WorldWideScience

Sample records for passive solar thermal

  1. Thermal analysis and design of passive solar buildings

    CERN Document Server

    Athienitis, AK

    2013-01-01

    Passive solar design techniques are becoming increasingly important in building design. This design reference book takes the building engineer or physicist step-by-step through the thermal analysis and design of passive solar buildings. In particular it emphasises two important topics: the maximum utilization of available solar energy and thermal storage, and the sizing of an appropriate auxiliary heating/cooling system in conjunction with good thermal control.Thermal Analysis and Design of Passive Solar Buildings is an important contribution towards the optimization of buildings as systems th

  2. Passive-solar construction handbook

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E.; Evans, D.; Gardstein, C.

    1981-02-01

    Many of the basic elements of passive solar design are reviewed. Passive solar construction is covered according to system type, each system type discussion including a general discussion of the important design and construction issues which apply to the particular system and case studies illustrating designed and built examples of the system type. The three basic types of passive solar systems discussed are direct gain, thermal storage wall, and attached sunspace. Thermal performance and construction information is presented for typical materials used in passive solar collector components, storage components, and control components. Appended are an overview of analysis methods and a technique for estimating performance. (LEW)

  3. Passive solar construction handbook

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E.; Evans, D.; Gardstein, C.

    1981-08-01

    Many of the basic elements of passive solar design are reviewed. The unique design constraints presented in passive homes are introduced and many of the salient issues influencing design decisions are described briefly. Passive solar construction is described for each passive system type: direct gain, thermal storage wall, attached sunspace, thermal storage roof, and convective loop. For each system type, important design and construction issues are discussed and case studies illustrating designed and built examples of the system type are presented. Construction details are given and construction and thermal performance information is given for the materials used in collector components, storage components, and control components. Included are glazing materials, framing systems, caulking and sealants, concrete masonry, concrete, brick, shading, reflectors, and insulators. The Load Collector Ratio method for estimating passive system performance is appended, and other analysis methods are briefly summarized. (LEW)

  4. Passive Collecting of Solar Radiation Energy using Transparent Thermal Insulators, Energetic Efficiency of Transparent Thermal Insulators

    Directory of Open Access Journals (Sweden)

    Smajo Sulejmanovic

    2014-11-01

    Full Text Available This paper explains passive collection of solar radiation energy using transparent thermal insulators. Transparent thermal insulators are transparent for sunlight, at the same time those are very good thermal insulators. Transparent thermal insulators can be placed instead of standard conventional thermal insulators and additionally transparent insulators can capture solar radiation, transform it into heat and save heat just as standard insulators. Using transparent insulators would lead to reduce in usage of fossil fuels and would help protection of an environment and reduce effects of global warming, etc.

  5. Passive Solar Techniques to Improve Thermal Comfort and Reduce Energy Consumption of Domestic Use

    OpenAIRE

    Naci Kalkan; Ihsan Dagtekin

    2016-01-01

    Passive design responds to improve indoor thermal comfort and minimize the energy consumption. The present research analyzed the how efficiently passive solar technologies generate heating and cooling and provide the system integration for domestic applications. In addition to this, the aim of this study is to increase the efficiency of solar systems system with integration some innovation and optimization. As a result, outputs of the project might start a new sector to provide environmentall...

  6. In-depth investigation of spin-on doped solar cells with thermally grown oxide passivation

    Directory of Open Access Journals (Sweden)

    Samir Mahmmod Ahmad

    Full Text Available Solar cell industrial manufacturing, based largely on proven semiconductor processing technologies supported by significant advancements in automation, has reached a plateau in terms of cost and efficiency. However, solar cell manufacturing cost (dollar/watt is still substantially higher than fossil fuels. The route to lowering cost may not lie with continuing automation and economies of scale. Alternate fabrication processes with lower cost and environmental-sustainability coupled with self-reliance, simplicity, and affordability may lead to price compatibility with carbon-based fuels. In this paper, a custom-designed formulation of phosphoric acid has been investigated, for n-type doping in p-type substrates, as a function of concentration and drive-in temperature. For post-diffusion surface passivation and anti-reflection, thermally-grown oxide films in 50–150-nm thickness were grown. These fabrication methods facilitate process simplicity, reduced costs, and environmental sustainability by elimination of poisonous chemicals and toxic gases (POCl3, SiH4, NH3. Simultaneous fire-through contact formation process based on screen-printed front surface Ag and back surface through thermally grown oxide films was optimized as a function of the peak temperature in conveyor belt furnace. Highest efficiency solar cells fabricated exhibited efficiency of ∼13%. Analysis of results based on internal quantum efficiency and minority carried measurements reveals three contributing factors: high front surface recombination, low minority carrier lifetime, and higher reflection. Solar cell simulations based on PC1D showed that, with improved passivation, lower reflection, and high lifetimes, efficiency can be enhanced to match with commercially-produced PECVD SiN-coated solar cells. Keywords: Crystalline Si solar cells, Phosphoric acid spin-on doping, Screen printing, Thermal oxide passivation

  7. Solar energy thermalization and storage device

    Science.gov (United States)

    McClelland, J.F.

    A passive solar thermalization and thermal energy storage assembly which is visually transparent is described. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  8. Proof-of-Concept Testing of the Passive Cooling System (T-CLIP™) for Solar Thermal Applications at an Elevated Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Jun [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Applied Engineering and Technology; Quintana, Donald L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Applied Engineering and Technology; Vigil, Gabrielle M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Applied Engineering and Technology; Perraglio, Martin Juan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Applied Engineering and Technology; Farley, Cory Wayne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Applied Engineering and Technology; Tafoya, Jose I. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Applied Engineering and Technology; Martinez, Adam L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Applied Engineering and Technology

    2015-11-30

    The Applied Engineering and Technology-1 group (AET-1) at Los Alamos National Laboratory (LANL) conducted the proof-of-concept tests of SolarSPOT LLC’s solar thermal Temperature- Clipper, or T-CLIP™ under controlled thermal conditions using a thermal conditioning unit (TCU) and a custom made environmental chamber. The passive T-CLIP™ is a plumbing apparatus that attaches to a solar thermal collector to limit working fluid temperature and to prevent overheating, since overheating may lead to various accident scenarios. The goal of the current research was to evaluate the ability of the T-CLIP™ to control the working fluid temperature by using its passive cooling mechanism (i.e. thermosiphon, or natural circulation) in a small-scale solar thermal system. The assembled environmental chamber that is thermally controlled with the TCU allows one to simulate the various possible weather conditions, which the solar system will encounter. The performance of the T-CLIP™ was tested at two different target temperatures: 1) room temperature (70 °F) and 2) an elevated temperature (130 °F). The current test campaign demonstrated that the T-CLIP™ was able to prevent overheating by thermosiphon induced cooling in a small-scale solar thermal system. This is an important safety feature in situations where the pump is turned off due to malfunction or power outages.

  9. Ultrathin Oxide Passivation Layer by Rapid Thermal Oxidation for the Silicon Heterojunction Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Youngseok Lee

    2012-01-01

    Full Text Available It is difficult to deposit extremely thin a-Si:H layer in heterojunction with intrinsic thin layer (HIT solar cell due to thermal damage and tough process control. This study aims to understand oxide passivation mechanism of silicon surface using rapid thermal oxidation (RTO process by examining surface effective lifetime and surface recombination velocity. The presence of thin insulating a-Si:H layer is the key to get high Voc by lowering the leakage current (I0 which improves the efficiency of HIT solar cell. The ultrathin thermal passivation silicon oxide (SiO2 layer was deposited by RTO system in the temperature range 500–950°C for 2 to 6 minutes. The thickness of the silicon oxide layer was affected by RTO annealing temperature and treatment time. The best value of surface recombination velocity was recorded for the sample treated at a temperature of 850°C for 6 minutes at O2 flow rate of 3 Lpm. A surface recombination velocity below 25 cm/s was obtained for the silicon oxide layer of 4 nm thickness. This ultrathin SiO2 layer was employed for the fabrication of HIT solar cell structure instead of a-Si:H, (i layer and the passivation and tunneling effects of the silicon oxide layer were exploited. The photocurrent was decreased with the increase of illumination intensity and SiO2 thickness.

  10. Architectural design of passive solar residential building

    Directory of Open Access Journals (Sweden)

    Ma Jing

    2015-01-01

    Full Text Available This paper studies thermal environment of closed balconies that commonly exist in residential buildings, and designs a passive solar residential building. The design optimizes the architectural details of the house and passive utilization of solar energy to provide auxiliary heating for house in winter and cooling in summer. This design might provide a more sufficient and reasonable modification for microclimate in the house.

  11. Hollow ceramic block: containment of water for thermal storage in passive solar design. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Winship, C.T.

    1983-12-27

    The project activity has been the development of designs, material compositions and production procedures to manufacture hollow ceramic blocks which contain water (or other heat absorptive liquids). The blocks are designed to serve, in plurality, a dual purpose: as an unobtrusive and efficient thermal storage element, and as a durable and aesthetically appealing surface for floors and walls of passive solar building interiors. Throughout the grant period, numerous ceramic formulas have been tested for their workabilty, thermal properties, maturing temperatures and color. Blocks have been designed to have structural integrity, and textured surfaces. Methods of slip-casting and extrusion have been developed for manufacturing of the blocks. The thermal storage capacity of the water-loaded block has been demonstrated to be 2.25 times greater than that of brick and 2.03 times greater than that of concrete (taking an average of commonly used materials). Although this represents a technical advance in thermal storage, the decorative effects provided by application of the blocks lend them a more significant advantage by reducing constraints on interior design in passive solar architecture.

  12. Passive solar technology

    Energy Technology Data Exchange (ETDEWEB)

    Watson, D

    1981-04-01

    The present status of passive solar technology is summarized, including passive solar heating, cooling and daylighting. The key roles of the passive solar system designer and of innovation in the building industry are described. After definitions of passive design and a summary of passive design principles are given, performance and costs of passive solar technology are discussed. Passive energy design concepts or methods are then considered in the context of the overall process by which building decisions are made to achieve the integration of new techniques into conventional design. (LEW).

  13. In-depth investigation of spin-on doped solar cells with thermally grown oxide passivation

    Science.gov (United States)

    Ahmad, Samir Mahmmod; Cheow, Siu Leong; Ludin, Norasikin A.; Sopian, K.; Zaidi, Saleem H.

    Solar cell industrial manufacturing, based largely on proven semiconductor processing technologies supported by significant advancements in automation, has reached a plateau in terms of cost and efficiency. However, solar cell manufacturing cost (dollar/watt) is still substantially higher than fossil fuels. The route to lowering cost may not lie with continuing automation and economies of scale. Alternate fabrication processes with lower cost and environmental-sustainability coupled with self-reliance, simplicity, and affordability may lead to price compatibility with carbon-based fuels. In this paper, a custom-designed formulation of phosphoric acid has been investigated, for n-type doping in p-type substrates, as a function of concentration and drive-in temperature. For post-diffusion surface passivation and anti-reflection, thermally-grown oxide films in 50-150-nm thickness were grown. These fabrication methods facilitate process simplicity, reduced costs, and environmental sustainability by elimination of poisonous chemicals and toxic gases (POCl3, SiH4, NH3). Simultaneous fire-through contact formation process based on screen-printed front surface Ag and back surface through thermally grown oxide films was optimized as a function of the peak temperature in conveyor belt furnace. Highest efficiency solar cells fabricated exhibited efficiency of ∼13%. Analysis of results based on internal quantum efficiency and minority carried measurements reveals three contributing factors: high front surface recombination, low minority carrier lifetime, and higher reflection. Solar cell simulations based on PC1D showed that, with improved passivation, lower reflection, and high lifetimes, efficiency can be enhanced to match with commercially-produced PECVD SiN-coated solar cells.

  14. Passive solar ranch house for the mass market

    Energy Technology Data Exchange (ETDEWEB)

    Albanes, M.N.

    1981-01-01

    To promote the building of passive solar housing in the Denver metropolitan area, a solar ranch style house was designed for a builder, Unique Homes, as part of a group of thirteen passive solar houses built for the mass market under SERI's Denver Metro Home Builders Program. The project, process of design, thermal performance analysis, cost and consumer/media response are reviewed. The final design was a direct gain, attached greenhouse system that used brick as interior mass.

  15. Development of climatic zones and passive solar design in Madagascar

    International Nuclear Information System (INIS)

    Rakoto-Joseph, O.; Garde, F.; David, M.; Adelard, L.; Randriamanantany, Z.A.

    2009-01-01

    Climate classification is extremely useful to design buildings for thermal comfort purposes. This paper presents the first work for a climate classification of Madagascar Island. This classification is based on the meteorological data measured in different cities of this country. Three major climatic zones are identified. Psychometric charts for the six urban areas of Madagascar are proposed, and suited passive solar designs related to each climate are briefly discussed. Finally, a total of three passive design zones have been identified and appropriate design strategies such as solar heating, natural ventilation, thermal mass are suggested for each zone. The specificity of this work is that: it is the first published survey on the climate classification and the passive solar designs for this developing country

  16. Ultrathin Oxide Passivation Layer by Rapid Thermal Oxidation for the Silicon Heterojunction Solar Cell Applications

    OpenAIRE

    Lee, Youngseok; Oh, Woongkyo; Dao, Vinh Ai; Hussain, Shahzada Qamar; Yi, Junsin

    2012-01-01

    It is difficult to deposit extremely thin a-Si:H layer in heterojunction with intrinsic thin layer (HIT) solar cell due to thermal damage and tough process control. This study aims to understand oxide passivation mechanism of silicon surface using rapid thermal oxidation (RTO) process by examining surface effective lifetime and surface recombination velocity. The presence of thin insulating a-Si:H layer is the key to get high Voc by lowering the leakage current (I0) which improves the efficie...

  17. Application of various surface passivation layers in solar cells

    International Nuclear Information System (INIS)

    Lee, Ji Youn; Lee, Soo Hong

    2004-01-01

    In this work, we have used different techniques for surface passivation: conventional thermal oxidation (CTO), rapid thermal oxidation (RTO), and plasma-enhanced chemical vapour deposition (PECVD). The surface passivation qualities of eight different single and combined double layers have been investigated both on phosphorus non-diffused p-type Float Zone (FZ) silicon wafers and on diffused emitters (100 Ω/□ and 40 Ω/□). CTO/SiN 1 passivates very well not only on a non-diffused surface (τ eff = 1361 μs) but also on an emitter (τ eff = 414 μs). However, we concluded that RTO/SiN 1 and RTO/SiN 2 stacks were more suitable than CTO/SiN stacks for surface passivation in solar cells since those stacks had relatively good passivation qualities and suitable optical reflections. RTO/SiN 1 for rear-surface passivation and RTO/SiN 2 for front-surface passivation were applied to the fabrication of solar cells. We achieved efficiencies of 18.5 % and 18.8 % on 0.5 Ω-cm (FZ) silicon with planar and textured front surfaces, respectively. An excellent open circuit voltage (V oc ) of 675.6 mV was obtained for the planar cell.

  18. Results of the Washington Passive Solar Design/Build Competition

    Energy Technology Data Exchange (ETDEWEB)

    Nylen, N.

    1981-01-01

    In an effort to encourage the design, construction, and marketing of moderately priced passive solar homes in Washington state, the Western Solar Utilization Network (Western SUN) recently sponsored the Washington Passive Solar Design/Build Competition. The competition drew an overwhelming response from designers and builders throughout Washington. Thermal performance of the designs was evaluated by a technical review committee, and final selections were made by the Competition Jury in accordance with the following criteria: perceived market acceptance, thermal performance, cost effectiveness, simplicity of design and operation, and completeness of the passive concept. Design contract awards totaling $50,000 were made available to winners in four categories, including single and multi-family, new and remodeled residences. In order to receive the award in its entirety, winning design/build teams are required to construct their design by April, 1983. As a result of the competition, a great deal was learned about the attitudes and knowledge of professionals and the general public regarding the use of solar energy in Washington state. Among the points that will be highlighted in this paper are the following: (1) a design/build competition is an effective vehicle for promoting solar energy among professionals in the housing community as well as the general public; (2) passive solar techniques can contribute significantly to the heating and cooling needs of residential housing throughout the state of Washington; (3) there is a great deal of interest and talent among the designers and builders of solar residences in Washington; and (4) follow-up activities, including the promotion of winning designs, the systematic collection of performance data, and identification of the major obstacles confronting designers and builders of solar homes, are critical to the success of the program in achieving both its short-term and long-term goals.

  19. Solid state phase change materials for thermal energy storage in passive solar heated buildings

    Science.gov (United States)

    Benson, D. K.; Christensen, C.

    1983-11-01

    A set of solid state phase change materials was evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol, pentaglycerine and neopentyl glycol. Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature within the range from less than 25 deg to 188 deg. Thermophysical properties such as thermal conductivity, density and volumetric expansion were measured. Computer simulations were used to predict the performance of various Trombe wall designs incorporating solid state phase change materials. Optimum performance was found to be sensitive to the choice of phase change temperatures and to the thermal conductivity of the phase change material. A molecular mechanism of the solid state phase transition is proposed and supported by infrared spectroscopic evidence.

  20. Interior design for passive solar homes

    Science.gov (United States)

    Breen, J. C.

    1981-07-01

    The increasing emphasis on refinement of passive solar systems brought recognition to interior design as an integral part of passive solar architecture. Interior design can be used as a finetuning tool minimizing many of the problems associated with passive solar energy use in residential buildings. In addition, treatment of interior space in solar model homes may be a prime factor in determining sales success. A new style of interior design is evolving in response to changes in building from incorporating passive solar design features. The psychology behind passive solar architecture is reflected in interiors, and selection of interior components increasingly depends on the functional suitably of various interior elements.

  1. Interior design for passive solar homes

    Energy Technology Data Exchange (ETDEWEB)

    Breen, J. C.

    1981-07-01

    The increasing emphasis on refinement of passive solar systems has brought recognition to interior design as an integral part of passive solar architecture. Interior design can be used as a finetuning tool minimizing many of the problems associated with passive solar energy use in residential buildings. In addition, treatment of interior space in solar model homes may be a prime factor in determining sales success. A new style of interior design is evolving in response to changes in building form incorporating passive solar design features. The psychology behind passive solar architecture is reflected in interiors, and selection of interior components increasingly depends on the functional suitability of various interior elements.

  2. Use of passive solar architecture design in energy saving, Morena tourist village

    Energy Technology Data Exchange (ETDEWEB)

    Mina, M.B.

    1993-12-31

    This document deals with energy saving in buildings,more precisely in the Morena tourist village. The concept of passive solar technology is developed in villas. The first prototype enabled to have measurements of temperatures and thermal graphs. A comparison between the initial architectural design and this prototype shows the efficiency of the use of passive solar energy (energy and money saving). (TEC). 5 figs., 1 tab.

  3. Use of passive solar architecture design in energy saving, Morena tourist village

    Energy Technology Data Exchange (ETDEWEB)

    Mina, M B

    1994-12-31

    This document deals with energy saving in buildings,more precisely in the Morena tourist village. The concept of passive solar technology is developed in villas. The first prototype enabled to have measurements of temperatures and thermal graphs. A comparison between the initial architectural design and this prototype shows the efficiency of the use of passive solar energy (energy and money saving). (TEC). 5 figs., 1 tab.

  4. Thermal Stability-Enhanced and High-Efficiency Planar Perovskite Solar Cells with Interface Passivation.

    Science.gov (United States)

    Zhang, Weihai; Xiong, Juan; Jiang, Li; Wang, Jianying; Mei, Tao; Wang, Xianbao; Gu, Haoshuang; Daoud, Walid A; Li, Jinhua

    2017-11-08

    As the electron transport layer (ETL) of perovskite solar cells, oxide semiconductor zinc oxide (ZnO) has been attracting great attention due to its relatively high mobility, optical transparency, low-temperature fabrication, and good environment stability. However, the nature of ZnO will react with the patron on methylamine, which would deteriorate the performance of cells. Although many methods, including high-temperature annealing, doping, and surface modification, have been studied to improve the efficiency and stability of perovskite solar cells with ZnO ETL, devices remain relatively low in efficiency and stability. Herein, we adopted a novel multistep annealing method to deposit a porous PbI 2 film and improved the quality and uniformity of perovskite films. The cells with ZnO ETL were fabricated at the temperature of perovskite film. Interestingly, the PCE of PCBM-passivated cells could reach nearly 19.1%. To our best knowledge, this is the highest PCE value of ZnO-based perovskite solar cells until now. More importantly, PCBM modification could effectively suppress the decomposition of MAPbI 3 and improve the thermal stability of cells. Therefore, the ZnO is a promising candidate of electron transport material for perovskite solar cells in future applications.

  5. Advanced Passivation Technology and Loss Factor Minimization for High Efficiency Solar Cells.

    Science.gov (United States)

    Park, Cheolmin; Balaji, Nagarajan; Jung, Sungwook; Choi, Jaewoo; Ju, Minkyu; Lee, Seunghwan; Kim, Jungmo; Bong, Sungjae; Chung, Sungyoun; Lee, Youn-Jung; Yi, Junsin

    2015-10-01

    High-efficiency Si solar cells have attracted great attention from researchers, scientists, photovoltaic (PV) industry engineers for the past few decades. With thin wafers, surface passivation becomes necessary to increase the solar cells efficiency by overcoming several induced effects due to associated crystal defects and impurities of c-Si. This paper discusses suitable passivation schemes and optimization techniques to achieve high efficiency at low cost. SiNx film was optimized with higher transmittance and reduced recombination for using as an effective antireflection and passivation layer to attain higher solar cell efficiencies. The higher band gap increased the transmittance with reduced defect states that persisted at 1.68 and 1.80 eV in SiNx films. The thermal stability of SiN (Si-rich)/SiN (N-rich) stacks was also studied. Si-rich SiN with a refractive index of 2.7 was used as a passivation layer and N-rich SiN with a refractive index of 2.1 was used for thermal stability. An implied Voc of 720 mV with a stable lifetime of 1.5 ms was obtained for the stack layer after firing. Si-N and Si-H bonding concentration was analyzed by FTIR for the correlation of thermally stable passivation mechanism. The passivation property of spin coated Al2O3 films was also investigated. An effective surface recombination velocity of 55 cm/s with a high density of negative fixed charges (Qf) on the order of 9 x 10(11) cm(-2) was detected in Al2O3 films.

  6. Enhanced Charge Collection with Passivation Layers in Perovskite Solar Cells.

    Science.gov (United States)

    Lee, Yong Hui; Luo, Jingshan; Son, Min-Kyu; Gao, Peng; Cho, Kyung Taek; Seo, Jiyoun; Zakeeruddin, Shaik M; Grätzel, Michael; Nazeeruddin, Mohammad Khaja

    2016-05-01

    The Al2 O3 passivation layer is beneficial for mesoporous TiO2 -based perovskite solar cells when it is deposited selectively on the compact TiO2 surface. Such a passivation layer suppressing surface recombination can be formed by thermal decomposition of the perovskite layer during post-annealing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High performance passive solar heating system with heat pipe energy transfer

    NARCIS (Netherlands)

    Wit, de M.H.; Hensen, J.L.M.; Dijk, van H.A.L.; Brink, van den G.J.; Galen, van E; Ouden, den C.

    1984-01-01

    The aim of the project is to develop a passive solar heating system with a higher efficiency (regarding accumulation and transfer of solar heat into dwellings) than convential concrete thermal storage walls and with restricted extra costs for manufacturing the system. This is to be achieved by the

  8. Energy efficiency and comfort conditions in passive solar buildings: Effect of thermal mass at equatorial high altitudes

    Science.gov (United States)

    Ogoli, David Mwale

    This dissertation is based on the philosophy that architectural design should not just be a function of aesthetics, but also of energy-efficiency, advanced technologies and passive solar strategies. A lot of published literature is silent regarding buildings in equatorial highland regions. This dissertation is part of the body of knowledge that attempts to provide a study of energy in buildings using thermal mass. The objectives were to establish (1) effect of equatorial high-altitude climate on thermal mass, (2) effect of thermal mass on moderating indoor temperatures, (3) effect of thermal mass in reducing heating and cooling energy, and (4) the amount of time lag and decrement factor of thermal mass. Evidence to analyze the effect of thermal mass issues came from three sources. First, experimental physical models involving four houses were parametrically conducted in Nairobi, Kenya. Second, energy computations were made using variations in thermal mass for determining annual energy usage and costs. Third, the data gathered were observed, evaluated, and compared with currently published research. The findings showed that: (1) Equatorial high-altitude climates that have diurnal temperature ranging about 10--15°C allow thermal mass to moderate indoor temperatures; (2) Several equations were established that indicate that indoor mean radiant temperatures can be predicted from outdoor temperatures; (3) Thermal mass can reduce annual energy for heating and cooling by about 71%; (4) Time lag and decrement of 200mm thick stone and concrete thermal mass can be predicted by a new formula; (5) All windows on a building should be shaded. East and west windows when shaded save 51% of the cooling energy. North and south windows when fully shaded account for a further 26% of the cooling energy; (6) Insulation on the outside of a wall reduces energy use by about 19.6% below the levels with insulation on the inside. The basic premise of this dissertation is that decisions that

  9. Past, present and future of passive homes in solar village 3, Athens

    Science.gov (United States)

    Kalogridis, Achilles

    Solar village 3 in Pefki, Athens, was part of an ambitious program for the promotion of solar technology, applied to a large scale social housing scheme, designed in mid 80's and firstly inhabited in the early 1990's. Among the aims of the project was the demonstration of the latest of technology in active solar systems and passive techniques, incorporated in a new settlement's layout and houses' building envelop, in order to create an energy saving, comfortable environment. More than fifteen years later, the housing complex remains the largest residential development of bioclimatic "solar" architecture in Athens, with the active and passive solar systems providing space and water heating for about 1750 inhabitants. The study focuses in the passive solar systems that have been applied to a number of the buildings of the settlement. The systems provide space heating with no need of any active mechanism, however with demand of the participation of the end users for their proper operation. The essay reviews various previous studies, monitoring reports and criticisms that have appeared throughout the past years, and identifies how the houses perform today, through a recent survey, sample monitoring and thermal comfort simulation. The report records things that have changed, features which worked well or others that did not and comments on the residents' behaviour. Interesting findings come into question, regarding the passive solar systems, their integration into the building's design, their current condition and their contribution to energy savings and thermal comfort conditions. Finally, current plans concerning the future of the settlement are highlighted, and considerations about the houses sustainability are suggested.

  10. Passive solar heating

    Energy Technology Data Exchange (ETDEWEB)

    Wiberg, K

    1981-11-10

    The present work treats the possibilities for heating according to the passive solar heating method. Problems of 'spatial organization in an energy-saving society' are distinguished from among other social problems. The final delimination of the actual problems under investigation consists of the use of passive solar heating and especially the 'consequences of such solar heating exploitation upon the form and structures' of planning and construction. In the concluding chapter an applied example shows how this method can be used in designing an urban area and what are its limitations. The results indicate the possibilities and difficulties in attempting to transfer this ideal and general method into models and directives for form and structure from which examples of the actual possibilities in practical planning can be given.

  11. Thermal Feature of a Modified Solar Phase Change Material Storage Wall System

    Directory of Open Access Journals (Sweden)

    Chenglong Luo

    2018-01-01

    Full Text Available This work is to study a novel solar PCM storage wall technology, that is, a dual-channel and thermal-insulation-in-the-middle type solar PCM storage wall (MSPCMW system. The system has the following four independent functions, passive solar heating, heat preservation, heat insulation, and passive cooling, and it can agilely cope with the requirements of climatization of buildings in different seasons throughout the year and is exactly suitable for building in regions characterized by hot summer and cold winter. The present work experimentally analyzes thermal feature of the system working in summer and winter modes, respectively.

  12. A new insight into opaque envelopes in a passive solar house: Properties and roles

    International Nuclear Information System (INIS)

    Long, Linshuang; Ye, Hong; Liu, Minghou

    2016-01-01

    Highlights: • A new insight into the opaque envelopes of a passive solar house was gained. • Five parts of envelopes, i.e., roof, south/east/west/north walls, were discussed. • Each part of envelopes were analyzed separately rather than treated as a whole. • Ideal properties of materials for each envelope are diverse from one another. • Differences are related to the envelopes’ leading roles as a heater or a cooler. - Abstract: Passive solar houses are effective solutions for minimizing the operating energy of buildings. The building envelopes of passive solar houses exert a significant influence on the degree of indoor thermal comfort. The focus of this study was the construction of high-performance opaque envelopes, i.e., the roof and walls, for a passive solar house, and a new conception of the envelopes from the perspective of the relation between the properties and roles was provided. The discussion was conducted based on a comprehensive range of envelope materials that were distinguished by the thermal conductivity and volumetric heat capacity. For the first time, each part of the envelopes was analyzed separately rather than considered as an entire envelope. By analyzing each envelope individually, the optimum properties of each envelope were found to be distinct from each other. The distinctions are determined by the dominant role of each envelope, which is associated with the location and absorbed solar irradiation. For summer or hot climate applications, when the dominant role is a cooler, the envelope, e.g., the south wall, should consist of materials with high thermal conductivity and large heat capacity; if a heater is the dominant role, the envelope, e.g., the roof, should consist of materials with low thermal conductivity. For winter or cold climate applications, the envelopes with a leading role of a heater or a cooler require materials with high or low thermal conductivity, respectively. Under the guidance of the results, a discussion

  13. Design, fabrication and performance of a hybrid photovoltaic/thermal (PV/T) active solar still

    International Nuclear Information System (INIS)

    Kumar, Shiv; Tiwari, Arvind

    2010-01-01

    Two solar stills (single slope passive and single slope photovoltaic/thermal (PV/T) active solar still) were fabricated and tested at solar energy park, IIT New Delhi (India) for composite climate. Photovoltaic operated DC water pump was used between solar still and photovoltaic (PV) integrated flat plate collector to re-circulate the water through the collectors and transfer it to the solar still. The newly designed hybrid (PV/T) active solar still is self-sustainable and can be used in remote areas, need to transport distilled water from a distance and not connected to grid, but blessed with ample solar energy. Experiments were performed for 0.05, 0.10, and 0.15 m water depth, round the year 2006-2007 for both the stills. It has been observed that maximum daily yield of 2.26 kg and 7.22 kg were obtained from passive and hybrid active solar still, respectively at 0.05 m water depth. The daily yield from hybrid active solar still is around 3.2 and 5.5 times higher than the passive solar still in summer and winter month, respectively. The study has shown that this design of the hybrid active solar still also provides higher electrical and overall thermal efficiency, which is about 20% higher than the passive solar still.

  14. A passive solar heater-refrigerator

    International Nuclear Information System (INIS)

    D'Isep, F.; Sertorio, L.

    1983-01-01

    In this paper it is studied the nonequilibrium thermodynamic steady-state behaviour of a model system representing a core surrounded by an envelope in which the envelope interacts with the solar radiation and with an external bath having a given temperature profile. The heat flow between core and envelope can be controlled by varying the thermal conductivity of their interface. It is shown that this system acts as a passive heat pump raising the core average temperature with respect to the average equilibrium value corresponding to a fixed value of the interface conductivity, at the same time flattening its oscillation in time. By changing the time dependence of the conductivity the system vice versa acts as a refrigerator. It is shown how the limits of this performance depend on the passive parameters such as surfaces, conductivities, heat capacities. The periodicity considered in this study is the daily cycle

  15. Performance of passive solar and energy conserving houses in California

    Science.gov (United States)

    Mahajan, S.; Newcomb, C.; Shea, M.; Mort, D.

    1983-11-01

    This report provides a technical description of the methodology and the results of a two year effort to collect field data on the performance of passive solar and energy conserving houses in California. Sixty-three passive solar houses were visited and several hours were spent with the homeowner obtaining building details, management procedures, architectural plans, photographs, and at least a year of billing data. With this information thermal performance parameters were calculated for each of the houses. Eleven of the above sixty-three Class C sites (nine passive solar and two energy conserving houses) were instrumented and monitored using the SERI Class B methodology as a guideline. Continuous data were collected for one year using up to 18 different sensors to measure temperatures, electric power, insolation, and the status of fans, gas burners, and moveable insulation. In addition careful one time measurements were made to determine the loss coefficient, infiltration rate, and furnace efficiency. Analysis of this data giving comfort conditions maintained and energy uses for a complete heating and cooling season for each of the houses is presented.

  16. Passive Q switching of a solar-pumped Nd:YAG laser.

    Science.gov (United States)

    Lando, M; Shimony, Y; Noter, Y; Benmair, R M; Yogev, A

    2000-04-20

    Passive Q switching is a preferable choice for switching the Q factor of a solar-pumped laser because it requires neither a driver nor an electrical power supply. The superior thermal characteristics and durability of Cr(4+):YAG single crystals as passive Q switches for lamp and diode-pumped high-power lasers has been demonstrated. Here we report on an average power of 37 W and a switching efficiency of 80% obtained by use of a solar-pumped Nd:YAG laser Q switched by a Cr(4+):YAG saturable absorber. Concentration of the pumping solar energy on the laser crystal was obtained with a three-stage concentrator, composed of 12 heliostats, a three-dimensional compound parabolic concentrator (CPC) and a two-dimensional CPC. The water-cooled passive Q switch also served as the laser rear mirror. Repetition rates of as much as 50 kHz, at pulse durations between 190 and 310 ns (FWHM) were achieved. From the experimental results, the saturated single-pass power absorption of the Cr(4+):YAG device was estimated as 3 ? 1%.

  17. THE USE OF PASSIVE SOLAR HEATING SYSTEMS AS PART OF THE PASSIVE HOUSE

    Directory of Open Access Journals (Sweden)

    Bryzgalin Vladislav Viktorovich

    2018-05-01

    Full Text Available Subject: systems of passive solar heating, which can, without the use of engineering equipment, capture and accumulate the solar heat used for heating buildings. Research objectives: study of the possibility to reach the passive house standard (buildings with near zero energy consumption for heating in climatic conditions of Russia using the systems of passive solar heating in combination with other solutions for reduction of energy costs of building developed in the past. Materials and methods: search and analysis of literature, containing descriptions of various passive solar heating systems, examples of their use in different climatic conditions and the resulting effect obtained from their use; analysis of thermophysical processes occurring in these systems. Results: we revealed the potential of using the solar heating systems in the climatic conditions of parts of the territories of the Russian Federation, identified the possibility of cheaper construction by the passive house standard with the use of these systems. Conclusions: more detailed analysis of thermophysical and other processes that take place in passive solar heating systems is required for creation of their computational models, which will allow us to more accurately predict their effectiveness and seek the most cost-effective design solutions, and include them in the list of means for achieving the passive house standard.

  18. Thermal Feature of a Modified Solar Phase Change Material Storage Wall System

    OpenAIRE

    Luo, Chenglong; Xu, Lijie; Ji, Jie; Liao, Mengyin; Sun, Dan

    2018-01-01

    This work is to study a novel solar PCM storage wall technology, that is, a dual-channel and thermal-insulation-in-the-middle type solar PCM storage wall (MSPCMW) system. The system has the following four independent functions, passive solar heating, heat preservation, heat insulation, and passive cooling, and it can agilely cope with the requirements of climatization of buildings in different seasons throughout the year and is exactly suitable for building in regions characterized by hot sum...

  19. CVD-Based Valence-Mending Passivation for Crystalline-Si Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Meng [Arizona State Univ., Mesa, AZ (United States)

    2015-03-01

    The objective of this project is to investigate a new surface passivation technique, valence-mending passivation, for its applications in crystalline-Si solar cells to achieve significant efficiency improvement and cost reduction. As the enabling technique, the project includes the development of chemical vapor deposition recipes to passivate textured Si(100) and multicrystalline-Si surfaces by sulfur and the characterization of the passivated Si surfaces, including thermal stability, Schottky barrier height, contact resistance and surface recombination. One important application is to replace the Ag finger electrode in Si cells with Al to reduce cost, by ~$0.1/Wp, and allow terawatt-scale deployment of crystalline-Si solar cells. These all-Al Si cells require a low-temperature metallization process for the Al electrode, to be compatible with valence-mending passivation and to prevent Al diffusion into n-type Si. Another application is to explore valence-mending passivation of grain boundaries in multicrystalline Si by diffusing sulfur into grain boundaries, to reduce the efficiency gas between monocrystalline-Si solar cells and multicrystalline-Si cells. The major accomplishments of this project include: 1) Demonstration of chemical vapor deposition processes for valence-mending passivation of both monocrystalline Si(100) and multicrystalline Si surfaces. Record Schottky barriers have been demonstrated, with the new record-low barrier of less than 0.08 eV between Al and sulfur-passivated n-type Si(100) and the new record-high barrier of 1.14 eV between Al and sulfur-passivated p-type Si(100). On the textured p-type monocrystalline Si(100) surface, the highest barrier with Al is 0.85 eV by valence-mending passivation. 2) Demonstration of a low-temperature metallization process for Al in crystalline-Si solar cells. The new metallization process is based on electroplating of Al in a room-temperature ionic liquid. The resistivity of the electroplated Al is ~7×10–6

  20. On the Modern History of Passive Solar Architecture

    DEFF Research Database (Denmark)

    Marsh, Rob

    2017-01-01

    This article examines the paradox of passive solar architecture within the Nordic context of Denmark, Norway and Sweden. Regulative developments to reduce space heating demand since the 1970s oil crisis are explored, highlighting architectural responses and the rise in prom-inence of passive solar...... design. An empirical study of passive solar housing schemes docu-ments architectural strategy, energy savings and extensive problems with overheating. A theo-retical study examines how passive solar was seen as advantageous when viewed with the 1985-2005 space heating paradigm, but actually resulted...... of Nordic modernism meant that passive solar architecture became the de-facto visual, aesthetic and functional expression of environmental design at that time. The article concludes by explor-ing the implications of the environmental paradigm for the architectural profession. By positing the architectural...

  1. Protocol Monitoring Passive Solar Energy. Background document

    International Nuclear Information System (INIS)

    Van den Ham, E.R.

    1998-01-01

    A method has been developed by means of which the contribution of passive solar energy to the Dutch energy balance can be quantified univocally. The monitoring will be directed at the absolute amount of used solar energy, the relative contribution of passive solar energy to the energy demand in the Netherlands, and the average efficiency of passive solar energy systems. Based on a model of the total building stock the quantities to be monitored can be determined. The most important parameters in the model are: the window surface per orientation, the average U-value (heat transfer coefficient) of windows, the average ZTA-value (incoming solar radiation factor) of windows, and the presence of sun lounges and atriums

  2. Solar '95: Proceedings of the 20. national passive solar conference. Volume 20

    International Nuclear Information System (INIS)

    Campbell-Howe, R.; Wilkins-Crowder, B.

    1995-01-01

    This book contains the proceedings of the 20th National Passive Solar Conference, 1995, of the American Solar Energy Society. The topics of the papers include historical aspects of solar energy, daylighting, examination of passive system designs, sustainability concepts, building components, building design, application of solar architecture, case studies, education, and design tools

  3. Analytical optimization of interior PCM for energy storage in a lightweight passive solar room

    International Nuclear Information System (INIS)

    Xiao Wei; Wang Xin; Zhang Yinping

    2009-01-01

    Lightweight envelopes are widely used in modern buildings but they lack sufficient thermal capacity for passive solar utilization. An attractive solution to increase the building thermal capacity is to incorporate phase change material (PCM) into the building envelope. In this paper, a simplified theoretical model is established to optimize an interior PCM for energy storage in a lightweight passive solar room. Analytical equations are presented to calculate the optimal phase change temperature and the total amount of latent heat capacity and to estimate the benefit of the interior PCM for energy storage. Further, as an example, the analytical optimization is applied to the interior PCM panels in a direct-gain room with realistic outdoor climatic conditions of Beijing. The analytical results agree well with the numerical results. The analytical results show that: (1) the optimal phase change temperature depends on the average indoor air temperature and the radiation absorbed by the PCM panels; (2) the interior PCM has little effect on average indoor air temperature; and (3) the amplitude of the indoor air temperature fluctuation depends on the product of surface heat transfer coefficient h in and area A of the PCM panels in a lightweight passive solar room.

  4. High performance passive solar heating system with heat pipe energy transfer and latent heat storage

    NARCIS (Netherlands)

    Dijk, van H.A.L.; Galen, van E; Hensen, J.L.M.; Wit, de M.H.

    1983-01-01

    Preliminar results are reported from a current project on the development of a high performance passive solar heating system. Two special components are introduced: a. A heat pipe as a thermal diode tube for the efficient transfer of collected solar heat from the absorber plate to behind an

  5. Comprehensive Planning for Passive Solar Architectural Retrofit

    Science.gov (United States)

    1980-05-01

    technical information, and the natural environ- ment. Since the Air Force Energy plan stresses Passive Solar (Architecture) before using Active Solar...retrofitted by-1990, and the Air Force Energy Plan stresses Passive Solar Applications. Bdcause of this requirement, you must consider the following retrofit...OF THI SUN AT NOON ON O CUMIN 21 EXAWMKU[ AT 3M. AN I S - W Figure 12-4 12-3 Skylight- use a reflector ,with horizontal skylights to ,iincrease solar

  6. Protocol Monitoring Passive Solar Energy

    International Nuclear Information System (INIS)

    Van den Ham, E.R.; Bosselaar, L.

    1998-01-01

    A method has been developed by means of which the contribution of passive solar energy to the Dutch energy balance can be quantified univocally. The contribution was 57 PJ in 1990 and also 57 PJ in 1995. The efficiency of passive solar energy systems increased from -31.5% to -28.1% in the period 1990-1995, mainly as a result of the use of extra insulating glazing. As a result of the reduction of energy consumption for heating in houses it is expected that the extra contribution of 2 PJ will not be realized in the year 2010. It is suggested that the method to determine the absolute contribution of passive solar energy to the energy demand of dwellings is to be included in the protocol monitoring renewable energy. For the method to be included in the energy statistics of Statistics Netherlands (CBS) it can be considered only to take into account the difference compared to 1990. 11 refs

  7. Performance of a desiccant assisted packed bed passive solar dryer for copra processing

    Directory of Open Access Journals (Sweden)

    Padmanaban Govindarajulu

    2017-01-01

    Full Text Available In this paper, the performance of a novel desiccant assisted packed bed passive solar dryer was evaluated for copra processing and compared with conventional passive solar dryer. This novel solar dryer consists of a desiccant assisted packed bed solar air heater attached with a dryer cabin. The desiccant and phase change materials packed in the solar air heater has control the humidity and retains the heat for longer duration, respectively. The performance of the dryer was evaluated (in terms of drying time to attain the final equilibrium moisture content, drying rate, specific moisture extraction rate, pick-up efficiency, and dryer efficiency under the meteorological conditions of Coimbatore city in India during March and April 2016. The copra was dried from initial moisture content (wet basis of about 52% to the final moisture content (wet basis of about 8% in 62 hours with specific moisture extraction rate of 0.82 kg/kWh. The drying time was reduced by about 44 hours when compared to the conventional passive solar dryer. The dryer pick-up efficiency was varied between about 10% and 65%. The average dryer thermal efficiency was calculated to be about 32%. The quality of final dried product was found to be good.

  8. Passive solar offices: integrated design

    Energy Technology Data Exchange (ETDEWEB)

    Evans, B

    1992-05-06

    Passive solar design in out-of-town offices can remove the need for air-conditioning by making greater use of daylight and natural ventilation. To promote the use of passive solar energy a series of design studies are being run by the Energy Technology Support Unit on behalf of the Department of Energy. The three reported here are designs for out-of-town business buildings. Each is a hypothetical building designed to a realistic brief for an organisation taking the role of real client. (author).

  9. Structural evolution of tunneling oxide passivating contact upon thermal annealing.

    Science.gov (United States)

    Choi, Sungjin; Min, Kwan Hong; Jeong, Myeong Sang; Lee, Jeong In; Kang, Min Gu; Song, Hee-Eun; Kang, Yoonmook; Lee, Hae-Seok; Kim, Donghwan; Kim, Ka-Hyun

    2017-10-16

    We report on the structural evolution of tunneling oxide passivating contact (TOPCon) for high efficient solar cells upon thermal annealing. The evolution of doped hydrogenated amorphous silicon (a-Si:H) into polycrystalline-silicon (poly-Si) by thermal annealing was accompanied with significant structural changes. Annealing at 600 °C for one minute introduced an increase in the implied open circuit voltage (V oc ) due to the hydrogen motion, but the implied V oc decreased again at 600 °C for five minutes. At annealing temperature above 800 °C, a-Si:H crystallized and formed poly-Si and thickness of tunneling oxide slightly decreased. The thickness of the interface tunneling oxide gradually decreased and the pinholes are formed through the tunneling oxide at a higher annealing temperature up to 1000 °C, which introduced the deteriorated carrier selectivity of the TOPCon structure. Our results indicate a correlation between the structural evolution of the TOPCon passivating contact and its passivation property at different stages of structural transition from the a-Si:H to the poly-Si as well as changes in the thickness profile of the tunneling oxide upon thermal annealing. Our result suggests that there is an optimum thickness of the tunneling oxide for passivating electron contact, in a range between 1.2 to 1.5 nm.

  10. Demonstration of Passive Fuel Cell Thermal Management Technology

    Science.gov (United States)

    Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony; Wynne, Robert; Miller, Michael; Meyer, Al; Smith, William

    2012-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.

  11. Passive solar energy information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1980-11-01

    The results of a series of telephone interviews with groups of users of information on passive solar heating and cooling are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from seven passive groups respondents are analyzed in this report: Federally Funded Researchers, Manufacturer Representatives, Architects, Builders, Educators, Cooperative Extension Service County Agents, and Homeowners. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  12. Photovoltaic. Solar thermal. Solar thermal electricity

    International Nuclear Information System (INIS)

    2009-01-01

    The year 2008 was excellent for solar energy in the European Union. The growth of the installed capacity for photovoltaic was +159% (it means +4747.018 MW) to reach 9689.952 MW and that for solar thermal was +51.5% (it means +3172.5 MW) to reach 19982.7 MW. Worldwide concentrated solar thermal capacity stood at 679 MW in 2009, while this figure may seem low, the sector has a promising future ahead of it. (A.C.)

  13. Compact, semi-passive beam steering prism array for solar concentrators.

    Science.gov (United States)

    Zheng, Cheng; Li, Qiyuan; Rosengarten, Gary; Hawkes, Evatt; Taylor, Robert A

    2017-05-10

    In order to maximize solar energy utilization in a limited space (e.g., rooftops), solar collectors should track the sun. As an alternative to rotational tracking systems, this paper presents a compact, semi-passive beam steering prism array which has been designed, analyzed, and tested for solar applications. The proposed prism array enables a linear concentrator system to remain stationary so that it can integrate with a variety of different solar concentrators, and which should be particularly useful for systems which require a low profile (namely rooftop-mounted systems). A case study of this prism array working within a specific rooftop solar collector demonstrates that it can boost the average daily optical efficiency of the collector by 32.7% and expand its effective working time from 6 h to 7.33 h. Overall, the proposed design provides an alternative way to "follow" the sun for a wide range of solar thermal and photovoltaic concentrator systems.

  14. Field Measurement and Evaluation of the Passive and Active Solar Heating Systems for Residential Building Based on the Qinghai-Tibetan Plateau Case

    Directory of Open Access Journals (Sweden)

    Zhijian Liu

    2017-10-01

    Full Text Available Passive and active solar heating systems have drawn much attention and are widely used in residence buildings in the Qinghai-Tibetan plateau due to its high radiation intensity. In fact, there is still lack of quantitative evaluation of the passive and active heating effect, especially for residential building in the Qinghai-Tibetan plateau areas. In this study, three kinds of heating strategies, including reference condition, passive solar heating condition and active solar heating condition, were tested in one demonstration residential building. The hourly air temperatures of each room under different conditions were obtained and analyzed. The results show the indoor air temperature in the living room and bedrooms (core zones was much higher than that of other rooms under both passive and active solar heating conditions. In addition, the heating effect with different strategies for core zones of the building was evaluated by the ratio of indoor and outdoor degree hour, which indicates that solar heating could effectively reduce the traditional energy consumption and improve the indoor thermal environment. The passive solar heating could undertake 49.8% degree hours for heating under an evaluation criterion of 14 °C and the active solar heating could undertake 75% degree hours for heating under evaluation criterion of 18 °C, which indicated that solar heating could effectively reduce the traditional energy consumption and improve the indoor thermal environment in this area. These findings could provide reference for the design and application of solar heating in similar climate areas.

  15. Wallboard with Latent Heat Storage for Passive Solar Applications; TOPICAL

    International Nuclear Information System (INIS)

    Kedl, R.J.

    2001-01-01

    Conventional wallboard impregnated with octadecane paraffin[melting point-23 C (73.5 F)] is being developed as a building material with latent heat storage for passive solar and other applications. Impregnation was accomplished simply by soaking the wallboard in molten wax. Concentrations of wax in the combined product as high as 35% by weight can be achieved. Scale-up of the soaking process, from small laboratory samples to full-sized 4- by 8-ft sheets, has been successfully accomplished. The required construction properties of wallboard are maintained after impregnation, that is, it can be painted and spackled. Long-term, high-temperature exposure tests and thermal cycling tests showed no tendency of the paraffin to migrate within the wallboard, and there was no deterioration of thermal energy storage capacity. In support of this concept, a computer model was developed to handle thermal transport and storage by a phase change material (PCM) dispersed in a porous media. The computer model was confirmed by comparison with known analytical solutions and also by comparison with temperatures measured in wallboard during an experimentally generated thermal transient. Agreement between the model and known solution was excellent. Agreement between the model and thermal transient was good, only after the model was modified to allow the PCM to melt over a temperature range, rather than at a specific melting point. When the melting characteristics of the PCM (melting point, melting range, and heat of fusion), as determined from a differential scanning calorimeter plot, were used in the model, agreement between the model and transient data was very good. The confirmed computer model may now be used in conjunction with a building heating and cooling code to evaluate design parameters and operational characteristics of latent heat storage wallboard for passive solar applications

  16. Proceedings of the 18th national passive solar conference. Volume 18

    International Nuclear Information System (INIS)

    Burley, S.; Arden, M.E.

    1993-01-01

    The American Solar Energy Society conducts the National Solar Energy Conference as an annual forum for exchange of information about advances in solar energy technologies, programs, and concepts. The SOLAR 93 conference presented papers on the following topics: passive design tools; passive performance; building case studies; passive components, construction and glazing; daylighting; passive cooling; sustainability theory; sustainability projects; vernacular architecture; emerging architecture; and education. A total of forty-nine papers were indexed separately for the data base

  17. Approach to interior design for passive direct gain solar homes

    Energy Technology Data Exchange (ETDEWEB)

    Kachadorian, C.C.

    1980-01-01

    In response to requests from buyers and builders of direct gain passive solar homes interior design criteria either specific to, or emphasized by, passive solar buildings are investigated. Problems of high sunlight penetration, secondary illumination, material selection, sound control and psychology are approached. Material deterioration, fading, glare, noise, and a sense of spacial confinement can be minimized, contributing to the appeal and saleability of passive solar homes.

  18. Passivated emitters in silicon solar cells

    International Nuclear Information System (INIS)

    King, R.R.; Gruenbaum, P.E.; Sinton, R.A.; Swanson, R.M.

    1990-01-01

    In high-efficiency silicon solar cells with low metal contact coverage fractions and high bulk lifetimes, cell performance is often dominated by recombination in the oxide-passivated diffusions on the cell surface. Measurements of the emitter saturation current density, J o , of oxide-passivated, boron and phosphorus diffusions are presented, and from these measurements, the dependence of surface recombination velocity on dopant concentration was extracted. The lowest observed values of J o which are stable under UV light are given for both boron- and phosphorus-doped, oxide-passivated diffusions, for both textured and untextured surfaces. Contour plots which incorporate the above data have been applied to two types of backside-contact solar cells with large area (37.5 cm 2 ) and one-sun efficiencies up to 22.7%

  19. Passive solar design strategies: Remodeling guidelines for conserving energy at home

    Science.gov (United States)

    The idea of passive solar is simple, but applying it effectively does require information and attention to the details of design and construction. Some passive solar techniques are modest and low-cost, and require only small changes in remodeler's typical practice. At the other end of the spectrum, some passive solar systems can almost eliminate a house's need for purchased heating (and in some cases, cooling) energy - but probably at a relatively high first cost. In between are a broad range of energy-conserving passive solar techniques. Whether or not they are cost-effective, practical, and attractive enough to offer a market advantage to any individual remodeler depends on very specific factors such as local costs, climate, and market characteristics. Passive Solar Design Strategies: Remodeling Guidelines For Conserving Energy At Home is written to help give remodelers the information they need to make these decisions. Passive Solar Design Strategies is a package in three basic parts: the guidelines contain information about passive solar techniques and how they work, and provides specific examples of systems which will save various percentages of energy; the worksheets offer a simple, fill-in-the-blank method to pre-evaluate the performance of a specific design; and the worked example demonstrates how to complete the worksheets for a typical residence.

  20. Development of a solar thermal storage system suitable for the farmhouse heating in northeast China

    Energy Technology Data Exchange (ETDEWEB)

    Jang, M.K. [Shenyang Agricultural Univ., Shenyang (China)

    2010-07-01

    This study reported on the performance of a passive solar radiant floor heating system designed for standard energy-saving farmhouses in northeast China. Weather data in the region was analyzed in terms of solar radiation, temperature, humidity and light levels. The heating characteristics of the building materials such as windows, doors, walls and roofs were also analyzed along with the indoor thermal environment of the farmhouse. The heating load was then calculated along with the size of the thermal storage element and the area of the collector element. The passive solar radiant floor heating system was designed for heating during the winter and cooling in summer. According to the results, the heating characteristics of the system have the potential to improve farming villages environment and the use of renewable energy.

  1. Solar Thermal Upper Stage Cryogen System Engineering Checkout Test

    Science.gov (United States)

    Olsen, A. D; Cady, E. C.; Jenkins, D. S.

    1999-01-01

    The Solar Thermal Upper Stage technology (STUSTD) program is a solar thermal propulsion technology program cooperatively sponsored by a Boeing led team and by NASA MSFC. A key element of its technology program is development of a liquid hydrogen (LH2) storage and supply system which employs multi-layer insulation, liquid acquisition devices, active and passive thermodynamic vent systems, and variable 40W tank heaters to reliably provide near constant pressure H2 to a solar thermal engine in the low-gravity of space operation. The LH2 storage and supply system is designed to operate as a passive, pressure fed supply system at a constant pressure of about 45 psia. During operation of the solar thermal engine over a small portion of the orbit the LH2 storage and supply system propulsively vents through the enjoy at a controlled flowrate. During the long coast portion of the orbit, the LH2 tank is locked up (unvented). Thus, all of the vented H2 flow is used in the engine for thrust and none is wastefully vented overboard. The key to managing the tank pressure and therefore the H2 flow to the engine is to manage and balance the energy flow into the LH2 tank with the MLI and tank heaters with the energy flow out of the LH2 tank through the vented H2 flow. A moderate scale (71 cu ft) LH2 storage and supply system was installed and insulated at the NASA MSFC Test Area 300. The operation of the system is described in this paper. The test program for the LH2 system consisted of two parts: 1) a series of engineering tests to characterize the performance of the various components in the system: and 2) a 30-day simulation of a complete LEO and GEO transfer mission. This paper describes the results of the engineering tests, and correlates these results with analytical models used to design future advanced Solar Orbit Transfer Vehicles.

  2. Stable High-Performance Perovskite Solar Cells via Grain Boundary Passivation

    KAUST Repository

    Niu, Tianqi

    2018-03-12

    The trap states at grain boundaries (GBs) within polycrystalline perovskite films deteriorate their optoelectronic properties, making GB engineering particularly important for stable high-performance optoelectronic devices. It is demonstrated that trap states within bulk films can be effectively passivated by semiconducting molecules with Lewis acid or base functional groups. The perovskite crystallization kinetics are studied using in situ synchrotron-based grazing-incidence X-ray scattering to explore the film formation mechanism. A model of the passivation mechanism is proposed to understand how the molecules simultaneously passivate the Pb-I antisite defects and vacancies created by under-coordinated Pb atoms. In addition, it also explains how the energy offset between the semiconducting molecules and the perovskite influences trap states and intergrain carrier transport. The superior optoelectronic properties are attained by optimizing the molecular passivation treatments. These benefits are translated into significant enhancements of the power conversion efficiencies to 19.3%, as well as improved environmental and thermal stability of solar cells. The passivated devices without encapsulation degrade only by ≈13% after 40 d of exposure in 50% relative humidity at room temperature, and only ≈10% after 24 h at 80 °C in controlled environment.

  3. Energy balance in a passive solar building. An attempt at economic assessment

    Directory of Open Access Journals (Sweden)

    Sobczyk Wiktoria

    2016-01-01

    Full Text Available The paper emphasizes possibilities for substantially reducing energy consumption with modern ecofriendly buildings. Passive building construction is a sector of the construction industry that has extremely low demand for the energy for heating house interiors. A passive house requires a small amount of energy to provide thermal comfort, but it requires proper systems (HRU, heat pumps, solar collectors to accomplish that effect. The modification proposal presented in the paper has dramatically reduced the demand for heat capacity of the building. Unfortunately the passive standard has not been reached, but thermomodernisation would allow for a significant reduction of heating costs. The demand per 1 m2 of heated surface area in a traditional building was 41.9 W/m2, while after the modification – only 15.01 W/m2. The tested building, if located in a warmer climate, with an average outside temperature of ≥ -10ºC would certainly perform its function. The use of modern technology ensures high energy savings. Such solutions, however, are not the cheapest on the market, and therefore are less available. The construction of a passive solar buildings is a “green” investment with tangible environmental results. By ensuring the thermomodernisation of a traditional building we can enjoy real environmental and economic benefits.

  4. Solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  5. Advanced phase change materials and systems for solar passive heating and cooling of residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Salyer, I.O.; Sircar, A.K.; Dantiki, S.

    1988-01-01

    During the last three years under the sponsorship of the DOE Solar Passive Division, the University of Dayton Research Institute (UDRI) has investigated four phase change material (PCM) systems for utility in thermal energy storage for solar passive heating and cooling applications. From this research on the basis of cost, performance, containment, and environmental acceptability, we have selected as our current and most promising series of candidate phase change materials, C-15 to C-24 linear crystalline alkyl hydrocarbons. The major part of the research during this contract period was directed toward the following three objectives. Find, test, and develop low-cost effective phase change materials (PCM) that melt and freeze sharply in the comfort temperature range of 73--77{degree}F for use in solar passive heating and cooling of buildings. Define practical materials and processes for fire retarding plasterboard/PCM building products. Develop cost-effective methods for incorporating PCM into building construction materials (concrete, plasterboard, etc.) which will lead to the commercial manufacture and sale of PCM-containing products resulting in significant energy conservation.

  6. Hydrogen passivation of polycrystalline Si thin film solar cells

    International Nuclear Information System (INIS)

    Gorka, Benjamin

    2010-01-01

    found for poly-Si with largest grains and coincides with best solar cell results, obtained after rapid thermal annealing and hydrogen passivation. Hydrogen passivation of poly-Si films was successfully achieved with a parallel plate rf H plasma treatment at elevated temperatures around 500 C to 600 C. Yet it seems that treatment induced defect generation causes a loss in V OC with prolonged passivation time and should be minimized. In order to achieve high open circuit voltages larger than 450 mV, in addition to hydrogen passivation, low recombination at the interfaces becomes more and more important. (orig.)

  7. Passive solar design strategies: Remodeling guidelines for conserving energy at home

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The idea of passive solar is simple, but applying it effectively does require information and attention to the details of design and construction. Some passive solar techniques are modest and low-cost, and require only small changes in remodeler's typical practice. At the other end of the spectrum, some passive solar systems can almost eliminate a house's need for purchased heating (and in some cases, cooling) energy -- but probably at a relatively high first cost. In between are a broad range of energy-conserving passive solar techniques. Whether or not they are cost-effective, practical and attractive enough to offer a market advantage to any individual remodeler depends on very specific factors such as local costs, climate, and market characteristics. Passive solar design strategies: Remodeling Guidelines For Conserving Energy At Homes is written to help give remodelers the information they need to make these decisions. Passive Solar Design Strategies is a package in three basic parts: The Guidelines contain information about passive solar techniques and how they work, and provides specific examples of systems which will save various percentages of energy; The Worksheets offer a simple, fill-in-the-blank method to pre-evaluate the performance of a specific design; The Worked Example demonstrates how to complete the worksheets for a typical residence.

  8. Surface Passivation for Silicon Heterojunction Solar Cells

    NARCIS (Netherlands)

    Deligiannis, D.

    2017-01-01

    Silicon heterojunction solar cells (SHJ) are currently one of the most promising solar cell technologies in the world. The SHJ solar cell is based on a crystalline silicon (c-Si) wafer, passivated on both sides with a thin intrinsic hydrogenated amorphous silicon (a-Si:H) layer. Subsequently, p-type

  9. Solar thermal barometer

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    After the bad year of 2002, the european solar thermal market returned to double-digit growth rate in 2003: 22%. Nevertheless, the sector still has not recovered the growth rate it had in the early 2000 and European Commission targets are still far from being reached. This paper presents the thermal solar industry barometer. Data on the evolution of annually installed surfaces in the european union since 1993, the cumulated capacity of thermal collectors installed in the European Union, the estimation of the annual energy production associated to european solar thermal capacities and the main companies of the European Union thermal solar sector are presented and discussed. (A.L.B.)

  10. Efficiency improvement of multicrystalline silicon solar cells after surface and grain boundaries passivation using vanadium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Derbali, L., E-mail: rayan.slat@yahoo.fr [Photovoltaiec Laboratory, Research and Technology Center of Energy, Technopole de Borj-Cedria, BP 95, Hammam-Lif 2050 (Tunisia); Ezzaouia, H. [Photovoltaiec Laboratory, Research and Technology Center of Energy, Technopole de Borj-Cedria, BP 95, Hammam-Lif 2050 (Tunisia)

    2012-08-01

    Highlights: Black-Right-Pointing-Pointer Evaporation of vanadium pentoxide onto the front surface leads to reduce the surface reflectivity considerably. Black-Right-Pointing-Pointer An efficient surface passivation can be obtained after thermal treatment of obtained films. Black-Right-Pointing-Pointer Efficiency of the obtained solar cells has been improved noticeably after thermal treatment of deposited thin films. - Abstract: The aim of this work is to investigate the effect of vanadium oxide deposition onto the front surface of multicrystalline silicon (mc-Si) substrat, without any additional cost in the fabrication process and leading to an efficient surface and grain boundaries (GBs) passivation that have not been reported before. The lowest reflectance of mc-Si coated with vanadium oxide film of 9% was achieved by annealing the deposited film at 600 Degree-Sign C. Vanadium pentoxide (V{sub 2}O{sub 5}) were thermally evaporated onto the surface of mc-Si substrates, followed by a short annealing duration at a temperature ranging between 600 Degree-Sign C and 800 Degree-Sign C, under O{sub 2} atmosphere. The chemical composition of the films was analyzed by means of Fourier transform infrared spectroscopy (FTIR). Surface and cross-section morphology were determined by atomic force microscope (AFM) and a scanning electron microscope (SEM), respectively. The deposited vanadium oxide thin films make the possibility of combining in one processing step an antireflection coating deposition along with efficient surface state passivation, as compared to a reference wafer. Silicon solar cells based on untreated and treated mc-Si wafers were achieved. We showed that mc-silicon solar cells, subjected to the above treatment, have better short circuit currents and open-circuit voltages than those made from untreated wafers. Thus, the efficiency of obtained solar cells has been improved.

  11. Efficiency improvement of multicrystalline silicon solar cells after surface and grain boundaries passivation using vanadium oxide

    International Nuclear Information System (INIS)

    Derbali, L.; Ezzaouia, H.

    2012-01-01

    Highlights: ► Evaporation of vanadium pentoxide onto the front surface leads to reduce the surface reflectivity considerably. ► An efficient surface passivation can be obtained after thermal treatment of obtained films. ► Efficiency of the obtained solar cells has been improved noticeably after thermal treatment of deposited thin films. - Abstract: The aim of this work is to investigate the effect of vanadium oxide deposition onto the front surface of multicrystalline silicon (mc-Si) substrat, without any additional cost in the fabrication process and leading to an efficient surface and grain boundaries (GBs) passivation that have not been reported before. The lowest reflectance of mc-Si coated with vanadium oxide film of 9% was achieved by annealing the deposited film at 600 °C. Vanadium pentoxide (V 2 O 5 ) were thermally evaporated onto the surface of mc-Si substrates, followed by a short annealing duration at a temperature ranging between 600 °C and 800 °C, under O 2 atmosphere. The chemical composition of the films was analyzed by means of Fourier transform infrared spectroscopy (FTIR). Surface and cross-section morphology were determined by atomic force microscope (AFM) and a scanning electron microscope (SEM), respectively. The deposited vanadium oxide thin films make the possibility of combining in one processing step an antireflection coating deposition along with efficient surface state passivation, as compared to a reference wafer. Silicon solar cells based on untreated and treated mc-Si wafers were achieved. We showed that mc-silicon solar cells, subjected to the above treatment, have better short circuit currents and open-circuit voltages than those made from untreated wafers. Thus, the efficiency of obtained solar cells has been improved.

  12. Solar Thermal Energy; Energia Solar Termica

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Martinez, M; Cuesta-Santianes, M J; Cabrera Jimenez, J A

    2008-07-01

    Approximately, 50 % of worldwide primary energy consumption is done in the form of heat in applications with a temperature lower than 250 degree centigree (low-medium temperature heat). These data clearly demonstrate the great potential of solar thermal energy to substitute conventional fossil fuels, which are becoming more expensive and are responsible for global warming. Low-medium temperature solar thermal energy is mainly used to obtain domestic hot water and provide space heating. Active solar thermal systems are those related to the use of solar thermal collectors. This study is dealing with low temperature solar thermal applications, mainly focusing on active solar thermal systems. This kind of systems has been extensively growing worldwide during the last years. At the end of 2006, the collector capacity in operation worldwide equalled 127.8 GWth. The technology is considered to be already developed and actions should be aimed at favouring a greater market penetration: diffusion, financial support, regulations establishment, etc. China and USA are the leading countries with a technology based on evacuated tube collectors and unglazed collectors, respectively. The rest of the world markets are dominated by the flat glazed collectors technology. (Author) 15 refs.

  13. Thermal performance of evacuated tube heat pipe solar collector

    Science.gov (United States)

    Putra, Nandy; Kristian, M. R.; David, R.; Haliansyah, K.; Ariantara, Bambang

    2016-06-01

    The high fossil energy consumption not only causes the scarcity of energy but also raises problems of global warming. Increasing needs of fossil fuel could be reduced through the utilization of solar energy by using solar collectors. Indonesia has the abundant potential for solar energy, but non-renewable energy sources still dominate energy consumption. With heat pipe as passive heat transfer device, evacuated tube solar collector is expected to heat up water for industrial and home usage without external power supply needed to circulate water inside the solar collector. This research was conducted to determine the performance of heat pipe-based evacuated tube solar collector as solar water heater experimentally. The experiments were carried out using stainless steel screen mesh as a wick material, and water and Al2O3-water 0.1% nanofluid as working fluid, and applying inclination angles of 0°, 15°, 30°, and 45°. To analyze the heat absorbed and transferred by the prototype, water at 30°C was circulated through the condenser. A 150 Watt halogen lamp was used as sun simulator, and the prototype was covered by an insulation box to obtain a steady state condition with a minimum affection of ambient changes. Experimental results show that the usage of Al2O3-water 0.1% nanofluid at 30° inclination angle provides the highest thermal performance, which gives efficiency as high as 0.196 and thermal resistance as low as 5.32 °C/W. The use of nanofluid as working fluid enhances thermal performance due to high thermal conductivity of the working fluid. The increase of the inclination angle plays a role in the drainage of the condensate to the evaporator that leads to higher thermal performance until the optimal inclination angle is reached.

  14. Stable High-Performance Perovskite Solar Cells via Grain Boundary Passivation.

    Science.gov (United States)

    Niu, Tianqi; Lu, Jing; Munir, Rahim; Li, Jianbo; Barrit, Dounya; Zhang, Xu; Hu, Hanlin; Yang, Zhou; Amassian, Aram; Zhao, Kui; Liu, Shengzhong Frank

    2018-04-01

    The trap states at grain boundaries (GBs) within polycrystalline perovskite films deteriorate their optoelectronic properties, making GB engineering particularly important for stable high-performance optoelectronic devices. It is demonstrated that trap states within bulk films can be effectively passivated by semiconducting molecules with Lewis acid or base functional groups. The perovskite crystallization kinetics are studied using in situ synchrotron-based grazing-incidence X-ray scattering to explore the film formation mechanism. A model of the passivation mechanism is proposed to understand how the molecules simultaneously passivate the Pb-I antisite defects and vacancies created by under-coordinated Pb atoms. In addition, it also explains how the energy offset between the semiconducting molecules and the perovskite influences trap states and intergrain carrier transport. The superior optoelectronic properties are attained by optimizing the molecular passivation treatments. These benefits are translated into significant enhancements of the power conversion efficiencies to 19.3%, as well as improved environmental and thermal stability of solar cells. The passivated devices without encapsulation degrade only by ≈13% after 40 d of exposure in 50% relative humidity at room temperature, and only ≈10% after 24 h at 80 °C in controlled environment. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Carrier population control and surface passivation in solar cells

    KAUST Repository

    Cuevas, Andres

    2018-05-02

    Controlling the concentration of charge carriers near the surface is essential for solar cells. It permits to form regions with selective conductivity for either electrons or holes and it also helps to reduce the rate at which they recombine. Chemical passivation of the surfaces is equally important, and it can be combined with population control to implement carrier-selective, passivating contacts for solar cells. This paper discusses different approaches to suppress surface recombination and to manipulate the concentration of carriers by means of doping, work function and charge. It also describes some of the many surface-passivating contacts that are being developed for silicon solar cells, restricted to experiments performed by the authors.

  16. Hydrogen passivation of polycrystalline Si thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gorka, Benjamin

    2010-12-15

    of 2.5.10{sup 16} cm{sup -3} after passivation was found for poly-Si with largest grains and coincides with best solar cell results, obtained after rapid thermal annealing and hydrogen passivation. Hydrogen passivation of poly-Si films was successfully achieved with a parallel plate rf H plasma treatment at elevated temperatures around 500 C to 600 C. Yet it seems that treatment induced defect generation causes a loss in V{sub OC} with prolonged passivation time and should be minimized. In order to achieve high open circuit voltages larger than 450 mV, in addition to hydrogen passivation, low recombination at the interfaces becomes more and more important. (orig.)

  17. Solar Spots - Activities to Introduce Solar Energy into the K-8 Curricula.

    Science.gov (United States)

    Longe, Karen M.; McClelland, Michael J.

    Following an introduction to solar technology which reviews solar heating and cooling, passive solar systems (direct gain systems, thermal storage walls, sun spaces, roof ponds, and convection loops), active solar systems, solar electricity (photovoltaic and solar thermal conversion systems), wind energy, and biomass, activities to introduce solar…

  18. Hybrid Solar: A Review on Photovoltaic and Thermal Power Integration

    Directory of Open Access Journals (Sweden)

    T. T. Chow

    2012-01-01

    Full Text Available The market of solar thermal and photovoltaic electricity generation is growing rapidly. New ideas on hybrid solar technology evolve for a wide range of applications, such as in buildings, processing plants, and agriculture. In the building sector in particular, the limited building space for the accommodation of solar devices has driven a demand on the use of hybrid solar technology for the multigeneration of active power and/or passive solar devices. The importance is escalating with the worldwide trend on the development of low-carbon/zero-energy buildings. Hybrid photovoltaic/thermal (PVT collector systems had been studied theoretically, numerically, and experimentally in depth in the past decades. Together with alternative means, a range of innovative products and systems has been put forward. The final success of the integrative technologies relies on the coexistence of robust product design/construction and reliable system operation/maintenance in the long run to satisfy the user needs. This paper gives a broad review on the published academic works, with an emphasis placed on the research and development activities in the last decade.

  19. Nanolayer surface passivation schemes for silicon solar cells

    NARCIS (Netherlands)

    Dingemans, G.

    2011-01-01

    This thesis is concerned with nanolayer surface passivation schemes and corresponding deposition processes, for envisaged applications in crystalline silicon solar cells. Surface passivation, i.e. the reduction of electronic recombination processes at semiconductor surfaces, is essential for

  20. Hydrogen passivation of multi-crystalline silicon solar cells

    Institute of Scientific and Technical Information of China (English)

    胡志华; 廖显伯; 刘祖明; 夏朝凤; 陈庭金

    2003-01-01

    The effects of hydrogen passivation on multi-crystalline silicon (mc-Si) solar cells are reported in this paper.Hydrogen plasma was generated by means of ac glow discharge in a hydrogen atmosphere. Hydrogen passivation was carried out with three different groups of mc-Si solar cells after finishing contacts. The experimental results demonstrated that the photovoltaic performances of the solar cell samples have been improved after hydrogen plasma treatment, with a relative increase in conversion efficiency up to 10.6%. A calculation modelling has been performed to interpret the experimental results using the model for analysis of microelectronic and photonic structures developed at Pennsylvania State University.

  1. PECVD-ONO: A New Deposited Firing Stable Rear Surface Passivation Layer System for Crystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    M. Hofmann

    2008-01-01

    Full Text Available A novel plasma-enhanced chemical vapour deposited (PECVD stack layer system consisting of a-SiOx:H, a-SiNx:H, and a-SiOx:H is presented for silicon solar cell rear side passivation. Surface recombination velocities below 60 cm/s (after firing and below 30 cm/s (after forming gas anneal were achieved. Solar cell precursors without front and rear metallisation showed implied open-circuit voltages Voc values extracted from quasi-steady-state photoconductance (QSSPC measurements above 680 mV. Fully finished solar cells with up to 20.0% energy conversion efficiency are presented. A fit of the cell's internal quantum efficiency using software tool PC1D and a comparison to a full-area aluminium-back surface field (Al-BSF and thermal SiO2 is shown. PECVD-ONO was found to be clearly superior to Al-BSF. A separation of recombination at the metallised and the passivated area at the solar cell's rear is presented using the equations of Fischer and Kray. Nuclear reaction analysis (NRA has been used to evaluate the hydrogen depth profile of the passivation layer system at different stages.

  2. Phase-change drywalls in a passive-solar building

    Energy Technology Data Exchange (ETDEWEB)

    Darkwa, K.; O' Callaghan, P.W.; Tetlow, D. [School of the Built Environment, The Applied Energy and Environmental Engineering Group, Nottingham Trent University, Burton Street, Nottingham NG1 4BU (United Kingdom)

    2006-05-15

    Integration of phase-change materials (PCMs) into building fabrics is considered to be one of the potential and effective ways of minimising energy-consumption and CO{sub 2}-emissions in the building sector. In order to assess the thermal effectiveness of this concept, composite PCM drywall samples (i.e., randomly mixed and laminated PCM drywalls) have been evaluated in a model passive-solar building. For a broader assessment, the effects of three phase-change zones (narrow, intermediate and wide) of the PCM sample were considered. The results showed that the laminated PCM sample with a narrow phase-change zone was capable of increasing the minimum room temperature by about 17% more than the randomly mixed type. Even though there was some display of a non-isothermal phase-change process, the laminated system proved to be thermally more effective in terms of evolution and utilisation of latent heat. A further heat-transfer enhancement process is, however, required for the development of the laminated system. . (author)

  3. Passive solar design strategies: Remodeling guidelines for conserving energy at home. [Final report

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The idea of passive solar is simple, but applying it effectively does require information and attention to the details of design and construction. Some passive solar techniques are modest and low-cost, and require only small changes in remodeler`s typical practice. At the other end of the spectrum, some passive solar systems can almost eliminate a house`s need for purchased heating (and in some cases, cooling) energy -- but probably at a relatively high first cost. In between are a broad range of energy-conserving passive solar techniques. Whether or not they are cost-effective, practical and attractive enough to offer a market advantage to any individual remodeler depends on very specific factors such as local costs, climate, and market characteristics. Passive solar design strategies: Remodeling Guidelines For Conserving Energy At Homes is written to help give remodelers the information they need to make these decisions. Passive Solar Design Strategies is a package in three basic parts: The Guidelines contain information about passive solar techniques and how they work, and provides specific examples of systems which will save various percentages of energy; The Worksheets offer a simple, fill-in-the-blank method to pre-evaluate the performance of a specific design; The Worked Example demonstrates how to complete the worksheets for a typical residence.

  4. Significantly enhanced thermal conductivity of indium arsenide nanowires via sulfur passivation.

    Science.gov (United States)

    Xiong, Yucheng; Tang, Hao; Wang, Xiaomeng; Zhao, Yang; Fu, Qiang; Yang, Juekuan; Xu, Dongyan

    2017-10-16

    In this work, we experimentally investigated the effect of sulfur passivation on thermal transport in indium arsenide (InAs) nanowires. Our measurement results show that thermal conductivity can be enhanced by a ratio up to 159% by sulfur passivation. Current-voltage (I-V) measurements were performed on both unpassivated and S-passivated InAs nanowires to understand the mechanism of thermal conductivity enhancement. We observed a remarkable improvement in electrical conductivity upon sulfur passivation and a significant contribution of electrons to thermal conductivity, which account for the enhanced thermal conductivity of the S-passivated InAs nanowires.

  5. Design of an atrium for a passive-solar retrofit of an office buildings

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, J.L.; Hunn, B.D.

    1980-01-01

    The Los Alamos Scientific Laboratory (LASL) has proposed to retrofit one of its administrative office buildings with a solar atrium. A 334 m/sup 2/ courtyard will be enclosed with a roof-mounted system of clerestory windows to maximize winter solar gain. This sunspace will thermally buffer the adjoining offices and also will preheat air supplied to the building's conventional heating, ventilating, and air-conditioning (HVAC) system. The use of the DOE-2 building energy analysis computer program in the design of the solar atrium is described. The results of a series of simulations are reported detailing the tradeoffs inherent in the selection of an optimal glazing area, the maintenance of acceptable comfort levels within the sunspace, and intergration of passive-solar devices with the conventional HVAC system. Potential energy savings are also discussed.

  6. Solar thermal

    International Nuclear Information System (INIS)

    Jones, J.

    2006-01-01

    While wind power is widely acknowledged as the most developed of the 'new' renewables, the number two technology, in terms of installed capacity functioning worldwide, is solar heating, or solar thermal. The author has investigated recent industry reports on how these markets are developing. The authors of an International Energy Agency (IEA) survey studied 41 countries in depth at the end of 2004, revealing that 141 million m 3 - corresponding to an installed capacity of 98.4 GWth - were installed in the sample countries (these nations represent 3.74 billion people, about 57% of the world's population). The installed capacity within the areas studied represents approximately 85%-90% of the solar thermal market worldwide. The use of solar heating varies greatly between countries - even close neighbours - and between economic regions. Its uptake often has more to do with policy than solar resource. There is also different uptake of technology. In China, Europe and Japan, plants with flat-plate and evacuated tube collectors are used, mainly to heat water and for space heating. Unglazed plastic collectors, used mainly for swimming pool heating, meanwhile, dominate the North American markets. Though the majority of solar heating installations today are installed on domestic rooftops, the larger-scale installations should not be overlooked. One important part of the market is the hotel sector - in particular hotels in locations that serve the seasonal summer holiday market, where solar is extremely effective. Likewise hospitals and residential homes, multi-family apartment blocks and sports centres are all good examples of places where solar thermal can deliver results. There are also a growing number of industrial applications, where solar thermal can meet the hot water needs (and possibly more) of a range of industries, such as food processing and agriculture. The ability of solar to provide a heat source for cooling is expected to become increasingly important as

  7. Solar thermal

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.

    2006-07-15

    While wind power is widely acknowledged as the most developed of the 'new' renewables, the number two technology, in terms of installed capacity functioning worldwide, is solar heating, or solar thermal. The author has investigated recent industry reports on how these markets are developing. The authors of an International Energy Agency (IEA) survey studied 41 countries in depth at the end of 2004, revealing that 141 million m{sup 3} - corresponding to an installed capacity of 98.4 GWth - were installed in the sample countries (these nations represent 3.74 billion people, about 57% of the world's population). The installed capacity within the areas studied represents approximately 85%-90% of the solar thermal market worldwide. The use of solar heating varies greatly between countries - even close neighbours - and between economic regions. Its uptake often has more to do with policy than solar resource. There is also different uptake of technology. In China, Europe and Japan, plants with flat-plate and evacuated tube collectors are used, mainly to heat water and for space heating. Unglazed plastic collectors, used mainly for swimming pool heating, meanwhile, dominate the North American markets. Though the majority of solar heating installations today are installed on domestic rooftops, the larger-scale installations should not be overlooked. One important part of the market is the hotel sector - in particular hotels in locations that serve the seasonal summer holiday market, where solar is extremely effective. Likewise hospitals and residential homes, multi-family apartment blocks and sports centres are all good examples of places where solar thermal can deliver results. There are also a growing number of industrial applications, where solar thermal can meet the hot water needs (and possibly more) of a range of industries, such as food processing and agriculture. The ability of solar to provide a heat source for cooling is expected to become

  8. Excellent c-Si surface passivation by thermal atomic layer deposited aluminum oxide after industrial firing activation

    International Nuclear Information System (INIS)

    Liao, B; Stangl, R; Ma, F; Mueller, T; Lin, F; Aberle, A G; Bhatia, C S; Hoex, B

    2013-01-01

    We demonstrate that by using a water (H 2 O)-based thermal atomic layer deposited (ALD) aluminum oxide (Al 2 O 3 ) film, excellent surface passivation can be attained on planar low-resistivity silicon wafers. Effective carrier lifetime values of up to 12 ms and surface recombination velocities as low as 0.33 cm s −1 are achieved on float-zone wafers after a post-deposition thermal activation of the Al 2 O 3 passivation layer. This post-deposition activation is achieved using an industrial high-temperature firing process which is commonly used for contact formation of standard screen-printed silicon solar cells. Neither a low-temperature post-deposition anneal nor a silicon nitride capping layer is required in this case. Deposition temperatures in the 100–400 °C range and peak firing temperatures of about 800 °C (set temperature) are investigated. Photoluminescence imaging shows that the surface passivation is laterally uniform. Corona charging and capacitance–voltage measurements reveal that the negative fixed charge density near the AlO x /c-Si interface increases from 1.4 × 10 12 to 3.3 × 10 12 cm −2 due to firing, while the midgap interface defect density reduces from 3.3 × 10 11 to 0.8 × 10 11 cm −2 eV −1 . This work demonstrates that direct firing activation of thermal ALD Al 2 O 3 is feasible, which could be beneficial for solar cell manufacturing. (paper)

  9. Effect of openings collectors and solar irradiance on the thermal efficiency of flat plate-finned collector for indirect-type passive solar dryer

    Science.gov (United States)

    Batubara, Fatimah; Dina, Sari Farah; Klaudia Kathryn Y., M.; Turmuzi, M.; Siregar, Fitri; Panjaitan, Nora

    2017-06-01

    Research on the effect of openings solar collector and solar irradiance to thermal efficiency has been done. Solar collector by flat plate-finned type consists of 3 ply insulator namely wood, Styrofoam and Rockwool with thickness respectively are 10 mm, 25 mm and 50 mm. Absorber plate made of aluminum sheet with thickness of 0.30 mm, painted by black-doff. Installation of 19 units fins (length x height x thickness: 1000x20x10 mm) on the collector will increase surface area of absorber so it can receive much more solar energy. The solar collector cover is made of glass (thickness of 5 mm). During the research, the solar irradiance and temperature of collector are measured and recorded every five minutes. Temperature measurement performed on the surface of the absorber plate, inside of collector, surface cover and the outer side insulator (plywood). This data is used to calculate the heat loss due to conduction, convection and radiation on the collector. Openings of collectors vary as follows: 100%, 75%, 15% and 0% (total enclosed). The data collecting was conducted from 09.00 am to 17.00 pm and triplicates. The collector thermal efficiency calculated based on the ratio of the amount of heat received to the solar irradiance absorbed. The results show that each of openings solar collector has different solar irradiance (because it was done on a different day) which is in units of W/m2: 390 (100% open), 376 (75% open), 429 (15% open), and 359 (totally enclosed). The highest thermal efficiency is in openings variation of 15% opened. These results indicate that the efficiency of the collector is influenced by the solar irradiance received by the collector and the temperature on the collector plate. The highest thermal efficiency is in variation of openings 15%. These indicate that the efficiency of the collector was influenced by solar irradiance received by the collector and openings of the collector plate.

  10. Energy savings solutions: passive solar design in Iranian cold climate

    Energy Technology Data Exchange (ETDEWEB)

    Nassehzadeh Tabriz, Shahram [Department of Architecture, Miyaneh Branch, Islamic Azad University (Iran, Islamic Republic of)], email: sh_nassehzadeh@m-iau.ac.ir; Mahdavi Tabatabaei Fard, Fariborz [SABAT TARH CO. (Iran, Islamic Republic of)], email: sabat_arc@yahoo.com; Aliyev, Fagan [International Eco-energy Academy (Azerbaijan)], email: ie_academy@yahoo.com

    2011-07-01

    In recent years, there has been a significant increase in the cost of fuel gas, fuel oil and electricity and much thought has been given to the use of solar energy. Living in a solar heated house gives peace of mind and body and it makes good sense in mountainous regions. Severe winters in such regions make more energy for standard living activities in buildings necessary. This paper discusses passive solar building design as an energy saving solution. In this type of design, windows, walls and floors act as storage and distribution devices for solar energy in winter and deflect solar heat in summer. Passive solar design techniques influence the choice of building site, design and materials within the general framework of enriching the quality of life of the inhabitants. As a result, natural resources are saved and the environment is conserved for future generations. In conclusion, it is seen that passive design keeps a home cool and comfortable in summer and warm and cozy in winter with minimal heating and cooling requirements.

  11. Thermal solar energy

    International Nuclear Information System (INIS)

    Gonzalez, J.C.; Leal C, H.

    1998-01-01

    Some relative aspects to the development and current state of thermal solar energy are summarized, so much at domestic level as international. To facilitate the criteria understanding as the size of the facilities in thermal solar systems, topics as availability of the solar resource and its interactions with the matter are included. Finally, some perspectives for the development of this energetic alternative are presented

  12. Enhancing Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation.

    Science.gov (United States)

    Hwang, Insung; Jeong, Inyoung; Lee, Jinwoo; Ko, Min Jae; Yong, Kijung

    2015-08-12

    In this study, a novel and facile passivation process for a perovskite solar cell is reported. Poor stability in ambient atmosphere, which is the most critical demerit of a perovskite solar cell, is overcome by a simple passivation process using a hydrophobic polymer layer. Teflon, the hydrophobic polymer, is deposited on the top of a perovskite solar cell by a spin-coating method. With the hydrophobic passivation, the perovskite solar cell shows negligible degradation after a 30 day storage in ambient atmosphere. Suppressed degradation of the perovskite film is proved in various ways: X-ray diffraction, light absorption spectrum, and quartz crystal microbalance. This simple but effective passivation process suggests new kind of approach to enhance stability of perovskite solar cells to moisture.

  13. Photovoltaic Thermal panels in collective thermal solar systems

    International Nuclear Information System (INIS)

    Elswijk, M.J.; Strootman, K.J.; Jong, M.J.M.; De Lange, E.T.N.; Smit, W.F.

    2003-12-01

    A feasibility study has been carried out to assess the options to apply photovoltaic/thermal panels (PVT-panels) in collective solar thermal systems in urban areas in the Netherlands. The study was focused on the technical (architecture and installations) and the economical feasibility of collective PVT-systems in comparison with conventional solar thermal systems and combinations of photovoltaic (PV) panels and solar collectors. The results of the study also give insight into cost and the market for PVT-panels. Three case studies in which collective solar collector systems were applied are analyzed again by simulating the installation of a PVT-panels system and a separate solar thermal PV system [nl

  14. Solar thermal utilization--an overview

    International Nuclear Information System (INIS)

    Chen Deming; Xu Gang

    2007-01-01

    Solar energy is an ideal renewable energy source and its thermal utilization is one of its most important applications. We review the status of solar thermal utilization, including: (1) developed technologies which are already widely used all over the world, such as solar assisted water heaters, solar cookers, solar heated buildings and so on; (2) advanced technologies which are still in the development or laboratory stage and could have more innovative applications, including thermal power generation, refrigeration, hydrogen production, desalination, and chimneys; (3) major problems which need to be resolved for advanced utilizaiton of solar thermal energy. (authors)

  15. Energy Conservation and Passive Solar Techniques in Campus Renovation.

    Science.gov (United States)

    Probasco, Jack; And Others

    1981-01-01

    The analysis of a building from an energy conservation and passive solar potential has three aspects: building envelope, landscaping, and room utilization. Typical conservation and solar control modifications are listed. (Author/MLF)

  16. Optically Transparent Thermally Insulating Silica Aerogels for Solar Thermal Insulation.

    Science.gov (United States)

    Günay, A Alperen; Kim, Hannah; Nagarajan, Naveen; Lopez, Mateusz; Kantharaj, Rajath; Alsaati, Albraa; Marconnet, Amy; Lenert, Andrej; Miljkovic, Nenad

    2018-04-18

    Rooftop solar thermal collectors have the potential to meet residential heating demands if deployed efficiently at low solar irradiance (i.e., 1 sun). The efficiency of solar thermal collectors depends on their ability to absorb incoming solar energy and minimize thermal losses. Most techniques utilize a vacuum gap between the solar absorber and the surroundings to eliminate conduction and convection losses, in combination with surface coatings to minimize reradiation losses. Here, we present an alternative approach that operates at atmospheric pressure with simple, black, absorbing surfaces. Silica based aerogels coated on black surfaces have the potential to act as simple and inexpensive solar thermal collectors because of their high transmission to solar radiation and low transmission to thermal radiation. To demonstrate their heat-trapping properties, we fabricated tetramethyl orthosilicate-based silica aerogels. A hydrophilic aerogel with a thickness of 1 cm exhibited a solar-averaged transmission of 76% and thermally averaged transmission of ≈1% (at 100 °C). To minimize unwanted solar absorption by O-H groups, we functionalized the aerogel to be hydrophobic, resulting in a solar-averaged transmission of 88%. To provide a deeper understanding of the link between aerogel properties and overall efficiency, we developed a coupled radiative-conductive heat transfer model and used it to predict solar thermal performance. Instantaneous solar thermal efficiencies approaching 55% at 1 sun and 80 °C were predicted. This study sheds light on the applicability of silica aerogels on black coatings for solar thermal collectors and offers design priorities for next-generation solar thermal aerogels.

  17. Solar passive buildings for developing countries

    International Nuclear Information System (INIS)

    Gupta, C.L.

    1993-01-01

    This paper is meant to be an indicative survey of developments in solar passive building technology relevant to developing countries. The evolution of this area during the last fifty years is reported along with the scientific principles and design concepts underlying these developments. Factors to be considered for design strategies such as direct gain, isolated gain, indirect gain and roof evaporative systems are then described. Rating parameters for assessing the performance and benefit and cost parameters are then outlined. Successful examples illustrating each of the design concepts, mainly from Indian buildings constructed during the last fifteen years, are then detailed along with their performance based on actual monitoring, if available. Concluding remarks indicate the current and future trends. A survey is made of papers marking significant milestones in the development of solar passive building technology relevant to developing countries. (author). 48 refs., 14 figs., 3 tabs

  18. Two or three decades of passive directions

    International Nuclear Information System (INIS)

    Cook, J.

    1995-01-01

    This paper presents an overview of the direction of passive solar architecture. The topics of the paper include design temperatures for buildings, active vs passive, fuel vs philosophy, engineering vs architecture, the thermal scale: heating vs cooling, fuel subsidies, divergent practices, sustainability, lighting, health, the place of passive technology

  19. Passive solar homes in Michigan's Upper Peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Kindred, G.F. [Garfield Kindred Associates, Hancock, MI (United States)

    2001-07-01

    This paper discussed the construction and design of 3 affordable passive solar homes located in high latitudes: (1) the Kindred house located in a wooded subdivision in Hancock, Michigan; (2) the Autio house located in Laurium, Michigan; and the Mikkola house located in South Range, Michigan. The award-winning houses were part of the United States federal government's Energy Star program. The houses were constructed with common building materials in order to introduce the general public to the principles of energy-conscious passive solar design strategies and sustainable construction technologies. Super-insulation was used to retain solar heat gain in the houses. Air infiltration was minimized through the use of an airtight drywall sealing technique. Large windows were a prominent feature of the southern facades of the houses. The windows used fixed and casement low-e argon-filled insulated glazing. Average bills for the Kindred home are US$960 per year. It was concluded that passive solar design and construction strategies are now being used more often in the area as a result of the positive media coverage that the homes has received. 5 refs.

  20. Advanced diffusion system for low contamination in-line rapid thermal processing of silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Biro, D.; Preu, R.; Schultz, O.; Peters, S.; Huljic, D.M.; Zickermann, D.; Schindler, R.; Luedemann, R.; Willeke, G. [Fraunhofer Institute for Solar Energy Systems ISE, Freiburg (Germany)

    2002-10-01

    A novel diffusion system for in-line rapid thermal diffusion is presented. The lamp-heated furnace has a low thermal mass and a metal free transport system based on the walking beam principle. The furnace has been used to process first solar cells with lightly and highly doped emitters respectively. Solar cells with shallow lightly doped emitters show that the emitters processed in the new device can be well passivated. Shallow emitters with sheet resistances of up to 40/sq. have been contacted successfully by means of screen printing and firing through a SiN{sub x} antireflection coating. (author)

  1. Solar thermal - the new dynamics

    International Nuclear Information System (INIS)

    2017-01-01

    This booklet is intended to engineering consultants and construction professionals and aims at showing them the real interest of solar thermal energy. It notably highlights the very high efficiency which can be reached, the high performance value compared to gas, the high rank of solar thermal energy in terms of profitability over a 20-year period, the fact that solar thermal energy is almost always the most economic solution for buildings and the less expensive in comparison with non renewable energies. It outlines that, as far as purchase is concerned, solar thermal energy is more than competitive, is also a leader as far as financing issues are concerned. It finally briefly describes how the SOCOL initiative can be a support at any step of a solar thermal project

  2. More Efficient Solar Thermal-Energy Receiver

    Science.gov (United States)

    Dustin, M. O.

    1987-01-01

    Thermal stresses and reradiation reduced. Improved design for solar thermal-energy receiver overcomes three major deficiencies of solar dynamic receivers described in literature. Concentrator and receiver part of solar-thermal-energy system. Receiver divided into radiation section and storage section. Concentrated solar radiation falls on boiling ends of heat pipes, which transmit heat to thermal-energy-storage medium. Receiver used in number of applications to produce thermal energy directly for use or to store thermal energy for subsequent use in heat engine.

  3. Molecular Monolayers for Electrical Passivation and Functionalization of Silicon-Based Solar Energy Devices.

    Science.gov (United States)

    Veerbeek, Janneke; Firet, Nienke J; Vijselaar, Wouter; Elbersen, Rick; Gardeniers, Han; Huskens, Jurriaan

    2017-01-11

    Silicon-based solar fuel devices require passivation for optimal performance yet at the same time need functionalization with (photo)catalysts for efficient solar fuel production. Here, we use molecular monolayers to enable electrical passivation and simultaneous functionalization of silicon-based solar cells. Organic monolayers were coupled to silicon surfaces by hydrosilylation in order to avoid an insulating silicon oxide layer at the surface. Monolayers of 1-tetradecyne were shown to passivate silicon micropillar-based solar cells with radial junctions, by which the efficiency increased from 8.7% to 9.9% for n + /p junctions and from 7.8% to 8.8% for p + /n junctions. This electrical passivation of the surface, most likely by removal of dangling bonds, is reflected in a higher shunt resistance in the J-V measurements. Monolayers of 1,8-nonadiyne were still reactive for click chemistry with a model catalyst, thus enabling simultaneous passivation and future catalyst coupling.

  4. Development of Passive Fuel Cell Thermal Management Heat Exchanger

    Science.gov (United States)

    Burke, Kenneth A.; Jakupca, Ian J.; Colozza, Anthony J.

    2010-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates that could conduct the heat, provide a sufficiently uniform temperature heat sink for each cell of the fuel cell stack, and be substantially lighter than the conventional thermal management approach. Tests were run with different materials to evaluate the design approach to a heat exchanger that could interface with the edges of the passive cooling plates. Measurements were made during fuel cell operation to determine the temperature of individual cooling plates and also to determine the temperature uniformity from one cooling plate to another.

  5. Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance.

    Science.gov (United States)

    Lan, Xinzheng; Voznyy, Oleksandr; Kiani, Amirreza; García de Arquer, F Pelayo; Abbas, Abdullah Saud; Kim, Gi-Hwan; Liu, Mengxia; Yang, Zhenyu; Walters, Grant; Xu, Jixian; Yuan, Mingjian; Ning, Zhijun; Fan, Fengjia; Kanjanaboos, Pongsakorn; Kramer, Illan; Zhitomirsky, David; Lee, Philip; Perelgut, Alexander; Hoogland, Sjoerd; Sargent, Edward H

    2016-01-13

    A solution-based passivation scheme is developed featuring the use of molecular iodine and PbS colloidal quantum dots (CQDs). The improved passivation translates into a longer carrier diffusion length in the solid film. This allows thicker solar-cell devices to be built while preserving efficient charge collection, leading to a certified power conversion efficiency of 9.9%, which is a new record in CQD solar cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Solar Thermal | Climate Neutral Research Campuses | NREL

    Science.gov (United States)

    building can still be designed and constructed to be solar ready with roof exposures and slopes that accept Solar Thermal Solar Thermal Solar thermal applications can be simple, cost effective, and diverse for research campuses. The following links go to sections that describe when and where solar thermal

  7. Cold-season solar input and ambivalent thermal behavior brought by climber greenwalls

    International Nuclear Information System (INIS)

    Jim, C.Y.

    2015-01-01

    Most greenwall studies focus on cooling and energy conservation in the warm season, and tropical cold-season has received little attention. This field-experimental study in humid-subtropical Hong Kong evaluated winter thermal behavior of climber greenwalls. Orientation and weather factors regulated solar-irradiation regimes with critical impact on vegetation thermal responses. Temperature differentiation occurred mainly on sunny day, with subdued variations on cloudy and rainy days. The south greenwall on sunny day received the highest solar-energy input, bringing divergent surface temperature in three climber species. The daytime descending cooling sequence was: Control-air > Pyrostegia venusta > Bauhinia corymbosa > Ficus pumila > Control-surface. Heat-sink effect related to foliage-thickness and moisture-content influenced climber thermal responses. Exceeding a solar-irradiance threshold of 500 Wm"−"2 was a prerequisite for notable solar-warming and transpiration-cooling, bringing well-differentiated climber-surface temperature. Cooling of vegetation-surface and Anterior-ambient-air was contrasted by warming behind the greenwall. Posterior-airgap with trapped stagnant air and Posterior-concrete-surface were warmed consistently above control concrete-surface on sunny and cloudy days. This winter passive warming mechanism denotes a new dimension in thermal benefits operating behind the greenwall. The thermal-gradient can transmit heat into indoor space, with benefits on human comfort, health and energy conservation. - Highlights: • Cold-season thermal regimes and benefits of climber greenwalls in tropics was studied. • Greenwall plots were installed as a field-experiment to evaluated six related factors. • Descending cooling sequence: Pyrostegia venusta > Bauhinia corymbosa > Ficus pumila. • Solar radiation intensity and foliage heat-sink effect determined climber cooling. • Posterior airgap and Posterior concrete-surface were warmed to provide indoor

  8. Solar thermal barometer

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    In 2008, the European solar thermal market put on a strong spurt only to mark time in 2009 with about 4.2 million m 2 installed, which is 450000 m 2 less year-on-year. The main reasons of the decrease is the financial crisis and the low oil price, other reasons more specific to the country exist, for instance the property crisis has dragged the Spanish market down. In 2009, the solar thermal collector surface area in service in the European Union is of the magnitude of 32.6 million m 2 , equivalent to a capacity of 22.8 GWTh. The solar thermal sector is one of the renewable sectors that creates the highest number of jobs and wealth, partly because the vast majority of the system components sold in Europe are produced in Europe and partly because the sale, installation fitting and maintenance are labour-intensive. In 2009, there were 50000 direct or indirect jobs in the European solar thermal sector. The main European actors in this sector are GREENoneTEC, Bosch-Thermotechnik, Viessmann, Vaillant and Solvis. No clear recovery is expected before 2011. (A.C.)

  9. Simulation of phase change drywalls in a passive solar building

    Energy Technology Data Exchange (ETDEWEB)

    Darkwa, K.; O' Callaghan, P.W. [School of the Built Environment, The Applied Energy and Environmental Engineering Group, Nottingham Trent University, Burton Street, Nottingham NG1 4BU (United Kingdom)

    2006-06-15

    Integration of phase change materials (PCMs) into building fabrics is considered to be one of the potential and effective ways of minimizing energy consumption and CO{sub 2} emissions in the building sector. In order to assess the thermal effectiveness of this concept, composite PCM drywall samples (i.e. randomly-mixed and laminated PCM drywalls) have been evaluated in a model passive solar building. For a broader assessment, effects of three phase change zones (narrow, intermediate and wide) of the PCM sample were considered. The results showed that the laminated PCM sample with a narrow phase change zone was capable of increasing the minimum room temperature by about 17% more than the randomly-mixed type. Even though there was some display of non-isothermal phase change process, the laminated system proved to be thermally more effective in terms of evolution and utilization of latent heat. Further heat transfer enhancement process is however required towards the development of the laminated system. [Author].

  10. Molecular monolayers for electrical passivation and functionalization of silicon-based solar energy devices

    NARCIS (Netherlands)

    Veerbeek, Janneke; Firet, Nienke J.; Vijselaar, Wouter; Elbersen, R.; Gardeniers, Han; Huskens, Jurriaan

    2017-01-01

    Silicon-based solar fuel devices require passivation for optimal performance yet at the same time need functionalization with (photo)catalysts for efficient solar fuel production. Here, we use molecular monolayers to enable electrical passivation and simultaneous functionalization of silicon-based

  11. Solar thermal aided power generation

    International Nuclear Information System (INIS)

    Hu, Eric; Yang, YongPing; Nishimura, Akira; Yilmaz, Ferdi; Kouzani, Abbas

    2010-01-01

    Fossil fuel based power generation is and will still be the back bone of our world economy, albeit such form of power generation significantly contributes to global CO 2 emissions. Solar energy is a clean, environmental friendly energy source for power generation, however solar photovoltaic electricity generation is not practical for large commercial scales due to its cost and high-tech nature. Solar thermal is another way to use solar energy to generate power. Many attempts to establish solar (solo) thermal power stations have been practiced all over the world. Although there are some advantages in solo solar thermal power systems, the efficiencies and costs of these systems are not so attractive. Alternately by modifying, if possible, the existing coal-fired power stations to generate green sustainable power, a much more efficient means of power generation can be reached. This paper presents the concept of solar aided power generation in conventional coal-fired power stations, i.e., integrating solar (thermal) energy into conventional fossil fuelled power generation cycles (termed as solar aided thermal power). The solar aided power generation (SAPG) concept has technically been derived to use the strong points of the two technologies (traditional regenerative Rankine cycle with relatively higher efficiency and solar heating at relatively low temperature range). The SAPG does not only contribute to increase the efficiencies of the conventional power station and reduce its emission of the greenhouse gases, but also provides a better way to use solar heat to generate the power. This paper presents the advantages of the SAPG at conceptual level.

  12. Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance

    KAUST Repository

    Lan, Xinzheng; Voznyy, Oleksandr; Kiani, Amirreza; Garcí a de Arquer, F. Pelayo; Abbas, Abdullah Saud; Kim, Gi-Hwan; Liu, Mengxia; Yang, Zhenyu; Walters, Grant; Xu, Jixian; Yuan, Mingjian; Ning, Zhijun; Fan, Fengjia; Kanjanaboos, Pongsakorn; Kramer, Illan; Zhitomirsky, David; Lee, Philip; Perelgut, Alexander; Hoogland, Sjoerd; Sargent, Edward H.

    2015-01-01

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Here we report a solution-based passivation scheme is developed featuring the use of molecular iodine and PbS colloidal quantum dots (CQDs). The improved passivation translates into a longer carrier diffusion length in the solid film. This allows thicker solar-cell devices to be built while preserving efficient charge collection, leading to a certified power conversion efficiency of 9.9%, which is a new record in CQD solar cells.

  13. Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance

    KAUST Repository

    Lan, Xinzheng

    2015-11-18

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Here we report a solution-based passivation scheme is developed featuring the use of molecular iodine and PbS colloidal quantum dots (CQDs). The improved passivation translates into a longer carrier diffusion length in the solid film. This allows thicker solar-cell devices to be built while preserving efficient charge collection, leading to a certified power conversion efficiency of 9.9%, which is a new record in CQD solar cells.

  14. Effect of Organic and Inorganic Passivation in Quantum-Dot-Sensitized Solar Cells.

    Science.gov (United States)

    de la Fuente, Mauricio Solis; Sánchez, Rafael S; González-Pedro, Victoria; Boix, Pablo P; Mhaisalkar, S G; Rincón, Marina E; Bisquert, Juan; Mora-Seró, Iván

    2013-05-02

    The effect of semiconductor passivation on quantum-dot-sensitized solar cells (QDSCs) has been systematically characterized for CdS and CdS/ZnS. We have found that passivation strongly depends on the passivation agent, obtaining an enhancement of the solar cell efficiency for compounds containing amine and thiol groups and, in contrast, a decrease in performance for passivating agents with acid groups. Passivation can induce a change in the position of TiO2 conduction band and also in the recombination rate and nature, reflected in a change in the β parameter. Especially interesting is the finding that β, and consequently the fill factor can be increased with the passivation treatment. Applying this strategy, record cells of 4.65% efficiency for PbS-based QDSCs have been produced.

  15. A completely passive continuous flow solar water purification system

    Energy Technology Data Exchange (ETDEWEB)

    Duff, William S.; Hodgson, David A. [Dept. of Mechanical Enginnering, Colorado State Univ., Fort Collins, CO (United States)

    2008-07-01

    Water-borne pathogens in developing countries cause several billion cases of disease and up to 10 million deaths each year, at least half of which are children. Solar water pasteurization is a potentially cost-effective, robust and reliable solution to these problems. A completely passively controlled solar water pasteurization system with a total collector area of 0.45 m{sup 2} has been constructed. The system most recently tested produced 337 litres per m{sup 2} of collector area of treated water on a sunny day. We developed our completely passive density-driven solar water pasteurization system over a five year span so that it now achieves reliable control for all possible variations in solar conditions. We have also substantially increased its daily pure water production efficiency over the same period. We will discuss the performance of our water purification system and provide an analyses that demonstrates that the system insures safe purified water production at all times. (orig.)

  16. Spectrally-engineered solar thermal photovoltaic devices

    Science.gov (United States)

    Lenert, Andrej; Bierman, David; Chan, Walker; Celanovic, Ivan; Soljacic, Marin; Wang, Evelyn N.; Nam, Young Suk; McEnaney, Kenneth; Kraemer, Daniel; Chen, Gang

    2018-03-27

    A solar thermal photovoltaic device, and method of forming same, includes a solar absorber and a spectrally selective emitter formed on either side of a thermally conductive substrate. The solar absorber is configured to absorb incident solar radiation. The solar absorber and the spectrally selective emitter are configured with an optimized emitter-to-absorber area ratio. The solar thermal photovoltaic device also includes a photovoltaic cell in thermal communication with the spectrally selective emitter. The spectrally selective emitter is configured to permit high emittance for energies above a bandgap of the photovoltaic cell and configured to permit low emittance for energies below the bandgap.

  17. Thermal performance of lived-in passive solar buildings: Pt. 2; School retrofit at Yeruham, Israel

    Energy Technology Data Exchange (ETDEWEB)

    Faiman, D. (Ben-Gurion Univ. of the Negev, Sede Boqer (Israel). J. Blaustein Inst. for Desert Research)

    1992-07-01

    This paper describes various, partially improvised, experiments that were devised in order to assess the thermal performance of a solar retrofit that was added to a school building. Typical measurements results are shown and analyzed. Two definitions are given for the system efficiency of solar retrofits to large-mass structures: one for the case when there is no backup system to complicate the analysis, and one for suggested use when auxiliary heating is present. (author).

  18. The solarPACES strategy for the solar thermal breakthrough

    International Nuclear Information System (INIS)

    Burch, G.D.; Grasse, W.

    1997-01-01

    IEA(International Energy Agency)/SolarPACES(Solar Power and Chemical Energy systems)represents a world wide coalition for information sharing and collaboration on applications of concentrated solar energy. The current SolarPACES community has built up solar thermal system know-how over 15 years, is operating the three main solar test centres in the world. Its main activities are in the following four fields: solar thermal electric power systems, solar chemistry, solar technology and advanced applications and non-technical activities. The article presents the talk on the strategy of solarPACES given at the International Workshop on applied solar energy held in Tashkent(Uzbekistan) in June 1997. (A.A.D.)

  19. Solar thermal power plants

    International Nuclear Information System (INIS)

    Schnatbaum, L.

    2009-01-01

    The solar thermal power plant technology, the opportunities it presents and the developments in the market are outlined. The focus is on the technology of parabolic trough power plants, a proven technology for solar power generation on a large scale. In a parabolic trough power plant, trough-shaped mirrors concentrate the solar irradiation onto a pipe in the focal line of the collector. The thermal energy thus generated is used for electricity generation in a steam turbine. Parabolic trough plants can be combined with thermal storage and fossil or biomass fired heat exchangers to generate electricity even when the sun is not shining. Solar Millennium AG in Erlangen has developed the first power plant of this kind in Europe. After two years of construction the plant started operation in Southern Spain in 2008. This one and its sister projects are important steps leading the way for the whole market. The paper also covers the technological challenges, the key components used and the research and development activities concerning this technology. Solar thermal power plants are ideal for covering peak and medium loads in power grids. In hybrid operation they can also cover base-load. The Solar Chimney power plant, another striking technology for the conversion of solar into electric energy, is described briefly. The paper concludes with a look at the future - the import of solar energy from the deserts of North Africa to central Europe. (author)

  20. Solar energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role solar energy may have in the energy future of the US. The topics discussed in the chapter include the solar resource, solar architecture including passive solar design and solar collectors, solar-thermal concentrating systems including parabolic troughs and dishes and central receivers, photovoltaic cells including photovoltaic systems for home use, and environmental, health and safety issues

  1. solar thermal power systems advanced solar thermal technology project, advanced subsystems development

    Science.gov (United States)

    1979-01-01

    The preliminary design for a prototype small (20 kWe) solar thermal electric generating unit was completed, consisting of several subsystems. The concentrator and the receiver collect solar energy and a thermal buffer storage with a transport system is used to provide a partially smoothed heat input to the Stirling engine. A fossil-fuel combustor is included in the receiver designs to permit operation with partial or no solar insolation (hybrid). The engine converts the heat input into mechanical action that powers a generator. To obtain electric power on a large scale, multiple solar modules will be required to operate in parallel. The small solar electric power plant used as a baseline design will provide electricity at remote sites and small communities.

  2. Passive thermal management system for downhole electronics in harsh thermal environments

    International Nuclear Information System (INIS)

    Shang, Bofeng; Ma, Yupu; Hu, Run; Yuan, Chao; Hu, Jinyan; Luo, Xiaobing

    2017-01-01

    Highlights: • A passive thermal management system is proposed for downhole electronics. • Electronics temperature can be maintained within 125 °C for six-hour operating time. • The result shows potential application for the logging tool in oil and gas industry. - Abstract: The performance and reliability of downhole electronics will degrade in high temperature environments. Various active cooling techniques have been proposed for thermal management of such systems. However, these techniques require additional power input, cooling liquids and other moving components which complicate the system. This study presents a passive Thermal Management System (TMS) for downhole electronics. The TMS includes a vacuum flask, Phase Change Material (PCM) and heat pipes. The thermal characteristics of the TMS is evaluated experimentally. The results show that the system maintains equipment temperatures below 125 °C for a six-hour operating period in a 200 °C downhole environment, which will effectively protect the downhole electronics.

  3. The SolarPACES strategy for the solar thermal breakthrough

    Energy Technology Data Exchange (ETDEWEB)

    Burch, G.D. [U.S. Department of Energy, Washington, DC (United States)

    1997-12-31

    Our national solar thermal research programs and our combined efforts conducted through IEA/SolarPACES have brought about many breakthroughs in the development of solar thermal technology. We have components and systems that are much more efficient, much more reliable, and can be built much more cost-efficiently than just a few years ago. As our technology development proceeds, we undoubtedly will continue to make significant progress, breakthroughs in fact, in all these areas - progress that will bring us even closer to economic parity with more conventional forms of energy. And while this progress is absolutely necessary, the question is whether it will be enough to allow solar thermal to break into the mainstream of global energy supply. Our new IEA/SolarPACES strategy, crafted and approved over the course of the past year, has recognized the changes we must face and given us license to begin to make those changes. We must begin addressing financial hurdles, work to create a more favorable regulatory and tax environment, support development of international partnerships, and expand the visibility and excitement of solar thermal technology to achieve the final breakthroughs we need to allow solar thermal energy to live up to its vast potential. (orig./AKF)

  4. Polymeric materials for solar thermal applications

    CERN Document Server

    Köhl, Michael; Papillon, Philippe; Wallner, Gernot M; Saile, Sandrin

    2012-01-01

    Bridging the gap between basic science and technological applications, this is the first book devoted to polymers for solar thermal applications.Clearly divided into three major parts, the contributions are written by experts on solar thermal applications and polymer scientists alike. The first part explains the fundamentals of solar thermal energy especially for representatives of the plastics industry and researchers. Part two then goes on to provide introductory information on polymeric materials and processing for solar thermal experts. The third part combines both of these fields, dis

  5. Radiation resistant passivation of silicon solar cells

    International Nuclear Information System (INIS)

    Swanson, R.M.; Gan, J.Y.; Gruenbaum, P.E.

    1991-01-01

    This patent describes a silicon solar cell having improved stability when exposed to concentrated solar radiation. It comprises a body of silicon material having a major surface for receiving radiation, a plurality of p and n conductivity regions in the body for collecting electrons and holes created by impinging radiation, and a passivation layer on the major surface including a first layer of silicon oxide in contact with the body and a polycrystalline silicon layer on the first layer of silicon oxide

  6. Perspectives for solar thermal applications in Taiwan

    International Nuclear Information System (INIS)

    Chang, Keh-Chin; Lin, Wei-Min; Leu, Tzong-Shyng; Chung, Kung-Ming

    2016-01-01

    Taiwan has long depended on imported fossil energy. The government is thus actively promoting the use of renewable energy. Since 2000, domestic installations of solar water heaters have increased substantially because of the long-term subsidies provided for such systems. However, data on the annual installation area of solar collectors in recent years indicated that the solar thermal industry in Taiwan has reached a bottleneck. The long-term policy providing subsidies must thus be revised. It is proposed that future thermal applications in Taiwan should focus on building-integrated solar thermal, photovoltaic/thermal, and industrial heating processes. Regarding building-integrated solar thermal systems, the current subsidy model can be continued (according to area of solar collectors); nevertheless, the application of photovoltaic/thermal and industrial heating systems must be determined according to the thermal output of such systems. - Highlights: •The long-term subsidization for solar water heaters has lost effectiveness. •Solar thermal applications include BIST, PV/T and industrial heating process. •A performance-based subsidy policy should be implemented.

  7. Surface Passivation of CIGS Solar Cells Using Gallium Oxide

    KAUST Repository

    Garud, Siddhartha

    2018-02-27

    This work proposes gallium oxide grown by plasma-enhanced atomic layer deposition, as a surface passivation material at the CdS buffer interface of Cu(In,Ga)Se2 (CIGS) solar cells. In preliminary experiments, a metal-insulator-semiconductor (MIS) structure is used to compare aluminium oxide, gallium oxide, and hafnium oxide as passivation layers at the CIGS-CdS interface. The findings suggest that gallium oxide on CIGS may show a density of positive charges and qualitatively, the least interface trap density. Subsequent solar cell results with an estimated 0.5 nm passivation layer show an substantial absolute improvement of 56 mV in open-circuit voltage (VOC), 1 mA cm−2 in short-circuit current density (JSC), and 2.6% in overall efficiency as compared to a reference (with the reference showing 8.5% under AM 1.5G).

  8. Economic impact of latent heat thermal energy storage systems within direct steam generating solar thermal power plants with parabolic troughs

    International Nuclear Information System (INIS)

    Seitz, M.; Johnson, M.; Hübner, S.

    2017-01-01

    Highlights: • Integration of a latent heat thermal energy storage system into a solar direct steam generation power cycle. • Parametric study of solar field and storage size for determination of the optimal layout. • Evaluation of storage impact on the economic performance of the solar thermal power plant. • Economic comparison of new direct steam generation plant layout with state-of-the-art oil plant layout. - Abstract: One possible way to further reduce levelized costs of electricity of concentrated solar thermal energy is to directly use water/steam as the primary heat transfer fluid within a concentrated collector field. This so-called direct steam generation offers the opportunity of higher operating temperatures and better exergy efficiency. A technical challenge of the direct steam generation technology compared to oil-driven power cycles is a competitive storage technology for heat transfer fluids with a phase change. Latent heat thermal energy storages are suitable for storing heat at a constant temperature and can be used for direct steam generation power plants. The calculation of the economic impact of an economically optimized thermal energy storage system, based on a latent heat thermal energy storage system with phase change material, is the main focus of the presented work. To reach that goal, a thermal energy storage system for a direct steam generation power plant with parabolic troughs in the solar field was thermally designed to determine the boundary conditions. This paper discusses the economic impact of the designed thermal energy storage system based on the levelized costs of electricity results, provided via a wide parametric study. A state-of-the-art power cycle with a primary and a secondary heat transfer fluid and a two-tank thermal energy storage is used as a benchmark technology for electricity generation with solar thermal energy. The benchmark and direct steam generation systems are compared to each other, based respectively

  9. Enhanced photovoltaic performance of inverted pyramid-based nanostructured black-silicon solar cells passivated by an atomic-layer-deposited Al2O3 layer.

    Science.gov (United States)

    Chen, Hong-Yan; Lu, Hong-Liang; Ren, Qing-Hua; Zhang, Yuan; Yang, Xiao-Feng; Ding, Shi-Jin; Zhang, David Wei

    2015-10-07

    Inverted pyramid-based nanostructured black-silicon (BS) solar cells with an Al2O3 passivation layer grown by atomic layer deposition (ALD) have been demonstrated. A multi-scale textured BS surface combining silicon nanowires (SiNWs) and inverted pyramids was obtained for the first time by lithography and metal catalyzed wet etching. The reflectance of the as-prepared BS surface was about 2% lower than that of the more commonly reported upright pyramid-based SiNW BS surface over the whole of the visible light spectrum, which led to a 1.7 mA cm(-2) increase in short circuit current density. Moreover, the as-prepared solar cells were further passivated by an ALD-Al2O3 layer. The effect of annealing temperature on the photovoltaic performance of the solar cells was investigated. It was found that the values of all solar cell parameters including short circuit current, open circuit voltage, and fill factor exhibit a further increase under an optimized annealing temperature. Minority carrier lifetime measurements indicate that the enhanced cell performance is due to the improved passivation quality of the Al2O3 layer after thermal annealing treatments. By combining these two refinements, the optimized SiNW BS solar cells achieved a maximum conversion efficiency enhancement of 7.6% compared to the cells with an upright pyramid-based SiNWs surface and conventional SiNx passivation.

  10. The limits to solar thermal electricity

    International Nuclear Information System (INIS)

    Trainer, Ted

    2014-01-01

    The potential and limits of solar thermal power systems depend primarily on their capacity to meet electricity demand in mid-winter, and the associated cost, storage and other implications. Evidence on output and costs is analysed. Most attention is given to central receivers. Problems of low radiation levels, embodied energy costs, variability and storage are discussed and are found to set significant difficulties for large scale solar thermal supply in less than ideal latitudes and seasons. It is concluded that for solar thermal systems to meet a large fraction of anticipated global electricity demand in winter would involve prohibitive capital costs. - Highlights: • Output and capital cost data for various solar thermal technologies is examined. • Special attention is given to performance in winter. • Attention is also given to the effect of solar intermittency. • Implications for storage are considered. • It is concluded that there are significant limits to solar thermal power

  11. Tunnel oxide passivated contacts formed by ion implantation for applications in silicon solar cells

    International Nuclear Information System (INIS)

    Reichel, Christian; Feldmann, Frank; Müller, Ralph; Hermle, Martin; Glunz, Stefan W.; Reedy, Robert C.; Lee, Benjamin G.; Young, David L.; Stradins, Paul

    2015-01-01

    Passivated contacts (poly-Si/SiO x /c-Si) doped by shallow ion implantation are an appealing technology for high efficiency silicon solar cells, especially for interdigitated back contact (IBC) solar cells where a masked ion implantation facilitates their fabrication. This paper presents a study on tunnel oxide passivated contacts formed by low-energy ion implantation into amorphous silicon (a-Si) layers and examines the influence of the ion species (P, B, or BF 2 ), the ion implantation dose (5 × 10 14  cm −2 to 1 × 10 16  cm −2 ), and the subsequent high-temperature anneal (800 °C or 900 °C) on the passivation quality and junction characteristics using double-sided contacted silicon solar cells. Excellent passivation quality is achieved for n-type passivated contacts by P implantations into either intrinsic (undoped) or in-situ B-doped a-Si layers with implied open-circuit voltages (iV oc ) of 725 and 720 mV, respectively. For p-type passivated contacts, BF 2 implantations into intrinsic a-Si yield well passivated contacts and allow for iV oc of 690 mV, whereas implanted B gives poor passivation with iV oc of only 640 mV. While solar cells featuring in-situ B-doped selective hole contacts and selective electron contacts with P implanted into intrinsic a-Si layers achieved V oc of 690 mV and fill factor (FF) of 79.1%, selective hole contacts realized by BF 2 implantation into intrinsic a-Si suffer from drastically reduced FF which is caused by a non-Ohmic Schottky contact. Finally, implanting P into in-situ B-doped a-Si layers for the purpose of overcompensation (counterdoping) allowed for solar cells with V oc of 680 mV and FF of 80.4%, providing a simplified and promising fabrication process for IBC solar cells featuring passivated contacts

  12. Solar technologies for buildings. Fundamentals and practice examples. 2. rev. ed.; Solare Technologien fuer Gebaeude. Grundlagen und Praxisbeispiele

    Energy Technology Data Exchange (ETDEWEB)

    Eicker, Ursula

    2012-07-01

    Active and passive utilization of solar energy makes a significant contribution to energy supply in buildings. Solar heating and cooling systems, photovoltaic energy conversion systems and efficient daylighting and passive solar systems are available on the market and need to gain acceptance. The book presents the physical fundamentals and calculated examples for students. It also addresses engineers in practice, who are given concrete design procedures for solar technologies in domestic and administrative buildings. Subjects are, among others: Energy consumption of buildings and solar coverage potential - meteorological basis - solar powered heating - solar cooling - grid-connected photovoltaic systems - thermal analysis of building-integrated solar components - passive utilization of solar energy - lighting engineering and utilization of daylight.

  13. Solar panel thermal cycling testing by solar simulation and infrared radiation methods

    Science.gov (United States)

    Nuss, H. E.

    1980-01-01

    For the solar panels of the European Space Agency (ESA) satellites OTS/MAROTS and ECS/MARECS the thermal cycling tests were performed by using solar simulation methods. The performance data of two different solar simulators used and the thermal test results are described. The solar simulation thermal cycling tests for the ECS/MARECS solar panels were carried out with the aid of a rotatable multipanel test rig by which simultaneous testing of three solar panels was possible. As an alternative thermal test method, the capability of an infrared radiation method was studied and infrared simulation tests for the ultralight panel and the INTELSAT 5 solar panels were performed. The setup and the characteristics of the infrared radiation unit using a quartz lamp array of approx. 15 sq and LN2-cooled shutter and the thermal test results are presented. The irradiation uniformity, the solar panel temperature distribution, temperature changing rates for both test methods are compared. Results indicate the infrared simulation is an effective solar panel thermal testing method.

  14. Solar-thermal jet pumping for irrigation

    Science.gov (United States)

    Clements, L. D.; Dellenback, P. A.; Bell, C. A.

    1980-01-01

    This paper describes a novel concept in solar powered irrigation pumping, gives measured performance data for the pump unit, and projected system performance. The solar-thermal jet pumping concept is centered around a conventional jet eductor pump which is commercially available at low cost. The jet eductor pump is powered by moderate temperature, moderate pressure Refrigerant-113 vapor supplied by a concentrating solar collector field. The R-113 vapor is direct condensed by the produced water and the two fluids are separated at the surface. The water goes on to use and the R-113 is repressurized and returned to the solar field. The key issue in the solar-thermal jet eductor concept is the efficiency of pump operation. Performance data from a small scale experimental unit which utilizes an electrically heated boiler in place of the solar field is presented. The solar-thermal jet eductor concept is compared with other solar irrigation concepts and optimal application situations are identified. Though having lower efficiencies than existing Rankine cycle solar-thermal irrigation systems, the mechanical and operational simplicity of this concept make it competitive with other solar powered irrigation schemes.

  15. Solar Thermal Utilization: Past, Present and Future

    Science.gov (United States)

    2010-09-01

    SO•C NON-FOCUSSING FLAT PLATE / (FPC) 100- 150•C For low temperature 50- 200•C COMPOUND applications PARABOLIC EVACUATED CONCENTRATOR ~ (ETC...2030 Ø 200GW BY 2050 Ø 20 MILLION SQ.METER SOLAR THERMAL COLLECTORS (20GW power) Ø 20 MILLION SOLAR LIGHTS LAUNCHING OF SOLAR INDIA SOLAR THERMAL...Temperature (20oC- 80oC) NALSUN ApplicationsThermal Conversion range SOLAR ENERGY COLLECTORS 40- GO•C UNGLAZED COLLECTORS 60- 90•C SOLAR POND 60

  16. Solar Air Heaters with Thermal Heat Storages

    OpenAIRE

    Saxena, Abhishek; Goel, Varun

    2013-01-01

    Solar energy can be converted into different forms of energy, either to thermal energy or to electrical energy. Solar energy is converted directly into electrical power by photovoltaic modules, while solar collector converts solar energy into thermal energy. Solar collector works by absorbing the direct solar radiation and converting it into thermal energy, which can be stored in the form of sensible heat or latent heat or a combination of sensible and latent heats. A theoretical study has be...

  17. Enhanced active aluminum content and thermal behaviour of nano-aluminum particles passivated during synthesis using thermal plasma route

    International Nuclear Information System (INIS)

    Mathe, Vikas L.; Varma, Vijay; Raut, Suyog; Nandi, Amiya Kumar; Pant, Arti; Prasanth, Hima; Pandey, R.K.; Bhoraskar, Sudha V.; Das, Asoka K.

    2016-01-01

    Graphical abstract: - Highlights: • Synthesis of nano crystalline Al (nAl) using DC thermal plasma reactor. • In situ passivation of nAl by palmitic acid and air. • Enhanced active aluminum content obtained for palmitic acid passivated nAl. • Palmitic acid passivated nAl are quite stable in humid atmospheres. - Abstract: Here, we report synthesis and in situ passivation of aluminum nanoparticles using thermal plasma reactor. Both air and palmitc acid passivation was carried out during the synthesis in the thermal plasma reactor. The passivated nanoparticles have been characterized for their structural and morphological properties using X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. In order to understand nature of passivation vibrational spectroscopic analysis have been carried out. The enhancement in active aluminum content and shelf life for a palmitic acid passivated nano-aluminum particles in comparison to the air passivated samples and commercially available nano Al powder (ALEX) has been observed. Thermo-gravimetric analysis was used to estimate active aluminum content of all the samples under investigation. In addition cerimetric back titration method was also used to estimate AAC and the shelf life of passivated aluminum particles. Structural, microstructural and thermogravomateric analysis of four year aged passivated sample also depicts effectiveness of palmitic acid passivation.

  18. Enhanced active aluminum content and thermal behaviour of nano-aluminum particles passivated during synthesis using thermal plasma route

    Energy Technology Data Exchange (ETDEWEB)

    Mathe, Vikas L., E-mail: vlmathe@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra (India); Varma, Vijay; Raut, Suyog [Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra (India); Nandi, Amiya Kumar; Pant, Arti; Prasanth, Hima; Pandey, R.K. [High Energy Materials Research Lab, Sutarwadi, Pune 411021, Maharashtra (India); Bhoraskar, Sudha V. [Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra (India); Das, Asoka K. [Utkal University, VaniVihar, Bhubaneswar, Odisha 751004 (India)

    2016-04-15

    Graphical abstract: - Highlights: • Synthesis of nano crystalline Al (nAl) using DC thermal plasma reactor. • In situ passivation of nAl by palmitic acid and air. • Enhanced active aluminum content obtained for palmitic acid passivated nAl. • Palmitic acid passivated nAl are quite stable in humid atmospheres. - Abstract: Here, we report synthesis and in situ passivation of aluminum nanoparticles using thermal plasma reactor. Both air and palmitc acid passivation was carried out during the synthesis in the thermal plasma reactor. The passivated nanoparticles have been characterized for their structural and morphological properties using X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. In order to understand nature of passivation vibrational spectroscopic analysis have been carried out. The enhancement in active aluminum content and shelf life for a palmitic acid passivated nano-aluminum particles in comparison to the air passivated samples and commercially available nano Al powder (ALEX) has been observed. Thermo-gravimetric analysis was used to estimate active aluminum content of all the samples under investigation. In addition cerimetric back titration method was also used to estimate AAC and the shelf life of passivated aluminum particles. Structural, microstructural and thermogravomateric analysis of four year aged passivated sample also depicts effectiveness of palmitic acid passivation.

  19. Trends in observable passive solar design strategies for existing homes in the U.S

    International Nuclear Information System (INIS)

    Kruzner, Kelly; Cox, Kristin; Machmer, Brian; Klotz, Leidy

    2013-01-01

    Passive design strategies are among the most cost-effective methods to reduce energy consumption in buildings. However, the prevalence of these strategies in existing U.S. homes is not well understood. To help address this issue, this research evaluated a nationally-representative sample of 1000 existing homes distributed geographically across the U.S. Using satellite images, each building was evaluated for three passive design strategies: orientation, roof color, and level of shading. Several statistically significant regional trends were identified. For example, existing homes in the High Plains, Ohio Valley, Northwest, and Southern regions show a statistically significant trend towards orientation in the East–West direction, an effective passive design strategy. Less intuitively, in terms of what would seem to be optimal passive design, buildings in the High Plains and Ohio Valley generally have lighter roof colors than buildings in the warmer Southwest region. At the national level, no statistically significant trends were found towards the passive design strategies evaluated. These trends give us no reason to believe they were a major consideration in the design of existing homes. Policy measures and education may be required to take advantage of the opportunity for cost-effective energy savings through more widespread passive solar design. - Highlights: ► GoogleMaps to examine implementation of cost-effective, observable passive solar strategies in U.S. houses. ► No national trends toward passive solar design in U.S.—a missed opportunity. ► Some regional passive solar trends in U.S. for house orientation, roof color

  20. Solar thermal power: the seamless solar link to the conventional power world

    International Nuclear Information System (INIS)

    Geyer, Michael; Quaschning, Volker

    2000-01-01

    This article focuses on solar thermal power generation and describes two solar thermal power concepts, namely, the parabolic trough or solar farm, and the solar central receiver or power tower. Details are given of grid-connected parabolic trough power plants in California and recent developments in collector design and absorber tubes, and the operation of power tower plants with different heat transfer media. Market issues are discussed, and solar thermal power projects under development, and application for support for solar thermal power projects under the Global Environment Facility's Operational Programme by Egypt, India, Iran, Mexico and Morocco are reported

  1. Device physics underlying silicon heterojunction and passivating-contact solar cells: A topical review

    KAUST Repository

    Chavali, Raghu V. K.

    2018-01-15

    The device physics of commercially dominant diffused-junction silicon solar cells is well understood, allowing sophisticated optimization of this class of devices. Recently, so-called passivating-contact solar cell technologies have become prominent, with Kaneka setting the world\\'s silicon solar cell efficiency record of 26.63% using silicon heterojunction contacts in an interdigitated configuration. Although passivating-contact solar cells are remarkably efficient, their underlying device physics is not yet completely understood, not in the least because they are constructed from diverse materials that may introduce electronic barriers in the current flow. To bridge this gap in understanding, we explore the device physics of passivating contact silicon heterojunction (SHJ) solar cells. Here, we identify the key properties of heterojunctions that affect cell efficiency, analyze the dependence of key heterojunction properties on carrier transport under light and dark conditions, provide a self-consistent multiprobe approach to extract heterojunction parameters using several characterization techniques (including dark J-V, light J-V, C-V, admittance spectroscopy, and Suns-Voc), propose design guidelines to address bottlenecks in energy production in SHJ cells, and develop a process-to-module modeling framework to establish the module\\'s performance limits. We expect that our proposed guidelines resulting from this multiscale and self-consistent framework will improve the performance of future SHJ cells as well as other passivating contact-based solar cells.

  2. Rapid Thermal Annealing and Hydrogen Passivation of Polycrystalline Silicon Thin-Film Solar Cells on Low-Temperature Glass

    Directory of Open Access Journals (Sweden)

    Mason L. Terry

    2007-01-01

    Full Text Available The changes in open-circuit voltage (Voc, short-circuit current density (Jsc, and internal quantum efficiency (IQE of aLuminum induced crystallization, ion-assisted deposition (ALICIA polycrystalline silicon thin-film solar cells on low-temperature glass substrates due to rapid thermal anneal (RTA treatment and subsequent remote microwave hydrogen plasma passivation (hydrogenation are examined. Voc improvements from 130 mV to 430 mV, Jsc improvements from 1.2 mA/cm2 to 11.3 mA/cm2, and peak IQE improvements from 16% to > 70% are achieved. A 1-second RTA plateau at 1000°C followed by hydrogenation increases the Jsc by a factor of 5.5. Secondary ion mass spectroscopy measurements are used to determine the concentration profiles of dopants, impurities, and hydrogen. Computer modeling based on simulations of the measured IQE data reveals that the minority carrier lifetime in the absorber region increases by 3 orders of magnitude to about 1 nanosecond (corresponding to a diffusion length of at least 1 μm due to RTA and subsequent hydrogenation. The evaluation of the changes in the quantum efficiency and Voc due to RTA and hydrogenation with computer modeling significantly improves the understanding of the limiting factors to cell performance.

  3. Passive solar energy-efficient architectural building Design ...

    African Journals Online (AJOL)

    In this paper analyses have been done on the climate data for various climatic regions in North Cyprus to obtain physical architectural building design specification with a view to develop passive solar energy-efficient building. It utilizes a computer program, ARCHIPAK, together with climate data (for 25 year period) to get ...

  4. Solar thermal and concentrated solar power barometer

    International Nuclear Information System (INIS)

    2013-01-01

    The European concentrated solar power plant market is steeling itself for tough time ahead. The number of projects under construction is a pittance compared with 2012 that was an excellent year for installations (an additional 802.5 MW of capacity recorded). This drop is the result of the moratorium on renewable energy power plants introduced by the Spanish government. The European solar thermal market is hardly any more encouraging . EurObserv'ER holds that it slipped for the fourth year in a row (it dropped 5.5% between 2011 and 2012). The newly-installed solar thermal collector surface area in the EU now stands at 3.4 million m 2 , far short of its 2008 installation record of 4.6 million m 2 . The EU's solar thermal base to date at the end of 2012 is 29.6 GWth with 2.4 GWth installed during the year 2012. This article gives tables gathering the figures of the production for every European country for 2012 and describes the market and the general trend for every EU member

  5. Reduction of carbon dioxide emissions by solar water heating systems and passive technologies in social housing

    International Nuclear Information System (INIS)

    Bessa, Vanessa M.T.; Prado, Racine T.A.

    2015-01-01

    Growing global concern regarding climate change motivates technological studies to minimize environmental impacts. In this context, solar water heating (SWH) systems are notably prominent in Brazil, primarily because of the abundance of solar energy in the country. However, SWH designs have not always been perfectly developed. In most projects, the installation option of the solar system only considers the electric power economy aspects and not the particular characteristics of each climatic zone. Thus, the primary objective of this paper is to assess the potential of carbon dioxide reduction with the use of SWH in comparison with electric showers in social housing in several Brazilian climatic zones. The Brazilian government authorities have created public policies to encourage the use of these technologies primarily among the low-income population. The results of this paper indicate that hot climactic regions demonstrate a low reduction of CO 2 emissions with SWH installations. Thus, solar radiation is not useful for water heating in those regions, but it does lead to a large fraction of household cooling loads, implying a demand for electrical energy for air conditioning or requiring the adoption of passive techniques to maintain indoor temperatures below threshold values. -- Graphical abstract: Display Omitted -- Highlights: •Brazil has created public policies to increase the use of solar water heating in social housing. •We have evaluated the potential for reduction of CO 2 emissions installing solar water heating. •We have found that the coldest regions have the greatest potential for reducing emissions. •Passive technologies for thermal comfort in hot climate households are more useful than solar water heating systems

  6. The Effect of Passive Design Strategies on Thermal Performance of Female Secondary School Buildings during Warm Season in Hot Dry Climate

    Directory of Open Access Journals (Sweden)

    Sahar eZahiri

    2016-03-01

    Full Text Available This paper describes a series of field studies and simulation analysis to improve the thermal performance of school buildings in the city of Tehran in Iran during warm season. The field studies used on-site measurement and questionnaire-based survey in the warm spring season in a typical female secondary school building. The on-site monitoring assessed the indoor air temperature and humidity levels of six classrooms while the occupants completed questionnaires covering their thermal sensations and thermal preferences. Moreover, thermal simulation analysis was also carried out to evaluate and improve the thermal performance of the classrooms based on the students’ thermal requirements and passive design strategies. In this study, the environmental design guidelines for female secondary school buildings were introduced for the hot and dry climate of Tehran, using passive design strategies. The study shows that the application of passive design strategies including south and south-east orientation, 10cm thermal insulation in wall and 5cm in the roof, and the combination of 30cm side fins and overhangs as a solar shading devices, as well as all-day ventilation strategy and the use of thermal mass materials with 25cm-30cm thickness, has considerable impact on indoor air temperatures in warm season in Tehran and keeps the indoor environment in an acceptable thermal condition. The results of the field studies also indicated that most of the occupants found their thermal environment not to be comfortable and the simulation results showed that passive design techniques had a significant influence on the indoor air temperature and can keep it in an acceptable range based on the female students’ thermal requirement. Therefore, in order to enhance the indoor environment and to increase the learning performance of the students, it is necessary to use the appropriate passive design strategies, which also reduce the need for mechanical systems and

  7. Photovoltaic. Solar thermal. Solar thermal electricity;Le Photovoltaique. Le solaire thermique. L'heliothermodynamique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The year 2008 was excellent for solar energy in the European Union. The growth of the installed capacity for photovoltaic was +159% (it means +4747.018 MW) to reach 9689.952 MW and that for solar thermal was +51.5% (it means +3172.5 MW) to reach 19982.7 MW. Worldwide concentrated solar thermal capacity stood at 679 MW in 2009, while this figure may seem low, the sector has a promising future ahead of it. (A.C.)

  8. Thin Film Photovoltaic/Thermal Solar Panels

    Institute of Scientific and Technical Information of China (English)

    David JOHNSTON

    2008-01-01

    A solar panel is described.in which thin films of semiconductor are deposited onto a metal substrate.The semiconductor-metal combination forms a thin film photovoltaic cell,and also acts as a reflector,absorber tandem, which acts as a solar selective surface,thus enhancing the solar thermal performance of the collector plate.The use of thin films reduces the distance heat is required to flow from the absorbing surface to the metal plate and heat exchange conduits.Computer modelling demonstrated that,by suitable choice of materials,photovohaic efficiency call be maintained,with thermal performance slishtly reduced,compared to that for thermal-only panels.By grading the absorber layer-to reduce the band gap in the lower region-the thermal performance can be improved,approaching that for a thermal-only solar panel.

  9. Concentrated solar thermal power - Now

    Energy Technology Data Exchange (ETDEWEB)

    Aringhoff, R.; Brakmann, G. [Solar Thermal Power Industry Association ESTIA, Avenue de la Fauconnerie 73, 1170 Brussels (Belgium); Geyer, M. [IEA SolarPACES Implementing Agreement, Avenida de la Paz 51, 04720 Aguadulce, Almeria (Spain); Teske, S. [Greenpeace International, Ottho Heldringstraat 5, 1066 AZ Amsterdam (Netherlands)

    2005-09-15

    This report demonstrates that there are no technical, economic or resource barriers to supplying 5% of the world's electricity needs from solar thermal power by 2040. It is written as practical blueprint to improve understanding of the solar thermal contribution to the world energy supply.

  10. Investigation of Solar and Solar-Gas Thermal Energy Sources

    OpenAIRE

    Ivan Herec; Jan Zupa

    2003-01-01

    The article deals with the investigation of solar thermal sources of electrical and heat energy as well as the investigation of hybrid solar-gas thermal sources of electrical and heat energy (so called photothermal sources). Photothermal sources presented here utilize computer-controlled injection of the conversion fluid into special capillary porous substance that is adjusted to direct temperature treatment by the concentrated thermal radiation absorption.

  11. Concentrated solar thermal power - Now

    Energy Technology Data Exchange (ETDEWEB)

    Aringhoff, R.; Brakmann, G. [Solar Thermal Power Industry Association ESTIA, Avenue de la Fauconnerie 73, 1170 Brussels (Belgium); Geyer, M. [IEA SolarPACES Implementing Agreement, Avenida de la Paz 51, 04720 Aguadulce, Almeria (Spain); Teske, S. [Greenpeace International, Ottho Heldringstraat 5, 1066 AZ Amsterdam (Netherlands)

    2005-09-15

    This report demonstrates that there are no technical, economic or resource barriers to supplying 5% of the world's electricity needs from solar thermal power by 2040. It is written as practical blueprint to improve understanding of the solar thermal contribution to the world energy supply.

  12. A comparative study on three types of solar utilization technologies for buildings: Photovoltaic, solar thermal and hybrid photovoltaic/thermal systems

    International Nuclear Information System (INIS)

    Huide, Fu; Xuxin, Zhao; Lei, Ma; Tao, Zhang; Qixing, Wu; Hongyuan, Sun

    2017-01-01

    Highlights: • Models of Solar thermal, Photovoltaic and Photovoltaic/thermal systems are developed. • Experiments are performed to validate the simulation results. • Annual performances of the three solar systems used in china are predicted. • Energy comparison between the three solar systems is analyzed. - Abstract: Buildings need energy including heat and electricity, and both of them can be provided by the solar systems. Solar thermal and photovoltaic systems absorb the solar energy and can supply the heat and electricity for buildings, respectively. However, for the urban residential buildings, the limited available area makes installation of the solar thermal collectors and photovoltaic modules together impossible. A hybrid photovoltaic/thermal system can simultaneously generate heat and electricity, which is deemed to be quite suitable for the urban residential buildings application. And yet, for a rural house of China, the available area for installation of the solar collectors is large but daily domestic hot water demand of a rural family is generally not exceeded 300 L. If only the hybrid photovoltaic/thermal collectors are installed on the whole available area, this will lead to an overproduction of the thermal energy, especially in summer. Moreover, buildings requiring for the heat and electricity are different in different regions and different seasons. In this paper, simulation models of the solar thermal, photovoltaic and hybrid photovoltaic/thermal systems are presented, and experiments are also performed to validate the simulation results. Using the validated models, performances of the three solar systems for residential applications were predicted. And energy comparison between the three solar systems used in Hongkong, Lhasa, Shanghai and Beijing of China, respectively, were also studied. Results show that, for the urban residential building with limited available installation space, a hybrid photovoltaic/thermal system may have the

  13. Breaking the cycle: Producer and consumer perspectives on the non-adoption of passive solar housing in the US

    International Nuclear Information System (INIS)

    Garrett, Vicki; Koontz, Tomas M.

    2008-01-01

    Creating the technologies to solve our energy and pollution problems is only one part of the solution. Getting the technologies adopted may be a larger hurdle. This study examines the adoption of a low- or no-cost technology, passive solar housing design, in the United States. Interviews with professionals involved in passive solar supply identified lack of demand as the most important factor, followed by availability, awareness, and economic incentives. Corresponding survey results from homebuyers in one region suggest that lack of demand represents not disinterest, but rather lack of availability when purchasing a home. Conventional homeowners are not familiar with passive solar design, but are predisposed to favor it, especially if it can be incorporated into traditional housing styles. In addition, to the extent that they can learn information to counter the perceptions that passive solar homes are too complicated or there is too little sun in their region, homebuyers would be more willing to purchase a passive solar home. Policy interventions to promote passive solar homes should focus on supply-side incentives as well as information for homebuyers

  14. Breaking the cycle: Producer and consumer perspectives on the non-adoption of passive solar housing in the US

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, Vicki; Koontz, Tomas M. [School of Environment and Natural Resources, The Ohio State University, 210 Kottman Hall, 2021 Coffey Road, Columbus, OH 43210 (United States)

    2008-04-15

    Creating the technologies to solve our energy and pollution problems is only one part of the solution. Getting the technologies adopted may be a larger hurdle. This study examines the adoption of a low- or no-cost technology, passive solar housing design, in the United States. Interviews with professionals involved in passive solar supply identified lack of demand as the most important factor, followed by availability, awareness, and economic incentives. Corresponding survey results from homebuyers in one region suggest that lack of demand represents not disinterest, but rather lack of availability when purchasing a home. Conventional homeowners are not familiar with passive solar design, but are predisposed to favor it, especially if it can be incorporated into traditional housing styles. In addition, to the extent that they can learn information to counter the perceptions that passive solar homes are too complicated or there is too little sun in their region, homebuyers would be more willing to purchase a passive solar home. Policy interventions to promote passive solar homes should focus on supply-side incentives as well as information for homebuyers. (author)

  15. Supplementary material on passive solar heating concepts. A compilation of published articles

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    A compilation of published articles and reports dealing with passive solar energy concepts for heating and cooling buildings is presented. The following are included: fundamental of passive systems, applications and technical analysis, graphic tools, and information sources. (MHR)

  16. Approaches to passive safety in advanced thermal reactors

    International Nuclear Information System (INIS)

    Moses, D.L.

    1986-01-01

    Since 1980, there has been a proliferation of thermal reactor designs which incorporate passive safety features. The evolution of this trend is briefly traced, and the nature of various passive safety features is discussed with regard to how they have been incorporated into evolving design concepts. The key aspects of the passive safety features include reduced core power density, enhanced passive heat sinks, inherent assured shutdown mechanisms, elimination/minimization of potential leak paths from the primary coolant systems, enhanced robustness of fuel elements and improved coolant chemistry and component materials. An increased reliance on purely passive safety features typically translates into larger reactor structures at reduced power ratings. Proponents of the most innovative concepts seek to offset the increased costs by simplifying licensing requirements and reducing construction time

  17. ZnSe passivation layer for the efficiency enhancement of CuInS2 quantum dots sensitized solar cells

    International Nuclear Information System (INIS)

    Peng, Zhuoyin; Liu, Yueli; Zhao, Yinghan; Chen, Keqiang; Cheng, Yuqing; Kovalev, Valery; Chen, Wen

    2014-01-01

    Highlights: • ZnSe is employed as passivation layer in CuInS 2 quantum dots sensitized solar cells. • Slight red-shift has been occurred in UV–vis absorption spectra with ZnSe coating. • CuInS 2 based solar cells coated by ZnSe have better efficiency than that of ZnS. • Higher rate of charge transport can be produced after coating with ZnSe. -- Abstract: The effect of ZnSe passivation layer is investigated in the CuInS 2 quantum dot sensitized solar cells, which is used to improve the photovoltaic performance. The CuInS 2 quantum dot sensitized TiO 2 photo-anodes are prepared by assembly linking technique, and then deposited by the ZnSe passivation layer using the successive ionic layer absorption and reaction technique. The optical absorption edge and photoluminescence peak have slightly red-shifted after the passivation layer coating. Under solar light illumination, the ZnSe passivation layer based CuInS 2 quantum dot sensitized solar cells have the higher photovoltaic efficiency of 0.95% and incident photon conversion efficiency response than that of pure CuInS 2 based solar cells and ZnS passivation layer based solar cells, as the electron injection rate becomes faster after coating with ZnSe passivation layer

  18. Performance improvement of the finned passive PVT system using reflectors like removable insulation covers

    International Nuclear Information System (INIS)

    Ziapour, Behrooz M.; Palideh, Vahid; Mokhtari, Farhad

    2016-01-01

    Highlights: • A passive PVT system means the combination of a PV panel and a compact solar water heater. • Comparative study was done on performance characteristics in passive and hybrid PVT systems. • Reflectors effects on performance of a finned passive PVT system were numerically studied. • Results show that the finned passive PVT system has higher performance than the hybrid type. • Reflectors reduce the night heat losses and increase the solar radiation rate on PVT system. - Abstract: A passive photovoltaic–thermal system (PVT) is the combination of a photovoltaic (PV) panel and a compact solar water heater for co-generation of heat and electricity. This system bears considerable heat losses to ambient, particularly at noncollection times. One simple way to overcome this problem is to use a removable insulation cover on the collector's outer glazing. In this paper, the effects of the reflectors on day and night performance of a finned passive PVT system were numerically studied. At nonenergy collection time, the reflectors can turn and cover the collector cover glass as a nonconductor material. Simulation results showed that the reflectors reduce the night heat losses and increase the solar radiation rate on the absorber plate. The use of removable insulation reflectors resulted to saving extra sensibly thermal energy. Also, the solar cells power generation (P_s_c), in the case of reflectors installed, was reinforced.

  19. Design and Development of a Solar Thermal Collector with Single Axis Solar Tracking Mechanism

    Directory of Open Access Journals (Sweden)

    Theebhan Mogana

    2016-01-01

    Full Text Available The solar energy is a source of energy that is abundant in Malaysia and can be easily harvested. However, because of the rotation of the Earth about its axis, it is impossible to harvest the solar energy to the maximum capacity if the solar thermal collector is placed fix to a certain angle. In this research, a solar thermal dish with single axis solar tracking mechanism that will rotate the dish according to the position of the sun in the sky is designed and developed, so that more solar rays can be reflected to a focal point and solar thermal energy can be harvested from the focal point. Data were collected for different weather conditions and performance of the solar thermal collector with a solar tracker were studied and compared with stationary solar thermal collector.

  20. Solar-thermal conversion and thermal energy storage of graphene foam-based composite

    KAUST Repository

    Zhang, Lianbin

    2016-07-11

    Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy.

  1. Solar-thermal conversion and thermal energy storage of graphene foam-based composites.

    Science.gov (United States)

    Zhang, Lianbin; Li, Renyuan; Tang, Bo; Wang, Peng

    2016-08-14

    Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy the continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances the heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy.

  2. Review of the Department of Trade and Industry passive solar programme. Pt. 2: non-domestic buildings. Final report

    International Nuclear Information System (INIS)

    1997-06-01

    The aim of the Passive Solar Programme (PSP) was to quantify the nature, size and timing of passive solar contribution to the UK building stock and the energy savings; to determine the best and most cost effective methods of achieving savings; to explore and develop better techniques; and to transfer the information to the appropriate people. There are over 1.25 million non-domestic buildings in the UK. It has been calculated that it is technically and economically possible to use passive solar design along with improved efficiency measures to reduce energy consumption in the UK by 25% in most existing non-domestic buildings and over 50% in new buildings. From the UK Government's point of view the savings are potentially very significant, and initiatives are aimed at bringing passive solar design into wide use at the earliest possible date. The PSP was intended to encourage the use of passive solar design and displace other forms of energy consumption. The earlier passive solar programme was focused on the domestic sector, where the primary concern was to reduce energy consumed in space heating. Its extension to non-domestic buildings demanded a broader definition of the potential benefits. (author)

  3. Solar-Thermal Engine Testing

    Science.gov (United States)

    Tucker, Stephen; Salvail, Pat; Haynes, Davy (Technical Monitor)

    2001-01-01

    A solar-thermal engine serves as a high-temperature solar-radiation absorber, heat exchanger, and rocket nozzle. collecting concentrated solar radiation into an absorber cavity and transferring this energy to a propellant as heat. Propellant gas can be heated to temperatures approaching 4,500 F and expanded in a rocket nozzle, creating low thrust with a high specific impulse (I(sub sp)). The Shooting Star Experiment (SSE) solar-thermal engine is made of 100 percent chemical vapor deposited (CVD) rhenium. The engine 'module' consists of an engine assembly, propellant feedline, engine support structure, thermal insulation, and instrumentation. Engine thermal performance tests consist of a series of high-temperature thermal cycles intended to characterize the propulsive performance of the engines and the thermal effectiveness of the engine support structure and insulation system. A silicone-carbide electrical resistance heater, placed inside the inner shell, substitutes for solar radiation and heats the engine. Although the preferred propellant is hydrogen, the propellant used in these tests is gaseous nitrogen. Because rhenium oxidizes at elevated temperatures, the tests are performed in a vacuum chamber. Test data will include transient and steady state temperatures on selected engine surfaces, propellant pressures and flow rates, and engine thrust levels. The engine propellant-feed system is designed to Supply GN2 to the engine at a constant inlet pressure of 60 psia, producing a near-constant thrust of 1.0 lb. Gaseous hydrogen will be used in subsequent tests. The propellant flow rate decreases with increasing propellant temperature, while maintaining constant thrust, increasing engine I(sub sp). In conjunction with analytical models of the heat exchanger, the temperature data will provide insight into the effectiveness of the insulation system, the structural support system, and the overall engine performance. These tests also provide experience on operational

  4. Passive solar design studies for non-domestic buildings. Case studies

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    Of the passive solar designs reported, those for a light industrial building, a nurses hostel and a low rise office block were considered to be clearly cost effective. A retrofit study of a secondary school showed that incorporating passive solar measures into refurbishment could be cost effective. Designs for a sports hall and medium rise office block were considered to be only marginally cost effective and those for a hotel bedroom block and DIY superstore were judged not to be cost effective. The maximization of daylight penetration coupled with controls on the lighting systems produced the main energy saving. This orientation, built form, fenestration, window shape, perimeter (and overhead) daylight and atria were primary solar features. Direct gain considered in conjunction with building weight/response factor could contribute to a lesser degree. Trombe walls were shown to be generally uneconomic for this type of building and conservatories contributed to amenity value more than to savings.

  5. Progress in passive solar energy systems. Volume 8. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, J.; Andrejko, D.A.

    1983-01-01

    This book presents the papers given at a conference sponsored by the US DOE, the Solar Energy Research Institute, SolarVision, Inc., and the Southern California Solar Energy Society. The topics considered at the conference included sizing solar energy systems for agricultural applications, a farm scale ethanol production plant, the EEC wind energy RandD program, the passive solar performance assessment of an earth-sheltered house, the ARCO 1 MW photovoltaic power plant, the performance of a dendritic web photovoltaic module, second generation point focused concentrators, linear fresnel lens concentrating photovoltaic collectors, photovoltaic conversion efficiency, amorphous silicon thin film solar cells, a photovoltaic system for a shopping center, photovoltaic power generation for the utility industry, spectral solar radiation, and the analysis of insolation data.

  6. Passive Solar still: Recent advancement in design and related Performance.

    Science.gov (United States)

    Awasthi, Anuradha; Kumari, Kanchan; Panchal, Hitesh; Sathyamurthy, Ravishankar

    2018-05-31

    Present review paper mainly focuses on different varieties of solar stills and highlights mostly the passive solar still with advanced modifications in the design and development of material, single and multi-effect solar still with augmentation of different materials, energy absorbing, insulators, mechanisms of heat and mass transfer to improve the loss of heat and enhance the productivity of solar still. The cost-benefit analysis along with the progressive advancement for solar stills is the major highlights of this review. To increase the output of solar still nowadays, applications of advance modifications is one of the promising tools, and it is anticipated that shortly more vigor will be added in this area with the modifications in designs of solar stills.

  7. Semiconductor-based Multilayer Selective Solar Absorber for Unconcentrated Solar Thermal Energy Conversion.

    Science.gov (United States)

    Thomas, Nathan H; Chen, Zhen; Fan, Shanhui; Minnich, Austin J

    2017-07-13

    Solar thermal energy conversion has attracted substantial renewed interest due to its applications in industrial heating, air conditioning, and electricity generation. Achieving stagnation temperatures exceeding 200 °C, pertinent to these technologies, with unconcentrated sunlight requires spectrally selective absorbers with exceptionally low emissivity in the thermal wavelength range and high visible absorptivity for the solar spectrum. In this Communication, we report a semiconductor-based multilayer selective absorber that exploits the sharp drop in optical absorption at the bandgap energy to achieve a measured absorptance of 76% at solar wavelengths and a low emittance of approximately 5% at thermal wavelengths. In field tests, we obtain a peak temperature of 225 °C, comparable to that achieved with state-of-the-art selective surfaces. With straightforward optimization to improve solar absorption, our work shows the potential for unconcentrated solar thermal systems to reach stagnation temperatures exceeding 300 °C, thereby eliminating the need for solar concentrators for mid-temperature solar applications such as supplying process heat.

  8. Thermal solar energy, towards a sunny interval?

    International Nuclear Information System (INIS)

    Anon.

    2017-01-01

    While its market results are continuously decreasing, the thermal solar sector regains confidence with the perspectives of a new thermal legislation in France, a higher carbon tax and the growing volume of installed equipment. This document contains 5 articles, which themes are: The renewal of the thermal solar energy sector in France, notably for the building market, due to a new regulation and a reduction in costs; Several companies are developing large capacity thermal solar plant for industrial facilities (one of them covers 10000 m 2 ) while another company is developing an all-in-one containerised system (less than 1 MW); Another example is given with a Caribbean chemical company which use thermal solar energy for its processes, with a reduction of the fuel consumption by a 2.5 factor; The return of experience show that hybrid solar panels present some limitations, especially in terms of performances and sizing; A collective building (35 apartments) in the West of France has 100 pc of its heating needs (hot water production and space heating) satisfied with solar energy

  9. Thermal-hydraulic modeling needs for passive reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, J.M. [Nuclear Regulatory Commission, Washington, DC (United States)

    1997-07-01

    The U.S. Nuclear Regulatory Commission has received an application for design certification from the Westinghouse Electric Corporation for an Advanced Light Water Reactor design known as the AP600. As part of the design certification process, the USNRC uses its thermal-hydraulic system analysis codes to independently audit the vendor calculations. The focus of this effort has been the small break LOCA transients that rely upon the passive safety features of the design to depressurize the primary system sufficiently so that gravity driven injection can provide a stable source for long term cooling. Of course, large break LOCAs have also been considered, but as the involved phenomena do not appear to be appreciably different from those of current plants, they were not discussed in this paper. Although the SBLOCA scenario does not appear to threaten core coolability - indeed, heatup is not even expected to occur - there have been concerns as to the performance of the passive safety systems. For example, the passive systems drive flows with small heads, consequently requiring more precision in the analysis compared to active systems methods for passive plants as compared to current plants with active systems. For the analysis of SBLOCAs and operating transients, the USNRC uses the RELAP5 thermal-hydraulic system analysis code. To assure the applicability of RELAP5 to the analysis of these transients for the AP600 design, a four year long program of code development and assessment has been undertaken.

  10. Thermal-hydraulic modeling needs for passive reactors

    International Nuclear Information System (INIS)

    Kelly, J.M.

    1997-01-01

    The U.S. Nuclear Regulatory Commission has received an application for design certification from the Westinghouse Electric Corporation for an Advanced Light Water Reactor design known as the AP600. As part of the design certification process, the USNRC uses its thermal-hydraulic system analysis codes to independently audit the vendor calculations. The focus of this effort has been the small break LOCA transients that rely upon the passive safety features of the design to depressurize the primary system sufficiently so that gravity driven injection can provide a stable source for long term cooling. Of course, large break LOCAs have also been considered, but as the involved phenomena do not appear to be appreciably different from those of current plants, they were not discussed in this paper. Although the SBLOCA scenario does not appear to threaten core coolability - indeed, heatup is not even expected to occur - there have been concerns as to the performance of the passive safety systems. For example, the passive systems drive flows with small heads, consequently requiring more precision in the analysis compared to active systems methods for passive plants as compared to current plants with active systems. For the analysis of SBLOCAs and operating transients, the USNRC uses the RELAP5 thermal-hydraulic system analysis code. To assure the applicability of RELAP5 to the analysis of these transients for the AP600 design, a four year long program of code development and assessment has been undertaken

  11. A hybrid solar and chemical looping combustion system for solar thermal energy storage

    International Nuclear Information System (INIS)

    Jafarian, Mehdi; Arjomandi, Maziar; Nathan, Graham J.

    2013-01-01

    Highlights: ► A novel solar–CLC hybrid system is proposed which integrates a CLC with solar thermal energy. ► The oxygen carrier particles are used as storage medium for thermal energy storage. ► A solar cavity reactor is proposed for fuel reactor. ► The absorbed solar energy is stored in the particles to produce a base heat load. -- Abstract: A novel hybrid of a solar thermal energy and a chemical looping combustion (CLC) system is proposed here, which employs the oxygen carrier particles in a CLC system to provide diurnal thermal energy storage for concentrated solar thermal energy. In taking advantage of the chemical and sensible energy storage systems that are an inherent part of a CLC system, this hybrid offers potential to achieve cost effective, base load power generation for solar energy. In the proposed system, three reservoirs have been added to a conventional CLC system to allow storage of the oxygen carrier particles, while a cavity solar receiver has been chosen for the fuel reactor. The performance of the system is evaluated using ASPEN PLUS software, with the model being validated using independent simulation result reported previously. Operating temperature, solar efficiency, solar fraction, exergy efficiency and the fraction of the solar thermal energy stored for a based load power generation application are reported.

  12. Solar thermal power meeting - Proceedings

    International Nuclear Information System (INIS)

    2011-07-01

    This document summarizes the presentations and debates of the first edition of the Solar thermal power meeting. Content: 1 - Opening talk (Jean-Louis BAL, SER); 2 - Solar thermal power, European and global road-maps (Cedric Philibert, IEA; Mariangels Perez Latorre, Estela); 3 - first round-table on the international development of solar energy (Philippe Lorec, DGEC France; Said Mouline, Aderee Morocco; Obaid Amrane, Masen Morocco; Kawther Lihidheb, ANME Tunisia; Abdelaziz Boumahra, Rouiba Eclairage, Algeria; Badis Derradji, NEAL Algeria; Yao Azoumah, Lesee, 2IE Foundation Burkina Faso; Mamadou Amadou Kane, MPEM Mauritania; Jean-Charles Mulet, Bertin Technologies); 4 - Second round-table on the French solar thermal offer for export (Georgina Grenon, DGEC; Stephanie Bouzigueseschmann, DG Tresor; Armand Pineda, Alstom; Florent Brunet, Mena-Areva; Roger Pujol, CNIM; Gilles David, Enertime; Michel Wohrer, Saed; Mathieu Vrinat, Sogreah; Marc Benmarraze, Solar Euromed; 5 - Presentation of Amisole - Moroccan association of solar and wind industries (Ahmed Squalli, Amisole); 6 - Third round-table on French research at the solar industry service (Gilles Flamant, Promes Lab. CNRS; Francois Moisan, Ademe; Tahar Melliti, CGI; Andre Joffre, Derbi; Michel Wohrer, Capenergies; 7 - Fourth round table on projects financing (Vincent Girard, Loan Officer BEI; Bertrand Marchais, Miga World Bank; Philippe Meunier, CDC Climat Groupe Caisse des Depots; Christian de Gromard, AFD; Laurent Belouze, Natixis; Piotr Michalowski, Loan Officer BEI); 8 - Closing of the meeting (Roger Pujol, SER)

  13. Rankine-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  14. Rankline-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2012-03-13

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  15. ZnSe passivation layer for the efficiency enhancement of CuInS{sub 2} quantum dots sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Zhuoyin; Liu, Yueli; Zhao, Yinghan; Chen, Keqiang; Cheng, Yuqing [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Kovalev, Valery [Department of Mechanics and Mathematics, Moscow State University named after M.V. Lomonosov, Leninskie Gory 1, 119992 Moscow (Russian Federation); Chen, Wen, E-mail: chenw@whut.edu.cn [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China)

    2014-02-25

    Highlights: • ZnSe is employed as passivation layer in CuInS{sub 2} quantum dots sensitized solar cells. • Slight red-shift has been occurred in UV–vis absorption spectra with ZnSe coating. • CuInS{sub 2} based solar cells coated by ZnSe have better efficiency than that of ZnS. • Higher rate of charge transport can be produced after coating with ZnSe. -- Abstract: The effect of ZnSe passivation layer is investigated in the CuInS{sub 2} quantum dot sensitized solar cells, which is used to improve the photovoltaic performance. The CuInS{sub 2} quantum dot sensitized TiO{sub 2} photo-anodes are prepared by assembly linking technique, and then deposited by the ZnSe passivation layer using the successive ionic layer absorption and reaction technique. The optical absorption edge and photoluminescence peak have slightly red-shifted after the passivation layer coating. Under solar light illumination, the ZnSe passivation layer based CuInS{sub 2} quantum dot sensitized solar cells have the higher photovoltaic efficiency of 0.95% and incident photon conversion efficiency response than that of pure CuInS{sub 2} based solar cells and ZnS passivation layer based solar cells, as the electron injection rate becomes faster after coating with ZnSe passivation layer.

  16. Techno-Economic Assessment of Heat Transfer Fluid Buffering for Thermal Energy Storage in the Solar Field of Parabolic Trough Solar Thermal Power Plants

    Directory of Open Access Journals (Sweden)

    Jorge M. Llamas

    2017-08-01

    Full Text Available Currently, operating parabolic trough (PT solar thermal power plants, either solar-only or with thermal storage block, use the solar field as a heat transfer fluid (HTF thermal storage system to provide extra thermal capacity when it is needed. This is done by circulating heat transfer fluid into the solar field piping in order to create a heat fluid buffer. In the same way, by oversizing the solar field, it can work as an alternative thermal energy storage (TES system to the traditionally applied methods. This paper presents a solar field TES model for a standard solar field from a 50-MWe solar power plant. An oversized solar model is analyzed to increase the capacity storage system (HTF buffering. A mathematical model has been developed and different simulations have been carried out over a cycle of one year with six different solar multiples considered to represent the different oversized solar field configurations. Annual electricity generation and levelized cost of energy (LCOE are calculated to find the solar multiple (SM which makes the highest solar field thermal storage capacity possible within the minimum LCOE.

  17. Device physics underlying silicon heterojunction and passivating-contact solar cells: A topical review

    KAUST Repository

    Chavali, Raghu V. K.; De Wolf, Stefaan; Alam, Muhammad A.

    2018-01-01

    The device physics of commercially dominant diffused-junction silicon solar cells is well understood, allowing sophisticated optimization of this class of devices. Recently, so-called passivating-contact solar cell technologies have become prominent

  18. Window structure for passivating solar cells based on gallium arsenide

    Science.gov (United States)

    Barnett, Allen M. (Inventor)

    1985-01-01

    Passivated gallium arsenide solar photovoltaic cells with high resistance to moisture and oxygen are provided by means of a gallium arsenide phosphide window graded through its thickness from arsenic rich to phosphorus rich.

  19. Solar engineering of thermal processes

    CERN Document Server

    Duffie, John A

    2013-01-01

    The updated fourth edition of the ""bible"" of solar energy theory and applications Over several editions, Solar Engineering of Thermal Processes has become a classic solar engineering text and reference. This revised Fourth Edition offers current coverage of solar energy theory, systems design, and applications in different market sectors along with an emphasis on solar system design and analysis using simulations to help readers translate theory into practice. An important resource for students of solar engineering, solar energy, and alternative energy as well

  20. CURRENT TRENDS IN THE USE OF SOLAR ENERGY

    OpenAIRE

    Vanya Zhivkova

    2013-01-01

    Solar energy represents the amount of solar radiation per unit time on unit area. Solar energy is used to obtain thermal energy through solar, and electrical energy through exist for solar energy: passive and active. The utilization of solar energy is essential for the development of human civilization.

  1. Full-spectrum volumetric solar thermal conversion via photonic nanofluids.

    Science.gov (United States)

    Liu, Xianglei; Xuan, Yimin

    2017-10-12

    Volumetric solar thermal conversion is an emerging technique for a plethora of applications such as solar thermal power generation, desalination, and solar water splitting. However, achieving broadband solar thermal absorption via dilute nanofluids is still a daunting challenge. In this work, full-spectrum volumetric solar thermal conversion is demonstrated over a thin layer of the proposed 'photonic nanofluids'. The underlying mechanism is found to be the photonic superposition of core resonances, shell plasmons, and core-shell resonances at different wavelengths, whose coexistence is enabled by the broken symmetry of specially designed composite nanoparticles, i.e., Janus nanoparticles. The solar thermal conversion efficiency can be improved by 10.8% compared with core-shell nanofluids. The extinction coefficient of Janus dimers with various configurations is also investigated to unveil the effects of particle couplings. This work provides the possibility to achieve full-spectrum volumetric solar thermal conversion, and may have potential applications in efficient solar energy harvesting and utilization.

  2. An Isotope Study of Hydrogenation of poly-Si/SiOx Passivated Contacts for Si Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, Manuel; Nemeth, William; van de Loo, Bas, W.H.; Macco, Bart; Kessels, Wilhelmus, M.M.; Stradins, Paul; Young, David, L.

    2017-06-26

    For many years, the record Si solar cell efficiency stood at 25.0%. Only recently have several companies and institutes managed to produce more efficient cells, using passivated contacts of made doped poly-Si or a-Si:H and a passivating intrinsic interlayer in all cases. Common to these designs is the need to passivate the layer stack with hydrogen. In this contribution, we perform a systematic study of passivated contact passivation by hydrogen, using poly-Si/SiOx passivated contacts on n-Cz-Si, and ALD Al2O3 followed by a forming gas anneal (FGA) as the hydrogen source. We study p-type and n-type passivated contacts with implied Voc exceeding 690 and 720 mV, respectively, and perform either the ALD step or the FGA with deuterium instead of hydrogen in order to separate the two processes via SIMS. By examining the deuterium concentration at the SiOx in both types of samples, we demonstrate that the FGA supplies negligible hydrogen species to the SiOx, regardless of whether the FGA is hydrogenated or deuterated. Instead, it supplies the thermal energy needed for hydrogen species in the Al2O3 to diffuse there. Furthermore, the concentration of hydrogen species at the SiOx can saturate while implied Voc continues to increase, showing that the energy from the FGA is also required for hydrogen species already at the SiOx to find recombination-active defects to passivate.

  3. Solar thermal production of zinc: Program strategy

    Energy Technology Data Exchange (ETDEWEB)

    Steinfeld, A; Weidenkaff, A; Moeller, S; Palumbo, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The solar thermal production of zinc is considered for the conversion of solar energy into storable and transportable chemical fuels. The ultimate objective is to develop a technically and economically viable technology that can produce solar zinc. The program strategy for achieving such a goal involves research on two paths: a direct path via the solar thermal splitting of ZnO in the absence of fossil fuels, and an indirect path via the solar carbothermal/CH{sub 4}-thermal reduction of Zn O, with fossil fuels (coke or natural gas) as chemical reducing agents. Both paths make use of concentrated solar energy for high-temperature process heat. The direct path brings us to the complete substitution of fossil fuels with solar fuels for a sustainable energy supply system. The indirect path creates a link between today`s fossil-fuel-based technology and tomorrow`s solar chemical technology and builds bridges between present and future energy economies. (author) 1 fig., 15 refs.

  4. Enhancing Efficiency of Perovskite Solar Cells via Surface Passivation with Graphene Oxide Interlayer.

    Science.gov (United States)

    Li, Hao; Tao, Leiming; Huang, Feihong; Sun, Qiang; Zhao, Xiaojuan; Han, Junbo; Shen, Yan; Wang, Mingkui

    2017-11-08

    Perovskite solar cells have been demonstrated as promising low-cost and highly efficient next-generation solar cells. Enhancing V OC by minimization the interfacial recombination kinetics can further improve device performance. In this work, we for the first time reported on surface passivation of perovskite layers with chemical modified graphene oxides, which act as efficient interlayer to reduce interfacial recombination and enhance hole extraction as well. Our modeling points out that the passivation effect mainly comes from the interaction between functional group (4-fluorophenyl) and under-coordinated Pb ions. The resulting perovskite solar cells achieved high efficient power conversion efficiency of 18.75% with enhanced high open circuit V OC of 1.11 V. Ultrafast spectroscopy, photovoltage/photocurrent transient decay, and electronic impedance spectroscopy characterizations reveal the effective passivation effect and the energy loss mechanism. This work sheds light on the importance of interfacial engineering on the surface of perovskite layers and provides possible ways to improve device efficiency.

  5. Solar Passive Modification Increase Radiation Safety Standards Inside Accelerator Building

    International Nuclear Information System (INIS)

    Eid, A. F.; Keshk, A. B.

    2010-01-01

    Irradiation processing by accelerated electrons is considering one of the most important and useful industrial irradiation treatments. It is depending on two principle attachment elements which are architecture of irradiation building and the accelerator characteristic that was arranged inside irradiation building. Negative environmental measurements were recorded inside the main building and were exceeded the international standards (humidity, air speed, high thermal effects and ozone concentration). The study showed that it is essential to improve the natural environmental standards inside the main irradiation building in order to improve the work environment and to reduce ozone concentration from 220 ppb to international standard. The main goals and advantages were achieved by using environmental architecture (desert architecture) indoor the irradiation building. The work depends on passive solar system which is economic, same architectural elements, comfort / health, and radiation safety, and without mechanical means. The experimental work was accomplished under these modifications. The registered results of various environmental concentrations have proved their normal standards.

  6. CURRENT TRENDS IN THE USE OF SOLAR ENERGY

    Directory of Open Access Journals (Sweden)

    Vanya Zhivkova

    2013-06-01

    Full Text Available Solar energy represents the amount of solar radiation per unit time on unit area. Solar energy is used to obtain thermal energy through solar, and electrical energy through exist for solar energy: passive and active. The utilization of solar energy is essential for the development of human civilization.

  7. Silicon heterojunction solar cell passivation in combination with nanocrystalline silicon oxide emitters

    NARCIS (Netherlands)

    Gatz, H.A.; Rath, J.K.; Verheijen, M.A.; Kessels, W.M.M.; Schropp, R.E.I.

    2016-01-01

    Silicon heterojunction solar cells (SHJ) are well known for their high efficiencies, enabled by their remarkably high open-circuit voltages (VOC). A key factor in achieving these values is a good passivation of the crystalline wafer interface. One of the restrictions during SHJ solar cell production

  8. Market potential of solar thermal system in Malaysia

    International Nuclear Information System (INIS)

    Othman, M.Y.H.; Sopian, K.; Dalimin, M.N.

    1992-01-01

    This paper reviews the market potential for solar thermal systems in Malaysia. Our study indicates that solar thermal systems such as solar drying, solar water heating and process heating have a good potential for commercialization. The primary obstacle facing the utilization of these technologies is the financial aspects. (author)

  9. Proposal of leak path passivation for InGaN solar cells to reduce the leakage current

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ke, E-mail: ke.wang@chiba-u.jp; Imai, Daichi; Kusakabe, Kazuhide [Center for SMART Green Innovation Research, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Yoshikawa, Akihiko, E-mail: yoshi@faculty.chiba-u.jp [Center for SMART Green Innovation Research, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Department of Information and Communication Engineering, Graduate School of Engineering, Kogakuin University, Nakano-cho, Hachioji, Tokyo 2665-1 (Japan)

    2016-01-25

    We propose some general ways to passivate the leak paths in InGaN solar cells and report some experimental evidences of its effectiveness. By adopting an AlOx passivation process, the photovoltaic performances of GaN pn-junctions and InGaN solar cells, grown by molecular beam epitaxy, have been significantly improved. The open circuit voltage under 1 sun illumination increases from 1.46 to 2.26 V for a GaN pn junction, and from 0.95 to 1.27 V for an InGaN solar cell, demonstrating evidence of leak path passivation (LPP) by AlOx. The proposed LPP is expected to be a realistic way to exploit the potential of thick and relaxed but defective InGaN for solar cell applications.

  10. Study of thermal effects and optical properties of an innovative absorber in integrated collector storage solar water heater

    Science.gov (United States)

    Taheri, Yaser; Alimardani, Kazem; Ziapour, Behrooz M.

    2015-10-01

    Solar passive water heaters are potential candidates for enhanced heat transfer. Solar water heaters with an integrated water tank and with the low temperature energy resource are used as the simplest and cheapest recipient devices of the solar energy for heating and supplying hot water in the buildings. The solar thermal performances of one primitive absorber were determined by using both the experimental and the simulation model of it. All materials applied for absorber such as the cover glass, the black colored sands and the V shaped galvanized plate were submerged into the water. The water storage tank was manufactured from galvanized sheet of 0.0015 m in thickness and the effective area of the collector was 0.67 m2. The absorber was installed on a compact solar water heater. The constructed flat-plate collectors were tested outdoors. However the simulation results showed that the absorbers operated near to the gray materials and all experimental results showed that the thermal efficiencies of the collector are over than 70 %.

  11. A new structure for comparing surface passivation materials of GaAs solar cells

    Science.gov (United States)

    Desalvo, Gregory C.; Barnett, Allen M.

    1989-01-01

    The surface recombination velocity (S sub rec) for bare GaAs is typically as high as 10 to the 6th power to 10 to the 7th power cm/sec, which dramatically lowers the efficiency of GaAs solar cells. Early attempts to circumvent this problem by making an ultra thin junction (xj less than .1 micron) proved unsuccessful when compared to lowering S sub rec by surface passivation. Present day GaAs solar cells use an GaAlAs window layer to passivate the top surface. The advantages of GaAlAs in surface passivation are its high bandgap energy and lattice matching to GaAs. Although GaAlAs is successful in reducing the surface recombination velocity, it has other inherent problems of chemical instability (Al readily oxidizes) and ohmic contact formation. The search for new, more stable window layer materials requires a means to compare their surface passivation ability. Therefore, a device structure is needed to easily test the performance of different passivating candidates. Such a test device is described.

  12. Solar 92: The 1992 American Solar Energy Society annual conference

    International Nuclear Information System (INIS)

    Burley, S.; Arden, M.E.

    1992-01-01

    The purpose of this symposium is to document the lessons learned from federal and state policies and programs in the late 1970's and 1980's aimed at promoting consumer use of solar energy. During this period the primary emphasis was on solar thermal technologies and passive solar design that could be used at the residential level, though there was also some information on stand-alone photovoltaic systems as well

  13. IBC c-Si solar cells based on ion-implanted poly-silicon passivating contacts

    NARCIS (Netherlands)

    Yang, G.; Ingenito, A.; Isabella, O.; Zeman, M.

    2016-01-01

    Ion-implanted poly-crystalline silicon (poly-Si), in combination with a tunnel oxide layer, is investigated as a carrier-selective passivating contact in c-Si solar cells based on an interdigitated back contact (IBC) architecture. The optimized poly-Si passivating contacts enable low interface

  14. Dynamic Characterization of an Inflatable Concentrator for Solar Thermal Propulsion

    Science.gov (United States)

    Leigh, Larry; Hamidzadeh, Hamid; Tinker, Michael L.; Rodriguez, Pedro I. (Technical Monitor)

    2001-01-01

    An inflatable structural system that is a technology demonstrator for solar thermal propulsion and other applications is characterized for structural dynamic behavior both experimentally and computationally. The inflatable structure is a pressurized assembly developed for use in orbit to support a Fresnel lens or inflatable lenticular element for focusing sunlight into a solar thermal rocket engine. When the engine temperature reaches a pre-set level, the propellant is injected into the engine, absorbs heat from an exchanger, and is expanded through the nozzle to produce thrust. The inflatable structure is a passively adaptive system in that a regulator and relief valve are utilized to maintain pressure within design limits during the full range of orbital conditions. Modeling and test activities are complicated by the fact that the polyimide film material used for construction of the inflatable is nonlinear, with modulus varying as a function of frequency, temperature, and level of excitation. Modal vibration testing and finite element modeling are described in detail in this paper. The test database is used for validation and modification of the model. This work is highly significant because of the current interest in inflatable structures for space application, and because of the difficulty in accurately modeling such systems.

  15. Builder experience with low-cost high-value passive solar

    International Nuclear Information System (INIS)

    Aitken, D.W.; Neuffer, P.

    1993-01-01

    This article reports on passive solar tract home construction in the Reno, Nevada, area, that has enhanced the builder's market, made buying a home more affordable for the entry-level customer and made living in that home more attractive, displaced energy at $1.50/MMBtu, and attracted the local utility into seriously considering offering cash incentives for the construction and sale of those homes as a very cost-effective gas demand side management program. The builder's solar models, costs and marketing experience are described, and the utility's economic analysis is presented

  16. Solar thermal in France

    International Nuclear Information System (INIS)

    Letz, T.

    2006-01-01

    This article gives details of Plan Soleil established in 2000 by the French Agency for Environment and Energy Management and its identification of solar hot water systems and combined domestic solar hot water and space heating as promising sectors for development. The setting up of a support scheme for investment by Plan Soleil is discussed along with subsidies and grants, manufacturers and importers, the guarantee of solar results, and the quality of plants, components, and installers. The costs of thermal solar equipment, and results of the French assessment programme are considered. The need for quality standards is stressed

  17. Passivation Layers for Indoor Solar Cells at Low Irradiation Intensities

    OpenAIRE

    Rühle, K.; Rauer, M.; Rüdiger, M.; Giesecke, J.; Niewelt, T.; Schmiga, C.; Glunz, S.W.; Kasemann, M.

    2012-01-01

    The passivation mechanisms and qualities of Al2O3, SiNx, SiO2 and a-Si:H(i) on p- and n-type silicon are investigated by quasi-steady-state photoluminescence measurements. This technique allows effective lifetime measurements in an extremely large injection range between 1010 cm-3 and 1017 cm-3. The measurements are discussed focusing on injections below 1012 cm-3 in order to determine the most effective passivation layer for solar cells arranged for indoor applications. Fixed negative charge...

  18. evaluation of a modified passive solar housing system for poultry

    African Journals Online (AJOL)

    User

    The hourly efficiency of the solar brick passive system was estimated at about 78.42% in a day of May and ... to high cost and unavailability of kerosene in most developing .... sulted in intermittent rainfall, cloud cover and sunshine. From the ...

  19. Study of the development of solar energy in Rhone-Alpes. Presentation of the photovoltaic sector, Presentation of the solar thermal sector, Sunshine mapping, Assessment of installations by the end 2009, Development potential for solar thermal energy, Development potential for solar photovoltaic energy

    International Nuclear Information System (INIS)

    2010-12-01

    A first part proposes a wide presentation of the photovoltaic sector with an overview of largest plants, a market analysis (on the 2001-2009 period in the World, Europe and France, per technology, in terms of industrial tissue and R and D activity in France, evolution per region and per technology), a presentation of the different technologies (from the first to the third generation, in terms of costs, and of perspective for the different sectors), an environmental assessment of the different sectors (CO 2 emissions and avoided emissions), a presentation of the main actors of the photovoltaic sector (silicon producers, cell producers, thin layer producers, developers), a presentation of tracking technologies (trackers gains), and a perspective for the photovoltaic sector in Europe and in the World. In a same way, a second part presents the solar thermal sector: market analysis, active and passive technologies, solar concentration technology, environmental assessment, future perspective in Europe and in the World. A sunshine mapping is then proposed for the Rhone-Alpes region. The next part discusses various stakes: regulation for roof-based installations and for ground-based photovoltaic plants with respect to various issues (land planning, environment, biodiversity, agriculture, landscape, cultural heritage, natural risks). The next part proposes an assessment of solar thermal and photovoltaic installations at the end of 2009

  20. Passive solar power in the shade of French energy policy, 1945-1986

    International Nuclear Information System (INIS)

    Teissier, Pierre

    2013-01-01

    The installation in 1949 of the LES (solar energy laboratory) on Mont Louis-Odeillo in the Pyrenees, was emblematic of public commitment to passive solar power. Throughout the 1950's solar furnaces were supported for research into materials and solar powered homes, moving in phase with colonial policy. Then, with the construction at Odeillo of a giant solar furnace as part of the 'policy of grandeur', policy swung in the opposite direction. The study concludes with the role that the LES played at the time of the energy crisis in the 1970's and questions the French model of not developing solar energy

  1. Concentrating solar thermal power.

    Science.gov (United States)

    Müller-Steinhagen, Hans

    2013-08-13

    In addition to wind and photovoltaic power, concentrating solar thermal power (CSP) will make a major contribution to electricity provision from renewable energies. Drawing on almost 30 years of operational experience in the multi-megawatt range, CSP is now a proven technology with a reliable cost and performance record. In conjunction with thermal energy storage, electricity can be provided according to demand. To date, solar thermal power plants with a total capacity of 1.3 GW are in operation worldwide, with an additional 2.3 GW under construction and 31.7 GW in advanced planning stage. Depending on the concentration factors, temperatures up to 1000°C can be reached to produce saturated or superheated steam for steam turbine cycles or compressed hot gas for gas turbine cycles. The heat rejected from these thermodynamic cycles can be used for sea water desalination, process heat and centralized provision of chilled water. While electricity generation from CSP plants is still more expensive than from wind turbines or photovoltaic panels, its independence from fluctuations and daily variation of wind speed and solar radiation provides it with a higher value. To become competitive with mid-load electricity from conventional power plants within the next 10-15 years, mass production of components, increased plant size and planning/operating experience will be accompanied by technological innovations. On 30 October 2009, a number of major industrial companies joined forces to establish the so-called DESERTEC Industry Initiative, which aims at providing by 2050 15 per cent of European electricity from renewable energy sources in North Africa, while at the same time securing energy, water, income and employment for this region. Solar thermal power plants are in the heart of this concept.

  2. Volumetric solar thermal receiver principles and technological approach

    International Nuclear Information System (INIS)

    Sagie, D.; Gruntman, S.; Taragan, E.; Danino, M.; Weiss, S.; Mimon, Y.

    1996-01-01

    Solar energy has received much interest in recent years, being a clean free of pollution or other environmental dotage), and inexhaustible energy source. It is also considered safer than some other non conventional energy sources (like nuclear energy). The interest in solar energy is motivated mainly by the growing awareness of the environmental problems associated with the use of . conventional keels. However, solar energy may become a serious alternative only if it can be used efficiently in major energy consuming industries (like the chemical industry), or be used for electricity generation. Those facilities are nowadays solely depend on fossil fuels as the prime source of energy . The solar energy, reaches file Earth as radiation, can be utilized either by direct quantum conversion using photo-voltaic solar cells, or by converting the radiation into thermal energy, to be used directly for heating, or to feed a thermal to electric converting cycle. Alter three decades of huge spending on the development of photo-voltaic systems those devices are commercially competitive only on very small energy scale, while solar thermal commercial applications are evident. The prominent examples are the domestic heating water receivers (direct thermal), and LUZ International electricity generation plants which are currently operated on a commercial basis, supplying 80 MWe per plant. Direct thermal exploitation of solar energy is naturally more efficient than converting to electricity but is limited to specific applications and locations especially since thermal storage at high temperature is not commercially viable. Efficient electricity production at competitive price is clearly the biggest opportunity for solar energy. (authors)

  3. Solar thermal organic rankine cycle for micro-generation

    Science.gov (United States)

    Alkahli, N. A.; Abdullah, H.; Darus, A. N.; Jalaludin, A. F.

    2012-06-01

    The conceptual design of an Organic Rankine Cycle (ORC) driven by solar thermal energy is developed for the decentralized production of electricity of up to 50 kW. Conventional Rankine Cycle uses water as the working fluid whereas ORC uses organic compound as the working fluid and it is particularly suitable for low temperature applications. The ORC and the solar collector will be sized according to the solar flux distribution in the Republic of Yemen for the required power output of 50 kW. This will be a micro power generation system that consists of two cycles, the solar thermal cycle that harness solar energy and the power cycle, which is the ORC that generates electricity. As for the solar thermal cycle, heat transfer fluid (HTF) circulates the cycle while absorbing thermal energy from the sun through a parabolic trough collector and then storing it in a thermal storage to increase system efficiency and maintains system operation during low radiation. The heat is then transferred to the organic fluid in the ORC via a heat exchanger. The organic fluids to be used and analyzed in the ORC are hydrocarbons R600a and R290.

  4. Advanced passivation techniques for Si solar cells with high-κ dielectric materials

    International Nuclear Information System (INIS)

    Geng, Huijuan; Lin, Tingjui; Letha, Ayra Jagadhamma; Hwang, Huey-Liang; Kyznetsov, Fedor A.; Smirnova, Tamara P.; Saraev, Andrey A.; Kaichev, Vasily V.

    2014-01-01

    Electronic recombination losses at the wafer surface significantly reduce the efficiency of Si solar cells. Surface passivation using a suitable thin dielectric layer can minimize the recombination losses. Herein, advanced passivation using simple materials (Al 2 O 3 , HfO 2 ) and their compounds H (Hf) A (Al) O deposited by atomic layer deposition (ALD) was investigated. The chemical composition of Hf and Al oxide films were determined by X-ray photoelectron spectroscopy (XPS). The XPS depth profiles exhibit continuous uniform dense layers. The ALD-Al 2 O 3 film has been found to provide negative fixed charge (−6.4 × 10 11  cm −2 ), whereas HfO 2 film provides positive fixed charge (3.2 × 10 12  cm −2 ). The effective lifetimes can be improved after oxygen gas annealing for 1 min. I-V characteristics of Si solar cells with high-κ dielectric materials as passivation layers indicate that the performance is significantly improved, and ALD-HfO 2 film would provide better passivation properties than that of the ALD-Al 2 O 3 film in this research work.

  5. Solar thermal systems successful planning and construction

    CERN Document Server

    Peuser, Dr Felix A; Schnauss, Martin

    2013-01-01

    Solar Thermal Systems summarizes the theoretical and practical knowledge gained from over 20 years of research, implementation and operation of thermal solar installations. This work provides answers to a variety of key questions by examining current solar installations, drawing upon past experiences and making proposals for future planning.- how do system components and materials behave under continuous operation?- which components have proven themselves and how are they used properly?- what are the causes of defects and how can they be avoided?- how long is the service life of modern solar i

  6. Flexible thermal cycle test equipment for concentrator solar cells

    Science.gov (United States)

    Hebert, Peter H [Glendale, CA; Brandt, Randolph J [Palmdale, CA

    2012-06-19

    A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

  7. Environmentally friendly education: A passive solar, straw-bale school

    Energy Technology Data Exchange (ETDEWEB)

    Stone, L.; Dickinson, J.

    1999-07-01

    The Waldorf students in the Roaring Fork Valley of western Colorado are learning their reading, writing and arithmetic in the cozy confines of a solar heated, naturally lit, straw-bale school. The Waldorf education system, founded in 1919 by Austrian Rudolph Steiner, stresses what's appropriate for the kids, not what's easiest to teach. In constructing a new school, the Waldorf community wanted a building that would reflect their philosophy. There was a long list of requirements: natural, energy efficient, light, warm, alive, and earthy. Passive solar straw-bale construction brought together all those qualities.

  8. Proceedings of the General Committee for solar thermal energy 2015

    International Nuclear Information System (INIS)

    Gibert, Francois; Loyen, Richard; Khebchache, Bouzid; Cholin, Xavier; Leicher, David; Mozas, Kevin; Leclercq, Martine; Laugier, Patrick; Dias, Pedro; Kuczer, Eric; Benabdelkarim, Mohamed; Brottier, Laetitia; Soussana, Max; Cheze, David; Mugnier, Daniel; Laplagne, Valerie; Mykieta, Frederic; Ducloux, Antoine; Egret, Dominique; Noisette, Nadege; Peneau, Yvan; Seguis, Anne-Sophie; Gerard, Roland

    2017-10-01

    After an introducing contribution which discussed the difficult evolution of the solar thermal energy sector in 2015, contributions addressed development plans for SOCOL (a plan for collective solar thermal and solar heat) which aims at reviving the market and at opening new markets. A next set of contributions discussed how solar thermal energy can be at the service of energy transition. Following sessions addressed issues like innovation at the service of solar thermal energy, energetic display of solar systems and application of the Ecodesign and Labelling directives, and the reduction of carbon footprint and the energy dependence of territories

  9. U.S. Light-duty Vehicle Air Conditioning Fuel Use and the Impact of Four Solar/Thermal Control Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Rugh, John P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kekelia, Bidzina [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kreutzer, Cory J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Titov, Eugene V [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-28

    The U.S. uses 7.6 billion gallons of fuel per year for vehicle air conditioning (A/C), equivalent to 5.7 percent of the total national light-duty vehicle (LDV) fuel use. This equates to 30 gallons/year per vehicle, or 23.5 grams (g) of carbon dioxide (CO2) per mile, for an average U.S. vehicle. A/C is a significant contribution to national fuel use; therefore, technologies that reduce A/C loads may reduce operational costs, A/C fuel use, and CO2 emissions. Since A/C is not operated during standard EPA fuel economy testing protocols, EPA provides off-cycle credits to encourage OEMs to implement advanced A/C technologies that reduce fuel use in the real world. NREL researchers assessed thermal/solar off-cycle credits available in the U.S. Environmental Protection Agency's (EPA's) Final Rule for Model Year 2017 and Later Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel Economy. Credits include glazings, solar reflective paint, and passive and active cabin ventilation. Implementing solar control glass reduced CO2 emissions by 2.0 g/mi, and solar reflective paint resulted in a reduction of 0.8 g/mi. Active and passive ventilation strategies only reduced emissions by 0.1 and 0.2 g/mi, respectively. The national-level analysis process is powerful and general; it can be used to determine the impact of a wide range of new vehicle thermal technologies on fuel use, EV range, and CO2 emissions.

  10. Solar energy in building construction practice. Solar architecture and solar engineering - fundamentals and uses. Sonnenenergie in der Baupraxis. Solar-Architektur und Solar-Technik - Grundlagen und Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Weik, H.; Hahn, G.; Marschall, F.; Meister, H.; Peters, W.; Ranft, F.

    1991-01-01

    This anthology presents a number of overall suggestions for modern, trend-setting building construction. Details are given about active in addition to passive solar energy utilization, i.e. combinations of solar architecture and solar engineering. In an intelligible way accessible to non-physicist readers, part one discusses the related physicotechnical and town-planning fundamentals. Parts two and three are dedicated to building construction practice. They discuss the various problems of solar energy utilization from the point of view of architects, and refer to economic aspects and thermal insulation. Numerous pictures, diagrams and tables complete the book. (BWI) With 59 figs.

  11. Review and summary of Solar Thermal Conversion Program planning assistance

    Energy Technology Data Exchange (ETDEWEB)

    1975-06-01

    The Solar Thermal Conversion Program comprises a major part of the national solar energy program which must be continuously reviewed and modified where necessary. Modifications are typically required to reflect technical achievements and uncertainties which arise from within the program or from other technical programs, changes in budgets available for supporting the program as well as internal program funding priorities, changing goals such as through acceleration or stretch-out of the program schedule, significant organizational changes involving responsible governmental agencies, the introduction of new project management support contractors, and required budget or schedule changes occurring within individual projects that make up the Solar Thermal Conversion Program. The Aerospace Corporation has provided data to assist in planning, review, coordination, and documentation of the overall Solar Thermal Conversion Program. The Solar Thermal Conversion Program Plan is described in detail. Sections 2.0 through 5.0 cover the discussion and detail planning covering the objectives, justification, basic and alternative plans, budgets, and schedules for the Solar Thermal sub-unit portion of the Solar Electric Applications effort. Appendices B1, B2, and B3 include the March 21, March 28, and April 5, 1975, Program Plan submissions of the complete Solar Electric Applications effort. In Appendix B the Solar Thermal, Solar Photovoltaic, Wind Energy, and Ocean Thermal sub-unit texts have been condensed and formatted for integration in the overall ERDA budget package. (WHK)

  12. Solar thermal barometer - EurObserv'ER - May 2016

    International Nuclear Information System (INIS)

    2016-05-01

    In 2015, the European Union saw its solar thermal market contract for the seventh year in a row. EurObserv'ER puts sales of solar thermal capacity installed for the heating market (hot water and space heating) at 1861 MWth, equivalent to a 2.7 million m"2 of collectors... a further 8.6% decrease on the previous year's poor performance. Combined solar thermal capacity installed to date in the EU stands at 34.3 GWth, or 49 million m"2 of collectors

  13. High reduction of interfacial charge recombination in colloidal quantum dot solar cells by metal oxide surface passivation.

    Science.gov (United States)

    Chang, Jin; Kuga, Yuki; Mora-Seró, Iván; Toyoda, Taro; Ogomi, Yuhei; Hayase, Shuzi; Bisquert, Juan; Shen, Qing

    2015-03-12

    Bulk heterojunction (BHJ) solar cells based on colloidal QDs and metal oxide nanowires (NWs) possess unique and outstanding advantages in enhancing light harvesting and charge collection in comparison to planar architectures. However, the high surface area of the NW structure often brings about a large amount of recombination (especially interfacial recombination) and limits the open-circuit voltage in BHJ solar cells. This problem is solved here by passivating the surface of the metal oxide component in PbS colloidal quantum dot solar cells (CQDSCs). By coating thin TiO2 layers onto ZnO-NW surfaces, the open-circuit voltage and power conversion efficiency have been improved by over 40% in PbS CQDSCs. Characterization by transient photovoltage decay and impedance spectroscopy indicated that the interfacial recombination was significantly reduced by the surface passivation strategy. An efficiency as high as 6.13% was achieved through the passivation approach and optimization for the length of the ZnO-NW arrays (device active area: 16 mm2). All solar cells were tested in air, and exhibited excellent air storage stability (without any performance decline over more than 130 days). This work highlights the significance of metal oxide passivation in achieving high performance BHJ solar cells. The charge recombination mechanism uncovered in this work could shed light on the further improvement of PbS CQDSCs and/or other types of solar cells.

  14. Solar Thermal Power.

    Science.gov (United States)

    McDaniels, David K.

    The different approaches to the generation of power from solar energy may be roughly divided into five categories: distributed collectors; central receivers; biomass; ocean thermal energy conversion; and photovoltaic devices. The first approach (distributed collectors) is the subject of this module. The material presented is designed to…

  15. Passive-solar: lessons from the past

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, R.

    The article reports on a research project conducted in Tunisia, in which ancient underground Roman homes in Bulla Reggia and similar inhabited Berber homes in Matmata were studied. Data were gathered on the passive-solar gain, compass orientations, and room measurements of the homes, and on natural lighting techniques, ventilation systems, earth-sheltered construction methods, cooling concepts, and domestic water collection systems used for these ancient dwellings. In addition, numerous sun-facing hill towns, cliff dwellings, and underground villages in Italy, France, and Spain were visited, with data recorded on window, shutter, and vent details, vegetation for climate control, and design concepts for climate-responsive town planning.

  16. Development of Non-Tracking Solar Thermal Technology

    Science.gov (United States)

    Winston, Roland; Johnston, Bruce; Balkowski, Kevin

    2011-11-01

    The aims of this research is to develop high temperature solar thermal collectors that do not require complex solar tracking devices to maintain optimal performance. The collector technology developed through these efforts uses non-imaging optics and is referred to as an external compound parabolic concentrator. It is able to operate with a solar thermal efficiency of approximately 50% at a temperature of 200 ° C and can be readily manufactured at a cost between 15 and 18 per square foot.

  17. Hydrogen passivation of silicon sheet solar cells

    International Nuclear Information System (INIS)

    Tsuo, Y.S.; Milstein, J.B.

    1984-01-01

    Significant improvements in the efficiencies of dendritic web and edge-supported-pulling silicon sheet solar cells have been obtained after hydrogen ion beam passivation for a period of ten minutes or less. We have studied the effects of the hydrogen ion beam treatment with respect to silicon material damage, silicon sputter rate, introduction of impurities, and changes in reflectance. The silicon sputter rate for constant ion beam flux of 0.60 +- 0.05 mA/cm 2 exhibits a maximum at approximately 1400-eV ion beam energy

  18. Revising the limits of net gain glazing: a tool for passive solar design

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T. [Australian National Univ., Canberra, ACT (Australia)

    1996-12-31

    The prevailing advice five years ago on shading of northerly fenestration had been motivated traditionally by a desire to shade the windows to sill level for as long as possible each day in summer and for as much of the summer as possible. Fixed shading, however, reduces the window area admitting direct sunlight, the top shaded section usually loses more heat to the outside than it admits. Over the whole heating season, the cumulative effect can be net loss of heat for the window as a whole, irrespective of its orientation. The concern of this study is to employ the improved thermal simulation computer program CHEETAH, and the Australian Solar Radiation Data Handbook, to revisit the original question, at what point does the combination of fixed shading of a window (due to eaves generally) and off-north orientation actually result in the window having a net heat loss (to the outside) over the whole heating season. The combined effect of eaves overhang and off-north orientation has been quantified and set out in graphical form for the use of architects seeking to apply the potential of passive solar heating to their designs. (author). 3 figs., 12 refs.

  19. Can passive house be the solution to our energy problems, and particularly with solar energy?

    OpenAIRE

    Merciadri, Luca

    2007-01-01

    A description about the main characteristics of the passive house concept. The aim of this document is to answer to the question ``Can passive house be the solution to our energy problems, and particularly with solar energy ?'' in an objective way.

  20. Residential Solar-Based Seasonal Thermal Storage Systems in Cold Climates: Building Envelope and Thermal Storage

    Directory of Open Access Journals (Sweden)

    Alexandre Hugo

    2012-10-01

    Full Text Available The reduction of electricity use for heating and domestic hot water in cold climates can be achieved by: (1 reducing the heating loads through the improvement of the thermal performance of house envelopes, and (2 using solar energy through a residential solar-based thermal storage system. First, this paper presents the life cycle energy and cost analysis of a typical one-storey detached house, located in Montreal, Canada. Simulation of annual energy use is performed using the TRNSYS software. Second, several design alternatives with improved thermal resistance for walls, ceiling and windows, increased overall air tightness, and increased window-to-wall ratio of South facing windows are evaluated with respect to the life cycle energy use, life cycle emissions and life cycle cost. The solution that minimizes the energy demand is chosen as a reference house for the study of long-term thermal storage. Third, the computer simulation of a solar heating system with solar thermal collectors and long-term thermal storage capacity is presented. Finally, the life cycle cost and life cycle energy use of the solar combisystem are estimated for flat-plate solar collectors and evacuated tube solar collectors, respectively, for the economic and climatic conditions of this study.

  1. Hierarchical Graphene Foam for Efficient Omnidirectional Solar-Thermal Energy Conversion.

    Science.gov (United States)

    Ren, Huaying; Tang, Miao; Guan, Baolu; Wang, Kexin; Yang, Jiawei; Wang, Feifan; Wang, Mingzhan; Shan, Jingyuan; Chen, Zhaolong; Wei, Di; Peng, Hailin; Liu, Zhongfan

    2017-10-01

    Efficient solar-thermal energy conversion is essential for the harvesting and transformation of abundant solar energy, leading to the exploration and design of efficient solar-thermal materials. Carbon-based materials, especially graphene, have the advantages of broadband absorption and excellent photothermal properties, and hold promise for solar-thermal energy conversion. However, to date, graphene-based solar-thermal materials with superior omnidirectional light harvesting performances remain elusive. Herein, hierarchical graphene foam (h-G foam) with continuous porosity grown via plasma-enhanced chemical vapor deposition is reported, showing dramatic enhancement of broadband and omnidirectional absorption of sunlight, which thereby can enable a considerable elevation of temperature. Used as a heating material, the external solar-thermal energy conversion efficiency of the h-G foam impressively reaches up to ≈93.4%, and the solar-vapor conversion efficiency exceeds 90% for seawater desalination with high endurance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The thermal solar energy - September 2010

    International Nuclear Information System (INIS)

    Acket, C.

    2010-01-01

    The author first notices that the use of solar heat to produce electricity is much lesser known than the production of electricity by photovoltaic effect. He also notices that few efforts have been made in France to develop this technology (thermal solar energy, also called helio-thermodynamics). He evokes the Themis project and also some initiatives in Spain and in California. He recalls some data about solar heat, presents the solar concentration technique which either uses a parabolic configuration (point focus concentration) or a cylindrical and parabolic configuration (line concentration system). He briefly presents the different techniques used to transform solar heat into electricity and to store the electricity. He briefly presents different solutions which have been tested over the past years in France, Germany, Spain, California and Israel (tower and air, gas and Stirling cycle, tower and direct vapour production, cylindrical-parabolic collector). He discusses the effect of intermittency and the French context, and questions and discusses the choice between thermal and photovoltaic solar energy (advantages and drawbacks)

  3. Solar applications of thermal energy storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.; Taylor, L.; DeVries, J.; Heibein, S.

    1979-01-01

    A technology assessment is presented on solar energy systems which use thermal energy storage. The study includes characterization of the current state-of-the-art of thermal energy storage, an assessment of the energy storage needs of solar energy systems, and the synthesis of this information into preliminary design criteria which would form the basis for detailed designs of thermal energy storage. (MHR)

  4. Comparison of selective transmitters for solar thermal applications.

    Science.gov (United States)

    Taylor, Robert A; Hewakuruppu, Yasitha; DeJarnette, Drew; Otanicar, Todd P

    2016-05-10

    Solar thermal collectors are radiative heat exchangers. Their efficacy is dictated predominantly by their absorption of short wavelength solar radiation and, importantly, by their emission of long wavelength thermal radiation. In conventional collector designs, the receiver is coated with a selectively absorbing surface (Black Chrome, TiNOx, etc.), which serves both of these aims. As the leading commercial absorber, TiNOx consists of several thin, vapor deposited layers (of metals and ceramics) on a metal substrate. In this technology, the solar absorption to thermal emission ratio can exceed 20. If a solar system requires an analogous transparent component-one which transmits the full AM1.5 solar spectrum, but reflects long wavelength thermal emission-the technology is much less developed. Bespoke "heat mirrors" are available from optics suppliers at high cost, but the closest mass-produced commercial technology is low-e glass. Low-e glasses are designed for visible light transmission and, as such, they reflect up to 50% of available solar energy. To address this technical gap, this study investigated selected combinations of thin films that could be deposited to serve as transparent, selective solar covers. A comparative numerical analysis of feasible materials and configurations was investigated using a nondimensional metric termed the efficiency factor for selectivity (EFS). This metric is dependent on the operation temperature and solar concentration ratio of the system, so our analysis covered the practical range for these parameters. It was found that thin films of indium tin oxide (ITO) and ZnS-Ag-ZnS provided the highest EFS. Of these, ITO represents the more commercially viable solution for large-scale development. Based on these optimized designs, proof-of-concept ITO depositions were fabricated and compared to commercial depositions. Overall, this study presents a systematic guide for creating a new class of selective, transparent optics for solar

  5. Photoswitchable Molecular Rings for Solar-Thermal Energy Storage.

    Science.gov (United States)

    Durgun, E; Grossman, Jeffrey C

    2013-03-21

    Solar-thermal fuels reversibly store solar energy in the chemical bonds of molecules by photoconversion, and can release this stored energy in the form of heat upon activation. Many conventional photoswichable molecules could be considered as solar thermal fuels, although they suffer from low energy density or short lifetime in the photoinduced high-energy metastable state, rendering their practical use unfeasible. We present a new approach to the design of chemistries for solar thermal fuel applications, wherein well-known photoswitchable molecules are connected by different linker agents to form molecular rings. This approach allows for a significant increase in both the amount of stored energy per molecule and the stability of the fuels. Our results suggest a range of possibilities for tuning the energy density and thermal stability as a function of the type of the photoswitchable molecule, the ring size, or the type of linkers.

  6. Thermal-hydraulic unreliability of passive systems

    International Nuclear Information System (INIS)

    Tzanos, C.P.; Saltos, N.T.

    1995-01-01

    Advanced light water reactor designs like AP600 and the simplified boiling water reactor (SBWR) use passive safety systems for accident prevention and mitigation. Because these systems rely on natural forces for their operation, their unavailability due to hardware failures and human error is significantly smaller than that of active systems. However, the coolant flows predicted to be delivered by these systems can be subject to significant uncertainties, which in turn can lead to a significant uncertainty in the predicted thermal-hydraulic performance of the plant under accident conditions. Because of these uncertainties, there is a probability that an accident sequence for which a best estimate thermal-hydraulic analysis predicts no core damage (success sequence) may actually lead to core damage. For brevity, this probability will be called thermal-hydraulic unreliability. The assessment of this unreliability for all the success sequences requires very expensive computations. Moreover, the computational cost increases drastically as the required thermal-hydraulic reliability increases. The required computational effort can be greatly reduced if a bounding approach can be used that either eliminates the need to compute thermal-hydraulic unreliabilities, or it leads to the analysis of a few bounding sequences for which the required thermal-hydraulic reliability is relatively small. The objective of this paper is to present such an approach and determine the order of magnitude of the thermal-hydraulic unreliabilities that may have to be computed

  7. Solar energy

    International Nuclear Information System (INIS)

    Kruisheer, N.

    1992-01-01

    In five brief articles product information is given on solar energy applications with special attention to the Netherlands. After an introduction on solar energy availability in the Netherlands the developments in solar boiler techniques are dealt with. Solar water heaters have advantages for the environment, and government subsidies stimulate different uses of such water heaters. Also the developments of solar cells show good prospects, not only for developing countries, but also for the industrialized countries. In brief the developments in solar energy storage and the connection of solar equipment to the grid are discussed. Finally attention is paid to the applications of passive solar energy in the housing construction, the use of transparent thermal insulation and the developments of translucent materials. 18 figs., 18 ills

  8. 10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide Passivation.

    Science.gov (United States)

    Lan, Xinzheng; Voznyy, Oleksandr; García de Arquer, F Pelayo; Liu, Mengxia; Xu, Jixian; Proppe, Andrew H; Walters, Grant; Fan, Fengjia; Tan, Hairen; Liu, Min; Yang, Zhenyu; Hoogland, Sjoerd; Sargent, Edward H

    2016-07-13

    Colloidal quantum dot (CQD) solar cells are solution-processed photovoltaics with broad spectral absorption tunability. Major advances in their efficiency have been made via improved CQD surface passivation and device architectures with enhanced charge carrier collection. Herein, we demonstrate a new strategy to improve further the passivation of CQDs starting from the solution phase. A cosolvent system is employed to tune the solvent polarity in order to achieve the solvation of methylammonium iodide (MAI) and the dispersion of hydrophobic PbS CQDs simultaneously in a homogeneous phase, otherwise not achieved in a single solvent. This process enables MAI to access the CQDs to confer improved passivation. This, in turn, allows for efficient charge extraction from a thicker photoactive layer device, leading to a certified solar cell power conversion efficiency of 10.6%, a new certified record in CQD photovoltaics.

  9. Sulfur passivation and contact methods for GaAs nanowire solar cells

    International Nuclear Information System (INIS)

    Tajik, N; Peng, Z; Kuyanov, P; LaPierre, R R

    2011-01-01

    The effect of sulfur passivation on core-shell p-n junction GaAs nanowire (NW) solar cells has been investigated. Devices of two types were investigated, consisting of indium tin oxide contact dots or opaque Au finger electrodes. Lateral carrier transport from the NWs to the contact fingers was achieved via a p-doped GaAs surface conduction layer. NWs between the opaque contact fingers had sidewall surfaces exposed for passivation by sulfur. The relative cell efficiency increased by 19% upon passivation. The contribution of the thin film grown between the NWs to the total cell efficiency was estimated by removing the NWs using a sonication procedure. Mechanisms of carrier transport and photovoltaic effects are discussed on the basis of spatially resolved laser scanning measurements.

  10. Hybrids of Solar Sail, Solar Electric, and Solar Thermal Propulsion for Solar-System Exploration

    Science.gov (United States)

    Wilcox, Brian H.

    2012-01-01

    Solar sails have long been known to be an attractive method of propulsion in the inner solar system if the areal density of the overall spacecraft (S/C) could be reduced to approx.10 g/sq m. It has also long been recognized that the figure (precise shape) of useful solar sails needs to be reasonably good, so that the reflected light goes mostly in the desired direction. If one could make large reflective surfaces with reasonable figure at an areal density of approx.10 g/sq m, then several other attractive options emerge. One is to use such sails as solar concentrators for solar-electric propulsion. Current flight solar arrays have a specific output of approx. 100W/kg at 1 Astronomical Unit (AU) from the sun, and near-term advances promise to significantly increase this figure. A S/C with an areal density of 10 g/sq m could accelerate up to 29 km/s per year as a solar sail at 1 AU. Using the same sail as a concentrator at 30 AU, the same spacecraft could have up to approx. 45 W of electric power per kg of total S/C mass available for electric propulsion (EP). With an EP system that is 50% power-efficient, exhausting 10% of the initial S/C mass per year as propellant, the exhaust velocity is approx. 119 km/s and the acceleration is approx. 12 km/s per year. This hybrid thus opens attractive options for missions to the outer solar system, including sample-return missions. If solar-thermal propulsion were perfected, it would offer an attractive intermediate between solar sailing in the inner solar system and solar electric propulsion for the outer solar system. In the example above, both the solar sail and solar electric systems don't have a specific impulse that is near-optimal for the mission. Solar thermal propulsion, with an exhaust velocity of the order of 10 km/s, is better matched to many solar system exploration missions. This paper derives the basic relationships between these three propulsion options and gives examples of missions that might be enabled by

  11. Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels.

    Science.gov (United States)

    Kolpak, Alexie M; Grossman, Jeffrey C

    2011-08-10

    Solar thermal fuels, which reversibly store solar energy in molecular bonds, are a tantalizing prospect for clean, renewable, and transportable energy conversion/storage. However, large-scale adoption requires enhanced energy storage capacity and thermal stability. Here we present a novel solar thermal fuel, composed of azobenzene-functionalized carbon nanotubes, with the volumetric energy density of Li-ion batteries. Our work also demonstrates that the inclusion of nanoscale templates is an effective strategy for design of highly cyclable, thermally stable, and energy-dense solar thermal fuels.

  12. Solar thermal electric power information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-02-01

    The results of a series of telephone interviews with groups of users of information on solar thermal electric power are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from five solar thermal electric power groups of respondents are analyzed: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Utilities, Electric Power Engineers, and Educators. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  13. Solar thermal energy conversion to electrical power

    International Nuclear Information System (INIS)

    Trinh, Anh-Khoi; González, Ivan; Fournier, Luc; Pelletier, Rémi; Sandoval V, Juan C.; Lesage, Frédéric J.

    2014-01-01

    The conversion of solar energy to electricity currently relies primarily on the photovoltaic effect in which photon bombardment of photovoltaic cells drives an electromotive force within the material. Alternatively, recent studies have investigated the potential of converting solar radiation to electricity by way of the Seebeck effect in which charge carrier mobility is generated by an asymmetric thermal differential. The present study builds upon these latest advancements in the state-of-the-art of thermoelectric system management by combining solar evacuated tube technology with commercially available Bismuth Telluride semiconductor modules. The target heat source is solar radiation and the target heat sink is thermal convection into the ambient air relying on wind aided forced convection. These sources of energy are reproduced in a laboratory controlled environment in order to maintain a thermal dipole across a thermoelectric module. The apparatus is then tested in a natural environment. The novelty of the present work lies in a net thermoelectric power gain for ambient environment applications and an experimental validation of theoretical electrical characteristics relative to a varying electrical load. - Highlights: • Solar radiation maintains a thermal tension which drives an electromotive force. • Voltage, current and electric power are reported and discussed. • Theoretical optimal thermoelectric conversion predictions are presented. • Theory is validated with experimentally measured data

  14. Low temperature desalination using solar collectors augmented by thermal energy storage

    International Nuclear Information System (INIS)

    Gude, Veera Gnaneswar; Nirmalakhandan, Nagamany; Deng, Shuguang; Maganti, Anand

    2012-01-01

    Highlights: ► A new low temperature desalination process using solar collectors was investigated. ► A thermal energy storage tank (TES) was included for continuous process operation. ► Solar collector area and TES volumes were optimized by theoretical simulations. ► Economic analysis for the entire process was compared with and without TES tank. ► Energy and emission payback periods for the solar collector system were reported. -- Abstract: A low temperature desalination process capable of producing 100 L/d freshwater was designed to utilize solar energy harvested from flat plate solar collectors. Since solar insolation is intermittent, a thermal energy storage system was incorporated to run the desalination process round the clock. The requirements for solar collector area as well as thermal energy storage volume were estimated based on the variations in solar insolation. Results from this theoretical study confirm that thermal energy storage is a useful component of the system for conserving thermal energy to meet the energy demand when direct solar energy resource is not available. Thermodynamic advantages of the low temperature desalination using thermal energy storage, as well as energy and environmental emissions payback period of the system powered by flat plate solar collectors are presented. It has been determined that a solar collector area of 18 m 2 with a thermal energy storage volume of 3 m 3 is adequate to produce 100 L/d of freshwater round the clock considering fluctuations in the weather conditions. An economic analysis on the desalination system with thermal energy storage is also presented.

  15. Passive House Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Strom, I.; Joosten, L.; Boonstra, C. [DHV Sustainability Consultants, Eindhoiven (Netherlands)

    2006-05-15

    PEP stands for 'Promotion of European Passive Houses' and is a consortium of European partners, supported by the European Commission, Directorate General for Energy and Transport. In this working paper an overview is given of Passive House solutions. An inventory has been made of Passive House solutions for new build residences applied in each country. Based on this, the most common basic solutions have been identified and described in further detail, including the extent to which solutions are applied in common and best practice and expected barriers for the implementation in each country. An inventory per country is included in the appendix. The analysis of Passive House solutions in partner countries shows high priority with regard to the performance of the thermal envelope, such as high insulation of walls, roofs, floors and windows/ doors, thermal bridge-free construction and air tightness. Due to the required air tightness, special attention must be paid to indoor air quality through proper ventilation. Finally, efficient ((semi-)solar) heating systems for combined space and DHW heating still require a significant amount of attention in most partner countries. Other basic Passive House solutions show a smaller discrepancy with common practice and fewer barriers have been encountered in partner countries. In the next section, the general barriers in partner countries have been inventoried. For each type of barrier a suggested approach has been given. Most frequently encountered barriers in partner countries are: limited know-how; limited contractor skills; and acceptation of Passive Houses in the market. Based on the suggested approaches to overcoming barriers, this means that a great deal of attention must be paid to providing practical information and solutions to building professionals, providing practical training to installers and contractors and communication about the Passive House concept to the market.

  16. Relation of lifetime to surface passivation for atomic-layer-deposited Al2O3 on crystalline silicon solar cell

    International Nuclear Information System (INIS)

    Cho, Young Joon; Song, Hee Eun; Chang, Hyo Sik

    2015-01-01

    Highlights: • We investigated the relation of potassium contamination on Si solar wafer to lifetime. • We deposited Al 2 O 3 layer by atomic layer deposition (ALD) on Si solar wafer after several cleaning process. • Potassium can be left on Si surface by incomplete cleaning process and degrade the Al 2 O 3 passivation quality. - Abstract: We investigated the relation of potassium contamination on a crystalline silicon (c-Si) surface after potassium hydroxide (KOH) etching to the lifetime of the c-Si solar cell. Alkaline solution was employed for saw damage removal (SDR), texturing, and planarization of a textured c-Si solar wafer prior to atomic layer deposition (ALD) Al 2 O 3 growth. In the solar-cell manufacturing process, ALD Al 2 O 3 passivation is utilized to obtain higher conversion efficiency. ALD Al 2 O 3 shows excellent surface passivation, though minority carrier lifetime varies with cleaning conditions. In the present study, we investigated the relation of potassium contamination to lifetime in solar-cell processing. The results showed that the potassium-contaminated samples, due to incomplete cleaning of KOH, had a short lifetime, thus establishing that residual potassium can degrade Al 2 O 3 surface passivation

  17. Combined Active and Passive Solar Space Heating and Solar Hot Water Systems for an Elementary School in Boise, Idaho.

    Science.gov (United States)

    Smull, Neil A.; Armstrong, Gerald L.

    1979-01-01

    Amity Elementary School in Boise, Idaho, features a solar space heating and domestic hot water system along with an earth covering to accommodate the passive aspects of energy conservation. (Author/MLF)

  18. Reverse Non-Equilibrium Molecular Dynamics Demonstrate That Surface Passivation Controls Thermal Transport at Semiconductor-Solvent Interfaces.

    Science.gov (United States)

    Hannah, Daniel C; Gezelter, J Daniel; Schaller, Richard D; Schatz, George C

    2015-06-23

    We examine the role played by surface structure and passivation in thermal transport at semiconductor/organic interfaces. Such interfaces dominate thermal transport in semiconductor nanomaterials owing to material dimensions much smaller than the bulk phonon mean free path. Utilizing reverse nonequilibrium molecular dynamics simulations, we calculate the interfacial thermal conductance (G) between a hexane solvent and chemically passivated wurtzite CdSe surfaces. In particular, we examine the dependence of G on the CdSe slab thickness, the particular exposed crystal facet, and the extent of surface passivation. Our results indicate a nonmonotonic dependence of G on ligand-grafting density, with interfaces generally exhibiting higher thermal conductance for increasing surface coverage up to ∼0.08 ligands/Å(2) (75-100% of a monolayer, depending on the particular exposed facet) and decreasing for still higher coverages. By analyzing orientational ordering and solvent penetration into the ligand layer, we show that a balance of competing effects is responsible for this nonmonotonic dependence. Although the various unpassivated CdSe surfaces exhibit similar G values, the crystal structure of an exposed facet nevertheless plays an important role in determining the interfacial thermal conductance of passivated surfaces, as the density of binding sites on a surface determines the ligand-grafting densities that may ultimately be achieved. We demonstrate that surface passivation can increase G relative to a bare surface by roughly 1 order of magnitude and that, for a given extent of passivation, thermal conductance can vary by up to a factor of ∼2 between different surfaces, suggesting that appropriately tailored nanostructures may direct heat flow in an anisotropic fashion for interface-limited thermal transport.

  19. Thermal Analysis of MIRIS Space Observation Camera for Verification of Passive Cooling

    Directory of Open Access Journals (Sweden)

    Duk-Hang Lee

    2012-09-01

    Full Text Available We conducted thermal analyses and cooling tests of the space observation camera (SOC of the multi-purpose infrared imaging system (MIRIS to verify passive cooling. The thermal analyses were conducted with NX 7.0 TMG for two cases of attitude of the MIRIS: for the worst hot case and normal case. Through the thermal analyses of the flight model, it was found that even in the worst case the telescope could be cooled to less than 206°K. This is similar to the results of the passive cooling test (~200.2°K. For the normal attitude case of the analysis, on the other hand, the SOC telescope was cooled to about 160°K in 10 days. Based on the results of these analyses and the test, it was determined that the telescope of the MIRIS SOC could be successfully cooled to below 200°K with passive cooling. The SOC is, therefore, expected to have optimal performance under cooled conditions in orbit.

  20. Integration of plasmonic Ag nanoparticles as a back reflector in ultra-thin Cu(In,Ga)Se_2 solar cells

    International Nuclear Information System (INIS)

    Yin, Guanchao; Steigert, Alexander; Andrae, Patrick; Goebelt, Manuela; Latzel, Michael; Manley, Phillip; Lauermann, Iver; Christiansen, Silke; Schmid, Martina

    2015-01-01

    Graphical abstract: Plasmonic Ag nanoparticles as a back reflector in ultra-thin Cu(In,Ga)Se_2 (CIGSe) solar cells are investigated. Ag diffusion is successfully passivated by reducing the substrate temperature and introducing a 50 nm atomic layer deposition (ALD) prepared Al_2O_3 film. This clears the thermal obstacle in incorporating Ag nanoparticles in CIGSe solar cells. Simulations show that Ag nanoparticles have the potential to greatly enhance the light absorption in ultra-thin CIGSe solar cells. - Highlights: • Ag nanoparticles are able to diffuse through ITO substrate into CIGSe absorber even at a low substrate temperature of 440 °C. • The direction (inserting a dielectric passivation layer) to thermally block the Ag diffusion and the requirements for the passivation layer are indicated and generalized. • An atomic layer deposited Al_2O_3 layer is experimentally proved to be able to thermally passivate the Ag nanoparticles, which clears the thermal obstacle in using Ag nanoparticles as a back reflector in ultra-thin CIGSe solar cells. • It is theoretically proved that the Ag nanoparticles as a back reflector have the potential to effectively enhance the absorption in ultra-thin CIGSe solar cells. - Abstract: Integration of plasmonic Ag nanoparticles as a back reflector in ultra-thin Cu(In,Ga)Se_2 (CIGSe) solar cells is investigated. X-ray photoelectron spectroscopy results show that Ag nanoparticles underneath a Sn:In_2O_3 back contact could not be thermally passivated even at a low substrate temperature of 440 °C during CIGSe deposition. It is shown that a 50 nm thick Al_2O_3 film prepared by atomic layer deposition is able to block the diffusion of Ag, clearing the thermal obstacle in utilizing Ag nanoparticles as a back reflector in ultra-thin CIGSe solar cells. Via 3-D finite element optical simulation, it is proved that the Ag nanoparticles show the potential to contribute the effective absorption in CIGSe solar cells.

  1. Solar thermal power plants simulation using the TRNSYS software

    Energy Technology Data Exchange (ETDEWEB)

    Popel, O.S.; Frid, S.E.; Shpilrain, E.E. [Institute for High Temperatures, Russian Academy of Sciences (IVTAN), Moscow (Russian Federation)

    1999-03-01

    The paper describes activity directed on the TRNSYS software application for mathematical simulation of solar thermal power plants. First stage of developments has been devoted to simulation and thermodynamic analysis of the Hybrid Solar-Fuel Thermal Power Plants (HSFTPP) with gas turbine installations. Three schemes of HSFTPP, namely: Gas Turbine Regenerative Cycle, Brayton Cycle with Steam Injection and Combined Brayton-Rankine Cycle,- have been assembled and tested under the TRNSYS. For this purpose 18 new models of the schemes components (gas and steam turbines, compressor, heat-exchangers, steam generator, solar receiver, condenser, controllers, etc) have been elaborated and incorporated into the TRNSYS library of 'standard' components. The authors do expect that this initiative and received results will stimulate experts involved in the mathematical simulation of solar thermal power plants to join the described activity to contribute to acceleration of development and expansion of 'Solar Thermal Power Plants' branch of the TRNSYS. The proposed approach could provide an appropriate basis for standardization of analysis, models and assumptions for well-founded comparison of different schemes of advanced solar power plants. (authors)

  2. Mathematical model for thermal solar collectors by using magnetohydrodynamic Maxwell nanofluid with slip conditions, thermal radiation and variable thermal conductivity

    Directory of Open Access Journals (Sweden)

    Asif Mahmood

    Full Text Available Solar energy is the cleanest, renewable and most abundant source of energy available on earth. The main use of solar energy is to heat and cool buildings, heat water and to generate electricity. There are two types of solar energy collection system, the photovoltaic systems and the solar thermal collectors. The efficiency of any solar thermal system depend on the thermophysical properties of the operating fluids and the geometry/length of the system in which fluid is flowing. In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The flow is induced by a non-uniform stretching of the porous sheet and the uniform magnetic field is applied in the transverse direction to the flow. The non-Newtonian Maxwell fluid model is utilized for the working fluid along with slip boundary conditions. Moreover the high temperature effect of thermal radiation and temperature dependent thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for cu-water and TiO2-water nanofluids. Results are presented for the velocity and temperature profiles as well as the skin friction coefficient and Nusselt number and the discussion is concluded on the effect of various governing parameters on the motion, temperature variation, velocity gradient and the rate of heat transfer at the boundary. Keywords: Solar energy, Thermal collectors, Maxwell-nanofluid, Thermal radiation, Partial slip, Variable thermal conductivity

  3. Electrochemical-thermal modeling and microscale phase change for passive internal thermal management of lithium ion batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Thomas F. (Georgia Institute of Technology, Atlanta, GA); Bandhauer, Todd (Georgia Institute of Technology, Atlanta, GA); Garimella, Srinivas (Georgia Institute of Technology, Atlanta, GA)

    2012-01-01

    A fully coupled electrochemical and thermal model for lithium-ion batteries is developed to investigate the impact of different thermal management strategies on battery performance. In contrast to previous modeling efforts focused either exclusively on particle electrochemistry on the one hand or overall vehicle simulations on the other, the present work predicts local electrochemical reaction rates using temperature-dependent data on commercially available batteries designed for high rates (C/LiFePO{sub 4}) in a computationally efficient manner. Simulation results show that conventional external cooling systems for these batteries, which have a low composite thermal conductivity ({approx}1 W/m-K), cause either large temperature rises or internal temperature gradients. Thus, a novel, passive internal cooling system that uses heat removal through liquid-vapor phase change is developed. Although there have been prior investigations of phase change at the microscales, fluid flow at the conditions expected here is not well understood. A first-principles based cooling system performance model is developed and validated experimentally, and is integrated into the coupled electrochemical-thermal model for assessment of performance improvement relative to conventional thermal management strategies. The proposed cooling system passively removes heat almost isothermally with negligible thermal resistances between the heat source and cooling fluid. Thus, the minimization of peak temperatures and gradients within batteries allow increased power and energy densities unencumbered by thermal limitations.

  4. Solar passive ceiling system. Final report. [Passive solar heating system with venetian blind reflectors and latent heat storage in ceiling

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, A.R.

    1980-01-01

    The construction of a 1200 square foot building, with full basement, built to be used as a branch library in a rural area is described. The primary heating source is a passive solar system consisting of a south facing window system. The system consists of: a set of windows located in the south facing wall only, composed of double glazed units; a set of reflectors mounted in each window which reflects sunlight up to the ceiling (the reflectors are similar to venetian blinds); a storage area in the ceiling which absorbs the heat from the reflected sunlight and stores it in foil salt pouches laid in the ceiling; and an automated curtain which automatically covers and uncovers the south facing window system. The system is totally passive and uses no blowers, pumps or other active types of heat distribution equipment. The building contains a basement which is normally not heated, and the north facing wall is bermed four feet high around the north side.

  5. A Low Resistance Calcium/Reduced Titania Passivated Contact for High Efficiency Crystalline Silicon Solar Cells

    KAUST Repository

    Allen, Thomas G.; Bullock, James; Jeangros, Quentin; Samundsett, Christian; Wan, Yimao; Cui, Jie; Hessler-Wyser, Aï cha; De Wolf, Stefaan; Javey, Ali; Cuevas, Andres

    2017-01-01

    Recent advances in the efficiency of crystalline silicon (c-Si) solar cells have come through the implementation of passivated contacts that simultaneously reduce recombination and resistive losses within the contact structure. In this contribution, low resistivity passivated contacts are demonstrated based on reduced titania (TiOx) contacted with the low work function metal, calcium (Ca). By using Ca as the overlying metal in the contact structure we are able to achieve a reduction in the contact resistivity of TiOx passivated contacts of up to two orders of magnitude compared to previously reported data on Al/TiOx contacts, allowing for the application of the Ca/TiOx contact to n-type c-Si solar cells with partial rear contacts. Implementing this contact structure on the cell level results in a power conversion efficiency of 21.8% where the Ca/TiOx contact comprises only ≈6% of the rear surface of the solar cell, an increase of 1.5% absolute compared to a similar device fabricated without the TiOx interlayer.

  6. A Low Resistance Calcium/Reduced Titania Passivated Contact for High Efficiency Crystalline Silicon Solar Cells

    KAUST Repository

    Allen, Thomas G.

    2017-02-04

    Recent advances in the efficiency of crystalline silicon (c-Si) solar cells have come through the implementation of passivated contacts that simultaneously reduce recombination and resistive losses within the contact structure. In this contribution, low resistivity passivated contacts are demonstrated based on reduced titania (TiOx) contacted with the low work function metal, calcium (Ca). By using Ca as the overlying metal in the contact structure we are able to achieve a reduction in the contact resistivity of TiOx passivated contacts of up to two orders of magnitude compared to previously reported data on Al/TiOx contacts, allowing for the application of the Ca/TiOx contact to n-type c-Si solar cells with partial rear contacts. Implementing this contact structure on the cell level results in a power conversion efficiency of 21.8% where the Ca/TiOx contact comprises only ≈6% of the rear surface of the solar cell, an increase of 1.5% absolute compared to a similar device fabricated without the TiOx interlayer.

  7. Highly reflective rear surface passivation design for ultra-thin Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Vermang, Bart, E-mail: Bart.Vermang@angstrom.uu.se [Ångström Solar Center, University of Uppsala, Uppsala 75121 (Sweden); ESAT-KU Leuven, University of Leuven, Leuven 3001 (Belgium); Wätjen, Jörn Timo; Fjällström, Viktor; Rostvall, Fredrik; Edoff, Marika [Ångström Solar Center, University of Uppsala, Uppsala 75121 (Sweden); Gunnarsson, Rickard; Pilch, Iris; Helmersson, Ulf [Plasma & Coatings Physics, University of Linköping, Linköping 58183 (Sweden); Kotipalli, Ratan; Henry, Frederic; Flandre, Denis [ICTEAM/IMNC, Université Catholique de Louvain, Louvain-la-Neuve 1348 (Belgium)

    2015-05-01

    Al{sub 2}O{sub 3} rear surface passivated ultra-thin Cu(In,Ga)Se{sub 2} (CIGS) solar cells with Mo nano-particles (NPs) as local rear contacts are developed to demonstrate their potential to improve optical confinement in ultra-thin CIGS solar cells. The CIGS absorber layer is 380 nm thick and the Mo NPs are deposited uniformly by an up-scalable technique and have typical diameters of 150 to 200 nm. The Al{sub 2}O{sub 3} layer passivates the CIGS rear surface between the Mo NPs, while the rear CIGS interface in contact with the Mo NP is passivated by [Ga]/([Ga] + [In]) (GGI) grading. It is shown that photon scattering due to the Mo NP contributes to an absolute increase in short circuit current density of 3.4 mA/cm{sup 2}; as compared to equivalent CIGS solar cells with a standard back contact. - Highlights: • Proof-of-principle ultra-thin CIGS solar cells have been fabricated. • The cells have Mo nano-particles (NPs) as local rear contacts. • An Al{sub 2}O{sub 3} film passivates the CIGS rear surface between these nano-particles. • [Ga]/([Ga] + [In]) grading is used to reduce Mo-NP/CIGS interface recombination.

  8. The solarisation of welfare housing: Is passive solar design a boon to those who don`t choose it?

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T. [Australian National Univ., Canberra, ACT (Australia)

    1994-12-31

    The solarized housing built for what is now the ACT Housing Trust in Canberra in the early 1980`s is revisited to see what lessons can be learned. Several hundred solarized (solar efficient) houses were built by the Federal Government and were the first `passive solar` public housing in Australia. Some houses, due to a combination of slope and expansive soil foundations, were constructed with foil-insulated suspended timber floors instead of concrete slabs and thus had negligible effective thermal mass irrespective of the floor finish chosen by the tenant. It is apparent that many occupants of the early solarized dwellings revisited are not getting the full measure of energy savings and enhanced comfort that the designs allow. In several cases, occupant action in building out their own solar access indicates a low or possible even negative value is placed on their solar heating capabilities. Alternatively, it may indicate that the conceptual extension of living spaces onto a northerly patio, an integral part of many of the original designs, is so attractive as to tempt the owners into extending the roof in translucent material to protect the pleasurable times they have there. This post-occupancy evaluation suggests that acceptance of solar housing should be more closely examined to ensure that future low energy designs fully accommodate the preferred living patterns and needs of their target audience and that further attempts at occupant education are effective in reducing actual home energy consumption. (author). photos. 2 refs.

  9. Thermal performance analysis of a solar heating plant

    DEFF Research Database (Denmark)

    Fan, Jianhua; Huang, Junpeng; Andersen, Ola Lie

    was developed to calculate thermal performances of the plant. In the Trnsys model, three solar collector fields with a total solar collector area of 33,300 m2, a seasonal water pit heat storage of 75,000 m3, a simplified CO2 HP, a simplified ORC unit and a simplified wood chip boiler were included. The energy......Detailed measurements were carried out on a large scale solar heating plant located in southern Denmark in order to evaluate thermal performances of the plant. Based on the measurements, energy flows of the plant were evaluated. A modified Trnsys model of the Marstal solar heating plant...... consumption of the district heating net was modeled by volume flow rate and given forward and return temperatures of the district heating net. Weather data from a weather station at the site of the plant were used in the calculations. The Trnsys calculated yearly thermal performance of the solar heating plant...

  10. Photoluminescence, structural and electrical properties of passivated a-Si:H based thin films and corresponding solar cells

    International Nuclear Information System (INIS)

    Pincik, E.; Kobayashi, H.; Takahashi, M.; Fujiwara, N.; Brunner, R.; Gleskova, H.; Jergel, M.; Muellerova, J.; Kucera, M.; Falcony, C.; Ortega, L.; Rusnak, J.; Mikula, M.; Zahoran, M.; Jurani, R.; Kral, M.

    2004-01-01

    This paper deals with the photoluminescence, structural and electrical properties of chemically passivated a-Si:H based thin films and corresponding thin film solar cells. The structures were chemically passivated in three types of KCN and HCN solutions containing MeOH and/or with water. The photoluminescence measurements were performed at 6 K using Ar laser and lock-in signal recording device containing Ge and Si photodetectors. Optically determined band gap related photoluminescence signals were observed between 1.1 and 1.7 eV. The electrical properties were measured by a high-sensitive charge version of deep level transient spectroscopy (Q-DLTS). The evolution of three basic groups of defects was observed. The structural studies were realized by the standard X-ray diffraction analysis. The cyanide treatment improved significantly the electrical characteristics of both corresponding MOS structures and solar cells due to the passivation of some parts of the dangling bonds by CN group. Particularly, the passivation of the defects at interfaces in MOS or solar cell multilayer structures was achieved which is of primary practical importance

  11. Development and evaluation of a ceiling ventilation system enhanced by solar photovoltaic thermal collectors and phase change materials

    International Nuclear Information System (INIS)

    Lin, Wenye; Ma, Zhenjun; Sohel, M. Imroz; Cooper, Paul

    2014-01-01

    Highlights: • A novel ceiling ventilation system enhanced by PVT and PCMs was proposed. • PCM was used to increase the local thermal mass and to serve as a storage unit. • The proposed system can enhance indoor thermal comfort in winter and summer. - Abstract: This paper presents the development and performance evaluation of a novel ceiling ventilation system integrated with solar photovoltaic thermal (PVT) collectors and phase change materials (PCMs). The PVT collectors are used to generate electricity and provide low grade heating and cooling energy for buildings by using winter daytime solar radiation and summer night-time sky radiative cooling, respectively. The PCM is integrated into the building ceiling as a part of the ceiling insulation and at the same time, as a centralized thermal energy storage to temporally store low grade energy collected from the PVT collectors. The performance of the proposed system was numerically evaluated based on a Solar Decathlon house using TRNSYS. The results showed that, in winter conditions, the proposed PVT–PCM integrated ventilation system can significantly improve the indoor thermal comfort of passive buildings without using air-conditioning systems with a maximum air temperature rise of 23.1 °C from the PVT collectors. Compared with the system using PCM but without using PVT collectors, the coefficient of thermal comfort enhancement in the kitchen, dining room and living room of the case building studied using the proposed system improved from almost zero to 0.9823 while the coefficient of thermal comfort enhancement in the study room improved from 0.0060 to 0.9921. In summer conditions, the proposed system can also enhance indoor thermal comfort through night-time sky radiative cooling

  12. Solar energy in Amersfoort, Netherlands

    International Nuclear Information System (INIS)

    Eijpe, H.A.

    1997-01-01

    For the first time in the world a newly to be built housing area (Nieuwland in Amersfoort, Netherlands) will be constructed, exclusively on the basis of sustainability. First, the use of three forms of solar energy conversion techniques (thermal solar energy, passive solar energy and photovoltaic energy) is going to be integrated in 50 rental houses. At the end of this century 10,000 m 2 of solar cells will be installed with a capacity of 1 MWp. 2 figs

  13. Using passive cooling strategies to improve thermal performance and reduce energy consumption of residential buildings in U.A.E. buildings

    Directory of Open Access Journals (Sweden)

    Hanan M. Taleb

    2014-06-01

    Full Text Available Passive design responds to local climate and site conditions in order to maximise the comfort and health of building users while minimising energy use. The key to designing a passive building is to take best advantage of the local climate. Passive cooling refers to any technologies or design features adopted to reduce the temperature of buildings without the need for power consumption. Consequently, the aim of this study is to test the usefulness of applying selected passive cooling strategies to improve thermal performance and to reduce energy consumption of residential buildings in hot arid climate settings, namely Dubai, United Arab Emirates. One case building was selected and eight passive cooling strategies were applied. Energy simulation software – namely IES – was used to assess the performance of the building. Solar shading performance was also assessed using Sun Cast Analysis, as a part of the IES software. Energy reduction was achieved due to both the harnessing of natural ventilation and the minimising of heat gain in line with applying good shading devices alongside the use of double glazing. Additionally, green roofing proved its potential by acting as an effective roof insulation. The study revealed several significant findings including that the total annual energy consumption of a residential building in Dubai may be reduced by up to 23.6% when a building uses passive cooling strategies.

  14. Solar thermal technology report, FY 1981. Volume 1: Executive summary

    Science.gov (United States)

    1982-01-01

    The activities of the Department of Energy's Solar Thermal Technology Program are discussed. Highlights of technical activities and brief descriptions of each technology are given. Solar thermal conversion concepts are discussed in detail, particularily concentrating collectors and salt-gradient solar ponds.

  15. STDAC: Solar Thermal Design Assistance Center annual report fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Solar Thermal Design Assistance Center (STDAC) at Sandia is a resource provided by the DOE Solar Thermal Program. The STDAC`s major objective is to accelerate the use of solar thermal systems by providing direct technical assistance to users in industry, government, and foreign countries; cooperating with industry to test, evaluate, and develop renewable energy systems and components; and educating public and private professionals, administrators, and decision makers. This FY94 report highlights the activities and accomplishments of the STDAC. In 1994, the STDAC continued to provide significant direct technical assistance to domestic and international organizations in industry, government, and education, Applying solar thermal technology to solve energy problems is a vital element of direct technical assistance. The STDAC provides information on the status of new, existing, and developing solar technologies; helps users screen applications; predicts the performance of components and systems; and incorporates the experience of Sandia`s solar energy personnel and facilities to provide expert guidance. The STDAC directly enhances the US solar industry`s ability to successfully bring improved systems to the marketplace. By collaborating with Sandia`s Photovoltaic Design Assistance Center and the National Renewable Energy Laboratory the STDAC is able to offer each customer complete service in applying solar thermal technology. At the National Solar Thermal Test Facility the STDAC tests and evaluates new and innovative solar thermal technologies. Evaluations are conducted in dose cooperation with manufacturers, and the results are used to improve the product and/or quantify its performance characteristics. Manufacturers, in turn, benefit from the improved design, economic performance, and operation of their solar thermal technology. The STDAC provides cost sharing and in-kind service to manufacturers in the development and improvement of solar technology.

  16. Research on passive solar energy application in Cyprus. Part 1. Meteorological characteristics of Cyprus

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, O; Savva, M [Kumamoto University, Kumamoto (Japan); Saito, I [Yatsushiro Institute of Technology, Kumamoto (Japan)

    1996-10-27

    For application of passive solar systems to houses in Cyprus, meteorological and geographical characteristics were studied. Solar energy is not yet in wide use in Cyprus. Meteorological subjects are also not yet clarified for application of passive solar systems to houses. Annual temperature difference is estimated to be nearly 10{degree}C between the lowland and highland, and a drop in temperature with altitude is 0.33-0.76{degree}C/100m. Sunshine duration is longer in summer in everywhere showing 10-13.2 hours in August, while it is shorter in winter showing 3.5-6 hours in January. It is shorter in highland than lowland all the year through. Solar radiation intensity is obviously lower in winter than summer. Relative humidity is considerably low in highland, and it is low during the daytime in summer in lowland. In general, the relative humidity remarkably increases in the night all the year through and the daytime in winter. As the survey result, meteorological conditions are more suitable in Cyprus than Tokyo and Kumamoto for application of solar systems to houses. 4 refs., 10 figs., 1 tab.

  17. Beam-Forming Concentrating Solar Thermal Array Power Systems

    Science.gov (United States)

    Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor); Hoppe, Daniel J. (Inventor)

    2016-01-01

    The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.

  18. 2D layered insulator hexagonal boron nitride enabled surface passivation in dye sensitized solar cells.

    Science.gov (United States)

    Shanmugam, Mariyappan; Jacobs-Gedrim, Robin; Durcan, Chris; Yu, Bin

    2013-11-21

    A two-dimensional layered insulator, hexagonal boron nitride (h-BN), is demonstrated as a new class of surface passivation materials in dye-sensitized solar cells (DSSCs) to reduce interfacial carrier recombination. We observe ~57% enhancement in the photo-conversion efficiency of the DSSC utilizing h-BN coated semiconductor TiO2 as compared with the device without surface passivation. The h-BN coated TiO2 is characterized by Raman spectroscopy to confirm the presence of highly crystalline, mixed monolayer/few-layer h-BN nanoflakes on the surface of TiO2. The passivation helps to minimize electron-hole recombination at the TiO2/dye/electrolyte interfaces. The DSSC with h-BN passivation exhibits significantly lower dark saturation current in the low forward bias region and higher saturation in the high forward bias region, respectively, suggesting that the interface quality is largely improved without impeding carrier transport at the material interface. The experimental results reveal that the emerging 2D layered insulator could be used for effective surface passivation in solar cell applications attributed to desirable material features such as high crystallinity and self-terminated/dangling-bond-free atomic planes as compared with high-k thin-film dielectrics.

  19. Tunnel oxide passivated rear contact for large area n-type front junction silicon solar cells providing excellent carrier selectivity

    Directory of Open Access Journals (Sweden)

    Yuguo Tao

    2016-01-01

    Full Text Available Carrier-selective contact with low minority carrier recombination and efficient majority carrier transport is mandatory to eliminate metal-induced recombination for higher energy conversion efficiency for silicon (Si solar cells. In the present study, the carrier-selective contact consists of an ultra-thin tunnel oxide and a phosphorus-doped polycrystalline Si (poly-Si thin film formed by plasma enhanced chemical vapor deposition (PECVD and subsequent thermal crystallization. It is shown that the poly-Si film properties (doping level, crystallization and dopant activation anneal temperature are crucial for achieving excellent contact passivation quality. It is also demonstrated quantitatively that the tunnel oxide plays a critical role in this tunnel oxide passivated contact (TOPCON scheme to realize desired carrier selectivity. Presence of tunnel oxide increases the implied Voc (iVoc by ~ 125 mV. The iVoc value as high as 728 mV is achieved on symmetric structure with TOPCON on both sides. Large area (239 cm2 n-type Czochralski (Cz Si solar cells are fabricated with homogeneous implanted boron emitter and screen-printed contact on the front and TOPCON on the back, achieving 21.2% cell efficiency. Detailed analysis shows that the performance of these cells is mainly limited by boron emitter recombination on the front side.

  20. Scenarios for solar thermal energy applications in Brazil

    International Nuclear Information System (INIS)

    Martins, F.R.; Abreu, S.L.; Pereira, E.B.

    2012-01-01

    The Solar and Wind Energy Resource Assessment (SWERA) database is used to prepare and discuss scenarios for solar thermal applications in Brazil. The paper discusses low temperature applications (small and large scale water heating) and solar power plants for electricity production (concentrated solar power plants and solar chimney plants) in Brazil. The results demonstrate the feasibility of large-scale application of solar energy for water heating and electricity generation in Brazil. Payback periods for water heating systems are typically below 4 years if they were used to replace residential electric showerheads in low-income families. Large-scale water heating systems also present high feasibility and many commercial companies are adopting this technology to reduce operational costs. The best sites to set up CSP plants are in the Brazilian semi-arid region where the annual energy achieves 2.2 MW h/m 2 and averages of daily solar irradiation are larger than 5.0 kW h/m 2 /day. The western area of Brazilian Northeastern region meets all technical requirements to exploit solar thermal energy for electricity generation based on solar chimney technology. Highlights: ► Scenarios for solar thermal applications are presented. ► Payback is typically below 4 years for small scale water heating systems. ► Large-scale water heating systems also present high feasibility. ► The Brazilian semi-arid region is the best sites for CSP and chimney tower plants.

  1. Thermal efficiency of low cost solar collectors - CSBC; Eficiencia termica de coletores solares de baixo custo - CSBC

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Renato C.; Shiota, Robson T.; Mello, Samuel F.; Assis Junior, Valdir; Bartoli, Julio R. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Quimica. Dept. de Tecnologia de Polimeros

    2006-07-01

    The thermal performance of a low cost flat panel solar collector was measured. This Low Cost Solar Collector is a novel concept for water heating using only thermoplastics materials, used on building: ceiling and tubes made of unplasticized PVC, but without transparent cover. The top side of the UPVC panel was black painted to be the solar radiation absorber surface. Prototypes were installed on two charity houses around Campinas and at the FEQ campus, being used without any trouble for one year. The thermal efficiency analysis followed ABNT NBR 10184 standard at the Green-Solar Laboratory, Brazilian Centre for Development of Solar Thermal Energy, PUC-Minas. It was measured a thermal efficiency of 67%, compared to the 75% usually found on conventional solar collectors made of copper tubes and with glass cover. (author)

  2. National Solar Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The National Solar Thermal Test Facility (NSTTF) is the only test facility in the United States of its type. This unique facility provides experimental engineering...

  3. The challenge of screen printed Ag metallization on nano-scale poly-silicon passivated contacts for silicon solar cells

    Science.gov (United States)

    Jiang, Lin; Song, Lixin; Yan, Li; Becht, Gregory; Zhang, Yi; Hoerteis, Matthias

    2017-08-01

    Passivated contacts can be used to reduce metal-induced recombination for higher energy conversion efficiency for silicon solar cells, and are obtained increasing attentions by PV industries in recent years. The reported thicknesses of passivated contact layers are mostly within tens of nanometer range, and the corresponding metallization methods are realized mainly by plating/evaporation technology. This high cost metallization cannot compete with the screen printing technology, and may affect its market potential comparing with the presently dominant solar cell technology. Very few works have been reported on screen printing metallization on passivated contact solar cells. Hence, there is a rising demand to realize screen printing metallization technology on this topic. In this work, we investigate applying screen printing metallization pastes on poly-silicon passivated contacts. The critical challenge for us is to build low contact resistance that can be competitive to standard technology while restricting the paste penetrations within the thin nano-scale passivated contact layers. The contact resistivity of 1.1mohm-cm2 and the open circuit voltages > 660mV are achieved, and the most appropriate thickness range is estimated to be around 80 150nm.

  4. Advances in solar thermal energy in Uruguay

    International Nuclear Information System (INIS)

    Franco Noceto, P.

    2012-01-01

    This article is about the law 18585 which declared de solar thermal energy as national interest. This law establishes the obligation to incorporate solar heating systems in health care centers, hotels and sports clubs.

  5. Crystalline Silicon Solar Cells with Thin Silicon Passivation Film Deposited prior to Phosphorous Diffusion

    Directory of Open Access Journals (Sweden)

    Ching-Tao Li

    2014-01-01

    Full Text Available We demonstrate the performance improvement of p-type single-crystalline silicon (sc-Si solar cells resulting from front surface passivation by a thin amorphous silicon (a-Si film deposited prior to phosphorus diffusion. The conversion efficiency was improved for the sample with an a-Si film of ~5 nm thickness deposited on the front surface prior to high-temperature phosphorus diffusion, with respect to the samples with an a-Si film deposited on the front surface after phosphorus diffusion. The improvement in conversion efficiency is 0.4% absolute with respect to a-Si film passivated cells, that is, the cells with an a-Si film deposited on the front surface after phosphorus diffusion. The new technique provided a 0.5% improvement in conversion efficiency compared to the cells without a-Si passivation. Such performance improvements result from reduced surface recombination as well as lowered contact resistance, the latter of which induces a high fill factor of the solar cell.

  6. Solar thermal heating and cooling. A bibliography with abstracts

    Science.gov (United States)

    Arenson, M.

    1979-01-01

    This bibliographic series cites and abstracts the literature and technical papers on the heating and cooling of buildings with solar thermal energy. Over 650 citations are arranged in the following categories: space heating and cooling systems; space heating and cooling models; building energy conservation; architectural considerations, thermal load computations; thermal load measurements, domestic hot water, solar and atmospheric radiation, swimming pools; and economics.

  7. Semi-transparent solar energy thermal storage device

    Science.gov (United States)

    McClelland, John F.

    1985-06-18

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls, Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  8. Sol–gel derived solar selective coatings on SS 321 substrates for solar thermal applications

    Energy Technology Data Exchange (ETDEWEB)

    Subasri, R., E-mail: subasri@arci.res.in; Soma Raju, K.R.C.; Reddy, D.S.; Hebalkar, Neha Y.; Padmanabham, G.

    2016-01-01

    Sol–gel derived multilayered solar selective coatings were generated on AISI SS 321 substrates using Ag-TiO{sub 2} as the cermet layer, titania and silica as the dielectric layers with high and low refractive indices respectively. The phase compositions of the individual layers were independently confirmed using grazing angle incidence X-ray diffraction, which was corroborated by X-ray photoelectron spectroscopic analysis. Thickness of the layers was measured using variable angle spectroscopic ellipsometry. The solar absorbance was measured over the UV–Vis-NIR wavelength range. Thermal emissivity was determined using FTIR spectroscopic analysis. The durability of the coatings was ascertained using accelerated corrosion testing methods as well as by measuring the optical properties after thermal cycling experiments. The promising nature of hexavalent chrome-free, environmental friendly, multilayered solar selective coating was ascertained with respect to amenability to scale-up. - Highlights: • Sol–gel derived multilayered solar selective coatings developed on SS321 • Solar absorptance and thermal emittance at par with toxic chrome coating • Thermal stability and corrosion resistance of coatings studied • Coating performance found to be promising for large scale applications • Scale-up amenability investigated by coating generation on 1 m tubes.

  9. Sol–gel derived solar selective coatings on SS 321 substrates for solar thermal applications

    International Nuclear Information System (INIS)

    Subasri, R.; Soma Raju, K.R.C.; Reddy, D.S.; Hebalkar, Neha Y.; Padmanabham, G.

    2016-01-01

    Sol–gel derived multilayered solar selective coatings were generated on AISI SS 321 substrates using Ag-TiO_2 as the cermet layer, titania and silica as the dielectric layers with high and low refractive indices respectively. The phase compositions of the individual layers were independently confirmed using grazing angle incidence X-ray diffraction, which was corroborated by X-ray photoelectron spectroscopic analysis. Thickness of the layers was measured using variable angle spectroscopic ellipsometry. The solar absorbance was measured over the UV–Vis-NIR wavelength range. Thermal emissivity was determined using FTIR spectroscopic analysis. The durability of the coatings was ascertained using accelerated corrosion testing methods as well as by measuring the optical properties after thermal cycling experiments. The promising nature of hexavalent chrome-free, environmental friendly, multilayered solar selective coating was ascertained with respect to amenability to scale-up. - Highlights: • Sol–gel derived multilayered solar selective coatings developed on SS321 • Solar absorptance and thermal emittance at par with toxic chrome coating • Thermal stability and corrosion resistance of coatings studied • Coating performance found to be promising for large scale applications • Scale-up amenability investigated by coating generation on 1 m tubes

  10. Solar thermal power system

    Science.gov (United States)

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  11. SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project

    Energy Technology Data Exchange (ETDEWEB)

    Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

    1980-03-01

    The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

  12. Thermally-Induced Structural Disturbances of Rigid Panel Solar Arrays

    Science.gov (United States)

    Johnston, John D.; Thornton, Earl A.

    1997-01-01

    The performance of a significant number of spacecraft has been impacted negatively by attitude disturbances resulting from thermally-induced motions of flexible structures. Recent examples of spacecraft affected by these disturbances include the Hubble Space Telescope (HST) and the Upper Atmosphere Research Satellite (UARS). Thermally-induced structural disturbances occur as the result of rapid changes in thermal loading typically initiated as a satellite exits or enters the Earth's shadow. Temperature differences in flexible appendages give rise to structural deformations, which in turn result in disturbance torques reacting back on the spacecraft. Structures which have proven susceptible to these disturbances include deployable booms and solar arrays. This paper investigates disturbances resulting from thermally-induced deformations of rigid panel solar arrays. An analytical model for the thermal-structural response of the solar array and the corresponding disturbance torque are presented. The effect of these disturbances on the attitude dynamics of a simple spacecraft is then investigated using a coupled system of governing equations which includes the effects of thermally-induced deformations. Numerical results demonstrate the effect of varying solar array geometry on the dynamic response of the system.

  13. Cheap effective thermal solar-energy collectors

    Energy Technology Data Exchange (ETDEWEB)

    Highgate, D.J.; Probert, S.D. [Cranfield University, Bedford (United Kingdom). Dept. of Applied Energy

    1996-04-01

    A light-weight flexible solar-collector, with a wavelength-selective absorption surface and an insolation-transparent thermal-insulation protecter for its aperture, was built and tested. Its cheapness and high performance, relative to a conventional flat-plate solar-collector, provide a prima-facie case for the more widespread adoption of its design. (author)

  14. Solar cells based upon multicrystalline Si with DLC antireflection and passivating coatings

    International Nuclear Information System (INIS)

    Klyui, N.; Litovchenko, V.; Neselevska, L.; Kostylyov, V.; Sarikov, A.; Taraschenko, N.; Kittler, M.; Seifert, W.

    2006-01-01

    The characteristics of multicrystalline Si solar cells covered by diamond-like carbon (DLC) antireflection coatings been experimentally studied. It has been shown that this kind of coating provides a significant increase of the efficiency of solar cells mainly due to the increase of the short-circuit current density. The effects of antireflection and of the surface and bulk passivation on the SC current-voltage characteristics due to the DLC deposition have been investigated theoretically. Physical mechanisms underlying the observed effects have been proposed

  15. The role of Solar thermal in Future Energy Systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Hansen, Kenneth

    This report deals with solar thermal technologies and investigates possible roles for solar thermal in future energy systems for four national energy systems; Germany, Austria, Italy and Denmark. The project period started in January 2014 and finished by October 2017. This report is based...

  16. Interreg IIIA SR - AT project SOLARSTRAT. Results of the interviews with experts on solar-thermal energy utilization. Possibilities of support to thermal-solar systems installation

    International Nuclear Information System (INIS)

    Ilias, I.

    2005-01-01

    In this presentation author presented the results of collecting of important data for solar-thermal market scenario modelling through interviews with Slovak stakeholders. Interviews with Slovak experts on thermal-solar energy utilisation represents important project activity in order to give a general review of current status of the market in target Bratislava region and to collect important data for next market analyses, which will be prepared by Austrian partner - IFAST. The results of face-to-face interviews and filled questionnaires can be generally presented as follows: - public attitude towards the renewable energy sources and solar energy utilisation is slowly getting better in Slovakia; - evaluating public awareness only 15% share of population is able to consider the possibilities of thermal-solar technologies; - expected increase of fossil fuels and energy prices will help to spread of thermal-solar systems through shorten the pay-back period of investment while prices of thermal-solar systems will increase only slightly; - also expected increase of political and economic public awareness about energy production and demand on thermal-solar systems will help to promote the further development of solar energy utilisation in Slovakia. Respondents were also evaluating the main barriers for better solar energy utilisation: (1) Weak public awareness, no systematic information campaign (examples from real life); (2) Missing support to installation for physical persons, no tax allowances; (3) High investment costs; (4) Unfriendly legislation. Other important barriers for better development of the sector were presented. E.g. assembling companies cannot afford effective promotion, only big producers are able to fund the marketing on their products, which are mainly expensive systems. Public is still considering solar systems as too expensive ('I can't afford it'). Renewable energy sources (RES) are often presented as the alternative to nuclear energy - this

  17. Interreg IIIA SR - AT project SOLARSTRAT. Results of the interviews with experts on solar-thermal energy utilization. Possibilities of support to thermal-solar systems installation

    International Nuclear Information System (INIS)

    Ilias, I.

    2005-01-01

    In this presentation author presented the results of collecting of important data for solar-thermal market scenario modelling through interviews with Slovak stakeholders. Interviews with Slovak experts on thermal-solar energy utilisation represents important project activity in order to give a general review of current status of the market in target Bratislava region and to collect important data for next market analyses, which will be prepared by Austrian partner - IFAST. The results of face-to-face interviews and filled questionnaires can be generally presented as follows: - public attitude towards the renewable energy sources and solar energy utilisation is slowly getting better in Slovakia; - evaluating public awareness only 15% share of population is able to consider the possibilities of thermal-solar technologies; - expected increase of fossil fuels and energy prices will help to spread of thermal-solar systems through shorten the pay-back period of investment while prices of thermal-solar systems will increase only slightly; - also expected increase of political and economic public awareness about energy production and demand on thermal-solar systems will help to promote the further development of solar energy utilisation in Slovakia. Respondent were also evaluating the main barriers for better solar energy utilisation: (1) Weak public awareness, no systematic information campaign (examples from real life); (2) Missing support to installation for physical persons, no tax allowances; (3) High investment costs; (4) Unfriendly legislation Other important barriers for better development of the sector were presented. E.g. assembling companies cannot afford effective promotion, only big producers are able to fund the marketing on their products, which are mainly expensive systems. Public is still considering solar systems as too expensive ('I can't afford it'). Renewable energy sources (RES) are often presented as the alternative to nuclear energy - this argument

  18. Positioning Your Library for Solar (and Financial) Gain. Improving Energy Efficiency, Lighting, and Ventilation with Primarily Passive Techniques

    Science.gov (United States)

    Shane, Jackie

    2012-01-01

    This article stresses the importance of building design above technology as a relatively inexpensive way to reduce energy costs for a library. Emphasis is placed on passive solar design for heat and daylighting, but also examines passive ventilation and cooling, green roofs, and building materials. Passive design is weighed against technologies…

  19. Robust optimization of a tandem grating solar thermal absorber

    Science.gov (United States)

    Choi, Jongin; Kim, Mingeon; Kang, Kyeonghwan; Lee, Ikjin; Lee, Bong Jae

    2018-04-01

    Ideal solar thermal absorbers need to have a high value of the spectral absorptance in the broad solar spectrum to utilize the solar radiation effectively. Majority of recent studies about solar thermal absorbers focus on achieving nearly perfect absorption using nanostructures, whose characteristic dimension is smaller than the wavelength of sunlight. However, precise fabrication of such nanostructures is not easy in reality; that is, unavoidable errors always occur to some extent in the dimension of fabricated nanostructures, causing an undesirable deviation of the absorption performance between the designed structure and the actually fabricated one. In order to minimize the variation in the solar absorptance due to the fabrication error, the robust optimization can be performed during the design process. However, the optimization of solar thermal absorber considering all design variables often requires tremendous computational costs to find an optimum combination of design variables with the robustness as well as the high performance. To achieve this goal, we apply the robust optimization using the Kriging method and the genetic algorithm for designing a tandem grating solar absorber. By constructing a surrogate model through the Kriging method, computational cost can be substantially reduced because exact calculation of the performance for every combination of variables is not necessary. Using the surrogate model and the genetic algorithm, we successfully design an effective solar thermal absorber exhibiting a low-level of performance degradation due to the fabrication uncertainty of design variables.

  20. Efficient Solar-Thermal Energy Harvest Driven by Interfacial Plasmonic Heating-Assisted Evaporation.

    Science.gov (United States)

    Chang, Chao; Yang, Chao; Liu, Yanming; Tao, Peng; Song, Chengyi; Shang, Wen; Wu, Jianbo; Deng, Tao

    2016-09-07

    The plasmonic heating effect of noble nanoparticles has recently received tremendous attention for various important applications. Herein, we report the utilization of interfacial plasmonic heating-assisted evaporation for efficient and facile solar-thermal energy harvest. An airlaid paper-supported gold nanoparticle thin film was placed at the thermal energy conversion region within a sealed chamber to convert solar energy into thermal energy. The generated thermal energy instantly vaporizes the water underneath into hot vapors that quickly diffuse to the thermal energy release region of the chamber to condense into liquids and release the collected thermal energy. The condensed water automatically flows back to the thermal energy conversion region under the capillary force from the hydrophilic copper mesh. Such an approach simultaneously realizes efficient solar-to-thermal energy conversion and rapid transportation of converted thermal energy to target application terminals. Compared to conventional external photothermal conversion design, the solar-thermal harvesting device driven by the internal plasmonic heating effect has reduced the overall thermal resistance by more than 50% and has demonstrated more than 25% improvement of solar water heating efficiency.

  1. The influence of weather on the thermal performance of solar heating systems

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon; Shah, Louise Jivan

    2003-01-01

    . The investigation is based on calculations with validated models. Solar heating systems with different solar collector types, heat storage volumes and solar fractions are included in the investigation. The yearly solar radiation varies with approximately 20 % in the period from 1990 until 2002. The calculations......The influence of weather on the thermal performance of solar combi systems, solar domestic hot water systems and solar heating plants is investigated. The investigation is based on weather data from the Danish Design Reference Year, DRY and weather data measured for a period from 1990 until 2002...... show that the thermal performance of the investigated systems varies due to the weather variation. The variation of the yearly thermal performance of a solar heating plant is about 40 % while the variation of the yearly thermal performance of a solar domestic hot water system is about 30...

  2. Value and cost analyses for solar thermal-storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Luft, W.; Copeland, R.J.

    1983-04-01

    Value and cost data for thermal energy storage are presented for solar thermal central receiver systems for which thermal energy storage appears to be attractive. Both solar thermal electric power and industrial process heat applications are evaluated. The value of storage is based on the cost for fossil fuel and solar thermal collector systems in 1990. The costing uses a standard lifetime methodology with the storage capacity as a parameter. Both value and costs are functions of storage capacity. However, the value function depends on the application. Value/cost analyses for first-generation storage concepts for five central receiver systems (molten salt, water/steam, organic fluid, air, and liquid metal) established the reference against which new systems were compared. Some promising second-generation energy storage concepts have been identified, and some more advanced concepts have also been evaluated.

  3. Study on the use of TiO2 passivation layer to reduce recombination losses in dye sensitized solar cells

    International Nuclear Information System (INIS)

    Eskander bin Samsudin, Adel; Mohamed, Norani Muti; Nayan, Nafarizal; Ali, Riyaz Ahmad Mohamed; Shariffuddin, Sharifah Amira Amir; Omar, Salwa

    2012-01-01

    A lot of research on various aspects of dye solar cells (DSC) has been carried out in order to improve efficiency. This paper analyzes the utilization of TiO 2 passivation layers of different thicknesses by improving the electron transport properties. Four different thicknesses of passivation layers namely 10, 20, 50 and 100 nm were deposited onto the working electrode using r.f sputtering. The electrodes were assembled into TiO 2 based DSC with active area of 1 cm 2 . The solar performance was investigated using 100 mW/cm 2 of AM 1.5 simulated sunlight from solar simulator. The kinetics of the solar cells was investigated using Electrochemical Impedance Spectroscopy (EIS) measurement and the spectral response was measured using Incident Photon to Electron Conversion (IPCE) measurement system. The highest efficiency was found for DSC with 20 nm passivation layer. DSCs with the passivation layer have open circuit voltage, V OC increased by 57 mV, their current density, J SC increased by 0.774 mA cm −2 compared to the one without the passivation layer. The quantum efficiency of the 20 nm passivation layer is the highest, peaking at the wavelength of 534 nm, resulting in the highest performance. All DSCs with the passivation layer recorded higher ratio of R BR /R T where R T is the diffusion resistance of the TiO 2 particles in the mesoscopic layer and R BR is the recombination resistance of the electron to the electrolyte. This implies that the recombination of the electrolyte I − 3 /3I − couple at the substrate/electrolyte interface has been effectively reduced resulting in an enhanced efficiency.

  4. Amorphous silicon passivation for 23.3% laser processed back contact solar cells

    Science.gov (United States)

    Carstens, Kai; Dahlinger, Morris; Hoffmann, Erik; Zapf-Gottwick, Renate; Werner, Jürgen H.

    2017-08-01

    This paper presents amorphous silicon deposited at temperatures below 200 °C, leading to an excellent passivation layer for boron doped emitter and phosphorus doped back surface field areas in interdigitated back contact solar cells. A higher deposition temperature degrades the passivation of the boron emitter by an increased hydrogen effusion due to lower silicon hydrogen bond energy, proved by hydrogen effusion measurements. The high boron surface doping in crystalline silicon causes a band bending in the amorphous silicon. Under these conditions, at the interface, the intentionally undoped amorphous silicon becomes p-type conducting, with the consequence of an increased dangling bond defect density. For bulk amorphous silicon this effect is described by the defect pool model. We demonstrate, that the defect pool model is also applicable to the interface between amorphous and crystalline silicon. Our simulation shows the shift of the Fermi energy towards the valence band edge to be more pronounced for high temperature deposited amorphous silicon having a small bandgap. Application of optimized amorphous silicon as passivation layer for the boron doped emitter and phosphorus doped back surface field on the rear side of laser processed back contact solar cells, fabricated using four laser processing steps, yields an efficiency of 23.3%.

  5. Simulation on the Performance of Dye Solar Cell Incorporated with TiO2 Passivation Layer

    Directory of Open Access Journals (Sweden)

    Unan Yusmaniar Oktiawati

    2016-01-01

    Full Text Available Dye Solar Cell (DSC has started to gain interest in the recent years for practical application because of its ecofriendly, low cost, and easy fabrication. However, its efficiency is still not as competitive as the conventional silicon based solar cell. One of the research efforts to improve the efficiency of DSC is to use the passivation layer in between the photoelectrode material and the conductive oxide substrate. Thus, the objective of this simulation study is to investigate the effect of passivation layer on the performance of DSC. Properties from literatures which are based on physical work were captured as the input for the simulation using process, ATHENA, and device, ATLAS, simulator. Results have shown that the addition of two-20 nm TiO2 passivation layers on DSC can enhance the efficiency by 11% as the result of less recombination, higher electron mobility, and longer electron lifetime.

  6. Extraction of thermal Green's function using diffuse fields: a passive approach applied to thermography

    Science.gov (United States)

    Capriotti, Margherita; Sternini, Simone; Lanza di Scalea, Francesco; Mariani, Stefano

    2016-04-01

    In the field of non-destructive evaluation, defect detection and visualization can be performed exploiting different techniques relying either on an active or a passive approach. In the following paper the passive technique is investigated due to its numerous advantages and its application to thermography is explored. In previous works, it has been shown that it is possible to reconstruct the Green's function between any pair of points of a sensing grid by using noise originated from diffuse fields in acoustic environments. The extraction of the Green's function can be achieved by cross-correlating these random recorded waves. Averaging, filtering and length of the measured signals play an important role in this process. This concept is here applied in an NDE perspective utilizing thermal fluctuations present on structural materials. Temperature variations interacting with thermal properties of the specimen allow for the characterization of the material and its health condition. The exploitation of the thermographic image resolution as a dense grid of sensors constitutes the basic idea underlying passive thermography. Particular attention will be placed on the creation of a proper diffuse thermal field, studying the number, placement and excitation signal of heat sources. Results from numerical simulations will be presented to assess the capabilities and performances of the passive thermal technique devoted to defect detection and imaging of structural components.

  7. Economic impact of solar thermal electricity deployment in Spain

    International Nuclear Information System (INIS)

    Caldes, N.; Varela, M.; Santamaria, M.; Saez, R.

    2009-01-01

    The objective of the work is to estimate the socio-economic impacts of increasing the installed solar thermal energy power capacity in Spain. Using an input-output (I-O) analysis, this paper estimates the increase in the demand for goods and services as well as in employment derived from solar thermal plants in Spain under two different scenarios: (a) based on two solar thermal power plants currently in operation (with 50 and 17 MW of installed capacity); (b) the compliance to the Spanish Renewable Energy Plan (PER) 2005-2010 reaching 500 MW by 2010. Results show that the multiplier effect of the PER is 2.3 and the total employment generated would reach 108,992 equivalent full-time jobs of 1 year of duration. Despite this is an aggregated result, this figure represents 4.5% of current Spanish unemployment. It can be concluded that the socio-economic effect of the PER's solar thermal installed capacity goal would be remarkable.

  8. Solar chimney integrated with passive evaporative cooler applied on glazing surfaces

    International Nuclear Information System (INIS)

    Al Touma, Albert; Ghali, Kamel; Ghaddar, Nesreen; Ismail, Nagham

    2016-01-01

    This study investigates the performance of a hybrid system applied on glazing surfaces for reducing the space cooling load and radiation asymmetry. The proposed system combines the principles of passive evaporative cooling with the natural buoyant flow in solar chimneys to entrain outdoor air and attenuate the window surface temperature. A predictive heat and mass transport model combining the evaporative cooler, glazing section, solar chimney and an office space is developed to study the system performance in harshly hot climates. The developed model was validated through experiments conducted in a twin climatic chamber for given ambient temperature, humidity, and solar radiation conditions. Good agreement was found between the measured and the predicted window temperatures and space loads at maximum discrepancy lower than 4.3%. The proposed system is applied to a typical office space to analyze its effectiveness in reducing the window temperature, the space load and radiation asymmetry, while maintaining the indoor comfort conditions. Results have shown that the system is reduced the space load by −19.8% and attenuated the radiation asymmetry significantly for office spaces having window-to-wall ratio of 40% in climate of Riyadh, KSA. The system performance diminished when applied in locations suffering from humid weather climates. - Highlights: • A passive evaporative-cooled solar chimney system is introduced to decrease window temperature. • A mathematical model is developed of the system to predict induce air flow and window surface temperature. • The model is validated with experiments in twin room climatic chamber and using artificial solar lamps. • The system reduces window maximum temperature by 5 °C in the hot dry climate of Riyadh, KSA. • It reduced the space load by 19.4% for office spaces at window-to-wall ratio of 40% in Riyadh, KSA.

  9. Development of space heating and domestic hot water systems with compact thermal energy storage. Compact thermal energy storage: Material development for System Integration

    NARCIS (Netherlands)

    Davidson, J.H.; Quinnell, J.; Burch, J.; Zondag, H.A.; Boer, R. de; Finck, C.J.; Cuypers, R.; Cabeza, L.F.; Heinz, A.; Jahnig, D.; Furbo, S.; Bertsch, F.

    2013-01-01

    Long-term, compact thermal energy storage (TES) is essential to the development of cost-effective solar and passive building-integrated space heating systems and may enhance the annual technical and economic performance of solar domestic hot water (DHW) systems. Systems should provide high energy

  10. Solar thermal barometer. More than 2 million m2 installed in 2005

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    With 22,8% growth, the european union solar thermal market (glazed, vacuum and unglazed collectors) has passed the 2 million m 2 benchmark corresponding to installed capacity of approximately 1450 MWth. This growth can be explained by the very good performance of the three leading EU solar thermal markets: Germany, Austria and Greece and the increase in importance of the French and Spanish markets. Statistical data are provided for the european union on the annually installed surfaces, breakdown by technologies of the solar thermal market, the solar thermal capacity in operation, the representative companies of the thermal solar sector and a comparison of current trend with the white book objectives. (A.L.B.)

  11. 4. meeting on passive solar energy houses. Proceedings; 4. Passivhaus Tagung. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    Feist, W [ed.; Sariri, V; Nagel, M [comps.; Passivhaus Institut, Darmstadt (Germany)

    2000-03-01

    This is the report on the 4th Passive Building Conference, which took place at Kassel on March 10/11, 2000. There were eight sections: (a) Planners' workshop; (b) Architecture; (c) Ventilation; (d) Construction practice; (e) Subjective users' comfort and measured results; (f) Practical implementation; (g) economic and ecological assessment; (h) Solar architecture; (i) Heat supply. It was considered particularly favourable that passive solar buildings do not only offer a solution to ecological problems but also a growing market. [German] Der Tagungsband der '4. Passivhaus Tagung', die von 10. bis 11. Maerz 2000 in Kassel stattgefunden hat, beinhalten Beitraege, die in acht Arbeitsgruppen vorgetragen worden: (a) Planer-Werkstatt; (b) Architektur; (c) Lueftungsplanung; (d) Baupraxis; (e) Wohnerfahrung, Messergebnisse; (f) Umsetzung; (g) oekonomische und oekologische Bewertung; (h) Solararchitektur; (i) Waermeversorgung. Es wird vom Herausgeber als besonders erfreulich herausgestellt, dass durch eine erfolgreiche Passivhaus-Entwicklung neben der Loesung der Klimaprobleme zugleich ein neuer Wachstumsmarkt geschaffen werde, der mit einer Mehrung von Wertschoepfung und Wohlstand verbunden ist. (AKF)

  12. The development of a volumetric solar thermal receiver: an overview

    International Nuclear Information System (INIS)

    Sagie, D.

    1996-01-01

    Solar energy has received much interest in recent years, being a clean (free of pollution or other environmental damage) and inexhaustible energy source. It is also considered safer than some other non conventional energy sources (like nuclear energy). The interest in solar energy is motivated mainly by the growing awareness of the environmental problems associated with the use of conventional fuels. However, solar energy may become a serious alternative only if it can be used efficiently in major energy consuming industries (like the chemical industry), or be used for electricity generation. Those facilities are nowadays solely dependent on fossil fuels as the prime source of energy. The solar energy, reaching the earth in the form of radiation, can be utilized either by direct quantum conversion using photo-voltaic solar cells, or by converting the radiation into thermal energy, to be used directly for heating, or to feed a thermal to electric converting cycle. After three decades of huge spending on the development of photo-voltaic systems those devices are commercially competitive only on a very small energy scale, while solar thermal commercial applications are more attractive. Prominent examples are the domestic heating water receivers (direct thermal), and LUZ International electricity generation plants which are currently operated on a commercial basis, supplying 80 MWe per plant. Direct thermal exploitation of solar energy is naturally more efficient than converting to electricity, but is limited to specific applications and locations especially since thermal storage at high temperature is not commercially viable. Efficient electricity production at a competitive price is clearly the biggest opportunity for solar energy . (author)

  13. Solar thermal and concentrated solar power barometer - EurObserv'ER - May 2012

    International Nuclear Information System (INIS)

    2012-05-01

    27545 MWth: the EU's solar thermal base to date at the end of 2011. After two years of sharp decline, the European solar thermal market is bottoming out. The EurObserv'ER survey findings are that the installation figure fell just 1.9% in comparison with 2010, giving a newly-installed collector area of 3.7 million m 2 . The concentrated solar power sector has been forging ahead alongside the heat production applications, and at the end of 2011 installed capacity passed the one gigawatt mark in Spain for the first time with 1157.2 MWe

  14. Effect of low thermal budget annealing on surface passivation of silicon by ALD based aluminum oxide films.

    Science.gov (United States)

    Vandana; Batra, Neha; Gope, Jhuma; Singh, Rajbir; Panigrahi, Jagannath; Tyagi, Sanjay; Pathi, P; Srivastava, S K; Rauthan, C M S; Singh, P K

    2014-10-21

    Thermal ALD deposited Al2O3 films on silicon show a marked difference in surface passivation quality as a function of annealing time (using a rapid thermal process). An effective and quality passivation is realized in short anneal duration (∼100 s) in nitrogen ambient which is reflected in the low surface recombination velocity (SRV passivation. Both as-deposited and low thermal budget annealed films show the presence of positive fixed charges and this is never been reported in the literature before. The role of field and chemical passivation is investigated in terms of fixed charge and interface defect densities. Further, the importance of the annealing step sequence in the MIS structure fabrication protocol is also investigated from the view point of its effect on the nature of fixed charges.

  15. estec2007 - 3rd European solar thermal energy conference. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-12-14

    The sessions of the 'estec2007 - 3{sup rd} European Solar Thermal Energy Conference held in Freiburg, Germany have the following titles: The solar thermal sector at a turning point; Cooling and Process Heat, Country reports Europe; Standards and Certification; Country reports outside Europe; Awareness raising and marketing; Domestic hot water and space heating; Domestic hot water and space heating; Quality Assurance and Solar Thermal Energy Service Companies; Collectors and other key technical issues; Policy - Financial incentives; Country Reports; Marketing and Awareness Raising; Quality Assurance Measures/Monistoring; Standards and Certification; Collectors; Domestic Hot Water and Space Heating; Industrial Process Heat; Storage; Solar Cooling. (AKF)

  16. estec2007 - 3rd European solar thermal energy conference. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-12-14

    The sessions of the 'estec2007 - 3{sup rd} European Solar Thermal Energy Conference held in Freiburg, Germany have the following titles: The solar thermal sector at a turning point; Cooling and Process Heat, Country reports Europe; Standards and Certification; Country reports outside Europe; Awareness raising and marketing; Domestic hot water and space heating; Domestic hot water and space heating; Quality Assurance and Solar Thermal Energy Service Companies; Collectors and other key technical issues; Policy - Financial incentives; Country Reports; Marketing and Awareness Raising; Quality Assurance Measures/Monistoring; Standards and Certification; Collectors; Domestic Hot Water and Space Heating; Industrial Process Heat; Storage; Solar Cooling. (AKF)

  17. Energetic and exergetic performances analysis of a PV/T (photovoltaic thermal) solar system tested and simulated under to Tunisian (North Africa) climatic conditions

    International Nuclear Information System (INIS)

    Hazami, Majdi; Riahi, Ali; Mehdaoui, Farah; Nouicer, Omeima; Farhat, Abdelhamid

    2016-01-01

    The endeavor of this paper is to study the potential offered by the expenditure of a PV/T (photovoltaic thermal) solar system in Tunisian households. This investigation is performed according to two-folded approaches. Firstly, outdoor experiments were carried out during July 2014 for both passive and active mode. An exhaustive energy and exergy analysis was then performed to evaluate the instantaneous thermal and the electrical exergy outputs of the PV/T solar system. The results showed that the maximum instantaneous thermal and electric energy efficiency in active mode are about 50 and 15%, respectively. It was found also that the maximum thermal and electric exergy efficiencies were about 50 and 14.8%, respectively. The second approach is the evaluation of the monthly/annual performances of the PV/T solar system under typical climate area of Tunisia by using TRNSYS program. The results showed that the active mode enhances the electric efficiency and the exergy of the PV/T system by 3 and 2.5% points, respectively. The results showed that the optimized PV/T solar system covert the major part of the hot water and the electric needs of Tunisian household's with an expected annual average gain of about 14.60 and 5.33%, respectively. An economic appraisal was performed. - Highlights: • The present work studies the potential of using PV/T solar collector in Tunisian. • The maximum thermal and electric efficiencies are 50 and 15%, respectively. • The maximum thermal and electric exergy efficiencies were 50 and 14.8%. • The results showed that the expected annual gain are 14.60 and 5.33%. • The PV/T is compared to a high quality commercial solar collectors and a PV panel.

  18. Passive residual energy utilization system in thermal cycles on water-cooled power reactors

    International Nuclear Information System (INIS)

    Placco, Guilherme M.; Guimaraes, Lamartine N.F.; Santos, Rubens S. dos

    2013-01-01

    This work presents a concept of a residual energy utilization in nuclear plants thermal cycles. After taking notice of the causes of the Fukushima nuclear plant accident, an idea arose to adapt a passive thermal circuit as part of the ECCS (Emergency Core Cooling System). One of the research topics of IEAv (Institute for Advanced Studies), as part of the heat conversion of a space nuclear power system is a passive multi fluid turbine. One of the main characteristics of this device is its passive capability of staying inert and be brought to power at moments notice. During the first experiments and testing of this passive device, it became clear that any small amount of gas flow would generate power. Given that in the first stages of the Fukushima accident and even during the whole event there was plenty availability of steam flow that would be the proper condition to make the proposed system to work. This system starts in case of failure of the ECCS, including loss of site power, loss of diesel generators and loss of the battery power. This system does not requires electricity to run and will work with bleed steam. It will generate enough power to supply the plant safety system avoiding overheating of the reactor core produced by the decay heat. This passive system uses a modified Tesla type turbine. With the tests conducted until now, it is possible to ensure that the operation of this new turbine in a thermal cycle is very satisfactory and it performs as expected. (author)

  19. Passive and hybrid solar technologies program summary

    Science.gov (United States)

    1985-05-01

    The goal of the national energy policy is to foster an adequate supply of energy at reasonable prices. This policy recognizes that adequate supply requires flexibility, with no undue reliance on any single source of supply. The goal of reasonable prices suggests economic efficiency so that consumers, individuals, commercial and industrial users alike, are not penalized by government regulation or subside. The strategies for achieving this energy policy goal are: (1) to minimize federal regulation in energy pricing while maintaining public health and safety and environmental quality, and (2) to promote a balanced and mixed energy resource system through research and development. One of the keys to energy sufficiently is the scientific application of passive solar energy techniques.

  20. Performance analysis of a lunar based solar thermal power system with regolith thermal storage

    International Nuclear Information System (INIS)

    Lu, Xiaochen; Ma, Rong; Wang, Chao; Yao, Wei

    2016-01-01

    The manned deep-space exploration is a hot topic of the current space activities. The continuous supply of thermal and electrical energy for the scientific equipment and human beings is a crucial issue for the lunar outposts. Since the night lasts for periods of about 350 h at most locations on the lunar surface, massive energy storage is required for continuous energy supply during the lengthy lunar night and the in-situ resource utilization is demanded. A lunar based solar thermal power system with regolith thermal storage is presented in this paper. The performance analysis is carried out by the finite-time thermodynamics to take into account major irreversible losses. The influences of some key design parameters are analyzed for system optimization. The analytical results shows that the lunar based solar thermal power system with regolith thermal storage can meet the requirement of the continuous energy supply for lunar outposts. - Highlights: • A lunar based solar thermal power system with regolith thermal storage is presented. • The performance analysis is carried out by the finite-time thermodynamics. • The influences of some key design parameters are analyzed.

  1. High-performance flat-panel solar thermoelectric generators with high thermal concentration

    Science.gov (United States)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J. Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-07-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m-2) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity.

  2. High-performance flat-panel solar thermoelectric generators with high thermal concentration.

    Science.gov (United States)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-05-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity. © 2011 Macmillan Publishers Limited. All rights reserved

  3. Economic Feasibility and Market Readiness of Solar Technologies. Draft Final Report. Volume I.

    Energy Technology Data Exchange (ETDEWEB)

    Flaim, Silvio J.; Buchanan, Deborah L.; Christmas, Susan; Fellhauer, Cheryl; Glenn, Barbara; Ketels, Peter A.; Levary, Arnon; Mourning, Pete; Steggerda, Paul; Trivedi, Harit; Witholder, Robert E.

    1978-09-01

    Systems descriptions, costs, technical and market readiness assessments are reported for ten solar technologies: solar heating and cooling of buildings (SHACOB), passive, agricultural and industrial process heat (A/IPH), biomass, ocean thermal (OTEC), wind (WECS), solar thermal electric, photovoltaics, satellite power station (SPS), and solar total energy systems (STES). Study objectives, scope, and methods. are presented. of Joint Task The cost and market analyses portion 5213/6103 will be used to make commercialization assessments in the conclusions of. the final report.

  4. Materials research for passive solar systems: Solid-state phase-change materials

    Science.gov (United States)

    Benson, D. K.; Webb, J. D.; Burrows, R. W.; McFadden, J. D. O.; Christensen, C.

    1985-03-01

    A set of solid-state phase-change materials is being evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol (C5H12O4), pentaglycerinve (C5H12O3), and neopentyl glycol (C5H12O2). Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature between 25 C and 188 C, and have latent heats of transformation etween 20 and 70 cal/g. Transformation temperatures, specific heats, and latent heats of transformation have been measured for a number of these materials. Limited cyclic experiments suggest that the solid solutions are stable. These phase-change materials exhibit large amounts of undercooling; however, the addition of certain nucleating agents as particulate dispersions in the solid phase-change material greatly reduces this effect. Computer simulations suggest that the use of an optimized solid-state phase-change material in a Trombe wall could provide better performance than a concrete Trombe wall four times thicker and nine times heavier.

  5. Myo-inositol based nano-PCM for solar thermal energy storage

    International Nuclear Information System (INIS)

    Singh, D.K.; Suresh, S.; Singh, H.; Rose, B.A.J.; Tassou, S.; Anantharaman, N.

    2017-01-01

    Highlights: • Properties of Myo-Inositol laden with Al_2O_3 and CuO nanoparticles was studied. • The melting point was found to increase for MI-A and decrease for MI-C. • MI interacted only physically on addition of NPs. • Mass changes were <3% after thermal cycling of MI-A and MI-C. • MI-A is more suited for thermal energy storage than MI-C. - Abstract: The thermo-physical behavior of Myo-Inositol (MI), (a sugar alcohol), was investigated as a potential material for developing more compact solar thermal energy storage systems than those currently available. This latent heat storage medium could be utilized for commercial and industrial applications using solar thermal energy storage in the temperature range of 160–260 °C, if its thermal performance was modified. The objective of this investigation was to determine via experimentation, if Al_2O_3 and CuO nanoparticles dispersed in pure MI for mixtures of 1, 2 and 3% (by weight) improved the thermal performance of MI for solar thermal energy systems. Nanoparticles only physically interacted with MI, and not chemically, even after 50 thermal cycles. The distribution of CuO nanoparticles in the nano-PCM was found to be more uniform than alumina nanoparticles. After cycling, nano-MIs studied here suffered a lower decrease in heat of fusion than pure MI, which makes nano-MIs more suitable for solar thermal storage applications at 160–260 °C. Between CuO and Al_2O_3 nanoparticles, latter was found to be more suitable for compact solar thermal energy storage owing to an increase in melting point observed.

  6. Solar thermal repowering systems integration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dubberly, L. J.; Gormely, J. E.; McKenzie, A. W.

    1979-08-01

    This report is a solar repowering integration analysis which defines the balance-of-plant characteristics and costs associated with the solar thermal repowering of existing gas/oil-fired electric generating plants. Solar repowering interface requirements for water/steam and salt or sodium-cooled central receivers are defined for unit sizes ranging from 50 MWe non-reheat to 350 MWe reheat. Finally balance-of-plant cost estimates are presented for each of six combinations of plant type, receiver type and percent solar repowering.

  7. Solar Energy: Energy Conservation and Passive Design Concepts: Student Material. First Edition.

    Science.gov (United States)

    Younger, Charles; Orsak, Charles G., Jr.

    Designed for student use in "Energy Conservation and Passive Design Concepts," one of 11 courses in a 2-year associate degree program in solar technology, this manual provides readings, bibliographies, and illustrations for seven course modules. The manual, which corresponds to an instructor guide for the same course, covers the…

  8. Atomic-layer deposited Nb2O5 as transparent passivating electron contact for c-Si solar cells

    NARCIS (Netherlands)

    Macco, Bart; Black, Lachlan E.; Melskens, Jimmy; van de Loo, Bas W.H.; Berghuis, Willem Jan H.; Verheijen, Marcel A.; Kessels, Wilhelmus M.M.

    2018-01-01

    Passivating contacts based on metal oxides have proven to enable high energy conversion efficiencies for crystalline silicon (c-Si) solar cells at low processing complexity. In this work, the potential of atomic-layer deposited (ALD) Nb2O5 as novel electron-selective passivating contact is explored

  9. Energy Efficiency Enhancement of Photovoltaics by Phase Change Materials through Thermal Energy Recovery

    Directory of Open Access Journals (Sweden)

    Ahmad Hasan

    2016-09-01

    Full Text Available Photovoltaic (PV panels convert a certain amount of incident solar radiation into electricity, while the rest is converted to heat, leading to a temperature rise in the PV. This elevated temperature deteriorates the power output and induces structural degradation, resulting in reduced PV lifespan. One potential solution entails PV thermal management employing active and passive means. The traditional passive means are found to be largely ineffective, while active means are considered to be energy intensive. A passive thermal management system using phase change materials (PCMs can effectively limit PV temperature rises. The PCM-based approach however is cost inefficient unless the stored thermal energy is recovered effectively. The current article investigates a way to utilize the thermal energy stored in the PCM behind the PV for domestic water heating applications. The system is evaluated in the winter conditions of UAE to deliver heat during water heating demand periods. The proposed system achieved a ~1.3% increase in PV electrical conversion efficiency, along with the recovery of ~41% of the thermal energy compared to the incident solar radiation.

  10. Willow Park II Community Center. Design report for the passive solar commercial buildings design assistance and demonstration program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-15

    The design process for a passive solar community center in Texas is documented. Weather data are given. Energy analysis for early drawings is performed using the ENERGYLOOK program and the results shown graphically. Energy consumption and cost data are given. The design evolution is then traced and the performance of alternative designs compared. Design indicators for best strategies and concepts are discussed and the final design is presented. Energy consumption and cost are given, along with incremental passive solar design costs. A schematic review meeting report and life cycle value tables are included. Overviews, unavailable information, incremental passive design costs, performance comparison of alternatives, and architectural compatibility are discussed for each step in the design process. (LEW)

  11. Output performance analyses of solar array on stratospheric airship with thermal effect

    International Nuclear Information System (INIS)

    Li, Jun; Lv, Mingyun; Tan, Dongjie; Zhu, Weiyu; Sun, Kangwen; Zhang, Yuanyuan

    2016-01-01

    Highlights: • A model investigating the output power of solar array is proposed. • The output power in the cruise condition with thermal effect is researched. • The effect of some factors on output performance is discussed in detail. • A suitable transmissivity of external layer is crucial in preliminary design step. - Abstract: Output performance analyses of the solar array are very critical for solving the energy problem of a long endurance stratospheric airship, and the solar cell efficiency is very sensitive to temperature of the solar cell. But the research about output performance of solar array with thermal effect is rare. This paper outlines a numerical model including the thermal model of airship and solar cells, the incident solar radiation model on the solar array, and the power output model. Based on this numerical model, a MATLAB computer program is developed. In the course of the investigation, the comparisons of the simulation results with and without considering thermal effect are reported. Furthermore, effects of the transmissivity of external encapsulation layer of solar array and wind speed on the thermal performance and output power of solar array are discussed in detail. The results indicate that this method is helpful for planning energy management.

  12. Simulation of an active solar energy system integrated in a passive building in order to obtain system efficiency

    Science.gov (United States)

    Ceacaru, Mihai C.

    2012-11-01

    In this work we present a simulation of an active solar energy system. This system belongs to the first passive office building (2086 square meters) in Romania and it is used for water heating consumption. This office building was opened in February 2009 and was built based on passive house design solutions. For this simulation, we use Solar Water Heating module, which belongs to the software RETSCREEN and this simulation is done for several cities in Romania. Results obtained will be compared graphically.

  13. Thermo-economic analysis of Shiraz solar thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Yaghoubi, M. [Academy of Science, Tehran (Iran, Islamic Republic of); Mokhtari, A.; Hesami, R. [Shiraz Univ., Shiraz (Iran, Islamic Republic of). School of Engineering

    2007-07-01

    The Shiraz solar thermal power plant in Iran has 48 parabolic trough collectors (PTCs) which are used to heat the working oil. There is potential to significantly increase the performance and reduce the cost of PTC solar thermal electric technologies. Conventional energy analysis based on the first law of thermodynamics does qualitatively assess the various losses occurring in the components. Therefore, exergy analysis, based on the second law of thermodynamics, can be applied to better assess various losses quantitatively as well as qualitatively. This paper presented a newly developed exergy-economic model for the Shiraz solar thermal power plant. The objective was to find the minimum exergetic production cost (EPC), based on the second law of thermodynamics. The application of exergy-economic analysis includes the evaluation of utility supply costs for production plants, and the energy costs for process operations. The purpose of the analysis was to minimize the total operating costs of the solar thermal power plant by assuming a fixed rate of electricity production and process steam. 21 refs., 3 tabs., 8 figs.

  14. Al-Si alloy point contact formation and rear surface passivation for silicon solar cells using double layer porous silicon

    International Nuclear Information System (INIS)

    Moumni, Besma; Ben Jaballah, Abdelkader; Bessais, Brahim

    2012-01-01

    Lowering the rear surface recombination velocities by a dielectric layer has fascinating advantages compared with the standard fully covered Al back-contact silicon solar cells. In this work the passivation effect by double layer porous silicon (PS) (wide band gap) and the formation of Al-Si alloy in narrow p-type Si point contact areas for rear passivated solar cells are analysed. As revealed by Fourier transform infrared spectroscopy, we found that a thin passivating aluminum oxide (Al 2 O 3 ) layer is formed. Scanning electron microscopy analysis performed in cross sections shows that with bilayer PS, liquid Al penetrates into the openings, alloying with the Si substrate at depth and decreasing the contact resistivity. At the solar cell level, the reduction in the contact area and resistivity leads to a minimization of the fill factor losses.

  15. Passive thermal management using phase change materials

    Science.gov (United States)

    Ganatra, Yash Yogesh

    The trend of enhanced functionality and reducing thickness of mobile devices has. led to a rapid increase in power density and a potential thermal bottleneck since. thermal limits of components remain unchanged. Active cooling mechanisms are not. feasible due to size, weight and cost constraints. This work explores the feasibility. of a passive cooling system based on Phase Change Materials (PCMs) for thermal. management of mobile devices. PCMs stabilize temperatures due to the latent heat. of phase change thus increasing the operating time of the device before threshold. temperatures are exceeded. The primary contribution of this work is the identification. of key parameters which influence the design of a PCM based thermal management. system from both the experiments and the numerical models. This work first identifies strategies for integrating PCMs in an electronic device. A. detailed review of past research, including experimental techniques and computational. models, yields key material properties and metrics to evaluate the performance of. PCMs. Subsequently, a miniaturized version of a conventional thermal conductivity. measurement technique is developed to characterize thermal resistance of PCMs. Further, latent heat and transition temperatures are also characterized for a wide. range of PCMs. In-situ measurements with PCMs placed on the processor indicate that some. PCMs can extend the operating time of the device by as much as a factor of 2.48. relative to baseline tests (with no PCMs). This increase in operating time is investigated. by computational thermal models that explore various integration locations, both at the package and device level.

  16. Anti-reflecting and passivating coatings for silicon solar cells on a basis of SO2 and TiO2 layers

    International Nuclear Information System (INIS)

    Taurbaev, T.I.; Nikulin, V.Eh.; Shorin, V.F.; Topanov, B.G.; Dikhanbaev, K.K.

    2002-01-01

    An analysis of influence of passivating layer on performance of anti-reflection coating of solar cells is carried out. The introduction of passivating SiO 2 layer between a frontal surface of the solar cell and TiO 2 +SiO 2 anti-reflection coating increase total reflection. If a thickness of a passivating layer no more than 20 Angstrom an increase of reflection does not exceed 0.5 %. However, for effective passivation the thickness of the passivating layer has to be within 100-1000 Angstrom region, thus the interference contribution of the passivating layer becomes essential and the AC is necessary to calculate as triple system SiO 2 -TiO 2 -SiO 2 . Such the three layers system ensuring average coefficient of reflection less of 3.5 % in a range 0.4-1.1 μm if the thickness of passivating SiO 2 layer no more 200 Angstrom. For solar cells with passivating SiO 2 layer thickness of 100 Angstrom and protective glass of non-interference thickness the single layer AC from TiO 2 allows to receive average value of reflection coefficient for a spectral range 0.4-1.1 μm no more than 9.5 %. The introduction of two additional layers SiO 2 and TiO 2 allows to reduce this value on 2.0-3.0 %. The comparison of calculation and experimental results is given. (author)

  17. Solar dryer with thermal storage and biomass-backup heater

    Energy Technology Data Exchange (ETDEWEB)

    Madhlopa, A. [Department of Physics and Biochemical Sciences, Malawi Polytechnic, P/Bag 303, Blantyre 3 (Malawi); Ngwalo, G. [Department of Mechanical Engineering, Malawi Polytechnic, P/Bag 303, Blantyre 3 (Malawi)

    2007-04-15

    An indirect type natural convection solar dryer with integrated collector-storage solar and biomass-backup heaters has been designed, constructed and evaluated. The major components of the dryer are biomass burner (with a rectangular duct and flue gas chimney), collector-storage thermal mass and drying chamber (with a conventional solar chimney). The thermal mass was placed in the top part of the biomass burner enclosure. The dryer was fabricated using simple materials, tools and skills, and it was tested in three modes of operation (solar, biomass and solar-biomass) by drying twelve batches of fresh pineapple (Ananas comosus), with each batch weighing about 20 kg. Meteorological conditions were monitored during the dehydration process. Moisture and vitamin C contents were determined in both fresh and dried samples. Results show that the thermal mass was capable of storing part of the absorbed solar energy and heat from the burner. It was possible to dry a batch of pineapples using solar energy only on clear days. Drying proceeded successfully even under unfavorable weather conditions in the solar-biomass mode of operation. In this operational mode, the dryer reduced the moisture content of pineapple slices from about 669 to 11% (db) and yielded a nutritious dried product. The average values of the final-day moisture-pickup efficiency were 15%, 11% and 13% in the solar, biomass and solar-biomass modes of operation respectively. It appears that the solar dryer is suitable for preservation of pineapples and other fresh foods. Further improvements to the system design are suggested. (author)

  18. Profits or preferences? Assessing the adoption of residential solar thermal technologies

    International Nuclear Information System (INIS)

    Mills, Bradford F.; Schleich, Joachim

    2009-01-01

    Solar thermal technologies offer the potential to meet a substantial share of residential water and space heating needs in the EU, but current levels of adoption are low. This paper uses data from a large sample of German households to assess the effects of geographic, residence, and household characteristics on the adoption of solar thermal water and space heating technologies. In addition, the impact of solar thermal technology adoption on household energy expenditures is estimated after controlling for observed household heterogeneity in geographic, residential, and household characteristics. While evidence is found of moderate household energy expenditure savings from combined solar water and space heating systems, the findings generally confirm that low in-home energy cost savings and fixed housing stocks limit the diffusion of residential solar thermal technologies. Little evidence is found of differential adoption by distinct socio-economic groups.

  19. Climate classification and passive solar design implications in China

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Chris C.S.; Lam, Joseph C. [Building Energy Research Group, Department of Building and Construction, City University of Hong Kong, Kowloon, Hong Kong (China); Yang, Liu [School of Architecture, Xi' an University of Architecture and Technology, Shaanxi 710055 (China)

    2007-07-15

    China's climate differs greatly in various regions, ranging from severe cold to hot and arid to humid. This has significant influences on energy efficient building design strategies and energy use. Solar radiation data from 123 measuring stations were used to propose a map indicating the solar radiation climates in China. A cluster analysis was adopted to identify the prevailing solar climates using the monthly average daily clearness index, K{sub t}, as climatic variable. Five major solar climates were identified with annual average K{sub t} ranging from 0.3 in the Sichuan Basin to 0.65 in the north and northwest regions. The solar climates were compared with the more widely used general (thermal) climates (severe cold, cold, hot summer and cold winter, mild and hot summer and warm winter) and the major topography (basin, plain and plateau), and implications for building designs were briefly discussed. (author)

  20. Climate classification and passive solar design implications in China

    International Nuclear Information System (INIS)

    Lau, Chris C.S.; Lam, Joseph C.; Yang, Liu

    2007-01-01

    China's climate differs greatly in various regions, ranging from severe cold to hot and arid to humid. This has significant influences on energy efficient building design strategies and energy use. Solar radiation data from 123 measuring stations were used to propose a map indicating the solar radiation climates in China. A cluster analysis was adopted to identify the prevailing solar climates using the monthly average daily clearness index, K t , as climatic variable. Five major solar climates were identified with annual average K t ranging from 0.3 in the Sichuan Basin to 0.65 in the north and northwest regions. The solar climates were compared with the more widely used general (thermal) climates (severe cold, cold, hot summer and cold winter, mild and hot summer and warm winter) and the major topography (basin, plain and plateau), and implications for building designs were briefly discussed

  1. Thermal energy storage for CSP (Concentrating Solar Power)

    Science.gov (United States)

    Py, Xavier; Sadiki, Najim; Olives, Régis; Goetz, Vincent; Falcoz, Quentin

    2017-07-01

    The major advantage of concentrating solar power before photovoltaic is the possibility to store thermal energy at large scale allowing dispatchability. Then, only CSP solar power plants including thermal storage can be operated 24 h/day using exclusively the solar resource. Nevertheless, due to a too low availability in mined nitrate salts, the actual mature technology of the two tanks molten salts cannot be applied to achieve the expected international share in the power production for 2050. Then alternative storage materials are under studies such as natural rocks and recycled ceramics made from industrial wastes. The present paper is a review of those alternative approaches.

  2. Thermal energy storage for CSP (Concentrating Solar Power

    Directory of Open Access Journals (Sweden)

    Py Xavier

    2017-01-01

    Full Text Available The major advantage of concentrating solar power before photovoltaic is the possibility to store thermal energy at large scale allowing dispatchability. Then, only CSP solar power plants including thermal storage can be operated 24 h/day using exclusively the solar resource. Nevertheless, due to a too low availability in mined nitrate salts, the actual mature technology of the two tanks molten salts cannot be applied to achieve the expected international share in the power production for 2050. Then alternative storage materials are under studies such as natural rocks and recycled ceramics made from industrial wastes. The present paper is a review of those alternative approaches.

  3. Monitoring solar-thermal systems: An outline of methods and procedures

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, A. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

    1994-04-01

    This manual discusses the technical issues associated with monitoring solar-thermal systems. It discusses some successful monitoring programs that have been implemented in the past. It gives the rationale for selecting a program of monitoring and gives guidelines for the design of new programs. In this report, solar thermal monitoring systems are classified into three levels. For each level, the report discusses the kinds of information obtained by monitoring, the effort needed to support the monitoring program, the hardware required, and the costs involved. Ultimately, all monitoring programs share one common requirement: the collection of accurate data that characterize some aspect or aspects of the system under study. This report addresses most of the issues involved with monitoring solar thermal systems. It does not address such topics as design fundamentals of thermal systems or the relative merits of the many different technologies employed for collection of solar energy.

  4. Mathematical model for thermal solar collectors by using magnetohydrodynamic Maxwell nanofluid with slip conditions, thermal radiation and variable thermal conductivity

    Science.gov (United States)

    Mahmood, Asif; Aziz, Asim; Jamshed, Wasim; Hussain, Sajid

    Solar energy is the cleanest, renewable and most abundant source of energy available on earth. The main use of solar energy is to heat and cool buildings, heat water and to generate electricity. There are two types of solar energy collection system, the photovoltaic systems and the solar thermal collectors. The efficiency of any solar thermal system depend on the thermophysical properties of the operating fluids and the geometry/length of the system in which fluid is flowing. In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The flow is induced by a non-uniform stretching of the porous sheet and the uniform magnetic field is applied in the transverse direction to the flow. The non-Newtonian Maxwell fluid model is utilized for the working fluid along with slip boundary conditions. Moreover the high temperature effect of thermal radiation and temperature dependent thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for cu-water and TiO2 -water nanofluids. Results are presented for the velocity and temperature profiles as well as the skin friction coefficient and Nusselt number and the discussion is concluded on the effect of various governing parameters on the motion, temperature variation, velocity gradient and the rate of heat transfer at the boundary.

  5. High thermal performance lithium-ion battery pack including hybrid active–passive thermal management system for using in hybrid/electric vehicles

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2014-01-01

    In this study, a novel Li-ion battery pack design including hybrid active–passive thermal management system is presented. The battery pack is suitable for using in hybrid/electric vehicles. Active part of the hybrid thermal management system uses distributed thin ducts, air flow and natural convection as cooling media while the passive part utilizes phase change material/expanded graphite composite (PCM/EG) as cooling/heating component to optimize the thermal performance of the proposed battery pack. High melting enthalpy of PCM/EG composite together with melting of PCM/EG composite at the temperature of 58.9 °C remains the temperature distribution of the battery units in the desired temperature range (below 60 °C). The temperature and voltage distributions in the proposed battery pack design consisting of battery units, distributed thin ducts and PCM/EG composite are calculated by numerical solving of the related partial differential equations. Simulation results obtained by writing M-files code in Matlab environment and plotting the numerical data are presented to validate the theoretical results. A comparison between the thermal and physical characteristics of the proposed battery pack and other latest works is presented that explicitly proves the battery pack performance. - Highlights: • Novel Li-ion battery pack including active and passive thermal management systems. • The battery pack has high thermal performance for ambient temperatures until 55 °C. • Uniform temperature and voltage distributions. • The maximum observed temperature in each battery unit is less than other works. • The maximum temperature dispersion in each battery is less than other works

  6. The solar thermal market in Greece - review and perspectives

    International Nuclear Information System (INIS)

    Argiriou, A.A.; Mirasgedis, S.

    2003-01-01

    The Hellenic solar thermal market is actually one of the most developed worldwide. This paper provides an overview of the evolution of this market since its start in the mid-1970s until today. The reasons for its success are discussed in detail: the role of the manufacturers, the quality assurance practices applied and the incentives on the demand and supply sides. The role of economic instruments towards the development of the Hellenic solar thermal market is investigated using a cost-benefit analysis (CBA). Although commercially successful, solar thermal applications today in Greece still cover a very limited percentage of their potential applications. The perspectives and potential barriers for their future development are presented, analysed by a CBA and discussed. This information is useful for all parties related to this market, manufacturers, potential users, policy makers, etc. Countries having a solar energy potential similar to that of Greece but a less developed solar market may also identify in this work parameters that will contribute to the development of their national market. (author)

  7. Ambient plasma treatment of silicon wafers for surface passivation recovery

    Science.gov (United States)

    Ge, Jia; Prinz, Markus; Markert, Thomas; Aberle, Armin G.; Mueller, Thomas

    2017-08-01

    In this work, the effect of an ambient plasma treatment powered by compressed dry air on the passivation quality of silicon wafers coated with intrinsic amorphous silicon sub-oxide is investigated. While long-time storage deteriorates the effective lifetime of all samples, a short ambient plasma treatment improves their passivation qualities. By studying the influence of the plasma treatment parameters on the passivation layers, an optimized process condition was identified which even boosted the passivation quality beyond its original value obtained immediately after deposition. On the other hand, the absence of stringent requirement on gas precursors, vacuum condition and longtime processing makes the ambient plasma treatment an excellent candidate to replace conventional thermal annealing in industrial heterojunction solar cell production.

  8. Solar heating at the P. E. I. Ark

    Energy Technology Data Exchange (ETDEWEB)

    MacKay, K.T.

    1979-01-01

    Both active and passive solar heating systems are employed at the P.E.I. Ark. An active drain-down system, which stores heat in water located in 70,000 litre concrete tanks, supplies heat to the living area. Domestic hot water is heated by a thermosiphon drain-down solar system coupled to a wood cookstove. Environmental design of the Ark allows for maximum use of passive solar energy. The passive system supplies the majority of the heating load on sunny days, while wood stoves supply the back-up heat. The performance of the active system has required high maintenance because of problems in the mechanical and electrical systems. This, coupled with the high initial cost, has not made the system cost effective. The 178m/sup 2/ commercial greenhouse uses a hybrid system with both active and passive systems. The active system employs a fan to draw air through rock storage. The passive system employs the high thermal mass of the deep soil beds, a concrete slab, and most importantly, 53,200 litres of water in translucent tanks. These tanks are then used for fish rearing and are the basis for a solar hatchery. The greenhouse has performed very well, producing crops year round since 1976.

  9. Low temperature surface passivation of crystalline silicon and its application to interdigitated back contact silicon heterojunction (ibc-shj) solar cell

    Science.gov (United States)

    Shu, Zhan

    With the absence of shading loss together with improved quality of surface passivation introduced by low temperature processed amorphous silicon crystalline silicon (a-Si:H/c-Si) heterojunction, the interdigitated back contact silicon heterojunction (IBC-SHJ) solar cell exhibits a potential for higher conversion efficiency and lower cost than a traditional front contact diffused junction solar cell. In such solar cells, the front surface passivation is of great importance to achieve both high open-circuit voltage (Voc) and short-circuit current (Jsc). Therefore, the motivation of this work is to develop a low temperature processed structure for the front surface passivation of IBC-SHJ solar cells, which must have an excellent and stable passivation quality as well as a good anti-reflection property. Four different thin film materials/structures were studied and evaluated for this purpose, namely: amorphous silicon nitride (a-SiNx:H), thick amorphous silicon film (a-Si:H), amorphous silicon/silicon nitride/silicon carbide (a-Si:H/a-SiN x:H/a-SiC:H) stack structure with an ultra-thin a-Si:H layer, and zinc sulfide (ZnS). It was demonstrated that the a-Si:H/a-SiNx:H/a-SiC:H stack surpasses other candidates due to both of its excellent surface passivation quality (SRVSi surface is found to be resulted from (i) field effect passivation due to the positive fixed charge (Q fix~1x1011 cm-2 with 5 nm a-Si:H layer) in a-SiNx:H as measured from capacitance-voltage technique, and (ii) reduced defect state density (mid-gap Dit~4x1010 cm-2eV-1) at a-Si:H/c-Si interface provided by a 5 nm thick a-Si:H layer, as characterized by conductance-frequency measurements. Paralleled with the experimental studies, a computer program was developed in this work based on the extended Shockley-Read-Hall (SRH) model of surface recombination. With the help of this program, the experimental injection level dependent SRV curves of the stack passivated c-Si samples were successfully reproduced and

  10. Applicability of advanced automotive heat engines to solar thermal power

    Science.gov (United States)

    Beremand, D. G.; Evans, D. G.; Alger, D. L.

    The requirements of a solar thermal power system are reviewed and compared with the predicted characteristics of automobile engines under development. A good match is found in terms of power level and efficiency when the automobile engines, designed for maximum powers of 65-100 kW (87 to 133 hp) are operated to the nominal 20-40 kW electric output requirement of the solar thermal application. At these reduced power levels it appears that the automotive gas turbine and Stirling engines have the potential to deliver the 40+ percent efficiency goal of the solar thermal program.

  11. Thermal performance of a transpired solar collector updraft tower

    International Nuclear Information System (INIS)

    Eryener, Dogan; Hollick, John; Kuscu, Hilmi

    2017-01-01

    Highlights: • Transpired solar collector updraft tower has been studied experimentally. • Transpired solar collector updraft tower efficiency ranges from 60 to 80%. • A comparison has been made with other SUT prototypes. • Three times higher efficiency compared to the glazed collectors of conventional solar towers. - Abstract: A novel solar updraft tower prototype, which consists of transpired solar collector, is studied, its function principle is described and its experimental thermal performance is presented for the first time. A test unit of transpired solar collector updraft tower was installed at the campus of Trakya University Engineering Faculty in Edirne-Turkey in 2014. Solar radiation, ambient temperature, collector cavity temperatures, and chimney velocities were monitored during summer and winter period. The results showed that transpired solar collector efficiency ranges from 60% to 80%. The maximum temperature rise in the collector area is found to be 16–18 °C on the typical sunny day. Compared to conventional solar tower glazed collectors, three times higher efficiency is obtained. With increased thermal efficiency, large solar collector areas for solar towers can be reduced in half or less.

  12. Passive and hybrid solar manufactured housing and buildings. [Includes architectural drawings

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, D; Bowling, C; Winter, S; Levy, E; Marks, R; Zgolinski, A

    1980-01-01

    The final design work on a passive solar two story modular home to be built by Unibilt Industries is summarized. After reviewing alternative insulation, glazing, and water wall schemes, five options were identified for detailed energy use and life cycle cost analysis. Using the PASCALC/SLR analysis procedure, the performance of the base case home and each of the energy conservation options was calculated. (MHR)

  13. Investigation of exergy and yield of a passive solar water desalination system with a parabolic concentrator incorporated with latent heat storage medium

    International Nuclear Information System (INIS)

    Kabeel, A.E.; Elkelawy, Medhat; Alm El Din, Hagar; Alghrubah, Adel

    2017-01-01

    Highlights: • The impact of PCM and solar concentrator on the production of solar still studied experimentally under Egyptian conditions. • Exergetic analysis studied for passive solar still in winter and summer at different water depth. • Experimental study of water depth effect on solar still with PCM and solar concentrator. • A comparison between improved still with and usual still is carried out for winter and summer. - Abstract: In the present study, two solar stills were assembled and experienced to evaluate the yield and energy performance of an improved passive solar desalination system compared to a conventional one. The improved still is incorporated with a latent heat thermal energy storage medium and a parabolic solar concentrator. A parabolic solar concentrator was added to concentrate and increase the amount of solar irradiance absorbed by the still basin. Paraffin wax was applied as phase change material (PCM) in the solar still bottom plate. In the current study also, the effect of impure water profundity inside the still on still’s accumulated yield have been assessed. The following study involved a mathematical analysis for calculation of the exergetic proficiency as an efficient tool for the optimization, and yield evaluation of any energy systems and solar stills as well. Experimental research conducted in steady days of summer and winter at six different values of impure water profundity inside the solar still basin. The salinity of the impure water tested was about 3000–5000 ppm, while the salinity for the resulted drinkable water was about 550–500 ppm. The performed outcomes revealed that during summer, exergetic efficiency is higher than its qualified value in winter with approximately (10–15%) for the same water profundity. Results also disclosed that, the exergetic efficiency is higher when the water profundity in the basin is lower with approximately (6–9%). The experimental findings reveals that, the solar still with

  14. Solar thermal electricity generation

    Science.gov (United States)

    Gasemagha, Khairy Ramadan

    1993-01-01

    This report presents the results of modeling the thermal performance and economic feasibility of large (utility scale) and small solar thermal power plants for electricity generation. A number of solar concepts for power systems applications have been investigated. Each concept has been analyzed over a range of plant power ratings from 1 MW(sub e) to 300 MW(sub e) and over a range of capacity factors from a no-storage case (capacity factor of about 0.25 to 0.30) up to intermediate load capacity factors in the range of 0.46 to 0.60. The solar plant's economic viability is investigated by examining the effect of various parameters on the plant costs (both capital and O & M) and the levelized energy costs (LEC). The cost components are reported in six categories: collectors, energy transport, energy storage, energy conversion, balance of plant, and indirect/contingency costs. Concentrator and receiver costs are included in the collector category. Thermal and electric energy transport costs are included in the energy transport category. Costs for the thermal or electric storage are included in the energy storage category; energy conversion costs are included in the energy conversion category. The balance of plant cost category comprises the structures, land, service facilities, power conditioning, instrumentation and controls, and spare part costs. The indirect/contingency category consists of the indirect construction and the contingency costs. The concepts included in the study are (1) molten salt cavity central receiver with salt storage (PFCR/R-C-Salt); (2) molten salt external central receiver with salt storage (PFCR/R-E-Salt); (3) sodium external central receiver with sodium storage (PFCR/RE-Na); (4) sodium external central receiver with salt storage (PFCR/R-E-Na/Salt); (5) water/steam external central receiver with oil/rock storage (PFCR/R-E-W/S); (6) parabolic dish with stirling engine conversion and lead acid battery storage (PFDR/SLAB); (7) parabolic dish

  15. Thermal performance of Danish solar combi systems in practice and in theory

    DEFF Research Database (Denmark)

    Andersen, Elsa; Shah, Louise Jivan; Furbo, Simon

    2004-01-01

    An overview of measured thermal performances of Danish solar combi systems in practice is given. The thermal performance varies greatly from system to system. Measured and calculated thermal performances of different solar combi systems are compared and the main reasons for the different thermal ...... as theoretically expected....

  16. 4. meeting on passive solar energy houses. Proceedings; 4. Passivhaus Tagung. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    Feist, W. [ed.; Sariri, V.; Nagel, M. [comps.] [Passivhaus Institut, Darmstadt (Germany)

    2000-03-01

    This is the report on the 4th Passive Building Conference, which took place at Kassel on March 10/11, 2000. There were eight sections: (a) Planners' workshop; (b) Architecture; (c) Ventilation; (d) Construction practice; (e) Subjective users' comfort and measured results; (f) Practical implementation; (g) economic and ecological assessment; (h) Solar architecture; (i) Heat supply. It was considered particularly favourable that passive solar buildings do not only offer a solution to ecological problems but also a growing market. [German] Der Tagungsband der '4. Passivhaus Tagung', die von 10. bis 11. Maerz 2000 in Kassel stattgefunden hat, beinhalten Beitraege, die in acht Arbeitsgruppen vorgetragen worden: (a) Planer-Werkstatt; (b) Architektur; (c) Lueftungsplanung; (d) Baupraxis; (e) Wohnerfahrung, Messergebnisse; (f) Umsetzung; (g) oekonomische und oekologische Bewertung; (h) Solararchitektur; (i) Waermeversorgung. Es wird vom Herausgeber als besonders erfreulich herausgestellt, dass durch eine erfolgreiche Passivhaus-Entwicklung neben der Loesung der Klimaprobleme zugleich ein neuer Wachstumsmarkt geschaffen werde, der mit einer Mehrung von Wertschoepfung und Wohlstand verbunden ist. (AKF)

  17. Proceedings of the General Committee for solar thermal energy 2017

    International Nuclear Information System (INIS)

    Loyen, Richard; Gibert, Francois; Porcheyre, Edwige; Laplagne, Valerie; Lambertucci, Stefano; Hauser, Eva; Delmas, Pierre; Mozas, Kevin; Servier, Gerard; Girard, Jean-Paul; Haim, Philippe; Gendron, Marc; Haas, Benjamin; Leclech, Rodrigue; Eberhardt, Mathieu; Bettwy, Fabrice; Berthomieu, Nadine; Barais, Claire; Mingant, Sylvie; Daniel, Charles; GODIN, Olivier; PELe, Charles; Benabdelkarim, Mohamed; Brottier, Laetitia; Cholin, Xavier; Mugnier, Daniel; Marchal, David; Khebchache, Bouzid

    2017-10-01

    The contributions of this conference first proposed an overview of the status and perspectives of the solar thermal energy sector with a presentation of the present situation and perspectives for the French market, and an overview of situations and initiatives in neighbouring European countries. A second session addressed the possible new economical and marketing models able to face challenges of solar thermal energy in 2018 with focuses on heat kWh purchase, on supply portage through a global operator contract (design-realisation-exploitation-maintenance contracts or CREM contracts, energy performance contracts or CPE), and on issues related to building renovation (solar-gas synergy) and to new buildings (regulatory evolution, E+C label). The third session proposed examples of local good practices: development of solar thermal networks in Auvergne-Rhone-Alpes with the development of these networks and a support to commissioners, ADEME's support with patrimony-rehabilitation contracts, and the solar policy implemented by the Brest metropole. A technological focus was then proposed. It addressed communications about the SOCOL approach, concentration-based solar technology (technology, applications, realisations), and solar heating (assets in new and renovated buildings). Before a synthesis, two interventions addressed the production of solar electron and calories, and works performed on the increase of the solar coverage rate

  18. Thermal-CFD Analysis of Combined Solar-Nuclear Cycle Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Fathi, Nima [Univ. of New Mexico, Albuquerque, NM (United States); McDaniel, Patrick [Univ. of New Mexico, Albuquerque, NM (United States); Vorobieff, Peter [Univ. of New Mexico, Albuquerque, NM (United States); de Oliveira, Cassiano [Univ. of New Mexico, Albuquerque, NM (United States); Rodriguez, Salvador B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Aleyasin, Seyed Sobhan [Univ. of Manitoba (Canada)

    2015-09-01

    The aim of this paper is evaluating the efficiency of a novel combined solar-nuclear cycle. CFD-Thermal analysis is performed to apply the available surplus heat from the nuclear cycle and measure the available kinetic energy of air for the turbine of a solar chimney power plant system (SCPPS). The presented idea helps to decrease the thermal pollution and handle the water shortage supply for water plant by replacing the cooling tower by solar chimney power plant to get the surplus heat from the available warm air in the secondary loop of the reactor. By applying this idea to a typical 1000 MW nuclear power plant with a 0.33 thermal efficiency, we can increase it to 0.39.

  19. Surface Passivation and Antireflection Behavior of ALD on n-Type Silicon for Solar Cells

    Directory of Open Access Journals (Sweden)

    Ing-Song Yu

    2013-01-01

    Full Text Available Atomic layer deposition, a method of excellent step coverage and conformal deposition, was used to deposit TiO2 thin films for the surface passivation and antireflection coating of silicon solar cells. TiO2 thin films deposited at different temperatures (200°C, 300°C, 400°C, and 500°C on FZ n-type silicon wafers are in the thickness of 66.4 nm ± 1.1 nm and in the form of self-limiting growth. For the properties of surface passivation, Si surface is effectively passivated by the 200°C deposition TiO2 thin film. Its effective minority carrier lifetime, measured by the photoconductance decay method, is improved 133% at the injection level of  cm−3. Depending on different deposition parameters and annealing processes, we can control the crystallinity of TiO2 and find low-temperature TiO2 phase (anatase better passivation performance than the high-temperature one (rutile, which is consistent with the results of work function measured by Kelvin probe. In addition, TiO2 thin films on polished Si wafer serve as good ARC layers with refractive index between 2.13 and 2.44 at 632.8 nm. Weighted average reflectance at AM1.5G reduces more than half after the deposition of TiO2. Finally, surface passivation and antireflection properties of TiO2 are stable after the cofire process of conventional crystalline Si solar cells.

  20. Thermal stability studies on atomically clean and sulphur passivated InGaAs surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Lalit; Hughes, Greg [School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9 (Ireland)

    2013-03-15

    High resolution synchrotron radiation core level photoemission measurements have been used to study the high temperature stability of sulphur passivated InGaAs surfaces and comparisons made with atomically clean surfaces subjected to the same annealing temperatures. Sulphur passivation of clean InGaAs surfaces prepared by the thermal removal of an arsenic capping layer was carried out using an in situ molecular sulphur treatment in ultra high vacuum. The elemental composition of the surfaces of these materials was measured at a series of annealing temperatures up to 530 C. Following a 480 C anneal In:Ga ratio was found to have dropped by 33% on sulphur passivated surface indicating a significant loss of indium, while no drop in indium signal was recorded at this temperature on the atomically InGaAs surface. No significant change in the As surface concentration was measured at this temperature. These results reflect the reduced thermal stability of the sulphur passivated InGaAs compared to the atomically clean surface which has implications for device fabrication. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Study on the use of TiO{sub 2} passivation layer to reduce recombination losses in dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Eskander bin Samsudin, Adel; Mohamed, Norani Muti; Nayan, Nafarizal; Ali, Riyaz Ahmad Mohamed; Shariffuddin, Sharifah Amira Amir; Omar, Salwa [Electrical and Electronics Department, 31750, Tronoh, Universiti Teknologi PETRONAS (Malaysia); Fundamental and Applied Sciences Department, 31750, Tronoh, Universiti Teknologi PETRONAS (Malaysia); Electronic Engineering Department, Electrical and Electronic Engineering Faculty, Universiti Tun Hussein Onn Malaysia (UTHM) (Malaysia)

    2012-09-26

    A lot of research on various aspects of dye solar cells (DSC) has been carried out in order to improve efficiency. This paper analyzes the utilization of TiO{sub 2} passivation layers of different thicknesses by improving the electron transport properties. Four different thicknesses of passivation layers namely 10, 20, 50 and 100 nm were deposited onto the working electrode using r.f sputtering. The electrodes were assembled into TiO{sub 2} based DSC with active area of 1 cm{sup 2}. The solar performance was investigated using 100 mW/cm{sup 2} of AM 1.5 simulated sunlight from solar simulator. The kinetics of the solar cells was investigated using Electrochemical Impedance Spectroscopy (EIS) measurement and the spectral response was measured using Incident Photon to Electron Conversion (IPCE) measurement system. The highest efficiency was found for DSC with 20 nm passivation layer. DSCs with the passivation layer have open circuit voltage, V{sub OC} increased by 57 mV, their current density, J{sub SC} increased by 0.774 mA cm{sup -2} compared to the one without the passivation layer. The quantum efficiency of the 20 nm passivation layer is the highest, peaking at the wavelength of 534 nm, resulting in the highest performance. All DSCs with the passivation layer recorded higher ratio of R{sub BR}/R{sub T} where R{sub T} is the diffusion resistance of the TiO{sub 2} particles in the mesoscopic layer and R{sub BR} is the recombination resistance of the electron to the electrolyte. This implies that the recombination of the electrolyte I{sup -}{sub 3}/3I{sup -} couple at the substrate/electrolyte interface has been effectively reduced resulting in an enhanced efficiency.

  2. Graphene-enhanced thermal interface materials for heat removal from photovoltaic solar cells

    Science.gov (United States)

    Saadah, M.; Gamalath, D.; Hernandez, E.; Balandin, A. A.

    2016-09-01

    The increase in the temperature of photovoltaic (PV) solar cells affects negatively their power conversion efficiency and decreases their lifetime. The negative effects are particularly pronounced in concentrator solar cells. Therefore, it is crucial to limit the PV cell temperature by effectively removing the excess heat. Conventional thermal phase change materials (PCMs) and thermal interface materials (TIMs) do not possess the thermal conductivity values sufficient for thermal management of the next generation of PV cells. In this paper, we report the results of investigation of the increased efficiency of PV cells with the use of graphene-enhanced TIMs. Graphene reveals the highest values of the intrinsic thermal conductivity. It was also shown that the thermal conductivity of composites can be increased via utilization of graphene fillers. We prepared TIMs with up to 6% of graphene designed specifically for PV cell application. The solar cells were tested using the solar simulation module. It was found that the drop in the output voltage of the solar panel under two-sun concentrated illumination can be reduced from 19% to 6% when grapheneenhanced TIMs are used. The proposed method can recover up to 75% of the power loss in solar cells.

  3. Solar thermal energy utilization in Brazil: a perspective; Utilizacao da energia solar termica no Brasil: uma perspectiva

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Francisco Mateus [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    Although Brazil has a large insolation potential, utilization of solar thermal energy is still limited to few applications, like residential and commercial water heating and drying of grains. However, there are in other countries more intensive applications, like electricity generation, industrial heat and fresh water production. The present work describes which are the other ways of using solar thermal energy that have been developed in the world, approaches the main technical aspects that affect its utilization, the perspective of increasing it in Brazil and its possible barriers and, finally, PETROBRAS' studies in this area, positioning itself as an Energy Company. The main solar thermal technologies currently used in the world are evacuated collectors, that work efficiently at temperatures up to 130 deg C, and concentrating solar technologies, that can reach the temperature of 1200 deg C. Among the latter, solar trough is the technology that is already considered mature, and near to become economically viable. Brazil, at the moment, has two technological challenges: development of national technology to manufacture high performance solar collectors, like evacuated collectors and solar troughs, and the development of thermal equipment to operate at temperatures under 120 deg C, like adsorption and absorption chillers and desalination towers, that can be economically competitive. (author)

  4. Solar thermal barometer

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    The european solar thermal system market grew spectacularly in 2008 with over 4,6 million m 2 installed as against less than 3,1 million in 2007. This was largely due to the doubling of the German market, bu strong growth in Southern Europe also played a vital part. While 2009 is looking uncertain, the medium and long term growth prospects are still very exciting. This barometer provides statistical data on the production, market, capacity and enterprises. (A.L.B.)

  5. Passive flow heat exchanger simulation for power generation from solar pond using thermoelectric generators

    Science.gov (United States)

    Baharin, Nuraida'Aadilia; Arzami, Amir Afiq; Singh, Baljit; Remeli, Muhammad Fairuz; Tan, Lippong; Oberoi, Amandeep

    2017-04-01

    In this study, a thermoelectric generator heat exchanger system was designed and simulated for electricity generation from solar pond. A thermoelectric generator heat exchanger was studied by using Computational Fluid Dynamics to simulate flow and heat transfer. A thermoelectric generator heat exchanger designed for passive in-pond flow used in solar pond for electrical power generation. A simple analysis simulation was developed to obtain the amount of electricity generated at different conditions for hot temperatures of a solar pond at different flow rates. Results indicated that the system is capable of producing electricity. This study and design provides an alternative way to generate electricity from solar pond in tropical countries like Malaysia for possible renewable energy applications.

  6. Housing and sustainable development: perspectives offered by thermal solar energy. Particle emissions: prospective investigation of primary particle emissions in France by 2030

    International Nuclear Information System (INIS)

    Brignon, J.M.; Cauret, L.; Sambat, S.

    2004-09-01

    This publication proposes two investigation reports. A first study proposes a prospective analysis of the housing 'stock' in France and the evolution of global energy consumptions and CO 2 emissions by the housing sector, a prospective study of space heating and hot water needs by defining reference scenarios as well as a target scenario for heating consumption (based on the factor 4 of reduction of emissions by 2050), and an assessment of the contribution of the thermal solar energy applied to winter comfort under the form of direct solar floors and passive solar contributions, and applied to hot water by 2050. The contribution of the thermal solar energy is studied within its regulatory context. An analysis of urban forms is also performed to assess the potential of integration of renewable energy solutions in the existing housing stock, and thus to assess the morphological limits of an attempt of generalized solarization of roofs. The second study proposes a detailed identification and assessment of the various sources of primary particles (combustion, industrial processes, mineral extraction and processing, road transport, waste processing and elimination, agriculture, natural sources, forest fires), providing more precise results and methodological complements for some sources. It also proposes a prospective assessment of emissions and identifies the main factors of particle concentrations in urban environment

  7. Improvement of energy performances of existing buildings by application of solar thermal systems

    Directory of Open Access Journals (Sweden)

    Krstić-Furundžić Aleksandra

    2009-01-01

    Full Text Available Improvement of energy performances of the existing buildings in the suburban settlement Konjarnik in Belgrade, by the application of solar thermal systems is the topic presented in this paper. Hypothetical models of building improvements are created to allow the benefits of applying solar thermal collectors to residential buildings in Belgrade climate conditions to be estimated. This case study presents different design variants of solar thermal collectors integrated into a multifamily building envelope. The following aspects of solar thermal systems integration are analyzed in the paper: energy, architectural, ecological and economic. The results show that in Belgrade climatic conditions significant energy savings and reduction of CO2 emissions can be obtained with the application of solar thermal collectors.

  8. Cost-effective and reliable design of a solar thermal power plant

    International Nuclear Information System (INIS)

    Aliabadi, A.A.; Wallace, J.S.

    2009-01-01

    A design study was conducted to evaluate the cost-effectiveness of solar thermal power generation in a 50 kWe power plant that could be used in a remote location. The system combines a solar collector-thermal storage system utilizing a heat transfer fluid and a simple Rankine cycle power generator utilizing R123 refrigerant. Evacuated tube solar collectors heat mineral oil and supply it to a thermal storage tank. A mineral oil to refrigerant heat exchanger generates superheated refrigerant vapor, which drives a radial turbogenerator. Supplemental natural gas firing maintains a constant thermal storage temperature irregardless of solar conditions enabling the system to produce a constant 50 kWe output. A simulation was carried out to predict the performance of the system in the hottest summer day and the coldest winter day for southern California solar conditions. A rigorous economic analysis was conducted. The system offers advantages over advanced solar thermal power plants by implementing simple fixed evacuated tube collectors, which are less prone to damage in harsh desert environment. Also, backed up by fossil fuel power generation, it is possible to obtain continued operation even during low insolation sky conditions and at night, a feature that stand-alone PV systems do not offer. (author)

  9. Low cost thermal solar collector

    International Nuclear Information System (INIS)

    Abugderah, M. M.; Schneider, E. L.; Tontini, M. V.

    2006-01-01

    Solar energy is a good alternative in the economy of the electric energy mainly for the water heating. However, the solar heaters used demand a high initial investment, becoming the warm water from solar energy inaccessible to a large part of the society. Thus, a low cost solar heater was developed, constructed and tested in the chemical engineering department of West Parana State University-Unioeste. This equipment consists of 300 cans, divided in 30 columns of 10 cans each, all painted in black to enhance the obsorption of the solar radiation. The columns are connected to a pipe of pvc of 8 liters with 0.085m of external diameter. The equipment is capable to heat 120 liters of water in temperatures around 60 degree centigrade. The heater is insolated in its inferior part with cardboard and aluminum, covered with a transparent plastic in its superior. The system still counts with a insulated thermal reservoir, which can conserve the water in temperatures adjusted for the night non-solar days domestic use. The advantage of the constructed is it low cost material. The results are given an graphical tabular from showing acceptable efficiencies.(Autho

  10. Solar thermal electric power generation - an attractive option for Pakistan

    International Nuclear Information System (INIS)

    Khan, N.A

    1999-01-01

    Solar Thermal Energy is being successfully used for production of electricity in few developed countries for more than 10 years. In solar Electric Generating Systems high temperature is generated by concentrating solar energy on black absorber pipe in evacuated glass tubes. This heat is absorbed and transported with the help of high temperature oil in to highly insulated heat exchanger storage tanks. They are subsequently used to produce steam that generates power through steam turbines as in standard thermal power plants. Various components involved in Solar thermal field have been developed at the Solar Systems Laboratory of College of EME, NUST Rawalpindi. It is considered as a cost effective alternate for power generation. The research has been partially sponsored by Ministry of Science and Technology under its Public Sector Development Program (PSDP) in (1996-1998). Parabolic mirror design, fabrication, polishing, installation, solar tracking, absorber pipe, glass tubes, steam generation al have been developed. This paper will cover the details of indigenous technological break through made in this direction. (author)

  11. Layered insulator hexagonal boron nitride for surface passivation in quantum dot solar cell

    International Nuclear Information System (INIS)

    Shanmugam, Mariyappan; Jain, Nikhil; Jacobs-Gedrim, Robin; Yu, Bin; Xu, Yang

    2013-01-01

    Single crystalline, two dimensional (2D) layered insulator hexagonal boron nitride (h-BN), is demonstrated as an emerging material candidate for surface passivation on mesoporous TiO 2 . Cadmium selenide (CdSe) quantum dot based bulk heterojunction (BHJ) solar cell employed h-BN passivated TiO 2 as an electron acceptor exhibits photoconversion efficiency ∼46% more than BHJ employed unpassivated TiO 2 . Dominant interfacial recombination pathways such as electron capture by TiO 2 surface states and recombination with hole at valence band of CdSe are efficiently controlled by h-BN enabled surface passivation, leading to improved photovoltaic performance. Highly crystalline, confirmed by transmission electron microscopy, dangling bond-free 2D layered h-BN with self-terminated atomic planes, achieved by chemical exfoliation, enables efficient passivation on TiO 2 , allowing electronic transport at TiO 2 /h-BN/CdSe interface with much lower recombination rate compared to an unpassivated TiO 2 /CdSe interface

  12. Solar thermal energy receiver

    Science.gov (United States)

    Baker, Karl W. (Inventor); Dustin, Miles O. (Inventor)

    1992-01-01

    A plurality of heat pipes in a shell receive concentrated solar energy and transfer the energy to a heat activated system. To provide for even distribution of the energy despite uneven impingement of solar energy on the heat pipes, absence of solar energy at times, or failure of one or more of the heat pipes, energy storage means are disposed on the heat pipes which extend through a heat pipe thermal coupling means into the heat activated device. To enhance energy transfer to the heat activated device, the heat pipe coupling cavity means may be provided with extensions into the device. For use with a Stirling engine having passages for working gas, heat transfer members may be positioned to contact the gas and the heat pipes. The shell may be divided into sections by transverse walls. To prevent cavity working fluid from collecting in the extensions, a porous body is positioned in the cavity.

  13. Solar Thermal Energy Storage in a Photochromic Macrocycle.

    Science.gov (United States)

    Vlasceanu, Alexandru; Broman, Søren L; Hansen, Anne S; Skov, Anders B; Cacciarini, Martina; Kadziola, Anders; Kjaergaard, Henrik G; Mikkelsen, Kurt V; Nielsen, Mogens Brøndsted

    2016-07-25

    The conversion and efficient storage of solar energy is recognized to hold significant potential with regard to future energy solutions. Molecular solar thermal batteries based on photochromic systems exemplify one possible technology able to harness and apply this potential. Herein is described the synthesis of a macrocycle based on a dimer of the dihydroazulene/vinylheptafulvene (DHA/VHF) photo/thermal couple. By taking advantage of conformational strain, this DHA-DHA macrocycle presents an improved ability to absorb and store incident light energy in chemical bonds (VHF-VHF). A stepwise energy release over two sequential ring-closing reactions (VHF→DHA) combines the advantages of an initially fast discharge, hypothetically addressing immediate energy consumption needs, followed by a slow process for consistent, long-term use. This exemplifies another step forward in the molecular engineering and design of functional organic materials towards solar thermal energy storage and release. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Laser-beam-induced current mapping evaluation of porous silicon-based passivation in polycrystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rabha, M. Ben; Bessais, B. [Laboratoire de Nanomateriaux et des Systemes pour l' Energie, Centre de Recherches et des Technologies de l' Energie - Technopole de Borj-Cedria BP 95, 2050 Hammam-Lif (Tunisia); Dimassi, W.; Bouaicha, M.; Ezzaouia, H. [Laboratoire de photovoltaique, des semiconducteurs et des nanostructures, Centre de Recherches et des Technologies de l' Energie - Technopole de Borj-Cedria BP 95, 2050 Hammam-Lif (Tunisia)

    2009-05-15

    In the present work, we report on the effect of introducing a superficial porous silicon (PS) layer on the performance of polycrystalline silicon (pc-Si) solar cells. Laser-beam-induced current (LBIC) mapping shows that the PS treatment on the emitter of pc-Si solar cells improves their quantum response and reduce the grain boundaries (GBs) activity. After the porous silicon treatment, mapping investigation shows an enhancement of the LBIC and the internal quantum efficiency (IQE), due to an improvement of the minority carrier diffusion length and the passivation of recombination centers at the GBs as compared to the reference substrate. It was quantitatively shown that porous silicon treatment can passivate both the grains and GBs. (author)

  15. Improved performance in GaInNAs solar cells by hydrogen passivation

    International Nuclear Information System (INIS)

    Fukuda, M.; Whiteside, V. R.; Keay, J. C.; Meleco, A.; Sellers, I. R.; Hossain, K.; Golding, T. D.; Leroux, M.; Al Khalfioui, M.

    2015-01-01

    The effect of UV-activated hydrogenation on the performance of GaInNAs solar cells is presented. A proof-of-principle investigation was performed on non-optimum GaInNAs cells, which allowed a clearer investigation of the role of passivation on the intrinsic nitrogen-related defects in these materials. Upon optimized hydrogenation of GaInNAs, a significant reduction in the presence of defect and impurity based luminescence is observed as compared to that of unpassivated reference material. This improvement in the optical properties is directly transferred to an improved performance in solar cell operation, with a more than two-fold improvement in the external quantum efficiency and short circuit current density upon hydrogenation. Temperature dependent photovoltaic measurements indicate a strong contribution of carrier localization and detrapping processes, with non-radiative processes dominating in the reference materials, and evidence for additional strong radiative losses in the hydrogenated solar cells

  16. Study on thermal-hydraulic phenomena identification of passive heat removal facilities

    International Nuclear Information System (INIS)

    Park, J. Y.

    2011-01-01

    Recently, passive heat removal facilities have been integral features of new generation or future reactor designs worldwide. This is because the passive heat removal facilities depending on a natural force such as buoyancy can give much higher operational reliability compared to active heat removal facilities depending on pumped fluid flow and as a result they can decrease core damage frequency of a nuclear power plant drastically ever achievable before. Keeping pace with this global trend, SMART and APR+ reactors also have introduced passive heat removal features such as a passive residual heat removal system (PRHRS) and a passive auxiliary feed water system (PAFS) in their designs. Since many thermal-hydraulic (T-H) phenomena including steam condensation are involved during operation of the passive heat removal facilities, they ought to be properly simulated by T-H codes such as MARS-KS and RELAP5 in order to guarantee reliable safety analysis by these codes. Unfortunately, however, these T-H codes are not well validated with respect to phenomena related to passive heat removal mechanism because previous focus on these codes validation was mainly on the LB LOCA and resulting phenomena. To resolve this gap, Korea Institute of Nuclear Safety has initiated a research program on the development of safety analysis technology for passive heat removal facilities. The main target of this program is PRHRS and PAFS in SMART and APR+ reactors and through this program, validation of capability of existing T-H codes and improvement of codes regarding passive facilities analysis are to be sought. In part of this research, T-H phenomena important to passive heat removal facilities (PRHRS and PAFS) are investigated in the present study

  17. Experimental Study on Solar Cooling Tube Using Thermal/Vacuum Emptying Method

    Directory of Open Access Journals (Sweden)

    Huizhong Zhao

    2012-01-01

    Full Text Available A solar cooling tube using thermal/vacuum emptying method was experimentally studied in this paper. The coefficient of performance (COP of the solar cooling tube was mostly affected by the vacuum degree of the system. In past research, the thermal vacuum method, using an electric oven and iodine-tungsten lamp to heat up the adsorbent bed and H2O vapor to expel the air from the solar cooling tube, was used to manufacture solar cooling tubes. This paper presents a novel thermal vacuum combined with vacuum pump method allowing an increased vacuum state for producing solar cooling tubes. The following conclusions are reached: the adsorbent bed temperature of solar cooling tube could reaches up to 233°C, and this temperature is sufficient to meet desorption demand; the refrigerator power of a single solar cooling tube varies from 1 W to 12 W; the total supply refrigerating capacity is about 287 kJ; and the COP of this solar cooling tube is about 0.215.

  18. Solar thermal and concentrated solar power barometer - EurObserv'ER - May 2013

    International Nuclear Information System (INIS)

    2013-05-01

    The European concentrated solar power plant market is steeling itself for tough time ahead. The number of projects under construction is a pittance compared with 2012 that was an excellent year for installations (an additional 802.5 MW of capacity recorded). This drop is the result of the moratorium on renewable energy power plants introduced by the Spanish government. The European solar thermal market is hardly any more encouraging. EurObserv'ER holds that it slipped for the fourth year in a row (it dropped 5.5% between 2011 and 2012). The newly-installed solar thermal collector surface area in the EU now stands at 3.4 million m 2 , far short of its 2008 installation record of 4.6 million m 2

  19. THERMAL PERFORMANCE OF FLAT PLATE SOLAR COLLECTOR

    Directory of Open Access Journals (Sweden)

    TABET I.

    2017-06-01

    Full Text Available In this paper, a theoretical and experimental studyof flat platesolar water collector with reflectors.A mathematical model based on energy balance equations saw the thermal behavior of the collector is investigated. The experimental test was made at the unit research applies in renewable energy (URAER located in southern Algeria.An increase of 23% for solar radiation incident on the collector surface with the addition of the planers reflectors in the day of May, this increase causes an improvement of the performance of the collector,the fluid temperature increases with an average of 5%. Thetests conducted on the flat plate solar water collector in open circuit enabled the determination of thermal performance of the collector by estimating the daily output The thermal efficiency of the collector ranges from 1% -63% during the day, a mean value of 36%obtained.

  20. Estec2003: European solar thermal energy conference. Proceedings; Estec2003: Europaeische Solarthermie-Konferenz. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    In December 2002 more than 40 solar thermal companies and associations joined forces in the European Solar Thermal Industry Federation (ESTIF), to strengthen support for this clean technology on the European level. ESTIF aims at building a close partnership between industry and public authorities in order to overcome the main barriers to growth. Over the last 6 months we have seen some positive developments, which we could build upon. Here are some examples: 1. Germany, the country with the largest demand for solar thermal technology, is back on track to repeat the growth rates we have witnessed in the 1990s. 2. The rules for the solar Keymark quality label were approved by CEN board in January 2003. 3. The city of Madrid became the first European capital to follow the example of Barcelona in requiring the use of solar thermal in new residential buildings. 4. The long awaited ''Sun in Action II - a solar thermal strategy for Europe was published last month. 5. Now, the first European Solar Thermal Energy Conference brings together decision makers from industry and politics to discuss the future of renewable heating and cooling in Europe. - Solar thermal has a great potential - 1.4 billion square meters in the 15 EU member states alone. 99% of this potential are still to be developed. ESTIF has made it its mission 'to achieve high priority and acceptance for solar thermal as a key element for sustainable heating and cooling in Europe and to work for the implementation, as soon as possible, of all steps necessary to realise the high potential of solar thermal'. With estec2003 we offer a platform to exchange information and opinions concerning how this goal can be achieved. The developments in different countries show that the use of solar thermal technologies does not depend on climatic conditions alone. (orig.)

  1. High temperature solar thermal technology: The North Africa Market

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

  2. Thermal solar energy. Collective domestic hot water installations

    International Nuclear Information System (INIS)

    Garnier, Cedric; Chauvet, Chrystele; Fourrier, Pascal

    2016-01-01

    This brochure, edited by ADEME, the French office for energy management and sustainable development, gives a basic outlook on the way to complete the installation of a collective domestic water solar heating system. After some recall of what is solar energy, the thermal solar technology and the energy savings it may induce, this document presents the main hydraulic configurations of a solar heating system with water storage, the dimensioning of a solar water heating system and its cost estimation, the installation and the commissioning of the system, the monitoring and maintenance operations

  3. Ultrafast Thermal Cycling of Solar Panels

    National Research Council Canada - National Science Library

    Wall, T

    1998-01-01

    Two new cyclers that utilize a novel hybrid approach to perform fast thermal cycling of solar panels have been built and are now operational in the Mechanics and Materials Technology Center at The Aerospace Corporation...

  4. Here comes the sun. Solar energy technology in the USA

    International Nuclear Information System (INIS)

    Van der Wees, G.

    1998-01-01

    An overview is given of the energy policy in the USA with respect to solar energy technology and the marketing of solar energy applications. In particular, attention is paid to the Million Solar Roofs programme, small-scale and medium-scale photovoltaic (PV) systems (Residential PV and Utility Scale PV), solar thermal systems (Parabolic Trough, Power tower, and Solar Dish/Engine). Also examples of passive solar systems are given. Finally, a number of aspects with regard to market implementation, e.g. net-metering. 9 refs

  5. Application of nanomaterials in solar thermal energy storage

    Science.gov (United States)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2018-06-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  6. Application of nanomaterials in solar thermal energy storage

    Science.gov (United States)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2017-12-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  7. Efficient and stable solution-processed planar perovskite solar cells via contact passivation

    KAUST Repository

    Tan, Hairen; Jain, Ankit; Voznyy, Oleksandr; Lan, Xinzheng; Garcí a de Arquer, F. Pelayo; Fan, James Z.; Quintero-Bermudez, Rafael; Yuan, Mingjian; Zhang, Bo; Zhao, Yicheng; Fan, Fengjia; Li, Peicheng; Quan, Li Na; Zhao, Yongbiao; Lu, Zheng-Hong; Yang, Zhenyu; Hoogland, Sjoerd; Sargent, Edward H.

    2017-01-01

    Planar perovskite solar cells (PSCs) made entirely via solution processing at low temperatures (<150°C) offer promise for simple manufacturing, compatibility with flexible substrates, and perovskite-based tandem devices. However, these PSCs require an electron-selective layer that performs well with similar processing. We report a contact-passivation strategy using chlorine-capped TiO2 colloidal nanocrystal film that mitigates interfacial recombination and improves interface binding in low-temperature planar solar cells. We fabricated solar cells with certified efficiencies of 20.1 and 19.5% for active areas of 0.049 and 1.1 square centimeters, respectively, achieved via low-temperature solution processing. Solar cells with efficiency greater than 20% retained 90% (97% after dark recovery) of their initial performance after 500 hours of continuous room-temperature operation at their maximum power point under 1-sun illumination (where 1 sun is defined as the standard illumination at AM1.5, or 1 kilowatt/square meter).

  8. Efficient and stable solution-processed planar perovskite solar cells via contact passivation

    KAUST Repository

    Tan, Hairen

    2017-02-03

    Planar perovskite solar cells (PSCs) made entirely via solution processing at low temperatures (<150°C) offer promise for simple manufacturing, compatibility with flexible substrates, and perovskite-based tandem devices. However, these PSCs require an electron-selective layer that performs well with similar processing. We report a contact-passivation strategy using chlorine-capped TiO2 colloidal nanocrystal film that mitigates interfacial recombination and improves interface binding in low-temperature planar solar cells. We fabricated solar cells with certified efficiencies of 20.1 and 19.5% for active areas of 0.049 and 1.1 square centimeters, respectively, achieved via low-temperature solution processing. Solar cells with efficiency greater than 20% retained 90% (97% after dark recovery) of their initial performance after 500 hours of continuous room-temperature operation at their maximum power point under 1-sun illumination (where 1 sun is defined as the standard illumination at AM1.5, or 1 kilowatt/square meter).

  9. Impacts of Thermal Atomic Layer-Deposited AlN Passivation Layer on GaN-on-Si High Electron Mobility Transistors.

    Science.gov (United States)

    Zhao, Sheng-Xun; Liu, Xiao-Yong; Zhang, Lin-Qing; Huang, Hong-Fan; Shi, Jin-Shan; Wang, Peng-Fei

    2016-12-01

    Thermal atomic layer deposition (ALD)-grown AlN passivation layer is applied on AlGaN/GaN-on-Si HEMT, and the impacts on drive current and leakage current are investigated. The thermal ALD-grown 30-nm amorphous AlN results in a suppressed off-state leakage; however, its drive current is unchanged. It was also observed by nano-beam diffraction method that thermal ALD-amorphous AlN layer barely enhanced the polarization. On the other hand, the plasma-enhanced chemical vapor deposition (PECVD)-deposited SiN layer enhanced the polarization and resulted in an improved drive current. The capacitance-voltage (C-V) measurement also indicates that thermal ALD passivation results in a better interface quality compared with the SiN passivation.

  10. Solar energy in practice

    International Nuclear Information System (INIS)

    Eijpe, H.A.

    1996-01-01

    One of the Dutch energy distribution companies (REMU) applies integrated passive, thermal and photovoltaic solar energy systems in fifty newly built dwellings in Amersfoort, Netherlands. The houses are equipped with a combi-boiler (solar energy and natural gas) and 22.5m 2 photovoltaic panels to produce electricity. Six houses are equipped with an electric heat pump, while the other 44 houses have a high-efficiency low-NO x combi-boiler. The experiences with the project so-far are outlined. 6 figs., 1 tab., 10 refs

  11. Yearly thermal performances of solar heating plants in Denmark – Measured and calculated

    DEFF Research Database (Denmark)

    Furbo, Simon; Dragsted, Janne; Perers, Bengt

    2018-01-01

    The thermal performance of solar collector fields depends mainly on the mean solar collector fluid temperature of the collector field and on the solar radiation. For Danish solar collector fields for district heating the measured yearly thermal performances per collector area varied in the period...... 2012–2016 between 313 kWh/m2 and 577 kWh/m2, with averages between 411 kWh/m2 and 463 kWh/m2. The percentage difference between the highest and lowest measured yearly thermal performance is about 84%. Calculated yearly thermal performances of typically designed large solar collector fields at six...... different locations in Denmark with measured weather data for the years 2002–2010 vary between 405 kWh/m2 collector and 566 kWh/m2 collector, if a mean solar collector fluid temperature of 60 °C is assumed. This corresponds to a percentage difference between the highest and lowest calculated yearly thermal...

  12. High Performance Flat Plate Solar Thermal Collector Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Rockenbaugh, Caleb [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dean, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lovullo, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lisell, Lars [National Renewable Energy Lab. (NREL), Golden, CO (United States); Barker, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hanckock, Ed [National Renewable Energy Lab. (NREL), Golden, CO (United States); Norton, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This report was prepared for the General Services Administration by the National Renewable Energy Laboratory. The Honeycomb Solar Thermal Collector (HSTC) is a flat plate solar thermal collector that shows promising high efficiencies over a wide range of climate zones. The technical objectives of this study are to: 1) verify collector performance, 2) compare that performance to other market-available collectors, 3) verify overheat protection, and 4) analyze the economic performance of the HSTC both at the demonstration sites and across a matrix of climate zones and utility markets.

  13. Solar thermal collectors at design and technology activity days

    OpenAIRE

    Petrina, Darinka

    2016-01-01

    Thesis encompases usage of renewable resources of energy, especially solar energy, which is essential for our future. On one hand, certain ways of exploiting solar energy (with solar cells) have been well established and is included in the Design and technology curriculum, on the other hand however, solar thermal collectors have not been recognized enough in spite of their distribution, applicability and environmentally friendly technology. Consequently thesis emphasizes the usage of solar en...

  14. Thermal photovoltaic solar integrated system analysis using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ashhab, S. [Hashemite Univ., Zarqa (Jordan). Dept. of Mechanical Engineering

    2007-07-01

    The energy demand in Jordan is primarily met by petroleum products. As such, the development of renewable energy systems is quite attractive. In particular, solar energy is a promising renewable energy source in Jordan and has been used for food canning, paper production, air-conditioning and sterilization. Artificial neural networks (ANNs) have received significant attention due to their capabilities in forecasting, modelling of complex nonlinear systems and control. ANNs have been used for forecasting solar energy. This paper presented a study that examined a thermal photovoltaic solar integrated system that was built in Jordan. Historical input-output system data that was collected experimentally was used to train an ANN that predicted the collector, PV module, pump and total efficiencies. The model predicted the efficiencies well and can therefore be utilized to find the operating conditions of the system that will produce the maximum system efficiencies. The paper provided a description of the photovoltaic solar system including equations for PV module efficiency; pump efficiency; and total efficiency. The paper also presented data relevant to the system performance and neural networks. The results of a neural net model were also presented based on the thermal PV solar integrated system data that was collected. It was concluded that the neural net model of the thermal photovoltaic solar integrated system set the background for achieving the best system performance. 10 refs., 6 figs.

  15. Solar energy guide

    International Nuclear Information System (INIS)

    Lentz, A.; Winter, R.

    1993-07-01

    Many aspects with regard to the practical use of solar energy are discussed. This guide is aimed at informing local and regional administrators, committee members of housing corporations and public utilities and public relations officers on the possibilities to use solar energy. In chapter one an overview is given of the use of solar energy in the housing sector, the recreational sector, agricultural sector, industry, trade and other sectors. In the chapters two, three and four attention is paid to passive solar energy, active thermal solar energy and photovoltaic energy respectively. In the chapters five and six aspects concerning the implementation of solar energy systems in practice are discussed. First an outline of the parties involved in implementing solar energy is given: the municipality, the energy utility, the province, local authorities, advisors, housing constructors and the occupants of the buildings. Then attention is paid to the consequences of implementing solar energy for the building inspection and regulations, the finances, energy savings and the environment. In chapter seven an overview is given of the subsidy regulations of the European Community, the Dutch national and local governments. Chapter contains addresses of solar thermal systems, photovoltaic systems and other institutes operating in the field of solar energy, as well as the titles of a number of brochures and courses. 51 figs., 7 tabs., 86 refs

  16. Solar cooling for small office buildings: Comparison of solar thermal and photovoltaic options for two different European climates

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, N. [University of Stuttgart, Institute of Energy Economics and the Rational Use of Energy (IER), Hessbruehlstr. 49a, 70565 Stuttgart (Germany); Glueck, C. [Karlsruhe Institute of Technology (KIT), Institute of Fluid Machinery (FSM), Kaiserstr. 12, 76131 Karlsruhe (Germany); Schmidt, F.P. [Karlsruhe Institute of Technology (KIT), Institute of Fluid Machinery (FSM), Kaiserstr. 12, 76131 Karlsruhe (Germany); Fraunhofer ISE, Heidenhofstr. 2, 79110 Freiburg (Germany)

    2011-05-15

    We present a comparison of solar thermal and solar electric cooling for a typical small office building exposed to two different European climates (Freiburg and Madrid). The investigation is based on load series for heating and cooling obtained previously from annual building simulations in TRNSYS. A conventional compression chiller is used as the reference system against which the solar options are evaluated with respect to primary energy savings and additional cost. A parametric study on collector and storage size is carried out for the solar thermal system to reach achieve the minimal cost per unit of primary energy saved. The simulated solar electric system consists of the reference system, equipped with a grid connected photovoltaic module, which can be varied in size. For cost comparison of the two systems, the electric grid is assumed to function as a cost-free storage. A method to include macroeconomic effects in the comparison is presented and discussed. Within the system parameters and assumptions used here, the grid coupled PV system leads to lower costs of primary energy savings than the solar thermal system at both locations. The presumed macroeconomic advantages of the solar thermal system, due to the non-usage of energy during peak demand, can be confirmed for Madrid. (author)

  17. Economic Evaluation of a Solar Charged Thermal Energy Store for Space Heating

    OpenAIRE

    Melo, Manuel

    2013-01-01

    A thermal energy store corrects the misalignment of heating demand in the winter relative to solar thermal energy gathered in the summer. This thesis reviews the viability of a solar charged hot water tank thermal energy store for a school at latitude 56.25N, longitude -120.85W

  18. A Pedestrian Approach to Indoor Temperature Distribution Prediction of a Passive Solar Energy Efficient House

    Directory of Open Access Journals (Sweden)

    Golden Makaka

    2015-01-01

    Full Text Available With the increase in energy consumption by buildings in keeping the indoor environment within the comfort levels and the ever increase of energy price there is need to design buildings that require minimal energy to keep the indoor environment within the comfort levels. There is need to predict the indoor temperature during the design stage. In this paper a statistical indoor temperature prediction model was developed. A passive solar house was constructed; thermal behaviour was simulated using ECOTECT and DOE computer software. The thermal behaviour of the house was monitored for a year. The indoor temperature was observed to be in the comfort level for 85% of the total time monitored. The simulation results were compared with the measured results and those from the prediction model. The statistical prediction model was found to agree (95% with the measured results. Simulation results were observed to agree (96% with the statistical prediction model. Modeled indoor temperature was most sensitive to the outdoor temperatures variations. The daily mean peak ones were found to be more pronounced in summer (5% than in winter (4%. The developed model can be used to predict the instantaneous indoor temperature for a specific house design.

  19. Market: why is thermal solar power down?

    International Nuclear Information System (INIS)

    Le Jannic, N.

    2010-01-01

    After a 10 year period of steady growth the French market of the thermal solar power dropped by 15% in 2009. Only 265.000 m 2 were installed instead of 313.000 m 2 in 2008. The main reason of this decrease is the economic crisis: the European market for thermal solar energy dropped by 10%. The second reason is the unfair competition of the photovoltaic power that benefits from very favourable electricity purchase prices, from higher subsidies and from a better image in the public's eye. Another competitor on the market is the new equipment called 'thermodynamic water heater' that involves a heat pump, this equipment is cheaper but only on a short term basis. (A.C.)

  20. Silver nanoparticles-incorporated Nb2O5 surface passivation layer for efficiency enhancement in dye-sensitized solar cells.

    Science.gov (United States)

    Suresh, S; Unni, Gautam E; Satyanarayana, M; Sreekumaran Nair, A; Mahadevan Pillai, V P

    2018-08-15

    Guiding and capturing photons at the nanoscale by means of metal nanoparticles and interfacial engineering for preventing back-electron transfer are well documented techniques for performance enhancement in excitonic solar cells. Drifting from the conventional route, we propose a simple one-step process to integrate both metal nanoparticles and surface passivation layer in the porous photoanode matrix of a dye-sensitized solar cell. Silver nanoparticles and Nb 2 O 5 surface passivation layer are simultaneously deposited on the surface of a highly porous nanocrystalline TiO 2 photoanode, facilitating an absorption enhancement in the 465 nm and 570 nm wavelength region and a reduction in back-electron transfer in the fabricated dye-sensitized solar cells together. The TiO 2 photoanodes were prepared by spray pyrolysis deposition method from a colloidal solution of TiO 2 nanoparticles. An impressive 43% enhancement in device performance was accomplished in photoanodes having an Ag-incorporated Nb 2 O 5 passivation layer as against a cell without Ag nanoparticles. By introducing this idea, we were able to record two benefits - the metal nanoparticles function as the absorption enhancement agent, and the Nb 2 O 5 layer as surface passivation for TiO 2 nanoparticles and as an energy barrier layer for preventing back-electron transfer - in a single step. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Impact of Various Charge States of Hydrogen on Passivation of Dislocation in Silicon

    Science.gov (United States)

    Song, Lihui; Lou, Jingjing; Fu, Jiayi; Ji, Zhenguo

    2018-03-01

    Dislocation, one of typical crystallographic defects in silicon, is detrimental to the minority carrier lifetime of silicon wafer. Hydrogen passivation is able to reduce the recombination activity of dislocation, however, the passivation efficacy is strongly dependent on the experimental conditions. In this paper, a model based on the theory of hydrogen charge state control is proposed to explain the passivation efficacy of dislocation correlated to the peak temperature of thermal annealing and illumination intensity. Experimental results support the prediction of the model that a mix of positively charged hydrogen and negatively charged hydrogen at certain ratio can maximise the passivation efficacy of dislocation, leading to a better power conversion efficiency of silicon solar cell with dislocation in it.

  2. Implementation of Active Thermal Control (ATC) for the Soil Moisture Active and Passive (SMAP) Radiometer

    Science.gov (United States)

    Mikhaylov, Rebecca; Kwack, Eug; French, Richard; Dawson, Douglas; Hoffman, Pamela

    2014-01-01

    NASA's Earth Observing Soil Moisture Active and Passive (SMAP) Mission is scheduled to launch in November 2014 into a 685 kilometer near-polar, sun-synchronous orbit. SMAP will provide comprehensive global mapping measurements of soil moisture and freeze/thaw state in order to enhance understanding of the processes that link the water, energy, and carbon cycles. The primary objectives of SMAP are to improve worldwide weather and flood forecasting, enhance climate prediction, and refine drought and agriculture monitoring during its three year mission. The SMAP instrument architecture incorporates an L-band radar and an L-band radiometer which share a common feed horn and parabolic mesh reflector. The instrument rotates about the nadir axis at approximately 15 revolutions per minute, thereby providing a conically scanning wide swath antenna beam that is capable of achieving global coverage within three days. In order to make the necessary precise surface emission measurements from space, the electronics and hardware associated with the radiometer must meet tight short-term (instantaneous and orbital) and long-term (monthly and mission) thermal stabilities. Maintaining these tight thermal stabilities is quite challenging because the sensitive electronics are located on a fast spinning platform that can either be in full sunlight or total eclipse, thus exposing them to a highly transient environment. A passive design approach was first adopted early in the design cycle as a low-cost solution. With careful thermal design efforts to cocoon and protect all sensitive components, all stability requirements were met passively. Active thermal control (ATC) was later added after the instrument Preliminary Design Review (PDR) to mitigate the threat of undetected gain glitches, not for thermal-stability reasons. Gain glitches are common problems with radiometers during missions, and one simple way to avoid gain glitches is to use the in-flight set point programmability that ATC

  3. Thermal behavior of spatial structures under solar irradiation

    International Nuclear Information System (INIS)

    Liu, Hongbo; Liao, Xiangwei; Chen, Zhihua; Zhang, Qian

    2015-01-01

    The temperature, particularly the non-uniform temperature under solar irradiation, is the main load for large-span steel structures. Due the shortage of in-site temperature test in previous studies, an in-site test was conducted on the large-span steel structures under solar irradiation, which was covered by glass roof and light roof, to gain insight into the temperature distribution of steel members under glass roof or light roof. A numerical method also was presented and verified to forecast the temperature of steel member under glass roof or light roof. Based on the on-site measurement and numerical analyses conducted, the following conclusions were obtained: 1) a remarkable temperature difference exists between the steel member under glass roof and that under light roof, 2) solar irradiation has a significant effect on the temperature distribution and thermal behavior of large-span spatial structures, 3) negative thermal load is the controlling factor for member stress, and the positive thermal load is the controlling factor for nodal displacement. - Highlights: • Temperature was measured for a steel structures under glass roof and light roof. • Temperature simulation method was presented and verified. • The thermal behavior of steel structures under glass or light roof was presented

  4. Solar collector wall with active curtain system; Lasikatteinen massiivienen aurinkokeraeaejaeseinae

    Energy Technology Data Exchange (ETDEWEB)

    Ojanen, T.; Heimonen, I. [VTT Building Technology, Espoo (Finland). Building Physics, Building Services and Fire Technology

    1998-12-01

    Integration of solar collector into the building envelope structure brings many advantages. The disadvantage of a passive solar collector wall is that its thermal performance can not be controlled, which may cause temporary overheating and low thermal efficiency of the collector. The thermal performance of the collector wall can be improved by using controllable, active collector systems. In this paper a solar collector wall with a controllable curtain between the transparent and absorption layers is investigated. The curtain is made of several low-emissivity foil layers, which ensures low radiation heat transfer through the curtain. The curtain decreases the heat losses out from the collector wall and it improves the U-value of the wall. The curtain is used when the solar radiation intensity to the wall is not high enough or when the wall needs protection against overheating during warm weather conditions. The materials and building components used in the collector wall, except those of the curtain, are ordinary in buildings. The transparent layer can be made by using normal glazing technology and the thermal storage layer can be made out of brick or similar material. The solar energy gains through the glazing can be utilised better than in passive systems, because the curtain provides the wall with high thermal resistance outside the solar radiation periods. The thermal performance of the collector wall was studied experimentally using a Hot-Box apparatus equipped with a solar lamp. Numerical simulations were carried out to study the yearly performance of the collector wall under real climate conditions. The objectives were to determine the thermal performance of the collector wall and to study how to optimise the use of solar radiation in this system. When the curtain with high thermal resistance is used actively, the temperature level of the thermal storage layer in the wall is relatively high also during dark periods and the heat losses out from the storage

  5. Thermal Performance Analysis of Staging Effect of Solar Thermal Absorber with Cross Design

    International Nuclear Information System (INIS)

    Amir Abdul Razak; Zafri Azran Abdul Majid; Mohd Hafidz Ruslan; Kamaruzzaman Sopian

    2015-01-01

    The type and shape of solar thermal absorber materials will impact on the operating temperature and thermal energy storage effect of a solar air thermal collector. For a standard flat-plate design, energy gain can be increased by expanding the thermal absorber area along the collector plane, subject to area limitation. This paper focuses on the staging effect of a metal hollow square rod absorber of aluminium, stainless steel, and a combination of the two with a cross design, for the heat gain and temperature characteristics of a solar air collector. Experiments were carried out with three cross design set-ups, with 30 minutes of heating and cooling, phase, respectively, under 485 W/ m 2 solar irradiance value, and at a constant air speed at 0.38 m/ s. One set aluminium set-up delivered the highest output temperature of 41.8 degree Celsius, followed by two-sets aluminium and one aluminium set + one stainless steel set at 39.3 and 38.2 degree Celsius, respectively. The lowest peak temperature is recorded on three sets of the aluminium absorber at 35 degree Celsius. The bi-metallic set-up performed better than the two aluminium set-up where each set-up obtained a temperature drop against heat gain gradient value of -0.4186 degree Celsius/ W and -0.4917 degree Celsius/ W, respectively. Results concluded that by increasing the number of sets, the volume and surface areas of the absorber material are also increased, and lead to a decrease in peak temperature output for each increase of sets. (author)

  6. Tunnel Oxides Formed by Field-Induced Anodisation for Passivated Contacts of Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Jingnan Tong

    2018-02-01

    Full Text Available Tunnel silicon oxides form a critical component for passivated contacts for silicon solar cells. They need to be sufficiently thin to allow carriers to tunnel through and to be uniform both in thickness and stoichiometry across the silicon wafer surface, to ensure uniform and low recombination velocities if high conversion efficiencies are to be achieved. This paper reports on the formation of ultra-thin silicon oxide layers by field-induced anodisation (FIA, a process that ensures uniform oxide thickness by passing the anodisation current perpendicularly through the wafer to the silicon surface that is anodised. Spectroscopical analyses show that the FIA oxides contain a lower fraction of Si-rich sub-oxides compared to wet-chemical oxides, resulting in lower recombination velocities at the silicon and oxide interface. This property along with its low temperature formation highlights the potential for FIA to be used to form low-cost tunnel oxide layers for passivated contacts of silicon solar cells.

  7. Solar Energy Education. Renewable energy: a background text. [Includes glossary

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Some of the most common forms of renewable energy are presented in this textbook for students. The topics include solar energy, wind power hydroelectric power, biomass ocean thermal energy, and tidal and geothermal energy. The main emphasis of the text is on the sun and the solar energy that it yields. Discussions on the sun's composition and the relationship between the earth, sun and atmosphere are provided. Insolation, active and passive solar systems, and solar collectors are the subtopics included under solar energy. (BCS)

  8. Rapid thermal cycling of new technology solar array blanket coupons

    Science.gov (United States)

    Scheiman, David A.; Smith, Bryan K.; Kurland, Richard M.; Mesch, Hans G.

    1990-01-01

    NASA Lewis Research Center is conducting thermal cycle testing of a new solar array blanket technologies. These technologies include test coupons for Space Station Freedom (SSF) and the advanced photovoltaic solar array (APSA). The objective of this testing is to demonstrate the durability or operational lifetime of the solar array interconnect design and blanket technology within a low earth orbit (LEO) or geosynchronous earth orbit (GEO) thermal cycling environment. Both the SSF and the APSA array survived all rapid thermal cycling with little or no degradation in peak performance. This testing includes an equivalent of 15 years in LEO for SSF test coupons and 30 years of GEO plus ten years of LEO for the APSA test coupon. It is concluded that both the parallel gap welding of the SSF interconnects and the soldering of the APSA interconnects are adequately designed to handle the thermal stresses of space environment temperature extremes.

  9. Hood River Passive House

    Energy Technology Data Exchange (ETDEWEB)

    Hales, David [BA-PIRC, Spokane, WA (United States)

    2014-01-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  10. Dimensioning of Solar Thermal Systems for Multi-Family Buildings in Lithuania: an Optimisation Study

    OpenAIRE

    Valančius, Rokas; Jurelionis, Andrius; Vaičiūnas, Juozas; Perednis, Eugenijus

    2017-01-01

    Small-scale solar thermal domestic hot water (DHW) systems in Lithuania can produce up to 523 kWh per year per one square meter of solar collector area. It is therefore one of the most common solar thermal applications in the country with the expected payback period of approximately 10 years. However, the number of solar water heating systems (SWH) installed in the renovated multi-family buildings is quite limited. On the other hand, the potential of integrating solar thermal systems in these...

  11. Recommendations and tools to design houses with passive solar cooling and mating in Mediterranean Sea; Recomendaciones y herramientas para el diseno de viviendas con calefaccion solar y climatizacion pasiva en una zona de clima mediterraneo

    Energy Technology Data Exchange (ETDEWEB)

    Muller, E.

    2004-07-01

    Recommendations for passive design and design tools based on European building codes were developed with extensive thermal simulations and a reference year especially prepared with hourly climate data from the central region of Chile. The results of the research were presented as a manual in Spanish enclosing simple design tools in an electronic spreadsheet. The design analysis is presented with a novel approach, that permits a better understanding and optimisation of the complex design balance between the demands for summer and winter in a mediterranean climate. The methodologies and approach that were developed are extended to other climatic regions. This way the investigation supports the improvement of thermal comfort conditions and the application of solar energy in dwellings as essential elements of a process of sustainable development. (Author)

  12. The thermal solar at the dawn of a necessary revolution

    International Nuclear Information System (INIS)

    Zebboudj, Idir

    2013-01-01

    This article proposes an overview of the difficult situation which the thermal solar sector is now facing in France (after a constant increase until 2008, its market keeps on shrinking and is not attractive enough). It discusses the implications and possible benefits the new thermal regulation (RT 2012) for new buildings could have for this energy, and whether it will be at the heart of the planned and expected energy transition. A new concept of water heater is presented which associates thermal solar and gas

  13. A performance analysis of solar chimney thermal power systems

    Directory of Open Access Journals (Sweden)

    Al-Dabbas Awwad Mohammed

    2011-01-01

    Full Text Available The objective of this study was to evaluate the solar chimney performance theoretically (techno-economic. A mathematical model was developed to estimate the following parameter: Power output, Pressure drop across the turbine, the max chimney height, Airflow temperature, and the overall efficiency of solar chimney. The mathematical model was validated with experimental data from the prototype in Manzanares power. It can be concluded that the differential pressure of collector-chimney transition section in the system, is increase with the increase of solar radiation intensity. The specific system costs are between 2000 Eur/kW and 5000 Eur/kW depending on the system size, system concept and storage size. Hence, a 50 MWe solar thermal power plant will cost 100-250 Eur million. At very good sites, today’s solar thermal power plants can generate electricity in the range of 0.15 Eur/kWh, and series production could soon bring down these costs below 0.10 Eur /kWh.

  14. Solar energy an introduction

    CERN Document Server

    Mackay, Michael E

    2015-01-01

    Solar Energy presents an introduction to all aspects of solar energy, from photovoltaic devices to active and passive solar thermal energy conversion, giving both a detailed and broad perspective of the field. It is aimed at the beginner involved in solar energy or a related field, or for someone wanting to gain a broader perspective of solar energy technologies. A chapter considering solar radiation, basic principles applied to solar energy, semiconductor physics, and light absorption brings the reader on equal footing with the technology of either solar generated electrical current or useful heat. Details of how a solar cell works and then production of current from a photovoltaic device is discussed. Characterization of a solar cell is examined, allowing one the ability to interpret the current-voltage relation, followed by discussion of parameter extraction from this relation. This information can be used to understand what limits the performance of a given solar cell with the potential to optimize its pe...

  15. Study and modeling of energy performance of a hybrid photovoltaic/thermal solar collector: Configuration suitable for an indirect solar dryer

    International Nuclear Information System (INIS)

    Slimani, Mohamed El Amine; Amirat, Madjid; Bahria, Sofiane; Kurucz, Ildikó; Aouli, M’heni; Sellami, Rabah

    2016-01-01

    Highlights: • The simulation results are in compliance with the experimental measurements indicated in the previous literature. • The accuracy of the numerical model is due to the presented energy analysis and also to the well-adopted correlations. • A comparative study between two solar photovoltaic/thermal air collectors was carried out. • The thermal efficiency of the analyzed hybrid collector increased by 30.85% compared to the basic configuration. • The air temperature supplied by a double-pass photovoltaic/thermal collector is very suitable for solar drying. - Abstract: In this paper, a configuration of photovoltaic-thermal hybrid solar collector embeddable in an indirect solar dryer system is studied. In the present structure of the solar photovoltaic/thermal air collector, the air goes through a double pass below and above the photovoltaic module. A system of electrical and thermal balance equations is developed and analyzed governing various electric and heat transfer parameters in the solar hybrid air collector. The numerical model planned for this study gives a good precision of results, which are close to the experimental ones (of previous literature), and makes it possible to have a good assessment of energy performance regarding the studied configuration (temperature, electric and thermal powers, electrical and thermal efficiencies, etc.). The numerical results show the energy effectiveness of this hybrid collector configuration and particularly its interesting use in an indirect solar dryer system that provides a more suitable air temperature for drying agricultural products. The values of the electrical, thermal and overall energy efficiencies reaches 10.5%, 70% and 90% respectively, with a mass flow rate of 0.0155 kg/s and weather data sample for the month of June in the Algiers site. The results presented in this study also reveal how important the effect of certain parameters and operating conditions on the performance of the hybrid

  16. Passive cooling of standalone flat PV module with cotton wick structures

    International Nuclear Information System (INIS)

    Chandrasekar, M.; Suresh, S.; Senthilkumar, T.; Ganesh karthikeyan, M.

    2013-01-01

    Highlights: • A simple passive cooling system is developed for standalone flat PV modules. • 30% Reduction in module temperature is observed with developed cooling system. • 15.61% Increase in output power of PV module is found with developed cooling system. • Module efficiency is increased by 1.4% with cooling arrangement. • Lower thermal degradation due to narrow range of temperature characteristics. - Abstract: In common, PV module converts only 4–17% of the incoming solar radiation into electricity. Thus more than 50% of the incident solar energy is converted as heat and the temperature of PV module is increased. The increase in module temperature in turn decreases the electrical yield and efficiency of the module with a permanent structural damage of the module due to prolonged period of thermal stress (also known as thermal degradation of the module). An effective way of improving efficiency and reducing the rate of thermal degradation of a PV module is to reduce the operating temperature of PV module. This can be achieved by cooling the PV module during operation. Hence in the present work, a simple passive cooling system with cotton wick structures is developed for standalone flat PV modules. The thermal and electrical performance of flat PV module with cooling system consisting of cotton wick structures in combination with water, Al 2 O 3 /water nanofluid and CuO/water nanofluid are investigated experimentally. The experimental results are also compared with the thermal and electrical performance of flat PV module without cooling system

  17. Analytical analysis of solar thermal collector with glass and Fresnel lens glazing

    Science.gov (United States)

    Zulkifle, Idris; Ruslan, Mohd Hafidz Hj; Othman, Mohd Yusof Hj; Ibarahim, Zahari

    2018-04-01

    Solar thermal collector is a system that converts solar radiation to heat. The heat will raise the temperature higher than the ambient temperature. Absorber and glazing are two important components in order to increase the temperature of the collector. The thermal absorber will release heat by convection and as radiation to the surrounding. These losses will be reduced by glazing. Other than that, glazing is beneficial for protecting the collector from dust and water. This study discusses about modelling of solar thermal collector effects of different mass flow rates with different glazing for V-groove flat plate solar collectors. The glazing used was the glass and linear Fresnel lens. Concentration ratio in this modelling was 1.3 for 0.1m solar collector thickness. Results show that solar collectors with linear Fresnel lens has the highest efficiency value of 71.18% compared to solar collectors with glass which has efficiency 54.10% with same operation conditions.

  18. Design and application of ion-implanted polySi passivating contacts for interdigitated back contact c-Si solar cells

    International Nuclear Information System (INIS)

    Yang, Guangtao; Ingenito, Andrea; Hameren, Nienke van; Isabella, Olindo; Zeman, Miro

    2016-01-01

    Ion-implanted passivating contacts based on poly-crystalline silicon (polySi) are enabled by tunneling oxide, optimized, and used to fabricate interdigitated back contact (IBC) solar cells. Both n-type (phosphorous doped) and p-type (boron doped) passivating contacts are fabricated by ion-implantation of intrinsic polySi layers deposited via low-pressure chemical vapor deposition and subsequently annealed. The impact of doping profile on the passivation quality of the polySi doped contacts is studied for both polarities. It was found that an excellent surface passivation could be obtained by confining as much as possible the implanted-and-activated dopants within the polySi layers. The doping profile in the polySi was controlled by modifying the polySi thickness, the energy and dose of ion-implantation, and the temperature and time of annealing. An implied open-circuit voltage of 721 mV for n-type and 692 mV for p-type passivating contacts was achieved. Besides the high passivating quality, the developed passivating contacts exhibit reasonable high conductivity (R sh n-type  = 95 Ω/□ and R sh p-type  = 120 Ω/□). An efficiency of 19.2% (V oc  = 673 mV, J sc  = 38.0 mA/cm 2 , FF = 75.2%, and pseudo-FF = 83.2%) was achieved on a front-textured IBC solar cell with polySi passivating contacts as both back surface field and emitter. By improving the front-side passivation, a V OC of 696 mV was also measured

  19. Hole-Collection Mechanism in Passivating Metal-Oxide Contacts on Si Solar Cells: Insights From Numerical Simulations

    KAUST Repository

    Vijayan, Ramachandran Ammapet; Essig, Stephanie; De Wolf, Stefaan; Ramanathan, Bairava Ganesh; Loper, Philipp; Ballif, Christophe; Varadharajaperumal, Muthubalan

    2018-01-01

    Silicon heterojunction solar cells enable high conversion efficiencies, thanks to their passivating contacts which consist of layered stacks of intrinsic and doped amorphous silicon. However, such contacts may reduce the photo current, when present

  20. Effect of a patent foramen ovale in humans on thermal responses to passive cooling and heating.

    Science.gov (United States)

    Davis, James T; Hay, Madeline W; Hardin, Alyssa M; White, Matthew D; Lovering, Andrew T

    2017-12-01

    Humans with a patent foramen ovale (PFO) have a higher esophageal temperature (T esoph ) than humans without a PFO (PFO-). Thus the presence of a PFO might also be associated with differences in thermal responsiveness to passive cooling and heating such as shivering and hyperpnea, respectively. The purpose of this study was to determine whether thermal responses to passive cooling and heating are different between PFO- subjects and subjects with a PFO (PFO+). We hypothesized that compared with PFO- subjects PFO+ subjects would cool down more rapidly and heat up slower and that PFO+ subjects who experienced thermal hyperpnea would have a blunted increase in ventilation. Twenty-seven men (13 PFO+) completed two trials separated by >48 h: 1 ) 60 min of cold water immersion (19.5 ± 0.9°C) and 2 ) 30 min of hot water immersion (40.5 ± 0.2°C). PFO+ subjects had a higher T esoph before and during cold water and hot water immersion ( P heating. NEW & NOTEWORTHY Patent foramen ovale (PFO) is found in ~25-40% of the population. The presence of a PFO appears to be associated with a greater core body temperature and blunted ventilatory responses during passive heating. The reason for this blunted ventilatory response to passive heating is unknown but may suggest differences in thermal sensitivity in PFO+ subjects compared with PFO- subjects. Copyright © 2017 the American Physiological Society.

  1. Survey of solar thermal test facilities

    Energy Technology Data Exchange (ETDEWEB)

    Masterson, K.

    1979-08-01

    The facilities that are presently available for testing solar thermal energy collection and conversion systems are briefly described. Facilities that are known to meet ASHRAE standard 93-77 for testing flat-plate collectors are listed. The DOE programs and test needs for distributed concentrating collectors are identified. Existing and planned facilities that meet these needs are described and continued support for most of them is recommended. The needs and facilities that are suitable for testing components of central receiver systems, several of which are located overseas, are identified. The central contact point for obtaining additional details and test procedures for these facilities is the Solar Thermal Test Facilities Users' Association in Albuquerque, N.M. The appendices contain data sheets and tables which give additional details on the technical capabilities of each facility. Also included is the 1975 Aerospace Corporation report on test facilities that is frequently referenced in the present work.

  2. Solar Assisted Ground Source Heat Pump Performance in Nearly Zero Energy Building in Baltic Countries

    Science.gov (United States)

    Januševičius, Karolis; Streckienė, Giedrė

    2013-12-01

    In near zero energy buildings (NZEB) built in Baltic countries, heat production systems meet the challenge of large share domestic hot water demand and high required heating capacity. Due to passive solar design, cooling demand in residential buildings also needs an assessment and solution. Heat pump systems are a widespread solution to reduce energy use. A combination of heat pump and solar thermal collectors helps to meet standard requirements and increases the share of renewable energy use in total energy balance of country. The presented paper describes a simulation study of solar assisted heat pump systems carried out in TRNSYS. The purpose of this simulation was to investigate how the performance of a solar assisted heat pump combination varies in near zero energy building. Results of three systems were compared to autonomous (independent) systems simulated performance. Different solar assisted heat pump design solutions with serial and parallel solar thermal collector connections to the heat pump loop were modelled and a passive cooling possibility was assessed. Simulations were performed for three Baltic countries: Lithuania, Latvia and Estonia.

  3. Solar radiation transfer and performance analysis of an optimum photovoltaic/thermal system

    International Nuclear Information System (INIS)

    Zhao Jiafei; Song Yongchen; Lam, Wei-Haur; Liu Weiguo; Liu Yu; Zhang Yi; Wang DaYong

    2011-01-01

    This paper presents the design optimization of a photovoltaic/thermal (PV/T) system using both non-concentrated and concentrated solar radiation. The system consists of a photovoltaic (PV) module using silicon solar cell and a thermal unit based on the direct absorption collector (DAC) concept. First, the working fluid of the thermal unit absorbs the solar infrared radiation. Then, the remaining visible light is transmitted and converted into electricity by the solar cell. This arrangement prevents excessive heating of the solar cell which would otherwise negatively affects its electrical efficiency. The optical properties of the working fluid were modeled based on the damped oscillator Lorentz-Drude model satisfying the Kramers-Kroenig relations. The coefficients of the model were retrieved by inverse method based on genetic algorithm, in order to (i) maximize transmission of solar radiation between 200 nm and 800 nm and (ii) maximize absorption in the infrared part of the spectrum from 800 nm to 2000 nm. The results indicate that the optimum system can effectively and separately use the visible and infrared part of solar radiation. The thermal unit absorbs 89% of the infrared radiation for photothermal conversion and transmits 84% of visible light to the solar cell for photoelectric conversion. When reducing the mass flow rate, the outflow temperature of the working fluid reaches 74 o C, the temperature of the PV module remains around 31 o C at a constant electrical efficiency about 9.6%. Furthermore, when the incident solar irradiance increases from 800 W/m 2 to 8000 W/m 2 , the system generates 196 o C working fluid with constant thermal efficiency around 40%, and the exergetic efficiency increases from 12% to 22%.

  4. Solar thermal barometer

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    After two years of very strong growth, the solar thermal market marked time in 2007 with 6,9% less collectors being sold with respect to year 2006. In the end this market reached 2,9 million m 2 facing 3,1 million m 2 in 2006, an equivalent capacity of more than 2000 MWth. This decrease is explained for a large part by a strong decline of the german market, the largest market of the european union. Conversely, other countries are continuing to develop their markets and are showing double-digit growth rates. (A.L.B.)

  5. Determining passive cooling limits in CPV using an analytical thermal model

    Science.gov (United States)

    Gualdi, Federico; Arenas, Osvaldo; Vossier, Alexis; Dollet, Alain; Aimez, Vincent; Arès, Richard

    2013-09-01

    We propose an original thermal analytical model aiming to predict the practical limits of passive cooling systems for high concentration photovoltaic modules. The analytical model is described and validated by comparison with a commercial 3D finite element model. The limiting performances of flat plate cooling systems in natural convection are then derived and discussed.

  6. Rear-Sided Passivation by SiNx:H Dielectric Layer for Improved Si/PEDOT:PSS Hybrid Heterojunction Solar Cells.

    Science.gov (United States)

    Sun, Yiling; Gao, Pingqi; He, Jian; Zhou, Suqiong; Ying, Zhiqin; Yang, Xi; Xiang, Yong; Ye, Jichun

    2016-12-01

    Silicon/organic hybrid solar cells have recently attracted great attention because they combine the advantages of silicon (Si) and the organic cells. In this study, we added a patterned passivation layer of silicon nitride (SiNx:H) onto the rear surface of the Si substrate in a Si/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) hybrid solar cell, enabling an improvement of 0.6 % in the power conversion efficiency (PCE). The addition of the SiNx:H layer boosted the open circuit voltage (V oc) from 0.523 to 0.557 V, suggesting the well-passivation property of the patterned SiNx:H thin layer that was created by plasma-enhanced chemical vapor deposition and lithography processes. The passivation properties that stemmed from front PSS, rear-SiNx:H, front PSS/rear-SiNx:H, etc. are thoroughly investigated, in consideration of the process-related variations.

  7. PCM/wood composite to store thermal energy in passive building envelopes

    Science.gov (United States)

    Barreneche, C.; Vecstaudza, J.; Bajare, D.; Fernandez, A. I.

    2017-10-01

    The development of new materials to store thermal energy in a passive building system is a must to improve the thermal efficiency by thermal-regulating the indoor temperatures. This fact will deal with the reduction of the gap between energy supply and energy demand to achieve thermal comfort in building indoors. The aim of this work was to test properties of novel PCM/wood composite materials developed at Riga Technical University. Impregnation of PCM (phase change material) in wood increases its thermal mass and regulates temperature fluctuations during day and night. The PCM used are paraffin waxes (RT-21 and RT-27 from Rubitherm) and the wood used was black alder, the most common wood in Latvia. The PCM distribution inside wood sample has been studied as well as its thermophysical, mechanical and fire reaction properties. Developed composite materials are promising in the field of energy saving in buildings.

  8. Influence of deposition temperature of thermal ALD deposited Al2O3 films on silicon surface passivation

    Directory of Open Access Journals (Sweden)

    Neha Batra

    2015-06-01

    Full Text Available The effect of deposition temperature (Tdep and subsequent annealing time (tanl of atomic layer deposited aluminum oxide (Al2O3 films on silicon surface passivation (in terms of surface recombination velocity, SRV is investigated. The pristine samples (as-deposited show presence of positive fixed charges, QF. The interface defect density (Dit decreases with increase in Tdep which further decreases with tanl up to 100s. An effective surface passivation (SRV<8 cm/s is realized for Tdep ≥ 200 °C. The present investigation suggests that low thermal budget processing provides the same quality of passivation as realized by high thermal budget process (tanl between 10 to 30 min.

  9. Solar thermally driven cooling systems: Some investigation results and perspectives

    International Nuclear Information System (INIS)

    Ajib, Salman; Günther, Wolfgang

    2013-01-01

    Highlights: ► Two types of solar thermally driven absorption refrigeration machines (ARMs) have been investigated. ► We investigated the influence of the operating conditions on the effectiveness of the ARMs. ► The influence of the flow rate of the work solution on the effectiveness of the ARMs has been tested. ► Two laboratory test plants have been built and tested under different operating conditions. - Abstract: A big increase in the number of solar thermal cooling installations and research efforts could be seen over the last years worldwide. Especially the producers of solar thermal collectors and systems have been looking for thermal chillers in the small capacity range to provide air conditioning for one or two family houses. Furthermore, many developments aim to increase the efficiency of the system and to decrease the specific costs of the produced refrigeration capacity. The growth in the use of solar thermal cooling systems amounted about 860% from 52 units in 2004 to 450 units in 2009 [1]. This tendency is expected to be continuously in the next years. The practical examinations on solar thermally driven absorption machines with refrigeration capacity of 15, 10 and 5 kW have shown that this technology has a good chance to be standardized and to replace partly the conventional one. These systems can save more primary energy at high fraction of solar thermally driving by suitable control and regulation of the system. The investing costs still higher as the conventional one, however, the operating costs are less than the conventional one. The Coefficient of Performance (COP) depends on the kind of the system, work temperatures and conditions as well as the refrigeration capacity of the systems. It lies between 0.4 and 1.2. In the framework of the research on this field, we built, tested and measured two prototypes. After measuring the first prototype, the chillers were redesigned to reduce internal heat losses and make the heat and mass transfer

  10. Efficient solar-driven synthesis, carbon capture, and desalinization, STEP: solar thermal electrochemical production of fuels, metals, bleach

    Energy Technology Data Exchange (ETDEWEB)

    Licht, S. [Department of Chemistry, George Washington University, Washington, DC (United States)

    2011-12-15

    STEP (solar thermal electrochemical production) theory is derived and experimentally verified for the electrosynthesis of energetic molecules at solar energy efficiency greater than any photovoltaic conversion efficiency. In STEP the efficient formation of metals, fuels, chlorine, and carbon capture is driven by solar thermal heated endothermic electrolyses of concentrated reactants occuring at a voltage below that of the room temperature energy stored in the products. One example is CO{sub 2}, which is reduced to either fuels or storable carbon at a solar efficiency of over 50% due to a synergy of efficient solar thermal absorption and electrochemical conversion at high temperature and reactant concentration. CO{sub 2}-free production of iron by STEP, from iron ore, occurs via Fe(III) in molten carbonate. Water is efficiently split to hydrogen by molten hydroxide electrolysis, and chlorine, sodium, and magnesium from molten chlorides. A pathway is provided for the STEP decrease of atmospheric carbon dioxide levels to pre-industrial age levels in 10 years. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Solar energy; Product information. Zonne-energie; Produktinformatie

    Energy Technology Data Exchange (ETDEWEB)

    Kruisheer, N

    1992-03-20

    In five brief articles product information is given on solar energy applications with special attention to the Netherlands. After an introduction on solar energy availability in the Netherlands the developments in solar boiler techniques are dealt with. Solar water heaters have advantages for the environment, and government subsidies stimulate different uses of such water heaters. Also the developments of solar cells show good prospects, not only for developing countries, but also for the industrialized countries. In brief the developments in solar energy storage and the connection of solar equipment to the grid are discussed. Finally attention is paid to the applications of passive solar energy in the housing construction, the use of transparent thermal insulation and the developments of translucent materials. 18 figs., 18 ills.

  12. Possibilities for retrofitting of the existing thermal electric power plants using solar power technologies

    International Nuclear Information System (INIS)

    Matjanov, Erkinjon K.; Abduganieva, Farogat A.; Aminov, Zarif Z.

    2012-01-01

    Full text: Total installed electric power output of the existing thermal electric power plants in Uzbekistan is reaches 12 GW. Thermal electric power plants, working on organic fuel, produce around 88 % of the electricity in the country. The emission coefficient of CO 2 gases is 620 gram/kwph. Average electric efficiency of the thermal electric power plants is 32.1 %. The mentioned above data certifies, that the existing thermal electric power plants of Uzbekistan are physically and morally aged and they need to be retrofitted. Retrofitting of the existing thermal electric power plants can be done by several ways such as via including gas turbine toppings, by using solar technologies, etc. Solar thermal power is a relatively new technology which has already shown its enormous promise. With few environmental impacts and a massive resource, it offers a comparable opportunity to the sunniest Uzbekistan. Solar thermal power uses direct sunlight, so it must be sited in regions with high direct solar radiation. In many regions, one square km of land is enough to generate as much as 100-120 GWh of electricity per year using the solar thermal technology. This is equivalent to the annual production of a 50 MW conventional coal or gas-fired mid-load power plant. Solar thermal power plants can be designed for solar-only or for hybrid operation. Producing electricity from the energy in the sun's rays is a straightforward process: direct solar radiation can be concentrated and collected by a range of Concentrating Solar Power technologies to provide medium- to high temperature heat. This heat is then used to operate a conventional power cycle, for example through a steam turbine or a Stirling engine. Solar heat collected during the day can also be stored in liquid or solid media such as molten salts, ceramics, concrete or, in the future, phase-changing salt mixtures. At night, it can be extracted from the storage medium thereby continuing turbine operation. Currently, the

  13. Design aspects of integrated compact thermal storage system for solar dryer applications

    International Nuclear Information System (INIS)

    Rajaraman, R.; Velraj, R.; Renganarayanan, S.

    2000-01-01

    Solar energy is an excellent source for drying of crops, fruits, vegetables and other agricultural and forest products. Though the availability of solar energy is plenty, it is time dependent in nature. The energy need for some applications is also time dependent, but in a different pattern and phase from the solar energy supply. This implies that the solar dryer should be integrated with an efficient thermal storage system to match the time-dependent supply and end-use requirements. Based on the studies carried out on Latent Heat Thermal Storage (LHTS) Systems, it is observed that when air is used as the heat transfer fluid in LHTS system, nearly uniform surface heat flux can be achieved. Hence the LHTS systems are most suitable for air based solar drying applications. In the present work some major conclusions arrived from the investigations on LHTS systems and the design considerations for the integrated latent heat thermal storage for the solar dryer are reported. (Author)

  14. Double-pass photovoltaic / thermal (PV/T) solar collector with advanced heat transfer features

    International Nuclear Information System (INIS)

    Mohd Nazari Abu Bakar; Baharudin Yatim; Mohd Yusof Othman; Kamaruzzaman Sopian

    2006-01-01

    The use of PV/T in combination with concentrating reflectors has a potential to significantly increase power production from a given solar cell area. A prototype double-pass photovoltaic-thermal solar air collector with CPR and fins has been designed and fabricated and its performance over a range of operating conditions was studied. The absorber of the hybrid photovoltaic / thermal (PV/T) collector under investigation consists of an array of solar cells for generating electricity, compound parabolic concentrator (CPR) to increase the radiation intensity falling on the solar cells and fins attached to the back side of the absorber plate to improve heat transfer to the flowing air. The thermal, electrical and combined electrical and thermal efficiencies of the collector are presented and discussed

  15. Thermal Analysis of Solar Panels

    Science.gov (United States)

    Barth, Nicolas; de Correia, João Pedro Magalhães; Ahzi, Saïd; Khaleel, Mohammad Ahmed

    In this work, we propose to analyze the thermal behavior of PV panels using finite element simulations (FEM). We applied this analysis to compute the temperature distribution in a PV panel BP 350 subjected to different atmospheric conditions. This analysis takes into account existing formulations in the literature and, based on NOCT conditions, meteorological data was used to validate our approach for different wind speed and solar irradiance. The electrical performance of the PV panel was also studied. The proposed 2D FEM analysis is applied to different region's climates and was also used to consider the role of thermal inertia on the optimization of the PV device efficiency.

  16. Nanofluid heat transfer under mixed convection flow in a tube for solar thermal energy applications.

    Science.gov (United States)

    Sekhar, Y Raja; Sharma, K V; Kamal, Subhash

    2016-05-01

    The solar flat plate collector operating under different convective modes has low efficiency for energy conversion. The energy absorbed by the working fluid in the collector system and its heat transfer characteristics vary with solar insolation and mass flow rate. The performance of the system is improved by reducing the losses from the collector. Various passive methods have been devised to aid energy absorption by the working fluid. Also, working fluids are modified using nanoparticles to improve the thermal properties of the fluid. In the present work, simulation and experimental studies are undertaken for pipe flow at constant heat flux boundary condition in the mixed convection mode. The working fluid at low Reynolds number in the mixed laminar flow range is undertaken with water in thermosyphon mode for different inclination angles of the tube. Local and average coefficients are determined experimentally and compared with theoretical values for water-based Al2O3 nanofluids. The results show an enhancement in heat transfer in the experimental range with Rayleigh number at higher inclinations of the collector tube for water and nanofluids.

  17. Numerical simulation of thermal behaviors of a clothed human body with evaluation of indoor solar radiation

    International Nuclear Information System (INIS)

    Mao, Aihua; Luo, Jie; Li, Yi

    2017-01-01

    Highlights: • Solar radiation evaluation is integrated with the thermal transfer in clothed humans. • Thermal models are developed for clothed humans exposed in indoor solar radiation. • The effect of indoor solar radiation on humans can be predicted in different situations in living. • The green solar energy can be efficiently utilized in the building development. - Abstract: Solar radiation is a valuable green energy, which is important in achieving a successful building design for thermal comfort in indoor environment. This paper considers solar radiation indoors into the transient thermal transfer models of a clothed human body and offers a new numerical method to analyze the dynamic thermal status of a clothed human body under different solar radiation incidences. The evaluation model of solar radiation indoors and a group of coupled thermal models of the clothed human body are developed and integrated. The simulation capacities of these integrated models are validated through a comparison between the predicted results and the experimental data in reference. After that, simulation cases are also conducted to show the influence of solar radiation on the thermal status of individual clothed body segments when the human body is staying indoors in different seasons. This numerical simulation method provides a useful tool to analyze the thermal status of clothed human body under different solar radiation incidences indoors and thus enables the architect to efficiently utilize the green solar energy in building development.

  18. Enhanced regeneration of degraded polymer solar cells by thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pankaj, E-mail: pankaj@mail.nplindia.ernet.in [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); Bilen, Chhinder; Zhou, Xiaojing; Belcher, Warwick J.; Dastoor, Paul C., E-mail: Paul.Dastoor@newcastle.edu.au [Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); Feron, Krishna [Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); CSIRO Energy Technology, P. O. Box 330, Newcastle NSW 2300 (Australia)

    2014-05-12

    The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) and P3HT:indene-C{sub 60} bisadduct (ICBA) polymer solar cells, with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene sulfonate anode have been investigated. Degradation occurs via a combination of three primary pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal annealing. Moreover, the solar cells with a P3HT:ICBA active layer exhibited enhanced regeneration compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated ∼50% performance restoration over several degradation/regeneration cycles.

  19. Enhanced regeneration of degraded polymer solar cells by thermal annealing

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Bilen, Chhinder; Zhou, Xiaojing; Belcher, Warwick J.; Dastoor, Paul C.; Feron, Krishna

    2014-01-01

    The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) and P3HT:indene-C 60 bisadduct (ICBA) polymer solar cells, with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene sulfonate anode have been investigated. Degradation occurs via a combination of three primary pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal annealing. Moreover, the solar cells with a P3HT:ICBA active layer exhibited enhanced regeneration compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated ∼50% performance restoration over several degradation/regeneration cycles

  20. Amorphous silicon oxide layers for surface passivation and contacting of heterostructure solar cells of amorphous and crystalline silicon; Amorphe Siliziumoxidschichten zur Oberflaechenpassivierung und Kontaktierung von Heterostruktur-Solarzellen aus amorphen und kristallinem Silizium

    Energy Technology Data Exchange (ETDEWEB)

    Einsele, Florian

    2010-02-05

    films is dominated by the diffusion of atomic hydrogen being suitable for the saturation of interface defects. This shows in a distinct increase of the passivation quality of annealed films. The heterostructure back contact for solar cells on p-type c-Si consists of an undoped, full area passivation film, followed by a boron doped p-type contact layer. If highly doped, this layer generates a back surface field effect which decreases the recombination by reflecting minority charge carriers from the defect rich interface. An undoped passivation layer of a-Si:H improves the passivation by saturating interface defects. Effusion measurements on stacks of undoped and doped layers show an increase of the hydrogen diffusion in the undoped layer due to the presence of the doped layer. The doped layer shifts the Fermi level of the undoped layer towards the valence band edge. This shift increases the diffusion coefficient of hydrogen due to an effective reduction of the Si-H bond energy. As a consequence, the presence of the doped contact layer increases the mobility of atomic hydrogen in the passivation layer, with atomic hydrogen being necessary for the passivation of interface defects. The thickness of the passivation layer critically affects both the passivation and the electrical conductance of the back contact. Whereas the passivation quality steadily improves with increasing thickness, the conductance drops when exceeding a critical thickness in a range of 4 nm to 8 nm. Temperature dependent measurements yield a thermal activation of the conductance with an activation energy of E{sub A} {approx_equal} 0.5 eV, which is attributed to the valence band offset {Delta}E{sub V} between a-Si:H and c-Si. This high barrier requires a tunneling process for majority charge carriers and explains the abrupt decrease of conductance with increasing passivation layer thickness. Passivation layers of a-SiO{sub x}:H form a blocking junction on p-type c-Si, which is explained by an oxygen

  1. Passivation effect of water vapour on thin film polycrystalline Si solar cells

    Czech Academy of Sciences Publication Activity Database

    Pikna, Peter; Müller, Martin; Becker, C.; Fejfar, Antonín

    2016-01-01

    Roč. 213, č. 7 (2016), s. 1969-1975 ISSN 1862-6300 R&D Projects: GA MŠk LM2015087; GA ČR GA13-12386S Grant - others:AV ČR(CZ) DAAD-16-27 Program:Bilaterální spolupráce Institutional support: RVO:68378271 Keywords : passivation, * plasma hydrogenation * silicon * solar cells * thin films * water vapour Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.775, year: 2016

  2. Solar thermal barometer. 12 million M2 installed in europe

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    European thermal solar has once again reached its zenith. The difficult times of 1985-1995 are now a thing of the past. The best proof is the very good results of 2001 that show figures in significant progression with respect to those of the year 2000. 1480 320 m 2 . This is now the new record to beat in terms of the annual volume of thermal solar collector installation in the European Union. (author)

  3. Human Body Exergy Balance: Numerical Analysis of an Indoor Thermal Environment of a Passive Wooden Room in Summer

    Directory of Open Access Journals (Sweden)

    Koichi Isawa

    2015-09-01

    Full Text Available To obtain a basic understanding of the resultant changes in the human body exergy balance (input, consumption, storage, and output accompanying outdoor air temperature fluctuations, a “human body system and a built environmental system” coupled with numerical analysis was conducted. The built environmental system assumed a wooden room equipped with passive cooling strategies, such as thermal insulation and solar shading devices. It was found that in the daytime, the cool radiation exergy emitted by surrounding surfaces, such as walls increased the rate of human body exergy consumption, whereas the warm radiant exergy emitted by the surrounding surfaces at night decreased the rate of human body exergy consumption. The results suggested that the rates and proportions of the different components in the exergy balance equation (exergy input, consumption, storage, and output vary according to the outdoor temperature and humidity conditions.

  4. Thermal Field Analysis and Simulation of an Infrared Belt Furnace Used for Solar Cells

    Directory of Open Access Journals (Sweden)

    Bai Lu

    2014-01-01

    Full Text Available During solar cell firing, volatile organic compounds (VOC and a small number of metal particles were removed using the gas flow. When the gas flow was disturbed by the thermal field of infrared belt furnace and structure, the metal particles in the discharging gas flow randomly adhered to the surface of solar cell, possibly causing contamination. Meanwhile, the gas flow also affected the thermal uniformity of the solar cell. In this paper, the heating mechanism of the solar cell caused by radiation, convection, and conduction during firing was analyzed. Afterward, four 2-dimensional (2D models of the furnace were proposed. The transient thermal fields with different gas inlets, outlets, and internal structures were simulated. The thermal fields and the temperature of the solar cell could remain stable and uniform when the gas outlets were installed at the ends and in the middle of the furnace, with the gas inlets being distributed evenly. To verify the results, we produced four types of furnaces according to the four simulated results. The experimental results indicated that the thermal distribution of the furnace and the characteristics of the solar cells were consistent with the simulation. These experiments improved the efficiency of the solar cells while optimizing the solar cell manufacturing equipment.

  5. Comparative analyses on dynamic performances of photovoltaic–thermal solar collectors integrated with phase change materials

    International Nuclear Information System (INIS)

    Su, Di; Jia, Yuting; Alva, Guruprasad; Liu, Lingkun; Fang, Guiyin

    2017-01-01

    Highlights: • The dynamic model of photovoltaic–thermal collector with phase change material was developed. • The performances of photovoltaic–thermal collector are performed comparative analyses. • The performances of photovoltaic–thermal collector with phase change material were evaluated. • Upper phase change material mode can improve performances of photovoltaic–thermal collector. - Abstract: The operating conditions (especially temperature) of photovoltaic–thermal solar collectors have significant influence on dynamic performance of the hybrid photovoltaic–thermal solar collectors. Only a small percentage of incoming solar radiation can be converted into electricity, and the rest is converted into heat. This heat leads to a decrease in efficiency of the photovoltaic module. In order to improve the performance of the hybrid photovoltaic–thermal solar collector, we performed comparative analyses on a hybrid photovoltaic–thermal solar collector integrated with phase change material. Electrical and thermal parameters like solar cell temperature, outlet temperature of air, electrical power, thermal power, electrical efficiency, thermal efficiency and overall efficiency are simulated and analyzed to evaluate the dynamic performance of the hybrid photovoltaic–thermal collector. It is found that the position of phase change material layer in the photovoltaic–thermal collector has a significant effect on the performance of the photovoltaic–thermal collector. The results indicate that upper phase change material mode in the photovoltaic–thermal collector can significantly improve the thermal and electrical performance of photovoltaic–thermal collector. It is found that overall efficiency of photovoltaic–thermal collector in ‘upper phase change material’ mode is 10.7% higher than that in ‘no phase change material’ mode. Further, for a photovoltaic–thermal collector with upper phase change material, it is verified that 3 cm

  6. Thermal Analysis of the Receiver of a Standalone Pilot Solar Dish–Stirling System

    Directory of Open Access Journals (Sweden)

    Ehsan Gholamalizadeh

    2018-06-01

    Full Text Available Recent developments in solar thermal systems have aroused considerable interest in several countries with high solar potential. One of the most promising solar driven technologies is the solar thermal dish-Stirling system. One of the main issues of the solar dish–Stirling system is thermal losses from its components. The majority of the thermal losses of the system occur through its receiver before the thermal energy is converted to electrical energy by the Stirling engine. The goal of this investigation is to analyze the thermal performance of the receiver of a standalone pilot solar dish–Stirling system installed in Kerman City, Iran, to be used in remote off-grid areas of the Kerman Province. An analytical model was developed to predict the input energy, thermal losses, and thermal efficiency of the receiver. The receiver thermal model was first validated by comparing simulation results to experimental measurements for the EuroDish project. Then, the incident flux intensity intercepted by the receiver aperture, the thermal losses through the receiver (including conduction, convection, and radiation losses, and the power output during daytime hours (average day of each month for a year were predicted. The results showed that the conduction loss was small, while the convection and radiation losses played major roles in the total thermal losses through the receiver. The convection loss is dominant during the early morning and later evening hours, while radiation loss reaches its highest value near midday. Finally, the thermal efficiency of the receiver and the power output for each working hour throughout the year were calculated. The maximum performance of the system occurred at midday in the middle of July, with a predicted power output of 850 W, and a receiver efficiency of about 60%. At this time, a conduction loss of about 266 W, a convection loss of 284 W, and a radiation loss of about 2000 W were estimated.

  7. Solar Thermal Barometer

    International Nuclear Information System (INIS)

    Beurskens, L.W.M.; Mozaffarian, M.

    2008-09-01

    After two years of very strong growth, the solar thermal market (taking all technologies including unglazed flexible collectors into account) marked time in 2007 with 6.9% less collectors being sold with respect to year 2006. In the end, this market reached 2.9 million m 2 vs. 3.1 million m 2 in 2006, i.e. an equivalent capacity of more than 2000 MWth. This decrease is explained for a large part by a strong decline of the German market, the largest market of the European Union. Conversely, other countries are continuing to develop their markets and are showing double-digit growth rates

  8. Thermal Desalination using MEMS and Salinity-Gradient Solar Pond Technology

    Science.gov (United States)

    Lu, H.; Walton, J. C.; Hein, H.

    2002-08-01

    MEMS (multi-effect, multi-stage) flash desalination (distillation) driven by thermal energy derived from a salinity-gradient solar pond is investigated in this study for the purpose of improving the thermodynamic efficiency and economics of this technology. Three major tasks are performed: (1) a MEMS unit is tested under various operating conditions at the El Paso Solar Pond site; (2) the operation and maintenance procedures of the salinity-gradient solar pond coupled with the MEMS operation is studied; and (3) previous test data on a 24-stage, falling-film flash distillation unit (known as the Spinflash) is analyzed and compared with the performance of the MEMS unit. The data and information obtained from this investigation is applicable to a variety of thermal desalination processes using other solar options and/or waste heat.

  9. Development of passive design zones in China using bioclimatic approach

    International Nuclear Information System (INIS)

    Lam, Joseph C.; Yang Liu; Liu Jiaping

    2006-01-01

    This paper presents the work on development of passive design zones for different climates in China. A total of 18 cities representing the five major climatic types, namely severe cold, cold, hot summer and cold winter, mild and hot summer and warm winter were selected for climatic analysis. Measured weather data were gathered and analysed. A bioclimatic approach was adopted in which the comfort zone and 12 monthly climatic lines were determined and plotted on the psychrometric chart for each city. From these bioclimatic charts, the potential use of passive design strategies such as solar heating, natural ventilation, thermal mass with/without night ventilation and evaporative cooling was assessed. A total of nine passive design strategy zones were identified, and appropriate design strategies suggested for both summer and winter consideration

  10. Thermal Testing Methods for Solar Dryers

    DEFF Research Database (Denmark)

    Singh, Shobhana

    2017-01-01

    Solar food drying is a complex heat and mass transfer phenomena which depend on a number of drying process-dependent parameters such as operating conditions and characteristics of the food product to be dried. The variation in these parameters significantly affects the overall performance...... of the dryer system. Since commercial growth and acceptance of any solar dryer system momentously depend on its performance guarantee, the development of a standard methodology for their thermal testing has become necessary. The standard testing method not only provides better performance management...... of the dryer system but allows the manufacturers to achieve competitive efficiency and good product quality by comparing the available designs. In this chapter, an extensive review of solar dryer performance evaluation has been carried out. Furthermore, the chapter describes the existing testing procedures...

  11. Passive energy standard in building as a perspective of sustainable development - first passive houses in Croatia

    International Nuclear Information System (INIS)

    Miscevic, Lj.

    2005-01-01

    The paper presents the projects and implementation of the first passive family houses in Croatia. The Croatian Solar House (CSH) is a national technological-development project by a group of authors, which is based on passive house standard as an energy-terms point of departure. The House EV1 is a wood-made passive house under construction, while the House M4 is the first passive house in Croatia made in poro-concrete and reinforced concrete made ceiling slabs. Both houses comply with the heating energy consumption requirements under the passive house definition, i.e., the annual consumption does not exceed 15 kWh/m2. These houses are also referred to as 'houses without heating', 'houses with thermal comfort without heating' or 'one-liter houses' because their consumption is equivalent to one liter of fuel oil by one square meter a year. Assuming the high-value thermal protection, passive house is equipped with an installation system which houses a heat pump and ventilation system for continuous introduction of fresh air indoors. The use of renewable energy sources enabled the accomplishment by far the biggest energy savings in the construction industry, ensuring optimal conditions for healthy living without harmful gas emissions. Since 1990 there is an exponential growth of constructed passive houses in Europe. Germany is leading this trend with total of 150,000 free-standing houses, house raw units or residential units in small multi-apartment buildings. The research project-program of the European Union: Cost Efficiency Passive Houses as European Union Standard (CEPHEUS) has confirmed, by scientific monitoring during several years, the energy- and cost-efficiency of such architecture and construction model in more than 250 units in Germany, France, Austria and Switzerland. Therefore the passive house is proposed as a standard for residential architecture and construction, but also for general construction of all functional types of non-residential architecture

  12. THERMAL STRATIFICATION IN SOLAR DOMESTIC STORAGE TANKS CAUSED BY DRAW-OFFS

    DEFF Research Database (Denmark)

    Jordan, Ulrike; Furbo, Simon

    2003-01-01

    As shown in many research studies in the past, the thermal stratification of the tank caused by draw-offs has a high impact on the performance of a Solar Domestic Hot Water (SDHW) system. Nevertheless, in most tank models for system simulations the influence of the draw-off pattern on the mixing...... with a component oriented simulation tool for solar thermal systems....

  13. Survey of solar thermal energy storage subsystems for thermal/electric applications

    Energy Technology Data Exchange (ETDEWEB)

    Segaser, C. L.

    1978-08-01

    A survey of the current technology and estimated costs of subsystems for storing the thermal energy produced by solar collectors is presented. The systems considered were capable of producing both electricity and space conditioning for three types of loads: a single-family detached residence, an apartment complex of 100 units, and a city of 30,000 residents, containing both single-family residences and apartments. Collector temperatures will be in four ranges: (1) 100 to 250/sup 0/F (used for space heating and single-cycle air conditioners and organic Rankine low-temperature turbines); (2) 300 to 400/sup 0/F (used for dual-cycle air conditioners and low-temperature turbines); (3) 400 to 600/sup 0/F (using fluids from parabolic trough collectors to run Rankine turbines); (4) 800 to 1000/sup 0/F (using fluids from heliostats to run closed-cycle gas turbines and steam Rankine turbines). The solar thermal energy subsystems will require from 60 to 36 x 10/sup 5/ kWhr (2.05 x 10/sup 5/ to 1.23 x 10/sup 10/ Btu) of thermal storage capacity. In addition to sensible heat and latent heat storage materials, several other media were investigated as potential thermal energy storage materials, including the clathrate and semiclathrate hydrates, various metal hydrides, and heat storage based on inorganic chemical reactions.

  14. Essential oil extraction with concentrating solar thermal energy

    OpenAIRE

    Veynandt, François

    2015-01-01

    Material complementari del cas estudi "Essential oil extraction with concentrating solar thermal energy”, part component del llibre "Case studies for developing globally responsible engineers" Peer Reviewed

  15. Efficiency Enhancement of Nanotextured Black Silicon Solar Cells Using Al2O3/TiO2 Dual-Layer Passivation Stack Prepared by Atomic Layer Deposition.

    Science.gov (United States)

    Wang, Wei-Cheng; Tsai, Meng-Chen; Yang, Jason; Hsu, Chuck; Chen, Miin-Jang

    2015-05-20

    In this study, efficient nanotextured black silicon (NBSi) solar cells composed of silicon nanowire arrays and an Al2O3/TiO2 dual-layer passivation stack on the n(+) emitter were fabricated. The highly conformal Al2O3 and TiO2 surface passivation layers were deposited on the high-aspect-ratio surface of the NBSi wafers using atomic layer deposition. Instead of the single Al2O3 passivation layer with a negative oxide charge density, the Al2O3/TiO2 dual-layer passivation stack treated with forming gas annealing provides a high positive oxide charge density and a low interfacial state density, which are essential for the effective field-effect and chemical passivation of the n(+) emitter. In addition, the Al2O3/TiO2 dual-layer passivation stack suppresses the total reflectance over a broad range of wavelengths (400-1000 nm). Therefore, with the Al2O3/TiO2 dual-layer passivation stack, the short-circuit current density and efficiency of the NBSi solar cell were increased by 11% and 20%, respectively. In conclusion, a high efficiency of 18.5% was achieved with the NBSi solar cells by using the n(+)-emitter/p-base structure passivated with the Al2O3/TiO2 stack.

  16. Remote Thermal IR Spectroscopy of our Solar System

    Science.gov (United States)

    Kostiuk, Theodor; Hewagama, Tilak; Goldstein, Jeffrey; Livengood, Timothy; Fast, Kelly

    1999-01-01

    Indirect methods to detect extrasolar planets have been successful in identifying a number of stars with companion planets. No direct detection of an extrasolar planet has yet been reported. Spectroscopy in the thermal infrared region provides a potentially powerful approach to detection and characterization of planets and planetary systems. We can use knowledge of our own solar system, its planets and their atmospheres to model spectral characteristics of planets around other stars. Spectra derived from modeling our own solar system seen from an extrasolar perspective can be used to constrain detection strategies, identification of planetary class (terrestrial vs. gaseous) and retrieval of chemical, thermal and dynamical information. Emission from planets in our solar system peaks in the thermal infrared region, approximately 10 - 30 microns, substantially displaced from the maximum of the much brighter solar emission in the visible near 0.5 microns. This fact provides a relatively good contrast ratio to discriminate between stellar (solar) and planetary emission and optimize the delectability of planetary spectra. Important molecular constituents in planetary atmospheres have rotational-vibrational spectra in the thermal infrared region. Spectra from these molecules have been well characterized in the laboratory and studied in the atmospheres of solar system planets from ground-based and space platforms. The best example of such measurements are the studies with Fourier transform spectrometers, the Infrared Interferometer Spectrometers (IRIS), from spacecraft: Earth observed from NIMBUS 8, Mars observed from Mariner 9, and the outer planets observed from Voyager spacecraft. An Earth-like planet is characterized by atmospheric spectra of ozone, carbon dioxide, and water. Terrestrial planets have oxidizing atmospheres which are easily distinguished from reducing atmospheres of gaseous giant planets which lack oxygen-bearing species and are characterized by spectra

  17. Solar thermal technology and market in Europe

    International Nuclear Information System (INIS)

    Sabba, S.

    2000-01-01

    The solar heating industry in Europe has reached maturity after more than two decades of technical development. High quality systems are now available with reliability and durability of the products being assured. The European solar market, now the world's largest, has been growing since the late 1980s, despite the fact that conventional energy sources are usually available and inexpensive. This is a new phenomenon and marks the beginning of changes in energy supply and consumption that will be experienced throughout the world in this new century. Almost 10 million square metres of solar thermal collectors now exist in Europe saving more than 1.5 million tonnes of CO 2 emissions and about 500,000 tonnes of oil. The solar heating industry has created some 10,000 jobs. (author)

  18. Desalination with thermal solar systems: technology assessment and perspectives

    International Nuclear Information System (INIS)

    Ajona, J.I.

    1992-01-01

    Solar desalination is among the most promising alternatives to apply solar energy as solar availability and the load requirements use to be matched. Solar thermal energy offers a full set of alternatives to desalt water, being the main difference among them the temperature range at which the load has to be fed. Solar technologies for the low temperature range (solar stills, plastic collectors,...) are quite suited for small loads in isolated placed or whenever the main constrain is to indigenize technology and to perform the operation and maintenance work with low qualified local labor, such as in less developed countries. The main drawback of this low temperature use of solar energy is that it is not possible to recover neither the heat of condensation of the water vapor, nor from the reject brine, to warm up the feed saline water. Higher temperature collectors, such as flat plate collectors with transparent insulation material and evacuated tubes, allow to work with conventional desalination units fed at 60-90C, as Multiple Effect Units or Multistage Flash Units, which get a performance ratio (quotient between heat required without recovery and with heat recovery) between 5 and 10. To further increase the performance ratio it is necessary to work with vapor in the 200C range. To attain this temperature range the solar option is based on the Parabolic Trough collector. This has been the line we have followed in our STD project in the Plataforma Solar in Almeria (Spain) when we have run a Multiple Effect Unit with an Absorption Heat Pump able to attain a performance ratio of 20. In this report, included within the STD project activities, we assess the potential of the solar thermal technology to desalt water in all the above mentioned temperature ranges. Beside the technology description and some characteristics results, we present a set of tool that, as the final result is dramatically dependent on the technical and economical scenario selected, will allow to

  19. Enhanced Passive Cooling for Waterless-Power Production Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Salvador B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-06-14

    Recent advances in the literature and at SNL indicate the strong potential for passive, specialized surfaces to significantly enhance power production output. Our exploratory computational and experimental research indicates that fractal and swirl surfaces can help enable waterless-power production by increasing the amount of heat transfer and turbulence, when compared with conventional surfaces. Small modular reactors, advanced reactors, and non-nuclear plants (e.g., solar and coal) are ideally suited for sCO2 coolant loops. The sCO2 loop converts the thermal heat into electricity, while the specialized surfaces passively and securely reject the waste process heat in an environmentally benign manner. The resultant, integrated energy systems are highly suitable for small grids, rural areas, and arid regions.

  20. FNCCR/Enerplan day 'Thermal solar for all territories'. Collection of contributions

    International Nuclear Information System (INIS)

    Perrin, Guillaume; Loyen, Richard; Porcheyre, Edwige; Greau, David; Boisleux, Francois; Roger, Christophe; Mariani, Christian; Mugnier, Daniel; Frey, Johan; Paulus, Cedric; Egret, Dominique; Muller, Marius

    2018-04-01

    Contributions to this day on the use of thermal solar installations (on building or for injection into a heat network) are proposed under the form of Power Point presentations. More precisely, after a general introduction with an overview of recent events in the energy sector, the authors address the renewal of the thermal solar sector (financial aspects, the SOCOL approach, performance markets), the development of solar energy in territories (study in Hauts-de-France, of support arrangements, large projects), the implementation of a regional support, an installation in an establishment for elderly and dependent people, a return on experience from a heat network with storage, the role of thermal solar in heat networks, the implementation of a new project (a heat network in Chateaubriant), and the innovative use of solar energy to produce cold

  1. Thermal limits for passive safety of fusion reactors

    International Nuclear Information System (INIS)

    Kazimi, M.S.; Massidda, J.E.; Oshima, M.

    1989-01-01

    The thermal response of the first wall and blanket due to power/cooling mismatch in the absence of operation action is examined. The analyses of coolant and power transients are carried out on six reference blanket designs representing a broad range of fusion first wall and blanket technology. It is concluded that the requirement of plant protection will impose sufficiently stringent peak neutron wall loading limits to avoid a serious threat to the public. It is found that for the D-T design,s the operating wall loading may have to be limited to 3 - 8 MW/m/sup 2/ for passive plant protection, depending on the plant design

  2. Evaluations of Silica Aerogel-Based Flexible Blanket as Passive Thermal Control Element for Spacecraft Applications

    Science.gov (United States)

    Hasan, Mohammed Adnan; Rashmi, S.; Esther, A. Carmel Mary; Bhavanisankar, Prudhivi Yashwantkumar; Sherikar, Baburao N.; Sridhara, N.; Dey, Arjun

    2018-03-01

    The feasibility of utilizing commercially available silica aerogel-based flexible composite blankets as passive thermal control element in applications such as extraterrestrial environments is investigated. Differential scanning calorimetry showed that aerogel blanket was thermally stable over - 150 to 126 °C. The outgassing behavior, e.g., total mass loss, collected volatile condensable materials, water vapor regained and recovered mass loss, was within acceptable range recommended for the space applications. ASTM tension and tear tests confirmed the material's mechanical integrity. The thermo-optical properties remained nearly unaltered in simulated space environmental tests such as relative humidity, thermal cycling and thermo-vacuum tests and confirmed the space worthiness of the aerogel. Aluminized Kapton stitched or anchored to the blanket could be used to control the optical transparency of the aerogel. These outcomes highlight the potential of commercial aerogel composite blankets as passive thermal control element in spacecraft. Structural and chemical characterization of the material was also done using scanning electron microscopy, Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy.

  3. Process and Economic Optimisation of a Milk Processing Plant with Solar Thermal Energy

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Elmegaard, Brian

    2016-01-01

    . Based on the case study of a dairy factory, where first a heat integration is performed to optimise the system, a model for solar thermal process integration is developed. The detailed model is based on annual hourly global direct and diffuse solar radiation, from which the radiation on a defined......This work investigates the integration of solar thermal systems for process energy use. A shift from fossil fuels to renewable energy could be beneficial both from environmental and economic perspectives, after the process itself has been optimised and efficiency measures have been implemented...... surface is calculated. Based on hourly process stream data from the dairy factory, the optimal streams for solar thermal process integration are found, with an optimal thermal storagetank volume. The last step consists of an economic optimisation of the problem to determine the optimal size...

  4. Comparison of thermal solar collector technologies and their applications

    OpenAIRE

    Alarcón Villamil, Alexander; Hortúa, Jairo Eduardo; López, Andrea

    2013-01-01

    This paper presents the operation of different thermal solar collector technologies and their main characteristics. It starts by providing a brief description of the importance of using solar collectors as an alternative to reduce the environmental impact caused by the production of non-renewable sources like coal and oil. Subsequently, it focuses on each solar concentrator technology and finishes with a theoretical analysis hub application in different industrial processes. En este artícu...

  5. Potential application of solar thermal systems for hot water production in Hong Kong

    International Nuclear Information System (INIS)

    Li Hong; Yang Hongxing

    2009-01-01

    This paper presents the evaluation results of conventional solar water heater (SWH) systems and solar assisted heat pump (SAHP) systems for hot water production in Hong Kong. An economic comparison and global warming impact analysis are conducted among the two kinds of solar thermal systems and traditional water heating systems (i.e. electric water heaters and towngas water heaters). The economic comparison results show that solar thermal systems have greater economic benefits than traditional water heating systems. In addition, conventional SWH systems are comparable with the SAHP systems when solar fractions are above 50%. Besides, analysis on the sensitivity of the total equivalent warming impact (TEWI) indicates that the towngas boosted SWH system has the greatest potential in greenhouse gas emission reduction with various solar collector areas and the electricity boosted SWH system has the comparative TEWI with the SAHP systems if its solar fraction is above 50%. As for SAHP systems, the solar assisted air source heat pump (SA-ASHP) system has the least global warming impact. Based on all investigation results, suggestions are given on the selection of solar thermal systems for applications in Hong Kong

  6. Exergy and economic analysis of a pyramid-shaped solar water purification system: Active and passive cases

    International Nuclear Information System (INIS)

    Kianifar, Ali; Zeinali Heris, Saeed; Mahian, Omid

    2012-01-01

    An exergy analysis has been conducted to show the effect of a small fan on the exergy efficiency in a pyramid-shaped solar still. The tests were carried out in Mashhad (36° 36′ N), for two solar still systems. One of them was equipped with a small fan (active system), to enhance the evaporation rate while the other one was tested in passive condition (no fan). To examine the effects of radiation and water depth on exergy efficiency, experiments in two seasons and two different depths of water in the solar still basin were performed. The results show that during summer, active unit has higher exergy efficiency than passive one while in winter there is no considerable difference between the exergy efficiency of the units. Results also reveal that the exergy efficiency is higher when the water depth in the basin is lower. Finally, the economic analysis shows a considerable reduction in production cost of the water (8–9%) when the active system is used. -- Highlights: ► Using a small fan in the solar still; reduces the productive cost of fresh water up to 9%. ► Effects of the fan and basin depth on the exergy efficiency during summer and winter were examined. ► Utilizing an active system will increase the daily productivity of fresh water by 20%.

  7. Contribution of Portuguese Vernacular Building Strategies to Indoor Thermal Comfort and Occupants’ Perception

    Directory of Open Access Journals (Sweden)

    Jorge Fernandes

    2015-11-01

    Full Text Available Solar passive strategies that have been developed in vernacular architecture from different regions are a response to specific climate effects. These strategies are usually simple, low-tech and have low potential environmental impact. For this reason, several studies highlight them as having potential to reduce the demands of non-renewable energy for buildings operation. In this paper, the climatic contrast between northern and southern parts of mainland Portugal is presented, namely the regions of Beira Alta and Alentejo. Additionally, it discusses the contribution of different climate-responsive strategies developed in vernacular architecture from both regions to assure thermal comfort conditions. In Beira Alta, the use of glazed balconies as a strategy to capture solar gains is usual, while in Alentejo the focus is on passive cooling strategies. To understand the effectiveness of these strategies, thermal performances and comfort conditions of two case studies were evaluated based on the adaptive comfort model. Field tests included measurement of hygrothermal parameters and surveys on occupants’ thermal sensation. From the results, it has been found that the case studies have shown a good thermal performance by passive means alone and that the occupants feel comfortable, except during winter where there is the need to use simple heating systems.

  8. Combined Contamination and Space Environmental Effects on Solar Cells and Thermal Control Surfaces

    Science.gov (United States)

    Dever, Joyce A.; Bruckner, Eric J.; Scheiman, David A.; Stidham, Curtis R.

    1994-01-01

    For spacecraft in low Earth orbit (LEO), contamination can occur from thruster fuel, sputter contamination products and from products of silicone degradation. This paper describes laboratory testing in which solar cell materials and thermal control surfaces were exposed to simulated spacecraft environmental effects including contamination, atomic oxygen, ultraviolet radiation and thermal cycling. The objective of these experiments was to determine how the interaction of the natural LEO environmental effects with contaminated spacecraft surfaces impacts the performance of these materials. Optical properties of samples were measured and solar cell performance data was obtained. In general, exposure to contamination by thruster fuel resulted in degradation of solar absorptance for fused silica and various thermal control surfaces and degradation of solar cell performance. Fused silica samples which were subsequently exposed to an atomic oxygen/vacuum ultraviolet radiation environment showed reversal of this degradation. These results imply that solar cells and thermal control surfaces which are susceptible to thruster fuel contamination and which also receive atomic oxygen exposure may not undergo significant performance degradation. Materials which were exposed to only vacuum ultraviolet radiation subsequent to contamination showed slight additional degradation in solar absorptance.

  9. Status and topics of thermal-hydraulic analysis for next-generation LWRs with passive safety systems

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Ohnuki, Akira; Arai, Kenji; Kikuta, Michitaka; Yonomoto, Taisuke; Araya, Fumimasa; Akimoto, Hajime

    1999-01-01

    For increasing of electric power demand and reducing of carbon dioxide exhaust in the 21st century, studies of the next-generation light water reactor (LWR) with passive safety systems are developing in the world: AP-600 (by Westing House Co.); SBWR (by General Electric Co.); SWR1000 (by Siemens Co.); NP21 (by Mitsubishi Heavy Industry Co., et al.); JPSR (by JAERI). The passive equipment using natural circulation and natural convection are installed in the passive safety system, instead of active safety equipment, such as pumps, etc. It remains still as a important issue, however, to verify the reliability on the functions of the passive equipment, since that the driving forces of the passive equipment are small at comparison with the active safety equipment. The various subjects of thermal-hydraulic analysis for the next-generation light water reactors, such as temperature stratification in the passive safety systems, vapor condensation in the mixture of non-condensable gases and the interactions of the passive safety system with the primary cooling system, are illustrated and discussed in the paper. (M. Suetake)

  10. Solar thermal energy utilization: A bibliography with abstracts

    Science.gov (United States)

    1976-01-01

    Bibliographic series, which is periodically updated, cites documents published since 1957 relating to practical thermal utilization of solar energy. Bibliography is indexed by author, corporate source, title, and keywords.

  11. GIS methodology and case study regarding assessment of the solar potential at territorial level: PV or thermal?

    Directory of Open Access Journals (Sweden)

    Loïc Quiquerez

    2015-06-01

    Full Text Available This paper presents a GIS-based methodology for assessing solar photovoltaic (PV and solar thermal potentials in urban environment. The consideration of spatial and temporal dimensions of energy resource and demand allows, for two different territories of the Geneva region, to determine the suitable building roof areas for solar installations, the solar irradiance on these areas and, finally, the electrical and/or thermal energy potentials related to the demand. Results show that the choice of combining PV and solar thermal for domestic hot water (DHW is relevant in both territories. Actually, the installation of properly sized solar thermal collectors doesn’t decrease much the solar PV potential, while allowing significant thermal production. However, solar collectors for combined DHW and space heating (SH require a much larger surface and, therefore, have a more important influence on the PV potential.

  12. Proceedings of the Canadian Solar Industries Association Solar Forum 2005 : sunny days ahead : a forum on solar energy for government officials

    International Nuclear Information System (INIS)

    2006-01-01

    Solar energy is the fastest growing energy source in the world. Government involvement is critical in the deployment of solar energy. This forum focused on the application of solar energy in government facilities. The forum was divided into 3 sessions: (1) solar technologies and markets; (2) government initiatives that support solar energy; and (3) the use of solar energy on government facilities in Canada. The current state of solar technologies and products in Canada was reviewed. Solar thermal markets were discussed with reference to passive solar energy and photovoltaic applications. On-site solar generation for federal facilities was discussed, and various federal initiatives were reviewed. Issues concerning Ontario's standard offer contract program were discussed. Government users and buyers of solar products spoke of their experiences in using solar energy and the challenges that were faced. The role that solar energy can play in reducing government costs was discussed, as well as the impact of solar energy on the environment. Opportunities and barriers to the use of solar energy in Canada were explored. The conference featured 14 presentations, of which 2 have been catalogued separately for inclusion in this database. refs., tabs., figs

  13. Comparative economic performance of selected passive solar heating and cooling technologies

    Science.gov (United States)

    Rutter, W.

    1981-05-01

    The economic performance of selected passive solar heating and cooling technologies which incorporate energy storage is assessed by using a set of uniform assumptions and methodologies. Where data are available, a given system is assessed at more than one geographical location. Results are obtained in the form of both payback period and net present value for residential applications, and in terms of net present value only for industrial/commercial uses. Results indicate that ventilated trombe walls, solar roof ponds, and certain night effect/floor storage strategies are cost effective, but night effect/rock bed cooling is not. Results also show that, although direct gain out-performs trombe walls in most parts of the country, both direct gain and trombe walls usually produce a net savings in the residential sector. Generally, however, tax regulations result in net economic loss for direct gain and trombe walls used to heat industrial and commercial buildings.

  14. Advanced thermal management of a solar cell by a nano-coated heat pipe plate: A thermal assessment

    International Nuclear Information System (INIS)

    Du, Yanping

    2017-01-01

    Highlights: • The nano-coated heat pipe plate provides sufficient cooling energy to the solar cell. • The induced solar cell temperature is below 40 °C in normal range of solar irradiance. • The evaporative heat flux is tuneable and varies with the change of operating conditions. • Additional cooling at the condenser is helpful to improve the heat removal of the device. - Abstract: The significant temperature effect on solar cells results in loss of photovoltaic (PV) efficiency by up to 20–25%, which may over-negate the efforts in technology development for promoting PV efficiency. This motivates studies in thermal management for solar cells. This study concerns the thermal assessment of an advanced system composed by a solar cell and a nano-coated heat pipe plate for thermal management. Solar cell temperature and the corresponding evaporative heat flux are evaluated based on a conjugated heat transfer model. It indicates that the solar cell can be cooled down to be below 40 °C and suffers no temperature effect due to the use of the heat pipe plate. The heat pipe plate can provide sufficient cooling to the solar cell under different solar irradiance. The analytical and experimental results show that the maximum evaporative heat flux of the current heat pipe plate is around 450 W/m"2. However, the practical heat removal flux at the condenser is 390 W/m"2. The loss of cooling energy is due to the gathered vapour at the condenser section, which prevents the liquid-vapour circulation inside the vacuum chamber of the device. By using additional cooling strategies (i.e. heat sink, PCMs, water jacket) at the condenser section, the heat removal ability can be further improved.

  15. Effects of passivation treatment on performance of CdS/CdSe quantum-dot co-sensitized solar cells

    International Nuclear Information System (INIS)

    Tubtimtae, Auttasit; Lee, Ming-Way

    2012-01-01

    Carrier recombination can greatly reduce the efficiencies of quantum-dot sensitized solar cells (QDSSCs). This work aims to find a general preparation route to reduce carrier recombination in QDSSCs. The effects of a series of passivation treatments on CdS/CdSe quantum-dot (QD) co-sensitized solar cells are investigated. The QDs were synthesized on a nanoporous TiO 2 electrode by the successive ionic layer adsorption and reaction processes. The different types of treatment included a blocking layer, a fluoride-ion coating, a ZnS coating, annealing, a TiO 2 scattering layer and an Au counterelectrode. The power conversion efficiency was observed to become three times larger after treatment. The effectiveness of each treatment method is as follows in descending order: blocking layer ≅ TiO 2 scattering layer > Au counterelectrode > F − ions and ZnS coatings > annealing. The best cell yields a current density of 14.6 mA/cm 2 and a respectable power conversion efficiency of η = 3.11% under AM 1.5 sun. The passivation procedure makes a useful general guide for researchers for the preparation of QDSSCs. - Highlights: ► Used a series of treatments to passivate quantum-dot sensitized solar cells ► Efficiency increased by a factor of three after going through all the treatments ► Contribution to efficiency due to each treatment determined quantitatively ► Obtained a best efficiency of 3.11%

  16. Dynamic tuning of optical absorbers for accelerated solar-thermal energy storage.

    Science.gov (United States)

    Wang, Zhongyong; Tong, Zhen; Ye, Qinxian; Hu, Hang; Nie, Xiao; Yan, Chen; Shang, Wen; Song, Chengyi; Wu, Jianbo; Wang, Jun; Bao, Hua; Tao, Peng; Deng, Tao

    2017-11-14

    Currently, solar-thermal energy storage within phase-change materials relies on adding high thermal-conductivity fillers to improve the thermal-diffusion-based charging rate, which often leads to limited enhancement of charging speed and sacrificed energy storage capacity. Here we report the exploration of a magnetically enhanced photon-transport-based charging approach, which enables the dynamic tuning of the distribution of optical absorbers dispersed within phase-change materials, to simultaneously achieve fast charging rates, large phase-change enthalpy, and high solar-thermal energy conversion efficiency. Compared with conventional thermal charging, the optical charging strategy improves the charging rate by more than 270% and triples the amount of overall stored thermal energy. This superior performance results from the distinct step-by-step photon-transport charging mechanism and the increased latent heat storage through magnetic manipulation of the dynamic distribution of optical absorbers.

  17. Nonimaging concentrators for solar thermal energy

    Science.gov (United States)

    Winston, R.; Gallagher, J. J.

    1980-03-01

    A small experimental solar collector test facility was used to explore applications of nonimaging optics for solar thermal concentration in three substantially different configurations: a single stage system with moderate concentration on an evacuated absorber (a 5.25X evacuated tube Compound Parabolic Concentrator or CPC), a two stage system with high concentration and a non-evacuated absorber (a 16X Fresnel lens/CPC type mirror) and moderate concentration single stage systems with non-evacuated absorbers for lower temperature (a 3X and a 6.5X CPC). Prototypes of each of these systems were designed, built and tested. The performance characteristics are presented.

  18. Assessment of industry views on international business prospects for solar thermal technology

    Energy Technology Data Exchange (ETDEWEB)

    Easterling, J.C.

    1984-09-01

    This report contains a review of solar thermal industry viewpoints on their prospects for developing international business. The report documents the industry's current involvement in foreign markets, view of foreign competition in overseas applications, and view of federal R and D and policy requirements to strengthen international business prospects. The report is based on discussions with equipment manufacturers and system integrators who have a product or service with potential international demand. Interviews with manufacturers and system integrators were conducted by using a standard format for interview questions. The use of a standard format for questions provided a basis for aggregating similar views expressed by US companies concerning overseas business prospects. A special effort was made to gather responses from the entire solar thermal industry, including manufacturers of line-focus, point-focus, and central receiver systems. General, technical, economic, institutional, and financial findings are provided in this summary. In addition, Pacific Northwest Laboratory (PNL) recommendations are provided (based upon advice from the Solar Thermal Review Panel) for activities to improve US solar thermal business prospects overseas.

  19. Solar thermal polymerase chain reaction for smartphone-assisted molecular diagnostics

    Science.gov (United States)

    Jiang, Li; Mancuso, Matthew; Lu, Zhengda; Akar, Gunkut; Cesarman, Ethel; Erickson, David

    2014-02-01

    Nucleic acid-based diagnostic techniques such as polymerase chain reaction (PCR) are used extensively in medical diagnostics due to their high sensitivity, specificity and quantification capability. In settings with limited infrastructure and unreliable electricity, however, access to such devices is often limited due to the highly specialized and energy-intensive nature of the thermal cycling process required for nucleic acid amplification. Here we integrate solar heating with microfluidics to eliminate thermal cycling power requirements as well as create a simple device infrastructure for PCR. Tests are completed in less than 30 min, and power consumption is reduced to 80 mW, enabling a standard 5.5 Wh iPhone battery to provide 70 h of power to this system. Additionally, we demonstrate a complete sample-to-answer diagnostic strategy by analyzing human skin biopsies infected with Kaposi's Sarcoma herpesvirus (KSHV/HHV-8) through the combination of solar thermal PCR, HotSHOT DNA extraction and smartphone-based fluorescence detection. We believe that exploiting the ubiquity of solar thermal energy as demonstrated here could facilitate broad availability of nucleic acid-based diagnostics in resource-limited areas.

  20. Selectively coated high efficiency glazing for solar-thermal flat-plate collectors

    International Nuclear Information System (INIS)

    Ehrmann, N.; Reineke-Koch, R.

    2012-01-01

    In order to increase the efficiency of solar-thermal flat-plate collectors at temperatures above 100 °C or with low solar irradiation, we implement a double glazing with a low-emitting (low-e) coating on the inner pane to improve the insulation of the transparent cover. Since commercially available low-e glazing provides only insufficient solar transmittance for the application in thermal flat-plate collectors we are developing a sputter-deposited low e-coating system based on transparent conductive oxides which provides a high solar transmittance of 85% due to additional antireflective coatings and the use of low-iron glass substrates. Durability tests of the developed coating system show that our low e-coating system is well suitable even at high temperatures, humidity and condensation.

  1. Survey of EPA facilities for solar thermal energy applications

    Science.gov (United States)

    Nelson, E. V.; Overly, P. T.; Bell, D. M.

    1980-01-01

    A study was done to assess the feasibility of applying solar thermal energy systems to EPA facilities. A survey was conducted to determine those EPA facilities where solar energy could best be used. These systems were optimized for each specific application and the system/facility combinations were ranked on the basis of greatest cost effectiveness.

  2. Thermal Modeling of the Mars Reconnaissance Orbiter's Solar Panel and Instruments during Aerobraking

    Science.gov (United States)

    Dec, John A.; Gasbarre, Joseph F.; Amundsen, Ruth M.

    2007-01-01

    The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005 and started aerobraking at Mars in March 2006. During the spacecraft s design phase, thermal models of the solar panels and instruments were developed to determine which components would be the most limiting thermally during aerobraking. Having determined the most limiting components, thermal limits in terms of heat rate were established. Advanced thermal modeling techniques were developed utilizing Thermal Desktop and Patran Thermal. Heat transfer coefficients were calculated using a Direct Simulation Monte Carlo technique. Analysis established that the solar panels were the most limiting components during the aerobraking phase of the mission.

  3. Thermal Analysis of TRIO-CINEMA Mission

    Directory of Open Access Journals (Sweden)

    Jaegun Yoo

    2012-03-01

    Full Text Available Thermal analysis and control design are prerequisite essential to design the satellite. In the space environment, it makes satellite survive from extreme hot and cold conditions. In recent years CubeSat mission is developed for many kinds of purpose. Triplet Ionospheric Observatory (TRIO–CubeSat for Ion, Neutral, Electron, MAgnetic fields (CINEMA is required to weigh less than 3 kg and operate on minimal 3 W power. In this paper we describe the thermal analysis and control design for TRIO-CINEMA mission. For this thermal analysis, we made a thermal model of the CubeSat with finite element method and NX6.0 TMG software is used to simulate this analysis model. Based on this result, passive thermal control method has been applied to thermal design of CINEMA. In order to get the better conduction between solar panel and chassis, we choose aluminum 6061-T6 for the material property of standoff. We can increase the average temperature of top and bottom solar panels from -70°C to -40°C and decrease the average temperature of the magnetometer from +93°C to -4°C using black paint on the surface of the chassis, inside of top & bottom solar panels, and magnetometer.

  4. Operational Experience from Solar Thermal Energy Projects

    Science.gov (United States)

    Cameron, C. P.

    1984-01-01

    Over the past few years, Sandia National Laboratories were involved in the design, construction, and operation of a number of DOE-sponsored solar thermal energy systems. Among the systems currently in operation are several industrial process heat projects and the Modular Industrial Solar Retrofit qualification test systems, all of which use parabolic troughs, and the Shenandoah Total Energy Project, which uses parabolic dishes. Operational experience has provided insight to both desirable and undesirable features of the designs of these systems. Features of these systems which are also relevant to the design of parabolic concentrator thermal electric systems are discussed. Other design features discussed are system control functions which were found to be especially convenient or effective, such as local concentrator controls, rainwash controls, and system response to changing isolation. Drive systems are also discussed with particular emphasis of the need for reliability and the usefulness of a manual drive capability.

  5. Survey of active solar thermal collectors, industry and markets in Canada : final report

    International Nuclear Information System (INIS)

    2005-08-01

    A survey of the solar thermal industry in Canada was presented. The aim of the survey was to determine the size of the Canadian solar thermal industry and market. Data were used to derive thermal energy output as well as avoided greenhouse gas (GHG) emissions from solar thermal systems. The questionnaire was distributed to 268 representatives. Results revealed annual sales of 24.2, 26.4 and 37.5 MW TH in 2002, 2003, and 2004 respectively, which represented over 50 per cent growth in the operating base during the 3 year survey period. Sales of all collector types grew substantially during the 3 year period, and survey respondents anticipated 20 per cent growth in both 2005 and 2006. Approximately 10 per cent of all sales were exported during 2002-2004. Unglazed liquid collectors constituted the majority of collector types sold in Canada, almost all of which were sold into the residential sector for swimming pool heating. The majority of air collectors were sold into the industrial/commercial and institutional (I/CI) sectors for use in space heating. Sales of liquid glazed and evacuated tube collectors were split between the residential and I/CI sectors. Residential sales were primarily for domestic water heating. In 2004, 23 per cent of sales in the residential sector were for combination domestic hot water and space heating applications, an indication of strong growth. Results of the survey indicated that the solar thermal market in Quebec differed from other regions, with more than double the annual per capita revenue of any other region as a result of greater market penetration of unglazed air collectors. Calculations of the GHG emissions avoided due to active solar thermal systems were made based on historical estimates of solar thermal installations. A model was developed to calculate an operating base by collector type from 1979 to the present. The model showed that many of the systems installed during the 1980s were decommissioned during the 1990s, and that

  6. Solar Thermal Enhanced Oil Recovery, (STEOR) Volume 1: Executive summary

    Science.gov (United States)

    Elzinga, E.; Arnold, C.; Allen, D.; Garman, R.; Joy, P.; Mitchell, P.; Shaw, H.

    1980-11-01

    Thermal enhanced oil recovery is widely used in California to aid in the production of heavy oils. Steam injection either to stimulate individual wells or to drive oil to the producing wells, is by far the major thermal process today and has been in use for over 20 years. Since steam generation at the necessary pressures (generally below 4000 kPa (580 psia)) is within the capabilities of present day solar technology, it is logical to consider the possibilities of solar thermal enhanced oil recovery (STEOR). The present project consisted of an evaluation of STEOR. Program objectives, system selection, trade-off studies, preliminary design, cost estimate, development plan, and market and economic analysis are summarized.

  7. Functionalized Graphene Enables Highly Efficient Solar Thermal Steam Generation.

    Science.gov (United States)

    Yang, Junlong; Pang, Yunsong; Huang, Weixin; Shaw, Scott K; Schiffbauer, Jarrod; Pillers, Michelle Anne; Mu, Xin; Luo, Shirui; Zhang, Teng; Huang, Yajiang; Li, Guangxian; Ptasinska, Sylwia; Lieberman, Marya; Luo, Tengfei

    2017-06-27

    The ability to efficiently utilize solar thermal energy to enable liquid-to-vapor phase transition has great technological implications for a wide variety of applications, such as water treatment and chemical fractionation. Here, we demonstrate that functionalizing graphene using hydrophilic groups can greatly enhance the solar thermal steam generation efficiency. Our results show that specially functionalized graphene can improve the overall solar-to-vapor efficiency from 38% to 48% at one sun conditions compared to chemically reduced graphene oxide. Our experiments show that such an improvement is a surface effect mainly attributed to the more hydrophilic feature of functionalized graphene, which influences the water meniscus profile at the vapor-liquid interface due to capillary effect. This will lead to thinner water films close to the three-phase contact line, where the water surface temperature is higher since the resistance of thinner water film is smaller, leading to more efficient evaporation. This strategy of functionalizing graphene to make it more hydrophilic can be potentially integrated with the existing macroscopic heat isolation strategies to further improve the overall solar-to-vapor conversion efficiency.

  8. Si surface passivation by SiOx:H films deposited by a low-frequency ICP for solar cell applications

    International Nuclear Information System (INIS)

    Zhou, H P; Wei, D Y; Xu, S; Xiao, S Q; Xu, L X; Huang, S Y; Guo, Y N; Khan, S; Xu, M

    2012-01-01

    Hydrogenated silicon suboxide (SiO x :H) thin films are fabricated by a low-frequency inductively coupled plasma of hydrogen-diluted SiH 4 + CO 2 at a low temperature (100 °C). Introduction of a small amount of oxygen into the film results in a predominantly amorphous structure, wider optical bandgap, increased H content, lower conductivity and higher activation energy. The minority carrier lifetime in the SiO x :H-passivated p-type Si substrate is up to 428 µs with a reduced incubation layer at the interface. The associated surface recombination velocity is as low as 70 cm s -1 . The passivation behaviour dominantly originates from the H-related chemical passivation. The passivation effect is also demonstrated by the excellent photovoltaic performance of the heterojunction solar cell with the SiO x :H-based passivation and emitter layers.

  9. High-temperature molten salt thermal energy storage systems for solar applications

    Science.gov (United States)

    Petri, R. J.; Claar, T. D.; Ong, E.

    1983-01-01

    Experimental results of compatibility screening studies of 100 salt/containment/thermal conductivity enhancement (TCE) combinations for the high temperature solar thermal application range of 704 deg to 871 C (1300 to 1600 F) are presented. Nine candidate containment/HX alloy materials and two TCE materials were tested with six candidate solar thermal alkali and alkaline earth carbonate storage salts (both reagent and technical grade of each). Compatibility tests were conducted with salt encapsulated in approx. 6.0 inch x 1 inch welded containers of test material from 300 to 3000 hours. Compatibility evaluations were end application oriented, considering the potential 30 year lifetime requirement of solar thermal power plant components. Analyses were based on depth and nature of salt side corrosion of materials, containment alloy thermal aging effects, weld integrity in salt environment, air side containment oxidation, and chemical and physical analyses of the salt. A need for more reliable, and in some cases first time determined thermophysical and transport property data was also identified for molten carbonates in the 704 to 871 C temperature range. In particular, accurate melting point (mp) measurements were performed for Li2CO3 and Na2CO3 while melting point, heat of fusion, and specific heat determinations were conducted on 81.3 weight percent Na2CO3-18.7 weight percent K2CO3 and 52.2 weight percent BaCO3-47.8 weight percent Na2CO3 to support future TES system design and ultimate scale up of solar thermal energy storage (TES) subsystems.

  10. Applicability research on passive design of residential buildings in hot summer and cold winter zone in China

    Science.gov (United States)

    Zhang, Hui; Wang, Huihui; Zhou, Xuan

    2017-04-01

    Passive design has long been a concern as an effective way of building energy efficiency. However, different urban climate characteristics determine the time-effectiveness of passive design. According to the climate characteristics of hot summer and cold winter zone in China, this research chose five cities, Shanghai, Wuhan, Chongqing, Nanjing and Changsha, to analyze their residential building energy consumption and thermal environment conditions. Based on Weather Tool calculation and analysis, the purpose of this research is to put forward the concept of Suitable Degree (SD), namely the applicability of the passive design. In addition, five cities’ SD of passive design technology had been analyzed from aspect of ventilation, temperature, solar radiation and envelope, then passive design strategies and methods of five cities’ residential building were discussed.

  11. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells.

    Science.gov (United States)

    Chen, Qi; Zhou, Huanping; Song, Tze-Bin; Luo, Song; Hong, Ziruo; Duan, Hsin-Sheng; Dou, Letian; Liu, Yongsheng; Yang, Yang

    2014-07-09

    To improve the performance of the polycrystalline thin film devices, it requires a delicate control of its grain structures. As one of the most promising candidates among current thin film photovoltaic techniques, the organic/inorganic hybrid perovskites generally inherit polycrystalline nature and exhibit compositional/structural dependence in regard to their optoelectronic properties. Here, we demonstrate a controllable passivation technique for perovskite films, which enables their compositional change, and allows substantial enhancement in corresponding device performance. By releasing the organic species during annealing, PbI2 phase is presented in perovskite grain boundaries and at the relevant interfaces. The consequent passivation effects and underlying mechanisms are investigated with complementary characterizations, including scanning electron microscopy (SEM), X-ray diffraction (XRD), time-resolved photoluminescence decay (TRPL), scanning Kelvin probe microscopy (SKPM), and ultraviolet photoemission spectroscopy (UPS). This controllable self-induced passivation technique represents an important step to understand the polycrystalline nature of hybrid perovskite thin films and contributes to the development of perovskite solar cells judiciously.

  12. Optimization of a PV/T (photovoltaic/thermal) active solar still

    International Nuclear Information System (INIS)

    Saeedi, F.; Sarhaddi, F.; Behzadmehr, A.

    2015-01-01

    In this paper, the optimization of a PV/T (photovoltaic/thermal) active solar still is carried out. Analytical expressions for glass cover temperature, basin temperature, brackish water temperature and fresh water productivity are obtained by writing energy balance for different components of PV/T active solar still. The output electrical power of PV/T active solar still is calculated by four-parameter I–V (current–voltage) model. Objective function in present study is the energy efficiency of PV/T active solar still. A computer simulation program has been developed in order to obtain thermal and electrical parameters, respectively. The simulation results of the present study are in fair agreement with the experimental data of previous literatures. Finally, the optimization of PV/T active solar still has been carried out and the optimized value of mass flow rate, number of PV/T collector and the objective function have been obtained. Furthermore, the effect of various operating parameters on energy efficiency have been investigated. - Highlights: • The comprehensive optimization of a PV/T active solar still is carried out. • Present study is based on numerical simulation. • A modified energy efficiency for PV/T active solar still is obtained. • The effect of design and operating parameters is investigated on energy efficiency

  13. The influence of thermal comfort and user control on the design of a passive solar school building-Locksheath Primary School

    Energy Technology Data Exchange (ETDEWEB)

    Baker, N

    1982-12-01

    This article describes the design of a Primary School at Locksheath, Hampshire, England. The design is the result of collaboration between the Hampshire County Council's Architect's Department and the Martin Centre for Architectural and Urban Studies, University of Cambridge. The design has been strongly influenced by considerations of energy conservation, maximum use of solar energy, and thermal comfort. Stress is placed on the role of the occupant in the control of the building. Predictive analysis indicates that the large conservatory incorporated makes a considerable reduction in heating energy demand.

  14. Preliminary experimental study of post-combustion carbon capture integrated with solar thermal collectors

    International Nuclear Information System (INIS)

    Wang, Fu; Zhao, Jun; Li, Hailong; Deng, Shuai; Yan, Jinyue

    2017-01-01

    Highlights: • A solar assisted chemical absorption pilot system with two types of collectors (parabolic trough and linear Fresnel reflector) has been constructed. • Performance of two types of solar collectors has been investigated and compared at steady and transient states. • The operations of the pilot system with and without solar assisted have been tested. • The pilot system responds to the temperature of the heat transfer fluid regularly. - Abstract: The amine-based chemical absorption for CO_2 capture normally needs to extract steam from the steam turbine cycle for solvent regeneration. Integrating solar thermal energy enables the reduction of steam extraction and therefore, can reduce the energy penalty caused by CO_2 capture. In this paper, a pilot system of the solar thermal energy assisted chemical absorption was built to investigate the system performance. Two types of solar thermal energy collectors, parabolic trough and linear Fresnel reflector, were tested. It was found that the values of operation parameters can meet the requirements of designed setting parameters, and the solar collectors can provide the thermal energy required by the reboiler, while its contribution was mainly determined by solar irradiation. The solvent regeneration was investigated by varying the heat input. The results show that the response time of the reboiler heat duty is longer than those of the reboiler temperature and desorber pressure. This work provides a better understanding about the overall operation and control of the system.

  15. Preliminary design of the thermal protection system for solar probe

    Science.gov (United States)

    Dirling, R. B., Jr.; Loomis, W. C.; Heightland, C. N.

    1982-01-01

    A preliminary design of the thermal protection system for the NASA Solar Probe spacecraft is presented. As presently conceived, the spacecraft will be launched by the Space Shuttle on a Jovian swing-by trajectory and at perihelion approach to three solar radii of the surface of the Earth's sun. The system design satisfies maximum envelope, structural integrity, equipotential, and mass loss/contamination requirements by employing lightweight carbon-carbon emissive shields. The primary shield is a thin shell, 15.5-deg half-angle cone which absorbs direct solar flux at up to 10-deg off-nadir spacecraft pointing angles. Secondary shields of sandwich construction and low thickness-direction thermal conductivity are used to reduce the primary shield infrared radiation to the spacecraft payload.

  16. The potential of solar energy in the Netherlands

    International Nuclear Information System (INIS)

    Sinke, W.C.; De Geus, A.C.

    1993-01-01

    Solar energy in the Netherlands is not yet a well-known phenomenon. Still, the potential of solar energy to save or generate energy is large. Several forms of solar energy, as well as its possibilities and limitations, are introduced in this article. Attention is paid to active and passive thermal solar energy, and photovoltaic solar energy. Also the involvement of different parties in introducing solar energy is discussed. The next 10-20 years will be characterized by large-scale practical experiments and market introduction. The application of solar energy should be taken into account when planning urban areas. It is expected that ongoing developments in all fields of solar energy will result in a considerable improvement of the price/performance ratio and many new possibilities. 4 figs., 4 ills., 14 refs

  17. An integrated solar thermal power system using intercooled gas turbine and Kalina cycle

    International Nuclear Information System (INIS)

    Peng, Shuo; Hong, Hui; Jin, Hongguang; Wang, Zhifeng

    2012-01-01

    A new solar tower thermal power system integrating the intercooled gas turbine top cycle and the Kalina bottoming cycle is proposed in the present paper. The thermodynamic performance of the proposed system is investigated, and the irreversibility of energy conversion is disclosed using the energy–utilization diagram method. On the top cycle of the proposed system, the compressed air after being intercooled is heated at 1000 °C or higher at the solar tower receiver and is used to drive the gas turbine to generate power. The ammonia–water mixture as the working substance of the bottom cycle recovers the waste heat from the gas turbine to generate power. A concise analytical formula of solar-to-electric efficiency of the proposed system is developed. As a result, the peak solar-to-electric efficiency of the proposed system is 27.5% at a gas turbine inlet temperature of 1000 °C under the designed solar direct normal irradiance of 800 W/m 2 . Compared with a conventional solar power tower plant, the proposed integrated system conserves approximately 69% of consumed water. The results obtained in the current study provide an approach to improve solar-to-electric efficiency and offer a potential to conserve water for solar thermal power plants in arid area. -- Highlights: ► An Integrated Solar Thermal Power System is modeled. ► A formula forecasting the thermodynamic performance is proposed. ► The irreversibility of energy conversion is disclosed using an energy utilization method. ► The effect of key operational parameters on thermal performance is examined.

  18. Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Adnan; Othman, Mohd Yusof; Ruslan, Mohd Hafidz; Mat, Sohif; Sopian, Kamaruzzaman [Solar Energy Research Institute Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2011-01-15

    Flat plate photovoltaic/thermal (PV/T) solar collector produces both thermal energy and electricity simultaneously. This paper presents the state-of-the-art on flat plate PV/T collector classification, design and performance evaluation of water, air and combination of water and/or air based. This review also covers the future development of flat plate PV/T solar collector on building integrated photovoltaic (BIPV) and building integrated photovoltaic/thermal (BIPVT) applications. Different designs feature and performance of flat plate PV/T solar collectors have been compared and discussed. Future research and development (R and D) works have been elaborated. The tube and sheet design is the simplest and easiest to be manufactured, even though, the efficiency is 2% lower compared to other types of collectors such as, channel, free flow and two-absorber. It is clear from the review that for both air and water based PV/T solar collectors, the important key factors that influenced the efficiency of the system are the area where the collector covered, the number of passes and the gap between the absorber collector and solar cells. From the literature review, it is obvious that the flat plate PV/T solar collector is an alternative promising system for low-energy applications in residential, industrial and commercial buildings. Other possible areas for the future works of BIPVT are also mentioned. (author)

  19. Improved performance of colloidal CdSe quantum dot-sensitized solar cells by hybrid passivation.

    Science.gov (United States)

    Huang, Jing; Xu, Bo; Yuan, Chunze; Chen, Hong; Sun, Junliang; Sun, Licheng; Agren, Hans

    2014-11-12

    A hybrid passivation strategy is employed to modify the surface of colloidal CdSe quantum dots (QDs) for quantum dot-sensitized solar cells (QDSCs), by using mercaptopropionic acid (MPA) and iodide anions through a ligand exchange reaction in solution. This is found to be an effective way to improve the performance of QDSCs based on colloidal QDs. The results show that MPA can increase the coverage of the QDs on TiO2 electrodes and facilitate the hole extraction from the photoxidized QDs, and simultaneously, that the iodide anions can remedy the surface defects of the CdSe QDs and thus reduce the recombination loss in the device. This hybrid passivation treatment leads to a significant enhancement of the power conversion efficiency of the QDSCs by 41%. Furthermore, an optimal ratio of iodide ions to MPA was determined for favorable hybrid passivation; results show that excessive iodine anions are detrimental to the loading of the QDs. This study demonstrates that the improvement in QDSC performance can be realized by using a combination of different functional ligands to passivate the QDs, and that ligand exchange in solution can be an effective approach to introduce different ligands.

  20. Interfacial Passivation of the p-Doped Hole-Transporting Layer Using General Insulating Polymers for High-Performance Inverted Perovskite Solar Cells.

    Science.gov (United States)

    Zhang, Fan; Song, Jun; Hu, Rui; Xiang, Yuren; He, Junjie; Hao, Yuying; Lian, Jiarong; Zhang, Bin; Zeng, Pengju; Qu, Junle

    2018-05-01

    Organic-inorganic lead halide perovskite solar cells (PVSCs), as a competing technology with traditional inorganic solar cells, have now realized a high power conversion efficiency (PCE) of 22.1%. In PVSCs, interfacial carrier recombination is one of the dominant energy-loss mechanisms, which also results in the simultaneous loss of potential efficiency. In this work, for planar inverted PVSCs, the carrier recombination is dominated by the dopant concentration in the p-doped hole transport layers (HTLs), since the F4-TCNQ dopant induces more charge traps and electronic transmission channels, thus leading to a decrease in open-circuit voltages (V OC ). This issue is efficiently overcome by inserting a thin insulating polymer layer (poly(methyl methacrylate) or polystyrene) as a passivation layer with an appropriate thickness, which allows for increases in the V OC without significantly sacrificing the fill factor. It is believed that the passivation layer attributes to the passivation of interfacial recombination and the suppression of current leakage at the perovskite/HTL interface. By manipulating this interfacial passivation technique, a high PCE of 20.3% is achieved without hysteresis. Consequently, this versatile interfacial passivation methodology is highly useful for further improving the performance of planar inverted PVSCs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Status and subjects of thermal-hydraulic analysis for next-generation LWRs with passive safety systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The present status and subjects on thermal-hydraulic analysis for next-generation light water reactors (LWRs) with passive safety systems were summarized based on survey results and discussion by subcommittee on improvement of reactor thermal-hydraulic analysis codes under nuclear code committee in Japan Atomic Energy Research Institute. This survey was performed to promote the research of improvement of reactor thermal-hydraulic analysis codes in future. In the first part of this report, the status and subjects on system analysis and those on evaluation of passive safety system performance are summarized for various types of reactor proposed before. In the second part, the status and subjects on multidimensional two-phase flow analysis are reviewed, since the multidimensional analysis was recognized as one of most important subjects through the investigation in the first part. Besides, databases for bubbly flow and annular dispersed flow were explored, those are needed to assess and verify each multidimensional analytical method. The contents in this report are the forefront of thermal-hydraulic analysis for LWRs and those include current findings for the development of multidimensional two-phase flow analytical method. Thus, we expect that the contents can offer various useful information against the improvement of reactor thermal-hydraulic analysis codes in future. (author)

  2. Passive Solar Landscape Design: Its Impact on Fossil Fuel Consumption Through Landscape Design

    OpenAIRE

    Boelt, Robin Wiatt

    2006-01-01

    Gas, electricity, heating and cooling buildings - comfort â our lives revolve around fossil fuels. Technology and the demands of living in todayâ s society add to our gigantic fossil fuel appetite. With gas prices topping three dollars per gallon, changes must be made. This thesis project presents an analysis of passive solar landscape design (PSLD) principles used to create microclimates within the landscape, and thereby increasing human comfort both indoors and outdoors. The ...

  3. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels.

    Science.gov (United States)

    Kucharski, Timothy J; Ferralis, Nicola; Kolpak, Alexie M; Zheng, Jennie O; Nocera, Daniel G; Grossman, Jeffrey C

    2014-05-01

    Large-scale utilization of solar-energy resources will require considerable advances in energy-storage technologies to meet ever-increasing global energy demands. Other than liquid fuels, existing energy-storage materials do not provide the requisite combination of high energy density, high stability, easy handling, transportability and low cost. New hybrid solar thermal fuels, composed of photoswitchable molecules on rigid, low-mass nanostructures, transcend the physical limitations of molecular solar thermal fuels by introducing local sterically constrained environments in which interactions between chromophores can be tuned. We demonstrate this principle of a hybrid solar thermal fuel using azobenzene-functionalized carbon nanotubes. We show that, on composite bundling, the amount of energy stored per azobenzene more than doubles from 58 to 120 kJ mol(-1), and the material also maintains robust cyclability and stability. Our results demonstrate that solar thermal fuels composed of molecule-nanostructure hybrids can exhibit significantly enhanced energy-storage capabilities through the generation of template-enforced steric strain.

  4. Analysis of passive systems as a tool for energy saving in buildings: solar control; Analisis de sistemas pasivos como herramienta para el ahorro de energia en edificaciones: Control solar

    Energy Technology Data Exchange (ETDEWEB)

    Saravia, Maricela; Morillon Galvez, David [Instituto de Ingenieria, UNAM, Mexico, D. F. (Mexico)

    1999-07-01

    A bioclimatic study of El Salvador is presented, with the purpose of using window eaves as elements of passive solar control and to determine the optimal angles of orientation, in order to diminish the thermal gains by direct solar radiation and to manage to get close to the comfort conditions. The former with the intention of integrating measures that help to obtain energy efficiency and comfortable buildings, for the conditions of warm humid climate, characteristic of a Central American country like El Salvador. Besides offering a document of consultation among the professionals dedicated to the design and as base of bioclimatic considerations that must have the construction regulations. As a conclusion the optimal angles of eaves for each orientation are presented and a quantitative estimation of the savings that would imply not to consume electrical energy in cooling systems using these elements as a protection to the direct solar radiation. [Spanish] Se presenta un estudio del bioclima de El Salvador, con el fin de utilizar aleros de ventana como elementos de control solar pasivo y determinar los angulos optimos por orientacion, para disminuir las ganancias termicas por radiacion solar directa y lograr acercar a las condiciones de confort. Lo anterior con el objeto de integrar medidas que coadyuven a lograr edificios energeticamente eficientes y confortables, para las condiciones de clima calido humedo, caracteristico de un pais centroamericano como El Salvador. Ademas de brindar un documento de consulta entre los profesionales dedicados al dise y como base de consideraciones bioclimaticas que debe tener el reglamento de construcciones. Como conclusion se presentan los angulos optimos de alero por cada orientacion y una estimacion cuantitativa del ahorro que implicaria el no consumir energia electrica en sistemas de enfriamiento utilizando estos elementos como una proteccion a la radiacion solar directa.

  5. Reliability of thermal-hydraulic passive safety systems

    International Nuclear Information System (INIS)

    D'Auria, F.; Araneo, D.; Pierro, F.; Galassi, G.

    2014-01-01

    The scholar will be informed of reliability concepts applied to passive system adopted for nuclear reactors. Namely, for classical components and systems the failure concept is associated with malfunction of breaking of hardware. In the case of passive systems the failure is associated with phenomena. A method for studying the reliability of passive systems is discussed and is applied. The paper deals with the description of the REPAS (Reliability Evaluation of Passive Safety System) methodology developed by University of Pisa (UNIPI) and with results from its application. The general objective of the REPAS methodology is to characterize the performance of a passive system in order to increase the confidence toward its operation and to compare the performances of active and passive systems and the performances of different passive systems

  6. Barriers to the Diffusion of Solar Thermal Technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Despite its considerable potential in household, domestic and industry sectors, the possible contribution of solar heat is often neglected in many academic and institutional energy projections and scenarios. This is best explained by the frequent failure to distinguish heat and work as two different forms of energy transfers. As a result, policy makers in many countries or States have tended to pay lesser attention to solar thermal technologies than to other renewable energy technologies.

  7. Mathematical Modeling and Numerical Analysis of Thermal Distribution in Arch Dams considering Solar Radiation Effect

    Science.gov (United States)

    Mirzabozorg, H.; Hariri-Ardebili, M. A.; Shirkhan, M.; Seyed-Kolbadi, S. M.

    2014-01-01

    The effect of solar radiation on thermal distribution in thin high arch dams is investigated. The differential equation governing thermal behavior of mass concrete in three-dimensional space is solved applying appropriate boundary conditions. Solar radiation is implemented considering the dam face direction relative to the sun, the slop relative to horizon, the region cloud cover, and the surrounding topography. It has been observed that solar radiation changes the surface temperature drastically and leads to nonuniform temperature distribution. Solar radiation effects should be considered in thermal transient analysis of thin arch dams. PMID:24695817

  8. Mathematical modeling and numerical analysis of thermal distribution in arch dams considering solar radiation effect.

    Science.gov (United States)

    Mirzabozorg, H; Hariri-Ardebili, M A; Shirkhan, M; Seyed-Kolbadi, S M

    2014-01-01

    The effect of solar radiation on thermal distribution in thin high arch dams is investigated. The differential equation governing thermal behavior of mass concrete in three-dimensional space is solved applying appropriate boundary conditions. Solar radiation is implemented considering the dam face direction relative to the sun, the slop relative to horizon, the region cloud cover, and the surrounding topography. It has been observed that solar radiation changes the surface temperature drastically and leads to nonuniform temperature distribution. Solar radiation effects should be considered in thermal transient analysis of thin arch dams.

  9. The International Standards for Solar Thermal Collectors and Components as a Medium of Quality Assurance

    International Nuclear Information System (INIS)

    Alkishriwi, Nouri; Schorn, Christian A.; Theis, Danjana

    2014-01-01

    Within this publication a detailed overview about the national and international solal't1lel1nai standards is made. The various tests are described and a cross reference list for comparing the different standards is given. Moreover a certification model is presented and the advantage of third party assessment is carried out. The requirement for a solar thermal test laboratory to conduct independent third party assessment by means of an ISO/IEC17065 accreditation is given. Finally the concept of a quality system for solar thermal markets is explained and major advantages are outlined. Solar thermal systems and their components are described in various national and international standards. In Europe the standard EN12975 defines the regulations and requirements for solar thermal collectors. The standard EN12976 is established for the evaluation of factory made solar thermal systems. The EN12977 is the state of the art standard for the evaluation of custom build systems. Nowadays in Libya the standard ISO9806 for solar collectors and the standard ISO9459 for domestic water heating systems define the regulations and requirements for solar thermal collectors and systems. In the meanwhile, empowered Center for Renewable Energy and Energy Efficiency Certification Body is under construction. This body is working now to set the minimum requirements of the testing facilities of solar thermal systems. The international standard for collector testing is the ISO9806 and the standard ISO9459 Part 2, 4, 5 for domestic water heating systems. Within the year 2013 a revision of the ISO9806 will be published and, for the first time, a consistent harmonized standard for the main solar thermal markets will be set in force. Besides the various standards for solar thermal products a meaningful element for the quality assurance and the customer protection is third party certification. Third party certification involves an independent assessment, declaring that specified requirements

  10. Numerical analysis of using hybrid photovoltaic-thermal solar water heater in Iran

    Directory of Open Access Journals (Sweden)

    M Mohammadi Sarduei

    2017-05-01

    Full Text Available Introduction Electrical performance of solar cells decreases with increasing cell temperature, basically because of growth of the internal charge carrier recombination rates, caused by increased carrier concentrations. Hybrid Photovoltaic/thermal (PVT systems produce electrical and thermal energy simultaneously. PVT solar collectors convert the heat generated in the solar cells to low temperature useful heat energy and so they provide a lower working temperature for solar cells which subsequently leads to a higher electrical efficiency. Recently, in Iran, the reforming government policy in subsidy and increasing fossil fuels price led to growing an interest in use of renewable energies for residual and industrial applications. In spite of this, the PV power generator investment is not economically feasible, so far. Hybrid PVT devices are well known as an alternative method to improve energy performance and therefore economic feasibility of the conventional PV systems. The aim of this study is to investigate the performance of a PVT solar water heater in four different cities of Iran using TRNSYS program. Materials and Methods The designed PVT solar water system consists of two separate water flow circuits namely closed cycle and open circuit. The closed cycle circuit was comprised of a solar PVT collector (with nominal power of 880 W and area of 5.6 m2, a heat exchanger in the tank (with volume of 300 L, a pump and connecting pipes. The water stream in the collector absorbs the heat accumulated in the solar cells and delivers it to the water in the tank though the heat exchanger. An on/off controller system was used to activate the pump when the collector outlet temperature was higher than that of the tank in the closed cycle circuit. The water in the open circuit, comes from city water at low temperature, enters in the lower part of the storage tank where the heat transfer occurs between the two separate circuits. An auxiliary heater, connected

  11. A review of installed solar photovoltaic and thermal collector capacities in relation to solar potential for the EU-15

    International Nuclear Information System (INIS)

    Celik, Ali Naci; Muneer, Tariq; Clarke, Peter

    2009-01-01

    This article analyses the energy statistics of 15 European Union countries (EU-15), giving special emphasis to the installed solar photovoltaic and thermal collector capacity. The installed capacities per capita are analysed in relation to the solar radiation income of respective countries with the view to explore the relationship between the solar income and its utilisation as of the year 2006. In terms of the installed solar thermal collector capacity, Austria leads the statistics amongst the countries studied with 223W th collector capacity per capita, followed by Greece with 207W th . Except for Greece, it is observed that the countries with high solar radiation income are lacking to realise their solar potential. Regarding the installed photovoltaic power per capita, Luxembourg leads the pack by a wide margin with 47W p capacity, followed by Germany with 30W p . Fiscal instruments to invigorate the deployment of solar energy have also been identified in this work. (author)

  12. Effect of passive cooling strategies on overheating in low energy residential buildings for Danish climate

    DEFF Research Database (Denmark)

    Simone, Angela; Avantaggiato, Marta; de Carli, Michele

    2014-01-01

    creating not negligible thermal discomfort. In the present work the effect of passive strategies, such as solar shading and natural night-time ventilation, are evaluated through computer simulations. The analyses are performed for 1½-storey single-family house in Copenhagen’s climate. The main result......Climate changes have progressively produced an increase of outdoors temperature resulting in tangible warmer summers even in cold climate regions. An increased interest for passive cooling strategies is rising in order to overcome the newly low energy buildings’ overheating issue. The growing level...

  13. Thermal performance of solar district heating plants in Denmark

    DEFF Research Database (Denmark)

    Furbo, Simon; Perers, Bengt; Bava, Federico

    2014-01-01

    The market for solar heating plants connected to district heating systems is expanding rapidly in Denmark. It is expected that by the end of 2014 the 10 largest solar heating plants in Europe will be located in Denmark. Measurements from 23 Danish solar heating plants, all based on flat plate solar...... collectors mounted on the ground, shows measured yearly thermal performances of the solar heating plants placed in the interval from 313 kWh/m² collector to 493 kWh/m² collector with averages for all plants of 411 kWh/m² collector for 2012 and 450 kWh/m² collector for 2013. Theoretical calculations show...... of the cost/performance ratio for solar collector fields, both with flat plate collectors and with concentrating tracking solar collectors. It is recommended to continue monitoring and analysis of all large solar heating plants to document the reliability of the solar heating plants. It is also recommended...

  14. Thermal design of spacecraft solar arrays using a polyimide foam

    International Nuclear Information System (INIS)

    Bianco, N; Iasiello, M; Naso, V

    2015-01-01

    The design of the Thermal Control System (TCS) of spacecraft solar arrays plays a fundamental role. Indeed, the spacecraft components must operate within a certain range of temperature. If this doesn't occur, their performance is reduced and they may even break. Solar arrays, which are employed to recharge batteries, are directly exposed to the solar heat flux, and they need to be insulated from the earth's surface irradiation. Insulation is currently provided either with a white paint coating or with a Multi Layer Insulation (MLI) system [1]. A configuration based on an open-cell polyimide foam has also been recently proposed [2]. Using polyimide foams in TCSs looks very attractive in terms of costs, weight and assembling. An innovative thermal analysis of the above cited TCS configurations is carried out in this paper, by solving the porous media energy equation, under the assumption of Local Thermal Equilibrium (LTE) between the two phases. Radiation effects through the solar array are also considered by using the Rosseland approximation. Under a stationary daylight condition, temperature profiles are obtained by means of the finite-element based code COMSOL Multiphysics ® . Finally, since the weight plays an important role in aerospace applications, weights of the three TCS configurations are compared. (paper)

  15. Thermal design of spacecraft solar arrays using a polyimide foam

    Science.gov (United States)

    Bianco, N.; Iasiello, M.; Naso, V.

    2015-11-01

    The design of the Thermal Control System (TCS) of spacecraft solar arrays plays a fundamental role. Indeed, the spacecraft components must operate within a certain range of temperature. If this doesn't occur, their performance is reduced and they may even break. Solar arrays, which are employed to recharge batteries, are directly exposed to the solar heat flux, and they need to be insulated from the earth's surface irradiation. Insulation is currently provided either with a white paint coating or with a Multi Layer Insulation (MLI) system [1]. A configuration based on an open-cell polyimide foam has also been recently proposed [2]. Using polyimide foams in TCSs looks very attractive in terms of costs, weight and assembling. An innovative thermal analysis of the above cited TCS configurations is carried out in this paper, by solving the porous media energy equation, under the assumption of Local Thermal Equilibrium (LTE) between the two phases. Radiation effects through the solar array are also considered by using the Rosseland approximation. Under a stationary daylight condition, temperature profiles are obtained by means of the finite-element based code COMSOL Multiphysics®. Finally, since the weight plays an important role in aerospace applications, weights of the three TCS configurations are compared.

  16. Comparison of Thermal Performances between Low Porosity Perforate Plate and Flat Plate Solar Air Collector

    Science.gov (United States)

    Chan, Hoy-Yen; Vinson, A. A.; Baljit, S. S. S.; Ruslan, M. H.

    2018-04-01

    Flat plate solar air collector is the most common collector design, which is relatively simpler to fabricate and lower cost. In the present study, perforated plate solar collector was developed to improve the system thermal performance. A glazed perforated plate of 6mm holes diameter with square geometry was designed and installed as the absorber of the collector. The influences of solar radiation intensity and mass flow rate on the thermal performance were investigated. The perforated collector was compared with the flat plate solar collector under the same operating conditions. The highest values of thermal efficiency in this study for the perforated plate (PP) and the flat plate (FP) solar collectors were 59% and 36% respectively, at solar radiation intensity of 846 Wm-2 and mass flow rate of 0.02 kgs-1. Furthermore, PP collector gave better thermal performance compared to FP collector; and compared to previous studies, the present perforated design was compatible with the flat plate with double pass designs.

  17. Wet-Chemical Preparation of Silicon Tunnel Oxides for Transparent Passivated Contacts in Crystalline Silicon Solar Cells.

    Science.gov (United States)

    Köhler, Malte; Pomaska, Manuel; Lentz, Florian; Finger, Friedhelm; Rau, Uwe; Ding, Kaining

    2018-05-02

    Transparent passivated contacts (TPCs) using a wide band gap microcrystalline silicon carbide (μc-SiC:H(n)), silicon tunnel oxide (SiO 2 ) stack are an alternative to amorphous silicon-based contacts for the front side of silicon heterojunction solar cells. In a systematic study of the μc-SiC:H(n)/SiO 2 /c-Si contact, we investigated selected wet-chemical oxidation methods for the formation of ultrathin SiO 2 , in order to passivate the silicon surface while ensuring a low contact resistivity. By tuning the SiO 2 properties, implied open-circuit voltages of 714 mV and contact resistivities of 32 mΩ cm 2 were achieved using μc-SiC:H(n)/SiO 2 /c-Si as transparent passivated contacts.

  18. Experimental study on comprehensive utilization of solar energy and energy balance in an integrated solar house

    International Nuclear Information System (INIS)

    Chang, Huawei; Liu, Yuting; Shen, Jinqiu; Xiang, Can; He, Sinian; Wan, Zhongmin; Jiang, Meng; Duan, Chen; Shu, Shuiming

    2015-01-01

    Highlights: • Active and passive solar house technology is integrated in the solar house. • Solar thermal system and solar photoelectric system are measured and analyzed. • Energy balance and energy consumption are analyzed with valuable experimental data. • “Zero energy consumption” is truly achieved with the solar supply rate of 1.19 in winter. - Abstract: An integrated solar house with numerous advanced envelops is designed and constructed to investigate the comprehensive utilization of solar energy, energy efficiency and energy balance, which combines active solar house technology with passive solar house technology including solar photovoltaic system, solar water heating system, direct-gain door and windows. Solar radiation intensity, performance of the photovoltaic system, water temperature, and indoor and outdoor temperature are measured, results of the experiments indicate that solar glass window on the south wall can maintain the average indoor temperature at 21.4 °C in the case of average outdoor temperature at 11.2 °C without any external heat supply. The output current of the solar photovoltaic system shows the same trend as solar radiation intensity. When the intensity is 619.7 W/m"2, the instantaneous generation power could reach a value of 781.9 W, cumulative capacity throughout the day achieves 4.56 kW h and photovoltaic conversion efficiency 9.8%. When the average intensity throughout a day is 358 W/m"2, the solar water heating system could help to raise the temperature of 450 L water by 30 °C with its heat collecting efficiency being 37.4%. Through the analysis of the overall energy system in the solar house, it can be derived that this solar house could achieve “zero energy consumption” in winter with the solar supply rate at 1.19.

  19. Nanofluid Types, Their Synthesis, Properties and Incorporation in Direct Solar Thermal Collectors: A Review.

    Science.gov (United States)

    Chamsa-Ard, Wisut; Brundavanam, Sridevi; Fung, Chun Che; Fawcett, Derek; Poinern, Gerrard

    2017-05-31

    The global demand for energy is increasing and the detrimental consequences of rising greenhouse gas emissions, global warming and environmental degradation present major challenges. Solar energy offers a clean and viable renewable energy source with the potential to alleviate the detrimental consequences normally associated with fossil fuel-based energy generation. However, there are two inherent problems associated with conventional solar thermal energy conversion systems. The first involves low thermal conductivity values of heat transfer fluids, and the second involves the poor optical properties of many absorbers and their coating. Hence, there is an imperative need to improve both thermal and optical properties of current solar conversion systems. Direct solar thermal absorption collectors incorporating a nanofluid offers the opportunity to achieve significant improvements in both optical and thermal performance. Since nanofluids offer much greater heat absorbing and heat transfer properties compared to traditional working fluids. The review summarizes current research in this innovative field. It discusses direct solar absorber collectors and methods for improving their performance. This is followed by a discussion of the various types of nanofluids available and the synthesis techniques used to manufacture them. In closing, a brief discussion of nanofluid property modelling is also presented.

  20. Heating up the market with solar thermal energy; Mit Solarthermie den Markt aufheizen

    Energy Technology Data Exchange (ETDEWEB)

    Leukefeld, T. [Soli fer Solardach GmbH, Freiberg (Germany)

    2006-07-01

    Compared to the market for solar current, the market for solar thermal energy only grows slowly. The markets depends on subsidies and as soon as somebody reacts too slowly the sales are decreasing. It is typical for a pioneer product but unsuitable for our proven technology that solar thermal campaigns attempt to sell an ideology instead of addressing the latent purchasing readiness of the customer. The leading groups in the market who have a strong buying power remain sceptical, mostly they are not reached at all. A healthy growth of the solar thermal energy field in Germany can not be achieved like this. Why do the solar pioneers not have the economic success? Where do the variations come from, why are the sales increases behind the expectations? Where do we hamper ourselves, which obstacles in the market do we allow? This contribution reports on some hindrances based on own gained experience and evaluates them from different perspectives. (orig.)