WorldWideScience

Sample records for path laser communications

  1. Full-Duplex Digital Communication on a Single Laser Beam

    Science.gov (United States)

    Hazzard, D. A.; MacCannell, J. A.; Lee, G.; Selves, E. R.; Moore, D.; Payne, J. A.; Garrett, C. D.; Dahlstrom, N.; Shay, T. M.

    2006-01-01

    A proposed free-space optical communication system would operate in a full-duplex mode, using a single constant-power laser beam for transmission and reception of binary signals at both ends of the free-space optical path. The system was conceived for two-way data communication between a ground station and a spacecraft in a low orbit around the Earth. It has been estimated that in this application, a data rate of 10 kb/s could be achieved at a ground-station-to-spacecraft distance of 320 km, using a laser power of only 100 mW. The basic system concept is also applicable to terrestrial free-space optical communications. The system (see figure) would include a diode laser at one end of the link (originally, the ground station) and a liquid-crystal- based retroreflecting modulator at the other end of the link (originally, the spacecraft). At the laser end, the beam to be transmitted would be made to pass through a quarter-wave plate, which would convert its linear polarization to right circular polarization. For transmission of data from the laser end to the retroreflector end, the laser beam would be modulated with subcarrier phase-shift keying (SC-PSK). The transmitted beam would then pass through an aperture- sharing element (ASE) - basically, a mirror with a hole in it, used to separate the paths of the transmitted and received light beams. The transmitted beam would continue outward through a telescope (which, in the original application, would be equipped with a spacecraft-tracking system) that would launch the transmitted beam along the free-space optical path to the retroreflector end.

  2. 375-nm ultraviolet-laser based non-line-of-sight underwater optical communication

    KAUST Repository

    Sun, Xiaobin; Cai, Wenqi; Alkhazragi, Omar; Ooi, Ee-Ning; He, Hongsen; Chaaban, Anas; Shen, Chao; Oubei, Hassan M.; Khan, Mohammed Zahed Mustafa; Ng, Tien Khee; Alouini, Mohamed-Slim; Ooi, Boon S.

    2018-01-01

    For circumventing the alignment requirement of line-of-sight (LOS) underwater wireless optical communication (UWOC), we demonstrated a non-line-of-sight (NLOS) UWOC link adequately enhanced using ultraviolet (UV) 375-nm laser. Path loss was chosen

  3. Status of High Data Rate Intersatellite Laser Communication as an Enabler for Earth and Space Science

    Science.gov (United States)

    Heine, F.; Zech, H.; Motzigemba, M.

    2017-12-01

    Space based laser communication is supporting earth observation and science missions with Gbps data download capabilities. Currently the Sentinel 1 and Sentinel 2 spacecrafts from the Copernicus earth observation program of the European Commission are using the Gbps laser communication links developed by Tesat Spacecom to download low latency data products via a commercial geostationary laser relay station- the European Data Relay Service- (EDRS) as a standard data path, in parallel to the conventional radio frequency links. The paper reports on the status of high bandwidth space laser communication as an enabler for small and large space science missions ranging from cube sat applications in low earth orbit to deep space missions. Space based laser communication has left the experimental phase and will support space science missions with unprecedented data rates.

  4. SDN-based path hopping communication against eavesdropping attack

    Science.gov (United States)

    Zhang, Chuanhao; Bu, Youjun; Zhao, Zheng

    2016-10-01

    Network eavesdropping is one of the most popular means used by cyber attackers, which has been a severe threat to network communication security. Adversaries could capture and analyze network communication data from network nodes or links, monitor network status and steal sensitive data such as username and password etc. Traditional network usually uses static network configuration, and existing defense methods, including firewall, IDS, IPS etc., cannot prevent eavesdropping, which has no distinguishing characteristic. Network eavesdropping become silent during most of the time of the attacking process, which is why it is difficult to discover and to defend. But A successful eavesdropping attack also has its' precondition, which is the target path should be relatively stable and has enough time of duration. So, In order to resolve this problem, it has to work on the network architecture. In this paper, a path hopping communication(PHC) mechanism based on Software Define Network (SDN) was proposed to solve this problem. In PHC, Ends in communication packets as well as the routing paths were changed dynamically. Therefore, the traffic would be distributed to multiple flows and transmitted along different paths. so that Network eavesdropping attack could be prevented effectively. It was concluded that PHC was able to increase the overhead of Network eavesdropping, as well as the difficulty of communication data recovery.

  5. ITS Multi-path Communications Access Decision Scheme

    Directory of Open Access Journals (Sweden)

    Miroslav Svitek

    2008-02-01

    Full Text Available Intelligent Transport Systems (ITS require widely spread and guarantied quality communications services. Method of ITS decomposition to set of subsystems and quantification of communications subsystems parameters is introduced. Due to typical complexity of the IST solution and mobility as the typical system elements property idea of communications systems with multipath multivendor structures is adopted. Resolution of seamless switching within a set of available wireless access solutions is presented. CALM based system or specifically designed and configured L3/L2 switching can be relevant solution for multi-path access communication system. These systems meet requirements of the seamless secure communications functionality within even extensive cluster of moving objects. Competent decision processes based on precisely quantified system requirements and each performance indicator tolerance range must be implemented to keep service up and running with no influence of continuously changing conditions in time and served space. Method of different paths service quality evaluation and selection of the best possible active communications access path is introduced. Proposed approach is based on Kalman filtering, which separates reasonable part of noise and also allows prediction of the individual parameters near future behavior. Presented classification algorithm applied on filtered measured data combined with deterministic parameters is trained using training data, i.e. combination of parameters vectors line and relevant decisions. Quality of classification is dependent on the size and quality of the training sets. This method is studied within projects e-Ident, DOTEK and SRATVU which are elaborating results of project CAMNA.

  6. Chirped laser dispersion spectroscopy for remote open-path trace-gas sensing.

    Science.gov (United States)

    Nikodem, Michal; Wysocki, Gerard

    2012-11-28

    In this paper we present a prototype instrument for remote open-path detection of nitrous oxide. The sensor is based on a 4.53 μm quantum cascade laser and uses the chirped laser dispersion spectroscopy (CLaDS) technique for molecular concentration measurements. To the best of our knowledge this is the first demonstration of open-path laser-based trace-gas detection using a molecular dispersion measurement. The prototype sensor achieves a detection limit down to the single-ppbv level and exhibits excellent stability and robustness. The instrument characterization, field deployment performance, and the advantages of applying dispersion sensing to sensitive trace-gas detection in a remote open-path configuration are presented.

  7. Laser enrichment: a new path to proliferation

    International Nuclear Information System (INIS)

    Casper, B.M.

    1977-01-01

    The use of lasers to obtain enriched uranium is an easier and cheaper method than methods currently in use. The immediate concern is that it could promote easy access to nuclear weapons by countries that do not presently have them. Mr. Casper feels that the U.S. government is working against itself; while the State Department is seeking to block one path to proliferation, ERDA laboratories are developing new technology that could open another. The proliferation implications have not been factored in a serious way into the decisions to proceed with this research. It is also clear that the United States does not now have a comprehensive policy that deals with all potentially important paths to proliferation, including laser enrichment. Mr. Casper states that there is still time to stop and consider whether laser enrichment should be developed, in light of its broader consequences. But this will not happen if the decisions are left exclusively in the hands of those promoting the technology, the author says. It is just this sort of situation that prompted the creation of several government institutions to provide independent assessments of new technologies. The Office of Technology Assessment, the Nuclear Regulatory Commission, and the Arms Control and Disarmament Agency all have the authority to intervene. Laser enrichment provides a good test of these institutions and of the viability of the concept of technology assessment. The status, benefits and risks, and the policy needed on laser research are discussed

  8. Polarization measurements through space-to-ground atmospheric propagation paths by using a highly polarized laser source in space.

    Science.gov (United States)

    Toyoshima, Morio; Takenaka, Hideki; Shoji, Yozo; Takayama, Yoshihisa; Koyama, Yoshisada; Kunimori, Hiroo

    2009-12-07

    The polarization characteristics of an artificial laser source in space were measured through space-to-ground atmospheric transmission paths. An existing Japanese laser communication satellite and optical ground station were used to measure Stokes parameters and the degree of polarization of the laser beam transmitted from the satellite. As a result, the polarization was preserved within an rms error of 1.6 degrees, and the degree of polarization was 99.4+/-4.4% through the space-to-ground atmosphere. These results contribute to the link estimation for quantum key distribution via space and provide the potential for enhancements in quantum cryptography worldwide in the future.

  9. 375-nm ultraviolet-laser based non-line-of-sight underwater optical communication

    KAUST Repository

    Sun, Xiaobin

    2018-05-04

    For circumventing the alignment requirement of line-of-sight (LOS) underwater wireless optical communication (UWOC), we demonstrated a non-line-of-sight (NLOS) UWOC link adequately enhanced using ultraviolet (UV) 375-nm laser. Path loss was chosen as a figure-of-merit for link performance in this investigation, which considers the effects of geometries, water turbidity, and transmission wavelength. The experiments suggest that path loss decreases with smaller azimuth angles, higher water turbidity, and shorter wavelength due in part to enhanced scattering utilizing 375-nm radiation. We highlighted that it is feasible to extend the current findings for long distance NLOS UWOC link in turbid water, such as harbor water.

  10. Competition between dissociation paths of I2+ NO+ using fast laser fields

    International Nuclear Information System (INIS)

    Lev, U; Prabhudesai, V S; Natan, A; Schwalm, D; Bruner, B D; Silberberg, Y; Heber, O; Zajfman, D; Zohrabi, M; Gaire, B; Carnes, K D; Ben-Itzhak, I; Strasser, D

    2012-01-01

    The competition between dissociation paths of I 2 + and NO + molecules was studied using femtosecond laser pulses with different intensities. It was found, both for moderate fields and for strong fields, that the dissociation path strongly prefers the higher energy dissociation path with smaller kinetic energy rather than the lower energy path with higher kinetic energy.

  11. Distance Dependence of Path Loss for Millimeter Wave Inter-Vehicle Communications

    Directory of Open Access Journals (Sweden)

    M. Fujise

    2004-12-01

    Full Text Available Millimeter-wave path loss between two cars was measured to obtainthe general applicable distance for inter-vehicle communication systemsin real environments. An abrupt and substantial increase in path lossdue to interruption, curves, and different-lane traveling has been amajor concern in inter-vehicle communications. The path lossmeasurements were carried out using 60-GHz CW radiowaves and standardhorn antennas on metropolitan highways and regular roads. Because thepropagation loss is traffic-dependent, the highways were classifiedinto uncrowded and crowded highways, and the regular roads wereclassified into uncrowded and crowded roads. The path loss for thehighways exhibited 2nd-power-law attenuation and that for the regularroads exhibited 1st-power-law attenuation with an increase ininter-vehicle distance. Additional losses of 15 dB for the highways and5 dB for the regular roads were observed when the inter-vehicledistance was more than approximately 30 m. Thus, we were able todemonstrate millimeter-wave inter-vehicle communications at aninter-vehicle distance of more than 100 m.

  12. Optimal optical communication terminal structure for maximizing the link budget

    Science.gov (United States)

    Huang, Jian; Jiang, Dagang; Deng, Ke; Zhang, Peng

    2015-02-01

    Ordinary inter-satellite optical includes at least three optical paths for acquisition, tracking and communication, the three optical paths work simultaneously and share the received power. An optimal structure of inter-satellite optical communication terminal with single working optical path at each of working stages of acquisition and communication is introduced. A space optical switch based on frustrated total internal reflection effect is applied to switch the received laser power between the acquisition sensor and the communication sensor between the stages of acquisition and communication, this is named as power fusion which means power is transferred for shutting down unused optical path. For the stages of tracking and communication, a multiple cells sensor is used to accomplish the operation of tracking while communication, this is named as function fusion which means accomplishing multiple functions by one device to reduce the redundant optical paths. For optical communication terminal with single working path structure, the total received laser power would be detected by one sensor for each different stages of acquisition, tracking and communication, the link budget would be maximized, and this design would help to enlarge the system tolerance and reduce the acquisition time.

  13. Alternative Path Communication in Wide-Scale Cluster-Tree Wireless Sensor Networks Using Inactive Periods.

    Science.gov (United States)

    Leão, Erico; Montez, Carlos; Moraes, Ricardo; Portugal, Paulo; Vasques, Francisco

    2017-05-06

    The IEEE 802.15.4/ZigBee cluster-tree topology is a suitable technology to deploy wide-scale Wireless Sensor Networks (WSNs). These networks are usually designed to support convergecast traffic, where all communication paths go through the PAN (Personal Area Network) coordinator. Nevertheless, peer-to-peer communication relationships may be also required for different types of WSN applications. That is the typical case of sensor and actuator networks, where local control loops must be closed using a reduced number of communication hops. The use of communication schemes optimised just for the support of convergecast traffic may result in higher network congestion and in a potentially higher number of communication hops. Within this context, this paper proposes an Alternative-Route Definition (ARounD) communication scheme for WSNs. The underlying idea of ARounD is to setup alternative communication paths between specific source and destination nodes, avoiding congested cluster-tree paths. These alternative paths consider shorter inter-cluster paths, using a set of intermediate nodes to relay messages during their inactive periods in the cluster-tree network. Simulation results show that the ARounD communication scheme can significantly decrease the end-to-end communication delay, when compared to the use of standard cluster-tree communication schemes. Moreover, the ARounD communication scheme is able to reduce the network congestion around the PAN coordinator, enabling the reduction of the number of message drops due to queue overflows in the cluster-tree network.

  14. Path Models of Vocal Emotion Communication.

    Directory of Open Access Journals (Sweden)

    Tanja Bänziger

    Full Text Available We propose to use a comprehensive path model of vocal emotion communication, encompassing encoding, transmission, and decoding processes, to empirically model data sets on emotion expression and recognition. The utility of the approach is demonstrated for two data sets from two different cultures and languages, based on corpora of vocal emotion enactment by professional actors and emotion inference by naïve listeners. Lens model equations, hierarchical regression, and multivariate path analysis are used to compare the relative contributions of objectively measured acoustic cues in the enacted expressions and subjective voice cues as perceived by listeners to the variance in emotion inference from vocal expressions for four emotion families (fear, anger, happiness, and sadness. While the results confirm the central role of arousal in vocal emotion communication, the utility of applying an extended path modeling framework is demonstrated by the identification of unique combinations of distal cues and proximal percepts carrying information about specific emotion families, independent of arousal. The statistical models generated show that more sophisticated acoustic parameters need to be developed to explain the distal underpinnings of subjective voice quality percepts that account for much of the variance in emotion inference, in particular voice instability and roughness. The general approach advocated here, as well as the specific results, open up new research strategies for work in psychology (specifically emotion and social perception research and engineering and computer science (specifically research and development in the domain of affective computing, particularly on automatic emotion detection and synthetic emotion expression in avatars.

  15. Vibration noise control in laser satellite communication

    Science.gov (United States)

    Saksonov, Avigdor; Shlomi, Arnon; Kopeika, Norman S.

    2001-08-01

    Laser satellite communication has become especially attractive in recent years. Because the laser beam width is narrow than in the RF or microwave range, the transmitted optical power may be significantly reduced. This leads to development of miniature communication systems with extremely low power consumption. On the other hand, the laser communication channel is very sensitive to vibrations of the optical platform. These vibrations cause angular noise in laser beam pointing, comparable to the laser beam width. As result, as significant portion of the optical power between transmitter and receiver is lost and the bit error rate is increased. Consequently, vibration noise control is a critical problem in laser satellite communication. The direction of the laser beam is corrected with a fast steering mirror (FSM). In this paper are presented two approaches for the FSM control. One is the feedback control that uses an LQG algorithm. The second is the direct feed- forward control when vibration noise is measured by three orthogonal accelerometers and drives directly the F SM. The performances of each approach are evaluated using MATLAB simulations.

  16. Communication with diode laser: short distance line of sight communication using fiber optics

    International Nuclear Information System (INIS)

    Mirza, A.H.

    1999-01-01

    The objective of this project is to carry audio signal from transmitting station to a short distance receiving station along line of sight and also communication through fiber optics is performed, using diode laser light as carrier. In this project optical communication system, modulation techniques, basics of laser and causes of using diode laser are discussed briefly. Transmitter circuit and receiver circuit are fully described. Communication was performed using pulse width modulation technique. Optical fiber communication have many advantages over other type of conventional communication techniques. This report contains the description of optical fiber communication and compared with other communication systems. (author)

  17. Laser diode technology for coherent communications

    Science.gov (United States)

    Channin, D. J.; Palfrey, S. L.; Toda, M.

    1989-01-01

    The effect of diode laser characteristics on the overall performance capabilities of coherent communication systems is discussed. In particular, attention is given to optical performance issues for diode lasers in coherent systems, measurements of key performance parameters, and optical requirements for coherent single-channel and multichannel communication systems. The discussion also covers limitations imposed by diode laser optical performance on multichannel system capabilities and implications for future developments.

  18. A novel communication mechanism based on node potential multi-path routing

    Science.gov (United States)

    Bu, Youjun; Zhang, Chuanhao; Jiang, YiMing; Zhang, Zhen

    2016-10-01

    With the network scales rapidly and new network applications emerge frequently, bandwidth supply for today's Internet could not catch up with the rapid increasing requirements. Unfortunately, irrational using of network sources makes things worse. Actual network deploys single-next-hop optimization paths for data transmission, but such "best effort" model leads to the imbalance use of network resources and usually leads to local congestion. On the other hand Multi-path routing can use the aggregation bandwidth of multi paths efficiently and improve the robustness of network, security, load balancing and quality of service. As a result, multi-path has attracted much attention in the routing and switching research fields and many important ideas and solutions have been proposed. This paper focuses on implementing the parallel transmission of multi next-hop data, balancing the network traffic and reducing the congestion. It aimed at exploring the key technologies of the multi-path communication network, which could provide a feasible academic support for subsequent applications of multi-path communication networking. It proposed a novel multi-path algorithm based on node potential in the network. And the algorithm can fully use of the network link resource and effectively balance network link resource utilization.

  19. Optimized path planning for soft tissue resection via laser vaporization

    Science.gov (United States)

    Ross, Weston; Cornwell, Neil; Tucker, Matthew; Mann, Brian; Codd, Patrick

    2018-02-01

    Robotic and robotic-assisted surgeries are becoming more prevalent with the promise of improving surgical outcomes through increased precision, reduced operating times, and minimally invasive procedures. The handheld laser scalpel in neurosurgery has been shown to provide a more gentle approach to tissue manipulation on or near critical structures over classical tooling, though difficulties of control have prevented large scale adoption of the tool. This paper presents a novel approach to generating a cutting path for the volumetric resection of tissue using a computer-guided laser scalpel. A soft tissue ablation simulator is developed and used in conjunction with an optimization routine to select parameters which maximize the total resection of target tissue while minimizing the damage to surrounding tissue. The simulator predicts the ablative properties of tissue from an interrogation cut for tuning and simulates the removal of a tumorous tissue embedded on the surface of healthy tissue using a laser scalpel. We demonstrate the ability to control depth and smoothness of cut using genetic algorithms to optimize the ablation parameters and cutting path. The laser power level, cutting rate and spacing between cuts are optimized over multiple surface cuts to achieve the desired resection volumes.

  20. Short distance line of sight laser communication

    International Nuclear Information System (INIS)

    Mudassar, A.A.; Hussain, H.; Jamil-ur-Rehman

    1998-01-01

    Communication methods based on lasers as carrier are well known. In our work we have made a two way laser based communication system for short range (<2 Km) line of sight communication. A small piece of plane mirror (100% reflector) was mounted on the centre of a speaker cone. The speaker was positioned close to the opening of laser such that He-Ne laser beam (10 mW) after reflection from the mirror is directed towards the receiver. There is a pre-amplifier and an amplifier between a microphone and the speaker. When the diagram of the speaker vibrates, it positionally modulates the laser beam. On the receiving end, there is a photo diode, a pre-amplifier, an amplifier and a head phone. So the man on the receiving end can decode the sound signal. On each stage there is a transmitter and a receiver assembled close to each other. So the two way communication is possible in the range 20 to 20 Khz. (author)

  1. Affordable Laser Communication in the Classroom

    Science.gov (United States)

    Walker, Constance E.; Sparks, R.; Pompea, S.

    2006-12-01

    Several companies sell systems that illustrate laser communication such as Arbor Scientific1. These systems can be too expensive for classroom use. We will demonstrate a technique to modulate a standard diode laser using a microphone or other sound source that is capable of transmitting voice and music. This affordable system can transmit over 350 feet using simple, inexpensive parts readily available at your local electronics store. We will provide a list of parts necessary for assembly, detailed assembly instructions, as well as some suggested investigations using the laser communication system. This system can be used in the classroom either as a demonstration or hands-on activity to explore the physics and technology involved, citing more sophisticated laser communication systems on board spacecraft such as the Mercury Messenger Mission and the Mars Telecommunications Orbiter. 1http://www.arborsci.com

  2. A Novel Dual Separate Paths (DSP) Algorithm Providing Fault-Tolerant Communication for Wireless Sensor Networks.

    Science.gov (United States)

    Tien, Nguyen Xuan; Kim, Semog; Rhee, Jong Myung; Park, Sang Yoon

    2017-07-25

    Fault tolerance has long been a major concern for sensor communications in fault-tolerant cyber physical systems (CPSs). Network failure problems often occur in wireless sensor networks (WSNs) due to various factors such as the insufficient power of sensor nodes, the dislocation of sensor nodes, the unstable state of wireless links, and unpredictable environmental interference. Fault tolerance is thus one of the key requirements for data communications in WSN applications. This paper proposes a novel path redundancy-based algorithm, called dual separate paths (DSP), that provides fault-tolerant communication with the improvement of the network traffic performance for WSN applications, such as fault-tolerant CPSs. The proposed DSP algorithm establishes two separate paths between a source and a destination in a network based on the network topology information. These paths are node-disjoint paths and have optimal path distances. Unicast frames are delivered from the source to the destination in the network through the dual paths, providing fault-tolerant communication and reducing redundant unicast traffic for the network. The DSP algorithm can be applied to wired and wireless networks, such as WSNs, to provide seamless fault-tolerant communication for mission-critical and life-critical applications such as fault-tolerant CPSs. The analyzed and simulated results show that the DSP-based approach not only provides fault-tolerant communication, but also improves network traffic performance. For the case study in this paper, when the DSP algorithm was applied to high-availability seamless redundancy (HSR) networks, the proposed DSP-based approach reduced the network traffic by 80% to 88% compared with the standard HSR protocol, thus improving network traffic performance.

  3. The Role of Sexual Communication in Couples' Sexual Outcomes: A Dyadic Path Analysis.

    Science.gov (United States)

    Jones, Adam C; Robinson, W David; Seedall, Ryan B

    2017-10-16

    In a study of 142 couples, we gathered survey data to show how sexual communication influences sexual and relationship satisfaction as well as sexual and orgasm frequency. In two dyadic data path analyses, we observed the significant paths of influence that sexual communication has on sexual and relationship satisfaction, as well as sexual and orgasm frequency. Our findings revealed greater amounts of sexual communication were associated with increased orgasm frequency in women and greater relationship and sexual satisfaction in both sexes. We also observed important differences in the associations of sexual communication and general communication on satisfaction levels. With these analyses, we expand the current literature to broaden our understanding of the role that sexual communication plays in committed relationships. © 2017 American Association for Marriage and Family Therapy.

  4. Earth Model with Laser Beam Simulating Seismic Ray Paths.

    Science.gov (United States)

    Ryan, John Arthur; Handzus, Thomas Jay, Jr.

    1988-01-01

    Described is a simple device, that uses a laser beam to simulate P waves. It allows students to follow ray paths, reflections and refractions within the earth. Included is a set of exercises that lead students through the steps by which the presence of the outer and inner cores can be recognized. (Author/CW)

  5. Multiquantum well beam-steering device for laser satellite communication

    Science.gov (United States)

    Lahat, Roee; Levy, Itamar; Shlomi, Arnon

    2002-01-01

    With the increasing interest in laser satellite communications, new methods are sought to solve the existing problems of accurate and rapid laser beam deflection. Current solutions in the form of galvanometers or piezo fast steering mirrors with one or two degrees of freedom are bulky, power-consuming and slow. The Multi-Quantum Well (MQW) is a semiconductor device with unique potential to steer laser beams without any moving parts. We have conducted a preliminary evaluation of the potential application of the MQW as a laser beam-steering device for laser satellite communication, examining the performance of critical parameters for this type of communications.

  6. UV laser long-path absorption spectroscopy

    Science.gov (United States)

    Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf

    1994-01-01

    Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive

  7. Assessment of Hydrogen Sulfide Minimum Detection Limits of an Open Path Tunable Diode Laser

    Science.gov (United States)

    During June 2007, U.S. EPA conducted a feasibility study to determine whether the EPA OTM 10 measurement approach, also known as radial plume mapping (RPM), was feasible. A Boreal open-path tunable diode laser (OP-TDL) to collect path-integrated hydrogen sulfide measurements alon...

  8. Automatic alignment of double optical paths in excimer laser amplifier

    Science.gov (United States)

    Wang, Dahui; Zhao, Xueqing; Hua, Hengqi; Zhang, Yongsheng; Hu, Yun; Yi, Aiping; Zhao, Jun

    2013-05-01

    A kind of beam automatic alignment method used for double paths amplification in the electron pumped excimer laser system is demonstrated. In this way, the beams from the amplifiers can be transferred along the designated direction and accordingly irradiate on the target with high stabilization and accuracy. However, owing to nonexistence of natural alignment references in excimer laser amplifiers, two cross-hairs structure is used to align the beams. Here, one crosshair put into the input beam is regarded as the near-field reference while the other put into output beam is regarded as the far-field reference. The two cross-hairs are transmitted onto Charge Coupled Devices (CCD) by image-relaying structures separately. The errors between intersection points of two cross-talk images and centroid coordinates of actual beam are recorded automatically and sent to closed loop feedback control mechanism. Negative feedback keeps running until preset accuracy is reached. On the basis of above-mentioned design, the alignment optical path is built and the software is compiled, whereafter the experiment of double paths automatic alignment in electron pumped excimer laser amplifier is carried through. Meanwhile, the related influencing factors and the alignment precision are analyzed. Experimental results indicate that the alignment system can achieve the aiming direction of automatic aligning beams in short time. The analysis shows that the accuracy of alignment system is 0.63μrad and the beam maximum restoration error is 13.75μm. Furthermore, the bigger distance between the two cross-hairs, the higher precision of the system is. Therefore, the automatic alignment system has been used in angular multiplexing excimer Main Oscillation Power Amplification (MOPA) system and can satisfy the requirement of beam alignment precision on the whole.

  9. Vibration control for the ARGOS laser launch path

    Science.gov (United States)

    Peter, Diethard; Gässler, Wolfgang; Borelli, Jose; Barl, Lothar; Rabien, S.

    2012-07-01

    Present and future adaptive optics systems aim for the correction of the atmospheric turbulence over a large field of view combined with large sky coverage. To achieve this goal the telescope is equipped with multiple laser beacons. Still, to measure tip-tilt aberrations a natural guide star is used. For some fields such a tilt-star is not available and a correction on the laser beacons alone is applied. For this method to work well the laser beacons must not be affected by telescope vibrations on their up-link path. For the ARGOS system the jitter of the beacons is specified to be below 0.05. To achieve this goal a vibration compensation system is necessary to mitigate the mechanical disturbances. The ARGOS vibration compensation system is an accelerometer based feed forward system. The accelerometer measurements are fed into a real time controller. To achieve high performance the controller of the system is model based. The output is applied to a fast steering mirror. This paper presents the concept of the ARGOS vibration compensation, the hardware, and laboratory results.

  10. Modeling and analysis of laser active interference optical path

    Science.gov (United States)

    Shan, Cong-miao; Sun, Hua-yan; Zhao, Yan-zhong; Chen, Jian-biao; Ren, Jian-ying

    2017-10-01

    By using the geometrical optics and physical optics method, the models of wedge plate interference optical path, Michelson interferometer and Mach Zehnder interferometer thus three different active interference pattern are built. The optical path difference (OPD) launched by different interference patterns, fringe spacing and contrast expression have been derived. The results show that far field interference peak intensity of the wedge plate interference is small, so the detection distance is limited, Michelson interferometer with low contrast affects the performance of detection system, Mach Zehnder interferometer has greater advantages in peak intensity, the variable range of interference fringe spacing and contrast ratio. The results of this study are useful for the theoretical research and practical application of laser active interference detection.

  11. Electronic Subsystems For Laser Communication System

    Science.gov (United States)

    Long, Catherine; Maruschak, John; Patschke, Robert; Powers, Michael

    1992-01-01

    Electronic subsystems of free-space laser communication system carry digital signals at 650 Mb/s over long distances. Applicable to general optical communications involving transfer of great quantities of data, and transmission and reception of video images of high definition.

  12. Study and design on USB wireless laser communication system

    Science.gov (United States)

    Wang, Aihua; Zheng, Jiansheng; Ai, Yong

    2004-04-01

    We give the definition of USB wireless laser communication system (WLCS) and the brief introduction to the protocol of USB, the standard of hardware is also given. The paper analyses the hardware and software of USB WLCS. Wireless laser communication part and USB interface circuit part are discussed in detail. We also give the periphery design of the chip AN2131Q, the control circuit to realize the transformation from parallel port to serial bus, and the circuit of laser sending and receiving of laser communication part, which are simply, cheap and workable. And then the four part of software are analyzed as followed. We have consummated the ISR in the firmware frame to develop the periphery device of USB. We have debugged and consummated the 'ezload,' and the GPD of the drivers. Windows application performs functions and schedules the corresponding API functions to let the interface practical and beautiful. The system can realize USB wireless laser communication between computers, which distance is farther than 50 meters, and top speed can be bigger than 8 Mbps. The system is of great practical sense to resolve the issues of high-speed communication among increasing districts without fiber trunk network.

  13. Codification of scan path parameters and development of perimeter scan strategies for 3D bowl-shaped laser forming

    Science.gov (United States)

    Tavakoli, A.; Naeini, H. Moslemi; Roohi, Amir H.; Gollo, M. Hoseinpour; Shahabad, Sh. Imani

    2018-01-01

    In the 3D laser forming process, developing an appropriate laser scan pattern for producing specimens with high quality and uniformity is critical. This study presents certain principles for developing scan paths. Seven scan path parameters are considered, including: (1) combined linear or curved path; (2) type of combined linear path; (3) order of scan sequences; (4) the position of the start point in each scan; (5) continuous or discontinuous scan path; (6) direction of scan path; and (7) angular arrangement of combined linear scan paths. Regarding these path parameters, ten combined linear scan patterns are presented. Numerical simulations show continuous hexagonal, scan pattern, scanning from outer to inner path, is the optimized. In addition, it is observed the position of the start point and the angular arrangement of scan paths is the most effective path parameters. Also, further experimentations show four sequences due to creat symmetric condition enhance the height of the bowl-shaped products and uniformity. Finally, the optimized hexagonal pattern was compared with the similar circular one. In the hexagonal scan path, distortion value and standard deviation rather to edge height of formed specimen is very low, and the edge height despite of decreasing length of scan path increases significantly compared to the circular scan path. As a result, four-sequence hexagonal scan pattern is proposed as the optimized perimeter scan path to produce bowl-shaped product.

  14. Method and apparatus for optical communication by frequency modulation

    Science.gov (United States)

    Priatko, Gordon J.

    1988-01-01

    Laser optical communication according to this invention is carried out by producing multi-frequency laser beams having different frequencies, splitting one or more of these constituent beams into reference and signal beams, encoding information on the signal beams by frequency modulation and detecting the encoded information by heterodyne techniques. Much more information can be transmitted over optical paths according to the present invention than with the use of only one path as done previously.

  15. Mode-Locked Semiconductor Lasers for Optical Communication Systems

    DEFF Research Database (Denmark)

    Yvind, Kresten; Larsson, David; Oxenløwe, Leif Katsuo

    2005-01-01

    We present investigations on 10 and 40 GHz monolithic mode-locked lasers for applications in optical communications systems. New all-active lasers with one to three quantum wells have been designed, fabricated and characterized....

  16. Free-space laser communication technologies; Proceedings of the Meeting, Los Angeles, CA, Jan. 11, 12, 1988

    Science.gov (United States)

    Koepf, Gerhard A.; Begley, David L.

    1988-01-01

    The present conference discusses topics in free-space laser communications, laser link characteristics, satellite laser communication systems, optoelectronic components for laser communications, and space laser subsystem technologies. Attention is given to Space Station-based deep-space communication experiments, the application of intersatellite links to operational satellite systems, high-power 0.87 micron channel substrate planar lasers for spaceborne communications, a ground experiment using a CO2 laser transceiver for free-space communications, studies of laser ranging to the TOPEX satellite, diffraction-limited tracking for space communications, and the compact implementation of a real-time, acoustooptic SAR processor.

  17. Application of Faraday rotator to suppression of target-reflected radiation in the optical path of a laser installation

    International Nuclear Information System (INIS)

    Bykovskiy, N.E.; Denus, S.; Dubik, A.; Ovsik, Y.; Lisunov, V.V.; Senatskiy, Y.V.; Fedotov, S.I.

    1988-01-01

    The interaction conditions between powerful laser radiation and a target are examined together with the Faraday rotators designed for suppressing target-reflected backward radiation in the neodymium glass laser optical path

  18. Laser Communications and Fiber Optics Lab Manual. High-Technology Training Module.

    Science.gov (United States)

    Biddick, Robert

    This laboratory training manual on laser communications and fiber optics may be used in a general technology-communications course for ninth graders. Upon completion of this exercise, students achieve the following goals: match concepts with laser communication system parts; explain advantages of fiber optic cable over conventional copper wire;…

  19. Plasma wakefields driven by an incoherent combination of laser pulses: a path towards high-average power laser-plasma accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, C.; Schroeder, C.B.; Esarey, E.; Leemans, W.P.

    2014-05-01

    he wakefield generated in a plasma by incoherently combining a large number of low energy laser pulses (i.e.,without constraining the pulse phases) is studied analytically and by means of fully-self-consistent particle-in-cell simulations. The structure of the wakefield has been characterized and its amplitude compared with the amplitude of the wake generated by a single (coherent) laser pulse. We show that, in spite of the incoherent nature of the wakefield within the volume occupied by the laser pulses, behind this region the structure of the wakefield can be regular with an amplitude comparable or equal to that obtained from a single pulse with the same energy. Wake generation requires that the incoherent structure in the laser energy density produced by the combined pulses exists on a time scale short compared to the plasma period. Incoherent combination of multiple laser pulses may enable a technologically simpler path to high-repetition rate, high-average power laser-plasma accelerators and associated applications.

  20. Vibrational analysis of a shipboard free electron laser beam path

    OpenAIRE

    Gallant, Bryan M.

    2011-01-01

    This thesis explores the deployment of a free electron laser (FEL) weapon system in a shipboard vibration environment. A concept solid model of a shipboard FEL is developed and used as a basis for a finite element model which is subjected to vibration simulation in MATLAB. Vibration input is obtained from ship shock trials data and wave excited motion data from ship motion simulation software. Emphasis is placed on the motion of electron beam path components of the FEL and the feasibility of ...

  1. Iterative Decoding for an Optical CDMA based Laser communication System

    International Nuclear Information System (INIS)

    Kim, Jin Young; Kim, Eun Cheol; Cha, Jae Sang

    2008-01-01

    An optical CDMA(code division multiple access)based Laser communication system has attracted much attention since it requires minimal optical Laser signal processing and it is virtually delay free, while from the theoretical point of view, its performance depends on the auto and cross correlation properties of employed sequences. Various kinds of channel coding schemes for optical CDMA based Laser communication systems have been proposed and analyzed to compensate nonideal channel and receiver conditions in impaired photon channels. In this paper, we propose and analyze an iterative decoding of optical CDMA based Laser communication signals for both shot noise limited and thermal noise limited systems. It is assumed that optical channel is an intensity modulated (IM)channel and direct detection scheme is employed to detect the received optical signal. The performance is evaluated in terms of bit error probability and throughput. It is demonstrated that the BER and throughput performance is substantially improved with interleaver length for a fixed code rate and with alphabet size of PPM (pulse position modulation). Also, the BER and throughput performance is significantly enhanced with the number of iterations for decoding process. The results in this paper can be applied to the optical CDMA based Laser communication network with multiple access applications

  2. Iterative Decoding for an Optical CDMA based Laser communication System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Young; Kim, Eun Cheol [Kwangwoon Univ., Seoul (Korea, Republic of); Cha, Jae Sang [Seoul National Univ. of Technology, Seoul (Korea, Republic of)

    2008-11-15

    An optical CDMA(code division multiple access)based Laser communication system has attracted much attention since it requires minimal optical Laser signal processing and it is virtually delay free, while from the theoretical point of view, its performance depends on the auto and cross correlation properties of employed sequences. Various kinds of channel coding schemes for optical CDMA based Laser communication systems have been proposed and analyzed to compensate nonideal channel and receiver conditions in impaired photon channels. In this paper, we propose and analyze an iterative decoding of optical CDMA based Laser communication signals for both shot noise limited and thermal noise limited systems. It is assumed that optical channel is an intensity modulated (IM)channel and direct detection scheme is employed to detect the received optical signal. The performance is evaluated in terms of bit error probability and throughput. It is demonstrated that the BER and throughput performance is substantially improved with interleaver length for a fixed code rate and with alphabet size of PPM (pulse position modulation). Also, the BER and throughput performance is significantly enhanced with the number of iterations for decoding process. The results in this paper can be applied to the optical CDMA based Laser communication network with multiple access applications.

  3. Semiconductor Mode-Locked Lasers for Optical Communication Systems

    DEFF Research Database (Denmark)

    Yvind, Kresten

    2003-01-01

    The thesis deals with the design and fabrication of semiconductor mode-locked lasers for use in optical communication systems. The properties of pulse sources and characterization methods are described as well as requirements for application in communication systems. Especially, the importance of...

  4. Laser materials processing of complex components. From reverse engineering via automated beam path generation to short process development cycles.

    Science.gov (United States)

    Görgl, R.; Brandstätter, E.

    2016-03-01

    The article presents an overview of what is possible nowadays in the field of laser materials processing. The state of the art in the complete process chain is shown, starting with the generation of a specific components CAD data and continuing with the automated motion path generation for the laser head carried by a CNC or robot system. Application examples from laser welding, laser cladding and additive laser manufacturing are given.

  5. Free-space laser communication technologies II; Proceedings of the Meeting, Los Angeles, CA, Jan. 15-17, 1990

    Science.gov (United States)

    Begley, David L. (Editor); Seery, Bernard D. (Editor)

    1990-01-01

    Various papers on free-space laser communication technologies are presented. Individual topics addressed include: optical intersatellite link experiment between the earth station and ETS-VI, the Goddard optical communications program, technologies and techniques for lasercom terminal size, weight, and cost reduction, laser beam acquisition and tracking system for ETS-VI laser communication equipment, analog dividers for acquisition and tracking signal normalization, fine pointing mechanism using multilayered piezoelectric actuator for optical ISL system, analysis of SILEX tracking sensor performance, new telescope concept for space communication, telescope considered as a very high gain antenna, design of compact transceiver optical systems for optical intersatellite links, ultralightweight optics for laser communications, highly sensitive measurement method for stray light and retroreflected light, depolarization effects on free space laser transceiver communication systems, in-orbit measurements of microaccelerations of ESA's communication satellite Olympus, high-performance laser diode transmitter for optical free space communication, diode-pumped Nd:host laser transmitter for intersatellite optical communications, single-frequency diode-pumped laser for free-space communication.

  6. Space communication and radar with lasers

    NARCIS (Netherlands)

    Witteman, W.J.

    2005-01-01

    Sensitive heterodyne detection with lasers applied .to radar and satellite communication is seriously hampered by the large electronic bandwidth due to random Doppler shift and frequency instability. These drawbacks can be circumvented by dual signal heterodyne detection. The system consists of

  7. Pure-Pursuit Reactive Path Tracking for Nonholonomic Mobile Robots with a 2D Laser Scanner

    Directory of Open Access Journals (Sweden)

    Jesús Morales

    2009-01-01

    Full Text Available Due to its simplicity and efficiency, the pure-pursuit path tracking method has been widely employed for planned navigation of nonholonomic ground vehicles. In this paper, we investigate the application of this technique for reactive tracking of paths that are implicitly defined by perceived environmental features. Goal points are obtained through an efficient interpretation of range data from an onboard 2D laser scanner to follow persons, corridors, and walls. Moreover, this formulation allows that a robotic mission can be composed of a combination of different types of path segments. These techniques have been successfully tested in the tracked mobile robot Auriga-α in an indoor environment.

  8. Research on large-aperture primary mirror supporting way of vehicle-mounted laser communication system

    Science.gov (United States)

    Meng, Lixin; Meng, Lingchen; Zhang, Yiqun; Zhang, Lizhong; Liu, Ming; Li, Xiaoming

    2018-01-01

    In the satellite to earth laser communication link, large-aperture ground laser communication terminals usually are used in order to realize the requirement of high rate and long distance communication and restrain the power fluctuation by atmospheric scintillation. With the increasing of the laser communication terminal caliber, the primary mirror weight should also be increased, and selfweight, thermal deformation and environment will affect the surface accuracy of the primary mirror surface. A high precision vehicular laser communication telescope unit with an effective aperture of 600mm was considered in this paper. The primary mirror is positioned with center hole, which back is supported by 9 floats and the side is supported by a mercury band. The secondary mirror adopts a spherical adjusting mechanism. Through simulation analysis, the system wave difference is better than λ/20 when the primary mirror is in different dip angle, which meets the requirements of laser communication.

  9. Research on optic antenna of space laser communication networking

    Science.gov (United States)

    Meng, Li-Xin; Li, Long; Zhang, Li-zhong; Zhao, Shan-shan; Jiang, Hui-lin

    2013-08-01

    With the highlights of the high transmission rate, large capacity, strong anti-interference and anti-capture ability, good security and small light, space laser communication becomes an important hotspot. At present, the focus of research of the laser communication system is point to point communication structure. However, from the application point of view, both the realization of space laser communication among multiple points and the establishment of the information transmission network can really have the practical value. Aiming at the problem of space laser communication network, this article puts forward the general idea about optical antenna to achieve multiple tracking goals at the same time. Through the analysis of the optical antenna, and the comparing of the current commonly used mirror driving mechanism, a new mirror driving mechanism is designed. The azimuth motion, containing circular grating feedback, is driven by torque motor,voice coil motor of fan produces pitch motion that has fan-shaped grating feedback, so that compression of the structure size to improve the efficiency of the reflector assembly. Through the establishment of the driving mechanism and the kinematic model of 3D entity, the relationship between the single drive azimuth and pitch angle following the angle of incident light is explained. The biggest ideal view area affecting the optical antenna is obtained by the simulation analysis of the kinematics model using MATLAB. The several factors of field overlap area and blind area offers a theoretical basis for structure optimization and control system for the subsequent optical antenna design.

  10. Laser materials processing of complex components: from reverse engineering via automated beam path generation to short process development cycles

    Science.gov (United States)

    Görgl, Richard; Brandstätter, Elmar

    2017-01-01

    The article presents an overview of what is possible nowadays in the field of laser materials processing. The state of the art in the complete process chain is shown, starting with the generation of a specific components CAD data and continuing with the automated motion path generation for the laser head carried by a CNC or robot system. Application examples from laser cladding and laser-based additive manufacturing are given.

  11. High speed visible light communication using blue GaN laser diodes

    Science.gov (United States)

    Watson, S.; Viola, S.; Giuliano, G.; Najda, S. P.; Perlin, P.; Suski, T.; Marona, L.; Leszczyński, M.; Wisniewski, P.; Czernecki, R.; Targowski, G.; Watson, M. A.; White, H.; Rowe, D.; Laycock, L.; Kelly, A. E.

    2016-10-01

    GaN-based laser diodes have been developed over the last 20 years making them desirable for many security and defence applications, in particular, free space laser communications. Unlike their LED counterparts, laser diodes are not limited by their carrier lifetime which makes them attractive for high speed communication, whether in free space, through fiber or underwater. Gigabit data transmission can be achieved in free space by modulating the visible light from the laser with a pseudo-random bit sequence (PRBS), with recent results approaching 5 Gbit/s error free data transmission. By exploiting the low-loss in the blue part of the spectrum through water, data transmission experiments have also been conducted to show rates of 2.5 Gbit/s underwater. Different water types have been tested to monitor the effect of scattering and to see how this affects the overall transmission rate and distance. This is of great interest for communication with unmanned underwater vehicles (UUV) as the current method using acoustics is much slower and vulnerable to interception. These types of laser diodes can typically reach 50-100 mW of power which increases the length at which the data can be transmitted. This distance could be further improved by making use of high power laser arrays. Highly uniform GaN substrates with low defectivity allow individually addressable laser bars to be fabricated. This could ultimately increase optical power levels to 4 W for a 20-emitter array. Overall, the development of GaN laser diodes will play an important part in free space optical communications and will be vital in the advancement of security and defence applications.

  12. Dual Fine Tracking Control of a Satellite Laser Communication Uplink

    National Research Council Canada - National Science Library

    Noble, Louis A

    2006-01-01

    A dual fine tracking control system (FTCS) is developed for a single aperture optical communication receiver to compensate for high frequency disturbances affecting tracking of two incident laser communication beams...

  13. Acousto-optic pointing and tracking systems for free-space laser communications

    Science.gov (United States)

    Nikulin, V.; Khandekar, R.; Sofka, J.; Tartakovsky, G.

    2005-08-01

    Implementation of long-range laser communication systems holds great promise for high-bandwidth applications. They are viewed as a technology that in the nearest future will handle most of the "last mile" communication traffic for the individual subscribers, corporate offices, military, and possibly deep space probes. Indeed, lasers allow for concentration of energy within tightly focused beams and narrow spectral interval, thus offering high throughput, information security, weight and size of components and power requirements that could not be matched by RF systems. However, the advantages of optical communication systems come in the same package with several major challenges. In particular, high data rates should be complemented by high-precision wide-bandwidth position control of a laser beam. In many applications the ability to maintain a link is affected by the complex maneuvers performed by mobile communication platforms, resident vibrations, and atmospheric effects. The search for the most effective and reliable way to shape and steer the laser beam is an on-going effort. This paper is focused on the application of acousto-optic technology as an alternative to electro-mechanical devices. With realization that an acousto-optic Bragg cell is only a component of the entire communication system, which should perform complex tasks of acquisition, pointing, and tracking of the remote terminal, we present an attempt to consider this problem from the "systems" point of view.

  14. Synchronised laser chaos communication: statistical investigation of an experimental system

    OpenAIRE

    Lawrance, Anthony J.; Papamarkou, Theodore; Uchida, Atsushi

    2017-01-01

    The paper is concerned with analyzing data from an experimental antipodal laser-based chaos shift-keying communication system. Binary messages are embedded in a chaotically behaving laser wave which is transmitted through a fiber-optic cable and are decoded at the receiver using a second laser synchronized with the emitter laser. Instrumentation in the experimental system makes it particularly interesting to be able to empirically analyze both optical noise and synchronization error as well a...

  15. Exploiting broad-area surface emitting lasers to manifest the path-length distributions of finite-potential quantum billiards.

    Science.gov (United States)

    Yu, Y T; Tuan, P H; Chang, K C; Hsieh, Y H; Huang, K F; Chen, Y F

    2016-01-11

    Broad-area vertical-cavity surface-emitting lasers (VCSELs) with different cavity sizes are experimentally exploited to manifest the influence of the finite confinement strength on the path-length distribution of quantum billiards. The subthreshold emission spectra of VCSELs are measured to obtain the path-length distributions by using the Fourier transform. It is verified that the number of the resonant peaks in the path-length distribution decreases with decreasing the confinement strength. Theoretical analyses for finite-potential quantum billiards are numerically performed to confirm that the mesoscopic phenomena of quantum billiards with finite confinement strength can be analogously revealed by using broad-area VCSELs.

  16. Free-space communication based on quantum cascade laser

    International Nuclear Information System (INIS)

    Liu Chuanwei; Zhai Shenqiang; Zhang Jinchuan; Zhou Yuhong; Jia Zhiwei; Liu Fengqi; Wang Zhanguo

    2015-01-01

    A free-space communication based on a mid-infrared quantum cascade laser (QCL) is presented. A room-temperature continuous-wave distributed-feedback (DFB) QCL combined with a mid-infrared detector comprise the basic unit of the communication system. Sinusoidal signals at a highest frequency of 40 MHz and modulated video signals with a carrier frequency of 30 MHz were successfully transmitted with this experimental setup. Our research has provided a proof-of-concept demonstration of space optical communication application with QCL. The highest operation frequency of our setup was determined by the circuit-limited modulation bandwidth. A high performance communication system can be obtained with improved modulation circuit system. (paper)

  17. Visible laser and superluminescent diode based free space and underwater communications

    KAUST Repository

    Ooi, Boon S.

    2017-01-30

    We report on our recent progress in high-modulation-efficiency, InGaN-based integrated waveguide modulator-laser diodes (IWM-LDs), high-speed violet and blue emitting superluminescent diodes (SLDs), InGaN-based vertical-cavity surface-emitting lasers (VCSELs), and their applications for gigahertz laser based free-space and underwater wireless optical communications.

  18. Visible laser and superluminescent diode based free space and underwater communications

    KAUST Repository

    Ooi, Boon S.

    2017-01-01

    We report on our recent progress in high-modulation-efficiency, InGaN-based integrated waveguide modulator-laser diodes (IWM-LDs), high-speed violet and blue emitting superluminescent diodes (SLDs), InGaN-based vertical-cavity surface-emitting lasers (VCSELs), and their applications for gigahertz laser based free-space and underwater wireless optical communications.

  19. Optimal operating conditions for external cavity semiconductor laser optical chaos communication system

    International Nuclear Information System (INIS)

    Priyadarshi, S; Pierce, I; Hong, Y; Shore, K A

    2012-01-01

    In optical chaos communications a message is masked in the noise-like broadband output of a chaotic transmitter laser, and message recovery is enabled through the synchronization of the transmitter and the (chaotic) receiver laser. Key issues are to identify the laser operating conditions which provide the highest quality synchronization conditions and those which provide optimized message extraction. In general such operating conditions are not coincident. In this paper numerical simulations are performed with the aim of identifying a regime of operation where the highest quality synchronization and optimizing message extraction efficiency are achieved simultaneously. Use of such an operating regime will facilitate practical deployment of optical chaos communications systems without the need for re-adjustment of laser operating conditions in the field. (paper)

  20. Free-space laser communication technologies III; Proceedings of the Meeting, Los Angeles, CA, Jan. 21, 22, 1991

    Science.gov (United States)

    Begley, David L. (Editor); Seery, Bernard D. (Editor)

    1991-01-01

    The present volume on free-space laser communication technologies discusses system analysis, performance, and applications, pointing, acquisition, and tracking in beam control, laboratory demonstration systems, and transmitter and critical component technologies. Attention is given to a space station laser communication transceiver, meeting intersatellite links mission requirements by an adequate optical terminal design, an optical approach to proximity-operations communications for Space Station Freedom, and optical space-to-ground link availability assessment and diversity requirements. Topics addressed include nonmechanical steering of laser beams by multiple aperture antennas, a free-space simulator for laser transmission, heterodyne acquisition and tracking in a free-space diode laser link, and laser terminal attitude determination via autonomous star tracking. Also discussed are stability considerations in relay lens design for optical communications, liquid crystals for lasercom applications, and narrowband optical interference filters.

  1. Optical Phase Recovery and Locking in a PPM Laser Communication Link

    Science.gov (United States)

    Aveline, David C.; Yu, Nan; Farr, William H.

    2012-01-01

    Free-space optical communication holds great promise for future space missions requiring high data rates. For data communication in deep space, the current architecture employs pulse position modulation (PPM). In this scheme, the light is transmitted and detected as pulses within an array of time slots. While the PPM method is efficient for data transmission, the phase of the laser light is not utilized. The phase coherence of a PPM optical signal has been investigated with the goal of developing a new laser communication and ranging scheme that utilizes optical coherence within the established PPM architecture and photon-counting detection (PCD). Experimental measurements of a PPM modulated optical signal were conducted, and modeling code was developed to generate random PPM signals and simulate spectra via FFT (Fast Fourier Transform) analysis. The experimental results show very good agreement with the simulations and confirm that coherence is preserved despite modulation with high extinction ratios and very low duty cycles. A real-time technique has been developed to recover the phase information through the mixing of a PPM signal with a frequency-shifted local oscillator (LO). This mixed signal is amplified, filtered, and integrated to generate a voltage proportional to the phase of the modulated signal. By choosing an appropriate time constant for integration, one can maintain a phase lock despite long dark times between consecutive pulses with low duty cycle. A proof-of-principle demonstration was first achieved with an RF-based PPM signal and test setup. With the same principle method, an optical carrier within a PPM modulated laser beam could also be tracked and recovered. A reference laser was phase-locked to an independent pulsed laser signal with low-duty-cycle pseudo-random PPM codes. In this way, the drifting carrier frequency in the primary laser source is tracked via its phase change in the mixed beat note, while the corresponding voltage feedback

  2. Intensity position modulation for free-space laser communication system

    Science.gov (United States)

    Jangjoo, Alireza; Faghihi, F.

    2004-12-01

    In this research a novel modulation technique for free-space laser communication system called Intensity Position Modulation (IPM) is carried out. According to TEM00 mode of a laser beam and by linear fitting on the Gaussian function as an approximation, the variation of linear part on the reverse biased pn photodiode produced alternating currents which contain the information. Here, no characteristic property of the beam as intensity or frequency is changed and only the beam position moves laterally. We demonstrated that in this method no bandwidth is required, so it is possible to reduce the background radiation noise by narrowband filtering of the carrier. The fidelity of the analog voice communication system which is made upon the IPM is satisfactory and we are able to transmit the audio signals up to 1Km.

  3. The development of a low-cost laser communication system for the classroom

    Science.gov (United States)

    Sparks, Robert T.; Pompea, Stephen M.; Walker, Constance E.

    2007-06-01

    Hands-On Optics (HOO) is a National Science Foundation funded program to bring optics education to underserved middle school students. We have developed the culminating module (Module 6) on laser communication. Students learn how lasers can be modulated to carry information. The main activity of this module is the construction of a low-cost laser communication system. The system can be built using parts readily available at a local electronics store for approximately US $60. The system can be used to transmit a person's voice or music from sources such as an mp3 player or radio over a distance of 350 feet. We will provide detailed plans on how to build the system in this paper.

  4. High-Rate Laser Communications for Human Exploration and Science

    Science.gov (United States)

    Robinson, B. S.; Shih, T.; Khatri, F. I.; King, T.; Seas, A.

    2018-02-01

    Laser communication links has been successfully demonstrated on recent near-Earth and lunar missions. We present a status of this development work and its relevance to a future Deep Space Gateway supporting human exploration and science activities.

  5. The C3PO project: a laser communication system concept for small satellites

    Science.gov (United States)

    d'Humières, Benoît; Esmiller, Bruno; Gouy, Yann; Steck, Emilie; Quintana, Crisanto; Faulkner, Graham; O'Brien, Dominic; Sproll, Fabian; Wagner, Paul; Hampf, Daniel; Riede, Wolfgang; Salter, Michael; Wang, Qin; Platt, Duncan; Jakonis, Darius; Piao, Xiaoyu; Karlsson, Mikael; Oberg, Olof; Petermann, Ingemar; Michalkiewicz, Aneta; Krezel, Jerzy; Debowska, Anna; Thueux, Yoann

    2017-02-01

    The satellite market is shifting towards smaller (micro and nanosatellites), lowered mass and increased performance platforms. Nanosatellites and picosatellites have been used for a number of new, innovative and unique payloads and missions. This trend requires new concepts for a reduced size, a better performance/weight ratio and a reduction of onboard power consumption. In this context, disruptive technologies, such as laser-optical communication systems, are opening new possibilities. This paper presents the C3PO1 system, "advanced Concept for laser uplink/ downlink CommuniCation with sPace Objects", and the first results of the development of its key technologies. This project targets the design of a communications system that uses a ground-based laser to illuminate a satellite, and a Modulating Retro-Reflector (MRR) to return a beam of light modulated by data to the ground. This enables a downlink, without a laser source on the satellite. This architecture suits well to small satellite applications so as high data rates are potentially provided with very low board mass. C3PO project aims to achieve data rates of 1Gbit/s between LEO satellites and Earth with a communication payload mass of less than 1kilogram. In this paper, results of the initial experiments and demonstration of the key technologies will be shown.

  6. Temporal characteristic analysis of laser-modulated pulsed X-ray source for space X-ray communication

    Science.gov (United States)

    Hang, Shuang; Liu, Yunpeng; Li, Huan; Tang, Xiaobin; Chen, Da

    2018-04-01

    X-ray communication (XCOM) is a new communication type and is expected to realize high-speed data transmission in some special communication scenarios, such as deep space communication and blackout communication. This study proposes a high-speed modulated X-ray source scheme based on the laser-to-X-ray conversion. The temporal characteristics of the essential components of the proposed laser-modulated pulsed X-ray source (LMPXS) were analyzed to evaluate its pulse emission performance. Results show that the LMPXS can provide a maximum modulation rate up to 100 Mbps which is expected to significantly improve the data rate of XCOM.

  7. Fusion of adaptive beam steering and optimization-based wavefront control for laser communications in atmosphere

    Science.gov (United States)

    Nikulin, Vladimir V.

    2005-10-01

    The performance of mobile laser communication systems operating within Earth's atmosphere is generally limited by the pointing errors due to movement of the platforms and mechanical vibrations. In addition, atmospheric turbulence causes changes of the refractive index along the propagation path, creating random redistribution of the optical energy in the spatial domain. Under adverse conditions these effects lead to increased bit error rate. While traditional approaches provide separate treatment of these problems, suggesting high-bandwidth beam steering systems for tracking and wavefront control for the mitigation of atmospheric effects, the two tasks can be integrated. This paper presents a hybrid laser beam-steering-wavefront-control system comprising an electrically addressed spatial light modulator (SLM) installed on the Omni-Wrist sensor mount. The function of the Omni-Wrist is to provide coarse steering over a wide range of pointing angles, while that of the SLM is twofold: wavefront correction and fine steering. The control law for the Omni-Wrist is synthesized using a decentralized approach that provides independent access to the azimuth and declination channels; calculation of the required phase profile for the SLM is optimization-based. This paper presents the control algorithms, the approach to coordinating the operation of the two systems, and the results.

  8. Dynamic evolution of temporal dissipative-soliton molecules in large normal path-averaged dispersion fiber lasers

    International Nuclear Information System (INIS)

    Liu Xueming

    2010-01-01

    The robust dissipative soliton molecules (DSM's) exhibiting as the quasirectangular spectral profile are investigated numerically and observed experimentally in mode-locked fiber lasers with the large normal path-averaged dispersion and the large net cavity dispersion. These DSM's have an independently evolving phase with a pulse duration T 0 of about 20 ps and a peak-to-peak separation of about 8T 0 . Under laboratory conditions, the proposed laser delivers vibrating DSM's with an oscillating amplitude of less than a percent of peak separation. Numerical simulations show that DSM's are characterized by a spectral modulation pattern with about a 3-dB modulation depth measured as an averaged value. The experimental observations are in excellent agreement with the numerical predictions.

  9. A Path Model of Political Cognitions and Attitudes, Communication, and Voting Behavior in a Congressional Election.

    Science.gov (United States)

    Kimsey, William D.; Atwood, L. Erwin

    A path model was developed to assess the effects of early campaign cognitions and attitudes on media use and interpersonal communication, subsequent cognitions, attitudes, and vote. Two interpretations of possible outcomes were postulated: agenda setting, and uses and gratifications. It was argued that an agenda-setting interpretation would be…

  10. Solar Pumped Solid State Lasers for Space Solar Power: Experimental Path

    Science.gov (United States)

    Fork, Richard L.; Carrington, Connie K.; Walker, Wesley W.; Cole, Spencer T.; Green, Jason J. A.; Laycock, Rustin L.

    2003-01-01

    We outline an experimentally based strategy designed to lead to solar pumped solid state laser oscillators useful for space solar power. Our method involves solar pumping a novel solid state gain element specifically designed to provide efficient conversion of sunlight in space to coherent laser light. Kilowatt and higher average power is sought from each gain element. Multiple such modular gain elements can be used to accumulate total average power of interest for power beaming in space, e.g., 100 kilowatts and more. Where desirable the high average power can also be produced as a train of pulses having high peak power (e.g., greater than 10(exp 10 watts). The modular nature of the basic gain element supports an experimental strategy in which the core technology can be validated by experiments on a single gain element. We propose to do this experimental validation both in terrestrial locations and also on a smaller scale in space. We describe a terrestrial experiment that includes diagnostics and the option of locating the laser beam path in vacuum environment. We describe a space based experiment designed to be compatible with the Japanese Experimental Module (JEM) on the International Space Station (ISS). We anticipate the gain elements will be based on low temperature (approx. 100 degrees Kelvin) operation of high thermal conductivity (k approx. 100 W/cm-K) diamond and sapphire (k approx. 4 W/cm-K). The basic gain element will be formed by sequences of thin alternating layers of diamond and Ti:sapphire with special attention given to the material interfaces. We anticipate this strategy will lead to a particularly simple, robust, and easily maintained low mass modelocked multi-element laser oscillator useful for space solar power.

  11. A multi-rate DPSK modem for free-space laser communications

    Science.gov (United States)

    Spellmeyer, N. W.; Browne, C. A.; Caplan, D. O.; Carney, J. J.; Chavez, M. L.; Fletcher, A. S.; Fitzgerald, J. J.; Kaminsky, R. D.; Lund, G.; Hamilton, S. A.; Magliocco, R. J.; Mikulina, O. V.; Murphy, R. J.; Rao, H. G.; Scheinbart, M. S.; Seaver, M. M.; Wang, J. P.

    2014-03-01

    The multi-rate DPSK format, which enables efficient free-space laser communications over a wide range of data rates, is finding applications in NASA's Laser Communications Relay Demonstration. We discuss the design and testing of an efficient and robust multi-rate DPSK modem, including aspects of the electrical, mechanical, thermal, and optical design. The modem includes an optically preamplified receiver, an 0.5-W average power transmitter, a LEON3 rad-hard microcontroller that provides the command and telemetry interface and supervisory control, and a Xilinx Virtex-5 radhard reprogrammable FPGA that both supports the high-speed data flow to and from the modem and controls the modem's analog and digital subsystems. For additional flexibility, the transmitter and receiver can be configured to support operation with multi-rate PPM waveforms.

  12. Synchronization and bidirectional communication without delay line using strong mutually coupled semiconductor lasers

    Science.gov (United States)

    Li, Guang-Hui; Wang, An-Bang; Feng, Ye; Wang, Yang

    2010-07-01

    This paper numerically demonstrates synchronization and bidirectional communication without delay line by using two semiconductor lasers with strong mutual injection in a face-to-face configuration. These results show that both of the two lasers' outputs synchronize with their input chaotic carriers. In addition, simulations demonstrate that this kind of synchronization can be used to realize bidirectional communications without delay line. Further studies indicate that within a small deviation in message amplitudes of two sides (±6%), the message can be extracted with signal-noise-ratio more than 10 dB; and the signal-noise-ratio is extremely sensitive to the message rates mismatch of two sides, which may be used as a key of bidirectional communication.

  13. Synchronization and bidirectional communication without delay line using strong mutually coupled semiconductor lasers

    International Nuclear Information System (INIS)

    Guang-Hui, Li; An-Bang, Wang; Ye, Feng; Yang, Wang

    2010-01-01

    This paper numerically demonstrates synchronization and bidirectional communication without delay line by using two semiconductor lasers with strong mutual injection in a face-to-face configuration. These results show that both of the two lasers' outputs synchronize with their input chaotic carriers. In addition, simulations demonstrate that this kind of synchronization can be used to realize bidirectional communications without delay line. Further studies indicate that within a small deviation in message amplitudes of two sides (±6%), the message can be extracted with signal-noise-ratio more than 10 dB; and the signal-noise-ratio is extremely sensitive to the message rates mismatch of two sides, which may be used as a key of bidirectional communication. (general)

  14. 5W intracavity frequency-doubled green laser for laser projection

    Science.gov (United States)

    Yan, Boxia; Bi, Yong; Li, Shu; Wang, Dongdong; Wang, Dongzhou; Qi, Yan; Fang, Tao

    2014-11-01

    High power green laser has many applications such as high brightness laser projection and large screen laser theater. A compact and high power green-light source has been developed in diode-pumped solid-state laser based on MgO doped periodically poled LiNbO3 (MgO:PPLN). 5W fiber coupled green laser is achieved by dual path Nd:YVO4/MgO:PPLN intra-cacity frequency-doubled. Single green laser maximum power 2.8W at 532nm is obtained by a 5.5W LD pumped, MgO:PPLN dimensions is 5mm(width)×1mm(thickness)×2mm(length), and the optical to optical conversion efficiency is 51%. The second LD series connected with the one LD, the second path green laser is obtained using the same method. Then the second path light overlap with the first path by the reflection mirrors, then couple into the fiber with a focus mirror. Dual of LD, Nd:YVO4, MgO:PPLN are placed on the same heat sink using a TEC cooling, the operating temperature bandwidth is about 12°C and the stablity is 5% in 96h. A 50×50×17mm3 laser module which generated continuous-wave 5 W green light with high efficiency and width temperature range is demonstrated.

  15. Compact wireless control network protocol with fast path switching

    Directory of Open Access Journals (Sweden)

    Yasutaka Kawamoto

    2017-08-01

    Full Text Available Sensor network protocol stacks require the addition or adjustment of functions based on customer requirements. Sensor network protocols that require low delay and low packet error rate (PER, such as wireless control networks, often adopt time division multiple access (TDMA. However, it is difficult to add or adjust functions in protocol stacks that use TDMA methods. Therefore, to add or adjust functions easily, we propose NES-SOURCE, a compact wireless control network protocol with a fast path-switching function. NES-SOURCE is implemented using carrier sense multiple access/collision avoidance (CSMA/CA rather than TDMA. Wireless control networks that use TDMA prevent communication failure by duplicating the communication path. If CSMA/CA networks use duplicate paths, collisions occur frequently, and communication will fail. NES-SOURCE switches paths quickly when communication fails, which reduces the effect of communication failures. Since NES-SOURCE is implemented using CSMA/CA rather than TDMA, the implementation scale is less than one-half that of existing network stacks. Furthermore, since NES-SOURCE’s code complexity is low, functions can be added or adjusted easily and quickly. Communication failures occur owing to changes in the communication environment and collisions. Experimental results demonstrate that the proposed NES-SOURCE’s path-switching function reduces the amount of communication failures when the communication environment changes owing to human movement and others. Furthermore, we clarify the relationships among the probability of a changing communication environment, the collision occurrence rate, and the PER of NES-SOURCE.

  16. Research on atmospheric CO2 remote sensing with open-path tunable diode laser absorption spectroscopy and comparison methods

    Science.gov (United States)

    Xin, Fengxin; Guo, Jinjia; Sun, Jiayun; Li, Jie; Zhao, Chaofang; Liu, Zhishen

    2017-06-01

    An open-path atmospheric CO2 measurement system was built based on tunable diode laser absorption spectroscopy (TDLAS). The CO2 absorption line near 2 μm was selected, measuring the atmospheric CO2 with direct absorption spectroscopy and carrying on the comparative experiment with multipoint measuring instruments of the open-path. The detection limit of the TDLAS system is 1.94×10-6. The calibration experiment of three AZ-7752 handheld CO2 measuring instruments was carried out with the Los Gatos Research gas analyzer. The consistency of the results was good, and the handheld instrument could be used in the TDLAS system after numerical calibration. With the contrast of three AZ-7752 and their averages, the correlation coefficients are 0.8828, 0.9004, 0.9079, and 0.9393 respectively, which shows that the open-path TDLAS has the best correlation with the average of three AZ-7752 and measures the concentration of atmospheric CO2 accurately. Multipoint measurement provides a convenient comparative method for open-path TDLAS.

  17. Free-space laser communication technologies IV; Proceedings of the 4th Conference, Los Angeles, CA, Jan. 23, 24, 1992

    Science.gov (United States)

    Begley, David L. (Editor); Seery, Bernard D. (Editor)

    1992-01-01

    Papers included in this volume are grouped under topics of receivers; laser transmitters; components; system analysis, performance, and applications; and beam control (pointing, acquisition, and tracking). Papers are presented on an experimental determination of power penalty contributions in an optical Costas-type phase-locked loop receiver, a resonant laser receiver for free-space laser communications, a simple low-loss technique for frequency-locking lasers, direct phase modulation of laser diodes, and a silex beacon. Particular attention is given to experimental results on an optical array antenna for nonmechanical beam steering, a potassium Faraday anomalous dispersion optical filter, a 100-Mbps resonant cavity phase modulator for coherent optical communications, a numerical simulation of a 325-Mbit/s QPPM optical communication system, design options for an optical multiple-access data relay terminal, CCD-based optical tracking loop design trades, and an analysis of a spatial-tracking subsystem for optical communications.

  18. Laser Rate Equation Based Filtering for Carrier Recovery in Characterization and Communication

    DEFF Research Database (Denmark)

    Piels, Molly; Iglesias Olmedo, Miguel; Xue, Weiqi

    2015-01-01

    We formulate a semiconductor laser rate equationbased approach to carrier recovery in a Bayesian filtering framework. Filter stability and the effect of model inaccuracies (unknown or un-useable rate equation coefficients) are discussed. Two potential application areas are explored: laser...... characterization and carrier recovery in coherent communication. Two rate equation based Bayesian filters, the particle filter and extended Kalman filter, are used in conjunction with a coherent receiver to measure frequency noise spectrum of a photonic crystal cavity laser with less than 20 nW of fiber...

  19. Experimental demonstration of a retro-reflective laser communication link on a mobile platform

    Science.gov (United States)

    Nikulin, Vladimir V.; Malowicki, John E.; Khandekar, Rahul M.; Skormin, Victor A.; Legare, David J.

    2010-02-01

    Successful pointing, acquisition, and tracking (PAT) are crucial for the implementation of laser communication links between ground and aerial vehicles. This technology has advantages over the traditional radio frequency communication, thus justifying the research efforts presented in this paper. The authors have been successful in the development of a high precision, agile, digitally controlled two-degree-of-freedom electromechanical system for positioning of optical instruments, cameras, telescopes, and communication lasers. The centerpiece of this system is a robotic manipulator capable of singularity-free operation throughout the full hemisphere range of yaw/pitch motion. The availability of efficient two-degree-of-freedom positioning facilitated the development of an optical platform stabilization system capable of rejecting resident vibrations with the angular and frequency range consistent with those caused by a ground vehicle moving on a rough terrain. This technology is being utilized for the development of a duplex mobile PAT system demonstrator that would provide valuable feedback for the development of practical laser communication systems intended for fleets of moving ground, and possibly aerial, vehicles. In this paper, a tracking system providing optical connectivity between stationary and mobile ground platforms is described. It utilizes mechanical manipulator to perform optical platform stabilization and initial beam positioning, and optical tracking for maintaining the line-of-sight communication. Particular system components and the challenges of their integration are described. The results of field testing of the resultant system under practical conditions are presented.

  20. Path Hopping: An MTD Strategy for Long-Term Quantum-Safe Communication

    Directory of Open Access Journals (Sweden)

    Reihaneh Safavi-Naini

    2018-01-01

    Full Text Available Moving target defense (MTD strategies have been widely studied for securing computer systems. We consider using MTD strategies to provide long-term cryptographic security for message transmission against an eavesdropping adversary who has access to a quantum computer. In such a setting, today’s widely used cryptographic systems including Diffie-Hellman key agreement protocol and RSA cryptosystem will be insecure and alternative solutions are needed. We will use a physical assumption, existence of multiple communication paths between the sender and the receiver, as the basis of security, and propose a cryptographic system that uses this assumption and an MTD strategy to guarantee efficient long-term information theoretic security even when only a single path is not eavesdropped. Following the approach of Maleki et al., we model the system using a Markov chain, derive its transition probabilities, propose two security measures, and prove results that show how to calculate these measures using transition probabilities. We define two types of attackers that we call risk-taking and risk-averse and compute our proposed measures for the two types of adversaries for a concrete MTD strategy. We will use numerical analysis to study tradeoffs between system parameters, discuss our results, and propose directions for future research.

  1. COTS low-cost 622-Mb/s free-space laser communications link for short-distance commercial applications

    Science.gov (United States)

    Morrison, Kenneth A.

    2000-05-01

    The results from a low cost 622 Mb/s, free-space laser communication link operating at 850 nm for short distance commercial applications is presented. The test results demonstrate the use of a free-space laser communications transceiver for building to building applications such as LAN, WAN and ATM operations, etc. This illustrates the potential for wide-use commercial computer network applications. The transceiver is constructed of commercial off-the-shelf materials for the development of a low-cost laser communications data link. The test system configuration utilizes standard Personal Computers with network cards and signal conversion cards for the copper to optical medical conversion. These tests precede the development of an increased data rate device operating at 2.5 Gb/s.

  2. Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication

    KAUST Repository

    Chi, Yu-Chieh; Hsieh, Dan-Hua; Lin, Chung-Yu; Chen, Hsiang-Yu; Huang, Chia-Yen; He, Jr-Hau; Ooi, Boon S.; DenBaars, Steven P.; Nakamura, Shuji; Kuo, Hao-Chung; Lin, Gong-Ru

    2015-01-01

    An advanced light-fidelity (Li-Fi) system based on the blue Gallium nitride (GaN) laser diode (LD) with a compact white-light phosphorous diffuser is demonstrated for fusing the indoor white-lighting and visible light communication (VLC

  3. Terre des Lasers: the new Aquitaine outreach and communication center in photonics

    Science.gov (United States)

    Prulhiere, Jean Paul; Sarger, Laurent

    2009-06-01

    The competitive cluster "Route des Lasers" has been labeled by the French Government in July 2005. In this context, it has launched in September 2005, in cooperation with Commissariat à l'Energie Atomique (CEA) and Regional Council a project involving scientific exhibitions, called "Terre des Lasers ®", in order to create an exhibition and an area of communication and science discovery or a very large target (public, school, industry) in the fields of optics, lasers, optronics and imaging. This initiative is part of the strategy of the "Route des Lasers" center which aims to promote technologies developed in the areas of photonics, targeting in particular children and teenagers and their awareness for this particular industrial and scientific topic.

  4. Research on the optoacoustic communication system for speech transmission by variable laser-pulse repetition rates

    Science.gov (United States)

    Jiang, Hongyan; Qiu, Hongbing; He, Ning; Liao, Xin

    2018-06-01

    For the optoacoustic communication from in-air platforms to submerged apparatus, a method based on speech recognition and variable laser-pulse repetition rates is proposed, which realizes character encoding and transmission for speech. Firstly, the theories and spectrum characteristics of the laser-generated underwater sound are analyzed; and moreover character conversion and encoding for speech as well as the pattern of codes for laser modulation is studied; lastly experiments to verify the system design are carried out. Results show that the optoacoustic system, where laser modulation is controlled by speech-to-character baseband codes, is beneficial to improve flexibility in receiving location for underwater targets as well as real-time performance in information transmission. In the overwater transmitter, a pulse laser is controlled to radiate by speech signals with several repetition rates randomly selected in the range of one to fifty Hz, and then in the underwater receiver laser pulse repetition rate and data can be acquired by the preamble and information codes of the corresponding laser-generated sound. When the energy of the laser pulse is appropriate, real-time transmission for speaker-independent speech can be realized in that way, which solves the problem of underwater bandwidth resource and provides a technical approach for the air-sea communication.

  5. Study on load temperature control system of ground laser communication

    Science.gov (United States)

    Zhai, Xunhua; Zhang, Hongtao; Liu, Wangsheng; Zhang, Chijun; Zhou, Xun

    2007-12-01

    The ground laser communication terminal as the termination of a communication system, works at the temperature which varies from -40°C to 50°C. We design a temperature control system to keep optical and electronic components working properly in the load. The load is divided into two sections to control temperature respectively. Because the space is limited, we use heater film and thermoelectric cooler to clearify and refrigerate the load. We design a hardware and a software for the temperature control system, establish mathematic model, and emulate it with Matlab.

  6. Novel CO2 laser robotic controller outperforms experienced laser operators in tasks of accuracy and performance repeatability.

    Science.gov (United States)

    Wong, Yu-Tung; Finley, Charles C; Giallo, Joseph F; Buckmire, Robert A

    2011-08-01

    To introduce a novel method of combining robotics and the CO(2) laser micromanipulator to provide excellent precision and performance repeatability designed for surgical applications. Pilot feasibility study. We developed a portable robotic controller that appends to a standard CO(2) laser micromanipulator. The robotic accuracy and laser beam path repeatability were compared to six experienced users of the industry standard micromanipulator performing the same simulated surgical tasks. Helium-neon laser beam video tracking techniques were employed. The robotic controller demonstrated superiority over experienced human manual micromanipulator control in accuracy (laser path within 1 mm of idealized centerline), 97.42% (standard deviation [SD] 2.65%), versus 85.11% (SD 14.51%), P = .018; and laser beam path repeatability (area of laser path divergence on successive trials), 21.42 mm(2) (SD 4.35 mm(2) ) versus 65.84 mm(2) (SD 11.93 mm(2) ), P = .006. Robotic micromanipulator control enhances accuracy and repeatability for specific laser tasks. Computerized control opens opportunity for alternative user interfaces and additional safety features. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  7. Methods and Devices for Space Optical Communications Using Laser Beams

    Science.gov (United States)

    Goorjian, Peter M. (Inventor)

    2018-01-01

    Light is used to communicate between objects separated by a large distance. Light beams are received in a telescopic lens assembly positioned in front of a cat's-eye lens. The light can thereby be received at various angles to be output by the cat's-eye lens to a focal plane of the cat's-eye lens, the position of the light beams upon the focal plane corresponding to the angle of the beam received. Lasers and photodetectors are distributed along this focal plane. A processor receives signals from the photodetectors, and selectively signal lasers positioned proximate the photodetectors detecting light, in order to transmit light encoding data through the cat's-eye lens and also through a telescopic lens back in the direction of the received light beams, which direction corresponds to a location upon the focal plane of the transmitting lasers.

  8. Active standoff detection of CH4 and N2O leaks using hard-target backscattered light using an open-path quantum cascade laser sensor

    Science.gov (United States)

    Diaz, Adrian; Thomas, Benjamin; Castillo, Paulo; Gross, Barry; Moshary, Fred

    2016-05-01

    Fugitive gas emissions from agricultural or industrial plants and gas pipelines are an important environmental concern as they contribute to the global increase of greenhouse gas concentrations. Moreover, they are also a security and safety concern because of possible risk of fire/explosion or toxicity. This study presents standoff detection of CH4 and N2O leaks using a quantum cascade laser open-path system that retrieves path-averaged concentrations by collecting the backscattered light from a remote hard target. It is a true standoff system and differs from other open-path systems that are deployed as point samplers or long-path transmission systems that use retroreflectors. The measured absorption spectra are obtained using a thermal intra-pulse frequency chirped DFB quantum cascade laser at ~7.7 µm wavelength range with ~200 ns pulse width. Making fast time resolved observations, the system simultaneously realizes high spectral resolution and range to the target, resulting in path-averaged concentration retrieval. The system performs measurements at high speed ~15 Hz and sufficient range (up to 45 m, ~148 feet) achieving an uncertainty of 3.1 % and normalized sensitivity of 3.3 ppm m Hz-1/2 for N2O and 9.3 % and normalized sensitivity of 30 ppm m Hz-1/2 for CH4 with a 0.31 mW average power QCL. Given these characteristics, this system is promising for mobile or multidirectional search and remote detection of gas leaks.

  9. Medieval Settlement Formation in Catalonia: Villages, their Territories and communication paths

    Directory of Open Access Journals (Sweden)

    Jordi BOLÒS

    2014-04-01

    Full Text Available This study focuses its attention on Catalonia and points to the importance of using several literary sources as a means of identifying the main characteristics of Catalan settlements throughout the Early Middle Ages (6th-10th Centuries. Apart from the need to use written and archaeological documents, the study highlights the importance of understanding and interpreting place-names and of reconstructing landscape history. Special emphasis is placed on the interest of interpreting by means of consulting documents, maps and orthophotomaps as witnesses that allow us to know the boundaries of the Early Medieval settlements. At the centre of these boundaries stand several small population centres (hamlets and a church. Several agricultural territories of various villages are reconstructed. Likewise, the study relates population with communication paths, churches and necropolis of the Early Middle Ages.

  10. Visible Lasers and Emerging Color Converters for Lighting and Visible Light Communications

    KAUST Repository

    Shen, Chao

    2017-10-30

    GaN-based lasers are promising for white lighting and visible-light communication (VLC). The advances of III-nitride photonic integration, and the application of YAG crystal and perovskite-based phosphors to lighting and VLC will be discussed.

  11. Visible Lasers and Emerging Color Converters for Lighting and Visible Light Communications

    KAUST Repository

    Shen, Chao

    2017-01-01

    GaN-based lasers are promising for white lighting and visible-light communication (VLC). The advances of III-nitride photonic integration, and the application of YAG crystal and perovskite-based phosphors to lighting and VLC will be discussed.

  12. Free Space Laser Communication Experiments from Earth to the Lunar Reconnaissance Orbiter in Lunar Orbit

    Science.gov (United States)

    Sun, Xiaoli; Skillman, David R.; Hoffman, Evan D.; Mao, Dandan; McGarry, Jan F.; Zellar, Ronald S.; Fong, Wai H; Krainak, Michael A.; Neumann, Gregory A.; Smith, David E.

    2013-01-01

    Laser communication and ranging experiments were successfully conducted from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit. The experiments used 4096-ary pulse position modulation (PPM) for the laser pulses during one-way LRO Laser Ranging (LR) operations. Reed-Solomon forward error correction codes were used to correct the PPM symbol errors due to atmosphere turbulence and pointing jitter. The signal fading was measured and the results were compared to the model.

  13. A mobile communication device adapted to provide a dynamic display arrangement

    DEFF Research Database (Denmark)

    2011-01-01

    The invention relates to a mobile communication device comprising a light projector adapted to project a multi-coloured image onto a surface; a hinged mirror comprising a first mirror part adapted to be tilted around the hinge into the light path of the light projector; wherein the first mirror...... part comprises means for correcting a skew angle in the multi-coloured image projected onto a surface. Thereby is achieved that the mobile communication device is able to provide RGB full colour dynamic image projection which is preferred over monochromatic laser projection because it is a speckle free...... and eye-friendly projection....

  14. NASA Laser Communications with Adaptive Optics and Linear Mode Photon Counting, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this effort, the Optical Sciences Company (tOSC) and Raytheon Vision Systems (RVS) will team to provide NASA with a long range laser communications system for...

  15. Transport mean free path in K5Bi1-xNdx(MoO4)4 laser crystal powders

    International Nuclear Information System (INIS)

    Illarramendi, M A; Aramburu, I; Fernandez, J; Balda, R; Al-Saleh, M

    2007-01-01

    In this work, we calculate in two different ways the transport mean free paths in K 5 Bi 1-x Nd x (MoO 4 ) 4 (x = 0.05, 0.2, 1) laser crystal powders by using the diffuse spectral reflectance and transmittance of the powders and the absorption coefficient of the crystal materials. The theoretical calculations have been made by assuming a diffusive propagation of light in these materials. Similar results have been obtained from both methods

  16. Link establishment criterion and topology optimization for hybrid GPS satellite communications with laser crosslinks

    Science.gov (United States)

    Li, Lun; Wei, Sixiao; Tian, Xin; Hsieh, Li-Tse; Chen, Zhijiang; Pham, Khanh; Lyke, James; Chen, Genshe

    2018-05-01

    In the current global positioning system (GPS), the reliability of information transmissions can be enhanced with the aid of inter-satellite links (ISLs) or crosslinks between satellites. Instead of only using conventional radio frequency (RF) crosslinks, the laser crosslinks provide an option to significantly increase the data throughput. The connectivity and robustness of ISL are needed for analysis, especially for GPS constellations with laser crosslinks. In this paper, we first propose a hybrid GPS communication architecture in which uplinks and downlinks are established via RF signals and crosslinks are established via laser links. Then, we design an optical crosslink assignment criteria considering the practical optical communication factors such as optical line- of-sight (LOS) range, link distance, and angular velocity, etc. After that, to further improve the rationality of establishing crosslinks, a topology control algorithm is formulated to optimize GPS crosslink networks at both physical and network layers. The RF transmission features for uplink and downlink and optical transmission features for crosslinks are taken into account as constraints for the optimization problem. Finally, the proposed link establishment criteria are implemented for GPS communication with optical crosslinks. The designs of this paper provide a potential crosslink establishment and topology control algorithm for the next generation GPS.

  17. Combined Effect of Random Transmit Power Control and Inter-Path Interference Cancellation on DS-CDMA Packet Mobile Communications

    Science.gov (United States)

    Kudoh, Eisuke; Ito, Haruki; Wang, Zhisen; Adachi, Fumiyuki

    In mobile communication systems, high speed packet data services are demanded. In the high speed data transmission, throughput degrades severely due to severe inter-path interference (IPI). Recently, we proposed a random transmit power control (TPC) to increase the uplink throughput of DS-CDMA packet mobile communications. In this paper, we apply IPI cancellation in addition to the random TPC. We derive the numerical expression of the received signal-to-interference plus noise power ratio (SINR) and introduce IPI cancellation factor. We also derive the numerical expression of system throughput when IPI is cancelled ideally to compare with the Monte Carlo numerically evaluated system throughput. Then we evaluate, by Monte-Carlo numerical computation method, the combined effect of random TPC and IPI cancellation on the uplink throughput of DS-CDMA packet mobile communications.

  18. Simultaneous Laser Ranging and Communication from an Earth-Based Satellite Laser Ranging Station to the Lunar Reconnaissance Orbiter in Lunar Orbit

    Science.gov (United States)

    Sun, Xiaoli; Skillman, David R.; Hoffman, Evan D.; Mao, Dandan; McGarry, Jan F.; Neumann, Gregory A.; McIntire, Leva; Zellar, Ronald S.; Davidson, Frederic M.; Fong, Wai H.; hide

    2013-01-01

    We report a free space laser communication experiment from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit through the on board one-way Laser Ranging (LR) receiver. Pseudo random data and sample image files were transmitted to LRO using a 4096-ary pulse position modulation (PPM) signal format. Reed-Solomon forward error correction codes were used to achieve error free data transmission at a moderate coding overhead rate. The signal fading due to the atmosphere effect was measured and the coding gain could be estimated.

  19. Direct measuring of single-cycle mid-IR light bullets path length in LiF by the laser coloration method

    Directory of Open Access Journals (Sweden)

    Chekalin Sergey

    2017-01-01

    Full Text Available A colour-centre structure formed in a LiF crystal under filamentation of a femtosecond mid-IR laser pulse with a power slightly exceeding the critical power for self-focusing has been experimentally and theoretically investigated. A single-cycle light bullet was recorded for the first time by observation of strictly periodic oscillations for the density of the color centers induced in an isotropic LiF crystal under filamentation of a laser beam with a wavelength tuned in the range from 2600 to 3900 nm, which is due to the periodic change in the light field amplitude in the light bullet formed under filamentation under propagation in dispersive medium. The light bullet path length was not more than one millimeter.

  20. Integrated Path Detection of Co2 and CH4 Using a Waveform Driven Electro-Optic Single Sideband Laser Source

    Directory of Open Access Journals (Sweden)

    Wagner Gerd

    2016-01-01

    Full Text Available Integrated path concentrations of ambient levels of carbon dioxide and methane have been measured during nighttime periods at NIST, Boulder (CO, USA, using a ground-based, eyesafe laser system. In this contribution, we describe the transmitter and receiver system, demonstrate measurements of CO2 and CH4 in comparison with an in situ point sensor measurement using a commercial cavity ring-down instrument, and demonstrate a speckle noise reduction method.

  1. A Day in the Life of the Laser Communications Relay Demonstration Project

    Science.gov (United States)

    Edwards, Bernard; Israel, David; Caroglanian, Armen; Spero, James; Roberts, Tom; Moores, John

    2016-01-01

    This paper provides an overview of the planned concept of operations for the Laser Communications Relay Demonstration Project (LCRD), a joint project among NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). LCRD will provide at least two years of bi-directional optical communications at user data rates of up to 1.244 Gbps in an operational environment. The project lays the groundwork for establishing communications architecture and protocols, and developing the communications hardware and support infrastructure, concluding in a demonstration of optical communications' potential to meet NASA's growing need for higher data rates for future science and exploration missions. A pair of flight optical communications terminals will reside on a single commercial communications satellite in geostationary orbit; the two ground optical communications terminals will be located in Southern California and Hawaii. This paper summarizes the current LCRD architecture and key systems for the demonstration, focusing on what it will take to operate an optical communications relay that can support space-to-space, space-to-air, and space-to-ground optical links.

  2. A Study of the r-Process Path Nuclides,$^{137,138,139}$Sb using the Enhanced Selectivity of Resonance Ionization Laser Ionization

    CERN Multimedia

    Walters, W

    2002-01-01

    The particular features of the r-process abundances with 100 < A < 150 have demonstrated the close connection between knowledge of nuclear structure and decay along the r-process path and the astrophysical environement in which these elements are produced. Key to this connection has been the measurement of data for nuclides (mostly even-N nuclides) that lie in the actual r-process path. Such data are of direct use in r-process calculations and they also serve to refine and test the predictive power of nuclear models where little or no data now exist. In this experiment we seek to use the newly developed ionization scheme for the Resonance Ionization Laser Ion Source (RILIS) to achieve selective ionization of neutron-rich antimony isotopes in order to measure the decay properties of r-process path nuclides $^{137,138,139}$Sb. These properties include the half-lives, delayed neutron branches, and daughter $\\gamma$-rays. The new nuclear structure data for the daughter Te nuclides is also of considerable in...

  3. Laser modulator for LISA pathfinder

    Science.gov (United States)

    Voland, C.; Lund, G.; Coppoolse, W.; Crosby, P.; Stadler, M.; Kudielka, K.; Özkan, C.

    2017-11-01

    LISA Pathfinder is an ESA experiment to demonstrate the key technologies needed for the LISA mission to detect gravitational waves in space. The LISA Pathfinder spacecraft represents one arm of the LISA interferometer, containing an optical metrology system and two proof masses as inertial references for the drag-free control system. The LISA Pathfinder payload consists of two drag-free floating test masses located in the inertial sensors with their control electronics and an optical metrology subsystem. The optical metrology subsystem monitors the movement of both test masses relative to each other and to the spacecraft with very high sensitivity and resolution. This is achieved with a heterodyne Mach- Zehnder interferometer. This interferometer requires as input two coherent laser beams with a heterodyne frequency difference of a few kHz. To generate the two laser beams with a heterodyne frequency difference a Nd:YAG laser is used together with the Laser Modulator. The Nd:YAG laser generates a single coherent laser signal at a wavelength of 1064nm which is fibre coupled to the Laser Modulator. The Laser Modulator then generates the two optical beams with the required heterodyne frequency offset. In addition, the Laser Modulator is required to perform laser amplitude stabilization and optical path difference control for the two optical signals. The Laser Modulator consists of an optical unit - the LMU - and RF synthesiser, power amplification and control electronics. These electronics are all housed in the Laser Modulator Electronics (LME). The LMU has four primary functions: • Splitting of the input laser beam into two paths for later superposition in the interferometer. • Applying different frequency shifts to each of the beams. • Providing amplitude modulation control to each of the beams. • Providing active control of the optical path length difference between the two optical paths. The present paper describes the design and performance of the LMU

  4. Stereotactic CO2 laser therapy for hydrocephalus

    Science.gov (United States)

    Kozodoy-Pins, Rebecca L.; Harrington, James A.; Zazanis, George A.; Nosko, Michael G.; Lehman, Richard M.

    1994-05-01

    A new fiber-optic delivery system for CO2 radiation has been used to successfully treat non-communicating hydrocephalus. This system consists of a hollow sapphire waveguide employed in the lumen of a stereotactically-guided neuroendoscope. CO2 gas flows through the bore of the hollow waveguide, creating a path for the laser beam through the cerebrospinal fluid (CSF). This delivery system has the advantages of both visualization and guided CO2 laser radiation without the same 4.3 mm diameter scope. Several patients with hydrocephalus were treated with this new system. The laser was used to create a passage in the floor of the ventricle to allow the flow of CSF from the ventricles to the sub-arachnoid space. Initial postoperative results demonstrated a relief of the clinical symptoms. Long-term results will indicate if this type of therapy will be superior to the use of implanted silicone shunts. Since CO2 laser radiation at 10.6 micrometers is strongly absorbed by the water in tissue and CSF, damage to tissue surrounding the lesion with each laser pulse is limited. The accuracy and safety of this technique may prove it to be an advantageous therapy for obstructive hydrocephalus.

  5. Digital communication system

    International Nuclear Information System (INIS)

    Union, D.C.

    1980-01-01

    A digital communication system for communicating among two central consoles and a plurality of local controllers, e.g. in a radiation and monitoring system, provides communication between each of the consoles and all of the local controllers via dual paths. Each path is independent of the other and each extends from one of the consoles to all of the local controllers from opposite directions, thereby forming a unique non-continuous loop. (author)

  6. A hybrid CATV/16-QAM-OFDM visible laser light communication system

    International Nuclear Information System (INIS)

    Lin, Chun-Yu; Li, Chung-Yi; Lu, Hai-Han; Chen, Chia-Yi; Jhang, Tai-Wei; Ruan, Sheng-Siang; Wu, Kuan-Hung

    2014-01-01

    A visible laser light communication (VLLC) system employing a vertical cavity surface emitting laser and spatial light modulator with hybrid CATV/16-QAM-OFDM modulating signals over a 5 m free-space link is proposed and demonstrated. With the assistance of a push-pull scheme, low-noise amplifier, and equalizer, good performances of composite second-order and composite triple beat are obtained, accompanied by an acceptable carrier-to-noise ratio performance for a CATV signal, and a low bit error rate value and clear constellation map are achieved for a 16-QAM-OFDM signal. Such a hybrid CATV/16-QAM-OFDM VLLC system would be attractive for providing services including CATV, Internet and telecommunication services. (paper)

  7. Research cooperation in the development of laser radar for environmental measurements. Environmental network; Kankyo keisokuyo laser radar no kaihatsu ni kansuru kenkyu kyoryoku. Kankyo network

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Among the research cooperation in the development of laser radar for environmental measurements with Indonesia between FY 1993 and FY 1996, results of the research and development of the environmental network are summarized. For the environmental information network, the Tokyo NOC is linked as an Internet connection point in Japan with the Jakarta NOC using an international dedicated line with a capacity of 64 Kbps. The Tokyo NOC is linked with domestic environmental information researchers using Internet. Thus, data stored in the data processing system of laser radar can be exchanged, information in both countries can be exchanged using E-mail, and data can be accumulated. For the research cooperation with Indonesia, research of path control and information relay server, research of effective transmission of data on the network, and research of multimedia communication have been conducted. The multimedia communication, distributed processing, and extension of dedicated line network using PPTP have been also conducted. 39 figs., 4 tabs.

  8. Communicating via robust synchronization of chaotic lasers

    International Nuclear Information System (INIS)

    Lopez-Gutierrez, R.M.; Posadas-Castillo, C.; Lopez-Mancilla, D.; Cruz-Hernandez, C.

    2009-01-01

    In this paper, the robust synchronization problem for coupled chaotic Nd:YAG lasers is addressed. We resort to complex systems theory to achieve chaos synchronization. Based on stability theory, it is shown that the state trajectories of the perturbed error synchronization are ultimately bounded, provided the unperturbed synchronization error system is exponentially stable, and some conditions on the bounds of the perturbation terms are satisfied. So that, encoding, transmission, and decoding in chaotic optical communications are presented. We analyze the transmission and recovery of encrypted information when parameter mismatches are considered. Computer simulations are provided to show the effectiveness of this robustness synchronization property, we present the encrypted transmission of image messages, and we show that, the transmitted image is faithfully recovered.

  9. Communicating via robust synchronization of chaotic lasers

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Gutierrez, R.M. [Engineering Faculty, Baja California Autonomous University (UABC), Km. 103 Carret. Tij-Ens., 22860 Ensenada, B.C. (Mexico); Posadas-Castillo, C. [Engineering Faculty, Baja California Autonomous University (UABC), Km. 103 Carret. Tij-Ens., 22860 Ensenada, B.C. (Mexico); FIME, Autonomous University of Nuevo Leon (UANL), Pedro de Alba, S.N., Cd. Universitaria, San Nicolas de los Garza, NL (Mexico); Lopez-Mancilla, D. [Departamento de Ciencias Exactas y Tecnologicas, Centro Universitario de los Lagos, Universidad de Guadalajara (CULagos-UdeG), Enrique Diaz de Leon s/n, 47460 Lagos de Moreno, Jal. (Mexico); Cruz-Hernandez, C. [Electronics and Telecommunications Department, Scientific Research and Advanced Studies of Ensenada (CICESE), Km. 107 Carret. Tij-Ens., 22860 Ensenada, B.C. (Mexico)], E-mail: ccruz@cicese.mx

    2009-10-15

    In this paper, the robust synchronization problem for coupled chaotic Nd:YAG lasers is addressed. We resort to complex systems theory to achieve chaos synchronization. Based on stability theory, it is shown that the state trajectories of the perturbed error synchronization are ultimately bounded, provided the unperturbed synchronization error system is exponentially stable, and some conditions on the bounds of the perturbation terms are satisfied. So that, encoding, transmission, and decoding in chaotic optical communications are presented. We analyze the transmission and recovery of encrypted information when parameter mismatches are considered. Computer simulations are provided to show the effectiveness of this robustness synchronization property, we present the encrypted transmission of image messages, and we show that, the transmitted image is faithfully recovered.

  10. Laser wakefield acceleration with high-power, few-cycle mid-IR lasers

    OpenAIRE

    Papp, Daniel; Wood, Jonathan C.; Gruson, Vincent; Bionta, Mina; Gruse, Jan-Niclas; Cormier, Eric; Najmudin, Zulfikar; Légaré, François; Kamperidis, Christos

    2018-01-01

    The study of laser wakefield electron acceleration (LWFA) using mid-IR laser drivers is a promising path for future laser driven electronaccelerators, when compared to traditional near-IR laser drivers uperating at 0.8-1 {\\mu}m central wavelength ({\\lambda}laser), as the necessary vector potential a_0 for electron injection can be achieved with smaller laser powers due to the linear dependence on {\\lambda}laser. In this work, we perform 2D PIC simulations on LWFA using few-cycle high power (5...

  11. Design windows of laser fusion power plants and conceptual design of laser-diode pumped slab laser

    International Nuclear Information System (INIS)

    Kozaki, Y.; Eguchi, T.; Izawa, Y.

    1999-01-01

    An analysis of the design space available to laser fusion power plants has been carried out, in terms of design key parameters such as target gain, laser energy and laser repetition rate, the number of fusion react ion chambers, and plant size. The design windows of economically attractive laser fusion plants is identified with the constraints of key design parameters and the cost conditions. Especially, for achieving high repetition rate lasers, we have proposed and designed a diode-pumped solid-state laser driver which consists of water-cooled zig-zag path slab amplifiers. (author)

  12. Secure space-to-space interferometric communications and its nexus to the physics of quantum entanglement

    Science.gov (United States)

    Duarte, F. J.

    2016-12-01

    The history of the probability amplitude equation | ψ > = ( | x , y > - | y , x > ) applicable to quanta pairs, propagating in different directions with entangled polarizations, is reviewed and traced back to the 1947-1949 period. The interferometric Dirac foundations common to | ψ > = ( | x , y > - | y , x > ) and the generalized N-slit interferometric equation, for indistinguishable quanta, are also described. The results from a series of experiments on N-slit laser interferometers, with intra interferometric propagation paths up to 527 m, are reviewed. Particular attention is given to explain the generation of interferometric characters, for secure space-to-space communications, which immediately collapse on attempts of interception. The design of a low divergence N-slit laser interferometer for low Earth orbit-low Earth orbit (LEO-LEO), and LEO-geostationary Earth orbit (LEO-GEO), secure interferometric communications is described and a weight assessment is provided.

  13. Investigation into triggering lightning with a pulsed laser

    International Nuclear Information System (INIS)

    Schubert, C.W. Jr.; Lippert, J.R.

    1979-01-01

    Theoretical and experimental considerations for the triggering of lightning with a high-power pulsed laser are discussed. The mechanisms of laser-induced clean air breakdown, aerosol breakdown, and channel heating over a long path for the purpose of initiating and possibly guiding lightning are reviewed. It is shown that long path (of the order of one kilometer) ionization through laser-induced clean air breakdown is theoretically possible. Channel heating over a long path appears possible, but requires prohibitive energies. Indications are that long path ionization can be enhanced by taking advantage of the significantly reduced power requirements for aerosol breakdown. The Mt. Baldy, New Mexico, experimental test site for 1978 to 1979 experiments and triggering attempts is briefly described

  14. HiPER: The European path to laser energy

    Directory of Open Access Journals (Sweden)

    Edwards Chris

    2013-11-01

    Full Text Available While for decades, energy production relying on laser inertial fusion has been a strong motivation for the development in Europe of a few high-energy laser facilities and dedicated scientific programs, the HiPER initiative launched in 2004 fostered an ambitious large-scale coordinated European program toward inertial fusion energy. Anticipating the successful demonstration of fusion ignition and gain at the National Ignition Facility (NIF in the USA, scientists and engineers from across Europe are developing the case for a next generation laser fusion facility, HiPER, to be constructed in Europe. The single-facility build strategy of HiPER (High Power Laser Energy Research Facility aims at first demonstrating some key elements of a fusion reactor in a high rep-rate few-second cycle mode, before addressing energy production on a high rep-rate continuous mode in a second area.

  15. Multi-point laser ignition device

    Energy Technology Data Exchange (ETDEWEB)

    McIntyre, Dustin L.; Woodruff, Steven D.

    2017-01-17

    A multi-point laser device comprising a plurality of optical pumping sources. Each optical pumping source is configured to create pumping excitation energy along a corresponding optical path directed through a high-reflectivity mirror and into substantially different locations within the laser media thereby producing atomic optical emissions at substantially different locations within the laser media and directed along a corresponding optical path of the optical pumping source. An output coupler and one or more output lenses are configured to produce a plurality of lasing events at substantially different times, locations or a combination thereof from the multiple atomic optical emissions produced at substantially different locations within the laser media. The laser media is a single continuous media, preferably grown on a single substrate.

  16. A Day in the Life of the Laser Communications Relay Demonstration (LCRD) Project.

    Science.gov (United States)

    Israel, David; Caroglanian, Armen; Edwards, Bernard; Spero, James; Roberts, Tom; Moores, John

    2016-01-01

    This presentation provides an overview of the planned concept of operations for the Laser Communications Relay Demonstration Project (LCRD), a joint project among NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MITLL). LCRD will provide at least two years of bi-directional optical communications at user data rates of up to 1.244 Gbps in an operational environment. The project lays the ground work for establishing communications architecture and protocols, and developing the communications hardware and support infrastructure, concluding in a demonstration of optical communications potential to meet NASAs growing need for higher data rates for future science and exploration missions. A pair of flight optical communications terminals will reside on a single commercial communications satellite in geostationary orbit; the two ground optical communications terminals will be located in Southern California and Hawaii. This paper summarizes the current LCRD architecture and key systems for the demonstration, focusing on what it will take to operate an optical communications relay that can support space-to-space, space-to-air, and space-to-ground optical links.

  17. Design and construction of single path Raman laser

    International Nuclear Information System (INIS)

    Mavaddat, M.; Soltanolkotabi, M.

    2007-01-01

    In this paper the stimulated Raman effect has been reported.The pumping laser in this setup is He-Ne with wavelength of 632.8 nm. The first order Stokes line has been observed, to be at 776 nm. The pressure of methane gas in this setup has been increased to 20 bar. The diagram of the effect of the intensity of first order Stokes line as a function of pressure has been plotted. Also, two different pumping laser powers have been used in these investigations. Intensity of first order Stokes line has been increased with increasing gas pressure or laser power.

  18. Semipolar InGaN quantum-well laser diode with integrated amplifier for visible light communications

    KAUST Repository

    Shen, Chao

    2018-02-14

    GaN-based semiconductor optical amplifier (SOA) and its integration with laser diode (LD) is an essential building block yet to be demonstrated for III-nitride photonic integrated circuits (PICs) at visible wavelength. This paper presents the InGaN/GaN quantum well (QW) based dual-section LD consisting of integrated amplifier and laser gain regions fabricated on a semipolar GaN substrate. The threshold current in the laser gain region was favorably reduced from 229mA to 135mA at SOA driving voltages, VSOA, of 0V and 6.25V, respectively. The amplification effect was measured based on a large gain of 5.7 dB at VSOA = 6.25V from the increased optical output power of 8.2 mW to 30.5 mW. Such integrated amplifier can be modulated to achieve Gbps data communication using on-off keying technique. The monolithically integrated amplifier-LD paves the way towards the III-nitride on-chip photonic system, providing a compact, low-cost, and multi-functional solution for applications such as smart lighting and visible light communications.

  19. Semipolar InGaN quantum-well laser diode with integrated amplifier for visible light communications

    KAUST Repository

    Shen, Chao; Ng, Tien Khee; Lee, Changmin; Nakamura, Shuji; Speck, James S.; DenBaars, Steven P.; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2018-01-01

    GaN-based semiconductor optical amplifier (SOA) and its integration with laser diode (LD) is an essential building block yet to be demonstrated for III-nitride photonic integrated circuits (PICs) at visible wavelength. This paper presents the InGaN/GaN quantum well (QW) based dual-section LD consisting of integrated amplifier and laser gain regions fabricated on a semipolar GaN substrate. The threshold current in the laser gain region was favorably reduced from 229mA to 135mA at SOA driving voltages, VSOA, of 0V and 6.25V, respectively. The amplification effect was measured based on a large gain of 5.7 dB at VSOA = 6.25V from the increased optical output power of 8.2 mW to 30.5 mW. Such integrated amplifier can be modulated to achieve Gbps data communication using on-off keying technique. The monolithically integrated amplifier-LD paves the way towards the III-nitride on-chip photonic system, providing a compact, low-cost, and multi-functional solution for applications such as smart lighting and visible light communications.

  20. Inverse Compton scattering X-ray source yield optimization with a laser path folding system inserted in a pre-existent RF linac

    Energy Technology Data Exchange (ETDEWEB)

    Chaleil, A.; Le Flanchec, V.; Binet, A.; Nègre, J.P.; Devaux, J.F.; Jacob, V.; Millerioux, M.; Bayle, A.; Balleyguier, P. [CEA DAM DIF, F-91297 Arpajon (France); Prazeres, R. [CLIO/LCP, Bâtiment 201, Université Paris-Sud, F-91450 Orsay (France)

    2016-12-21

    An inverse Compton scattering source is under development at the ELSA linac of CEA, Bruyères-le-Châtel. Ultra-short X-ray pulses are produced by inverse Compton scattering of 30 ps-laser pulses by relativistic electron bunches. The source will be able to operate in single shot mode as well as in recurrent mode with 72.2 MHz pulse trains. Within this framework, an optical multipass system that multiplies the number of emitted X-ray photons in both regimes has been designed in 2014, then implemented and tested on ELSA facility in the course of 2015. The device is described from both geometrical and timing viewpoints. It is based on the idea of folding the laser optical path to pile-up laser pulses at the interaction point, thus increasing the interaction probability. The X-ray output gain measurements obtained using this system are presented and compared with calculated expectations.

  1. Level crossing statistics for optical beam wander in a turbulent atmosphere with applications to ground-to-space laser communications.

    Science.gov (United States)

    Yura, Harold T; Fields, Renny A

    2011-06-20

    Level crossing statistics is applied to the complex problem of atmospheric turbulence-induced beam wander for laser propagation from ground to space. A comprehensive estimate of the single-axis wander angle temporal autocorrelation function and the corresponding power spectrum is used to develop, for the first time to our knowledge, analytic expressions for the mean angular level crossing rate and the mean duration of such crossings. These results are based on an extension and generalization of a previous seminal analysis of the beam wander variance by Klyatskin and Kon. In the geometrical optics limit, we obtain an expression for the beam wander variance that is valid for both an arbitrarily shaped initial beam profile and transmitting aperture. It is shown that beam wander can disrupt bidirectional ground-to-space laser communication systems whose small apertures do not require adaptive optics to deliver uniform beams at their intended target receivers in space. The magnitude and rate of beam wander is estimated for turbulence profiles enveloping some practical laser communication deployment options and suggesting what level of beam wander effects must be mitigated to demonstrate effective bidirectional laser communication systems.

  2. Full aperture backscatter signal analysis of laser with hohlraum on Shenguang II laser facility

    International Nuclear Information System (INIS)

    Jiao Chunye; Wang Feng; Liu Shenye; Jiang Xiaohua; Li Sanwei; Liu Yonggang; Yang Jiamin; Gu Yuqiu; Wang Chuanke

    2010-01-01

    Full aperture backscatter system and experimental measurement of hohlraum with 351 nm wavelength laser on Shenguang II laser facility is reported. FABS optical path has been analyzed and the backscattering light completely entered FABS collecting optical path. FABS existed the background light when the eight beams symmetrically acted on hohlraum. The background light is composed of 526.5 nm and 1053 nm wavelength remains while the 1053 nm wavelength changes into 351 nm wavelength, according to records of laser sensitive paper and optical filter. The background light accounts for 15% of FABS energy from experimental measurement result. (authors)

  3. Cooperative path planning of unmanned aerial vehicles

    CERN Document Server

    Tsourdos, Antonios; Shanmugavel, Madhavan

    2010-01-01

    An invaluable addition to the literature on UAV guidance and cooperative control, Cooperative Path Planning of Unmanned Aerial Vehicles is a dedicated, practical guide to computational path planning for UAVs. One of the key issues facing future development of UAVs is path planning: it is vital that swarm UAVs/ MAVs can cooperate together in a coordinated manner, obeying a pre-planned course but able to react to their environment by communicating and cooperating. An optimized path is necessary in order to ensure a UAV completes its mission efficiently, safely, and successfully. Focussing on the path planning of multiple UAVs for simultaneous arrival on target, Cooperative Path Planning of Unmanned Aerial Vehicles also offers coverage of path planners that are applicable to land, sea, or space-borne vehicles. Cooperative Path Planning of Unmanned Aerial Vehicles is authored by leading researchers from Cranfield University and provides an authoritative resource for researchers, academics and engineers working in...

  4. Laser guide stars for optical free-space communications

    Science.gov (United States)

    Mata-Calvo, Ramon; Bonaccini Calia, Domenico; Barrios, Ricardo; Centrone, Mauro; Giggenbach, Dirk; Lombardi, Gianluca; Becker, Peter; Zayer, Igor

    2017-02-01

    The German Aerospace Center (DLR) and the European Southern Observatory (ESO) performed a measurement campaign together in April and July 2016 at Teide-Observatory (Tenerife), with the support of the European Space Agency (ESA), to investigate the use of laser guide stars (LGS) in ground to space optical communications. Atmospheric turbulence causes strong signal fluctuations in the uplink, due to scintillation and beam wander. In space communications, the use of the downlink channel as reference for pointing and for pre-distortion adaptive optics is limited by the size of the isokinetic and isoplanatic angle in relation to the required point-ahead angle. Pointing and phase errors due to the decorrelation between downward and upward beam due to the point-ahead angle may have a severe impact on the required transmit power and the stability of the communications link. LGSs provide a self-tailored reference to any optical ground-to-space link, independently of turbulence conditions and required point-ahead angle. In photon-starved links, typically in deep-space scenarios, LGSs allow dedicating all downlink received signal to communications purposes, increasing the available link margin. The scope of the joint DLR-ESO measurement campaign was, first, to measure the absolute value of the beam wander (uplink-tilt) using a LGS, taking a natural star as a reference, and, second, to characterize the decrease of correlation between uplink-tilt and downlink-tilt with respect to the angular separation between both sources. This paper describes the experiments performed during the measurement campaigns, providing an overview of the measured data and the first outcomes of the data post-processing.

  5. Beam propagation considerations in the Aurora laser system

    International Nuclear Information System (INIS)

    Rosoche, L.A.; Mc Leod, J.; Hanlon, J.A.

    1987-01-01

    Aurora is a high-power KrF laser system now being constructed for inertial confinement fusion (ICF) studies. It will use optical angular multiplexing and serial amplification by electron-beam-driven KrF amplifiers to deliver a stacked, multikilojoule 5-ns-duration laser pulse to ICF targets. The requirements of angular multiplexing KrF lasers at the multikilojoule level dictate path lengths on the order of 1 km. The inherent complicated path crossings produced by angular multiplexing and pulse stacking do not allow isolation of individual beam lines, so the optical quality of the long beam paths must be controlled. Propagation of the 248-nm light beams over long paths in air is affected by scattering, absorption thermal gradients and turbulence, beam alignment, and control and optical component figure errors

  6. [Open-path online monitoring of ambient atmospheric CO2 based on laser absorption spectrum].

    Science.gov (United States)

    He, Ying; Zhang, Yu-Jun; Kan, Rui-Feng; Xia, Hui; Geng, Hui; Ruan, Jun; Wang, Min; Cui, Xiao-Juan; Liu, Wen-Qing

    2009-01-01

    With the conjunction of tunable diode laser absorption spectroscopy technology (TDLAS) and the open long optical path technology, the system designing scheme of CO2 on-line monitoring based on near infrared tunable diode laser absorption spectroscopy technology was discussed in detail, and the instrument for large-range measurement was set up. By choosing the infrared absorption line of CO2 at 1.57 microm whose line strength is strong and suitable for measurement, the ambient atmospheric CO2 was measured continuously with a 30 s temporal resolution at an suburb site in the autumn of 2007. The diurnal atmospheric variations of CO2 and continuous monitoring results were presented. The results show that the variation in CO2 concentration has an obvious diurnal periodicity in suburb where the air is free of interference and contamination. The general characteristic of diurnal variation is that the concentration is low in the daytime and high at night, so it matches the photosynthesis trend. The instrument can detect gas concentration online with high resolution, high sensitivity, high precision, short response time and many other advantages, the monitoring requires no gas sampling, the calibration is easy, and the detection limit is about 4.2 x 10(-7). It has been proved that the system and measurement project are feasible, so it is an effective method for gas flux continuous online monitoring of large range in ecosystem based on TDLAS technology.

  7. Method and system for compact efficient laser architecture

    Science.gov (United States)

    Bayramian, Andrew James; Erlandson, Alvin Charles; Manes, Kenneth Rene; Spaeth, Mary Louis; Caird, John Allyn; Deri, Robert J.

    2015-09-15

    A laser amplifier module having an enclosure includes an input window, a mirror optically coupled to the input window and disposed in a first plane, and a first amplifier head disposed along an optical amplification path adjacent a first end of the enclosure. The laser amplifier module also includes a second amplifier head disposed along the optical amplification path adjacent a second end of the enclosure and a cavity mirror disposed along the optical amplification path.

  8. Appendices for: Improper Signaling in Two-Path Relay Channels

    KAUST Repository

    Gaafar, Mohamed

    2016-12-01

    This document contains the appendices for the work in “Improper Signaling in Two-Path Relay Channels,” which is submitted to 2017 IEEE International Conference on Communications (ICC) Workshop on Full-Duplex Communications for Future Wireless Networks, Paris, France.

  9. Appendices for: Improper Signaling in Two-Path Relay Channels

    KAUST Repository

    Gaafar, Mohamed; Amin, Osama; Schaefer, Rafael F.; Alouini, Mohamed-Slim

    2016-01-01

    This document contains the appendices for the work in “Improper Signaling in Two-Path Relay Channels,” which is submitted to 2017 IEEE International Conference on Communications (ICC) Workshop on Full-Duplex Communications for Future Wireless Networks, Paris, France.

  10. Lasers in space.

    CSIR Research Space (South Africa)

    Michaelis, MM

    2008-04-01

    Full Text Available cube, laser beam reflectors, placed on the Moon half a century ago. These early achievements will soon be followed by a plethora of experiments involving lasers in low earth orbit (LEO) or at Lagrange points. And not much later, laser communications... will stretch out as far as Mars and beyond. One important low Earth orbit (LEO) application is the removal of space debris by Earth based or LEO relayed lasers as promoted by Phipps et al.3. Another is military communication. The prominent L1 laser space...

  11. Secure communications with low-orbit spacecraft using quantum cryptography

    Science.gov (United States)

    Hughes, Richard J.; Buttler, William T.; Kwiat, Paul G.; Luther, Gabriel G.; Morgan, George L; Nordholt, Jane E.; Peterson, Charles G.; Simmons, Charles M.

    1999-01-01

    Apparatus and method for secure communication between an earth station and spacecraft. A laser outputs single pulses that are split into preceding bright pulses and delayed attenuated pulses, and polarized. A Pockels cell changes the polarization of the polarized delayed attenuated pulses according to a string of random numbers, a first polarization representing a "1," and a second polarization representing a "0." At the receiving station, a beamsplitter randomly directs the preceding bright pulses and the polarized delayed attenuated pulses onto longer and shorter paths, both terminating in a beamsplitter which directs the preceding bright pulses and a first portion of the polarized delayed attenuated pulses to a first detector, and a second portion of the polarized delayed attenuated pulses to a second detector to generate a key for secure communication between the earth station and the spacecraft.

  12. Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors

    KAUST Repository

    Lee, Changmin; Shen, Chao; Cozzan, Clayton; Farrell, Robert M.; Speck, James S.; Nakamura, Shuji; Ooi, Boon S.; DenBaars, Steven P.

    2017-01-01

    Data communication based on white light generated using a near-ultraviolet (NUV) laser diode (LD) pumping red-, green-, and blue-emitting (RGB) phosphors was demonstrated for the first time. A III-nitride laser diode (LD) on a semipolar (2021

  13. Investigation of Self-injection Locked Visible Laser Diodes for High Bit-rate Visible Light Communication

    KAUST Repository

    Shamim, Md. Hosne Mobarok; Shemis, Mohamed; Shen, Chao; Oubei, Hassan M.; Ng, Tien Khee; Ooi, Boon S.; Khan, Mohammed Zahed Mustafa

    2018-01-01

    -mode-suppression-ratio was considerably increased in all the cases, reaching as high as ~20 dB in self-injection locked blue laser diode, thus enabling a close to single mode operation. This work paves the way for attaining high speed optical wireless communications by overcoming

  14. Establishment path and management innovation of mutually beneficial nonprofit organization (MBNPO: A study based on integrated marketing communications (IMC theory

    Directory of Open Access Journals (Sweden)

    Kwang-yong Shin

    2017-05-01

    Full Text Available Purpose - Research about the modern mutually beneficial nonprofit organizations (MBNPOs has great value because of the increasingly important role that the MBNPO plays in society. The establishment and management of MBNPOs are critical for its development. Design/methodology/approach - Integrated marketing communications (IMC theory is applied to the research on establishment and management innovation. The establishment of MBNPOs needs four sequential steps: identifying the target group, providing services to meet the demand of stakeholders, designing appropriate communication tactics and deploying proper organizational structure to accomplish efficient communication. Findings - Three types of approach enable traditional enterprises to transform into MBNPOs: product innovation, operational innovation and synergetic development. The application of IMC theory accomplishes management innovation of MBNPOs in three aspects: leading market-orientation specific to stakeholder-orientation, making management innovation systematic in MBNPOs and clarifying targets of management innovation in MBNPOs. Originality/value - This is one of the first examinations of establishment path and management innovation of MBNPO based on IMC theory.

  15. Time-bin entangled photon pairs from spontaneous parametric down-conversion pumped by a cw multi-mode diode laser.

    Science.gov (United States)

    Kwon, Osung; Park, Kwang-Kyoon; Ra, Young-Sik; Kim, Yong-Su; Kim, Yoon-Ho

    2013-10-21

    Generation of time-bin entangled photon pairs requires the use of the Franson interferometer which consists of two spatially separated unbalanced Mach-Zehnder interferometers through which the signal and idler photons from spontaneous parametric down-conversion (SPDC) are made to transmit individually. There have been two SPDC pumping regimes where the scheme works: the narrowband regime and the double-pulse regime. In the narrowband regime, the SPDC process is pumped by a narrowband cw laser with the coherence length much longer than the path length difference of the Franson interferometer. In the double-pulse regime, the longitudinal separation between the pulse pair is made equal to the path length difference of the Franson interferometer. In this paper, we propose another regime by which the generation of time-bin entanglement is possible and demonstrate the scheme experimentally. In our scheme, differently from the previous approaches, the SPDC process is pumped by a cw multi-mode (i.e., short coherence length) laser and makes use of the coherence revival property of such a laser. The high-visibility two-photon Franson interference demonstrates clearly that high-quality time-bin entanglement source can be developed using inexpensive cw multi-mode diode lasers for various quantum communication applications.

  16. Semipolar GaN-based laser diodes for Gbit/s white lighting communication: devices to systems

    KAUST Repository

    Lee, Changmin

    2018-02-23

    We report the high-speed performance of semipolar GaN ridge laser diodes at 410 nm and the dynamic characteristics including differential gain, damping, and the intrinsic maximum bandwidth. To the best of our knowledge, the achieved modulation bandwidth of 6.8 GHz is the highest reported value in the blue-violet spectrum. The calculated differential gain of ~3 x 10-16 cm2, which is a critical factor in high-speed modulation, proved theoretical predictions of higher gain in semipolar GaN laser diodes than the conventional c-plane counterparts. In addition, we demonstrate the first novel white lighting communication system by using our near-ultraviolet (NUV) LDs and pumping red-, green-, and blueemitting phosphors. This system satisfies both purposes of high-speed communication and high-quality white light illumination. A high data rate of 1.5 Gbit/s using on-off keying (OOK) modulation together with a high color rendering index (CRI) of 80 has been measured.

  17. Non-line-of-sight ultraviolet communication based on DHT ACO-OFDM

    Science.gov (United States)

    Gao, Qian; Chen, Gang

    2012-10-01

    Free space optical (FSO) communication has attracted tremendous research interest in the recent year. Most existing works focus only on the line-of-sight (LOS) transmission by infrared (IR) or visible light lasers/LEDs, while this article suggested a framework of non-line-of-sight (NLOS) FSO, motivated by our recent experimental results on the successful transmission of NLOS ultraviolet (UV) beams for up to kilometers, which is comparable to the typical distance a LOS FSO transmission. The NLOS provides an alternate path when the LOS path is shadowed or is highly attenuated. In order to mitigate the multipath dispersion of the NLOS FSO, a baseband orthogonal frequency division multiplexing (OFDM) modulation scheme was proposed, based on Discrete Hartley Transform (DHT) and asymmetric clipping to guarantee the positive-realness of the transmitted optical intensity. The proposed system could reduce the hardware complexity of transmitter and receiver. Minimum mean square error (MMSE) precoder was applied before the DHT to remove the crosstalk between subcarriers, i.e. the frequency domain orthogonality of OFDM was preserved. Performance of the BPSK modulated communication system was given under lognormal atmospheric turbulence for demonstration of the feasibility of the proposed method.

  18. Analysis on Human Blockage Path Loss and Shadow Fading in Millimeter-Wave Band

    Directory of Open Access Journals (Sweden)

    Hongmei Zhao

    2017-01-01

    Full Text Available Millimeter-wave (Mm-w is the trend of communication development in the future; users who carry mobile communication equipment could be blocked by others in a crowded population environment. Based on Shooting and Bouncing Ray (SBR method and setting up different orientation receivers (RX, population density, and people fabric property at 28 GHz and 38 GHz, simulating experimental scene similar to station square by Wireless Insite software, we use least square method to do linear-regression analysis for path loss and build path loss model. The result shows that the path loss index has a certain change in the different frequency, orientation receivers, population density, and people fabric. The path loss index of RouteC1 and RouteA2 has an obvious change in the central transmitter (TX. Each route shadow fading obeys Gaussian distribution whose mean is 0. This paper’s result has a theoretical guiding for designing the communication system in a crowded population environment.

  19. Laser cutting of irregular shape object based on stereo vision laser galvanometric scanning system

    Science.gov (United States)

    Qi, Li; Zhang, Yixin; Wang, Shun; Tang, Zhiqiang; Yang, Huan; Zhang, Xuping

    2015-05-01

    Irregular shape objects with different 3-dimensional (3D) appearances are difficult to be shaped into customized uniform pattern by current laser machining approaches. A laser galvanometric scanning system (LGS) could be a potential candidate since it can easily achieve path-adjustable laser shaping. However, without knowing the actual 3D topography of the object, the processing result may still suffer from 3D shape distortion. It is desirable to have a versatile auxiliary tool that is capable of generating 3D-adjusted laser processing path by measuring the 3D geometry of those irregular shape objects. This paper proposed the stereo vision laser galvanometric scanning system (SLGS), which takes the advantages of both the stereo vision solution and conventional LGS system. The 3D geometry of the object obtained by the stereo cameras is used to guide the scanning galvanometers for 3D-shape-adjusted laser processing. In order to achieve precise visual-servoed laser fabrication, these two independent components are integrated through a system calibration method using plastic thin film target. The flexibility of SLGS has been experimentally demonstrated by cutting duck feathers for badminton shuttle manufacture.

  20. Land-mobile satellite excess path loss measurements

    Science.gov (United States)

    Hess, G. C.

    1980-05-01

    An experiment conducted with the ATS-6 satellite to determine the additional path loss over free-space loss experienced by land-mobile communication links is described. This excess path loss is measured as a function of 1) local environment, 2) vehicle heading, 3) link frequency, 4) satellite elevation angle, and 5) street side. A statistical description of excess loss developed from the data shows that the first two parameters dominate. Excess path loss on the order of 25 dB is typical in urban situations, but decreases to under 10 dB in suburban/rural areas. Spaced antenna selection diversity is found to provide only a slight decrease (4 dB, typically) in the urban excess path loss observed. Level crossing rates are depressed in satellite links relative to those of Rayleigh-faded terrestrial links, but increases in average fade durations tend to offset that advantage. The measurements show that the excess path loss difference between 860-MHz links and 1550-MHz links is generally negligible.

  1. Ablation of selected conducting layers by fiber laser

    Science.gov (United States)

    Pawlak, Ryszard; Tomczyk, Mariusz; Walczak, Maria

    2014-08-01

    Laser Direct Writing (LDW) are used in the manufacture of electronic circuits, pads, and paths in sub millimeter scale. They can also be used in the sensors systems. Ablative laser writing in a thin functional layer of material deposited on the dielectric substrate is one of the LDW methods. Nowadays functional conductive layers are composed from graphene paint or nanosilver paint, indium tin oxide (ITO), AgHTTM and layers containing carbon nanotubes. Creating conducting structures in transparent layers (ITO, AgHT and carbon nanotubes layers) may have special importance e.g. for flexi electronics. The paper presents research on the fabrication of systems of paths and appropriate pattern systems of paths and selected electronic circuits in AgHTTM and ITO layers deposited on glass and polymer substrates. An influence of parameters of ablative fiber laser treatment in nanosecond regime as well as an influence of scanning mode of laser beam on the pattern fidelity and on electrical parameters of a generated circuit was investigated.

  2. 4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication

    KAUST Repository

    Lee, Changmin; Zhang, Chong; Cantore, Michael; Farrell, Robert M.; Oh, Sang Ho; Margalith, Tal; Speck, James S.; Nakamura, Shuji; Bowers, John E.; DenBaars, Steven P.

    2015-01-01

    We demonstrate high-speed data transmission with a commercial high power GaN laser diode at 450 nm. 2.6 GHz bandwidth was achieved at an injection current of 500 mA using a high-speed visible light communication setup. Record high 4 Gbps free

  3. Path Loss Prediction Over the Lunar Surface Utilizing a Modified Longley-Rice Irregular Terrain Model

    Science.gov (United States)

    Foore, Larry; Ida, Nathan

    2007-01-01

    This study introduces the use of a modified Longley-Rice irregular terrain model and digital elevation data representative of an analogue lunar site for the prediction of RF path loss over the lunar surface. The results are validated by theoretical models and past Apollo studies. The model is used to approximate the path loss deviation from theoretical attenuation over a reflecting sphere. Analysis of the simulation results provides statistics on the fade depths for frequencies of interest, and correspondingly a method for determining the maximum range of communications for various coverage confidence intervals. Communication system engineers and mission planners are provided a link margin and path loss policy for communication frequencies of interest.

  4. High repetition rate ultrashort laser cuts a path through fog

    Science.gov (United States)

    de la Cruz, Lorena; Schubert, Elise; Mongin, Denis; Klingebiel, Sandro; Schultze, Marcel; Metzger, Thomas; Michel, Knut; Kasparian, Jérôme; Wolf, Jean-Pierre

    2016-12-01

    We experimentally demonstrate that the transmission of a 1030 nm, 1.3 ps laser beam of 100 mJ energy through fog increases when its repetition rate increases to the kHz range. Due to the efficient energy deposition by the laser filaments in the air, a shockwave ejects the fog droplets from a substantial volume of the beam, at a moderate energy cost. This process opens prospects for applications requiring the transmission of laser beams through fogs and clouds.

  5. Optics assembly for high power laser tools

    Science.gov (United States)

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.

    2016-06-07

    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  6. Multi-user bidirectional communication using isochronal synchronisation of array of chaotic directly modulated semiconductor lasers

    International Nuclear Information System (INIS)

    Krishna, Bindu M.; John, Manu P.; Nandakumaran, V.M.

    2010-01-01

    Isochronal synchronisation between the elements of an array of three mutually coupled directly modulated semiconductor lasers is utilized for the purpose of simultaneous bidirectional secure communication. Chaotic synchronisation is achieved by adding the coupling signal to the self feedback signal provided to each element of the array. A symmetric coupling is effective in inducing synchronisation between the elements of the array. This coupling scheme provides a direct link between every pair of elements thus making the method suitable for simultaneous bidirectional communication between them. Both analog and digital messages are successfully encrypted and decrypted simultaneously by each element of the array.

  7. III-nitride Photonic Integrated Circuit: Multi-section GaN Laser Diodes for Smart Lighting and Visible Light Communication

    KAUST Repository

    Shen, Chao

    2017-01-01

    The past decade witnessed the rapid development of III-nitride light-emitting diodes (LEDs) and laser diodes (LDs), for smart lighting, visible-light communication (VLC), optical storage, and internet-of-things. Recent studies suggested that the Ga

  8. [System design of open-path natural gas leakage detection based on Fresnel lens].

    Science.gov (United States)

    Xia, Hui; Liu, Wen-Qing; Zhang, Yu-Jun; Kan, Rui-Feng; Cui, Yi-Ben; Wang, Min; He, Ying; Cui, Xiao-Juan; Ruan, Jun; Geng, Hui

    2009-03-01

    Based on the technology of tunable diode laser absorption spectroscopy (TDLAS) in conjunction with second harmonic wave detection, a long open-path TDLAS system using a 1.65 microm InGaAsP distributed feedback laser was developed, which is used for detecting pipeline leakage. In this system, a high cost performance Fresnel lens is used as the receiving optical system, which receives the laser-beam reflected by a solid corner cube reflector, and focuses the receiving laser-beam to the InGaAs detector. At the same time, the influences of the concentration to the fluctuation of light intensity were taken into account in the process of measurement, and were eliminated by the method of normalized light intensity. As a result, the measurement error caused by the fluctuation of light intensity was made less than 1%. The experiment of natural gas leakage detection was simulated, and the detection sensitivity is 0.1 x 10(-6) (ratio by volume) with a total path of 320 m. According to the receiving light efficiency of the optical system and the detectable minimum light intensity of the detector, the detectable maximal optical path of the system was counted to be 2 000 m. The results of experiment show that it is a feasible design to use the Fresnel lens as the receiving optical system and can satisfy the demand of the leakage detection of natural gas.

  9. Radiation-hard mid-power booster optical fiber amplifiers for high-speed digital and analogue satellite laser communication links

    Science.gov (United States)

    Stampoulidis, L.; Kehayas, E.; Stevens, G.; Henwood-Moroney, L.; Hosking, P.; Robertson, A.

    2017-11-01

    Optical laser communications (OLC) has been identified as the technology to enable high-data rate, secure links between and within satellites, as well as between satellites and ground stations with decreased mass, size, and electrical power compared to traditional RF technology.

  10. The National Ignition Facility (NIF): A path to fusion energy

    International Nuclear Information System (INIS)

    Moses, Edward I.

    2008-01-01

    Fusion energy has long been considered a promising, clean, nearly inexhaustible source of energy. Power production by fusion micro-explosions of inertial confinement fusion (ICF) targets has been a long-term research goal since the invention of the first laser in 1960. The National Ignition Facility (NIF) is poised to take the next important step in the journey by beginning experiments researching ICF ignition. Ignition on NIF will be the culmination of over 30 years of ICF research on high-powered laser systems such as the Nova laser at Lawrence Livermore National Laboratory (LLNL) and the OMEGA laser at the University of Rochester, as well as smaller systems around the world. NIF is a 192-beam Nd-glass laser facility at LLNL that is more than 90% complete. The first cluster of 48 beams is operational in the laser bay, the second cluster is now being commissioned, and the beam path to the target chamber is being installed. The Project will be completed in 2009, and ignition experiments will start in 2010. When completed, NIF will produce up to 1.8 MJ of 0.35-μm light in highly shaped pulses required for ignition. It will have beam stability and control to higher precision than any other laser fusion facility. Experiments using one of the beams of NIF have demonstrated that NIF can meet its beam performance goals. The National Ignition Campaign (NIC) has been established to manage the ignition effort on NIF. NIC has all of the research and development required to execute the ignition plan and to develop NIF into a fully operational facility. NIF will explore the ignition space, including direct drive, 2ω ignition, and fast ignition, to optimize target efficiency for developing fusion as an energy source. In addition to efficient target performance, fusion energy requires significant advances in high-repetition-rate lasers and fusion reactor technology. The Mercury laser at LLNL is a high-repetition-rate Nd-glass laser for fusion energy driver development. Mercury

  11. The national ignition facility (NIF) : A path to fusion energy

    International Nuclear Information System (INIS)

    Moses, E. I.

    2007-01-01

    Fusion energy has long been considered a promising clean, nearly inexhaustible source of energy. Power production by fusion micro-explosions of inertial confinement fusion (ICF) targets has been a long term research goal since the invention of the first laser in 1960. The NIF is poised to take the next important step in the journey by beginning experiments researching ICF ignition. Ignition on NIF will be the culmination of over thirty years of ICF research on high-powered laser systems such as the Nova laser at LLNL and the OMEGA laser at the University of Rochester as well as smaller systems around the world. NIF is a 192 beam Nd-glass laser facility at LLNL that is more than 90% complete. The first cluster of 48 beams is operational in the laser bay, the second cluster is now being commissioned, and the beam path to the target chamber is being installed. The Project will be completed in 2009 and ignition experiments will start in 2010. When completed NIF will produce up to 1.8 MJ of 0.35 μm light in highly shaped pulses required for ignition. It will have beam stability and control to higher precision than any other laser fusion facility. Experiments using one of the beams of NIF have demonstrated that NIF can meet its beam performance goals. The National Ignition Campaign (NIC) has been established to manage the ignition effort on NIF. NIC has all of the research and development required to execute the ignition plan and to develop NIF into a fully operational facility. NIF will explore the ignition space, including direct drive, 2ω ignition, and fast ignition, to optimize target efficiency for developing fusion as an energy source. In addition to efficient target performance, fusion energy requires significant advances in high repetition rate lasers and fusion reactor technology. The Mercury laser at LLNL is a high repetition rate Nd-glass laser for fusion energy driver development. Mercury uses state-o-the art technology such as ceramic laser slabs and light

  12. Software-based data path for raster-scanned multi-beam mask lithography

    Science.gov (United States)

    Rajagopalan, Archana; Agarwal, Ankita; Buck, Peter; Geller, Paul; Hamaker, H. Christopher; Rao, Nagswara

    2016-10-01

    According to the 2013 SEMATECH Mask Industry Survey,i roughly half of all photomasks are produced using laser mask pattern generator ("LMPG") lithography. LMPG lithography can be used for all layers at mature technology nodes, and for many non-critical and semi-critical masks at advanced nodes. The extensive use of multi-patterning at the 14-nm node significantly increases the number of critical mask layers, and the transition in wafer lithography from positive tone resist to negative tone resist at the 14-nm design node enables the switch from advanced binary masks back to attenuated phase shifting masks that require second level writes to remove unwanted chrome. LMPG lithography is typically used for second level writes due to its high productivity, absence of charging effects, and versatile non-actinic alignment capability. As multi-patterning use expands from double to triple patterning and beyond, the number of LMPG second level writes increases correspondingly. The desire to reserve the limited capacity of advanced electron beam writers for use when essential is another factor driving the demand for LMPG capacity. The increasing demand for cost-effective productivity has kept most of the laser mask writers ever manufactured running in production, sometimes long past their projected lifespan, and new writers continue to be built based on hardware developed some years ago.ii The data path is a case in point. While state-ofthe- art when first introduced, hardware-based data path systems are difficult to modify or add new features to meet the changing requirements of the market. As data volumes increase, design styles change, and new uses are found for laser writers, it is useful to consider a replacement for this critical subsystem. The availability of low-cost, high-performance, distributed computer systems combined with highly scalable EDA software lends itself well to creating an advanced data path system. EDA software, in routine production today, scales

  13. 4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication

    KAUST Repository

    Lee, Changmin

    2015-06-10

    We demonstrate high-speed data transmission with a commercial high power GaN laser diode at 450 nm. 2.6 GHz bandwidth was achieved at an injection current of 500 mA using a high-speed visible light communication setup. Record high 4 Gbps free-space data transmission rate was achieved at room temperature.

  14. 4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication.

    Science.gov (United States)

    Lee, Changmin; Zhang, Chong; Cantore, Michael; Farrell, Robert M; Oh, Sang Ho; Margalith, Tal; Speck, James S; Nakamura, Shuji; Bowers, John E; DenBaars, Steven P

    2015-06-15

    We demonstrate high-speed data transmission with a commercial high power GaN laser diode at 450 nm. 2.6 GHz bandwidth was achieved at an injection current of 500 mA using a high-speed visible light communication setup. Record high 4 Gbps free-space data transmission rate was achieved at room temperature.

  15. Laser long-range remote-sensing program experimental results

    Science.gov (United States)

    Highland, Ronald G.; Shilko, Michael L.; Fox, Marsha J.; Gonglewski, John D.; Czyzak, Stanley R.; Dowling, James A.; Kelly, Brian; Pierrottet, Diego F.; Ruffatto, Donald; Loando, Sharon; Matsuura, Chris; Senft, Daniel C.; Finkner, Lyle; Rae, Joe; Gallegos, Joe

    1995-12-01

    A laser long range remote sensing (LRS) program is being conducted by the United States Air Force Phillips Laboratory (AF/PL). As part of this program, AF/PL is testing the feasibility of developing a long path CO(subscript 2) laser-based DIAL system for remote sensing. In support of this program, the AF/PL has recently completed an experimental series using a 21 km slant- range path (3.05 km ASL transceiver height to 0.067 km ASL target height) at its Phillips Laboratory Air Force Maui Optical Station (AMOS) facility located on Maui, Hawaii. The dial system uses a 3-joule, (superscript 13)C isotope laser coupled into a 0.6 m diameter telescope. The atmospheric optical characterization incorporates information from an infrared scintillometer co-aligned to the laser path, atmospheric profiles from weather balloons launched from the target site, and meteorological data from ground stations at AMOS and the target site. In this paper, we report a description of the experiment configuration, a summary of the results, a summary of the atmospheric conditions and their implications to the LRS program. The capability of such a system for long-range, low-angle, slant-path remote sensing is discussed. System performance issues relating to both coherent and incoherent detection methods, atmospheric limitations, as well as, the development of advanced models to predict performance of long range scenarios are presented.

  16. Path generation algorithm for UML graphic modeling of aerospace test software

    Science.gov (United States)

    Qu, MingCheng; Wu, XiangHu; Tao, YongChao; Chen, Chao

    2018-03-01

    Aerospace traditional software testing engineers are based on their own work experience and communication with software development personnel to complete the description of the test software, manual writing test cases, time-consuming, inefficient, loopholes and more. Using the high reliability MBT tools developed by our company, the one-time modeling can automatically generate test case documents, which is efficient and accurate. UML model to describe the process accurately express the need to rely on the path is reached, the existing path generation algorithm are too simple, cannot be combined into a path and branch path with loop, or too cumbersome, too complicated arrangement generates a path is meaningless, for aerospace software testing is superfluous, I rely on our experience of ten load space, tailor developed a description of aerospace software UML graphics path generation algorithm.

  17. Multiple wavelength spectral system simulating background light noise environment in satellite laser communications

    Science.gov (United States)

    Lu, Wei; Sun, Jianfeng; Hou, Peipei; Xu, Qian; Xi, Yueli; Zhou, Yu; Zhu, Funan; Liu, Liren

    2017-08-01

    Performance of satellite laser communications between GEO and LEO satellites can be influenced by background light noise appeared in the field of view due to sunlight or planets and some comets. Such influences should be studied on the ground testing platform before the space application. In this paper, we introduce a simulator that can simulate the real case of background light noise in space environment during the data talking via laser beam between two lonely satellites. This simulator can not only simulate the effect of multi-wavelength spectrum, but also the effects of adjustable angles of field-of-view, large range of adjustable optical power and adjustable deflection speeds of light noise in space environment. We integrate these functions into a device with small and compact size for easily mobile use. Software control function is also achieved via personal computer to adjust these functions arbitrarily. Keywords:

  18. Distributed wireless quantum communication networks with partially entangled pairs

    International Nuclear Information System (INIS)

    Yu Xu-Tao; Zhang Zai-Chen; Xu Jin

    2014-01-01

    Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks with partially entangled pairs. A quantum routing scheme with multi-hop teleportation is proposed. With the proposed scheme, is not necessary for the quantum path to be consistent with the classical path. The quantum path and its associated classical path are established in a distributed way. Direct multi-hop teleportation is conducted on the selected path to transfer a quantum state from the source to the destination. Based on the feature of multi-hop teleportation using partially entangled pairs, if the node number of the quantum path is even, the destination node will add another teleportation at itself. We simulated the performance of distributed wireless quantum communication networks with a partially entangled state. The probability of transferring the quantum state successfully is statistically analyzed. Our work shows that multi-hop teleportation on distributed wireless quantum networks with partially entangled pairs is feasible. (general)

  19. Sensor development and integration for robotized laser welding

    NARCIS (Netherlands)

    Iakovou, D.

    2009-01-01

    Laser welding requires fast and accurate positioning of the laser beam over the seam trajectory. The task of accurate positioning of the laser tools is performed by robotic systems. It is therefore necessary to teach the robot the path it has to follow. Seam teaching is implemented in several ways:

  20. Transition paths in single-molecule force spectroscopy.

    Science.gov (United States)

    Cossio, Pilar; Hummer, Gerhard; Szabo, Attila

    2018-03-28

    In a typical single-molecule force spectroscopy experiment, the ends of the molecule of interest are connected by long polymer linkers to a pair of mesoscopic beads trapped in the focus of two laser beams. At constant force load, the total extension, i.e., the end-to-end distance of the molecule plus linkers, is measured as a function of time. In the simplest systems, the measured extension fluctuates about two values characteristic of folded and unfolded states, with occasional transitions between them. We have recently shown that molecular (un)folding rates can be recovered from such trajectories, with a small linker correction, as long as the characteristic time of the bead fluctuations is shorter than the residence time in the unfolded (folded) state. Here, we show that accurate measurements of the molecular transition path times require an even faster apparatus response. Transition paths, the trajectory segments in which the molecule (un)folds, are properly resolved only if the beads fluctuate more rapidly than the end-to-end distance of the molecule. Therefore, over a wide regime, the measured rates may be meaningful but not the transition path times. Analytic expressions for the measured mean transition path times are obtained for systems diffusing anisotropically on a two-dimensional free energy surface. The transition path times depend on the properties both of the molecule and of the pulling device.

  1. Diode-pumped solid state laser. (Part V). ; Short pulse laser oscillation. Handotai laser reiki kotai laser. 5. ; Tan pulse hasshin

    Energy Technology Data Exchange (ETDEWEB)

    Kuwabara, M.; Bando, N. (Asahi Glass Co. Ltd., Tokyo (Japan))

    1991-12-25

    A semiconductor laser (LD) excited solid state laser using an LD as an excited light source is under discussion for its practical applications to measurements, processing, communications, office automation, and medical areas. This paper describes the discussions given on the short pulse transmission using AOQ switching elements in the LD excited solid state laser with a long wave length band (1.3{mu}m), which is expected of its application in the communications and measurements area. Based on a possibility of raising a measurements resolution by making the pluses in the LD excited solid state laser, and experiments were performed using Nd:YLF as a laser host. as a results, it was found that the smaller the effective mode volume V {sub eff},the smaller the pulse width, and that the ratio of number of initial inversion distribution (N{sub i}/N{sub t}), an important parameter to determine pulse widths, can be obtained from the ratio of the LD exciting light to the input power (P{sub in}/P{sub t}). 7 refs., 14 figs., 2 tabs.

  2. Latest Changes to NASA's Laser Communication Relay Demonstration Project

    Science.gov (United States)

    Edwards, Bernard L.; Israel, David J.; Vithlani, Seema K.

    2018-01-01

    Over the last couple of years, NASA has been making changes to the Laser Communications Relay Demonstration Project (LCRD), a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). The changes made makes LCRD more like a future Earth relay system that has both high speed optical and radio frequency links. This will allow LCRD to demonstrate a more detailed concept of operations for a future operational mission critical Earth relay. LCRD is expected to launch in June 2019 and is expected to be followed a couple of years later with a prototype user terminal on the International Space Station. LCRD's architecture will allow it to serve as a testbed in space and this paper will provide an update of its planned capabilities and experiments.

  3. Continuous in-situ methane measurements at paddy fields in a rural area of India with poor electric infrastructure, using a low-cost instrument based on open-path near-IR laser absorption spectroscopy

    Science.gov (United States)

    Hidemori, T.; Matsumi, Y.; Nakayama, T.; Kawasaki, M.; Sasago, H.; Takahashi, K.; Imasu, R.; Takeuchi, W.; Adachi, M.; Machida, T.; Terao, Y.; Nomura, S.; Dhaka, S. K.; Singh, J.

    2015-12-01

    In southeast and south Asia, the previous satellite observations suggest that the methane emission from rice paddies is significant and important source of methane during rainy season. Since it is difficult to measure methane stably and continuously at rural areas such as the paddy fields in terms of infrastructures and maintenances, there are large uncertainties in quantitative estimation of methane emission in these areas and there are needs for more certification between satellite and ground based measurements. To measure methane concentrations continuously at difficult situations such as the center of paddy fields and wetlands, we developed the continuous in-situ measurement system, not to look for your lost keys under the streetlight. The methane gas sensor is used an open-path laser based measurement instrument (LaserMethane, ANRITSU CORPORATION), which can quickly and selectively detect average methane concentrations on the optical path of the laser beam. The developed system has the power supply and telecommunication system to run the laser gas sensor in rural areas with poor electricity infrastructure.The methane measurement system was installed at paddy fields of Sonepat, Haryana on the north of Delhi in India and has been operated from the end of 2014. The air sampling along with our measurement has been carried out once a week during daytime to calibrate the laser instrument. We found that the seasonal variation of methane concentrations was different from the satellite observations and there were significant diurnal variations, which it was difficult to detect from occasional air samplings. We will present details of the measurement system and recent results of continuous methane measurements in India.

  4. Experimental demonstration of OFDM/OQAM transmission with DFT-based channel estimation for visible laser light communications

    Science.gov (United States)

    He, Jing; Shi, Jin; Deng, Rui; Chen, Lin

    2017-08-01

    Recently, visible light communication (VLC) based on light-emitting diodes (LEDs) is considered as a candidate technology for fifth-generation (5G) communications, VLC is free of electromagnetic interference and it can simplify the integration of VLC into heterogeneous wireless networks. Due to the data rates of VLC system limited by the low pumping efficiency, small output power and narrow modulation bandwidth, visible laser light communication (VLLC) system with laser diode (LD) has paid more attention. In addition, orthogonal frequency division multiplexing/offset quadrature amplitude modulation (OFDM/OQAM) is currently attracting attention in optical communications. Due to the non-requirement of cyclic prefix (CP) and time-frequency domain well-localized pulse shapes, it can achieve high spectral efficiency. Moreover, OFDM/OQAM has lower out-of-band power leakage so that it increases the system robustness against inter-carrier interference (ICI) and frequency offset. In this paper, a Discrete Fourier Transform (DFT)-based channel estimation scheme combined with the interference approximation method (IAM) is proposed and experimentally demonstrated for VLLC OFDM/OQAM system. The performance of VLLC OFDM/OQAM system with and without DFT-based channel estimation is investigated. Moreover, the proposed DFT-based channel estimation scheme and the intra-symbol frequency-domain averaging (ISFA)-based method are also compared for the VLLC OFDM/OQAM system. The experimental results show that, the performance of EVM using the DFT-based channel estimation scheme is improved about 3dB compared with the conventional IAM method. In addition, the DFT-based channel estimation scheme can resist the channel noise effectively than that of the ISFA-based method.

  5. The path integral formulation of fractional Brownian motion for the general Hurst exponent

    International Nuclear Information System (INIS)

    Calvo, I; Sanchez, R

    2008-01-01

    In 1995, Sebastian (1995 J. Phys. A: Math. Gen. 28 4305) gave a path integral computation of the propagator of subdiffusive fractional Brownian motion (fBm), i.e. fBm with a Hurst or self-similarity exponent H element of (0, 1/2). The extension of Sebastian's calculation to superdiffusion, H element of (1/2, 1], becomes however quite involved due to the appearance of additional boundary conditions on fractional derivatives of the path. In this communication, we address the construction of the path integral representation in a different fashion, which allows us to treat both subdiffusion and superdiffusion on an equal footing. The derivation of the propagator of fBm for the general Hurst exponent is then performed in a neat and unified way. (fast track communication)

  6. Dual beam translator for use in Laser Doppler anemometry

    Science.gov (United States)

    Brudnoy, David M.

    1987-01-01

    A method and apparatus for selectively translating the path of at least one pair of light beams in a Laser Doppler anemometry device whereby the light paths are translated in a direction parallel to the original beam paths so as to enable attainment of spacial coincidence of the two intersection volumes and permit accurate measurements of Reynolds shear stress.

  7. Long Path Quantum Cascade Laser Based Sensor for Environment Sensing/Ambient Detection of CH4 and N2O

    Science.gov (United States)

    Castillo, P. C.; Sydoryk, I.; Gross, B.; Moshary, F.

    2013-12-01

    Methane (CH4) and Nitrous Oxide (N2O) are long-lived greenhouse gases in the atmosphere with significant global warming effects. These gases also are known to be produced in a number of anthropogenic settings such as manure management systems, which releases substantial GHGs and is mandated by the EPA to provide continuous monitoring. In addition, natural gas leaks in urban areas is another source of strong spatially inhomogeneous methane emissions Most open path methods for quantitative detection of trace gases utilize either Fourier Transform Spectrometer (FTIR) or near-IR differential optical absorption spectroscopy (DOAS). Although, FTIR is suitable for ambient air monitoring measurement of more abundant gases such as CO2 and H20 etc., the lack of spectral resolution makes the retrieval of weaker absorbing features such as N20 more difficult. On the other hand, conventional DOAS systems can be large and impractical. As an alternative, we illustrate a robust portable quantum cascade laser (QCL) approach for simultaneous detection of CH4 and N2O. In particular, gas spectra were recorded by ultrafast pulse intensity (thermal) chirp tuning over the 1299 - 1300cm-1 spectral window. Etalon measurements insure stable tuning was obtained. To deal with multiple species, a LSQ spectral fitting approach was used which accounted for both the overlapping trace gases , background water vapor as well as detector drift and calibration. In summary, ambient concentrations of CH4 with and N2O with accuracy < 1% was obtained on the order of 5ms using optical paths of 500 m path length. In addition, unattended long term operation was demonstrated and validations using other sensors when possible were shown to be consistent. The system accuracy is limited by systemic errors, which are still being explored.

  8. Visible Solid State Lasers

    NARCIS (Netherlands)

    Hikmet, R.A.M.

    2007-01-01

    Diode lasers can be found in various applications most notably in optical communication and optical storage. Visible lasers were until recently were all based on IR diode lasers. Using GaN, directly blue and violet emitting lasers have also been introduced to the market mainly in the area of optical

  9. On the reachability and observability of path and cycle graphs

    OpenAIRE

    Parlangeli, Gianfranco; Notarstefano, Giuseppe

    2011-01-01

    In this paper we investigate the reachability and observability properties of a network system, running a Laplacian based average consensus algorithm, when the communication graph is a path or a cycle. More in detail, we provide necessary and sufficient conditions, based on simple algebraic rules from number theory, to characterize all and only the nodes from which the network system is reachable (respectively observable). Interesting immediate corollaries of our results are: (i) a path graph...

  10. comparative analysis of path loss prediction models for urban

    African Journals Online (AJOL)

    the acceptable minimum MSE value of 6dB for good signal propagation. Keywords: macrocellular areas ... itate high-speed data communications in ad- dition to voice calls. ... On the basis of the mobile radio environment, path loss predic-.

  11. Target isolation system, high power laser and laser peening method and system using same

    Science.gov (United States)

    Dane, C. Brent; Hackel, Lloyd A.; Harris, Fritz

    2007-11-06

    A system for applying a laser beam to work pieces, includes a laser system producing a high power output beam. Target delivery optics are arranged to deliver the output beam to a target work piece. A relay telescope having a telescope focal point is placed in the beam path between the laser system and the target delivery optics. The relay telescope relays an image between an image location near the output of the laser system and an image location near the target delivery optics. A baffle is placed at the telescope focal point between the target delivery optics and the laser system to block reflections from the target in the target delivery optics from returning to the laser system and causing damage.

  12. Discrete mode lasers for communications applications

    Science.gov (United States)

    Barry, L. P.; Herbert, C.; Jones, D.; Kaszubowska-Anandarajah, A.; Kelly, B.; O'Carroll, J.; Phelan, R.; Anandarajah, P.; Shi, K.; O'Gorman, J.

    2009-02-01

    The wavelength spectra of ridge waveguide Fabry Perot lasers can be modified by perturbing the effective refractive index of the guided mode along very small sections of the laser cavity. One way of locally perturbing the effective index of the lasing mode is by etching features into the ridge waveguide such that each feature has a small overlap with the transverse field profile of the unperturbed mode, consequently most of the light in the laser cavity is unaffected by these perturbations. A proportion of the propagating light is however reflected at the boundaries between the perturbed and the unperturbed sections. Suitable positioning of these interfaces allows the mirror loss spectrum of a Fabry Perot laser to be manipulated. In order to achieve single longitudinal mode emission, the mirror loss of a specified mode must be reduced below that of the other cavity modes. Here we review the latest results obtained from devices containing such features. These results clearly demonstrate that these devices exceed the specifications required for a number of FTTH and Datacomms applications, such as GEPON, LX4 and CWDM. As well as this we will also present initial results on the linewidth of these devices.

  13. A Conceptual Tree of Laser Propulsion

    International Nuclear Information System (INIS)

    Pakhomov, Andrew V.; Sinko, John E.

    2008-01-01

    An original attempt to develop a conceptual tree for laser propulsion is offered. The tree provides a systematic view for practically all possible laser propulsion concepts and all inter-conceptual links, based on propellant phases and phase transfers. It also helps to see which fields of laser propulsion have been already thoroughly explored, where the next effort must be applied, and which paths should be taken with proper care or avoided entirely

  14. The European project Hippo high-power photonics for satellite laser communications and on-board optical processing

    Science.gov (United States)

    Kehayas, E.; Stampoulidis, L.; Henderson, P.; Robertson, Andrew; Van Dijk, F.; Achouche, M.; Le Kernec, A.; Sotom, M.; Schuberts, F.; Brabant, T.

    2017-11-01

    Photonics is progressively transforming from a highly- focused technology applicable to digital communication networks into a pervasive "enabling" technology with diverse non-telecom applications. However, the centre of mass on the R&D level is still mostly driven by, and invested in, by stakeholders active in the telecoms domain. This is due to the high level of investments necessary that in turn require a large and established market for reaching break-even and generation of revenues. Photonics technology and more specifically, fibre-optic technology is moving into non-telecom business areas with great success in terms of markets captured and penetration rates. One example that cannot be overlooked is the application of fibre-optics to industrial applications, where double-digit growth rates are recorded with fibre lasers and amplifiers constantly gaining momentum. In this example, several years of R&D efforts in creating high-power amplification solutions and fibre-laser sources by the telecom sector, were piggy-backed into industrial applications and laser cutting/welding equipment that is now a strong R&D sector on its own and commercially now displacing some conventional free space laser cutting/welding.

  15. Dual-laser vibrometry: elimination or extraction of pseudovibration

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Bækbo, Martin Jesper; Hanson, Steen Grüner

    2015-01-01

    The principal idea of a method using two identical laser vibrometers to eliminate pseudovibrations occurring as structured noise in laser-vibrometer measurements of angular velocity of a rotating object is investigated. The two vibrometers monitor the same surface path on the rotating object...

  16. Secure Path Selection under Random Fading

    Directory of Open Access Journals (Sweden)

    Furqan Jameel

    2017-05-01

    Full Text Available Application-oriented Wireless Sensor Networks (WSNs promises to be one of the most useful technologies of this century. However, secure communication between nodes in WSNs is still an unresolved issue. In this context, we propose two protocols (i.e. Optimal Secure Path (OSP and Sub-optimal Secure Path (SSP to minimize the outage probability of secrecy capacity in the presence of multiple eavesdroppers. We consider dissimilar fading at the main and wiretap link and provide detailed evaluation of the impact of Nakagami-m and Rician-K factors on the secrecy performance of WSNs. Extensive simulations are performed to validate our findings. Although the optimal scheme ensures more security, yet the sub-optimal scheme proves to be a more practical approach to secure wireless links.

  17. Thermal tuning On narrow linewidth fiber laser

    Science.gov (United States)

    Han, Peiqi; Liu, Tianshan; Gao, Xincun; Ren, Shiwei

    2010-10-01

    At present, people have been dedicated to high-speed and large-capacity optical fiber communication system. Studies have been shown that optical wavelength division multiplexing (WDM) technology is an effective means of communication to increase the channel capacity. Tunable lasers have very important applications in high-speed, largecapacity optical communications, and distributed sensing, it can provide narrow linewidth and tunable laser for highspeed optical communication. As the erbium-doped fiber amplifier has a large gain bandwidth, the erbium-doped fiber laser can be achieved lasing wavelength tunable by adding a tunable filter components, so tunable filter device is the key components in tunable fiber laser.At present, fiber laser wavelength is tuned by PZT, if thermal wavelength tuning is combined with PZT, a broader range of wavelength tuning is appearance . Erbium-doped fiber laser is used in the experiments,the main research is the physical characteristics of fiber grating temperature-dependent relationship and the fiber grating laser wavelength effects. It is found that the fiber laser wavelength changes continuously with temperature, tracking several temperature points observed the self-heterodyne spectrum and found that the changes in spectra of the 3dB bandwidth of less than 1kHz, and therefore the fiber laser with election-mode fiber Bragg grating shows excellent spectral properties and wavelength stability.

  18. System Design and Implementation of Intelligent Fire Engine Path Planning based on SAT Algorithm

    Institute of Scientific and Technical Information of China (English)

    CAI Li-sha[1; ZENG Wei-peng[1; HAN Bao-ru[1

    2016-01-01

    In this paper, in order to make intelligent fi re car complete autonomy path planning in simulation map. Proposed system design of intelligent fi re car path planning based on SAT. The system includes a planning module, a communication module, a control module. Control module via the communication module upload the initial state and the goal state to planning module. Planning module solve this planning solution,and then download planning solution to control module, control the movement of the car fi re. Experiments show this the system is tracking short time, higher planning effi ciency.

  19. Compact and efficient blue laser sheet for measurement

    Science.gov (United States)

    Qi, Yan; Wang, Yu; Wu, Bin; Wang, Yanwei; Yan, Boxia

    2017-10-01

    Compact and efficient blue laser sheet has important applications in the field of measurement, with laser diode end pumped Nd:YAG directly and LBO intracavity frequency doubling, a compact and efficient CW 473nm blue laser sheet composed of dual path liner blue laser is realized. At an incident pump power of 12.4W, up to 1.4W output power of the compound blue laser is achieved, the optical-to-optical conversion efficiency is as high as 11.3%.

  20. Laser cutting system

    Science.gov (United States)

    Dougherty, Thomas J

    2015-03-03

    A workpiece cutting apparatus includes a laser source, a first suction system, and a first finger configured to guide a workpiece as it moves past the laser source. The first finger includes a first end provided adjacent a point where a laser from the laser source cuts the workpiece, and the first end of the first finger includes an aperture in fluid communication with the first suction system.

  1. Flowing Air-Water Cooled Slab Nd: Glass Laser

    Science.gov (United States)

    Lu, Baida; Cai, Bangwei; Liao, Y.; Xu, Shifa; Xin, Z.

    1989-03-01

    A zig-zag optical path slab geometry Nd: glass laser cooled through flowing air-water is developed by us. Theoretical studies on temperature distribution of slab and rod configurations in the unsteady state clarify the advantages of the slab geometry laser. The slab design and processing are also reported. In our experiments main laser output characteristics, e. g. laser efficiency, polarization, far-field divergence angle as well as resonator misalignment are investigated. The slab phosphate glass laser in combination with a crossed Porro-prism resonator demonstrates a good laser performance.

  2. Diode lasers and arrays

    International Nuclear Information System (INIS)

    Streifer, W.

    1988-01-01

    This paper discusses the principles of operation of III-V semiconductor diode lasers, the use of distributed feedback, and high power laser arrays. The semiconductor laser is a robust, miniature, versatile device, which directly converts electricity to light with very high efficiency. Applications to pumping solid-state lasers and to fiber optic and point-to-point communications are reviewed

  3. Laser safety at high profile laser facilities

    International Nuclear Information System (INIS)

    Barat, K.

    2010-01-01

    Complete text of publication follows. Laser safety has been an active concern of laser users since the invention of the laser. Formal standards were developed in the early 1970's and still continue to be developed and refined. The goal of these standards is to give users guidance on the use of laser and consistent safety guidance and requirements for laser manufacturers. Laser safety in the typical research setting (government laboratory or university) is the greatest challenge to the laser user and laser safety officer. This is due to two factors. First, the very nature of research can put the user at risk; consider active manipulation of laser optics and beam paths, and user work with energized systems. Second, a laser safety culture that seems to accept laser injuries as part of the graduate student educational process. The fact is, laser safety at research settings, laboratories and universities still has long way to go. Major laser facilities have taken a more rigid and serious view of laser safety, its controls and procedures. Part of the rationale for this is that these facilities draw users from all around the world presenting the facility with a work force of users coming from a wide mix of laser safety cultures. Another factor is funding sources do not like bad publicity which can come from laser accidents and a poor safety record. The fact is that injuries, equipment damage and lost staff time slow down progress. Hence high profile/large laser projects need to adapt a higher safety regimen both from an engineering and administrative point of view. This presentation will discuss all these points and present examples. Acknowledgement. This work has been supported by the University of California, Director, Office of Science.

  4. SDN-Based Double Hopping Communication against Sniffer Attack

    Directory of Open Access Journals (Sweden)

    Zheng Zhao

    2016-01-01

    Full Text Available Sniffer attack has been a severe threat to network communication security. Traditional network usually uses static network configuration, which provides convenience to sniffer attack. In this paper, an SDN-based double hopping communication (DHC approach is proposed to solve this problem. In DHC, ends in communication packets as well as the routing paths are changed dynamically. Therefore, the traffic will be distributed to multiple flows and transmitted along different paths. Moreover, the data from multiple users will be mixed, bringing difficulty for attackers in obtaining and recovering the communication data, so that sniffer attack will be prevented effectively. It is concluded that DHC is able to increase the overhead of sniffer attack, as well as the difficulty of communication data recovery.

  5. Laser Beam Scintillation with Applications

    CERN Document Server

    Andrews, Larry C; Young, Cynthia

    2001-01-01

    Renewed interest in laser communication systems has sparked development of useful new analytic models. This book discusses optical scintillation and its impact on system performance in free-space optical communication and laser radar applications, with a detailed look at propagation phenomena and the role of scintillation on system behavior. Intended for practicing engineers, scientists, and students.

  6. Do future commercial broadband communication satellites really need laser-communication intersatellite links (ISLs)?

    Science.gov (United States)

    Freidell, James E.

    1997-04-01

    Large commercial satellite programs requiring ISLs are growing in number and maturing. An important segment of the commercial satellite market, and its ISL needs, is discussed in the paper. ISL value will increase as long-haul terrestrial backbones become increasingly congested. Providing interregional and intercontinental connectivity via ISL presents far lower cost and fewer problems than relying on terrestrial fiber-optic networks. To demonstrate this, a new metric is proposed which allows 'apples-to- apples' cost/performance comparisons between laser communications in GEO, LEO, and terrestrial fiber-optics. ISL requirements in to the next decade are predicted >= 50-100 Gb/s full duplex. Many attitudinal changes must be embraced among those who choose to focus on this new commercial business. Foremost among these is a preponderance to delivering fully acceptable hardware fast and at low cost, as opposed to merely designing such. Considerable attention must be given business considerations foreign to professionals who have spent time in the government or government contracting sectors. Successful ISL customers will come to recognize that ISLs are not commodity products. Failure to embrace these attitudes will nonetheless constitute decision to which the commercial market, and particularly the financial market, will appropriately respond.

  7. Performance evaluation of CPPM modulation in multi-path environments

    International Nuclear Information System (INIS)

    Tasev, Zarko; Kocarev, Ljupco

    2003-01-01

    Chaotic pulse position modulation (CPPM) is a novel technique to communicate with chaotic signals based upon pulse trains in which the intervals between two pulses are determined by chaotic dynamics of a pulse generator. Using numerical simulations we show that CPPM offers excellent multi-path performance. We simulated the CPPM radio system, which is designed for a WLAN application and operates in the 2.4 GHz ISM frequency band with IEEE 802.11 compliant channel spacing. In this case, the average performance loss due the multi-path for CPPM is less than 5 dB

  8. Performance evaluation of CPPM modulation in multi-path environments

    Energy Technology Data Exchange (ETDEWEB)

    Tasev, Zarko E-mail: ztasev@ucsd.edu; Kocarev, Ljupco E-mail: lkocarev@ucsd.edu

    2003-01-01

    Chaotic pulse position modulation (CPPM) is a novel technique to communicate with chaotic signals based upon pulse trains in which the intervals between two pulses are determined by chaotic dynamics of a pulse generator. Using numerical simulations we show that CPPM offers excellent multi-path performance. We simulated the CPPM radio system, which is designed for a WLAN application and operates in the 2.4 GHz ISM frequency band with IEEE 802.11 compliant channel spacing. In this case, the average performance loss due the multi-path for CPPM is less than 5 dB.

  9. Detecting Topological Defect Dark Matter Using Coherent Laser Ranging System

    Science.gov (United States)

    Yang, Wanpeng; Leng, Jianxiao; Zhang, Shuangyou; Zhao, Jianye

    2016-01-01

    In the last few decades, optical frequency combs with high intensity, broad optical bandwidth, and directly traceable discrete wavelengths have triggered rapid developments in distance metrology. However, optical frequency combs to date have been limited to determine the absolute distance to an object (such as satellite missions). We propose a scheme for the detection of topological defect dark matter using a coherent laser ranging system composed of dual-combs and an optical clock via nongravitational signatures. The dark matter field, which comprises a defect, may interact with standard model particles, including quarks and photons, resulting in the alteration of their masses. Thus, a topological defect may function as a dielectric material with a distinctive frequency-depend index of refraction, which would cause the time delay of a periodic extraterrestrial or terrestrial light. When a topological defect passes through the Earth, the optical path of long-distance vacuum path is altered, this change in optical path can be detected through the coherent laser ranging system. Compared to continuous wavelength(cw) laser interferometry methods, dual-comb interferometry in our scheme excludes systematic misjudgement by measuring the absolute optical path length. PMID:27389642

  10. Development of Operational Free-Space-Optical (FSO) Laser Communication Systems Final Report CRADA No. TC02093.0

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Orgren, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-15

    This project was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL) and LGS Innovations, LLC (formerly Lucent Technologies, Inc.), to develop long-range and mobile operational free-space optical (FSO) laser communication systems for specialized government applications. LLNL and LGS Innovations formerly Lucent Bell Laboratories Government Communications Systems performed this work for a United States Government (USG) Intelligence Work for Others (I-WFO) customer, also referred to as "Government Customer", or "Customer" and "Government Sponsor." The CRADA was a critical and required part of the LLNL technology transfer plan for the customer.

  11. High-Speed Operation of Interband Cascade Lasers

    Science.gov (United States)

    Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Wright, Malcom W.; Farr, William H.; Yang, Rui Q.; Liu, H. C.

    2010-01-01

    Optical sources operating in the atmospheric window of 3-5 microns are of particular interest for the development of free-space optical communication link. It is more advantageous to operate the free-space optical communication link in 3-5-microns atmospheric transmission window than at the telecom wavelength of 1.5 m due to lower optical scattering, scintillation, and background radiation. However, the realization of optical communications at the longer wavelength has encountered significant difficulties due to lack of adequate optical sources and detectors operating in the desirable wavelength regions. Interband Cascade (IC) lasers are novel semiconductor lasers that have a great potential for the realization of high-power, room-temperature optical sources in the 3-5-microns wavelength region, yet no experimental work, until this one, was done on high-speed direct modulation of IC lasers. Here, highspeed interband cascade laser, operating at wavelength 3.0 m, has been developed and the first direct measurement of the laser modulation bandwidth has been performed using a unique, highspeed quantum well infrared photodetector (QWIP). The developed laser has modulation bandwidth exceeding 3 GHz. This constitutes a significant increase of the IC laser modulation bandwidth over currently existing devices. This result has demonstrated suitability of IC lasers as a mid-IR light source for multi-GHz free-space optical communications links

  12. Compact and portable open-path sensor for simultaneous measurements of atmospheric N2O and CO using a quantum cascade laser.

    Science.gov (United States)

    Tao, Lei; Sun, Kang; Khan, M Amir; Miller, David J; Zondlo, Mark A

    2012-12-17

    A compact and portable open-path sensor for simultaneous detection of atmospheric N(2)O and CO has been developed with a 4.5 μm quantum cascade laser (QCL). An in-line acetylene (C(2)H(2)) gas reference cell allows for continuous monitoring of the sensor drift and calibration in rapidly changing field environments and thereby allows for open-path detection at high precision and stability. Wavelength modulation spectroscopy (WMS) is used to detect simultaneously both the second and fourth harmonic absorption spectra with an optimized dual modulation amplitude scheme. Multi-harmonic spectra containing atmospheric N(2)O, CO, and the reference C(2)H(2) signals are fit in real-time (10 Hz) by combining a software-based lock-in amplifier with a computationally fast numerical model for WMS. The sensor consumes ~50 W of power and has a mass of ~15 kg. Precision of 0.15 ppbv N(2)O and 0.36 ppbv CO at 10 Hz under laboratory conditions was demonstrated. The sensor has been deployed for extended periods in the field. Simultaneous N(2)O and CO measurements distinguished between natural and fossil fuel combustion sources of N(2)O, an important greenhouse gas with poorly quantified emissions in space and time.

  13. Laser Light Fiber Communication,

    Science.gov (United States)

    1980-10-14

    001 068 C)LASER FIGT3IBER OMNICATION BICICJ-,HuanN/CAnIOu Country off origin: China Translated by: :F3 -8D01SCITRAN A~s---qnrt / Requester: FTD/TQTA...TXS ’ -’- Approved ffor public release; distribution DTIC T:’’w fBy _ Conty f riin. Codes Trans ated by: CITRA Accssio THIS TRANSLATION IS A REI

  14. Spectral and far-field broadening due to stimulated rotational Raman scattering driven by the Nike krypton fluoride laser.

    Science.gov (United States)

    Weaver, James; Lehmberg, Robert; Obenschain, Stephen; Kehne, David; Wolford, Matthew

    2017-11-01

    Stimulated rotational Raman scattering (SRRS) in the ultraviolet region (λ=248  nm) has been observed at the Nike laser over extended propagation paths in air during high power operation. Although this phenomenon is not significant for standard operating configurations at Nike, broadening of the laser spectrum and far-field focal profiles has been observed once the intensity-path length product exceeds a threshold of approximately 1  TW/cm. This paper presents experimental results and a new theoretical evaluation of these effects. The observations suggest that significantly broader spectra can be achieved with modest degradation of the final focal distribution. These results point to a possible path for enhanced laser-target coupling with the reduction of laser-plasma instabilities due to broad laser bandwidth produced by the SRRS.

  15. Microstructure of selective laser melted nickel–titanium

    International Nuclear Information System (INIS)

    Bormann, Therese; Müller, Bert; Schinhammer, Michael; Kessler, Anja; Thalmann, Peter; Wild, Michael de

    2014-01-01

    In selective laser melting, the layer-wise local melting of metallic powder by means of a scanning focused laser beam leads to anisotropic microstructures, which reflect the pathway of the laser beam. We studied the impact of laser power, scanning speed, and laser path onto the microstructure of NiTi cylinders. Here, we varied the laser power from 56 to 100 W and the scanning speed from about 100 to 300 mm/s. In increasing the laser power, the grain width and length increased from (33 ± 7) to (90 ± 15) μm and from (60 ± 20) to (600 ± 200) μm, respectively. Also, the grain size distribution changed from uni- to bimodal. Ostwald-ripening of the crystallites explains the distinct bimodal size distributions. Decreasing the scanning speed did not alter the microstructure but led to increased phase transformation temperatures of up to 40 K. This was experimentally determined using differential scanning calorimetry and explained as a result of preferential nickel evaporation during the fabrication process. During selective laser melting of the NiTi shape memory alloy, the control of scanning speed allows restricted changes of the transformation temperatures, whereas controlling the laser power and scanning path enables us to tailor the microstructure, i.e. the crystallite shapes and arrangement, the extent of the preferred crystallographic orientation and the grain size distribution. - Highlights: • Higher laser powers during selective laser melting of NiTi lead to larger grains. • Selective laser melting of NiTi gives rise to preferred <111> orientation. • The observed Ni/Ti ratio depends on the exposure time. • Ostwald ripening explains the bimodal grain size distribution

  16. Free-space communication with over 100 spatial modes

    CSIR Research Space (South Africa)

    Rosales-Guzmán, C

    2016-10-01

    Full Text Available Congress 2016: Advanced Solid State Lasers (ASSL); Applications of Lasers for Sensing and Free Space Communications (LS&C), 30 October - 3 November 2016, Boston, Massachusetts, United States Free-space communication with over 100 spatial modes...

  17. Blue laser phase change recording system

    International Nuclear Information System (INIS)

    Hofmann, Holger; Dambach, S.Soeren; Richter, Hartmut

    2002-01-01

    The migration paths from DVD phase change recording with red laser to the next generation optical disk formats with blue laser and high NA optics are discussed with respect to optical aberration margins and disc capacities. A test system for the evaluation of phase change disks with more than 20 GB capacity is presented and first results of the recording performance are shown

  18. Violet Laser Diode Enables Lighting Communication.

    Science.gov (United States)

    Chi, Yu-Chieh; Huang, Yu-Fang; Wu, Tsai-Chen; Tsai, Cheng-Ting; Chen, Li-Yin; Kuo, Hao-Chung; Lin, Gong-Ru

    2017-09-05

    Violet laser diode (VLD) based white-light source with high color rendering index (CRI) for lighting communication is implemented by covering with Y 3 Al 5 O 12 :Ce 3+ (YAG:Ce) or Lu 3 Al 5 O 12 :Ce 3+ /CaAlSiN 3 :Eu 2+ (LuAG:Ce/CASN:Eu) phosphorous diffuser plates. After passing the beam of VLD biased at 70 mA (~2I th ) through the YAG:Ce phosphorous diffuser, a daylight with a correlated color temperature (CCT) of 5068 K and a CRI of 65 is acquired to provide a forward error correction (FEC) certified data rate of 4.4 Gbit/s. By using the VLD biased at 122 mA (~3.5I th ) to excite the LuAG:Ce/CASN:Eu phosphorous diffuser with 0.85-mm thickness, a warm white-light source with a CCT of 2700 K and a CRI of 87.9 is obtained at a cost of decreasing transmission capacity to 2.4 Gbit/s. Thinning the phosphor thickness to 0.75 mm effectively reduces the required bias current by 32 mA to achieve the same CCT for the delivered white light, which offers an enlarged CRI of 89.1 and an increased data rate of 4.4 Gbit/s. Further enlarging the bias current to 105 mA remains the white-light transmission capacity at 4.4 Gbit/s but reveals an increased CCT of 3023 K and an upgraded CRI of 91.5.

  19. Laser diode technology and applications

    International Nuclear Information System (INIS)

    Figueroa, L.

    1989-01-01

    This book covers a wide range of semiconductor laser technology, from new laser structures and laser design to applications in communications, remote sensing, and optoelectronics. The authors report on new laser diode physics and applications and present a survey of the state of the art as well as progress in new developments

  20. Method and system for homogenizing diode laser pump arrays

    Science.gov (United States)

    Bayramian, Andy J

    2013-10-01

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  1. Laser experiments in light cloudiness with the geostationary satellite ARTEMIS

    Science.gov (United States)

    Kuzkov, V.; Kuzkov, S.; Sodnik, Z.

    2016-08-01

    The geostationary satellite ARTEMIS was launched in July 2001. The satellite is equipped with a laser communication terminal, which was used for the world's first inter-satellite laser communication link between ARTEMIS and the low earth orbit satellite SPOT-4. Ground-to-space laser communication experiments were also conducted under various atmospheric conditions involving ESA's optical ground station. With a rapidly increasing volume of information transferred by geostationary satellites, there is a rising demand for high-speed data links between ground stations and satellites. For ground-to-space laser communications there are a number of important design parameters that need to be addressed, among them, the influence of atmospheric turbulence in different atmospheric conditions and link geometries. The Main Astronomical Observatory of NAS of Ukraine developed a precise computer tracking system for its 0.7 m AZT-2 telescope and a compact laser communication package LACES (Laser Atmosphere and Communication experiments with Satellites) for laser communication experiments with geostationary satellites. The specially developed software allows computerized tracking of the satellites using their orbital data. A number of laser experiments between MAO and ARTEMIS were conducted in partial cloudiness with some amount of laser light observed through clouds. Such conditions caused high break-up (splitting) of images from the laser beacon of ARTEMIS. One possible explanation is Raman scattering of photons on molecules of a water vapor in the atmosphere. Raman scattering causes a shift in a wavelength of the photons.In addition, a different value for the refraction index appears in the direction of the meridian for the wavelength-shifted photons. This is similar to the anomalous atmospheric refraction that appears at low angular altitudes above the horizon. We have also estimated the atmospheric attenuation and the influence of atmospheric turbulence on observed results

  2. Multipoint alignment monitoring with amorphous silicon position detectors in a complex light path

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E. [CIEMAT, Madrid (Spain); Ferrando, A., E-mail: antonio.ferrando@ciemat.e [CIEMAT, Madrid (Spain); Josa, M.I.; Molinero, A.; Navarrete, J.; Oller, J.C.; Yuste, C. [CIEMAT, Madrid (Spain); Calderon, A.; Gomez, G.; Gonzalez-Sanchez, F.J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Sobron, M.; Vila, I.; Virto, A.L. [Instituto de Fisica de Cantabria. CSIC-University of Cantabria, Santander (Spain)

    2010-12-01

    This document presents an application of the new generation of amorphous silicon position detecting (ASPD) sensors to multipoint alignment. Twelve units are monitored along a 20 m long laser beam, where the light path is deflected by 90{sup o} using a pentaprism.

  3. Multipoint alignment monitoring with amorphous silicon position detectors in a complex light path

    International Nuclear Information System (INIS)

    Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M.I.; Molinero, A.; Navarrete, J.; Oller, J.C.; Yuste, C.; Calderon, A.; Gomez, G.; Gonzalez-Sanchez, F.J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Sobron, M.; Vila, I.; Virto, A.L.

    2010-01-01

    This document presents an application of the new generation of amorphous silicon position detecting (ASPD) sensors to multipoint alignment. Twelve units are monitored along a 20 m long laser beam, where the light path is deflected by 90 o using a pentaprism.

  4. Advanced laser architectures for high power eyesafe illuminators

    Science.gov (United States)

    Baranova, N.; Pati, B.; Stebbins, K.; Bystryak, I.; Rayno, M.; Ezzo, K.; DePriest, C.

    2018-02-01

    Q-Peak has demonstrated a novel pulsed eyesafe laser architecture operating with >50 mJ pulse energies at Pulse Repetition Frequencies (PRFs) as high as 320 Hz. The design leverages an Optical Parametric Oscillator (OPO) and Optical Parametric Amplifier (OPA) geometry, which provides the unique capability for high power in a comparatively compact package, while also offering the potential for additional eyesafe power scaling. The laser consists of a Commercial Off-the-Shelf (COTS) Q-switched front-end seed laser to produce pulse-widths around 10 ns at 1.06-μm, which is then followed by a pair of Multi-Pass Amplifier (MPA) architectures (comprised of side-pumped, multi-pass Nd:YAG slabs with a compact diode-pump-array imaging system), and finally involving two sequential nonlinear optical conversion architectures for transfer into the eyesafe regime. The initial seed beam is first amplified through the MPA, and then split into parallel optical paths. An OPO provides effective nonlinear conversion on one optical path, while a second MPA further amplifies the 1.06-μm beam for use in pumping an OPA on the second optical path. These paths are then recombined prior to seeding the OPA. Each nonlinear conversion subsystem utilizes Potassium Titanyl Arsenate (KTA) for effective nonlinear conversion with lower risk to optical damage. This laser architecture efficiently produces pulse energies of >50 mJ in the eyesafe band at PRFs as high as 320 Hz, and has been designed to fit within a volume of 4,500 in3 (0.074 m3 ). We will discuss theoretical and experimental details of the nonlinear optical system for achieving higher eyesafe powers.

  5. Research on NC laser combined cutting optimization model of sheet metal parts

    Science.gov (United States)

    Wu, Z. Y.; Zhang, Y. L.; Li, L.; Wu, L. H.; Liu, N. B.

    2017-09-01

    The optimization problem for NC laser combined cutting of sheet metal parts was taken as the research object in this paper. The problem included two contents: combined packing optimization and combined cutting path optimization. In the problem of combined packing optimization, the method of “genetic algorithm + gravity center NFP + geometric transformation” was used to optimize the packing of sheet metal parts. In the problem of combined cutting path optimization, the mathematical model of cutting path optimization was established based on the parts cutting constraint rules of internal contour priority and cross cutting. The model played an important role in the optimization calculation of NC laser combined cutting.

  6. Scan path entropy and Arrow plots: Capturing scanning behavior of multiple observers

    Directory of Open Access Journals (Sweden)

    Ignace T C Hooge

    2013-12-01

    Full Text Available Designers of visual communication material want their material to attract and retain attention. In marketing research, heat maps, dwell time, and time to AOI first hit are often used as evaluation parameters. Here we present two additional measures 1 scan path entropy to quantify gaze guidance and 2 the arrow plot to visualize the average scan path. Both are based on string representations of scan paths. The latter also incorporates transition matrices and time required for 50% of the observers to first hit AOIs (T50. The new measures were tested in an eye tracking study (48 observers, 39 advertisements. Scan path entropy is a sensible measure for gaze guidance and the new visualization method reveals aspects of the average scan path and gives a better indication in what order global scanning takes place.

  7. One subject, many paths. Transmedia communication in journalism

    Directory of Open Access Journals (Sweden)

    André Fagundes Pase

    2012-06-01

    Full Text Available Transmedia communication is used mainly in fiction, but also in journalism. This paper analyzes the informational synergy of transmedia in the news field. Through a conceptual digression, we discuss the word transmedia, as defined by Jenkins (2006, cross-media and multimedia, explaining the differences between all those concepts – sometimes treated by some authors as synonyms, although they are not. The ideas are revisited and verified through the study of Inside Disaster, a Canadian documentary about the 2010 Haitian earthquake that offers news by means of game, hypertext and video. Above all, we propose a reflection on the implications of the transmedia experience applied to journalism, a look at transmedia communication thinking not only about technology, but searching for a cultural and social interpretation, in a cultural perspective of the study of technology and journalism.

  8. ONE SUBJECT, MANY PATHS. TRANSMEDIA COMMUNICATION IN JOURNALISM

    Directory of Open Access Journals (Sweden)

    Ana Cecília Bisso Nunes

    2012-06-01

    Full Text Available Transmedia communication is used mainly in fiction, but also in journalism. This paper analyzes the informational synergy of transmedia in the news field. Through a conceptual digression, we discuss the word transmedia, as defined by Jenkins (2006, cross-media and multimedia, explaining the differences between all those concepts – sometimes treated by some authors as synonyms, although they are not. The ideas are revisited and verified through the study of Inside Disaster, a Canadian documentary about the 2010 Haitian earthquake that offers news by means of game, hypertext and video. Above all, we propose a reflection on the implications of the transmedia experience applied to journalism, a look at transmedia communication thinking not only about technology, but searching for a cultural and social interpretation, in a cultural perspective of the study of technology and journalism.

  9. Realization of double-pulse laser irradiating scheme for laser ion sources

    International Nuclear Information System (INIS)

    Li Zhangmin; Jin Qianyu; Liu Wei; Zhang Junjie; Sha Shan; Zhao Huanyu; Sun Liangting; Zhang Xuezhen; Zhao Hongwei

    2015-01-01

    A double-pulse laser irradiating scheme has been designed and established for the production of highly charged ion beams at Institute of Modern Physics (IMP), Chinese Academy of Sciences. The laser beam output by a Nd : YAG laser is split and combined by a double of beam splitters, between which the split laser beams are transmitted along different optical paths to get certain time delay between each other. With the help of a quarter-wave plate before the first splitter, the energy ratio between the two laser pulses can be adjusted between 3 : 8 to 8 : 3. To testify its feasibility, a preliminary experiment was carried out with the new-developed double-pulse irradiating scheme to produce highly charged carbon ions. Comparing the results with those got from the previous single-pulse irradiating scheme, the differences in the time structure and Charge State Distribution (CSD) of the ion pulse were observed, but its mechanisms and optimization require further studies. (authors)

  10. Laser Communications Relay Demonstration

    Data.gov (United States)

    National Aeronautics and Space Administration — LCRD is a minimum two year flight demonstration in geosynchronous Earth orbit to advance optical communications technology toward infusion into Deep Space and Near...

  11. Dependence of the absorption of pulsed CO2-laser radiation by silane on wavenumber, fluence, pulse duration, temperature, optical path length, and pressure of absorbing and nonabsorbing gases

    International Nuclear Information System (INIS)

    Blazejowski, J.; Gruzdiewa, L.; Rulewski, J.; Lampe, F.W.

    1995-01-01

    The absorption of three lines [P(20), 944.2 cm -1 ; P(14), 949.2 cm -1 ; and R(24), 978.5 cm -1 ] of the pulsed CO 2 laser (00 0 1--10 0 0 transition) by SiH 4 was measured at various pulse energy, pulse duration, temperature, optical path length, and pressure of the compound and nonabsorbing foreign gases. In addition, low intensity infrared absorption spectrum of silane was compared with high intensity absorption characteristics for all lines of the pulsed CO 2 laser. The experimental dependencies show deviations from the phenomenological Beer--Lambert law which can be considered as arising from the high intensity of an incident radiation and collisions of absorbing molecules with surroundings. These effects were included into the expression, being an extended form of the Beer--Lambert law, which reasonably approximates all experimental data. The results, except for extending knowledge on the interaction of a high power laser radiation with matter, can help understanding and planning processes leading to preparation of silicon-containing technologically important materials

  12. Hard paths, soft paths or no paths? Cross-cultural perceptions of water solutions

    Science.gov (United States)

    Wutich, A.; White, A. C.; White, D. D.; Larson, K. L.; Brewis, A.; Roberts, C.

    2014-01-01

    In this study, we examine how development status and water scarcity shape people's perceptions of "hard path" and "soft path" water solutions. Based on ethnographic research conducted in four semi-rural/peri-urban sites (in Bolivia, Fiji, New Zealand, and the US), we use content analysis to conduct statistical and thematic comparisons of interview data. Our results indicate clear differences associated with development status and, to a lesser extent, water scarcity. People in the two less developed sites were more likely to suggest hard path solutions, less likely to suggest soft path solutions, and more likely to see no path to solutions than people in the more developed sites. Thematically, people in the two less developed sites envisioned solutions that involve small-scale water infrastructure and decentralized, community-based solutions, while people in the more developed sites envisioned solutions that involve large-scale infrastructure and centralized, regulatory water solutions. People in the two water-scarce sites were less likely to suggest soft path solutions and more likely to see no path to solutions (but no more likely to suggest hard path solutions) than people in the water-rich sites. Thematically, people in the two water-rich sites seemed to perceive a wider array of unrealized potential soft path solutions than those in the water-scarce sites. On balance, our findings are encouraging in that they indicate that people are receptive to soft path solutions in a range of sites, even those with limited financial or water resources. Our research points to the need for more studies that investigate the social feasibility of soft path water solutions, particularly in sites with significant financial and natural resource constraints.

  13. Path coupling and aggregate path coupling

    CERN Document Server

    Kovchegov, Yevgeniy

    2018-01-01

    This book describes and characterizes an extension to the classical path coupling method applied to statistical mechanical models, referred to as aggregate path coupling. In conjunction with large deviations estimates, the aggregate path coupling method is used to prove rapid mixing of Glauber dynamics for a large class of statistical mechanical models, including models that exhibit discontinuous phase transitions which have traditionally been more difficult to analyze rigorously. The book shows how the parameter regions for rapid mixing for several classes of statistical mechanical models are derived using the aggregate path coupling method.

  14. A path to practical Solar Pumped Lasers via Radiative Energy Transfer.

    Science.gov (United States)

    Reusswig, Philip D; Nechayev, Sergey; Scherer, Jennifer M; Hwang, Gyu Weon; Bawendi, Moungi G; Baldo, Marc A; Rotschild, Carmel

    2015-10-05

    The optical conversion of incoherent solar radiation into a bright, coherent laser beam enables the application of nonlinear optics to solar energy conversion and storage. Here, we present an architecture for solar pumped lasers that uses a luminescent solar concentrator to decouple the conventional trade-off between solar absorption efficiency and the mode volume of the optical gain material. We report a 750-μm-thick Nd(3+)-doped YAG planar waveguide sensitized by a luminescent CdSe/CdZnS (core/shell) colloidal nanocrystal, yielding a peak cascade energy transfer of 14%, a broad spectral response in the visible portion of the solar spectrum, and an equivalent quasi-CW solar lasing threshold of 23 W-cm(-2), or approximately 230 suns. The efficient coupling of incoherent, spectrally broad sunlight in small gain volumes should allow the generation of coherent laser light from intensities of less than 100 suns.

  15. Method and system for communicating with a laser power driver

    Science.gov (United States)

    Telford, Steven

    2017-07-18

    A system for controlling a plurality of laser diodes includes an optical transmitter coupled to the laser diode driver for each laser diode. An optical signal including bi-phase encoded data is provided to each laser diode driver. The optical signal includes current level and pulse duration information at which each of the diodes is to be driven. Upon receiving a trigger signal, the laser diode drivers operate the laser diodes using the current level and pulse duration information to output a laser beam.

  16. Optical overview and qualification of the LLCD space terminal

    Science.gov (United States)

    DeVoe, C. E.; Pillsbury, A. D.; Khatri, F.; Burnside, J. M.; Raudenbush, A. C.; Petrilli, L. J.; Williams, T.

    2017-11-01

    In October 2013 the Lunar Laser Communications Demonstration (LLCD) made communications history by successfully demonstrating 622 megabits per second laser communication from the moon's orbit to earth. The LLCD consisted of the Lunar Laser Communication Space Terminal (LLST), developed by MIT Lincoln Laboratory, mounted on NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft and a primary ground terminal located in New Mexico, the Lunar Laser Communications Ground Terminal (LLGT), and two alternate ground terminals. This paper presents the optical layout of the LLST, the approach for testing the optical subsystems, and the results of the optical qualification of the LLST. Also described is the optical test set used to qualify the LLST. The architecture philosophy for the optics was to keep a small, simple optical backend that provided excellent boresighting and high isolation between the optical paths, high quality wavefront on axis, with minimal throughput losses on all paths. The front end large optics consisted of a Cassegrain 107mm telescope with an f/0.7 parabolic primary mirror and a solar window to reduce the thermal load on the telescope and to minimize background light received at the sensors.

  17. Development and application of the variable focus laser leveling gage

    International Nuclear Information System (INIS)

    Gong Kun; Ma Jinglong

    2005-01-01

    The variable focus laser leveling gage was developed. The performance and structure were introduced. The several alignments and tests in KrF laser angle multi-path optical system were accomplished with them. Its application in other optical equipment was discussed too. (author)

  18. Path Creation, Path Dependence and Breaking Away from the Path

    OpenAIRE

    Wang, Jens; Hedman, Jonas; Tuunainen, Virpi Kristiina

    2016-01-01

    The explanation of how and why firms succeed or fail is a recurrent research challenge. This is particularly important in the context of technological innovations. We focus on the role of historical events and decisions in explaining such success and failure. Using a case study of Nokia, we develop and extend a multi-layer path dependence framework. We identify four layers of path dependence: technical, strategic and leadership, organizational, and external collaboration. We show how path dep...

  19. Continuous-scanning laser Doppler vibrometry: Extensions to arbitrary areas, multi-frequency and 3D capture

    International Nuclear Information System (INIS)

    Weekes, B.; Ewins, D.; Acciavatti, F.

    2014-01-01

    To date, differing implementations of continuous scan laser Doppler vibrometry have been demonstrated by various academic institutions, but since the scan paths were defined using step or sine functions from function generators, the paths were typically limited to 1D line scans or 2D areas such as raster paths or Lissajous trajectories. The excitation was previously often limited to a single frequency due to the specific signal processing performed to convert the scan data into an ODS. In this paper, a configuration of continuous-scan laser Doppler vibrometry is demonstrated which permits scanning of arbitrary areas, with the benefit of allowing multi-frequency/broadband excitation. Various means of generating scan paths to inspect arbitrary areas are discussed and demonstrated. Further, full 3D vibration capture is demonstrated by the addition of a range-finding facility to the described configuration, and iteratively relocating a single scanning laser head. Here, the range-finding facility was provided by a Microsoft Kinect, an inexpensive piece of consumer electronics

  20. Directional maximum likelihood self-estimation of the path-loss exponent

    NARCIS (Netherlands)

    Hu, Y.; Leus, G.J.T.; Dong, Min; Zheng, Thomas Fang

    2016-01-01

    The path-loss exponent (PLE) is a key parameter in wireless propagation channels. Therefore, obtaining the knowledge of the PLE is rather significant for assisting wireless communications and networking to achieve a better performance. Most existing methods for estimating the PLE not only require

  1. NASA's current activities in free space optical communications

    Science.gov (United States)

    Edwards, Bernard L.

    2017-11-01

    NASA and other space agencies around the world are currently developing free space optical communication systems for both space-to-ground links and space-to-space links. This paper provides an overview of NASA's current activities in free space optical communications with a focus on Near Earth applications. Activities to be discussed include the Lunar Laser Communication Demonstration, the Laser Communications Relay Demonstration, and the commercialization of the underlying technology. The paper will also briefly discuss ongoing efforts and studies for Deep Space optical communications. Finally the paper will discuss the development of international optical communication standards within the Consultative Committee for Space Data Systems.

  2. A path to practical Solar Pumped Lasers via Radiative Energy Transfer

    Science.gov (United States)

    Reusswig, Philip D.; Nechayev, Sergey; Scherer, Jennifer M.; Hwang, Gyu Weon; Bawendi, Moungi G.; Baldo, Marc. A.; Rotschild, Carmel

    2015-01-01

    The optical conversion of incoherent solar radiation into a bright, coherent laser beam enables the application of nonlinear optics to solar energy conversion and storage. Here, we present an architecture for solar pumped lasers that uses a luminescent solar concentrator to decouple the conventional trade-off between solar absorption efficiency and the mode volume of the optical gain material. We report a 750-μm-thick Nd3+-doped YAG planar waveguide sensitized by a luminescent CdSe/CdZnS (core/shell) colloidal nanocrystal, yielding a peak cascade energy transfer of 14%, a broad spectral response in the visible portion of the solar spectrum, and an equivalent quasi-CW solar lasing threshold of 23 W-cm−2, or approximately 230 suns. The efficient coupling of incoherent, spectrally broad sunlight in small gain volumes should allow the generation of coherent laser light from intensities of less than 100 suns. PMID:26434400

  3. Lasers '90: Proceedings of the 13th International Conference on Lasers and Applications, San Diego, CA, Dec. 10-14, 1990

    International Nuclear Information System (INIS)

    Harris, D.G.; Herbelin, J.

    1991-01-01

    The general topics considered are: x-ray lasers; FELs; solid state lasers; techniques and phenomena of ultrafast lasers; optical filters and free space laser communications; discharge lasers; tunable lasers; applications of lasers in medicine and surgery; lasers in materials processing; high power lasers; dynamics gratings, wave mixing, and holography; up-conversion lasers; lidar and laser radar; laser resonators; excimer lasers; laser propagation; nonlinear and quantum optics; blue-green technology; imaging; laser spectroscopy; chemical lasers; dye lasers; and lasers in chemistry

  4. Beaconless Pointing for Deep-Space Optical Communication

    Science.gov (United States)

    Swank, Aaron J.; Aretskin-Hariton, Eliot; Le, Dzu K.; Sands, Obed S.; Wroblewski, Adam

    2016-01-01

    Free space optical communication is of interest to NASA as a complement to existing radio frequency communication methods. The potential for an increase in science data return capability over current radio-frequency communications is the primary objective. Deep space optical communication requires laser beam pointing accuracy on the order of a few microradians. The laser beam pointing approach discussed here operates without the aid of a terrestrial uplink beacon. Precision pointing is obtained from an on-board star tracker in combination with inertial rate sensors and an outgoing beam reference vector. The beaconless optical pointing system presented in this work is the current approach for the Integrated Radio and Optical Communication (iROC) project.

  5. Task Allocation and Path Planning for Collaborative Autonomous Underwater Vehicles Operating through an Underwater Acoustic Network

    Directory of Open Access Journals (Sweden)

    Yueyue Deng

    2013-01-01

    Full Text Available Dynamic and unstructured multiple cooperative autonomous underwater vehicle (AUV missions are highly complex operations, and task allocation and path planning are made significantly more challenging under realistic underwater acoustic communication constraints. This paper presents a solution for the task allocation and path planning for multiple AUVs under marginal acoustic communication conditions: a location-aided task allocation framework (LAAF algorithm for multitarget task assignment and the grid-based multiobjective optimal programming (GMOOP mathematical model for finding an optimal vehicle command decision given a set of objectives and constraints. Both the LAAF and GMOOP algorithms are well suited in poor acoustic network condition and dynamic environment. Our research is based on an existing mobile ad hoc network underwater acoustic simulator and blind flooding routing protocol. Simulation results demonstrate that the location-aided auction strategy performs significantly better than the well-accepted auction algorithm developed by Bertsekas in terms of task-allocation time and network bandwidth consumption. We also demonstrate that the GMOOP path-planning technique provides an efficient method for executing multiobjective tasks by cooperative agents with limited communication capabilities. This is in contrast to existing multiobjective action selection methods that are limited to networks where constant, reliable communication is assumed to be available.

  6. Constraining atmospheric ammonia emissions through new observations with an open-path, laser-based sensor

    Science.gov (United States)

    Sun, Kang

    As the third most abundant nitrogen species in the atmosphere, ammonia (NH3) is a key component of the global nitrogen cycle. Since the industrial revolution, humans have more than doubled the emissions of NH3 to the atmosphere by industrial nitrogen fixation, revolutionizing agricultural practices, and burning fossil fuels. NH3 is a major precursor to fine particulate matter (PM2.5), which has adverse impacts on air quality and human health. The direct and indirect aerosol radiative forcings currently constitute the largest uncertainties for future climate change predictions. Gas and particle phase NH3 eventually deposits back to the Earth's surface as reactive nitrogen, leading to the exceedance of ecosystem critical loads and perturbation of ecosystem productivity. Large uncertainties still remain in estimating the magnitude and spatiotemporal patterns of NH3 emissions from all sources and over a range of scales. These uncertainties in emissions also propagate to the deposition of reactive nitrogen. To improve our understanding of NH3 emissions, observational constraints are needed from local to global scales. The first part of this thesis is to provide quality-controlled, reliable NH3 measurements in the field using an open-path, quantum cascade laser-based NH3 sensor. As the second and third part of my research, NH3 emissions were quantified from a cattle feedlot using eddy covariance (EC) flux measurements, and the similarities between NH3 turbulent fluxes and those of other scalars (temperature, water vapor, and CO2) were investigated. The fourth part involves applying a mobile laboratory equipped with the open-path NH3 sensor and other important chemical/meteorological measurements to quantify fleet-integrated NH3 emissions from on-road vehicles. In the fifth part, the on-road measurements were extended to multiple major urban areas in both the US and China in the context of five observation campaigns. The results significantly improved current urban NH3

  7. DICOM involving XML path-tag

    Science.gov (United States)

    Zeng, Qiang; Yao, Zhihong; Liu, Lei

    2011-03-01

    Digital Imaging and Communications in Medicine (DICOM) is a standard for handling, storing, printing, and transmitting information in medical imaging. XML (Extensible Markup Language) is a set of rules for encoding documents in machine-readable form which has become more and more popular. The combination of these two is very necessary and promising. Using XML tags instead of numeric labels in DICOM files will effectively increase the readability and enhance the clear hierarchical structure of DICOM files. However, due to the fact that the XML tags rely heavily on the orders of the tags, the strong data dependency has a lot of influence on the flexibility of inserting and exchanging data. In order to improve the extensibility and sharing of DICOM files, this paper introduces XML Path-Tag to DICOM. When a DICOM file is converted to XML format, adding simple Path-Tag into the DICOM file in place of complex tags will keep the flexibility of a DICOM file while inserting data elements and give full play to the advantages of the structure and readability of an XML file. Our method can solve the weak readability problem of DICOM files and the tedious work of inserting data into an XML file. In addition, we set up a conversion engine that can transform among traditional DICOM files, XML-DCM and XML-DCM files involving XML Path-Tag efficiently.

  8. The national ignition facility: path to ignition in the laboratory

    International Nuclear Information System (INIS)

    Moses, E.I.; Bonanno, R.E.; Haynam, C.A.; Kauffman, R.L.; MacGowan, B.J.; Patterson Jr, R.W.; Sawicki, R.H.; Van Wonterghem, B.M.

    2007-01-01

    The National Ignition Facility (NIF) is a 192-beam laser facility presently under construction at Lawrence Livermore National Laboratory. When completed, NIF will be a 1.8-MJ, 500-TW ultraviolet laser system. Its missions are to obtain fusion ignition of deuterium-tritium plasmas in ICF (Inertial Confinement Fusion) targets and to perform high energy density experiments in support of the U.S. nuclear weapons stockpile. The NIF facility will consist of 2 laser bays, 4 capacitor areas, 2 laser switchyards, the target area and the building core. The laser is configured in 4 clusters of 48 beams, 2 in each laser bay. Four of the NIF beams have been already commissioned to demonstrate laser performance and to commission the target area including target and beam alignment and laser timing. During this time, NIF has demonstrated on a single-beam basis that it will meet its performance goals and has demonstrated its precision and flexibility for pulse shaping, pointing, timing and beam conditioning. It also performed 4 important experiments for ICF and High Energy Density Science. Presently, the project is installing production hardware to complete the project in 2009 with the goal to begin ignition experiments in 2010. An integrated plan has been developed including the NIF operations, user equipment such as diagnostics and cryogenic target capability, and experiments and calculations to meet this goal. This talk will provide NIF status, the plan to complete NIF, and the path to ignition. (authors)

  9. Satellite communications principles and applications

    CERN Document Server

    Calcutt, David

    1994-01-01

    Satellites are increasingly used for global communications, as well as for radio and television transmissions. With the growth of mobile communications, and of digital technology, the use of satellite systems is set to expand substantially and already all students of electronics or communications engineering must study the subject.This book steers a middle path between offering a basic understanding of the process of communication by satellite and the methodology used; and the extensive mathematical analysis normally adopted in similar texts. It presents the basic concepts, using as mu

  10. Constraint-Based Local Search for Constrained Optimum Paths Problems

    Science.gov (United States)

    Pham, Quang Dung; Deville, Yves; van Hentenryck, Pascal

    Constrained Optimum Path (COP) problems arise in many real-life applications and are ubiquitous in communication networks. They have been traditionally approached by dedicated algorithms, which are often hard to extend with side constraints and to apply widely. This paper proposes a constraint-based local search (CBLS) framework for COP applications, bringing the compositionality, reuse, and extensibility at the core of CBLS and CP systems. The modeling contribution is the ability to express compositional models for various COP applications at a high level of abstraction, while cleanly separating the model and the search procedure. The main technical contribution is a connected neighborhood based on rooted spanning trees to find high-quality solutions to COP problems. The framework, implemented in COMET, is applied to Resource Constrained Shortest Path (RCSP) problems (with and without side constraints) and to the edge-disjoint paths problem (EDP). Computational results show the potential significance of the approach.

  11. Optical Remote Sensing for Fence-Line Monitoring using Open-Path Quantum Cascade Laser (QCL) mono-static system for multiple target compounds in the Mid IR 7-13um (Fingerprint) region.

    Science.gov (United States)

    Zemek, P. G.

    2017-12-01

    Quantum Cascade Lasers (QCLs) are quickly replacing Tunable Diode Lasers (TDL) for multi-target species identification and quantification in both extractive and open-path (OP) Optical Remote Sensing (ORS) fence-line instrumentation. As was seen with TDL incorporation and pricing drops as the adoption by the telecommunications industry and its current scaling has improved robustness and pricing, the QCL is also, albiet more slowly, becoming a mature market. There are several advantages of QCLs over conventional TDLs such as improved brightness and beam density, high resolution, as well as the incorporation of external etalons or internal gratings to scan over wide spectral areas. QCLs typically operate in the Mid infra-red (MIR) as opposed to the Near-Infrared (NIR) region used with TDL. The MidIR is a target rich absorption band area where compounds have high absorbtivity coefficients resulting in better detection limits as compared to TDL instruments. The use of novel chemometrics and more sensitive non-cryo-cooled detectors has allowed some of the first QCL open-path instruments in both active and passive operation. Data and field studies of one of the newest QCL OP systems is presented that allows one system to measure multiple target compounds. Multiple QCL spectral regions may be stitched together to increase the capability of QCLs over TDL OP systems. A comparison of several ORS type systems will be presented.

  12. Critical Path Driven Cosynthesis for Heterogeneous Target Architectures

    DEFF Research Database (Denmark)

    Bjørn-Jørgensen, Peter; Madsen, Jan

    1997-01-01

    This paper presents a critical path driven algorithm to produce a static schedule of a single-rate system onto a heterogeneous target architecture. Our algorithm is a list based scheduling algorithm which concurrently assigns tasks to processors and allocates nets to interprocessor communication........ Experimental results show that our algorithm is able to find good results, as compared to other methods, in small amount of CPU time....

  13. 2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode

    KAUST Repository

    Oubei, Hassan M.

    2015-07-30

    We experimentally demonstrate a record high-speed underwater wireless optical communication (UWOC) over 7 m distance using on-off keying non-return-to-zero (OOK-NRZ) modulation scheme. The communication link uses a commercial TO-9 packaged pigtailed 520 nm laser diode (LD) with 1.2 GHz bandwidth as the optical transmitter and an avalanche photodiode (APD) module as the receiver. At 2.3 Gbit/s transmission, the measured bit error rate of the received data is 2.23×10−4, well below the forward error correction (FEC) threshold of 2×10−3 required for error-free operation. The high bandwidth of the LD coupled with high sensitivity APD and optimized operating conditions is the key enabling factor in obtaining high bit rate transmission in our proposed system. To the best of our knowledge, this result presents the highest data rate ever achieved in UWOC systems thus far.

  14. Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds Calculated Using Multiple Constraints

    Science.gov (United States)

    2015-12-10

    Laboratory (Ret.), private communication. 33. S. Kou, Welding Metallurgy , 2nd Ed., John Wiley & Sons, Inc., 2003. DOI: 10.1002/0471434027. 34. J. K...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--15-9665 Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds ...NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds Calculated Using Multiple

  15. Path Dependency

    OpenAIRE

    Mark Setterfield

    2015-01-01

    Path dependency is defined, and three different specific concepts of path dependency – cumulative causation, lock in, and hysteresis – are analyzed. The relationships between path dependency and equilibrium, and path dependency and fundamental uncertainty are also discussed. Finally, a typology of dynamical systems is developed to clarify these relationships.

  16. Discovering Euler Circuits and Paths through a Culturally Relevant Lesson

    Science.gov (United States)

    Robichaux, Rebecca R.; Rodrigue, Paulette R.

    2006-01-01

    This article describes a middle school discrete mathematics lesson that uses the context of catching crawfish to provide students with a hands-on experience related to Euler circuits and paths. The lesson promotes mathematical communication through the use of cooperative learning as well as connections between mathematics and the real world…

  17. Self-Homodyne Detection in Optical Communication Systems

    Directory of Open Access Journals (Sweden)

    Benjamin J. Puttnam

    2014-05-01

    Full Text Available We review work on self-homodyne detection (SHD for optical communication systems. SHD uses a transmitted pilot-tone (PT, originating from the transmitter laser, to exploit phase noise cancellation at a coherent receiver and to enable transmitter linewidth tolerance and potential energy savings. We give an overview of SHD performance, outlining the key contributors to the optical signal-to-noise ratio penalty compared to equivalent intradyne systems, and summarize the advantages, differences and similarities between schemes using polarization-division multiplexed PTs (PDM-SHD and those using space-division multiplexed PTs (SDM-SHD. For PDM-SHD, we review the extensive work on the transmission of advanced modulation formats and techniques to minimize the trade-off with spectral efficiency, as well as recent work on digital SHD, where the SHD receiver is combined with an polarization-diversity ID front-end receiver to provide both polarization and modulation format alignment. We then focus on SDM-SHD systems, describing experimental results using multi-core fibers (MCFs with up to 19 cores, including high capacity transmission with broad-linewidth lasers and experiments incorporating SDM-SHD in networking. Additionally, we discuss the requirement for polarization tracking of the PTs at the receiver and path length alignment and review some variants of SHD before outlining the future challenges of self-homodyne optical transmission and gaps in current knowledge.

  18. Nova laser alignment control system

    International Nuclear Information System (INIS)

    Van Arsdall, P.J.; Holloway, F.W.; McGuigan, D.L.; Shelton, R.T.

    1984-01-01

    Alignment of the Nova laser requires control of hundreds of optical components in the ten beam paths. Extensive application of computer technology makes daily alignment practical. The control system is designed in a manner which provides both centralized and local manual operator controls integrated with automatic closed loop alignment. Menudriven operator consoles using high resolution color graphics displays overlaid with transport touch panels allow laser personnel to interact efficiently with the computer system. Automatic alignment is accomplished by using image analysis techniques to determine beam references points from video images acquired along the laser chain. A major goal of the design is to contribute substantially to rapid experimental turnaround and consistent alignment results. This paper describes the computer-based control structure and the software methods developed for aligning this large laser system

  19. Plasmonic Waveguide-Integrated Nanowire Laser

    DEFF Research Database (Denmark)

    Bermudez-Urena, Esteban; Tutuncuoglu, Gozde; Cuerda, Javier

    2017-01-01

    Next-generation optoelectronic devices and photonic circuitry will have to incorporate on-chip compatible nanolaser sources. Semiconductor nanowire lasers have emerged as strong candidates for integrated systems with applications ranging from ultrasensitive sensing to data communication technolog......Next-generation optoelectronic devices and photonic circuitry will have to incorporate on-chip compatible nanolaser sources. Semiconductor nanowire lasers have emerged as strong candidates for integrated systems with applications ranging from ultrasensitive sensing to data communication...... technologies. Despite significant advances in their fundamental aspects, the integration within scalable photonic circuitry remains challenging. Here we report on the realization of hybrid photonic devices consisting of nanowire lasers integrated with wafer-scale lithographically designed V-groove plasmonic...

  20. Present and future of laser welding machine; Laser yosetsuki no genjo to tenbo

    Energy Technology Data Exchange (ETDEWEB)

    Taniu, Y. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1998-04-01

    This paper describes recent trends of laser welding machine. For CO2 laser welding machine, seam weld of large diameter weld pipes using a 25 kW-class machine, and plate weld of steel plate using a 45 kW-class machine are reported. For YAG laser welding machine, high-output 5.5 kW-class machines are commercialized. Machines with slab structure of plate-like YAG chrystal have been developed which show high-oscillation efficiency and can be applied to cutting. Machines have been developed in which YAG laser output with slab structure is transmitted through GI fiber. High-speed welding of aluminum alloys can be realized by improving the converging performance. Efficiency of YAG laser can be enhanced through the time-divided utilization by switching the beam transmission path using fiber change-over switch. In the automobile industry, CO2 laser is mainly used, and a system combining CO laser with articulate robot is realized. TIG and MIG welding is often used for welding of aluminum for railway vehicles. It is required to reduce the welding strain. In the iron and steel industry, the productivity has been improved by the laser welding. YAG laser is put into practice for nuclear reactors. 5 refs., 8 figs., 1 tab.

  1. Diode laser-pumped Ho:YLF laser

    International Nuclear Information System (INIS)

    Hemmati, H.

    1987-01-01

    The author reports laser action in Ho:YLF at 2.06 μm following optical pumping with a cw diode laser array. Diode laser-pumped Nd-YAG and Ho:YAG have been reported recently. Lasers with a wavelength of 2 μm have medical and optical communication applications. The diode laser light is focused with a 60-mm focal length lens onto the YLF crystal. A high-reflectivity mirror with 100-mm radius of curvature was used as the output coupler. The lasing threshold was at 5 mWof incident power. This is higher than expected considering that a high reflector was used as the output coupler. However, a more uniform cooling of the crystal is expected to lower the lasing threshold. With 100 mW of pump power coupled into the crystal, --20 mW of 2-μm radiation was observed from this unoptimized setup. The 2-μm laser output is highly sensitive to output coupler alignment, YLF crystal temperature, and pump laser wavelength. The 20% optical conversion efficiency achieved in his preliminary measurements is expected to be improved by better crystal cooling, proper matching of laser wavelength to crystal absorption, variations in the concentration of Ho and sensitizers and use of a proper output coupler. A study of the parameters mentioned above and the effect of crystal temperature on the laser output is under way

  2. Augmented reality in laser laboratories

    Science.gov (United States)

    Quercioli, Franco

    2018-05-01

    Laser safety glasses block visibility of the laser light. This is a big nuisance when a clear view of the beam path is required. A headset made up of a smartphone and a viewer can overcome this problem. The user looks at the image of the real world on the cellphone display, captured by its rear camera. An unimpeded and safe sight of the laser beam is then achieved. If the infrared blocking filter of the smartphone camera is removed, the spectral sensitivity of the CMOS image sensor extends in the near infrared region up to 1100 nm. This substantial improvement widens the usability of the device to many laser systems for industrial and medical applications, which are located in this spectral region. The paper describes this modification of a phone camera to extend its sensitivity beyond the visible and make a true augmented reality laser viewer.

  3. Free-electron laser system with Raman amplifier outcoupling

    Energy Technology Data Exchange (ETDEWEB)

    Linford, G.J.

    1988-05-03

    A free-electron laser system is described comprising: a free-electron laser pump beam generator producing a high-power optical output beam in a vacuum environement; a Raman amplifier cell located in the path of the output beam from the pump beam generator; means for generating and introducing a Stokes seed beam into the Raman amplifier cell, a pair of gaseous windows through which the output beam enters and leaves the Raman amplifier cell, each window having a stream of gas moving continuously in a direction generally perpendicular to the beam; and a mirror positioned in the path of the output beam from the Raman amplifier, the mirror functioning to reflect and further direct the output beam, but not the unwanted spectral components.

  4. Measurements of DSD Second Moment Based on Laser Extinction

    Science.gov (United States)

    Lane, John E.; Jones, Linwood; Kasparis, Takis C.; Metzger, Philip

    2013-01-01

    Using a technique recently developed for estimating the density of surface dust dispersed during a rocket landing, measuring the extinction of a laser passing through rain (or dust in the rocket case) yields an estimate of the 2nd moment of the particle cloud, and rainfall drop size distribution (DSD) in the terrestrial meteorological case. With the exception of disdrometers, instruments that measure rainfall make in direct measurements of the DSD. Most common of these instruments are the rainfall rate gauge measuring the 1 1/3 th moment, (when using a D(exp 2/3) dependency on terminal velocity). Instruments that scatter microwaves off of hydrometeors, such as the WSR-880, vertical wind profilers, and microwave disdrometers, measure the 6th moment of the DSD. By projecting a laser onto a target, changes in brightness of the laser spot against the target background during rain, yield a measurement of the DSD 2nd moment, using the Beer-Lambert law. In order to detect the laser attenuation within the 8-bit resolution of most camera image arrays, a minimum path length is required, depending on the intensity of the rainfall rate. For moderate to heavy rainfall, a laser path length of 100 m is sufficient to measure variations in optical extinction using a digital camera. A photo-detector could replace the camera, for automated installations. In order to spatially correlate the 2nd moment measurements to a collocated disdrometer or tipping bucket, the laser's beam path can be reflected multiple times using mirrors to restrict the spatial extent of the measurement. In cases where a disdrometer is not available, complete DSD estimates can be produced by parametric fitting of DSD model to the 2nd moment data in conjunction with tipping bucket data. In cases where a disdrometer is collocated, the laser extinction technique may yield a significant improvement to insitu disdrometer validation and calibration strategies

  5. Challenging Aspects of Terahertz Terabit Wireless Communications

    DEFF Research Database (Denmark)

    Yu, Xianbin; Galili, Michael; Jepsen, Peter Uhd

    The increasing demand on fast wireless communications, e.g. huge data file transferring and mobile broadband access, has driven wireless communication systems into a path towards Terabit era. Terahertz (THz) technology is promising due to its unique features, such as unlimited bandwidth available......, in terms of THz generation and link power budget. The THz atmospheric absorption is another critical issue to limit wireless communication range....

  6. BRIEF COMMUNICATIONS: Optically pumped ultraviolet BR2 laser

    Science.gov (United States)

    Kamrukov, A. S.; Kozlov, N. P.; Protasov, Yu S.; Ushmarov, E. Yu

    1989-12-01

    A report is given of lasing achieved for the first time in optically pumped molecular bromine (D' 3Π2g→A' 3π2u, λL approx 292 nm). It was pumped by thermal vacuum ultraviolet radiation emitted by plasmadynamic discharges of magnetoplasma compressors, formed directly in the laser active medium. An output energy of ~ 1.1 J was obtained per laser pulse of ~ 5-μs duration from a Br2:Ar approx 1:450 active mixture at a pressure of ~ 4 atm. A comparison was made of the experimental output parameters of optically pumped Br2, I2, and XeF (B-X) lasers when their geometries and excitation energies were identical.

  7. Quivers of Bound Path Algebras and Bound Path Coalgebras

    Directory of Open Access Journals (Sweden)

    Dr. Intan Muchtadi

    2010-09-01

    Full Text Available bras and coalgebras can be represented as quiver (directed graph, and from quiver we can construct algebras and coalgebras called path algebras and path coalgebras. In this paper we show that the quiver of a bound path coalgebra (resp. algebra is the dual quiver of its bound path algebra (resp. coalgebra.

  8. Topological Rankings in Communication Networks

    DEFF Research Database (Denmark)

    Aabrandt, Andreas; Hansen, Vagn Lundsgaard; Træholt, Chresten

    2015-01-01

    In the theory of communication the central problem is to study how agents exchange information. This problem may be studied using the theory of connected spaces in topology, since a communication network can be modelled as a topological space such that agents can communicate if and only...... if they belong to the same path connected component of that space. In order to study combinatorial properties of such a communication network, notions from algebraic topology are applied. This makes it possible to determine the shape of a network by concrete invariants, e.g. the number of connected components...

  9. Fractional path planning and path tracking

    International Nuclear Information System (INIS)

    Melchior, P.; Jallouli-Khlif, R.; Metoui, B.

    2011-01-01

    This paper presents the main results of the application of fractional approach in path planning and path tracking. A new robust path planning design for mobile robot was studied in dynamic environment. The normalized attractive force applied to the robot is based on a fictitious fractional attractive potential. This method allows to obtain robust path planning despite robot mass variation. The danger level of each obstacles is characterized by the fractional order of the repulsive potential of the obstacles. Under these conditions, the robot dynamic behavior was studied by analyzing its X - Y path planning with dynamic target or dynamic obstacles. The case of simultaneously mobile obstacles and target is also considered. The influence of the robot mass variation is studied and the robustness analysis of the obtained path shows the robustness improvement due to the non integer order properties. Pre shaping approach is used to reduce system vibration in motion control. Desired systems inputs are altered so that the system finishes the requested move without residual vibration. This technique, developed by N.C. Singer and W.P.Seering, is used for flexible structure control, particularly in the aerospace field. In a previous work, this method was extended for explicit fractional derivative systems and applied to second generation CRONE control, the robustness was also studied. CRONE (the French acronym of C ommande Robuste d'Ordre Non Entier ) control system design is a frequency-domain based methodology using complex fractional integration.

  10. Los Alamos National Laboratory progress and path to inertial confinement fusion commercialization

    International Nuclear Information System (INIS)

    Harris, D.B.; Dudziak, D.J.

    1989-01-01

    KrF lasers appear to be an attractive driver for inertial confinement fusion commercial applications such as electric power production. Los Alamos National Laboratory is working to develop the technology required to demonstrate that KrF lasers can satisfy all of the driver requirements. The latest experimental and theoretical results indicate that cost currently appears to be the main issue for KrF lasers. The Los Alamos program is working to reduce the cost of KrF laser systems by developing damage-resistant optical coatings, low-cost optical blanks, high-intrinsic-efficiency gas mixtures, low-cost and high-efficiency pulsed power, and optimized system architectures. Other potential issues may cause problems after the 5 kJ Aurora KrF laser system becomes operational, such as amplified spontaneous emission, cross talk or temporal pulse distortion. Design solutions to issues such as these have been identified and will be experimentally demonstrated on Aurora. Issues specific to commercial-application drivers, such as cost, gas flow, repetively pulsed power, and high reliability cannot be experimentally addressed at this time. Projections will be made on the ability of KrF lasers to satisfy these requirements. The path to commercialization of inertial fusion for KrF lasers is also described. (orig.)

  11. Advanced Laser Architecture for Two-Step Laser Tandem Mass Spectrometer

    Science.gov (United States)

    Fahey, Molly E.; Li, Steven X.; Yu, Anthony W.; Getty, Stephanie A.

    2016-01-01

    Future astrobiology missions will focus on planets with significant astrochemical or potential astrobiological features, such as small, primitive bodies and the icy moons of the outer planets that may host diverse organic compounds. These missions require advanced instrument techniques to fully and unambiguously characterize the composition of surface and dust materials. Laser desorptionionization mass spectrometry (LDMS) is an emerging instrument technology for in situ mass analysis of non-volatile sample composition. A recent Goddard LDMS advancement is the two-step laser tandem mass spectrometer (L2MS) instrument to address the need for future flight instrumentation to deconvolve complex organic signatures. The L2MS prototype uses a resonance enhanced multi-photon laser ionization mechanism to selectively detect aromatic species from a more complex sample. By neglecting the aliphatic and inorganic mineral signatures in the two-step mass spectrum, the L2MS approach can provide both mass assignments and clues to structural information for an in situ investigation of non-volatile sample composition. In this paper we will describe our development effort on a new laser architecture that is based on the previously flown Lunar Orbiter Laser Altimeter (LOLA) laser transmitter for the L2MS instrument. The laser provides two discrete midinfrared wavelengths (2.8 m and 3.4 m) using monolithic optical parametric oscillators and ultraviolet (UV) wavelength (266 nm) on a single laser bench with a straightforward development path toward flight readiness.

  12. Chaos-based communications using semiconductor lasers subject to feedback from an integrated double cavity

    International Nuclear Information System (INIS)

    Tronciu, V Z; Mirasso, Claudio R; Colet, Pere

    2008-01-01

    We report the results of numerical investigations of the dynamical behaviour of an integrated device composed of a semiconductor laser and a double cavity that provides optical feedback. Due to the influence of the feedback, under the appropriate conditions, the system displays chaotic behaviour appropriate for chaos-based communications. The optimal conditions for chaos generation are identified. It is found that the double cavity feedback requires lower feedback strengths for developing high complexity chaos when compared with a single cavity. The synchronization of two unidirectional coupled (master-slave) systems and the influence of parameters mismatch on the synchronization quality are also studied. Finally, examples of message encoding and decoding are presented and discussed

  13. Digital Communication System Based on Polarization Self-Modulation in Lasers

    Science.gov (United States)

    Tabarin, V. A.; Ikonnikov, V. P.; Shatalov, A. N.

    2014-09-01

    Polarization self-modulation in lasers can be used to create instruments for generating optical pulses at very high repetition rates without using high-speed electronics. Self-oscillation is observed when part of the output of a laser is returned to the laser after a 90° polarization change. A practical scheme based on polarization self-modulation in a 3.39-μm helium-neon laser is proposed for pulsed code data transmission with an yttrium-iron garnet magnetooptical Q-switch. Highly efficient transmission of digital signals is implemented with a repetition rate of 75 MHz, equivalent to half the free spectral range of the laser.

  14. Laser-driven acceleration with Bessel beam

    International Nuclear Information System (INIS)

    Imasaki, Kazuo; Li, Dazhi

    2005-01-01

    A new approach of laser-driven acceleration with Bessel beam is described. Bessel beam, in contrast to the Gaussian beam, shows diffraction-free'' characteristics in its propagation, which implies potential in laser-driven acceleration. But a normal laser, even if the Bessel beam, laser can not accelerate charged particle efficiently because the difference of velocity between the particle and photon makes cyclic acceleration and deceleration phase. We proposed a Bessel beam truncated by a set of annular slits those makes several special regions in its travelling path, where the laser field becomes very weak and the accelerated particles are possible to receive no deceleration as they undergo decelerating phase. Thus, multistage acceleration is realizable with high gradient. In a numerical computation, we have shown the potential of multistage acceleration based on a three-stage model. (author)

  15. A Local Search Modeling for Constrained Optimum Paths Problems (Extended Abstract

    Directory of Open Access Journals (Sweden)

    Quang Dung Pham

    2009-10-01

    Full Text Available Constrained Optimum Path (COP problems appear in many real-life applications, especially on communication networks. Some of these problems have been considered and solved by specific techniques which are usually difficult to extend. In this paper, we introduce a novel local search modeling for solving some COPs by local search. The modeling features the compositionality, modularity, reuse and strengthens the benefits of Constrained-Based Local Search. We also apply the modeling to the edge-disjoint paths problem (EDP. We show that side constraints can easily be added in the model. Computational results show the significance of the approach.

  16. Optical oscillator-amplifier laser configuration

    International Nuclear Information System (INIS)

    McAllister, G.L.

    1975-01-01

    A laser is described that has incorporated therein an oscillator formed by a pair of mirrors, at least one of the mirrors being positioned outside of the envelope. The mirrors are dimensioned and spaced from each other so that the resonator has a relatively low Fresnel number and is operated unstably. The entire surface of one of these mirrors is convex and diffracts a portion of the energy outside of the oscillator region. Also incorporated into the laser is an amplifier region defined by a separate pair of mirrors which receive the energy diffracted from the oscillator region. The second pair of mirrors form an optical system with a high Fresnel number. A filter, modulator or other control for the laser signal may be placed outside the laser envelope in the optical path of the oscillator

  17. Laser-based additive manufacturing: where it has been, where it needs to go

    Science.gov (United States)

    Cooper, Khershed P.

    2014-03-01

    It is no secret that the laser was the driver for additive manufacturing (AM) of 3D objects since such objects were first demonstrated in the mid-1980s. A myriad of techniques utilizing the directed energy of lasers were invented. Lasers are used to selectively sinter or fuse incremental layers in powder-beds, melt streaming powder following a programmed path, and polymerize photopolymers in a liquid vat layer-by-layer. The laser is an energy source of choice for repair of damaged components, for manufacture of new or replacement parts, and for rapid prototyping of concept designs. Lasers enable microstructure gradients and heterogeneous structures designed to exhibit unique properties and behavior. Laserbased additive manufacturing has been successful in producing relatively simple near net-shape metallic parts saving material and cost, but requiring finish-machining and in repair and refurbishment of worn components. It has been routinely used to produce polymer parts. These capabilities have been widely recognized as evidenced by the explosion in interest in AM technology, nationally. These successes are, however, tempered by challenges facing practitioners such as process and part qualification and verification, which are needed to bring AM as a true manufacturing technology. The ONR manufacturing science program, in collaboration with other agencies, invested in basic R&D in AM since its beginnings. It continues to invest, currently focusing on developing cyber-enabled manufacturing systems for AM. It is believed that such computation, communication and control approaches will help in validating AM and moving it to the factory floor along side CNC machines.

  18. Resonant communicators, effective communicators. Communicator’s flow and credibility

    Directory of Open Access Journals (Sweden)

    Irene García-Ureta, Ph.D

    2012-01-01

    Full Text Available Communication studies have been integrating the latest developments in cognitive sciences and acknowledging the importance of understanding the subjective processes involved in communication. This article argues that communication studies should also take into account the psychology of the communicator. This article presents the theoretical basis and the results of a training programme designed for audiovisual communicators. The programme is based on the theories of self-efficacy and flow and seeks to improve students’ communication competencies through the use of presentation techniques and psychological skills to tackle communication apprehension. The programme involves an active methodology that is based on modelling, visualisation, immediate feedback and positive reinforcement. A repeated-measures ANOVA shows that the programme successfully decreases the level of communication apprehension, improves the perceived self-efficacy, improves the psychological state needed to perform better in front of the cameras (flow, and improves students’ communication skills. A path analysis proved that the perceived self-efficacy and anxiety levels predict the level of flow during the communication act. At the end of the training programme, those who experienced higher levels of flow and enjoyment during the communication task achieved higher quality levels in their communication exercise. It is concluded that the concepts of self-efficacy and flow facilitate advancing in the understanding of the factors that determine a communicator’s credibility and ability to connect with the audience.

  19. Comparing laser-based open- and closed-path gas analyzers to measure methane fluxes using the eddy covariance method

    Science.gov (United States)

    Detto, Matteo; Verfaillie, Joseph; Anderson, Frank; Xu, Liukang; Baldocchi, Dennis

    2011-01-01

    Closed- and open-path methane gas analyzers are used in eddy covariance systems to compare three potential methane emitting ecosystems in the Sacramento-San Joaquin Delta (CA, USA): a rice field, a peatland pasture and a restored wetland. The study points out similarities and differences of the systems in field experiments and data processing. The closed-path system, despite a less intrusive placement with the sonic anemometer, required more care and power. In contrast, the open-path system appears more versatile for a remote and unattended experimental site. Overall, the two systems have comparable minimum detectable limits, but synchronization between wind speed and methane data, air density corrections and spectral losses have different impacts on the computed flux covariances. For the closed-path analyzer, air density effects are less important, but the synchronization and spectral losses may represent a problem when fluxes are small or when an undersized pump is used. For the open-path analyzer air density corrections are greater, due to spectroscopy effects and the classic Webb–Pearman–Leuning correction. Comparison between the 30-min fluxes reveals good agreement in terms of magnitudes between open-path and closed-path flux systems. However, the scatter is large, as consequence of the intensive data processing which both systems require.

  20. Arduino based laser control

    OpenAIRE

    Bernal Muñoz, Ferran

    2015-01-01

    ARDUINO is a vey usefull platform for prototypes. In this project ARDUINO will be used for controling a Semiconductor Tuneable Laser. [ANGLÈS] Diode laser for communications control based on an Arduino board. Temperature control implementation. Software and hardware protection for the laser implementation. [CASTELLÀ] Control de un láser de comunicaciones ópticas desde el ordenador utilizando una placa Arduino. Implementación de un control de temperatura y protección software y hardware ...

  1. Bandwidth enhancement of wireless optical communication link using a near-infrared laser over turbid underwater channel

    KAUST Repository

    Lee, It Ee

    2017-11-30

    Underwater wireless optical communication (UWOC) has been widely studied as a promising alternative to establish reliable short-range marine communication links. Microscopic particulates suspended in various ocean, harbor and natural waters will alter the propagation characteristics of the optical signals underwater. In this paper, we demonstrate a gigabit near-infrared (NIR)-based UWOC link using an 808-nm laser diode, to examine the feasibility of the proposed system in mitigating the particle scattering effect over turbid waters. We show that the NIR wavelengths presents greater resilience to the aqueous suspension of these micro-sized particles with a smaller scattering effect due to its longer wavelength, as evident by the smaller variations in the optical beam transmittance. It is also observed that the error performance is improved at higher concentrations albeit the significant reduction in received signal power. We further demonstrate that the overall frequency response of the system exhibits a bandwidth enhancement up to a few tens of MHz with increasing concentrations.

  2. High-energy krypton fluoride lasers for inertial fusion.

    Science.gov (United States)

    Obenschain, Stephen; Lehmberg, Robert; Kehne, David; Hegeler, Frank; Wolford, Matthew; Sethian, John; Weaver, James; Karasik, Max

    2015-11-01

    Laser fusion researchers have realized since the 1970s that the deep UV light from excimer lasers would be an advantage as a driver for robust high-performance capsule implosions for inertial confinement fusion (ICF). Most of this research has centered on the krypton-fluoride (KrF) laser. In this article we review the advantages of the KrF laser for direct-drive ICF, the history of high-energy KrF laser development, and the present state of the art and describe a development path to the performance needed for laser fusion and its energy application. We include descriptions of the architecture and performance of the multi-kilojoule Nike KrF laser-target facility and the 700 J Electra high-repetition-rate KrF laser that were developed at the U.S. Naval Research Laboratory. Nike and Electra are the most advanced KrF lasers for inertial fusion research and energy applications.

  3. A packet loss compliant logic-based communication alogoritham for cooperative path following control

    Digital Repository Service at National Institute of Oceanography (India)

    Rego, F.; Aguiar, A.P.; Pascoal, A.M.

    logic takes into account the topology of the communication network, the fact that communications are discrete, and the cost of exchanging information. We also address explicitly communication losses and bounded delays. Conditions are derived under which...

  4. Laser cutting: industrial relevance, process optimization, and laser safety

    Science.gov (United States)

    Haferkamp, Heinz; Goede, Martin; von Busse, Alexander; Thuerk, Oliver

    1998-09-01

    Compared to other technological relevant laser machining processes, up to now laser cutting is the application most frequently used. With respect to the large amount of possible fields of application and the variety of different materials that can be machined, this technology has reached a stable position within the world market of material processing. Reachable machining quality for laser beam cutting is influenced by various laser and process parameters. Process integrated quality techniques have to be applied to ensure high-quality products and a cost effective use of the laser manufacturing plant. Therefore, rugged and versatile online process monitoring techniques at an affordable price would be desirable. Methods for the characterization of single plant components (e.g. laser source and optical path) have to be substituted by an omnivalent control system, capable of process data acquisition and analysis as well as the automatic adaptation of machining and laser parameters to changes in process and ambient conditions. At the Laser Zentrum Hannover eV, locally highly resolved thermographic measurements of the temperature distribution within the processing zone using cost effective measuring devices are performed. Characteristic values for cutting quality and plunge control as well as for the optimization of the surface roughness at the cutting edges can be deducted from the spatial distribution of the temperature field and the measured temperature gradients. Main influencing parameters on the temperature characteristic within the cutting zone are the laser beam intensity and pulse duration in pulse operation mode. For continuous operation mode, the temperature distribution is mainly determined by the laser output power related to the cutting velocity. With higher cutting velocities temperatures at the cutting front increase, reaching their maximum at the optimum cutting velocity. Here absorption of the incident laser radiation is drastically increased due to

  5. Feynman's path integrals and Bohm's particle paths

    International Nuclear Information System (INIS)

    Tumulka, Roderich

    2005-01-01

    Both Bohmian mechanics, a version of quantum mechanics with trajectories, and Feynman's path integral formalism have something to do with particle paths in space and time. The question thus arises how the two ideas relate to each other. In short, the answer is, path integrals provide a re-formulation of Schroedinger's equation, which is half of the defining equations of Bohmian mechanics. I try to give a clear and concise description of the various aspects of the situation. (letters and comments)

  6. Communication: Mode bifurcation of droplet motion under stationary laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Takabatake, Fumi [Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579 (Japan); Yoshikawa, Kenichi [Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394 (Japan); Ichikawa, Masatoshi, E-mail: ichi@scphys.kyoto-u.ac.jp [Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan)

    2014-08-07

    The self-propelled motion of a mm-sized oil droplet floating on water, induced by a local temperature gradient generated by CW laser irradiation is reported. The circular droplet exhibits two types of regular periodic motion, reciprocal and circular, around the laser spot under suitable laser power. With an increase in laser power, a mode bifurcation from rectilinear reciprocal motion to circular motion is caused. The essential aspects of this mode bifurcation are discussed in terms of spontaneous symmetry-breaking under temperature-induced interfacial instability, and are theoretically reproduced with simple coupled differential equations.

  7. Aircraft path planning for optimal imaging using dynamic cost functions

    Science.gov (United States)

    Christie, Gordon; Chaudhry, Haseeb; Kochersberger, Kevin

    2015-05-01

    Unmanned aircraft development has accelerated with recent technological improvements in sensing and communications, which has resulted in an "applications lag" for how these aircraft can best be utilized. The aircraft are becoming smaller, more maneuverable and have longer endurance to perform sensing and sampling missions, but operating them aggressively to exploit these capabilities has not been a primary focus in unmanned systems development. This paper addresses a means of aerial vehicle path planning to provide a realistic optimal path in acquiring imagery for structure from motion (SfM) reconstructions and performing radiation surveys. This method will allow SfM reconstructions to occur accurately and with minimal flight time so that the reconstructions can be executed efficiently. An assumption is made that we have 3D point cloud data available prior to the flight. A discrete set of scan lines are proposed for the given area that are scored based on visibility of the scene. Our approach finds a time-efficient path and calculates trajectories between scan lines and over obstacles encountered along those scan lines. Aircraft dynamics are incorporated into the path planning algorithm as dynamic cost functions to create optimal imaging paths in minimum time. Simulations of the path planning algorithm are shown for an urban environment. We also present our approach for image-based terrain mapping, which is able to efficiently perform a 3D reconstruction of a large area without the use of GPS data.

  8. NEW UPPER AND LOWER BOUNDS LINE OF SIGHT PATH LOSS MODELS FOR MOBILE PROPAGATION IN BUILDINGS

    Directory of Open Access Journals (Sweden)

    Supachai Phaiboon

    2017-11-01

    Full Text Available This paper proposes a method to predict line-of-sight (LOS path loss in buildings. We performed measurements in two different type of buildings at a frequency of 1.8 GHz and propose new upper and lower bounds path loss models which depend on max and min values of sample path loss data. This makes our models limit path loss within the boundary lines. The models include time-variant effects such as people moving and cars in parking areas with their influence on wave propagation that is very high.  The results have shown that the proposed models will be useful for the system and cell design of indoor wireless communication systems.

  9. Multi-Dimensional Path Queries

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    1998-01-01

    to create nested path structures. We present an SQL-like query language that is based on path expressions and we show how to use it to express multi-dimensional path queries that are suited for advanced data analysis in decision support environments like data warehousing environments......We present the path-relationship model that supports multi-dimensional data modeling and querying. A path-relationship database is composed of sets of paths and sets of relationships. A path is a sequence of related elements (atoms, paths, and sets of paths). A relationship is a binary path...

  10. Wire communication engineering

    International Nuclear Information System (INIS)

    Son, Byeong Tae

    1997-02-01

    This book describes wire telecommunication engineering/ It is divided into eleven chapter, which deal with Introduction with development of telecommunication, voice and sound wave and communication network, Telegraphy with summary of telegraphy, code of telegraphy, communication speed, morse and telex, Telephone on structure, circuit and image telephone, Traffic on telecommunication traffic, transmission of line about theory, cable line and loaded cable, carrier communication with carrier telegraphy and carrier telephone, optical communication with types, structure, specialty, laser and equipment, DATA, Mobile telecommunication on summary, mobile telephone, radio paging and digital mobile telecommunication, ISDN with channel of ISDN, and service of ISDN, and design of telecommunication.

  11. Influence of transmission bit rate on performance of optical fibre communication systems with direct modulation of laser diodes

    International Nuclear Information System (INIS)

    Ahmed, Moustafa F

    2009-01-01

    This paper reports on the influence of the transmission bit rate on the performance of optical fibre communication systems employing laser diodes subjected to high-speed direct modulation. The performance is evaluated in terms of the bit error rate (BER) and power penalty associated with increasing the transmission bit rate while keeping the transmission distance. The study is based on numerical analysis of the stochastic rate equations of the laser diode and takes into account noise mechanisms in the receiver. Correlation between BER and the Q-parameter of the received signal is presented. The relative contributions of the transmitter noise and the circuit and shot noises of the receiver to BER are quantified as functions of the transmission bit rate. The results show that the power penalty at BER = 10 -9 required to keep the transmission distance increases moderately with the increase in the bit rate near 1 Gbps and at high bias currents. In this regime, the shot noise is the main contributor to BER. At higher bit rates and lower bias currents, the power penalty increases remarkably, which comes mainly from laser noise induced by the pseudorandom bit-pattern effect.

  12. Bidirectional communication using delay coupled chaotic directly ...

    Indian Academy of Sciences (India)

    Corresponding author. ... 30 September 2009. Abstract. Chaotic synchronization of two directly modulated semiconductor lasers with ... For InGaAsP lasers used in optical communication systems, the nonlinear gain re- duction is very strong and its ...

  13. DFB fiber laser as source for optical communication systems

    DEFF Research Database (Denmark)

    Varming, Poul; Hübner, Jörg; Kristensen, Martin

    1997-01-01

    The results demonstrate that DFB fiber lasers are an attractive alternative as sources in telecommunication systems. The lasers show excellent long-term stability with very high signal to noise ratio and a reasonable output power, combined with exceptional temperature stability and inherent fiber...

  14. Polygonal-path approximations on the path spaces of quantum-mechanical systems: properties of the polygonal paths

    International Nuclear Information System (INIS)

    Exner, P.; Kolerov, G.I.

    1981-01-01

    Properties of the subset of polygonal paths in the Hilbert space H of paths referring to a d-dimensional quantum-mechanical system are examined. Using the reproduction kernel technique we prove that each element of H is approximated by polygonal paths uniformly with respect to the ''norm'' of time-interval partitions. This result will be applied in the second part of the present paper to prove consistency of the uniform polygonal-path extension of the Feynman maps [ru

  15. V-shaped resonators for addition of broad-area laser diode arrays

    Science.gov (United States)

    Liu, Bo; Liu, Yun; Braiman, Yehuda Y.

    2012-12-25

    A system and method for addition of broad-area semiconductor laser diode arrays are described. The system can include an array of laser diodes, a V-shaped external cavity, and grating systems to provide feedback for phase-locking of the laser diode array. A V-shaped mirror used to couple the laser diode emissions along two optical paths can be a V-shaped prism mirror, a V-shaped stepped mirror or include multiple V-shaped micro-mirrors. The V-shaped external cavity can be a ring cavity. The system can include an external injection laser to further improve coherence and phase-locking.

  16. Emerging solid-state laser technology by lidar/DIAL remote sensing

    Science.gov (United States)

    Killinger, Dennis

    1992-01-01

    Significant progress has been made in recent years in the development of new, solid-state laser sources. This talk will present an overview of some of the new developments in solid-state lasers, and their application toward lidar/DIAL measurements of the atmosphere. Newly emerging lasers such as Ho:YAG, Tm:YAG, OPO, and Ti:Sapphire will be covered, along with the spectroscopic parameters required for differential operational modes of atmospheric remote sensing including Doppler-Windshear lidar, Tunable laser detection of water/CO2, and broad linewidth OPO's for open path detection of pollutant hydrocarbon gases. Additional considerations of emerging laser technology for lidar/DIAL will also be covered.

  17. He-Ne and CW CO2 laser long-path systems for gas detection

    Science.gov (United States)

    Grant, W. B.

    1986-01-01

    This paper describes the design and testing of a laboratory prototype dual He-Ne laser system for the detection of methane leaks from underground pipelines and solid-waste landfill sites using differential absorption of radiation backscattered from topographic targets. A laboratory-prototype dual CW carbon dioxide laser system also using topographic backscatter is discussed, and measurement results for methanol are given. With both systems, it was observed that the time-varying differential absorption signal was useful in indicating the presence of a gas coming from a nearby source. Limitations to measurement sensitivity, especially the role of speckle and atmospheric turbulence, are described. The speckle results for hard targets are contrasted with those from atmospheric aerosols. The appendix gives appropriate laser lines and values of absorption coefficients for the hydrazine fuel gases.

  18. Polarization tracking system for free-space optical communication, including quantum communication

    Science.gov (United States)

    Nordholt, Jane Elizabeth; Newell, Raymond Thorson; Peterson, Charles Glen; Hughes, Richard John

    2018-01-09

    Quantum communication transmitters include beacon lasers that transmit a beacon optical signal in a predetermined state of polarization such as one of the states of polarization of a quantum communication basis. Changes in the beacon polarization are detected at a receiver, and a retarder is adjusted so that the states of polarization in a received quantum communication optical signal are matched to basis polarizations. The beacon and QC signals can be at different wavelengths so that the beacon does not interfere with detection and decoding of the QC optical signal.

  19. Short-pulse lasers for weather control

    Science.gov (United States)

    Wolf, J. P.

    2018-02-01

    Filamentation of ultra-short TW-class lasers recently opened new perspectives in atmospheric research. Laser filaments are self-sustained light structures of 0.1–1 mm in diameter, spanning over hundreds of meters in length, and producing a low density plasma (1015–1017 cm‑3) along their path. They stem from the dynamic balance between Kerr self-focusing and defocusing by the self-generated plasma and/or non-linear polarization saturation. While non-linearly propagating in air, these filamentary structures produce a coherent supercontinuum (from 230 nm to 4 µm, for a 800 nm laser wavelength) by self-phase modulation (SPM), which can be used for remote 3D-monitoring of atmospheric components by Lidar (Light Detection and Ranging). However, due to their high intensity (1013–1014 W cm‑2), they also modify the chemical composition of the air via photo-ionization and photo-dissociation of the molecules and aerosols present in the laser path. These unique properties were recently exploited for investigating the capability of modulating some key atmospheric processes, like lightning from thunderclouds, water vapor condensation, fog formation and dissipation, and light scattering (albedo) from high altitude clouds for radiative forcing management. Here we review recent spectacular advances in this context, achieved both in the laboratory and in the field, reveal their underlying mechanisms, and discuss the applicability of using these new non-linear photonic catalysts for real scale weather control.

  20. Accurate beacon positioning method for satellite-to-ground optical communication.

    Science.gov (United States)

    Wang, Qiang; Tong, Ling; Yu, Siyuan; Tan, Liying; Ma, Jing

    2017-12-11

    In satellite laser communication systems, accurate positioning of the beacon is essential for establishing a steady laser communication link. For satellite-to-ground optical communication, the main influencing factors on the acquisition of the beacon are background noise and atmospheric turbulence. In this paper, we consider the influence of background noise and atmospheric turbulence on the beacon in satellite-to-ground optical communication, and propose a new locating algorithm for the beacon, which takes the correlation coefficient obtained by curve fitting for image data as weights. By performing a long distance laser communication experiment (11.16 km), we verified the feasibility of this method. Both simulation and experiment showed that the new algorithm can accurately obtain the position of the centroid of beacon. Furthermore, for the distortion of the light spot through atmospheric turbulence, the locating accuracy of the new algorithm was 50% higher than that of the conventional gray centroid algorithm. This new approach will be beneficial for the design of satellite-to ground optical communication systems.

  1. A Vision-Aided 3D Path Teaching Method before Narrow Butt Joint Welding.

    Science.gov (United States)

    Zeng, Jinle; Chang, Baohua; Du, Dong; Peng, Guodong; Chang, Shuhe; Hong, Yuxiang; Wang, Li; Shan, Jiguo

    2017-05-11

    For better welding quality, accurate path teaching for actuators must be achieved before welding. Due to machining errors, assembly errors, deformations, etc., the actual groove position may be different from the predetermined path. Therefore, it is significant to recognize the actual groove position using machine vision methods and perform an accurate path teaching process. However, during the teaching process of a narrow butt joint, the existing machine vision methods may fail because of poor adaptability, low resolution, and lack of 3D information. This paper proposes a 3D path teaching method for narrow butt joint welding. This method obtains two kinds of visual information nearly at the same time, namely 2D pixel coordinates of the groove in uniform lighting condition and 3D point cloud data of the workpiece surface in cross-line laser lighting condition. The 3D position and pose between the welding torch and groove can be calculated after information fusion. The image resolution can reach 12.5 μm. Experiments are carried out at an actuator speed of 2300 mm/min and groove width of less than 0.1 mm. The results show that this method is suitable for groove recognition before narrow butt joint welding and can be applied in path teaching fields of 3D complex components.

  2. Ar-Xe Laser: The Path to a Robust, All-Electric Shipboard Directed Energy Weapon

    National Research Council Canada - National Science Library

    Apruzese, J. P; Sethian, J. D; Giuliani, J. L; Wolford, M. F

    2008-01-01

    .... The electron beam pumped Ar-Xe laser has been investigated in an ONR-sponsored 6.1 program at NRL. The results of this program are summarized in this Memorandum Report, and indicate that the Ar-Xe laser has strong potential to meet these requirements...

  3. Current-Sensitive Path Planning for an Underactuated Free-Floating Ocean Sensorweb

    Science.gov (United States)

    Dahl, Kristen P.; Thompson, David R.; McLaren, David; Chao, Yi; Chien, Steve

    2011-01-01

    This work investigates multi-agent path planning in strong, dynamic currents using thousands of highly under-actuated vehicles. We address the specific task of path planning for a global network of ocean-observing floats. These submersibles are typified by the Argo global network consisting of over 3000 sensor platforms. They can control their buoyancy to float at depth for data collection or rise to the surface for satellite communications. Currently, floats drift at a constant depth regardless of the local currents. However, accurate current forecasts have become available which present the possibility of intentionally controlling floats' motion by dynamically commanding them to linger at different depths. This project explores the use of these current predictions to direct float networks to some desired final formation or position. It presents multiple algorithms for such path optimization and demonstrates their advantage over the standard approach of constant-depth drifting.

  4. Single frequency semiconductor lasers

    CERN Document Server

    Fang, Zujie; Chen, Gaoting; Qu, Ronghui

    2017-01-01

    This book systematically introduces the single frequency semiconductor laser, which is widely used in many vital advanced technologies, such as the laser cooling of atoms and atomic clock, high-precision measurements and spectroscopy, coherent optical communications, and advanced optical sensors. It presents both the fundamentals and characteristics of semiconductor lasers, including basic F-P structure and monolithic integrated structures; interprets laser noises and their measurements; and explains mechanisms and technologies relating to the main aspects of single frequency lasers, including external cavity lasers, frequency stabilization technologies, frequency sweeping, optical phase locked loops, and so on. It paints a clear, physical picture of related technologies and reviews new developments in the field as well. It will be a useful reference to graduate students, researchers, and engineers in the field.

  5. Peculiarities of the statistics of spectrally selected fluorescence radiation in laser-pumped dye-doped random media

    Science.gov (United States)

    Yuvchenko, S. A.; Ushakova, E. V.; Pavlova, M. V.; Alonova, M. V.; Zimnyakov, D. A.

    2018-04-01

    We consider the practical realization of a new optical probe method of the random media which is defined as the reference-free path length interferometry with the intensity moments analysis. A peculiarity in the statistics of the spectrally selected fluorescence radiation in laser-pumped dye-doped random medium is discussed. Previously established correlations between the second- and the third-order moments of the intensity fluctuations in the random interference patterns, the coherence function of the probe radiation, and the path difference probability density for the interfering partial waves in the medium are confirmed. The correlations were verified using the statistical analysis of the spectrally selected fluorescence radiation emitted by a laser-pumped dye-doped random medium. Water solution of Rhodamine 6G was applied as the doping fluorescent agent for the ensembles of the densely packed silica grains, which were pumped by the 532 nm radiation of a solid state laser. The spectrum of the mean path length for a random medium was reconstructed.

  6. Laser experimental system as teaching aid for demonstrating basic phenomena of laser feedback

    International Nuclear Information System (INIS)

    Xu, Ling; Zhao, Shijie; Zhang, Shulian

    2015-01-01

    An experimental laser teaching system is developed to demonstrate laser feedback phenomena, which bring great harm to optical communication and benefits to precision measurement. The system consists of an orthogonally polarized He-Ne laser, a feedback mirror which reflects the laser output light into the laser cavity, and an optical attenuator which changes the intensity of the feedback light. As the feedback mirror is driven by a piezoelectric ceramic, the attenuator is adjusted and the feedback mirror is tilted, the system can demonstrate many basic laser feedback phenomena, including weak, moderate and strong optical feedback, multiple feedback and polarization flipping. Demonstrations of these phenomena can give students a better understanding about the intensity and polarization of lasers. The system is well designed and assembled, simple to operate, and provides a valuable teaching aid at an undergraduate level. (paper)

  7. Study on Evolutionary Path of University Students’ Entrepreneurship Training

    Directory of Open Access Journals (Sweden)

    Daojian Yang

    2014-01-01

    Full Text Available Aiming at studying the evolution pattern of cultivating the ability of university students’ entrepreneurship, this paper established the payoff matrix between the university and students agent with the evolutionary economics method. The analysis of the evolution of the communication process model reveals how the choice strategy of individuals influences that of groups. Numerical simulation also demonstrates the influences of different values of decision-making parameters and the change of initial conditions on the result of evolution. It is found that the evolution path system of university students’ entrepreneurial ability has two kinds of modes: one is the ideal state; and the other one is the bad “lock” state. By adjusting parameters, we can jump out of the bad “lock” state, thus optimizing cultivation path.

  8. FROM TEXT TO STAGE PERFORMANCE (IN SEARCH OF PATHS OF COMMUNICATION

    Directory of Open Access Journals (Sweden)

    Dubravka Crnojević-Carić

    2015-01-01

    Full Text Available This paper explores the acting in an interdisciplinary way, linking the insights that come from theory and pedagogy of acting and theater studies (Branko Gavella, Michail Chekhov, Konstantin Stanislavsky, Lee Strasberg, Cicely Berry, Antonin Artaud, as well as from contemporary insights of neuroscience (Antonio Damasio, Michel Lacroix, Rosa Alice Branco. By analysing the creative process of the actor, I’ll speak about the nature of speech acts. The actor has the privilege to explore different forms of the communication, as well as speech acts. The creative process of the actor will be analysed through the several work phases (the process of text reading, the individual introduction with the text, the group reading rehearsal, the misenscene rehearsal, tech rehearsal, as well as public performance. During the work processes on a play, communication participants are changing and they adopt the various strategies of communication. An actor is the one who practices how to re-direct his attention, as well as speech act: he pays attention to the partner, to the director, technical staff, imaginary ideal spectators and real present auditorium. The paper thematises so-called “attention circles” which are defining the speech of actor. Nature of “attention circle” is changing during the performance. All of the above (the creative process of the actor is somehow connected with the everydays communication and with the communication during the public presentation of the default topics. A separate part of this paper will be dedicated to those differences. In this paper I will also consider distinction between the speech act which has pragmatic function in the form of so-called “civil honesty” and position which requires “credibility and organic truth” in order to maintain the interplay between the actors/speakers and spectators /listeners.

  9. Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors

    KAUST Repository

    Lee, Changmin

    2017-07-12

    Data communication based on white light generated using a near-ultraviolet (NUV) laser diode (LD) pumping red-, green-, and blue-emitting (RGB) phosphors was demonstrated for the first time. A III-nitride laser diode (LD) on a semipolar (2021) substrate emitting at 410 nm was used for the transmitter. The measured modulation bandwidth of the LD was 1 GHz, which was limited by the avalanche photodetector. The emission from the NUV LD and the RGB phosphor combination measured a color rendering index (CRI) of 79 and correlated color temperature (CCT) of 4050 K, indicating promise of this approach for creating high quality white lighting. Using this configuration, data was successfully transmitted at a rate of more than 1 Gbps. This NUV laser-based system is expected to have lower background noise from sunlight at the LD emission wavelength than a system that uses a blue LD due to the rapid fall off in intensity of the solar spectrum in the NUV spectral region.

  10. Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors.

    Science.gov (United States)

    Lee, Changmin; Shen, Chao; Cozzan, Clayton; Farrell, Robert M; Speck, James S; Nakamura, Shuji; Ooi, Boon S; DenBaars, Steven P

    2017-07-24

    Data communication based on white light generated using a near-ultraviolet (NUV) laser diode (LD) pumping red-, green-, and blue-emitting (RGB) phosphors was demonstrated for the first time. A III-nitride laser diode (LD) on a semipolar (2021¯)  substrate emitting at 410 nm was used for the transmitter. The measured modulation bandwidth of the LD was 1 GHz, which was limited by the avalanche photodetector. The emission from the NUV LD and the RGB phosphor combination measured a color rendering index (CRI) of 79 and correlated color temperature (CCT) of 4050 K, indicating promise of this approach for creating high quality white lighting. Using this configuration, data was successfully transmitted at a rate of more than 1 Gbps. This NUV laser-based system is expected to have lower background noise from sunlight at the LD emission wavelength than a system that uses a blue LD due to the rapid fall off in intensity of the solar spectrum in the NUV spectral region.

  11. Qualification testing of fiber-based laser transmitters and on-orbit validation of a commercial laser system

    Science.gov (United States)

    Wright, M. W.; Wilkerson, M. W.; Tang, R. R.

    2017-11-01

    Qualification testing of fiber based laser transmitters is required for NASA's Deep Space Optical Communications program to mature the technology for space applications. In the absence of fully space qualified systems, commercial systems have been investigated in order to demonstrate the robustness of the technology. To this end, a 2.5 W fiber based laser source was developed as the transmitter for an optical communications experiment flown aboard the ISS as a part of a technology demonstration mission. The low cost system leveraged Mil Standard design principles and Telcordia certified components to the extent possible and was operated in a pressure vessel with active cooling. The laser was capable of high rate modulation but was limited by the mission requirements to 50 Mbps for downlinking stored video from the OPALS payload, externally mounted on the ISS. Environmental testing and space qualification of this unit will be discussed along with plans for a fully space qualified laser transmitter.

  12. Experimental validation of wireless communication with chaos

    International Nuclear Information System (INIS)

    Ren, Hai-Peng; Bai, Chao; Liu, Jian; Baptista, Murilo S.; Grebogi, Celso

    2016-01-01

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.

  13. Experimental validation of wireless communication with chaos

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Hai-Peng; Bai, Chao; Liu, Jian [Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xian University of Technology, Xian 710048 (China); Baptista, Murilo S.; Grebogi, Celso [Institute for Complex System and Mathematical Biology, SUPA, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom)

    2016-08-15

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.

  14. Experimental validation of wireless communication with chaos.

    Science.gov (United States)

    Ren, Hai-Peng; Bai, Chao; Liu, Jian; Baptista, Murilo S; Grebogi, Celso

    2016-08-01

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.

  15. Laser streaming: Turning a laser beam into a flow of liquid.

    Science.gov (United States)

    Wang, Yanan; Zhang, Qiuhui; Zhu, Zhuan; Lin, Feng; Deng, Jiangdong; Ku, Geng; Dong, Suchuan; Song, Shuo; Alam, Md Kamrul; Liu, Dong; Wang, Zhiming; Bao, Jiming

    2017-09-01

    Transforming a laser beam into a mass flow has been a challenge both scientifically and technologically. We report the discovery of a new optofluidic principle and demonstrate the generation of a steady-state water flow by a pulsed laser beam through a glass window. To generate a flow or stream in the same path as the refracted laser beam in pure water from an arbitrary spot on the window, we first fill a glass cuvette with an aqueous solution of Au nanoparticles. A flow will emerge from the focused laser spot on the window after the laser is turned on for a few to tens of minutes; the flow remains after the colloidal solution is completely replaced by pure water. Microscopically, this transformation is made possible by an underlying plasmonic nanoparticle-decorated cavity, which is self-fabricated on the glass by nanoparticle-assisted laser etching and exhibits size and shape uniquely tailored to the incident beam profile. Hydrophone signals indicate that the flow is driven via acoustic streaming by a long-lasting ultrasound wave that is resonantly generated by the laser and the cavity through the photoacoustic effect. The principle of this light-driven flow via ultrasound, that is, photoacoustic streaming by coupling photoacoustics to acoustic streaming, is general and can be applied to any liquid, opening up new research and applications in optofluidics as well as traditional photoacoustics and acoustic streaming.

  16. Progress of Digital Communication Technology

    Science.gov (United States)

    Yamazaki, Satoshi; Asano, David K.

    In wireless communications, since transmitted signals are scattered from many objects, many propagation paths with different time delays are formed. When transmitting and receiving while moving in such an environment, received signals will be affected by intricate selective fading in both the frequency and time domains. In this technical note, first, the mechanism of fading phenomena is clarified, changes in previous phase compensation technology are surveyed, and a foundation for digital wireless-communications technology is provided.

  17. Semiconductor lasers stability, instability and chaos

    CERN Document Server

    Ohtsubo, Junji

    2017-01-01

    This book describes the fascinating recent advances made concerning the chaos, stability and instability of semiconductor lasers, and discusses their applications and future prospects in detail. It emphasizes the dynamics in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Applications of semiconductor laser chaos, control and noise, and semiconductor lasers are also demonstrated. Semiconductor lasers with new structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are intriguing and promising devices. Current topics include fast physical number generation using chaotic semiconductor lasers for secure communication, development of chaos, quantum-dot semiconductor lasers and quantum-cascade semiconductor lasers, and vertical-cavity surface-emitting lasers. This fourth edition has been significantly expanded to reflect the latest developments. The fundamental theory of laser chaos and the chaotic dynamics in se...

  18. The closed time-path Green function formalism in many-body theory

    International Nuclear Information System (INIS)

    Guang-zhao Zhou; Zhao-bin Su; Bai-lin Hao; Lu Yu.

    1983-09-01

    The closed time-path Green function formalism, developed by our group during recent years, is briefly reviewed. The generating functional technique, the coupled equations for the order parameter and the elementary excitations as well as the systematic loop expansion are outlined. The applications to critical dynamics, quenched random systems, nonlinear response theory, superconductivity, laser system and quasi-one-dimensional conductors are described. The theoretical approach developed can be applied to both equilibrium and non-equilibrium many-body systems. (author)

  19. Local drying underwater cutting of reactor core internals by CO laser

    International Nuclear Information System (INIS)

    Beppu, Seiji; Takano, Genta; Matsumoto, Osa; Sugihara, Masaaki; Miya, Kenzo.

    1991-01-01

    Since the CO laser operates at shorter wavelength than the CO 2 laser, the former has superior ability to cut materials. Its applicability to the cutting of reactor core internals in a nuclear power plant has been studied. In order to use such a laser for cutting actual structures, it would be useful to develop underwater cutting technology for the purpose of minimizing radiation exposure during cutting. However, since the laser beam is absorbed by water, a path needs to be cleared along the laser's line of sight. The authors have developed a nozzle that forms a local dry zone and have demonstrated that CO laser cutting can be carried out under water as it is in air. (author)

  20. Pulled Motzkin paths

    International Nuclear Information System (INIS)

    Janse van Rensburg, E J

    2010-01-01

    In this paper the models of pulled Dyck paths in Janse van Rensburg (2010 J. Phys. A: Math. Theor. 43 215001) are generalized to pulled Motzkin path models. The generating functions of pulled Motzkin paths are determined in terms of series over trinomial coefficients and the elastic response of a Motzkin path pulled at its endpoint (see Orlandini and Whittington (2004 J. Phys. A: Math. Gen. 37 5305-14)) is shown to be R(f) = 0 for forces pushing the endpoint toward the adsorbing line and R(f) = f(1 + 2cosh f))/(2sinh f) → f as f → ∞, for forces pulling the path away from the X-axis. In addition, the elastic response of a Motzkin path pulled at its midpoint is shown to be R(f) = 0 for forces pushing the midpoint toward the adsorbing line and R(f) = f(1 + 2cosh (f/2))/sinh (f/2) → 2f as f → ∞, for forces pulling the path away from the X-axis. Formal combinatorial identities arising from pulled Motzkin path models are also presented. These identities are the generalization of combinatorial identities obtained in directed paths models to their natural trinomial counterparts.

  1. Pulled Motzkin paths

    Energy Technology Data Exchange (ETDEWEB)

    Janse van Rensburg, E J, E-mail: rensburg@yorku.c [Department of Mathematics and Statistics, York University, Toronto, ON, M3J 1P3 (Canada)

    2010-08-20

    In this paper the models of pulled Dyck paths in Janse van Rensburg (2010 J. Phys. A: Math. Theor. 43 215001) are generalized to pulled Motzkin path models. The generating functions of pulled Motzkin paths are determined in terms of series over trinomial coefficients and the elastic response of a Motzkin path pulled at its endpoint (see Orlandini and Whittington (2004 J. Phys. A: Math. Gen. 37 5305-14)) is shown to be R(f) = 0 for forces pushing the endpoint toward the adsorbing line and R(f) = f(1 + 2cosh f))/(2sinh f) {yields} f as f {yields} {infinity}, for forces pulling the path away from the X-axis. In addition, the elastic response of a Motzkin path pulled at its midpoint is shown to be R(f) = 0 for forces pushing the midpoint toward the adsorbing line and R(f) = f(1 + 2cosh (f/2))/sinh (f/2) {yields} 2f as f {yields} {infinity}, for forces pulling the path away from the X-axis. Formal combinatorial identities arising from pulled Motzkin path models are also presented. These identities are the generalization of combinatorial identities obtained in directed paths models to their natural trinomial counterparts.

  2. Pulled Motzkin paths

    Science.gov (United States)

    Janse van Rensburg, E. J.

    2010-08-01

    In this paper the models of pulled Dyck paths in Janse van Rensburg (2010 J. Phys. A: Math. Theor. 43 215001) are generalized to pulled Motzkin path models. The generating functions of pulled Motzkin paths are determined in terms of series over trinomial coefficients and the elastic response of a Motzkin path pulled at its endpoint (see Orlandini and Whittington (2004 J. Phys. A: Math. Gen. 37 5305-14)) is shown to be R(f) = 0 for forces pushing the endpoint toward the adsorbing line and R(f) = f(1 + 2cosh f))/(2sinh f) → f as f → ∞, for forces pulling the path away from the X-axis. In addition, the elastic response of a Motzkin path pulled at its midpoint is shown to be R(f) = 0 for forces pushing the midpoint toward the adsorbing line and R(f) = f(1 + 2cosh (f/2))/sinh (f/2) → 2f as f → ∞, for forces pulling the path away from the X-axis. Formal combinatorial identities arising from pulled Motzkin path models are also presented. These identities are the generalization of combinatorial identities obtained in directed paths models to their natural trinomial counterparts.

  3. Computer program compatible with a laser nephelometer

    Science.gov (United States)

    Paroskie, R. M.; Blau, H. H., Jr.; Blinn, J. C., III

    1975-01-01

    The laser nephelometer data system was updated to provide magnetic tape recording of data, and real time or near real time processing of data to provide particle size distribution and liquid water content. Digital circuits were provided to interface the laser nephelometer to a Data General Nova 1200 minicomputer. Communications are via a teletypewriter. A dual Linc Magnetic Tape System is used for program storage and data recording. Operational programs utilize the Data General Real-Time Operating System (RTOS) and the ERT AIRMAP Real-Time Operating System (ARTS). The programs provide for acquiring data from the laser nephelometer, acquiring data from auxiliary sources, keeping time, performing real time calculations, recording data and communicating with the teletypewriter.

  4. Propagation Path Loss Models for 5G Urban Micro- and Macro-Cellular Scenarios

    DEFF Research Database (Denmark)

    Sun, Shu; Rappaport, Theodore S.; Rangan, Sundeep

    2016-01-01

    This paper presents and compares two candidate large-scale propagation path loss models, the alpha-beta-gamma (ABG) model and the close-in (CI) free space reference distance model, for the design of fifth generation (5G) wireless communication systems in urban micro- and macro-cellular scenarios....

  5. Raman laser spectrometer optical head: qualification model assembly and integration verification

    Science.gov (United States)

    Ramos, G.; Sanz-Palomino, M.; Moral, A. G.; Canora, C. P.; Belenguer, T.; Canchal, R.; Prieto, J. A. R.; Santiago, A.; Gordillo, C.; Escribano, D.; Lopez-Reyes, G.; Rull, F.

    2017-08-01

    Raman Laser Spectrometer (RLS) is the Pasteur Payload instrument of the ExoMars mission, within the ESA's Aurora Exploration Programme, that will perform for the first time in an out planetary mission Raman spectroscopy. RLS is composed by SPU (Spectrometer Unit), iOH (Internal Optical Head), and ICEU (Instrument Control and Excitation Unit). iOH focuses the excitation laser on the samples (excitation path), and collects the Raman emission from the sample (collection path, composed on collimation system and filtering system). Its original design presented a high laser trace reaching to the detector, and although a certain level of laser trace was required for calibration purposes, the high level degrades the Signal to Noise Ratio confounding some Raman peaks. So, after the bread board campaign, some light design modifications were implemented in order to fix the desired amount of laser trace, and after the fabrication and the commitment of the commercial elements, the assembly and integration verification process was carried out. A brief description of the iOH design update for the engineering and qualification model (iOH EQM) as well as the assembly process are briefly described in this papers. In addition, the integration verification and the first functional tests, carried out with the RLS calibration target (CT), results are reported on.

  6. Analysis of the pump-beam path in corner-pumped slab laser

    International Nuclear Information System (INIS)

    Chen Li; Qiang Liu; Mali Gong; Gang Chen; Ping Yan

    2007-01-01

    The propagation of the pump radiation in active slab elements is considered. Conditions of the total internal reflection of the pump radiation are obtained, and are used to construct a series of graphical illustrations of reflection characteristics of different active elements. (control of laser radiation parameters)

  7. High brightness semiconductor lasers with reduced filamentation

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter.; Skovgaard, Peter M. W.

    1999-01-01

    High brightness semiconductor lasers have applications in spectroscopy, fiber lasers, manufacturing and materials processing, medicine and free space communication or energy transfer. The main difficulty associated with high brightness is that, because of COD, high power requires a large aperture...

  8. Path Expressions

    Science.gov (United States)

    1975-06-01

    Traditionally, synchronization of concurrent processes is coded in line by operations on semaphores or similar objects. Path expressions move the...discussion about a variety of synchronization primitives . An analysis of their relative power is found in [3]. Path expressions do not introduce yet...another synchronization primitive . A path expression relates to such primitives as a for- or while-statement of an ALGOL-like language relates to a JUMP

  9. Experimental multiplexing of quantum key distribution with classical optical communication

    International Nuclear Information System (INIS)

    Wang, Liu-Jun; Chen, Luo-Kan; Ju, Lei; Xu, Mu-Lan; Zhao, Yong; Chen, Kai; Chen, Zeng-Bing; Chen, Teng-Yun; Pan, Jian-Wei

    2015-01-01

    We demonstrate the realization of quantum key distribution (QKD) when combined with classical optical communication, and synchronous signals within a single optical fiber. In the experiment, the classical communication sources use Fabry-Pérot (FP) lasers, which are implemented extensively in optical access networks. To perform QKD, multistage band-stop filtering techniques are developed, and a wavelength-division multiplexing scheme is designed for the multi-longitudinal-mode FP lasers. We have managed to maintain sufficient isolation among the quantum channel, the synchronous channel and the classical channels to guarantee good QKD performance. Finally, the quantum bit error rate remains below a level of 2% across the entire practical application range. The proposed multiplexing scheme can ensure low classical light loss, and enables QKD over fiber lengths of up to 45 km simultaneously when the fibers are populated with bidirectional FP laser communications. Our demonstration paves the way for application of QKD to current optical access networks, where FP lasers are widely used by the end users

  10. The Effect of Competitive Rivalry on Internal Communication in Private Healthcare Organizations: Evidence from Istanbul, Turkey

    Directory of Open Access Journals (Sweden)

    Gültekin Altuntas

    2014-02-01

    Full Text Available Both competitive rivalry and internal communication play a crucial role for a business to position itself in a favourable manner in order to succeed particularly in a hostile environment. While numerous studies present the importance of competitive rivalry and of communication, even internal communication separately, little is known about the specific linkage of how competitive rivalry affects communication in the literature. Within the framework of internal communication, this study focuses on the notion that competitive rivalry is related to the path and style of communication as well as to the usage of internal communication tools but not to quality of communication. Thus, our research presents the linkage and the interaction between competitive rivalry and internal communication, of which the results indicate that, overall, competitive rivalry has a significant direct positive influence on internal communication dimensions in terms of path, style and quality of communication, as well as usage of communication tools in healthcare organizations.

  11. Scanning Laser Infrared Molecular Spectrometer (SLIMS)

    Science.gov (United States)

    Scott, David C.; Rickey, Kelly; Ksendzov, Alexander; George, Warren P.; Aljabri, Abdullah S.; Steinkraus, Joel M.

    2012-01-01

    This prototype innovation is a novel design that achieves very long, effective laser path lengths that are able to yield ppb (parts per billion) and sub-ppb measurements of trace gases. SLIMS can also accommodate multiple laser channels covering a wide range of wavelengths, resulting in detection of more chemicals of interest. The mechanical design of the mirror cell allows for the large effective path length within a small footprint. The same design provides a robust structure that lends itself to being immune to some of the alignment challenges that similar cells face. By taking a hollow cylinder and by cutting an elliptically or spherically curved surface into its inner wall, the basic geometry of a reflecting ring is created. If the curved, inner surface is diamond-turned and highly polished, a surface that is very highly reflective can be formed. The surface finish can be further improved by adding a thin chrome or gold film over the surface. This creates a high-quality, curved, mirrored surface. A laser beam, which can be injected from a small bore hole in the wall of the cylinder, will be able to make many low-loss bounces around the ring, creating a large optical path length. The reflecting ring operates on the same principle as the Herriott cell. The difference exists in the mirror that doesn't have to be optically aligned, and which has a relatively large, internal surface area that lends itself to either open air or evacuated spectroscopic measurements. This solid, spherical ring mirror removes the possibility of mirror misalignment caused by thermal expansion or vibrations, because there is only a single, solid reflecting surface. Benefits of the reflecting ring come into play when size constraints reduce the size of the system, especially for space missions in which mass is at a premium.

  12. Experimental Measurements of Temporal Dispersion for Underwater Laser Communications and Imaging

    Science.gov (United States)

    Cochenour, Brandon Michael

    ) at which multiple scattering and temporal dispersion are observed, while finer details of the scattering phase function shape are related to the amount of temporal dispersion that occurs. 3. Consistent with intuition, temporal dispersion is increased while increasing the receiver field-of-view when observing the light field at the beam axis. This is due to the collection of non-scattered, minimally scattered, and multiply scattered light. Observation of the light field far from the beam axis also results in increased temporal dispersion relative to on-axis observation, as only multiply scattered light is collected. However, no additional temporal dispersion is induced by widening the receiver field-of-view at these off-axis locations. This is contrary to the current conventional understanding, and illustrates the interdependence of geometry, system configuration, and environmental characteristics. 4. The experimental results are used to establish operational limits for underwater optical communication links with regard to sensitivity, dynamic range, and bandwidth. Establishing these bounds, particularly as they relate to channel bandwidth, have typically not be possible due to the previous lack of experimental evidence. 5. The intensity distribution of high frequency modulated light exhibits an effective 'angular narrowing' relative to non-modulated light. This result was theoretically predicted over 40 years ago, and experimentally verified for the first time in this work. This phenomenon is then exploited as a method to improve the resolution of underwater laser imaging systems. These results provide an improved understanding of temporal and spatial dispersion, as well as their relationship to each other. Understanding how both environmental and sensor properties effect spatial and temporal impairments are essential for optimizing the operating range and bandwidth of underwater laser communication links, or the range, resolution, and reliability of underwater laser

  13. Remote imaging laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy using nanosecond pulses from a mobile lidar system.

    Science.gov (United States)

    Grönlund, Rasmus; Lundqvist, Mats; Svanberg, Sune

    2006-08-01

    A mobile lidar system was used in remote imaging laser-induced breakdown spectroscopy (LIBS) and laser-induced fluorescence (LIF) experiments. Also, computer-controlled remote ablation of a chosen area was demonstrated, relevant to cleaning of cultural heritage items. Nanosecond frequency-tripled Nd:YAG laser pulses at 355 nm were employed in experiments with a stand-off distance of 60 meters using pulse energies of up to 170 mJ. By coaxial transmission and common folding of the transmission and reception optical paths using a large computer-controlled mirror, full elemental imaging capability was achieved on composite targets. Different spectral identification algorithms were compared in producing thematic data based on plasma or fluorescence light.

  14. Laser fusion systems design study. Final technical report

    International Nuclear Information System (INIS)

    1975-06-01

    This study investigated: (1) the formulation and evaluation of an alignment system to accomplish pointing, focusing, centering and translation for the 20-arm SHIVA laser, (2) the formulation and evaluation of concepts for the correction of static phase distortions introduced by the accumulated optical elements in the laser chains, (3) the formulation and evaluation of concepts for the correction of optical path length differences between the arms of the SHIVA system, and (4) the conceptual design of appropriate control system hardware. (U.S.)

  15. Physical Layer Security Using Two-Path Successive Relaying

    Directory of Open Access Journals (Sweden)

    Qian Yu Liau

    2016-06-01

    Full Text Available Relaying is one of the useful techniques to enhance wireless physical-layer security. Existing literature shows that employing full-duplex relay instead of conventional half-duplex relay improves secrecy capacity and secrecy outage probability, but this is at the price of sophisticated implementation. As an alternative, two-path successive relaying has been proposed to emulate operation of full-duplex relay by scheduling a pair of half-duplex relays to assist the source transmission alternately. However, the performance of two-path successive relaying in secrecy communication remains unexplored. This paper proposes a secrecy two-path successive relaying protocol for a scenario with one source, one destination and two half-duplex relays. The relays operate alternately in a time division mode to forward messages continuously from source to destination in the presence of an eavesdropper. Analytical results reveal that the use of two half-duplex relays in the proposed scheme contributes towards a quadratically lower probability of interception compared to full-duplex relaying. Numerical simulations show that the proposed protocol achieves the ergodic achievable secrecy rate of full-duplex relaying while delivering the lowest probability of interception and secrecy outage probability compared to the existing half duplex relaying, full duplex relaying and full duplex jamming schemes.

  16. Reversible Communicating Processes

    Directory of Open Access Journals (Sweden)

    Geoffrey Brown

    2016-02-01

    Full Text Available Reversible distributed programs have the ability to abort unproductive computation paths and backtrack, while unwinding communication that occurred in the aborted paths. While it is natural to assume that reversibility implies full state recovery (as with traditional roll-back recovery protocols, an interesting alternative is to separate backtracking from local state recovery. For example, such a model could be used to create complex transactions out of nested compensable transactions where a programmer-supplied compensation defines the work required to "unwind" a transaction. Reversible distributed computing has received considerable theoretical attention, but little reduction to practice; the few published implementations of languages supporting reversibility depend upon a high degree of central control. The objective of this paper is to demonstrate that a practical reversible distributed language can be efficiently implemented in a fully distributed manner. We discuss such a language, supporting CSP-style synchronous communication, embedded in Scala. While this language provided the motivation for the work described in this paper, our focus is upon the distributed implementation. In particular, we demonstrate that a "high-level" semantic model can be implemented using a simple point-to-point protocol.

  17. Advanced lasers laser physics and technology for applied and fundamental science

    CERN Document Server

    Sukhoivanov, Igor

    2015-01-01

    Presenting a blend of applied and fundamental research in highly interdisciplinary subjects of rapidly developing areas, this book contains contributions on the frontiers and hot topics of laser physics, laser technology and laser engineering, and covers a wide range of laser topics, from all-optical signal processing and chaotic optical communication to production of superwicking surfaces, correction of extremely high-power beams, and generation of ultrabroadband spectra. It presents both review-type contributions and well researched and documented case studies, and is intended for graduate students, young scientist, and emeritus scientist working/studying in laser physics, optoelectronics, optics, photonics, and adjacent areas. The book contains both experimental and theoretical studies, as well as combinations of these two, which is known to be a most useful and interesting form of reporting scientific results, allowing students to really learn from each contribution. The book contains over 130 illustratio...

  18. In-to-out body path loss for wireless radio frequency capsule endoscopy in a human body.

    Science.gov (United States)

    Vermeeren, G; Tanghe, E; Thielens, A; Martens, L; Joseph, W

    2016-08-01

    Physical-layer characterization is important for design of in-to-out body communication for wireless body area networks (WBANs). This paper numerically investigates the path loss of an in-to-out body radio frequency (RF) wireless link between an endoscopy capsule and a receiver outside the body using a 3D electromagnetic solver. A spiral antenna in the endoscopy capsule is tuned to operate in the Medical Implant Communication Service (MICS) band at 402 MHz, accounting for the properties of the human body. The influence of misalignment, rotation of the capsule, and human body model are investigated. Semi-empirical path loss models for various homogeneous tissues and 3D realistic human body models are provided for manufacturers to evaluate the performance of in-to-out-body WBAN systems.

  19. Zero-Slack, Noncritical Paths

    Science.gov (United States)

    Simons, Jacob V., Jr.

    2017-01-01

    The critical path method/program evaluation and review technique method of project scheduling is based on the importance of managing a project's critical path(s). Although a critical path is the longest path through a network, its location in large projects is facilitated by the computation of activity slack. However, logical fallacies in…

  20. Distributed systems design using separable communications

    International Nuclear Information System (INIS)

    Capel, A.C.; Yan, G.

    1980-01-01

    One of the promises of distributed systems is the ability to design each process function largely independently of the others, and in many cases locate the resulting hardware in close proximity to the application. The communications architecture for such systems should be approached in the same way, using separable communications facilities to meet individual sets of requirements while at the same time reducing the interactions between functions. Where complete physical separation is not feasible and hardware resource sharing is required, the protocols should be designed emphasizing the logical separation of communication paths. This paper discusses the different types of communications for process control applictions and the parameters which need to be characterized in designing separable communications for distributed systems. (auth)

  1. Plastic optical fiber serial communications link for distributed control system

    Science.gov (United States)

    Saxena, Piyush; Sharangpani, K. K.; Vora, H. S.; Nakhe, S. V.; Jain, R.; Shenoy, N. M.; Bhatnagar, R.; Shirke, N. D.

    2001-09-01

    One of the most common interface for communications specified is RS 232C standard. Though widely accepted, RS232 has limited transmission speed, range and networking capabilities. RS 422 standard overcomes limitations by using differential signal lines. In automation of the operation of gas discharge lasers, multiple processors are used for control of lasers, cooling system, vacuum system etc. High EMI generated by lasers interfere through galvanic transmission or by radiation over the length of cables, and hang up operation of processors or control PC. A serial communications link was designed eliminating copper transmission media, using plastic optical fiber cables and components, to connect local controllers with the master PC working on RS232 protocols. The paper discusses the design and implementation of a high ly reliable EMI harden serial communications link.

  2. A common-path phase-shift interferometry surface plasmon imaging system

    Science.gov (United States)

    Su, Y.-T.; Chen, Shean-Jen; Yeh, T.-L.

    2005-03-01

    A biosensing imaging system is proposed based on the integration of surface plasmon resonance (SPR) and common-path phase-shift interferometry (PSI) techniques to measure the two-dimensional spatial phase variation caused by biomolecular interactions upon a sensing chip. The SPR phase imaging system can offer high resolution and high-throughout screening capabilities to analyze microarray biomolecular interaction without the need for additional labeling. With the long-term stability advantage of the common-path PSI technique even with external disturbances such as mechanical vibration, buffer flow noise, and laser unstable issue, the system can match the demand of real-time kinetic study for biomolecular interaction analysis (BIA). The SPR-PSI imaging system has achieved a detection limit of 2×10-7 refraction index change, a long-term phase stability of 2.5x10-4π rms over four hours, and a spatial phase resolution of 10-3 π with a lateral resolution of 100μm.

  3. Aurora multikilojoule KrF laser system prototype for inertial confinement fusion

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Hanlon, J.A.; Mc Leod, J.; Kang, M.; Kortegaard, B.L.; Burrows, M.D.; Bowling, P.S.

    1987-01-01

    Aurora is the Los Alamos National Laboratory short-pulse, high-power, KrF laser system. It serves as an end-to-end technology demonstration for large-scale ultraviolet laser systems of interest for short wavelength, inertial confinement fusion (ICF) investigations. The systems is a prototype for using optical angular multiplexing and serial amplification by large electron-beam-driven KrF laser amplifiers to deliver stacked, 248-nm, 5-ns duration multikilojoule laser pulses to ICF targets using an --1-km-long optical beam path. The entire Aurora KrF laser system is described and the design features of the following major system components are summarized: front-end lasers, amplifier train, multiplexer, optical relay train, demultiplexer, target irradiation apparatus, and alignment and controls systems

  4. Semiconductor Lasers Stability, Instability and Chaos

    CERN Document Server

    Ohtsubo, Junji

    2008-01-01

    This monograph describes fascinating recent progress in the field of chaos, stability and instability of semiconductor lasers. Applications and future prospects are discussed in detail. The book emphasizes the various dynamics induced in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Recent results of both theoretical and experimental investigations are presented. Demonstrating applications of semiconductor laser chaos, control and noise, Semiconductor Lasers describes suppression and chaotic secure communications. For those who are interested in optics but not familiar with nonlinear systems, a brief introduction to chaos analysis is presented.

  5. Diffractive optical elements for space communication terminals

    OpenAIRE

    Herzig, Hans-Peter; Ehbets, Peter; Teijido, Juan M.; Weible, Kenneth J.; Heimbeck, Hans-Joerg

    2007-01-01

    The potential of diffractive optical elements for advanced laser communication terminals has been investigated. Applications include beam shaping of high- power laser diode arrays, optical filter elements for position detection and hybrid (refractive/diffractive) elements. In addition, we present a design example of a miniaturized terminal including diffractive optics.

  6. Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication

    KAUST Repository

    Chi, Yu-Chieh

    2015-12-21

    An advanced light-fidelity (Li-Fi) system based on the blue Gallium nitride (GaN) laser diode (LD) with a compact white-light phosphorous diffuser is demonstrated for fusing the indoor white-lighting and visible light communication (VLC). The phosphorous diffuser adhered blue GaN LD broadens luminescent spectrum and diverges beam spot to provide ample functionality including the completeness of Li-Fi feature and the quality of white-lighting. The phosphorous diffuser diverged white-light spot covers a radiant angle up to 120o with CIE coordinates of (0.34, 0.37). On the other hand, the degradation on throughput frequency response of the blue LD is mainly attributed to the self-feedback caused by the reflection from the phosphor-air interface. It represents the current state-of-the-art performance on carrying 5.2-Gbit/s orthogonal frequency-division multiplexed 16-quadrature-amplitude modulation (16-QAM OFDM) data with a bit error rate (BER) of 3.1 × 10−3 over a 60-cm free-space link. This work aims to explore the plausibility of the phosphorous diffuser diverged blue GaN LD for future hybrid white-lighting and VLC systems.

  7. III-nitride Photonic Integrated Circuit: Multi-section GaN Laser Diodes for Smart Lighting and Visible Light Communication

    KAUST Repository

    Shen, Chao

    2017-04-01

    The past decade witnessed the rapid development of III-nitride light-emitting diodes (LEDs) and laser diodes (LDs), for smart lighting, visible-light communication (VLC), optical storage, and internet-of-things. Recent studies suggested that the GaN-based LDs, which is free from efficiency droop, outperform LEDs as a viable high-power light source. Conventionally, the InGaN-based LDs are grown on polar, c-plane GaN substrates. However, a relatively low differential gain limited the device performance due to a significant polarization field in the active region. Therefore, the LDs grown on nonpolar m-plane and semipolar (2021)-plane GaN substrates are posed to deliver high-efficiency owing to the entirely or partially eliminated polarization field. To date, the smart lighting and VLC functionalities have been demonstrated based on discrete devices, such as LDs, transverse-transmission modulators, and waveguide photodetectors. The integration of III-nitride photonic components, including the light emitter, modulator, absorber, amplifier, and photodetector, towards the realization of III-nitride photonic integrated circuit (PIC) offers the advantages of small-footprint, high-speed, and low power consumption, which has yet to be investigated. This dissertation presents the design, fabrication, and characterization of the multi-section InGaN laser diodes with integrated functionalities on semipolar (2021)-plane GaN substrates for enabling such photonic integration. The blue-emitting integrated waveguide modulator-laser diode (IWM-LD) exhibits a high modulation efficiency of 2.68 dB/V. A large extinction ratio of 11.3 dB is measured in the violet-emitting IWM-LD. Utilizing an integrated absorber, a high optical power (250mW), droop-free, speckle-free, and large modulation bandwidth (560MHz) blue-emitting superluminescent diode is reported. An integrated short-wavelength semiconductor optical amplifier with the laser diode at ~404 nm is demonstrated with a large gain of 5

  8. In-line optical fiber metallic mirror reflector for monolithic common path optical coherence tomography probes.

    Science.gov (United States)

    Singh, Kanwarpal; Reddy, Rohith; Sharma, Gargi; Verma, Yogesh; Gardecki, Joseph A; Tearney, Guillermo

    2018-03-01

    Endoscopic optical coherence tomography probes suffer from various artifacts due to dispersion imbalance and polarization mismatch between reference and sample arm light. Such artifacts can be minimized using a common path approach. In this work, we demonstrate a miniaturized common path probe for optical coherence tomography using an inline fiber mirror. A common path optical fiber probe suitable for performing high-resolution endoscopic optical coherence tomography imaging was developed. To achieve common path functionality, an inline fiber mirror was fabricated using a thin gold layer. A commercially available swept source engine was used to test the designed probe in a cadaver human coronary artery ex vivo. We achieved a sensitivity of 104 dB for this probe using a swept source optical coherence tomography system. To test the probe, images of a cadaver human coronary artery were obtained, demonstrating the quality that is comparable to those obtained by OCT systems with separate reference arms. Additionally, we demonstrate recovery of ranging depth by use of a Michelson interferometer in the detection path. We developed a miniaturized monolithic inline fiber mirror-based common path probe for optical coherence tomography. Owing to its simplicity, our design will be helpful in endoscopic applications that require high-resolution probes in a compact form factor while reducing system complexity. Lasers Surg. Med. 50:230-235, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Digital operation and eye diagrams in spin-lasers

    International Nuclear Information System (INIS)

    Wasner, Evan; Bearden, Sean; Žutić, Igor; Lee, Jeongsu

    2015-01-01

    Digital operation of lasers with injected spin-polarized carriers provides an improved operation over their conventional counterparts with spin-unpolarized carriers. Such spin-lasers can attain much higher bit rates, crucial for optical communication systems. The overall quality of a digital signal in these two types of lasers is compared using eye diagrams and quantified by improved Q-factors and bit-error-rates in spin-lasers. Surprisingly, an optimal performance of spin-lasers requires finite, not infinite, spin-relaxation times, giving a guidance for the design of future spin-lasers

  10. Analysis of D2D Communications over Gamma/Nakagami Fading Channels

    Directory of Open Access Journals (Sweden)

    Z. Hussain

    2018-04-01

    Full Text Available In this paper, we investigate the outage probability, channel capacity and symbol error rate (SER performance of device-to-device (D2D communication systems. The D2D communication system is affected by several co-channel interferers. Gamma fading channel is considered for the D2D communication system. The channel for the co-channel interference is assumed to be Nakagami faded. An expression for the probability density function (PDF of the signal-to-interference ratio (SIR is presented. The PDF is a function of distances between various devices in the D2D system, path-loss, channel fading conditions and signal powers. Based on the PDF expression, we present the expressions for the outage, channel capacity and SER. With the help of numerical results the performance of D2D communication system is discussed under various conditions of interference, path-loss and channel fading.

  11. Performance of the Aurora KrF ICF laser system

    International Nuclear Information System (INIS)

    Jones, J.E.; Czuchlewski, S.J.; Turner, T.P.; Watt, R.G.; Thomas, S.J.; Netz, D.A.; Tallman, C.R.; Mack, J.M.; Figueira, J.F.

    1990-01-01

    Because short wavelength lasers are attractive for inertial confinement fusion (ICF), the Department of Energy is sponsoring work at Los Alamos National Laboratory in krypton-fluoride (KrF) laser technology. Aurora is a short-pulse, high-power, KrF laser system. It serves as an end-to-end technology demonstration prototype for large-scale ultraviolet laser systems for short wavelength ICF research. The system employs optical angular multiplexing and serial amplification by electron-beam-driven KrF laser amplifiers. The 1 to 5 ns pulse of the Aurora front end is split into 96 beams which are angularly and temporally multiplexed to produce a 480 ns pulse train for amplification by four KrF laser amplifiers. In the present system configuration half (48) of the amplified pulses are demultiplexed using different optical path lengths and delivered simultaneously to target. This paper discusses how the Aurora laser system has entered the initial operational phase by delivering pulse energies of greater than one kilojoule to target

  12. Optical-feedback semiconductor laser Michelson interferometer for displacement measurements with directional discrimination

    International Nuclear Information System (INIS)

    Rodrigo, Peter John; Lim, May; Saloma, Caesar

    2001-01-01

    An optical-feedback semiconductor laser Michelson interferometer (OSMI) is presented for measuring microscopic linear displacements without ambiguity in the direction of motion. The two waves from the interferometer arms, one from the reference mirror and the other from the reflecting moving target, are fed back into the lasing medium (λ=830 nm), causing variations in the laser output power. We model the OSMI into an equivalent Fabry-Perot resonator and derive the dependence of the output power (and the junction voltage) on the path difference between the two interferometer arms. Numerical and experimental results consistently show that the laser output power varies periodically (period, λ/2) with path difference. The output power variation exhibits an asymmetric behavior with the direction of motion, which is used to measure, at subwavelength resolution, the displacement vector (both amplitude and direction) of the moving sample. Two samples are considered in the experiments: (i) a piezoelectric transducer and (ii) an audio speaker

  13. Underwater wireless communication system

    International Nuclear Information System (INIS)

    Goh, J H; Shaw, A; Al-Shamma'a, A I

    2009-01-01

    Underwater communication has a range of applications including remotely operated vehicle (ROV) and autonomous underwater vehicle (AUV) communication and docking in the offshore industry. Current underwater transmission techniques is primarily utilise sound waves for large distance at lower frequencies and the velocity of sound in water is approximately 1500m/s the resultant communications have problems with multi-path propagation and low bandwidth problems. The use of electromagnetic (EM) techniques underwater has largely been overlooked because of the attenuation due to the conductivity of seawater. However, for short range applications, the higher frequencies and much higher velocity can prove advantageous. This paper will outline a project which will utilise recent investigations that demonstrate EM wave propagation up to the MHz frequency range is possible in seawater.

  14. Path Creation, Path Dependence and Breaking Away from the Path: Re-Examining the Case of Nokia

    OpenAIRE

    Wang, Jens; Hedman, Jonas; Tuunainen, Virpi Kristiina

    2016-01-01

    The explanation of how and why firms succeed or fail is a recurrent research challenge. This is particularly important in the context of technological innovations. We focus on the role of historical events and decisions in explaining such success and failure. Using a case study of Nokia, we develop and extend a multi-layer path dependence framework. We identify four layers of path dependence: technical, strategic and leadership, organizational, and external collaboration. We show how path dep...

  15. Path-dependent functions

    International Nuclear Information System (INIS)

    Khrapko, R.I.

    1985-01-01

    A uniform description of various path-dependent functions is presented with the help of expansion of the type of the Taylor series. So called ''path-integrals'' and ''path-tensor'' are introduced which are systems of many-component quantities whose values are defined for arbitrary paths in coordinated region of space in such a way that they contain a complete information on the path. These constructions are considered as elementary path-dependent functions and are used instead of power monomials in the usual Taylor series. Coefficients of such an expansion are interpreted as partial derivatives dependent on the order of the differentiations or else as nonstandard cavariant derivatives called two-point derivatives. Some examples of pathdependent functions are presented.Space curvature tensor is considered whose geometrica properties are determined by the (non-transitive) translator of parallel transport of a general type. Covariant operation leading to the ''extension'' of tensor fiels is pointed out

  16. Optimized fiber delivery system for Q-switched, Nd:YAG lasers

    International Nuclear Information System (INIS)

    Setchell, R.E.

    1997-01-01

    Interest in the transmission of high intensities through optical fibers is being motivated by an increasing number of applications. Using different laser types and fiber materials, various studies are encountering transmission limitations due to laser-induced damage processes. For a number of years we have been investigating these limiting processes during the transmission of Q-switched, multimode, Nd:YAG laser pulses through step-index, multimode, fused-silica fiber. We have found that fiber transmission is often limited by a plasma-forming breakdown occurring at the fiber entrance face. This breakdown can result in subtle surface modifications that leave the entrance face more resistant to further breakdown or damage events. Catastrophic fiber damage can also occur as a result of a variety of mechanisms, with damage appearing at fiber entrance and exit faces, within the initial entry segment of the fiber path, and at other internal sites due to fiber fixturing and routing effects. System attributes that will affect breakdown and damage thresholds include laser characteristics, the design and alignment of laser-to-fiber injection optics, and fiber end-face preparation. In the present work we have combined insights gained in past studies in order to establish what thresholds can be achieved if all system attributes can be optimized to some degree. Our multimode laser utilized past modifications that produced a relatively smooth, quasi-Gaussian profile. The laser-to-fiber injection system achieved a relatively low value for the ratio of peak-to-average fluences at the fiber entrance face, incorporated a mode scrambler to generate a broad mode power distribution within the initial segment of the fiber path, and had improved fixturing to insure that the fiber axis was collinear with the incident laser beam. Test fibers were from a particular production lot for which initial-strength characteristics were established and a high-stress proof test was performed

  17. Proceedings of the 4. International Conference on Lasers and their Applications

    International Nuclear Information System (INIS)

    400 scientists from 19 countries participated in the 4. international conference on lasers and their applications, held at Leipzig, GDR, in October 1981. The conference focused on problems of gas lasers, high-power lasers for materials working, and laser spectroscopy, on optoelectronics considering communications systems, and on laser-controlled thermonuclear fusion with special regard to the laser plant 'Delphin 1'. 186 summaries are included

  18. OPEN PATH TUNABLE DIODE LASER ABSORPTION SPECTROSCOPY FOR ACQUISITION OF FUGITIVE EMISSION FLUX DATA

    Science.gov (United States)

    Air pollutant emission from unconfined sources is an increasingly important environmental issue. The U.S. EPA has developed a gorund-based optical remote sensing method that enables direct measurement of fugitive emission flux from large area sources. Open-path Fourier transfor...

  19. Detection of elemental mercury by multimode diode laser correlation spectroscopy.

    Science.gov (United States)

    Lou, Xiutao; Somesfalean, Gabriel; Svanberg, Sune; Zhang, Zhiguo; Wu, Shaohua

    2012-02-27

    We demonstrate a method for elemental mercury detection based on correlation spectroscopy employing UV laser radiation generated by sum-frequency mixing of two visible multimode diode lasers. Resonance matching of the multimode UV laser is achieved in a wide wavelength range and with good tolerance for various operating conditions. Large mode-hops provide an off-resonance baseline, eliminating interferences from other gas species with broadband absorption. A sensitivity of 1 μg/m3 is obtained for a 1-m path length and 30-s integration time. The performance of the system shows promise for mercury monitoring in industrial applications.

  20. Exposure Path Perceptions and Protective Actions in Biological Water Contamination Emergencies

    Directory of Open Access Journals (Sweden)

    Michael K. Lindell

    2015-01-01

    Full Text Available This study extends the Protective Action Decision Model, developed to address disaster warning responses in the context of natural hazards, to “boil water” advisories. The study examined 110 Boston residents' and 203 Texas students' expectations of getting sick through different exposure paths for contact with contaminated water. In addition, the study assessed respondents' actual implementation (for residents or behavioral expectations (for students of three different protective actions – bottled water, boiled water, and personally chlorinated water – as well as their demographic characteristics and previous experience with water contamination. The results indicate that people distinguish among the exposure paths, but the differences are small (one-third to one-half of the response scale. Nonetheless, the perceived risk from the exposure paths helps to explain why people are expected to consume (or actually consumed bottled water rather than boiled or personally chlorinated water. Overall, these results indicate that local authorities should take care to communicate the relative risks of different exposure paths and should expect that people will respond to a boil water order primarily by consuming bottled water. Thus, they should make special efforts to increase supplies of bottled water in their communities during water contamination emergencies.

  1. Differential absorption lidar measurements of atmospheric water vapor using a pseudonoise code modulated AlGaAs laser. Thesis

    Science.gov (United States)

    Rall, Jonathan A. R.

    1994-01-01

    Lidar measurements using pseudonoise code modulated AlGaAs lasers are reported. Horizontal path lidar measurements were made at night to terrestrial targets at ranges of 5 and 13 km with 35 mW of average power and integration times of one second. Cloud and aerosol lidar measurements were made to thin cirrus clouds at 13 km altitude with Rayleigh (molecular) backscatter evident up to 9 km. Average transmitter power was 35 mW and measurement integration time was 20 minutes. An AlGaAs laser was used to characterize spectral properties of water vapor absorption lines at 811.617, 816.024, and 815.769 nm in a multipass absorption cell using derivative spectroscopy techniques. Frequency locking of an AlGaAs laser to a water vapor absorption line was achieved with a laser center frequency stability measured to better than one-fifth of the water vapor Doppler linewidth over several minutes. Differential absorption lidar measurements of atmospheric water vapor were made in both integrated path and range-resolved modes using an externally modulated AlGaAs laser. Mean water vapor number density was estimated from both integrated path and range-resolved DIAL measurements and agreed with measured humidity values to within 6.5 percent and 20 percent, respectively. Error sources were identified and their effects on estimates of water vapor number density calculated.

  2. Dual-Laser vibrometry: Elimination or extraction of pseudo vibration

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Bækbo, Martin Jesper; Hanson, Steen Grüner

    2014-01-01

    This paper investigates the principal idea of a method using two identical laser vibrometers to eliminate pseudovibrations, occurring as structured noise in laser-vibrometer measurements of angular velocity of a rotating object. Thetwo vibrometers monitor the same surface path on the rotating...... in angularvelocity of the object occur simultaneously at the two vibrometers. Knowing the angular separation between thevibrometers, simple trigonometry canbe used to eliminate the pseudo vibrations. These vibrometers are based oncameras, therefore the experiments demonstrate the principle of the method only...

  3. Sustainable Entangled State of Two Qutrits Under Laser Irradiation

    Directory of Open Access Journals (Sweden)

    Biryukov A.А.

    2015-01-01

    Full Text Available We study the evolution of quantum entanglement in the model of two identical qubits interacting with a single-mode laser field. The density matrix and Peres-Horodecki parameter are calculated within the frameworks of path-integral formalism. The quantum entanglement measure is shown to be strongly dependent upon the phase difference between the laser radiation acting on each cubit. This observation may offer the possibility of quantum entanglement stationary control by varying the distance between the qubits.

  4. Regimes of self-pulsing in photonic crystal Fano lasers

    DEFF Research Database (Denmark)

    Rasmussen, Thorsten Svend; Yu, Yi; Mørk, Jesper

    2017-01-01

    Laser self-pulsing was a property exclusive to macroscopic laser systems until recently, where self-pulsing laser operation was demonstrated experimentally and theoretically in a microscopic photonic crystal Fano laser [1]. We now provide a detailed theoretical analysis of the self......-pulsing mechanism and laser characteristics with numerical simulations to demonstrate the parameter dependence of the self-pulsing regime and its limitations, indicating how the design may be optimised for applications in e.g. integrated on-chip communication systems....

  5. Laser vaccine adjuvants

    Science.gov (United States)

    Kashiwagi, Satoshi; Brauns, Timothy; Gelfand, Jeffrey; Poznansky, Mark C

    2014-01-01

    Immunologic adjuvants are essential for current vaccines to maximize their efficacy. Unfortunately, few have been found to be sufficiently effective and safe for regulatory authorities to permit their use in vaccines for humans and none have been approved for use with intradermal vaccines. The development of new adjuvants with the potential to be both efficacious and safe constitutes a significant need in modern vaccine practice. The use of non-damaging laser light represents a markedly different approach to enhancing immune responses to a vaccine antigen, particularly with intradermal vaccination. This approach, which was initially explored in Russia and further developed in the US, appears to significantly improve responses to both prophylactic and therapeutic vaccines administered to the laser-exposed tissue, particularly the skin. Although different types of lasers have been used for this purpose and the precise molecular mechanism(s) of action remain unknown, several approaches appear to modulate dendritic cell trafficking and/or activation at the irradiation site via the release of specific signaling molecules from epithelial cells. The most recent study, performed by the authors of this review, utilized a continuous wave near-infrared laser that may open the path for the development of a safe, effective, low-cost, simple-to-use laser vaccine adjuvant that could be used in lieu of conventional adjuvants, particularly with intradermal vaccines. In this review, we summarize the initial Russian studies that have given rise to this approach and comment upon recent advances in the use of non-tissue damaging lasers as novel physical adjuvants for vaccines. PMID:25424797

  6. Per-Pixel, Dual-Counter Scheme for Optical Communications

    Science.gov (United States)

    Farr, William H.; Bimbaum, Kevin M.; Quirk, Kevin J.; Sburlan, Suzana; Sahasrabudhe, Adit

    2013-01-01

    Free space optical communications links from deep space are projected to fulfill future NASA communication requirements for 2020 and beyond. Accurate laser-beam pointing is required to achieve high data rates at low power levels.This innovation is a per-pixel processing scheme using a pair of three-state digital counters to implement acquisition and tracking of a dim laser beacon transmitted from Earth for pointing control of an interplanetary optical communications system using a focal plane array of single sensitive detectors. It shows how to implement dim beacon acquisition and tracking for an interplanetary optical transceiver with a method that is suitable for both achieving theoretical performance, as well as supporting additional functions of high data rate forward links and precision spacecraft ranging.

  7. Column carbon dioxide and water vapor measurements by an airborne triple-pulse integrated path differential absorption lidar: novel lidar technologies and techniques with path to space

    Science.gov (United States)

    Singh, U. N.; Petros, M.; Refaat, T. F.; Yu, J.; Ismail, S.

    2017-09-01

    The 2-micron wavelength region is suitable for atmospheric carbon dioxide (CO2) measurements due to the existence of distinct absorption features for the gas at this wavelength region [1]. For more than 20 years, researchers at NASA Langley Research Center (LaRC) have developed several high-energy and high repetition rate 2-micron pulsed lasers [2]. Currently, LaRC team is engaged in designing, developing and demonstrating a triple-pulsed 2-micron direct detection Integrated Path Differential Absorption (IPDA) lidar to measure the weighted-average column dry-air mixing ratios of carbon dioxide (XCO2) and water vapor (XH2O) from an airborne platform [1, 3-5]. This novel technique allows measurement of the two most dominant greenhouse gases, simultaneously and independently, using a single instrument. This paper will provide status and details of the development of this airborne 2-micron triple-pulse IPDA lidar. The presented work will focus on the advancement of critical IPDA lidar components. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver and detector upgrades, laser packaging and lidar integration. Future plans for IPDA lidar ground integration, testing and flight validation will also be discussed. This work enables new Earth observation measurements, while reducing risk, cost, size, volume, mass and development time of required instruments.

  8. Cyclone: A laser scanner for mobile robot navigation

    Science.gov (United States)

    Singh, Sanjiv; West, Jay

    1991-09-01

    Researchers at Carnegie Mellon's Field Robotics Center have designed and implemented a scanning laser rangefinder. The device uses a commercially available time-of-flight ranging instrument that is capable of making up to 7200 measurements per second. The laser beam is reflected by a rotating mirror, producing up to a 360 degree view. Mounted on a robot vehicle, the scanner can be used to detect obstacles in the vehicle's path or to locate the robot on a map. This report discusses the motivation, design, and some applications of the scanner.

  9. Noninvasive micromanipulation of live HIV-1 infected cells via laser light

    Science.gov (United States)

    Mthunzi, Patience

    2015-12-01

    Live mammalian cells from various tissues of origin can be aseptically and noninvasively micromanipulated via lasers of different regimes. Laser-driven techniques are therefore paving a path toward the advancement of human immuno-deficiency virus (HIV-1) investigations. Studies aimed at the interaction of laser light, nanomaterials, and biological materials can also lead to an understanding of a wealth of disease conditions and result in photonics-based therapies and diagnostic tools. Thus, in our research, both continuous wave and pulsed lasers operated at varying wavelengths are employed, as they possess special properties that allow classical biomedical applications. This paper discusses photo-translocation of antiretroviral drugs into HIV-1 permissive cells and preliminary results of low-level laser therapy (LLLT) in HIV-1 infected cells.

  10. Impact of Beamforming on the Path Connectivity in Cognitive Radio Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Le The Dung

    2017-03-01

    Full Text Available This paper investigates the impact of using directional antennas and beamforming schemes on the connectivity of cognitive radio ad hoc networks (CRAHNs. Specifically, considering that secondary users use two kinds of directional antennas, i.e., uniform linear array (ULA and uniform circular array (UCA antennas, and two different beamforming schemes, i.e., randomized beamforming and center-directed to communicate with each other, we study the connectivity of all combination pairs of directional antennas and beamforming schemes and compare their performances to those of omnidirectional antennas. The results obtained in this paper show that, compared with omnidirectional transmission, beamforming transmission only benefits the connectivity when the density of secondary user is moderate. Moreover, the combination of UCA and randomized beamforming scheme gives the highest path connectivity in all evaluating scenarios. Finally, the number of antenna elements and degree of path loss greatly affect path connectivity in CRAHNs.

  11. High power YAG laser cutting; Koshutsuryoku YAG laser ni yoru setsudan gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Owaki, K. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1998-08-01

    This paper describes features of high power YAG cutting. The optical fiber transmission YAG laser machining system has some advantages in which optical path length compensation unit is not required and measures for low power loss and dust are not required, when compared with the CO2 laser system. Its application to the cutting of stainless steel plates has attracted attention. Cutting tests of SUS304 were conducted using high power YAG laser. Cutting of SUS304 plate with a thickness of 40 mm could be successfully done at the power of 3.5 kW. Cutting tests of SUS304 pipes with a thickness of 8 mm in water under the depth of 20 m were also conducted using air as assist gas at the power of 2.5 kW. Excellent results were obtained without scale deposition. For the tests by the composite beam using 3 kW and 4 kW systems, SUS304 plate with a thickness of 50 mm could be cut at the cutting speed of 0.1 m/min. Laser cutting of pipes from the internal surface was conducted using a newly developed small machining head which can rotate in the peripheral direction. Excellent quality for welding was confirmed. Cutting speed and plate thickness were improved by combining water jet cutter and YAG laser unit. 6 refs., 10 figs.

  12. Information spread of emergency events: path searching on social networks.

    Science.gov (United States)

    Dai, Weihui; Hu, Hongzhi; Wu, Tunan; Dai, Yonghui

    2014-01-01

    Emergency has attracted global attentions of government and the public, and it will easily trigger a series of serious social problems if it is not supervised effectively in the dissemination process. In the Internet world, people communicate with each other and form various virtual communities based on social networks, which lead to a complex and fast information spread pattern of emergency events. This paper collects Internet data based on data acquisition and topic detection technology, analyzes the process of information spread on social networks, describes the diffusions and impacts of that information from the perspective of random graph, and finally seeks the key paths through an improved IBF algorithm. Application cases have shown that this algorithm can search the shortest spread paths efficiently, which may help us to guide and control the information dissemination of emergency events on early warning.

  13. Information Spread of Emergency Events: Path Searching on Social Networks

    Directory of Open Access Journals (Sweden)

    Weihui Dai

    2014-01-01

    Full Text Available Emergency has attracted global attentions of government and the public, and it will easily trigger a series of serious social problems if it is not supervised effectively in the dissemination process. In the Internet world, people communicate with each other and form various virtual communities based on social networks, which lead to a complex and fast information spread pattern of emergency events. This paper collects Internet data based on data acquisition and topic detection technology, analyzes the process of information spread on social networks, describes the diffusions and impacts of that information from the perspective of random graph, and finally seeks the key paths through an improved IBF algorithm. Application cases have shown that this algorithm can search the shortest spread paths efficiently, which may help us to guide and control the information dissemination of emergency events on early warning.

  14. Advances in laser technology for the atmospheric sciences; Proceedings of the Seminar, San Diego, Calif., August 25, 26, 1977

    Science.gov (United States)

    Trolinger, J. D. (Editor); Moore, W. W.

    1977-01-01

    These papers deal with recent research, developments, and applications in laser and electrooptics technology, particularly with regard to atmospheric effects in imaging and propagation, laser instrumentation and measurements, and particle measurement. Specific topics include advanced imaging techniques, image resolution through atmospheric turbulence over the ocean, an efficient method for calculating transmittance profiles, a comparison of a corner-cube reflector and a plane mirror in folded-path and direct transmission through atmospheric turbulence, line-spread instrumentation for propagation measurements, scaling laws for thermal fluctuations in the layer adjacent to ocean waves, particle sizing by laser photography, and an optical Fourier transform analysis of satellite cloud imagery. Other papers discuss a subnanosecond photomultiplier tube for laser application, holography of solid propellant combustion, diagnostics of turbulence by holography, a camera for in situ photography of cloud particles from a hail research aircraft, and field testing of a long-path laser transmissometer designed for atmospheric visibility measurements.

  15. Device Characterization of High Performance Quantum Dot Comb Laser

    KAUST Repository

    Rafi, Kazi

    2012-02-01

    The cost effective comb based laser sources are considered to be one of the prominent emitters used in optical communication (OC) and photonic integrated circuits (PIC). With the rising demand for delivering triple-play services (voice, data and video) in FTTH and FTTP-based WDM-PON networks, metropolitan area network (MAN), and short-reach rack-to-rack optical computer communications, a versatile and cost effective WDM transmitter design is required, where several DFB lasers can be replaced by a cost effective broadband comb laser to support on-chip optical signaling. Therefore, high performance quantum dot (Q.Dot) comb lasers need to satisfy several challenges before real system implementations. These challenges include a high uniform broadband gain spectrum from the active layer, small relative intensity noise with lower bit error rate (BER) and better temperature stability. Thus, such short wavelength comb lasers offering higher bandwidth can be a feasible solution to address these challenges. However, they still require thorough characterization before implementation. In this project, we briefly characterized the novel quantum dot comb laser using duty cycle based electrical injection and temperature variations where we have observed the presence of reduced thermal conductivity in the active layer. This phenomenon is responsible for the degradation of device performance. Hence, different performance trends, such as broadband emission and spectrum stability were studied with pulse and continuous electrical pumping. The tested comb laser is found to be an attractive solution for several applications but requires further experiments in order to be considered for photonic intergraded circuits and to support next generation computer-communications.

  16. MinePath: Mining for Phenotype Differential Sub-paths in Molecular Pathways

    Science.gov (United States)

    Koumakis, Lefteris; Kartsaki, Evgenia; Chatzimina, Maria; Zervakis, Michalis; Vassou, Despoina; Marias, Kostas; Moustakis, Vassilis; Potamias, George

    2016-01-01

    Pathway analysis methodologies couple traditional gene expression analysis with knowledge encoded in established molecular pathway networks, offering a promising approach towards the biological interpretation of phenotype differentiating genes. Early pathway analysis methodologies, named as gene set analysis (GSA), view pathways just as plain lists of genes without taking into account either the underlying pathway network topology or the involved gene regulatory relations. These approaches, even if they achieve computational efficiency and simplicity, consider pathways that involve the same genes as equivalent in terms of their gene enrichment characteristics. Most recent pathway analysis approaches take into account the underlying gene regulatory relations by examining their consistency with gene expression profiles and computing a score for each profile. Even with this approach, assessing and scoring single-relations limits the ability to reveal key gene regulation mechanisms hidden in longer pathway sub-paths. We introduce MinePath, a pathway analysis methodology that addresses and overcomes the aforementioned problems. MinePath facilitates the decomposition of pathways into their constituent sub-paths. Decomposition leads to the transformation of single-relations to complex regulation sub-paths. Regulation sub-paths are then matched with gene expression sample profiles in order to evaluate their functional status and to assess phenotype differential power. Assessment of differential power supports the identification of the most discriminant profiles. In addition, MinePath assess the significance of the pathways as a whole, ranking them by their p-values. Comparison results with state-of-the-art pathway analysis systems are indicative for the soundness and reliability of the MinePath approach. In contrast with many pathway analysis tools, MinePath is a web-based system (www.minepath.org) offering dynamic and rich pathway visualization functionality, with the

  17. Opto-mechanical design and gravity-deformation analysis on optical telescope in laser communication system

    Science.gov (United States)

    Fu, Sen; Du, Jindan; Song, Yiwei; Gao, Tianyu; Zhang, Daqing; Wang, Yongzhi

    2017-11-01

    In space laser communication, optical antennas are one of the main components and the precision of optical antennas is very high. In this paper, it is based on the R-C telescope and it is carried out that the design and simulation of optical lens and supporting truss, according to the parameters of the systems. And a finite element method (FEM) was used to analyze the deformation of the optical lens. Finally, the Zernike polynomial was introduced to fit the primary mirror with a diameter of 250mm. The objective of this study is to determine whether the wave-front aberration of the primary mirror can meet the imaging quality. The results show that the deterioration of the imaging quality caused by the gravity deformation of primary and secondary mirrors. At the same time, the optical deviation of optical antenna increase with the diameter of the pupil.

  18. Mode selection laser

    DEFF Research Database (Denmark)

    2014-01-01

    spatial reflector variations, may be combined to generate a laser beam containing a plurality of orthogonal modes. The laser beam may be injected into a few- mode optical fiber, e.g. for the purpose of optical communication. The VCSEL may have intra-cavity contacts (31,37) and a Tunnel junction (33......) for current confinement into the active layer (34). An air-gap layer (102) may be provided between the upper reflector (15) and the SOI wafer (50) acting as a substrate. The lower reflector may be designed as a high-contrast grating (51) by etching....

  19. Quantum communications

    CERN Document Server

    Cariolaro, Gianfranco

    2015-01-01

    This book demonstrates that a quantum communication system using the coherent light of a laser can achieve performance orders of magnitude superior to classical optical communications Quantum Communications provides the Masters and PhD signals or communications student with a complete basics-to-applications course in using the principles of quantum mechanics to provide cutting-edge telecommunications. Assuming only knowledge of elementary probability, complex analysis and optics, the book guides its reader through the fundamentals of vector and Hilbert spaces and the necessary quantum-mechanical ideas, simply formulated in four postulates. A turn to practical matters begins with and is then developed by: ·         development of the concept of quantum decision, emphasizing the optimization of measurements to extract useful information from a quantum system; ·         general formulation of a transmitter–receiver system ·         particular treatment of the most popular quantum co...

  20. Optical system for laser triggering of PBFA II

    International Nuclear Information System (INIS)

    Hamil, R.A.; Seamons, L.O.; Schanwald, L.P.; Gerber, R.A.

    1985-01-01

    The PBFA II laser triggering optical system consists of nearly 300 optical components. These optics must be sufficiently precise to preserve the laser beam quality, as well as to equally distribute the energy of the UV laser beam to the 36, 5.5 MV gas-filled switches at precisely the same instant. Both index variation and cleanliness of the air long the laser path must be controlled. The manual alignment system is capable of alignment to better than the acceptable error of 200 microradians (laser to switches). A technique has been devised to ease the alignment procedure by using a special high gain video camera and a tool alignment telescope to view retroreflective tape targets having optical brightness gains over white surfaces of 10/sup 3/. The camera is a charge-coupled detector intensified by a double microchannel plate having an optical gain of between 10/sup 4/ and 10/sup 5/

  1. Semiconductor Lasers Stability, Instability and Chaos

    CERN Document Server

    Ohtsubo, Junji

    2013-01-01

    This third edition of “Semiconductor Lasers, Stability, Instability and Chaos” was significantly extended.  In the previous edition, the dynamics and characteristics of chaos in semiconductor lasers after the introduction of the fundamental theory of laser chaos and chaotic dynamics induced by self-optical feedback and optical injection was discussed. Semiconductor lasers with new device structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are interesting devices from the viewpoint of chaotic dynamics since they essentially involve chaotic dynamics even in their free-running oscillations. These topics are also treated with respect to the new developments in the current edition. Also the control of such instabilities and chaos control are critical issues for applications. Another interesting and important issue of semiconductor laser chaos in this third edition is chaos synchronization between two lasers and the application to optical secure communication. One o...

  2. High precision patterning of ITO using femtosecond laser annealing process

    International Nuclear Information System (INIS)

    Cheng, Chung-Wei; Lin, Cen-Ying

    2014-01-01

    Highlights: • We have reported a process of fabrication of crystalline indium tin oxide (c-ITO) patterns using femtosecond laser-induced crystallization with a Gaussian beam profile followed by chemical etching. • The experimental results have demonstrated that the ablation and crystallization threshold fluences of a-ITO thin film are well-defined, the line width of the c-ITO patterns is controllable. • Fast fabrication of the two parallel sub-micro (∼0.5 μm) c-ITO line patterns using a single femtosecond laser beam and a single scanning path can be achieved. • A long-length sub-micro c-ITO line pattern is fabricated, and the feasibility of fabricating c-ITO patterns is confirmed, which are expected to be used in micro-electronics devices. - Abstract: High precision patterning of crystalline indium tin oxide (c-ITO) patterns on amorphous ITO (a-ITO) thin films by femtosecond laser-induced crystallization with a Gaussian beam profile followed by chemical etching is demonstrated. In the proposed approach, the a-ITO thin film is selectively transformed into a c-ITO structure via a low heat affect zone and the well-defined thresholds (ablation and crystallization) supplied by the femtosecond laser pulse. The experimental results show that by careful control of the laser fluence above the crystallization threshold, c-ITO patterns with controllable line widths and ridge-free characteristics can be accomplished. By careful control of the laser fluence above the ablation threshold, fast fabrication of the two parallel sub-micro c-ITO line patterns using a single femtosecond laser beam and single scanning path can be achieved. Along-length sub-micro c-ITO line pattern is fabricated, and the feasibility of fabricating c-ITO patterns is confirmed, which are expected to be used in micro-electronics devices

  3. NOVANET: communications network for a control system

    International Nuclear Information System (INIS)

    Hill, J.R.; Severyn, J.R.; VanArsdall, P.J.

    1983-01-01

    NOVANET is a control system oriented fiber optic local area network that was designed to meet the unique and often conflicting requirements of the Nova laser control system which will begin operation in 1984. The computers and data acquisition devices that form the distributed control system for a large laser fusion research facility need reliable, high speed communications. Both control/status messages and experimental data must be handled. A subset of NOVANET is currently operating on the two beam Novette laser system

  4. A new approach to shortest paths on networks based on the quantum bosonic mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Xin; Wang Hailong; Tang Shaoting; Ma Lili; Zhang Zhanli; Zheng Zhiming, E-mail: jiangxin@ss.buaa.edu.cn [Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Ministry of Education, Beijing University of Aeronautics and Astronautics, 100191 Beijing (China)

    2011-01-15

    This paper presents quantum bosonic shortest path searching (QBSPS), a natural, practical and highly heuristic physical algorithm for reasoning about the recognition of network structure via quantum dynamics. QBSPS is based on an Anderson-like itinerant bosonic system in which a boson's Green function is used as a navigation pointer for one to accurately approach the terminals. QBSPS is demonstrated by rigorous mathematical and physical proofs and plenty of simulations, showing how it can be used as a greedy routing to seek the shortest path between different locations. In methodology, it is an interesting and new algorithm rooted in the quantum mechanism other than combinatorics. In practice, for the all-pairs shortest-path problem in a random scale-free network with N vertices, QBSPS runs in O({mu}(N) ln ln N) time. In application, we suggest that the corresponding experimental realizations are feasible by considering path searching in quantum optical communication networks; in this situation, the method performs a pure local search on networks without requiring the global structure that is necessary for current graph algorithms.

  5. Plume characteristics and dynamics of UV and IR laser-desorbed oligonucleotides.

    Science.gov (United States)

    Merrigan, Tony L; Timson, David J; Hunniford, C Adam; Catney, Martin; McCullough, Robert W

    2012-05-01

    Laser desorption of dye-tagged oligonucleotides was studied using laser-induced fluorescence imaging. Desorption with ultra violet (UV) and infra-red (IR) lasers resulted in forward directed plumes of molecules. In the case of UV desorption, the initial shot desorbed approximately seven-fold more material than subsequent shots. In contrast, the initial shot in IR desorption resulted in the ejection of less material compared to subsequent shots and these plumes had a component directed along the path of the laser. Thermal equilibrium of the molecules in the plume was achieved after approximately 25 μs with a spread in molecular temperature which was described by a modified Maxwell-Boltzmann equation. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Radial polar histogram: obstacle avoidance and path planning for robotic cognition and motion control

    Science.gov (United States)

    Wang, Po-Jen; Keyawa, Nicholas R.; Euler, Craig

    2012-01-01

    In order to achieve highly accurate motion control and path planning for a mobile robot, an obstacle avoidance algorithm that provided a desired instantaneous turning radius and velocity was generated. This type of obstacle avoidance algorithm, which has been implemented in California State University Northridge's Intelligent Ground Vehicle (IGV), is known as Radial Polar Histogram (RPH). The RPH algorithm utilizes raw data in the form of a polar histogram that is read from a Laser Range Finder (LRF) and a camera. A desired open block is determined from the raw data utilizing a navigational heading and an elliptical approximation. The left and right most radii are determined from the calculated edges of the open block and provide the range of possible radial paths the IGV can travel through. In addition, the calculated obstacle edge positions allow the IGV to recognize complex obstacle arrangements and to slow down accordingly. A radial path optimization function calculates the best radial path between the left and right most radii and is sent to motion control for speed determination. Overall, the RPH algorithm allows the IGV to autonomously travel at average speeds of 3mph while avoiding all obstacles, with a processing time of approximately 10ms.

  7. Multi-AGV path planning with double-path constraints by using an improved genetic algorithm.

    Directory of Open Access Journals (Sweden)

    Zengliang Han

    Full Text Available This paper investigates an improved genetic algorithm on multiple automated guided vehicle (multi-AGV path planning. The innovations embody in two aspects. First, three-exchange crossover heuristic operators are used to produce more optimal offsprings for getting more information than with the traditional two-exchange crossover heuristic operators in the improved genetic algorithm. Second, double-path constraints of both minimizing the total path distance of all AGVs and minimizing single path distances of each AGV are exerted, gaining the optimal shortest total path distance. The simulation results show that the total path distance of all AGVs and the longest single AGV path distance are shortened by using the improved genetic algorithm.

  8. Optimal concurrent access strategies in mobile communication networks

    NARCIS (Netherlands)

    Bhulai, S.; Hoekstra, G.; van der Mei, R.D.

    2010-01-01

    Current wireless channel capacities are closely approaching the theoretical limit. Hence, further capacity improvements from complex signal processing schemes may only gain modest improvements. Multi-path communication approaches, however, combine the benefits of higher performance and reliability

  9. Cutting thin glass by femtosecond laser ablation

    Science.gov (United States)

    Shin, Hyesung; Kim, Dongsik

    2018-06-01

    The femtosecond laser ablation process for cutting thin aluminoborosilicate glass sheets of thickness 100 μm was investigated with emphasis on effective cutting speed (Veff) and mechanical strength of diced samples. The process parameters including the laser fluence (F), overlap ratio (r) of the laser beam and polarization direction were varied at a fixed pulse repetition rate f = 1 kHz to find the optimal process condition that maximizes Veff and edge strength. A three-point bending test was performed to evaluate the front-side and back-side bending (edge) strength of the laser-cut samples. Veff was proportional to F unless r exceeded a critical value, at which excessive energy began to be delivered at the same spot. The front-side edge strength was bigger than the back-side strength because of the back-side damages such as chipping. Good edge strength, as high as ∼280 MPa (front-side) and ∼230 MPa (back-side), was obtained at F = 19 J/m2, r = 0.99, with laser polarization vertical to the cutting path.

  10. Hybrid III-V/silicon lasers

    Science.gov (United States)

    Kaspar, P.; Jany, C.; Le Liepvre, A.; Accard, A.; Lamponi, M.; Make, D.; Levaufre, G.; Girard, N.; Lelarge, F.; Shen, A.; Charbonnier, P.; Mallecot, F.; Duan, G.-H.; Gentner, J.-.; Fedeli, J.-M.; Olivier, S.; Descos, A.; Ben Bakir, B.; Messaoudene, S.; Bordel, D.; Malhouitre, S.; Kopp, C.; Menezo, S.

    2014-05-01

    The lack of potent integrated light emitters is one of the bottlenecks that have so far hindered the silicon photonics platform from revolutionizing the communication market. Photonic circuits with integrated light sources have the potential to address a wide range of applications from short-distance data communication to long-haul optical transmission. Notably, the integration of lasers would allow saving large assembly costs and reduce the footprint of optoelectronic products by combining photonic and microelectronic functionalities on a single chip. Since silicon and germanium-based sources are still in their infancy, hybrid approaches using III-V semiconductor materials are currently pursued by several research laboratories in academia as well as in industry. In this paper we review recent developments of hybrid III-V/silicon lasers and discuss the advantages and drawbacks of several integration schemes. The integration approach followed in our laboratory makes use of wafer-bonded III-V material on structured silicon-on-insulator substrates and is based on adiabatic mode transfers between silicon and III-V waveguides. We will highlight some of the most interesting results from devices such as wavelength-tunable lasers and AWG lasers. The good performance demonstrates that an efficient mode transfer can be achieved between III-V and silicon waveguides and encourages further research efforts in this direction.

  11. Development of key technologies in DPSSL system for fast-ignition, laser fusion reactor - FIREX, HALNA, and protection of final optics

    International Nuclear Information System (INIS)

    Norimatsu, T.; Azechi, H.; Fujimoto, Y.; Jitsuno, T.; Kanabe, T.; Kodama, R.; Kondo, K.; Miyanaga, N.; Nagatomo, H.; Nakatsuka, M.; Shiraga, H.; Tanaka, K.A.; Tsubakimoto, K.; Yamanaka, M.; Yasuhara, R.; Izawa, Y.; Kawashima, T.; Kurita, T.; Matsumoto, O.; Tsuchiya, Y.; Sekine, T.; Kan, H.

    2005-01-01

    A critical path to a laser fusion power plant is construction of a reliable, efficient, high repetitive energy driver including the relation with the reactor environment. At ILE, Osaka University, FIREX project has been proposed and the phase I to show heating of compressed fuel to 5 keV has started with construction of the FIREX laser. This project will demonstrate physics of fast ignition and elemental studies are carried out to obtain persuasive data to find the path to the goal. A diode-laser-pumped, solid-state-laser (DPSSL) HALNA-10 succeeded in operation of 7.5J output power at 10 Hz rep-rate. Contamination of final optics by metal vapor was studied using a 1/10 model of the beam duct. The result indicated that contamination can be controlled with high speed shutters and a low pressure buffer gas. (author)

  12. Communication: importance sampling including path correlation in semiclassical initial value representation calculations for time correlation functions.

    Science.gov (United States)

    Pan, Feng; Tao, Guohua

    2013-03-07

    Full semiclassical (SC) initial value representation (IVR) for time correlation functions involves a double phase space average over a set of two phase points, each of which evolves along a classical path. Conventionally, the two initial phase points are sampled independently for all degrees of freedom (DOF) in the Monte Carlo procedure. Here, we present an efficient importance sampling scheme by including the path correlation between the two initial phase points for the bath DOF, which greatly improves the performance of the SC-IVR calculations for large molecular systems. Satisfactory convergence in the study of quantum coherence in vibrational relaxation has been achieved for a benchmark system-bath model with up to 21 DOF.

  13. Study on the high-frequency laser measurement of slot surface difference

    Science.gov (United States)

    Bing, Jia; Lv, Qiongying; Cao, Guohua

    2017-10-01

    In view of the measurement of the slot surface difference in the large-scale mechanical assembly process, Based on high frequency laser scanning technology and laser detection imaging principle, This paragraph designs a double galvanometer pulse laser scanning system. Laser probe scanning system architecture consists of three parts: laser ranging part, mechanical scanning part, data acquisition and processing part. The part of laser range uses high-frequency laser range finder to measure the distance information of the target shape and get a lot of point cloud data. Mechanical scanning part includes high-speed rotary table, high-speed transit and related structure design, in order to realize the whole system should be carried out in accordance with the design of scanning path on the target three-dimensional laser scanning. Data processing part mainly by FPGA hardware with LAbVIEW software to design a core, to process the point cloud data collected by the laser range finder at the high-speed and fitting calculation of point cloud data, to establish a three-dimensional model of the target, so laser scanning imaging is realized.

  14. Integral transforms of the quantum mechanical path integral: Hit function and path-averaged potential

    Science.gov (United States)

    Edwards, James P.; Gerber, Urs; Schubert, Christian; Trejo, Maria Anabel; Weber, Axel

    2018-04-01

    We introduce two integral transforms of the quantum mechanical transition kernel that represent physical information about the path integral. These transforms can be interpreted as probability distributions on particle trajectories measuring respectively the relative contribution to the path integral from paths crossing a given spatial point (the hit function) and the likelihood of values of the line integral of the potential along a path in the ensemble (the path-averaged potential).

  15. Monochromatic x-ray radiography of laser-driven spherical targets using high-energy, picoseconds LFEX laser

    Science.gov (United States)

    Sawada, Hiroshi; Fujioka, S.; Lee, S.; Arikawa, Y.; Shigemori, K.; Nagatomo, H.; Nishimura, H.; Sunahara, A.; Theobald, W.; Perez, F.; Patel, P. K.; Beg, F. N.

    2015-11-01

    Formation of a high density fusion fuel is essential in both conventional and advanced Inertial Confinement Fusion (ICF) schemes for the self-sustaining fusion process. In cone-guided Fast Ignition (FI), a metal cone is attached to a spherical target to maintain the path for the injection of an intense short-pulse ignition laser from blow-off plasma created when nanoseconds compression lasers drive the target. We have measured a temporal evolution of a compressed deuterated carbon (CD) sphere using 4.5 keV K-alpha radiography with the Kilo-Joule, picosecond LFEX laser at the Institute of Laser Engineering. A 200 μm CD sphere attached to the tip of a Au cone was directly driven by 9 Gekko XII beams with 300 J/beam in a 1.3 ns Gaussian pulse. The LFEX laser irradiated on a Ti foil to generate 4.51 Ti K-alpha x-ray. By varying the delay between the compression and backlighter lasers, the measured radiograph images show an increase of the areal density of the imploded target. The detail of the quantitative analyses to infer the areal density and comparisons to hydrodynamics simulations will be presented. This work was performed with the support and under the auspices of the NIFS Collaboration Research program (NIFS13KUGK072). H.S. was supported by the UNR's International Activities Grant program.

  16. Optimal control of quantum rings by terahertz laser pulses.

    Science.gov (United States)

    Räsänen, E; Castro, A; Werschnik, J; Rubio, A; Gross, E K U

    2007-04-13

    Complete control of single-electron states in a two-dimensional semiconductor quantum-ring model is established, opening a path into coherent laser-driven single-gate qubits. The control scheme is developed in the framework of optimal-control theory for laser pulses of two-component polarization. In terms of pulse lengths and target-state occupations, the scheme is shown to be superior to conventional control methods that exploit Rabi oscillations generated by uniform circularly polarized pulses. Current-carrying states in a quantum ring can be used to manipulate a two-level subsystem at the ring center. Combining our results, we propose a realistic approach to construct a laser-driven single-gate qubit that has switching times in the terahertz regime.

  17. Advanced in Nonlinear Optics and Laser Research and Development

    International Nuclear Information System (INIS)

    Jackel, S.; Kotler, Z; Lavi, R.; Sternklar, S.

    1996-01-01

    The Nonlinear Optics Group (NLOG) at Soreq NRC is engaged in the development of fundamental and applied technology in the related fields of nonlinear optics and laser development. Our work in nonlinear optics started with the goal of improving laser performance. These efforts were successful and opened the way for R and D in nonlinear optics for other applications. Today we use nonlinear optics to enable continuous tunability of lasers, control the path of light beams, modulate a light signal rapidly, provide optical data storage, and supply new means of microscopically probing biological and inorganic samples. Technology maturation and interaction with users will show which aspects of nonlinear optics will make the most impact

  18. Plasmonic Waveguide-Integrated Nanowire Laser

    DEFF Research Database (Denmark)

    Bermudez-Urena, Esteban; Tutuncuoglu, Gozde; Cuerda, Javier

    2017-01-01

    technologies. Despite significant advances in their fundamental aspects, the integration within scalable photonic circuitry remains challenging. Here we report on the realization of hybrid photonic devices consisting of nanowire lasers integrated with wafer-scale lithographically designed V-groove plasmonic......Next-generation optoelectronic devices and photonic circuitry will have to incorporate on-chip compatible nanolaser sources. Semiconductor nanowire lasers have emerged as strong candidates for integrated systems with applications ranging from ultrasensitive sensing to data communication...

  19. A new imaging technique for detecting interstellar communications

    Science.gov (United States)

    Vallerga, John; Welsh, Barry; Kotze, Marissa; Siegmund, Oswald

    2017-01-01

    We report on a unique detection methodology using the Berkeley Visible Image Tube (BVIT) mounted on the 10m Southern African Large Telescope (SALT) to search for laser pulses originating in communications from advanced extraterrestrial (ET) civilizations residing on nearby Earth-like planets located within their habitability zones. The detection technique assumes that ET communicates through high powered pulsed lasers with pulse durations on the order of 5 nanoseconds, the signals thereby being brighter than that of the host star within this very short period of time. Our technique turns down the gain of the optically sensitive photon counting microchannel plate detector such that ~30 photons are required in a 5ns window to generate an imaged event. Picking a priori targets with planets in the habitable zone substantially reduces the false alarm rate. Interplanetary communication by optical masers was first postulated by Schwartz and Townes in 1961. Under the assumption that ET has access to a 10 m class telescope operated as a transmitter then we could detect lasers with a similar power to that of the Livermore Laboratory laser (~1.8Mj per pulse), to a distance of ~ 1000 pc. In this talk we present the results of 2400 seconds of BVIT observations on the SALT of the star Wolf 1061, which is known to harbor an Earth-sized exoplanet located in the habitability zone. At this distance (4.3 pc), BVIT on SALT could detect a 48 joule per pulse laser, now commercially available as tabletop devices.

  20. A new method for incoherent combining of far-field laser beams based on multiple faculae recognition

    Science.gov (United States)

    Ye, Demao; Li, Sichao; Yan, Zhihui; Zhang, Zenan; Liu, Yuan

    2018-03-01

    Compared to coherent beam combining, incoherent beam combining can complete the output of high power laser beam with high efficiency, simple structure, low cost and high thermal damage resistance, and it is easy to realize in engineering. Higher target power is achieved by incoherent beam combination which using technology of multi-channel optical path correction. However, each channel forms a spot in the far field respectively, which cannot form higher laser power density with low overlap ratio of faculae. In order to improve the combat effectiveness of the system, it is necessary to overlap different faculae that improve the target energy density. Hence, a novel method for incoherent combining of far-field laser beams is present. The method compromises piezoelectric ceramic technology and evaluation algorithm of faculae coincidence degree which based on high precision multi-channel optical path correction. The results show that the faculae recognition algorithm is low-latency(less than 10ms), which can meet the needs of practical engineering. Furthermore, the real time focusing ability of far field faculae is improved which was beneficial to the engineering of high-energy laser weapon or other laser jamming systems.

  1. Measurement system with high accuracy for laser beam quality.

    Science.gov (United States)

    Ke, Yi; Zeng, Ciling; Xie, Peiyuan; Jiang, Qingshan; Liang, Ke; Yang, Zhenyu; Zhao, Ming

    2015-05-20

    Presently, most of the laser beam quality measurement system collimates the optical path manually with low efficiency and low repeatability. To solve these problems, this paper proposed a new collimated method to improve the reliability and accuracy of the measurement results. The system accuracy controlled the position of the mirror to change laser beam propagation direction, which can realize the beam perpendicularly incident to the photosurface of camera. The experiment results show that the proposed system has good repeatability and the measuring deviation of M2 factor is less than 0.6%.

  2. Fibre optic communication key devices

    CERN Document Server

    Grote, Norbert

    2017-01-01

    The book gives an in-depth description of key devices of current and next generation fibre optic communication networks. Devices treated include semiconductor lasers, optical amplifiers, modulators, wavelength filters and other passives, detectors, all-optical switches, but relevant properties of optical fibres and network aspects are included as well. The presentations include the physical principles underlying the various devices, technologies used for their realization, typical performance characteristics and limitations, but development trends towards more advanced components are also illustrated. This new edition of a successful book was expanded and updated extensively. The new edition covers among others lasers for optical communication, optical switches, hybrid integration, monolithic integration and silicon photonics. The main focus is on Indium phosphide-based structures but silicon photonics is included as well. The book covers relevant principles, state-of-the-art implementations, status of curren...

  3. The Theory of Random Laser Systems

    International Nuclear Information System (INIS)

    Xunya Jiang

    2002-01-01

    Studies of random laser systems are a new direction with promising potential applications and theoretical interest. The research is based on the theories of localization and laser physics. So far, the research shows that there are random lasing modes inside the systems which is quite different from the common laser systems. From the properties of the random lasing modes, they can understand the phenomena observed in the experiments, such as multi-peak and anisotropic spectrum, lasing mode number saturation, mode competition and dynamic processes, etc. To summarize, this dissertation has contributed the following in the study of random laser systems: (1) by comparing the Lamb theory with the Letokhov theory, the general formulas of the threshold length or gain of random laser systems were obtained; (2) they pointed out the vital weakness of previous time-independent methods in random laser research; (3) a new model which includes the FDTD method and the semi-classical laser theory. The solutions of this model provided an explanation of the experimental results of multi-peak and anisotropic emission spectra, predicted the saturation of lasing modes number and the length of localized lasing modes; (4) theoretical (Lamb theory) and numerical (FDTD and transfer-matrix calculation) studies of the origin of localized lasing modes in the random laser systems; and (5) proposal of using random lasing modes as a new path to study wave localization in random systems and prediction of the lasing threshold discontinuity at mobility edge

  4. Laser experiments for chemistry and physics

    CERN Document Server

    Compton, Robert N

    2016-01-01

    Lasers are employed throughout science and technology, in fundamental research, the remote sensing of atmospheric gases or pollutants, communications, medical diagnostics and therapies, and the manufacturing of microelectronic devices. Understanding the principles of their operation, which underlie all of these areas, is essential for a modern scientific education. This text introduces the characteristics and operation of lasers through laboratory experiments designed for the undergraduate curricula in chemistry and physics. Introductory chapters describe the properties of light, the history of laser invention, the atomic, molecular, and optical principles behind how lasers work, and the kinds of lasers available today. Other chapters include the basic theory of spectroscopy and computational chemistry used to interpret laser experiments. Experiments range from simple in-class demonstrations to more elaborate configurations for advanced students. Each chapter has historical and theoretical background, as well...

  5. Coherent optical communication detection device based on modified balanced optical phase-locked loop

    Science.gov (United States)

    Zhang, Bo; Sun, Jianfeng; Xu, Mengmeng; Li, Guangyuan; Zhang, Guo; Lao, Chenzhe; He, Hongyu; Lu, Zhiyong

    2017-08-01

    In the field of satellite communication, space laser communication technology is famous for its high communication rate, good confidentiality, small size, low power consumption and so on. The design of coherent optical communication detection device based on modified balanced optical phase-locked loop (OPLL) is presented in the paper. It combined by local oscillator beam, modulator, voltage controlled oscillator, signal beam, optical filter, 180 degree hybrid, balanced detector, loop filter and signal receiver. Local oscillator beam and voltage controlled oscillator trace the phase variation of signal beam simultaneously. That taking the advantage of voltage controlled oscillator which responses sensitively and tunable local oscillator laser source with large tuning range can trace the phase variation of signal beam rapidly and achieve phase locking. The demand of the phase deviation is very low, and the system is easy to adjust. When the transmitter transmits the binary phase shift keying (BPSK) signal, the receiver can demodulate the baseband signal quickly, which has important significance for the free space coherent laser communication.

  6. Aerodynamic window for a laser fusion device

    International Nuclear Information System (INIS)

    Masuda, Wataru

    1983-01-01

    Since the window of a laser system absorbs a part of the laser energy, the output power is determined by the characteristics of the window. The use of an aerodynamic window has been studied. The required characteristics are to keep the large pressure difference. An equation of motion of a vortex was presented and analyzed. The operation power of the system was studied. A multi-stage aerodynamic window was proposed to reduce the power. When the jet flow of 0.3 of the Mach number is used, the operation power will be several Megawatt, and the length of an optical path will be about 100 m. (Kato, T.)

  7. Laser beam trapping and propagation in cylindrical plasma columns

    International Nuclear Information System (INIS)

    Feit, M.D.; Fleck, J.A. Jr.

    1976-01-01

    An analysis of the scheme to heat magnetically confined plasma columns to kilovolt temperatures with a laser beam requires consideration of two propagation problems. The first question to be answered is whether stable beam trapping is possible. Since the laser beam creates its own density profile by heating the plasma, the propagation of the beam becomes a nonlinear phenomenon, but not necessarily a stable one. In addition, the electron density at a given time depends on the preceding history of both the medium and the laser pulse. A self-consistent time dependent treatment of the beam propagation and the medium hydrodynamics is consequently required to predict the behavior of the laser beam. Such calculations have been carried out and indicate that propagation of a laser beam in an initially uniform plasma can form a stable filament which alternately focuses and defocuses. An additional question that is discussed is whether diffractive losses associated with long propagation paths are significant

  8. Cellular scanning strategy for selective laser melting: Generating reliable, optimized scanning paths and processing parameters

    DEFF Research Database (Denmark)

    Mohanty, Sankhya; Hattel, Jesper Henri

    2015-01-01

    method based uncertainty and reliability analysis. The reliability of the scanning paths are established using cumulative probability distribution functions for process output criteria such as sample density, thermal homogeneity, etc. A customized genetic algorithm is used along with the simulation model...

  9. Power balance on a multibeam laser

    Science.gov (United States)

    Sampat, S.; Kelly, J. H.; Kosc, T. Z.; Rigatti, A. L.; Kwiatkowski, J.; Donaldson, W. R.; Romanofsky, M. H.; Waxer, L. J.; Dean, R.; Moshier, R.

    2018-02-01

    Inertial confinement fusion (ICF) cryogenic experiments on the 60-beam OMEGA laser have strict requirements for the laser energy delivered on target to be power balanced in order to maximize target-irradiation uniformity. For OMEGA, this quantity (power balance) is inferred from measurements of the time-integrated energy and time-resolved, spatially integrated temporal profile of each of the 60 beams at the output of the laser. The work presented here proposes a general definition of power balance as measured at the laser output and discusses the conditions that are fundamental to achieving laser power balance. Power balance necessitates equal gain across all stages of amplification, equal net losses across each amplifier stage, equal frequency conversion (from 1053 nm to 351 nm) of all 60 beams, and equal beam path lengths (beam timing). Typical OMEGA ICF laser pulse shapes consist of one or more short (100-ps) "pickets" followed by a shaped "drive" pulse of 1 to 2 ns. For these experiments, power balance is assessed for the pickets and the drive independently, with the ultimate goal of achieving root-mean-square (rms) imbalance across all 60 beams of less than 2% rms on both. This work presents a comprehensive summary of laser shot campaigns conducted to significantly improve laser power balance from typical rms values of 4.7% and 5.2%, respectively, to the 3% level for both features along with a discussion of future work required to further reduce the rms power imbalance of the laser system.

  10. Path-based Queries on Trajectory Data

    DEFF Research Database (Denmark)

    Krogh, Benjamin Bjerre; Pelekis, Nikos; Theodoridis, Yannis

    2014-01-01

    In traffic research, management, and planning a number of path-based analyses are heavily used, e.g., for computing turn-times, evaluating green waves, or studying traffic flow. These analyses require retrieving the trajectories that follow the full path being analyzed. Existing path queries cannot...... sufficiently support such path-based analyses because they retrieve all trajectories that touch any edge in the path. In this paper, we define and formalize the strict path query. This is a novel query type tailored to support path-based analysis, where trajectories must follow all edges in the path...... a specific path by only retrieving data from the first and last edge in the path. To correctly answer strict path queries existing network-constrained trajectory indexes must retrieve data from all edges in the path. An extensive performance study of NETTRA using a very large real-world trajectory data set...

  11. Path loss variation of on-body UWB channel in the frequency bands of IEEE 802.15.6 standard.

    Science.gov (United States)

    Goswami, Dayananda; Sarma, Kanak C; Mahanta, Anil

    2016-06-01

    The wireless body area network (WBAN) has gaining tremendous attention among researchers and academicians for its envisioned applications in healthcare service. Ultra wideband (UWB) radio technology is considered as excellent air interface for communication among body area network devices. Characterisation and modelling of channel parameters are utmost prerequisite for the development of reliable communication system. The path loss of on-body UWB channel for each frequency band defined in IEEE 802.15.6 standard is experimentally determined. The parameters of path loss model are statistically determined by analysing measurement data. Both the line-of-sight and non-line-of-sight channel conditions are considered in the measurement. Variations of parameter values with the size of human body are analysed along with the variation of parameter values with the surrounding environments. It is observed that the parameters of the path loss model vary with the frequency band as well as with the body size and surrounding environment. The derived parameter values are specific to the particular frequency bands of IEEE 802.15.6 standard, which will be useful for the development of efficient UWB WBAN system.

  12. Communication Between Volcanoes: a Possible Path

    Science.gov (United States)

    Linde, A. T.; Sacks, I. S.

    2002-12-01

    could provide a mechanism for communication between the volcanoes.

  13. Path Loss, Shadow Fading, and Line-Of-Sight Probability Models for 5G Urban Macro-Cellular Scenarios

    DEFF Research Database (Denmark)

    Sun, Shu; Thomas, Timothy; Rappaport, Theodore S.

    2015-01-01

    This paper presents key parameters including the line-of-sight (LOS) probability, large-scale path loss, and shadow fading models for the design of future fifth generation (5G) wireless communication systems in urban macro-cellular (UMa) scenarios, using the data obtained from propagation...... measurements in Austin, US, and Aalborg, Denmark, at 2, 10, 18, and 38 GHz. A comparison of different LOS probability models is performed for the Aalborg environment. Both single-slope and dual-slope omnidirectional path loss models are investigated to analyze and contrast their root-mean-square (RMS) errors...

  14. Hollow core waveguide as mid-infrared laser modal beam filter

    Energy Technology Data Exchange (ETDEWEB)

    Patimisco, P.; Giglio, M.; Spagnolo, V. [Dipartimento Interateneo di Fisica, Università e Politecnico di Bari, CNR-IFN UOS BARI, Via Amendola 173, 70126 Bari (Italy); Sampaolo, A. [Dipartimento Interateneo di Fisica, Università e Politecnico di Bari, CNR-IFN UOS BARI, Via Amendola 173, 70126 Bari (Italy); Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005 (United States); Kriesel, J. M. [Opto-Knowledge Systems, Inc. (OKSI), 19805 Hamilton Ave., Torrance, California 90502-1341 (United States); Tittel, F. K. [Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005 (United States)

    2015-09-21

    A novel method for mid-IR laser beam mode cleaning employing hollow core waveguide as a modal filter element is reported. The influence of the input laser beam quality on fiber optical losses and output beam profile using a hollow core waveguide with 200 μm-bore size was investigated. Our results demonstrate that even when using a laser with a poor spatial profile, there will exist a minimum fiber length that allows transmission of only the Gaussian-like fundamental waveguide mode from the fiber, filtering out all the higher order modes. This essentially single mode output is preserved also when the waveguide is bent to a radius of curvature of 7.5 cm, which demonstrates that laser mode filtering can be realized even if a curved light path is required.

  15. Ultrafast electron crystallography of the cooperative reaction path in vanadium dioxide

    Directory of Open Access Journals (Sweden)

    Ding-Shyue Yang

    2016-05-01

    Full Text Available Time-resolved electron diffraction with atomic-scale spatial and temporal resolution was used to unravel the transformation pathway in the photoinduced structural phase transition of vanadium dioxide. Results from bulk crystals and single-crystalline thin-films reveal a common, stepwise mechanism: First, there is a femtosecond V−V bond dilation within 300 fs, second, an intracell adjustment in picoseconds and, third, a nanoscale shear motion within tens of picoseconds. Experiments at different ambient temperatures and pump laser fluences reveal a temperature-dependent excitation threshold required to trigger the transitional reaction path of the atomic motions.

  16. Picture archiving and communication systems for diagnostic radiology

    International Nuclear Information System (INIS)

    Huang, H.K.; Mankovich, N.J.; Kangarloo, H.; Boechat, M.I.; Dietrich, R.; Hall, T.; Taira, R.K.; Cho, P.S.; Stewart, B.K.

    1987-01-01

    The authors developed two picture archiving and communication system (PACS) modules for pediatric radiology and for coronary care unit use. Both modules have been in clinical operation 24 hours a day, 7 days a week, since March 1987. This exhibit presents all components used in these two modules, including a computed radiographic unit, two film laser scanners, a minicomputer, two large processors, one communication system, one digital optical disk library, one six-512-line monitor station, two three 1,024-line monitor stations, a two-2,048-line monitor station, and one laser film printer. The exhibit summarizes clinical evaluations of these two modules

  17. Uncertainty estimation and multi sensor fusion for kinematic laser tracker measurements

    Science.gov (United States)

    Ulrich, Thomas

    2013-08-01

    Laser trackers are widely used to measure kinematic tasks such as tracking robot movements. Common methods to evaluate the uncertainty in the kinematic measurement include approximations specified by the manufacturers, various analytical adjustment methods and the Kalman filter. In this paper a new, real-time technique is proposed, which estimates the 4D-path (3D-position + time) uncertainty of an arbitrary path in space. Here a hybrid system estimator is applied in conjunction with the kinematic measurement model. This method can be applied to processes, which include various types of kinematic behaviour, constant velocity, variable acceleration or variable turn rates. The new approach is compared with the Kalman filter and a manufacturer's approximations. The comparison was made using data obtained by tracking an industrial robot's tool centre point with a Leica laser tracker AT901 and a Leica laser tracker LTD500. It shows that the new approach is more appropriate to analysing kinematic processes than the Kalman filter, as it reduces overshoots and decreases the estimated variance. In comparison with the manufacturer's approximations, the new approach takes account of kinematic behaviour with an improved description of the real measurement process and a reduction in estimated variance. This approach is therefore well suited to the analysis of kinematic processes with unknown changes in kinematic behaviour as well as the fusion among laser trackers.

  18. The second-order interference of two independent single-mode He-Ne lasers

    Science.gov (United States)

    Liu, Jianbin; Le, Mingnan; Bai, Bin; Wang, Wentao; Chen, Hui; Zhou, Yu; Li, Fu-li; Xu, Zhuo

    2015-09-01

    The second-order spatial and temporal interference patterns with two independent single-mode continuous-wave He-Ne lasers are observed when these two lasers are incident to two adjacent input ports of a 1:1 non-polarizing beam splitter, respectively. Two-photon interference based on the superposition principle in Feynman's path integral theory is employed to interpret the experimental results. The conditions to observe the second-order interference pattern with two independent single-mode continuous-wave lasers are discussed. It is concluded that frequency stability is important to observe the second-order interference pattern with two independent light beams.

  19. Measuring Oscillating Walking Paths with a LIDAR

    Directory of Open Access Journals (Sweden)

    Jordi Palacín

    2011-05-01

    Full Text Available This work describes the analysis of different walking paths registered using a Light Detection And Ranging (LIDAR laser range sensor in order to measure oscillating trajectories during unsupervised walking. The estimate of the gait and trajectory parameters were obtained with a terrestrial LIDAR placed 100 mm above the ground with the scanning plane parallel to the floor to measure the trajectory of the legs without attaching any markers or modifying the floor. Three different large walking experiments were performed to test the proposed measurement system with straight and oscillating trajectories. The main advantages of the proposed system are the possibility to measure several steps and obtain average gait parameters and the minimum infrastructure required. This measurement system enables the development of new ambulatory applications based on the analysis of the gait and the trajectory during a walk.

  20. Hydrometeor Size Distribution Measurements by Imaging the Attenuation of a Laser Spot

    Science.gov (United States)

    Lane, John

    2013-01-01

    The optical extinction of a laser due to scattering of particles is a well-known phenomenon. In a laboratory environment, this physical principle is known as the Beer-Lambert law, and is often used to measure the concentration of scattering particles in a fluid or gas. This method has been experimentally shown to be a usable means to measure the dust density from a rocket plume interaction with the lunar surface. Using the same principles and experimental arrangement, this technique can be applied to hydrometeor size distributions, and for launch-pad operations, specifically as a passive hail detection and measurement system. Calibration of a hail monitoring system is a difficult process. In the past, it has required comparison to another means of measuring hydrometeor size and density. Using a technique recently developed for estimating the density of surface dust dispersed during a rocket landing, measuring the extinction of a laser passing through hail (or dust in the rocket case) yields an estimate of the second moment of the particle cloud, and hydrometeor size distribution in the terrestrial meteorological case. With the exception of disdrometers, instruments that measure rain and hail fall make indirect measurements of the drop-size distribution. Instruments that scatter microwaves off of hydrometeors, such as the WSR-88D (Weather Surveillance Radar 88 Doppler), vertical wind profilers, and microwave disdrometers, measure the sixth moment of the drop size distribution (DSD). By projecting a laser onto a target, changes in brightness of the laser spot against the target background during rain and hail yield a measurement of the DSD's second moment by way of the Beer-Lambert law. In order to detect the laser attenuation within the 8-bit resolution of most camera image arrays, a minimum path length is required. Depending on the intensity of the hail fall rate for moderate to heavy rainfall, a laser path length of 100 m is sufficient to measure variations in

  1. Analysis and evaluation of zig-zag slab laser amplifier with optical diamond geometry

    International Nuclear Information System (INIS)

    Matsumoto, Osamu; Yasuhara, Ryo; Kanabe, Tadashi

    2007-01-01

    In this paper, we describe the development of a high-average-power solid-state laser system and the derivation of equations for the amplification of a laser beam. This laser system is capable of generating an output energy of 10J per pulse at a wavelength of 1,053nm in a 10 Hz operation for scientific and industrial applications. The main amplifier of our system is a laser-diode-pumped solid-state amplifier. A water-cooled Nd:glass slab is pumped with two 803 nm AlGaAs laser-diode modules. The laser beam propagates through zig-zag optical paths four times and is amplified. To estimate laser output energy, we have derived and evaluated equations for the amplification of the laser beam, and designed and constructed a laser system based on the calculated results. Experimental results reveal an output energy of 10.6 J at 1 Hz, which closely fits the results calculated using the derived equations. (author)

  2. Krypton laser photocoagulation induces retinal vascular remodeling rather than choroidal neovascularization.

    Science.gov (United States)

    Behar-Cohen, F; Benezra, D; Soubrane, G; Jonet, L; Jeanny, J C

    2006-08-01

    The purpose of this study is to analyze the retina and choroid response following krypton laser photocoagulation. Ninety-two C57BL6/Sev129 and 32 C57BL/6J, 5-6-week-old mice received one single krypton (630 nm) laser lesion: 50 microm, 0.05 s, 400 mW. On the following day, every day thereafter for 1 week and every 2-3 days for the following 3 weeks, serial sections throughout the lesion were systematically collected and studied. Immunohistology using specific markers or antibodies for glial fibrillary acidic protein (GFAP) (astrocytes, glia and Muller's cells), von Willebrand (vW) (vascular endothelial cells), TUNEL (cells undergoing caspase dependent apoptosis), PCNA (proliferating cell nuclear antigen) p36, CD4 and F4/80 (infiltrating inflammatory and T cells), DAPI (cell nuclei) and routine histology were carried out. Laser confocal microscopy was also performed on flat mounts. Temporal and spatial observations of the created photocoagulation lesions demonstrate that, after a few hours, activated glial cells within the retinal path of the laser beam express GFAP. After 48 h, GFAP-positive staining was also detected within the choroid lesion center. "Movement" of this GFAP-positive expression towards the lasered choroid was preceded by a well-demarcated and localized apoptosis of the retina outer nuclear layer cells within the laser beam path. Later, death of retinal outer nuclear cells and layer thinning at this site was followed by evagination of the inner nuclear retinal layer. Funneling of the entire inner nuclear and the thinned outer nuclear layers into the choroid lesion center was accompanied by "dragging" of the retinal capillaries. Thus, from days 10 to 14 after krypton laser photocoagulation onward, well-formed blood capillaries (of retinal origin) were observed within the lesion. Only a few of the vW-positive capillary endothelial cells stained also for PCNA p36. In the choroid, dilatation of the vascular bed occurred at the vicinity of the

  3. Low-power FLC-based retromodulator communications system

    Science.gov (United States)

    Swenson, Charles M.; Steed, Clark A.; de La Rue, Imelda A.; Fugate, Robert Q.

    1997-05-01

    On September 15, 1996, researchers from Utah State University/Space Dynamics Lab in conjunction with Phillips Lab/Starfire Optical Range and Kjome Research successfully flew and tested a retromodulator laser communication package on a high altitude balloon. This paper addresses the layout and hardware used for the communication link, as well as presenting some preliminary data collected during the 6 hour flight of the balloon. The package was a proof of concept demonstration system for a low-power laser communications systems for small, low Earth orbiting satellites. The ferroelectric liquid crystal based retromodulator design of Utah State provided test patterns for modulation rates up to 20 kilo bits per second. Data was successfully downlinked using a 1200 bps RS232 format and a simplistic receiver. The Starfire Optical Range 1.5-meter telescope located on Kirtland AFB, tracked the balloon, which reached a float altitude of 31 km and collected the modulated light reflected from the payload.

  4. Tracking frequency laser distance gauge

    International Nuclear Information System (INIS)

    Phillips, J.D.; Reasenberg, R.D.

    2005-01-01

    Advanced astronomical missions with greatly enhanced resolution and physics missions of unprecedented accuracy will require laser distance gauges of substantially improved performance. We describe a laser gauge, based on Pound-Drever-Hall locking, in which the optical frequency is adjusted to maintain an interferometer's null condition. This technique has been demonstrated with pm performance. Automatic fringe hopping allows it to track arbitrary distance changes. The instrument is intrinsically free of the nm-scale cyclic bias present in traditional (heterodyne) high-precision laser gauges. The output is a radio frequency, readily measured to sufficient accuracy. The laser gauge has operated in a resonant cavity, which improves precision, can suppress the effects of misalignments, and makes possible precise automatic alignment. The measurement of absolute distance requires little or no additional hardware, and has also been demonstrated. The proof-of-concept version, based on a stabilized HeNe laser and operating on a 0.5 m path, has achieved 10 pm precision with 0.1 s integration time, and 0.1 mm absolute distance accuracy. This version has also followed substantial distance changes as fast as 16 mm/s. We show that, if the precision in optical frequency is a fixed fraction of the linewidth, both incremental and absolute distance precision are independent of the distance measured. We discuss systematic error sources, and present plans for a new version of the gauge based on semiconductor lasers and fiber-coupled components

  5. An Introduction to Free-space Optical Communications

    Directory of Open Access Journals (Sweden)

    H. Henniger

    2010-06-01

    Full Text Available Over the last two decades free-space optical communication (FSO has become more and more interesting as an adjunct or alternative to radio frequency communication. This article gives an overview of the challenges a system designer has to consider while implementing an FSO system. Typical gains and losses along the path from the transmitter through the medium to the receiver are introduced in this article. Detailed discussions of these topics can be found in this special issue of the Radioengineering Journal.

  6. Monitoring of laser material processing using machine integrated low-coherence interferometry

    Science.gov (United States)

    Kunze, Rouwen; König, Niels; Schmitt, Robert

    2017-06-01

    Laser material processing has become an indispensable tool in modern production. With the availability of high power pico- and femtosecond laser sources, laser material processing is advancing into applications, which demand for highest accuracies such as laser micro milling or laser drilling. In order to enable narrow tolerance windows, a closedloop monitoring of the geometrical properties of the processed work piece is essential for achieving a robust manufacturing process. Low coherence interferometry (LCI) is a high-precision measuring principle well-known from surface metrology. In recent years, we demonstrated successful integrations of LCI into several different laser material processing methods. Within this paper, we give an overview about the different machine integration strategies, that always aim at a complete and ideally telecentric integration of the measurement device into the existing beam path of the processing laser. Thus, highly accurate depth measurements within machine coordinates and a subsequent process control and quality assurance are possible. First products using this principle have already found its way to the market, which underlines the potential of this technology for the monitoring of laser material processing.

  7. Evolution of branch points for a laser beam propagating through an uplink turbulent atmosphere.

    Science.gov (United States)

    Ge, Xiao-Lu; Liu, Xuan; Guo, Cheng-Shan

    2014-03-24

    Evolution of branch points in the distorted optical field is studied when a laser beam propagates through turbulent atmosphere along an uplink path. Two categories of propagation events are mainly explored for the same propagation height: fixed wavelength with change of the turbulence strength and fixed turbulence strength with change of the wavelength. It is shown that, when the beam propagates to a certain height, the density of the branch-points reaches its maximum and such a height changes with the turbulence strength but nearly remains constant with different wavelengths. The relationship between the density of branch-points and the Rytov number is also given. A fitted formula describing the relationship between the density of branch-points and propagation height with different turbulence strength and wavelength is found out. Interestingly, this formula is very similar to the formula used for describing the Blackbody radiation in physics. The results obtained may be helpful for atmospheric optics, astronomy and optical communication.

  8. Design strategy for terahertz quantum dot cascade lasers.

    Science.gov (United States)

    Burnett, Benjamin A; Williams, Benjamin S

    2016-10-31

    The development of quantum dot cascade lasers has been proposed as a path to obtain terahertz semiconductor lasers that operate at room temperature. The expected benefit is due to the suppression of nonradiative electron-phonon scattering and reduced dephasing that accompanies discretization of the electronic energy spectrum. We present numerical modeling which predicts that simple scaling of conventional quantum well based designs to the quantum dot regime will likely fail due to electrical instability associated with high-field domain formation. A design strategy adapted for terahertz quantum dot cascade lasers is presented which avoids these problems. Counterintuitively, this involves the resonant depopulation of the laser's upper state with the LO-phonon energy. The strategy is tested theoretically using a density matrix model of transport and gain, which predicts sufficient gain for lasing at stable operating points. Finally, the effect of quantum dot size inhomogeneity on the optical lineshape is explored, suggesting that the design concept is robust to a moderate amount of statistical variation.

  9. Airborne Measurements of Atmospheric Methane Using Pulsed Laser Transmitters

    Science.gov (United States)

    Numata, Kenji; Riris, Haris; Wu, Stewart; Gonzalez, Brayler; Rodriguez, Michael; Hasselbrack, William; Fahey, Molly; Yu, Anthony; Stephen, Mark; Mao, Jianping; hide

    2016-01-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. At NASA Goddard Space Flight Center (GSFC) we have been developing a laser-based technology needed to remotely measure CH4 from orbit. We report on our development effort for the methane lidar, especially on our laser transmitters and recent airborne demonstration. Our lidar transmitter is based on an optical parametric process to generate near infrared laser radiation at 1651 nanometers, coincident with a CH4 absorption. In an airborne flight campaign in the fall of 2015, we tested two kinds of laser transmitters --- an optical parametric amplifier (OPA) and an optical parametric oscillator (OPO). The output wavelength of the lasers was rapidly tuned over the CH4 absorption by tuning the seed laser to sample the CH4 absorption line at several wavelengths. This approach uses the same Integrated Path Differential Absorption (IPDA) technique we have used for our CO2 lidar for ASCENDS. The two laser transmitters were successfully operated in the NASAs DC-8 aircraft, measuring methane from 3 to 13 kilometers with high precision.

  10. Path integration quantization

    International Nuclear Information System (INIS)

    DeWitt-Morette, C.

    1983-01-01

    Much is expected of path integration as a quantization procedure. Much more is possible if one recognizes that path integration is at the crossroad of stochastic and differential calculus and uses the full power of both stochastic and differential calculus in setting up and computing path integrals. In contrast to differential calculus, stochastic calculus has only comparatively recently become an instrument of thought. It has nevertheless already been used in a variety of challenging problems, for instance in the quantization problem. The author presents some applications of the stochastic scheme. (Auth.)

  11. Stochastic Models for Laser Propagation in Atmospheric Turbulence.

    Science.gov (United States)

    Leland, Robert Patton

    In this dissertation, stochastic models for laser propagation in atmospheric turbulence are considered. A review of the existing literature on laser propagation in the atmosphere and white noise theory is presented, with a view toward relating the white noise integral and Ito integral approaches. The laser beam intensity is considered as the solution to a random Schroedinger equation, or forward scattering equation. This model is formulated in a Hilbert space context as an abstract bilinear system with a multiplicative white noise input, as in the literature. The model is also modeled in the Banach space of Fresnel class functions to allow the plane wave case and the application of path integrals. Approximate solutions to the Schroedinger equation of the Trotter-Kato product form are shown to converge for each white noise sample path. The product forms are shown to be physical random variables, allowing an Ito integral representation. The corresponding Ito integrals are shown to converge in mean square, providing a white noise basis for the Stratonovich correction term associated with this equation. Product form solutions for Ornstein -Uhlenbeck process inputs were shown to converge in mean square as the input bandwidth was expanded. A digital simulation of laser propagation in strong turbulence was used to study properties of the beam. Empirical distributions for the irradiance function were estimated from simulated data, and the log-normal and Rice-Nakagami distributions predicted by the classical perturbation methods were seen to be inadequate. A gamma distribution fit the simulated irradiance distribution well in the vicinity of the boresight. Statistics of the beam were seen to converge rapidly as the bandwidth of an Ornstein-Uhlenbeck process was expanded to its white noise limit. Individual trajectories of the beam were presented to illustrate the distortion and bending of the beam due to turbulence. Feynman path integrals were used to calculate an

  12. Interferometric Laser Scanner for Direction Determination

    Directory of Open Access Journals (Sweden)

    Gennady Kaloshin

    2016-01-01

    Full Text Available In this paper, we explore the potential capabilities of new laser scanning-based method for direction determination. The method for fully coherent beams is extended to the case when interference pattern is produced in the turbulent atmosphere by two partially coherent sources. The performed theoretical analysis identified the conditions under which stable pattern may form on extended paths of 0.5–10 km in length. We describe a method for selecting laser scanner parameters, ensuring the necessary operability range in the atmosphere for any possible turbulence characteristics. The method is based on analysis of the mean intensity of interference pattern, formed by two partially coherent sources of optical radiation. Visibility of interference pattern is estimated as a function of propagation pathlength, structure parameter of atmospheric turbulence, and spacing of radiation sources, producing the interference pattern. It is shown that, when atmospheric turbulences are moderately strong, the contrast of interference pattern of laser scanner may ensure its applicability at ranges up to 10 km.

  13. Interferometric Laser Scanner for Direction Determination

    Science.gov (United States)

    Kaloshin, Gennady; Lukin, Igor

    2016-01-01

    In this paper, we explore the potential capabilities of new laser scanning-based method for direction determination. The method for fully coherent beams is extended to the case when interference pattern is produced in the turbulent atmosphere by two partially coherent sources. The performed theoretical analysis identified the conditions under which stable pattern may form on extended paths of 0.5–10 km in length. We describe a method for selecting laser scanner parameters, ensuring the necessary operability range in the atmosphere for any possible turbulence characteristics. The method is based on analysis of the mean intensity of interference pattern, formed by two partially coherent sources of optical radiation. Visibility of interference pattern is estimated as a function of propagation pathlength, structure parameter of atmospheric turbulence, and spacing of radiation sources, producing the interference pattern. It is shown that, when atmospheric turbulences are moderately strong, the contrast of interference pattern of laser scanner may ensure its applicability at ranges up to 10 km. PMID:26805841

  14. Controlling the optical performance of transparent conducting oxides using direct laser interference patterning

    International Nuclear Information System (INIS)

    Berger, Jana; Roch, Teja; Correia, Stelio; Eberhardt, Jens; Lasagni, Andrés Fabián

    2016-01-01

    In this study, a laser based process called Direct Laser Interference Patterning (DLIP) was used to fabricate micro-textured boron doped zinc oxide (ZnO:B) thin films to be used as electrodes in thin-film silicon solar cells. First, the ablation thresholds of the ZnO:B film were determined using a nanosecond pulsed laser at wavelengths of 266 and 355 nm (100 mJ/cm"2 and 89 mJ/cm"2, respectively). After that, DLIP experiments were performed at 355 nm wavelength. Line-like periodic surface structures with spatial periods ranging from 0.8 to 5.0 μm were fabricated using two interfering laser beams. It was found that the structuring process of the transparent conducting oxide (TCO) is mainly based on a photo-thermal mechanism. The surface of the ZnO:B film was molten and evaporated at the interference maxima positions and the depth and width of the generated microfeatures depend on the laser parameters as well as the spatial period of the interference pattern. The optical properties of the structured TCOs were investigated as a function of the utilized laser processing parameters. Both diffuse and total transmission and the intensity of the diffraction orders were determined. These data were used to calculate the increase of the optical path of the transmitted light. - Highlights: • Direct Laser Interference Patterning (DLIP) on boron doped zinc oxide (LPCVD-ZnO:B) • No relevant decrease of total transmission • Periods of 1.5 μm provide large diffraction angle and good diffraction intensity. • Significant increase of optical path length could be reached.

  15. Controlling the optical performance of transparent conducting oxides using direct laser interference patterning

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Jana; Roch, Teja [Fraunhofer-Institut für Werkstoff-und Strahltechnik IWS, Winterbergstr. 28, 01277 Dresden (Germany); Technische Universität Dresden, Institute of Manufacturing Technology, George-Baehr-Str.1, 01069 Dresden (Germany); Correia, Stelio; Eberhardt, Jens [Bosch Solar Energy AG, August-Broemel-Str. 6, 99310 Arnstadt (Germany); Lasagni, Andrés Fabián, E-mail: andres_fabian.lasagni@tu-dresden.de [Fraunhofer-Institut für Werkstoff-und Strahltechnik IWS, Winterbergstr. 28, 01277 Dresden (Germany); Technische Universität Dresden, Institute of Manufacturing Technology, George-Baehr-Str.1, 01069 Dresden (Germany)

    2016-08-01

    In this study, a laser based process called Direct Laser Interference Patterning (DLIP) was used to fabricate micro-textured boron doped zinc oxide (ZnO:B) thin films to be used as electrodes in thin-film silicon solar cells. First, the ablation thresholds of the ZnO:B film were determined using a nanosecond pulsed laser at wavelengths of 266 and 355 nm (100 mJ/cm{sup 2} and 89 mJ/cm{sup 2}, respectively). After that, DLIP experiments were performed at 355 nm wavelength. Line-like periodic surface structures with spatial periods ranging from 0.8 to 5.0 μm were fabricated using two interfering laser beams. It was found that the structuring process of the transparent conducting oxide (TCO) is mainly based on a photo-thermal mechanism. The surface of the ZnO:B film was molten and evaporated at the interference maxima positions and the depth and width of the generated microfeatures depend on the laser parameters as well as the spatial period of the interference pattern. The optical properties of the structured TCOs were investigated as a function of the utilized laser processing parameters. Both diffuse and total transmission and the intensity of the diffraction orders were determined. These data were used to calculate the increase of the optical path of the transmitted light. - Highlights: • Direct Laser Interference Patterning (DLIP) on boron doped zinc oxide (LPCVD-ZnO:B) • No relevant decrease of total transmission • Periods of 1.5 μm provide large diffraction angle and good diffraction intensity. • Significant increase of optical path length could be reached.

  16. Safety assessment of inter-channel / inter-system digital communications: A defensive measures approach

    International Nuclear Information System (INIS)

    Thuy, N. N. Q.

    2006-01-01

    Inappropriately designed inter-channel and inter-system digital communications could initiate common cause failure of multiple channels or multiple systems. Defensive measures were introduced in EPRI report TR-1002835 (Guideline for Performing Defense-in-Depth and Diversity Assessments for Digital Upgrades) to assess, on a deterministic basis, the susceptibility of digital systems architectures to common-cause failures. This paper suggests how this approach could be applied to assess inter-channel and inter-system digital communications from a safety standpoint. The first step of the approach is to systematically identify the so called 'influence factors' that one end of the data communication path can have on the other. Potential factors to be considered would typically include data values, data volumes and data rates. The second step of the approach is to characterize the ways possible failures of a given end of the communication path could affect these influence factors (e.g., incorrect data values, excessive data rates, time-outs, incorrect data volumes). The third step is to analyze the designed-in measures taken to guarantee independence of the other end. In addition to classical error detection and correction codes, typical defensive measures are one-way data communication, fixed-rate data communication, fixed-volume data communication, validation of data values. (authors)

  17. A Scheduling Algorithm for Cloud Computing System Based on the Driver of Dynamic Essential Path.

    Science.gov (United States)

    Xie, Zhiqiang; Shao, Xia; Xin, Yu

    2016-01-01

    To solve the problem of task scheduling in the cloud computing system, this paper proposes a scheduling algorithm for cloud computing based on the driver of dynamic essential path (DDEP). This algorithm applies a predecessor-task layer priority strategy to solve the problem of constraint relations among task nodes. The strategy assigns different priority values to every task node based on the scheduling order of task node as affected by the constraint relations among task nodes, and the task node list is generated by the different priority value. To address the scheduling order problem in which task nodes have the same priority value, the dynamic essential long path strategy is proposed. This strategy computes the dynamic essential path of the pre-scheduling task nodes based on the actual computation cost and communication cost of task node in the scheduling process. The task node that has the longest dynamic essential path is scheduled first as the completion time of task graph is indirectly influenced by the finishing time of task nodes in the longest dynamic essential path. Finally, we demonstrate the proposed algorithm via simulation experiments using Matlab tools. The experimental results indicate that the proposed algorithm can effectively reduce the task Makespan in most cases and meet a high quality performance objective.

  18. Radio-wave propagation for space communications systems

    Science.gov (United States)

    Ippolito, L. J.

    1981-01-01

    The most recent information on the effects of Earth's atmosphere on space communications systems is reviewed. The design and reliable operation of satellite systems that provide the many applications in space which rely on the transmission of radio waves for communications and scientific purposes are dependent on the propagation characteristics of the transmission path. The presence of atmospheric gases, clouds, fog, precipitation, and turbulence causes uncontrolled variations in the signal characteristics. These variations can result in a reduction of the quality and reliability of the transmitted information. Models and other techniques are used in the prediction of atmospheric effects as influenced by frequency, geography, elevation angle, and type of transmission. Recent data on performance characteristics obtained from direct measurements on satellite links operating to above 30 GHz have been reviewed. Particular emphasis has been placed on the effects of precipitation on the Earth/space path, including rain attenuation, and ice particle depolarization. Other factors are sky noise, antenna gain degradation, scintillations, and bandwidth coherence. Each of the various propagation factors has an effect on design criteria for communications systems. These criteria include link reliability, power margins, noise contribution, modulation and polarization factors, channel cross talk, error rate, and bandwidth limitations.

  19. cPath: open source software for collecting, storing, and querying biological pathways

    Directory of Open Access Journals (Sweden)

    Gross Benjamin E

    2006-11-01

    Full Text Available Abstract Background Biological pathways, including metabolic pathways, protein interaction networks, signal transduction pathways, and gene regulatory networks, are currently represented in over 220 diverse databases. These data are crucial for the study of specific biological processes, including human diseases. Standard exchange formats for pathway information, such as BioPAX, CellML, SBML and PSI-MI, enable convenient collection of this data for biological research, but mechanisms for common storage and communication are required. Results We have developed cPath, an open source database and web application for collecting, storing, and querying biological pathway data. cPath makes it easy to aggregate custom pathway data sets available in standard exchange formats from multiple databases, present pathway data to biologists via a customizable web interface, and export pathway data via a web service to third-party software, such as Cytoscape, for visualization and analysis. cPath is software only, and does not include new pathway information. Key features include: a built-in identifier mapping service for linking identical interactors and linking to external resources; built-in support for PSI-MI and BioPAX standard pathway exchange formats; a web service interface for searching and retrieving pathway data sets; and thorough documentation. The cPath software is freely available under the LGPL open source license for academic and commercial use. Conclusion cPath is a robust, scalable, modular, professional-grade software platform for collecting, storing, and querying biological pathways. It can serve as the core data handling component in information systems for pathway visualization, analysis and modeling.

  20. Apparatus, system, and method for laser-induced breakdown spectroscopy

    Science.gov (United States)

    Effenberger, Jr., Andrew J; Scott, Jill R; McJunkin, Timothy R

    2014-11-18

    In laser-induced breakdown spectroscopy (LIBS), an apparatus includes a pulsed laser configured to generate a pulsed laser signal toward a sample, a constructive interference object and an optical element, each located in a path of light from the sample. The constructive interference object is configured to generate constructive interference patterns of the light. The optical element is configured to disperse the light. A LIBS system includes a first and a second optical element, and a data acquisition module. The data acquisition module is configured to determine an isotope measurement based, at least in part, on light received by an image sensor from the first and second optical elements. A method for performing LIBS includes generating a pulsed laser on a sample to generate light from a plasma, generating constructive interference patterns of the light, and dispersing the light into a plurality of wavelengths.

  1. Reparametrization in the path integral

    International Nuclear Information System (INIS)

    Storchak, S.N.

    1983-01-01

    The question of the invariance of a measure in the n-dimensional path integral under the path reparametrization is considered. The non-invariance of the measure through the jacobian is suggeste. After the path integral reparametrization the representatioq for the Green's function of the Hamilton operator in terms of the path integral with the classical Hamiltonian has been obtained

  2. Unique Path Partitions

    DEFF Research Database (Denmark)

    Bessenrodt, Christine; Olsson, Jørn Børling; Sellers, James A.

    2013-01-01

    We give a complete classification of the unique path partitions and study congruence properties of the function which enumerates such partitions.......We give a complete classification of the unique path partitions and study congruence properties of the function which enumerates such partitions....

  3. Laser direct fabrication of silver conductors on glass boards

    International Nuclear Information System (INIS)

    Li Xiangyou; Zeng Xiaoyan; Li Huiling; Qi Xiaojing

    2005-01-01

    Laser micro-cladding has been used to fabricate metal conductors, according to a designed electronic circuit, directly onto glass boards which had been coated with a silver-containing electronic paste. The electronic pastes, composed of silver powders, inorganic binders and organic medium, thus formed the conductive metal pattern (i.e. electric circuit) along the path of the laser allowing the rest of the layer to be removed subsequently by an organic solvent. Firing in a furnace at 600 deg. C resulted in conductive lines with resistivity of about 10 -5 Ω cm and with adhesive strength of the order of magnitude of megapascals

  4. Exploring vacuum birefringence based on a 100 PW laser and an x-ray free electron laser beam

    Science.gov (United States)

    Shen, Baifei; Bu, Zhigang; Xu, Jiancai; Xu, Tongjun; Ji, Liangliang; Li, Ruxin; Xu, Zhizhan

    2018-04-01

    Exploring vacuum birefringence with the station of extreme light at Shanghai Coherent Light Facility is considered. Laser pulses of intensity beyond 1023 W cm-2 are capable of polarizing the vacuum due to the ultra-strong electro-magnetic fields. The subtle difference of the vacuum refractive indexes along electric and magnetic fields leads to a birefringence effect for lights propagating through. The vacuum birefringence effect can now be captured by colliding a hard x-ray free electron laser (XFEL) beam with a high-power laser. The initial XFEL beam of pure linear polarization is predicated to gain a very small ellipticity after passing through the laser stimulated vacuum. Various interaction geometries are considered, showing that the estimated ellipticity lies between 1.8 × 10-10 and 10-9 for a 100 PW laser interacting with a 12.9 keV XFEL beam, approaching the threshold for todays’ polarity detection technique. The detailed experimental set-up is designed, including the polarimeter, the focusing compound refractive lens and the optical path. When taking into account the efficiencies of the x-ray instruments, it is found that about 10 polarization-flipped x-ray photons can be detected for a single shot for our design. Considering the background noise level, accumulating runs are necessary to obtain high confident measurement.

  5. Detection and response to unauthorized access to a communication device

    Science.gov (United States)

    Smith, Rhett; Gordon, Colin

    2015-09-08

    A communication gateway consistent with the present disclosure may detect unauthorized physical or electronic access and implement security actions in response thereto. A communication gateway may provide a communication path to an intelligent electronic device (IED) using an IED communications port configured to communicate with the IED. The communication gateway may include a physical intrusion detection port and a network port. The communication gateway may further include control logic configured to evaluate physical intrusion detection signal. The control logic may be configured to determine that the physical intrusion detection signal is indicative of an attempt to obtain unauthorized access to one of the communication gateway, the IED, and a device in communication with the gateway; and take a security action based upon the determination that the indication is indicative of the attempt to gain unauthorized access.

  6. N2O fluxes over a corn field from an open-path, laser-based eddy covariance system and static chambers

    Science.gov (United States)

    Tao, L.; Pan, D.; Gelfand, I.; Abraha, M.; Moyer, R.; Poe, A.; Sun, K.; Robertson, P.; Zondlo, M. A.

    2015-12-01

    Nitrous oxide (N2O) is important greenhouse and ozone-depleting gase. Although many efforts have been paid to N2O emissions, the spatial and temporal variability of N2O emissions still subject to large uncertainty. Application of the eddy covariance method for N2O emissions research would allow continuous ecosystem level flux measurements. The caveat, however, is need for high precision and high frequency measurements in field. In this study, an open-path, quantum cascade-laser-based eddy covariance N2O sensor has been deployed nearly continuously since May 2015 over a corn field at the W.K. Kellogg Biological Station site in SW Michigan. The field precision of the N2O sensor was assessed to be 0.1 ppbv at 10 Hz, and the total consumption was ~ 40 W, allowing the system to be powered solely by solar panels. The stability of the sensor under different temperature and humidity was tested within an environmental chamber. Spectroscopic experiments and cospectra analyses were carried out to study specific corrections associated with the sensor for eddy covariance techniques, including the line broadening effect due to water vapor and high frequency flux attenuation owning to sample path averaging. Ogive analyses indicated that the high-frequency N2O flux loss due to various damping effects was comparable to those of the CO2 flux. The detection limit of flux was estimated to be 0.3 ng N s-1 m-2 with a flux averaging interval of 30 minutes. The results from the EC system were also compared with ground measurements by standard static chambers (SC). Overall, more than 150 individual chamber measurements were taken within the footprint of the EC system. We found good correlation between the EC and SC methods given the spatiotemporal differences between the two techniques (R2 = 0.75). Both methods detected increased emissions during afternoon as compared to morning and night hours. Differences between EC and SC were also studied by investigating spatial variability with a

  7. Stability design considerations for mirror support systems in ICF lasers

    International Nuclear Information System (INIS)

    Tietbohl, G.L.; Sommer, S.C.

    1996-10-01

    Some of the major components of laser systems used for Inertial Confinement Fusion (ICF) are the large aperture mirrors which direct the path of the laser. These mirrors are typically supported by systems which consist of mirror mounts, mirror enclosures, superstructures, and foundations. Stability design considerations for the support systems of large aperture mirrors have been developed based on the experience of designing and evaluating similar systems at the Lawrence Livermore National Laboratory (LLNL). Examples of the systems developed at LLNL include Nova, the Petawatt laser, Beamlet, and the National Ignition Facility (NIF). The structural design of support systems of large aperture mirrors has typically been controlled by stability considerations in order for the large laser system to meet its performance requirements for alignment and positioning. This paper will discuss the influence of stability considerations and will provide guidance on the structural design and evaluation of mirror support systems in ICF lasers so that this information can be used on similar systems

  8. Measurement of Debye length in laser-produced plasma.

    Science.gov (United States)

    Ehler, W.

    1973-01-01

    The Debye length of an expanded plasma created by placing an evacuated chamber with an entrance slit in the path of a freely expanding laser produced plasma was measured, using the slab geometry. An independent measurement of electron density together with the observed value for the Debye length also provided a means for evaluating the plasma electron temperature. This temperature has applications in ascertaining plasma conductivity and magnetic field necessary for confinement of the laser produced plasma. Also, the temperature obtained would be useful in analyzing electron-ion recombination rates in the expanded plasma and the dynamics of the cooling process of the plasma expansion.

  9. Second-order interference of two independent and tunable single-mode continuous-wave lasers

    International Nuclear Information System (INIS)

    Liu Jianbin; Chen Hui; Zheng Huaibin; Xu Zhuo; Wei Dong; Zhou Yu; Gao Hong; Li Fu-Li

    2016-01-01

    The second-order temporal interference of two independent single-mode continuous-wave lasers is discussed by employing two-photon interference in Feynman’s path integral theory. It is concluded that whether the second-order temporal interference pattern can or cannot be retrieved via two-photon coincidence counting rate is dependent on the resolution time of the detection system and the frequency difference between these two lasers. Two identical and tunable single-mode continuous-wave diode lasers are employed to verify the predictions. These studies are helpful to understand the physics of two-photon interference with photons of different spectra. (paper)

  10. Method and apparatus for laser-controlled proton beam radiology

    Science.gov (United States)

    Johnstone, Carol J.

    1998-01-01

    A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H.sup.- beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H.sup.- beam and laser beam to produce a neutral beam therefrom within a subsection of the H.sup.- beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H.sup.- beam in order to form the neutral beam in subsections of the H.sup.- beam. As the scanning laser moves across the H.sup.- beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser.

  11. Laser distance measurement using a newly developed composite-type optical fiberscope for fetoscopic laser surgery

    Science.gov (United States)

    Seki, Takeshi; Oka, Kiyoshi; Naganawa, Akihiro; Yamashita, Hiromasa; Kim, Keri; Chiba, Toshio

    2010-10-01

    Twin-twin transfusion syndrome (TTTS) is a condition of twins disproportionately sharing blood by the communicating vessels in the shared placenta and resulting in the significantly high fetal and perinatal mortality rate. Fetoscopic laser surgery is performed to block these communicating vessels. It is difficult, however, to perceive the distance from the tip of the fetoscope to the placental surface with only a two-dimensional fetoscopic view. When the distance is too short it causes excessive irradiation and even the risk of inadvertent damage to the placenta. On the other hand, not only target vessels but also adjacent tissues can be irradiated when it is too long. We have developed a composite-type optical fiberscope (COF) that was able to observe the target area and also to perform laser irradiation at the same time. In this paper, we studied a method to estimate the distance from the tip of the COF to the target area. We combined the COF with a laser blood-flow meter. Using laser light from the meter, we measured the total amount of light received ("REFLEX") and estimated the relation between the "REFLEX" value and the laser irradiation distance. Further in vivo experiments were subsequently carried out using porcine mesenteric blood vessels. The results showed that the distance and the "REFLEX" value were inversely proportional, irrespective of the experimental environment (e.g. in air, water and amniotic fluid-like solution) and the target object. In the in vivo experiments, we quantitatively measured the distance within an accuracy of ±1 mm (approximately 10%). In conclusion, our new system was able to measure the distance in vivo enabling a surgeon to safely and effectively perform laser irradiation at a suitable distance. The system can be used not only for fetoscopic surgery but also for general endoscopic surgery.

  12. Quantum communication with photons

    International Nuclear Information System (INIS)

    Tittel, W.

    2005-01-01

    Full text: The discovery that transmission of information encoded into single quantum systems enables new forms of communication let to the emergence of the domain of quantum communication. During the last ten years, various key experiments based on photons as carrier of the quantum information have been realized. Today, quantum cryptography systems based on faint laser pulses can be purchased commercially, bi-partite entanglement has been distributed over long distances and has been used for quantum key distribution, and quantum purification, teleportation and entanglement swapping have been demonstrated. I will give a general introduction into this fascinating field and will review experimental achievements in the domain of quantum communication with discrete two-level quantum systems (qubits) encoded into photons. (author)

  13. Chaotic dynamics and chaos control in nonlinear laser systems

    International Nuclear Information System (INIS)

    Fang Jinqing; Yao Weiguang

    2001-01-01

    Chaotic dynamics and chaos control have become a great challenge in nonlinear laser systems and its advances are reviewed mainly based on the ring cavity laser systems. The principle and stability conditions for time-delay feedback control are analyzed and applied to chaos control in the laser systems. Other advanced methods of chaos control, such as weak spatial perturbation and occasional proportional feedback technique, are discussed. Prospects of chaos control for application (such as improvement of laser power and performance, synchronized chaos secure communication and information processing) are pointed out finally

  14. Applications of Gunn lasers

    Science.gov (United States)

    Balkan, N.; Chung, S. H.

    2008-04-01

    The principle of the operation of a Gunn laser is based on the band to band recombination of impact ionized non-equilibrium electron-hole pairs in propagating high field space-charge domains in a Gunn diode, which is biased above the negative differential resistance threshold and placed in a Fabry-Perot or a vertical micro cavity (VCSEL). In conventional VCSEL structures, unless specific measures such as the addition of oxide apertures and use of small windows are employed, the lack of uniformity in the density of current injected into the active region can reduce the efficiency and delay the lasing threshold. In a vertical-cavity structured Gunn device, however, the current is uniformly injected into the active region independently of the distributed Bragg reflector (DBR) layers. Therefore, lasing occurs from the entire surface of the device. The light emission from Gunn domains is an electric field induced effect. Therefore, the operation of Gunn-VCSEL or F-P laser is independent of the polarity of the applied voltage. Red-NIR VCSELs emitting in the range of 630-850 nm are also possible when Ga 1-xAl xAs (x communications. Furthermore the device may find applications as an optical clock and cross link between microwave and NIR communications. The operation of a both Gunn-Fabry-Perot laser and Gunn-VCSEL has been demonstrated by us recently. In the current work we present the potential results of experimental and theoretical studies concerning the applications together with the gain and emission characteristics of Gunn-Lasers.

  15. Vulnerabilities, Influences and Interaction Paths: Failure Data for Integrated System Risk Analysis

    Science.gov (United States)

    Malin, Jane T.; Fleming, Land

    2006-01-01

    We describe graph-based analysis methods for identifying and analyzing cross-subsystem interaction risks from subsystem connectivity information. By discovering external and remote influences that would be otherwise unexpected, these methods can support better communication among subsystem designers at points of potential conflict and to support design of more dependable and diagnosable systems. These methods identify hazard causes that can impact vulnerable functions or entities if propagated across interaction paths from the hazard source to the vulnerable target. The analysis can also assess combined impacts of And-Or trees of disabling influences. The analysis can use ratings of hazards and vulnerabilities to calculate cumulative measures of the severity and importance. Identification of cross-subsystem hazard-vulnerability pairs and propagation paths across subsystems will increase coverage of hazard and risk analysis and can indicate risk control and protection strategies.

  16. Distributed computing system with dual independent communications paths between computers and employing split tokens

    Science.gov (United States)

    Rasmussen, Robert D. (Inventor); Manning, Robert M. (Inventor); Lewis, Blair F. (Inventor); Bolotin, Gary S. (Inventor); Ward, Richard S. (Inventor)

    1990-01-01

    This is a distributed computing system providing flexible fault tolerance; ease of software design and concurrency specification; and dynamic balance of the loads. The system comprises a plurality of computers each having a first input/output interface and a second input/output interface for interfacing to communications networks each second input/output interface including a bypass for bypassing the associated computer. A global communications network interconnects the first input/output interfaces for providing each computer the ability to broadcast messages simultaneously to the remainder of the computers. A meshwork communications network interconnects the second input/output interfaces providing each computer with the ability to establish a communications link with another of the computers bypassing the remainder of computers. Each computer is controlled by a resident copy of a common operating system. Communications between respective ones of computers is by means of split tokens each having a moving first portion which is sent from computer to computer and a resident second portion which is disposed in the memory of at least one of computer and wherein the location of the second portion is part of the first portion. The split tokens represent both functions to be executed by the computers and data to be employed in the execution of the functions. The first input/output interfaces each include logic for detecting a collision between messages and for terminating the broadcasting of a message whereby collisions between messages are detected and avoided.

  17. Intergenerational communication satisfaction and age boundaries: comparative middle eastern data.

    Science.gov (United States)

    Giles, Howard; Khajavy, Gholam Hassan; Choi, Charles W

    2012-12-01

    Guided by the communicative predicative model of aging, American and Iranian young adults' perceptions of communication with their peers, middle-aged and elderly adults were examined; subjective boundaries for these age categories were also explored. As age of target increased, so did attributions of benevolence, norms of politeness and deference, and communicative respect and avoidance; conversely, attributions of personal vitality and communication satisfaction decreased linearly. Path analysis was also adopted to examine the simultaneous relationships between the variables under study, and ultimately with cultural caveats largely supported, a hypothesized model was derived. The data were discussed in terms of their yielding refinements and elaborations to the communicative predicament and enhancement models of aging.

  18. Relay telescope for high power laser alignment system

    Science.gov (United States)

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2006-09-19

    A laser system includes an optical path having an intracavity relay telescope with a telescope focal point for imaging an output of the gain medium between an image location at or near the gain medium and an image location at or near an output coupler for the laser system. A kinematic mount is provided within a vacuum chamber, and adapted to secure beam baffles near the telescope focal point. An access port on the vacuum chamber is adapted for allowing insertion and removal of the beam baffles. A first baffle formed using an alignment pinhole aperture is used during alignment of the laser system. A second tapered baffle replaces the alignment aperture during operation and acts as a far-field baffle in which off angle beams strike the baffle a grazing angle of incidence, reducing fluence levels at the impact areas.

  19. High phase noise tolerant pilot-tone-aided DP-QPSK optical communication systems

    DEFF Research Database (Denmark)

    Zhang, Xu; Pang, Xiaodan; Deng, Lei

    2012-01-01

    In this paper we experimentally demonstrate a novel, high phase-noise tolerant, optical dual polarization (DP) quadrature phase-shift keying (QPSK) communication system based on pilot-tone-aided phase noise cancellation (PNC) algorithm. Vertical cavity surface emitting lasers (VCSELs) with approx......In this paper we experimentally demonstrate a novel, high phase-noise tolerant, optical dual polarization (DP) quadrature phase-shift keying (QPSK) communication system based on pilot-tone-aided phase noise cancellation (PNC) algorithm. Vertical cavity surface emitting lasers (VCSELs...

  20. The Enhanced Segment Interconnect for FASTBUS data communications

    International Nuclear Information System (INIS)

    Machen, D.R.; Downing, R.W.; Kirsten, F.A.; Nelson, R.O.

    1987-01-01

    The Enhanced Segment Interconnect concept (ESI) for improved FASTBUS data communications is a development supported by the U.S. Department of Energy under the Small Business Innovation Research (SBIR) program. The ESI will contain both the Segment Interconnect (SI) Tyhpe S-1 and an optional buffered interconnect for store-and-forward data communications; fiber-optic-coupled serial ports will provide optional data paths. The ESI can be applied in large FASTBUS-implemented physics experiments whose data-set or data-transmission distance requirements dictate alternate approaches to data communications. This paper describes the functions of the ESI and the status of its development, now 25% complete

  1. Iterated Leavitt Path Algebras

    International Nuclear Information System (INIS)

    Hazrat, R.

    2009-11-01

    Leavitt path algebras associate to directed graphs a Z-graded algebra and in their simplest form recover the Leavitt algebras L(1,k). In this note, we introduce iterated Leavitt path algebras associated to directed weighted graphs which have natural ± Z grading and in their simplest form recover the Leavitt algebras L(n,k). We also characterize Leavitt path algebras which are strongly graded. (author)

  2. Path Dependence

    DEFF Research Database (Denmark)

    Madsen, Mogens Ove

    Begrebet Path Dependence blev oprindelig udviklet inden for New Institutionel Economics af bl.a. David, Arthur og North. Begrebet har spredt sig vidt i samfundsvidenskaberne og undergået en udvikling. Dette paper propagerer for at der er sket så en så omfattende udvikling af begrebet, at man nu kan...... tale om 1. og 2. generation af Path Dependence begrebet. Den nyeste udvikling af begrebet har relevans for metodologi-diskusionerne i relation til Keynes...

  3. Femtosecond laser spectroscopy

    CERN Document Server

    Hannaford, Peter

    2005-01-01

    As concepts and methodologies have evolved over the past two decades, the realm of ultrafast science has become vast and exciting and has impacted many areas of chemistry, biology and physics, and other fields such as materials science, electrical engineering, and optical communication. The field has recently exploded with the announcement of a series of remarkable new developments and advances. This volume surveys this recent growth in eleven chapters written by leading international researchers in the field. It includes sections on femtosecond optical frequency combs, soft x-ray femtosecond laser sources, and attosecond laser sources. In addition, the contributors address real-time spectroscopy of molecular vibrations with sub-5-fs pulses and multidimensional femtosecond coherent spectroscopies for studying molecular and electron dynamics. Novel methods for measuring and characterizing ultrashort laser pulses and ultrashort pulses of light are also described. The topics covered are revolutionizing the field...

  4. Ultra-High-Contrast Laser Acceleration of Relativistic Electrons in Solid Targets

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, Drew Pitney [Univ. of California, San Diego, CA (United States)

    2013-01-01

    The cone-guided fast ignition approach to Inertial Con nement Fusion requires laser-accelerated relativistic electrons to deposit kilojoules of energy within an imploded fuel core to initiate fusion burn. One obstacle to coupling electron energy into the core is the ablation of material, known as preplasma, by laser energy proceeding nanoseconds prior to the main pulse. This causes the laser-absorption surface to be pushed back hundreds of microns from the initial target surface; thus increasing the distance that electrons must travel to reach the imploded core. Previous experiments have shown an order of magnitude decrease in coupling into surrogate targets when intentionally increasing the amount of preplasma. Additionally, for electrons to deposit energy within the core, they should have kinetic energies on the order of a few MeV, as less energetic electrons will be stopped prior to the core and more energetic electrons will pass through the core without depositing much energy. Thus a quantitative understanding of the electron energy spectrum and how it responds to varied laser parameters is paramount for fast ignition. For the rst time, this dissertation quantitatively investigates the acceleration of electrons using an ultra-high-contrast laser. Ultra-high-contrast lasers reduce the laser energy that reaches the target prior to the main pulse; drastically reducing the amount of preplasma. Experiments were performed in a cone-wire geometry relevant to fast ignition. These experiments irradiated the inner-tip of a Au cone with the laser and observed electrons that passed through a Cu wire attached to the outer-tip of the cone. The total emission of K x-rays is used as a diagnostic to infer the electron energy coupled into the wire. Imaging the x-ray emission allowed an e ective path-length of electrons within the wire to be determined, which constrained the electron energy spectrum. Experiments were carried out on the ultra-high-contrast Trident laser at Los

  5. Laser EXAFS

    International Nuclear Information System (INIS)

    Mallozzi, P.J.; Epstein, H.M.; Schwenzel, R.E.; Campbell, B.E.

    1983-01-01

    Apparatus for obtaining EXAFS data of a material, comprising means for directing radiant energy from a laser onto a target in such manner as to produce X-rays at the target of a selected spectrum and intensity, suitable for obtaining the EXAFS spectrum of the material, means for directing X-rays from the target onto spectral dispersive means so located as to direct the spectrally resolved X-rays therefrom onto recording means, and means for positioning a sample of material in the optical path of the X-rays, the recording means providing a reference spectrum of X-rays not affected by the sample and absorption spectrum of X-rays modified by transmission through the sample

  6. Long axial imaging range using conventional swept source lasers in optical coherence tomography via re-circulation loops

    Science.gov (United States)

    Bradu, Adrian; Jackson, David A.; Podoleanu, Adrian

    2018-03-01

    Typically, swept source optical coherence tomography (SS-OCT) imaging instruments are capable of a longer axial range than their camera based (CB) counterpart. However, there are still various applications that would take advantage for an extended axial range. In this paper, we propose an interferometer configuration that can be used to extend the axial range of the OCT instruments equipped with conventional swept-source lasers up to a few cm. In this configuration, the two arms of the interferometer are equipped with adjustable optical path length rings. The use of semiconductor optical amplifiers in the two rings allows for compensating optical losses hence, multiple paths depth reflectivity profiles (Ascans) can be combined axially. In this way, extremely long overall axial ranges are possible. The use of the recirculation loops produces an effect equivalent to that of extending the coherence length of the swept source laser. Using this approach, the achievable axial imaging range in SS-OCT can reach values well beyond the limit imposed by the coherence length of the laser, to exceed in principle many centimeters. In the present work, we demonstrate axial ranges exceeding 4 cm using a commercial swept source laser and reaching 6 cm using an "in-house" swept source laser. When used in a conventional set-up alone, both these lasers can provide less than a few mm axial range.

  7. Receiver Signal to Noise Ratios for IPDA Lidars Using Sine-wave and Pulsed Laser Modulation and Direct Detections

    Science.gov (United States)

    Sun, Xiaoli; Abshire, James B.

    2011-01-01

    Integrated path differential absorption (IPDA) lidar can be used to remotely measure the column density of gases in the path to a scattering target [1]. The total column gas molecular density can be derived from the ratio of the laser echo signal power with the laser wavelength on the gas absorption line (on-line) to that off the line (off-line). 80th coherent detection and direct detection IPDA lidar have been used successfully in the past in horizontal path and airborne remote sensing measurements. However, for space based measurements, the signal propagation losses are often orders of magnitude higher and it is important to use the most efficient laser modulation and detection technique to minimize the average laser power and the electrical power from the spacecraft. This paper gives an analysis the receiver signal to noise ratio (SNR) of several laser modulation and detection techniques versus the average received laser power under similar operation environments. Coherent detection [2] can give the best receiver performance when the local oscillator laser is relatively strong and the heterodyne mixing losses are negligible. Coherent detection has a high signal gain and a very narrow bandwidth for the background light and detector dark noise. However, coherent detection must maintain a high degree of coherence between the local oscillator laser and the received signal in both temporal and spatial modes. This often results in a high system complexity and low overall measurement efficiency. For measurements through atmosphere the coherence diameter of the received signal also limits the useful size of the receiver telescope. Direct detection IPDA lidars are simpler to build and have fewer constraints on the transmitter and receiver components. They can use much larger size 'photon-bucket' type telescopes to reduce the demands on the laser transmitter. Here we consider the two most widely used direct detection IPDA lidar techniques. The first technique uses two CW

  8. Transverse pumped laser amplifier architecture

    Science.gov (United States)

    Bayramian, Andrew James; Manes, Kenneth; Deri, Robert; Erlandson, Al; Caird, John; Spaeth, Mary

    2013-07-09

    An optical gain architecture includes a pump source and a pump aperture. The architecture also includes a gain region including a gain element operable to amplify light at a laser wavelength. The gain region is characterized by a first side intersecting an optical path, a second side opposing the first side, a third side adjacent the first and second sides, and a fourth side opposing the third side. The architecture further includes a dichroic section disposed between the pump aperture and the first side of the gain region. The dichroic section is characterized by low reflectance at a pump wavelength and high reflectance at the laser wavelength. The architecture additionally includes a first cladding section proximate to the third side of the gain region and a second cladding section proximate to the fourth side of the gain region.

  9. Image-converter diagnostics of laser and laser plasma in pico-femtosecond region

    International Nuclear Information System (INIS)

    Schelev, M.Ya.

    1979-01-01

    In the present communication we would like to outline some new trends in development of pico-femtosecond image-converter diagnostics for laser and laser plasma research on the basis of the recent works done in P.N.Lebedev Physical Institute. The discussion of the following subjects will be included: new generation of picosecond image-converter tubes (ICT), pulsed control circuitry, late prototype of picosecond image-converter cameras (ICC), test installation consisting of Nd: glass and YAG lasers for production the ultra-short pulses and sinusoidally modulated radiation, methods and techniques for image tube and camera dynamic measurements in IR, visible and X-ray spectral regions. Also discussed are the image processing technique for pictures taken with picosecond ICC in order to correct the geometrical distortions, enhance pictures quality and evaluate parameters of the input signals through their recorded images. (author)

  10. Ar-Xe Laser: The Path to a Robust, All-Electric Shipboard Directed Energy Weapon

    National Research Council Canada - National Science Library

    Apruzese, J. P; Sethian, J. D; Giuliani, J. L; Wolford, M. F

    2008-01-01

    .... However, no HELs have been deployed to date. Until recently, there was no laser that had credible prospects of meeting the Navy's requirements for safety, power, size, beam quality, electrical drive, and atmospheric propagation...

  11. 4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication

    KAUST Repository

    Oubei, Hassan M.

    2015-08-26

    We experimentally demonstrate an underwater wireless optical communications (UWOC) employing 450-nm TO-9 packaged and fiberpigtailed laser diode (LD) directly encoded with an orthogonal frequency division multiplexed quadrature amplitude modulation (QAM-OFDM) data. A record data rate of up to 4.8 Gbit/s over 5.4-m transmission distance is achieved. By encoding the full 1.2-GHz bandwidth of the 450-nm LD with a 16-QAM-OFDM data, an error vector magnitude (EVM) of 16.5%, a signal-to-noise ratio (SNR) of 15.63 dB and a bit error rate (BER) of 2.6 × 10-3, well pass the forward error correction (FEC) criterion, were obtained. © 2015 Optical Society of America.

  12. 4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication

    KAUST Repository

    Oubei, Hassan M.; Duran, Jose R.; Janjua, Bilal; Wang, Huai-Yung; Tsai, Cheng-Ting; Chi, Yu-Cheih; Ng, Tien Khee; Kuo, Hao-Chung; He, Jr-Hau; Alouini, Mohamed-Slim; Lin, Gong-Ru; Ooi, Boon S.

    2015-01-01

    We experimentally demonstrate an underwater wireless optical communications (UWOC) employing 450-nm TO-9 packaged and fiberpigtailed laser diode (LD) directly encoded with an orthogonal frequency division multiplexed quadrature amplitude modulation (QAM-OFDM) data. A record data rate of up to 4.8 Gbit/s over 5.4-m transmission distance is achieved. By encoding the full 1.2-GHz bandwidth of the 450-nm LD with a 16-QAM-OFDM data, an error vector magnitude (EVM) of 16.5%, a signal-to-noise ratio (SNR) of 15.63 dB and a bit error rate (BER) of 2.6 × 10-3, well pass the forward error correction (FEC) criterion, were obtained. © 2015 Optical Society of America.

  13. Discretely tunable micromachined injection-locked lasers

    International Nuclear Information System (INIS)

    Cai, H; Yu, M B; Lo, G Q; Kwong, D L; Zhang, X M; Liu, A Q; Liu, B

    2010-01-01

    This paper reports a micromachined injection-locked laser (ILL) to provide tunable discrete wavelengths. It utilizes a non-continuously tunable laser as the master to lock a Fabry–Pérot semiconductor laser chip. Both lasers are integrated into a deep-etched silicon chip with dimensions of 3 mm × 3 mm × 0.8 mm. Based on the experimental results, significant improvements in the optical power and spectral purity have been achieved in the fully locked state, and optical hysteresis and bistability have also been observed in response to the changes of the output wavelength and optical power of the master laser. As a whole system, the micromachined ILL is able to provide single mode, discrete wavelength tuning, high power and direct modulation with small size and single-chip solution, making it promising for advanced optical communications such as wavelength division multiplexing optical access networks.

  14. 78 FR 37723 - Laser Products; Proposed Amendment to Performance Standard

    Science.gov (United States)

    2013-06-24

    ... of products that incorporate lasers are compact disc and DVD players, fax machines, fiber optic and... incorporate lasers are compact disc and DVD players, fax machines, fiber optic and free-air communication... additional training costs associated with learning the new standard, but believe estimated costs would be so...

  15. Shortest Paths and Vehicle Routing

    DEFF Research Database (Denmark)

    Petersen, Bjørn

    This thesis presents how to parallelize a shortest path labeling algorithm. It is shown how to handle Chvátal-Gomory rank-1 cuts in a column generation context. A Branch-and-Cut algorithm is given for the Elementary Shortest Paths Problem with Capacity Constraint. A reformulation of the Vehicle...... Routing Problem based on partial paths is presented. Finally, a practical application of finding shortest paths in the telecommunication industry is shown....

  16. Optical design of the National Ignition Facility main laser and switchyard/target area beam transport systems

    Science.gov (United States)

    Miller, John L.; English, R. Edward, Jr.; Korniski, Ronald J.; Rodgers, J. Michael

    1999-07-01

    The optical design of the main laser and transport mirror sections of the National Ignition Facility are described. For the main laser the configuration, layout constraints, multiple beam arrangement, pinhole layout and beam paths, clear aperture budget, ray trace models, alignment constraints, lens designs, wavefront performance, and pupil aberrations are discussed. For the transport mirror system the layout, alignment controls and clear aperture budget are described.

  17. [Dual insertion paths design characteristics and short-term clinical observation of rotational path removable partial dentures].

    Science.gov (United States)

    Li, Jian; Jiang, Ting; Li, Sai; Chen, Wei

    2013-02-18

    To investigate design methods of dual insertion paths and observe a short-term clinic overview of rotational path removable partial dentures (RPDs). In the study, 40 patients with partial edentulous arches were included and divided into two groups. The patients in group one were restored with rotational path RPDs (10 Kennedy class III and 10 Kennedy class IV respectively). The patients in group two (20 patients), whose edentulous area was matched with the patients' in group one, were restored with the linear path RPDs. After surveying and simulative preparation on diagnostic casts, the basic laws of designing rotational path RPDs were summarized. The oral preparation was accurately performed under the guidance of indices made on diagnostic casts after simulative preparation. The 40 dentures were recalled two weeks and one year after the insertion. The evaluations of the clinic outcome, including retention, stability, mastication function, esthetics and wearing convenience, were marked out as good, acceptable, and poor. The comparison of the evaluation results was performed between the two groups. In the rotational path design for Kennedy class III or IV RPDs, the angles (α) of dual insertion paths should be designed within a scope, approximate 10°-15°.When the angle (α) became larger, the denture retention turned to be better, but accordingly the posterior abutments needed more preparation. In the clinical application, the first insertions of the 40 dentures were all favorably accomplished. When the rotational path RPDs were compared to linear path RPDs, the time consuming on first insertion had no statistical difference[(32±8) min and (33±8) min respectively, P>0.05]. Recalled two weeks and one year after the insertion, in the esthetics evaluation, 20 rotational path RPDs were all evaluated as "A", but only 7(two weeks after) and 6 (one year after) linear path RPDs were evaluated as "A"(P<0.05). There was no significant difference in other evaluation results

  18. Path planning in changeable environments

    NARCIS (Netherlands)

    Nieuwenhuisen, D.

    2007-01-01

    This thesis addresses path planning in changeable environments. In contrast to traditional path planning that deals with static environments, in changeable environments objects are allowed to change their configurations over time. In many cases, path planning algorithms must facilitate quick

  19. Semiconductor laser using multimode interference principle

    Science.gov (United States)

    Gong, Zisu; Yin, Rui; Ji, Wei; Wu, Chonghao

    2018-01-01

    Multimode interference (MMI) structure is introduced in semiconductor laser used in optical communication system to realize higher power and better temperature tolerance. Using beam propagation method (BPM), Multimode interference laser diode (MMI-LD) is designed and fabricated in InGaAsP/InP based material. As a comparison, conventional semiconductor laser using straight single-mode waveguide is also fabricated in the same wafer. With a low injection current (about 230 mA), the output power of the implemented MMI-LD is up to 2.296 mW which is about four times higher than the output power of the conventional semiconductor laser. The implemented MMI-LD exhibits stable output operating at the wavelength of 1.52 μm and better temperature tolerance when the temperature varies from 283.15 K to 293.15 K.

  20. Solar Pumped Lasers and Their Applications

    Science.gov (United States)

    Lee, Ja H.

    1991-01-01

    Since 1980, NASA has been pursuing high power solar lasers as part of the space power beaming program. Materials in liquid, solid, and gas phases have been evaluated against the requirements for solar pumping. Two basic characteristics of solar insolation, namely its diffuse irradiance and 5800 K blackbody-like spectrum, impose rather stringent requirements for laser excitation. However, meeting these requirements is not insurmountable as solar thermal energy technology has progressed today, and taking advantage of solar pumping lasers is becoming increasingly attractive. The high density photons of concentrated solar energy have been used for mainly electric power generation and thermal processing of materials by the DOE Solar Thermal Technologies Program. However, the photons can interact with materials through many other direct kinetic paths, and applications of the concentrated photons could be extended to processes requiring photolysis, photosynthesis, and photoexcitation. The use of solar pumped lasers on Earth seems constrained by economics and sociopolitics. Therefore, prospective applications may be limited to those that require use of quantum effects and coherency of the laser in order to generate extremely high value products and services when conventional and inexpensive means are ineffective or impossible. The new applications already proposed for concentrated solar photons, such as destruction of hazardous waste, production of renewable fuel, production of fertilizer, and air/water pollution controls, may benefit from the use of inexpensive solar pumped laser matched with the photochemical kinetics of these processes.

  1. Comparison of classical reaction paths and tunneling paths studied with the semiclassical instanton theory.

    Science.gov (United States)

    Meisner, Jan; Markmeyer, Max N; Bohner, Matthias U; Kästner, Johannes

    2017-08-30

    Atom tunneling in the hydrogen atom transfer reaction of the 2,4,6-tri-tert-butylphenyl radical to 3,5-di-tert-butylneophyl, which has a short but strongly curved reaction path, was investigated using instanton theory. We found the tunneling path to deviate qualitatively from the classical intrinsic reaction coordinate, the steepest-descent path in mass-weighted Cartesian coordinates. To perform that comparison, we implemented a new variant of the predictor-corrector algorithm for the calculation of the intrinsic reaction coordinate. We used the reaction force analysis method as a means to decompose the reaction barrier into structural and electronic components. Due to the narrow energy barrier, atom tunneling is important in the abovementioned reaction, even above room temperature. Our calculated rate constants between 350 K and 100 K agree well with experimental values. We found a H/D kinetic isotope effect of almost 10 6 at 100 K. Tunneling dominates the protium transfer below 400 K and the deuterium transfer below 300 K. We compared the lengths of the tunneling path and the classical path for the hydrogen atom transfer in the reaction HCl + Cl and quantified the corner cutting in this reaction. At low temperature, the tunneling path is about 40% shorter than the classical path.

  2. E-Learning and Further Education: How do Individual Learning Paths support Personal Learning Processes

    Directory of Open Access Journals (Sweden)

    Bertil Haack

    2010-02-01

    Full Text Available The MOPEM project includes two fixed scenarios that have been defined to convey the idea of "learning paths". Our aim in this paper is to demonstrate the contexts and conditions for flexible learning paths that can be tailored to meet individual needs. The concept of this kind of specialised path is to enable learners to individualise the learning process and to adjust it to their personal needs. We will outline the background and pro- vide examples to explain the concept of learning stations which we use in our four courses: Online Marketing, CRM Systems, Business Communications and Event Marketing. This idea of "freely" combining subject matter naturally leads to the ques- tion of multi-applicability for the learning blocks in various educational contexts. The answers to this question are interest- ing not only in terms of the feasibility of learning paths from a content and didactic point of view, but also with regard to the economic viability of E-Learning or Blended Learning Systems, which ultimately require technical implementation. In addition we will present some first thoughts on the design of a prototype "Content Pool". It would, however, only make sense to develop and implement this within the scope of a follow-up project.

  3. Evolutionistic or revolutionary paths? A PACS maturity model for strategic situational planning.

    Science.gov (United States)

    van de Wetering, Rogier; Batenburg, Ronald; Lederman, Reeva

    2010-07-01

    While many hospitals are re-evaluating their current Picture Archiving and Communication System (PACS), few have a mature strategy for PACS deployment. Furthermore, strategies for implementation, strategic and situational planning methods for the evolution of PACS maturity are scarce in the scientific literature. Consequently, in this paper we propose a strategic planning method for PACS deployment. This method builds upon a PACS maturity model (PMM), based on the elaboration of the strategic alignment concept and the maturity growth path concept previously developed in the PACS domain. First, we review the literature on strategic planning for information systems and information technology and PACS maturity. Secondly, the PMM is extended by applying four different strategic perspectives of the Strategic Alignment Framework whereupon two types of growth paths (evolutionistic and revolutionary) are applied that focus on a roadmap for PMM. This roadmap builds a path to get from one level of maturity and evolve to the next. An extended method for PACS strategic planning is developed. This method defines eight distinctive strategies for PACS strategic situational planning that allow decision-makers in hospitals to decide which approach best suits their hospitals' current situation and future ambition and what in principle is needed to evolve through the different maturity levels. The proposed method allows hospitals to strategically plan for PACS maturation. It is situational in that the required investments and activities depend on the alignment between the hospital strategy and the selected growth path. The inclusion of both strategic alignment and maturity growth path concepts make the planning method rigorous, and provide a framework for further empirical research and clinical practice.

  4. Downlink Fiber Laser Transmitter for Deep Space Communication, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Space Communications and Navigation (SCaN) roadmap, calls for an integrated network approach to communication and navigation needs for robotic and human space...

  5. Method and apparatus for obtaining very high energy laser pulses: photon cyclotron

    International Nuclear Information System (INIS)

    Vali, V.; Krogstad, R.S.; Goldstein, R.

    1975-01-01

    Apparatus is arranged in selected embodiments of several combinations, each sometimes being referred to as a system, and each embodiment establishing a large enclosable chamber containing a laser energy reacting medium through which a laser beam is created. When laser energy pulses of such a beam are created, they are guided in a continuous path using reflectors in this chamber, and they receive supplemental energy units from multiple spaced laser pumps. Each laser pump is effective in respect to its own inverted population laser energy source, and each laser pump is triggered by an overall excitation control system. The laser beam is thereby supplemented to a higher level at each laser pump. Yet at all times the laser energy reacting medium remains at a level below super radiance. A working unit or working pulse of a laser beam is allowed to escape from each large enclosable chamber through an escape exit only when a preselected very high energy level is reached. The escape exit of this chamber may be designed to be destroyed by the exiting high level pulse energy of the laser beam. Also an escape exit may be opened upon the operation of a piezoelectric decoupler. (U.S.)

  6. Curved laser microjet in near field.

    Science.gov (United States)

    Kotlyar, Victor V; Stafeev, Sergey S; Kovalev, Alexey A

    2013-06-20

    With the use of the finite-difference time-domain-based simulation and a scanning near-field optical microscope that has a metal cantilever tip, the diffraction of a linearly polarized plane wave of wavelength λ by a glass corner step of height 2λ is shown to generate a low divergence laser jet of a root-parabolic form: over a distance of 4.7λ on the optical axis, the beam path is shifted by 2.1λ. The curved laser jet of the FWHM length depth of focus=9.5λ has the diameter FWHM=1.94λ over the distance 5.5λ, and the intensity maximum is 5 times higher than the incident wave intensity. The discrepancy between the analytical and the experimental results amounts to 11%.

  7. Research of narrow pulse width, high repetition rate, high output power fiber lasers for deep space exploration

    Science.gov (United States)

    Tang, Yan-feng; Li, Hong-zuo; Wang, Yan; Hao, Zi-qiang; Xiao, Dong-Ya

    2013-08-01

    As human beings expand the research in unknown areas constantly, the deep space exploration has become a hot research topic all over the world. According to the long distance and large amount of information transmission characteristics of deep space exploration, the space laser communication is the preferred mode because it has the advantages of concentrated energy, good security, and large information capacity and interference immunity. In a variety of laser source, fibre-optical pulse laser has become an important communication source in deep space laser communication system because of its small size, light weight and large power. For fiber lasers, to solve the contradiction between the high repetition rate and the peak value power is an important scientific problem. General Q technology is difficult to obtain a shorter pulse widths, This paper presents a DFB semiconductor laser integrated with Electro-absorption modulator to realize the narrow pulse width, high repetition rate of the seed source, and then using a two-cascaded high gain fiber amplifier as amplification mean, to realize the fibre-optical pulse laser with pulse width 3ns, pulse frequency 200kHz and peak power 1kW. According to the space laser atmospheric transmission window, the wavelength selects for 1.06um. It is adopted that full fibre technology to make seed source and amplification, pumping source and amplification of free-space coupled into fiber-coupled way. It can overcome that fibre lasers are vulnerable to changes in external conditions such as vibration, temperature drift and other factors affect, improving long-term stability. The fiber lasers can be modulated by PPM mode, to realize high rate modulation, because of its peak power, high transmission rate, narrow pulse width, high frequency stability, all technical indexes meet the requirements of the exploration of deep space communication technology.

  8. Complex networks in the Euclidean space of communicability distances

    Science.gov (United States)

    Estrada, Ernesto

    2012-06-01

    We study the properties of complex networks embedded in a Euclidean space of communicability distances. The communicability distance between two nodes is defined as the difference between the weighted sum of walks self-returning to the nodes and the weighted sum of walks going from one node to the other. We give some indications that the communicability distance identifies the least crowded routes in networks where simultaneous submission of packages is taking place. We define an index Q based on communicability and shortest path distances, which allows reinterpreting the “small-world” phenomenon as the region of minimum Q in the Watts-Strogatz model. It also allows the classification and analysis of networks with different efficiency of spatial uses. Consequently, the communicability distance displays unique features for the analysis of complex networks in different scenarios.

  9. Remote detection of methane with a 1.66-microm diode laser.

    Science.gov (United States)

    Uehara, K; Tai, H

    1992-02-20

    High-sensitivity real-time remote detection of methane in air with a 1.66-microm distributed-feedback diode laser operating at room temperature is demonstrated by laboratory simulations. The laser current was modulated at a high frequency of ~5 MHz, and the laser-center frequency was locked onto a methane-absorption line. The laser light directed toward the probed region was received after one-way transmission or further reflection from a topographic target. The methane absorption was detected by the second-harmonic component in the optical-power variation. The minimum-detectable concentration-path-length product in the transmission scheme was 0.3 part in 10(6) m for a signal averaging time of 1.3 s. In the reflection scheme, the amount of methane could be measured from the ratio of the fundamental and second-harmonic signal intensities independently of the received power.

  10. A 12 GHz wavelength spacing multi-wavelength laser source for wireless communication systems

    Science.gov (United States)

    Peng, P. C.; Shiu, R. K.; Bitew, M. A.; Chang, T. L.; Lai, C. H.; Junior, J. I.

    2017-08-01

    This paper presents a multi-wavelength laser source with 12 GHz wavelength spacing based on a single distributed feedback laser. A light wave generated from the distributed feedback laser is fed into a frequency shifter loop consisting of 50:50 coupler, dual-parallel Mach-Zehnder modulator, optical amplifier, optical filter, and polarization controller. The frequency of the input wavelength is shifted and then re-injected into the frequency shifter loop. By re-injecting the shifted wavelengths multiple times, we have generated 84 optical carriers with 12 GHz wavelength spacing and stable output power. For each channel, two wavelengths are modulated by a wireless data using the phase modulator and transmitted through a 25 km single mode fiber. In contrast to previously developed schemes, the proposed laser source does not incur DC bias drift problem. Moreover, it is a good candidate for radio-over-fiber systems to support multiple users using a single distributed feedback laser.

  11. A laser-based beam profile monitor for the SLC/SLD interaction region

    International Nuclear Information System (INIS)

    Alley, R.; Arnett, D.; Bong, E.; Colocho, W.; Frisch, J.; Horton-Smith, S.; Inman, W.; Jobe, K.; Kotseroglou, T.; McCormick, D.; Nelson, J.; Scheeff, M.; Wagner, S.; Ross, M.C.

    1996-01-01

    Beam size estimates made using beam-beam deflections are used for optimization of the Stanford linear collider (SLC) electron-positron beam sizes. Typical beam sizes and intensities expected for 1996 operations are 2.1 x 0.6 μm (x, y) at 4.0.10 10 particles per pulse. Conventional profile monitors, such as scanning wires, fail at charge densities well below this. The laser-based profile monitor uses a finely-focused 350-nm wavelength tripled YLF laser pulse that traverses the particle beam path about 29 cm away from the e + /e - IP. Compton scattered photons and degraded e + /e - are detected as the beam is steered across the laser pulse. The laser pulse has a transverse size of 380 nm and a Rayleigh range of about 5 μm. (orig.)

  12. Development of laser application technologies for nuclear industry

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Rhee, Y.; Cha, B. H.

    2004-03-01

    The stable laser isotope facility will supply raw stable isotope material to produce radioisotope elements for medical and industrial applications. The medical stable isotope, Tl-203 was separated by the isotope selective optical pumping (ISOP) method native to the laboratory for quantum optics, KAERI. The extraction rate of 10 mg/hr was achieved from the separation chamber of 80cm x 80cm x 100cm dimension. The Yb-168 separation facility was improved in stability, durability, and efficiency. The old copper vapor pumping laser system was replaced with two 40W green DPSSL's. The tunable dye laser system was also improved in stability. The extraction rate was measured as 1.5 mg/hr in the improved system. The 200W infrared DPSSL system was also developed and used for photoionization of thallium isotopes. The adaptive optics and beam path control system was applied to the isotope separation facilities. Also the beam quality of the lasers was monitored and improved. To maintain constant isotope composition during reaction process, the wavelengths of tunable lasers are locked by being the mass composition information fed back into the oscillator control unit of the lasers. To optimize isotope separation process timely, the extractor surface is directly analyzed by laser irradiation and TOF mass spectrometer. And the final products in high purity is recovered in maximum by solution chemistry

  13. Autonomous Laser-Powered Vehicle

    Science.gov (United States)

    Stone, William C. (Inventor); Hogan, Bartholomew P. (Inventor)

    2017-01-01

    An autonomous laser-powered vehicle designed to autonomously penetrate through ice caps of substantial (e.g., kilometers) thickness by melting a path ahead of the vehicle as it descends. A high powered laser beam is transmitted to the vehicle via an onboard bare fiber spooler. After the beam enters through the dispersion optics, the beam expands into a cavity. A radiation shield limits backscatter radiation from heating the optics. The expanded beam enters the heat exchanger and is reflected by a dispersion mirror. Forward-facing beveled circular grooves absorb the reflected radiant energy preventing the energy from being reflected back towards the optics. Microchannels along the inner circumference of the beam dump heat exchanger maximize heat transfer. Sufficient amount of fiber is wound on the fiber spooler to permit not only a descent but also to permit a sample return mission by inverting the vehicle and melting its way back to the surface.

  14. Fairness in Knowing: Science Communication and Epistemic Justice.

    Science.gov (United States)

    Medvecky, Fabien

    2017-09-22

    Science communication, as a field and as a practice, is fundamentally about knowledge distribution; it is about the access to, and the sharing of knowledge. All distribution (science communication included) brings with it issues of ethics and justice. Indeed, whether science communicators acknowledge it or not, they get to decide both which knowledge is shared (by choosing which topic is communicated), and who gets access to this knowledge (by choosing which audience it is presented to). As a result, the decisions of science communicators have important implications for epistemic justice: how knowledge is distributed fairly and equitably. This paper presents an overview of issues related to epistemic justice for science communication, and argues that there are two quite distinct ways in which science communicators can be just (or unjust) in the way they distribute knowledge. Both of these paths will be considered before concluding that, at least on one of these accounts, science communication as a field and as a practice is fundamentally epistemically unjust. Possible ways to redress this injustice are suggested.

  15. Review of progress in pulsed laser deposition and using Nd:YAG laser in processing of high Tc superconductors

    International Nuclear Information System (INIS)

    Chen, C.W.; Mukherjee, K.

    1993-01-01

    The current progress in pulsed laser ablation of high-temperature superconductors is reviewed with emphasis on the effect of pulse-width and wavelength, nature of the plasma plume, post-annealing and methods to improve quality of films grown at low temperature. An ion beam assisted millisecond pulsed laser vapor deposition process has been developed to fabricate YBa 2 Cu 3 O x high T. superconductor thin films. Solution to target overheating problem, effects of oxygen ion beam, properties of deposited films, and effect of silver buffer layer on YSZ substrate are presented. A new laser calcining process has been used to produce near single phase high T c superconductors of Bi-Pb-Sr-Ca-Cu-0 system. The total processing time was reduced to about 100 hours which is about half of that for conventional sintering. For this compound both resistance and magnetic susceptibility data showed an onset of superconducting transition at about 110K. A sharp susceptibility drop was observed above 106K. The zero resistance temperature was about 98K. High T c phase was formed via a different kinetic path in laser calcined sample compare with the conventionally processed sample

  16. DiversePathsJ: diverse shortest paths for bioimage analysis.

    Science.gov (United States)

    Uhlmann, Virginie; Haubold, Carsten; Hamprecht, Fred A; Unser, Michael

    2018-02-01

    We introduce a formulation for the general task of finding diverse shortest paths between two end-points. Our approach is not linked to a specific biological problem and can be applied to a large variety of images thanks to its generic implementation as a user-friendly ImageJ/Fiji plugin. It relies on the introduction of additional layers in a Viterbi path graph, which requires slight modifications to the standard Viterbi algorithm rules. This layered graph construction allows for the specification of various constraints imposing diversity between solutions. The software allows obtaining a collection of diverse shortest paths under some user-defined constraints through a convenient and user-friendly interface. It can be used alone or be integrated into larger image analysis pipelines. http://bigwww.epfl.ch/algorithms/diversepathsj. michael.unser@epfl.ch or fred.hamprecht@iwr.uni-heidelberg.de. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  17. Femtosecond laser ablation of carbon reinforced polymers

    International Nuclear Information System (INIS)

    Moreno, P.; Mendez, C.; Garcia, A.; Arias, I.; Roso, L.

    2006-01-01

    Interaction of intense ultrashort laser pulses (120 fs at 795 nm) with polymer based composites has been investigated. We have found that carbon filled polymers exhibit different ultrafast ablation behaviour depending on whether the filling material is carbon black or carbon fiber and on the polymer matrix itself. The shape and dimensions of the filling material are responsible for some geometrical bad quality effects in the entrance and inner surfaces of drilled microholes. We give an explanation for these non-quality effects in terms of fundamentals of ultrafast ablation process, specifically threshold laser fluences and material removal paths. Since carbon fiber reinforced polymers seemed particularly concerned, this could prevent the use of ultrafast ablation for microprocessing purposes of some of these materials

  18. Dynamic Pathloss Model for Future Mobile Communication Networks

    DEFF Research Database (Denmark)

    Kumar, Ambuj; Mihovska, Albena Dimitrova; Prasad, Ramjee

    2016-01-01

    that are essentially static. Therefore, once the signal level drops beyond the predicted values due to any variance in the environmental conditions, very crowded areas may not be catered well enough by the deployed network that had been designed with the static path loss model. This paper proposes an approach......— Future mobile communication networks (MCNs) are expected to be more intelligent and proactive based on new capabilities that increase agility and performance. However, for any successful mobile network service, the dexterity in network deployment is a key factor. The efficiency of the network...... planning depends on how congruent the chosen path loss model and real propagation are. Various path loss models have been developed that predict the signal propagation in various morphological and climatic environments; however they consider only those physical parameters of the network environment...

  19. Diode lasers: From laboratory to industry

    Science.gov (United States)

    Nasim, Hira; Jamil, Yasir

    2014-03-01

    The invention of first laser in 1960 triggered the discovery of several new families of lasers. A rich interplay of different lasing materials resulted in a far better understanding of the phenomena particularly linked with atomic and molecular spectroscopy. Diode lasers have gone through tremendous developments on the forefront of applied physics that have shown novel ways to the researchers. Some interesting attributes of the diode lasers like cost effectiveness, miniature size, high reliability and relative simplicity of use make them good candidates for utilization in various practical applications. Diode lasers are being used by a variety of professionals and in several spectroscopic techniques covering many areas of pure and applied sciences. Diode lasers have revolutionized many fields like optical communication industry, medical science, trace gas monitoring, studies related to biology, analytical chemistry including elemental analysis, war fare studies etc. In this paper the diode laser based technologies and measurement techniques ranging from laboratory research to automated field and industry have been reviewed. The application specific developments of diode lasers and various methods of their utilization particularly during the last decade are discussed comprehensively. A detailed snapshot of the current state of the art diode laser applications is given along with a detailed discussion on the upcoming challenges.

  20. The Chicago guide to communicating science

    CERN Document Server

    Montgomery, Scott L

    2017-01-01

    For more than a decade, The Chicago Guide to Communicating Science has been the go-to reference for anyone who needs to write or speak about their research. Whether a student writing a thesis, a faculty member composing a grant proposal, or a public information officer crafting a press release, Scott Montgomery’s advice is perfectly adaptable to any scientific writer’s needs. This new edition has been thoroughly revised to address crucial issues in the changing landscape of scientific communication, with an increased focus on those writers working in corporate settings, government, and nonprofit organizations as well as academia. Half a dozen new chapters tackle the evolving needs and paths of scientific writers. These sections address plagiarism and fraud, writing graduate theses, translating scientific material, communicating science to the public, and the increasing globalization of research. The Chicago Guide to Communicating Science recognizes that writers come to the table with different needs and...

  1. On the thermodynamic path enabling a room-temperature, laser-assisted graphite to nanodiamond transformation

    Science.gov (United States)

    Gorrini, F.; Cazzanelli, M.; Bazzanella, N.; Edla, R.; Gemmi, M.; Cappello, V.; David, J.; Dorigoni, C.; Bifone, A.; Miotello, A.

    2016-10-01

    Nanodiamonds are the subject of active research for their potential applications in nano-magnetometry, quantum optics, bioimaging and water cleaning processes. Here, we present a novel thermodynamic model that describes a graphite-liquid-diamond route for the synthesis of nanodiamonds. Its robustness is proved via the production of nanodiamonds powders at room-temperature and standard atmospheric pressure by pulsed laser ablation of pyrolytic graphite in water. The aqueous environment provides a confinement mechanism that promotes diamond nucleation and growth, and a biologically compatible medium for suspension of nanodiamonds. Moreover, we introduce a facile physico-chemical method that does not require harsh chemical or temperature conditions to remove the graphitic byproducts of the laser ablation process. A full characterization of the nanodiamonds by electron and Raman spectroscopies is reported. Our model is also corroborated by comparison with experimental data from the literature.

  2. High Power Mid-IR Semiconductor Lasers for LADAR

    National Research Council Canada - National Science Library

    Lester, Luke

    2003-01-01

    The growing need for antimonide-based, room temperature, 2-5 micrometers, semiconductor lasers for trace gas spectroscopy, ultra-low loss communication, infrared countermeasures, and ladar motivated this work...

  3. Interaction of a CO2 laser beam with a shock-tube plasma

    International Nuclear Information System (INIS)

    Box, S.J.C.; John, P.K.; Byszewski, W.W.

    1977-01-01

    The results of experimental investigations of the interaction of a CO 2 laser beam with plasma produced in an electromagnetic shock tube are presented. The interaction was investigated in two different configurations: with the laser beam perpendicular to the direction of propagation of the shock wave and with the laser beam parallel to the direction of the shock wave. The laser energy was 0.3 J in a 180-nsec pulse. The plasma density was in the range 10 17 --10 18 cm -3 and temperature was around 2 eV. Spectroscopic methods were used in the measurement of density and temperature. Direct observation of the path of the laser beam through the plasma was made by an image-convertor camera in conjunction with a narrow-band interference filter. The propagation of the laser through the plasma and energy absorption are discussed. The observed maximum increase in electron temperature due to the laser in the first configuration was 0.4 eV and the estimated temperature increase in the second configuration was about 2 eV

  4. Path integrals on curved manifolds

    International Nuclear Information System (INIS)

    Grosche, C.; Steiner, F.

    1987-01-01

    A general framework for treating path integrals on curved manifolds is presented. We also show how to perform general coordinate and space-time transformations in path integrals. The main result is that one has to subtract a quantum correction ΔV ∝ ℎ 2 from the classical Lagrangian L, i.e. the correct effective Lagrangian to be used in the path integral is L eff = L-ΔV. A general prescription for calculating the quantum correction ΔV is given. It is based on a canonical approach using Weyl-ordering and the Hamiltonian path integral defined by the midpoint prescription. The general framework is illustrated by several examples: The d-dimensional rotator, i.e. the motion on the sphere S d-1 , the path integral in d-dimensional polar coordinates, the exact treatment of the hydrogen atom in R 2 and R 3 by performing a Kustaanheimo-Stiefel transformation, the Langer transformation and the path integral for the Morse potential. (orig.)

  5. Development of Blue Laser Direct-Write Lithography System

    Directory of Open Access Journals (Sweden)

    Hao-Wen Chang

    2012-01-01

    Full Text Available The optical lithography system researched in this study adopted the laser direct-write lithography technology with nano-positioning stage by using retailing blue ray optical pickup head contained 405nm wavelength and 0.85 numerical aperture of focus lens as the system lighting source. The system employed a photodiode received the focusing error signal reflected by the glass substrate to identify specimen position and automatic focused control with voice coil motor. The pattern substrate was loaded on a nano-positioning stage; input pattern path automatically and collocate with inner program at the same time. This research has successfully developed a blue laser lithography process system. The single spot size can be narrowed down to 3.07 μm and the linewidth is 3.3μm, time of laser control can reach to 450 ns and the exposure pattern can be controlled by program as well.

  6. MEASUREMENT OF AMMONIA EMISSIONS FROM MECHANICALLY VENTILATED POULTRY HOUSES USING MULTIPATH TUNABLE DIODE LASER SPECTROSCOPY

    Science.gov (United States)

    Ammonia emissions from mechanically ventilated poultry operations are an important environmental concern. Open Path Tunable Diode Laser Absorption Spectroscopy has emerged as a robust real-time method for gas phase measurement of ammonia concentrations in agricultural settings. ...

  7. Welding Robot Collision-Free Path Optimization

    Directory of Open Access Journals (Sweden)

    Xuewu Wang

    2017-02-01

    Full Text Available Reasonable welding path has a significant impact on welding efficiency, and a collision-free path should be considered first in the process of welding robot path planning. The shortest path length is considered as an optimization objective, and obstacle avoidance is considered as the constraint condition in this paper. First, a grid method is used as a modeling method after the optimization objective is analyzed. For local collision-free path planning, an ant colony algorithm is selected as the search strategy. Then, to overcome the shortcomings of the ant colony algorithm, a secondary optimization is presented to improve the optimization performance. Finally, the particle swarm optimization algorithm is used to realize global path planning. Simulation results show that the desired welding path can be obtained based on the optimization strategy.

  8. What are other parents saying? Perceived parental communication norms and the relationship between alcohol-specific parental communication and college student drinking

    Science.gov (United States)

    Napper, Lucy E.; Hummer, Justin F.; Lac, Andrew; LaBrie, Joseph W.

    2013-01-01

    This study examined parents’ normative perceptions of other college parents’ alcohol-specific communication, and how parents’ perceived communication norms and alcohol-specific communication relate to student drinking outcomes. A sample of 457 student-parent dyads were recruited from a mid-size university. Students completed web-based assessments of alcohol-related attitudes and behaviors. Parents completed alcohol-specific measures of communication norms and parent-child communication, including communication content (i.e., targeted communication) and frequency of communication. Results indicated that parents overestimated how much other parents talked to their college students about the frequency and quantity of alcohol use, but underestimated how often parents initiated conversations about alcohol. In a path model, perceived communication norms positively predicted both targeted communication and frequency of communication. Perceived communication norms and targeted communication negatively predicted students’ attitude toward alcohol use. In contrast, more frequent communication predicted students holding more approving attitudes toward alcohol. The relationship between parents’ perceived communication norms and students’ drinking behaviors was mediated by the parental communication variables and student attitudes. Tests of indirect effects were undertaken to examine meditational processes. The findings underscore relations involving parental perceived communication norms and parents’ own alcohol communication and their children’s drinking outcomes. The complex relationships of different types of parental communication and student outcomes warrant further research. PMID:24128293

  9. Future Energy Grid. Migration paths into the energy Internet; Future Energy Grid. Migrationspfade ins Internet der Energie

    Energy Technology Data Exchange (ETDEWEB)

    Appelrath, Hans-Juergen [Oldenburg Univ. (Germany); Kagermann, Henning [acatech - Deutsche Akademie der Technikwissenschaften, Berlin (Germany). Hauptstadtbuero; Mayer, Christoph (eds.) [OFFIS e.V., Oldenburg (Germany)

    2012-07-01

    The present study describes the migration path that must be taken up to the year 2030 in pursuit of the Future Energy Grid. For this purpose it has explored what possible future scenarios must be taken into account along the migration path. The following key factors were identified in preparation of drawing up scenarios: expansion of the electrical infrastructure; system-wide availability of an information and communication technology infrastructure; flexibilisation of consumption; energy mix; new services and products; final consumer costs; and standardisation and political framework conditions. These eight key factors were combined with each other in different variants to give three consistent scenarios for the year 2030.

  10. Information communication on complex networks

    International Nuclear Information System (INIS)

    Igarashi, Akito; Kawamoto, Hiroki; Maruyama, Takahiro; Morioka, Atsushi; Naganuma, Yuki

    2013-01-01

    Since communication networks such as the Internet, which is regarded as a complex network, have recently become a huge scale and a lot of data pass through them, the improvement of packet routing strategies for transport is one of the most significant themes in the study of computer networks. It is especially important to find routing strategies which can bear as many traffic as possible without congestion in complex networks. First, using neural networks, we introduce a strategy for packet routing on complex networks, where path lengths and queue lengths in nodes are taken into account within a framework of statistical physics. Secondly, instead of using shortest paths, we propose efficient paths which avoid hubs, nodes with a great many degrees, on scale-free networks with a weight of each node. We improve the heuristic algorithm proposed by Danila et. al. which optimizes step by step routing properties on congestion by using the information of betweenness, the probability of paths passing through a node in all optimal paths which are defined according to a rule, and mitigates the congestion. We confirm the new heuristic algorithm which balances traffic on networks by achieving minimization of the maximum betweenness in much smaller number of iteration steps. Finally, We model virus spreading and data transfer on peer-to-peer (P2P) networks. Using mean-field approximation, we obtain an analytical formulation and emulate virus spreading on the network and compare the results with those of simulation. Moreover, we investigate the mitigation of information traffic congestion in the P2P networks.

  11. Adaptive metal mirror for high-power CO2 lasers

    Science.gov (United States)

    Jarosch, Uwe-Klaus

    1996-08-01

    Spherical mirrors with a variable radius of curvature are used inside laser resonators as well as in the beam path between the laser and the workpiece. Commercially-available systems use piezoelectric actuators, or the pressure of the coolant, to deform the mirror surface. In both cases, the actuator and the cooling system influence each other. This interaction is avoided through the integration of the cooling system with the flexible mirror membrane. A multi- channel design leads to an optimized cooling effect, which is necessary for high power applications. The contour of the variable metal mirror depends on the mounting between the membrane and the mirror body and on the distribution of forces. Four cases of deformation can be distinguished for a circular elastic membrane. The realization of an adaptive metal mirror requires a technical compromise to be made. A mechanical construction is presented which combines an elastic hinge with the inlet and outlet of the coolant. For the deformation of the mirror membranes two actuators with different character of deformation are used. The superposition of the two deformations results in smaller deviations from the spherical surface shape than can be achieved using a single actuator. DC proportional magnets have been introduced as cheap and rigid actuators. The use of this adaptive mirror, either in a low pressure atmosphere of a gas laser resonator, or in an extra-cavity beam path is made possible through the use of a ventilation system.

  12. EDITORIAL: Semiconductor lasers: the first fifty years Semiconductor lasers: the first fifty years

    Science.gov (United States)

    Calvez, S.; Adams, M. J.

    2012-09-01

    Anniversaries call for celebrations. Since it is now fifty years since the first semiconductor lasers were reported, it is highly appropriate to celebrate this anniversary with a Special Issue dedicated to the topic. The semiconductor laser now has a major effect on our daily lives since it has been a key enabler in the development of optical fibre communications (and hence the internet and e-mail), optical storage (CDs, DVDs, etc) and barcode scanners. In the early 1960s it was impossible for most people (with the exception of very few visionaries) to foresee any of these future developments, and the first applications identified were for military purposes (range-finders, target markers, etc). Of course, many of the subsequent laser applications were made possible by developments in semiconductor materials, in the associated growth and fabrication technology, and in the increased understanding of the underlying fundamental physics. These developments continue today, so that the subject of semiconductor lasers, although mature, is in good health and continues to grow. Hence, we can be confident that the pervasive influence of semiconductor lasers will continue to develop as optoelectronics technology makes further advances into other sectors such as healthcare, security and a whole host of applications based on the global imperatives to reduce energy consumption, minimise environmental impact and conserve resources. The papers in this Special Issue are intended to tell some of the story of the last fifty years of laser development as well as to provide evidence of the current state of semiconductor laser research. Hence, there are a number of papers where the early developments are recalled by authors who played prominent parts in the story, followed by a selection of papers from authors who are active in today's exciting research. The twenty-fifth anniversary of the semiconductor laser was celebrated by the publication of a number of papers dealing with the early

  13. Hamiltonian path integrals

    International Nuclear Information System (INIS)

    Prokhorov, L.V.

    1982-01-01

    The properties of path integrals associated with the allowance for nonstandard terms reflecting the operator nature of the canonical variables are considered. Rules for treating such terms (''equivalence rules'') are formulated. Problems with a boundary, the behavior of path integrals under canonical transformations, and the problem of quantization of dynamical systems with constraints are considered in the framework of the method

  14. Spreading paths in partially observed social networks

    Science.gov (United States)

    Onnela, Jukka-Pekka; Christakis, Nicholas A.

    2012-03-01

    Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using static, structurally realistic social networks as platforms for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is.

  15. Spreading paths in partially observed social networks.

    Science.gov (United States)

    Onnela, Jukka-Pekka; Christakis, Nicholas A

    2012-03-01

    Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using static, structurally realistic social networks as platforms for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is.

  16. Thermokinetic Modeling of Phase Transformation in the Laser Powder Deposition Process

    Science.gov (United States)

    Foroozmehr, Ehsan; Kovacevic, Radovan

    2009-08-01

    A finite element model coupled with a thermokinetic model is developed to predict the phase transformation of the laser deposition of AISI 4140 on a substrate with the same material. Four different deposition patterns, long-bead, short-bead, spiral-in, and spiral-out, are used to cover a similar area. Using a finite element model, the temperature history of the laser powder deposition (LPD) process is determined. The martensite transformation as well as martensite tempering is considered to calculate the final fraction of martensite, ferrite, cementite, ɛ-carbide, and retained austenite. Comparing the surface hardness topography of different patterns reveals that path planning is a critical parameter in laser surface modification. The predicted results are in a close agreement with the experimental results.

  17. Short communication: Genetic lag represents commercial herd genetic merit more accurately than the 4-path selection model.

    Science.gov (United States)

    Dechow, C D; Rogers, G W

    2018-05-01

    Expectation of genetic merit in commercial dairy herds is routinely estimated using a 4-path genetic selection model that was derived for a closed population, but commercial herds using artificial insemination sires are not closed. The 4-path model also predicts a higher rate of genetic progress in elite herds that provide artificial insemination sires than in commercial herds that use such sires, which counters other theoretical assumptions and observations of realized genetic responses. The aim of this work is to clarify whether genetic merit in commercial herds is more accurately reflected under the assumptions of the 4-path genetic response formula or by a genetic lag formula. We demonstrate by tracing the transmission of genetic merit from parents to offspring that the rate of genetic progress in commercial dairy farms is expected to be the same as that in the genetic nucleus. The lag in genetic merit between the nucleus and commercial farms is a function of sire and dam generation interval, the rate of genetic progress in elite artificial insemination herds, and genetic merit of sires and dams. To predict how strategies such as the use of young versus daughter-proven sires, culling heifers following genomic testing, or selective use of sexed semen will alter genetic merit in commercial herds, genetic merit expectations for commercial herds should be modeled using genetic lag expectations. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. From laser cooling of non-relativistic to relativistic ion beams

    International Nuclear Information System (INIS)

    Schramm, U.; Bussmann, M.; Habs, D.

    2004-01-01

    Laser cooling of stored 24 Mg + ion beams recently led to the long anticipated experimental realization of Coulomb-ordered 'crystalline' ion beams in the low-energy RF-quadrupole storage ring PAul Laser CooLing Acceleration System (Munich). Moreover, systematic studies revealed severe constraints on the cooling scheme and the storage ring lattice for the attainment and maintenance of the crystalline state of the beam, which will be summarized. With the envisaged advent of high-energy heavy ion storage rings like SIS 300 at GSI (Darmstadt), which offer favourable lattice conditions for space-charge-dominated beams, we here discuss the general scaling of laser cooling of highly relativistic beams of highly charged ions and present a novel idea for direct three-dimensional beam cooling by forcing the ions onto a helical path

  19. Ultrabroad linewidth orange-emitting nanowires LED for high CRI laser-based white lighting and gigahertz communications

    KAUST Repository

    Janjua, Bilal

    2016-08-10

    Group-III-nitride laser diode (LD)-based solid-state lighting device has been demonstrated to be droop-free compared to light-emitting diodes (LEDs), and highly energy-efficient compared to that of the traditional incandescent and fluorescent white light systems. The YAG:Ce3+ phosphor used in LD-based solid-state lighting, however, is associated with rapid degradation issue. An alternate phosphor/LD architecture, which is capable of sustaining high temperature, high power density, while still intensity- and bandwidth-tunable for high color-quality remained unexplored. In this paper, we present for the first time, the proof-of-concept of the generation of high-quality white light using an InGaN-based orange nanowires (NWs) LED grown on silicon, in conjunction with a blue LD, and in place of the compound-phosphor. By changing the relative intensities of the ultrabroad linewidth orange and narrow-linewidth blue components, our LED/LD device architecture achieved correlated color temperature (CCT) ranging from 3000 K to above 6000K with color rendering index (CRI) values reaching 83.1, a value unsurpassed by the YAG-phosphor/blue-LD counterpart. The white-light wireless communications was implemented using the blue LD through on-off keying (OOK) modulation to obtain a data rate of 1.06 Gbps. We therefore achieved the best of both worlds when orange-emitting NWs LED are utilized as “active-phosphor”, while blue LD is used for both color mixing and optical wireless communications.

  20. First-principles assessment of potential ultrafast laser-induced structural transition in Ni

    Energy Technology Data Exchange (ETDEWEB)

    Bévillon, E.; Colombier, J.P., E-mail: jean.philippe.colombier@univ-st-etienne.fr; Stoian, R.

    2016-06-30

    Highlights: • First-principles theory calculations in nonequilibrium conditions. • Electronic temperatures fully and consistently taken into account. • Evaluation of an ultrafast laser-induced solid-to-solid transition in Ni. • Relative energies, phonon spectra and energy path are evaluated. • Discussion on the generation of non-thermal forces in metals. - Abstract: The possibility to trigger ultrafast solid-to-solid transitions in transition metals under femtosecond laser irradiation is investigated by means of first-principles calculations. Electronic heating can drastically modify screening, charge distribution and atomic binding features, potentially determining new structural relaxation paths in the solid phase, before thermodynamic solid-to-liquid transformations set in. Consequently, we evaluate here the effect of electronic excitation on structural stability and conditions for structural transitions. Ni is chosen as a case study for the probability of a solid transition, and the stability of its FCC phase is compared to the non-standard HCP structure while accounting for the heating of the electronic subsystem. From a phonon spectra analysis, we show that the thermodynamic stability order reverses at an electronic temperature of around 10{sup 4} K. Both structures exhibit a dynamic stability, indicating they present a metastability depending on the heating. However, the general hardening of phonon modes with the increase of the electronic temperature points out that no transformation will occur, as confirmed by the study of a typical FCC to HCP diffusionless transformation path, showing an increasing energy barrier. Finally, based on electronic density of states interpretation, the tendency of different metal categories to undergo or not an ultrafast laser-induced structural transition is discussed.