04-01
The development of technology has made all areas of life easier now, one of which is the ease of obtaining geographic information. The use of geographic information may vary according to need, for example, the digital map learning, navigation systems, observations area, and much more. With the support of adequate infrastructure, almost no one will ever get lost to a destination even to foreign places or that have never been visited before. The reasons why many institutions and business entities use technology to improve services to consumers and to streamline the production process undertaken and so forth. Speaking of the efficient, there are many elements related to efficiency in navigation systems, and one of them is the efficiency in terms of distance. The shortest distance determination algorithm required in this research is used Floyd-Warshall Algorithm. Floyd-Warshall algorithm is the algorithm to find the fastest path and the shortest distance between 2 nodes, while the program is intended to find the path of more than 2 nodes.
Ilba Mateusz
2016-01-01
Full Text Available The paper presents the development of an daily solar irradiation algorithm with application of the free software Blender. Considerable attention was paid to the possibilities of simulation of reflections of direct and diffuse solar radiation. For this purpose, the rendering algorithm “Cycles” was used, based on the principle of bi-directional path tracing – tracing random paths of light beams. The value of global radiation in this study is the sum of four components: direct beam radiation, reflected beam radiation, diffuse radiation and reflected diffuse radiation. The developed algorithm allows calculation of solar irradiation for all elements of the 3D model created in Blender, or imported from an external source. One minute is the highest possible time resolution of the analysis, while the accuracy is dependent on the resolution of textures defined for each element of a 3D object. The analysed data is stored in the form of textures that in the algorithm are converted to the value of solar radiance. The result of the analysis is visualization, which shows the distribution of daily solar irradiation on all defined elements of the 3D model.
A dynamic global and local combined particle swarm optimization algorithm
Jiao Bin; Lian Zhigang; Chen Qunxian
2009-01-01
Particle swarm optimization (PSO) algorithm has been developing rapidly and many results have been reported. PSO algorithm has shown some important advantages by providing high speed of convergence in specific problems, but it has a tendency to get stuck in a near optimal solution and one may find it difficult to improve solution accuracy by fine tuning. This paper presents a dynamic global and local combined particle swarm optimization (DGLCPSO) algorithm to improve the performance of original PSO, in which all particles dynamically share the best information of the local particle, global particle and group particles. It is tested with a set of eight benchmark functions with different dimensions and compared with original PSO. Experimental results indicate that the DGLCPSO algorithm improves the search performance on the benchmark functions significantly, and shows the effectiveness of the algorithm to solve optimization problems.
When do evolutionary algorithms optimize separable functions in parallel?
Doerr, Benjamin; Sudholt, Dirk; Witt, Carsten
2013-01-01
is that evolutionary algorithms make progress on all subfunctions in parallel, so that optimizing a separable function does not take not much longer than optimizing the hardest subfunction-subfunctions are optimized "in parallel." We show that this is only partially true, already for the simple (1+1) evolutionary...... algorithm ((1+1) EA). For separable functions composed of k Boolean functions indeed the optimization time is the maximum optimization time of these functions times a small O(log k) overhead. More generally, for sums of weighted subfunctions that each attain non-negative integer values less than r = o(log1...
In Search of the Optimal Path: How Learners at Task Use an Online Dictionary
Hamel, Marie-Josee
2012-01-01
We have analyzed circa 180 navigation paths followed by six learners while they performed three language encoding tasks at the computer using an online dictionary prototype. Our hypothesis was that learners who follow an "optimal path" while navigating within the dictionary, using its search and look-up functions, would have a high chance of…
A MODIFIED GENETIC ALGORITHM FOR FINDING FUZZY SHORTEST PATHS IN UNCERTAIN NETWORKS
A. A. Heidari
2016-06-01
Full Text Available In realistic network analysis, there are several uncertainties in the measurements and computation of the arcs and vertices. These uncertainties should also be considered in realizing the shortest path problem (SPP due to the inherent fuzziness in the body of expert's knowledge. In this paper, we investigated the SPP under uncertainty to evaluate our modified genetic strategy. We improved the performance of genetic algorithm (GA to investigate a class of shortest path problems on networks with vague arc weights. The solutions of the uncertain SPP with considering fuzzy path lengths are examined and compared in detail. As a robust metaheuristic, GA algorithm is modified and evaluated to tackle the fuzzy SPP (FSPP with uncertain arcs. For this purpose, first, a dynamic operation is implemented to enrich the exploration/exploitation patterns of the conventional procedure and mitigate the premature convergence of GA technique. Then, the modified GA (MGA strategy is used to resolve the FSPP. The attained results of the proposed strategy are compared to those of GA with regard to the cost, quality of paths and CPU times. Numerical instances are provided to demonstrate the success of the proposed MGA-FSPP strategy in comparison with GA. The simulations affirm that not only the proposed technique can outperform GA, but also the qualities of the paths are effectively improved. The results clarify that the competence of the proposed GA is preferred in view of quality quantities. The results also demonstrate that the proposed method can efficiently be utilized to handle FSPP in uncertain networks.
An Adaptive Unified Differential Evolution Algorithm for Global Optimization
Qiang, Ji; Mitchell, Chad
2014-11-03
In this paper, we propose a new adaptive unified differential evolution algorithm for single-objective global optimization. Instead of the multiple mutation strate- gies proposed in conventional differential evolution algorithms, this algorithm employs a single equation unifying multiple strategies into one expression. It has the virtue of mathematical simplicity and also provides users the flexibility for broader exploration of the space of mutation operators. By making all control parameters in the proposed algorithm self-adaptively evolve during the process of optimization, it frees the application users from the burden of choosing appro- priate control parameters and also improves the performance of the algorithm. In numerical tests using thirteen basic unimodal and multimodal functions, the proposed adaptive unified algorithm shows promising performance in compari- son to several conventional differential evolution algorithms.
Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models.
Gonglin Yuan
Full Text Available Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1 βk ≥ 0 2 the search direction has the trust region property without the use of any line search method 3 the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations.
Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models.
Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou
2015-01-01
Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1) βk ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations.
A hybrid artificial bee colony algorithm for numerical function optimization
Alqattan, Zakaria N.; Abdullah, Rosni
2015-02-01
Artificial Bee Colony (ABC) algorithm is one of the swarm intelligence algorithms; it has been introduced by Karaboga in 2005. It is a meta-heuristic optimization search algorithm inspired from the intelligent foraging behavior of the honey bees in nature. Its unique search process made it as one of the most competitive algorithm with some other search algorithms in the area of optimization, such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO). However, the ABC performance of the local search process and the bee movement or the solution improvement equation still has some weaknesses. The ABC is good in avoiding trapping at the local optimum but it spends its time searching around unpromising random selected solutions. Inspired by the PSO, we propose a Hybrid Particle-movement ABC algorithm called HPABC, which adapts the particle movement process to improve the exploration of the original ABC algorithm. Numerical benchmark functions were used in order to experimentally test the HPABC algorithm. The results illustrate that the HPABC algorithm can outperform the ABC algorithm in most of the experiments (75% better in accuracy and over 3 times faster).
PSO Algorithm for an Optimal Power Controller in a Microgrid
Al-Saedi, W.; Lachowicz, S.; Habibi, D.; Bass, O.
2017-07-01
This paper presents the Particle Swarm Optimization (PSO) algorithm to improve the quality of the power supply in a microgrid. This algorithm is proposed for a real-time selftuning method that used in a power controller for an inverter based Distributed Generation (DG) unit. In such system, the voltage and frequency are the main control objectives, particularly when the microgrid is islanded or during load change. In this work, the PSO algorithm is implemented to find the optimal controller parameters to satisfy the control objectives. The results show high performance of the applied PSO algorithm of regulating the microgrid voltage and frequency.
Genetic Algorithm Optimized Neural Networks Ensemble as ...
Marquardt algorithm by varying conditions such as inputs, hidden neurons, initialization, training sets and random Gaussian noise injection to ... Several such ensembles formed the population which was evolved to generate the fittest ensemble.
A biomimetic, energy-harvesting, obstacle-avoiding, path-planning algorithm for UAVs
Gudmundsson, Snorri
This dissertation presents two new approaches to energy harvesting for Unmanned Aerial Vehicles (UAV). One method is based on the Potential Flow Method (PFM); the other method seeds a wind-field map based on updraft peak analysis and then applies a variant of the Bellman-Ford algorithm to find the minimum-cost path. Both methods are enhanced by taking into account the performance characteristics of the aircraft using advanced performance theory. The combined approach yields five possible trajectories from which the one with the minimum energy cost is selected. The dissertation concludes by using the developed theory and modeling tools to simulate the flight paths of two small Unmanned Aerial Vehicles (sUAV) in the 500 kg and 250 kg class. The results show that, in mountainous regions, substantial energy can be recovered, depending on topography and wind characteristics. For the examples presented, as much as 50% of the energy was recovered for a complex, multi-heading, multi-altitude, 170 km mission in an average wind speed of 9 m/s. The algorithms constitute a Generic Intelligent Control Algorithm (GICA) for autonomous unmanned aerial vehicles that enables an extraction of atmospheric energy while completing a mission trajectory. At the same time, the algorithm. automatically adjusts the flight path in order to avoid obstacles, in a fashion not unlike what one would expect from living organisms, such as birds and insects. This multi-disciplinary approach renders the approach biomimetic, i.e. it constitutes a synthetic system that “mimics the formation and function of biological mechanisms and processes.”.
On Implementing a Homogeneous Interior-Point Algorithm for Nonsymmetric Conic Optimization
Skajaa, Anders; Jørgensen, John Bagterp; Hansen, Per Christian
Based on earlier work by Nesterov, an implementation of a homogeneous infeasible-start interior-point algorithm for solving nonsymmetric conic optimization problems is presented. Starting each iteration from (the vicinity of) the central path, the method computes (nearly) primal-dual symmetric...... approximate tangent directions followed by a purely primal centering procedure to locate the next central primal-dual point. Features of the algorithm include that it makes use only of the primal barrier function, that it is able to detect infeasibilities in the problem and that no phase-I method is needed...
Reactive power dispatch considering voltage stability with seeker optimization algorithm
Dai, Chaohua; Chen, Weirong; Zhang, Xuexia [The School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Zhu, Yunfang [Department of Computer and Communication Engineering, E' mei Campus, Southwest Jiaotong University, E' mei 614202 (China)
2009-10-15
Optimal reactive power dispatch (ORPD) has a growing impact on secure and economical operation of power systems. This issue is well known as a non-linear, multi-modal and multi-objective optimization problem where global optimization techniques are required in order to avoid local minima. In the last decades, computation intelligence-based techniques such as genetic algorithms (GAs), differential evolution (DE) algorithms and particle swarm optimization (PSO) algorithms, etc., have often been used for this aim. In this work, a seeker optimization algorithm (SOA) based method is proposed for ORPD considering static voltage stability and voltage deviation. The SOA is based on the concept of simulating the act of human searching where search direction is based on the empirical gradient by evaluating the response to the position changes and step length is based on uncertainty reasoning by using a simple Fuzzy rule. The algorithm's performance is studied with comparisons of two versions of GAs, three versions of DE algorithms and four versions of PSO algorithms on the IEEE 57 and 118-bus power systems. The simulation results show that the proposed approach performed better than the other listed algorithms and can be efficiently used for the ORPD problem. (author)
Tax policy can change the production path: A model of optimal oil extraction in Alaska
Leighty, Wayne; Lin, C.-Y. Cynthia
2012-01-01
We model the economically optimal dynamic oil production decisions for seven production units (fields) on Alaska's North Slope. We use adjustment cost and discount rate to calibrate the model against historical production data, and use the calibrated model to simulate the impact of tax policy on production rate. We construct field-specific cost functions from average cost data and an estimated inverse production function, which incorporates engineering aspects of oil production into our economic modeling. Producers appear to have approximated dynamic optimality. Consistent with prior research, we find that changing the tax rate alone does not change the economically optimal oil production path, except for marginal fields that may cease production. Contrary to prior research, we find that the structure of tax policy can be designed to affect the economically optimal production path, but at a cost in net social benefit. - Highlights: ► We model economically optimal dynamic oil production decisions for 7 Alaska fields. ► Changing tax rate alone does not alter the economically optimal oil production path. ► But change in tax structure can affect the economically optimal oil production path. ► Tax structures that modify the optimal production path reduce net social benefit. ► Field-specific cost functions and inverse production functions are estimated
A Cooperative Harmony Search Algorithm for Function Optimization
Gang Li
2014-01-01
Full Text Available Harmony search algorithm (HS is a new metaheuristic algorithm which is inspired by a process involving musical improvisation. HS is a stochastic optimization technique that is similar to genetic algorithms (GAs and particle swarm optimizers (PSOs. It has been widely applied in order to solve many complex optimization problems, including continuous and discrete problems, such as structure design, and function optimization. A cooperative harmony search algorithm (CHS is developed in this paper, with cooperative behavior being employed as a significant improvement to the performance of the original algorithm. Standard HS just uses one harmony memory and all the variables of the object function are improvised within the harmony memory, while the proposed algorithm CHS uses multiple harmony memories, so that each harmony memory can optimize different components of the solution vector. The CHS was then applied to function optimization problems. The results of the experiment show that CHS is capable of finding better solutions when compared to HS and a number of other algorithms, especially in high-dimensional problems.
A Unified Differential Evolution Algorithm for Global Optimization
Qiang, Ji; Mitchell, Chad
2014-06-24
Abstract?In this paper, we propose a new unified differential evolution (uDE) algorithm for single objective global optimization. Instead of selecting among multiple mutation strategies as in the conventional differential evolution algorithm, this algorithm employs a single equation as the mutation strategy. It has the virtue of mathematical simplicity and also provides users the flexbility for broader exploration of different mutation strategies. Numerical tests using twelve basic unimodal and multimodal functions show promising performance of the proposed algorithm in comparison to convential differential evolution algorithms.
Wolf Search Algorithm for Solving Optimal Reactive Power Dispatch Problem
Kanagasabai Lenin
2015-03-01
Full Text Available This paper presents a new bio-inspired heuristic optimization algorithm called the Wolf Search Algorithm (WSA for solving the multi-objective reactive power dispatch problem. Wolf Search algorithm is a new bio – inspired heuristic algorithm which based on wolf preying behaviour. The way wolves search for food and survive by avoiding their enemies has been imitated to formulate the algorithm for solving the reactive power dispatches. And the speciality of wolf is possessing both individual local searching ability and autonomous flocking movement and this special property has been utilized to formulate the search algorithm .The proposed (WSA algorithm has been tested on standard IEEE 30 bus test system and simulation results shows clearly about the good performance of the proposed algorithm .
Blocked All-Pairs Shortest Paths Algorithm on Intel Xeon Phi KNL Processor: A Case Study
Rucci, Enzo; De Giusti, Armando Eduardo; Naiouf, Marcelo
2017-01-01
Manycores are consolidating in HPC community as a way of improving performance while keeping power efficiency. Knights Landing is the recently released second generation of Intel Xeon Phi architec- ture.While optimizing applications on CPUs, GPUs and first Xeon Phi’s has been largely studied in the last years, the new features in Knights Landing processors require the revision of programming and optimization techniques for these devices. In this work, we selected the Floyd-Warshall algorithm ...
Yifan Hu
2012-01-01
Full Text Available The fault-tolerant routing problem is important consideration in the design of heterogeneous wireless sensor networks (H-WSNs applications, and has recently been attracting growing research interests. In order to maintain k disjoint communication paths from source sensors to the macronodes, we present a hybrid routing scheme and model, in which multiple paths are calculated and maintained in advance, and alternate paths are created once the previous routing is broken. Then, we propose an immune cooperative particle swarm optimization algorithm (ICPSOA in the model to provide the fast routing recovery and reconstruct the network topology for path failure in H-WSNs. In the ICPSOA, mutation direction of the particle is determined by multi-swarm evolution equation, and its diversity is improved by immune mechanism, which can enhance the capacity of global search and improve the converging rate of the algorithm. Then we validate this theoretical model with simulation results. The results indicate that the ICPSOA-based fault-tolerant routing protocol outperforms several other protocols due to its capability of fast routing recovery mechanism, reliable communications, and prolonging the lifetime of WSNs.
Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem
Chen, Wei
2015-07-01
In this paper, we discuss the portfolio optimization problem with real-world constraints under the assumption that the returns of risky assets are fuzzy numbers. A new possibilistic mean-semiabsolute deviation model is proposed, in which transaction costs, cardinality and quantity constraints are considered. Due to such constraints the proposed model becomes a mixed integer nonlinear programming problem and traditional optimization methods fail to find the optimal solution efficiently. Thus, a modified artificial bee colony (MABC) algorithm is developed to solve the corresponding optimization problem. Finally, a numerical example is given to illustrate the effectiveness of the proposed model and the corresponding algorithm.
Multiphase Return Trajectory Optimization Based on Hybrid Algorithm
Yi Yang
2016-01-01
Full Text Available A hybrid trajectory optimization method consisting of Gauss pseudospectral method (GPM and natural computation algorithm has been developed and utilized to solve multiphase return trajectory optimization problem, where a phase is defined as a subinterval in which the right-hand side of the differential equation is continuous. GPM converts the optimal control problem to a nonlinear programming problem (NLP, which helps to improve calculation accuracy and speed of natural computation algorithm. Through numerical simulations, it is found that the multiphase optimal control problem could be solved perfectly.
Genetic algorithm for neural networks optimization
Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta
2004-11-01
This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.
Theory and Algorithms for Global/Local Design Optimization
Haftka, Raphael T
2004-01-01
... the component and overall design as well as on exploration of global optimization algorithms. In the former category, heuristic decomposition was followed with proof that it solves the original problem...
ProxImaL: efficient image optimization using proximal algorithms
Heide, Felix; Diamond, Steven; Nieß ner, Matthias; Ragan-Kelley, Jonathan; Heidrich, Wolfgang; Wetzstein, Gordon
2016-01-01
domain-specific language and compiler for image optimization problems that makes it easy to experiment with different problem formulations and algorithm choices. The language uses proximal operators as the fundamental building blocks of a variety
Theory and Algorithms for Global/Local Design Optimization
Watson, Layne T; Guerdal, Zafer; Haftka, Raphael T
2005-01-01
The motivating application for this research is the global/local optimal design of composite aircraft structures such as wings and fuselages, but the theory and algorithms are more widely applicable...
Parallel Global Optimization with the Particle Swarm Algorithm (Preprint)
Schutte, J. F; Reinbolt, J. A; Fregly, B. J; Haftka, R. T; George, A. D
2004-01-01
.... To obtain enhanced computational throughput and global search capability, we detail the coarse-grained parallelization of an increasingly popular global search method, the Particle Swarm Optimization (PSO) algorithm...
Solving Multiobjective Optimization Problems Using Artificial Bee Colony Algorithm
Wenping Zou
2011-01-01
Full Text Available Multiobjective optimization has been a difficult problem and focus for research in fields of science and engineering. This paper presents a novel algorithm based on artificial bee colony (ABC to deal with multi-objective optimization problems. ABC is one of the most recently introduced algorithms based on the intelligent foraging behavior of a honey bee swarm. It uses less control parameters, and it can be efficiently used for solving multimodal and multidimensional optimization problems. Our algorithm uses the concept of Pareto dominance to determine the flight direction of a bee, and it maintains nondominated solution vectors which have been found in an external archive. The proposed algorithm is validated using the standard test problems, and simulation results show that the proposed approach is highly competitive and can be considered a viable alternative to solve multi-objective optimization problems.
Optimal design of the heat pipe using TLBO (teaching–learning-based optimization) algorithm
Rao, R.V.; More, K.C.
2015-01-01
Heat pipe is a highly efficient and reliable heat transfer component. It is a closed container designed to transfer a large amount of heat in system. Since the heat pipe operates on a closed two-phase cycle, the heat transfer capacity is greater than for solid conductors. Also, the thermal response time is less than with solid conductors. The three major elemental parts of the rotating heat pipe are: a cylindrical evaporator, a truncated cone condenser, and a fixed amount of working fluid. In this paper, a recently proposed new stochastic advanced optimization algorithm called TLBO (Teaching–Learning-Based Optimization) algorithm is used for single objective as well as multi-objective design optimization of heat pipe. It is easy to implement, does not make use of derivatives and it can be applied to unconstrained or constrained problems. Two examples of heat pipe are presented in this paper. The results of application of TLBO algorithm for the design optimization of heat pipe are compared with the NPGA (Niched Pareto Genetic Algorithm), GEM (Grenade Explosion Method) and GEO (Generalized External optimization). It is found that the TLBO algorithm has produced better results as compared to those obtained by using NPGA, GEM and GEO algorithms. - Highlights: • The TLBO (Teaching–Learning-Based Optimization) algorithm is used for the design and optimization of a heat pipe. • Two examples of heat pipe design and optimization are presented. • The TLBO algorithm is proved better than the other optimization algorithms in terms of results and the convergence
R. Venkata Rao
2013-01-01
Full Text Available Teaching-Learning-based optimization (TLBO is a recently proposed population based algorithm, which simulates the teaching-learning process of the class room. This algorithm requires only the common control parameters and does not require any algorithm-specific control parameters. In this paper, the effect of elitism on the performance of the TLBO algorithm is investigated while solving unconstrained benchmark problems. The effects of common control parameters such as the population size and the number of generations on the performance of the algorithm are also investigated. The proposed algorithm is tested on 76 unconstrained benchmark functions with different characteristics and the performance of the algorithm is compared with that of other well known optimization algorithms. A statistical test is also performed to investigate the results obtained using different algorithms. The results have proved the effectiveness of the proposed elitist TLBO algorithm.
Search Parameter Optimization for Discrete, Bayesian, and Continuous Search Algorithms
2017-09-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS SEARCH PARAMETER OPTIMIZATION FOR DISCRETE , BAYESIAN, AND CONTINUOUS SEARCH ALGORITHMS by...to 09-22-2017 4. TITLE AND SUBTITLE SEARCH PARAMETER OPTIMIZATION FOR DISCRETE , BAYESIAN, AND CON- TINUOUS SEARCH ALGORITHMS 5. FUNDING NUMBERS 6...simple search and rescue acts to prosecuting aerial/surface/submersible targets on mission. This research looks at varying the known discrete and
Chaotically encoded particle swarm optimization algorithm and its applications
Alatas, Bilal; Akin, Erhan
2009-01-01
This paper proposes a novel particle swarm optimization (PSO) algorithm, chaotically encoded particle swarm optimization algorithm (CENPSOA), based on the notion of chaos numbers that have been recently proposed for a novel meaning to numbers. In this paper, various chaos arithmetic and evaluation measures that can be used in CENPSOA have been described. Furthermore, CENPSOA has been designed to be effectively utilized in data mining applications.
Rowe, Neil C.; Lewis, David H.
1989-01-01
Path planning is an important issue for space robotics. Finding safe and energy-efficient paths in the presence of obstacles and other constraints can be complex although important. High-level (large-scale) path planning for robotic vehicles was investigated in three-dimensional space with obstacles, accounting for: (1) energy costs proportional to path length; (2) turn costs where paths change trajectory abruptly; and (3) safety costs for the danger associated with traversing a particular path due to visibility or invisibility from a fixed set of observers. Paths optimal with respect to these cost factors are found. Autonomous or semi-autonomous vehicles were considered operating either in a space environment around satellites and space platforms, or aircraft, spacecraft, or smart missiles operating just above lunar and planetary surfaces. One class of applications concerns minimizing detection, as for example determining the best way to make complex modifications to a satellite without being observed by hostile sensors; another example is verifying there are no paths (holes) through a space defense system. Another class of applications concerns maximizing detection, as finding a good trajectory between mountain ranges of a planet while staying reasonably close to the surface, or finding paths for a flight between two locations that maximize the average number of triangulation points available at any time along the path.
A Globally Convergent Parallel SSLE Algorithm for Inequality Constrained Optimization
Zhijun Luo
2014-01-01
Full Text Available A new parallel variable distribution algorithm based on interior point SSLE algorithm is proposed for solving inequality constrained optimization problems under the condition that the constraints are block-separable by the technology of sequential system of linear equation. Each iteration of this algorithm only needs to solve three systems of linear equations with the same coefficient matrix to obtain the descent direction. Furthermore, under certain conditions, the global convergence is achieved.
Advanced optimization of permanent magnet wigglers using a genetic algorithm
Hajima, Ryoichi [Univ. of Tokyo (Japan)
1995-12-31
In permanent magnet wigglers, magnetic imperfection of each magnet piece causes field error. This field error can be reduced or compensated by sorting magnet pieces in proper order. We showed a genetic algorithm has good property for this sorting scheme. In this paper, this optimization scheme is applied to the case of permanent magnets which have errors in the direction of field. The result shows the genetic algorithm is superior to other algorithms.
Advanced optimization of permanent magnet wigglers using a genetic algorithm
Hajima, Ryoichi
1995-01-01
In permanent magnet wigglers, magnetic imperfection of each magnet piece causes field error. This field error can be reduced or compensated by sorting magnet pieces in proper order. We showed a genetic algorithm has good property for this sorting scheme. In this paper, this optimization scheme is applied to the case of permanent magnets which have errors in the direction of field. The result shows the genetic algorithm is superior to other algorithms
MPC Toolbox with GPU Accelerated Optimization Algorithms
Gade-Nielsen, Nicolai Fog; Jørgensen, John Bagterp; Dammann, Bernd
2012-01-01
The introduction of Graphical Processing Units (GPUs) in scientific computing has shown great promise in many different fields. While GPUs are capable of very high floating point performance and memory bandwidth, its massively parallel architecture requires algorithms to be reimplemented to suit...
Bio Inspired Algorithms in Single and Multiobjective Reliability Optimization
Madsen, Henrik; Albeanu, Grigore; Burtschy, Bernard
2014-01-01
Non-traditional search and optimization methods based on natural phenomena have been proposed recently in order to avoid local or unstable behavior when run towards an optimum state. This paper describes the principles of bio inspired algorithms and reports on Migration Algorithms and Bees...
Analysis of Ant Colony Optimization and Population-Based Evolutionary Algorithms on Dynamic Problems
Lissovoi, Andrei
the dynamic optimum for finite alphabets up to size μ, while MMAS is able to do so for any finite alphabet size. Parallel Evolutionary Algorithms on Maze. We prove that while a (1 + λ) EA is unable to track the optimum of the dynamic fitness function Maze for offspring population size up to λ = O(n1-ε......This thesis presents new running time analyses of nature-inspired algorithms on various dynamic problems. It aims to identify and analyse the features of algorithms and problem classes which allow efficient optimization to occur in the presence of dynamic behaviour. We consider the following...... settings: λ-MMAS on Dynamic Shortest Path Problems. We investigate how in-creasing the number of ants simulated per iteration may help an ACO algorithm to track optimum in a dynamic problem. It is shown that while a constant number of ants per-vertex is sufficient to track some oscillations, there also...
Yogang Singh
2018-03-01
Full Text Available The growing need of ocean surveying and exploration for scientific and industrial application has led to the requirement of routing strategies for ocean vehicles which are optimal in nature. Most of the op-timal path planning for marine vehicles had been conducted offline in a self-made environment. This paper takes into account a practical marine environment, i.e. Portsmouth Harbour, for finding an optimal path in terms of computational time between source and end points on a real time map for an USV. The current study makes use of a grid map generated from original and uses a Dijkstra algorithm to find the shortest path for a single USV. In order to benchmark the study, a path planning study using a well-known local path planning method artificial path planning (APF has been conducted in a real time marine environment and effectiveness is measured in terms of path length and computational time.
Xun Zhang
2014-01-01
Full Text Available Optimal sensor placement is a key issue in the structural health monitoring of large-scale structures. However, some aspects in existing approaches require improvement, such as the empirical and unreliable selection of mode and sensor numbers and time-consuming computation. A novel improved particle swarm optimization (IPSO algorithm is proposed to address these problems. The approach firstly employs the cumulative effective modal mass participation ratio to select mode number. Three strategies are then adopted to improve the PSO algorithm. Finally, the IPSO algorithm is utilized to determine the optimal sensors number and configurations. A case study of a latticed shell model is implemented to verify the feasibility of the proposed algorithm and four different PSO algorithms. The effective independence method is also taken as a contrast experiment. The comparison results show that the optimal placement schemes obtained by the PSO algorithms are valid, and the proposed IPSO algorithm has better enhancement in convergence speed and precision.
Salcedo-Sanz, S.; Del Ser, J.; Landa-Torres, I.; Gil-López, S.; Portilla-Figueras, J. A.
2014-01-01
This paper presents a novel bioinspired algorithm to tackle complex optimization problems: the coral reefs optimization (CRO) algorithm. The CRO algorithm artificially simulates a coral reef, where different corals (namely, solutions to the optimization problem considered) grow and reproduce in coral colonies, fighting by choking out other corals for space in the reef. This fight for space, along with the specific characteristics of the corals' reproduction, produces a robust metaheuristic algorithm shown to be powerful for solving hard optimization problems. In this research the CRO algorithm is tested in several continuous and discrete benchmark problems, as well as in practical application scenarios (i.e., optimum mobile network deployment and off-shore wind farm design). The obtained results confirm the excellent performance of the proposed algorithm and open line of research for further application of the algorithm to real-world problems. PMID:25147860
a new meta-heuristic optimization algorithm
N Archana
programming obtain optimal solution to the problem by rigorous methods supplemented by gradient information. Classical methods are good for solving problems with only ... ronment for their survival and apply the concepts in finding.
Optimal Seamline Detection for Orthoimage Mosaicking Based on DSM and Improved JPS Algorithm
Gang Chen
2018-05-01
Full Text Available Based on the digital surface model (DSM and jump point search (JPS algorithm, this study proposed a novel approach to detect the optimal seamline for orthoimage mosaicking. By threshold segmentation, DSM was first identified as ground regions and obstacle regions (e.g., buildings, trees, and cars. Then, the mathematical morphology method was used to make the edge of obstacles more prominent. Subsequently, the processed DSM was considered as a uniform-cost grid map, and the JPS algorithm was improved and employed to search for key jump points in the map. Meanwhile, the jump points would be evaluated according to an optimized function, finally generating a minimum cost path as the optimal seamline. Furthermore, the search strategy was modified to avoid search failure when the search map was completely blocked by obstacles in the search direction. Comparison of the proposed method and the Dijkstra’s algorithm was carried out based on two groups of image data with different characteristics. Results showed the following: (1 the proposed method could detect better seamlines near the centerlines of the overlap regions, crossing far fewer ground objects; (2 the efficiency and resource consumption were greatly improved since the improved JPS algorithm skips many image pixels without them being explicitly evaluated. In general, based on DSM, the proposed method combining threshold segmentation, mathematical morphology, and improved JPS algorithms was helpful for detecting the optimal seamline for orthoimage mosaicking.
Yuksel Celik
2013-01-01
Full Text Available Marriage in honey bees optimization (MBO is a metaheuristic optimization algorithm developed by inspiration of the mating and fertilization process of honey bees and is a kind of swarm intelligence optimizations. In this study we propose improved marriage in honey bees optimization (IMBO by adding Levy flight algorithm for queen mating flight and neighboring for worker drone improving. The IMBO algorithm’s performance and its success are tested on the well-known six unconstrained test functions and compared with other metaheuristic optimization algorithms.
Optimization of multi-objective micro-grid based on improved particle swarm optimization algorithm
Zhang, Jian; Gan, Yang
2018-04-01
The paper presents a multi-objective optimal configuration model for independent micro-grid with the aim of economy and environmental protection. The Pareto solution set can be obtained by solving the multi-objective optimization configuration model of micro-grid with the improved particle swarm algorithm. The feasibility of the improved particle swarm optimization algorithm for multi-objective model is verified, which provides an important reference for multi-objective optimization of independent micro-grid.
An improved optimum-path forest clustering algorithm for remote sensing image segmentation
Chen, Siya; Sun, Tieli; Yang, Fengqin; Sun, Hongguang; Guan, Yu
2018-03-01
Remote sensing image segmentation is a key technology for processing remote sensing images. The image segmentation results can be used for feature extraction, target identification and object description. Thus, image segmentation directly affects the subsequent processing results. This paper proposes a novel Optimum-Path Forest (OPF) clustering algorithm that can be used for remote sensing segmentation. The method utilizes the principle that the cluster centres are characterized based on their densities and the distances between the centres and samples with higher densities. A new OPF clustering algorithm probability density function is defined based on this principle and applied to remote sensing image segmentation. Experiments are conducted using five remote sensing land cover images. The experimental results illustrate that the proposed method can outperform the original OPF approach.
Adaptive symbiotic organisms search (SOS algorithm for structural design optimization
Ghanshyam G. Tejani
2016-07-01
Full Text Available The symbiotic organisms search (SOS algorithm is an effective metaheuristic developed in 2014, which mimics the symbiotic relationship among the living beings, such as mutualism, commensalism, and parasitism, to survive in the ecosystem. In this study, three modified versions of the SOS algorithm are proposed by introducing adaptive benefit factors in the basic SOS algorithm to improve its efficiency. The basic SOS algorithm only considers benefit factors, whereas the proposed variants of the SOS algorithm, consider effective combinations of adaptive benefit factors and benefit factors to study their competence to lay down a good balance between exploration and exploitation of the search space. The proposed algorithms are tested to suit its applications to the engineering structures subjected to dynamic excitation, which may lead to undesirable vibrations. Structure optimization problems become more challenging if the shape and size variables are taken into account along with the frequency. To check the feasibility and effectiveness of the proposed algorithms, six different planar and space trusses are subjected to experimental analysis. The results obtained using the proposed methods are compared with those obtained using other optimization methods well established in the literature. The results reveal that the adaptive SOS algorithm is more reliable and efficient than the basic SOS algorithm and other state-of-the-art algorithms.
The optimal time path of clean energy R&D policy when patents have finite lifetime
Gerlagh, R.; Kverndokk, S.; Rosendahl, K.E.
We study the optimal time path for clean energy innovation policy. In a model with emission reduction through clean energy deployment, and with R&D increasing the overall productivity of clean energy, we describe optimal R&D policies jointly with emission pricing policies. We find that while
AC-600 reactor reloading pattern optimization by using genetic algorithms
Wu Hongchun; Xie Zhongsheng; Yao Dong; Li Dongsheng; Zhang Zongyao
2000-01-01
The use of genetic algorithms to optimize reloading pattern of the nuclear power plant reactor is proposed. And a new encoding and translating method is given. Optimization results of minimizing core power peak and maximizing cycle length for both low-leakage and out-in loading pattern of AC-600 reactor are obtained
Concrete Plant Operations Optimization Using Combined Simulation and Genetic Algorithms
Cao, Ming; Lu, Ming; Zhang, Jian-Ping
2004-01-01
This work presents a new approach for concrete plant operations optimization by combining a ready mixed concrete (RMC) production simulation tool (called HKCONSIM) with a genetic algorithm (GA) based optimization procedure. A revamped HKCONSIM computer system can be used to automate the simulation
Application of a genetic algorithm to core reload pattern optimization
Tanker, E.; Tanker, A.Z.
1994-01-01
A genetic algorithm is applied to reload pattern optimization of a PWR core. Evaluating all different distributions of a given batch load separately is found slow and ineffective. Allowing patterns from different distributions to combine reproduce, an optimized pattern better than that obtained from from linear programming is found, albeit in a longer time. (authors). 5 refs., 2 tabs
Maintenance optimization in nuclear power plants through genetic algorithms
Munoz, A.; Martorell, S.; Serradell, V.
1999-01-01
Establishing suitable scheduled maintenance tasks leads to optimizing the reliability of nuclear power plant safety systems. The articles addresses this subject, whilst endeavoring to tackle an overall optimization process for component availability and safety systems through the use of genetic algorithms. (Author) 20 refs
Optimization Shape of Variable Capacitance Micromotor Using Differential Evolution Algorithm
A. Ketabi
2010-01-01
Full Text Available A new method for optimum shape design of variable capacitance micromotor (VCM using Differential Evolution (DE, a stochastic search algorithm, is presented. In this optimization exercise, the objective function aims to maximize torque value and minimize the torque ripple, where the geometric parameters are considered to be the variables. The optimization process is carried out using a combination of DE algorithm and FEM analysis. Fitness value is calculated by FEM analysis using COMSOL3.4, and the DE algorithm is realized by MATLAB7.4. The proposed method is applied to a VCM with 8 poles at the stator and 6 poles at the rotor. The results show that the optimized micromotor using DE algorithm had higher torque value and lower torque ripple, indicating the validity of this methodology for VCM design.
Optimizing graph algorithms on pregel-like systems
Salihoglu, Semih
2014-03-01
We study the problem of implementing graph algorithms efficiently on Pregel-like systems, which can be surprisingly challenging. Standard graph algorithms in this setting can incur unnecessary inefficiencies such as slow convergence or high communication or computation cost, typically due to structural properties of the input graphs such as large diameters or skew in component sizes. We describe several optimization techniques to address these inefficiencies. Our most general technique is based on the idea of performing some serial computation on a tiny fraction of the input graph, complementing Pregel\\'s vertex-centric parallelism. We base our study on thorough implementations of several fundamental graph algorithms, some of which have, to the best of our knowledge, not been implemented on Pregel-like systems before. The algorithms and optimizations we describe are fully implemented in our open-source Pregel implementation. We present detailed experiments showing that our optimization techniques improve runtime significantly on a variety of very large graph datasets.
A Hybrid Backtracking Search Optimization Algorithm with Differential Evolution
Lijin Wang
2015-01-01
Full Text Available The backtracking search optimization algorithm (BSA is a new nature-inspired method which possesses a memory to take advantage of experiences gained from previous generation to guide the population to the global optimum. BSA is capable of solving multimodal problems, but it slowly converges and poorly exploits solution. The differential evolution (DE algorithm is a robust evolutionary algorithm and has a fast convergence speed in the case of exploitive mutation strategies that utilize the information of the best solution found so far. In this paper, we propose a hybrid backtracking search optimization algorithm with differential evolution, called HBD. In HBD, DE with exploitive strategy is used to accelerate the convergence by optimizing one worse individual according to its probability at each iteration process. A suit of 28 benchmark functions are employed to verify the performance of HBD, and the results show the improvement in effectiveness and efficiency of hybridization of BSA and DE.
A Novel Hybrid Firefly Algorithm for Global Optimization.
Lina Zhang
Full Text Available Global optimization is challenging to solve due to its nonlinearity and multimodality. Traditional algorithms such as the gradient-based methods often struggle to deal with such problems and one of the current trends is to use metaheuristic algorithms. In this paper, a novel hybrid population-based global optimization algorithm, called hybrid firefly algorithm (HFA, is proposed by combining the advantages of both the firefly algorithm (FA and differential evolution (DE. FA and DE are executed in parallel to promote information sharing among the population and thus enhance searching efficiency. In order to evaluate the performance and efficiency of the proposed algorithm, a diverse set of selected benchmark functions are employed and these functions fall into two groups: unimodal and multimodal. The experimental results show better performance of the proposed algorithm compared to the original version of the firefly algorithm (FA, differential evolution (DE and particle swarm optimization (PSO in the sense of avoiding local minima and increasing the convergence rate.
PID controller tuning using metaheuristic optimization algorithms for benchmark problems
Gholap, Vishal; Naik Dessai, Chaitali; Bagyaveereswaran, V.
2017-11-01
This paper contributes to find the optimal PID controller parameters using particle swarm optimization (PSO), Genetic Algorithm (GA) and Simulated Annealing (SA) algorithm. The algorithms were developed through simulation of chemical process and electrical system and the PID controller is tuned. Here, two different fitness functions such as Integral Time Absolute Error and Time domain Specifications were chosen and applied on PSO, GA and SA while tuning the controller. The proposed Algorithms are implemented on two benchmark problems of coupled tank system and DC motor. Finally, comparative study has been done with different algorithms based on best cost, number of iterations and different objective functions. The closed loop process response for each set of tuned parameters is plotted for each system with each fitness function.
Stochastic Recursive Algorithms for Optimization Simultaneous Perturbation Methods
Bhatnagar, S; Prashanth, L A
2013-01-01
Stochastic Recursive Algorithms for Optimization presents algorithms for constrained and unconstrained optimization and for reinforcement learning. Efficient perturbation approaches form a thread unifying all the algorithms considered. Simultaneous perturbation stochastic approximation and smooth fractional estimators for gradient- and Hessian-based methods are presented. These algorithms: • are easily implemented; • do not require an explicit system model; and • work with real or simulated data. Chapters on their application in service systems, vehicular traffic control and communications networks illustrate this point. The book is self-contained with necessary mathematical results placed in an appendix. The text provides easy-to-use, off-the-shelf algorithms that are given detailed mathematical treatment so the material presented will be of significant interest to practitioners, academic researchers and graduate students alike. The breadth of applications makes the book appropriate for reader from sim...
Genetic algorithms for RDF chain query optimization
Hogenboom, A.C.; Milea, D.V.; Frasincar, F.; Kaymak, U.; Calders, T.; Tuyls, K.; Pechenizkiy, M.
2009-01-01
The application of Semantic Web technologies in an Electronic Commerce environment implies a need for good support tools. Fast query engines are required for efficient real-time querying of large amounts of data, usually represented using RDF. We focus on optimizing a special class of SPARQL
Efficient evolutionary algorithms for optimal control
López Cruz, I.L.
2002-01-01
If optimal control problems are solved by means of gradient based local search methods, convergence to local solutions is likely. Recently, there has been an increasing interest in the use
Bioinspired computation in combinatorial optimization: algorithms and their computational complexity
Neumann, Frank; Witt, Carsten
2012-01-01
Bioinspired computation methods, such as evolutionary algorithms and ant colony optimization, are being applied successfully to complex engineering and combinatorial optimization problems, and it is very important that we understand the computational complexity of these algorithms. This tutorials...... problems. Classical single objective optimization is examined first. They then investigate the computational complexity of bioinspired computation applied to multiobjective variants of the considered combinatorial optimization problems, and in particular they show how multiobjective optimization can help...... to speed up bioinspired computation for single-objective optimization problems. The tutorial is based on a book written by the authors with the same title. Further information about the book can be found at www.bioinspiredcomputation.com....
Online algorithms for optimal energy distribution in microgrids
Wang, Yu; Nelms, R Mark
2015-01-01
Presenting an optimal energy distribution strategy for microgrids in a smart grid environment, and featuring a detailed analysis of the mathematical techniques of convex optimization and online algorithms, this book provides readers with essential content on how to achieve multi-objective optimization that takes into consideration power subscribers, energy providers and grid smoothing in microgrids. Featuring detailed theoretical proofs and simulation results that demonstrate and evaluate the correctness and effectiveness of the algorithm, this text explains step-by-step how the problem can b
A Linearized Relaxing Algorithm for the Specific Nonlinear Optimization Problem
Mio Horai
2016-01-01
Full Text Available We propose a new method for the specific nonlinear and nonconvex global optimization problem by using a linear relaxation technique. To simplify the specific nonlinear and nonconvex optimization problem, we transform the problem to the lower linear relaxation form, and we solve the linear relaxation optimization problem by the Branch and Bound Algorithm. Under some reasonable assumptions, the global convergence of the algorithm is certified for the problem. Numerical results show that this method is more efficient than the previous methods.
Simulated annealing algorithm for reactor in-core design optimizations
Zhong Wenfa; Zhou Quan; Zhong Zhaopeng
2001-01-01
A nuclear reactor must be optimized for in core fuel management to make full use of the fuel, to reduce the operation cost and to flatten the power distribution reasonably. The author presents a simulated annealing algorithm. The optimized objective function and the punishment function were provided for optimizing the reactor physics design. The punishment function was used to practice the simulated annealing algorithm. The practical design of the NHR-200 was calculated. The results show that the K eff can be increased by 2.5% and the power distribution can be flattened
Air data system optimization using a genetic algorithm
Deshpande, Samir M.; Kumar, Renjith R.; Seywald, Hans; Siemers, Paul M., III
1992-01-01
An optimization method for flush-orifice air data system design has been developed using the Genetic Algorithm approach. The optimization of the orifice array minimizes the effect of normally distributed random noise in the pressure readings on the calculation of air data parameters, namely, angle of attack, sideslip angle and freestream dynamic pressure. The optimization method is applied to the design of Pressure Distribution/Air Data System experiment (PD/ADS) proposed for inclusion in the Aeroassist Flight Experiment (AFE). Results obtained by the Genetic Algorithm method are compared to the results obtained by conventional gradient search method.
PWR loading pattern optimization using Harmony Search algorithm
Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.
2013-01-01
Highlights: ► Numerical results reveal that the HS method is reliable. ► The great advantage of HS is significant gain in computational cost. ► On the average, the final band width of search fitness values is narrow. ► Our experiments show that the search approaches the optimal value fast. - Abstract: In this paper a core reloading technique using Harmony Search, HS, is presented in the context of finding an optimal configuration of fuel assemblies, FA, in pressurized water reactors. To implement and evaluate the proposed technique a Harmony Search along Nodal Expansion Code for 2-D geometry, HSNEC2D, is developed to obtain nearly optimal arrangement of fuel assemblies in PWR cores. This code consists of two sections including Harmony Search algorithm and Nodal Expansion modules using fourth degree flux expansion which solves two dimensional-multi group diffusion equations with one node per fuel assembly. Two optimization test problems are investigated to demonstrate the HS algorithm capability in converging to near optimal loading pattern in the fuel management field and other subjects. Results, convergence rate and reliability of the method are quite promising and show the HS algorithm performs very well and is comparable to other competitive algorithms such as Genetic Algorithm and Particle Swarm Intelligence. Furthermore, implementation of nodal expansion technique along HS causes considerable reduction of computational time to process and analysis optimization in the core fuel management problems
Optimization of Algorithms Using Extensions of Dynamic Programming
AbouEisha, Hassan M.
2017-04-09
We study and answer questions related to the complexity of various important problems such as: multi-frontal solvers of hp-adaptive finite element method, sorting and majority. We advocate the use of dynamic programming as a viable tool to study optimal algorithms for these problems. The main approach used to attack these problems is modeling classes of algorithms that may solve this problem using a discrete model of computation then defining cost functions on this discrete structure that reflect different complexity measures of the represented algorithms. As a last step, dynamic programming algorithms are designed and used to optimize those models (algorithms) and to obtain exact results on the complexity of the studied problems. The first part of the thesis presents a novel model of computation (element partition tree) that represents a class of algorithms for multi-frontal solvers along with cost functions reflecting various complexity measures such as: time and space. It then introduces dynamic programming algorithms for multi-stage and bi-criteria optimization of element partition trees. In addition, it presents results based on optimal element partition trees for famous benchmark meshes such as: meshes with point and edge singularities. New improved heuristics for those benchmark meshes were ob- tained based on insights of the optimal results found by our algorithms. The second part of the thesis starts by introducing a general problem where different problems can be reduced to and show how to use a decision table to model such problem. We describe how decision trees and decision tests for this table correspond to adaptive and non-adaptive algorithms for the original problem. We present exact bounds on the average time complexity of adaptive algorithms for the eight elements sorting problem. Then bounds on adaptive and non-adaptive algorithms for a variant of the majority problem are introduced. Adaptive algorithms are modeled as decision trees whose depth
A superlinear interior points algorithm for engineering design optimization
Herskovits, J.; Asquier, J.
1990-01-01
We present a quasi-Newton interior points algorithm for nonlinear constrained optimization. It is based on a general approach consisting of the iterative solution in the primal and dual spaces of the equalities in Karush-Kuhn-Tucker optimality conditions. This is done in such a way to have primal and dual feasibility at each iteration, which ensures satisfaction of those optimality conditions at the limit points. This approach is very strong and efficient, since at each iteration it only requires the solution of two linear systems with the same matrix, instead of quadratic programming subproblems. It is also particularly appropriate for engineering design optimization inasmuch at each iteration a feasible design is obtained. The present algorithm uses a quasi-Newton approximation of the second derivative of the Lagrangian function in order to have superlinear asymptotic convergence. We discuss theoretical aspects of the algorithm and its computer implementation.
Two-Phase Algorithm for Optimal Camera Placement
Jun-Woo Ahn
2016-01-01
Full Text Available As markers for visual sensor networks have become larger, interest in the optimal camera placement problem has continued to increase. The most featured solution for the optimal camera placement problem is based on binary integer programming (BIP. Due to the NP-hard characteristic of the optimal camera placement problem, however, it is difficult to find a solution for a complex, real-world problem using BIP. Many approximation algorithms have been developed to solve this problem. In this paper, a two-phase algorithm is proposed as an approximation algorithm based on BIP that can solve the optimal camera placement problem for a placement space larger than in current studies. This study solves the problem in three-dimensional space for a real-world structure.
OPTIMIZATION OF LONG RURAL FEEDERS USING A GENETIC ALGORITHM
Wishart, Michael; Ledwich, Gerard; Ghosh, Arindam; Ivanovich, Grujica
2010-01-01
This paper describes the optimization of conductor size and the voltage regulator location and magnitude of long rural distribution lines. The optimization minimizes the lifetime cost of the lines, including capital costs and losses while observing voltage drop and operational constraints using a Genetic Algorithm (GA). The GA optimization is applied to a real Single Wire Earth Return (SWER) network in regional Queensland and results are presented.
Support vector machines optimization based theory, algorithms, and extensions
Deng, Naiyang; Zhang, Chunhua
2013-01-01
Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions presents an accessible treatment of the two main components of support vector machines (SVMs)-classification problems and regression problems. The book emphasizes the close connection between optimization theory and SVMs since optimization is one of the pillars on which SVMs are built.The authors share insight on many of their research achievements. They give a precise interpretation of statistical leaning theory for C-support vector classification. They also discuss regularized twi
Optimal Placement Algorithms for Virtual Machines
Bellur, Umesh; Rao, Chetan S; SD, Madhu Kumar
2010-01-01
Cloud computing provides a computing platform for the users to meet their demands in an efficient, cost-effective way. Virtualization technologies are used in the clouds to aid the efficient usage of hardware. Virtual machines (VMs) are utilized to satisfy the user needs and are placed on physical machines (PMs) of the cloud for effective usage of hardware resources and electricity in the cloud. Optimizing the number of PMs used helps in cutting down the power consumption by a substantial amo...
Françoise Benz
2004-01-01
ACADEMIC TRAINING LECTURE REGULAR PROGRAMME 1, 2, 3 and 4 June From 11:00 hrs to 12:00 hrs - Main Auditorium bldg. 500 Evolutionary Heuristic Optimization: Genetic Algorithms and Estimation of Distribution Algorithms V. Robles Forcada and M. Perez Hernandez / Univ. de Madrid, Spain In the real world, there exist a huge number of problems that require getting an optimum or near-to-optimum solution. Optimization can be used to solve a lot of different problems such as network design, sets and partitions, storage and retrieval or scheduling. On the other hand, in nature, there exist many processes that seek a stable state. These processes can be seen as natural optimization processes. Over the last 30 years several attempts have been made to develop optimization algorithms, which simulate these natural optimization processes. These attempts have resulted in methods such as Simulated Annealing, based on natural annealing processes or Evolutionary Computation, based on biological evolution processes. Geneti...
Françoise Benz
2004-01-01
ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch ACADEMIC TRAINING LECTURE REGULAR PROGRAMME 1, 2, 3 and 4 June From 11:00 hrs to 12:00 hrs - Main Auditorium bldg. 500 Evolutionary Heuristic Optimization: Genetic Algorithms and Estimation of Distribution Algorithms V. Robles Forcada and M. Perez Hernandez / Univ. de Madrid, Spain In the real world, there exist a huge number of problems that require getting an optimum or near-to-optimum solution. Optimization can be used to solve a lot of different problems such as network design, sets and partitions, storage and retrieval or scheduling. On the other hand, in nature, there exist many processes that seek a stable state. These processes can be seen as natural optimization processes. Over the last 30 years several attempts have been made to develop optimization algorithms, which simulate these natural optimization processes. These attempts have resulted in methods such as Simulated Annealing, based on nat...
Design of an optimization algorithm for clinical use
Gustafsson, Anders
1995-01-01
Radiation therapy optimization has received much attention in the past few years. In combination with biological objective functions, the different optimization schemes has shown a potential to considerably increase the treatment outcome. With improved radiobiological models and increased computer capacity, radiation therapy optimization has now reached a stage where implementation in a clinical treatment planning system is realistic. A radiation therapy optimization method has been investigated with respect to its feasibility as a tool in a clinical 3D treatment planning system. The optimization algorithm is a constrained iterative gradient method. Photon dose calculation is performed using the clinically validated pencil-beam based algorithm of the clinical treatment planning system. Dose calculation within the optimization scheme is very time consuming and measures are required to decrease the calculation time. Different methods for more effective dose calculation within the optimization scheme have been investigated. The optimization results for adaptive sampling of calculation points, and secondary effect approximations in the dose calculation algorithm are compared with the optimization result for accurate dose calculation in all voxels of interest
The PBIL algorithm applied to a nuclear reactor design optimization
Machado, Marcelo D.; Medeiros, Jose A.C.C.; Lima, Alan M.M. de; Schirru, Roberto [Instituto Alberto Luiz Coimbra de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ-RJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear. Lab. de Monitoracao de Processos]. E-mails: marcelo@lmp.ufrj.br; canedo@lmp.ufrj.br; alan@lmp.ufrj.br; schirru@lmp.ufrj.br
2007-07-01
The Population-Based Incremental Learning (PBIL) algorithm is a method that combines the mechanism of genetic algorithm with the simple competitive learning, creating an important tool to be used in the optimization of numeric functions and combinatory problems. PBIL works with a set of solutions to the problems, called population, whose objective is create a probability vector, containing real values in each position, that when used in a decoding procedure gives subjects that present the best solutions for the function to be optimized. In this work a new form of learning for algorithm PBIL is developed, having aimed at to reduce the necessary time for the optimization process. This new algorithm will be used in the nuclear reactor design optimization. The optimization problem consists in adjusting several reactor cell parameters, such as dimensions, enrichment and materials, in order to minimize the average peak-factor in a 3-enrichment zone reactor, considering some restrictions. In this optimization is used the computational code HAMMER, and the results compared with other methods of optimization by artificial intelligence. (author)
The PBIL algorithm applied to a nuclear reactor design optimization
Machado, Marcelo D.; Medeiros, Jose A.C.C.; Lima, Alan M.M. de; Schirru, Roberto
2007-01-01
The Population-Based Incremental Learning (PBIL) algorithm is a method that combines the mechanism of genetic algorithm with the simple competitive learning, creating an important tool to be used in the optimization of numeric functions and combinatory problems. PBIL works with a set of solutions to the problems, called population, whose objective is create a probability vector, containing real values in each position, that when used in a decoding procedure gives subjects that present the best solutions for the function to be optimized. In this work a new form of learning for algorithm PBIL is developed, having aimed at to reduce the necessary time for the optimization process. This new algorithm will be used in the nuclear reactor design optimization. The optimization problem consists in adjusting several reactor cell parameters, such as dimensions, enrichment and materials, in order to minimize the average peak-factor in a 3-enrichment zone reactor, considering some restrictions. In this optimization is used the computational code HAMMER, and the results compared with other methods of optimization by artificial intelligence. (author)
Time optimized path-choice in the termite hunting ant Megaponera analis.
Frank, Erik T; Hönle, Philipp O; Linsenmair, K Eduard
2018-05-10
Trail network systems among ants have received a lot of scientific attention due to their various applications in problem solving of networks. Recent studies have shown that ants select the fastest available path when facing different velocities on different substrates, rather than the shortest distance. The progress of decision-making by these ants is determined by pheromone-based maintenance of paths, which is a collective decision. However, path optimization through individual decision-making remains mostly unexplored. Here we present the first study of time-optimized path selection via individual decision-making by scout ants. Megaponera analis scouts search for termite foraging sites and lead highly organized raid columns to them. The path of the scout determines the path of the column. Through installation of artificial roads around M. analis nests we were able to influence the pathway choice of the raids. After road installation 59% of all recorded raids took place completely or partly on the road, instead of the direct, i.e. distance-optimized, path through grass from the nest to the termites. The raid velocity on the road was more than double the grass velocity, the detour thus saved 34.77±23.01% of the travel time compared to a hypothetical direct path. The pathway choice of the ants was similar to a mathematical model of least time allowing us to hypothesize the underlying mechanisms regulating the behavior. Our results highlight the importance of individual decision-making in the foraging behavior of ants and show a new procedure of pathway optimization. © 2018. Published by The Company of Biologists Ltd.
Cambié, D.; Zhao, F.; Hessel, V.; Debije, M.G.; Noël, T.
2017-01-01
Luminescent solar concentrator-based photomicroreactors (LSC-PMs) have been recently proposed for sustainable and energy-efficient photochemical reactions. Herein, a Monte Carlo ray tracing algorithm to simulate photon paths within LSC-PMs was developed and experimentally validated. The simulation
Mohanty, Sankhya; Hattel, Jesper Henri
2015-01-01
method based uncertainty and reliability analysis. The reliability of the scanning paths are established using cumulative probability distribution functions for process output criteria such as sample density, thermal homogeneity, etc. A customized genetic algorithm is used along with the simulation model...
Sequential unconstrained minimization algorithms for constrained optimization
Byrne, Charles
2008-01-01
The problem of minimizing a function f(x):R J → R, subject to constraints on the vector variable x, occurs frequently in inverse problems. Even without constraints, finding a minimizer of f(x) may require iterative methods. We consider here a general class of iterative algorithms that find a solution to the constrained minimization problem as the limit of a sequence of vectors, each solving an unconstrained minimization problem. Our sequential unconstrained minimization algorithm (SUMMA) is an iterative procedure for constrained minimization. At the kth step we minimize the function G k (x)=f(x)+g k (x), to obtain x k . The auxiliary functions g k (x):D subset of R J → R + are nonnegative on the set D, each x k is assumed to lie within D, and the objective is to minimize the continuous function f:R J → R over x in the set C = D-bar, the closure of D. We assume that such minimizers exist, and denote one such by x-circumflex. We assume that the functions g k (x) satisfy the inequalities 0≤g k (x)≤G k-1 (x)-G k-1 (x k-1 ), for k = 2, 3, .... Using this assumption, we show that the sequence {(x k )} is decreasing and converges to f(x-circumflex). If the restriction of f(x) to D has bounded level sets, which happens if x-circumflex is unique and f(x) is closed, proper and convex, then the sequence {x k } is bounded, and f(x*)=f(x-circumflex), for any cluster point x*. Therefore, if x-circumflex is unique, x* = x-circumflex and {x k } → x-circumflex. When x-circumflex is not unique, convergence can still be obtained, in particular cases. The SUMMA includes, as particular cases, the well-known barrier- and penalty-function methods, the simultaneous multiplicative algebraic reconstruction technique (SMART), the proximal minimization algorithm of Censor and Zenios, the entropic proximal methods of Teboulle, as well as certain cases of gradient descent and the Newton–Raphson method. The proof techniques used for SUMMA can be extended to obtain related results
Wismans, Luc Johannes Josephus; van Berkum, Eric C.; Bliemer, Michiel; Allkim, T.P.; van Arem, Bart
2010-01-01
Multi objective optimization of externalities of traffic is performed solving a network design problem in which Dynamic Traffic Management measures are used. The resulting Pareto optimal set is determined by employing the SPEA2+ evolutionary algorithm.
Sriram, Vinay K; Montgomery, Doug
2017-07-01
The Internet is subject to attacks due to vulnerabilities in its routing protocols. One proposed approach to attain greater security is to cryptographically protect network reachability announcements exchanged between Border Gateway Protocol (BGP) routers. This study proposes and evaluates the performance and efficiency of various optimization algorithms for validation of digitally signed BGP updates. In particular, this investigation focuses on the BGPSEC (BGP with SECurity extensions) protocol, currently under consideration for standardization in the Internet Engineering Task Force. We analyze three basic BGPSEC update processing algorithms: Unoptimized, Cache Common Segments (CCS) optimization, and Best Path Only (BPO) optimization. We further propose and study cache management schemes to be used in conjunction with the CCS and BPO algorithms. The performance metrics used in the analyses are: (1) routing table convergence time after BGPSEC peering reset or router reboot events and (2) peak-second signature verification workload. Both analytical modeling and detailed trace-driven simulation were performed. Results show that the BPO algorithm is 330% to 628% faster than the unoptimized algorithm for routing table convergence in a typical Internet core-facing provider edge router.
Wang, Z.
2015-12-01
For decades, distributed and lumped hydrological models have furthered our understanding of hydrological system. The development of hydrological simulation in large scale and high precision elaborated the spatial descriptions and hydrological behaviors. Meanwhile, the new trend is also followed by the increment of model complexity and number of parameters, which brings new challenges of uncertainty quantification. Generalized Likelihood Uncertainty Estimation (GLUE) has been widely used in uncertainty analysis for hydrological models referring to Monte Carlo method coupled with Bayesian estimation. However, the stochastic sampling method of prior parameters adopted by GLUE appears inefficient, especially in high dimensional parameter space. The heuristic optimization algorithms utilizing iterative evolution show better convergence speed and optimality-searching performance. In light of the features of heuristic optimization algorithms, this study adopted genetic algorithm, differential evolution, shuffled complex evolving algorithm to search the parameter space and obtain the parameter sets of large likelihoods. Based on the multi-algorithm sampling, hydrological model uncertainty analysis is conducted by the typical GLUE framework. To demonstrate the superiority of the new method, two hydrological models of different complexity are examined. The results shows the adaptive method tends to be efficient in sampling and effective in uncertainty analysis, providing an alternative path for uncertainty quantilization.
Khasawneh, Mohammed A.; Al-Shboul, Zeina Aman M.; Jaradat, Mohammad A.
2013-01-01
Highlights: ► A new navigation algorithm for radiation evasion around nuclear facilities. ► An optimization criteria minimized under algorithm operation. ► A man-borne device guiding the occupational worker towards paths that warrant least radiation × time products. ► Benefits of using localized navigation as opposed to global navigation schemas. ► A path discrimination function for finding the navigational paths exhibiting the least amounts of radiation. -- Abstract: In this paper, we introduce a navigation algorithm having general utility for occupational workers at nuclear facilities and places where radiation poses serious health hazards. This novel algorithm leverages the use of localized information for its operation. Therefore, the need for central processing and decision resources is avoided, since information processing and the ensuing decision-making are done aboard a man-borne device. To acquire the information needed for path planning in radiation avoidance, a well-designed and distributed wireless sensory infrastructure is needed. This will automatically benefit from the most recent trends in technology developments in both sensor networks and wireless communication. When used to navigate based on local radiation information, the algorithm will behave more reliably when accidents happen, since no long-haul communication links are required for information exchange. In essence, the proposed algorithm is designed to leverage nearest neighbor information coming in through the sensory network overhead, to compute successful navigational paths from one point to another. The proposed algorithm is tested under the “Radiation Evasion” criterion. It is also tested for the case when more information, beyond nearest neighbors, is made available; here, we test its operation for different numbers of step look-ahead. We verify algorithm performance by means of simulations, whereby navigational paths are calculated for different radiation fields
Khasawneh, Mohammed A., E-mail: mkha@ieee.org [Department of Electrical Engineering, Jordan University of Science and Technology, Irbid 221 10 (Jordan); Al-Shboul, Zeina Aman M., E-mail: xeinaaman@gmail.com [Department of Electrical Engineering, Jordan University of Science and Technology, Irbid 221 10 (Jordan); Jaradat, Mohammad A., E-mail: majaradat@just.edu.jo [Department of Mechanical Engineering, Jordan University of Science and Technology, Irbid 221 10 (Jordan)
2013-06-15
Highlights: ► A new navigation algorithm for radiation evasion around nuclear facilities. ► An optimization criteria minimized under algorithm operation. ► A man-borne device guiding the occupational worker towards paths that warrant least radiation × time products. ► Benefits of using localized navigation as opposed to global navigation schemas. ► A path discrimination function for finding the navigational paths exhibiting the least amounts of radiation. -- Abstract: In this paper, we introduce a navigation algorithm having general utility for occupational workers at nuclear facilities and places where radiation poses serious health hazards. This novel algorithm leverages the use of localized information for its operation. Therefore, the need for central processing and decision resources is avoided, since information processing and the ensuing decision-making are done aboard a man-borne device. To acquire the information needed for path planning in radiation avoidance, a well-designed and distributed wireless sensory infrastructure is needed. This will automatically benefit from the most recent trends in technology developments in both sensor networks and wireless communication. When used to navigate based on local radiation information, the algorithm will behave more reliably when accidents happen, since no long-haul communication links are required for information exchange. In essence, the proposed algorithm is designed to leverage nearest neighbor information coming in through the sensory network overhead, to compute successful navigational paths from one point to another. The proposed algorithm is tested under the “Radiation Evasion” criterion. It is also tested for the case when more information, beyond nearest neighbors, is made available; here, we test its operation for different numbers of step look-ahead. We verify algorithm performance by means of simulations, whereby navigational paths are calculated for different radiation fields.
Muhammad Aizzat Zakaria
2013-08-01
Full Text Available Trajectory tracking is an important aspect of autonomous vehicles. The idea behind trajectory tracking is the ability of the vehicle to follow a predefined path with zero steady state error. The difficulty arises due to the nonlinearity of vehicle dynamics. Therefore, this paper proposes a stable tracking control for an autonomous vehicle. An approach that consists of steering wheel control and lateral control is introduced. This control algorithm is used for a non-holonomic navigation problem, namely tracking a reference trajectory in a closed loop form. A proposed future prediction point control algorithm is used to calculate the vehicle's lateral error in order to improve the performance of the trajectory tracking. A feedback sensor signal from the steering wheel angle and yaw rate sensor is used as feedback information for the controller. The controller consists of a relationship between the future point lateral error, the linear velocity, the heading error and the reference yaw rate. This paper also introduces a spike detection algorithm to track the spike error that occurs during GPS reading. The proposed idea is to take the advantage of the derivative of the steering rate. This paper aims to tackle the lateral error problem by applying the steering control law to the vehicle, and proposes a new path tracking control method by considering the future coordinate of the vehicle and the future estimated lateral error. The effectiveness of the proposed controller is demonstrated by a simulation and a GPS experiment with noisy data. The approach used in this paper is not limited to autonomous vehicles alone since the concept of autonomous vehicle tracking can be used in mobile robot platforms, as the kinematic model of these two platforms is similar.
Fast optimization algorithms and the cosmological constant
Bao, Ning; Bousso, Raphael; Jordan, Stephen; Lackey, Brad
2017-11-01
Denef and Douglas have observed that in certain landscape models the problem of finding small values of the cosmological constant is a large instance of a problem that is hard for the complexity class NP (Nondeterministic Polynomial-time). The number of elementary operations (quantum gates) needed to solve this problem by brute force search exceeds the estimated computational capacity of the observable Universe. Here we describe a way out of this puzzling circumstance: despite being NP-hard, the problem of finding a small cosmological constant can be attacked by more sophisticated algorithms whose performance vastly exceeds brute force search. In fact, in some parameter regimes the average-case complexity is polynomial. We demonstrate this by explicitly finding a cosmological constant of order 10-120 in a randomly generated 1 09-dimensional Arkani-Hamed-Dimopoulos-Kachru landscape.
Backes, Michael; Meiser, Sebastian; Slowik, Marcin
2015-01-01
In this paper, we present a rigorous methodology for quantifying the anonymity provided by Tor against a variety of structural attacks, i.e., adversaries that compromise Tor nodes and thereby perform eavesdropping attacks to deanonymize Tor users. First, we provide an algorithmic approach for computing the anonymity impact of such structural attacks against Tor. The algorithm is parametric in the considered path selection algorithm and is, hence, capable of reasoning about variants of Tor and...
Differential harmony search algorithm to optimize PWRs loading pattern
Poursalehi, N., E-mail: npsalehi@yahoo.com [Engineering Department, Shahid Beheshti University, G.C, P.O.Box: 1983963113, Tehran (Iran, Islamic Republic of); Zolfaghari, A.; Minuchehr, A. [Engineering Department, Shahid Beheshti University, G.C, P.O.Box: 1983963113, Tehran (Iran, Islamic Republic of)
2013-04-15
Highlights: ► Exploit of DHS algorithm in LP optimization reveals its flexibility, robustness and reliability. ► Upshot of our experiments with DHS shows that the search approach to optimal LP is quickly. ► On the average, the final band width of DHS fitness values is narrow relative to HS and GHS. -- Abstract: The objective of this work is to develop a core loading optimization technique using differential harmony search algorithm in the context of obtaining an optimal configuration of fuel assemblies in pressurized water reactors. To implement and evaluate the proposed technique, differential harmony search nodal expansion package for 2-D geometry, DHSNEP-2D, is developed. The package includes two modules; in the first modules differential harmony search (DHS) is implemented and nodal expansion code which solves two dimensional-multi group neutron diffusion equations using fourth degree flux expansion with one node per a fuel assembly is in the second module. For evaluation of DHS algorithm, classical harmony search (HS) and global-best harmony search (GHS) algorithms are also included in DHSNEP-2D in order to compare the outcome of techniques together. For this purpose, two PWR test cases have been investigated to demonstrate the DHS algorithm capability in obtaining near optimal loading pattern. Results show that the convergence rate of DHS and execution times are quite promising and also is reliable for the fuel management operation. Moreover, numerical results show the good performance of DHS relative to other competitive algorithms such as genetic algorithm (GA), classical harmony search (HS) and global-best harmony search (GHS) algorithms.
Differential harmony search algorithm to optimize PWRs loading pattern
Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.
2013-01-01
Highlights: ► Exploit of DHS algorithm in LP optimization reveals its flexibility, robustness and reliability. ► Upshot of our experiments with DHS shows that the search approach to optimal LP is quickly. ► On the average, the final band width of DHS fitness values is narrow relative to HS and GHS. -- Abstract: The objective of this work is to develop a core loading optimization technique using differential harmony search algorithm in the context of obtaining an optimal configuration of fuel assemblies in pressurized water reactors. To implement and evaluate the proposed technique, differential harmony search nodal expansion package for 2-D geometry, DHSNEP-2D, is developed. The package includes two modules; in the first modules differential harmony search (DHS) is implemented and nodal expansion code which solves two dimensional-multi group neutron diffusion equations using fourth degree flux expansion with one node per a fuel assembly is in the second module. For evaluation of DHS algorithm, classical harmony search (HS) and global-best harmony search (GHS) algorithms are also included in DHSNEP-2D in order to compare the outcome of techniques together. For this purpose, two PWR test cases have been investigated to demonstrate the DHS algorithm capability in obtaining near optimal loading pattern. Results show that the convergence rate of DHS and execution times are quite promising and also is reliable for the fuel management operation. Moreover, numerical results show the good performance of DHS relative to other competitive algorithms such as genetic algorithm (GA), classical harmony search (HS) and global-best harmony search (GHS) algorithms
Economic dispatch optimization algorithm based on particle diffusion
Han, Li; Romero, Carlos E.; Yao, Zheng
2015-01-01
Highlights: • A dispatch model that considers fuel, emissions control and wind power cost is built. • An optimization algorithm named diffusion particle optimization (DPO) is proposed. • DPO was used to analyze the impact of wind power risk and emissions on dispatch. - Abstract: Due to the widespread installation of emissions control equipment in fossil fuel-fired power plants, the cost of emissions control needs to be considered, together with the plant fuel cost, in providing economic power dispatch of those units to the grid. On the other hand, while using wind power decreases the overall power generation cost for the power grid, it poses a risk to a traditional grid, because of its inherent stochastic characteristics. Therefore, an economic dispatch optimization model needs to consider all of the fuel cost, emissions control cost and wind power cost for each of the generating unit conforming the fleet that meets the required grid power demand. In this study, an optimization algorithm referred as diffusion particle optimization (DPO) is proposed to solve such complex optimization problem. In this algorithm, Brownian motion theory is used to guide the movement of particles so that the particles can search for an optimal solution over the entire definition region. Several benchmark functions and power grid system data were used to test the performance of DPO, and compared to traditional algorithms used for economic dispatch optimization, such as, particle swarm optimization and artificial bee colony algorithm. It was found that DPO has less probability to be trapped in local optimums. According to results of different power systems DPO was able to find economic dispatch solutions with lower costs. DPO was also used to analyze the impact of wind power risk and fossil unit emissions coefficients on power dispatch. The result are encouraging for the use of DPO as a dynamic tool for economic dispatch of the power grid.
Segment-based dose optimization using a genetic algorithm
Cotrutz, Cristian; Xing Lei
2003-01-01
Intensity modulated radiation therapy (IMRT) inverse planning is conventionally done in two steps. Firstly, the intensity maps of the treatment beams are optimized using a dose optimization algorithm. Each of them is then decomposed into a number of segments using a leaf-sequencing algorithm for delivery. An alternative approach is to pre-assign a fixed number of field apertures and optimize directly the shapes and weights of the apertures. While the latter approach has the advantage of eliminating the leaf-sequencing step, the optimization of aperture shapes is less straightforward than that of beamlet-based optimization because of the complex dependence of the dose on the field shapes, and their weights. In this work we report a genetic algorithm for segment-based optimization. Different from a gradient iterative approach or simulated annealing, the algorithm finds the optimum solution from a population of candidate plans. In this technique, each solution is encoded using three chromosomes: one for the position of the left-bank leaves of each segment, the second for the position of the right-bank and the third for the weights of the segments defined by the first two chromosomes. The convergence towards the optimum is realized by crossover and mutation operators that ensure proper exchange of information between the three chromosomes of all the solutions in the population. The algorithm is applied to a phantom and a prostate case and the results are compared with those obtained using beamlet-based optimization. The main conclusion drawn from this study is that the genetic optimization of segment shapes and weights can produce highly conformal dose distribution. In addition, our study also confirms previous findings that fewer segments are generally needed to generate plans that are comparable with the plans obtained using beamlet-based optimization. Thus the technique may have useful applications in facilitating IMRT treatment planning
COOMA: AN OBJECT-ORIENTED STOCHASTIC OPTIMIZATION ALGORITHM
Stanislav Alexandrovich Tavridovich
2017-09-01
Full Text Available Stochastic optimization methods such as genetic algorithm, particle swarm optimization algorithm, and others are successfully used to solve optimization problems. They are all based on similar ideas and need minimal adaptation when being implemented. But several factors complicate the application of stochastic search methods in practice: multimodality of the objective function, optimization with constraints, finding the best parameter configuration of the algorithm, the increasing of the searching space, etc. This paper proposes a new Cascade Object Optimization and Modification Algorithm (COOMA which develops the best ideas of known stochastic optimization methods and can be applied to a wide variety of real-world problems described in the terms of object-oriented models with practically any types of parameters, variables, and associations between objects. The objects of different classes are organized in pools and pools form the hierarchical structure according to the associations between classes. The algorithm is also executed according to the pool structure: the methods of the upper-level pools before changing their objects call the analogous methods of all their subpools. The algorithm starts with initialization step and then passes through a number of iterations during which the objects are modified until the stop criteria are satisfied. The objects are modified using movement, replication and mutation operations. Two-level version of COOMA realizes a built-in self-adaptive mechanism. The optimization statistics for a number of test problems shows that COOMA is able to solve multi-level problems (with objects of different associated classes, problems with multimodal fitness functions and systems of constraints. COOMA source code on Java is available on request.
Optimal Design of a Centrifugal Compressor Impeller Using Evolutionary Algorithms
Soo-Yong Cho
2012-01-01
Full Text Available An optimization study was conducted on a centrifugal compressor. Eight design variables were chosen from the control points for the Bezier curves which widely influenced the geometric variation; four design variables were selected to optimize the flow passage between the hub and the shroud, and other four design variables were used to improve the performance of the impeller blade. As an optimization algorithm, an artificial neural network (ANN was adopted. Initially, the design of experiments was applied to set up the initial data space of the ANN, which was improved during the optimization process using a genetic algorithm. If a result of the ANN reached a higher level, that result was re-calculated by computational fluid dynamics (CFD and was applied to develop a new ANN. The prediction difference between the ANN and CFD was consequently less than 1% after the 6th generation. Using this optimization technique, the computational time for the optimization was greatly reduced and the accuracy of the optimization algorithm was increased. The efficiency was improved by 1.4% without losing the pressure ratio, and Pareto-optimal solutions of the efficiency versus the pressure ratio were obtained through the 21st generation.
Otsu Based Optimal Multilevel Image Thresholding Using Firefly Algorithm
N. Sri Madhava Raja
2014-01-01
Full Text Available Histogram based multilevel thresholding approach is proposed using Brownian distribution (BD guided firefly algorithm (FA. A bounded search technique is also presented to improve the optimization accuracy with lesser search iterations. Otsu’s between-class variance function is maximized to obtain optimal threshold level for gray scale images. The performances of the proposed algorithm are demonstrated by considering twelve benchmark images and are compared with the existing FA algorithms such as Lévy flight (LF guided FA and random operator guided FA. The performance assessment comparison between the proposed and existing firefly algorithms is carried using prevailing parameters such as objective function, standard deviation, peak-to-signal ratio (PSNR, structural similarity (SSIM index, and search time of CPU. The results show that BD guided FA provides better objective function, PSNR, and SSIM, whereas LF based FA provides faster convergence with relatively lower CPU time.
A Hybrid Genetic Algorithm Approach for Optimal Power Flow
Sydulu Maheswarapu
2011-08-01
Full Text Available This paper puts forward a reformed hybrid genetic algorithm (GA based approach to the optimal power flow. In the approach followed here, continuous variables are designed using real-coded GA and discrete variables are processed as binary strings. The outcomes are compared with many other methods like simple genetic algorithm (GA, adaptive genetic algorithm (AGA, differential evolution (DE, particle swarm optimization (PSO and music based harmony search (MBHS on a IEEE30 bus test bed, with a total load of 283.4 MW. Its found that the proposed algorithm is found to offer lowest fuel cost. The proposed method is found to be computationally faster, robust, superior and promising form its convergence characteristics.
Artificial root foraging optimizer algorithm with hybrid strategies
Yang Liu
2017-02-01
Full Text Available In this work, a new plant-inspired optimization algorithm namely the hybrid artificial root foraging optimizion (HARFO is proposed, which mimics the iterative root foraging behaviors for complex optimization. In HARFO model, two innovative strategies were developed: one is the root-to-root communication strategy, which enables the individual exchange information with each other in different efficient topologies that can essentially improve the exploration ability; the other is co-evolution strategy, which can structure the hierarchical spatial population driven by evolutionary pressure of multiple sub-populations that ensure the diversity of root population to be well maintained. The proposed algorithm is benchmarked against four classical evolutionary algorithms on well-designed test function suites including both classical and composition test functions. Through the rigorous performance analysis that of all these tests highlight the significant performance improvement, and the comparative results show the superiority of the proposed algorithm.
A Harmony Search Algorithm approach for optimizing traffic signal timings
Mauro Dell'Orco
2013-07-01
Full Text Available In this study, a bi-level formulation is presented for solving the Equilibrium Network Design Problem (ENDP. The optimisation of the signal timing has been carried out at the upper-level using the Harmony Search Algorithm (HSA, whilst the traffic assignment has been carried out through the Path Flow Estimator (PFE at the lower level. The results of HSA have been first compared with those obtained using the Genetic Algorithm, and the Hill Climbing on a two-junction network for a fixed set of link flows. Secondly, the HSA with PFE has been applied to the medium-sized network to show the applicability of the proposed algorithm in solving the ENDP. Additionally, in order to test the sensitivity of perceived travel time error, we have used the HSA with PFE with various level of perceived travel time. The results showed that the proposed method is quite simple and efficient in solving the ENDP.
A Swarm Optimization Genetic Algorithm Based on Quantum-Behaved Particle Swarm Optimization.
Sun, Tao; Xu, Ming-Hai
2017-01-01
Quantum-behaved particle swarm optimization (QPSO) algorithm is a variant of the traditional particle swarm optimization (PSO). The QPSO that was originally developed for continuous search spaces outperforms the traditional PSO in search ability. This paper analyzes the main factors that impact the search ability of QPSO and converts the particle movement formula to the mutation condition by introducing the rejection region, thus proposing a new binary algorithm, named swarm optimization genetic algorithm (SOGA), because it is more like genetic algorithm (GA) than PSO in form. SOGA has crossover and mutation operator as GA but does not need to set the crossover and mutation probability, so it has fewer parameters to control. The proposed algorithm was tested with several nonlinear high-dimension functions in the binary search space, and the results were compared with those from BPSO, BQPSO, and GA. The experimental results show that SOGA is distinctly superior to the other three algorithms in terms of solution accuracy and convergence.
Imam Ahmad Ashari
2016-11-01
Full Text Available Scheduling problems at the university is a complex type of scheduling problems. The scheduling process should be carried out at every turn of the semester's. The core of the problem of scheduling courses at the university is that the number of components that need to be considered in making the schedule, some of the components was made up of students, lecturers, time and a room with due regard to the limits and certain conditions so that no collision in the schedule such as mashed room, mashed lecturer and others. To resolve a scheduling problem most appropriate technique used is the technique of optimization. Optimization techniques can give the best results desired. Metaheuristic algorithm is an algorithm that has a lot of ways to solve the problems to the very limit the optimal solution. In this paper, we use a genetic algorithm and ant colony optimization algorithm is an algorithm metaheuristic to solve the problem of course scheduling. The two algorithm will be tested and compared to get performance is the best. The algorithm was tested using data schedule courses of the university in Semarang. From the experimental results we conclude that the genetic algorithm has better performance than the ant colony optimization algorithm in solving the case of course scheduling.
Using neural networks to speed up optimization algorithms
Bazan, M
2000-01-01
The paper presents the application of radial-basis-function (RBF) neural networks to speed up deterministic search algorithms used for the design and optimization of superconducting LHC magnets. The optimization of the iron yoke of the main dipoles requires a number of numerical field computations per trial solution as the field quality depends on the excitation of the magnets. This results in computation times of about 30 minutes for each objective function evaluation (on a DEC-Alpha 600/333) and only the most robust (deterministic) optimization algorithms can be applied. Using a RBF function approximator, the achieved speed-up of the search algorithm is in the order of 25% for problems with two parameters and about 18% for problems with three and five design variables. (13 refs).
Swarm algorithms with chaotic jumps for optimization of multimodal functions
Krohling, Renato A.; Mendel, Eduardo; Campos, Mauro
2011-11-01
In this article, the use of some well-known versions of particle swarm optimization (PSO) namely the canonical PSO, the bare bones PSO (BBPSO) and the fully informed particle swarm (FIPS) is investigated on multimodal optimization problems. A hybrid approach which consists of swarm algorithms combined with a jump strategy in order to escape from local optima is developed and tested. The jump strategy is based on the chaotic logistic map. The hybrid algorithm was tested for all three versions of PSO and simulation results show that the addition of the jump strategy improves the performance of swarm algorithms for most of the investigated optimization problems. Comparison with the off-the-shelf PSO with local topology (l best model) has also been performed and indicates the superior performance of the standard PSO with chaotic jump over the standard both using local topology (l best model).
Optimal Grid Scheduling Using Improved Artificial Bee Colony Algorithm
T. Vigneswari; M. A. Maluk Mohamed
2015-01-01
Job Scheduling plays an important role for efficient utilization of grid resources available across different domains and geographical zones. Scheduling of jobs is challenging and NPcomplete. Evolutionary / Swarm Intelligence algorithms have been extensively used to address the NP problem in grid scheduling. Artificial Bee Colony (ABC) has been proposed for optimization problems based on foraging behaviour of bees. This work proposes a modified ABC algorithm, Cluster Hete...
Optimization algorithms intended for self-tuning feedwater heater model
Czop, P; Barszcz, T; Bednarz, J
2013-01-01
This work presents a self-tuning feedwater heater model. This work continues the work on first-principle gray-box methodology applied to diagnostics and condition assessment of power plant components. The objective of this work is to review and benchmark the optimization algorithms regarding the time required to achieve the best model fit to operational power plant data. The paper recommends the most effective algorithm to be used in the model adjustment process.
Optimal Power Flow by Interior Point and Non Interior Point Modern Optimization Algorithms
Marcin Połomski
2013-03-01
Full Text Available The idea of optimal power flow (OPF is to determine the optimal settings for control variables while respecting various constraints, and in general it is related to power system operational and planning optimization problems. A vast number of optimization methods have been applied to solve the OPF problem, but their performance is highly dependent on the size of a power system being optimized. The development of the OPF recently has tracked significant progress both in numerical optimization techniques and computer techniques application. In recent years, application of interior point methods to solve OPF problem has been paid great attention. This is due to the fact that IP methods are among the fastest algorithms, well suited to solve large-scale nonlinear optimization problems. This paper presents the primal-dual interior point method based optimal power flow algorithm and new variant of the non interior point method algorithm with application to optimal power flow problem. Described algorithms were implemented in custom software. The experiments show the usefulness of computational software and implemented algorithms for solving the optimal power flow problem, including the system model sizes comparable to the size of the National Power System.
A Parallel Particle Swarm Optimization Algorithm Accelerated by Asynchronous Evaluations
Venter, Gerhard; Sobieszczanski-Sobieski, Jaroslaw
2005-01-01
A parallel Particle Swarm Optimization (PSO) algorithm is presented. Particle swarm optimization is a fairly recent addition to the family of non-gradient based, probabilistic search algorithms that is based on a simplified social model and is closely tied to swarming theory. Although PSO algorithms present several attractive properties to the designer, they are plagued by high computational cost as measured by elapsed time. One approach to reduce the elapsed time is to make use of coarse-grained parallelization to evaluate the design points. Previous parallel PSO algorithms were mostly implemented in a synchronous manner, where all design points within a design iteration are evaluated before the next iteration is started. This approach leads to poor parallel speedup in cases where a heterogeneous parallel environment is used and/or where the analysis time depends on the design point being analyzed. This paper introduces an asynchronous parallel PSO algorithm that greatly improves the parallel e ciency. The asynchronous algorithm is benchmarked on a cluster assembled of Apple Macintosh G5 desktop computers, using the multi-disciplinary optimization of a typical transport aircraft wing as an example.
Multiobjective generalized extremal optimization algorithm for simulation of daylight illuminants
Kumar, Srividya Ravindra; Kurian, Ciji Pearl; Gomes-Borges, Marcos Eduardo
2017-10-01
Daylight illuminants are widely used as references for color quality testing and optical vision testing applications. Presently used daylight simulators make use of fluorescent bulbs that are not tunable and occupy more space inside the quality testing chambers. By designing a spectrally tunable LED light source with an optimal number of LEDs, cost, space, and energy can be saved. This paper describes an application of the generalized extremal optimization (GEO) algorithm for selection of the appropriate quantity and quality of LEDs that compose the light source. The multiobjective approach of this algorithm tries to get the best spectral simulation with minimum fitness error toward the target spectrum, correlated color temperature (CCT) the same as the target spectrum, high color rendering index (CRI), and luminous flux as required for testing applications. GEO is a global search algorithm based on phenomena of natural evolution and is especially designed to be used in complex optimization problems. Several simulations have been conducted to validate the performance of the algorithm. The methodology applied to model the LEDs, together with the theoretical basis for CCT and CRI calculation, is presented in this paper. A comparative result analysis of M-GEO evolutionary algorithm with the Levenberg-Marquardt conventional deterministic algorithm is also presented.
Kriging-based algorithm for nuclear reactor neutronic design optimization
Kempf, Stephanie; Forget, Benoit; Hu, Lin-Wen
2012-01-01
Highlights: ► A Kriging-based algorithm was selected to guide research reactor optimization. ► We examined impacts of parameter values upon the algorithm. ► The best parameter values were incorporated into a set of best practices. ► Algorithm with best practices used to optimize thermal flux of concept. ► Final design produces thermal flux 30% higher than other 5 MW reactors. - Abstract: Kriging, a geospatial interpolation technique, has been used in the present work to drive a search-and-optimization algorithm which produces the optimum geometric parameters for a 5 MW research reactor design. The technique has been demonstrated to produce an optimal neutronic solution after a relatively small number of core calculations. It has additionally been successful in producing a design which significantly improves thermal neutron fluxes by 30% over existing reactors of the same power rating. Best practices for use of this algorithm in reactor design were identified and indicated the importance of selecting proper correlation functions.
Genetic Algorithm Optimizes Q-LAW Control Parameters
Lee, Seungwon; von Allmen, Paul; Petropoulos, Anastassios; Terrile, Richard
2008-01-01
A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto-optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution. Q-law control parameters are represented as real-valued genes in the genetic algorithm. The performances of the Q-law control parameters are evaluated in the multi-objective space (flight time vs. propellant mass) and sorted by the non-dominated sorting method that assigns a better fitness value to the solutions that are dominated by a fewer number of other solutions. With the ranking result, the genetic algorithm encourages the solutions with higher fitness values to participate in the reproduction process, improving the solutions in the evolution process. The population of solutions converges to the Pareto front that is permitted within the Q-law control parameter space.
Jiaxi Wang
2016-01-01
Full Text Available The shunting schedule of electric multiple units depot (SSED is one of the essential plans for high-speed train maintenance activities. This paper presents a 0-1 programming model to address the problem of determining an optimal SSED through automatic computing. The objective of the model is to minimize the number of shunting movements and the constraints include track occupation conflicts, shunting routes conflicts, time durations of maintenance processes, and shunting running time. An enhanced particle swarm optimization (EPSO algorithm is proposed to solve the optimization problem. Finally, an empirical study from Shanghai South EMU Depot is carried out to illustrate the model and EPSO algorithm. The optimization results indicate that the proposed method is valid for the SSED problem and that the EPSO algorithm outperforms the traditional PSO algorithm on the aspect of optimality.
Jin, Junchen
2016-01-01
The shunting schedule of electric multiple units depot (SSED) is one of the essential plans for high-speed train maintenance activities. This paper presents a 0-1 programming model to address the problem of determining an optimal SSED through automatic computing. The objective of the model is to minimize the number of shunting movements and the constraints include track occupation conflicts, shunting routes conflicts, time durations of maintenance processes, and shunting running time. An enhanced particle swarm optimization (EPSO) algorithm is proposed to solve the optimization problem. Finally, an empirical study from Shanghai South EMU Depot is carried out to illustrate the model and EPSO algorithm. The optimization results indicate that the proposed method is valid for the SSED problem and that the EPSO algorithm outperforms the traditional PSO algorithm on the aspect of optimality. PMID:27436998
Tang, Ge; Wei, Biao; Wu, Decao; Feng, Peng; Liu, Juan; Tang, Yuan; Xiong, Shuangfei; Zhang, Zheng
2018-03-01
To select the optimal wavelengths in the light extinction spectroscopy measurement, genetic algorithm-particle swarm optimization (GAPSO) based on genetic algorithm (GA) and particle swarm optimization (PSO) is adopted. The change of the optimal wavelength positions in different feature size parameters and distribution parameters is evaluated. Moreover, the Monte Carlo method based on random probability is used to identify the number of optimal wavelengths, and good inversion effects of the particle size distribution are obtained. The method proved to have the advantage of resisting noise. In order to verify the feasibility of the algorithm, spectra with bands ranging from 200 to 1000 nm are computed. Based on this, the measured data of standard particles are used to verify the algorithm.
Flexible path optimization for the Cask and Plug Remote Handling System in ITER
Vale, Alberto, E-mail: avale@ipfn.ist.utl.pt [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Fonte, Daniel; Valente, Filipe; Ferreira, João [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Ribeiro, Isabel [Laboratório de Robótica e Sistemas em Engenharia e Ciência, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Gonzalez, Carmen [Fusion for Energy Agency (F4E), Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain)
2013-10-15
Highlights: ► Complementary approach for path optimization named free roaming that takes full advantage of the rhombic like kinematics of the Cask and Plug Remote Handling System (CPRHS). ► Possibility to find trajectories not possible in the past using the line guidance developed in a previous work, in particular when moving the Cask Transfer System (CTS) beneath the pallet or in rescue missions. ► Methodology that maximizes the common parts of different trajectories in the same level of ITER buildings. -- Abstract: The Cask and Plug Remote Handling System (CPRHS) provides the means for the remote transfer of in-vessel components and remote handling equipment between the Hot Cell Building and the Tokamak Building in ITER along pre-defined optimized trajectories. A first approach for CPRHS path optimization was previously proposed using line guidance as the navigation methodology to be adopted. This approach might not lead to feasible paths in new situations not considered during the previous work, as rescue operations. This paper addresses this problem by presenting a complementary approach for path optimization inspired in rigid body dynamics that takes full advantage of the rhombic like kinematics of the CPRHS. It also presents a methodology that maximizes the common parts of different trajectories in the same level of ITER buildings. The results gathered from 500 optimized trajectories are summarized. Conclusions and open issues are presented and discussed.
Optimization of phononic filters via genetic algorithms
Hussein, M I [University of Colorado, Department of Aerospace Engineering Sciences, Boulder, Colorado 80309-0429 (United States); El-Beltagy, M A [Cairo University, Faculty of Computers and Information, 5 Dr. Ahmed Zewail Street, 12613 Giza (Egypt)
2007-12-15
A phononic crystal is commonly characterized by its dispersive frequency spectrum. With appropriate spatial distribution of the constituent material phases, spectral stop bands could be generated. Moreover, it is possible to control the number, the width, and the location of these bands within a frequency range of interest. This study aims at exploring the relationship between unit cell configuration and frequency spectrum characteristics. Focusing on 1D layered phononic crystals, and longitudinal wave propagation in the direction normal to the layering, the unit cell features of interest are the number of layers and the material phase and relative thickness of each layer. An evolutionary search for binary- and ternary-phase cell designs exhibiting a series of stop bands at predetermined frequencies is conducted. A specially formulated representation and set of genetic operators that break the symmetries in the problem are developed for this purpose. An array of optimal designs for a range of ratios in Young's modulus and density are obtained and the corresponding objective values (the degrees to which the resulting bands match the predetermined targets) are examined as a function of these ratios. It is shown that a rather complex filtering objective could be met with a high degree of success. Structures composed of the designed phononic crystals are excellent candidates for use in a wide range of applications including sound and vibration filtering.
Optimization of phononic filters via genetic algorithms
Hussein, M I; El-Beltagy, M A
2007-01-01
A phononic crystal is commonly characterized by its dispersive frequency spectrum. With appropriate spatial distribution of the constituent material phases, spectral stop bands could be generated. Moreover, it is possible to control the number, the width, and the location of these bands within a frequency range of interest. This study aims at exploring the relationship between unit cell configuration and frequency spectrum characteristics. Focusing on 1D layered phononic crystals, and longitudinal wave propagation in the direction normal to the layering, the unit cell features of interest are the number of layers and the material phase and relative thickness of each layer. An evolutionary search for binary- and ternary-phase cell designs exhibiting a series of stop bands at predetermined frequencies is conducted. A specially formulated representation and set of genetic operators that break the symmetries in the problem are developed for this purpose. An array of optimal designs for a range of ratios in Young's modulus and density are obtained and the corresponding objective values (the degrees to which the resulting bands match the predetermined targets) are examined as a function of these ratios. It is shown that a rather complex filtering objective could be met with a high degree of success. Structures composed of the designed phononic crystals are excellent candidates for use in a wide range of applications including sound and vibration filtering
A dynamic inertia weight particle swarm optimization algorithm
Jiao Bin; Lian Zhigang; Gu Xingsheng
2008-01-01
Particle swarm optimization (PSO) algorithm has been developing rapidly and has been applied widely since it was introduced, as it is easily understood and realized. This paper presents an improved particle swarm optimization algorithm (IPSO) to improve the performance of standard PSO, which uses the dynamic inertia weight that decreases according to iterative generation increasing. It is tested with a set of 6 benchmark functions with 30, 50 and 150 different dimensions and compared with standard PSO. Experimental results indicate that the IPSO improves the search performance on the benchmark functions significantly
A decoupled power flow algorithm using particle swarm optimization technique
Acharjee, P.; Goswami, S.K.
2009-01-01
A robust, nondivergent power flow method has been developed using the particle swarm optimization (PSO) technique. The decoupling properties between the power system quantities have been exploited in developing the power flow algorithm. The speed of the power flow algorithm has been improved using a simple perturbation technique. The basic power flow algorithm and the improvement scheme have been designed to retain the simplicity of the evolutionary approach. The power flow is rugged, can determine the critical loading conditions and also can handle the flexible alternating current transmission system (FACTS) devices efficiently. Test results on standard test systems show that the proposed method can find the solution when the standard power flows fail.
A Global Optimization Algorithm for Sum of Linear Ratios Problem
Yuelin Gao
2013-01-01
Full Text Available We equivalently transform the sum of linear ratios programming problem into bilinear programming problem, then by using the linear characteristics of convex envelope and concave envelope of double variables product function, linear relaxation programming of the bilinear programming problem is given, which can determine the lower bound of the optimal value of original problem. Therefore, a branch and bound algorithm for solving sum of linear ratios programming problem is put forward, and the convergence of the algorithm is proved. Numerical experiments are reported to show the effectiveness of the proposed algorithm.
Modified Monkey Optimization Algorithm for Solving Optimal Reactive Power Dispatch Problem
Kanagasabai Lenin
2015-04-01
Full Text Available In this paper, a novel approach Modified Monkey optimization (MMO algorithm for solving optimal reactive power dispatch problem has been presented. MMO is a population based stochastic meta-heuristic algorithm and it is inspired by intelligent foraging behaviour of monkeys. This paper improves both local leader and global leader phases. The proposed (MMO algorithm has been tested in standard IEEE 30 bus test system and simulation results show the worthy performance of the proposed algorithm in reducing the real power loss.
Parallel optimization of IDW interpolation algorithm on multicore platform
Guan, Xuefeng; Wu, Huayi
2009-10-01
Due to increasing power consumption, heat dissipation, and other physical issues, the architecture of central processing unit (CPU) has been turning to multicore rapidly in recent years. Multicore processor is packaged with multiple processor cores in the same chip, which not only offers increased performance, but also presents significant challenges to application developers. As a matter of fact, in GIS field most of current GIS algorithms were implemented serially and could not best exploit the parallelism potential on such multicore platforms. In this paper, we choose Inverse Distance Weighted spatial interpolation algorithm (IDW) as an example to study how to optimize current serial GIS algorithms on multicore platform in order to maximize performance speedup. With the help of OpenMP, threading methodology is introduced to split and share the whole interpolation work among processor cores. After parallel optimization, execution time of interpolation algorithm is greatly reduced and good performance speedup is achieved. For example, performance speedup on Intel Xeon 5310 is 1.943 with 2 execution threads and 3.695 with 4 execution threads respectively. An additional output comparison between pre-optimization and post-optimization is carried out and shows that parallel optimization does to affect final interpolation result.
Genetic Algorithm and its Application in Optimal Sensor Layout
Xiang-Yang Chen
2015-05-01
Full Text Available This paper aims at the problem of multi sensor station distribution, based on multi- sensor systems of different types as the research object, in the analysis of various types of sensors with different application background, different indicators of demand, based on the different constraints, for all kinds of multi sensor station is studied, the application of genetic algorithms as a tool for the objective function of the models optimization, then the optimal various types of multi sensor station distribution plan, improve the performance of the system, and achieved good military effect. In the field of application of sensor radar, track measuring instrument, the satellite, passive positioning equipment of various types, specific problem, use care indicators and station arrangement between the mathematical model of geometry, using genetic algorithm to get the optimization results station distribution, to solve a variety of practical problems provides useful help, but also reflects the improved genetic algorithm in electronic weapon system based on multi sensor station distribution on the applicability and effectiveness of the optimization; finally the genetic algorithm for integrated optimization of multi sensor station distribution using the good to the training exercise tasks based on actual in, and have achieved good military effect.
Genetic algorithm enhanced by machine learning in dynamic aperture optimization
Li, Yongjun; Cheng, Weixing; Yu, Li Hua; Rainer, Robert
2018-05-01
With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given "elite" status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitness of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. The machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.
Peng Wang
2013-01-01
Full Text Available This paper presents a novel biologically inspired metaheuristic algorithm called seven-spot ladybird optimization (SLO. The SLO is inspired by recent discoveries on the foraging behavior of a seven-spot ladybird. In this paper, the performance of the SLO is compared with that of the genetic algorithm, particle swarm optimization, and artificial bee colony algorithms by using five numerical benchmark functions with multimodality. The results show that SLO has the ability to find the best solution with a comparatively small population size and is suitable for solving optimization problems with lower dimensions.
Nuclear fuel management optimization using adaptive evolutionary algorithms with heuristics
Axmann, J.K.; Van de Velde, A.
1996-01-01
Adaptive Evolutionary Algorithms in combination with expert knowledge encoded in heuristics have proved to be a robust and powerful optimization method for the design of optimized PWR fuel loading pattern. Simple parallel algorithmic structures coupled with a low amount of communications between computer processor units in use makes it possible for workstation clusters to be employed efficiently. The extension of classic evolution strategies not only by new and alternative methods but also by the inclusion of heuristics with effects on the exchange probabilities of the fuel assemblies at specific core positions leads to the RELOPAT optimization code of the Technical University of Braunschweig. In combination with the new, neutron-physical 3D nodal core simulator PRISM developed by SIEMENS the PRIMO loading pattern optimization system has been designed. Highly promising results in the recalculation of known reload plans for German PWR's new lead to a commercially usable program. (author)
Exergetic optimization of turbofan engine with genetic algorithm method
Turan, Onder [Anadolu University, School of Civil Aviation (Turkey)], e-mail: onderturan@anadolu.edu.tr
2011-07-01
With the growth of passenger numbers, emissions from the aeronautics sector are increasing and the industry is now working on improving engine efficiency to reduce fuel consumption. The aim of this study is to present the use of genetic algorithms, an optimization method based on biological principles, to optimize the exergetic performance of turbofan engines. The optimization was carried out using exergy efficiency, overall efficiency and specific thrust of the engine as evaluation criteria and playing on pressure and bypass ratio, turbine inlet temperature and flight altitude. Results showed exergy efficiency can be maximized with higher altitudes, fan pressure ratio and turbine inlet temperature; the turbine inlet temperature is the most important parameter for increased exergy efficiency. This study demonstrated that genetic algorithms are effective in optimizing complex systems in a short time.
Optimal path-finding through mental exploration based on neural energy field gradients.
Wang, Yihong; Wang, Rubin; Zhu, Yating
2017-02-01
Rodent animal can accomplish self-locating and path-finding task by forming a cognitive map in the hippocampus representing the environment. In the classical model of the cognitive map, the system (artificial animal) needs large amounts of physical exploration to study spatial environment to solve path-finding problems, which costs too much time and energy. Although Hopfield's mental exploration model makes up for the deficiency mentioned above, the path is still not efficient enough. Moreover, his model mainly focused on the artificial neural network, and clear physiological meanings has not been addressed. In this work, based on the concept of mental exploration, neural energy coding theory has been applied to the novel calculation model to solve the path-finding problem. Energy field is constructed on the basis of the firing power of place cell clusters, and the energy field gradient can be used in mental exploration to solve path-finding problems. The study shows that the new mental exploration model can efficiently find the optimal path, and present the learning process with biophysical meaning as well. We also analyzed the parameters of the model which affect the path efficiency. This new idea verifies the importance of place cell and synapse in spatial memory and proves that energy coding is effective to study cognitive activities. This may provide the theoretical basis for the neural dynamics mechanism of spatial memory.
Vorozheikin, A.; Gonchar, T.; Panfilov, I.; Sopov, E.; Sopov, S.
2009-01-01
A new algorithm for the solution of complex constrained optimization problems based on the probabilistic genetic algorithm with optimal solution prediction is proposed. The efficiency investigation results in comparison with standard genetic algorithm are presented.
A low complexity method for the optimization of network path length in spatially embedded networks
Chen, Guang; Yang, Xu-Hua; Xu, Xin-Li; Ming, Yong; Chen, Sheng-Yong; Wang, Wan-Liang
2014-01-01
The average path length of a network is an important index reflecting the network transmission efficiency. In this paper, we propose a new method of decreasing the average path length by adding edges. A new indicator is presented, incorporating traffic flow demand, to assess the decrease in the average path length when a new edge is added during the optimization process. With the help of the indicator, edges are selected and added into the network one by one. The new method has a relatively small time computational complexity in comparison with some traditional methods. In numerical simulations, the new method is applied to some synthetic spatially embedded networks. The result shows that the method can perform competitively in decreasing the average path length. Then, as an example of an application of this new method, it is applied to the road network of Hangzhou, China. (paper)
Improved Differential Evolution Algorithm for Wireless Sensor Network Coverage Optimization
Xing Xu
2014-04-01
Full Text Available In order to serve for the ecological monitoring efficiency of Poyang Lake, an improved hybrid algorithm, mixed with differential evolution and particle swarm optimization, is proposed and applied to optimize the coverage problem of wireless sensor network. And then, the affect of the population size and the number of iterations on the coverage performance are both discussed and analyzed. The four kinds of statistical results about the coverage rate are obtained through lots of simulation experiments.
Optimization of heat pump using fuzzy logic and genetic algorithm
Sahin, Arzu Sencan [Sueleyman Demirel University, Technology Faculty, Isparta (Turkey); Kilic, Bayram; Kilic, Ulas [Bucak Emin Guelmez Vocational School, Mehmet Akif Ersoy University, Bucak (Turkey)
2011-12-15
Heat pumps offer economical alternatives of recovering heat from different sources for use in various industrial, commercial and residential applications. In this study, single-stage air-source vapor compression heat pump system has been optimized using genetic algorithm (GA) and fuzzy logic (FL). The necessary thermodynamic properties for optimization were calculated by FL. Thermodynamic properties obtained with FL were compared with actual results. Then, the optimum working conditions of heat pump system were determined by the GA. (orig.)
Eddy current testing probe optimization using a parallel genetic algorithm
Dolapchiev Ivaylo
2008-01-01
Full Text Available This paper uses the developed parallel version of Michalewicz's Genocop III Genetic Algorithm (GA searching technique to optimize the coil geometry of an eddy current non-destructive testing probe (ECTP. The electromagnetic field is computed using FEMM 2D finite element code. The aim of this optimization was to determine coil dimensions and positions that improve ECTP sensitivity to physical properties of the tested devices.
Optimization of broadband semiconductor chirped mirrors with genetic algorithm
Dems, M.; Wnuk, P.; Wasylczyk, P.; Zinkiewicz, L.; Wojcik-Jedlinska, A.; Reginski, K.; Hejduk, K.; Jasik, A.
2016-01-01
Genetic algorithm was applied for optimization of dispersion properties in semiconductor Bragg reflectors for applications in femtosecond lasers. Broadband, large negative group-delay dispersion was achieved in the optimized design: The group-delay dispersion (GDD) as large as −3500 fs2 was theoretically obtained over a 10-nm bandwidth. The designed structure was manufactured and tested, providing GDD −3320 fs2 over a 7-nm bandwidth. The mirror performance was ...
Awasthi, Abhishek; Venkitusamy, Karthikeyan; Padmanaban, Sanjeevikumar
2017-01-01
India's ever increasing population has made it necessary to develop alternative modes of transportation with electric vehicles being the most preferred option. The major obstacle is the deteriorating impact on the utility distribution system brought about by improper setup of these charging...... stations. This paper deals with the optimal planning (siting and sizing) of charging station infrastructure in the city of Allahabad, India. This city is one of the upcoming smart cities, where electric vehicle transportation pilot project is going on under Government of India initiative. In this context......, a hybrid algorithm based on genetic algorithm and improved version of conventional particle swarm optimization is utilized for finding optimal placement of charging station in the Allahabad distribution system. The particle swarm optimization algorithm re-optimizes the received sub-optimal solution (site...
Some Studies on Forming Optimization with Genetic Algorithm
Ganesh Marotrao KAKANDIKAR
2012-07-01
Full Text Available Forming is a compression-tension process involving wide spectrum of operations andflow conditions. The result of the process depends on the large number of parameters and theirinterdependence. The selection of various parameters is still based on trial and error methods. In thispaper the authors present a new approach to optimize the geometry parameters of circularcomponents, process parameters such as blank holder pressure and coefficient of friction etc. Theoptimization problem has been formulated with the objective of optimizing the maximum formingload required in Forming. Genetic algorithm is used as a tool for the optimization: to optimize thedrawing load and to optimize the process parameters. A finite element analysis simulation softwareFast Form Advanced is used for the validations of the results after optimization with prior results.
The optimal algorithm for Multi-source RS image fusion.
Fu, Wei; Huang, Shui-Guang; Li, Zeng-Shun; Shen, Hao; Li, Jun-Shuai; Wang, Peng-Yuan
2016-01-01
In order to solve the issue which the fusion rules cannot be self-adaptively adjusted by using available fusion methods according to the subsequent processing requirements of Remote Sensing (RS) image, this paper puts forward GSDA (genetic-iterative self-organizing data analysis algorithm) by integrating the merit of genetic arithmetic together with the advantage of iterative self-organizing data analysis algorithm for multi-source RS image fusion. The proposed algorithm considers the wavelet transform of the translation invariance as the model operator, also regards the contrast pyramid conversion as the observed operator. The algorithm then designs the objective function by taking use of the weighted sum of evaluation indices, and optimizes the objective function by employing GSDA so as to get a higher resolution of RS image. As discussed above, the bullet points of the text are summarized as follows.•The contribution proposes the iterative self-organizing data analysis algorithm for multi-source RS image fusion.•This article presents GSDA algorithm for the self-adaptively adjustment of the fusion rules.•This text comes up with the model operator and the observed operator as the fusion scheme of RS image based on GSDA. The proposed algorithm opens up a novel algorithmic pathway for multi-source RS image fusion by means of GSDA.
Quantum Behaved Particle Swarm Optimization Algorithm Based on Artificial Fish Swarm
Yumin, Dong; Li, Zhao
2014-01-01
Quantum behaved particle swarm algorithm is a new intelligent optimization algorithm; the algorithm has less parameters and is easily implemented. In view of the existing quantum behaved particle swarm optimization algorithm for the premature convergence problem, put forward a quantum particle swarm optimization algorithm based on artificial fish swarm. The new algorithm based on quantum behaved particle swarm algorithm, introducing the swarm and following activities, meanwhile using the a...
Shao, Zhongshi; Pi, Dechang; Shao, Weishi
2018-05-01
This article presents an effective estimation of distribution algorithm, named P-EDA, to solve the blocking flow-shop scheduling problem (BFSP) with the makespan criterion. In the P-EDA, a Nawaz-Enscore-Ham (NEH)-based heuristic and the random method are combined to generate the initial population. Based on several superior individuals provided by a modified linear rank selection, a probabilistic model is constructed to describe the probabilistic distribution of the promising solution space. The path relinking technique is incorporated into EDA to avoid blindness of the search and improve the convergence property. A modified referenced local search is designed to enhance the local exploitation. Moreover, a diversity-maintaining scheme is introduced into EDA to avoid deterioration of the population. Finally, the parameters of the proposed P-EDA are calibrated using a design of experiments approach. Simulation results and comparisons with some well-performing algorithms demonstrate the effectiveness of the P-EDA for solving BFSP.
FSD-HSO Optimization Algorithm for Closed Fringes Interferogram Demodulation
Ulises H. Rodriguez-Marmolejo
2016-01-01
Full Text Available Due to the physical nature of the interference phenomenon, extracting the phase of an interferogram is a known sinusoidal modulation problem. In order to solve this problem, a new hybrid mathematical optimization model for phase extraction is established. The combination of frequency guide sequential demodulation and harmony search optimization algorithms is used for demodulating closed fringes patterns in order to find the phase of interferogram applications. The proposed algorithm is tested in four sets of different synthetic interferograms, finding a range of average relative error in phase reconstructions of 0.14–0.39 rad. For reference, experimental results are compared with the genetic algorithm optimization technique, obtaining a reduction in the error up to 0.1448 rad. Finally, the proposed algorithm is compared with a very known demodulation algorithm, using a real interferogram, obtaining a relative error of 1.561 rad. Results are shown in patterns with complex fringes distribution.
Hard decoding algorithm for optimizing thresholds under general Markovian noise
Chamberland, Christopher; Wallman, Joel; Beale, Stefanie; Laflamme, Raymond
2017-04-01
Quantum error correction is instrumental in protecting quantum systems from noise in quantum computing and communication settings. Pauli channels can be efficiently simulated and threshold values for Pauli error rates under a variety of error-correcting codes have been obtained. However, realistic quantum systems can undergo noise processes that differ significantly from Pauli noise. In this paper, we present an efficient hard decoding algorithm for optimizing thresholds and lowering failure rates of an error-correcting code under general completely positive and trace-preserving (i.e., Markovian) noise. We use our hard decoding algorithm to study the performance of several error-correcting codes under various non-Pauli noise models by computing threshold values and failure rates for these codes. We compare the performance of our hard decoding algorithm to decoders optimized for depolarizing noise and show improvements in thresholds and reductions in failure rates by several orders of magnitude. Our hard decoding algorithm can also be adapted to take advantage of a code's non-Pauli transversal gates to further suppress noise. For example, we show that using the transversal gates of the 5-qubit code allows arbitrary rotations around certain axes to be perfectly corrected. Furthermore, we show that Pauli twirling can increase or decrease the threshold depending upon the code properties. Lastly, we show that even if the physical noise model differs slightly from the hypothesized noise model used to determine an optimized decoder, failure rates can still be reduced by applying our hard decoding algorithm.
Environmental Optimization Using the WAste Reduction Algorithm (WAR)
Traditionally chemical process designs were optimized using purely economic measures such as rate of return. EPA scientists developed the WAste Reduction algorithm (WAR) so that environmental impacts of designs could easily be evaluated. The goal of WAR is to reduce environme...
Optimization of composite panels using neural networks and genetic algorithms
Ruijter, W.; Spallino, R.; Warnet, Laurent; de Boer, Andries
2003-01-01
The objective of this paper is to present first results of a running study on optimization of aircraft components (composite panels of a typical vertical tail plane) by using Genetic Algorithms (GA) and Neural Networks (NN). The panels considered are standardized to some extent but still there is a
Use of multiple objective evolutionary algorithms in optimizing surveillance requirements
Martorell, S.; Carlos, S.; Villanueva, J.F.; Sanchez, A.I; Galvan, B.; Salazar, D.; Cepin, M.
2006-01-01
This paper presents the development and application of a double-loop Multiple Objective Evolutionary Algorithm that uses a Multiple Objective Genetic Algorithm to perform the simultaneous optimization of periodic Test Intervals (TI) and Test Planning (TP). It takes into account the time-dependent effect of TP performed on stand-by safety-related equipment. TI and TP are part of the Surveillance Requirements within Technical Specifications at Nuclear Power Plants. It addresses the problem of multi-objective optimization in the space of dependable variables, i.e. TI and TP, using a novel flexible structure of the optimization algorithm. Lessons learnt from the cases of application of the methodology to optimize TI and TP for the High-Pressure Injection System are given. The results show that the double-loop Multiple Objective Evolutionary Algorithm is able to find the Pareto set of solutions that represents a surface of non-dominated solutions that satisfy all the constraints imposed on the objective functions and decision variables. Decision makers can adopt then the best solution found depending on their particular preference, e.g. minimum cost, minimum unavailability
Numerical Optimization Algorithms and Software for Systems Biology
Saunders, Michael
2013-02-02
The basic aims of this work are: to develop reliable algorithms for solving optimization problems involving large stoi- chiometric matrices; to investigate cyclic dependency between metabolic and macromolecular biosynthetic networks; and to quantify the significance of thermodynamic constraints on prokaryotic metabolism.
Hybrid Robust Multi-Objective Evolutionary Optimization Algorithm
2009-03-10
xfar by xint. Else, generate a new individual, using the Sobol pseudo- random sequence generator within the upper and lower bounds of the variables...12. Deb, K., Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons. 2002. 13. Sobol , I. M., "Uniformly Distributed Sequences
2-Phase NSGA II: An Optimized Reward and Risk Measurements Algorithm in Portfolio Optimization
Seyedeh Elham Eftekharian
2017-11-01
Full Text Available Portfolio optimization is a serious challenge for financial engineering and has pulled down special attention among investors. It has two objectives: to maximize the reward that is calculated by expected return and to minimize the risk. Variance has been considered as a risk measure. There are many constraints in the world that ultimately lead to a non–convex search space such as cardinality constraint. In conclusion, parametric quadratic programming could not be applied and it seems essential to apply multi-objective evolutionary algorithm (MOEA. In this paper, a new efficient multi-objective portfolio optimization algorithm called 2-phase NSGA II algorithm is developed and the results of this algorithm are compared with the NSGA II algorithm. It was found that 2-phase NSGA II significantly outperformed NSGA II algorithm.
Parameter optimization of electrochemical machining process using black hole algorithm
Singh, Dinesh; Shukla, Rajkamal
2017-12-01
Advanced machining processes are significant as higher accuracy in machined component is required in the manufacturing industries. Parameter optimization of machining processes gives optimum control to achieve the desired goals. In this paper, electrochemical machining (ECM) process is considered to evaluate the performance of the considered process using black hole algorithm (BHA). BHA considers the fundamental idea of a black hole theory and it has less operating parameters to tune. The two performance parameters, material removal rate (MRR) and overcut (OC) are considered separately to get optimum machining parameter settings using BHA. The variations of process parameters with respect to the performance parameters are reported for better and effective understanding of the considered process using single objective at a time. The results obtained using BHA are found better while compared with results of other metaheuristic algorithms, such as, genetic algorithm (GA), artificial bee colony (ABC) and bio-geography based optimization (BBO) attempted by previous researchers.
RCQ-GA: RDF Chain Query Optimization Using Genetic Algorithms
Hogenboom, Alexander; Milea, Viorel; Frasincar, Flavius; Kaymak, Uzay
The application of Semantic Web technologies in an Electronic Commerce environment implies a need for good support tools. Fast query engines are needed for efficient querying of large amounts of data, usually represented using RDF. We focus on optimizing a special class of SPARQL queries, the so-called RDF chain queries. For this purpose, we devise a genetic algorithm called RCQ-GA that determines the order in which joins need to be performed for an efficient evaluation of RDF chain queries. The approach is benchmarked against a two-phase optimization algorithm, previously proposed in literature. The more complex a query is, the more RCQ-GA outperforms the benchmark in solution quality, execution time needed, and consistency of solution quality. When the algorithms are constrained by a time limit, the overall performance of RCQ-GA compared to the benchmark further improves.
An Algorithm for Global Optimization Inspired by Collective Animal Behavior
Erik Cuevas
2012-01-01
Full Text Available A metaheuristic algorithm for global optimization called the collective animal behavior (CAB is introduced. Animal groups, such as schools of fish, flocks of birds, swarms of locusts, and herds of wildebeest, exhibit a variety of behaviors including swarming about a food source, milling around a central locations, or migrating over large distances in aligned groups. These collective behaviors are often advantageous to groups, allowing them to increase their harvesting efficiency, to follow better migration routes, to improve their aerodynamic, and to avoid predation. In the proposed algorithm, the searcher agents emulate a group of animals which interact with each other based on the biological laws of collective motion. The proposed method has been compared to other well-known optimization algorithms. The results show good performance of the proposed method when searching for a global optimum of several benchmark functions.
An Elite Decision Making Harmony Search Algorithm for Optimization Problem
Lipu Zhang
2012-01-01
Full Text Available This paper describes a new variant of harmony search algorithm which is inspired by a well-known item “elite decision making.” In the new algorithm, the good information captured in the current global best and the second best solutions can be well utilized to generate new solutions, following some probability rule. The generated new solution vector replaces the worst solution in the solution set, only if its fitness is better than that of the worst solution. The generating and updating steps and repeated until the near-optimal solution vector is obtained. Extensive computational comparisons are carried out by employing various standard benchmark optimization problems, including continuous design variables and integer variables minimization problems from the literature. The computational results show that the proposed new algorithm is competitive in finding solutions with the state-of-the-art harmony search variants.
Research reactor loading pattern optimization using estimation of distribution algorithms
Jiang, S. [Dept. of Earth Science and Engineering, Applied Modeling and Computation Group AMCG, Imperial College, London, SW7 2AZ (United Kingdom); Ziver, K. [Dept. of Earth Science and Engineering, Applied Modeling and Computation Group AMCG, Imperial College, London, SW7 2AZ (United Kingdom); AMCG Group, RM Consultants, Abingdon (United Kingdom); Carter, J. N.; Pain, C. C.; Eaton, M. D.; Goddard, A. J. H. [Dept. of Earth Science and Engineering, Applied Modeling and Computation Group AMCG, Imperial College, London, SW7 2AZ (United Kingdom); Franklin, S. J.; Phillips, H. J. [Imperial College, Reactor Centre, Silwood Park, Buckhurst Road, Ascot, Berkshire, SL5 7TE (United Kingdom)
2006-07-01
A new evolutionary search based approach for solving the nuclear reactor loading pattern optimization problems is presented based on the Estimation of Distribution Algorithms. The optimization technique developed is then applied to the maximization of the effective multiplication factor (K{sub eff}) of the Imperial College CONSORT research reactor (the last remaining civilian research reactor in the United Kingdom). A new elitism-guided searching strategy has been developed and applied to improve the local convergence together with some problem-dependent information based on the 'stand-alone K{sub eff} with fuel coupling calculations. A comparison study between the EDAs and a Genetic Algorithm with Heuristic Tie Breaking Crossover operator has shown that the new algorithm is efficient and robust. (authors)
A Novel Spectrum Scheduling Scheme with Ant Colony Optimization Algorithm
Liping Liu
2018-01-01
Full Text Available Cognitive radio is a promising technology for improving spectrum utilization, which allows cognitive users access to the licensed spectrum while primary users are absent. In this paper, we design a resource allocation framework based on graph theory for spectrum assignment in cognitive radio networks. The framework takes into account the constraints that interference for primary users and possible collision among cognitive users. Based on the proposed model, we formulate a system utility function to maximize the system benefit. Based on the proposed model and objective problem, we design an improved ant colony optimization algorithm (IACO from two aspects: first, we introduce differential evolution (DE process to accelerate convergence speed by monitoring mechanism; then we design a variable neighborhood search (VNS process to avoid the algorithm falling into the local optimal. Simulation results demonstrate that the improved algorithm achieves better performance.
Research reactor loading pattern optimization using estimation of distribution algorithms
Jiang, S.; Ziver, K.; Carter, J. N.; Pain, C. C.; Eaton, M. D.; Goddard, A. J. H.; Franklin, S. J.; Phillips, H. J.
2006-01-01
A new evolutionary search based approach for solving the nuclear reactor loading pattern optimization problems is presented based on the Estimation of Distribution Algorithms. The optimization technique developed is then applied to the maximization of the effective multiplication factor (K eff ) of the Imperial College CONSORT research reactor (the last remaining civilian research reactor in the United Kingdom). A new elitism-guided searching strategy has been developed and applied to improve the local convergence together with some problem-dependent information based on the 'stand-alone K eff with fuel coupling calculations. A comparison study between the EDAs and a Genetic Algorithm with Heuristic Tie Breaking Crossover operator has shown that the new algorithm is efficient and robust. (authors)
Optimal reservoir operation policies using novel nested algorithms
Delipetrev, Blagoj; Jonoski, Andreja; Solomatine, Dimitri
2015-04-01
Historically, the two most widely practiced methods for optimal reservoir operation have been dynamic programming (DP) and stochastic dynamic programming (SDP). These two methods suffer from the so called "dual curse" which prevents them to be used in reasonably complex water systems. The first one is the "curse of dimensionality" that denotes an exponential growth of the computational complexity with the state - decision space dimension. The second one is the "curse of modelling" that requires an explicit model of each component of the water system to anticipate the effect of each system's transition. We address the problem of optimal reservoir operation concerning multiple objectives that are related to 1) reservoir releases to satisfy several downstream users competing for water with dynamically varying demands, 2) deviations from the target minimum and maximum reservoir water levels and 3) hydropower production that is a combination of the reservoir water level and the reservoir releases. Addressing such a problem with classical methods (DP and SDP) requires a reasonably high level of discretization of the reservoir storage volume, which in combination with the required releases discretization for meeting the demands of downstream users leads to computationally expensive formulations and causes the curse of dimensionality. We present a novel approach, named "nested" that is implemented in DP, SDP and reinforcement learning (RL) and correspondingly three new algorithms are developed named nested DP (nDP), nested SDP (nSDP) and nested RL (nRL). The nested algorithms are composed from two algorithms: 1) DP, SDP or RL and 2) nested optimization algorithm. Depending on the way we formulate the objective function related to deficits in the allocation problem in the nested optimization, two methods are implemented: 1) Simplex for linear allocation problems, and 2) quadratic Knapsack method in the case of nonlinear problems. The novel idea is to include the nested
Hoomod, Haider K.; Kareem Jebur, Tuka
2018-05-01
Mobile ad hoc networks (MANETs) play a critical role in today’s wireless ad hoc network research and consist of active nodes that can be in motion freely. Because it consider very important problem in this network, we suggested proposed method based on modified radial basis function networks RBFN and Self-Organizing Map SOM. These networks can be improved by the use of clusters because of huge congestion in the whole network. In such a system, the performance of MANET is improved by splitting the whole network into various clusters using SOM. The performance of clustering is improved by the cluster head selection and number of clusters. Modified Radial Based Neural Network is very simple, adaptable and efficient method to increase the life time of nodes, packet delivery ratio and the throughput of the network will increase and connection become more useful because the optimal path has the best parameters from other paths including the best bitrate and best life link with minimum delays. Proposed routing algorithm depends on the group of factors and parameters to select the path between two points in the wireless network. The SOM clustering average time (1-10 msec for stall nodes) and (8-75 msec for mobile nodes). While the routing time range (92-510 msec).The proposed system is faster than the Dijkstra by 150-300%, and faster from the RBFNN (without modify) by 145-180%.
Global structural optimizations of surface systems with a genetic algorithm
Chuang, Feng-Chuan
2005-01-01
Global structural optimizations with a genetic algorithm were performed for atomic cluster and surface systems including aluminum atomic clusters, Si magic clusters on the Si(111) 7 x 7 surface, silicon high-index surfaces, and Ag-induced Si(111) reconstructions. First, the global structural optimizations of neutral aluminum clusters Al n (n up to 23) were performed using a genetic algorithm coupled with a tight-binding potential. Second, a genetic algorithm in combination with tight-binding and first-principles calculations were performed to study the structures of magic clusters on the Si(111) 7 x 7 surface. Extensive calculations show that the magic cluster observed in scanning tunneling microscopy (STM) experiments consist of eight Si atoms. Simulated STM images of the Si magic cluster exhibit a ring-like feature similar to STM experiments. Third, a genetic algorithm coupled with a highly optimized empirical potential were used to determine the lowest energy structure of high-index semiconductor surfaces. The lowest energy structures of Si(105) and Si(114) were determined successfully. The results of Si(105) and Si(114) are reported within the framework of highly optimized empirical potential and first-principles calculations. Finally, a genetic algorithm coupled with Si and Ag tight-binding potentials were used to search for Ag-induced Si(111) reconstructions at various Ag and Si coverages. The optimized structural models of √3 x √3, 3 x 1, and 5 x 2 phases were reported using first-principles calculations. A novel model is found to have lower surface energy than the proposed double-honeycomb chained (DHC) model both for Au/Si(111) 5 x 2 and Ag/Si(111) 5 x 2 systems
A Cultural Algorithm for Optimal Design of Truss Structures
Shahin Jalili
Full Text Available Abstract A cultural algorithm was utilized in this study to solve optimal design of truss structures problem achieving minimum weight objective under stress and deflection constraints. The algorithm is inspired by principles of human social evolution. It simulates the social interaction between the peoples and their beliefs in a belief space. Cultural Algorithm (CA utilizes the belief space and population space which affects each other based on acceptance and influence functions. The belief space of CA consists of different knowledge components. In this paper, only situational and normative knowledge components are used within the belief space. The performance of the method is demonstrated through four benchmark design examples. Comparison of the obtained results with those of some previous studies demonstrates the efficiency of this algorithm.
ProxImaL: efficient image optimization using proximal algorithms
Heide, Felix
2016-07-11
Computational photography systems are becoming increasingly diverse, while computational resources-for example on mobile platforms-are rapidly increasing. As diverse as these camera systems may be, slightly different variants of the underlying image processing tasks, such as demosaicking, deconvolution, denoising, inpainting, image fusion, and alignment, are shared between all of these systems. Formal optimization methods have recently been demonstrated to achieve state-of-the-art quality for many of these applications. Unfortunately, different combinations of natural image priors and optimization algorithms may be optimal for different problems, and implementing and testing each combination is currently a time-consuming and error-prone process. ProxImaL is a domain-specific language and compiler for image optimization problems that makes it easy to experiment with different problem formulations and algorithm choices. The language uses proximal operators as the fundamental building blocks of a variety of linear and nonlinear image formation models and cost functions, advanced image priors, and noise models. The compiler intelligently chooses the best way to translate a problem formulation and choice of optimization algorithm into an efficient solver implementation. In applications to the image processing pipeline, deconvolution in the presence of Poisson-distributed shot noise, and burst denoising, we show that a few lines of ProxImaL code can generate highly efficient solvers that achieve state-of-the-art results. We also show applications to the nonlinear and nonconvex problem of phase retrieval.
Modified Discrete Grey Wolf Optimizer Algorithm for Multilevel Image Thresholding
Linguo Li
2017-01-01
Full Text Available The computation of image segmentation has become more complicated with the increasing number of thresholds, and the option and application of the thresholds in image thresholding fields have become an NP problem at the same time. The paper puts forward the modified discrete grey wolf optimizer algorithm (MDGWO, which improves on the optimal solution updating mechanism of the search agent by the weights. Taking Kapur’s entropy as the optimized function and based on the discreteness of threshold in image segmentation, the paper firstly discretizes the grey wolf optimizer (GWO and then proposes a new attack strategy by using the weight coefficient to replace the search formula for optimal solution used in the original algorithm. The experimental results show that MDGWO can search out the optimal thresholds efficiently and precisely, which are very close to the result examined by exhaustive searches. In comparison with the electromagnetism optimization (EMO, the differential evolution (DE, the Artifical Bee Colony (ABC, and the classical GWO, it is concluded that MDGWO has advantages over the latter four in terms of image segmentation quality and objective function values and their stability.
A novel optimization method, Gravitational Search Algorithm (GSA), for PWR core optimization
Mahmoudi, S.M.; Aghaie, M.; Bahonar, M.; Poursalehi, N.
2016-01-01
Highlights: • The Gravitational Search Algorithm (GSA) is introduced. • The advantage of GSA is verified in Shekel’s Foxholes. • Reload optimizing in WWER-1000 and WWER-440 cases are performed. • Maximizing K eff , minimizing PPFs and flattening power density is considered. - Abstract: In-core fuel management optimization (ICFMO) is one of the most challenging concepts of nuclear engineering. In recent decades several meta-heuristic algorithms or computational intelligence methods have been expanded to optimize reactor core loading pattern. This paper presents a new method of using Gravitational Search Algorithm (GSA) for in-core fuel management optimization. The GSA is constructed based on the law of gravity and the notion of mass interactions. It uses the theory of Newtonian physics and searcher agents are the collection of masses. In this work, at the first step, GSA method is compared with other meta-heuristic algorithms on Shekel’s Foxholes problem. In the second step for finding the best core, the GSA algorithm has been performed for three PWR test cases including WWER-1000 and WWER-440 reactors. In these cases, Multi objective optimizations with the following goals are considered, increment of multiplication factor (K eff ), decrement of power peaking factor (PPF) and power density flattening. It is notable that for neutronic calculation, PARCS (Purdue Advanced Reactor Core Simulator) code is used. The results demonstrate that GSA algorithm have promising performance and could be proposed for other optimization problems of nuclear engineering field.
A Hybrid Harmony Search Algorithm Approach for Optimal Power Flow
Mimoun YOUNES
2012-08-01
Full Text Available Optimal Power Flow (OPF is one of the main functions of Power system operation. It determines the optimal settings of generating units, bus voltage, transformer tap and shunt elements in Power System with the objective of minimizing total production costs or losses while the system is operating within its security limits. The aim of this paper is to propose a novel methodology (BCGAs-HSA that solves OPF including both active and reactive power dispatch It is based on combining the binary-coded genetic algorithm (BCGAs and the harmony search algorithm (HSA to determine the optimal global solution. This method was tested on the modified IEEE 30 bus test system. The results obtained by this method are compared with those obtained with BCGAs or HSA separately. The results show that the BCGAs-HSA approach can converge to the optimum solution with accuracy compared to those reported recently in the literature.
Joint optimization of algorithmic suites for EEG analysis.
Santana, Eder; Brockmeier, Austin J; Principe, Jose C
2014-01-01
Electroencephalogram (EEG) data analysis algorithms consist of multiple processing steps each with a number of free parameters. A joint optimization methodology can be used as a wrapper to fine-tune these parameters for the patient or application. This approach is inspired by deep learning neural network models, but differs because the processing layers for EEG are heterogeneous with different approaches used for processing space and time. Nonetheless, we treat the processing stages as a neural network and apply backpropagation to jointly optimize the parameters. This approach outperforms previous results on the BCI Competition II - dataset IV; additionally, it outperforms the common spatial patterns (CSP) algorithm on the BCI Competition III dataset IV. In addition, the optimized parameters in the architecture are still interpretable.
Algorithms for optimization of branching gravity-driven water networks
Dardani, Ian; Jones, Gerard F.
2018-05-01
The design of a water network involves the selection of pipe diameters that satisfy pressure and flow requirements while considering cost. A variety of design approaches can be used to optimize for hydraulic performance or reduce costs. To help designers select an appropriate approach in the context of gravity-driven water networks (GDWNs), this work assesses three cost-minimization algorithms on six moderate-scale GDWN test cases. Two algorithms, a backtracking algorithm and a genetic algorithm, use a set of discrete pipe diameters, while a new calculus-based algorithm produces a continuous-diameter solution which is mapped onto a discrete-diameter set. The backtracking algorithm finds the global optimum for all but the largest of cases tested, for which its long runtime makes it an infeasible option. The calculus-based algorithm's discrete-diameter solution produced slightly higher-cost results but was more scalable to larger network cases. Furthermore, the new calculus-based algorithm's continuous-diameter and mapped solutions provided lower and upper bounds, respectively, on the discrete-diameter global optimum cost, where the mapped solutions were typically within one diameter size of the global optimum. The genetic algorithm produced solutions even closer to the global optimum with consistently short run times, although slightly higher solution costs were seen for the larger network cases tested. The results of this study highlight the advantages and weaknesses of each GDWN design method including closeness to the global optimum, the ability to prune the solution space of infeasible and suboptimal candidates without missing the global optimum, and algorithm run time. We also extend an existing closed-form model of Jones (2011) to include minor losses and a more comprehensive two-part cost model, which realistically applies to pipe sizes that span a broad range typical of GDWNs of interest in this work, and for smooth and commercial steel roughness values.
Algorithms for optimization of branching gravity-driven water networks
I. Dardani
2018-05-01
Full Text Available The design of a water network involves the selection of pipe diameters that satisfy pressure and flow requirements while considering cost. A variety of design approaches can be used to optimize for hydraulic performance or reduce costs. To help designers select an appropriate approach in the context of gravity-driven water networks (GDWNs, this work assesses three cost-minimization algorithms on six moderate-scale GDWN test cases. Two algorithms, a backtracking algorithm and a genetic algorithm, use a set of discrete pipe diameters, while a new calculus-based algorithm produces a continuous-diameter solution which is mapped onto a discrete-diameter set. The backtracking algorithm finds the global optimum for all but the largest of cases tested, for which its long runtime makes it an infeasible option. The calculus-based algorithm's discrete-diameter solution produced slightly higher-cost results but was more scalable to larger network cases. Furthermore, the new calculus-based algorithm's continuous-diameter and mapped solutions provided lower and upper bounds, respectively, on the discrete-diameter global optimum cost, where the mapped solutions were typically within one diameter size of the global optimum. The genetic algorithm produced solutions even closer to the global optimum with consistently short run times, although slightly higher solution costs were seen for the larger network cases tested. The results of this study highlight the advantages and weaknesses of each GDWN design method including closeness to the global optimum, the ability to prune the solution space of infeasible and suboptimal candidates without missing the global optimum, and algorithm run time. We also extend an existing closed-form model of Jones (2011 to include minor losses and a more comprehensive two-part cost model, which realistically applies to pipe sizes that span a broad range typical of GDWNs of interest in this work, and for smooth and commercial steel
Optimization of image processing algorithms on mobile platforms
Poudel, Pramod; Shirvaikar, Mukul
2011-03-01
This work presents a technique to optimize popular image processing algorithms on mobile platforms such as cell phones, net-books and personal digital assistants (PDAs). The increasing demand for video applications like context-aware computing on mobile embedded systems requires the use of computationally intensive image processing algorithms. The system engineer has a mandate to optimize them so as to meet real-time deadlines. A methodology to take advantage of the asymmetric dual-core processor, which includes an ARM and a DSP core supported by shared memory, is presented with implementation details. The target platform chosen is the popular OMAP 3530 processor for embedded media systems. It has an asymmetric dual-core architecture with an ARM Cortex-A8 and a TMS320C64x Digital Signal Processor (DSP). The development platform was the BeagleBoard with 256 MB of NAND RAM and 256 MB SDRAM memory. The basic image correlation algorithm is chosen for benchmarking as it finds widespread application for various template matching tasks such as face-recognition. The basic algorithm prototypes conform to OpenCV, a popular computer vision library. OpenCV algorithms can be easily ported to the ARM core which runs a popular operating system such as Linux or Windows CE. However, the DSP is architecturally more efficient at handling DFT algorithms. The algorithms are tested on a variety of images and performance results are presented measuring the speedup obtained due to dual-core implementation. A major advantage of this approach is that it allows the ARM processor to perform important real-time tasks, while the DSP addresses performance-hungry algorithms.
Optimization of path length stretching in Monte Carlo calculations for non-leakage problems
Hoogenboom, J.E. [Delft Univ. of Technology (Netherlands)
2005-07-01
Path length stretching (or exponential biasing) is a well known variance reduction technique in Monte Carlo calculations. It can especially be useful in shielding problems where particles have to penetrate a lot of material before being tallied. Several authors sought for optimization of the path length stretching parameter for detection of the leakage of neutrons from a slab. Here the adjoint function behaves as a single exponential function and can well be used to determine the stretching parameter. In this paper optimization is sought for a detector embedded in the system, which changes the adjoint function in the detector drastically. From literature it is known that the combination of path length stretching and angular biasing can result in appreciable variance reduction. However, angular biasing is not generally available in general purpose Monte Carlo codes and therefore we want to restrict ourselves to the application of pure path length stretching and finding optimum parameters for that. Nonetheless, the starting point for our research is the zero-variance scheme. In order to study the solution in detail the simplified monoenergetic two-direction model is adopted, which allows analytical solutions and can still be used in a Monte Carlo simulation. Knowing the zero-variance solution analytically, it is shown how optimum path length stretching parameters can be derived from it. It results in path length shrinking in the detector. Results for the variance in the detector response are shown in comparison with other patterns for the stretching parameter. The effect of anisotropic scattering on the path length stretching parameter is taken into account. (author)
District Heating Network Design and Configuration Optimization with Genetic Algorithm
Li, Hongwei; Svendsen, Svend
2013-01-01
In this paper, the configuration of a district heating network which connects from the heating plant to the end users is optimized. Each end user in the network represents a building block. The connections between the heat generation plant and the end users are represented with mixed integer...... and the pipe friction and heat loss formulations are non-linear. In order to find the optimal district heating network configuration, genetic algorithm which handles the mixed integer nonlinear programming problem is chosen. The network configuration is represented with binary and integer encoding...... and it is optimized in terms of the net present cost. The optimization results indicates that the optimal DH network configuration is determined by multiple factors such as the consumer heating load, the distance between the heating plant to the consumer, the design criteria regarding the pressure and temperature...
GENETIC ALGORITHM BASED CONCEPT DESIGN TO OPTIMIZE NETWORK LOAD BALANCE
Ashish Jain
2012-07-01
Full Text Available Multiconstraints optimal network load balancing is an NP-hard problem and it is an important part of traffic engineering. In this research we balance the network load using classical method (brute force approach and dynamic programming is used but result shows the limitation of this method but at a certain level we recognized that the optimization of balanced network load with increased number of nodes and demands is intractable using the classical method because the solution set increases exponentially. In such case the optimization techniques like evolutionary techniques can employ for optimizing network load balance. In this paper we analyzed proposed classical algorithm and evolutionary based genetic approach is devise as well as proposed in this paper for optimizing the balance network load.
Jianzhou Wang
2015-01-01
Full Text Available This paper develops an effectively intelligent model to forecast short-term wind speed series. A hybrid forecasting technique is proposed based on recurrence plot (RP and optimized support vector regression (SVR. Wind caused by the interaction of meteorological systems makes itself extremely unsteady and difficult to forecast. To understand the wind system, the wind speed series is analyzed using RP. Then, the SVR model is employed to forecast wind speed, in which the input variables are selected by RP, and two crucial parameters, including the penalties factor and gamma of the kernel function RBF, are optimized by various optimization algorithms. Those optimized algorithms are genetic algorithm (GA, particle swarm optimization algorithm (PSO, and cuckoo optimization algorithm (COA. Finally, the optimized SVR models, including COA-SVR, PSO-SVR, and GA-SVR, are evaluated based on some criteria and a hypothesis test. The experimental results show that (1 analysis of RP reveals that wind speed has short-term predictability on a short-term time scale, (2 the performance of the COA-SVR model is superior to that of the PSO-SVR and GA-SVR methods, especially for the jumping samplings, and (3 the COA-SVR method is statistically robust in multi-step-ahead prediction and can be applied to practical wind farm applications.
An Optimization-Driven Analysis Pipeline to Uncover Biomarkers and Signaling Paths: Cervix Cancer
Enery Lorenzo
2015-05-01
Full Text Available Establishing how a series of potentially important genes might relate to each other is relevant to understand the origin and evolution of illnesses, such as cancer. High‑throughput biological experiments have played a critical role in providing information in this regard. A special challenge, however, is that of trying to conciliate information from separate microarray experiments to build a potential genetic signaling path. This work proposes a two-step analysis pipeline, based on optimization, to approach meta-analysis aiming to build a proxy for a genetic signaling path.
Optimization in Quaternion Dynamic Systems: Gradient, Hessian, and Learning Algorithms.
Xu, Dongpo; Xia, Yili; Mandic, Danilo P
2016-02-01
The optimization of real scalar functions of quaternion variables, such as the mean square error or array output power, underpins many practical applications. Solutions typically require the calculation of the gradient and Hessian. However, real functions of quaternion variables are essentially nonanalytic, which are prohibitive to the development of quaternion-valued learning systems. To address this issue, we propose new definitions of quaternion gradient and Hessian, based on the novel generalized Hamilton-real (GHR) calculus, thus making a possible efficient derivation of general optimization algorithms directly in the quaternion field, rather than using the isomorphism with the real domain, as is current practice. In addition, unlike the existing quaternion gradients, the GHR calculus allows for the product and chain rule, and for a one-to-one correspondence of the novel quaternion gradient and Hessian with their real counterparts. Properties of the quaternion gradient and Hessian relevant to numerical applications are also introduced, opening a new avenue of research in quaternion optimization and greatly simplified the derivations of learning algorithms. The proposed GHR calculus is shown to yield the same generic algorithm forms as the corresponding real- and complex-valued algorithms. Advantages of the proposed framework are illuminated over illustrative simulations in quaternion signal processing and neural networks.
Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms.
Garro, Beatriz A; Vázquez, Roberto A
2015-01-01
Artificial Neural Network (ANN) design is a complex task because its performance depends on the architecture, the selected transfer function, and the learning algorithm used to train the set of synaptic weights. In this paper we present a methodology that automatically designs an ANN using particle swarm optimization algorithms such as Basic Particle Swarm Optimization (PSO), Second Generation of Particle Swarm Optimization (SGPSO), and a New Model of PSO called NMPSO. The aim of these algorithms is to evolve, at the same time, the three principal components of an ANN: the set of synaptic weights, the connections or architecture, and the transfer functions for each neuron. Eight different fitness functions were proposed to evaluate the fitness of each solution and find the best design. These functions are based on the mean square error (MSE) and the classification error (CER) and implement a strategy to avoid overtraining and to reduce the number of connections in the ANN. In addition, the ANN designed with the proposed methodology is compared with those designed manually using the well-known Back-Propagation and Levenberg-Marquardt Learning Algorithms. Finally, the accuracy of the method is tested with different nonlinear pattern classification problems.
Optimization in optical systems revisited: Beyond genetic algorithms
Gagnon, Denis; Dumont, Joey; Dubé, Louis
2013-05-01
Designing integrated photonic devices such as waveguides, beam-splitters and beam-shapers often requires optimization of a cost function over a large solution space. Metaheuristics - algorithms based on empirical rules for exploring the solution space - are specifically tailored to those problems. One of the most widely used metaheuristics is the standard genetic algorithm (SGA), based on the evolution of a population of candidate solutions. However, the stochastic nature of the SGA sometimes prevents access to the optimal solution. Our goal is to show that a parallel tabu search (PTS) algorithm is more suited to optimization problems in general, and to photonics in particular. PTS is based on several search processes using a pool of diversified initial solutions. To assess the performance of both algorithms (SGA and PTS), we consider an integrated photonics design problem, the generation of arbitrary beam profiles using a two-dimensional waveguide-based dielectric structure. The authors acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC).
Optimal control of hybrid qubits: Implementing the quantum permutation algorithm
Rivera-Ruiz, C. M.; de Lima, E. F.; Fanchini, F. F.; Lopez-Richard, V.; Castelano, L. K.
2018-03-01
The optimal quantum control theory is employed to determine electric pulses capable of producing quantum gates with a fidelity higher than 0.9997, when noise is not taken into account. Particularly, these quantum gates were chosen to perform the permutation algorithm in hybrid qubits in double quantum dots (DQDs). The permutation algorithm is an oracle based quantum algorithm that solves the problem of the permutation parity faster than a classical algorithm without the necessity of entanglement between particles. The only requirement for achieving the speedup is the use of a one-particle quantum system with at least three levels. The high fidelity found in our results is closely related to the quantum speed limit, which is a measure of how fast a quantum state can be manipulated. Furthermore, we model charge noise by considering an average over the optimal field centered at different values of the reference detuning, which follows a Gaussian distribution. When the Gaussian spread is of the order of 5 μ eV (10% of the correct value), the fidelity is still higher than 0.95. Our scheme also can be used for the practical realization of different quantum algorithms in DQDs.
Effects of Optimizing the Scan-Path on Scanning Keyboards with QWERTY-Layout for English Text.
Sandnes, Frode Eika; Medola, Fausto Orsi
2017-01-01
Scanning keyboards can be essential tools for individuals with reduced motor function. However, most research addresses layout optimization. Learning new layouts is time-consuming. This study explores the familiar QWERTY layout with alternative scanning paths intended for English text. The results show that carefully designed scan-paths can help QWERTY nearly match optimized layouts in performance.
An algorithm for sequential tail value at risk for path-independent payoffs in a binomial tree
Roorda, Berend
2010-01-01
We present an algorithm that determines Sequential Tail Value at Risk (STVaR) for path-independent payoffs in a binomial tree. STVaR is a dynamic version of Tail-Value-at-Risk (TVaR) characterized by the property that risk levels at any moment must be in the range of risk levels later on. The
Optimization of tokamak plasma equilibrium shape using parallel genetic algorithms
Zhulin An; Bin Wu; Lijian Qiu
2006-01-01
In the device of non-circular cross sectional tokamaks, the plasma equilibrium shape has a strong influence on the confinement and MHD stability. The plasma equilibrium shape is determined by the configuration of the poloidal field (PF) system. Usually there are many PF systems that could support the specified plasma equilibrium, the differences are the number of coils used, their positions, sizes and currents. It is necessary to find the optimal choice that meets the engineering constrains, which is often done by a constrained optimization. The Genetic Algorithms (GAs) based method has been used to solve the problem of the optimization, but the time complexity limits the algorithms to become widely used. Due to the large search space that the optimization has, it takes several hours to get a nice result. The inherent parallelism in GAs can be exploited to enhance their search efficiency. In this paper, we introduce a parallel genetic algorithms (PGAs) based approach which can reduce the computational time. The algorithm has a master-slave structure, the slave explore the search space separately and return the results to the master. A program is also developed, and it can be running on any computers which support massage passing interface. Both the algorithm and the program are detailed discussed in the paper. We also include an application that uses the program to determine the positions and currents of PF coils in EAST. The program reach the target value within half an hour and yield a speedup rate of 5.21 on 8 CPUs. (author)
Fine-Tuning ADAS Algorithm Parameters for Optimizing Traffic ...
With the development of the Connected Vehicle technology that facilitates wirelessly communication among vehicles and road-side infrastructure, the Advanced Driver Assistance Systems (ADAS) can be adopted as an effective tool for accelerating traffic safety and mobility optimization at various highway facilities. To this end, the traffic management centers identify the optimal ADAS algorithm parameter set that enables the maximum improvement of the traffic safety and mobility performance, and broadcast the optimal parameter set wirelessly to individual ADAS-equipped vehicles. After adopting the optimal parameter set, the ADAS-equipped drivers become active agents in the traffic stream that work collectively and consistently to prevent traffic conflicts, lower the intensity of traffic disturbances, and suppress the development of traffic oscillations into heavy traffic jams. Successful implementation of this objective requires the analysis capability of capturing the impact of the ADAS on driving behaviors, and measuring traffic safety and mobility performance under the influence of the ADAS. To address this challenge, this research proposes a synthetic methodology that incorporates the ADAS-affected driving behavior modeling and state-of-the-art microscopic traffic flow modeling into a virtually simulated environment. Building on such an environment, the optimal ADAS algorithm parameter set is identified through an optimization programming framework to enable th
APPLICATION OF GENETIC ALGORITHMS FOR ROBUST PARAMETER OPTIMIZATION
N. Belavendram
2010-12-01
Full Text Available Parameter optimization can be achieved by many methods such as Monte-Carlo, full, and fractional factorial designs. Genetic algorithms (GA are fairly recent in this respect but afford a novel method of parameter optimization. In GA, there is an initial pool of individuals each with its own specific phenotypic trait expressed as a ‘genetic chromosome’. Different genes enable individuals with different fitness levels to reproduce according to natural reproductive gene theory. This reproduction is established in terms of selection, crossover and mutation of reproducing genes. The resulting child generation of individuals has a better fitness level akin to natural selection, namely evolution. Populations evolve towards the fittest individuals. Such a mechanism has a parallel application in parameter optimization. Factors in a parameter design can be expressed as a genetic analogue in a pool of sub-optimal random solutions. Allowing this pool of sub-optimal solutions to evolve over several generations produces fitter generations converging to a pre-defined engineering optimum. In this paper, a genetic algorithm is used to study a seven factor non-linear equation for a Wheatstone bridge as the equation to be optimized. A comparison of the full factorial design against a GA method shows that the GA method is about 1200 times faster in finding a comparable solution.
Application of Fuzzy Sets for the Improvement of Routing Optimization Heuristic Algorithms
Mattas Konstantinos
2016-12-01
Full Text Available The determination of the optimal circular path has become widely known for its difficulty in producing a solution and for the numerous applications in the scope of organization and management of passenger and freight transport. It is a mathematical combinatorial optimization problem for which several deterministic and heuristic models have been developed in recent years, applicable to route organization issues, passenger and freight transport, storage and distribution of goods, waste collection, supply and control of terminals, as well as human resource management. Scope of the present paper is the development, with the use of fuzzy sets, of a practical, comprehensible and speedy heuristic algorithm for the improvement of the ability of the classical deterministic algorithms to identify optimum, symmetrical or non-symmetrical, circular route. The proposed fuzzy heuristic algorithm is compared to the corresponding deterministic ones, with regard to the deviation of the proposed solution from the best known solution and the complexity of the calculations needed to obtain this solution. It is shown that the use of fuzzy sets reduced up to 35% the deviation of the solution identified by the classical deterministic algorithms from the best known solution.
Optimization of Pesticide Spraying Tasks via Multi-UAVs Using Genetic Algorithm
He Luo
2017-01-01
Full Text Available Task allocation is the key factor in the spraying pesticides process using unmanned aerial vehicles (UAVs, and maximizing the effects of pesticide spraying is the goal of optimizing UAV pesticide spraying. In this study, we first introduce each UAV’s kinematic constraint and extend the Euclidean distance between fields to the Dubins path distance. We then analyze the two factors affecting the pesticide spraying effects, which are the type of pesticides and the temperature during the pesticide spraying. The time window of the pesticide spraying is dynamically generated according to the temperature and is introduced to the pesticide spraying efficacy function. Finally, according to the extensions, we propose a team orienteering problem with variable time windows and variable profits model. We propose the genetic algorithm to solve the above model and give the methods of encoding, crossover, and mutation in the algorithm. The experimental results show that this model and its solution method have clear advantages over the common manual allocation strategy and can provide the same results as those of the enumeration method in small-scale scenarios. In addition, the results also show that the algorithm parameter can affect the solution, and we provide the optimal parameters configuration for the algorithm.
A Dynamic Multistage Hybrid Swarm Intelligence Optimization Algorithm for Function Optimization
Daqing Wu
2012-01-01
Full Text Available A novel dynamic multistage hybrid swarm intelligence optimization algorithm is introduced, which is abbreviated as DM-PSO-ABC. The DM-PSO-ABC combined the exploration capabilities of the dynamic multiswarm particle swarm optimizer (PSO and the stochastic exploitation of the cooperative artificial bee colony algorithm (CABC for solving the function optimization. In the proposed hybrid algorithm, the whole process is divided into three stages. In the first stage, a dynamic multiswarm PSO is constructed to maintain the population diversity. In the second stage, the parallel, positive feedback of CABC was implemented in each small swarm. In the third stage, we make use of the particle swarm optimization global model, which has a faster convergence speed to enhance the global convergence in solving the whole problem. To verify the effectiveness and efficiency of the proposed hybrid algorithm, various scale benchmark problems are tested to demonstrate the potential of the proposed multistage hybrid swarm intelligence optimization algorithm. The results show that DM-PSO-ABC is better in the search precision, and convergence property and has strong ability to escape from the local suboptima when compared with several other peer algorithms.
Optimization of multicast optical networks with genetic algorithm
Lv, Bo; Mao, Xiangqiao; Zhang, Feng; Qin, Xi; Lu, Dan; Chen, Ming; Chen, Yong; Cao, Jihong; Jian, Shuisheng
2007-11-01
In this letter, aiming to obtain the best multicast performance of optical network in which the video conference information is carried by specified wavelength, we extend the solutions of matrix games with the network coding theory and devise a new method to solve the complex problems of multicast network switching. In addition, an experimental optical network has been testified with best switching strategies by employing the novel numerical solution designed with an effective way of genetic algorithm. The result shows that optimal solutions with genetic algorithm are accordance with the ones with the traditional fictitious play method.
Hierarchical Artificial Bee Colony Algorithm for RFID Network Planning Optimization
Lianbo Ma
2014-01-01
Full Text Available This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization, called HABC, to tackle the radio frequency identification network planning (RNP problem. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operators is applied to enhance the global search ability between species. Experiments are conducted on a set of 10 benchmark optimization problems. The results demonstrate that the proposed HABC obtains remarkable performance on most chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms. Then HABC is used for solving the real-world RNP problem on two instances with different scales. Simulation results show that the proposed algorithm is superior for solving RNP, in terms of optimization accuracy and computation robustness.
A Degree Distribution Optimization Algorithm for Image Transmission
Jiang, Wei; Yang, Junjie
2016-09-01
Luby Transform (LT) code is the first practical implementation of digital fountain code. The coding behavior of LT code is mainly decided by the degree distribution which determines the relationship between source data and codewords. Two degree distributions are suggested by Luby. They work well in typical situations but not optimally in case of finite encoding symbols. In this work, the degree distribution optimization algorithm is proposed to explore the potential of LT code. Firstly selection scheme of sparse degrees for LT codes is introduced. Then probability distribution is optimized according to the selected degrees. In image transmission, bit stream is sensitive to the channel noise and even a single bit error may cause the loss of synchronization between the encoder and the decoder. Therefore the proposed algorithm is designed for image transmission situation. Moreover, optimal class partition is studied for image transmission with unequal error protection. The experimental results are quite promising. Compared with LT code with robust soliton distribution, the proposed algorithm improves the final quality of recovered images obviously with the same overhead.
Algorithms for optimal sequencing of dynamic multileaf collimators
Kamath, Srijit; Sahni, Sartaj; Palta, Jatinder; Ranka, Sanjay
2004-01-01
Dynamic multileaf collimator (DMLC) intensity modulated radiation therapy (IMRT) is used to deliver intensity modulated beams using a multileaf collimator (MLC), with the leaves in motion. DMLC-IMRT requires the conversion of a radiation intensity map into a leaf sequence file that controls the movement of the MLC while the beam is on. It is imperative that the intensity map delivered using the leaf sequence file be as close as possible to the intensity map generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. Optimization of the leaf-sequencing algorithm has been the subject of several recent investigations. In this work, we present a systematic study of the optimization of leaf-sequencing algorithms for dynamic multileaf collimator beam delivery and provide rigorous mathematical proofs of optimized leaf sequence settings in terms of monitor unit (MU) efficiency under the most common leaf movement constraints that include leaf interdigitation constraint. Our analytical analysis shows that leaf sequencing based on unidirectional movement of the MLC leaves is as MU efficient as bi-directional movement of the MLC leaves
Algorithms for optimal sequencing of dynamic multileaf collimators
Kamath, Srijit [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Sahni, Sartaj [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Palta, Jatinder [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Ranka, Sanjay [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States)
2004-01-07
Dynamic multileaf collimator (DMLC) intensity modulated radiation therapy (IMRT) is used to deliver intensity modulated beams using a multileaf collimator (MLC), with the leaves in motion. DMLC-IMRT requires the conversion of a radiation intensity map into a leaf sequence file that controls the movement of the MLC while the beam is on. It is imperative that the intensity map delivered using the leaf sequence file be as close as possible to the intensity map generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. Optimization of the leaf-sequencing algorithm has been the subject of several recent investigations. In this work, we present a systematic study of the optimization of leaf-sequencing algorithms for dynamic multileaf collimator beam delivery and provide rigorous mathematical proofs of optimized leaf sequence settings in terms of monitor unit (MU) efficiency under the most common leaf movement constraints that include leaf interdigitation constraint. Our analytical analysis shows that leaf sequencing based on unidirectional movement of the MLC leaves is as MU efficient as bi-directional movement of the MLC leaves.
An External Archive-Guided Multiobjective Particle Swarm Optimization Algorithm.
Zhu, Qingling; Lin, Qiuzhen; Chen, Weineng; Wong, Ka-Chun; Coello Coello, Carlos A; Li, Jianqiang; Chen, Jianyong; Zhang, Jun
2017-09-01
The selection of swarm leaders (i.e., the personal best and global best), is important in the design of a multiobjective particle swarm optimization (MOPSO) algorithm. Such leaders are expected to effectively guide the swarm to approach the true Pareto optimal front. In this paper, we present a novel external archive-guided MOPSO algorithm (AgMOPSO), where the leaders for velocity update are all selected from the external archive. In our algorithm, multiobjective optimization problems (MOPs) are transformed into a set of subproblems using a decomposition approach, and then each particle is assigned accordingly to optimize each subproblem. A novel archive-guided velocity update method is designed to guide the swarm for exploration, and the external archive is also evolved using an immune-based evolutionary strategy. These proposed approaches speed up the convergence of AgMOPSO. The experimental results fully demonstrate the superiority of our proposed AgMOPSO in solving most of the test problems adopted, in terms of two commonly used performance measures. Moreover, the effectiveness of our proposed archive-guided velocity update method and immune-based evolutionary strategy is also experimentally validated on more than 30 test MOPs.
Hierarchical artificial bee colony algorithm for RFID network planning optimization.
Ma, Lianbo; Chen, Hanning; Hu, Kunyuan; Zhu, Yunlong
2014-01-01
This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization, called HABC, to tackle the radio frequency identification network planning (RNP) problem. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operators is applied to enhance the global search ability between species. Experiments are conducted on a set of 10 benchmark optimization problems. The results demonstrate that the proposed HABC obtains remarkable performance on most chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms. Then HABC is used for solving the real-world RNP problem on two instances with different scales. Simulation results show that the proposed algorithm is superior for solving RNP, in terms of optimization accuracy and computation robustness.
Optimization of Antennas using a Hybrid Genetic-Algorithm Space-Mapping Algorithm
Pantoja, M.F.; Bretones, A.R.; Meincke, Peter
2006-01-01
A hybrid global-local optimization technique for the design of antennas is presented. It consists of the subsequent application of a Genetic Algorithm (GA) that employs coarse models in the simulations and a space mapping (SM) that refines the solution found in the previous stage. The technique...
Effects of Random Values for Particle Swarm Optimization Algorithm
Hou-Ping Dai
2018-02-01
Full Text Available Particle swarm optimization (PSO algorithm is generally improved by adaptively adjusting the inertia weight or combining with other evolution algorithms. However, in most modified PSO algorithms, the random values are always generated by uniform distribution in the range of [0, 1]. In this study, the random values, which are generated by uniform distribution in the ranges of [0, 1] and [−1, 1], and Gauss distribution with mean 0 and variance 1 ( U [ 0 , 1 ] , U [ − 1 , 1 ] and G ( 0 , 1 , are respectively used in the standard PSO and linear decreasing inertia weight (LDIW PSO algorithms. For comparison, the deterministic PSO algorithm, in which the random values are set as 0.5, is also investigated in this study. Some benchmark functions and the pressure vessel design problem are selected to test these algorithms with different types of random values in three space dimensions (10, 30, and 100. The experimental results show that the standard PSO and LDIW-PSO algorithms with random values generated by U [ − 1 , 1 ] or G ( 0 , 1 are more likely to avoid falling into local optima and quickly obtain the global optima. This is because the large-scale random values can expand the range of particle velocity to make the particle more likely to escape from local optima and obtain the global optima. Although the random values generated by U [ − 1 , 1 ] or G ( 0 , 1 are beneficial to improve the global searching ability, the local searching ability for a low dimensional practical optimization problem may be decreased due to the finite particles.
Optimization of high harmonic generation by genetic algorithm
Constance Valentin; Olga Boyko; Gilles Rey; Brigitte Mercier; Evaggelos Papalazarou; Laure Antonucci; Philippe Balcou
2006-01-01
Complete test of publication follows. High Harmonic Generation (HHG) is very sensitive to pulse shape of the fundamental laser. We have first used an Acousto-Optic Programmable Dispersive Filter (AOPDF) in order to modify the spectral phase and second, a deformable mirror in order to modify the wavefront. We have optimized harmonic signal using a genetic algorithm coupled with both setups. We show the influence of macroscopic parameters for optimization process. Genetic algorithms have been already used to modify pulse shapes of the fundamental laser in order to optimize high harmonic signals, in order to change the emission wavelength of one harmonic or to modify the fundamental wavefront to optimize harmonic signals. For the first time, we present a systematic study of the optimization of harmonic signals using the AOPDF. Signal optimizations by a factor 2 to 10 have been measured depending of parameters of generation. For instance, one of the interesting result concerns the effect of macroscopic parameters as position of the entrance of the cell with respect to the focus of the IR laser when we change the pulse shapes. For instance, the optimization is higher when the cell entrance is above the focus where the intensity gradients are higher. Although the spectral phase of the IR laser is important for the response of one atom, the optimization depends also of phase-matching and especially of the effect intensity gradients. Other systematic studies have been performed as well as measurements of temporal profiles and wavefronts of the IR beam. These studies allow bringing out the behaviour of high harmonic generation with respect to the optimization process.
Practical mathematical optimization basic optimization theory and gradient-based algorithms
Snyman, Jan A
2018-01-01
This textbook presents a wide range of tools for a course in mathematical optimization for upper undergraduate and graduate students in mathematics, engineering, computer science, and other applied sciences. Basic optimization principles are presented with emphasis on gradient-based numerical optimization strategies and algorithms for solving both smooth and noisy discontinuous optimization problems. Attention is also paid to the difficulties of expense of function evaluations and the existence of multiple minima that often unnecessarily inhibit the use of gradient-based methods. This second edition addresses further advancements of gradient-only optimization strategies to handle discontinuities in objective functions. New chapters discuss the construction of surrogate models as well as new gradient-only solution strategies and numerical optimization using Python. A special Python module is electronically available (via springerlink) that makes the new algorithms featured in the text easily accessible and dir...
An Optimal Path Computation Architecture for the Cloud-Network on Software-Defined Networking
Hyunhun Cho
2015-05-01
Full Text Available Legacy networks do not open the precise information of the network domain because of scalability, management and commercial reasons, and it is very hard to compute an optimal path to the destination. According to today’s ICT environment change, in order to meet the new network requirements, the concept of software-defined networking (SDN has been developed as a technological alternative to overcome the limitations of the legacy network structure and to introduce innovative concepts. The purpose of this paper is to propose the application that calculates the optimal paths for general data transmission and real-time audio/video transmission, which consist of the major services of the National Research & Education Network (NREN in the SDN environment. The proposed SDN routing computation (SRC application is designed and applied in a multi-domain network for the efficient use of resources, selection of the optimal path between the multi-domains and optimal establishment of end-to-end connections.
Hybrid Genetic Algorithm Optimization for Case Based Reasoning Systems
Mohamed, A.H.
2008-01-01
The success of a CBR system largely depen ds on an effective retrieval of useful prior case for the problem. Nearest neighbor and induction are the main CBR retrieval algorithms. Each of them can be more suitable in different situations. Integrated the two retrieval algorithms can catch the advantages of both of them. But, they still have some limitations facing the induction retrieval algorithm when dealing with a noisy data, a large number of irrelevant features, and different types of data. This research utilizes a hybrid approach using genetic algorithms (GAs) to case-based induction retrieval of the integrated nearest neighbor - induction algorithm in an attempt to overcome these limitations and increase the overall classification accuracy. GAs can be used to optimize the search space of all the possible subsets of the features set. It can deal with the irrelevant and noisy features while still achieving a significant improvement of the retrieval accuracy. Therefore, the proposed CBR-GA introduces an effective general purpose retrieval algorithm that can improve the performance of CBR systems. It can be applied in many application areas. CBR-GA has proven its success when applied for different problems in real-life
Optimization of reconstruction algorithms using Monte Carlo simulation
Hanson, K.M.
1989-01-01
A method for optimizing reconstruction algorithms is presented that is based on how well a specified task can be performed using the reconstructed images. Task performance is numerically assessed by a Monte Carlo simulation of the complete imaging process including the generation of scenes appropriate to the desired application, subsequent data taking, reconstruction, and performance of the stated task based on the final image. The use of this method is demonstrated through the optimization of the Algebraic Reconstruction Technique (ART), which reconstructs images from their projections by an iterative procedure. The optimization is accomplished by varying the relaxation factor employed in the updating procedure. In some of the imaging situations studied, it is found that the optimization of constrained ART, in which a non-negativity constraint is invoked, can vastly increase the detectability of objects. There is little improvement attained for unconstrained ART. The general method presented may be applied to the problem of designing neutron-diffraction spectrometers. (author)
Mazyar Seraj
2014-06-01
Full Text Available In recent years, many studies have been carried out on how to engage and support students in e-learning environments. Portable devices such as Personal Digital Assistants (PDAs, Tablet PCs, mobile phones and other mobile equipment have been used as parts of electronic learning environments to facilitate learning and teaching for both lecturers and students. However, there is still a dearth of study investigating the effects of small screen interfaces on mobile-based learning environments. This study aims to address two objectives: (i investigate lecturer and student difficulties encountered in teaching-learning process in traditional face-to-face classroom settings, and (ii to explore lecturer and student perceptions about learning the subject through mobile devices. This paper presents the results of a qualitative study using structured interviews to investigate lecturer and student experiences and perceptions on teaching and learning Dijkstra’s shortest path algorithm via mobile devices. The interview insights were then used as inputs to define user requirements for a mobile learning prototype. The findings show that the lecturers and students raised many issues about interactivity and the flexibility of effective learning applications on small screen devices, especially for a technical subject.
Optimal Parameter Selection of Power System Stabilizer using Genetic Algorithm
Chung, Hyeng Hwan; Chung, Dong Il; Chung, Mun Kyu [Dong-AUniversity (Korea); Wang, Yong Peel [Canterbury Univeristy (New Zealand)
1999-06-01
In this paper, it is suggested that the selection method of optimal parameter of power system stabilizer (PSS) with robustness in low frequency oscillation for power system using real variable elitism genetic algorithm (RVEGA). The optimal parameters were selected in the case of power system stabilizer with one lead compensator, and two lead compensator. Also, the frequency responses characteristics of PSS, the system eigenvalues criterion and the dynamic characteristics were considered in the normal load and the heavy load, which proved usefulness of RVEGA compare with Yu's compensator design theory. (author). 20 refs., 15 figs., 8 tabs.
Parallel Algorithms for Graph Optimization using Tree Decompositions
Sullivan, Blair D [ORNL; Weerapurage, Dinesh P [ORNL; Groer, Christopher S [ORNL
2012-06-01
Although many $\\cal{NP}$-hard graph optimization problems can be solved in polynomial time on graphs of bounded tree-width, the adoption of these techniques into mainstream scientific computation has been limited due to the high memory requirements of the necessary dynamic programming tables and excessive runtimes of sequential implementations. This work addresses both challenges by proposing a set of new parallel algorithms for all steps of a tree decomposition-based approach to solve the maximum weighted independent set problem. A hybrid OpenMP/MPI implementation includes a highly scalable parallel dynamic programming algorithm leveraging the MADNESS task-based runtime, and computational results demonstrate scaling. This work enables a significant expansion of the scale of graphs on which exact solutions to maximum weighted independent set can be obtained, and forms a framework for solving additional graph optimization problems with similar techniques.
Optimal Design of a Hydrogen Community by Genetic Algorithms
Rodolfo Dufo Lopez; Jose Luis Bernal Agustin; Luis Correas Uson; Ismael Aso Aguarta
2006-01-01
A study was conducted for the implementation of two Hydrogen Communities, following the recommendations of the HY-COM initiative of the European Commission. The proposed communities find their place in the municipality of Sabinanigo (Aragon, Spain). Two cases are analyzed, one off-grid village house near Sabinanigo, and a house situated in the town proper. The study was carried out with the HOGA program, Hybrid Optimization by Genetic Algorithms. A description is provided for the algorithms. The off-grid study deals with a hybrid pv-wind system with hydrogen storage for AC supply to an isolated house. The urban study is related to hydrogen production by means of hybrid renewable sources available locally (photovoltaic, wind and hydro). These complement the existing industrial electrolysis processes, in order to cater for the energy requirements of a small fleet of municipal hydrogen-powered vehicles. HOGA was used to optimize both hybrid systems. Dimensioning and deployment estimations are also provided. (authors)
Optimal Design of a Hydrogen Community by Genetic Algorithms
Rodolfo Dufo Lopeza; Jose Luis Bernal Agustin; Luis Correas Uson; Ismael Aso Aguarta
2006-01-01
A study was conducted for the implementation of two Hydrogen Communities, following the recommendations of the HY-COM initiative of the European Commission. The proposed communities find their place in the municipality of Sabinanigo (Aragon, Spain). Two cases are analyzed, one off-grid village house near Sabinanigo, and a house situated in the town proper. The study was carried out with the HOGA program, Hybrid Optimization by Genetic Algorithms. A description is provided for the algorithms. The off-grid study deals with a hybrid PV-wind system with hydrogen storage for AC supply to an isolated house. The urban study is related to hydrogen production by means of hybrid renewable sources available locally (photovoltaic, wind and hydro). These complement the existing industrial electrolysis processes, in order to cater for the energy requirements of a small fleet of municipal hydrogen-powered vehicles. HOGA was used to optimize both hybrid systems. Dimensioning and deployment estimations are also provided. (authors)
Sustainable logistics and transportation optimization models and algorithms
Gakis, Konstantinos; Pardalos, Panos
2017-01-01
Focused on the logistics and transportation operations within a supply chain, this book brings together the latest models, algorithms, and optimization possibilities. Logistics and transportation problems are examined within a sustainability perspective to offer a comprehensive assessment of environmental, social, ethical, and economic performance measures. Featured models, techniques, and algorithms may be used to construct policies on alternative transportation modes and technologies, green logistics, and incentives by the incorporation of environmental, economic, and social measures. Researchers, professionals, and graduate students in urban regional planning, logistics, transport systems, optimization, supply chain management, business administration, information science, mathematics, and industrial and systems engineering will find the real life and interdisciplinary issues presented in this book informative and useful.
Time Optimized Algorithm for Web Document Presentation Adaptation
Pan, Rong; Dolog, Peter
2010-01-01
Currently information on the web is accessed through different devices. Each device has its own properties such as resolution, size, and capabilities to display information in different format and so on. This calls for adaptation of information presentation for such platforms. This paper proposes...... content-optimized and time-optimized algorithms for information presentation adaptation for different devices based on its hierarchical model. The model is formalized in order to experiment with different algorithms.......Currently information on the web is accessed through different devices. Each device has its own properties such as resolution, size, and capabilities to display information in different format and so on. This calls for adaptation of information presentation for such platforms. This paper proposes...
Optimal interconnection trees in the plane theory, algorithms and applications
Brazil, Marcus
2015-01-01
This book explores fundamental aspects of geometric network optimisation with applications to a variety of real world problems. It presents, for the first time in the literature, a cohesive mathematical framework within which the properties of such optimal interconnection networks can be understood across a wide range of metrics and cost functions. The book makes use of this mathematical theory to develop efficient algorithms for constructing such networks, with an emphasis on exact solutions. Marcus Brazil and Martin Zachariasen focus principally on the geometric structure of optimal interconnection networks, also known as Steiner trees, in the plane. They show readers how an understanding of this structure can lead to practical exact algorithms for constructing such trees. The book also details numerous breakthroughs in this area over the past 20 years, features clearly written proofs, and is supported by 135 colour and 15 black and white figures. It will help graduate students, working mathematicians, ...
Experimental Methods for the Analysis of Optimization Algorithms
, computational experiments differ from those in other sciences, and the last decade has seen considerable methodological research devoted to understanding the particular features of such experiments and assessing the related statistical methods. This book consists of methodological contributions on different...... in algorithm design, statistical design, optimization and heuristics, and most chapters provide theoretical background and are enriched with case studies. This book is written for researchers and practitioners in operations research and computer science who wish to improve the experimental assessment......In operations research and computer science it is common practice to evaluate the performance of optimization algorithms on the basis of computational results, and the experimental approach should follow accepted principles that guarantee the reliability and reproducibility of results. However...
Genetic algorithms for optimal design and control of adaptive structures
Ribeiro, R; Dias-Rodrigues, J; Vaz, M
2000-01-01
Future High Energy Physics experiments require the use of light and stable structures to support their most precise radiation detection elements. These large structures must be light, highly stable, stiff and radiation tolerant in an environment where external vibrations, high radiation levels, material aging, temperature and humidity gradients are not negligible. Unforeseen factors and the unknown result of the coupling of environmental conditions, together with external vibrations, may affect the position stability of the detectors and their support structures compromising their physics performance. Careful optimization of static and dynamic behavior must be an essential part of the engineering design. Genetic Algorithms ( GA) belong to the group of probabilistic algorithms, combining elements of direct and stochastic search. They are more robust than existing directed search methods with the advantage of maintaining a population of potential solutions. There is a class of optimization problems for which Ge...
A Hybrid Optimization Algorithm for Low RCS Antenna Design
W. Shao
2012-12-01
Full Text Available In this article, a simple and efficient method is presented to design low radar cross section (RCS patch antennas. This method consists of a hybrid optimization algorithm, which combines a genetic algorithm (GA with tabu search algorithm (TSA, and electromagnetic field solver. The TSA, embedded into the GA frame, defines the acceptable neighborhood region of parameters and screens out the poor-scoring individuals. Thus, the repeats of search are avoided and the amount of time-consuming electromagnetic simulations is largely reduced. Moreover, the whole design procedure is auto-controlled by programming the VBScript language. A slot patch antenna example is provided to verify the accuracy and efficiency of the proposed method.
Logic hybrid simulation-optimization algorithm for distillation design
Caballero Suárez, José Antonio
2014-01-01
In this paper, we propose a novel algorithm for the rigorous design of distillation columns that integrates a process simulator in a generalized disjunctive programming formulation. The optimal distillation column, or column sequence, is obtained by selecting, for each column section, among a set of column sections with different number of theoretical trays. The selection of thermodynamic models, properties estimation etc., are all in the simulation environment. All the numerical issues relat...
Nonsmooth Optimization Algorithms, System Theory, and Software Tools
1993-04-13
Optimization Algorithms, System Theory , and Scftware Tools" AFOSR-90-OO68 L AUTHOR($) Elijah Polak -Professor and Principal Investigator 7. PERFORMING...NSN 754Q-01-2W0-S500 Standard Form 295 (69O104 Draft) F’wsa*W by hA Sit 230.1""V AFOSR-90-0068 NONSMO0 TH OPTIMIZA TION A L GORI THMS, SYSTEM THEORY , AND
Experimental methods for the analysis of optimization algorithms
Bartz-Beielstein, Thomas; Paquete, Luis; Preuss, Mike
2010-01-01
In operations research and computer science it is common practice to evaluate the performance of optimization algorithms on the basis of computational results, and the experimental approach should follow accepted principles that guarantee the reliability and reproducibility of results. However, computational experiments differ from those in other sciences, and the last decade has seen considerable methodological research devoted to understanding the particular features of such experiments and assessing the related statistical methods. This book consists of methodological contributions on diffe
Stochastic search in structural optimization - Genetic algorithms and simulated annealing
Hajela, Prabhat
1993-01-01
An account is given of illustrative applications of genetic algorithms and simulated annealing methods in structural optimization. The advantages of such stochastic search methods over traditional mathematical programming strategies are emphasized; it is noted that these methods offer a significantly higher probability of locating the global optimum in a multimodal design space. Both genetic-search and simulated annealing can be effectively used in problems with a mix of continuous, discrete, and integer design variables.
A Global Optimization Algorithm for Sum of Linear Ratios Problem
Yuelin Gao; Siqiao Jin
2013-01-01
We equivalently transform the sum of linear ratios programming problem into bilinear programming problem, then by using the linear characteristics of convex envelope and concave envelope of double variables product function, linear relaxation programming of the bilinear programming problem is given, which can determine the lower bound of the optimal value of original problem. Therefore, a branch and bound algorithm for solving sum of linear ratios programming problem is put forward, and the c...
MICRONEEDLE STRUCTURE DESIGN AND OPTIMIZATION USING GENETIC ALGORITHM
N. A. ISMAIL; S. C. NEOH; N. SABANI; B. N. TAIB
2015-01-01
This paper presents a Genetic Algorithm (GA) based microneedle design and analysis. GA is an evolutionary optimization technique that mimics the natural biological evolution. The design of microneedle structure considers the shape of microneedle, material used, size of the array, the base of microneedle, the lumen base, the height of microneedle, the height of the lumen, and the height of the drug container or reservoir. The GA is executed in conjunction with ANSYS simulation system to assess...
Ojalehto, Vesa; Podkopaev, Dmitry; Miettinen, Kaisa
2015-01-01
We generalize the applicability of interactive methods for solving computationally demanding, that is, time-consuming, multiobjective optimization problems. For this purpose we propose a new agent assisted interactive algorithm. It employs a computationally inexpensive surrogate problem and four different agents that intelligently update the surrogate based on the preferences specified by a decision maker. In this way, we decrease the waiting times imposed on the decision maker du...
Optimized design of embedded DSP system hardware supporting complex algorithms
Li, Yanhua; Wang, Xiangjun; Zhou, Xinling
2003-09-01
The paper presents an optimized design method for a flexible and economical embedded DSP system that can implement complex processing algorithms as biometric recognition, real-time image processing, etc. It consists of a floating-point DSP, 512 Kbytes data RAM, 1 Mbytes FLASH program memory, a CPLD for achieving flexible logic control of input channel and a RS-485 transceiver for local network communication. Because of employing a high performance-price ratio DSP TMS320C6712 and a large FLASH in the design, this system permits loading and performing complex algorithms with little algorithm optimization and code reduction. The CPLD provides flexible logic control for the whole DSP board, especially in input channel, and allows convenient interface between different sensors and DSP system. The transceiver circuit can transfer data between DSP and host computer. In the paper, some key technologies are also introduced which make the whole system work efficiently. Because of the characters referred above, the hardware is a perfect flat for multi-channel data collection, image processing, and other signal processing with high performance and adaptability. The application section of this paper presents how this hardware is adapted for the biometric identification system with high identification precision. The result reveals that this hardware is easy to interface with a CMOS imager and is capable of carrying out complex biometric identification algorithms, which require real-time process.
Genetic algorithms and Monte Carlo simulation for optimal plant design
Cantoni, M.; Marseguerra, M.; Zio, E.
2000-01-01
We present an approach to the optimal plant design (choice of system layout and components) under conflicting safety and economic constraints, based upon the coupling of a Monte Carlo evaluation of plant operation with a Genetic Algorithms-maximization procedure. The Monte Carlo simulation model provides a flexible tool, which enables one to describe relevant aspects of plant design and operation, such as standby modes and deteriorating repairs, not easily captured by analytical models. The effects of deteriorating repairs are described by means of a modified Brown-Proschan model of imperfect repair which accounts for the possibility of an increased proneness to failure of a component after a repair. The transitions of a component from standby to active, and vice versa, are simulated using a multiplicative correlation model. The genetic algorithms procedure is demanded to optimize a profit function which accounts for the plant safety and economic performance and which is evaluated, for each possible design, by the above Monte Carlo simulation. In order to avoid an overwhelming use of computer time, for each potential solution proposed by the genetic algorithm, we perform only few hundreds Monte Carlo histories and, then, exploit the fact that during the genetic algorithm population evolution, the fit chromosomes appear repeatedly many times, so that the results for the solutions of interest (i.e. the best ones) attain statistical significance
Optimization of wind farm turbines layout using an evolutive algorithm
Gonzalez, Javier Serrano; Santos, Jesus Riquelme; Payan, Manuel Burgos; Gonzalez Rodriguez, Angel G.; Mora, Jose Castro
2010-01-01
The optimum wind farm configuration problem is discussed in this paper and an evolutive algorithm to optimize the wind farm layout is proposed. The algorithm's optimization process is based on a global wind farm cost model using the initial investment and the present value of the yearly net cash flow during the entire wind-farm life span. The proposed algorithm calculates the yearly income due to the sale of the net generated energy taking into account the individual wind turbine loss of production due to wake decay effects and it can deal with areas or terrains with non-uniform load-bearing capacity soil and different roughness length for every wind direction or restrictions such as forbidden areas or limitations in the number of wind turbines or the investment. The results are first favorably compared with those previously published and a second collection of test cases is used to proof the performance and suitability of the proposed evolutive algorithm to find the optimum wind farm configuration. (author)
Elahe Fallah Mehdipour
2012-12-01
Full Text Available Optimal operation of multipurpose reservoirs is one of the complex and sometimes nonlinear problems in the field of multi-objective optimization. Evolutionary algorithms are optimization tools that search decision space using simulation of natural biological evolution and present a set of points as the optimum solutions of problem. In this research, application of multi-objective particle swarm optimization (MOPSO in optimal operation of Bazoft reservoir with different objectives, including generating hydropower energy, supplying downstream demands (drinking, industry and agriculture, recreation and flood control have been considered. In this regard, solution sets of the MOPSO algorithm in bi-combination of objectives and compromise programming (CP using different weighting and power coefficients have been first compared that the MOPSO algorithm in all combinations of objectives is more capable than the CP to find solution with appropriate distribution and these solutions have dominated the CP solutions. Then, ending points of solution set from the MOPSO algorithm and nonlinear programming (NLP results have been compared. Results showed that the MOPSO algorithm with 0.3 percent difference from the NLP results has more capability to present optimum solutions in the ending points of solution set.
Cavazos-Cadena, R.; Montes-de-Oca, R.; Sladký, Karel
2015-01-01
Roč. 52, č. 2 (2015), s. 419-440 ISSN 0021-9002 Grant - others:GA AV ČR(CZ) 171396 Institutional support: RVO:67985556 Keywords : Dominated Convergence theorem for the expected average criterion * Discrepancy function * Kolmogorov inequality * Innovations * Strong sample-path optimality Subject RIV: BC - Control Systems Theory Impact factor: 0.665, year: 2015 http://library.utia.cas.cz/separaty/2015/E/sladky-0449029.pdf
Finding optimal vaccination strategies for pandemic influenza using genetic algorithms.
Patel, Rajan; Longini, Ira M; Halloran, M Elizabeth
2005-05-21
In the event of pandemic influenza, only limited supplies of vaccine may be available. We use stochastic epidemic simulations, genetic algorithms (GA), and random mutation hill climbing (RMHC) to find optimal vaccine distributions to minimize the number of illnesses or deaths in the population, given limited quantities of vaccine. Due to the non-linearity, complexity and stochasticity of the epidemic process, it is not possible to solve for optimal vaccine distributions mathematically. However, we use GA and RMHC to find near optimal vaccine distributions. We model an influenza pandemic that has age-specific illness attack rates similar to the Asian pandemic in 1957-1958 caused by influenza A(H2N2), as well as a distribution similar to the Hong Kong pandemic in 1968-1969 caused by influenza A(H3N2). We find the optimal vaccine distributions given that the number of doses is limited over the range of 10-90% of the population. While GA and RMHC work well in finding optimal vaccine distributions, GA is significantly more efficient than RMHC. We show that the optimal vaccine distribution found by GA and RMHC is up to 84% more effective than random mass vaccination in the mid range of vaccine availability. GA is generalizable to the optimization of stochastic model parameters for other infectious diseases and population structures.
Optimizing SRF Gun Cavity Profiles in a Genetic Algorithm Framework
Hofler, Alicia; Evtushenko, Pavel; Marhauser, Frank
2009-01-01
Automation of DC photoinjector designs using a genetic algorithm (GA) based optimization is an accepted practice in accelerator physics. Allowing the gun cavity field profile shape to be varied can extend the utility of this optimization methodology to superconducting and normal conducting radio frequency (SRF/RF) gun based injectors. Finding optimal field and cavity geometry configurations can provide guidance for cavity design choices and verify existing designs. We have considered two approaches for varying the electric field profile. The first is to determine the optimal field profile shape that should be used independent of the cavity geometry, and the other is to vary the geometry of the gun cavity structure to produce an optimal field profile. The first method can provide a theoretical optimal and can illuminate where possible gains can be made in field shaping. The second method can produce more realistically achievable designs that can be compared to existing designs. In this paper, we discuss the design and implementation for these two methods for generating field profiles for SRF/RF guns in a GA based injector optimization scheme and provide preliminary results.
Interior point algorithms: guaranteed optimality for fluence map optimization in IMRT
Aleman, Dionne M [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, ON M5S 3G8 (Canada); Glaser, Daniel [Division of Optimization and Systems Theory, Department of Mathematics, Royal Institute of Technology, Stockholm (Sweden); Romeijn, H Edwin [Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109-2117 (United States); Dempsey, James F, E-mail: aleman@mie.utoronto.c, E-mail: romeijn@umich.ed, E-mail: jfdempsey@viewray.co [ViewRay, Inc. 2 Thermo Fisher Way, Village of Oakwood, OH 44146 (United States)
2010-09-21
One of the most widely studied problems of the intensity-modulated radiation therapy (IMRT) treatment planning problem is the fluence map optimization (FMO) problem, the problem of determining the amount of radiation intensity, or fluence, of each beamlet in each beam. For a given set of beams, the fluences of the beamlets can drastically affect the quality of the treatment plan, and thus it is critical to obtain good fluence maps for radiation delivery. Although several approaches have been shown to yield good solutions to the FMO problem, these solutions are not guaranteed to be optimal. This shortcoming can be attributed to either optimization model complexity or properties of the algorithms used to solve the optimization model. We present a convex FMO formulation and an interior point algorithm that yields an optimal treatment plan in seconds, making it a viable option for clinical applications.
Interior point algorithms: guaranteed optimality for fluence map optimization in IMRT
Aleman, Dionne M; Glaser, Daniel; Romeijn, H Edwin; Dempsey, James F
2010-01-01
One of the most widely studied problems of the intensity-modulated radiation therapy (IMRT) treatment planning problem is the fluence map optimization (FMO) problem, the problem of determining the amount of radiation intensity, or fluence, of each beamlet in each beam. For a given set of beams, the fluences of the beamlets can drastically affect the quality of the treatment plan, and thus it is critical to obtain good fluence maps for radiation delivery. Although several approaches have been shown to yield good solutions to the FMO problem, these solutions are not guaranteed to be optimal. This shortcoming can be attributed to either optimization model complexity or properties of the algorithms used to solve the optimization model. We present a convex FMO formulation and an interior point algorithm that yields an optimal treatment plan in seconds, making it a viable option for clinical applications.
Optimal Design of Pumped Pipeline Systems Using Genetic Algorithm and Mathematical Optimization
Mohammadhadi Afshar
2007-12-01
Full Text Available In recent years, much attention has been paid to the optimal design of pipeline systems. In this study, the problem of pipeline system optimal design has been solved through genetic algorithm and mathematical optimization. Pipe diameters and their thicknesses are considered as decision variables to be designed in a manner that water column separation and excessive pressures are avoided in the event of pump failure. Capabilities of the genetic algorithm and the mathematical programming method are compared for the problem under consideration. For simulation of transient streams, explicit characteristic method is used in which devices such as pumps are defined as boundary conditions of the equations defining the hydraulic behavior of pipe segments. The problem of optimal design of pipeline systems is a constrained problem which is converted to an unconstrained optimization problem using an external penalty function approach. The efficiency of the proposed approaches is verified in one example and the results are presented.
Optimization of neural network algorithm of the land market description
M. A. Karpovich
2016-01-01
Full Text Available The advantages of neural network technology is shown in comparison of traditional descriptions of dynamically changing systems, which include a modern land market. The basic difficulty arising in the practical implementation of neural network models of the land market and construction products is revealed It is the formation of a representative set of training and test examples. The requirements which are necessary for the correct description of the current economic situation has been determined, it consists in the fact that Train-paid-set in the feature space should not has the ranges with a low density of observations. The methods of optimization of empirical array, which allow to avoid the long-range extrapolation of data from range of concentration of the set of examples are formulated. It is shown that a radical method of optimization a set of training and test examples enclosing to collect supplemantary information, is associated with significant costs time and resources for the economic problems and the ratio of cost / efficiency is less efficient than an algorithm optimization neural network models the earth market fixed set of empirical data. Algorithm of optimization based on the transformation of arrays of information which represents the expansion of the ranges of concentration of the set of examples and compression the ranges of low density of observations is analyzed in details. The significant reduction in the relative error of land price description is demonstrated on the specific example of Voronezh region market of lands which intend for road construction, it makes the using of radical method of empirical optimization of the array costeffective with accounting the significant absolute value of the land. The high economic efficiency of the proposed algorithms is demonstrated.
Daniali, H. M.; Dardel, M.; Fathi, A. [Babol University of Technology, Babol (Iran, Islamic Republic of); Varedi, S. M. [University of Shahrood, Shahrood (Iran, Islamic Republic of)
2015-05-15
In practice, clearances in the joints are inevitable due to tolerances and defects arising from design and manufacturing. Moreover, the joints undergo wear and backlash, resulting in poor accuracy and repeatability. This paper presents a novel optimization method for simultaneously kinematic and dynamic synthesis of a planar four-bar linkage with clearance at the joints. It is well-known that in the presence of clearance at a joint, the linkage gains an additional, uncontrollable degree of freedom which is the source of error. Here, we synthesis the path generation problem while controlling the unwanted degrees of freedom by revising the mass distributions of the moving links. An algorithm based on particle swarm optimization method solves this highly nonlinear optimization problem with some constraints. Finally, an example is included to demonstrate the efficiency of the algorithm. The results clearly show that the linear and angular accelerations of the links for the optimal design are very smooth and bounded.
Springback effects during single point incremental forming: Optimization of the tool path
Giraud-Moreau, Laurence; Belchior, Jérémy; Lafon, Pascal; Lotoing, Lionel; Cherouat, Abel; Courtielle, Eric; Guines, Dominique; Maurine, Patrick
2018-05-01
Incremental sheet forming is an emerging process to manufacture sheet metal parts. This process is more flexible than conventional one and well suited for small batch production or prototyping. During the process, the sheet metal blank is clamped by a blank-holder and a small-size smooth-end hemispherical tool moves along a user-specified path to deform the sheet incrementally. Classical three-axis CNC milling machines, dedicated structure or serial robots can be used to perform the forming operation. Whatever the considered machine, large deviations between the theoretical shape and the real shape can be observed after the part unclamping. These deviations are due to both the lack of stiffness of the machine and residual stresses in the part at the end of the forming stage. In this paper, an optimization strategy of the tool path is proposed in order to minimize the elastic springback induced by residual stresses after unclamping. A finite element model of the SPIF process allowing the shape prediction of the formed part with a good accuracy is defined. This model, based on appropriated assumptions, leads to calculation times which remain compatible with an optimization procedure. The proposed optimization method is based on an iterative correction of the tool path. The efficiency of the method is shown by an improvement of the final shape.
Kastanya, Doddy
2012-01-01
Highlights: ► ADORE is an algorithm for CANDU ROP Detector Layout Optimization. ► ADORE-GA is a Genetic Algorithm variant of the ADORE algorithm. ► Robustness test of ADORE-GA algorithm is presented in this paper. - Abstract: The regional overpower protection (ROP) systems protect CANDU® reactors against overpower in the fuel that could reduce the safety margin-to-dryout. The overpower could originate from a localized power peaking within the core or a general increase in the global core power level. The design of the detector layout for ROP systems is a challenging discrete optimization problem. In recent years, two algorithms have been developed to find a quasi optimal solution to this detector layout optimization problem. Both of these algorithms utilize the simulated annealing (SA) algorithm as their optimization engine. In the present paper, an alternative optimization algorithm, namely the genetic algorithm (GA), has been implemented as the optimization engine. The implementation is done within the ADORE algorithm. Results from evaluating the effects of using various mutation rates and crossover parameters are presented in this paper. It has been demonstrated that the algorithm is sufficiently robust in producing similar quality solutions.
Particle Swarm Optimization algorithms for geophysical inversion, practical hints
Garcia Gonzalo, E.; Fernandez Martinez, J.; Fernandez Alvarez, J.; Kuzma, H.; Menendez Perez, C.
2008-12-01
PSO is a stochastic optimization technique that has been successfully used in many different engineering fields. PSO algorithm can be physically interpreted as a stochastic damped mass-spring system (Fernandez Martinez and Garcia Gonzalo 2008). Based on this analogy we present a whole family of PSO algorithms and their respective first order and second order stability regions. Their performance is also checked using synthetic functions (Rosenbrock and Griewank) showing a degree of ill-posedness similar to that found in many geophysical inverse problems. Finally, we present the application of these algorithms to the analysis of a Vertical Electrical Sounding inverse problem associated to a seawater intrusion in a coastal aquifer in South Spain. We analyze the role of PSO parameters (inertia, local and global accelerations and discretization step), both in convergence curves and in the a posteriori sampling of the depth of an intrusion. Comparison is made with binary genetic algorithms and simulated annealing. As result of this analysis, practical hints are given to select the correct algorithm and to tune the corresponding PSO parameters. Fernandez Martinez, J.L., Garcia Gonzalo, E., 2008a. The generalized PSO: a new door to PSO evolution. Journal of Artificial Evolution and Applications. DOI:10.1155/2008/861275.
Real parameter optimization by an effective differential evolution algorithm
Ali Wagdy Mohamed
2013-03-01
Full Text Available This paper introduces an Effective Differential Evolution (EDE algorithm for solving real parameter optimization problems over continuous domain. The proposed algorithm proposes a new mutation rule based on the best and the worst individuals among the entire population of a particular generation. The mutation rule is combined with the basic mutation strategy through a linear decreasing probability rule. The proposed mutation rule is shown to promote local search capability of the basic DE and to make it faster. Furthermore, a random mutation scheme and a modified Breeder Genetic Algorithm (BGA mutation scheme are merged to avoid stagnation and/or premature convergence. Additionally, the scaling factor and crossover of DE are introduced as uniform random numbers to enrich the search behavior and to enhance the diversity of the population. The effectiveness and benefits of the proposed modifications used in EDE has been experimentally investigated. Numerical experiments on a set of bound-constrained problems have shown that the new approach is efficient, effective and robust. The comparison results between the EDE and several classical differential evolution methods and state-of-the-art parameter adaptive differential evolution variants indicate that the proposed EDE algorithm is competitive with , and in some cases superior to, other algorithms in terms of final solution quality, efficiency, convergence rate, and robustness.
Raghunathan, Shriram; Gupta, Sumeet K; Markandeya, Himanshu S; Roy, Kaushik; Irazoqui, Pedro P
2010-10-30
Implantable neural prostheses that deliver focal electrical stimulation upon demand are rapidly emerging as an alternate therapy for roughly a third of the epileptic patient population that is medically refractory. Seizure detection algorithms enable feedback mechanisms to provide focally and temporally specific intervention. Real-time feasibility and computational complexity often limit most reported detection algorithms to implementations using computers for bedside monitoring or external devices communicating with the implanted electrodes. A comparison of algorithms based on detection efficacy does not present a complete picture of the feasibility of the algorithm with limited computational power, as is the case with most battery-powered applications. We present a two-dimensional design optimization approach that takes into account both detection efficacy and hardware cost in evaluating algorithms for their feasibility in an implantable application. Detection features are first compared for their ability to detect electrographic seizures from micro-electrode data recorded from kainate-treated rats. Circuit models are then used to estimate the dynamic and leakage power consumption of the compared features. A score is assigned based on detection efficacy and the hardware cost for each of the features, then plotted on a two-dimensional design space. An optimal combination of compared features is used to construct an algorithm that provides maximal detection efficacy per unit hardware cost. The methods presented in this paper would facilitate the development of a common platform to benchmark seizure detection algorithms for comparison and feasibility analysis in the next generation of implantable neuroprosthetic devices to treat epilepsy. Copyright © 2010 Elsevier B.V. All rights reserved.
Multi-Objective Optimization of Grillages Applying the Genetic Algorithm
Darius Mačiūnas
2012-01-01
Full Text Available The article analyzes the optimization of grillage-type foundations seeking for the least possible reactive forces in the poles for a given number of poles and for the least possible bending moments of absolute values in the connecting beams of the grillage. Therefore, we suggest using a compromise objective function (to be minimized that consists of the maximum reactive force arising in all poles and the maximum bending moment of the absolute value in connecting beams; both components include the given weights. The variables of task design are pole positions under connecting beams. The optimization task is solved applying the algorithm containing all the initial data of the problem. Reactive forces and bending moments are calculated using an original program (finite element method is applied. This program is integrated into the optimization algorithm using the “black-box” principle. The “black-box” finite element program sends back the corresponding value of the objective function. Numerical experiments revealed the optimal quantity of points to compute bending moments. The obtained results show a certain ratio of weights in the objective function where the contribution of reactive forces and bending moments to the objective function are equivalent. This solution can serve as a pilot project for more detailed design.Article in Lithuanian
Gravitation search algorithm: Application to the optimal IIR filter design
Suman Kumar Saha
2014-01-01
Full Text Available This paper presents a global heuristic search optimization technique known as Gravitation Search Algorithm (GSA for the design of 8th order Infinite Impulse Response (IIR, low pass (LP, high pass (HP, band pass (BP and band stop (BS filters considering various non-linear characteristics of the filter design problems. This paper also adopts a novel fitness function in order to improve the stop band attenuation to a great extent. In GSA, law of gravity and mass interactions among different particles are adopted for handling the non-linear IIR filter design optimization problem. In this optimization technique, searcher agents are the collection of masses and interactions among them are governed by the Newtonian gravity and the laws of motion. The performances of the GSA based IIR filter designs have proven to be superior as compared to those obtained by real coded genetic algorithm (RGA and standard Particle Swarm Optimization (PSO. Extensive simulation results affirm that the proposed approach using GSA outperforms over its counterparts not only in terms of quality output, i.e., sharpness at cut-off, smaller pass band ripple, higher stop band attenuation, but also the fastest convergence speed with assured stability.
Chaos Time Series Prediction Based on Membrane Optimization Algorithms
Meng Li
2015-01-01
Full Text Available This paper puts forward a prediction model based on membrane computing optimization algorithm for chaos time series; the model optimizes simultaneously the parameters of phase space reconstruction (τ,m and least squares support vector machine (LS-SVM (γ,σ by using membrane computing optimization algorithm. It is an important basis for spectrum management to predict accurately the change trend of parameters in the electromagnetic environment, which can help decision makers to adopt an optimal action. Then, the model presented in this paper is used to forecast band occupancy rate of frequency modulation (FM broadcasting band and interphone band. To show the applicability and superiority of the proposed model, this paper will compare the forecast model presented in it with conventional similar models. The experimental results show that whether single-step prediction or multistep prediction, the proposed model performs best based on three error measures, namely, normalized mean square error (NMSE, root mean square error (RMSE, and mean absolute percentage error (MAPE.
A Novel Adaptive Particle Swarm Optimization Algorithm with Foraging Behavior in Optimization Design
Liu Yan
2018-01-01
Full Text Available The method of repeated trial and proofreading is generally used to the convention reducer design, but these methods is low efficiency and the size of the reducer is often large. Aiming the problems, this paper presents an adaptive particle swarm optimization algorithm with foraging behavior, in this method, the bacterial foraging process is introduced into the adaptive particle swarm optimization algorithm, which can provide the function of particle chemotaxis, swarming, reproduction, elimination and dispersal, to improve the ability of local search and avoid premature behavior. By test verification through typical function and the application of the optimization design in the structure of the reducer with discrete and continuous variables, the results are shown that the new algorithm has the advantages of good reliability, strong searching ability and high accuracy. It can be used in engineering design, and has a strong applicability.
Narinder Singh
2017-01-01
Full Text Available A newly hybrid nature inspired algorithm called HPSOGWO is presented with the combination of Particle Swarm Optimization (PSO and Grey Wolf Optimizer (GWO. The main idea is to improve the ability of exploitation in Particle Swarm Optimization with the ability of exploration in Grey Wolf Optimizer to produce both variants’ strength. Some unimodal, multimodal, and fixed-dimension multimodal test functions are used to check the solution quality and performance of HPSOGWO variant. The numerical and statistical solutions show that the hybrid variant outperforms significantly the PSO and GWO variants in terms of solution quality, solution stability, convergence speed, and ability to find the global optimum.
David S. Hardin
2013-04-01
Full Text Available As Graphics Processing Units (GPUs have gained in capability and GPU development environments have matured, developers are increasingly turning to the GPU to off-load the main host CPU of numerically-intensive, parallelizable computations. Modern GPUs feature hundreds of cores, and offer programming niceties such as double-precision floating point, and even limited recursion. This shift from CPU to GPU, however, raises the question: how do we know that these new GPU-based algorithms are correct? In order to explore this new verification frontier, we formalized a parallelizable all-pairs shortest path (APSP algorithm for weighted graphs, originally coded in NVIDIA's CUDA language, in ACL2. The ACL2 specification is written using a single-threaded object (stobj and tail recursion, as the stobj/tail recursion combination yields the most straightforward translation from imperative programming languages, as well as efficient, scalable executable specifications within ACL2 itself. The ACL2 version of the APSP algorithm can process millions of vertices and edges with little to no garbage generation, and executes at one-sixth the speed of a host-based version of APSP coded in C – a very respectable result for a theorem prover. In addition to formalizing the APSP algorithm (which uses Dijkstra's shortest path algorithm at its core, we have also provided capability that the original APSP code lacked, namely shortest path recovery. Path recovery is accomplished using a secondary ACL2 stobj implementing a LIFO stack, which is proven correct. To conclude the experiment, we ported the ACL2 version of the APSP kernels back to C, resulting in a less than 5% slowdown, and also performed a partial back-port to CUDA, which, surprisingly, yielded a slight performance increase.
Real-Time Demand Side Management Algorithm Using Stochastic Optimization
Moses Amoasi Acquah
2018-05-01
Full Text Available A demand side management technique is deployed along with battery energy-storage systems (BESS to lower the electricity cost by mitigating the peak load of a building. Most of the existing methods rely on manual operation of the BESS, or even an elaborate building energy-management system resorting to a deterministic method that is susceptible to unforeseen growth in demand. In this study, we propose a real-time optimal operating strategy for BESS based on density demand forecast and stochastic optimization. This method takes into consideration uncertainties in demand when accounting for an optimal BESS schedule, making it robust compared to the deterministic case. The proposed method is verified and tested against existing algorithms. Data obtained from a real site in South Korea is used for verification and testing. The results show that the proposed method is effective, even for the cases where the forecasted demand deviates from the observed demand.
Combinatorial Optimization in Project Selection Using Genetic Algorithm
Dewi, Sari; Sawaluddin
2018-01-01
This paper discusses the problem of project selection in the presence of two objective functions that maximize profit and minimize cost and the existence of some limitations is limited resources availability and time available so that there is need allocation of resources in each project. These resources are human resources, machine resources, raw material resources. This is treated as a consideration to not exceed the budget that has been determined. So that can be formulated mathematics for objective function (multi-objective) with boundaries that fulfilled. To assist the project selection process, a multi-objective combinatorial optimization approach is used to obtain an optimal solution for the selection of the right project. It then described a multi-objective method of genetic algorithm as one method of multi-objective combinatorial optimization approach to simplify the project selection process in a large scope.
Optimal siting of capacitors in radial distribution network using Whale Optimization Algorithm
D.B. Prakash
2017-12-01
Full Text Available In present days, continuous effort is being made in bringing down the line losses of the electrical distribution networks. Therefore proper allocation of capacitors is of utmost importance because, it will help in reducing the line losses and maintaining the bus voltage. This in turn results in improving the stability and reliability of the system. In this paper Whale Optimization Algorithm (WOA is used to find optimal sizing and placement of capacitors for a typical radial distribution system. Multi objectives such as operating cost reduction and power loss minimization with inequality constraints on voltage limits are considered and the proposed algorithm is validated by applying it on standard radial systems: IEEE-34 bus and IEEE-85 bus radial distribution test systems. The results obtained are compared with those of existing algorithms. The results show that the proposed algorithm is more effective in bringing down the operating costs and in maintaining better voltage profile. Keywords: Whale Optimization Algorithm (WOA, Optimal allocation and sizing of capacitors, Power loss reduction and voltage stability improvement, Radial distribution system, Operating cost minimization
Groenwold, A.A.; Wood, D.W.; Etman, L.F.P.; Tosserams, S.
2009-01-01
We implement and test a globally convergent sequential approximate optimization algorithm based on (convexified) diagonal quadratic approximations. The algorithm resides in the class of globally convergent optimization methods based on conservative convex separable approximations developed by
Optimal design of link systems using successive zooming genetic algorithm
Kwon, Young-Doo; Sohn, Chang-hyun; Kwon, Soon-Bum; Lim, Jae-gyoo
2009-07-01
Link-systems have been around for a long time and are still used to control motion in diverse applications such as automobiles, robots and industrial machinery. This study presents a procedure involving the use of a genetic algorithm for the optimal design of single four-bar link systems and a double four-bar link system used in diesel engine. We adopted the Successive Zooming Genetic Algorithm (SZGA), which has one of the most rapid convergence rates among global search algorithms. The results are verified by experiment and the Recurdyn dynamic motion analysis package. During the optimal design of single four-bar link systems, we found in the case of identical input/output (IO) angles that the initial and final configurations show certain symmetry. For the double link system, we introduced weighting factors for the multi-objective functions, which minimize the difference between output angles, providing balanced engine performance, as well as the difference between final output angle and the desired magnitudes of final output angle. We adopted a graphical method to select a proper ratio between the weighting factors.
Optimal design of planar slider-crank mechanism using teaching-learning-based optimization algorithm
Chaudhary, Kailash; Chaudhary, Himanshu
2015-01-01
In this paper, a two stage optimization technique is presented for optimum design of planar slider-crank mechanism. The slider crank mechanism needs to be dynamically balanced to reduce vibrations and noise in the engine and to improve the vehicle performance. For dynamic balancing, minimization of the shaking force and the shaking moment is achieved by finding optimum mass distribution of crank and connecting rod using the equipemental system of point-masses in the first stage of the optimization. In the second stage, their shapes are synthesized systematically by closed parametric curve, i.e., cubic B-spline curve corresponding to the optimum inertial parameters found in the first stage. The multi-objective optimization problem to minimize both the shaking force and the shaking moment is solved using Teaching-learning-based optimization algorithm (TLBO) and its computational performance is compared with Genetic algorithm (GA).
Optimal design of planar slider-crank mechanism using teaching-learning-based optimization algorithm
Chaudhary, Kailash; Chaudhary, Himanshu [Malaviya National Institute of Technology, Jaipur (Malaysia)
2015-11-15
In this paper, a two stage optimization technique is presented for optimum design of planar slider-crank mechanism. The slider crank mechanism needs to be dynamically balanced to reduce vibrations and noise in the engine and to improve the vehicle performance. For dynamic balancing, minimization of the shaking force and the shaking moment is achieved by finding optimum mass distribution of crank and connecting rod using the equipemental system of point-masses in the first stage of the optimization. In the second stage, their shapes are synthesized systematically by closed parametric curve, i.e., cubic B-spline curve corresponding to the optimum inertial parameters found in the first stage. The multi-objective optimization problem to minimize both the shaking force and the shaking moment is solved using Teaching-learning-based optimization algorithm (TLBO) and its computational performance is compared with Genetic algorithm (GA).
RSMDP-based Robust Q-learning for Optimal Path Planning in a Dynamic Environment
Yunfei Zhang
2014-07-01
Full Text Available This paper presents arobust Q-learning method for path planningin a dynamic environment. The method consists of three steps: first, a regime-switching Markov decision process (RSMDP is formed to present the dynamic environment; second a probabilistic roadmap (PRM is constructed, integrated with the RSMDP and stored as a graph whose nodes correspond to a collision-free world state for the robot; and third, an onlineQ-learning method with dynamic stepsize, which facilitates robust convergence of the Q-value iteration, is integrated with the PRM to determine an optimal path for reaching the goal. In this manner, the robot is able to use past experience for improving its performance in avoiding not only static obstacles but also moving obstacles, without knowing the nature of the obstacle motion. The use ofregime switching in the avoidance of obstacles with unknown motion is particularly innovative. The developed approach is applied to a homecare robot in computer simulation. The results show that the online path planner with Q-learning is able torapidly and successfully converge to the correct path.
Amol M. Dalavi
2016-07-01
Full Text Available Optimization of hole-making operations in manufacturing industry plays a vital role. Tool travel and tool switch planning are the two major issues in hole-making operations. Many industrial applications such as moulds, dies, engine block, automotive parts etc. requires machining of large number of holes. Large number of machining operations like drilling, enlargement or tapping/reaming are required to achieve the final size of individual hole, which gives rise to number of possible sequences to complete hole-making operations on the part depending upon the location of hole and tool sequence to be followed. It is necessary to find the optimal sequence of operations which minimizes the total processing cost of hole-making operations. In this work, therefore an attempt is made to reduce the total processing cost of hole-making operations by applying relatively new optimization algorithms known as shuffled frog leaping algorithm and proposed modified shuffled frog leaping algorithm for the determination of optimal sequence of hole-making operations. An industrial application example of ejector plate of injection mould is considered in this work to demonstrate the proposed approach. The obtained results by the shuffled frog leaping algorithm and proposed modified shuffled frog leaping algorithm are compared with each other. It is seen from the obtained results that the results of proposed modified shuffled frog leaping algorithm are superior to those obtained using shuffled frog leaping algorithm.
Optimization-Based Image Segmentation by Genetic Algorithms
Rosenberger C
2008-01-01
Full Text Available Abstract Many works in the literature focus on the definition of evaluation metrics and criteria that enable to quantify the performance of an image processing algorithm. These evaluation criteria can be used to define new image processing algorithms by optimizing them. In this paper, we propose a general scheme to segment images by a genetic algorithm. The developed method uses an evaluation criterion which quantifies the quality of an image segmentation result. The proposed segmentation method can integrate a local ground truth when it is available in order to set the desired level of precision of the final result. A genetic algorithm is then used in order to determine the best combination of information extracted by the selected criterion. Then, we show that this approach can either be applied for gray-levels or multicomponents images in a supervised context or in an unsupervised one. Last, we show the efficiency of the proposed method through some experimental results on several gray-levels and multicomponents images.
Optimization-Based Image Segmentation by Genetic Algorithms
H. Laurent
2008-05-01
Full Text Available Many works in the literature focus on the definition of evaluation metrics and criteria that enable to quantify the performance of an image processing algorithm. These evaluation criteria can be used to define new image processing algorithms by optimizing them. In this paper, we propose a general scheme to segment images by a genetic algorithm. The developed method uses an evaluation criterion which quantifies the quality of an image segmentation result. The proposed segmentation method can integrate a local ground truth when it is available in order to set the desired level of precision of the final result. A genetic algorithm is then used in order to determine the best combination of information extracted by the selected criterion. Then, we show that this approach can either be applied for gray-levels or multicomponents images in a supervised context or in an unsupervised one. Last, we show the efficiency of the proposed method through some experimental results on several gray-levels and multicomponents images.
ABCluster: the artificial bee colony algorithm for cluster global optimization.
Zhang, Jun; Dolg, Michael
2015-10-07
Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspired by the foraging behavior of a bee colony, and only three parameters are needed to control it. We applied it to several potential functions of quite different nature, i.e., the Coulomb-Born-Mayer, Lennard-Jones, Morse, Z and Gupta potentials. The benchmarks reveal that for long-ranged potentials the ABC algorithm is very efficient in locating the global minimum, while for short-ranged ones it is sometimes trapped into a local minimum funnel on a potential energy surface of large clusters. We have released an efficient, user-friendly, and free program "ABCluster" to realize the ABC algorithm. It is a black-box program for non-experts as well as experts and might become a useful tool for chemists to study clusters.
New Search Space Reduction Algorithm for Vertical Reference Trajectory Optimization
Alejandro MURRIETA-MENDOZA
2016-06-01
Full Text Available Burning the fuel required to sustain a given flight releases pollution such as carbon dioxide and nitrogen oxides, and the amount of fuel consumed is also a significant expense for airlines. It is desirable to reduce fuel consumption to reduce both pollution and flight costs. To increase fuel savings in a given flight, one option is to compute the most economical vertical reference trajectory (or flight plan. A deterministic algorithm was developed using a numerical aircraft performance model to determine the most economical vertical flight profile considering take-off weight, flight distance, step climb and weather conditions. This algorithm is based on linear interpolations of the performance model using the Lagrange interpolation method. The algorithm downloads the latest available forecast from Environment Canada according to the departure date and flight coordinates, and calculates the optimal trajectory taking into account the effects of wind and temperature. Techniques to avoid unnecessary calculations are implemented to reduce the computation time. The costs of the reference trajectories proposed by the algorithm are compared with the costs of the reference trajectories proposed by a commercial flight management system using the fuel consumption estimated by the FlightSim® simulator made by Presagis®.
Mazyar Seraj
2014-10-01
Full Text Available This paper describes an experimental study of learning Dijkstra’s shortest path algorithm on mobile devices. The aim of the study is to investigate and compare the impacts of two different mobile screen user interfaces on students’ satisfaction for learning the technical subject. A mobile learning prototype was developed for learning Dijkstra’s shortest path algorithm on Apple iPhone 4 operated on iPhone operating system (iOS, and Acer Inconia Tab operated on an Android operating system. Thirty students, who are either currently studying or had previously studied Computer Networks, were recruited for the usability trial. At the end of each single session, students’ satisfaction interacting with the two mobile devices was measured using QUIS questionnaire. Although there is no significant difference in students’ satisfaction between the two different mobile screen interfaces, the subjective findings indicate that Acer Inconia Tab gained higher scores as compared to Apple iPhone 4.
Application of mapping crossover genetic algorithm in nuclear power equipment optimization design
Li Guijiang; Yan Changqi; Wang Jianjun; Liu Chengyang
2013-01-01
Genetic algorithm (GA) has been widely applied in nuclear engineering. An improved method, named the mapping crossover genetic algorithm (MCGA), was developed aiming at improving the shortcomings of traditional genetic algorithm (TGA). The optimal results of benchmark problems show that MCGA has better optimizing performance than TGA. MCGA was applied to the reactor coolant pump optimization design. (authors)
Optimization of diesel engine performance by the Bees Algorithm
Azfanizam Ahmad, Siti; Sunthiram, Devaraj
2018-03-01
Biodiesel recently has been receiving a great attention in the world market due to the depletion of the existing fossil fuels. Biodiesel also becomes an alternative for diesel No. 2 fuel which possesses characteristics such as biodegradable and oxygenated. However, there are facts suggested that biodiesel does not have the equivalent features as diesel No. 2 fuel as it has been claimed that the usage of biodiesel giving increment in the brake specific fuel consumption (BSFC). The objective of this study is to find the maximum brake power and brake torque as well as the minimum BSFC to optimize the condition of diesel engine when using the biodiesel fuel. This optimization was conducted using the Bees Algorithm (BA) under specific biodiesel percentage in fuel mixture, engine speed and engine load. The result showed that 58.33kW of brake power, 310.33 N.m of brake torque and 200.29/(kW.h) of BSFC were the optimum value. Comparing to the ones obtained by other algorithm, the BA produced a fine brake power and a better brake torque and BSFC. This finding proved that the BA can be used to optimize the performance of diesel engine based on the optimum value of the brake power, brake torque and BSFC.
Stochastic optimization of GeantV code by use of genetic algorithms
Amadio, G.; Apostolakis, J.; Bandieramonte, M.; Behera, S. P.; Brun, R.; Canal, P.; Carminati, F.; Cosmo, G.; Duhem, L.; Elvira, D.; Folger, G.; Gheata, A.; Gheata, M.; Goulas, I.; Hariri, F.; Jun, S. Y.; Konstantinov, D.; Kumawat, H.; Ivantchenko, V.; Lima, G.; Nikitina, T.; Novak, M.; Pokorski, W.; Ribon, A.; Seghal, R.; Shadura, O.; Vallecorsa, S.; Wenzel, S.
2017-10-01
GeantV is a complex system based on the interaction of different modules needed for detector simulation, which include transport of particles in fields, physics models simulating their interactions with matter and a geometrical modeler library for describing the detector and locating the particles and computing the path length to the current volume boundary. The GeantV project is recasting the classical simulation approach to get maximum benefit from SIMD/MIMD computational architectures and highly massive parallel systems. This involves finding the appropriate balance between several aspects influencing computational performance (floating-point performance, usage of off-chip memory bandwidth, specification of cache hierarchy, etc.) and handling a large number of program parameters that have to be optimized to achieve the best simulation throughput. This optimization task can be treated as a black-box optimization problem, which requires searching the optimum set of parameters using only point-wise function evaluations. The goal of this study is to provide a mechanism for optimizing complex systems (high energy physics particle transport simulations) with the help of genetic algorithms and evolution strategies as tuning procedures for massive parallel simulations. One of the described approaches is based on introducing a specific multivariate analysis operator that could be used in case of resource expensive or time consuming evaluations of fitness functions, in order to speed-up the convergence of the black-box optimization problem.
Optimization of the muon reconstruction algorithms for LHCb Run 2
Aaij, Roel; Dettori, Francesco; Dungs, Kevin; Lopes, Helder; Martinez Santos, Diego; Prisciandaro, Jessica; Sciascia, Barbara; Syropoulos, Vasileios; Stahl, Sascha; Vazquez Gomez, Ricardo
2017-01-01
The muon identiﬁcation algorithm in the LHCb HLT software trigger and offline reconstruction has been revisited in view of the LHC Run 2. This software has undergone a signiﬁcant refactorisation, resulting in a modularized common code base between the HLT and offline event processing. Because of the latter, the muon identiﬁcation is now identical in HLT and offline. The HLT1 algorithm sequence has been updated given the new rate and timing constraints. Also, information from the TT subdetector is used in order to reduce ghost tracks and optimize for low $p_T$ muons. The current software is presented here together with performance studies showing improved efficiencies and reduced timing.
Marine Traffic Optimization Using Petri Net and Genetic Algorithm
Anita Gudelj
2012-11-01
Full Text Available The paper deals with the traffic control and job optimization in the marine canal system. The moving of vessels can be described as a set of discrete events and states. Some of these states can be undesirable such as conflicts and deadlocks. It is necessary to apply adequate control policy to avoid deadlocks and blocks the vessels’ moving only in the case of dangerous situation. This paper addresses the use of Petri net as modelling and scheduling tool in this context. To find better solutions the authors propose the integration of Petri net with a genetic algorithm. Also, a matrix based formal method is proposed for analyzing discrete event dynamic system (DEDS. The algorithm is developed to deal with multi-project, multi-constrained scheduling problem with shared resources. It is verified by a computer simulation using MATLAB environment.
An optimal algorithm for computing all subtree repeats in trees.
Flouri, T; Kobert, K; Pissis, S P; Stamatakis, A
2014-05-28
Given a labelled tree T, our goal is to group repeating subtrees of T into equivalence classes with respect to their topologies and the node labels. We present an explicit, simple and time-optimal algorithm for solving this problem for unrooted unordered labelled trees and show that the running time of our method is linear with respect to the size of T. By unordered, we mean that the order of the adjacent nodes (children/neighbours) of any node of T is irrelevant. An unrooted tree T does not have a node that is designated as root and can also be referred to as an undirected tree. We show how the presented algorithm can easily be modified to operate on trees that do not satisfy some or any of the aforementioned assumptions on the tree structure; for instance, how it can be applied to rooted, ordered or unlabelled trees.
Flow shop scheduling algorithm to optimize warehouse activities
P. Centobelli
2016-01-01
Full Text Available Successful flow-shop scheduling outlines a more rapid and efficient process of order fulfilment in warehouse activities. Indeed the way and the speed of order processing and, in particular, the operations concerning materials handling between the upper stocking area and a lower forward picking one must be optimized. The two activities, drops and pickings, have considerable impact on important performance parameters for Supply Chain wholesaler companies. In this paper, a new flow shop scheduling algorithm is formulated in order to process a greater number of orders by replacing the FIFO logic for the drops activities of a wholesaler company on a daily basis. The System Dynamics modelling and simulation have been used to simulate the actual scenario and the output solutions. Finally, a t-Student test validates the modelled algorithm, granting that it can be used for all wholesalers based on drop and picking activities.