WorldWideScience

Sample records for passive measurement devices

  1. Measurement and Treatment of Passive Muscle Stiffness

    DEFF Research Database (Denmark)

    Kirk, Henrik

    , which aimed to investigate: 1) The development of a clinical method to evaluate and distinguish neural (reflex mediated stiffness) and non-neural (passive muscle stiffness) components of muscle stiffness in adults with CP by objective and reliable measurements. 2) The association between increased...... and reliability of the method, and argue for the use of the method in the clinical practice. The device is able to distinguish between passive muscle stiffness and reflex-mediated stiffness in subjects with CP. It shows good high intrarater and interrater reliability in evaluation of passive muscle stiffness...... to measure muscle stiffness, and distinguish between passive muscle stiffness and reflex-mediated stiffness. Furthermore, it is a reliable device to measure changes in passive ROM. Treatment of passive muscle stiffness should be directed towards intense training, comprising many repetitions with a functional...

  2. Surface Passivation for Reliable Measurement of Bulk Electronic Properties of Heterojunction Devices.

    Science.gov (United States)

    Bissig, Benjamin; Guerra-Nunez, Carlos; Carron, Romain; Nishiwaki, Shiro; La Mattina, Fabio; Pianezzi, Fabian; Losio, Paolo A; Avancini, Enrico; Reinhard, Patrick; Haass, Stefan G; Lingg, Martina; Feurer, Thomas; Utke, Ivo; Buecheler, Stephan; Tiwari, Ayodhya N

    2016-10-01

    Quantum efficiency measurements of state of the art Cu(In,Ga)Se 2 (CIGS) thin film solar cells reveal current losses in the near infrared spectral region. These losses can be ascribed to inadequate optical absorption or poor collection of photogenerated charge carriers. Insight on the limiting mechanism is crucial for the development of more efficient devices. The electron beam induced current measurement technique applied on device cross-sections promises an experimental access to depth resolved information about the charge carrier collection probability. Here, this technique is used to show that charge carrier collection in CIGS deposited by multistage co-evaporation at low temperature is efficient over the optically active region and collection losses are minor as compared to the optical ones. Implications on the favorable absorber design are discussed. Furthermore, it is observed that the measurement is strongly affected by cross-section surface recombination and an accurate determination of the collection efficiency is not possible. Therefore it is proposed and shown that the use of an Al 2 O 3 layer deposited onto the cleaved cross-section significantly improves the accuracy of the measurement by reducing the surface recombination. A model for the passivation mechanism is presented and the passivation concept is extended to other solar cell technologies such as CdTe and Cu 2 (Zn,Sn)(S,Se) 4 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Highly air stable passivation of graphene based field effect devices.

    Science.gov (United States)

    Sagade, Abhay A; Neumaier, Daniel; Schall, Daniel; Otto, Martin; Pesquera, Amaia; Centeno, Alba; Elorza, Amaia Zurutuza; Kurz, Heinrich

    2015-02-28

    The sensitivity of graphene based devices to surface adsorbates and charge traps at the graphene/dielectric interface requires proper device passivation in order to operate them reproducibly under ambient conditions. Here we report on the use of atomic layer deposited aluminum oxide as passivation layer on graphene field effect devices (GFETs). We show that successful passivation produce hysteresis free DC characteristics, low doping level GFETs stable over weeks though operated and stored in ambient atmosphere. This is achieved by selecting proper seed layer prior to deposition of encapsulation layer. The passivated devices are also demonstrated to be robust towards the exposure to chemicals and heat treatments, typically used during device fabrication. Additionally, the passivation of high stability and reproducible characteristics is also shown for functional devices like integrated graphene based inverters.

  4. Accumulation of brevetoxins by passive sampling devices | Shea ...

    African Journals Online (AJOL)

    We report on initial investigations into the use of polymer-based passive sampling devices for the chronic time-integrated measure of brevetoxins in natural waters. Polyethylene membranes readily accumulated brevetoxins, but reached steady state within a few days, likely owing to surface saturation on the polyethylene ...

  5. Device-free object tracking using passive tags

    CERN Document Server

    Han, Jinsong; Zhao, Kun; Jiang, Zhiping

    2014-01-01

    This SpringerBrief examines the use of cheap commercial passive RFID tags to achieve accurate device-free object-tracking. It presents a sensitive detector, named Twins, which uses a pair of adjacent passive tags to detect uncooperative targets (such as intruders). Twins leverages a newly observed phenomenon called critical state that is caused by interference among passive tags.The author expands on the previous object tracking methods, which are mostly device-based, and reveals a new interference model and their extensive experiments for validation. A prototype implementation of the Twins-ba

  6. A new passive radon-thoron discriminative measurement system

    International Nuclear Information System (INIS)

    Sciocchetti, G.; Sciocchetti, A.; Giovannoli, P.; DeFelice, P.; Cardellini, F.; Cotellessa, G.; Pagliari, M.

    2010-01-01

    A new passive radon-thoron discriminative measurement system has been developed for monitoring radon and thoron individually. It consists of a 'couple' of passive integrating devices with a CR39 nuclear track detector (NTD). The experimental prototype is based on the application of a new concept of NTD instrument developed at ENEA, named Alpha-PREM, acronym of piston radon exposure meter, which allows controlling the detector exposure with a patented sampling technique (Int. Eu. Pat. and US Pat.). The 'twin diffusion chambers system' was based on two A-PREM devices consisting of the standard device, named NTD-Rn, and a modified version, named NTD-Rn/Tn, which was set up to improve thoron sampling efficiency of the diffusion chamber, without changing the geometry and the start/stop function of the NTD-Rn device. Coupling devices fitted on each device allowed getting a system, which works as a double-chamber structure when deployed at the monitoring position. In this paper both technical and physical aspects are considered. (authors)

  7. A new passive radon-thoron discriminative measurement system.

    Science.gov (United States)

    Sciocchetti, G; Sciocchetti, A; Giovannoli, P; DeFelice, P; Cardellini, F; Cotellessa, G; Pagliari, M

    2010-10-01

    A new passive radon-thoron discriminative measurement system has been developed for monitoring radon and thoron individually. It consists of a 'couple' of passive integrating devices with a CR39 nuclear track detector (NTD). The experimental prototype is based on the application of a new concept of NTD instrument developed at ENEA, named Alpha-PREM, acronym of piston radon exposure meter, which allows controlling the detector exposure with a patented sampling technique (Int. Eu. Pat. and US Pat.). The 'twin diffusion chambers system' was based on two A-PREM devices consisting of the standard device, named NTD-Rn, and a modified version, named NTD-Rn/Tn, which was set up to improve thoron sampling efficiency of the diffusion chamber, without changing the geometry and the start/stop function of the NTD-Rn device. Coupling devices fitted on each device allowed getting a system, which works as a double-chamber structure when deployed at the monitoring position. In this paper both technical and physical aspects are considered.

  8. Traffic classification with passive measurement

    OpenAIRE

    Pham, Hoang Phong

    2005-01-01

    Abstract This is a master thesis from a collaboration between Oslo University College and Uninett Research. Uninett have a passive monitoring device on a 2.5 Gbps backbone link between Trondheim and Narvik. They uses measurement with optical splitters and specialized measuring interfaces to trace traffic with Gigabit speed. We would like to investigate the structure and patterns in these data. It is of special interest to classify the traffic belonging to different services and protocols. ...

  9. Second Law based definition of passivity/activity of devices

    Science.gov (United States)

    Sundqvist, Kyle M.; Ferry, David K.; Kish, Laszlo B.

    2017-10-01

    Recently, our efforts to clarify the old question, if a memristor is a passive or active device [1], triggered debates between engineers, who have had advanced definitions of passivity/activity of devices, and physicists with significantly different views about this seemingly simple question. This debate triggered our efforts to test the well-known engineering concepts about passivity/activity in a deeper way, challenging them by statistical physics. It is shown that the advanced engineering definition of passivity/activity of devices is self-contradictory when a thermodynamical system executing Johnson-Nyquist noise is present. A new, statistical physical, self-consistent definition based on the Second Law of Thermodynamics is introduced. It is also shown that, in a system with uniform temperature distribution, any rectifier circuitry that can rectify thermal noise must contain an active circuit element, according to both the engineering and statistical physical definitions.

  10. Comparative performance of passive devices for piping system under seismic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen, E-mail: pra_veen74@rediffmail.com [Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 (India); Jangid, R.S. [Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 (India); Reddy, G.R. [Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 (India)

    2016-03-15

    Highlights: • Correlated the analytical results obtained from the proposed analytical procedures with experimental results in the case of XPD. • Substantial reduction of the seismic response of piping system with passive devices is observed. • Significant increase in the modal damping of the piping system is noted. • There exist an optimum parameters of the passive devices. • Good amount of energy dissipation is observed by using passive devices. - Abstract: Among several passive control devices, X-plate damper, viscous damper, visco-elastic damper, tuned mass damper and multiple tuned mass dampers are popular and used to mitigate the seismic response in the 3-D piping system. In the present paper detailed studies are made to see the effectiveness of the dampers when used in 3-D piping system subjected to artificial earthquake with increasing amplitudes. The analytical results obtained using Wen's model are compared with the corresponding experimental results available which indicated a good match with the proposed analytical procedure for the X-plate dampers. It is observed that there is significant reduction in the seismic response of interest like relative displacement, acceleration and the support reaction of the piping system with passive devices. In general, the passive devices under particular optimum parameters such as stiffness and damping are very effective and practically implementable for the seismic response mitigation, vibration control and seismic requalification of piping system.

  11. Re-Active Passive devices for control of noise transmission through a panel

    Science.gov (United States)

    Carneal, James P.; Giovanardi, Marco; Fuller, Chris R.; Palumbo, Dan

    2008-01-01

    Re-Active Passive devices have been developed to control low-frequency (transmission through a panel. These devices use a combination of active, re-active, and passive technologies packaged into a single unit to control a broad frequency range utilizing the strength of each technology over its best suited frequency range. The Re-Active Passive device uses passive constrained layer damping to cover relatively high-frequency range (>150 Hz), reactive distributed vibration absorber to cover the medium-frequency range (50-200 Hz), and active control for controlling low frequencies (transmission through a panel mounted in the Transmission Loss Test Facility at Virginia Tech. Experimental results are presented for the bare panel, and combinations of passive treatment, reactive treatment, and active control. Results indicate that three Re-Active Passive devices were able to increase the overall broadband (15-1000 Hz) transmission loss by 9.4 dB. These three devices added a total of 285 g to the panel mass of 6.0 kg, or approximately 5%, not including control electronics.

  12. Design issues for semi-passive optical communication devices

    Science.gov (United States)

    Glaser, I.

    2007-09-01

    Optical smart cards are devices containing a retro-reflector, light modulator, and some computing and data storage capabilities to affect semi-passive communication. They do not produce light; instead they modulate and send back light received from a stationary unit. These devices can replace contact-based smart cards as well as RF based ones for applications ranging from identification to transmitting and validating data. Since their transmission is essentially focused on the receiving unit, they are harder to eavesdrop than RF devices, yet need no physical contact or alignment. In this paper we explore optical design issues of these devices and estimate their optical behavior. Specifically, we analyze how these compact devices can be optimized for selected application profiles. Some of the key parameters addressed are effective light efficiency (how much modulated signal can be received by the stationary unit given the amount of light it transmits), range of tilt angles (angle between device surface normal to the line connecting the optical smart card with the stationary unit) through which the device would be effective, and power requirements of the semi-passive unit. In addition, issues concerning compact packaging of this device are discussed. Finally, results of the analysis are employed to produce a comparison of achievable capabilities of these optical smart cards, as opposed to alternative devices, and discuss potential applications were they can be best utilized.

  13. Re-active Passive (RAP) Devices for Control of Noise Transmission through a Panel

    Science.gov (United States)

    Carneal, James P.; Giovanardi, Marco; Fuller, Chris R.; Palumbo, Daniel L.

    2008-01-01

    Re-Active Passive (RAP) devices have been developed to control low frequency (transmission through a panel. These devices use a combination of active, re-active, and passive technologies packaged into a single unit to control a broad frequency range utilizing the strength of each technology over its best suited frequency range. The RAP device uses passive constrained layer damping to cover the relatively high frequency range (>200 Hz), reactive distributed vibration absorber) to cover the medium frequency range (75 to 250 Hz), and active control for controlling low frequencies (transmission through a panel mounted in a transmission loss test facility. Experimental results are presented for the bare panel, and combinations of passive treatment, reactive treatment, and active control. Results indicate that three RAP devices were able to increase the overall broadband (15-1000 Hz) transmission loss by 9.4 dB. These three devices added a total of 285 grams to the panel mass of 6.0 kg, or approximately 5%, not including control electronics.

  14. Surface passivation for CdTe devices

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Matthew O.; Perkins, Craig L.; Burst, James M.; Gessert, Timothy A.; Barnes, Teresa M.; Metzger, Wyatt K.

    2017-08-01

    In one embodiment, a method for surface passivation for CdTe devices is provided. The method includes adjusting a stoichiometry of a surface of a CdTe material layer such that the surface becomes at least one of stoichiometric or Cd-rich; and reconstructing a crystalline lattice at the surface of the CdTe material layer by annealing the adjusted surface.

  15. Molecular Monolayers for Electrical Passivation and Functionalization of Silicon-Based Solar Energy Devices.

    Science.gov (United States)

    Veerbeek, Janneke; Firet, Nienke J; Vijselaar, Wouter; Elbersen, Rick; Gardeniers, Han; Huskens, Jurriaan

    2017-01-11

    Silicon-based solar fuel devices require passivation for optimal performance yet at the same time need functionalization with (photo)catalysts for efficient solar fuel production. Here, we use molecular monolayers to enable electrical passivation and simultaneous functionalization of silicon-based solar cells. Organic monolayers were coupled to silicon surfaces by hydrosilylation in order to avoid an insulating silicon oxide layer at the surface. Monolayers of 1-tetradecyne were shown to passivate silicon micropillar-based solar cells with radial junctions, by which the efficiency increased from 8.7% to 9.9% for n + /p junctions and from 7.8% to 8.8% for p + /n junctions. This electrical passivation of the surface, most likely by removal of dangling bonds, is reflected in a higher shunt resistance in the J-V measurements. Monolayers of 1,8-nonadiyne were still reactive for click chemistry with a model catalyst, thus enabling simultaneous passivation and future catalyst coupling.

  16. An experimental study of the flow characteristics of fluidic device in a passive safety injection tank

    International Nuclear Information System (INIS)

    Cho, Seok; Song, Chul Hwa; Won, Suon Yeon; Min, Kyong Ho; Chung, Moon Ki

    1998-01-01

    It is considered to adopt passive safety injection tank (SIT) as a enhanced safety feature in KNGR. Passive SIT employs a vortex chamber as a fluidic device, which control injection flow rate passively by the variation of flow resistance produced by vortex intensity within the vortex chamber. To investigate the flow characteristics of the vortex chamber many tests have been carried out by using small-scale test facility. In this report the effects of geometric parameters of vortex chamber on discharge flow characteristics and the velocity measurement result of flow field, measured by PIV, are presented and discussed. (author). 25 refs., 11 tabs., 31 figs

  17. Hybrid finite element/waveguide mode analysis of passive RF devices

    Science.gov (United States)

    McGrath, Daniel T.

    1993-07-01

    A numerical solution for time-harmonic electromagnetic fields in two-port passive radio frequency (RF) devices has been developed, implemented in a computer code, and validated. Vector finite elements are used to represent the fields in the device interior, and field continuity across waveguide apertures is enforced by matching the interior solution to a sum of waveguide modes. Consequently, the mesh may end at the aperture instead of extending into the waveguide. The report discusses the variational formulation and its reduction to a linear system using Galerkin's method. It describes the computer code, including its interface to commercial CAD software used for geometry generation. It presents validation results for waveguide discontinuities, coaxial transitions, and microstrip circuits. They demonstrate that the method is an effective and versatile tool for predicting the performance of passive RF devices.

  18. Role of passive valves & devices in poison injection system of advanced heavy water reactor

    International Nuclear Information System (INIS)

    Sapra, M.K.; Kundu, S.; Vijayan, P.K.; Vaze, K.K.; Sinha, R.K.

    2014-01-01

    The Advanced Heavy Water Reactor (AHWR) is a 300 MWe pressure tube type boiling light water (H 2 O) cooled, heavy water (D 2 O) moderated reactor. The reactor design is based on well-proven water reactor technologies and incorporates a number of passive safety features such as natural circulation core cooling; direct in-bundle injection of light water coolant during a Loss of Coolant Accident (LOCA) from Advanced Accumulators and Gravity Driven Water Pool by passive means; Passive Decay Heat Removal using Isolation Condensers, Passive Containment Cooling System and Passive Containment Isolation System. In addition to above, there is another passive safety system named as Passive Poison Injection System (PPIS) which is capable of shutting down the reactor for a prolonged time. It is an additional safety system in AHWR to fulfill the shutdown function in the event of failure of wired shutdown systems i.e. primary and secondary shut down systems of the reactor. When demanded, PPIS injects the liquid poison into the moderator by passive means using passive valves and devices. On increase of main heat transport (MHT) system pressure beyond a predetermined value, a set of rupture disks burst, which in-turn actuate the passive valve. The opening of passive valve initiates inrush of high pressure helium gas into poison tanks to push the poison into the moderator system, thereby shutting down the reactor. This paper primarily deals with design and development of Passive Poison Injection System (PPIS) and its passive valves & devices. Recently, a prototype DN 65 size Poison Injection Passive Valve (PIPV) has been developed for AHWR usage and tested rigorously under simulated conditions. The paper will highlight the role of passive valves & devices in PPIS of AHWR. The design concept and test results of passive valves along with rupture disk performance will also be covered. (author)

  19. In planta passive sampling devices for assessing subsurface chlorinated solvents.

    Science.gov (United States)

    Shetty, Mikhil K; Limmer, Matt A; Waltermire, Kendra; Morrison, Glenn C; Burken, Joel G

    2014-06-01

    Contaminant concentrations in trees have been used to delineate groundwater contaminant plumes (i.e., phytoscreening); however, variability in tree composition hinders accurate measurement of contaminant concentrations in planta, particularly for long-term monitoring. This study investigated in planta passive sampling devices (PSDs), termed solid phase samplers (SPSs) to be used as a surrogate tree core. Characteristics studied for five materials included material-air partitioning coefficients (Kma) for chlorinated solvents, sampler equilibration time and field suitability. The materials investigated were polydimethylsiloxane (PDMS), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), polyoxymethylene (POM) and plasticized polyvinyl chloride (PVC). Both PDMS and LLDPE samplers demonstrated high partitioning coefficients and diffusivities and were further tested in greenhouse experiments and field trials. While most of the materials could be used for passive sampling, the PDMS SPSs performed best as an in planta sampler. Such a sampler was able to accurately measure trichloroethylene (TCE) and tetrachloroethylene (PCE) concentrations while simultaneously incorporating simple operation and minimal impact to the surrounding property and environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Spent fuel measurements. passive neutron albedo reactivity (PNAR) and photon signatures

    Energy Technology Data Exchange (ETDEWEB)

    Eigenbrodt, Julia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Menlove, Howard Olsen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-29

    The International Atomic Energy Agency’s (IAEA) safeguards technical objective is the timely detection of a diversion of a significant quantity of nuclear material from peaceful activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection. An important IAEA task towards meeting this objective is the ability to accurately and reliably measure spent nuclear fuel (SNF) to verify reactor operating parameters and verify that the fuel has not been removed from reactors or SNF storage facilities. This dissertation analyzes a method to improve the state-of-the-art of nuclear material safeguards measurements using two combined measurement techniques: passive neutron albedo reactivity (PNAR) and passive spectral photon measurements.

  1. Passive and Self-Powered Autonomous Sensors for Remote Measurements

    Directory of Open Access Journals (Sweden)

    Mauro Serpelloni

    2009-02-01

    Full Text Available Autonomous sensors play a very important role in the environmental, structural, and medical fields. The use of this kind of systems can be expanded for several applications, for example in implantable devices inside the human body where it is impossible to use wires. Furthermore, they enable measurements in harsh or hermetic environments, such as under extreme heat, cold, humidity or corrosive conditions. The use of batteries as a power supply for these devices represents one solution, but the size, and sometimes the cost and unwanted maintenance burdens of replacement are important drawbacks. In this paper passive and self-powered autonomous sensors for harsh or hermetical environments without batteries are discussed. Their general architectures are presented. Sensing strategies, communication techniques and power management are analyzed. Then, general building blocks of an autonomous sensor are presented and the design guidelines that such a system must follow are given. Furthermore, this paper reports different proposed applications of autonomous sensors applied in harsh or hermetic environments: two examples of passive autonomous sensors that use telemetric communication are proposed, the first one for humidity measurements and the second for high temperatures. Other examples of self-powered autonomous sensors that use a power harvesting system from electromagnetic fields are proposed for temperature measurements and for airflow speeds.

  2. Passive and self-powered autonomous sensors for remote measurements.

    Science.gov (United States)

    Sardini, Emilio; Serpelloni, Mauro

    2009-01-01

    Autonomous sensors play a very important role in the environmental, structural, and medical fields. The use of this kind of systems can be expanded for several applications, for example in implantable devices inside the human body where it is impossible to use wires. Furthermore, they enable measurements in harsh or hermetic environments, such as under extreme heat, cold, humidity or corrosive conditions. The use of batteries as a power supply for these devices represents one solution, but the size, and sometimes the cost and unwanted maintenance burdens of replacement are important drawbacks. In this paper passive and self-powered autonomous sensors for harsh or hermetical environments without batteries are discussed. Their general architectures are presented. Sensing strategies, communication techniques and power management are analyzed. Then, general building blocks of an autonomous sensor are presented and the design guidelines that such a system must follow are given. Furthermore, this paper reports different proposed applications of autonomous sensors applied in harsh or hermetic environments: two examples of passive autonomous sensors that use telemetric communication are proposed, the first one for humidity measurements and the second for high temperatures. Other examples of self-powered autonomous sensors that use a power harvesting system from electromagnetic fields are proposed for temperature measurements and for airflow speeds.

  3. Passive measurement-device-independent quantum key distribution with orbital angular momentum and pulse position modulation

    Science.gov (United States)

    Wang, Lian; Zhou, Yuan-yuan; Zhou, Xue-jun; Chen, Xiao

    2018-03-01

    Based on the orbital angular momentum and pulse position modulation, we present a novel passive measurement-device-independent quantum key distribution (MDI-QKD) scheme with the two-mode source. Combining with the tight bounds of the yield and error rate of single-photon pairs given in our paper, we conduct performance analysis on the scheme with heralded single-photon source. The numerical simulations show that the performance of our scheme is significantly superior to the traditional MDI-QKD in the error rate, key generation rate and secure transmission distance, since the application of orbital angular momentum and pulse position modulation can exclude the basis-dependent flaw and increase the information content for each single photon. Moreover, the performance is improved with the rise of the frame length. Therefore, our scheme, without intensity modulation, avoids the source side channels and enhances the key generation rate. It has greatly utility value in the MDI-QKD setups.

  4. Review of 3D Printed Millimeter-Wave and Terahertz Passive Devices

    Directory of Open Access Journals (Sweden)

    Bing Zhang

    2017-01-01

    Full Text Available The 3D printing technology is catching attention nowadays. It has certain advantages over the traditional fabrication processes. We give a chronical review of the 3D printing technology from the time it was invented. This technology has also been used to fabricate millimeter-wave (mmWave and terahertz (THz passive devices. Though promising results have been demonstrated, the challenge lies in the fabrication tolerance improvement such as dimensional tolerance and surface roughness. We propose the design methodology of high order device to circumvent the dimensional tolerance and suggest specific modelling of the surface roughness of 3D printed devices. It is believed that, with the improvement of the 3D printing technology and related subjects in material science and mechanical engineering, the 3D printing technology will become mainstream for mmWave and THz passive device fabrication.

  5. Error in measuring radon in soil gas by means of passive detectors

    International Nuclear Information System (INIS)

    Tanner, A.B.

    1991-01-01

    Passive detection of radon isotopes depends on diffusion of radon atoms from the sites of their generation to the location of the detecting or collecting device. Because some radon decays en route to a passive detector in soil, the radon concentration measured by the detector must be less than the concentration in those soil pores where it is undiminished by diffusion to the detector cavity. The true radon concentration may be significantly underestimated in moist soils. (author)

  6. Passive radon daughter dosimeters

    International Nuclear Information System (INIS)

    McElroy, R.G.C.; Johnson, J.R.

    1986-03-01

    On the basis of an extensive review of the recent literature concerning passive radon daughter dosimeters, we have reached the following conclusions: 1) Passive dosimeters for measuring radon are available and reliable. 2) There does not presently exist an acceptable passive dosimeter for radon daughters. There is little if any hope for the development of such a device in the foreseeable future. 3) We are pessimistic about the potential of 'semi-passive dosimeters' but are less firm about stating categorically that these devices cannot be developed into a useful radon daughter dosimeter. This report documents and justifies these conclusions. It does not address the question of the worker's acceptance of these devices because at the present time, no device is sufficiently advanced for this question to be meaningful. 118 refs

  7. High-temperature superconducting passive microwave devices, filters and antennas

    International Nuclear Information System (INIS)

    Ohshima, S.

    2000-01-01

    High-temperature superconducting (HTS) passive microwave devices, such as filters and antennas, are promising devices. In particular, HTS filters may be successfully marketed in the near future. Cross-coupled filters, ring filters, and coplanar waveguide filters are good options to reduce filter size. On the other hand, HTS patch antennas which can be cooled by a cryo-cooler are also promising devices as well, since they show higher efficiency than normal antennas. This paper examines the design process and filter properties of HTS filters as well as the gains, directivity, and cooling system of HTS patch antennas. (author)

  8. Molecular monolayers for electrical passivation and functionalization of silicon-based solar energy devices

    NARCIS (Netherlands)

    Veerbeek, Janneke; Firet, Nienke J.; Vijselaar, Wouter; Elbersen, R.; Gardeniers, Han; Huskens, Jurriaan

    2017-01-01

    Silicon-based solar fuel devices require passivation for optimal performance yet at the same time need functionalization with (photo)catalysts for efficient solar fuel production. Here, we use molecular monolayers to enable electrical passivation and simultaneous functionalization of silicon-based

  9. Device physics underlying silicon heterojunction and passivating-contact solar cells: A topical review

    KAUST Repository

    Chavali, Raghu V. K.

    2018-01-15

    The device physics of commercially dominant diffused-junction silicon solar cells is well understood, allowing sophisticated optimization of this class of devices. Recently, so-called passivating-contact solar cell technologies have become prominent, with Kaneka setting the world\\'s silicon solar cell efficiency record of 26.63% using silicon heterojunction contacts in an interdigitated configuration. Although passivating-contact solar cells are remarkably efficient, their underlying device physics is not yet completely understood, not in the least because they are constructed from diverse materials that may introduce electronic barriers in the current flow. To bridge this gap in understanding, we explore the device physics of passivating contact silicon heterojunction (SHJ) solar cells. Here, we identify the key properties of heterojunctions that affect cell efficiency, analyze the dependence of key heterojunction properties on carrier transport under light and dark conditions, provide a self-consistent multiprobe approach to extract heterojunction parameters using several characterization techniques (including dark J-V, light J-V, C-V, admittance spectroscopy, and Suns-Voc), propose design guidelines to address bottlenecks in energy production in SHJ cells, and develop a process-to-module modeling framework to establish the module\\'s performance limits. We expect that our proposed guidelines resulting from this multiscale and self-consistent framework will improve the performance of future SHJ cells as well as other passivating contact-based solar cells.

  10. Passivation layer breakdown during laser-fired contact formation for photovoltaic devices

    International Nuclear Information System (INIS)

    Raghavan, A.; DebRoy, T.; Palmer, T. A.

    2014-01-01

    Low resistance laser-fired ohmic contacts (LFCs) can be formed on the backside of Si-based solar cells using microsecond pulses. However, the impact of these longer pulse durations on the dielectric passivation layer is not clear. Retention of the passivation layer during processing is critical to ensure low recombination rates of electron-hole pairs at the rear surface of the device. In this work, advanced characterization tools are used to demonstrate that although the SiO 2 passivation layer melts directly below the laser, it is well preserved outside the immediate LFC region over a wide range of processing parameters. As a result, low recombination rates at the passivation layer/wafer interface can be expected despite higher energy densities associated with these pulse durations.

  11. Device physics underlying silicon heterojunction and passivating-contact solar cells: A topical review

    KAUST Repository

    Chavali, Raghu V. K.; De Wolf, Stefaan; Alam, Muhammad A.

    2018-01-01

    The device physics of commercially dominant diffused-junction silicon solar cells is well understood, allowing sophisticated optimization of this class of devices. Recently, so-called passivating-contact solar cell technologies have become prominent

  12. Trends in monitoring pharmaceuticals and personal-care products in the aquatic environment by use of passive sampling devices

    Science.gov (United States)

    Mills, G.A.; Vrana, B.; Allan, I.; Alvarez, D.A.; Huckins, J.N.; Greenwood, R.

    2007-01-01

    The use of passive sampling in monitoring pharmaceuticals and personal-care products (PPCPs) in the aquatic environment is discussed. The utility of passive sampling methods for monitoring the fraction of heavy metals and the biologically available fraction of non-polar organic priority pollutants is recognized and these technologies are being used in surveys of water quality. These devices are used to measure the dissolved fraction and they can yield information that can be used in the development of risk assessments models. These devices can also be used to locate illegal dumping and to monitor specific sources of input of PPCPs into the environment, or to monitor the effectiveness of water treatment processes in the removal of these compounds from wastewater. These devices can provide representative information at low cost which necessitate a combination of laboratory calibration and field studies for emerging pollutants.

  13. Device-Free Passive Identity Identification via WiFi Signals.

    Science.gov (United States)

    Lv, Jiguang; Yang, Wu; Man, Dapeng

    2017-11-02

    Device-free passive identity identification attracts much attention in recent years, and it is a representative application in sensorless sensing. It can be used in many applications such as intrusion detection and smart building. Previous studies show the sensing potential of WiFi signals in a device-free passive manner. It is confirmed that human's gait is unique from each other similar to fingerprint and iris. However, the identification accuracy of existing approaches is not satisfactory in practice. In this paper, we present Wii, a device-free WiFi-based Identity Identification approach utilizing human's gait based on Channel State Information (CSI) of WiFi signals. Principle Component Analysis (PCA) and low pass filter are applied to remove the noises in the signals. We then extract several entities' gait features from both time and frequency domain, and select the most effective features according to information gain. Based on these features, Wii realizes stranger recognition through Gaussian Mixture Model (GMM) and identity identification through a Support Vector Machine (SVM) with Radial Basis Function (RBF) kernel. It is implemented using commercial WiFi devices and evaluated on a dataset with more than 1500 gait instances collected from eight subjects walking in a room. The results indicate that Wii can effectively recognize strangers and can achieves high identification accuracy with low computational cost. As a result, Wii has the potential to work in typical home security systems.

  14. Device-Free Passive Identity Identification via WiFi Signals

    Directory of Open Access Journals (Sweden)

    Jiguang Lv

    2017-11-01

    Full Text Available Device-free passive identity identification attracts much attention in recent years, and it is a representative application in sensorless sensing. It can be used in many applications such as intrusion detection and smart building. Previous studies show the sensing potential of WiFi signals in a device-free passive manner. It is confirmed that human’s gait is unique from each other similar to fingerprint and iris. However, the identification accuracy of existing approaches is not satisfactory in practice. In this paper, we present Wii, a device-free WiFi-based Identity Identification approach utilizing human’s gait based on Channel State Information (CSI of WiFi signals. Principle Component Analysis (PCA and low pass filter are applied to remove the noises in the signals. We then extract several entities’ gait features from both time and frequency domain, and select the most effective features according to information gain. Based on these features, Wii realizes stranger recognition through Gaussian Mixture Model (GMM and identity identification through a Support Vector Machine (SVM with Radial Basis Function (RBF kernel. It is implemented using commercial WiFi devices and evaluated on a dataset with more than 1500 gait instances collected from eight subjects walking in a room. The results indicate that Wii can effectively recognize strangers and can achieves high identification accuracy with low computational cost. As a result, Wii has the potential to work in typical home security systems.

  15. Passive fault current limiting device

    Science.gov (United States)

    Evans, Daniel J.; Cha, Yung S.

    1999-01-01

    A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment.

  16. FAST and SAFE Passive Safety Devices for Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hartanto, Donny; Kim, Chihyung; Kim, In-Hyung; Kim, Yonghee [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    The major factor is the impact of the neutron spectral hardening. The second factor that affects the CVR is reduced capture by the coolant when the coolant voiding occurs. To improve the CVR, many ideas and concepts have been proposed, which include introduction of an internal blanket, spectrum softening, or increasing the neutron leakage. These ideas may reduce the CVR, but they deteriorate the neutron economy. Another potential solution is to adopt a passive safety injection device such as the ARC (autonomous reactivity control) system, which is still under development. In this paper, two new concepts of passive safety devices are proposed. The devices are called FAST (Floating Absorber for Safety at Transient) and SAFE (Static Absorber Feedback Equipment). Their purpose is to enhance the negative reactivity feedback originating from the coolant in fast reactors. SAFE is derived to balance the positive reactivity feedback due to sodium coolant temperature increases. It has been demonstrated that SAFE allows a low-leakage SFR to achieve a self-shutdown and self-controllability even though the generic coolant temperature coefficient is quite positive and the coolant void reactivity can be largely managed by the new FAST device. It is concluded that both FAST and SAFE devices will improve substantially the fast reactor safety and they deserve more detailed investigations.

  17. Review of passive accumulation devices for monitoring organic micropollutants in the aquatic environment

    International Nuclear Information System (INIS)

    Stuer-Lauridsen, Frank

    2005-01-01

    Over the past 15 years passive sampling devices have been developed that accumulate organic micropollutants and allow detection at ambient sub ng/l concentrations. Most passive accumulation devices (PADs) are designed for 1-4 weeks field deployment, where uptake is governed by linear first order kinetics providing a time weighted average of the exposure concentration. Semipermeable membrane devices (SPMDs) are the most comprehensively studied PADs, but other samplers may also be considered for aquatic monitoring purposes. The applicability of the PADs is reviewed with respect to commonly monitored aqueous matrices and compounds, the detection limits, and for use in quantitative monitoring related to requirements embedded in the EU Water Framework Directive, the US and EU Water Quality Criteria, and the Danish monitoring aquatic programme. The PADs may monitor >75% of the organic micropollutants of the programmes. Research is warranted regarding the uptake in PADs in low flow environments and for the development of samplers for polar organic compounds. - Major developments in the passive sampling of organic contaminants in aquatic environments will support future monitoring, compliance and research

  18. Design of Passive Acoustic Wave Shaping Devices and Their Experimental Validation

    DEFF Research Database (Denmark)

    Christiansen, Rasmus Ellebæk; Sigmund, Ole; Fernandez Grande, Efren

    We discuss a topology optimization based approach for designing passive acoustic wave shaping devices and demonstrate its application to; directional sound emission [1], sound focusing and wave splitting. Optimized devices, numerical and experimental results are presented and benchmarked against...... other designs proposed in the literature. We focus on design problems where the size of the device is on the order of the wavelength, a problematic region for traditional design methods, such as ray tracing.The acoustic optimization problem is formulated in the frequency domain and modeled...

  19. Intercomparison of active, passive and continuous instruments for radon and radon progeny measurements in the EML chamber and test facility

    International Nuclear Information System (INIS)

    Scarpitta, S.C.; Tu, K.W.; Fisenne, I.M.; Cavallo, A.; Perry, P.

    1996-10-01

    Results are presented from the Fifth Intercomparison of Active, Passive and Continuous Instruments for Radon and Radon Progeny Measurements conducted in the EML radon exposure and test facility in May 1996. In total, thirty-four government, private and academic facilities participated in the exercise with over 170 passive and electronic devices exposed in the EML test chamber. During the first week of the exercise, passive and continuous measuring devices were exposed (usually in quadruplicate) to about 1,280 Bq m -3 222 Rn for 1--7 days. Radon progeny measurements were made during the second week of the exercise. The results indicate that all of the tested devices that measure radon gas performed well and fulfill their intended purpose. The grand mean (GM) ratio of the participants' reported values to the EML values, for all four radon device categories, was 0.99 ± 0.08. Eighty-five percent of all the radon measuring devices that were exposed in the EML radon test chamber were within ±1 standard deviation (SD) of the EML reference values. For the most part, radon progeny measurements were also quite good as compared to the EML values. The GM ratio for the 10 continuous PAEC instruments was 0.90 ± 0.12 with 75% of the devices within 1 SD of the EML reference values. Most of the continuous and integrating electronic instruments used for measuring the PAEC underestimated the EML values by about 10--15% probably because the concentration of particles onto which the radon progeny were attached was low (1,200--3,800 particles cm -3 ). The equilibrium factor at that particle concentration level was 0.10--0.22

  20. Use of passive sampling devices for monitoring and compliance checking of POP concentrations in water

    NARCIS (Netherlands)

    Lohmann, R.; Booij, K.; Smedes, F.; Vrana, B.

    2012-01-01

    The state of the art of passive water sampling of (nonpolar) organic contaminants is presented. Its suitability for regulatory monitoring is discussed, with an emphasis on the information yielded by passive sampling devices (PSDs), their relevance and associated uncertainties. Almost all persistent

  1. A comparison of 'radon' measurement devices

    International Nuclear Information System (INIS)

    Rolle, R.

    2004-01-01

    For the indoor concentration measurement of Rn decay chain members, instruments ranging from long-term integrating passive devices to far more sensitive active devices with good time resolution are in use. The former are used mainly to screen for potentially high exposure locations, while the latter are useful for assessing the exposure dynamics of encumbered premises, with potential clarification (modelling) for optimal remediation, before, during and after such process. Concentration measurement of any one decay chain member always involves its complete decay chain. The 222 Rn gas concentration can be measured with gas measuring devices or with spectrometric measuring instruments that concentrate the decay products. The latter generally offer far more accurate measurement per time of the 222 Rn concentration, than mere Rn gas measuring devices, and also give the decay product concentrations and thus activity ratios which are related to air exchange. The concentrations of the unattached Rn decay products may be measured simultaneously with inline screen measurement. In premises steady state ventilation conditions are rare. Rapidly changing concentrations can be measured more accurately with the more sensitive concentrating instruments - the inherent instrumental time lag of detected signals from chain decay, relative to time of sampling, should however be corrected where rates of concentration change approximate chain decay constants. Counting of beta-signals in addition to alpha-spectrometry, and quasi-continuous sampling while continuously measuring, enhances the sensitivity, and particularly measurement time lag correction, where concentration ratios are sought for elucidating air exchange. Appropriate software ought to be made available to evaluate the spectrometric data and to link it to suitable compartment ventilation models (automatic adjustment for a dynamic change in alpha-calibration could be incorporated) - this would constitute the modern version of

  2. High aspect-ratio MEMS devices for the next generation of THz/MHz passive components

    NARCIS (Netherlands)

    Fiorentino, G.

    2015-01-01

    The realization of efficient passive devices directly on chip represents one of the most intriguing challenges in IC fabrication processes. The performance of such devices are intrinsically determined by physical parameters that cannot be easily scaled, making the on-chip integration of such

  3. Evaporation and condensation devices for passive heat removal systems in nuclear power engineering

    International Nuclear Information System (INIS)

    Gershuni, A.N.; Pis'mennyj, E.N.; Nishchik, A.P.

    2016-01-01

    The paper justifies advantages of evaporation and condensation heat transfer devices as means of passive heat removal and thermal shielding in nuclear power engineering. The main thermophysical factors that limit heat transfer capacity of evaporation and condensation systems have been examined in the research. The results of experimental studies of heat engineering properties of elongated (8-m) vertically oriented evaporation and condensation devices (two-phase thermosyphons), which showed a high enough heat transfer capacity, as well as stability and reliability both in steady state and in start-up modes, are provided. The paper presents the examples of schematic designs of evaporation and condensation systems for passive heat removal and thermal shielding in application to nuclear power equipment

  4. Fiscal 2000 pioneering research on the research on high-sensitivity passive measurement/analysis technologies; 2000 nendo kokando passive keisoku bunseki gijutsu no chosa sendo kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The above-named research was brought over from the preceding fiscal year. Needs for passive measurement were investigated, and it was found that what are named below were interested in passive measurement. Wanting passive measurement technology were the analysis of organic matters on semiconductor wafers, analysis of dangerous substances in wastes, measurement of substances in the life space causing allergy to chemical substances, measurement of constituents of gas emitted by organisms for example through expiration, measurement for automatic sorting of plastic wastes, 2-dimensional spectrometry for medical treatment of organisms, and so forth. In the survey of seeds, various novel technologies were investigated in the fields of optical systems, sensors, and signal processing. The outcomes of the survey indicated that high-sensitivity measurement and analysis of spectral images, measurement and analysis of trace quantities in he fields of medical treatment, environmental matters, and semiconductors would be feasible by the use of newly developed technologies involving the interference array type 2-dimensional modulation/demodulation device, 2-dimensional high-sensitivity infrared sensor, high-sensitivity systematization technology, mixed signal separation technology capable of suppressing noise and background light, and technology for increasing processing speeds. (NEDO)

  5. Review of passive accumulation devices for monitoring organic micropollutants in the aquatic environment.

    Science.gov (United States)

    Stuer-Lauridsen, Frank

    2005-08-01

    Over the past 15 years passive sampling devices have been developed that accumulate organic micropollutants and allow detection at ambient sub ng/l concentrations. Most passive accumulation devices (PADs) are designed for 1-4 weeks field deployment, where uptake is governed by linear first order kinetics providing a time weighted average of the exposure concentration. Semipermeable membrane devices (SPMDs) are the most comprehensively studied PADs, but other samplers may also be considered for aquatic monitoring purposes. The applicability of the PADs is reviewed with respect to commonly monitored aqueous matrices and compounds, the detection limits, and for use in quantitative monitoring related to requirements embedded in the EU Water Framework Directive, the US and EU Water Quality Criteria, and the Danish monitoring aquatic programme. The PADs may monitor >75% of the organic micropollutants of the programmes. Research is warranted regarding the uptake in PADs in low flow environments and for the development of samplers for polar organic compounds.

  6. Wireless passive radiation sensor

    Science.gov (United States)

    Pfeifer, Kent B; Rumpf, Arthur N; Yelton, William G; Limmer, Steven J

    2013-12-03

    A novel measurement technique is employed using surface acoustic wave (SAW) devices, passive RF, and radiation-sensitive films to provide a wireless passive radiation sensor that requires no batteries, outside wiring, or regular maintenance. The sensor is small (<1 cm.sup.2), physically robust, and will operate unattended for decades. In addition, the sensor can be insensitive to measurement position and read distance due to a novel self-referencing technique eliminating the need to measure absolute responses that are dependent on RF transmitter location and power.

  7. The development of differential inductors using double air-bridge structure based on integrated passive device technology

    Science.gov (United States)

    Li, Yang; Yao, Zhao; Fu, Xiao-Qian; Li, Zhi-Ming; Shan, Fu-Kai; Wang, Cong

    2017-05-01

    Recently, integrated passive devices have become increasingly popular; inductor realization, in particular, offers interesting high performance for RF modules and systems. In this paper, a development of differential inductor fabricated by integrated passive devices technology using a double air-bridge structure is presented. A study of the model development of the differential inductor is first demonstrated. In this model section, a segment box analysis method is applied to provide a clear presentation of the differential inductor. Compared with other work that only shows a brief description of the process, the integrated passive devices process used to fabricate the inductor in this study is elaborated on. Finally, a characterization of differential inductors with different physical layout parameters is illustrated based on inductance and quality factors, which provides a valuable reference for realizing high performance. The proposed work provides a good solution for the design, fabrication and practical application of RF modules and systems.

  8. Real-time computer treatment of THz passive device images with the high image quality

    Science.gov (United States)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2012-06-01

    We demonstrate real-time computer code improving significantly the quality of images captured by the passive THz imaging system. The code is not only designed for a THz passive device: it can be applied to any kind of such devices and active THz imaging systems as well. We applied our code for computer processing of images captured by four passive THz imaging devices manufactured by different companies. It should be stressed that computer processing of images produced by different companies requires using the different spatial filters usually. The performance of current version of the computer code is greater than one image per second for a THz image having more than 5000 pixels and 24 bit number representation. Processing of THz single image produces about 20 images simultaneously corresponding to various spatial filters. The computer code allows increasing the number of pixels for processed images without noticeable reduction of image quality. The performance of the computer code can be increased many times using parallel algorithms for processing the image. We develop original spatial filters which allow one to see objects with sizes less than 2 cm. The imagery is produced by passive THz imaging devices which captured the images of objects hidden under opaque clothes. For images with high noise we develop an approach which results in suppression of the noise after using the computer processing and we obtain the good quality image. With the aim of illustrating the efficiency of the developed approach we demonstrate the detection of the liquid explosive, ordinary explosive, knife, pistol, metal plate, CD, ceramics, chocolate and other objects hidden under opaque clothes. The results demonstrate the high efficiency of our approach for the detection of hidden objects and they are a very promising solution for the security problem.

  9. An unattended device for high-voltage sampling and passive measurement of thoron decay products

    Energy Technology Data Exchange (ETDEWEB)

    Gierl, Stefanie; Meisenberg, Oliver, E-mail: oliver.meisenberg@helmholtz-muenchen.de; Wielunski, Marek; Tschiersch, Jochen [Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Protection, Ingolstädter Landstr. 1, 85764 Neuherberg (Germany); Haninger, Thomas [Helmholtz Zentrum München, German Research Center for Environmental Health, Auswertungsstelle für Strahlendosimeter, Otto-Hahn-Ring 6, 81739 München (Germany)

    2014-02-15

    An integrating measurement device for the concentration of airborne thoron decay products was designed and calibrated. It is suitable for unattended use over up to several months also in inhabited dwellings. The device consists of a hemispheric capacitor with a wire mesh as the outer electrode on ground potential and the sampling substrates as the inner electrode on +7.0 kV. Negatively charged and neutral thoron decay products are accelerated to and deposited on the sampling substrates. As sampling substrates, CR39 solid-state nuclear track detectors are used in order to record the alpha decay of the sampled decay products. Nuclide discrimination is achieved by covering the detectors with aluminum foil of different thickness, which are penetrated only by alpha particles with sufficient energy. Devices of this type were calibrated against working level monitors in a thoron experimental house. The sensitivity was measured as 9.2 tracks per Bq/m{sup 3} × d of thoron decay products. The devices were used over 8 weeks in several houses built of earthen material in southern Germany, where equilibrium equivalent concentrations of 1.4–9.9 Bq/m{sup 3} of thoron decay products were measured.

  10. Measurement of Resistive Plantar Flexion Torque of the Ankle during Passive Stretch in Healthy Subjects and Patients with Poststroke Hemiplegia.

    Science.gov (United States)

    Mizuno, Shiho; Sonoda, Shigeru; Takeda, Kotaro; Maeshima, Shinichiro

    2016-04-01

    Quantification of increased muscle tone for patients with spasticity has been performed to date using various devices to replace the manual scales, such as the modified Ashworth scale or the Tardieu scale. We developed a device that could measure resistive plantar flexion (PF) torque of the ankle during passive dorsiflexion (DF) as an indicator of muscle tone of ankle plantar flexors. The primary objective was to explore the test-retest intrarater reliability of a custom-built device. Participants were 11 healthy subjects (7 men, 4 women; mean age 47.0 years) and 22 patients with poststroke hemiplegia (11 hemorrhagic, 11 ischemic; 14 men, 8 women; mean age 57.2 years). The device was affixed to the ankle. Subjects were seated with knees either flexed or extended. The ankle was passively dorsiflexed from 20° of PF to more than 10° of DF at 5°/second (slow stretch) or 90°/second (fast stretch). Angle and torque were measured twice during the stretches. The intraclass correlation coefficients (ICCs) of torque at 10° of DF (T10) in the 4 conditions-slow and fast stretches with knee flexed or extended-were calculated. The T10 ICCs of the 4 conditions were .95-.99 in both groups. The healthy subjects showed significantly higher T10 of knee extension than of knee flexion during slow and fast stretches. The patients showed increased velocity-dependent torque during fast stretches. Excellent reliability was observed. The device is suitable for measuring resistive PF torque during passive stretch in a flexed knee condition. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  11. Possible way for increasing the quality of imaging from THz passive device

    Science.gov (United States)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.; Deng, Chao; Zhao, Yuan-meng; Zhang, Cun-lin; Zhang, Xin

    2011-11-01

    Using the passive THz imaging system developed by the CNU-THz laboratory, we capture the passive THz image of human body with forbidden objects hidden under opaque clothes. We demonstrate the possibility of significant improving the quality of the image. Our approach bases on the application of spatial filters, developed by us for computer treatment of passive THz imaging. The THz imaging system is constructed with accordance to well known passive THz imaging principles and to the THz quasi-optical theory. It contains a scanning mechanism, which has a detector approximately with 1200μm central wavelength, a data acquisition card and a microcomputer. To get a clear imaging of object we apply a sequence of the spatial filters to the image and spectral transforms of the image. The treatment of imaging from the passive THz device is made by computer code. The performance time of treatment of the image, containing about 5000 pixels, is less than 0.1 second. To illustrate the efficiency of developed approach we detect the liquid explosive, knife, pistol and metal plate hidden under opaque clothes. The results obtained demonstrate the high efficiency of our approach for the detection and recognition of the hidden objects and are very promising for the real security application.

  12. A Wireless Fully Passive Neural Recording Device for Unobtrusive Neuropotential Monitoring.

    Science.gov (United States)

    Kiourti, Asimina; Lee, Cedric W L; Chae, Junseok; Volakis, John L

    2016-01-01

    We propose a novel wireless fully passive neural recording device for unobtrusive neuropotential monitoring. Previous work demonstrated the feasibility of monitoring emulated brain signals in a wireless fully passive manner. In this paper, we propose a novel realistic recorder that is significantly smaller and much more sensitive. The proposed recorder utilizes a highly efficient microwave backscattering method and operates without any formal power supply or regulating elements. Also, no intracranial wires or cables are required. In-vitro testing is performed inside a four-layer head phantom (skin, bone, gray matter, and white matter). Compared to our former implementation, the neural recorder proposed in this study has the following improved features: 1) 59% smaller footprint, 2) up to 20-dB improvement in neuropotential detection sensitivity, and 3) encapsulation in biocompatible polymer. For the first time, temporal emulated neuropotentials as low as 63 μVpp can be detected in a wireless fully passive manner. Remarkably, the high-sensitivity achieved in this study implies reading of most neural signals generated by the human brain. The proposed recorder brings forward transformational possibilities in wireless fully passive neural detection for a very wide range of applications (e.g., epilepsy, Alzheimer's, mental disorders, etc.).

  13. Conceptualization of an exoskeleton Continuous Passive Motion(CPM) device using a link structure.

    Science.gov (United States)

    Kim, Kyu-Jung; Kang, Min-Sung; Choi, Youn-Sung; Han, Jungsoo; Han, Changsoo

    2011-01-01

    This study is about developing an exoskeleton Continuous Passive Motion (CPM) with the same Range of Motion (ROM) and instant center of rotation as the human knee. The key feature in constructing a CPM is an accurate alignment with the human knee joint enabling it to deliver the same movements as the actual body on the CPM. In this research, we proposed an exoskeleton knee joint through kinematic interpretation, measured the knee joint torque generated while using a CPM and applied it to the device. Thus, this new exoskeleton type CPM will allow precise alignment with the human knee joint, and follow the same ROM as the human knee in any position. © 2011 IEEE

  14. Effects of emitter junction and passive base region on low dose rate effect in bipolar devices

    International Nuclear Information System (INIS)

    Pershenkov, V.S.; Cherepko, S.V.; Maslov, V.B.; Belyakov, V.V.; Sogoyan, A.V.; Ulimov, N.; Emelianov, V.V.

    1999-01-01

    Low dose rate effect in bipolar devices consists in the increase of peripheral surface recombination current with dose rate decrease. This is due to the more rapid positive oxide charge and interface trap density build-up as the dose rate becomes lower. High dose rate elevated temperature irradiation is proposed for simulation if the low dose rate effect. In the present we tried to separate the effect of radiation-induced charge in the thick passivation oxide over the emitter junction and passive base regions of npn bipolar transistor. Its goal is to improve bipolar device design for use in space environments and nuclear installations. Three experiments were made during this work. 1. Experiment on radiation-induced charge neutralization (RICN) effect under elevated temperature was performed to show transistor degradation dependence on emitter-base bias. 2. High dose rate elevated and room temperature irradiation of bipolar transistors were performed to separate effects of emitter-junction and passive base regions. 3. Pre- and post- irradiation hydrogen ambient storage was used to investigate its effect on radiation-induced charge build-up over the passive base region. All experiments were performed with npn and pnp transistors. (authors)

  15. Fiscal 1998 achievement report on regional consortium research and development project. Venture business fostering regional consortium--Creation of key industries (Development of trace pollutant measuring device); 1998 nendo biryo kankyo busshitsu sokutei device no kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For measuring trace pollutants and for establishing a simplified high-speed method of assessing their impacts, research and development efforts are exerted to build measuring devices to meet the purpose. In relation with air pollutants, researches are conducted to develop a passive sampler technology-aided measuring devices capable of on-site analyses of trace pollutants. For the development of microchips to be the nuclei of such devices, studies are conducted about a gas absorbing chip consisting of porous quartz glass and a passive sampler installed thereon, a chemical reaction chip on which absorbed NO{sub 2} ions react with a fluorescent reagent, and an optical detection chip capable of high-sensitivity detection of a fluorescent substance generated by an ultraviolet emission device. As the result, an A4 size prototype of a trace NO{sub 2} measuring device is developed using a fluorescence detecting microchip system. In addition, a simplified measuring device is developed, in which gas absorbed at a polymer film flows in a very thin plastic-formed channel to reach an electrochemical detection system for measurement, and the device is found to work effectively. (NEDO)

  16. A passive-active neutron device for assaying remote-handled transuranic waste

    International Nuclear Information System (INIS)

    Estep, R.J.; Coop, K.L.; Deane, T.M.; Lujan, J.E.

    1990-01-01

    A combined passive-active neutron assay device was constructed for assaying remote-handled transuranic waste. A study of matrix and source position effects in active assays showed that a knowledge of the source position alone is not sufficient to correct for position-related errors in highly moderating or absorbing matrices. An alternate function for the active assay of solid fuel pellets was derived, although the efficacy of this approach remains to be established

  17. Use of passive sampling devices to determine soil contaminant concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K.A. [Clemson Univ., Pendleton, SC (United States)]|[Washington State Univ., Richland, WA (United States); Hooper, M.J. [Clemson Univ., Pendleton, SC (United States); Weisskopf, C.P. [Washington State Univ., Richland, WA (United States)

    1996-12-31

    The effective remediation of contaminated sites requires accurate identification of chemical distributions. A rapid sampling method using passive sampling devices (PSDs) can provide a thorough site assessment. We have been pursuing their application in terrestrial systems and have found that they increase the ease and speed of analysis, decrease solvent usage and overall cost, and minimize the transport of contaminated soils. Time and cost savings allow a higher sampling frequency than is generally the case using traditional methods. PSDs have been used in the field in soils of varying physical properties and have been successful in estimating soil concentrations ranging from 1 {mu}g/kg (parts per billion) to greater than 200 mg/kg (parts per million). They were also helpful in identifying hot spots within the sites. Passive sampling devices show extreme promise as an analytical tool to rapidly characterize contaminant distributions in soil. There are substantial time and cost savings in laboratory personnel and supplies. By selectively excluding common interferences that require sample cleanup, PSDs can be retrieved from the field and processed rapidly (one technician can process approximately 90 PSDs in an 8-h work day). The results of our studies indicate that PSDs can be used to accurately estimate soil contaminant concentrations and provide lower detection limits. Further, time and cost savings will allow a more thorough and detailed characterization of contaminant distributions. 13 refs., 4 figs., 2 tabs.

  18. Chemical and physical passivation of type II strained-layer superlattice devices by means of thiolated self-assembled monolayers and polymer encapsulates

    Science.gov (United States)

    Henry, Nathan C.; Knorr, Daniel B.; Williams, Kristen S.; Baril, Neil; Nallon, Eric; Lenhart, Joseph L.; Andzelm, Jan W.; Pellegrino, Joseph; Tidrow, Meimei; Cleveland, Erin; Bandara, Sumith

    2015-05-01

    The efficacy of solution deposition of thiolated self-assembled monolayers (SAMs) has been explored for the purpose of passivating III-V type II superlattice (T2SL) photodetectors, more specifically a p-type heterojunction device. Sulfur passivation has previously been achieved on T2SL devices. However, degradation over time, temperature sensitivity and inconsistent reproducibility necessitate a physical encapsulate that can chemically bond to the chemical passivant. Thus, this research investigates two passivation methods, surface passivation with a thiol monolayer and passivation with a polymer encapsulant with a view toward future combination of these techniques. Analysis of the physical and chemical condition of the surface prior to deposition assisted in the development of ideal processes for optimized film quality. Successful deposition was facilitated by in situ oxide removal. Various commercially available functional (cysteamine) and non-functional (alkane) thiolated monolayers were investigated. Dark current was reduced by 3 orders of magnitude and achieved negligible surface leakage at low bias levels. The lowest dark current result, 7.69 × 10-6 A/cm2 at 50 mV, was achieved through passivation with cysteamine.

  19. Mobile Device Passive Localization Based on IEEE 802.11 Probe Request Frames

    Directory of Open Access Journals (Sweden)

    Lin Sun

    2017-01-01

    Full Text Available This paper presents a novel passive mobile device localization mode based on IEEE 802.11 Probe Request frames. In this approach, the listener can discover mobile devices by receiving the Probe Request frames and localize them on his walking path. The unique location of the mobile device is estimated on a geometric diagram and right-angled walking path. In model equations, site-related parameter, that is, path loss exponent, is eliminated to make the approach site-independent. To implement unique localization, the right-angled walking path is designed and the optimal location is estimated from the optional points. The performance of our method has been evaluated inside the room, outside the room, and in outdoor scenarios. Three kinds of walking paths, for example, horizontal, vertical, and slanted, are also tested.

  20. Wireless SAW passive tag temperature measurement in the collision case

    Science.gov (United States)

    Sorokin, A.; Shepeta, A.; Wattimena, M.

    2018-04-01

    This paper describes temperature measurement in the multisensor systems based on the radio-frequency identification SAW passive tags which are currently applied in the electric power systems and the switchgears. Different approaches of temperature measurement in the collision case are shown here. The study is based on the tag model with specific topology, which allows us to determine temperature through the response signal with time-frequency information. This research considers the collision case for several passive tags as the temperature sensors which are placed in the switchgear. This research proposal is to analyze the possibility of using several SAW passive sensors in the collision case. We consider the using of the different typical elements for passive surface acoustic wave tag which applies as an anticollision passive sensor. These wireless sensors based on the surface acoustic waves tags contain specifically coded structures. This topology makes possible the reliability of increasing tag identification and the temperature measurement in the collision case. As the results for this case we illustrate simultaneous measurement of at least six sensors.

  1. Electropotential measurements of passivation and corrosion of steel coupons

    International Nuclear Information System (INIS)

    Petit, G.S.; Wright, R.R.

    1977-02-01

    There is considerable interest at the Oak Ridge Gaseous Diffusion Plant (ORGDP) in the preparation of mild steel to resist corrosion (passivation) both in moist air and uranium hexafluoride (UF 6 ) environments. Steel prepared by the usual procedures to prevent rusting, such as oiling, plastic coating, painting, or phosphating, cannot be used in the presence of UF 6 . Tests have shown that a chromate treatment or an ammoniacal citrate treatment for passivation are effective. The electropotential behavior of these two passivation treatments is described. The initial electropotential measurement, when compared to that of an unpassivated coupon, gives the electropotential degree in volts of passivation. Continual exposure in the test, when compared to the unpassivated coupon, gives a profile of the durability of the passivation film. The chromate passivation treatment was slightly superior to the citrate passivation

  2. Computer processing of image captured by the passive THz imaging device as an effective tool for its de-noising

    Science.gov (United States)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.; Kuchik, Igor E.; Zhang, Cun-lin; Deng, Chao; Zhao, Yuan-meng; Zhang, Xin

    2012-12-01

    As it is well-known, passive THz imaging devices have big potential for solution of the security problem. Nevertheless, one of the main problems, which take place on the way of using these devices, consists in the low image quality of developed passive THz camera. To change this situation, it is necessary to improve the engineering characteristics (resolution, sensitivity and so on) of the THz camera or to use computer processing of the image. In our opinion, the last issue is more preferable because it is more inexpensive. Below we illustrate possibility of suppression of the noise of the image captured by three THz passive camera developed in CNU (Beijing. China). After applying the computer processing of the image, its quality enhances many times. Achieved quality in many cases becomes enough for the detection of the object hidden under opaque clothes. We stress that the performance of developed computer code is enough high and does not restrict the performance of passive THz imaging device. The obtained results demonstrate the high efficiency of our approach for the detection of hidden objects and they are a very promising solution for the security problem. Nevertheless, developing the new spatial filter for treatment of the THz image remains a modern problem at present time.

  3. A Passively-Suspended Tesla Pump Left Ventricular Assist Device

    Science.gov (United States)

    Izraelev, Valentin; Weiss, William J.; Fritz, Bryan; Newswanger, Raymond K.; Paterson, Eric G.; Snyder, Alan; Medvitz, Richard B.; Cysyk, Joshua; Pae, Walter E.; Hicks, Dennis; Lukic, Branka; Rosenberg, Gerson

    2009-01-01

    The design and initial test results of a new passively suspended Tesla type LAVD blood pump are described. CFD analysis was used in the design of the pump. Overall size of the prototype device is 50 mm in diameter and 75 mm in length. The pump rotor has a density lower than that of blood and when spinning inside the stator in blood it creates a buoyant centering force that suspends the rotor in the radial direction. The axial magnetic force between the rotor and stator restrain the rotor in the axial direction. The pump is capable of pumping up to 10 liters/min at a 70 mmHg head rise at 8000 RPM. The pump has demonstrated a normalized index of hemolysis level below .02 mg/dL for flows between 2 and 9.7 L/min. An inlet pressure sensor has also been incorporated into the inlet cannula wall and will be used for control purposes. One initial in vivo study showed an encouraging result. Further CFD modeling refinements are planned as well as endurance testing of the device. PMID:19770799

  4. Passive Rn dose meters - measuring methods appropriate for large measurement series

    International Nuclear Information System (INIS)

    Urban, M.; Kiefer, H.

    1985-01-01

    Passive integrating measuring methods can be classified in several groups by their functioning principle, e.g. spray chambers or open chambers with nuclear trace detectors or TL detectors, open detectors, activated carbon dose meters with or without TL detectors. According to the functioning principle, only radon or radon and fission products can be detected. The lecture gives a survey of the present state of development of passive Rn dose meters. By the example of the Ra dose meter developed at Karlsruhe which was used in inquiry measurements carried out in Germany, Switzerland, the Netherlands, Belgium and Austria, etching technology, estimation of measuring uncertainties, reproducibility and fading behaviour shall be discussed. (orig./HP) [de

  5. Measure Guideline: Passive Vents

    Energy Technology Data Exchange (ETDEWEB)

    Berger, David [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Neri, Robin [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2016-02-05

    This document addresses the use of passive vents as a source of outdoor air in multifamily buildings. The challenges associated with implementing passive vents and the factors affecting performance are outlined. A comprehensive design methodology and quantified performance metrics are provided. Two hypothetical design examples are provided to illustrate the process. This document is intended to be useful to designers, decision-makers, and contractors implementing passive ventilation strategies. It is also intended to be a resource for those responsible for setting high-performance building program requirements, especially pertaining to ventilation and outdoor air. To ensure good indoor air quality, a dedicated source of outdoor air is an integral part of high-performance buildings. Presently, there is a lack of guidance pertaining to the design and installation of passive vents, resulting in poor system performance. This report details the criteria necessary for designing, constructing, and testing passive vent systems to enable them to provide consistent and reliable levels of ventilation air from outdoors.

  6. Passive devices of a reactor stop: classification of the characteristics and estimation of perfection degree

    International Nuclear Information System (INIS)

    Portyanoj, A.G.; Serdun', E.N.; Sorokin, A.P.; Egorov, V.S.; Shkarovskij, D.A.

    1998-01-01

    The perspective direction in NPP safety improvement connected with development of passive devices for nuclear reactor emergency shutdown (PDRS) is discussed. More than hundred devices which can fulfil the PDRS functions are suggested nowadays. The analysis of PDRS designing status as applicable for the fast reactors in the main which are based on the physical effect used in an element sensitive to temperature is made. The complex consisting of nine general characteristics including passive character, thresholdness, forces generation, inertia, multichannel design, stability towards operational factors, safety at failures, simplicity and visualisation, development conditions, is suggested for estimation of the quality of PDRS of different types. Basing on expert assessments realized using the complex of general characteristics it is shown that the types of PDRS may be separated into following three groups: linear expansion of solid bodies and thermoelectric ones (K ≅ 0.45); magnet ones with shape memory effect, liquid volume expansion (K ≅ 0.6); fusing ones (K ≅ 0.7). The conclusion is made that PDRS on the basis of fusing devices of the sulphon type with liofobic capillary-porous working body most completely satisfy the complex of general characteristics considered

  7. The effect of (NH4)2Sx passivation on the (311)A GaAs surface and its use in AlGaAs/GaAs heterostructure devices.

    Science.gov (United States)

    Carrad, D J; Burke, A M; Reece, P J; Lyttleton, R W; Waddington, D E J; Rai, A; Reuter, D; Wieck, A D; Micolich, A P

    2013-08-14

    We have studied the efficacy of (NH4)2Sx surface passivation on the (311)A GaAs surface. We report XPS studies of simultaneously-grown (311)A and (100) heterostructures showing that the (NH4)2Sx solution removes surface oxide and sulfidizes both surfaces. Passivation is often characterized using photoluminescence measurements; we show that while (NH4)2Sx treatment gives a 40-60 ×  increase in photoluminescence intensity for the (100) surface, an increase of only 2-3 ×  is obtained for the (311)A surface. A corresponding lack of reproducible improvement in the gate hysteresis of (311)A heterostructure transistor devices made with the passivation treatment performed immediately prior to gate deposition is also found. We discuss possible reasons why sulfur passivation is ineffective for (311)A GaAs, and propose alternative strategies for passivation of this surface.

  8. The effect of (NH4)2Sx passivation on the (311)A GaAs surface and its use in AlGaAs/GaAs heterostructure devices

    International Nuclear Information System (INIS)

    Carrad, D J; Burke, A M; Reece, P J; Lyttleton, R W; Waddington, D E J; Micolich, A P; Rai, A; Reuter, D; Wieck, A D

    2013-01-01

    We have studied the efficacy of (NH 4 ) 2 S x surface passivation on the (311)A GaAs surface. We report XPS studies of simultaneously-grown (311)A and (100) heterostructures showing that the (NH 4 ) 2 S x solution removes surface oxide and sulfidizes both surfaces. Passivation is often characterized using photoluminescence measurements; we show that while (NH 4 ) 2 S x treatment gives a 40–60 × increase in photoluminescence intensity for the (100) surface, an increase of only 2–3 × is obtained for the (311)A surface. A corresponding lack of reproducible improvement in the gate hysteresis of (311)A heterostructure transistor devices made with the passivation treatment performed immediately prior to gate deposition is also found. We discuss possible reasons why sulfur passivation is ineffective for (311)A GaAs, and propose alternative strategies for passivation of this surface. (paper)

  9. Position measuring device

    International Nuclear Information System (INIS)

    Maeda, Kazuyuki; Takahashi, Shuichi; Maruyama, Mayumi

    1998-01-01

    The present invention provides a device capable of measuring accurate position and distance easily even at places where operator can not easily access, such as cell facilities for vitrifying radioactive wastes. Referring to a case of the vitrifying cell, an objective equipment settled in the cell is photographed by a photographing device. The image is stored in a position measuring device by way of an image input device. After several years, when the objective equipment is exchanged, a new objective equipment is photographed by a photographing device. The image is also stored in the position measuring device. The position measuring device compares the data of both of the images on the basis of pixel unit. Based on the image of the equipment before the exchange as a reference, extent of the displacement of the installation position of the equipment on the image after the exchange caused by installation error and manufacturing error is determined to decide the position of the equipment after exchange relative to the equipment before exchange. (I.S.)

  10. Accurately bearing measurement in non-cooperative passive location system

    International Nuclear Information System (INIS)

    Liu Zhiqiang; Ma Hongguang; Yang Lifeng

    2007-01-01

    The system of non-cooperative passive location based on array is proposed. In the system, target is detected by beamforming and Doppler matched filtering; and bearing is measured by a long-base-ling interferometer which is composed of long distance sub-arrays. For the interferometer with long-base-line, the bearing is measured accurately but ambiguously. To realize unambiguous accurately bearing measurement, beam width and multiple constraint adoptive beamforming technique is used to resolve azimuth ambiguous. Theory and simulation result shows this method is effective to realize accurately bearing measurement in no-cooperate passive location system. (authors)

  11. Device for electrochemical detection of metal sample surface resistance and passivation against corrosion in electrolyte

    International Nuclear Information System (INIS)

    Urbancik, L.; Bar, J.; Nemec, J.; Sima, A.

    1986-01-01

    The device consists of a teflon vessel with sealing and an opening below the electrolyte level. Into it is submerged an electrode connected to a dc voltage supply whose other pole is connected to a sample of the metal which is pressed to the opening in the sealing with a flexible strap. The teflon vessel and the sealing are integral. The device is simpler and less costly than those manufactured so far. The operating capability of damaged sealing may be renewed by simple mechanical working. The device may be used for detecting the resistance and passivation of steam generator metal tubes. (J.B.). 1 fig

  12. Occurrence of contaminants of emerging concern along the California coast (2009-10) using passive sampling devices

    Science.gov (United States)

    Alvarez, David A.; Maruya, Keith A.; Dodder, Nathan G.; Lao, Wenjian; Furlong, Edward T.; Smalling, Kelly L.

    2014-01-01

    Three passive sampling devices (PSDs), polar organic chemical integrative samplers (POCIS), polyethylene devices (PEDs), and solid-phase microextraction (SPME) samplers were used to sample a diverse set of chemicals in the coastal waters of San Francisco Bay and the Southern California Bight. Seventy one chemicals (including fragrances, phosphate flame retardants, pharmaceuticals, PAHs, PCBs, PBDEs, and pesticides) were measured in at least 50% of the sites. The chemical profile from the San Francisco Bay sites was distinct from profiles from the sites in the Southern California Bight. This distinction was not due to a single compound or class, but by the relative abundances/concentrations of the chemicals. Comparing the PSDs to mussel (Mytilus spp.) tissues, a positive correlation exists for the 25 and 26 chemicals in common for the PEDs and SPME, respectively. Diphenhydramine was the only common chemical out of 40 analyzed in both POCIS and tissues detected at a common site.

  13. Hydrogen Passivation of Interstitial Zn Defects in Heteroepitaxial InP Cell Structures and Influence on Device Characteristics

    Science.gov (United States)

    Ringel, S. A.; Chatterjee, B.

    2004-01-01

    Hydrogen passivation of heteroepitaxial InP solar cells is of recent interest for deactivation of dislocations and other defects caused by the cell/substrate lattice mismatch that currently limit the photovoltaic performance of these devices. In this paper we present strong evidence that, in addition to direct hydrogen-dislocation interactions, hydrogen forms complexes with the high concentration of interstitial Zn defects present within the p(+) Zn-doped emitter of MOCVD-grown heteroepitaxial InP devices, resulting in a dramatic increase of the forward bias turn-on voltage by as much as 280 mV, from 680 mV to 960 mV. This shift is reproducible and thermally reversible and no such effect is observed for either n(+)p structures or homoepitaxial p(+)n structures grown under identical conditions. A combination of photoluminescence (PL), electrochemical C-V dopant profiling, SIMS and I-V measurements were performed on a set of samples having undergone a matrix of hydrogenation and post-hydrogenation annealing conditions to investigate the source of this voltage enhancement and confirm the expected role of interstitial Zn and hydrogen. A precise correlation between all measurements is demonstrated which indicates that Zn interstitials within the p(+) emitter and their interaction with hydrogen are indeed responsible for this device behavior.

  14. Optical and electrical characterizations of a single step ion beam milling mesa devices of chloride passivated PbS colloidal quantum dots based film

    International Nuclear Information System (INIS)

    Hechster, Elad; Sarusi, Gabby; Shapiro, Arthur; Lifshitz, Efrat

    2016-01-01

    Colloidal Quantum Dots (CQDs) are of increasing interest, thanks to their quantum size effect that gives rise to their usage in various applications, such as biological tagging, solar cells and as the sensitizing layer of night vision devices. Here, we analyze the optical absorbance of chloride passivated PbS CQDs as well as revealing a correlation between their photoluminescence and sizes distribution, using theoretical models and experimental results from the literature. Next, we calculate the CQDs resistivity as a film. Although resistivity can be calculated from sheet resistance measurement using four point probes, such measurement is usually carried-out on the layer’s surface that in most cases has dangling bonds and surface states, which might affect the charges flow and modify the resistivity. Therefore; our approach, which was applied in this work, is to extract the actual resistivity from measurements that are performed along the film’s thickness (z-direction). For this intent, we fabricated gold capped PbS mesas devices using a single step Ion Beam Milling (IBM) process where we milled the gold and the PbS film continually, and then measured the vertical resistance. Knowing the mesas’ dimensions, we calculate the resistivity. To the best of our knowledge, no previous work has extracted, vertically, the resistivity of chloride passivated PbS CQDs using the above method.

  15. Optical and electrical characterizations of a single step ion beam milling mesa devices of chloride passivated PbS colloidal quantum dots based film

    Energy Technology Data Exchange (ETDEWEB)

    Hechster, Elad, E-mail: elad.hechster@gmail.com; Sarusi, Gabby [Electro-Optics Engineering Unit and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 84100 Israel (Israel); Shapiro, Arthur; Lifshitz, Efrat [Schulich Faculty of Chemistry, Solid State Institute, Russel Berrie Nanotechnology Institute, Technion – Israel Institute of technology, 32000 Haifa (Israel)

    2016-07-15

    Colloidal Quantum Dots (CQDs) are of increasing interest, thanks to their quantum size effect that gives rise to their usage in various applications, such as biological tagging, solar cells and as the sensitizing layer of night vision devices. Here, we analyze the optical absorbance of chloride passivated PbS CQDs as well as revealing a correlation between their photoluminescence and sizes distribution, using theoretical models and experimental results from the literature. Next, we calculate the CQDs resistivity as a film. Although resistivity can be calculated from sheet resistance measurement using four point probes, such measurement is usually carried-out on the layer’s surface that in most cases has dangling bonds and surface states, which might affect the charges flow and modify the resistivity. Therefore; our approach, which was applied in this work, is to extract the actual resistivity from measurements that are performed along the film’s thickness (z-direction). For this intent, we fabricated gold capped PbS mesas devices using a single step Ion Beam Milling (IBM) process where we milled the gold and the PbS film continually, and then measured the vertical resistance. Knowing the mesas’ dimensions, we calculate the resistivity. To the best of our knowledge, no previous work has extracted, vertically, the resistivity of chloride passivated PbS CQDs using the above method.

  16. Passivation Effect of Atomic Layer Deposition of Al2O3 Film on HgCdTe Infrared Detectors

    Science.gov (United States)

    Zhang, Peng; Ye, Zhen-Hua; Sun, Chang-Hong; Chen, Yi-Yu; Zhang, Tian-Ning; Chen, Xin; Lin, Chun; Ding, Ring-Jun; He, Li

    2016-09-01

    The passivation effect of atomic layer deposition of (ALD) Al2O3 film on a HgCdTe infrared detector was investigated in this work. The passivation effect of Al2O3 film was evaluated by measuring the minority carrier lifetime, capacitance versus voltage ( C- V) characteristics of metal-insulator-semiconductor devices, and resistance versus voltage ( R- V) characteristics of variable-area photodiodes. The minority carrier lifetime, C- V characteristics, and R- V characteristics of HgCdTe devices passivated by ALD Al2O3 film was comparable to those of HgCdTe devices passivated by e-beam evaporation of ZnS/CdTe film. However, the baking stability of devices passivated by Al2O3 film is inferior to that of devices passivated by ZnS/CdTe film. In future work, by optimizing the ALD Al2O3 film growing process and annealing conditions, it may be feasible to achieve both excellent electrical properties and good baking stability.

  17. Passive safety device and internal short tested method for energy storage cells and systems

    Science.gov (United States)

    Keyser, Matthew; Darcy, Eric; Long, Dirk; Pesaran, Ahmad

    2015-09-22

    A passive safety device for an energy storage cell for positioning between two electrically conductive layers of the energy storage cell. The safety device also comprising a separator and a non-conductive layer. A first electrically conductive material is provided on the non-conductive layer. A first opening is formed through the separator between the first electrically conductive material and one of the electrically conductive layers of the energy storage device. A second electrically conductive material is provided adjacent the first electrically conductive material on the non-conductive layer, wherein a space is formed on the non-conductive layer between the first and second electrically conductive materials. A second opening is formed through the non-conductive layer between the second electrically conductive material and another of the electrically conductive layers of the energy storage device. The first and second electrically conductive materials combine and exit at least partially through the first and second openings to connect the two electrically conductive layers of the energy storage device at a predetermined temperature.

  18. Methods of radon measurement and devices

    International Nuclear Information System (INIS)

    Miles, J.

    2004-01-01

    The following topics and instrumentation are discussed: The quantity to be measured; Active measurement methods (scintillation cells, ionisation chambers, electrostatic collection of decay products); Passive measurement methods (charcoal detectors; electret ion chambers; etched track detectors); and Detector considerations for large-scale surveys ('always on' or 'switchable' detectors?; response to radon-220; avoidance of electrostatic effects; quality assurance for passive radon detectors; quality control within the laboratory; external quality assurance; detectors need to be easily deliverable). It is concluded that the ideal detector for large scale surveys of radon in houses is a small, closed detector in a conducting holder which excludes radon-220, supported by rigorous quality assurance procedures. (P.A.)

  19. Surface Passivation in Empirical Tight Binding

    OpenAIRE

    He, Yu; Tan, Yaohua; Jiang, Zhengping; Povolotskyi, Michael; Klimeck, Gerhard; Kubis, Tillmann

    2015-01-01

    Empirical Tight Binding (TB) methods are widely used in atomistic device simulations. Existing TB methods to passivate dangling bonds fall into two categories: 1) Method that explicitly includes passivation atoms is limited to passivation with atoms and small molecules only. 2) Method that implicitly incorporates passivation does not distinguish passivation atom types. This work introduces an implicit passivation method that is applicable to any passivation scenario with appropriate parameter...

  20. Accuracy of two root canal length measurement devices integrated into rotary endodontic motors when removing gutta-percha from root-filled teeth.

    Science.gov (United States)

    Uzun, O; Topuz, O; Tinaz, C; Nekoofar, M H; Dummer, P M H

    2008-09-01

    To evaluate ex vivo the accuracy of the integrated electronic root canal length measurement devices within TCM Endo V and Tri Auto ZX motors whilst removing gutta-percha and sealer from filled root canals. Forty freshly extracted maxillary and mandibular incisor teeth with mature apices were selected. Following access cavity preparation, the length of the root canals were measured visually 0.5 mm short of the major foramen (TL). The canals were prepared using the HERO 642 system and then filled with gutta-percha and AH26 sealer using a lateral compaction technique. After 7 days the coronal temporary filling was removed and the roots mounted in an alginate experimental model. The roots were then randomly divided in two groups. The access cavities were filled with chloroform to soften the gutta-percha and allow its penetration using the Tri Auto ZX and the TCM Endo V devices in groups 1 and 2, respectively. The 'automatic apical reverse function' (ARL) of both devices was set to start at the 0.5 setting and the rotary instrument inserted inside the root canal until a beeping sound was heard and the rotation of the file stopped automatically. Once the auto reverse function had been initiated, the foot pedal of the motor was inactivated and the rubber stop placed against the reference point. The distance between the file tip and rubber stop was measured using a digital calliper to 0.01 mm accuracy (ARL). Then, a size 20, 0.02 taper instrument was attached to each device and inserted into the root canals without rotary motion until the integrated ERCLMDs positioned the instrument tips at the 0.5 setting as suggested by the devices. This length was again measured using a digital calliper (EL). The Mann-Whitney U-test was used to investigate statistical differences between the true canal length and those indicated by the two devices when used in 'automatic ARL and when inserted passively (EL). In the presence of gutta-percha, sealer and chloroform, the auto

  1. An investigation of a passively controlled haptic interface

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J.T. [Oak Ridge National Lab., TN (United States); Book, W.J. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Mechanical Engineering

    1997-03-01

    Haptic interfaces enhance cooperation between humans and robotic manipulators by providing force and tactile feedback to the human user during the execution of arbitrary tasks. The use of active actuators in haptic displays presents a certain amount of risk since they are capable of providing unacceptable levels of energy to the systems upon which they operate. An alternative to providing numerous safeguards is to remove the sources of risk altogether. This research investigates the feasibility of trajectory control using passive devices, that is, devices that cannot add energy to the system. Passive actuators are capable only of removing energy from the system or transferring energy within the system. It is proposed that the utility of passive devices is greatly enhanced by the use of redundant actuators. In a passive system, once motion is provided to the system, presumably by a human user, passive devices may be able to modify this motion to achieve a desired resultant trajectory. A mechanically passive, 2-Degree-of-Freedom (D.O.F.) manipulator has been designed and built. It is equipped with four passive actuators: two electromagnetic brakes and two electromagnetic clutches. This paper gives a review of the literature on passive and robotics and describes the experimental test bed used in this research. Several control algorithms are investigated, resulting in the formulation of a passive control law.

  2. An investigation of a passively controlled haptic interface

    International Nuclear Information System (INIS)

    Davis, J.T.; Book, W.J.

    1997-01-01

    Haptic interfaces enhance cooperation between humans and robotic manipulators by providing force and tactile feedback to the human user during the execution of arbitrary tasks. The use of active actuators in haptic displays presents a certain amount of risk since they are capable of providing unacceptable levels of energy to the systems upon which they operate. An alternative to providing numerous safeguards is to remove the sources of risk altogether. This research investigates the feasibility of trajectory control using passive devices, that is, devices that cannot add energy to the system. Passive actuators are capable only of removing energy from the system or transferring energy within the system. It is proposed that the utility of passive devices is greatly enhanced by the use of redundant actuators. In a passive system, once motion is provided to the system, presumably by a human user, passive devices may be able to modify this motion to achieve a desired resultant trajectory. A mechanically passive, 2-Degree-of-Freedom (D.O.F.) manipulator has been designed and built. It is equipped with four passive actuators: two electromagnetic brakes and two electromagnetic clutches. This paper gives a review of the literature on passive and robotics and describes the experimental test bed used in this research. Several control algorithms are investigated, resulting in the formulation of a passive control law

  3. Passive direct methanol fuel cells for portable electronic devices

    International Nuclear Information System (INIS)

    Achmad, F.; Kamarudin, S.K.; Daud, W.R.W.; Majlan, E.H.

    2011-01-01

    Due to the increasing demand for electricity, clean, renewable energy resources must be developed. Thus, the objective of the present study was to develop a passive direct methanol fuel cell (DMFC) for portable electronic devices. The power output of six dual DMFCs connected in series with an active area of 4 cm 2 was approximately 600 mW, and the power density of the DMFCs was 25 mW cm -2 . The DMFCs were evaluated as a power source for mobile phone chargers and media players. The results indicated that the open circuit voltage of the DMFC was between 6.0 V and 6.5 V, and the voltage under operating conditions was 4.0 V. The fuel cell was tested on a variety of cell phone chargers, media players and PDAs. The cost of energy consumption by the proposed DMFC was estimated to be USD 20 W -1 , and the cost of methanol is USD 4 kW h. Alternatively, the local conventional electricity tariff is USD 2 kW h. However, for the large-scale production of electronic devices, the cost of methanol will be significantly lower. Moreover, the electricity tariff is expected to increase due to the constraints of fossil fuel resources and pollution. As a result, DMFCs will become competitive with conventional power sources.

  4. Comparative study of passive and semi-active energy dissipation devices intended for overhead cranes

    International Nuclear Information System (INIS)

    Guihot, P.; Revaud, D.

    1996-04-01

    This paper deals with the results of a bibliographic survey of energy dissipation devices which could be adapted for overhead cranes. The principle of passive devices using friction, yielding steel systems of viscous and viscoelastic systems are remembered. An active control system, which needs a minimum of external control energy is also presented. The application to overhead cranes which have a strong non linear behaviour under strong seismic motion (sliding between rails and wheels, local yielding and damage) is further discussed. The first results of a numerical study in progress are likewise purposed. The criterion of selection of the devices turn on the performance, the robustness and the reliability. The behaviour in the presence of non linearities, the sensitivity to the variations of the vibratory characteristics, and lastly the sensitivity to the response delay of the active controller are taken into account. (authors). 14 refs., 4 figs

  5. Radio requestable passive SAW water content sensor

    NARCIS (Netherlands)

    Reindl, L.; Ruppel, C.C.W.; Kirmayr, A.; Stockhausen, N.; Hilhorst, M.A.; Balendonk, J.

    2001-01-01

    A new passive sensor for remote measurement of water content in sandy soil was designed, using a surface acoustic wave (SAW) reflective delay line. Information from this sensor can be obtained by an interrogation device via a radio link operating in the European 434-MHz industrial-scientific-medical

  6. Hybrid heat pipe based passive cooling device for spent nuclear fuel dry storage cask

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Bang, In Cheol

    2016-01-01

    Highlights: • Hybrid heat pipe was presented as a passive cooling device for dry storage cask of SNF. • A method to utilize waste heat from spent fuel was suggested using hybrid heat pipe. • CFD analysis was performed to evaluate the thermal performance of hybrid heat pipe. • Hybrid heat pipe can increase safety margin and storage capacity of the dry storage cask. - Abstract: Conventional dry storage facilities for spent nuclear fuel (SNF) were designed to remove decay heat through the natural convection of air, but this method has limited cooling capacity and a possible re-criticality accident in case of flooding. To enhance the safety and capacity of dry storage cask of SNF, hybrid heat pipe-based passive cooling device was suggested. Heat pipe is an excellent passive heat transfer device using the principles of both conduction and phase change of the working fluid. The heat pipe containing neutron absorber material, the so-called hybrid heat pipe, is expected to prevent the re-criticality accidents of SNF and to increase the safety margin during interim and long term storage period. Moreover, a hybrid heat pipe with thermoelectric module, a Stirling engine and a phase change material tank can be used for utilization of the waste heat as heat-transfer medium. Located at the guide tube or instrumentation tube, hybrid heat pipe can remove decay heat from inside the sealed metal cask to outside, decreasing fuel rod temperature. In this paper, a 2-step analysis was performed using computational fluid dynamics code to evaluate the heat and fluid flow inside a cask, which consisted of a single spent fuel assembly simulation and a full-scope dry cask simulation. For a normal dry storage cask, the maximum fuel temperature is 290.0 °C. With hybrid heat pipe cooling, the temperature decreased to 261.6 °C with application of one hybrid heat pipe per assembly, and to 195.1 °C with the application of five hybrid heat pipes per assembly. Therefore, a dry

  7. Seismic Passive Control of Cable-Stayed Bridges

    Directory of Open Access Journals (Sweden)

    Hosam-Eddin M. Ali

    1995-01-01

    Full Text Available A three-dimensional modeling procedure is proposed for cable-stayed bridges with rubber, steel, and lead energy dissipation devices. The passive control technique is investigated by considering the response of bridge models with and without energy dissipation devices. The impact of various design parameters on the seismic response of current and future bridge designs is studied. Appropriate locations and properties of the passive devices can achieve better performance for cable-stayed bridges by balancing the significant reduction in earthquake-induced forces against tolerable displacements. Proper design of passive systems can help provide solutions for retro-fitting some existing bridges.

  8. Using bioavailability to assess contaminated sediment risk: Passive sampling and Pore Water Remedial Guidelines (PWRGs)

    Science.gov (United States)

    Hosted by the Contaminated Sediment Forum, this half-day course will introduce the RPM to the use of passive samplers to assess bioavailability and in ecological risk assessment. Passive sampling devices (PSD) are a technology with growing acceptance for measuring porewater conce...

  9. High-sensitivity measurements for low-level TRU wastes using advanced passive neutron techniques

    International Nuclear Information System (INIS)

    Menlove, H.O.; Eccleston, G.W.

    1992-01-01

    In recent years, both passive- and active-neutron nondestructive assay (NDA) systems have been used to measure the uranium and plutonium content in 200-ell drums. Because of the heterogeneity of the wastes, representative sampling is not possible and NDA methods are preferred over destructive analysis. Active-neutron assay systems are used to measure the fissile isotopes such as 235 U, 23 Pu, and 241 Pu; the isotopic ratios are used to infer the total plutonium content and thus the specific disintegration rate. The active systems include 14-MeV-neutron (DT) generators with delayed-neutron counting, (D,T) generators with the differential die-away technique, and 252 Cf delayed-neutron shufflers. Passive assay systems (for example, segmented gamma-ray scanners)5 have used gamma-ray sessions, while others (for example, passive drum counters) used passive-neutron signals. We have developed a new passive-neutron measurement technique to improve the accuracy and sensitivity of the NDA of plutonium scrap and waste. This new 200-ell-drum assay system combines the classical NDA method of counting passive-neutron totals and coincidences from plutonium with the new features of ''add-a-source'' (AS) and multiplicity counting to improve the accuracy of matrix corrections and statistical techniques that improve the low-level detectability limits. This paper describes the improvements we have made in passive-neutron assay systems and compares the accuracies and detectability limits of passive- and active-neutron assay systems

  10. Passive Time Coincidence Measurements with HEU and DU Metal Castings

    International Nuclear Information System (INIS)

    McConchie, Seth M.; Hausladen, Paul; Mihalczo, John T.; Wright, Michael C.; Archer, Daniel E.

    2008-01-01

    A Department of Energy sponsored Oak Ridge National Laboratory/Y-12 National Security Complex program of passive time coincidence measurements has been initiated at Y-12 to evaluate the ability to determine the presence of high enriched uranium (HEU) and distinguish it from depleted uranium (DU). This program uses the Nuclear Materials Identification System (NMIS) without an active interrogation source. Previous passive NMIS measurements with Pu metal and Pu oxide have been successful in determining the Pu mass, assuming a known 240Pu content. The spontaneous fission of uranium metal is considerably lower than Pu and measurements of this type have been performed at Lawrence Livermore National Laboratory. This work presents results of measurements of HEU and DU metal castings using moderated 3He detectors.

  11. Neutron measuring device

    International Nuclear Information System (INIS)

    Hatayama, Akiyoshi; Seki, Eiji; Kita, Yoshio; Nishitani, Takeo.

    1993-01-01

    The device of the present invention concerns measurement for neutrons in a tokamak type thermonuclear device and it can measure total amount of generated neutrons accurately throughout the operation period even if an error is caused in counted values by plasma disruption. That is, the device comprises (1) a means for detecting presence or absence of occurrence of plasma disruption and the time for the initiation of the occurrence, (2) a first data processing means for processing detection signals, (3) a means for detecting neutrons generated in plasmas and (4) a second data processing means for calculating integrated values for the number of neutrons generated from the start to the completion of electric discharge when no disruption occurs and calculating integrated values for the number of generated neutrons from the start of electric discharge to the time at the initiation of occurrence of the disruption when disruption is present. In the thus constituted device, even if an error is caused by frequent occurrence of plasma disruption, total time integrated amount of neutrons generated in the plasmas can be measured accurately. (I.S.)

  12. Optical absorption and oxygen passivation of surface states in III-nitride photonic devices

    Science.gov (United States)

    Rousseau, Ian; Callsen, Gordon; Jacopin, Gwénolé; Carlin, Jean-François; Butté, Raphaël; Grandjean, Nicolas

    2018-03-01

    III-nitride surface states are expected to impact high surface-to-volume ratio devices, such as nano- and micro-wire light-emitting diodes, transistors, and photonic integrated circuits. In this work, reversible photoinduced oxygen desorption from III-nitride microdisk resonator surfaces is shown to increase optical attenuation of whispering gallery modes by 100 cm-1 at λ = 450 nm. Comparison of photoinduced oxygen desorption in unintentionally and n+-doped microdisks suggests that the spectral changes originate from the unpinning of the surface Fermi level, likely taking place at etched nonpolar III-nitride sidewalls. An oxygen-rich surface prepared by thermal annealing results in a broadband Q improvement to state-of-the-art values exceeding 1 × 104 at 2.6 eV. Such findings emphasize the importance of optically active surface states and their passivation for future nanoscale III-nitride optoelectronic and photonic devices.

  13. Use of passive sampling for atmospheric tritium monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Caldeira Ideias, P.; Pierrard, O.; Tournieux, D. [Institut de Radioprotection et de Surete Nucleaire - IRSN (France); Tenailleau, L. [Marine nationale (France)

    2014-07-01

    conducted both in laboratory and in real environmental conditions with different tritium levels. For important tritium activities 10-25 kBq.L{sup -1} the passive devices were tested in an accidentally contaminated site in France and for low activities 1-3 Bq.L{sup -1} in the surroundings of a nuclear installation. In both cases the tritium passive samplers performances were compared with an active method (condenser). The result indicates that the measured activity from the passive technique and the active one showed a very good agreement. The monitoring results with passive sampling showed that this technology can be used both for environmental monitoring programmes (sampling frequency: weekly to monthly) and radiological emergency situations (sampling time reduced to 24 H). This system can also be very useful for radiological mapping. These results are encouraging for future studies aiming to develop the {sup 14}C and HT passive samplers, since these devices offer a unique complement to other sample/measurement techniques and will most likely be more commonly used. Document available in abstract form only. (authors)

  14. Nonlinear surface impedance of YBCO thin films: Measurements, modeling, and effects in devices

    International Nuclear Information System (INIS)

    Oates, D.E.; Koren, G.; Polturak, E.

    1995-01-01

    High-T c thin films continue to be of interest for passive device applications at microwave frequencies, but nonlinear effects may limit the performance. To understand these effects we have measured the nonlinear effects may limit the performance. To understand these effects we have measured the nonlinear surface impedance Z s in a number of YBa 2 Cu 3 O 7-x thin films as a function of frequency from 1 to 18 GHz, rf surface magnetic field H rf to 1500 Oe, and temperature from 4 K to T c . The results at low H rf are shown to agree quantitatively with a modified coupled-grain model and at high H rf with hysteresis-loss calculations using the Bean critical-state model applied to a thin strip. The loss mechanisms are extrinsic properties resulting from defects in the films. We also report preliminary measurements of the nonlinear impedance of Josephson junctions, and the results are related to the models of nonlinear Z s . The implications of nonlinear Z s for devices are discussed using the example of a five-pole bandpass filter

  15. Inherently safe passive gas monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, Joseph V.; Bellamy, John Stephen; Shuler, James M.; Shull, Davis J.; Leduc, Daniel R.

    2016-09-06

    Generally, the present disclosure is directed to gas monitoring systems that use inductive power transfer to safely power an electrically passive device included within a nuclear material storage container. In particular, the electrically passive device can include an inductive power receiver for receiving inductive power transfer through a wall of the nuclear material storage container. The power received by the inductive power receiver can be used to power one or more sensors included in the device. Thus, the device is not required to include active power generation components such as, for example, a battery, that increase the risk of a spark igniting flammable gases within the container.

  16. Aloe vera in active and passive regions of electronic devices towards a sustainable development

    Science.gov (United States)

    Lim, Zhe Xi; Sreenivasan, Sasidharan; Wong, Yew Hoong; Cheong, Kuan Yew

    2017-07-01

    The increasing awareness towards sustainable development of electronics has driven the search for natural bio-organic materials in place of conventional electronic materials. The concept of using natural bio-organic materials in electronics provides not only an effective solution to address global electronic waste crisis, but also a compelling template for sustainable electronics manufacturing. This paper attempts to provide an overview of using Aloe vera gel as a natural bio-organic material for various electronic applications. Important concepts such as responses of living Aloe vera plant towards electrical stimuli and demonstrations of Aloe vera films as passive and active regions of electronic devices are highlighted in chronological order. The biodegradability and biocompatibility of Aloe vera can bring the world a step closer towards the ultimate goal of sustainable development of electronic devices from "all-natural" materials.

  17. A silicon-on-insulator vertical nanogap device for electrical transport measurements in aqueous electrolyte solution

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, Sebastian [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Arinaga, Kenji [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Hansen, Allan [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Tornow, Marc [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany)

    2007-07-25

    A novel concept for metal electrodes with few 10 nm separation for electrical conductance measurements in an aqueous electrolyte environment is presented. Silicon-on-insulator (SOI) material with 10 nm buried silicon dioxide serves as a base substrate for the formation of SOI plateau structures which, after recess-etching the thin oxide layer, thermal oxidation and subsequent metal thin film evaporation, feature vertically oriented nanogap electrodes at their exposed sidewalls. During fabrication only standard silicon process technology without any high-resolution nanolithographic techniques is employed. The vertical concept allows an array-like parallel processing of many individual devices on the same substrate chip. As analysed by cross-sectional TEM analysis the devices exhibit a well-defined material layer architecture, determined by the chosen material thicknesses and process parameters. To investigate the device in aqueous solution, we passivated the sample surface by a polymer layer, leaving a micrometre-size fluid access window to the nanogap region only. First current-voltage characteristics of a 65 nm gap device measured in 60 mM buffer solution reveal excellent electrical isolation behaviour which suggests applications in the field of biomolecular electronics in a natural environment.

  18. Micro and nano devices in passive millimetre wave imaging systems

    Science.gov (United States)

    Appleby, R.

    2013-06-01

    The impact of micro and nano technology on millimetre wave imaging from the post war years to the present day is reviewed. In the 1950s whisker contacted diodes in mixers and vacuum tubes were used to realise both radiometers and radars but required considerable skill to realise the performance needed. Development of planar semiconductor devices such as Gunn and Schottky diodes revolutionised mixer performance and provided considerable improvement. The next major breakthrough was high frequency transistors based on gallium arsenide which were initially used at intermediate frequencies but later after further development at millimeter wave frequencies. More recently Monolithic Microwave Integrated circuits(MMICs) offer exceptional performance and the opportunity for innovative design in passive imaging systems. In the future the use of micro and nano technology will continue to drive system performance and we can expect to see integration of antennae, millimetre wave and sub millimetre wave circuits and signal processing.

  19. Sound source measurement by using a passive sound insulation and a statistical approach

    Science.gov (United States)

    Dragonetti, Raffaele; Di Filippo, Sabato; Mercogliano, Francesco; Romano, Rosario A.

    2015-10-01

    This paper describes a measurement technique developed by the authors that allows carrying out acoustic measurements inside noisy environments reducing background noise effects. The proposed method is based on the integration of a traditional passive noise insulation system with a statistical approach. The latter is applied to signals picked up by usual sensors (microphones and accelerometers) equipping the passive sound insulation system. The statistical approach allows improving of the sound insulation given only by the passive sound insulation system at low frequency. The developed measurement technique has been validated by means of numerical simulations and measurements carried out inside a real noisy environment. For the case-studies here reported, an average improvement of about 10 dB has been obtained in a frequency range up to about 250 Hz. Considerations on the lower sound pressure level that can be measured by applying the proposed method and the measurement error related to its application are reported as well.

  20. A passive cold storage device economic model to evaluate selected immunization location scenarios.

    Science.gov (United States)

    Norman, Bryan A; Nourollahi, Sevnaz; Chen, Sheng-I; Brown, Shawn T; Claypool, Erin G; Connor, Diana L; Schmitz, Michelle M; Rajgopal, Jayant; Wateska, Angela R; Lee, Bruce Y

    2013-10-25

    The challenge of keeping vaccines cold at health posts given the unreliability of power sources in many low- and middle-income countries and the expense and maintenance requirements of solar refrigerators has motivated the development of passive cold storage devices (PCDs), containers that keep vaccines cold without using an active energy source. With different PCDs under development, manufacturers, policymakers and funders need guidance on how varying different PCD characteristics may affect the devices' cost and utility. We developed an economic spreadsheet model representing the lowest two levels of a typical Expanded Program on Immunization (EPI) vaccine supply chain: a district store, the immunization locations that the district store serves, and the transport vehicles that operate between the district store and the immunization locations. The model compares the use of three vaccine storage device options [(1) portable PCDs, (2) stationary PCDs, or (3) solar refrigerators] and allows the user to vary different device (e.g., size and cost) and scenario characteristics (e.g., catchment area population size and vaccine schedule). For a sample set of select scenarios and equipment specification, we found the portable PCD to generally be better suited to populations of 5,000 or less. The stationary PCD replenished once per month can be a robust design especially with a 35L capacity and a cost of $2,500 or less. The solar device was generally a reasonable alternative for most of the scenarios explored if the cost was $2,100 or less (including installation). No one device type dominated over all explored circumstances. Therefore, the best device may vary from country-to-country and location-to-location within a country. This study introduces a quantitative model to help guide PCD development. Although our selected set of explored scenarios and device designs was not exhaustive, future explorations can further alter model input values to represent additional scenarios

  1. Low-Cost Wireless Temperature Measurement: Design, Manufacture, and Testing of a PCB-Based Wireless Passive Temperature Sensor.

    Science.gov (United States)

    Yan, Dan; Yang, Yong; Hong, Yingping; Liang, Ting; Yao, Zong; Chen, Xiaoyong; Xiong, Jijun

    2018-02-10

    Low-cost wireless temperature measurement has significant value in the food industry, logistics, agriculture, portable medical equipment, intelligent wireless health monitoring, and many areas in everyday life. A wireless passive temperature sensor based on PCB (Printed Circuit Board) materials is reported in this paper. The advantages of the sensor include simple mechanical structure, convenient processing, low-cost, and easiness in integration. The temperature-sensitive structure of the sensor is a dielectric-loaded resonant cavity, consisting of the PCB substrate. The sensitive structure also integrates a patch antenna for the transmission of temperature signals. The temperature sensing mechanism of the sensor is the dielectric constant of the PCB substrate changes with temperature, which causes the resonant frequency variation of the resonator. Then the temperature can be measured by detecting the changes in the sensor's working frequency. The PCB-based wireless passive temperature sensor prototype is prepared through theoretical design, parameter analysis, software simulation, and experimental testing. The high- and low-temperature sensing performance of the sensor is tested, respectively. The resonant frequency decreases from 2.434 GHz to 2.379 GHz as the temperature increases from -40 °C to 125 °C. The fitting curve proves that the experimental data have good linearity. Three repetitive tests proved that the sensor possess well repeatability. The average sensitivity is 347.45 KHz / ℃ from repetitive measurements conducted three times. This study demonstrates the feasibility of the PCB-based wireless passive sensor, which provides a low-cost temperature sensing solution for everyday life, modern agriculture, thriving intelligent health devices, and so on, and also enriches PCB product lines and applications.

  2. Thin film-based optically variable security devices: From passive to active

    Science.gov (United States)

    Baloukas, Bill

    Counterfeiting costs the world economy billions of dollars every year. Aside from financial losses, counterfeiting also poses a great threat to the public's safety, for example through the existence of counterfeit passports (terrorism), pharmaceutical products (health hazards) and even airplane parts (safety issues). Optical security devices (OSDs) have therefore played a critical role in the fight against counterfeiting. It is the aim of the present thesis to show that through the use of metamerism and electrochromic materials, new types of active security devices with interesting features can be created; indeed, most present-day devices are passive in nature. I first demonstrate that the addition of metamerism in the design of interference filters can result in innovative features. Different structures which can be used in transmission and/or in reflection are designed, fabricated, and evaluated. The first structures which are presented here are based on a combination of two different metameric interference filters. Possessing widely different transmission spectra, these filters also offer different angular color shifts and, as a result, offer an opportunity of creating hidden image effects. Despite their interesting properties, such metameric devices are shown to be highly illuminant and observer sensitive; that is the color match is lost under most observation conditions. These issues are solved by a simpler structure based on the juxtaposition of an interference filter and a non-iridescent colored material. Throughout this study, I present the design approach, analyze the filters' sensitivity to deposition errors, and evaluate the performance of prototype devices prepared by dual ion beam sputtering. Following my work on passive metameric systems, I then propose to go one step further by implementing an active component using an electrochromic material. This novel concept, which is based on the joint use of a metameric filter and electrochromic device, offers

  3. A Biopolymer Heparin Sodium Interlayer Anchoring TiO2 and MAPbI3 Enhances Trap Passivation and Device Stability in Perovskite Solar Cells.

    Science.gov (United States)

    You, Shuai; Wang, Hui; Bi, Shiqing; Zhou, Jiyu; Qin, Liang; Qiu, Xiaohui; Zhao, Zhiqiang; Xu, Yun; Zhang, Yuan; Shi, Xinghua; Zhou, Huiqiong; Tang, Zhiyong

    2018-04-18

    Traps in the photoactive layer or interface can critically influence photovoltaic device characteristics and stabilities. Here, traps passivation and retardation on device degradation for methylammonium lead trihalide (MAPbI 3 ) perovskite solar cells enabled by a biopolymer heparin sodium (HS) interfacial layer is investigated. The incorporated HS boosts the power conversion efficiency from 17.2 to 20.1% with suppressed hysteresis and Shockley-Read-Hall recombination, which originates primarily from the passivation of traps near the interface between the perovskites and the TiO 2 cathode. The incorporation of an HS interfacial layer also leads to a considerable retardation of device degradation, by which 85% of the initial performance is maintained after 70 d storage in ambient environment. Aided by density functional theory calculations, it is found that the passivation of MAPbI 3 and TiO 2 surfaces by HS occurs through the interactions of the functional groups (COO - , SO 3 - , or Na + ) in HS with undersaturated Pb and I ions in MAPbI 3 and Ti 4+ in TiO 2 . This work demonstrates a highly viable and facile interface strategy using biomaterials to afford high-performance and stable perovskite solar cells. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. PROMETHEE: a versatile R and D measurement device for low level waste assay

    International Nuclear Information System (INIS)

    Romeyer Dherby, J.; Passard, C.; Mariani, A.

    1996-01-01

    The accurate measurement of heavy nuclide masses and activities in radioactive wastes drums is an important part of waste management. The Active/Passive non destructive assay of radioactive waste drums using a 14 MeV neutron generator is particularly interesting for alpha low level measurements or for gamma irradiating wastes. The development, optimisation, and validation of such a device for industrial use necessitate the building of a demonstrator. In 1985, the CEA decided to build at Cadarache the PROMETHEE modular system for experimenting the pulsed generator techniques, and since then, this device has led us to define several specific systems. At the present time, in the frame of COGEMA actions to reduce the volume of the reprocessing waste, a new strategy of drumming and incineration is going to start at LA HAGUE and MARCOULE, for the low level waste planned for surface storage. This strategy depends on the performance improvement of non destructive measurements systems used for the alpha waste evaluation. In this goal, a developments and tests are carried out on the PROMETHEE research and development facility at CEA CADARACHE, in order to obtain the required performances

  5. PROMETHEE: a versatile R and D measurement device for low level waste assay

    Energy Technology Data Exchange (ETDEWEB)

    Romeyer Dherby, J.; Passard, C.; Mariani, A

    1996-12-31

    The accurate measurement of heavy nuclide masses and activities in radioactive wastes drums is an important part of waste management. The Active/Passive non destructive assay of radioactive waste drums using a 14 MeV neutron generator is particularly interesting for alpha low level measurements or for gamma irradiating wastes. The development, optimisation, and validation of such a device for industrial use necessitate the building of a demonstrator. In 1985, the CEA decided to build at Cadarache the PROMETHEE modular system for experimenting the pulsed generator techniques, and since then, this device has led us to define several specific systems. At the present time, in the frame of COGEMA actions to reduce the volume of the reprocessing waste, a new strategy of drumming and incineration is going to start at LA HAGUE and MARCOULE, for the low level waste planned for surface storage. This strategy depends on the performance improvement of non destructive measurements systems used for the alpha waste evaluation. In this goal, a developments and tests are carried out on the PROMETHEE research and development facility at CEA CADARACHE, in order to obtain the required performances.

  6. Study of Train-Side Passive Magnetic Measurements with Applications to Train Localization

    Directory of Open Access Journals (Sweden)

    Oliver Heirich

    2017-01-01

    Full Text Available Passive magnetic sensors measure the magnetic field density in three axes and are often integrated on a single chip. These low-cost sensors are widely used in car navigation as well as in battery powered navigation equipment such as smartphones as part of an electronic compass. We focus on a train localization application with multiple, exclusively onboard sensors and a track map. This approach is considered as a base technology for future railway applications such as collision avoidance systems or autonomous train driving. In this paper, we address the following question: how beneficial are passive magnetic measurements for train localization? We present and analyze measurements of two different magnetometers recorded on a regional train at regular passenger service. We show promising correlations of the measurements with the track positions and the traveled switch way. The processed data reveals that the railway environment has repeatable, location-dependent magnetic signatures. This is considered as a novel approach to train localization, as the use of these magnetic signals at first view is not obvious. The proposed methods based on passive magnetic measurements show a high potential to be integrated in new and existing train localization approaches.

  7. Fluid-flow pressure measurements and thermo-fluid characterization of a single loop two-phase passive heat transfer device

    Science.gov (United States)

    Ilinca, A.; Mangini, D.; Mameli, M.; Fioriti, D.; Filippeschi, S.; Araneo, L.; Roth, N.; Marengo, M.

    2017-11-01

    A Novel Single Loop Pulsating Heat Pipe (SLPHP), with an inner diameter of 2 mm, filled up with two working fluids (Ethanol and FC-72, Filling Ratio of 60%), is tested in Bottom Heated mode varying the heating power and the orientation. The static confinement diameter for Ethanol and FC-72, respectively 3.4 mm and 1.7mm, is above and slightly under the inner diameter of the tube. This is important for a better understanding of the working principle of the device very close to the limit between the Loop Thermosyphon and Pulsating Heat Pipe working modes. With respect to previous SLPHP experiments found in the literature, such device is designed with two transparent inserts mounted between the evaporator and the condenser allowing direct fluid flow visualization. Two highly accurate pressure transducers permit local pressure measurements just at the edges of one of the transparent inserts. Additionally, three heating elements are controlled independently, so as to vary the heating distribution at the evaporator. It is found that peculiar heating distributions promote the slug/plug flow motion in a preferential direction, increasing the device overall performance. Pressure measurements point out that the pressure drop between the evaporator and the condenser are related to the flow pattern. Furthermore, at high heat inputs, the flow regimes recorded for the two fluids are very similar, stressing that, when the dynamic effects start to play a major role in the system, the device classification between Loop Thermosyphon and Pulsating Heat Pipe is not that sharp anymore.

  8. Passivation and Depassivation of Defects in Graphene-based field-effect transistors

    Science.gov (United States)

    O'Hara, Andrew; Wang, Pan; Perini, Chris J.; Fleetwood, Daniel M.; Vogel, Eric M.; Pantelides, Sokrates T.

    Field effect transistors based on graphene on amorphous SiO2 substrates were fabricated, both with and without a top oxide passivation layer of Al2O3. Initial I-V characteristics of these devices show that the Fermi energy occurs below the Dirac point in graphene (i.e. p-type behavior). Introduction of environmental stresses, e.g. baking the devices, causes a shift in the Fermi energy relative to the Dirac point. 1/f noise measurements indicate the presence of charge trapping defects. In order to find the origins of this behavior, we construct atomistic models of the substrate/graphene interface and the graphene/oxide passivation layer interface. Using density functional theory, we investigate the role that the introduction and removal of hydrogen and hydroxide passivants has on the electronic structure of the graphene layer as well as the relative energetics for these processes to occur in order to gain insights into the experimental results. Supported by DTRA: 1-16-0032 and NSF: ECCS-1508898.

  9. Radiation ray measuring device

    International Nuclear Information System (INIS)

    Maekawa, Tatsuyuki; Ida, Masaki.

    1997-01-01

    The present invention provides a chained-radiation ray monitoring system which can be applied to an actual monitoring system of a nuclear power plant or the like. Namely, this device comprises a plurality of scintillation detectors. Each of the detectors has two light take-out ports for emitting light corresponding to radiation rays irradiated from the object of the measurement to optical fibers. In addition, incident light from the optical fiber by way of one of the light take-out optical ports is transmitted to the other of the ports and sent from the other optical port to the fibers. Plurality sets of measuring systems are provided in which each of the detectors are disposed corresponding to a plurality of objects to be measured. A signal processing device is (1) connected with optical fibers of plurality sets of measuring systems in conjunction, (2) detects the optical pulses inputted from the optical fibers to identify the detector from which the optical pulses are sent and (3) measures the amount of radiation rays detected by the identified detector. As a result, the device of the present invention can form a measuring system with redundancy. (I.S.)

  10. Surface Passivation in Empirical Tight Binding

    Science.gov (United States)

    He, Yu; Tan, Yaohua; Jiang, Zhengping; Povolotskyi, Michael; Klimeck, Gerhard; Kubis, Tillmann

    2016-03-01

    Empirical Tight Binding (TB) methods are widely used in atomistic device simulations. Existing TB methods to passivate dangling bonds fall into two categories: 1) Method that explicitly includes passivation atoms is limited to passivation with atoms and small molecules only. 2) Method that implicitly incorporates passivation does not distinguish passivation atom types. This work introduces an implicit passivation method that is applicable to any passivation scenario with appropriate parameters. This method is applied to a Si quantum well and a Si ultra-thin body transistor oxidized with SiO2 in several oxidation configurations. Comparison with ab-initio results and experiments verifies the presented method. Oxidation configurations that severely hamper the transistor performance are identified. It is also shown that the commonly used implicit H atom passivation overestimates the transistor performance.

  11. High-order passive photonic temporal integrators.

    Science.gov (United States)

    Asghari, Mohammad H; Wang, Chao; Yao, Jianping; Azaña, José

    2010-04-15

    We experimentally demonstrate, for the first time to our knowledge, an ultrafast photonic high-order (second-order) complex-field temporal integrator. The demonstrated device uses a single apodized uniform-period fiber Bragg grating (FBG), and it is based on a general FBG design approach for implementing optimized arbitrary-order photonic passive temporal integrators. Using this same design approach, we also fabricate and test a first-order passive temporal integrator offering an energetic-efficiency improvement of more than 1 order of magnitude as compared with previously reported passive first-order temporal integrators. Accurate and efficient first- and second-order temporal integrations of ultrafast complex-field optical signals (with temporal features as fast as approximately 2.5ps) are successfully demonstrated using the fabricated FBG devices.

  12. Quality assurance for radon measurements in Germany

    International Nuclear Information System (INIS)

    Beck, T.R.; Buchroeder, H.; Foerster, E.; Schmidt, V.

    2005-01-01

    Full text: Radiation protection regarding work activities at workplaces with naturally occurring radiation has been regulated in the German Radiation Protection Ordinance. Regulations refer only to workplaces where the presence of natural radiation leads to a significant increase in the exposure of workers. These workplaces were identified in the following working areas with enhanced exposures to radon-222: underground mines, including visitor mines and show caves; radon-spas and galleries; water supply and distribution industries. Presently, regulations are being initiated by the German government to limit the exposures to radon in homes. For radon measurements at workplaces passive radon devices for individual monitoring as well as active measuring systems for workplace monitoring can be used. However, passive radon devices are preferred for radon measurements in homes because of low costs and availability in large quantities. To assure the quality of radon measurements the German Federal Office for Radiation Protection (BfS) has established annual interlaboratory comparisons for passive radon devices. The comparisons are carried out in the BfS radon calibration laboratory accredited by the German Calibration Service. Passive radon devices which use solid state track detectors, electrets or activated charcoal can be submitted. Approved radon services which offer radon measurements to determine radon exposure in homes and at workplaces have to pass the comparisons successfully. (author)

  13. WiFi-Based Real-Time Calibration-Free Passive Human Motion Detection

    Directory of Open Access Journals (Sweden)

    Liangyi Gong

    2015-12-01

    Full Text Available With the rapid development of WLAN technology, wireless device-free passive human detection becomes a newly-developing technique and holds more potential to worldwide and ubiquitous smart applications. Recently, indoor fine-grained device-free passive human motion detection based on the PHY layer information is rapidly developed. Previous wireless device-free passive human detection systems either rely on deploying specialized systems with dense transmitter-receiver links or elaborate off-line training process, which blocks rapid deployment and weakens system robustness. In the paper, we explore to research a novel fine-grained real-time calibration-free device-free passive human motion via physical layer information, which is independent of indoor scenarios and needs no prior-calibration and normal profile. We investigate sensitivities of amplitude and phase to human motion, and discover that phase feature is more sensitive to human motion, especially to slow human motion. Aiming at lightweight and robust device-free passive human motion detection, we develop two novel and practical schemes: short-term averaged variance ratio (SVR and long-term averaged variance ratio (LVR. We realize system design with commercial WiFi devices and evaluate it in typical multipath-rich indoor scenarios. As demonstrated in the experiments, our approach can achieve a high detection rate and low false positive rate.

  14. WiFi-Based Real-Time Calibration-Free Passive Human Motion Detection.

    Science.gov (United States)

    Gong, Liangyi; Yang, Wu; Man, Dapeng; Dong, Guozhong; Yu, Miao; Lv, Jiguang

    2015-12-21

    With the rapid development of WLAN technology, wireless device-free passive human detection becomes a newly-developing technique and holds more potential to worldwide and ubiquitous smart applications. Recently, indoor fine-grained device-free passive human motion detection based on the PHY layer information is rapidly developed. Previous wireless device-free passive human detection systems either rely on deploying specialized systems with dense transmitter-receiver links or elaborate off-line training process, which blocks rapid deployment and weakens system robustness. In the paper, we explore to research a novel fine-grained real-time calibration-free device-free passive human motion via physical layer information, which is independent of indoor scenarios and needs no prior-calibration and normal profile. We investigate sensitivities of amplitude and phase to human motion, and discover that phase feature is more sensitive to human motion, especially to slow human motion. Aiming at lightweight and robust device-free passive human motion detection, we develop two novel and practical schemes: short-term averaged variance ratio (SVR) and long-term averaged variance ratio (LVR). We realize system design with commercial WiFi devices and evaluate it in typical multipath-rich indoor scenarios. As demonstrated in the experiments, our approach can achieve a high detection rate and low false positive rate.

  15. Temperature measuring device

    International Nuclear Information System (INIS)

    Brixy, H.

    1977-01-01

    The temperature measuring device is equipped with an electric resistor installed within a metal shroud tube so as to be insulated from it, the noise voltage of which resistor is fed to a measuring unit. The measuring junctions of one or two thermocouples are connected with the electric resistor and the legs of one or both thermocouples can be connected to the measuring unit by means of a switch. (orig.) [de

  16. passive and active measurements for some ceramic samples

    International Nuclear Information System (INIS)

    Hassan, M.F.; Said, S.A.; Ali, M.A.; Szegedi, S.

    2004-01-01

    passive measurements for an imported natural ore (zirconium silicate) used in ceramic industries were carried out to identify its radioactivity . this work was done for ceramic quality control purposes. accurate gamma spectrometers with 30% and 70% detector efficiencies were used in the measurements. the 235 U, 238 U and 232 Th radioactivity were determined . for the sake of comparison already manufactured different ceramic samples were investigated applying fast neutrons activation analysis (FNAA) and X-Ray florescence (XRF) techniques. the obtained results were discussed with the tabulated international radioactivity levels for building materials

  17. Measurements concerning the immission load in the Alpine region with passive samplers

    International Nuclear Information System (INIS)

    Kirchner, M.; Suppan, P.

    1994-02-01

    This project deals with measurements concerning the nuisance situation in various areas of the Alpine region using selected passive collectors for ozone and NO 2 . In a first partial step (phase I) a comparative experiment, building on a pilot test, with the use of different passive collectors in sites in the Alpine region was carried through. In a second stage of the project (Phase II) two types of passive collectors were used at suitable altitude profiles in the Alpine region to measure ozone levels. In this way, more detailed knowledge on the vertical distribution of ozone in areas with a varied orography was to be obtained. The study is a joint project of numerous scientific tasks forces from several countries and a number of institutions participating in the 'ARGE ALP' working group of Alpine countries. Results of the first project phase are reported. (orig./KW) [de

  18. Passive dosimetry aboard the Mir Orbital Station: internal measurements

    International Nuclear Information System (INIS)

    Benton, E.R.; Benton, E.V.; Frank, A.L.

    2002-01-01

    Passive radiation dosimeters were exposed aboard the Mir Orbital Station over a substantial portion of the solar cycle in order to measure the change in dose and dose equivalent rates as a function of time. During solar minimum, simultaneous measurements of the radiation environment throughout the habitable volume of the Mir were made using passive dosimeters in order to investigate the effect of localized shielding on dose and dose equivalent. The passive dosimeters consisted of a combination of thermoluminescent detectors to measure absorbed dose and CR-39 PNTDs to measure the linear energy transfer (LET) spectrum from charged particles of LET ∞ H 2 O≥5 keV/μm. Results from the two detector types were then combined to yield mean total dose rate, mean dose equivalent rate, and average quality factor. Contrary to expectations, both dose and dose equivalent rates measured during May-October 1991 near solar maximum were higher than similar measurements carried out in 1996-1997 during solar minimum. The elevated dose and dose equivalent rates measured in 1991 were probably due to a combination of intense solar activity, including a large solar particle event on 9 June 1991, and the temporary trapped radiation belt created in the slot region by the solar particle event and ensuing magnetic storm of 24 March 1991. During solar minimum, mean dose and dose equivalent rates were found to vary by factors of 1.55 and 1.37, respectively, between different locations through the interior of Mir. More heavily shielded locations tended to yield lower total dose and dose equivalent rates, but higher average quality factor than did more lightly shielding locations. However, other factors such as changes in the immediate shielding environment surrounding a given detector location, changes in the orientation of the Mir relative to its velocity vector, and changes in the altitude of the station also contributed to the variation. Proton and neutron-induced target fragment

  19. Outdoor chamber measurements of biological aerosols with a passive FTIR spectrometer

    Science.gov (United States)

    D'Amico, Francis M.; Emge, Darren K.; Roelant, Geoffrey J.

    2004-02-01

    Outdoor measurements of dry bacillus subtilis (BG) spores were conducted with a passive Fourier transform infrared (FTIR) spectrometer using two types of chambers. One was a large open-ended cell, and the other was a canyon of similar dimensions. The canyon exposes the aerosol plume to downwelling sky radiance, while the open-ended cell does not. The goal of the experiments was to develop a suitable test methodology for evaluation of passive standoff detectors for open-air aerosol measurements. Dry BG aerosol particles were dispersed with a blower through an opening in the side of the chamber to create a pseudo-stationary plume, wind conditions permitting. Numerous trials were performed with the FTIR spectrometer positioned to view mountain, sky and mixed mountain-sky backgrounds. This paper will discuss the results of the FTIR measurements for BG and Kaolin dust releases.

  20. Passive cooling of condensate chambers as retrofitting measure in boiling water reactors; Passive Kuehlung der Kondensationskammern in Siedewasserreaktoren als Nachruestmassnahme

    Energy Technology Data Exchange (ETDEWEB)

    Freis, Daniel; Nachtrodt, Frederik; Sporn, Michael; Tietsch, Wolfgang; Sassen, Felix [Westinghouse Electric Germany GmbH, Mannheim (Germany)

    2012-11-01

    Westinghouse Electric Germany GmbH has developed a concept for passive cooling of condensate chambers of BWR-type reactors. Due to its compactness the system is feasible as retrofitting measure. The passive condensate chamber cooling system is based on a cooling module with ascending and down pipe that are connected with the evaporation condenser to form a cooling circuit. Based on the consequent use of high-effective heat transport mechanisms, as boiling, condensation without non-condensable gases and mass transport a high cooling performance and compact construction is possible. The system is completely passive and completely diverse to existing active cooling systems. In the frame of a true-scale experiment the significant cooling performance was demonstrated. RELAP5 calculations confirmed the functionality of the cooling module.

  1. Development of a passive air sampler to measure airborne organophosphorus pesticides and oxygen analogs in an agricultural community.

    Science.gov (United States)

    Armstrong, Jenna L; Yost, Michael G; Fenske, Richard A

    2014-09-01

    Organophosphorus pesticides are some of the most widely used insecticides in the US, and spray drift may result in human exposures. We investigate sampling methodologies using the polyurethane foam passive air sampling device to measure cumulative monthly airborne concentrations of OP pesticides chlorpyrifos, azinphos-methyl, and oxygen analogs. Passive sampling rates (m(3)d(-1)) were determined using calculations using chemical properties, loss of depuration compounds, and calibration with side-by-side active air sampling in a dynamic laboratory exposure chamber and in the field. The effects of temperature, relative humidity, and wind velocity on outdoor sampling rates were examined at 23 sites in Yakima Valley, Washington. Indoor sampling rates were significantly lower than outdoors. Outdoor rates significantly increased with average wind velocity, with high rates (>4m(3)d(-1)) observed above 8ms(-1). In exposure chamber studies, very little oxygen analog was observed on the PUF-PAS, yet substantial amounts chlorpyrifos-oxon and azinphos methyl oxon were measured in outdoor samples. PUF-PAS is a practical and useful alternative to AAS because it results in little artificial transformation to the oxygen analog during sampling, it provides cumulative exposure estimates, and the measured sampling rates were comparable to rates for other SVOCs. It is ideal for community based participatory research due to low subject burden and simple deployment in remote areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Influence of Surface Passivation on AlN Barrier Stress and Scattering Mechanism in Ultra-thin AlN/GaN Heterostructure Field-Effect Transistors.

    Science.gov (United States)

    Lv, Y J; Song, X B; Wang, Y G; Fang, Y L; Feng, Z H

    2016-12-01

    Ultra-thin AlN/GaN heterostructure field-effect transistors (HFETs) with, and without, SiN passivation were fabricated by the same growth and device processes. Based on the measured DC characteristics, including the capacitance-voltage (C-V) and output current-voltage (I-V) curves, the variation of electron mobility with gate bias was found to be quite different for devices with, and without, SiN passivation. Although the AlN barrier layer is ultra thin (c. 3 nm), it was proved that SiN passivation induces no additional tensile stress and has no significant influence on the piezoelectric polarization of the AlN layer using Hall and Raman measurements. The SiN passivation was found to affect the surface properties, thereby increasing the electron density of the two-dimensional electron gas (2DEG) under the access region. The higher electron density in the access region after SiN passivation enhanced the electrostatic screening for the non-uniform distributed polarization charges, meaning that the polarization Coulomb field scattering has a weaker effect on the electron drift mobility in AlN/GaN-based devices.

  3. Incorporating Plutonium Particle Size Effects in the Assessment of Active Mode Measurement Uncertainty in Passive-Active Neutron Radioassay Systems

    International Nuclear Information System (INIS)

    Blackwood, Larry G.; Harker, Yale D.

    2002-01-01

    Assessment of active mode measurement uncertainty in passive-active neutron radioassay systems used to measure Pu content in nuclear waste is severely hampered by lack of knowledge of the waste Pu particle size distribution, which is a major factor in determining bias in active mode measurements. The sensitivity of active mode measurements to particle size precludes using simulations or surrogate waste forms to estimate uncertainty in active mode measurements when the particle size distribution is not precisely known or inadequately reproduced. An alternative approach is based on a statistical comparison of active and passive mode results in the mass range for which both active and passive mode analyses produce useable measurements. Because passive mode measurements are not particularly sensitive to particle size effects, their uncertainty can be more easily assessed. Once bias corrected, passive mode measurements can serve as confirmatory measurements for the estimation of active mode bias. Further statistical analysis of the errors in measurements leads to precision estimates for the active mode

  4. Effect of Passivation on Microwave Power Performances of AlGaN/GaN/Si HEMTs

    Directory of Open Access Journals (Sweden)

    H. MOSBAHI

    2014-05-01

    Full Text Available This paper reports on the use of plasma assisted molecular beam epitaxy of AlGaN/GaN high electron mobility transistors (HEMTs grown on silicon substrate. Surface passivation effects on AlGaN/GaN HEMTs were studied using SiO2/SiN dielectric layers grown by plasma enhanced chemical vapor deposition. The direct current measurement, pulsed characteristics and microwave small-signal characteristics were studied before and after passivation. An improvement of drain-source current density and the extrinsic transconductance was observed on the passivated HEMTs when compared with the unpassivated HEMTs. An enhancement of cut-off frequency (ft and maximum power gain (fmax was also observed for the devices with full SiO2/SiN passivation. A good correlation is found between pulsed and power measurements.

  5. Passive measurements of mixed-oxide fuel for nuclear nonproliferation

    International Nuclear Information System (INIS)

    Dolan, Jennifer L.; Flaska, Marek; Pozzi, Sara A.; Chichester, David L.

    2013-01-01

    We present new results on passive measurements and simulations of mixed-oxide fuel-pin assemblies. Potential tools for mixed-oxide fuel pin characterization are discussed for future nuclear-nonproliferation applications. Four EJ-309 liquid scintillation detectors coupled with an accurate pulse timing and digital, offline and optimized pulse-shape discrimination method were used. Measurement analysis included pulse-height distributions to distinguish between purely fission neutron sources and alpha-n plus fission neutrons sources. Time-dependent cross-correlation functions were analyzed to measure the fission neutron contribution to the measured sample's neutron source. The use of Monte Carlo particle transport code MCNPX-PoliMi is discussed in conjunction with the measurements

  6. DEVICE FOR MEASURMENT OF RELAXATION TIME OF THE BLEACHED STATE OF OPTICAL MATERIALS BY THE «PUMP-PROBE» METHOD IN SUB-ΜS TIME DOMAIN

    Directory of Open Access Journals (Sweden)

    I. V. Glazunov

    2016-01-01

    Full Text Available The use of passive shutters to control the duration of the light pulses is an important aspect in the miniature and microchip lasers. One of the key spectroscopic characteristics which determine the properties of the material, which can be used as a passive shutter is relaxation time of its bleached state.We describe a device for determination of relaxation time of the bleached state in optical materials by the «pump-probe» method in the sub-μs time domain. This device allows one to determine relaxation times for materials which absorb at the light wavelength of 1.5 μm, e.g., materials doped with cobalt ions Co2+. The results of test examinations of the device are described, and the relaxation time of the bleached state of Co2+ ions is measured for a novel material – transparent glass-ceramics with Co2+:Ga2 O3 nanophase – amounting to 190 ± 6 ns. 

  7. Experimental benchmark and code validation for airfoils equipped with passive vortex generators

    DEFF Research Database (Denmark)

    Baldacchino, D.; Manolesos, M.; Ferreira, Célia Maria Dias

    2016-01-01

    Experimental results and complimentary computations for airfoils with vortex generators are compared in this paper, as part of an effort within the AVATAR project to develop tools for wind turbine blade control devices. Measurements from two airfoils equipped with passive vortex generators, a 30...

  8. 21 CFR 864.6400 - Hematocrit measuring device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hematocrit measuring device. 864.6400 Section 864.6400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6400 Hematocrit measuring...

  9. WiFi-Based Real-Time Calibration-Free Passive Human Motion Detection †

    Science.gov (United States)

    Gong, Liangyi; Yang, Wu; Man, Dapeng; Dong, Guozhong; Yu, Miao; Lv, Jiguang

    2015-01-01

    With the rapid development of WLAN technology, wireless device-free passive human detection becomes a newly-developing technique and holds more potential to worldwide and ubiquitous smart applications. Recently, indoor fine-grained device-free passive human motion detection based on the PHY layer information is rapidly developed. Previous wireless device-free passive human detection systems either rely on deploying specialized systems with dense transmitter-receiver links or elaborate off-line training process, which blocks rapid deployment and weakens system robustness. In the paper, we explore to research a novel fine-grained real-time calibration-free device-free passive human motion via physical layer information, which is independent of indoor scenarios and needs no prior-calibration and normal profile. We investigate sensitivities of amplitude and phase to human motion, and discover that phase feature is more sensitive to human motion, especially to slow human motion. Aiming at lightweight and robust device-free passive human motion detection, we develop two novel and practical schemes: short-term averaged variance ratio (SVR) and long-term averaged variance ratio (LVR). We realize system design with commercial WiFi devices and evaluate it in typical multipath-rich indoor scenarios. As demonstrated in the experiments, our approach can achieve a high detection rate and low false positive rate. PMID:26703612

  10. Development of a wireless blood pressure measuring device with smart mobile device.

    Science.gov (United States)

    İlhan, İlhan; Yıldız, İbrahim; Kayrak, Mehmet

    2016-03-01

    Today, smart mobile devices (telephones and tablets) are very commonly used due to their powerful hardware and useful features. According to an eMarketer report, in 2014 there were 1.76 billion smartphone users (excluding users of tablets) in the world; it is predicted that this number will rise by 15.9% to 2.04 billion in 2015. It is thought that these devices can be used successfully in biomedical applications. A wireless blood pressure measuring device used together with a smart mobile device was developed in this study. By means of an interface developed for smart mobile devices with Android and iOS operating systems, a smart mobile device was used both as an indicator and as a control device. The cuff communicating with this device through Bluetooth was designed to measure blood pressure via the arm. A digital filter was used on the cuff instead of the traditional analog signal processing and filtering circuit. The newly developed blood pressure measuring device was tested on 18 patients and 20 healthy individuals of different ages under a physician's supervision. When the test results were compared with the measurements made using a sphygmomanometer, it was shown that an average 93.52% accuracy in sick individuals and 94.53% accuracy in healthy individuals could be achieved with the new device. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Rapid, Sensitive, and Reusable Detection of Glucose by a Robust Radiofrequency Integrated Passive Device Biosensor Chip

    Science.gov (United States)

    Kim, Nam-Young; Adhikari, Kishor Kumar; Dhakal, Rajendra; Chuluunbaatar, Zorigt; Wang, Cong; Kim, Eun-Soo

    2015-01-01

    Tremendous demands for sensitive and reliable label-free biosensors have stimulated intensive research into developing miniaturized radiofrequency resonators for a wide range of biomedical applications. Here, we report the development of a robust, reusable radiofrequency resonator based integrated passive device biosensor chip fabricated on a gallium arsenide substrate for the detection of glucose in water-glucose solutions and sera. As a result of the highly concentrated electromagnetic energy between the two divisions of an intertwined spiral inductor coupled with an interdigital capacitor, the proposed glucose biosensor chip exhibits linear detection ranges with high sensitivity at center frequency. This biosensor, which has a sensitivity of up to 199 MHz/mgmL−1 and a short response time of less than 2 sec, exhibited an ultralow detection limit of 0.033 μM and a reproducibility of 0.61% relative standard deviation. In addition, the quantities derived from the measured S-parameters, such as the propagation constant (γ), impedance (Z), resistance (R), inductance (L), conductance (G) and capacitance (C), enabled the effective multi-dimensional detection of glucose. PMID:25588958

  12. Device for passive flow control around vertical axis marine turbine

    Science.gov (United States)

    Coşoiu, C. I.; Georgescu, A. M.; Degeratu, M.; Haşegan, L.; Hlevca, D.

    2012-11-01

    The power supplied by a turbine with the rotor placed in a free stream flow may be increased by augmenting the velocity in the rotor area. The energy of the free flow is dispersed and it may be concentrated by placing a profiled structure around the bare turbine in order to concentrate more energy in the rotor zone. At the Aerodynamic and Wind Engineering Laboratory (LAIV) of the Technical University of Civil Engineering of Bucharest (UTCB) it was developed a concentrating housing to be used for hydro or aeolian horizontal axis wind turbines, in order to increase the available energy in the active section of turbine rotor. The shape of the concentrating housing results by superposing several aero/hydro dynamic effects, the most important being the one generated by the passive flow control devices that were included in the housing structure. Those concentrating housings may be also adapted for hydro or aeolian turbines with vertical axis. The present paper details the numerical research effectuated at the LAIV to determine the performances of a vertical axis marine turbine equipped with such a concentrating device, in order to increase the energy quantity extracted from the main flow. The turbine is a Darrieus type one with three vertical straight blades, symmetric with respect to the axis of rotation, generated using a NACA4518 airfoil. The global performances of the turbine equipped with the concentrating housing were compared to the same characteristics of the bare turbine. In order to validate the numerical approach used in this paper, test cases from the literature resulting from experimental and numerical simulations for similar situations, were used.

  13. Device for passive flow control around vertical axis marine turbine

    International Nuclear Information System (INIS)

    Coşoiu, C I; Georgescu, A M; Degeratu, M; Haşegan, L; Hlevca, D

    2012-01-01

    The power supplied by a turbine with the rotor placed in a free stream flow may be increased by augmenting the velocity in the rotor area. The energy of the free flow is dispersed and it may be concentrated by placing a profiled structure around the bare turbine in order to concentrate more energy in the rotor zone. At the Aerodynamic and Wind Engineering Laboratory (LAIV) of the Technical University of Civil Engineering of Bucharest (UTCB) it was developed a concentrating housing to be used for hydro or aeolian horizontal axis wind turbines, in order to increase the available energy in the active section of turbine rotor. The shape of the concentrating housing results by superposing several aero/hydro dynamic effects, the most important being the one generated by the passive flow control devices that were included in the housing structure. Those concentrating housings may be also adapted for hydro or aeolian turbines with vertical axis. The present paper details the numerical research effectuated at the LAIV to determine the performances of a vertical axis marine turbine equipped with such a concentrating device, in order to increase the energy quantity extracted from the main flow. The turbine is a Darrieus type one with three vertical straight blades, symmetric with respect to the axis of rotation, generated using a NACA4518 airfoil. The global performances of the turbine equipped with the concentrating housing were compared to the same characteristics of the bare turbine. In order to validate the numerical approach used in this paper, test cases from the literature resulting from experimental and numerical simulations for similar situations, were used.

  14. 32 CFR 634.27 - Speed-measuring devices.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Speed-measuring devices. 634.27 Section 634.27 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Traffic Supervision § 634.27 Speed-measuring devices. Speed-measuring devices will be...

  15. Improving toxicity assessment of pesticide mixtures: the use of polar passive sampling devices extracts in microalgae toxicity tests

    Directory of Open Access Journals (Sweden)

    Sandra KIM TIAM

    2016-09-01

    Full Text Available Complexity of contaminants exposure needs to be taking in account for an appropriate evaluation of risks related to mixtures of pesticides released in the ecosystems. Toxicity assessment of such mixtures can be made through a variety of toxicity tests reflecting different level of biological complexity. This paper reviews the recent developments of passive sampling techniques for polar compounds, especially Polar Organic Chemical Integrative Samplers (POCIS and Chemcatcher® and the principal assessment techniques using microalgae in laboratory experiments. The progresses permitted by the coupled use of such passive samplers and ecotoxicology testing as well as their limitations are presented. Case studies combining passive sampling devices (PSD extracts and toxicity assessment toward microorganisms at different biological scales from single organisms to communities level are presented. These case studies, respectively aimed i at characterizing the toxic potential of waters using dose-response curves, and ii at performing microcosm experiments with increased environmental realism in the toxicant exposure in term of cocktail composition and concentration. Finally perspectives and limitations of such approaches for future applications in the area of environmental risk assessment are discussed.

  16. Passive Mixing inside Microdroplets

    Directory of Open Access Journals (Sweden)

    Chengmin Chen

    2018-04-01

    Full Text Available Droplet-based micromixers are essential units in many microfluidic devices for widespread applications, such as diagnostics and synthesis. The mixers can be either passive or active. When compared to active methods, the passive mixer is widely used because it does not require extra energy input apart from the pump drive. In recent years, several passive droplet-based mixers were developed, where mixing was characterized by both experiments and simulation. A unified physical understanding of both experimental processes and simulation models is beneficial for effectively developing new and efficient mixing techniques. This review covers the state-of-the-art passive droplet-based micromixers in microfluidics, which mainly focuses on three aspects: (1 Mixing parameters and analysis method; (2 Typical mixing element designs and the mixing characters in experiments; and, (3 Comprehensive introduction of numerical models used in microfluidic flow and diffusion.

  17. Effects of Active and Passive Hearing Protection Devices on Sound Source Localization, Speech Recognition, and Tone Detection.

    Directory of Open Access Journals (Sweden)

    Andrew D Brown

    Full Text Available Hearing protection devices (HPDs such as earplugs offer to mitigate noise exposure and reduce the incidence of hearing loss among persons frequently exposed to intense sound. However, distortions of spatial acoustic information and reduced audibility of low-intensity sounds caused by many existing HPDs can make their use untenable in high-risk (e.g., military or law enforcement environments where auditory situational awareness is imperative. Here we assessed (1 sound source localization accuracy using a head-turning paradigm, (2 speech-in-noise recognition using a modified version of the QuickSIN test, and (3 tone detection thresholds using a two-alternative forced-choice task. Subjects were 10 young normal-hearing males. Four different HPDs were tested (two active, two passive, including two new and previously untested devices. Relative to unoccluded (control performance, all tested HPDs significantly degraded performance across tasks, although one active HPD slightly improved high-frequency tone detection thresholds and did not degrade speech recognition. Behavioral data were examined with respect to head-related transfer functions measured using a binaural manikin with and without tested HPDs in place. Data reinforce previous reports that HPDs significantly compromise a variety of auditory perceptual facilities, particularly sound localization due to distortions of high-frequency spectral cues that are important for the avoidance of front-back confusions.

  18. Integrated passive flux measurement in groundwater: design and performance of iFLUX samplers

    Science.gov (United States)

    Verreydt, Goedele; Razaei, Meisam; Meire, Patrick; Van Keer, Ilse; Bronders, Jan; Seuntjens, Piet

    2017-04-01

    The monitoring and management of soil and groundwater is a challenge. Current methods for the determination of movement or flux of pollution in groundwater use no direct measurements but only simulations based on concentration measurements and Darcy velocity estimations. This entails large uncertainties which cause remediation failures and higher costs for contaminated site owners. On top of that, the lack of useful data makes it difficult to get approval for a risk-based management approach which completely avoids costly remedial actions. The iFLUX technology is a key development of Dr. Goedele Verreydt at the University of Antwerp and VITO. It is supported by the passive flux measurement technology as invented by Prof. Mike Annable and his team at the University of Florida. The iFLUX technology includes an in situ measurement device for capturing dynamic groundwater quality and quantity, the iFLUX sampler, and an associated interpretation and visualization method. The iFLUX sampler is a modular passive sampler that provides simultaneous in situ point determinations of a time-averaged target compound mass flux and water flux. The sampler is typically installed in a monitoring well where it intercepts the groundwater flow and captures the compounds of interest. The sampler consists of permeable cartridges which are each packed with a specific sorbent matrix. The sorbent matrix of the water flux cartridge is impregnated with known amounts of water soluble resident tracers. These tracers are leached from the matrix at rates proportional to the groundwater flux. The measurements of the contaminants and the remaining resident tracer are used to determine groundwater and target compound fluxes. Exposure times range from 1 week to 6 months, depending on the expected concentration and groundwater flow velocity. The iFLUX sampler technology has been validated and tested at several field projects. Currently, 4 cartridges are tested and available: 1 waterflux cartridge to

  19. Propagation Measurements for Device-to-Device Communication in Forest Terrain

    DEFF Research Database (Denmark)

    Hejselbæk, Johannes; Nielsen, Jesper Ødum; Drewes, Christian

    2018-01-01

    In this paper, we present a measurement campaign conducted in forest terrain with focus on path-loss. The aim of the measurement campaign is to study the coverage in a Device-to-Device (D2D) communication scenario. The measurement campaign was conducted in the LTE band 8 at 917.5 MHz...... with measurement ranges extending to more than 2.5 km. The measurements have been conducted using a purpose-developed measurement system with a dynamic range of 180 dB. The measurements showed that a D2D system with transmit and receive antenna at heights of 1.5 m could achieve a range of approximately 2 km using...

  20. Coating thickness measuring device

    International Nuclear Information System (INIS)

    Joffe, B.B.; Sawyer, B.E.; Spongr, J.J.

    1984-01-01

    A device especially adapted for measuring the thickness of coatings on small, complexly-shaped parts, such as, for example, electronic connectors, electronic contacts, or the like. The device includes a source of beta radiation and a radiation detector whereby backscatter of the radiation from the coated part can be detected and the thickness of the coating ascertained. The radiation source and detector are positioned in overlying relationship to the coated part and a microscope is provided to accurately position the device with respect to the part. Means are provided to control the rate of descent of the radiation source and radiation detector from its suspended position to its operating position and the resulting impact it makes with the coated part to thereby promote uniformity of readings from operator to operator, and also to avoid excessive impact with the part, thereby improving accuracy of measurement and eliminating damage to the parts

  1. Inducer Hydrodynamic Load Measurement Devices

    Science.gov (United States)

    Skelley, Stephen E.; Zoladz, Thomas F.

    2002-01-01

    Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This "rotating balance" was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.

  2. Sulfur passivation and contact methods for GaAs nanowire solar cells

    International Nuclear Information System (INIS)

    Tajik, N; Peng, Z; Kuyanov, P; LaPierre, R R

    2011-01-01

    The effect of sulfur passivation on core-shell p-n junction GaAs nanowire (NW) solar cells has been investigated. Devices of two types were investigated, consisting of indium tin oxide contact dots or opaque Au finger electrodes. Lateral carrier transport from the NWs to the contact fingers was achieved via a p-doped GaAs surface conduction layer. NWs between the opaque contact fingers had sidewall surfaces exposed for passivation by sulfur. The relative cell efficiency increased by 19% upon passivation. The contribution of the thin film grown between the NWs to the total cell efficiency was estimated by removing the NWs using a sonication procedure. Mechanisms of carrier transport and photovoltaic effects are discussed on the basis of spatially resolved laser scanning measurements.

  3. Comparison of different passive knee extension torque-angle assessments

    International Nuclear Information System (INIS)

    Freitas, Sandro R; Vaz, João R; Bruno, Paula M; Valamatos, Maria J; Mil-Homens, Pedro

    2013-01-01

    Previous studies have used isokinetic dynamometry to assess joint torques and angles during passive extension of the knee, often without reporting upon methodological errors and reliability outcomes. In addition, the reliability of the techniques used to measure passive knee extension torque-angle and the extent to which reliability may be affected by the position of the subjects is also unclear. Therefore, we conducted an analysis of the intra- and inter-session reliability of two methods of assessing passive knee extension: (A) a 2D kinematic analysis coupled to a custom-made device that enabled the direct measurement of resistance to stretch and (B) an isokinetic dynamometer used in two testing positions (with the non-tested thigh either flexed at 45° or in the neutral position). The intra-class correlation coefficients (ICCs) of torque, the slope of the torque-angle curve, and the parameters of the mathematical model that were fit to the torque-angle data for the above conditions were measured in sixteen healthy male subjects (age: 21.4 ± 2.1 yr; BMI: 22.6 ± 3.3 kg m −2 ; tibial length: 37.4 ± 3.4 cm). The results found were: (1) methods A and B led to distinctly different torque-angle responses; (2) passive torque-angle relationship and stretch tolerance were influenced by the position of the non-tested thigh; and (3) ICCs obtained for torque were higher than for the slope and for the mathematical parameters that were fit to the torque-angle curve. In conclusion, the measurement method that is used and the positioning of subjects can influence the passive knee extension torque-angle outcome. (paper)

  4. Passive containment cooling water distribution device

    Science.gov (United States)

    Conway, Lawrence E.; Fanto, Susan V.

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using a series of radial guide elements and cascading weir boxes to collect and then distribute the cooling water into a series of distribution areas through a plurality of cascading weirs. The cooling water is then uniformly distributed over the curved surface by a plurality of weir notches in the face plate of the weir box.

  5. Effect of surface passivation by SiN/SiO2 of AlGaN/GaN high-electron mobility transistors on Si substrate by deep level transient spectroscopy method

    International Nuclear Information System (INIS)

    Gassoumi, Malek; Mosbahi, Hana; Zaidi, Mohamed Ali; Gaquiere, Christophe; Maaref, Hassen

    2013-01-01

    Device performance and defects in AlGaN/GaN high-electron mobility transistors have been correlated. The effect of SiN/SiO 2 passivation of the surface of AlGaN/GaN high-electron mobility transistors on Si substrates is reported on DC characteristics. Deep level transient spectroscopy (DLTS) measurements were performed on the device after the passivation by a (50/100 nm) SiN/SiO 2 film. The DLTS spectra from these measurements showed the existence of the same electron trap on the surface of the device

  6. Measurement-Device-Independent Approach to Entanglement Measures

    Science.gov (United States)

    Shahandeh, Farid; Hall, Michael J. W.; Ralph, Timothy C.

    2017-04-01

    Within the context of semiquantum nonlocal games, the trust can be removed from the measurement devices in an entanglement-detection procedure. Here, we show that a similar approach can be taken to quantify the amount of entanglement. To be specific, first, we show that in this context, a small subset of semiquantum nonlocal games is necessary and sufficient for entanglement detection in the local operations and classical communication paradigm. Second, we prove that the maximum payoff for these games is a universal measure of entanglement which is convex and continuous. Third, we show that for the quantification of negative-partial-transpose entanglement, this subset can be further reduced down to a single arbitrary element. Importantly, our measure is measurement device independent by construction and operationally accessible. Finally, our approach straightforwardly extends to quantify the entanglement within any partitioning of multipartite quantum states.

  7. Enhanced interfacial and electrical characteristics of 4H-SiC MOS capacitor with lanthanum silicate passivation interlayer

    International Nuclear Information System (INIS)

    Wang, Qian; Cheng, Xinhong; Zheng, Li; Ye, Peiyi; Li, Menglu; Shen, Lingyan; Li, Jingjie; Zhang, Dongliang; Gu, Ziyue; Yu, Yuehui

    2017-01-01

    Highlights: • The 4H-SiC MOS capacitor with an untra-thin LaSiO_x passivation layer and Al_2O_3 gate dielectric was fabricated. • The detrimental SiO_x interfacial layer could be effectively restrained by the LaSiO_x passivation layer. • The passivation mechanism of LaSiO_x was analyzed by HRTEM, XPS and electrical measurements. • The 4H-SiC MOS capacitor with a LaSiO_x passivation layer shows excellent device characteristics. • This technique provides an efficient path to improve dielectrics/4H-SiC interfaces for future high-power device applications. - Abstract: The detrimental sub-oxide (SiO_x) interfacial layer formed during the 4H-SiC metal-oxide-semiconductor (MOS) capacitor fabrication will drastically damage its device performance. In this work, an ultrathin lanthanum silicate (LaSiO_x) passivation layer was introduced to enhance the interfacial and electrical characteristics of 4H-SiC MOS capacitor with Al_2O_3 gate dielectric. The interfacial LaSiO_x formation was investigated by high resolution transmission electron microscopy and X-ray photoelectron spectroscopy. The 4H-SiC MOS capacitor with ultrathin LaSiO_x passivation interlayer shows excellent interfacial and electrical characteristics, including lower leakage current density, higher dielectric breakdown electric field, smaller C–V hysteresis, and lower interface states density and border traps density. The involved mechanism implies that the LaSiO_x passivation interlayer can effectively restrain SiO_x formation and improve the Al_2O_3/4H-SiC interface quality. This technique provides an efficient path to improve dielectrics/4H-SiC interfaces for future high-power device applications.

  8. Enhanced interfacial and electrical characteristics of 4H-SiC MOS capacitor with lanthanum silicate passivation interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qian [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system & Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Cheng, Xinhong, E-mail: xh_cheng@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system & Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China); Zheng, Li, E-mail: zhengli@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system & Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ye, Peiyi; Li, Menglu [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Shen, Lingyan; Li, Jingjie; Zhang, Dongliang; Gu, Ziyue [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system & Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yu, Yuehui [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system & Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China)

    2017-07-15

    Highlights: • The 4H-SiC MOS capacitor with an untra-thin LaSiO{sub x} passivation layer and Al{sub 2}O{sub 3} gate dielectric was fabricated. • The detrimental SiO{sub x} interfacial layer could be effectively restrained by the LaSiO{sub x} passivation layer. • The passivation mechanism of LaSiO{sub x} was analyzed by HRTEM, XPS and electrical measurements. • The 4H-SiC MOS capacitor with a LaSiO{sub x} passivation layer shows excellent device characteristics. • This technique provides an efficient path to improve dielectrics/4H-SiC interfaces for future high-power device applications. - Abstract: The detrimental sub-oxide (SiO{sub x}) interfacial layer formed during the 4H-SiC metal-oxide-semiconductor (MOS) capacitor fabrication will drastically damage its device performance. In this work, an ultrathin lanthanum silicate (LaSiO{sub x}) passivation layer was introduced to enhance the interfacial and electrical characteristics of 4H-SiC MOS capacitor with Al{sub 2}O{sub 3} gate dielectric. The interfacial LaSiO{sub x} formation was investigated by high resolution transmission electron microscopy and X-ray photoelectron spectroscopy. The 4H-SiC MOS capacitor with ultrathin LaSiO{sub x} passivation interlayer shows excellent interfacial and electrical characteristics, including lower leakage current density, higher dielectric breakdown electric field, smaller C–V hysteresis, and lower interface states density and border traps density. The involved mechanism implies that the LaSiO{sub x} passivation interlayer can effectively restrain SiO{sub x} formation and improve the Al{sub 2}O{sub 3}/4H-SiC interface quality. This technique provides an efficient path to improve dielectrics/4H-SiC interfaces for future high-power device applications.

  9. A Novel Intracranial Pressure Readout Circuit for Passive Wireless LC Sensor.

    Science.gov (United States)

    Wang, Fa; Zhang, Xuan; Shokoueinejad, Mehdi; Iskandar, Bermans J; Medow, Joshua E; Webster, John G

    2017-10-01

    We present a wide frequency range, low cost, wireless intracranial pressure monitoring system, which includes an implantable passive sensor and an external reader. The passive sensor consists of two spiral coils and transduces the pressure change to a resonant frequency shift. The external portable reader reads out the sensor's resonant frequency over a wide frequency range (35 MHz-2.7 GHz). We propose a novel circuit topology, which tracks the system's impedance and phase change at a high frequency with low-cost components. This circuit is very simple and reliable. A prototype has been developed, and measurement results demonstrate that the device achieves a suitable measurement distance (>2 cm), sufficient sample frequency (>6 Hz), fine resolution, and good measurement accuracy for medical practice. Responsivity of this prototype is 0.92 MHz/mmHg and resolution is 0.028 mmHg. COMSOL specific absorption rate simulation proves that this system is safe. Considerations to improve the device performance have been discussed, which include the size of antenna, the power radiation, the Analog-to-digital converter (ADC) choice, and the signal processing algorithm.

  10. Passive and Active Measurements of Radon related parameters inside ancient Egyptian Tombs in Luxor

    International Nuclear Information System (INIS)

    Abo-Elmagd, M.; Eissa, H.M.; Metwally, S.M.; Fiki, S.A.; Salama, E.

    2005-01-01

    Radon concentration and its exhalation rate were measured using active (Alpha-Guard analyzer) and passive (CR-39) techniques inside seven ancient Egyptian tombs of the Kings valley in Luxor. The measurements were performed during the winter season of tourism (15/10/2003 up to 09/02/2004). The real radium content was determine for all examined tombs by HPGe detector, while the effective radium content was obtained by Alpha-Guard and sealed cup techniques. The average radon concentration inside the tombs based on the active technique ranges from 116 42 to 362 115 Bq m-3 and the exhalation rate ranges from 0.68 to 1.47 Bq m-2 h-1. For passive measurements, the average radon concentrations inside the tombs vary from 88 5 to 517 8 Bq m-3 while the exhalation rate ranges from 0.60 to 1.42 0.05 Bq m-2 h-1. Because of the variations of tombs dimensions and their ventilation systems, the equilibrium factor between radon and its progeny ranges from 0.10 0.04 to 0.99 0.14 based on Can and Bare measurement method. The effective dose rate inside the tombs varies from 0.11 0.04 to 4.28 0.68 Sv/h, based on UNSCEAR 2000 dose conversion factors for radon and its progeny. Radon exhalation rate was correlated with the real radium content. Moreover, a good correlation was found between active and passive measurements. So it may be useful to use passive technique in large scale instead of the active one

  11. Passive and Active Measurements of Radon related parameters inside ancient Egyptian Tombs in Luxor

    Energy Technology Data Exchange (ETDEWEB)

    Abo-Elmagd, M; Eissa, H M [National institute for standerd, radiation Measurements department, Giza (Egypt); Metwally, S M; Fiki, S A; Salama, E [Faculty of Science Department of physics, Ain Shams University, Cairo (Egypt)

    2005-04-01

    Radon concentration and its exhalation rate were measured using active (Alpha-Guard analyzer) and passive (CR-39) techniques inside seven ancient Egyptian tombs of the Kings valley in Luxor. The measurements were performed during the winter season of tourism (15/10/2003 up to 09/02/2004). The real radium content was determine for all examined tombs by HPGe detector, while the effective radium content was obtained by Alpha-Guard and sealed cup techniques. The average radon concentration inside the tombs based on the active technique ranges from 116 42 to 362 115 Bq m-3 and the exhalation rate ranges from 0.68 to 1.47 Bq m-2 h-1. For passive measurements, the average radon concentrations inside the tombs vary from 88 5 to 517 8 Bq m-3 while the exhalation rate ranges from 0.60 to 1.42 0.05 Bq m-2 h-1. Because of the variations of tombs dimensions and their ventilation systems, the equilibrium factor between radon and its progeny ranges from 0.10 0.04 to 0.99 0.14 based on Can and Bare measurement method. The effective dose rate inside the tombs varies from 0.11 0.04 to 4.28 0.68 Sv/h, based on UNSCEAR 2000 dose conversion factors for radon and its progeny. Radon exhalation rate was correlated with the real radium content. Moreover, a good correlation was found between active and passive measurements. So it may be useful to use passive technique in large scale instead of the active one.

  12. An equivalent method of mixed dielectric constant in passive microwave/millimeter radiometric measurement

    Science.gov (United States)

    Su, Jinlong; Tian, Yan; Hu, Fei; Gui, Liangqi; Cheng, Yayun; Peng, Xiaohui

    2017-10-01

    Dielectric constant is an important role to describe the properties of matter. This paper proposes This paper proposes the concept of mixed dielectric constant(MDC) in passive microwave radiometric measurement. In addition, a MDC inversion method is come up, Ratio of Angle-Polarization Difference(RAPD) is utilized in this method. The MDC of several materials are investigated using RAPD. Brightness temperatures(TBs) which calculated by MDC and original dielectric constant are compared. Random errors are added to the simulation to test the robustness of the algorithm. Keywords: Passive detection, microwave/millimeter, radiometric measurement, ratio of angle-polarization difference (RAPD), mixed dielectric constant (MDC), brightness temperatures, remote sensing, target recognition.

  13. Hybrid passivated colloidal quantum dot solids

    KAUST Repository

    Ip, Alex

    2012-07-29

    Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect. However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance. Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions, leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states. Furthermore, the solution-based approach leverages recent progress in metal:chalcogen chemistry in the liquid phase. Here, we quantify the density of midgap trap states in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electrong-"hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device. © 2012 Macmillan Publishers Limited. All rights reserved.

  14. Hybrid passivated colloidal quantum dot solids

    KAUST Repository

    Ip, Alex; Thon, Susanna; Hoogland, Sjoerd H.; Voznyy, Oleksandr; Zhitomirsky, David; Debnath, Ratan K.; Levina, Larissa; Rollny, Lisa R.; Carey, Graham H.; Fischer, Armin H.; Kemp, Kyle W.; Kramer, Illan J.; Ning, Zhijun; Labelle, André J.; Chou, Kang Wei; Amassian, Aram; Sargent, E. H.

    2012-01-01

    Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect. However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance. Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions, leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states. Furthermore, the solution-based approach leverages recent progress in metal:chalcogen chemistry in the liquid phase. Here, we quantify the density of midgap trap states in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electrong-"hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device. © 2012 Macmillan Publishers Limited. All rights reserved.

  15. Antenna for passive RFID tags

    Science.gov (United States)

    Schiopu, Paul; Manea, Adrian; Cristea, Ionica; Grosu, Neculai; Vladescu, Marian; Craciun, Anca-Ileana; Craciun, Alexandru

    2015-02-01

    Minuscule devices, called RFID tags are attached to objects and persons and emit information which positioned readers may capture wirelessly. Many methods of identification have been used, but that of most common is to use a unique serial number for identification of person or object. RFID tags can be characterized as either active or passive [1,2]. Traditional passive tags are typically in "sleep" state until awakened by the reader's emitted field. In passive tags, the reader's field acts to charge the capacitor that powers the badge and this can be a combination of antenna and barcodes obtained with SAW( Surface Acoustic Wave) devices [1,2,3] . The antenna in an RFID tag is a conductive element that permits the tag to exchange data with the reader. The paper contribution are targeted to antenna for passive RFID tags. The electromagnetic field generated by the reader is somehow oriented by the reader antenna and power is induced in the tag only if the orientation of the tag antenna is appropriate. A tag placed orthogonal to the reader yield field will not be read. This is the reason that guided manufacturers to build circular polarized antenna capable of propagating a field that is alternatively polarized on all planes passing on the diffusion axis. Passive RFID tags are operated at the UHF frequencies of 868MHz (Europe) and 915MHz (USA) and at the microwave frequencies of 2,45 GHz and 5,8 GHz . Because the tags are small dimensions, in paper, we present the possibility to use circular polarization microstrip antenna with fractal edge [2].

  16. Thermal stability studies on atomically clean and sulphur passivated InGaAs surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Lalit; Hughes, Greg [School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9 (Ireland)

    2013-03-15

    High resolution synchrotron radiation core level photoemission measurements have been used to study the high temperature stability of sulphur passivated InGaAs surfaces and comparisons made with atomically clean surfaces subjected to the same annealing temperatures. Sulphur passivation of clean InGaAs surfaces prepared by the thermal removal of an arsenic capping layer was carried out using an in situ molecular sulphur treatment in ultra high vacuum. The elemental composition of the surfaces of these materials was measured at a series of annealing temperatures up to 530 C. Following a 480 C anneal In:Ga ratio was found to have dropped by 33% on sulphur passivated surface indicating a significant loss of indium, while no drop in indium signal was recorded at this temperature on the atomically InGaAs surface. No significant change in the As surface concentration was measured at this temperature. These results reflect the reduced thermal stability of the sulphur passivated InGaAs compared to the atomically clean surface which has implications for device fabrication. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Passive and active measurements of radon-related parameters inside ancient Egyptian tombs in Luxor

    Energy Technology Data Exchange (ETDEWEB)

    Abo-Elmagd, M [Radiation Measurements Department, National Institute for Standard, Giza (Egypt); Metwally, S M [Faculty of Science, Department of Physics, Ain Shams University, Cairo (Egypt); El-Fiki, S A [Faculty of Science, Department of Physics, Ain Shams University, Cairo (Egypt); Eissa, H M [Radiation Measurements Department, National Institute for Standard, Giza (Egypt); Salama, E [Faculty of Science, Department of Physics, Ain Shams University, Cairo (Egypt)

    2007-01-15

    Radon and its related parameters were measured using passive (CR-39) and active (Alpha-Guard analyzer) techniques inside seven ancient Egyptian tombs of the Valley of the Kings in Luxor. The measurements were performed throughout the winter and summer seasons. The average radon concentration inside the tombs ranges from 96.9+/-10.8 to 415+/-43Bqm{sup -3} in winter and from 86.4+/-13.8 to 6102.8+/-573.6 in summer. Because of the variations of tombs dimensions and their ventilation systems, the equilibrium factor between radon and its progeny ranges from 0.228+/-0.02 to 0.95+/-0.05. The effective doses for the tomb workers, the tour guide and visitors were calculated. Active measurements show that radon exhalation rates range from 0.68+/-0.30 to 1.47+/-0.27Bqm{sup -2}h{sup -1} and from 0.60+/-0.03 to 1.42+/-0.05Bqm{sup -2}h{sup -1} for passive measurements. The real radium content was determined for all examined tombs by HPGe detector, while the effective radium content was obtained by Alpha-Guard and sealed cup techniques. Radon exhalation rates were correlated with the real radium content. A good correlation was found between active and passive measurements of radon exhalation rate.

  18. Passive and active measurements of radon-related parameters inside ancient Egyptian tombs in Luxor

    International Nuclear Information System (INIS)

    Abo-Elmagd, M.; Metwally, S.M.; El-Fiki, S.A.; Eissa, H.M.; Salama, E.

    2007-01-01

    Radon and its related parameters were measured using passive (CR-39) and active (Alpha-Guard analyzer) techniques inside seven ancient Egyptian tombs of the Valley of the Kings in Luxor. The measurements were performed throughout the winter and summer seasons. The average radon concentration inside the tombs ranges from 96.9+/-10.8 to 415+/-43Bqm -3 in winter and from 86.4+/-13.8 to 6102.8+/-573.6 in summer. Because of the variations of tombs dimensions and their ventilation systems, the equilibrium factor between radon and its progeny ranges from 0.228+/-0.02 to 0.95+/-0.05. The effective doses for the tomb workers, the tour guide and visitors were calculated. Active measurements show that radon exhalation rates range from 0.68+/-0.30 to 1.47+/-0.27Bqm -2 h -1 and from 0.60+/-0.03 to 1.42+/-0.05Bqm -2 h -1 for passive measurements. The real radium content was determined for all examined tombs by HPGe detector, while the effective radium content was obtained by Alpha-Guard and sealed cup techniques. Radon exhalation rates were correlated with the real radium content. A good correlation was found between active and passive measurements of radon exhalation rate

  19. Suitability of Hydraulic Disk Brakes for Passive Actuation of Upper-Extremity Rehabilitation Exoskeleton

    Directory of Open Access Journals (Sweden)

    Arno H. A. Stienen

    2009-01-01

    Full Text Available Passive, energy-dissipating actuators are promising for force-coordination training in stroke rehabilitation, as they are inherently safe and have a high torque-to-weight ratio. The goal of this study is to determine if hydraulic disk brakes are suitable to actuate an upper-extremity exoskeleton, for application in rehabilitation settings. Passive actuation with friction brakes has direct implications for joint control. Braking is always opposite to the movement direction. During standstill, the measured torque is equal to the torque applied by the human. During rotations, it is equal to the brake torque. Actively assisting movement is not possible, nor are energy-requiring virtual environments. The evaluated disk brake has a 20 Nm bandwidth (flat-spectrum, multi-sine of 10 Hz; sufficient for torques required for conventional therapy and simple, passive virtual environments. The maximum static output torque is 120 Nm, sufficient for isometric training of the upper extremity. The minimal impedance is close zero, with only the inertia of the device felt. In conclusion, hydraulic disk brakes are suitable for rehabilitation devices.

  20. Passive Sampler for Measurements of Atmospheric Nitric Acid Vapor (HNO3 Concentrations

    Directory of Open Access Journals (Sweden)

    Andrzej Bytnerowicz

    2001-01-01

    Full Text Available Nitric acid (HNO3 vapor is an important nitrogenous air pollutant responsible for increasing saturation of forests with nitrogen and direct injury to plants. The USDA Forest Service and University of California researchers have developed a simple and inexpensive passive sampler for monitoring air concentrations of HNO3. Nitric acid is selectively absorbed on 47-mm Nylasorb nylon filters with no interference from particulate NO3-. Concentrations determined with the passive samplers closely corresponded with those measured with the co-located honeycomb annular denuder systems. The PVC protective caps of standardized dimensions protect nylon filters from rain and wind and allow for reliable measurements of ambient HNO3 concentrations. The described samplers have been successfully used in Sequoia National Park, the San Bernardino Mountains, and on Mammoth Mountain in California.

  1. Fixed type incore measuring device

    International Nuclear Information System (INIS)

    Oda, Naotaka; Ito, Hitoshi; Maeda, Hiroyuki

    1998-01-01

    The present invention concerns a measuring device using gamma thermometers to be used in a BWR type reactor. An input switch is inserted to the vicinity of a detection signal input portion of a signal cable connecting GT with the detection signal input portion of a fixed type incore measuring device, and a loop resistance measuring means is disposed to the input switch on the side of the GT by way of a measurement switch. Upon measuring loop resistance, the GT measuring circuit is switched from the detection signal input portion to the loop resistance measuring means by a switching operation of the input switch and the measurement switch thereby enabling to confirm the value of the loop resistance. In addition, the lowering of the voltage in the loop resistance is compensated to confirm the accurate measurement values to be used thereby enabling to measure GT detection signals accurately. A diagnosing means for diagnosing the state of GT based on the results of the measurement for the loop resistance is disposed, and the results are reported to an operator. (N.H.)

  2. Performance enhancement of a heterojunction bipolar transistor (HBT) by two-step passivation

    International Nuclear Information System (INIS)

    Fu, S.-I.; Lai, P.-H.; Tsai, Y.-Y.; Hung, C.-W.; Yen, C.-H.; Cheng, S.-Y.; Liu, W.-C.

    2006-01-01

    An interesting two-step passivation (with ledge structure and sulphide based chemical treatment) on base surface, for the first time, is demonstrated to study the temperature-dependent DC characteristics and noise performance of an InGaP/GaAs heterojunction bipolar transistor (HBT). Improved transistor behaviors on maximum current gain β max , offset voltage ΔV CE , and emitter size effect are obtained by using the two-step passivation. Moreover, the device with the two-step passivation exhibits relatively temperature-independent and improved thermal stable performances as the temperature is increased. Therefore, the two-step passivationed device can be used for high-temperature and low-power electronics applications

  3. Characterization of a complex near-surface structure using well logging and passive seismic measurements

    Science.gov (United States)

    Benjumea, Beatriz; Macau, Albert; Gabàs, Anna; Figueras, Sara

    2016-04-01

    We combine geophysical well logging and passive seismic measurements to characterize the near-surface geology of an area located in Hontomin, Burgos (Spain). This area has some near-surface challenges for a geophysical study. The irregular topography is characterized by limestone outcrops and unconsolidated sediments areas. Additionally, the near-surface geology includes an upper layer of pure limestones overlying marly limestones and marls (Upper Cretaceous). These materials lie on top of Low Cretaceous siliciclastic sediments (sandstones, clays, gravels). In any case, a layer with reduced velocity is expected. The geophysical data sets used in this study include sonic and gamma-ray logs at two boreholes and passive seismic measurements: three arrays and 224 seismic stations for applying the horizontal-to-vertical amplitude spectra ratio method (H/V). Well-logging data define two significant changes in the P-wave-velocity log within the Upper Cretaceous layer and one more at the Upper to Lower Cretaceous contact. This technique has also been used for refining the geological interpretation. The passive seismic measurements provide a map of sediment thickness with a maximum of around 40 m and shear-wave velocity profiles from the array technique. A comparison between seismic velocity coming from well logging and array measurements defines the resolution limits of the passive seismic techniques and helps it to be interpreted. This study shows how these low-cost techniques can provide useful information about near-surface complexity that could be used for designing a geophysical field survey or for seismic processing steps such as statics or imaging.

  4. Effects of Various Passivation Layers on Electrical Properties of Multilayer MoS₂ Transistors.

    Science.gov (United States)

    Ma, Jiyeon; Yoo, Geonwook

    2018-09-01

    So far many of research on transition metal dichalcogenides (TMDCs) are based on a bottomgate device structure due to difficulty with depositing a dielectric film on top of TMDs channel layer. In this work, we study different effects of various passivation layers on electrical properties of multilayer MoS2 transistors: spin-coated CYTOP, SU-8, and thermal evaporated MoOX. The SU-8 passivation layer alters device performance least significantly, and MoOX induces positive threshold voltage shift of ~8.0 V due to charge depletion at the interface, and the device with CYTOP layer exhibits decreased field-effect mobility by ~50% due to electric dipole field effect of C-F bonds in the end groups. Our results imply that electrical properties of the multilayer MoS2 transistors can be modulated using a passivation layer, and therefore a proper passivation layer should be considered for MoS2 device structures.

  5. Study on development of active-passive rehabilitation system for upper limbs: Hybrid-PLEMO

    International Nuclear Information System (INIS)

    Kikuchi, T; Jin, Y; Fukushima, K; Akai, H; Furusho, J

    2009-01-01

    In recent years, many researchers have studied the potential of using robotics technology to assist and quantify the motor functions for neuron-rehabilitation. Some kinds of haptic devices have been developed and evaluated its efficiency with clinical tests, for example, upper limb training for patients with spasticity after stroke. Active-type (motor-driven) haptic devices can realize a lot of varieties of haptics. But they basically require high-cost safety system. On the other hand, passive-type (brake-based) haptic devices have inherent safety. However, the passive robot system has strong limitation on varieties of haptics. There are not sufficient evidences to clarify how the passive/active haptics effect to the rehabilitation of motor skills. In this paper, we developed an active-passive-switchable rehabilitation system with ER clutch/brake device named 'Hybrid-PLEMO' in order to address these problems. In this paper, basic structures and haptic control methods of the Hybrid-PLEMO are described.

  6. Study on development of active-passive rehabilitation system for upper limbs: Hybrid-PLEMO

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, T; Jin, Y; Fukushima, K; Akai, H; Furusho, J [Department of Mechanical Engineering, Graduate School of Engineering, Osaka University, Osaka (Japan)], E-mail: kikuchi@mech.eng.osaka-u.ac.jp

    2009-02-01

    In recent years, many researchers have studied the potential of using robotics technology to assist and quantify the motor functions for neuron-rehabilitation. Some kinds of haptic devices have been developed and evaluated its efficiency with clinical tests, for example, upper limb training for patients with spasticity after stroke. Active-type (motor-driven) haptic devices can realize a lot of varieties of haptics. But they basically require high-cost safety system. On the other hand, passive-type (brake-based) haptic devices have inherent safety. However, the passive robot system has strong limitation on varieties of haptics. There are not sufficient evidences to clarify how the passive/active haptics effect to the rehabilitation of motor skills. In this paper, we developed an active-passive-switchable rehabilitation system with ER clutch/brake device named 'Hybrid-PLEMO' in order to address these problems. In this paper, basic structures and haptic control methods of the Hybrid-PLEMO are described.

  7. Specific characteristics of radon passive/open model detectors compared to passive/close and charcoal devices

    International Nuclear Information System (INIS)

    Andru, J.

    1990-01-01

    All passive/open detectors, also called Unfiltered alpha Track Detectors (UTDs), are built around KODAK LR115 film, only material sensitive to all ambient alpha particles and capable to work in open mode. The principle of open detectors is not new. They are largely used worldwide, often by scientists (in France, Italy, Japan, Norway, Sweden etc.). However, their particular functioning needs some explanation and some reminders. This paper is more aimed to discuss generalities than details of calculation. The estimation of the Potential Alpha Energy (PAE) concentration is about 4 times better than that from other passive detectors and it includes thoron progeny. The film is more sensitive to ambient decay products than it is to Radon as track count is higher for alpha's of greater initial energy

  8. Development of a Passive Multisampling Method to Measure Dioxins/Furans and Other Contaminant Bioavailability in Aquatic Sediments

    Science.gov (United States)

    2016-11-01

    FINAL REPORT Development of a Passive Multisampling Method to Measure Dioxins/Furans and Other Contaminant Bioavailability in Aquatic...passive multisampling method to measure Dioxins/Furans 5a. CONTRACT NUMBER and other contaminant bioavailability in aquatic sediments...This also indicates the bioavailability or pressure (fugacity) of contaminants on organisms2 and consequently represents the exposure level for

  9. A linear 180 nm SOI CMOS antenna switch module using integrated passive device filters for cellular applications

    Science.gov (United States)

    Jie, Cui; Lei, Chen; Peng, Zhao; Xu, Niu; Yi, Liu

    2014-06-01

    A broadband monolithic linear single pole, eight throw (SP8T) switch has been fabricated in 180 nm thin film silicon-on-insulator (SOI) CMOS technology with a quad-band GSM harmonic filter in integrated passive devices (IPD) technology, which is developed for cellular applications. The antenna switch module (ASM) features 1.2 dB insertion loss with filter on 2G bands and 0.4 dB insertion loss in 3G bands, less than -45 dB isolation and maximum -103 dB intermodulation distortion for mobile front ends by applying distributed architecture and adaptive supply voltage generator.

  10. Indoor radon level measurements in Iran using AEOI passive dosimeters

    International Nuclear Information System (INIS)

    Sohrabi, M.; Solaymanian, A.R.

    1988-01-01

    A passive radon diffusion dosimeter was developed at the RPD of AEOI for nationwide indoor radon level measurements. Several parameters of the dosimeter were studied. Radon levels were determined in about 250 houses in Ramsar (a high natural radiation area), Tehran, Babolsar and Gonabad. In this paper, the results of some dosimeter parameters as well as radon levels in indoor air are reported

  11. Micromachined filter-chamber array with passive valves for biochemical assays on beads.

    Science.gov (United States)

    Andersson, H; van der Wijngaart, W; Stemme, G

    2001-01-01

    The filter-chamber array presented here enables a real-time parallel analysis of three different samples on beads in a volume of 3 nL, on a 1 cm2 chip. The filter-chamber array is a system containing three filter-chambers, three passive valves at the inlet channels and a common outlet. The design enables parallel sample handling and time-controlled analysis. The device is microfabricated in silicon and sealed with a Pyrex lid to enable real-time analysis. Single nucleotide polymorphism analysis by using pyrosequencing has successfully been performed in single filter-chamber devices. The passive valves consist of plasma-deposited octafluorocyclobutane and show a much higher resistance towards water and surface-active solutions than previous hydrophobic patches. The device is not sensitive to gas bubbles, clogging is rare and reversible, and the filter-chamber array is reusable. More complex (bio)chemical reactions on beads can be performed in the devices with passive valves than in the devices without valves.

  12. Induced conductivity in sol-gel ZnO films by passivation or elimination of Zn vacancies

    Directory of Open Access Journals (Sweden)

    D. J. Winarski

    2016-09-01

    Full Text Available Undoped and Ga- and Al- doped ZnO films were synthesized using sol-gel and spin coating methods and characterized by X-ray diffraction, high-resolution scanning electron microscopy (SEM, optical spectroscopy and Hall-effect measurements. SEM measurements reveal an average grain size of 20 nm and distinct individual layer structure. Measurable conductivity was not detected in the unprocessed films; however, annealing in hydrogen or zinc environment induced significant conductivity (∼10−2 Ω.cm in most films. Positron annihilation spectroscopy measurements provided strong evidence that the significant enhancement in conductivity was due to hydrogen passivation of Zn vacancy related defects or elimination of Zn vacancies by Zn interstitials which suppress their role as deep acceptors. Hydrogen passivation of cation vacancies is shown to play an important role in tuning the electrical conductivity of ZnO, similar to its role in passivation of defects at the Si/SiO2 interface that has been essential for the successful development of complementary metal–oxide–semiconductor (CMOS devices. By comparison with hydrogen effect on other oxides, we suggest that hydrogen may play a universal role in oxides passivating cation vacancies and modifying their electronic properties.

  13. Induced conductivity in sol-gel ZnO films by passivation or elimination of Zn vacancies

    Science.gov (United States)

    Winarski, D. J.; Anwand, W.; Wagner, A.; Saadatkia, P.; Selim, F. A.; Allen, M.; Wenner, B.; Leedy, K.; Allen, J.; Tetlak, S.; Look, D. C.

    2016-09-01

    Undoped and Ga- and Al- doped ZnO films were synthesized using sol-gel and spin coating methods and characterized by X-ray diffraction, high-resolution scanning electron microscopy (SEM), optical spectroscopy and Hall-effect measurements. SEM measurements reveal an average grain size of 20 nm and distinct individual layer structure. Measurable conductivity was not detected in the unprocessed films; however, annealing in hydrogen or zinc environment induced significant conductivity (˜10-2 Ω .cm) in most films. Positron annihilation spectroscopy measurements provided strong evidence that the significant enhancement in conductivity was due to hydrogen passivation of Zn vacancy related defects or elimination of Zn vacancies by Zn interstitials which suppress their role as deep acceptors. Hydrogen passivation of cation vacancies is shown to play an important role in tuning the electrical conductivity of ZnO, similar to its role in passivation of defects at the Si/SiO2 interface that has been essential for the successful development of complementary metal-oxide-semiconductor (CMOS) devices. By comparison with hydrogen effect on other oxides, we suggest that hydrogen may play a universal role in oxides passivating cation vacancies and modifying their electronic properties.

  14. Passive components of NPP safety-related systems

    International Nuclear Information System (INIS)

    Ionaytis Romuald, R.; Bubnova Tatyana, A.

    2005-01-01

    This paper presents a new passive components with having drives: fast-response cutoff valves; modular actuators with opposite cocking pneumatic drives and actuation spring drives; voting electromagnetic valve units for control of pneumatic drives; passive initiators of actuation; visual diagnostics . All these devices have been developed and tested at mock-ups. This paper presents also the following direct-action passive safety components: modular pressure-relief safety valves; pilot safety valves with passive action; check valves with remote position indicator and after-tightening; modular inserts for limiting emergency coolant flow; vortex rectifier; critical weld fasteners; gas-liquid valves; fast-removable seal assembly; seal spring loaders; grooves for increasing hydraulic resistance. Replacement of active safety system components for passive ones improves the general reliability NPP by 1.5 or 2 orders of magnitudes. (authors)

  15. Lipid-Based Passivation in Nanofluidics

    Science.gov (United States)

    2012-01-01

    Stretching DNA in nanochannels is a useful tool for direct, visual studies of genomic DNA at the single molecule level. To facilitate the study of the interaction of linear DNA with proteins in nanochannels, we have implemented a highly effective passivation scheme based on lipid bilayers. We demonstrate virtually complete long-term passivation of nanochannel surfaces to a range of relevant reagents, including streptavidin-coated quantum dots, RecA proteins, and RecA–DNA complexes. We show that the performance of the lipid bilayer is significantly better than that of standard bovine serum albumin-based passivation. Finally, we show how the passivated devices allow us to monitor single DNA cleavage events during enzymatic degradation by DNase I. We expect that our approach will open up for detailed, systematic studies of a wide range of protein–DNA interactions with high spatial and temporal resolution. PMID:22432814

  16. Method and device for measuring fluid flow

    International Nuclear Information System (INIS)

    Atherton, R.; Marinkovich, P.S.; Spadaro, P.R.; Stout, J.W.

    1976-01-01

    The invention is a fluid flow measuring device for determining the coolant flow at the entrance to a specific nuclear reactor fuel region. The device comprises a plurality of venturis having the upstream inlet and throat pressure of each respectively manifolded together to provide one static pressure signal for each region monitored. The device provides accurate flow measurement with low pressure losses and uniform entrance and discharge flow distribution. 1 claim, 7 figures

  17. A high-performance trench capacitor integrated in a passive integration technology

    International Nuclear Information System (INIS)

    Geiselbrechtinger, Angelika; Büyüktas, Kevni; Allers, Karl-Heinz; Hartung, Wolfgang

    2009-01-01

    The requirements for the electrical characteristics of passive on-chip devices become more and more important. The electrical performance of RF circuits is predominantly restricted by the passives. New technologies and new device concepts are necessary to meet the demands. In this work, a trench capacitor developed for RF applications is presented for the first time. This so-called SilCap (silicon capacitor) device features very high capacitance density, extreme low-voltage dependence, excellent temperature stability, good RF performance and a high breakthrough voltage. First, the device function and the technological concept are introduced. The concept is realized without implementing cost-intensive high-k materials. This trench capacitor is integrated in the front end of line of a passive integration technology. The achieved specific capacitance density is compared to a standard planar capacitor. Performance of the SilCap in terms of quality factor and breakthrough voltage is shown. Finally, reliability data of this trench capacitor are presented with special focus on extrinsic and dielectric lifetime

  18. Practical microwave electron devices

    CERN Document Server

    Meurant, Gerard

    2013-01-01

    Practical Microwave Electron Devices provides an understanding of microwave electron devices and their applications. All areas of microwave electron devices are covered. These include microwave solid-state devices, including popular microwave transistors and both passive and active diodes; quantum electron devices; thermionic devices (including relativistic thermionic devices); and ferrimagnetic electron devices. The design of each of these devices is discussed as well as their applications, including oscillation, amplification, switching, modulation, demodulation, and parametric interactions.

  19. ALS insertion device block measurement and inspection

    International Nuclear Information System (INIS)

    Marks, S.; Carrieri, J.; Cook, C.; Hassenzahl, W.V.; Hoyer, E.; Plate, D.

    1991-05-01

    The performance specifications for ALS insertion devices require detailed knowledge and strict control of the Nd-Fe-B permanent magnet blocks incorporated in these devices. This paper describes the measurement and inspection apparatus and the procedures designed to qualify and characterize these blocks. A detailed description of a new, automated Helmholtz coil facility for measurement of the three components of magnetic moment is included. Physical block inspection and magnetic moment measurement procedures are described. Together they provide a basis for qualifying blocks and for specifying placement of blocks within an insertion devices' magnetic structures. 1 ref., 4 figs

  20. Validity and Reliability of a New Device (WIMU®) for Measuring Hamstring Muscle Extensibility.

    Science.gov (United States)

    Muyor, José M

    2017-09-01

    The aims of the current study were 1) to evaluate the validity of the WIMU ® system for measuring hamstring muscle extensibility in the passive straight leg raise (PSLR) test using an inclinometer for the criterion and 2) to determine the test-retest reliability of the WIMU ® system to measure hamstring muscle extensibility during the PSLR test. 55 subjects were evaluated on 2 separate occasions. Data from a Unilever inclinometer and WIMU ® system were collected simultaneously. Intraclass correlation coefficients (ICCs) for the validity were very high (0.983-1); a very low systematic bias (-0.21°--0.42°), random error (0.05°-0.04°) and standard error of the estimate (0.43°-0.34°) were observed (left-right leg, respectively) between the 2 devices (inclinometer and the WIMU ® system). The R 2 between the devices was 0.999 (p<0.001) in both the left and right legs. The test-retest reliability of the WIMU ® system was excellent, with ICCs ranging from 0.972-0.995, low coefficients of variation (0.01%), and a low standard error of the estimate (0.19-0.31°). The WIMU ® system showed strong concurrent validity and excellent test-retest reliability for the evaluation of hamstring muscle extensibility in the PSLR test. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Inkjet Printed Radio Frequency Passive Components

    KAUST Repository

    McKerricher, Garret

    2015-12-01

    Inkjet printing is a mature technique for colourful graphic arts. It excels at customized, large area, high resolution, and small volume production. With the developments in conductive, and dielectric inks, there is potential for large area inkjet electronics fabrication. Passive radio frequency devices can benefit greatly from a printing process, since the size of these devices is defined by the frequency of operation. The large size of radio frequency passives means that they either take up expensive space “on chip” or that they are fabricated on a separate lower cost substrate and somehow bonded to the chips. This has hindered cost-sensitive high volume applications such as radio frequency identification tags. Substantial work has been undertaken on inkjet-printed conductors for passive antennas on microwave substrates and even paper, yet there has been little work on the printing of the dielectric materials aimed at radio frequency passives. Both the conductor and dielectric need to be integrated to create a multilayer inkjet printing process that is capable of making quality passives such as capacitors and inductors. Three inkjet printed dielectrics are investigated in this thesis: a ceramic (alumina), a thermal-cured polymer (poly 4 vinyl phenol), and a UV-cured polymer (acrylic based). For the conductor, both a silver nanoparticle ink as well as a custom in-house formulated particle-free silver ink are explored. The focus is on passives, mainly capacitors and inductors. Compared to low frequency electronics, radio frequency components have additional sensitivity regarding skin depth of the conductor and surface roughness, as well as dielectric constant and loss tangent of the dielectric. These concerns are investigated with the aim of making the highest quality components possible and to understand the current limitations of inkjet-fabricated radio frequency devices. An inkjet-printed alumina dielectric that provides quality factors of 200 and high

  2. Passive coherent discriminator using phase diversity for the simultaneous measurement of frequency noise and intensity noise of a continuous-wave laser

    Science.gov (United States)

    Michaud-Belleau, V.; Bergeron, H.; Light, P. S.; Hébert, N. B.; Deschênes, J. D.; Luiten, A. N.; Genest, J.

    2016-10-01

    The frequency noise and intensity noise of a laser set the performance limits in many modern photonics applications and, consequently, must often be characterized. As lasers continue to improve, the measurement of these noises however becomes increasingly challenging. Current approaches for the characterization of very high-performance lasers often call for a second laser with equal or higher performance to the one that is to be measured, an incoherent interferometer having an extremely long delay-arm, or an interferometer that relies on an active device. These instrumental features can be impractical or problematic under certain experimental conditions. As an alternative, this paper presents an entirely passive coherent interferometer that employs an optical 90° hybrid coupler to perform in-phase and quadrature detection. We demonstrate the technique by measuring the frequency noise power spectral density of a highly-stable 192 THz (1560 nm) fiber laser over five frequency decades. Simultaneously, we are able to measure its relative intensity noise power spectral density and characterize the correlation between its amplitude noise and phase noise. We correct some common misconceptions through a detailed theoretical analysis and demonstrate the necessity to account for normal imperfections of the optical 90° hybrid coupler. We finally conclude that this passive coherent discriminator is suitable for reliable and simple noise characterization of highly-stable lasers, with bandwidth and dynamic range benefits but susceptibility to additive noise contamination.

  3. Role of bond adaptability in the passivation of colloidal quantum dot solids.

    Science.gov (United States)

    Thon, Susanna M; Ip, Alexander H; Voznyy, Oleksandr; Levina, Larissa; Kemp, Kyle W; Carey, Graham H; Masala, Silvia; Sargent, Edward H

    2013-09-24

    Colloidal quantum dot (CQD) solids are attractive materials for photovoltaic devices due to their low-cost solution-phase processing, high absorption cross sections, and their band gap tunability via the quantum size effect. Recent advances in CQD solar cell performance have relied on new surface passivation strategies. Specifically, cadmium cation passivation of surface chalcogen sites in PbS CQDs has been shown to contribute to lowered trap state densities and improved photovoltaic performance. Here we deploy a generalized solution-phase passivation strategy as a means to improving CQD surface management. We connect the effects of the choice of metal cation on solution-phase surface passivation, film-phase trap density of states, minority carrier mobility, and photovoltaic power conversion efficiency. We show that trap passivation and midgap density of states determine photovoltaic device performance and are strongly influenced by the choice of metal cation. Supported by density functional theory simulations, we propose a model for the role of cations, a picture wherein metals offering the shallowest electron affinities and the greatest adaptability in surface bonding configurations eliminate both deep and shallow traps effectively even in submonolayer amounts. This work illustrates the importance of materials choice in designing a flexible passivation strategy for optimum CQD device performance.

  4. Role of bond adaptability in the passivation of colloidal quantum dot solids

    KAUST Repository

    Thon, Susanna

    2013-09-24

    Colloidal quantum dot (CQD) solids are attractive materials for photovoltaic devices due to their low-cost solution-phase processing, high absorption cross sections, and their band gap tunability via the quantum size effect. Recent advances in CQD solar cell performance have relied on new surface passivation strategies. Specifically, cadmium cation passivation of surface chalcogen sites in PbS CQDs has been shown to contribute to lowered trap state densities and improved photovoltaic performance. Here we deploy a generalized solution-phase passivation strategy as a means to improving CQD surface management. We connect the effects of the choice of metal cation on solution-phase surface passivation, film-phase trap density of states, minority carrier mobility, and photovoltaic power conversion efficiency. We show that trap passivation and midgap density of states determine photovoltaic device performance and are strongly influenced by the choice of metal cation. Supported by density functional theory simulations, we propose a model for the role of cations, a picture wherein metals offering the shallowest electron affinities and the greatest adaptability in surface bonding configurations eliminate both deep and shallow traps effectively even in submonolayer amounts. This work illustrates the importance of materials choice in designing a flexible passivation strategy for optimum CQD device performance. © 2013 American Chemical Society.

  5. Digital Thickness Measurement of a Transparent Plastic Orthodontic Device

    Science.gov (United States)

    Kim, Yoon-Hwan; Rhim, Sung-Han

    2018-05-01

    A transparent orthodontic device is used to move the teeth to the final calibration position to form a proper set of teeth. Because the uniform thickness of the device plays an important role in tooth positioning, the accuracy of the device's thickness profile is important for effective orthodontic treatment. However, due to the complexity of the device's geometry and the transparency of the device's material, measuring the complete thickness profile has been difficult. In the present study, a new optical scanning method to measure the thickness profile of transparent plastic orthodontic devices is proposed and evaluated by using scanning electron microscopy (SEM). The error of the new measurement method is less than ±18 μm. The new method can be used to measure the thickness of non-specific, multi-curved, transparent orthodontic devices.

  6. An All-Silicon Passive Optical Diode

    OpenAIRE

    Fan, Li; Wang, Jian; Varghese, Leo T.; Shen, Hao; Niu, Ben; Xuan, Yi; Weiner, Andrew M.; Qi, Minghao

    2011-01-01

    A passive optical diode effect would be useful for on-chip optical information processing but has been difficult to achieve. Using a method based on optical nonlinearity, we demonstrate a forward-backward transmission ratio of up to 28 decibels within telecommunication wavelengths. Our device, which uses two silicon rings 5 micrometers in radius, is passive yet maintains optical nonreciprocity for a broad range of input power levels, and it performs equally well even if the backward input pow...

  7. Fluid phase passivation and polymer encapsulation of InP/InGaAs heterojunction bipolar transistors

    International Nuclear Information System (INIS)

    Oxland, R K; Rahman, F

    2008-01-01

    This paper reports on the development of effective passivation techniques for improving and stabilizing the characteristics of InP/InGaAs heterojunction bipolar transistors. Two different methods for carrying out sulfur-based surface passivations are compared. These include exposure to gaseous hydrogen sulfide and immersion treatment in an ammonium sulfide solution. The temporal behaviour of effects resulting from such passivation treatments is reported. It is shown that liquid phase passivation has a larger beneficial effect on device performance than gas phase passivation. This is explained in terms of the polarity of passivating species and the exposed semiconductor surface. Finally, device encapsulation in a novel chalcogenide polymer is shown to be effective in preserving the benefits of surface passivation treatments. The relevant properties of this encapsulation material are also discussed

  8. Passive wireless strain measurement based upon the Villari effect and giant magnetoresistance

    Science.gov (United States)

    Windl, Roman; Bruckner, Florian; Abert, Claas; Huber, Christian; Vogler, Christoph; Huber, Thomas; Oezelt, Harald; Suess, Dieter

    2016-12-01

    A passive wireless radio frequency-identification (RFID) stress/strain sensor is presented. Stress is transformed into a change of magnetic field by utilizing an amorphous metal ribbon. This magnetic field change is measured by a giant magnetoresistance magnetic field sensor and converted into a digital value with a RFID chip for wireless access. Standard metal foil strain gauges have a gauge factor GF from around 2 to 5 and suffer from the disadvantage of a physically connected power supply and measurement equipment. For the presented sensor, a strain range of -10 μm/m to 190 μm/m results in a linear sensor response, a gauge factor of GF ≈ 245, and a detectivity of 4.10 nm/m 1/√{Hz } . The detectivity of the presented sensor is similar to the detectivity of a reference metal foil strain gauge. Due to low power consumption and easy signal analysis, this sensor is well suited for long term strain measurement inside closed spaces. RFID adds features like multiple tag detection, wireless passive operation and a user data storage.

  9. Comparing passive angle-torque curves recorded simultaneously with a load cell versus an isokinetic dynamometer during dorsiflexion stretch tolerance assessments.

    Science.gov (United States)

    Buckner, Samuel L; Jenkins, Nathaniel D M; Costa, Pablo B; Ryan, Eric D; Herda, Trent J; Cramer, Joel T

    2015-05-01

    The purpose of the present study was to compare the passive angle-torque curves and the passive stiffness (PS, N m °(-)(1)) values recorded simultaneously from a load cell versus an isokinetic dynamometer during dorsiflexion stretch tolerance assessments in vivo. Nine healthy men (mean ± SD age = 21.4 ± 1.6 years) completed stretch tolerance assessments on a custom-built apparatus where passive torque was measured simultaneously from an isokinetic dynamometer and a load cell. Passive torque values that corresponded with the last 10° of dorsiflexion, verified by surface electromyographic amplitude, were analyzed for each device (θ1, θ2, θ3, …, θ10). Passive torque values measured with the load cell were greater (p ≤ 0.05) than the dynamometer torque values for θ4 through θ10. There were more statistical differentiations among joint angles for passive torque measured by the load cell, and the load cell measured a greater (p ≤ 0.01) increase in passive torque and PS than the isokinetic dynamometer. These findings suggested that when examining the angle-torque curves from passive dorsiflexion stretch tolerance tests, a load cell placed under the distal end of the foot may be more sensitive than the torque recorded from an isokinetic dynamometer. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. A linear 180 nm SOI CMOS antenna switch module using integrated passive device filters for cellular applications

    International Nuclear Information System (INIS)

    Cui Jie; Chen Lei; Liu Yi; Zhao Peng; Niu Xu

    2014-01-01

    A broadband monolithic linear single pole, eight throw (SP8T) switch has been fabricated in 180 nm thin film silicon-on-insulator (SOI) CMOS technology with a quad-band GSM harmonic filter in integrated passive devices (IPD) technology, which is developed for cellular applications. The antenna switch module (ASM) features 1.2 dB insertion loss with filter on 2G bands and 0.4 dB insertion loss in 3G bands, less than −45 dB isolation and maximum −103 dB intermodulation distortion for mobile front ends by applying distributed architecture and adaptive supply voltage generator. (semiconductor integrated circuits)

  11. Remotely Interrogated Passive Polarizing Dosimeter (RIPPeD).

    Energy Technology Data Exchange (ETDEWEB)

    Kemme, Shanalyn A.; Buller, Daniel L.; Dirk, Shawn M.; Boye, Robert R.; Samora, Sally; Washburn, Cody M.; Wheeler, David Roger

    2008-09-01

    Conductive polymers have become an extremely useful class of materials for many optical applications. We have developed an electrochemical growth method for depositing highly conductive ({approx}100 S/cm) polypyrrole. Additionally, we have adapted advanced fabrication methods for use with the polypyrrole resulting in gratings with submicron features. This conductive polymer micro-wire grid provides an optical polarizer with unique properties. When the polymer is exposed to ionizing radiation, its conductivity is affected and the polarization properties of the device, specifically the extinction ratio, change in a corresponding manner. This change in polarization properties can be determined by optically interrogating the device, possibly from a remote location. The result is a passive radiation-sensitive sensor with very low optical visibility. The ability to interrogate the device from a safe standoff distance provides a device useful in potentially dangerous environments. Also, the passive nature of the device make it applicable in applications where external power is not available. We will review the polymer deposition, fabrication methods and device design and modeling. The characterization of the polymer's sensitivity to ionizing radiation and optical testing of infrared polarizers before and after irradiation will also be presented. These experimental results will highlight the usefulness of the conductive infrared polarizer to many security and monitoring applications.

  12. Remotely Interrogated Passive Polarizing Dosimeter (RIPPeD)

    International Nuclear Information System (INIS)

    Kemme, Shanalyn A.; Buller, Daniel L.; Dirk, Shawn M.; Boye, Robert R.; Samora, Sally; Washburn, Cody M.; Wheeler, David Roger

    2008-01-01

    Conductive polymers have become an extremely useful class of materials for many optical applications. We have developed an electrochemical growth method for depositing highly conductive (∼100 S/cm) polypyrrole. Additionally, we have adapted advanced fabrication methods for use with the polypyrrole resulting in gratings with submicron features. This conductive polymer micro-wire grid provides an optical polarizer with unique properties. When the polymer is exposed to ionizing radiation, its conductivity is affected and the polarization properties of the device, specifically the extinction ratio, change in a corresponding manner. This change in polarization properties can be determined by optically interrogating the device, possibly from a remote location. The result is a passive radiation-sensitive sensor with very low optical visibility. The ability to interrogate the device from a safe standoff distance provides a device useful in potentially dangerous environments. Also, the passive nature of the device make it applicable in applications where external power is not available. We will review the polymer deposition, fabrication methods and device design and modeling. The characterization of the polymer's sensitivity to ionizing radiation and optical testing of infrared polarizers before and after irradiation will also be presented. These experimental results will highlight the usefulness of the conductive infrared polarizer to many security and monitoring applications

  13. Chemical and electrical properties of (NH4)2S passivated GaSb surface

    International Nuclear Information System (INIS)

    Tao Dongyan; Cheng Yu; Liu Jingming; Su Jie; Liu Tong; Yang Fengyun; Wang Fenghua; Cao Kewei; Dong Zhiyuan; Zhao Youwen

    2015-01-01

    The surface chemical properties of gallium antimonide (GaSb) after ammonium sulfide ((NH 4 ) 2 S) solution passivation have been studied by X-ray photoelectron spectroscopy (XPS), time of flight secondary ion mass spectroscopy (TOF-SIMS) and I–V measurement. An advantage of neutral (NH 4 ) 2 S + S solution over pure (NH 4 ) 2 S solution and alkaline (NH 4 ) 2 S + S solution has been found in the ability to passivate the GaSb surface by contrast and comparison. It has been found that alkaline (NH 4 ) 2 S + S solution passivation effectively removes oxides of the GaSb surface and forms sulfide products to improve device performance. TOF-SIMS complementally demonstrates that pure (NH 4 ) 2 S passivation did form sulfide products, which are too soluble to really exist. The lowest roughness determined using a 3D optical profilometer and the highest improved SBD quality proved that neutral (NH 4 ) 2 S + S solution passivation worked much better in improving the surface properties of GaSb. (paper)

  14. Thiol passivation of MWIR type II superlattice photodetectors

    Science.gov (United States)

    Salihoglu, O.; Muti, A.; Aydinli, A.

    2013-06-01

    Poor passivation on photodetectors can result in catastrophic failure of the device. Abrupt termination of mesa side walls during pixel definition generates dangling bonds that lead to inversion layers and surface traps leading to surface leakage currents that short circuit diode action. Good passivation, therefore, is critical in the fabrication of high performance devices. Silicondioxide has been the main stay of passivation for commercial photodetectors, deposited at high temperatures and high RF powers using plasma deposition techniques. In photodetectors based on III-V compounds, sulphur passivation has been shown to replace oxygen and saturate the dangling bonds. Despite its effectiveness, it degrades over time. More effort is required to create passivation layers which eliminate surface leakage current. In this work, we propose the use of sulphur based octadecanethiol (ODT), CH3(CH2)17SH, as a passivation layer for the InAs/GaSb superlattice photodetectors that acts as a self assembled monolayer (SAM). ODT SAMs consist of a chain of 18 carbon atoms with a sulphur atom at its head. ODT Thiol coating is a simple process that consist of dipping the sample into the solution for a prescribed time. Excellent electrical performance of diodes tested confirm the effectiveness of the sulphur head stabilized by the intermolecular interaction due to van der Walls forces between the long chains of ODT SAM which results in highly stable ultrathin hydrocarbon layers without long term degradation.

  15. ERP correlates of object recognition memory in Down syndrome: Do active and passive tasks measure the same thing?

    Science.gov (United States)

    Van Hoogmoed, A H; Nadel, L; Spanò, G; Edgin, J O

    2016-02-01

    Event related potentials (ERPs) can help to determine the cognitive and neural processes underlying memory functions and are often used to study populations with severe memory impairment. In healthy adults, memory is typically assessed with active tasks, while in patient studies passive memory paradigms are generally used. In this study we examined whether active and passive continuous object recognition tasks measure the same underlying memory process in typically developing (TD) adults and in individuals with Down syndrome (DS), a population with known hippocampal impairment. We further explored how ERPs in these tasks relate to behavioral measures of memory. Data-driven analysis techniques revealed large differences in old-new effects in the active versus passive task in TD adults, but no difference between these tasks in DS. The group with DS required additional processing in the active task in comparison to the TD group in two ways. First, the old-new effect started 150 ms later. Second, more repetitions were required to show the old-new effect. In the group with DS, performance on a behavioral measure of object-location memory was related to ERP measures across both tasks. In total, our results suggest that active and passive ERP memory measures do not differ in DS and likely reflect the use of implicit memory, but not explicit processing, on both tasks. Our findings highlight the need for a greater understanding of the comparison between active and passive ERP paradigms before they are inferred to measure similar functions across populations (e.g., infants or intellectual disability). Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Temperature measuring device

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, R.J.; Bible, D.W.; Sohns, C.W.

    1999-10-19

    Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

  17. Terahertz-bandwidth coherence measurements of a quantum dash laser in passive and active mode-locking operation.

    Science.gov (United States)

    Martin, Eamonn; Watts, Regan; Bramerie, Laurent; Shen, Alexandre; Gariah, Harry; Blache, Fabrice; Lelarge, Francois; Barry, Liam

    2012-12-01

    This research carries out coherence measurements of a 42.7 GHz quantum dash (QDash) semiconductor laser when passively, electrically, and optically mode-locked. Coherence of the spectral lines from the mode-locked laser is determined by examining the radio frequency beat-tone linewidth as the mode spacing is increased up to 1.1 THz. Electric-field measurements of the QDash laser are also presented, from which a comparison between experimental results and accepted theory for coherence in passively mode-locked lasers has been performed.

  18. The effect of DNA degradation bias in passive sampling devices on metabarcoding studies of arthropod communities and their associated microbiota.

    Science.gov (United States)

    Krehenwinkel, Henrik; Fong, Marisa; Kennedy, Susan; Huang, Edward Greg; Noriyuki, Suzuki; Cayetano, Luis; Gillespie, Rosemary

    2018-01-01

    PCR amplification bias is a well-known problem in metagenomic analysis of arthropod communities. In contrast, variation of DNA degradation rates is a largely neglected source of bias. Differential degradation of DNA molecules could cause underrepresentation of taxa in a community sequencing sample. Arthropods are often collected by passive sampling devices, like malaise traps. Specimens in such a trap are exposed to varying periods of suboptimal storage and possibly different rates of DNA degradation. Degradation bias could thus be a significant issue, skewing diversity estimates. Here, we estimate the effect of differential DNA degradation on the recovery of community diversity of Hawaiian arthropods and their associated microbiota. We use a simple DNA size selection protocol to test for degradation bias in mock communities, as well as passively collected samples from actual Malaise traps. We compare the effect of DNA degradation to that of varying PCR conditions, including primer choice, annealing temperature and cycle number. Our results show that DNA degradation does indeed bias community analyses. However, the effect of this bias is of minor importance compared to that induced by changes in PCR conditions. Analyses of the macro and microbiome from passively collected arthropod samples are thus well worth pursuing.

  19. Italy: Analysis of Solutions for Passively Actuated Safety Shutdown Devices

    International Nuclear Information System (INIS)

    Burgazzi, L.

    2015-01-01

    This article looks at different special shutdown systems specifically engineered for prevention of severe accidents, to be implemented on Fast Reactors, with main focus on the investigation of the performance of the self-actuated shutdown systems in Sodium Fast Reactors. The passive shut-down systems are designed to shut-down system only by inherent passive reactivity feedback mechanism, under unprotected accident conditions, implying failure of reactor protection system. They are conceived to be self-actuated without any signal elaboration, since the actuation of the system is triggered by the effects induced by the transient like material dilatation, in case of overheating of the coolant for instance, according to Fast Reactor design to meet the safety requirements

  20. Passive remediation strategies for petroleum contaminated sites

    International Nuclear Information System (INIS)

    Everett, L.G.; Cullen, S.J.; Eccles, L.A.

    1991-01-01

    The US EPA is becoming increasingly aware of costs and the limited success of existing remediation strategies. Research teams within the US EPA believe that if passive remediation can be successfully demonstrated, it is a candidate for best available technology. Passive remediation, however, must be demonstrated through the use of monitoring techniques, which demonstrate: contaminants are not moving in the dissolved, adsorbed or free product phase; and contamination is biodegrading in-place. This paper presents a concise monitoring and analysis strategy for passive remediation. Specifically, the paper presents the accuracy, precision and operating range of neutron moderation techniques as a low cost, real-time screening tool to measure the migration of the dissolved phase in soil moisture, the stabilized adsorbed phase and free product movement. In addition, the paper identifies the capillary pressure range through which the dissolved phase will move and identifies techniques for satisfying the risk analysis that movement is not taking place. The rationale for passive remediation taking place is confirmed through a discussion of gas ratios associated with bacterial assimilation of hydrocarbons. Gas ratios which are relatively constant above ground are highly inverted in the subsurface at contamination sites. The use of frequent screening of a vertical geologic profile using least cost techniques and the infrequent analysis of soil gas ratios provides the required data upon which the public will accept passive remediation as best available technology at a particular site. The paper points out that neutron moderation is a high candidate vadose zone monitoring device and identifies alternative techniques using resistivity and dielectric constants, which are in the developmental stage. The economic implications for passive remediation are enormous relative to the excavation and remediation strategies which are currently in use

  1. The passive control of air pollution exposure in Dublin, Ireland: A combined measurement and modelling case study

    International Nuclear Information System (INIS)

    Gallagher, J.; Gill, L.W.; McNabola, A.

    2013-01-01

    This study investigates the potential real world application of passive control systems to reduce personal pollutant exposure in an urban street canyon in Dublin, Ireland. The implementation of parked cars and/or low boundary walls as a passive control system has been shown to minimise personal exposure to pollutants on footpaths in previous investigations. However, previous research has been limited to generic numerical modelling studies. This study combines real-time traffic data, meteorological conditions and pollution concentrations, in a real world urban street canyon before and after the implementation of a passive control system. Using a combination of field measurements and numerical modelling this study assessed the potential impact of passive controls on personal exposure to nitric oxide (NO) concentrations in the street canyon in winter conditions. A calibrated numerical model of the urban street canyon was developed, taking into account the variability in traffic and meteorological conditions. The modelling system combined the computational fluid dynamic (CFD) simulations and a semi-empirical equation, and demonstrated a good agreement with measured field data collected in the street canyon. The results indicated that lane distribution, fleet composition and vehicular turbulence all affected pollutant dispersion, in addition to the canyon geometry and local meteorological conditions. The introduction of passive controls displayed mixed results for improvements in air quality on the footpaths for different wind and traffic conditions. Parked cars demonstrated the most comprehensive passive control system with average improvements in air quality of up to 15% on the footpaths. This study highlights the potential of passive controls in a real street canyon to increase dispersion and improve air quality at street level. - Highlights: • Parked cars and LBWs were assessed as passive controls in an urban street canyon. • The calibrated model combined CFD

  2. The passive control of air pollution exposure in Dublin, Ireland: A combined measurement and modelling case study

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, J., E-mail: j.gallagher@bangor.ac.uk [School of Energy, Natural Resources and Geography, Bangor University (United Kingdom); Gill, L.W.; McNabola, A. [Dept. of Civil, Structural and Environmental Engineering, Trinity College Dublin (Ireland)

    2013-08-01

    This study investigates the potential real world application of passive control systems to reduce personal pollutant exposure in an urban street canyon in Dublin, Ireland. The implementation of parked cars and/or low boundary walls as a passive control system has been shown to minimise personal exposure to pollutants on footpaths in previous investigations. However, previous research has been limited to generic numerical modelling studies. This study combines real-time traffic data, meteorological conditions and pollution concentrations, in a real world urban street canyon before and after the implementation of a passive control system. Using a combination of field measurements and numerical modelling this study assessed the potential impact of passive controls on personal exposure to nitric oxide (NO) concentrations in the street canyon in winter conditions. A calibrated numerical model of the urban street canyon was developed, taking into account the variability in traffic and meteorological conditions. The modelling system combined the computational fluid dynamic (CFD) simulations and a semi-empirical equation, and demonstrated a good agreement with measured field data collected in the street canyon. The results indicated that lane distribution, fleet composition and vehicular turbulence all affected pollutant dispersion, in addition to the canyon geometry and local meteorological conditions. The introduction of passive controls displayed mixed results for improvements in air quality on the footpaths for different wind and traffic conditions. Parked cars demonstrated the most comprehensive passive control system with average improvements in air quality of up to 15% on the footpaths. This study highlights the potential of passive controls in a real street canyon to increase dispersion and improve air quality at street level. - Highlights: • Parked cars and LBWs were assessed as passive controls in an urban street canyon. • The calibrated model combined CFD

  3. Measurement of rain intensity by means of active-passive remote sensing

    Science.gov (United States)

    Linkova, Anna; Khlopov, Grygoriy

    2014-05-01

    Measurement of rain intensity is of great interest for municipal services and agriculture, particularly because of increasing number of floods and landslides. At that monitoring of amount of liquid precipitation allows to schedule work of hydrological services to inform the relevant public authorities about violent weather in time. That is why development of remote sensing methods for monitoring of rains is quite important task. The inverse problem solution of rain remote sensing is based on the measurements of scattering or radiation characteristics of rain drops. However liquid precipitation has a difficult structure which depends on many parameters. So using only scattering or radiation characteristics obtained by active and passive sensing at a single frequency does not allow to solve the inverse problem. Therefore double frequency sensing is widely used now for precipitation monitoring. Measurement of reflected power at two frequencies allows to find two parameters of drop size distribution of rain drops. However three-parameter distributions (for example gamma distribution) are the most prevalent now as a rain model, so in this case solution of the inverse problem requires the measurement of at least three uncorrelated variables. That is why a priori statistical meteorological data obtained by contact methods are used additionally to the double frequency sensing to solve the inverse problem. In particular, authors proposed and studied the combined method of double frequency sensing of rains based on dependence of the parameters of gamma distribution on rain intensity. The numerical simulation and experimental study shown that the proposed method allows to retrieve the profile of microstructure and integral parameters of rain with accuracy less than 15%. However, the effectiveness of the proposed method essentially depends on the reliability of the used statistical data which are tend to have a strong seasonal and regional variability led to significant

  4. Leading research and survey report for fiscal 1999. Survey and research on high-sensitivity passive measurement analysis technology; 1999 nendo kokando passive keisoku bunseki gijutsu no chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Effective use of the limited natural resources and preservation of global environments are sought for with the 21st century approaching. In the field of measurement analysis, 21st century type technologies are desired, different from the current ones whose improvement is to be attained through reaching for the limits of sensitivity and resolution. Although the laser device with its performance innovatively advanced has now come to provide light sources for measurement, yet they retain their own flaws of damaging or destroying the object of measurement. Passive measurement techniques need to be developed using natural light or white light as well as laser, which will enable the measurement of the shapes and characteristics of human beings, other animals, and vegetables by use of their radiation, and to determine the kinds and amounts of components of the living environments by use of natural light. Techniques should be developed to measure, in natural light or artificial illumination, shapes and colors, and microscopic substances on solid matters, their temperatures, and reaction processes in factories and laboratories. In this connection, surveys are conducted of technologies for measuring safety, productivity, and environment improving potential. Technologies key to their realization are those involving novel heterodyne interference and light source quality improvement, light amplification, cohering, signal processing, chemistry and mass transfer, establishment of multidimensionality, systematization, etc. (NEDO)

  5. Measurement of gastrocnemius muscle elasticity by shear wave elastography: association with passive ankle joint stiffness and sex differences.

    Science.gov (United States)

    Chino, Kentaro; Takahashi, Hideyuki

    2016-04-01

    Passive joint stiffness is an important quantitative measure of flexibility, but is affected by muscle volume and all of the anatomical structures located within and over the joint. Shear wave elastography can assess muscle elasticity independent of the influences of muscle volume and the other nearby anatomical structures. We determined how muscle elasticity, as measured using shear wave elastography, is associated with passive joint stiffness and patient sex. Twenty-six healthy men (24.4 ± 5.9 years) and 26 healthy women (25.2 ± 4.8 years) participated in this study. The passive ankle joint stiffness and tissue elasticity of the medial gastrocnemius (MG) were quantified with the ankle in 30° plantar flexion (PF), a neutral anatomical position (NE), and 20° dorsiflexion (DF). No significant difference in passive joint stiffness by sex was observed with the ankle in PF, but significantly greater passive ankle joint stiffness in men than in women was observed in NE and DF. The MG elasticity was not significantly associated with joint stiffness in PF or NE, but it was significantly associated with joint stiffness in DF. There were no significant differences in MG elasticity by sex at any ankle position. Muscle elasticity, measured independent of the confounding effects of muscle volume and the other nearby anatomical structures, is associated with passive joint stiffness in the joint position where the muscle is sufficiently lengthened, but does not vary by sex in any joint position tested.

  6. Passivity-based control and estimation in networked robotics

    CERN Document Server

    Hatanaka, Takeshi; Fujita, Masayuki; Spong, Mark W

    2015-01-01

    Highlighting the control of networked robotic systems, this book synthesizes a unified passivity-based approach to an emerging cross-disciplinary subject. Thanks to this unified approach, readers can access various state-of-the-art research fields by studying only the background foundations associated with passivity. In addition to the theoretical results and techniques,  the authors provide experimental case studies on testbeds of robotic systems  including networked haptic devices, visual robotic systems,  robotic network systems and visual sensor network systems. The text begins with an introduction to passivity and passivity-based control together with the other foundations needed in this book. The main body of the book consists of three parts. The first examines how passivity can be utilized for bilateral teleoperation and demonstrates the inherent robustness of the passivity-based controller against communication delays. The second part emphasizes passivity’s usefulness for visual feedback control ...

  7. A population-based exposure assessment methodology for carbon monoxide: Development of a carbon monoxide passive sampler and occupational dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Apte, Michael G. [Univ. of California, Berkeley, CA (United States)

    1997-09-01

    Two devices, an occupational carbon monoxide (CO) dosimeter (LOCD), and an indoor air quality (IAQ) passive sampler were developed for use in population-based CO exposure assessment studies. CO exposure is a serious public health problem in the U.S., causing both morbidity and mortality (lifetime mortality risk approximately 10{sup -4}). Sparse data from population-based CO exposure assessments indicate that approximately 10% of the U.S. population is exposed to CO above the national ambient air quality standard. No CO exposure measurement technology is presently available for affordable population-based CO exposure assessment studies. The LOCD and IAQ Passive Sampler were tested in the laboratory and field. The palladium-molybdenum based CO sensor was designed into a compact diffusion tube sampler that can be worn. Time-weighted-average (TWA) CO exposure of the device is quantified by a simple spectrophotometric measurement. The LOCD and IAQ Passive Sampler were tested over an exposure range of 40 to 700 ppm-hours and 200 to 4200 ppm-hours, respectively. Both devices were capable of measuring precisely (relative standard deviation <20%), with low bias (<10%). The LOCD was screened for interferences by temperature, humidity, and organic and inorganic gases. Temperature effects were small in the range of 10°C to 30°C. Humidity effects were low between 20% and 90% RH. Ethylene (200 ppm) caused a positive interference and nitric oxide (50 ppm) caused a negative response without the presence of CO but not with CO.

  8. Metal insulator semiconductor solar cell devices based on a Cu2O substrate utilizing h-BN as an insulating and passivating layer

    International Nuclear Information System (INIS)

    Ergen, Onur; Gibb, Ashley; Vazquez-Mena, Oscar; Zettl, Alex; Regan, William Raymond

    2015-01-01

    We demonstrate cuprous oxide (Cu 2 O) based metal insulator semiconductor Schottky (MIS-Schottky) solar cells with efficiency exceeding 3%. A unique direct growth technique is employed in the fabrication, and hexagonal boron nitride (h-BN) serves simultaneously as a passivation and insulation layer on the active Cu 2 O layer. The devices are the most efficient of any Cu 2 O based MIS-Schottky solar cells reported to date

  9. Paraffin wax passivation layer improvements in electrical characteristics of bottom gate amorphous indium–gallium–zinc oxide thin-film transistors

    International Nuclear Information System (INIS)

    Chang, Geng-Wei; Chang, Ting-Chang; Syu, Yong-En; Tsai, Tsung-Ming; Chang, Kuan-Chang; Tu, Chun-Hao; Jian, Fu-Yen; Hung, Ya-Chi; Tai, Ya-Hsiang

    2011-01-01

    In this research, paraffin wax is employed as the passivation layer of the bottom gate amorphous indium–gallium–zinc oxide thin-film transistors (a-IGZO TFTs), and it is formed by sol–gel process in the atmosphere. The high yield and low cost passivation layer of sol–gel process technology has attracted much attention for current flat-panel-display manufacturing. Comparing with passivation-free a-IGZO TFTs, passivated devices exhibit a superior stability against positive gate bias stress in different ambient gas, demonstrating that paraffin wax shows gas-resisting characteristics for a-IGZO TFTs application. Furthermore, light-induced stretch-out phenomenon for paraffin wax passivated device is suppressed. This superior stability of the passivated device was attributed to the reduced total density of states (DOS) including the interfacial and semiconductor bulk trap densities.

  10. Passive thermal management using phase change materials

    Science.gov (United States)

    Ganatra, Yash Yogesh

    The trend of enhanced functionality and reducing thickness of mobile devices has. led to a rapid increase in power density and a potential thermal bottleneck since. thermal limits of components remain unchanged. Active cooling mechanisms are not. feasible due to size, weight and cost constraints. This work explores the feasibility. of a passive cooling system based on Phase Change Materials (PCMs) for thermal. management of mobile devices. PCMs stabilize temperatures due to the latent heat. of phase change thus increasing the operating time of the device before threshold. temperatures are exceeded. The primary contribution of this work is the identification. of key parameters which influence the design of a PCM based thermal management. system from both the experiments and the numerical models. This work first identifies strategies for integrating PCMs in an electronic device. A. detailed review of past research, including experimental techniques and computational. models, yields key material properties and metrics to evaluate the performance of. PCMs. Subsequently, a miniaturized version of a conventional thermal conductivity. measurement technique is developed to characterize thermal resistance of PCMs. Further, latent heat and transition temperatures are also characterized for a wide. range of PCMs. In-situ measurements with PCMs placed on the processor indicate that some. PCMs can extend the operating time of the device by as much as a factor of 2.48. relative to baseline tests (with no PCMs). This increase in operating time is investigated. by computational thermal models that explore various integration locations, both at the package and device level.

  11. 21 CFR 864.5950 - Blood volume measuring device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blood volume measuring device. 864.5950 Section 864.5950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated Hematology Devices...

  12. Performance of passive samplers for monitoring estuarine water column concentrations: 2. Emerging contaminants.

    Science.gov (United States)

    Perron, Monique M; Burgess, Robert M; Suuberg, Eric M; Cantwell, Mark G; Pennell, Kelly G

    2013-10-01

    Measuring dissolved concentrations of emerging contaminants, such as polybrominated diphenyl ethers (PBDEs) and triclosan, can be challenging due to their physicochemical properties resulting in low aqueous solubilities and association with particles. Passive sampling methods have been applied to assess dissolved concentrations in water and sediments primarily for legacy contaminants. Although the technology is applicable to some emerging contaminants, the use of passive samplers with emerging contaminants is limited. In the present study, the performance of 3 common passive samplers was evaluated for sampling PBDEs and triclosan. Passive sampling polymers included low-density polyethylene (PE) and polyoxymethylene (POM) sheets, and polydimethylsiloxane (PDMS)-coated solid-phase microextraction (SPME) fibers. Dissolved concentrations were calculated using measured sampler concentrations and laboratory-derived partition coefficients. Dissolved tri-, tetra-, and pentabrominated PBDE congeners were detected at several of the study sites at very low pg/L concentrations using PE and POM. Calculated dissolved water concentrations of triclosan ranged from 1.7 ng/L to 18 ng/L for POM and 8.8 ng/L to 13 ng/L for PE using performance reference compound equilibrium adjustments. Concentrations in SPME were not reported due to lack of detectable chemical in the PDMS polymer deployed. Although both PE and POM were found to effectively accumulate emerging contaminants from the water column, further research is needed to determine their utility as passive sampling devices for emerging contaminants. © 2013 SETAC.

  13. Stable High-Performance Perovskite Solar Cells via Grain Boundary Passivation

    KAUST Repository

    Niu, Tianqi

    2018-03-12

    The trap states at grain boundaries (GBs) within polycrystalline perovskite films deteriorate their optoelectronic properties, making GB engineering particularly important for stable high-performance optoelectronic devices. It is demonstrated that trap states within bulk films can be effectively passivated by semiconducting molecules with Lewis acid or base functional groups. The perovskite crystallization kinetics are studied using in situ synchrotron-based grazing-incidence X-ray scattering to explore the film formation mechanism. A model of the passivation mechanism is proposed to understand how the molecules simultaneously passivate the Pb-I antisite defects and vacancies created by under-coordinated Pb atoms. In addition, it also explains how the energy offset between the semiconducting molecules and the perovskite influences trap states and intergrain carrier transport. The superior optoelectronic properties are attained by optimizing the molecular passivation treatments. These benefits are translated into significant enhancements of the power conversion efficiencies to 19.3%, as well as improved environmental and thermal stability of solar cells. The passivated devices without encapsulation degrade only by ≈13% after 40 d of exposure in 50% relative humidity at room temperature, and only ≈10% after 24 h at 80 °C in controlled environment.

  14. Molecular dynamics study of solid-liquid heat transfer and passive liquid flow

    Science.gov (United States)

    Yesudasan Daisy, Sumith

    High heat flux removal is a challenging problem in boilers, electronics cooling, concentrated photovoltaic and other power conversion devices. Heat transfer by phase change is one of the most efficient mechanisms for removing heat from a solid surface. Futuristic electronic devices are expected to generate more than 1000 W/cm2 of heat. Despite the advancements in microscale and nanoscale manufacturing, the maximum passive heat flux removal has been 300 W/cm2 in pool boiling. Such limitations can be overcome by developing nanoscale thin-film evaporation based devices, which however require a better understanding of surface interactions and liquid vapor phase change process. Evaporation based passive flow is an inspiration from the transpiration process that happens in trees. If we can mimic this process and develop heat removal devices, then we can develop efficient cooling devices. The existing passive flow based cooling devices still needs improvement to meet the future demands. To improve the efficiency and capacity of these devices, we need to explore and quantify the passive flow happening at nanoscales. Experimental techniques have not advanced enough to study these fundamental phenomena at the nanoscale, an alternative method is to perform theoretical study at nanoscales. Molecular dynamics (MD) simulation is a widely accepted powerful tool for studying a range of fundamental and engineering problems. MD simulations can be utilized to study the passive flow mechanism and heat transfer due to it. To study passive flow using MD, apart from the conventional methods available in MD, we need to have methods to simulate the heat transfer between solid and liquid, local pressure, surface tension, density, temperature calculation methods, realistic boundary conditions, etc. Heat transfer between solid and fluids has been a challenging area in MD simulations, and has only been minimally explored (especially for a practical fluid like water). Conventionally, an

  15. Device to measure elastic modulus of superconducting windings

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    This device was made to measure elastic modulus of the Po dipole superconducting coils. More elaborated devices, but based on the same concept, were later used to measure the apparent elastic moduli of the LHC superconducting magnet coils. See also 7903547X, 7901386.

  16. Measurement of passive ankle stiffness in subjects with chronic hemiparesis using a novel ankle robot

    Science.gov (United States)

    Roy, Anindo; Bever, Christopher T.; Forrester, Larry W.; Macko, Richard F.; Hogan, Neville

    2011-01-01

    Our objective in this study was to assess passive mechanical stiffness in the ankle of chronic hemiparetic stroke survivors and to compare it with those of healthy young and older (age-matched) individuals. Given the importance of the ankle during locomotion, an accurate estimate of passive ankle stiffness would be valuable for locomotor rehabilitation, potentially providing a measure of recovery and a quantitative basis to design treatment protocols. Using a novel ankle robot, we characterized passive ankle stiffness both in sagittal and in frontal planes by applying perturbations to the ankle joint over the entire range of motion with subjects in a relaxed state. We found that passive stiffness of the affected ankle joint was significantly higher in chronic stroke survivors than in healthy adults of a similar cohort, both in the sagittal as well as frontal plane of movement, in three out of four directions tested with indistinguishable stiffness values in plantarflexion direction. Our findings are comparable to the literature, thus indicating its plausibility, and, to our knowledge, report for the first time passive stiffness in the frontal plane for persons with chronic stroke and older healthy adults. PMID:21346215

  17. A device for measuring electron beam characteristics

    Directory of Open Access Journals (Sweden)

    M. Andreev

    2017-01-01

    Full Text Available This paper presents a device intended for diagnostics of electron beams and the results obtained with this device. The device comprises a rotating double probe operating in conjunction with an automated probe signal collection and processing system. This provides for measuring and estimating the electron beam characteristics such as radius, current density, power density, convergence angle, and brightness.

  18. The passive control of air pollution exposure in Dublin, Ireland: a combined measurement and modelling case study.

    Science.gov (United States)

    Gallagher, J; Gill, L W; McNabola, A

    2013-08-01

    This study investigates the potential real world application of passive control systems to reduce personal pollutant exposure in an urban street canyon in Dublin, Ireland. The implementation of parked cars and/or low boundary walls as a passive control system has been shown to minimise personal exposure to pollutants on footpaths in previous investigations. However, previous research has been limited to generic numerical modelling studies. This study combines real-time traffic data, meteorological conditions and pollution concentrations, in a real world urban street canyon before and after the implementation of a passive control system. Using a combination of field measurements and numerical modelling this study assessed the potential impact of passive controls on personal exposure to nitric oxide (NO) concentrations in the street canyon in winter conditions. A calibrated numerical model of the urban street canyon was developed, taking into account the variability in traffic and meteorological conditions. The modelling system combined the computational fluid dynamic (CFD) simulations and a semi-empirical equation, and demonstrated a good agreement with measured field data collected in the street canyon. The results indicated that lane distribution, fleet composition and vehicular turbulence all affected pollutant dispersion, in addition to the canyon geometry and local meteorological conditions. The introduction of passive controls displayed mixed results for improvements in air quality on the footpaths for different wind and traffic conditions. Parked cars demonstrated the most comprehensive passive control system with average improvements in air quality of up to 15% on the footpaths. This study highlights the potential of passive controls in a real street canyon to increase dispersion and improve air quality at street level. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Intercomparison and intercalibration of passive/active radon and active radon progeny instruments and methods in North America

    International Nuclear Information System (INIS)

    George, A.C.; Tu, Keng W.

    1993-06-01

    An intercomparison and intercalibration exercise for radon and radon progeny measurements made with active and passive instruments was held at EML from October 22--30,1992. Twenty-five participants submitted 96 passive integrating devices, eight active devices for radon, and seven integrating devices for potential alpha energy concentration (PAEC). In addition, 40 grab samples for radon progeny analysis were taken by five groups that participated in person during the intercomparison. The results reported to EML indicate that the majority of the participants (70%) obtained mean results within 10% of the EML reference value. Although the instruments used in this exercise are based on different principles of collection and detection, they all appear reliable. However, in some instances there seemed to be some minor problems with quality control and calibration bias. Also, the large counting errors for the PAEC experienced by some of the participants can be minimized by using higher sampling air flow rates without sacrificing instrument portability

  20. A dual-mode hemispherical sparse array for 3D passive acoustic mapping and skull localization within a clinical MRI guided focused ultrasound device

    Science.gov (United States)

    Crake, Calum; Brinker, Spencer T.; Coviello, Christian M.; Livingstone, Margaret S.; McDannold, Nathan J.

    2018-03-01

    Previous work has demonstrated that passive acoustic imaging may be used alongside MRI for monitoring of focused ultrasound therapy. However, past implementations have generally made use of either linear arrays originally designed for diagnostic imaging or custom narrowband arrays specific to in-house therapeutic transducer designs, neither of which is fully compatible with clinical MR-guided focused ultrasound (MRgFUS) devices. Here we have designed an array which is suitable for use within an FDA-approved MR-guided transcranial focused ultrasound device, within the bore of a 3 Tesla clinical MRI scanner. The array is constructed from 5  ×  0.4 mm piezoceramic disc elements arranged in pseudorandom fashion on a low-profile laser-cut acrylic frame designed to fit between the therapeutic elements of a 230 kHz InSightec ExAblate 4000 transducer. By exploiting thickness and radial resonance modes of the piezo discs the array is capable of both B-mode imaging at 5 MHz for skull localization, as well as passive reception at the second harmonic of the therapy array for detection of cavitation and 3D passive acoustic imaging. In active mode, the array was able to perform B-mode imaging of a human skull, showing the outer skull surface with good qualitative agreement with MR imaging. Extension to 3D showed the array was able to locate the skull within  ±2 mm/2° of reference points derived from MRI, which could potentially allow registration of a patient to the therapy system without the expense of real-time MRI. In passive mode, the array was able to resolve a point source in 3D within a  ±10 mm region about each axis from the focus, detect cavitation (SNR ~ 12 dB) at burst lengths from 10 cycles to continuous wave, and produce 3D acoustic maps in a flow phantom. Finally, the array was used to detect and map cavitation associated with microbubble activity in the brain in nonhuman primates.

  1. London 2012 Paralympic swimming: passive drag and the classification system.

    Science.gov (United States)

    Oh, Yim-Taek; Burkett, Brendan; Osborough, Conor; Formosa, Danielle; Payton, Carl

    2013-09-01

    The key difference between the Olympic and Paralympic Games is the use of classification systems within Paralympic sports to provide a fair competition for athletes with a range of physical disabilities. In 2009, the International Paralympic Committee mandated the development of new, evidence-based classification systems. This study aims to assess objectively the swimming classification system by determining the relationship between passive drag and level of swimming-specific impairment, as defined by the current swimming class. Data were collected on participants at the London 2012 Paralympic Games. The passive drag force of 113 swimmers (classes 3-14) was measured using an electro-mechanical towing device and load cell. Swimmers were towed on the surface of a swimming pool at 1.5 m/s while holding their most streamlined position. Passive drag ranged from 24.9 to 82.8 N; the normalised drag (drag/mass) ranged from 0.45 to 1.86 N/kg. Significant negative associations were found between drag and the swimming class (τ = -0.41, p < 0.01) and normalised drag and the swimming class (τ = -0.60, p < 0.01). The mean difference in drag between adjacent classes was inconsistent, ranging from 0 N (6 vs 7) to 11.9 N (5 vs 6). Reciprocal Ponderal Index (a measure of slenderness) correlated moderately with normalised drag (r(P) = -0.40, p < 0.01). Although swimmers with the lowest swimming class experienced the highest passive drag and vice versa, the inconsistent difference in mean passive drag between adjacent classes indicates that the current classification system does not always differentiate clearly between swimming groups.

  2. Comparison of fatal motor vehicle accidents at passive and active railway level crossings in Finland

    Directory of Open Access Journals (Sweden)

    Sirkku Laapotti

    2016-07-01

    Active warning devices are effective in preventing accidents due to road user errors. Equipping the most dangerous passive level crossings with warning devices – low cost or conventional – would increase safety. Alternatively, some level crossings could be removed altogether. A minimum requirement is that the environmental factors at passive level crossings support safe crossing.

  3. Device-Independent Certification of a Nonprojective Qubit Measurement

    Science.gov (United States)

    Gómez, Esteban S.; Gómez, Santiago; González, Pablo; Cañas, Gustavo; Barra, Johanna F.; Delgado, Aldo; Xavier, Guilherme B.; Cabello, Adán; Kleinmann, Matthias; Vértesi, Tamás; Lima, Gustavo

    2016-12-01

    Quantum measurements on a two-level system can have more than two independent outcomes, and in this case, the measurement cannot be projective. Measurements of this general type are essential to an operational approach to quantum theory, but so far, the nonprojective character of a measurement can only be verified experimentally by already assuming a specific quantum model of parts of the experimental setup. Here, we overcome this restriction by using a device-independent approach. In an experiment on pairs of polarization-entangled photonic qubits we violate by more than 8 standard deviations a Bell-like correlation inequality that is valid for all sets of two-outcome measurements in any dimension. We combine this with a device-independent verification that the system is best described by two qubits, which therefore constitutes the first device-independent certification of a nonprojective quantum measurement.

  4. Passive Sensors for Long Duration Internet of Things Networks.

    Science.gov (United States)

    Pereira, Felisberto; Correia, Ricardo; Carvalho, Nuno Borges

    2017-10-03

    In this work, three different concepts are used to develop a fully passive sensor that is capable of measuring different types of data. The sensor was supplied by Wireless Power Transmission (WPT). Communication between the sensor and reader is established by a backscatter, and to ensure minimum energy consumption, low power techniques are used. In a simplistic way, the process starts by the transmission of two different waves by the reader to the sensor, one of which is used in power transmission and the other of which is used to communicate. Once the sensor is powered, the monitoring process starts. From the monitoring state, results from after processing are used to modulate the incoming wave, which is the information that is sent back from the reader to the tag. This new combination of technologies enables the possibility of using sensors without any cables or batteries to operate 340 cm from the reader. The developed prototype measures acceleration and temperature. However, it is scalable. This system enables a new generation of passive Internet of Things (IoT) devices.

  5. A Portable Passive Physiotherapeutic Exoskeleton

    Directory of Open Access Journals (Sweden)

    Dasheek Naidu

    2012-10-01

    Full Text Available The public healthcare system in South Africa is in need of urgent attention in no small part because there has been an escalation in the number of stroke victims which could be due to the increase in hypertension in this urbanizing society. There is a growing need for physiotherapists and occupational therapists in the country, which is further hindered by the division between urban and rural areas. A possible solution is a portable passive physiotherapeutic exoskeleton device. The exoskeleton device has been formulated to encapsulate methodologies that enable the anthropomorphic integration between a biological and mechatronic limb. A physiotherapeutic mechanism was designed to be portable and adjustable, without limiting the spherical motion and workspace of the human arm. The exoskeleton was designed to be portable in the sense that it could be transported geographically. It is a complete device allowing for motion in the shoulder, elbow, wrist and hand joints. The inverse kinematics was solved iteratively via the Damped Least Squares (DLS method. The electronic and computer system allowed for professional personnel to either change an individual joint or a combination of joints angles via the kinematic models. A ramp PI controller was established to provide a smooth response to simulate the passive therapy motion.

  6. Enhanced stability of black phosphorus field-effect transistors with SiO₂ passivation.

    Science.gov (United States)

    Wan, Bensong; Yang, Bingchao; Wang, Yue; Zhang, Junying; Zeng, Zhongming; Liu, Zhongyuan; Wang, Wenhong

    2015-10-30

    Few-layer black phosphorus (BP) has attracted much attention due to its high mobility and suitable band gap for potential applic5ations in optoelectronics and flexible devices. However, its instability under ambient conditions limits its practical applications. Our investigations indicate that by passivation of the mechanically exfoliated BP flakes with a SiO2 layer, the fabricated BP field-effect transistors (FETs) exhibit greatly enhanced environmental stability. Compared to the unpassivated BP devices, which show a fast drop of on/off current ratio by a factor of 10 after one week of ambient exposure, the SiO2-passivated BP devices display a high retained on/off current ratio of over 600 after one week of exposure, just a little lower than the initial value of 810. Our investigations provide an effective route to passivate the few-layer BPs for enhancement of their environmental stability.

  7. Accuracy of portable devices in measuring peak cough flow

    International Nuclear Information System (INIS)

    Kulnik, Stefan Tino; Kalra, Lalit; MacBean, Victoria; Birring, Surinder Singh; Moxham, John; Rafferty, Gerrard Francis

    2015-01-01

    Peak cough flow (PCF) measurements can be used as indicators of cough effectiveness. Portable peak flow meters and spirometers have been used to measure PCF, but little is known about their accuracy compared to pneumotachograph systems. The aim of this study was to compare the accuracy of four portable devices (Mini–Wright and Assess peak flow meters, SpiroUSB and Microlab spirometers) in measuring PCF with a calibrated laboratory based pneumotachograph system. Twenty healthy volunteers (mean (SD) age 45 (16) years) coughed through a pneumotachograph connected in series with each portable device in turn, and the differences in PCF readings were analysed. In addition, mechanically generated flow waves of constant peak flow were delivered through each device both independently and when connected in series with the pneumotachograph. Agreement between PCF readings obtained with the pneumotachograph and the portable devices was poor. Peak flow readings were on average lower by approximately 50 L min −1 when measured using the portable devices; 95% limits of agreement spanned approximately 150 L min −1 . The findings highlight the potential for inaccuracy when using portable devices for the measurement of PCF. Depending on the measurement instrument used, absolute values of PCF reported in the literature may not be directly comparable. (paper)

  8. Passive film growth on carbon steel and its nanoscale features at various passivating potentials

    International Nuclear Information System (INIS)

    Li, Yuan; Cheng, Y. Frank

    2017-01-01

    Highlights: • Imaged the topography of passivated steel at various film-forming potentials. • Characterized the nanoscale features of passive films. • Determined the composition of passive films formed at various potentials. - Abstract: In this work, the passivation and topographic sub-structure of passive films on a carbon steel in a carbonate/bicarbonate solution was characterized by electrochemical measurements, atomic force microscopy and X-ray photoelectron spectroscopy. When passivating at a potential near the active-passive transition, the film contains the mixture of Fe_3O_4, Fe_2O_3 and FeOOH, with numerous nanoscale features. As the film-forming potential shifts positively, the passive film becomes more compact and the nanoscale features disappear. When the film is formed at a passive potential where the oxygen evolution is enabled, the content of FeOOH in the film increases, resulting in an amorphous topography and reduced corrosion resistance.

  9. Monitoring ambient ozone with a passive measurement technique method, field results and strategy

    NARCIS (Netherlands)

    Scheeren, BA; Adema, EH

    1996-01-01

    A low-cost, accurate and sensitive passive measurement method for ozone has been developed and tested. The method is based on the reaction of ozone with indigo carmine which results in colourless reaction products which are detected spectrophotometrically after exposure. Coated glass filters are

  10. Device independent quantum key distribution secure against coherent attacks with memoryless measurement devices

    International Nuclear Information System (INIS)

    McKague, Matthew

    2009-01-01

    Device independent quantum key distribution (QKD) aims to provide a higher degree of security than traditional QKD schemes by reducing the number of assumptions that need to be made about the physical devices used. The previous proof of security by Pironio et al (2009 New J. Phys. 11 045021) applies only to collective attacks where the state is identical and independent and the measurement devices operate identically for each trial in the protocol. We extend this result to a more general class of attacks where the state is arbitrary and the measurement devices have no memory. We accomplish this by a reduction of arbitrary adversary strategies to qubit strategies and a proof of security for qubit strategies based on the previous proof by Pironio et al and techniques adapted from Renner.

  11. Defect generation/passivation by low energy hydrogen implant for silicon solar cells

    International Nuclear Information System (INIS)

    Sopori, B.L.; Zhou, T.Q.; Rozgonyi, G.A.

    1990-01-01

    Low energy ion implant is shown to produce defects in silicon. These defects include surface damage, hydrogen agglomeration, formation of platelets with (111) habit plane and decoration of dislocations. Hydrogen also produces an inversion type of surface on boron doped silicon. These effects indicate that a preferred approach for passivation is to incorporate hydrogen from the back side of the cell. A backside H + implant technique is described. The results show that degree of passivation differs for various devices. A comparison of the defect structures of hydrogenated devices indicates that the structure and the distribution of defects in the bulk of the material plays a significant role in determining the degree of passivation

  12. Application of passive sonar technology to mineral processing and oil sands applications : if you can measure it, you can manage it

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, C.; Viega, J.; Fernald, M. [CiDRA Corp., Wallingford, CT (United States)

    2007-07-01

    SONAR-based flow and entrained air measurement instruments were described. This new class of industrial flow and compositional analyzers was developed by CiDRA to provide new measurement insight and quantifiable value to industrial process operators. Passive sonar array-based processing units have been installed worldwide in several industrial applications and are particularly suited for a wide range of mineral processing applications, including slurry flow rate measurement and fluid characterization. This paper also described the SONAR-based, clamp-on SONARtrac technology, a scalable platform that provides several other value added measurements and information such as speed of sound, entrained air/gas, gas hold-up, and velocity profile. Oil sands, tailings and bitumen slurries present considerable measurement challenges for in-line flow measurement devices in terms of measurement accuracy, reliability and maintenance. The sonar-based technology platform has been used in a variety of oil sands processes, hydrotransport, and minerals beneficiation applications. This paper described these applications with particular reference to difficult slurry flow measurement and control in the areas of comminution and flotation such as mill discharge, hydrocyclone feed/overflow, final concentrate, thickener discharge, and tailings. 5 refs., 4 tabs., 23 figs.

  13. Impairment of Heat Transfer in the Passive Cooling System due to Mixed Convection

    Energy Technology Data Exchange (ETDEWEB)

    Chae Myeong Seon; Chung, Bum Jin [Kyunghee University, Yongin (Korea, Republic of); Kim, Jong Hwan [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In the passive cooling devices, the buoyant flows are induced. However the local Nusselt number of natural convective flow can be partly impaired due to the development of the mixed convective flows. This paper discusses impairment of heat transfer in the passive cooling system in relation to the development of mixed convection. The present work describes the preliminary plan to explore the phenomena experimentally. This paper is to discuss and make the plan to experiment the impairment of heat transfer in the passive cooling system due to mixed convection. In the sufficiently high passive cooling devices, the natural convection flow behavior can be mixed convection. The local Nusselt number distribution exhibits the non-monotonic behavior as axial position, since the buoyancy-aided with mixed convection was appeared. This is the part of the experimental work.

  14. Measurement-Device Independency Analysis of Continuous-Variable Quantum Digital Signature

    Directory of Open Access Journals (Sweden)

    Tao Shang

    2018-04-01

    Full Text Available With the practical implementation of continuous-variable quantum cryptographic protocols, security problems resulting from measurement-device loopholes are being given increasing attention. At present, research on measurement-device independency analysis is limited in quantum key distribution protocols, while there exist different security problems for different protocols. Considering the importance of quantum digital signature in quantum cryptography, in this paper, we attempt to analyze the measurement-device independency of continuous-variable quantum digital signature, especially continuous-variable quantum homomorphic signature. Firstly, we calculate the upper bound of the error rate of a protocol. If it is negligible on condition that all measurement devices are untrusted, the protocol is deemed to be measurement-device-independent. Then, we simplify the calculation by using the characteristics of continuous variables and prove the measurement-device independency of the protocol according to the calculation result. In addition, the proposed analysis method can be extended to other quantum cryptographic protocols besides continuous-variable quantum homomorphic signature.

  15. On the hydrodynamic characterization of a passive Shape Memory Alloy valve

    International Nuclear Information System (INIS)

    Waddell, A.M.; Punch, J.; Stafford, J.; Jeffers, N.

    2015-01-01

    An attractive approach to the thermal management of next generation photonics devices (heat fluxes > 10 2  W/cm 2 ) is micro-channel cooling, and micro-valves will be required for refined flow control in the supporting micro-fluidic systems. In this paper, a NiTi Shape Memory Alloy (SMA) micro-valve design for passive flow control and thermal management was prototyped at the macro scale and hydrodynamically characterized. The dynamic behavior of the valve was observed and the loss coefficient (ζ v ) derived from pressure-flow measurements. The hydrodynamic characterization study is important because ζ v is sensitive to Re and geometry in the flow regime of the micro-fluidic system. Static replicas of the SMA valve geometry were tested for low Re (110–220) and a range of opening ratios (β) in a ø1 mm miniature channel. The loss coefficients were found to be sensitive to flow rate and decreased rapidly with an increase in Re. A correlation was developed to interpolate ζ v from a given Re and β. The valve loss coefficients obtained in this work are important parameters in the modeling and design of future micro-fluidic cooling systems. - Highlights: • A miniature normally closed passive SMA valve for micro-fluidic cooling of Photonics devices is demonstrated in this paper. • The passive dynamic behaviour of the valve in response to temperature change is observed. • The design is hydrodynamically characterized through pressure-flow measurements. • A correlation for head loss across the valve as a function of Re and blockage ratio is presented

  16. Numerical Analysis of a Passive Containment Filtered Venting System

    International Nuclear Information System (INIS)

    Kim, Taejoon; Ha, Huiun; Heo, Sun

    2014-01-01

    The passive Containment Filtered Venting system (CFVS) does not have principally any kind of isolation valves or filtering devices which need periodic maintenance. In this study, the hydro-thermal analysis is presented to investigate the existence of flow instability in the passive CFVS and its performance under the pressure change of APR+ containment building with LB-LOCA M/E data. The Passive Containment Filtered Venting System was suggested as a part in i-Power development project and the operation mechanism was investigated by numerical modeling and simulation using GOTHIC8.0 system code. There are four Phases for consideration to investigate the pressurization of the containment building, loss of hydrostatic head in the pipe line of CFVS, opening of pipe line and gas ejection to the coolant tank, and the head recovery inside the pipe as the containment gas exhausted. The simulation results show that gas generation rate determine the timing of head recovery in the CFVS pipe line and that the equipment of various devices inducing pressure loss at the pipe can give the capacity of Phase control of the passive CFVS operation

  17. Temperature measurement device

    International Nuclear Information System (INIS)

    Fournier, Christian; Lions, Noel.

    1975-01-01

    The present invention relates to a temperature measuring system that can be applied in particular to monitoring the temperature of the cooling liquid metal of the outlet of the core assemblies of a fast reactor. Said device combines a long hollow metallic pole, at least partially dipped into the liquid metal and constituting a first thermocouple junction between said pole, and two metallic conductors of different nature, joined at one of their ends to constitute the second thermocouple junction. Said conductors suitably insulated are arranged inside a sheath. Said sheath made of the same metals as the pole extends inside the latter and is connected with the pole through a soldered joint. Said reliable system permits an instantaneous measurement of a quantity representing the variations in the recorded temperature and a measurement of the mean surrounding temperature that can be direcly used as a reference for calibrating the first one [fr

  18. Radon Measurement Proficiency (RMP) Program methods and devices

    International Nuclear Information System (INIS)

    Harrison, J.; Hoornbeek, J.; Jalbert, P.; Sensintaffar, E.; Hopper, R.

    1991-01-01

    The US EPA developed the voluntary Radon Measurement Proficiency Program in 1986 in response to a Federal and State need for measurement services firms to demonstrate their proficiency with radon measurement methods and devices. Since that time, the program has set basic standards for the radon measurement industry. The program has grown dramatically since its inception. In 1986, fewer than 50 companies participated in the program. By 1989, more than 5,000 companies were participating. Participants represent firms with an analytical capability as well as firms that rely upon another firm for analysis service. Since the beginning of the RMP Program, the Agency has learned a great deal about radon measurement methods and devices. This paper reviews the measurement devices used in the program and what the EPA has learned about them since the program's inception. Performance data from the RMP Program are used to highlight relevant findings

  19. Passive film growth on carbon steel and its nanoscale features at various passivating potentials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan; Cheng, Y. Frank, E-mail: fcheng@ucalgary.ca

    2017-02-28

    Highlights: • Imaged the topography of passivated steel at various film-forming potentials. • Characterized the nanoscale features of passive films. • Determined the composition of passive films formed at various potentials. - Abstract: In this work, the passivation and topographic sub-structure of passive films on a carbon steel in a carbonate/bicarbonate solution was characterized by electrochemical measurements, atomic force microscopy and X-ray photoelectron spectroscopy. When passivating at a potential near the active-passive transition, the film contains the mixture of Fe{sub 3}O{sub 4}, Fe{sub 2}O{sub 3} and FeOOH, with numerous nanoscale features. As the film-forming potential shifts positively, the passive film becomes more compact and the nanoscale features disappear. When the film is formed at a passive potential where the oxygen evolution is enabled, the content of FeOOH in the film increases, resulting in an amorphous topography and reduced corrosion resistance.

  20. Device for the alternative option of temperature measurement

    Science.gov (United States)

    Jargus, Jan; Nedoma, Jan; Fajkus, Marcel; Novak, Martin; Cubik, Jakub; Cvejn, Daniel; Vasinek, Vladimir

    2017-10-01

    Polydimethylsiloxane (PDMS) has good optical properties, and its composition offers the possibility of use in many applications (industry, security device, medicine applications and etc.). We focused on the alternative option of temperature measurement in this article. Our approach is based on measuring changes of chromaticity correlated temperature corresponding to changes in temperature. Described device uses an optical fiber with a defined layer of PDMS and luminophore and we assume that it can find use also in the field of security. The article describes the process of making the prototype of the device and its verification based on laboratory results. The measured temperature depends mainly on the type of optical fiber and the measured temperature range is determined by the thermal resistance of used optical fiber. Using a calibration measurement can determine the value of temperature with an accuracy of +/- 2,5 %.

  1. Photoluminescence, structural and electrical properties of passivated a-Si:H based thin films and corresponding solar cells

    International Nuclear Information System (INIS)

    Pincik, E.; Kobayashi, H.; Takahashi, M.; Fujiwara, N.; Brunner, R.; Gleskova, H.; Jergel, M.; Muellerova, J.; Kucera, M.; Falcony, C.; Ortega, L.; Rusnak, J.; Mikula, M.; Zahoran, M.; Jurani, R.; Kral, M.

    2004-01-01

    This paper deals with the photoluminescence, structural and electrical properties of chemically passivated a-Si:H based thin films and corresponding thin film solar cells. The structures were chemically passivated in three types of KCN and HCN solutions containing MeOH and/or with water. The photoluminescence measurements were performed at 6 K using Ar laser and lock-in signal recording device containing Ge and Si photodetectors. Optically determined band gap related photoluminescence signals were observed between 1.1 and 1.7 eV. The electrical properties were measured by a high-sensitive charge version of deep level transient spectroscopy (Q-DLTS). The evolution of three basic groups of defects was observed. The structural studies were realized by the standard X-ray diffraction analysis. The cyanide treatment improved significantly the electrical characteristics of both corresponding MOS structures and solar cells due to the passivation of some parts of the dangling bonds by CN group. Particularly, the passivation of the defects at interfaces in MOS or solar cell multilayer structures was achieved which is of primary practical importance

  2. A passive radon dosemeter suitable for workplaces

    International Nuclear Information System (INIS)

    Orlando, C.; Orlando, P.; Patrizii, L.; Tommasino, L.; Tonnarini, S.; Trevisi, R.; Viola, P.

    2002-01-01

    The results obtained in different international intercomparisons on passive radon monitors have been analysed with the aim of identifying a suitable radon monitoring device for workplaces. From this analysis, the passive radon device, first developed for personal dosimetry in mines by the National Radiation Protection Board, UK (NRPB), has shown the most suitable set of characteristics. This radon monitor consists of a diffusion chamber, made of conductive plastic with less than 2 cm height, containing a CR-39 film (Columbia Resin 1939), as track detector. Radon detectors in workplaces may be exposed only during the working hours, thus requiring the storage of the detectors in low-radon zones when not exposed. This paper describes how this problem can be solved. Since track detectors are also efficient neutron dosemeters, care should be taken when radon monitors are used in workplaces, where they may be exposed to neutrons, such as on high altitude mountains, in the surroundings of high energy X ray facilities (where neutrons are produced by (gamma, n) reactions) or around high energy particle accelerators. To this end, the response of these passive radon monitors to high energy neutron fields has been investigated. (author)

  3. Novel Approach to Front Contact Passivation for CdTe Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Kephart, Jason

    2018-02-18

    The goal of this project was to study the use of sputter-deposited oxide materials for interface passivation of CdTe-based photovoltaics. Several candidate materials were chosen based on their promise in passivating the CdTe and CdSeTe semiconductor interface, chemical and thermal stability to device processing, and ability to be deposited by sputter deposition.

  4. Experimental Measurement-Device-Independent Entanglement Detection

    Science.gov (United States)

    Nawareg, Mohamed; Muhammad, Sadiq; Amselem, Elias; Bourennane, Mohamed

    2015-02-01

    Entanglement is one of the most puzzling features of quantum theory and of great importance for the new field of quantum information. The determination whether a given state is entangled or not is one of the most challenging open problems of the field. Here we report on the experimental demonstration of measurement-device-independent (MDI) entanglement detection using witness method for general two qubits photon polarization systems. In the MDI settings, there is no requirement to assume perfect implementations or neither to trust the measurement devices. This experimental demonstration can be generalized for the investigation of properties of quantum systems and for the realization of cryptography and communication protocols.

  5. Principles of TRIP Steel Optimization for Passive Damping Applications

    Science.gov (United States)

    Fraley, George Jay

    Globally many historic structures of cultural significance which do not have systems to mitigate seismic damage are located in areas with heavy seismic activity. Efforts have been undertaken to develop strategies to retrofit such structures, however any intervention must be limited in size for aesthetic reasons. To contribute to this effort, ArcelorMittal aims to create steel-based solutions for passive energy dissipation through plastic deformation during cyclic loading. High-strength TRansformation-Induced Plasticity (TRIP) steels are proposed as an excellent candidate material for this application, due to the extreme combination of high strength and large ductility they are well-known to exhibit. To evaluate high-strength TRIP steels for passive damping applications, isothermal, fully-reversed, displacement-controlled Ultra-Low Cycle Fatigue (ULCF) experiments (Nf stainless steel 316, despite having a yield strength approximately four times larger. For a similar number of cycles to failure the high stability condition dissipated 2.4 times more energy than stainless steel 316 upon initial cycling. The stress-strain hysteresis curves and fatigue life data generated can be input into computational models of passive damping devices for initial concurrent material/device design iterations. Evidence of shear lips, large primary inclusions serving as fracture-initiation sites, and highly dimpled fracture surfaces confirmed for all failed specimens that ductile fracture mechanisms contribute to failure under ULCF conditions. For specimens failing in 10-11 cycles large protrusions aligned along the transverse direction were found, indicating that intergranular fracture may also be playing a role in ULCF failures for this alloy. To explore lower cost alternatives to fully-austenitic TRIP steels for passive-damping devices, austenite precipitation and its effect on uniaxial-tension mechanical properties in martensitic steels was investigated. Isothermal dilatometry

  6. Radiation flux measuring device

    International Nuclear Information System (INIS)

    Corte, E.; Maitra, P.

    1977-01-01

    A radiation flux measuring device is described which employs a differential pair of transistors, the output of which is maintained constant, connected to a radiation detector. Means connected to the differential pair produce a signal representing the log of the a-c component of the radiation detector, thereby providing a signal representing the true root mean square logarithmic output. 3 claims, 2 figures

  7. A power measuring device

    International Nuclear Information System (INIS)

    As, R. van.

    1985-01-01

    As a part of the klystron test facility of the Dutch NIKHEF-K accelerator, a sensitive power measuring device has been built. The high-frequency power of a klystron is stored in a water-cooled dummy load. Using a microcomputer, the increase of the water temperature and the water flow rate are transformed to a digital indication of the klystron power. (Auth.)

  8. Stable High-Performance Perovskite Solar Cells via Grain Boundary Passivation.

    Science.gov (United States)

    Niu, Tianqi; Lu, Jing; Munir, Rahim; Li, Jianbo; Barrit, Dounya; Zhang, Xu; Hu, Hanlin; Yang, Zhou; Amassian, Aram; Zhao, Kui; Liu, Shengzhong Frank

    2018-04-01

    The trap states at grain boundaries (GBs) within polycrystalline perovskite films deteriorate their optoelectronic properties, making GB engineering particularly important for stable high-performance optoelectronic devices. It is demonstrated that trap states within bulk films can be effectively passivated by semiconducting molecules with Lewis acid or base functional groups. The perovskite crystallization kinetics are studied using in situ synchrotron-based grazing-incidence X-ray scattering to explore the film formation mechanism. A model of the passivation mechanism is proposed to understand how the molecules simultaneously passivate the Pb-I antisite defects and vacancies created by under-coordinated Pb atoms. In addition, it also explains how the energy offset between the semiconducting molecules and the perovskite influences trap states and intergrain carrier transport. The superior optoelectronic properties are attained by optimizing the molecular passivation treatments. These benefits are translated into significant enhancements of the power conversion efficiencies to 19.3%, as well as improved environmental and thermal stability of solar cells. The passivated devices without encapsulation degrade only by ≈13% after 40 d of exposure in 50% relative humidity at room temperature, and only ≈10% after 24 h at 80 °C in controlled environment. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. GRADIENCE IN ANALYSIS: A CASE OF PRESENTATIVE PASSIVE

    Directory of Open Access Journals (Sweden)

    Junichi Toyota

    2008-12-01

    Full Text Available In this paper, a concept of overlapping grammatical categories in alinguistic analysis is discussed. This overlap has gained recognition in research and is often termed as gradience. A specific instance of gradience concerning various types of the passive voice, especially the one involving less-typical information status, is used asan example to illustrate how gradience exists in different languages. The passive is known to function as a topic marker in a clause, but there are some cases where it is used as a focus device. By studying these features both synchronically and diachronically, one can find gradience of the passive both structurally and functionally.

  10. Evaluation of the Brix refractometer as an on-farm tool for the detection of passive transfer of immunity in dairy calves.

    Science.gov (United States)

    Thornhill, J B; Krebs, G L; Petzel, C E

    2015-01-01

    To investigate the accuracy of both the optical and digital Brix refractometers compared with radial immunodiffusion (RID) for determining the immunoglobulin G (IgG) concentrations in dairy calf serum. The experiment design was a cross-sectional survey of four dairy farms. Serum was sampled from 12 calves from each farm at approximately 48 hours of age. Serum IgG concentrations of 48 calves were measured using RID and both types of Brix refractometer. IgG concentrations measured by Brix refractometer scores correlated with RID results: 0.74 and 0.71 for the digital and optical devices, respectively. The minimum Brix score that identified calf serum with success of passive immunity (>1000 mg/dL RID IgG) with 100% accuracy was 10% for both devices. The optical and digital devices performed similarly at identifying IgG concentrations in calf serum, with a concordance of 87%. Brix refractometer score ≥10% can be used to classify calves with successful transfer of passive immunity and the devices are sufficiently accurate for use as a simple, inexpensive on-farm tool for the monitoring of neonatal dairy calf immunity levels. © 2015 Australian Veterinary Association.

  11. Vehicle Classification and Speed Estimation Using Combined Passive Infrared/Ultrasonic Sensors

    KAUST Repository

    Odat, Enas M.; Shamma, Jeff S.; Claudel, Christian

    2017-01-01

    In this paper, a new sensing device that can simultaneously monitor traffic congestion and urban flash floods is presented. This sensing device is based on the combination of passive infrared sensors (PIRs) and ultrasonic rangefinder, and is used

  12. An all-silicon passive optical diode.

    Science.gov (United States)

    Fan, Li; Wang, Jian; Varghese, Leo T; Shen, Hao; Niu, Ben; Xuan, Yi; Weiner, Andrew M; Qi, Minghao

    2012-01-27

    A passive optical diode effect would be useful for on-chip optical information processing but has been difficult to achieve. Using a method based on optical nonlinearity, we demonstrate a forward-backward transmission ratio of up to 28 decibels within telecommunication wavelengths. Our device, which uses two silicon rings 5 micrometers in radius, is passive yet maintains optical nonreciprocity for a broad range of input power levels, and it performs equally well even if the backward input power is higher than the forward input. The silicon optical diode is ultracompact and is compatible with current complementary metal-oxide semiconductor processing.

  13. Measurement of Passive Uptake Rates for Volatile Organic Compounds on Commercial Thermal Desorption Tubes and the Effect of Ozone on Sampling

    Energy Technology Data Exchange (ETDEWEB)

    Maddalena, Randy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Parra, Amanda [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Russell, Marion [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lee, Wen-Yee [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-05-01

    Diffusive or passive sampling methods using commercially filled axial-sampling thermal desorption tubes are widely used for measuring volatile organic compounds (VOCs) in air. The passive sampling method provides a robust, cost effective way to measure air quality with time-averaged concentrations spanning up to a week or more. Sampling rates for VOCs can be calculated using tube geometry and Fick’s Law for ideal diffusion behavior or measured experimentally. There is evidence that uptake rates deviate from ideal and may not be constant over time. Therefore, experimentally measured sampling rates are preferred. In this project, a calibration chamber with a continuous stirred tank reactor design and constant VOC source was combined with active sampling to generate a controlled dynamic calibration environment for passive samplers. The chamber air was augmented with a continuous source of 45 VOCs ranging from pentane to diethyl phthalate representing a variety of chemical classes and physiochemical properties. Both passive and active samples were collected on commercially filled Tenax TA thermal desorption tubes over an 11-day period and used to calculate passive sampling rates. A second experiment was designed to determine the impact of ozone on passive sampling by using the calibration chamber to passively load five terpenes on a set of Tenax tubes and then exposing the tubes to different ozone environments with and without ozone scrubbers attached to the tube inlet. During the sampling rate experiment, the measured diffusive uptake was constant for up to seven days for most of the VOCs tested but deviated from linearity for some of the more volatile compounds between seven and eleven days. In the ozone experiment, both exposed and unexposed tubes showed a similar decline in terpene mass over time indicating back diffusion when uncapped tubes were transferred to a clean environment but there was no indication of significant loss by ozone reaction.

  14. Main principles of passive devices based on graphene and carbon films in microwave-THz frequency range

    Science.gov (United States)

    Kuzhir, Polina P.; Paddubskaya, Alesia G.; Volynets, Nadezhda I.; Batrakov, Konstantin G.; Kaplas, Tommi; Lamberti, Patrizia; Kotsilkova, Rumiana; Lambin, Philippe

    2017-07-01

    The ability of thin conductive films, including graphene, pyrolytic carbon (PyC), graphitic PyC (GrPyC), graphene with graphitic islands (GrI), glassy carbon (GC), and sandwich structures made of all these materials separated by polymer slabs to absorb electromagnetic radiation in microwave-THz frequency range, is discussed. The main physical principles making a basis for high absorption ability of these heterostructures are explained both in the language of electromagnetic theory and using representation of equivalent electrical circuits. The idea of using carbonaceous thin films as the main working elements of passive radiofrequency (RF) devices, such as shields, filters, polarizers, collimators, is proposed theoretically and proved experimentally. The important advantage of PyC, GrI, GrPyC, and GC is that, in contrast to graphene, they either can be easily deposited onto a dielectric substrate or are strong enough to allow their transfer from the catalytic substrate without a shuttle polymer layer. This opens a new avenue toward the development of a scalable protocol for cost-efficient production of ultralight electromagnetic shields that can be transferred to commercial applications. A robust design via finite-element method and design of experiment for RF devices based on carbon/graphene films and sandwiches is also discussed in the context of virtual prototyping.

  15. Metal insulator semiconductor solar cell devices based on a Cu{sub 2}O substrate utilizing h-BN as an insulating and passivating layer

    Energy Technology Data Exchange (ETDEWEB)

    Ergen, Onur; Gibb, Ashley; Vazquez-Mena, Oscar; Zettl, Alex, E-mail: azettl@berkeley.edu [Department of Physics, University of California at Berkeley, Berkeley, California 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Kavli Energy Nanosciences Institute at the University of California, Berkeley, and the Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Regan, William Raymond [Department of Physics, University of California at Berkeley, Berkeley, California 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-03-09

    We demonstrate cuprous oxide (Cu{sub 2}O) based metal insulator semiconductor Schottky (MIS-Schottky) solar cells with efficiency exceeding 3%. A unique direct growth technique is employed in the fabrication, and hexagonal boron nitride (h-BN) serves simultaneously as a passivation and insulation layer on the active Cu{sub 2}O layer. The devices are the most efficient of any Cu{sub 2}O based MIS-Schottky solar cells reported to date.

  16. Use of passive alpha detectors to screen for uranium contamination in a field at Fernald, Ohio

    International Nuclear Information System (INIS)

    Dudney, C.S.; Meyer, K.E.; Gammage, R.B.; Wheeler, R.V.; Salasky, M.; Kotrappa, P.

    1995-01-01

    This paper reports the results from a field test of newly developed techniques for inexpensive, in situ screening of soil for alpha contamination. Passive alpha detectors that are commercially available for the detection indoor airborne alpha activity (i.e., 222 Rn) have been modified so they can be applied to the detection of alpha contamination on surfaces or in soils. Results reported here are from an intercomparison involving several different techniques with all measurements being made at the same sites in a field near the formerly used uranium processing facility at Fernald, Ohio, during the summer of 1994. The results for two types of passive alpha detector show that the quality of calibration is improved if soils samples are milled to increase homogeneity within the soil matrices. The correlation between laboratory based radiochemical analyses and quick, field-based screening measurements is acceptable and can be improved if the passive devices are left for longer exposure times in the field. The total cost per measurement for either type of passive alpha detector is probably less than $25 and should provide a cost-effective means for site managers to develop the information needed to find areas with remaining alpha contamination so resources can be allocated efficiently

  17. Use of bioindicators and passive sampling devices to evaluate ambient ozone concentrations in north central Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Yuska, D.E.; Skelly, J.M.; Ferdinand, J.A.; Stevenson, R.E.; Savage, J.E.; Mulik, J.D.; Hines, A

    2003-09-01

    Passive samplers and bioindicator plants detect ozone air pollution in north central Pennsylvania. - Ambient concentrations of tropospheric ozone and ozone-induced injury to black cherry (Prunus serotina) and common milkweed (Asclepias syriaca) were determined in north central Pennsylvania from 29 May to 5 September 2000 and from 28 May to 18 September 2001. Ogawa passive ozone samplers were utilized within openings at 15 forested sites of which six were co-located with TECO model 49 continuous ozone monitors. A significant positive correlation was observed between the Ogawa passive samplers and the TECO model 49 continuous ozone monitors for the 2000 (r=0.959) and 2001 (r=0.979) seasons. In addition, a significant positive correlation existed in 2000 and 2001 between ozone concentration and elevation (r=0.720) and (r=0.802), respectively. Classic ozone-induced symptoms were observed on black cherry and common milkweed. In 2000, initial injury was observed in early June, whereas for the 2001 season, initial injury was initially observed in late June. During both seasons, injury was noted at most sites by mid- to late-July. Soil moisture potential was measured for the 2001 season and a significant positive relationship (P<0.001) showed that injury to black cherry was a function of cumulative ozone concentrations and available soil moisture.

  18. Use of bioindicators and passive sampling devices to evaluate ambient ozone concentrations in north central Pennsylvania

    International Nuclear Information System (INIS)

    Yuska, D.E.; Skelly, J.M.; Ferdinand, J.A.; Stevenson, R.E.; Savage, J.E.; Mulik, J.D.; Hines, A.

    2003-01-01

    Passive samplers and bioindicator plants detect ozone air pollution in north central Pennsylvania. - Ambient concentrations of tropospheric ozone and ozone-induced injury to black cherry (Prunus serotina) and common milkweed (Asclepias syriaca) were determined in north central Pennsylvania from 29 May to 5 September 2000 and from 28 May to 18 September 2001. Ogawa passive ozone samplers were utilized within openings at 15 forested sites of which six were co-located with TECO model 49 continuous ozone monitors. A significant positive correlation was observed between the Ogawa passive samplers and the TECO model 49 continuous ozone monitors for the 2000 (r=0.959) and 2001 (r=0.979) seasons. In addition, a significant positive correlation existed in 2000 and 2001 between ozone concentration and elevation (r=0.720) and (r=0.802), respectively. Classic ozone-induced symptoms were observed on black cherry and common milkweed. In 2000, initial injury was observed in early June, whereas for the 2001 season, initial injury was initially observed in late June. During both seasons, injury was noted at most sites by mid- to late-July. Soil moisture potential was measured for the 2001 season and a significant positive relationship (P<0.001) showed that injury to black cherry was a function of cumulative ozone concentrations and available soil moisture

  19. Reducing the cytotoxicity of inhalable engineered nanoparticles via in situ passivation with biocompatible materials.

    Science.gov (United States)

    Byeon, Jeong Hoon; Park, Jae Hong; Peters, Thomas M; Roberts, Jeffrey T

    2015-07-15

    The cytotoxicity of model welding nanoparticles was modulated through in situ passivation with soluble biocompatible materials. A passivation process consisting of a spark discharge particle generator coupled to a collison atomizer as a co-flow or counter-flow configuration was used to incorporate the model nanoparticles with chitosan. The tested model welding nanoparticles are inhaled and that A549 cells are a human lung epithelial cell line. Measurements of in vitro cytotoxicity in A549 cells revealed that the passivated nanoparticles had a lower cytotoxicity (>65% in average cell viability, counter-flow) than the untreated model nanoparticles. Moreover, the co-flow incorporation between the nanoparticles and chitosan induced passivation of the nanoparticles, and the average cell viability increased by >80% compared to the model welding nanoparticles. As a more convenient way (additional chitosan generation and incorporation devices may not be required), other passivation strategies through a modification of the welding rod with chitosan adhesive and graphite paste did also enhance average cell viability (>58%). The approach outlined in this work is potentially generalizable as a new platform, using only biocompatible materials in situ, to treat nanoparticles before they are inhaled. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Characterization of a 15 GHz integrated bulk InGaAsP passively modelocked ring laser at 1.53microm.

    Science.gov (United States)

    Barbarin, Yohan; Bente, Erwin A J M; Heck, Martijn J R; Oei, Y S; Nötzel, Richard; Smit, Meint K

    2006-10-16

    We report on an extensive characterization of a 15GHz integrated bulk InGaAsP passively modelocked ring laser at 1530 nm. The laser is modelocked for a wide range of amplifier currents and reverse bias voltages on the saturable absorber. We have measured a timing jitter of 7.1 ps (20 kHz - 80 MHz), which is low for an all-active device using bulk material and due to the ring configuration. Measured output pulses are highly chirped, a FWHM bandwidth is obtained of up to 4.5 nm. Such lasers with high bandwidth pulses and compatible with active-passive integration are of great interest for OCDMA applications.

  1. Calibrating passive sampling and passive dosing techniques to lipid based concentrations

    DEFF Research Database (Denmark)

    Mayer, Philipp; Schmidt, Stine Nørgaard; Annika, A.

    2011-01-01

    Equilibrium sampling into various formats of the silicone polydimethylsiloxane (PDMS) is increasingly used to measure the exposure of hydrophobic organic chemicals in environmental matrices, and passive dosing from silicone is increasingly used to control and maintain their exposure in laboratory...... coated vials and with Head Space Solid Phase Microextraction (HS-SPME) yielded lipid based concentrations that were in good agreement with each other, but about a factor of two higher than measured lipid-normalized concentrations in the organisms. Passive dosing was applied to bioconcentration...

  2. Passivation of MBE grown InGaSb/InAs superlattice photodiodes

    Science.gov (United States)

    Hill, Cory J.; Keo, Sam S.; Mumolo, Jason M.; Gunapala, Sarath D.

    2005-01-01

    We have performed wet chemical passivation tests on InGaSb/InAs superlattice photodiode structures grown molecular beam epitaxy. The details of the devices growth and characterization as well as the results of chemical passivation involving RuCl3 and H2SO4 with SiO2 dielectric depositions are presented.

  3. Comparison of passive and active radon measurement methods for personal occupational dose assessment

    Directory of Open Access Journals (Sweden)

    Hasanzadeh Elham

    2016-01-01

    Full Text Available To compare the performance of the active short-term and passive long-term radon measurement methods, a study was carried out in several closed spaces, including a uranium mine in Iran. For the passive method, solid-state nuclear track detectors based on Lexan polycarbonate were utilized, for the active method, AlphaGUARD. The study focused on the correlation between the results obtained for estimating the average indoor radon concentrations and consequent personal occupational doses in various working places. The repeatability of each method was investigated, too. In addition, it was shown that the radon concentrations in different stations of the continually ventilated uranium mine were comparable to the ground floor laboratories or storage rooms (without continual ventilation and lower than underground laboratories.

  4. Inducing half-metallicity with enhanced stability in zigzag graphene nanoribbons via fluorine passivation

    Energy Technology Data Exchange (ETDEWEB)

    Jaiswal, Neeraj K., E-mail: neerajkjaiswal@gmail.com [Discipline of Physics, Indian Institute of Information Technology Design & Manufacturing, Jabalpur 482005 (India); Tyagi, Neha [Department of Applied Physics, Delhi Technological University, Delhi 110042 (India); Kumar, Amit [Discipline of Physics, Indian Institute of Information Technology Design & Manufacturing, Jabalpur 482005 (India); Srivastava, Pankaj [Nanomaterials Research Group, ABV-Indian Institute of Information Technology & Management, Gwalior 474015 (India)

    2017-02-28

    Highlights: • F passivated zigzag graphene nanoribbon (F-ZGNR) are more favorable than pristine ones. • External electric field induces half metallicity in F-ZGNR. • The observed half metallicity is independent of ribbon widths. • Enhanced stability makes F-ZGNR preferable over pristine ribbon. - Abstract: Half metals are the primary ingredients for the realization of novel spintronic devices. In the present work, by employing density functional theory based first-principles calculation, we predict half metallic behavior in fluorine passivated zigzag graphene nanoribbons (F-ZGNR). Four different structures have been investigated viz. one edge F passivated ZGNR (F-ZGNR-1), both edges F passivated ZGNR (F-ZGNR-2), F passivation on alternate sites in first configuration (alt-1) and F passivation on alternate sites in second configuration (alt-2). Interestingly, it is noticed that F passivation is analogous to H passivation (pristine), however, F-ZGNR are reckoned energetically more stable than pristine ones. An spin induced band gap is noticed for all F-ZGNR irrespective of their widths although its magnitude is slightly less than the pristine counterparts. With an external transverse electric field, ribbons undergo semiconducting to half metallic transformation. The observed half metallic character with enhanced stability present F-ZGNR as a better candidate than pristine ZGNR towards the realization of upcoming spintronic devices.

  5. Plant Chlorophyll fluorescence: active and passive measurements at canopy and leaf scales with different nitrogen treatments

    Science.gov (United States)

    Most studies assessing chlorophyll fluorescence (ChlF) have examined leaf responses to environmental stress conditions using active techniques. Alternatively, passive techniques are able to measure ChlF at both leaf and canopy scales. However, although the measurement principles of both techniques a...

  6. Evaluating groundwater flow using passive electrical measurements

    Science.gov (United States)

    Voytek, E.; Revil, A.; Singha, K.

    2016-12-01

    Accurate quantification of groundwater flow patterns, both in magnitude and direction, is a necessary component of evaluating any hydrologic system. Groundwater flow patterns are often determined using a dense network of wells or piezometers, which can be limited due to logistical or regulatory constraints. The self-potential (SP) method, a passive geophysical technique that relies on currents generated by water movement through porous materials, is a re-emerging alternative or addition to traditional piezometer networks. Naturally generated currents can be measured as voltage differences at the ground surface using only two electrodes, or a more complex electrode array. While the association between SP measurements and groundwater flow was observed as early as 1890s, the method has seen resurgence in hydrology since the governing equations were refined in the 1980s. The method can be used to analyze hydrologic processes at various temporal and spatial scales. Here we present the results of multiple SP surveys collected a multiple scales (1 to 10s of meters). Here single SP grid surveys are used to evaluate flow patterns through artic hillslopes at a discrete point in time. Additionally, a coupled groundwater and electrical model is used to analyze multiple SP data sets to evaluate seasonal changes in groundwater flow through an alpine meadow.

  7. Enhanced Optoelectronic Performance of a Passivated Nanowire-Based Device: Key Information from Real-Space Imaging Using 4D Electron Microscopy

    KAUST Repository

    Khan, Jafar Iqbal

    2016-03-03

    Managing trap states and understanding their role in ultrafast charge-carrier dynamics, particularly at surface and interfaces, remains a major bottleneck preventing further advancements and commercial exploitation of nanowire (NW)-based devices. A key challenge is to selectively map such ultrafast dynamical processes on the surfaces of NWs, a capability so far out of reach of time-resolved laser techniques. Selective mapping of surface dynamics in real space and time can only be achieved by applying four-dimensional scanning ultrafast electron microscopy (4D S-UEM). Charge carrier dynamics are spatially and temporally visualized on the surface of InGaN NW arrays before and after surface passivation with octadecylthiol (ODT). The time-resolved secondary electron images clearly demonstrate that carrier recombination on the NW surface is significantly slowed down after ODT treatment. This observation is fully supported by enhancement of the performance of the light emitting device. Direct observation of surface dynamics provides a profound understanding of the photophysical mechanisms on materials\\' surfaces and enables the formulation of effective surface trap state management strategies for the next generation of high-performance NW-based optoelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A Practical Device for Measuring the Luminance Distribution

    Directory of Open Access Journals (Sweden)

    Thijs Kruisselbrink

    2017-06-01

    Full Text Available Various applications in building lighting such as automated daylight systems, dynamic lighting control systems, lighting simulations, and glare analyzes can be optimized using information on the actual luminance distributions of the surroundings. Currently, commercially available luminance distribution measurement devices are often not suitable for these kind of applications or simply too expensive for broad application. This paper describes the development of a practical and autonomous luminance distribution measurement device based on a credit card-sized single-board computer and a camera system. The luminance distribution was determined by capturing High Dynamic Range images and translating the RGB information to the CIE XYZ color space. The High Dynamic Range technology was essential to accurately capture the data needed to calculate the luminance distribution because it allows to capture luminance ranges occurring in real scenarios. The measurement results were represented in accordance with established methods in the field of daylighting. Measurements showed that the accuracy of the luminance distribution measurement device ranged from 5% to 20% (worst case which was deemed acceptable for practical measurements and broad applications in the building realm.

  9. A new structure for comparing surface passivation materials of GaAs solar cells

    Science.gov (United States)

    Desalvo, Gregory C.; Barnett, Allen M.

    1989-01-01

    The surface recombination velocity (S sub rec) for bare GaAs is typically as high as 10 to the 6th power to 10 to the 7th power cm/sec, which dramatically lowers the efficiency of GaAs solar cells. Early attempts to circumvent this problem by making an ultra thin junction (xj less than .1 micron) proved unsuccessful when compared to lowering S sub rec by surface passivation. Present day GaAs solar cells use an GaAlAs window layer to passivate the top surface. The advantages of GaAlAs in surface passivation are its high bandgap energy and lattice matching to GaAs. Although GaAlAs is successful in reducing the surface recombination velocity, it has other inherent problems of chemical instability (Al readily oxidizes) and ohmic contact formation. The search for new, more stable window layer materials requires a means to compare their surface passivation ability. Therefore, a device structure is needed to easily test the performance of different passivating candidates. Such a test device is described.

  10. Device for measuring atmospheric radon activity

    International Nuclear Information System (INIS)

    Deml, F.; Jansky, Z.; Smejkal, Z.

    1989-01-01

    The device consists of a lightproof case pivoted on a stand. Minimally two chambers are provided in the case for holding glass scintillation chambers, each with an opening in its bottom. The centers of the openings lie on a common circle with its center in the center of rotation of the case. An opening for the passage of light is provided in the stand. The opening also is on the common circle of the centres of the openings. A photomultiplier is placed below the opening. Measurement always proceeds with one scintillation chamber only. Thus, replacement of scintillation chambers can take place simultaneously with measurement and rapid and continuous measurement can be secured. Case rotation can be controlled automatically. The device can be used not only in monitoring air pollution but also in monitoring solid materials, aquifers, mine corridors, natural materials, etc. (J.B.). 1 fig

  11. An IoT Reader for Wireless Passive Electromagnetic Sensors.

    Science.gov (United States)

    Galindo-Romera, Gabriel; Carnerero-Cano, Javier; Martínez-Martínez, José Juan; Herraiz-Martínez, Francisco Javier

    2017-03-28

    In the last years, many passive electromagnetic sensors have been reported. Some of these sensors are used for measuring harmful substances. Moreover, the response of these sensors is usually obtained with laboratory equipment. This approach highly increases the total cost and complexity of the sensing system. In this work, a novel low-cost and portable Internet-of-Things (IoT) reader for passive wireless electromagnetic sensors is proposed. The reader is used to interrogate the sensors within a short-range wireless link avoiding the direct contact with the substances under test. The IoT functionalities of the reader allows remote sensing from computers and handheld devices. For that purpose, the proposed design is based on four functional layers: the radiating layer, the RF interface, the IoT mini-computer and the power unit. In this paper a demonstrator of the proposed reader is designed and manufactured. The demonstrator shows, through the remote measurement of different substances, that the proposed system can estimate the dielectric permittivity. It has been demonstrated that a linear approximation with a small error can be extracted from the reader measurements. It is remarkable that the proposed reader can be used with other type of electromagnetic sensors, which transduce the magnitude variations in the frequency domain.

  12. Measurement techniques for radio frequency nanoelectronics

    CERN Document Server

    Wallis, T Mitch

    2017-01-01

    Connect basic theory with real-world applications with this practical, cross-disciplinary guide to radio frequency measurement of nanoscale devices and materials.• Learn the techniques needed for characterizing the performance of devices and their constituent building blocks, including semiconducting nanowires, graphene, and other two dimensional materials such as transition metal dichalcogenides• Gain practical insights into instrumentation, including on-wafer measurement platforms and scanning microwave microscopy• Discover how measurement techniques can be applied to solve real-world problems, in areas such as passive and active nanoelectronic devices, semiconductor dopant profiling, subsurface nanoscale tomography, nanoscale magnetic device engineering, and broadband, spatially localized measurements of biological materialsFeaturing numerous practical examples, and written in a concise yet rigorous style, this is the ideal resource for researchers, practicing engineers, and graduate students new to ...

  13. Comparison of eye-safe solid state laser DIAL with passive gas filter correlation measurements from aircraft and spacecraft

    Science.gov (United States)

    Hess, Robert V.; Staton, Leo D.; Wallio, H. Andrew; Wang, Liang-Guo

    1992-01-01

    Differential Absorption Lidar (DIAL) using solid state Ti:sapphire lasers finds current application in the NASA/LASE Project for H2O vapor measurements in the approximately = 0.820 micron region for the lower and mid-troposphere and in potential future applications in planned measurements of the approximately = 0.940 micron region where both strong and weak absorption lines enables measurements throughout the troposphere and lower stratosphere. The challenge exists to perform measurements in the eye-safe greater than 1.5 micron region. A comparison between DIAL and passive Gas Filter Correlation Radiometer (GFCR) measurements is made. The essence of the differences in signal to noise ratio for DIAL and passive GFCR measurements is examined. The state of the art of lasers and optical parametric oscillators (OPO's) is discussed.

  14. Reducing the cytotoxicity of inhalable engineered nanoparticles via in situ passivation with biocompatible materials

    International Nuclear Information System (INIS)

    Byeon, Jeong Hoon; Park, Jae Hong; Peters, Thomas M.; Roberts, Jeffrey T.

    2015-01-01

    Highlights: • The cytotoxicity of model welding particles was modulated through in situ passivation. • Model welding particles were incorporated with chitosan nanoparticles for passivation. • In vitro assay revealed that the passivated particles had a lower cytotoxicity. • Passivation with chitosan adhesive or graphite paste could also reduce cytotoxicity. • This method would be suitable for efficient reduction of inhalable toxic components. - Abstract: The cytotoxicity of model welding nanoparticles was modulated through in situ passivation with soluble biocompatible materials. A passivation process consisting of a spark discharge particle generator coupled to a collison atomizer as a co-flow or counter-flow configuration was used to incorporate the model nanoparticles with chitosan. The tested model welding nanoparticles are inhaled and that A549 cells are a human lung epithelial cell line. Measurements of in vitro cytotoxicity in A549 cells revealed that the passivated nanoparticles had a lower cytotoxicity (>65% in average cell viability, counter-flow) than the untreated model nanoparticles. Moreover, the co-flow incorporation between the nanoparticles and chitosan induced passivation of the nanoparticles, and the average cell viability increased by >80% compared to the model welding nanoparticles. As a more convenient way (additional chitosan generation and incorporation devices may not be required), other passivation strategies through a modification of the welding rod with chitosan adhesive and graphite paste did also enhance average cell viability (>58%). The approach outlined in this work is potentially generalizable as a new platform, using only biocompatible materials in situ, to treat nanoparticles before they are inhaled

  15. Reducing the cytotoxicity of inhalable engineered nanoparticles via in situ passivation with biocompatible materials

    Energy Technology Data Exchange (ETDEWEB)

    Byeon, Jeong Hoon, E-mail: postjb@yu.ac.kr [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Park, Jae Hong; Peters, Thomas M. [Department of Occupational and Environmental Health, University of Iowa, IA 52242 (United States); Roberts, Jeffrey T., E-mail: jtrob@purdue.edu [Department of Chemistry, Purdue University, IN 47907 (United States)

    2015-07-15

    Highlights: • The cytotoxicity of model welding particles was modulated through in situ passivation. • Model welding particles were incorporated with chitosan nanoparticles for passivation. • In vitro assay revealed that the passivated particles had a lower cytotoxicity. • Passivation with chitosan adhesive or graphite paste could also reduce cytotoxicity. • This method would be suitable for efficient reduction of inhalable toxic components. - Abstract: The cytotoxicity of model welding nanoparticles was modulated through in situ passivation with soluble biocompatible materials. A passivation process consisting of a spark discharge particle generator coupled to a collison atomizer as a co-flow or counter-flow configuration was used to incorporate the model nanoparticles with chitosan. The tested model welding nanoparticles are inhaled and that A549 cells are a human lung epithelial cell line. Measurements of in vitro cytotoxicity in A549 cells revealed that the passivated nanoparticles had a lower cytotoxicity (>65% in average cell viability, counter-flow) than the untreated model nanoparticles. Moreover, the co-flow incorporation between the nanoparticles and chitosan induced passivation of the nanoparticles, and the average cell viability increased by >80% compared to the model welding nanoparticles. As a more convenient way (additional chitosan generation and incorporation devices may not be required), other passivation strategies through a modification of the welding rod with chitosan adhesive and graphite paste did also enhance average cell viability (>58%). The approach outlined in this work is potentially generalizable as a new platform, using only biocompatible materials in situ, to treat nanoparticles before they are inhaled.

  16. Nuclear-burst strength detecting and measuring device

    International Nuclear Information System (INIS)

    Balut, J.A.L.G.; Lemaire, P.E.G.K.; Loisy, C.M.

    1976-01-01

    A continuous-operation automatic device is described for detection and accurate measurement of the strength of a burst generating an emission from luminous or infrared sources. This device characterizes and analyzes the maxima and minima of a ''thermal flux/time'' curve. The device comprises a master time element and an assembly of photoelectric detectors, an electronic processing system coupled to the detectors, and a mechanical system securing the rigidity and positioning of the photoelectric detector assembly with respect to an octahedral prism based on a horizontal plane

  17. Design of a Programmable Passive SoC for Biomedical Applications Using RFID ISO 15693/NFC5 Interface

    Directory of Open Access Journals (Sweden)

    Mayukh Bhattacharyya

    2018-01-01

    Full Text Available Low power, low cost inductively powered passive biotelemetry system involving fully customized RFID/NFC interface base SoC has gained popularity in the last decades. However, most of the SoCs developed are application specific and lacks either on-chip computational or sensor readout capability. In this paper, we present design details of a programmable passive SoC in compliance with ISO 15693/NFC5 standard for biomedical applications. The integrated system consists of a 32-bit microcontroller, a sensor readout circuit, a 12-bit SAR type ADC, 16 kB RAM, 16 kB ROM and other digital peripherals. The design is implemented in a 0.18 μ m CMOS technology and used a die area of 1.52 mm × 3.24 mm. The simulated maximum power consumption of the analog block is 592 μ W. The number of external components required by the SoC is limited to an external memory device, sensors, antenna and some passive components. The external memory device contains the application specific firmware. Based on the application, the firmware can be modified accordingly. The SoC design is suitable for medical implants to measure physiological parameters like temperature, pressure or ECG. As an application example, the authors have proposed a bioimplant to measure arterial blood pressure for patients suffering from Peripheral Artery Disease (PAD.

  18. Measuring ionizing radiation with a mobile device

    Science.gov (United States)

    Michelsburg, Matthias; Fehrenbach, Thomas; Puente León, Fernando

    2012-02-01

    In cases of nuclear disasters it is desirable to know one's personal exposure to radioactivity and the related health risk. Usually, Geiger-Mueller tubes are used to assess the situation. Equipping everyone with such a device in a short period of time is very expensive. We propose a method to detect ionizing radiation using the integrated camera of a mobile consumer device, e.g., a cell phone. In emergency cases, millions of existing mobile devices could then be used to monitor the exposure of its owners. In combination with internet access and GPS, measured data can be collected by a central server to get an overview of the situation. During a measurement, the CMOS sensor of a mobile device is shielded from surrounding light by an attachment in front of the lens or an internal shutter. The high-energy radiation produces free electrons on the sensor chip resulting in an image signal. By image analysis by means of the mobile device, signal components due to incident ionizing radiation are separated from the sensor noise. With radioactive sources present significant increases in detected pixels can be seen. Furthermore, the cell phone application can make a preliminary estimate on the collected dose of an individual and the associated health risks.

  19. CEPHEUS results: measurements and occupants' satisfaction provide evidence for Passive Houses being an option for sustainable building

    International Nuclear Information System (INIS)

    Schnieders, Juergen; Hermelink, Andreas

    2006-01-01

    Passive houses offer extended living comfort with only 15-20% of the space heating demand of conventional new buildings while the extra costs of this standard are only about 10% of the total building costs. In the first part of this paper, detailed measurements for 11 'Passive House' projects with more than 100 dwelling units from the EU-funded demonstration project CEPHEUS (Cost Efficient Passive Houses as EUropean Standards) are presented. All projects exhibit extraordinarily low space heat consumptions. Compared with ordinary, newly erected buildings, 80% of the space heat consumption could be saved. The total primary energy consumption (including household electricity) was less than 50% of that of conventional new buildings. The measurements show that the buildings also offer comfortable indoor conditions in both summer and winter. Several social research studies revealed that the users are well pleased with their homes. The second part of the paper focuses on low-income tenant's satisfaction in the world's first multi-story Passive Houses in Kassel, Germany. This building contrasts sharply with the 'standard' Passive House, occupied by its owners. A 2.5 year study was conducted from spring of 2000 to autumn of 2002. The development of opinions, attitudes, behaviour, and satisfaction over time could be recorded. The building is a clear success, the tenant's satisfaction is high. It is concluded that this building type fulfils the conditions of sustainability in social, ecological and economic respects and should therefore be disseminated on a larger scale. To this end, the last part of the paper describes the development of the Passive House standard in Germany, Austria and Switzerland, from the first demonstration project in 1991 to about 3500 dwelling units today. The prerequisites for this development are analysed. Finally, the authors give their view about the political possibilities for pushing Passive Houses into the market as well as for stimulating a

  20. Analysis of solutions for passively activated safety shutdown devices for SFR

    International Nuclear Information System (INIS)

    Burgazzi, Luciano

    2013-01-01

    Highlights: • Innovative systems for emergency shut down of fast reactors are proposed. • The concepts of inherent and passive safety are put forward. • The relative analysis in terms of safety and reliability is presented. • A comparative assessment among the concepts is performed. • Path forward is tracked. -- Abstract: In order to enhance the inherent safety of fast reactors, innovative reactivity control systems have been proposed for intrinsic ultimate shut-down instead of conventional scram rods, to cope with the potential consequences of severe unprotected transient accidents, such as an energetic core disruptive accident, as in case of sodium fast reactors. The passive shut-down systems are designed to shut-down system only by inherent passive reactivity feedback mechanism, under unprotected accident conditions, implying failure of reactor protection system. They are conceived to be self-actuated without any signal elaboration, since the actuation of the system is triggered by the effects induced by the transient like material dilatation, in case of overheating of the coolant for instance, according to fast reactor design to meet the safety requirements. This article looks at different special shutdown systems specifically engineered for prevention of severe accidents, to be implemented on fast reactors, with main focus on the investigation of the performance of the self-actuated shutdown systems in sodium fast reactors

  1. Continuous and passive environmental radon monitoring: Measuring methods and health effects. (Latest citations from the INSPEC: Information services for the Physics and Engineering Communities database). Published Search

    International Nuclear Information System (INIS)

    1993-08-01

    The bibliography contains citations concerning continuous and passive radon (Rn) monitoring, measurement methods and equipment, and health effects from Rn concentration in air, water, and soils. Citations discuss the design, development, and evaluation of monitoring and detection devices, including alpha spectroscopy and dosimetry, track detecting and scintillation, thermoluminescent, electret, and electrode collection. Sources of Rn concentration levels found in building materials, ventilation systems, soils, and ground water are examined. Lung cancer-associated risks from Rn radiation exposure are explored. Radon monitoring in mining operations is excluded. (Contains a minimum of 210 citations and includes a subject term index and title list.)

  2. Superacid Passivation of Crystalline Silicon Surfaces.

    Science.gov (United States)

    Bullock, James; Kiriya, Daisuke; Grant, Nicholas; Azcatl, Angelica; Hettick, Mark; Kho, Teng; Phang, Pheng; Sio, Hang C; Yan, Di; Macdonald, Daniel; Quevedo-Lopez, Manuel A; Wallace, Robert M; Cuevas, Andres; Javey, Ali

    2016-09-14

    The reduction of parasitic recombination processes commonly occurring within the silicon crystal and at its surfaces is of primary importance in crystalline silicon devices, particularly in photovoltaics. Here we explore a simple, room temperature treatment, involving a nonaqueous solution of the superacid bis(trifluoromethane)sulfonimide, to temporarily deactivate recombination centers at the surface. We show that this treatment leads to a significant enhancement in optoelectronic properties of the silicon wafer, attaining a level of surface passivation in line with state-of-the-art dielectric passivation films. Finally, we demonstrate its advantage as a bulk lifetime and process cleanliness monitor, establishing its compatibility with large area photoluminescence imaging in the process.

  3. Low temperature cured poly-siloxane passivation for highly reliable a-InGaZnO thin-film transistors

    Science.gov (United States)

    Yoshida, Naofumi; Bermundo, Juan Paolo; Ishikawa, Yasuaki; Nonaka, Toshiaki; Taniguchi, Katsuto; Uraoka, Yukiharu

    2018-05-01

    Low temperature processable passivation materials are necessary to fabricate highly reliable amorphous InGaZnO (a-IGZO) thin-film transistors (TFT) on organic substrates for flexible device applications. We investigated 3 types of poly-siloxane (Poly-SX) passivation layers fabricated by a solution process and cured at low temperatures (180 °C) for a-IGZO TFTs. This passivation layer greatly improves the stability of the a-IGZO device even after being subjected to positive (PBS) and negative bias stress (NBS). The field effect mobility (μ) of MePhQ504010 passivated on the TFT reached 8.34 cm2/Vs and had a small threshold voltage shift of 0.9 V after PBS, -0.8 V after NBS without the hump phenomenon. Furthermore, we analyzed the hydrogen and hydroxide states in the a-IGZO layer by secondary ion mass spectrometry and X-ray photoelectron spectroscopy to determine the cause of excellent electrical properties despite the curing performed at a low temperature. These results show the potential of the solution processed Poly-SX passivation layer for flexible devices.

  4. Temperature measurement with industrial color camera devices

    Science.gov (United States)

    Schmidradler, Dieter J.; Berndorfer, Thomas; van Dyck, Walter; Pretschuh, Juergen

    1999-05-01

    This paper discusses color camera based temperature measurement. Usually, visual imaging and infrared image sensing are treated as two separate disciplines. We will show, that a well selected color camera device might be a cheaper, more robust and more sophisticated solution for optical temperature measurement in several cases. Herein, only implementation fragments and important restrictions for the sensing element will be discussed. Our aim is to draw the readers attention to the use of visual image sensors for measuring thermal radiation and temperature and to give reasons for the need of improved technologies for infrared camera devices. With AVL-List, our partner of industry, we successfully used the proposed sensor to perform temperature measurement for flames inside the combustion chamber of diesel engines which finally led to the presented insights.

  5. Active versus passive screening for entrance control

    International Nuclear Information System (INIS)

    McCormick, N.J.

    1976-01-01

    The benefits of different entrance control actions are quantitatively assessed by defining a relative improvement index for the screening activity. Three classes of entrance control measures are investigated: the use of a purely active screening measure (such as a portal monitor), the use of a purely passive screening measure (such as personality typing), and the combined use of active and passive measures. Active entrance control measures have been studied previously [McCormick and Erdmann, Nucl. Mat. Manag. 4, (1975)] where it was determined that the relative improvement index is approximately related to the nondetection probability factor r for the protective system by (1-r + r ln r). It is shown here that the relative improvement index for a purely passive screening system also can be approximately expressed in a convenient manner. Because the probability is very small that a sabotage or diversion action would be attempted, the result for passive screening, multiplied by r, may be combined with the factor (1-r + r ln r) to give the relative improvement index for a combined, active-and-passive entrance control system. Results from simple example calculations indicate that passive screening of nuclear plant personnel or applicants for such positions is orders-of-magnitude less effective than portal monitors or reasonable improvements in them. 5 tables

  6. Improved DC performance of AlGaN/GaN high electron mobility transistors using hafnium oxide for surface passivation

    International Nuclear Information System (INIS)

    Liu, Chang; Chor, Eng Fong; Tan, Leng Seow

    2007-01-01

    Improved DC performance of AlGaN/GaN high electron mobility transistors (HEMTs) have been demonstrated using reactive-sputtered hafnium oxide (HfO 2 ) thin film as the surface passivation layer. Hall data indicate a significant increase in the product of sheet carrier concentration (n s ) and electron mobility (μ n ) in the HfO 2 -passivated HEMTs, compared to the unpassivated HEMTs. This improvement in electron carrier characteristics gives rise to a 22% higher I Dmax and an 18% higher g mmax in HEMTs with HfO 2 passivation relative to the unpassivated devices. On the other hand, I gleak of the HEMTs decreases by nearly one order of magnitude when HfO 2 passivation is applied. In addition, drain current is measured in the subthreshold regime. Compared to the unpassivated HEMTs, HfO 2 -passivated HEMTs exhibit a much smaller off-state I D , indicating better turn-off characteristics

  7. Development of a silicone-membrane passive sampler for monitoring cylindrospermopsin and microcystin LR-YR-RR in natural waters

    Science.gov (United States)

    Nyoni, Hlengilizwe; Mamba, Bhekie B.; Msagati, Titus A. M.

    2017-08-01

    Silicone membrane tubes were functionalised by filling them with synthesised γ-Fe2O3 nanoparticles and used as a passive sampling device for monitoring microcystins and cylindrospermopsin in aquatic environments. This novel device was calibrated for the measurement of microcystin and cylindrospermopsin concentrations in water. The effect of temperature and hydrodynamics on the sampler performance was studied in a flow-through system under controlled conditions. The chemical uptake of microcystins (MCs) and cylindrospermopsin (CYN) into the passive sampler remained linear and integrative throughout the exposure period. The rate of accumulation of most of the MC compounds tested was dependent on temperature and flow velocity. The use of 13C labelled polychlorinated biphenyls as performance reference compounds (PRCs) in silicone membrane/γ-Fe2O3 nanoparticle passive sampler, Chemcatcher and polar organic chemical integrative sampler (POCIS) was evaluated. The majority of PRCs improved the semi quantitative nature of water concentration estimated by the three samplers. The corrected sampling rate values of model biotoxin compounds were used to estimate the time-weighted average concentrations in natural cyanobacterial water blooms of the Hartbeespoort dam. The corrected sampling rates RScorr values varied from 0.1140 to 0.5628 Ld-1 between samplers with silicone membrane having the least RScorr values compared to the Chemcatcher and POCIS. The three passive sampling devises provided a more relevant picture of the biotoxin concentration in the Hartbeespoort dam. The results suggested that the three sampling devices are suitable for use in monitoring microcystins and cylindrospermopsin concentrations in aquatic environments.

  8. Using Teacher-Made Measurement Devices.

    Science.gov (United States)

    Mehrens, William A.; Lehmann, Irvin J.

    1987-01-01

    Classroom measurement devices, when tailored to fit a teacher's particular instructional objectives, are essential for optimal teaching and learning. Teachers use test data to assess students' progress but often fail to analyze tests for validity. This article shows how locally and correctly developed assessment tools may serve a variety of…

  9. XPS and electrochemical studies of the dissolution and passivation of molybdenum-implanted austenitic stainless steels

    International Nuclear Information System (INIS)

    De Vito, E.; Marcus, P.

    1993-01-01

    X-ray Photoelectron Spectroscopy (XPS) was used to investigate the chemical composition and the chemical states of the passive film formed on austenitic stainless steels (Fe-19Cr-10Ni (at.%)) which have been implanted with molybdenum (Mo + , 100 keV, 2.5 x 10 16 at./cm 2 ). Prior to passivation the implanted alloy was characterized by RBS (Rutherford Backscattering Spectroscopy) and XPS. Alloys with well-defined surface concentrations of molybdenum were prepared by ion sputtering the implanted alloy in the preparation chamber of the spectrometer, to a fixed point in the implantation profile. The samples were then transferred without air exposure to a glove box with inert gas in which the electrochemical measurements were performed. After passivation, return transfer of the passivated samples was done with the same transfer device to avoid exposure to air. In 0.5 M H 2 SO 4 , the anodic dissolution current density decreases with increasing Mo content on the alloy surface. Surface analysis by XPS showed that the surface is enriched with molybdenum in the Mo 4+ chemical state. The current density in the passive state is similar for both the non-implanted and the implanted alloys. Surface analysis by XPS showed that the passive film has a bilayer structure (inner oxide and outer hydroxide) and that the hydroxide layer present on the surface of the passive film is markedly enriched with molybdenum in the Mo 6+ chemical state. The XPS measurements indicate that the presence of molybdenum favors the formation of chromium hydroxide at the expense of chromium oxide. A significant enrichment of the alloyed (Cr, Ni) and implanted (Mo) elements was also observed in the metallic phase under the passive film. The possible mechanisms of the effect of molybdenum on the corrosion resistance of stainless steels are discussed in light of the obtained surface analytical results

  10. Advanced Performance Modeling with Combined Passive and Active Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Dovrolis, Constantine [Georgia Inst. of Technology, Atlanta, GA (United States); Sim, Alex [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-04-15

    To improve the efficiency of resource utilization and scheduling of scientific data transfers on high-speed networks, the "Advanced Performance Modeling with combined passive and active monitoring" (APM) project investigates and models a general-purpose, reusable and expandable network performance estimation framework. The predictive estimation model and the framework will be helpful in optimizing the performance and utilization of networks as well as sharing resources with predictable performance for scientific collaborations, especially in data intensive applications. Our prediction model utilizes historical network performance information from various network activity logs as well as live streaming measurements from network peering devices. Historical network performance information is used without putting extra load on the resources by active measurement collection. Performance measurements collected by active probing is used judiciously for improving the accuracy of predictions.

  11. Scattering measurements in Tokamak type devices

    International Nuclear Information System (INIS)

    Matoba, Tohru

    1975-03-01

    Theories, experiments and proposals for light scattering in Tokamak type devices are reviewed. Thomson scattering, measuring method of the current density distribution by scattering and resonance fluorescence are summarily described. These methods may be useful for diagnosis of the fusion plasmas. The report may help planning of the measuring apparatus for the fusion plasmas in future. (auth.)

  12. SWEPP PAN assay system uncertainty analysis: Passive mode measurements of graphite waste

    International Nuclear Information System (INIS)

    Blackwood, L.G.; Harker, Y.D.; Meachum, T.R.; Yoon, Woo Y.

    1997-07-01

    The Idaho National Engineering and Environmental Laboratory is being used as a temporary storage facility for transuranic waste generated by the U.S. Nuclear Weapons program at the Rocky Flats Plant (RFP) in Golden, Colorado. Currently, there is a large effort in progress to prepare to ship this waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. In order to meet the TRU Waste Characterization Quality Assurance Program Plan nondestructive assay compliance requirements and quality assurance objectives, it is necessary to determine the total uncertainty of the radioassay results produced by the Stored Waste Examination Pilot Plant (SWEPP) Passive Active Neutron (PAN) radioassay system. To this end a modified statistical sampling and verification approach has been developed to determine the total uncertainty of a PAN measurement. In this approach the total performance of the PAN nondestructive assay system is simulated using computer models of the assay system and the resultant output is compared with the known input to assess the total uncertainty. This paper is one of a series of reports quantifying the results of the uncertainty analysis of the PAN system measurements for specific waste types and measurement modes. In particular this report covers passive mode measurements of weapons grade plutonium-contaminated graphite molds contained in 208 liter drums (waste code 300). The validity of the simulation approach is verified by comparing simulated output against results from measurements using known plutonium sources and a surrogate graphite waste form drum. For actual graphite waste form conditions, a set of 50 cases covering a statistical sampling of the conditions exhibited in graphite wastes was compiled using a Latin hypercube statistical sampling approach

  13. Comparative studies of MOS-gate/oxide-passivated AlGaAs/InGaAs pHEMTs by using ozone water oxidation technique

    International Nuclear Information System (INIS)

    Lee, Ching-Sung; Hung, Chun-Tse; Chou, Bo-Yi; Hsu, Wei-Chou; Liu, Han-Yin; Ho, Chiu-Sheng; Lai, Ying-Nan

    2012-01-01

    Al 0.22 Ga 0.78 As/In 0.24 Ga 0.76 As pseudomorphic high-electron-mobility transistors (pHEMTs) with metal-oxide-semiconductor (MOS)-gate structure or oxide passivation by using ozone water oxidation treatment have been comprehensively investigated. Annihilated surface states, enhanced gate insulating property and improved device gain have been achieved by the devised MOS-gate structure and oxide passivation. The present MOS-gated or oxide-passivated pHEMTs have demonstrated superior device performances, including superior breakdown, device gain, noise figure, high-frequency characteristics and power performance. Temperature-dependent device characteristics of the present designs at 300–450 K are also studied. (paper)

  14. Mixing in a Microfluid Device

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Deryabin, Mikhail

    Mixing of fluids in microchannels cannot rely on turbulence since the flow takes place at extremly low Reynolds numbers. Various active and passive devices have been developed to induce mixing in microfluid flow devices. We describe here a model of an active mixer where a transverse periodic flow...

  15. Phosphorene nanoribbons: Passivation effect on bandgap and effective mass

    International Nuclear Information System (INIS)

    Xu, Li-Chun; Song, Xian-Jiang; Yang, Zhi; Cao, Ling; Liu, Rui-Ping; Li, Xiu-Yan

    2015-01-01

    Highlights: • Hydrogenation and fluorination can passivate the metallic edge states of zPNRs. • The bandgap of each type of zPNRs decreases as the ribbon's width increases duo to the quantum confinement effect. • Two local configurations of passivated atoms can coexist in nanoribbons and affect the bandgap of narrow nanoribbons. • New passivation configuration can effectively reduce the effective mass of electrons. - Abstract: The edge passivation effect of phosphorene nanoribbons is systematically investigated using density functional theory. Hydrogen and fluorine atoms passivate the metallic edge states of nanoribbons and can open a bandgap up to 2.25 eV. The two configurations of passivated atoms can exist at two edges and affect the bandgap of narrow nanoribbons. The bandgap of each type of zPNRs decreases as the ribbon's width increases, which can be attributed to the quantum confinement effect. The new configuration, named C b , can effectively reduce the effective mass of electrons, which benefits the future design of phosphorene-based electronic devices

  16. Phosphorene nanoribbons: Passivation effect on bandgap and effective mass

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Li-Chun, E-mail: xulichun@tyut.edu.cn; Song, Xian-Jiang; Yang, Zhi; Cao, Ling; Liu, Rui-Ping; Li, Xiu-Yan

    2015-01-01

    Highlights: • Hydrogenation and fluorination can passivate the metallic edge states of zPNRs. • The bandgap of each type of zPNRs decreases as the ribbon's width increases duo to the quantum confinement effect. • Two local configurations of passivated atoms can coexist in nanoribbons and affect the bandgap of narrow nanoribbons. • New passivation configuration can effectively reduce the effective mass of electrons. - Abstract: The edge passivation effect of phosphorene nanoribbons is systematically investigated using density functional theory. Hydrogen and fluorine atoms passivate the metallic edge states of nanoribbons and can open a bandgap up to 2.25 eV. The two configurations of passivated atoms can exist at two edges and affect the bandgap of narrow nanoribbons. The bandgap of each type of zPNRs decreases as the ribbon's width increases, which can be attributed to the quantum confinement effect. The new configuration, named C{sub b}, can effectively reduce the effective mass of electrons, which benefits the future design of phosphorene-based electronic devices.

  17. Measurement Devices and the Psychophysiology of Consumer Behaviour

    DEFF Research Database (Denmark)

    Schwarzkopf, Stefan

    2015-01-01

    of the type of subjectivity that underlies consumer behaviour. I argue instead that a posthuman view of the relationship between brain, mind and behaviour underpinned neurophysiological research into consumers from its very beginning in the late nineteenth century. By tracing the biopolitical potentialities...... of neuromarketing back to the Fin-de-Siècle neurophysiological laboratory, I show that consumers' bodies and later on their brains became reconfigured as part of a dispositif made up of laboratory-based artefacts (measurement devices) and new ways of seeing the human brain and human behaviour. This dispositif......From the 1890s, psychophysiological measurement devices have played an important, but as yet under-theorized role in marketing and consumer research. Because of the recent advances made in neuromarketing, it is often assumed that these measurement devices ushered in a radically new understanding...

  18. Adsorption of molecular additive onto lead halide perovskite surfaces: A computational study on Lewis base thiophene additive passivation

    Science.gov (United States)

    Zhang, Lei; Yu, Fengxi; Chen, Lihong; Li, Jingfa

    2018-06-01

    Organic additives, such as the Lewis base thiophene, have been successfully applied to passivate halide perovskite surfaces, improving the stability and properties of perovskite devices based on CH3NH3PbI3. Yet, the detailed nanostructure of the perovskite surface passivated by additives and the mechanisms of such passivation are not well understood. This study presents a nanoscopic view on the interfacial structure of an additive/perovskite interface, consisting of a Lewis base thiophene molecular additive and a lead halide perovskite surface substrate, providing insights on the mechanisms that molecular additives can passivate the halide perovskite surfaces and enhance the perovskite-based device performance. Molecular dynamics study on the interactions between water molecules and the perovskite surfaces passivated by the investigated additive reveal the effectiveness of employing the molecular additives to improve the stability of the halide perovskite materials. The additive/perovskite surface system is further probed via molecular engineering the perovskite surfaces. This study reveals the nanoscopic structure-property relationships of the halide perovskite surface passivated by molecular additives, which helps the fundamental understanding of the surface/interface engineering strategies for the development of halide perovskite based devices.

  19. Dose rate measuring device and dose rate measuring method using the same

    International Nuclear Information System (INIS)

    Urata, Megumu; Matsushita, Takashi; Hanazawa, Sadao; Konno, Takahiro; Chiba, Yoshinori; Yumitate, Tadahiro

    1998-01-01

    The device of the present invention comprises a scintillation fiber scope having a shape elongated in the direction of the height of a pressure vessel and emitting light by incident of radiation to detect radiation, a radioactivity measuring device for measuring a dose rate based on the detection of the fiber scope and a reel means for dispensing and taking up the fiber scope, and it constituted such that the dose rate of the pressure vessel and that of a shroud are determined independently. Then, when the taken out shroud is contained in an container, excessive shielding is not necessary, in addition, this device can reliably be inserted to or withdrawn from complicated places between the pressure vessel and the shroud, and further, the dose rate of the pressure vessel and that of the shroud can be measured approximately accurately even when the thickness of them is different greatly. (N.H.)

  20. Dose rate measuring device and dose rate measuring method using the same

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Megumu; Matsushita, Takashi; Hanazawa, Sadao; Konno, Takahiro; Chiba, Yoshinori; Yumitate, Tadahiro

    1998-11-13

    The device of the present invention comprises a scintillation fiber scope having a shape elongated in the direction of the height of a pressure vessel and emitting light by incident of radiation to detect radiation, a radioactivity measuring device for measuring a dose rate based on the detection of the fiber scope and a reel means for dispensing and taking up the fiber scope, and it constituted such that the dose rate of the pressure vessel and that of a shroud are determined independently. Then, when the taken out shroud is contained in an container, excessive shielding is not necessary, in addition, this device can reliably be inserted to or withdrawn from complicated places between the pressure vessel and the shroud, and further, the dose rate of the pressure vessel and that of the shroud can be measured approximately accurately even when the thickness of them is different greatly. (N.H.)

  1. Extended-Range Passive RFID and Sensor Tags

    Science.gov (United States)

    Fink, Patrick W.; Kennedy, Timothy F.; Lin, Gregory Y.; Barton, Richard

    2012-01-01

    Extended-range passive radio-frequency identification (RFID) tags and related sensor tags are undergoing development. A tag of this type incorporates a retroreflective antenna array, so that it reflects significantly more signal power back toward an interrogating radio transceiver than does a comparable passive RFID tag of prior design, which does not incorporate a retroreflective antenna array. Therefore, for a given amount of power radiated by the transmitter in the interrogating transceiver, a tag of this type can be interrogated at a distance greater than that of the comparable passive RFID or sensor tag of prior design. The retroreflective antenna array is, more specifically, a Van Atta array, named after its inventor and first published in a patent issued in 1959. In its simplest form, a Van Atta array comprises two antenna elements connected by a transmission line so that the signal received by each antenna element is reradiated by the other antenna element (see Figure 1). The phase relationships among the received and reradiated signals are such as to produce constructive interference of the reradiated signals; that is, to concentrate the reradiated signal power in a direction back toward the source. Hence, an RFID tag equipped with a Van Atta antenna array automatically tracks the interrogating transceiver. The effective gain of a Van Atta array is the same as that of a traditional phased antenna array having the same number of antenna elements. Additional pairs of antenna elements connected by equal-length transmission lines can be incorporated into a Van Atta array to increase its directionality. Like some RFID tags here-to-fore commercially available, an RFID or sensor tag of the present developmental type includes one-port surface-acoustic-wave (SAW) devices. In simplified terms, the mode of operation of a basic one-port SAW device as used heretofore in an RFID device is the following: An interrogating radio signal is converted, at an input end, from

  2. Intercomparison and intercalibration of active and passive radon detectors in North America

    International Nuclear Information System (INIS)

    George, A.C.

    1991-04-01

    The state of the art of the most commonly used instrumentation for radon measurements was evaluated at an intercomparison exercise held at the Environmental Measurements Laboratory, between April 24, and May 10, 1990. More than 50 sets of active and passive devices were submitted for evaluation by 30 laboratories from private firms, local, state and federal agencies and universities. There were basically five different types of detectors representing the majority of instruments used to assess the indoor airborne concentration of radon. After exposure, the devices were returned to the participating laboratories for analysis. The results reported to EML indicate that the overall performance was good with the majority of the participating laboratories reporting mean results within 10% of the EML reference values. In general, the majority of radon measuring devices gave slightly lower readings than the reference values. The individual measurements made with activated carbon collectors of both the open face and diffusion barrier type and the electret/ionization chambers showed the best precision and accuracy. The nuclear track detectors showed mixed results, exhibiting the largest measurement errors. This suggests that there are problems with sensitivity and with quality control procedures that must be addressed to improve their performance. 7 refs., 1 fig., 2 tabs

  3. Enhanced performance of C60 N-type organic field-effect transistors using a pentacene passivation layer

    International Nuclear Information System (INIS)

    Liang Xiaoyu; Cheng Xiaoman; Du Boqun; Bai Xiao; Fan Jianfeng

    2013-01-01

    We investigated the properties of C 60 -based organic field-effect transistors (OFETs) with a pentacene passivation layer inserted between the C 60 active layer and the gate dielectric. After modification of the pentacene passivation layer, the performance of the devices was considerably improved compared to C 60 -based OFETs with only a PMMA dielectric. The peak field-effect mobility was up to 1.01 cm 2 /(V·s) and the on/off ratio shifted to 10 4 . This result indicates that using a pentacene passivation layer is an effective way to improve the performance of N-type OFETs. (semiconductor devices)

  4. Adaptive suppression of passive intermodulation in digital satellite transceivers

    Directory of Open Access Journals (Sweden)

    Lu TIAN

    2017-06-01

    Full Text Available For the performance issues of satellite transceivers suffering passive intermodulation interference, a novel and effective digital suppression algorithm is presented in this paper. In contrast to analog approaches, digital passive intermodulation (PIM suppression approaches can be easily reconfigured and therefore are highly attractive for future satellite communication systems. A simplified model of nonlinear distortion from passive microwave devices is established in consideration of the memory effect. The multiple high-order PIM products falling into the receiving band can be described as a bilinear predictor function. A suppression algorithm based on a bilinear polynomial decorrelated adaptive filter is proposed for baseband digital signal processing. In consideration of the time-varying characteristics of passive intermodulation, this algorithm can achieve the rapidness of online interference estimation and low complexity with less consumption of resources. Numerical simulation results show that the algorithm can effectively compensate the passive intermodulation interference, and achieve a high signal-to-interference ratio gain.

  5. Sulfuric acid and hydrogen peroxide surface passivation effects on AlGaN/GaN high electron mobility transistors

    Energy Technology Data Exchange (ETDEWEB)

    Zaidi, Z. H., E-mail: zaffar.zaidi@sheffield.ac.uk; Lee, K. B.; Qian, H.; Jiang, S.; Houston, P. A. [Department of Electronic and Electrical Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Guiney, I.; Wallis, D. J.; Humphreys, C. J. [Department of Materials Science and Metallurgy, The University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

    2014-12-28

    In this work, we have compared SiN{sub x} passivation, hydrogen peroxide, and sulfuric acid treatment on AlGaN/GaN HEMTs surface after full device fabrication on Si substrate. Both the chemical treatments resulted in the suppression of device pinch-off gate leakage current below 1 μA/mm, which is much lower than that for SiN{sub x} passivation. The greatest suppression over the range of devices is observed with the sulfuric acid treatment. The device on/off current ratio is improved (from 10{sup 4}–10{sup 5} to 10{sup 7}) and a reduction in the device sub-threshold (S.S.) slope (from ∼215 to 90 mV/decade) is achieved. The sulfuric acid is believed to work by oxidizing the surface which has a strong passivating effect on the gate leakage current. The interface trap charge density (D{sub it}) is reduced (from 4.86 to 0.90 × 10{sup 12 }cm{sup −2} eV{sup −1}), calculated from the change in the device S.S. The gate surface leakage current mechanism is explained by combined Mott hopping conduction and Poole Frenkel models for both untreated and sulfuric acid treated devices. Combining the sulfuric acid treatment underneath the gate with the SiN{sub x} passivation after full device fabrication results in the reduction of D{sub it} and improves the surface related current collapse.

  6. Sulfuric acid and hydrogen peroxide surface passivation effects on AlGaN/GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Zaidi, Z. H.; Lee, K. B.; Qian, H.; Jiang, S.; Houston, P. A.; Guiney, I.; Wallis, D. J.; Humphreys, C. J.

    2014-01-01

    In this work, we have compared SiN x passivation, hydrogen peroxide, and sulfuric acid treatment on AlGaN/GaN HEMTs surface after full device fabrication on Si substrate. Both the chemical treatments resulted in the suppression of device pinch-off gate leakage current below 1 μA/mm, which is much lower than that for SiN x passivation. The greatest suppression over the range of devices is observed with the sulfuric acid treatment. The device on/off current ratio is improved (from 10 4 –10 5 to 10 7 ) and a reduction in the device sub-threshold (S.S.) slope (from ∼215 to 90 mV/decade) is achieved. The sulfuric acid is believed to work by oxidizing the surface which has a strong passivating effect on the gate leakage current. The interface trap charge density (D it ) is reduced (from 4.86 to 0.90 × 10 12  cm −2 eV −1 ), calculated from the change in the device S.S. The gate surface leakage current mechanism is explained by combined Mott hopping conduction and Poole Frenkel models for both untreated and sulfuric acid treated devices. Combining the sulfuric acid treatment underneath the gate with the SiN x passivation after full device fabrication results in the reduction of D it and improves the surface related current collapse

  7. [Mobile Health: IEEE Standard for Wearable Cuffless Blood Pressure Measuring Devices].

    Science.gov (United States)

    Zhou, Xia; Wu, Wenli; Bao, Shudi

    2015-07-01

    IEEE Std 1708-2014 breaks through the traditional standards of cuff based blood pressure measuring devices and establishes a normative definition of wearable cuffless blood pressure measuring devices and the objective performance evaluation of this kind of devices. This study firstly introduces the background of the new standard. Then, the standard details will be described, and the impact of cuffless blood pressure measuring devices with the new standard on manufacturers and end users will be addressed.

  8. Classification of methods for measuring current-voltage characteristics of semiconductor devices

    Directory of Open Access Journals (Sweden)

    Iermolenko Ia. O.

    2014-06-01

    Full Text Available It is shown that computer systems for measuring current-voltage characteristics are very important for semiconductor devices production. The main criteria of efficiency of such systems are defined. It is shown that efficiency of such systems significantly depends on the methods for measuring current-voltage characteristics of semiconductor devices. The aim of this work is to analyze existing methods for measuring current-voltage characteristics of semiconductor devices and to create the classification of these methods in order to specify the most effective solutions in terms of defined criteria. To achieve this aim, the most common classifications of methods for measuring current-voltage characteristics of semiconductor devices and their main disadvantages are considered. Automated and manual, continuous, pulse, mixed, isothermal and isodynamic methods for measuring current-voltage characteristics are analyzed. As a result of the analysis and generalization of existing methods the next classification criteria are defined: the level of automation, the form of measurement signals, the condition of semiconductor device during the measurements, and the use of mathematical processing of the measurement results. With the use of these criteria the classification scheme of methods for measuring current-voltage characteristics of semiconductor devices is composed and the most effective methods are specified.

  9. Republic of Korea: Design Study for Passive Shutdown System of the PGSFR

    International Nuclear Information System (INIS)

    Lee, J.H.

    2015-01-01

    There have been no experiences of implementing a passive shutdown system in operating or operated SFRs around the world. However, new SFRs are considered to adopt a self-actuated shutdown system (SASS) in the future to provide an alternate means of passively shutting down the reactor. The Prototype Gen-IV SFR (PGSFR) developed by KAERI also adopts this system for the same reason. This passive shutdown design concept is combined with a group of secondary control rod drive mechanisms (SCRDM). The system automatically releases the control rod assembly (CRA) around the set temperature, and then drops the CRA by gravity without any external control signals and any actuating power in an emergency of the reactor. This paper describes the parametric design study of a passive shutdown system, which consists of a thermal expansion device, an electromagnet, and a secondary control rod assembly head. The conceptual design values of each component are also suggested. Parametric calculations are performed to check the suitability of the performance requirements of the thermal expansion device and electromagnets

  10. Passive cooling applications for nuclear power plants using pulsating steam-water heat pipes

    International Nuclear Information System (INIS)

    Aparna, J.; Chandraker, D.K.

    2015-01-01

    Gen IV reactors incorporate passive principles in their system design as an important safety philosophy. Passive safety systems use inherent physical phenomena for delivering the desired safe action without any external inputs or intrusion. The accidents in Fukushima have renewed the focus on passive self-manageable systems capable of unattended operation, for long hours even in extended station blackout (SBO) and severe accident conditions. Generally, advanced reactors use water or atmospheric air as their ultimate heat sink and employ passive principles in design for enhanced safety. This paper would be discussing the experimental results on pulsating steam water heat-pipe devices and their applications in passive cooling. (author)

  11. Seasonal Variation in Monthly Average Air Change Rates Using Passive Tracer Gas Measurements

    DEFF Research Database (Denmark)

    Frederiksen, Marie; Bergsøe, Niels Christian; Kolarik, Barbara

    2011-01-01

    in five dwellings in Greater Copenhagen, Denmark. A passive tracer gas technique (Perfluorocarbon) was used to measure ACR in a seven-month period. Considerable differences were observed between the dwellings with monthly ACRs ranging from 0.21 to 1.75 h-1. Only smaller seasonal variations, generally less...... driving forces for natural ventilation is partially compensated by changed occupant behaviour....

  12. A field comparison of volatile organic compound measurements using passive organic vapor monitors and stainless steel canisters.

    Science.gov (United States)

    Pratt, Gregory C; Bock, Don; Stock, Thomas H; Morandi, Maria; Adgate, John L; Ramachandran, Gurumurthy; Mongin, Steven J; Sexton, Ken

    2005-05-01

    Concurrent field measurements of 10 volatile organic compounds (VOCs) were made using passive diffusion-based organic vapor monitors (OVMs) and the U.S. Federal Reference Method, which comprises active monitoring with stainless steel canisters (CANs). Measurements were obtained throughout a range of weather conditions, repeatedly over the course of three seasons, and at three different locations in the Minneapolis/St. Paul metropolitan area. Ambient concentrations of most VOCs as measured by both methods were low compared to those of other large metropolitan areas. For some VOCs a considerable fraction of measurements was below the detection limit of one or both methods. The observed differences between the two methods were similar across measurement sites, seasons, and meteorological variables. A Bayesian analysis with uniform priors on the differences was applied, with accommodation of sometimes heavy censoring (nondetection) in either device. The resulting estimates of bias and standard deviation of the OVM relative to the CAN were computed by tertile of the canister-measured concentration. In general, OVM and CAN measurements were in the best agreement for benzene and other aromatic compounds with hydrocarbon additions (ethylbenzene, toluene, and xylenes). The two methods were not in such good agreement for styrene and halogenated compounds (carbon tetrachloride, p-dichlorobenzene, methylene chloride, and trichloroethylene). OVMs slightly overestimated benzene concentrations and carbon tetrachloride at low concentrations, but in all other cases where significant differences were found, OVMs underestimated relative to canisters. Our study indicates that the two methods are in agreement for some compounds, but not all. We provide data and interpretation on the relative performance of the two VOC measurement methods, which facilitates intercomparisons among studies.

  13. Pressure and Relative Humidity Measurement Devices for Mars 2020 Rover

    Science.gov (United States)

    Hieta, M.; Genzer, M.; Nikkanen, T.; Haukka, H.; Harri, A.-M.; Polkko, J.; Rodriguez-Manfredi, J. A.

    2017-09-01

    One of the scientific payloads onboard the NASA Mars 2020 rover mission is Mars Environmental Dynamic Analyzer (MEDA): a set of environmental sensors for Mars surface weather measurements. Finnish Meteorological Institute (FMI) provides a pressure measurement device (MEDA PS) and a relative humidity measurement device (MEDA HS) for MEDA.

  14. Interface characteristics of spin-on-dielectric SiO{sub x}-buffered passivation layers for AlGaN/GaN high electron mobility transistors

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Pil-Seok; Park, Kyoung-Seok; Yoon, Yeo-Chang [Division of Electronics and Electrical Engineering, Dongguk University, 100-715 Seoul (Korea, Republic of); Sheen, Mi-Hyang [Department of Materials Science Engineering, Seoul National University, 151-742 Seoul (Korea, Republic of); Kim, Sam-Dong, E-mail: samdong@dongguk.edu [Division of Electronics and Electrical Engineering, Dongguk University, 100-715 Seoul (Korea, Republic of)

    2015-08-31

    To reveal the cause for significant enhancement of dc current performance of the AlGaN/GaN high electron mobility transistors (HEMTs) with the spin-on-dielectric (SOD) SiO{sub x}-buffered passivation structure compared to the conventional Si{sub 3}N{sub 4} passivation deposited by plasma-enhanced vapor deposition (PECVD), we characterized the passivation interfaces using the cross-sectional transmission electron microscopy, cathodoluminescence, capacitance–voltage (C–V) characterizations, and Hall-effect measurements. The interface state density of PECVD Si{sub 3}N{sub 4} passivation was in the range of 10{sup 12}–10{sup 13} cm{sup −2} eV{sup −1}, which is one-order higher than that of the SOD (10{sup 11}–10{sup 12} cm{sup −2} eV{sup −1}) as measured by C–V measurements from the metal–insulator–semiconductor capacitors. Higher density of effective oxide charge density (especially dominant contribution of ionic mobile charge) was also derived from the PECVD Si{sub 3}N{sub 4} passivation. A well-resolved reduction of the electron Hall mobility of the Si{sub 3}N{sub 4} passivation compared to that of the perhydropolysilazane SOD passivation, which can be due to the higher-density interface states and trap charges, can answer the relative dc current collapse of our HEMT devices. - Highlights: • Spin-on-dielectric (SOD)-buffered passivation for AlGaN/GaN HEMTs • Characterize the charge density and interface states using the C–V measurements • SOD-buffered passivation minimizes surface states at the interface. • DC performance of SOD-buffered structure is due to the interface characteristics.

  15. Pressure measurements in magnetic-fusion devices

    International Nuclear Information System (INIS)

    Dylla, H.F.

    1981-11-01

    Accurate pressure measurements are important in magnetic fusion devices for: (1) plasma diagnostic measurements of particle balance and ion temperature; (2) discharge cleaning optimization; (3) vacuum system performance; and (4) tritium accountability. This paper reviews the application, required accuracy, and suitable instrumentation for these measurements. Demonstrated uses of ionization-type and capacitance-diaphragm gauges for various pressure and gas-flow measurements in tokamaks are presented, with specific reference to the effects of magnetic fields on gauge performance and the problems associated with gauge calibration

  16. Pressure measurements in magnetic-fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Dylla, H.F.

    1981-11-01

    Accurate pressure measurements are important in magnetic fusion devices for: (1) plasma diagnostic measurements of particle balance and ion temperature; (2) discharge cleaning optimization; (3) vacuum system performance; and (4) tritium accountability. This paper reviews the application, required accuracy, and suitable instrumentation for these measurements. Demonstrated uses of ionization-type and capacitance-diaphragm gauges for various pressure and gas-flow measurements in tokamaks are presented, with specific reference to the effects of magnetic fields on gauge performance and the problems associated with gauge calibration.

  17. Comparative Measurements of Radon Concentration in Soil Using Passive and Active Methods in High Level Natural Radiation Area (HLNRA of Ramsar

    Directory of Open Access Journals (Sweden)

    Amanat B

    2013-12-01

    Full Text Available Background: Radon and its daughters are amongst the most important sources of natural exposure in the world. Soil is one of the signifcant sources of radon/thoron due to both radium and thorium so that the emanated thoron from it may cause in creased uncertainties in radon measurements. Recently, a diffusion chamber has been designed and optimized for passive discriminative measurements of radon/thoron concentrations in soil. Objective: In order to evaluate the capability of the passive method, some com parative measurements (with active methods have been performed. Method: The method is based upon measurements by a diffusion chamber, includ ing two Lexan polycarbonate SSNTDs, which can discriminate the emanated radon/ thorn from the soil by delay method. The comparative measurements have been done in ten selected points of HLNRA of Ramsar in Iran. The linear regression and cor relation between the results of two methods have been studied. Results: The results show that the radon concentrations are within the range of 12.1 to 165 kBq/m3 values. The correlation between the results of active and passive methods was measured by 0.99 value. As well, the thoron concentrations have been measured between 1.9 to 29.5 kBq/m3 values at the points. Conclusion: The sensitivity as well as the strong correlation with active mea surements shows that the new low-cost passive method is appropriate for accurate seasonal measurements of radon and thoron concentration in soil.

  18. Experiments to Evaluate and Implement Passive Tracer Gas Methods to Measure Ventilation Rates in Homes

    Energy Technology Data Exchange (ETDEWEB)

    Lunden, Melissa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faulkner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Heredia, Elizabeth [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cohn, Sebastian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dickerhoff, Darryl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Noris, Federico [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Logue, Jennifer [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hotchi, Toshifumi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, Brett [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sherman, Max H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-10-01

    This report documents experiments performed in three homes to assess the methodology used to determine air exchange rates using passive tracer techniques. The experiments used four different tracer gases emitted simultaneously but implemented with different spatial coverage in the home. Two different tracer gas sampling methods were used. The results characterize the factors of the execution and analysis of the passive tracer technique that affect the uncertainty in the calculated air exchange rates. These factors include uncertainties in tracer gas emission rates, differences in measured concentrations for different tracer gases, temporal and spatial variability of the concentrations, the comparison between different gas sampling methods, and the effect of different ventilation conditions.

  19. Evaluation of radon measuring technique using passive detector activated carbon; Avaliacao da tecnica de medicao do radonio utilizando detector passivo com carvao ativado

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Paulo Roberto Rocha; Lessa, Edmilson de Lima; Oliveira, Evaldo Paulo de, E-mail: epoliveira@aluno.ird.gov.br [Instituto de Radioprotecao e Dosimetria, (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Div. de Radioprotecao Ambiental e Ocupacional

    2014-07-01

    This study aims to evaluate the efficiency of measuring the radioactive gas Radon ({sup 222} Rn) with passive detector activated carbon. Alpha Guard, exposure chamber, air sampler, default font Radio, calibrator flow, flow adjuster, ducts drivers: For this, various equipment to make the measurement system as were used. An assembly of such equipment, with specific sequence was used allowing for more efficient exposure of passive detectors Radon gas. Twenty samples were heated to remove moisture and then stored in desiccator until the experiment were made. The exhibition was held passive dosimeters being removed from the chamber, and one hour after, subjected to analysis by gamma spectrometry in germanium (HPGe) for an hour. Subsequently, other measurements were made at scheduled times and sequential for one hour. The results were presented in report form and spectra, measures and graphs generated by Alpha Guard were also extracted. Finally we calculated the efficiency of the passive meter activated carbon. (author)

  20. Integrated passive and wireless sensor for magnetic fields, temperature and humidity

    KAUST Repository

    Li, Bodong; Yassine, Omar; Kosel, Jü rgen

    2013-01-01

    This paper presents a surface acoustic wave-based passive and wireless sensor that can measure magnetic field, temperature and humidity. A thin film giant magnetoimpedance sensor, a thermally sensitive LiNbO3 substrate and a humidity sensitive hydrogel are integrated together with a surface acoustic wave transducer to realize the multifunctional sensor. The device is characterized using a network analyzer under sequentially changing humidity, temperature and magnetic field conditions. The first hand results show the sensor response to all three sensing parameters with small temperature interference on the magnetic signals. © 2013 IEEE.

  1. Integrated passive and wireless sensor for magnetic fields, temperature and humidity

    KAUST Repository

    Li, Bodong

    2013-11-01

    This paper presents a surface acoustic wave-based passive and wireless sensor that can measure magnetic field, temperature and humidity. A thin film giant magnetoimpedance sensor, a thermally sensitive LiNbO3 substrate and a humidity sensitive hydrogel are integrated together with a surface acoustic wave transducer to realize the multifunctional sensor. The device is characterized using a network analyzer under sequentially changing humidity, temperature and magnetic field conditions. The first hand results show the sensor response to all three sensing parameters with small temperature interference on the magnetic signals. © 2013 IEEE.

  2. Field trials of an electret based passive dust sampler in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Hemingway, M.A.; Brown, R.C.; Arthur, J. [Health and Safety Laboratory, Sheffield (United Kingdom)

    1997-12-31

    An electret-based passive dust sampler has been developed by the Health and Safety Laboratory, UK. The device consists of a small disc of electret (polymer holding a permanent electric charge) held between earthen plates, and it acts by attaching charged dust particles to itself. The device does not require a pump and its rate of sampling is independent of external air velocity, provided that the velocity exceeds a low limiting value. Experiments have been carried out in two coal mines. In each experiment two passive sampler were mounted alongside an MRE sampler at the statutory sampling point in the return roadway. Both passive samplers were mounted vertically but in one the plane of the electret was parallel to the air flow and in the other it was perpendicular. The result obtained from the first mine showed a good correlation between gravimetric estimates of dust concentration obtained with the passive samplers and respirable dust concentrations obtained with MRE. The correlation between the two sets of results at the second mine was not quite as good as those of the first, but was reasonable. In no instance was any significant difference observed between samples obtained from pairs of passive samples in different orientations. 8 refs., 5 figs., 2 tabs.

  3. Potassium ions in SiO2: electrets for silicon surface passivation

    Science.gov (United States)

    Bonilla, Ruy S.; Wilshaw, Peter R.

    2018-01-01

    This manuscript reports an experimental and theoretical study of the transport of potassium ions in thin silicon dioxide films. While alkali contamination was largely researched in the context of MOSFET instability, recent reports indicate that potassium ions can be embedded into oxide films to produce dielectric materials with permanent electric charge, also known as electrets. These electrets are integral to a number of applications, including the passivation of silicon surfaces for optoelectronic devices. In this work, electric field assisted migration of ions is used to rapidly drive K+ into SiO2 and produce effective passivation of silicon surfaces. Charge concentrations of up to ~5  ×  1012 e cm-2 have been achieved. This charge was seen to be stable for over 1500 d, with decay time constants as high as 17 000 d, producing an effectively passivated oxide-silicon interface with SRV  industrial manufacture of silicon optoelectronic devices.

  4. Radon Measurements in Egypt using passive etched track detectors. A Review

    Energy Technology Data Exchange (ETDEWEB)

    Gomaa, M A [National Network of Radiation Physics. Atomic Energy Authority (Egypt); Hussein, A S [Radiation Protection Department, Nuclear Power Plants Authority, (Egypt); El-Arabi, A M [Physics Department, Faculty of Science, South Valley University, Qena, (Egypt)

    2005-04-01

    Radon and its progeny may cause serious radiation harm to human health such as lung cancer and other types. Radon measurements based on alpha particles etched track detectors (LR-115, CR-39) are very attractive for assessment of radon exposure. This is due to their high sensitivity, low cost, easy to handle and retain a permanent record of data. Also these detectors can incorporate the effects of seasonal and diurnal fluctuation of radon activity concentrations due to physical, geological and meteorological factors. The present review is based mainly on the topic of passive etched track detectors for the measurements of radon in Egypt in the recent years. Published papers includes the measurements of radon in dwellings, working places, Cairo Metro stations, ancient Pharaonic places and uranium exploration galleries as well as assessment of radon in drinking water.

  5. Radon Measurements in Egypt using passive etched track detectors. A Review

    International Nuclear Information System (INIS)

    Gomaa, M.A.; Hussein, A.S.; El-Arabi, A.M.

    2005-01-01

    Radon and its progeny may cause serious radiation harm to human health such as lung cancer and other types. Radon measurements based on alpha particles etched track detectors (LR-115, CR-39) are very attractive for assessment of radon exposure. This is due to their high sensitivity, low cost, easy to handle and retain a permanent record of data. Also these detectors can incorporate the effects of seasonal and diurnal fluctuation of radon activity concentrations due to physical, geological and meteorological factors. The present review is based mainly on the topic of passive etched track detectors for the measurements of radon in Egypt in the recent years. Published papers includes the measurements of radon in dwellings, working places, Cairo Metro stations, ancient Pharaonic places and uranium exploration galleries as well as assessment of radon in drinking water

  6. Effect of Fullerene Passivation on the Charging and Discharging Behavior of Perovskite Solar Cells: Reduction of Bound Charges and Ion Accumulation.

    Science.gov (United States)

    Shih, Yen-Chen; Wang, Leeyih; Hsieh, Hsiao-Chi; Lin, King-Fu

    2018-04-11

    Ion accumulation of organometal halide perovskites (OHPs) induced by electrode polarization of perovskite solar cells (PSCs) under illumination has been intensely studied and associated with a widely observed current-voltage hysteresis behavior. This work is dedicated to the investigation of the behavior of charged species at the compact TiO 2 /OHP interface with respect to electrode polarization in PSC devices. By providing a comprehensive discussion of open-circuit voltage ( V OC ) buildup and V OC decay under illumination and in the dark for the PSCs modified with [6,6]-phenyl-C 61 butyric acid methyl ester (PCBM) at the TiO 2 /OHP interface and their corresponding electrochemical impedance spectroscopies (EISs), a justified mechanism is proposed attempting to elucidate the dynamics of interfacial species with respect to the time and frequency domains. Our results demonstrate that the retarded V OC buildup and decay observed in PSC devices are related to the formation of bound charges in TiO 2 , which is essential to neutralize the oppositely charged ions accumulating at the OHP side. Besides, inserting a thicker PCBM at the TiO 2 /OHP interface as a passivation layer can alleviate the electrode polarization more efficiently as verified by the low dielectric constant measured from EIS. Moreover, photoluminescence measurements indicate that PCBM at the TiO 2 /OHP interface is capable of passivating a trap state and improving charge transfer. However, with respect to the time scale investigated in this work, the reduction of the hysteresis behavior on a millisecond scale is more likely due to less bound charge formation at the interface rather than shallow trap-state passivation by PCBM. After all, this work comprehensively demonstrates the interfacial properties of PSCs associated with PCBM passivation and helps to further understand its impact on charging/discharging as well as device performance.

  7. Study on the electrical degradation of AlGaN/GaN MIS-HEMTs induced by residual stress of SiNx passivation

    Science.gov (United States)

    Bai, Zhiyuan; Du, Jiangfeng; Liu, Yong; Xin, Qi; Liu, Yang; Yu, Qi

    2017-07-01

    In this paper, we report a new phenomenon in C-V measurement of different gate length MIS-HEMTs, which can be associated with traps character of the AlGaN/GaN interface. The analysis of DC measurement, frequency dependent capacitance-voltage measurements and simulation show that the stress from passivation layer may induce a decrease of drain output current Ids, an increase of on-resistance, serious nonlinearity of transconductance gm, and a new peak of C-V curve. The value of the peak is reduced to zero while the gate length and measure frequency are increasing to 21 μm and 1 MHz, respectively. By using conductance method, the SiNx/GaN interface traps with energy level of EC-0.42 eV to EC-0.45 eV and density of 3.2 × 1012 ∼ 5.0 × 1012 eV-1 cm-2 is obtained after passivation. According to the experimental and simulation results, formation of the acceptor-like traps with concentration of 3 × 1011 cm-2 and energy level of EC-0.37 eV under the gate on AlGaN barrier side of AlGaN/GaN interface is the main reason for the degradation after the passivation. He is currently an Associate Professor with State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Microelectronics and Solid-State Electronics, UESTC. He is the author of over 30 peer-reviewed journal papers and more than 20 conference papers. He has also hold over 20 patents. His research interests include Gallium Nitride based high-voltage power switching devices, microwave and millimeter-wave power devices and integrated technologies. Dr. Yu was a recipient of the prestigious Award of Science and Technology of China

  8. An introduction to electrooptic devices

    CERN Document Server

    Kaminow, Ivan P

    1974-01-01

    An Introduction to Electrooptic Devices aims to present an introduction to the electrooptic effect and to summarize work on devices employing the electrooptic effect. The book provides the necessary background in classical crystal optics. The text then discusses topics including crystal symmetry, the tensor description of linear dielectric properties, propagation in anisotropic media, and passive crystal optic devices. The book also describes the phenomenological description of tensor nonlinear dielectric properties of crystals, with emphasis on the electrooptic effect; device design and appli

  9. Evaluating the Relationship between Equilibrium Passive ...

    Science.gov (United States)

    Objectives. This review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) in water column and interstitial water exposures as a surrogate for organism bioaccumulation. Approach/Activities. Fifty-five studies were found where both passive sampler uptake and organism bioaccumulation were measured and 19 of these investigations provided direct comparisons relating passive sampler uptake and organism bioaccumulation. Polymers compared included low density polyethylene (LDPE), polyoxymethylene (POM), and polydimethylsiloxane (PDMS), and organisms ranged from polychaetes and oligochaetes to bivalves, aquatic insects, and gastropods. Regression equations correlating bioaccumulation (CL) and passive sampler uptake (CPS) were used to assess the strength of observed relationships. Results/Lessons Learned. Passive sampling based concentrations resulted in strong logarithmic regression relationships, most of which were within one to two orders of magnitude of measured bioaccumulation. Mean coefficients of determination (r2) for LDPE, PDMS and POM were 0.68, 0.76 and 0.58, respectively. For the available raw data, the mean ratio of CL and CPS was 10.8 ± 18.4 (n = 609). Passive sampler uptake and bioaccumulation were not found to be identical (i.e., CPS ≠ CL) but the logarithmic-based relationships between these values were consistently linear and predictive. This review concludes that in many applications passive sampling may serve as a

  10. On the Disambiguation of Passively Measured In-home Gait Velocities from Multi-person Smart Homes.

    Science.gov (United States)

    Austin, Daniel; Hayes, Tamara L; Kaye, Jeffrey; Mattek, Nora; Pavel, Misha

    2011-01-01

    In-home monitoring of gait velocity with passive PIR sensors in a smart home has been shown to be an effective method of continuously and unobtrusively measuring this important predictor of cognitive function and mobility. However, passive measurements of velocity are nonspecific with regard to who generated each measurement or walking event. As a result, this method is not suitable for multi-person homes without additional information to aid in the disambiguation of gait velocities. In this paper we propose a method based on Gaussian mixture models (GMMs) combined with infrequent clinical assessments of gait velocity to model in-home walking speeds of two or more residents. Modeling the gait parameters directly allows us to avoid the more difficult problem of assigning each measured velocity individually to the correct resident. We show that if the clinically measured gait velocities of residents are separated by at least 15 cm/s a GMM can be accurately fit to the in-home gait velocity data. We demonstrate the accuracy of this method by showing that the correlation between the means of the GMMs and the clinically measured gait velocities is 0.877 (p value < 0.0001) with bootstrapped 95% confidence intervals of (0.79, 0.94) for 54 measurements of 20 subjects living in multi-person homes. Example applications of using this method to track in-home mean velocities over time are also given.

  11. Device for measuring fission product density

    International Nuclear Information System (INIS)

    Kaneda, Mitsunori.

    1980-01-01

    Purpose: To determine the fission product density of xenon or the like and enable measurement of real time of fission product density in a reactor by calculating the disintegration and annihilation of the fission product on the basis of neutron detected output. Constitution: The neutron flux in a reactor is detected by a detector, and applied to first and second density calculators. Second fission product density signal of xenon or the like outputted from first device is again inputted to the device to form an annihilation signal due to disintegration to determine the present density of the second fission product of xenon or the like corresponding to the decrease of the neutron due to the poison of xeron or the like. Similarly, second device determines the first fission product density of iodine or the like. (Sekiya, K.)

  12. Beam diagnostics using an emittance measurement device

    International Nuclear Information System (INIS)

    Sarstedt, M.; Becker, R.; Klein, H.; Maaser, A.; Mueller, J.; Thomae, R.; Weber, M.

    1995-01-01

    For beam diagnostics aside from Faraday cups for current measurements and analysing magnets for the determination of beam composition and energy the most important tool is an emittance measurement device. With such a system the distribution of the beam particles in phase-space can be determined. This yields information not only on the position of the particles but also on their angle with respect to the beam axis. There are different kinds of emittance measurement devices using either circular holes or slits for separation of part of the beam. The second method (slit-slit measurement), though important for the determination of the rms-emittance, has the disadvantage of integrating over the y- and y'-coordinate (measurement in xx'-plane assumed). This leads to different emittance diagrams than point-point measurements, since in xx'-plane for each two corresponding points of rr'-plane there exists a connecting line. With regard to beam aberrations this makes xx'-emittances harder to interpret. In this paper the two kinds of emittance diagrams are discussed. Additionally the influence of the slit height on the xx'-emittance is considered. The analytical results are compared to experimental measurements in rr'-, rx'- and xx'-phase-space. (orig.)

  13. Humidity measurements in passive heat and moisture exchangers applications: a critical issue.

    Science.gov (United States)

    Dubini, G; Fumero, R

    2000-01-01

    A reliable, quantitative assessment of humidification performances of passive heat and moisture exchangers in mechanically-ventilated patients is still to be achieved, although relevant efforts have been made to date. One of the major problems to tackle consists in the difficulty of humidity measurements, both in vivo (during either anaesthesia or intensive care unit treatments) and in vitro set-ups. In this paper a review of the basic operation principles of humidity sensors as well as an analysis of their usage within in vivo and in vitro tests are presented. Particular attention is devoted to the limitations arising from the specific measurement set-up, as they may affect the results notably.

  14. The Reliability of a Novel Mobile 3-dimensional Wound Measurement Device.

    Science.gov (United States)

    Anghel, Ersilia L; Kumar, Anagha; Bigham, Thomas E; Maselli, Kathryn M; Steinberg, John S; Evans, Karen K; Kim, Paul J; Attinger, Christopher E

    2016-11-01

    Objective assessment of wound dimensions is essential for tracking progression and determining treatment effectiveness. A reliability study was designed to establish intrarater and interrater reliability of a novel mobile 3-dimensional wound measurement (3DWM) device. Forty-five wounds were assessed by 2 raters using a 3DWM device to obtain length, width, area, depth, and volume measurements. Wounds were also measured manually, using a disposable ruler and digital planimetry. The intraclass correlation coefficient (ICC) was used to establish intrarater and interrater reliability. High levels of intrarater and interrater agreement were observed for area, length, and width; ICC = 0.998, 0.977, 0.955 and 0.999, 0.997, 0.995, respectively. Moderate levels of intrarater (ICC = 0.888) and interrater (ICC = 0.696) agreement were observed for volume. Lastly, depth yielded an intrarater ICC of 0.360 and an interrater ICC of 0.649. Measures from the 3DWM device were highly correlated with those obtained from scaled photography for length, width, and area (ρ = 0.997, 0.988, 0.997, P device yielded correlations of ρ = 0.990, 0.987, 0.996 with P device was found to be highly reliable for measuring wound areas for a range of wound sizes and types as compared to manual measurement and digital planimetry. The depth and therefore volume measurement using the 3DWM device was found to have a lower ICC, but volume ICC alone was moderate. Overall, this device offers a mobile option for objective wound measurement in the clinical setting.

  15. The effects of passive humidifier dead space on respiratory variables in paralyzed and spontaneously breathing patients.

    Science.gov (United States)

    Campbell, R S; Davis, K; Johannigman, J A; Branson, R D

    2000-03-01

    Passive humidifiers have gained acceptance in the intensive care unit because of their low cost, simple operation, and elimination of condensate from the breathing circuit. However, the additional dead space of these devices may adversely affect respiratory function in certain patients. This study evaluates the effects of passive humidifier dead space on respiratory function. Two groups of patients were studied. The first group consisted of patients recovering from acute lung injury and breathing spontaneously on pressure support ventilation. The second group consisted of patients who were receiving controlled mechanical ventilation and were chemically paralyzed following operative procedures. All patients used 3 humidification devices in random order for one hour each. The devices were a heated humidifier (HH), a hygroscopic heat and moisture exchanger (HHME) with a dead space of 28 mL, and a heat and moisture exchanger (HME) with a dead space of 90 mL. During each measurement period the following were recorded: tidal volume, minute volume, respiratory frequency, oxygen consumption, carbon dioxide production, ratio of dead space volume to tidal volume (VD/VT), and blood gases. In the second group, intrinsic positive end-expiratory pressure was also measured. Addition of either of the passive humidifiers was associated with increased VD/VT. In spontaneously breathing patients, VD/VT increased from 59 +/- 13 (HH) to 62 +/- 13 (HHME) to 68 +/- 11% (HME) (p < 0.05). In these patients, constant alveolar ventilation was maintained as a result of increased respiratory frequency, from 22.1 +/- 6.6 breaths/min (HH) to 24.5 +/- 6.9 breaths/min (HHME) to 27.7 +/- 7.4 breaths/min (HME) (p < 0.05), and increased minute volume, from 9.1 +/- 3.5 L/min (HH) to 9.9 +/- 3.6 L/min (HHME) to 11.7 +/- 4.2 L/min (HME) (p < 0.05). There were no changes in blood gases or carbon dioxide production. In the paralyzed patient group, VD/VT increased from 54 +/- 12% (HH) to 56 +/- 10% (HHME

  16. Toward compression of small cell population: harnessing stress in passive regions of dielectric elastomer actuators

    Science.gov (United States)

    Poulin, Alexandre; Rosset, Samuel; Shea, Herbert

    2014-03-01

    We present a dielectric elastomer actuator (DEA) for in vitro analysis of mm2 biological samples under periodic compressive stress. Understanding how mechanical stimuli affect cell functions could lead to significant advances in diseases diagnosis and drugs development. We previously reported an array of 72 micro-DEAs on a chip to apply a periodic stretch to cells. To diversify our cell mechanotransduction toolkit we have developed an actuator for periodic compression of small cell populations. The device is based on a novel design which exploits the effects of non-equibiaxial pre-stretch and takes advantage of the stress induced in passive regions of DEAs. The device consists of two active regions separated by a 2mm x 2mm passive area. When connected to an AC high-voltage source, the two active regions periodically compress the passive region. Due to the non-equibiaxial pre-stretch it induces uniaxial compressive strain greater than 10%. Cells adsorbed on top of this passive gap would experience the same uniaxial compressive stain. The electrodes configuration confines the electric field and prevents it from reaching the biological sample. A thin layer of silicone is casted on top of the device to ensure a biocompatible environment. This design provides several advantages over alternative technologies such as high optical transparency of the area of interest (passive region under compression) and its potential for miniaturization and parallelization.

  17. Update on scribe–cleave–passivate (SCP) slim edge technology for silicon sensors: Automated processing and radiation resistance

    Energy Technology Data Exchange (ETDEWEB)

    Fadeyev, V., E-mail: fadeyev@ucsc.edu [Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA 95064 (United States); Ely, S.; Galloway, Z.; Ngo, J.; Parker, C.; Sadrozinski, H.F.-W. [Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA 95064 (United States); Christophersen, M.; Phlips, B.F. [U.S. Naval Research Laboratory, Code 7654, 4555 Overlook Avenue, Southwest Washington, DC 20375 (United States); Pellegrini, G.; Rafi, J.M.; Quirion, D. [Instituto de Microelectrónica de Barcelona, IMB-CNM-CSIC, Bellaterra, Barcelona (Spain); Dalla Betta, G.-F. [INFN and University of Trento, Via Sommarive, 14, 38123 Povo di Trento (Italy); Boscardin, M. [Fondazione Bruno Kessler, Via Sommarive, 18, 38123 Povo di Trento (Italy); Casse, G. [Department of Physics, University of Liverpool, O. Lodge Laboratory, Oxford Street, Liverpool L69 7ZE (United Kingdom); Gorelov, I.; Hoeferkamp, M.; Metcalfe, J.; Seidel, S. [Department of Physics and Astronomy, University of New Mexico, MSC 07 4220, 1919 Lomas Boulevard NE, Albuquerque, NM 87131 (United States); Gaubas, E.; Ceponis, T. [Institute of Applied Research, Vilnius University, Sauletekio 9, LT-10222 Vilnius (Lithuania); and others

    2014-11-21

    We pursue scribe–cleave–passivate (SCP) technology for making “slim edge” sensors. The goal is to reduce the inactive region at the periphery of the devices while maintaining their performance. In this paper we report on two aspects of the current efforts. The first one involves fabrication options for mass production. We describe the automated cleaving tests and a simplified version of SCP post-processing of n-type devices. Another aspect is the radiation resistance of the passivation. We report on the radiation tests of n- and p-type devices with protons and neutrons.

  18. Optimized 425MHz passive wireless magnetic field sensor

    KAUST Repository

    Li, Bodong

    2014-06-01

    A passive, magnetic field sensor consisting of a 425 MHz surface acoustic wave device loaded with a giant magnetoimpedance element is developed. The GMI element with a multilayer structure composed of Ni80Fe 20/Cu/Ni80Fe20, is fabricated on a 128° Y-X cut LiNbO3 LiNbO3 substrate. The integrated sensor is characterized with a network analyzer through an S-parameter measurement. Upon the application of a magnetic field, a maximum magnitude change and phase shift of 7.8 dB and 27 degree, respectively, are observed. Within the linear region, the magnetic sensitivity is 1.6 dB/Oe and 5 deg/Oe. © 2014 IEEE.

  19. Reliability of reflectance measures in passive filters

    Science.gov (United States)

    Saldiva de André, Carmen Diva; Afonso de André, Paulo; Rocha, Francisco Marcelo; Saldiva, Paulo Hilário Nascimento; Carvalho de Oliveira, Regiani; Singer, Julio M.

    2014-08-01

    Measurements of optical reflectance in passive filters impregnated with a reactive chemical solution may be transformed to ozone concentrations via a calibration curve and constitute a low cost alternative for environmental monitoring, mainly to estimate human exposure. Given the possibility of errors caused by exposure bias, it is common to consider sets of m filters exposed during a certain period to estimate the latent reflectance on n different sample occasions at a certain location. Mixed models with sample occasions as random effects are useful to analyze data obtained under such setups. The intra-class correlation coefficient of the mean of the m measurements is an indicator of the reliability of the latent reflectance estimates. Our objective is to determine m in order to obtain a pre-specified reliability of the estimates, taking possible outliers into account. To illustrate the procedure, we consider an experiment conducted at the Laboratory of Experimental Air Pollution, University of São Paulo, Brazil (LPAE/FMUSP), where sets of m = 3 filters were exposed during 7 days on n = 9 different occasions at a certain location. The results show that the reliability of the latent reflectance estimates for each occasion obtained under homoskedasticity is km = 0.74. A residual analysis suggests that the within-occasion variance for two of the occasions should be different from the others. A refined model with two within-occasion variance components was considered, yielding km = 0.56 for these occasions and km = 0.87 for the remaining ones. To guarantee that all estimates have a reliability of at least 80% we require measurements on m = 10 filters on each occasion.

  20. A device for electron gun emittance measurement

    International Nuclear Information System (INIS)

    Aune, B.; Corveller, P.; Jablonka, M.; Joly, J.M.

    1985-05-01

    In order to improve the final emittance of the beam delivered by the ALS electron linac a new gun is going to be installed. To measure its emittance and evaluate the contribution of different factors to emittance growth we have developed an emittance measurement device. We describe the experimental and mathematical procedure we have followed, and give some results of measurements

  1. Characterization of alpha low level waste in 118 litre drums by passive and active neutron measurements in the promethee assay system

    International Nuclear Information System (INIS)

    Jallu, F.; Passard, C.; Mariani, A.; Ma, J.L.; Baudry, G.; Romeyer-Dherbey, J.; Recroix, H.; Rodriguez, M.; Loridon, J.; Denis, C.; Toubon, H.

    2003-01-01

    This paper deals with the PROMETHEE (PROMpt, epithermal and THErmal interrogation experiment) waste assay system for alpha low level waste (LLW) characterization. This device, including both passive and active neutron measurement methods, is developed at the French Atomic Energy Commission (C.E.A.), Cadarache Centre, in cooperation with COGEMA. Its purpose is to reach the requirements for incinerating alpha waste (less than 50 Bq[α], i.e. about 50 μg of Pu per gram of raw waste) in 118 litre- > drums. The PROMETHEE development and progress are performed with the help of simulation based on the Monte Carlo code MCNP4 [1]. These calculations are coupled with specific experiments in order to confirm calculated results and to obtain characteristics that can not be approached by the simulation (background for example). This paper presents the PROMETHEE measurement cell, its current performances, and studies performed at the laboratory about the most limiting parameters such as the matrix of the drum - its composition (H, Cl..), its density and its heterogeneity degree -the localization and the self-shielding properties of the contaminant. (orig.)

  2. Characterization of alpha low level waste in 118 litre drums by passive and active neutron measurements in the promethee assay system

    Energy Technology Data Exchange (ETDEWEB)

    Jallu, F.; Passard, C.; Mariani, A.; Ma, J.L.; Baudry, G.; Romeyer-Dherbey, J.; Recroix, H.; Rodriguez, M.; Loridon, J.; Denis, C. [French Atomic Energy Commission (C.E.A./Cadarache), DED/SCCD/LDMN, Durance (France); Toubon, H. [COGEMA, VELIZY-VILLACOUBLAY (France)

    2003-07-01

    This paper deals with the PROMETHEE (PROMpt, epithermal and THErmal interrogation experiment) waste assay system for alpha low level waste (LLW) characterization. This device, including both passive and active neutron measurement methods, is developed at the French Atomic Energy Commission (C.E.A.), Cadarache Centre, in cooperation with COGEMA. Its purpose is to reach the requirements for incinerating alpha waste (less than 50 Bq[{alpha}], i.e. about 50 {mu}g of Pu per gram of raw waste) in 118 litre-<> drums. The PROMETHEE development and progress are performed with the help of simulation based on the Monte Carlo code MCNP4 [1]. These calculations are coupled with specific experiments in order to confirm calculated results and to obtain characteristics that can not be approached by the simulation (background for example). This paper presents the PROMETHEE measurement cell, its current performances, and studies performed at the laboratory about the most limiting parameters such as the matrix of the drum - its composition (H, Cl..), its density and its heterogeneity degree -the localization and the self-shielding properties of the contaminant. (orig.)

  3. The use of segregated heat sink structures to achieve enhanced passive cooling for outdoor wireless devices

    International Nuclear Information System (INIS)

    O'Flaherty, K; Punch, J

    2014-01-01

    Environmental standards which govern outdoor wireless equipment can stipulate stringent conditions: high solar loads (up to 1 kW/m 2 ), ambient temperatures as high as 55°C and negligible wind speeds (0 m/s). These challenges result in restrictions on power dissipation within a given envelope, due to the limited heat transfer rates achievable with passive cooling. This paper addresses an outdoor wireless device which features two segregated heat sink structures arranged vertically within a shielded chimney structure: a primary sink to cool temperature-sensitive components; and a secondary sink for high power devices. Enhanced convective cooling of the primary sink is achieved due to the increased mass flow within the chimney generated by the secondary sink. An unshielded heat sink was examined numerically, theoretically and experimentally, to verify the applicability of the methods employed. Nusselt numbers were compared for three cases: an unshielded heat sink; a sink located at the inlet of a shield; and a primary heat sink in a segregated structure. The heat sink, when placed at the inlet of a shield three times the length of the sink, augmented the Nusselt number by an average of 64% compared to the unshielded case. The Nusselt number of the primary was found to increase proportionally with the temperature of the secondary sink, and the optimum vertical spacing between the primary and secondary sinks was found to be close to zero, provided that conductive transfer between the sinks was suppressed.

  4. Brachial cuff measurements of blood pressure during passive leg raising for fluid responsiveness prediction.

    Science.gov (United States)

    Lakhal, K; Ehrmann, S; Benzekri-Lefèvre, D; Runge, I; Legras, A; Dequin, P-F; Mercier, E; Wolff, M; Régnier, B; Boulain, T

    2012-05-01

    The passive leg raising maneuver (PLR) for fluid responsiveness testing relies on cardiac output (CO) measurements or invasive measurements of arterial pressure (AP) whereas the initial hemodynamic management during shock is often based solely on brachial cuff measurements. We assessed PLR-induced changes in noninvasive oscillometric readings to predict fluid responsiveness. Multicentre interventional study. In ICU sedated patients with circulatory failure, AP (invasive and noninvasive readings) and CO measurements were performed before, during PLR (trunk supine, not modified) and after 500-mL volume expansion. Areas under the ROC curves (AUC) were determined for fluid responsiveness (>10% volume expansion-induced increase in CO) prediction. In 112 patients (19% with arrhythmia), changes in noninvasive systolic AP during PLR (noninvasiveΔ(PLR)SAP) only predicted fluid responsiveness (cutoff 17%, n=21, positive likelihood ratio [LR] of 26 [18-38]), not unresponsiveness. If PLR-induced change in central venous pressure (CVP) was at least of 2 mm Hg (n=60), suggesting that PLR succeeded in altering cardiac preload, noninvasiveΔ(PLR)SAP performance was good: AUC of 0.94 [0.85-0.98], positive and negative LRs of 5.7 [4.6-6.8] and 0.07 [0.009-0.5], respectively, for a cutoff of 9%. Of note, invasive AP-derived indices did not outperform noninvasiveΔ(PLR)SAP. Regardless of CVP (i.e., during "blind PLR"), noninvasiveΔ(PLR)SAP more than 17% reliably identified fluid responders. During "CVP-guided PLR", in case of sufficient change in CVP, noninvasiveΔ(PLR)SAP performed better (cutoff of 9%). These findings, in sedated patients who had already undergone volume expansion and/or catecholamines, have to be verified during the early phase of circulatory failure (before an arterial line and/or a CO measuring device is placed). Copyright © 2012 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier SAS. All rights reserved.

  5. Secure optionally passive RFID tag or sensor with external power source and data logging

    Science.gov (United States)

    Nekoogar, Faranak; Reynolds, Matthew; Lefton, Scott; Dowla, Farid; Twogood, Richard

    2016-05-31

    A secure optionally passive RFID tag or sensor system comprises a passive RFID tag having means for receiving radio signals from at least one base station and for transmitting radio signals to at least one base station, where the tag is capable of being powered exclusively by received radio energy, and an external power and data logging device having at least one battery and electronic circuitry including a digital memory configured for storing and recalling data. The external power and data logging device has a means for powering the tag, and also has a means.

  6. Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance.

    Science.gov (United States)

    Lan, Xinzheng; Voznyy, Oleksandr; Kiani, Amirreza; García de Arquer, F Pelayo; Abbas, Abdullah Saud; Kim, Gi-Hwan; Liu, Mengxia; Yang, Zhenyu; Walters, Grant; Xu, Jixian; Yuan, Mingjian; Ning, Zhijun; Fan, Fengjia; Kanjanaboos, Pongsakorn; Kramer, Illan; Zhitomirsky, David; Lee, Philip; Perelgut, Alexander; Hoogland, Sjoerd; Sargent, Edward H

    2016-01-13

    A solution-based passivation scheme is developed featuring the use of molecular iodine and PbS colloidal quantum dots (CQDs). The improved passivation translates into a longer carrier diffusion length in the solid film. This allows thicker solar-cell devices to be built while preserving efficient charge collection, leading to a certified power conversion efficiency of 9.9%, which is a new record in CQD solar cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Mobile dynamic passive sampling of trace organic compounds: Evaluation of sampler performance in the Danube River.

    Science.gov (United States)

    Vrana, Branislav; Smedes, Foppe; Allan, Ian; Rusina, Tatsiana; Okonski, Krzysztof; Hilscherová, Klára; Novák, Jiří; Tarábek, Peter; Slobodník, Jaroslav

    2018-03-29

    A "dynamic" passive sampling (DPS) device, consisting of an electrically driven large volume water pumping device coupled to a passive sampler exposure cell, was designed to enhance the sampling rate of trace organic compounds. The purpose of enhancing the sampling rate was to achieve sufficient method sensitivity, when the period available for sampling is limited to a few days. Because the uptake principle in the DPS remains the same as for conventionally-deployed passive samplers, free dissolved concentrations can be derived from the compound uptake using available passive sampler calibration parameters. This was confirmed by good agreement between aqueous concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) derived from DPS and conventional caged passive sampler. The DPS device enhanced sampling rates of compounds that are accumulated in samplers under water boundary layer control (WBL) more than five times compared with the conventionally deployed samplers. The DPS device was deployed from a ship cruising downstream the Danube River to provide temporally and spatially integrated concentrations. A DPS-deployed sampler with surface area of 400cm 2 can reach sampling rates up to 83Ld -1 . The comparison of three passive samplers made of different sorbents and co-deployed in the DPS device, namely silicone rubber (SR), low density polyethylene (LDPE) and SDB-RPS Empore™ disks showed a good correlation of surface specific uptake for compounds that were sampled integratively during the entire exposure period. This provided a good basis for a cross-calibration between the samplers. The good correlation of free dissolved PAHs, PCBs and HCB concentration estimates obtained using SR and LDPE confirmed that both samplers are suitable for the identification of concentration gradients and trends in the water column. We showed that the differences in calculated aqueous concentrations between sampler types

  8. Significant performance enhancement of InGaN/GaN nanorod LEDs with multi-layer graphene transparent electrodes by alumina surface passivation.

    Science.gov (United States)

    Latzel, M; Büttner, P; Sarau, G; Höflich, K; Heilmann, M; Chen, W; Wen, X; Conibeer, G; Christiansen, S H

    2017-02-03

    Nanotextured surfaces provide an ideal platform for efficiently capturing and emitting light. However, the increased surface area in combination with surface defects induced by nanostructuring e.g. using reactive ion etching (RIE) negatively affects the device's active region and, thus, drastically decreases device performance. In this work, the influence of structural defects and surface states on the optical and electrical performance of InGaN/GaN nanorod (NR) light emitting diodes (LEDs) fabricated by top-down RIE of c-plane GaN with InGaN quantum wells was investigated. After proper surface treatment a significantly improved device performance could be shown. Therefore, wet chemical removal of damaged material in KOH solution followed by atomic layer deposition of only 10 [Formula: see text] alumina as wide bandgap oxide for passivation were successfully applied. Raman spectroscopy revealed that the initially compressively strained InGaN/GaN LED layer stack turned into a virtually completely relaxed GaN and partially relaxed InGaN combination after RIE etching of NRs. Time-correlated single photon counting provides evidence that both treatments-chemical etching and alumina deposition-reduce the number of pathways for non-radiative recombination. Steady-state photoluminescence revealed that the luminescent performance of the NR LEDs is increased by about 50% after KOH and 80% after additional alumina passivation. Finally, complete NR LED devices with a suspended graphene contact were fabricated, for which the effectiveness of the alumina passivation was successfully demonstrated by electroluminescence measurements.

  9. Device for radioactivity measurement of liquid samples

    International Nuclear Information System (INIS)

    Lamaziere, J.

    1983-01-01

    The device for low activity gamma measurements comprises an automatic changer for sample transfer from a conveyor to a measuring chamber. The conveyor includes a horizontal table were are regularly distributed sample holders. A lift allows a vertical motion of a plate for the exposition in front of a detector [fr

  10. Device for measuring well twistings

    Energy Technology Data Exchange (ETDEWEB)

    Kostin, Yu S; Golubin, S V; Keller, V F; Merzheyevskiy, A B; Zdorov, V P

    1982-01-01

    The device for measuring the well twistings with the use of fluids (poured into a vessel and which leave an imprint on the walls), containing a housing and adapter, is distinguished by the fact that in order to improve the accuracy of measurement by obtaining a clear imprint, it is equipped with cylinder that is spring-loaded in relation to the adapter, forming a vessel for fluid with the adapter. The adapter is made of two parts, one of which is made of neutral metal in relation to the fluid, and the other, from active in relation to the same fluid.

  11. Low temperature surface passivation of crystalline silicon and its application to interdigitated back contact silicon heterojunction (ibc-shj) solar cell

    Science.gov (United States)

    Shu, Zhan

    With the absence of shading loss together with improved quality of surface passivation introduced by low temperature processed amorphous silicon crystalline silicon (a-Si:H/c-Si) heterojunction, the interdigitated back contact silicon heterojunction (IBC-SHJ) solar cell exhibits a potential for higher conversion efficiency and lower cost than a traditional front contact diffused junction solar cell. In such solar cells, the front surface passivation is of great importance to achieve both high open-circuit voltage (Voc) and short-circuit current (Jsc). Therefore, the motivation of this work is to develop a low temperature processed structure for the front surface passivation of IBC-SHJ solar cells, which must have an excellent and stable passivation quality as well as a good anti-reflection property. Four different thin film materials/structures were studied and evaluated for this purpose, namely: amorphous silicon nitride (a-SiNx:H), thick amorphous silicon film (a-Si:H), amorphous silicon/silicon nitride/silicon carbide (a-Si:H/a-SiN x:H/a-SiC:H) stack structure with an ultra-thin a-Si:H layer, and zinc sulfide (ZnS). It was demonstrated that the a-Si:H/a-SiNx:H/a-SiC:H stack surpasses other candidates due to both of its excellent surface passivation quality (SRVSi surface is found to be resulted from (i) field effect passivation due to the positive fixed charge (Q fix~1x1011 cm-2 with 5 nm a-Si:H layer) in a-SiNx:H as measured from capacitance-voltage technique, and (ii) reduced defect state density (mid-gap Dit~4x1010 cm-2eV-1) at a-Si:H/c-Si interface provided by a 5 nm thick a-Si:H layer, as characterized by conductance-frequency measurements. Paralleled with the experimental studies, a computer program was developed in this work based on the extended Shockley-Read-Hall (SRH) model of surface recombination. With the help of this program, the experimental injection level dependent SRV curves of the stack passivated c-Si samples were successfully reproduced and

  12. Biomechanical conceptual design of a passive transfemoral prosthesis.

    NARCIS (Netherlands)

    Ünal, Ramazan; Carloni, Raffaella; Hekman, Edsko E.G.; Stramigioli, Stefano; Koopman, Hubertus F.J.M.

    In this study, we present the conceptual design of a fully-passive transfemoral prosthesis. The proposed design is inspired by the analysis of the musculo-skeletal activity of the healthy human leg. In order to realize an energy efficient device, we introduce three storage elements, which are

  13. Measurements of passive correction of magnetization higher multipoles in one meter long dipoles

    International Nuclear Information System (INIS)

    Green, M.A.; Althaus, R.F.; Barale, P.J.; Benjegerdes, R.W.; Gilbert, W.S.; Green, M.I.; Scanlan, R.M.; Taylor, C.E.

    1990-09-01

    The use of passive superconductor to correct the magnetization sextupole and decapole in SSC dipoles appears to be promising. This paper presents the results of a series of experiments of passive superconductor correctors in one meter long dipole magnets. Reduction of the magnetization sextupole by a factor of five to ten has been achieved using the passive superconductor correctors. The magnetization decapole was also reduced. The passive superconductor correctors reduced the sextupole temperature sensitivity by an order of magnitude. Flux creep decay was partially compensated for by the correctors. 13 refs., 7 figs

  14. European vehicle passive safety network

    NARCIS (Netherlands)

    Wismans, J.S.H.M.; Janssen, E.G.

    1999-01-01

    The general objective of the European Vehicle Passive Safety Network is to contribute to the reduction of the number of road traffic victims in Europe by passive safety measures. The aim of the road safety policy of the European Commission is to reduce the annual total of fatalities to 18000 in

  15. Ferromagnetism in Cr-doped passivated AlN nanowires

    KAUST Repository

    Kanoun, Mohammed; Goumri-Said, Souraya; Schwingenschlö gl, Udo

    2014-01-01

    We apply first principles calculations to predict the effect of Cr doping on the electronic and magnetic properties of passivated AlN nanowires. We compare the energetics of the possible dopant sites and demonstrate the favorable configuration ferromagnetic ordering. The charge density of the pristine passivated AlN nanowires is used to elucidate the bonding character. Spin density maps demonstrate an induced spin polarization for N atoms next to dopant atoms, though most of the magnetism is carried by the Cr atoms. Cr-doped AlN nanowires turn out to be interesting for spintronic devices. © 2014 the Partner Organisations.

  16. A Passive Flow-rate Regulator Using Pressure-dependent Autonomous Deflection of Parallel Membrane Valves

    International Nuclear Information System (INIS)

    Il, Doh; Cho, Young-Ho

    2009-01-01

    We present a passive flow-rate regulator, capable to compensate inlet pressure variation and to maintain a constant flow-rate for precise liquid control. Deflection of the parallel membrane valves in the passive flowrate regulator adjusts fluidic resistance according to inlet fluid pressure without any external energy. Compared to previous passive flow-rate regulators, the present device achieves precision flow regulation functions at the lower threshold compensation pressure of 20kPa with the simpler structure. In the experimental study, the fabricated device achieves the constant flow-rate of 6.09±0.32 μl/s over the inlet pressure range of 20∼50 kPa. The present flow-rate regulator having simple structure and lower compensation pressure level demonstrates potentials for use in integrated micropump systems

  17. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation

    KAUST Repository

    Tang, Jiang

    2011-09-18

    Colloidal-quantum-dot (CQD) optoelectronics offer a compelling combination of solution processing and spectral tunability through quantum size effects. So far, CQD solar cells have relied on the use of organic ligands to passivate the surface of the semiconductor nanoparticles. Although inorganic metal chalcogenide ligands have led to record electronic transport parameters in CQD films, no photovoltaic device has been reported based on such compounds. Here we establish an atomic ligand strategy that makes use of monovalent halide anions to enhance electronic transport and successfully passivate surface defects in PbS CQD films. Both time-resolved infrared spectroscopy and transient device characterization indicate that the scheme leads to a shallower trap state distribution than the best organic ligands. Solar cells fabricated following this strategy show up to 6% solar AM1.5G power-conversion efficiency. The CQD films are deposited at room temperature and under ambient atmosphere, rendering the process amenable to low-cost, roll-by-roll fabrication. © 2011 Macmillan Publishers Limited. All rights reserved.

  18. Effect of Surface Passivation on the Electrical Characteristics of Nanoscale AlGaN/GaN HEMT

    Science.gov (United States)

    Gupta, Akriti; Chatterjee, Neel; Kumar, Pradeep; Pandey, Sujata

    2017-08-01

    In this paper, we present the effect of passivation layer on the electrical characteristics of AlGaN/GaN HEMT. The energy band diagram, drain current voltage characteristics, transconductance and cut off frequency was calculated for both long channel and short channel devices. It was found that the electrical characteristics of the device improve with the introduction of high K dielectric in the passivation layer. The results obtained agree well with the data available in literature.

  19. Substrate and Passivation Techniques for Flexible Amorphous Silicon-Based X-ray Detectors.

    Science.gov (United States)

    Marrs, Michael A; Raupp, Gregory B

    2016-07-26

    Flexible active matrix display technology has been adapted to create new flexible photo-sensing electronic devices, including flexible X-ray detectors. Monolithic integration of amorphous silicon (a-Si) PIN photodiodes on a flexible substrate poses significant challenges associated with the intrinsic film stress of amorphous silicon. This paper examines how altering device structuring and diode passivation layers can greatly improve the electrical performance and the mechanical reliability of the device, thereby eliminating one of the major weaknesses of a-Si PIN diodes in comparison to alternative photodetector technology, such as organic bulk heterojunction photodiodes and amorphous selenium. A dark current of 0.5 pA/mm² and photodiode quantum efficiency of 74% are possible with a pixelated diode structure with a silicon nitride/SU-8 bilayer passivation structure on a 20 µm-thick polyimide substrate.

  20. Device measures static friction of magnetic tape

    Science.gov (United States)

    Cole, P. T.

    1967-01-01

    Device measures the coefficient of static friction of magnetic tape over a range of temperatures and relative humidities. It uses a strain gage to measure the force of friction between a reference surface and the tape drawn at a constant velocity of approximately 0.0001 inch per second relative to the reference surface.

  1. Improving Scene Classifications with Combined Active/Passive Measurements

    Science.gov (United States)

    Hu, Y.; Rodier, S.; Vaughan, M.; McGill, M.

    The uncertainties in cloud and aerosol physical properties derived from passive instruments such as MODIS are not insignificant And the uncertainty increases when the optical depths decrease Lidar observations do much better for the thin clouds and aerosols Unfortunately space-based lidar measurements such as the one onboard CALIPSO satellites are limited to nadir view only and thus have limited spatial coverage To produce climatologically meaningful thin cloud and aerosol data products it is necessary to combine the spatial coverage of MODIS with the highly sensitive CALIPSO lidar measurements Can we improving the quality of cloud and aerosol remote sensing data products by extending the knowledge about thin clouds and aerosols learned from CALIPSO-type of lidar measurements to a larger portion of the off-nadir MODIS-like multi-spectral pixels To answer the question we studied the collocated Cloud Physics Lidar CPL with Modis-Airborne-Simulation MAS observations and established an effective data fusion technique that will be applied in the combined CALIPSO MODIS cloud aerosol product algorithms This technique performs k-mean and Kohonen self-organized map cluster analysis on the entire swath of MAS data as well as on the combined CPL MAS data at the nadir track Interestingly the clusters generated from the two approaches are almost identical It indicates that the MAS multi-spectral data may have already captured most of the cloud and aerosol scene types such as cloud ice water phase multi-layer information aerosols

  2. Real-time precision measuring device of tree diameter growth

    Science.gov (United States)

    Guo, Mingming; Chen, Aijun; Li, Dongsheng; Liu, Nan; Yao, Jingyuan

    2016-01-01

    DBH(diameter at breast height) is an important factor to reflect of the quality of plant growth, also an important parameter indispensable in forest resources inventory and forest carbon sink, the accurate measurement of DBH or not is directly related to the research of forest resources inventory and forest carbon sink. In this paper, the principle and the mathematical model of DBH measurement device were introduced, the fixture measuring device and the hardware circuit for this tree diameter were designed, the measurement software programs were compiled, and the precision measuring device of tree diameter growth was developed. Some experiments with Australia fir were conducted. Based on experiment data, the correlations among the DBH variation of Australian fir, the environment temperature, air humility and PAR(photosynthetically active radiation) were obtained. The effects of environmental parameters (environment temperature, air humility and PAR) on tree diameter were analyzed. Experimental results show that there is a positive correlation between DBH variation of Australian fir and environment temperature, a negative correlation between DBH variation of Australian fir and air humility , so is PAR.

  3. An Innovative Flow-Measuring Device: Thermocouple Boundary Layer Rake

    Science.gov (United States)

    Hwang, Danny P.; Fralick, Gustave C.; Martin, Lisa C.; Wrbanek, John D.; Blaha, Charles A.

    2001-01-01

    An innovative flow-measuring device, a thermocouple boundary layer rake, was developed. The sensor detects the flow by using a thin-film thermocouple (TC) array to measure the temperature difference across a heater strip. The heater and TC arrays are microfabricated on a constant-thickness quartz strut with low heat conductivity. The device can measure the velocity profile well into the boundary layer, about 65 gm from the surface, which is almost four times closer to the surface than has been possible with the previously used total pressure tube.

  4. 30 CFR 75.320 - Air quality detectors and measurement devices.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air quality detectors and measurement devices... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.320 Air quality detectors and measurement devices. (a) Tests for methane shall be made by a qualified person with...

  5. Passivation effects on quantum dots prepared by successive ionic layer adsorption and reaction

    Science.gov (United States)

    Dai, Qilin; Maloney, Scott; Chen, Weimin; Poudyal, Uma; Wang, Wenyong

    2016-06-01

    ZnS is typically used to passivate semiconductor quantum dots (QDs) prepared by the successive ionic layer adsorption and reaction (SILAR) method for solar cell applications, while for colloidal QDs, organic ligands are usually used for this passivation purpose. In this study we utilized oleylamine and oleic acid ligands, besides ZnS, to passivate QDs prepared by the SILAR approach, and investigated their effects on the incident photon-to-current efficiency (IPCE) performance of the solar cells. It was observed that oleylamine passivation decreased device performance, while oleic acid passivation improved the IPCE of the cells. Redshift of the IPCE onset wavelength was also observed after oleic acid coating, which was attributed to the delocalization of excitons in the CdS QDs.

  6. Development and optimization of a device for diferencial pressure measurement

    International Nuclear Information System (INIS)

    Santarine, G.A.

    1980-01-01

    The measurements of reduced values of diferencial pressure, are studied. Several situations are described where the diferencial pressure accurate measurement is necessary in routine works in the Thermohydraulic Laboratory, as well as, the major pressure measurement devices and their respective range are studied. The development of a device for diferencial pressure measurement followed by the design development of the calibration bench covering the foreseen range, start up tests realization, optimization, calibration, performance analysis and conclusions, is showed. (Author) [pt

  7. Passive sorting of capsules by deformability

    Science.gov (United States)

    Haener, Edgar; Juel, Anne

    We study passive sorting according to deformability of liquid-filled ovalbumin-alginate capsules. We present results for two sorting geometries: a straight channel with a half-cylindrical obstruction and a pinched flow fractioning device (PFF) adapted for use with capsules. In the half-cylinder device, the capsules deform as they encounter the obstruction, and travel around the half-cylinder. The distance from the capsule's centre of mass to the surface of the half-cylinder depends on deformability, and separation between capsules of different deformability is amplified by diverging streamlines in the channel expansion downstream of the obstruction. We show experimentally that capsules can be sorted according to deformability with their downstream position depending on capillary number only, and we establish the sensitivity of the device to experimental variability. In the PFF device, particles are compressed against a wall using a strong pinching flow. We show that capsule deformation increases with the intensity of the pinching flow, but that the downstream capsule position is not set by deformation in the device. However, when using the PFF device like a T-Junction, we achieve improved sorting resolution compared to the half-cylinder device.

  8. Device for measuring the temperature of flowing hot gases

    Energy Technology Data Exchange (ETDEWEB)

    Reed, R D

    1977-05-12

    The invention pertains to a device to measure the temperature of a hot gas flowing through a closed tube. The device will have a simple and inexpensive design and avoid heat losses due to heat radiation near the thermal sensor.

  9. Miniature ingestible telemeter devices to measure deep-body temperature

    Science.gov (United States)

    Pope, J. M.; Fryer, T. B. (Inventor)

    1976-01-01

    A telemetry device comprised of a pill-size ingestible transmitter developed to obtain deep body temperature measurements of a human is described. The device has particular utility in the medical field where deep body temperatures provide an indication of general health.

  10. Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance

    KAUST Repository

    Lan, Xinzheng; Voznyy, Oleksandr; Kiani, Amirreza; Garcí a de Arquer, F. Pelayo; Abbas, Abdullah Saud; Kim, Gi-Hwan; Liu, Mengxia; Yang, Zhenyu; Walters, Grant; Xu, Jixian; Yuan, Mingjian; Ning, Zhijun; Fan, Fengjia; Kanjanaboos, Pongsakorn; Kramer, Illan; Zhitomirsky, David; Lee, Philip; Perelgut, Alexander; Hoogland, Sjoerd; Sargent, Edward H.

    2015-01-01

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Here we report a solution-based passivation scheme is developed featuring the use of molecular iodine and PbS colloidal quantum dots (CQDs). The improved passivation translates into a longer carrier diffusion length in the solid film. This allows thicker solar-cell devices to be built while preserving efficient charge collection, leading to a certified power conversion efficiency of 9.9%, which is a new record in CQD solar cells.

  11. Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance

    KAUST Repository

    Lan, Xinzheng

    2015-11-18

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Here we report a solution-based passivation scheme is developed featuring the use of molecular iodine and PbS colloidal quantum dots (CQDs). The improved passivation translates into a longer carrier diffusion length in the solid film. This allows thicker solar-cell devices to be built while preserving efficient charge collection, leading to a certified power conversion efficiency of 9.9%, which is a new record in CQD solar cells.

  12. Device to measure level in a steam drum of NPP

    International Nuclear Information System (INIS)

    Vinogradov, Yu.A.

    1988-01-01

    Gravitation-hydrostatic device for measuring coolant level in a steam drum of NPP is described. The device enables to improve the accuracy and sensitivity of measuring coolant level above and below the submerged perforated sheet of the steam drum and decrease the amount of levelling vessels in the unit by 50%. 1 fig

  13. Advantages and disadvantages of sulfur passivation of InAs/GaSb superlattice waveguide photodiodes

    International Nuclear Information System (INIS)

    Hoffmann, J; Lehnert, T; Hoffmann, D; Fouckhardt, H

    2009-01-01

    In this work, the influence of ammonium sulfide (NH 4 ) 2 S passivation on waveguide based mid-infrared InAs/GaSb superlattice photodetectors (2–5 µm wavelength) has been studied. The current–voltage characteristics for reverse as well as for forward bias of passivated samples have been examined. The advantages of this have been the reduction of the reverse leakage current and the increase of zero bias resistance. As a disadvantage the decrease of the photoresponsivity after sulfur passivation has been found. Furthermore, it has been observed that the passivation solution does not only passivate the surface of GaSb, but it also reacts with entire GaSb layers and can destroy the devices

  14. A novel permanent maglev rotary LVAD with passive magnetic bearings.

    Science.gov (United States)

    Qian, K X; Yuan, H Y; Zeng, P; Ru, W M

    2005-01-01

    It has been widely acknowledged that permanent maglev cannot achieve stability; however, the authors have discovered that stable permanent maglev is possible under the effect of a combination of passive magnetic and nonmagnetic forces. In addition, a rotary left ventricular assist device (LVAD) with passive magnetic bearings has been developed. It is a radially driven impeller pump, having a rotor and a stator. The rotor consists of driven magnets and impeller; the motor coil and pump housing form the stator. Two passive magnetic bearings counteract the attractive force between motor coil iron core and rotor magnets; the rotor thereafter can be disaffiliated from the stator and become levitated under the action of passive magnetic and haemodynamic forces. Because of the pressure difference between the outlet and the inlet of the pump, there is a small flow passing through the gap of rotor and stator, and then entering the lower pressure area along the central hole of the rotor. This small flow comes to a full washout of all blood contacting surfaces in the motor. Moreover, a decreased Bernoulli force in the larger gap with faster flow produces a centring force that leads to stable levitation of the rotor. Resultantly, neither mechanical wear nor thrombosis will occur in the pump. The rotor position detection reveals that the precondition of levitation is a high rotating speed (over 3250 rpm) and a high flow rate (over 1 l min(-1)). Haemodynamic tests with porcine blood indicate that the device as a LVAD requires a rotating speed between 3500 and 4000 rpm for producing a blood flow of 4 - 6 l min(-1) against 100 mmHg mean pressure head. The egg-sized device has a weight of 200 g and an O.D. of 40 mm at its largest point.

  15. Hood River Passive House

    Energy Technology Data Exchange (ETDEWEB)

    Hales, David [BA-PIRC, Spokane, WA (United States)

    2014-01-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  16. Establishment of Passive Energy Conservation Measure and Economic Evaluation of Fenestration System in Nonresidential Building of Korea

    Directory of Open Access Journals (Sweden)

    Bo-Eun Choi

    2017-01-01

    Full Text Available ECO2 (building energy efficiency rating program and passive energy conservation measures (ECMs were established as a basic study for targeted methodologies and decision support systems development in Korea to meet national regulations. The primary energy consumption and economic evaluation of nonresidential buildings was performed. Passive ECMs were classified as planning and performance elements. The planning elements are the window-to-wall ratio (WWR and horizontal shading angle. The performance elements are the thermal transmittance (U-value of the walls, roof, and floor and the U-value and solar heat gain coefficient (SHGC of windows. This study focused on the window-to-wall ratio and the U-value and solar heat gain coefficient of windows. An economic efficiency database for the constructed alternatives was built; the target building was set and the Passive ECM List for the target building was derived. The energy consumption evaluation and economic evaluation were performed for each of the constructed alternatives, and a methodology for guiding energy efficiency decisions was proposed based on the performance evaluation results, and the optimal Passive ECM List for the target building was derived.

  17. Wireless implantable passive strain sensor: design, fabrication and characterization

    International Nuclear Information System (INIS)

    Umbrecht, F; Wägli, P; Dechand, S; Hierold, Ch; Gattiker, F; Neuenschwander, J; Sennhauser, U

    2010-01-01

    This work presents a new passive sensor concept for monitoring the deformation of orthopedic implants. The novel sensing principle of the WIPSS (wireless implantable passive strain sensor) is based on a hydro-mechanical amplification effect. The WIPSS is entirely made from biocompatible PMMA and consists of a microchannel attached to a reservoir, which is filled with an incompressible fluid. As the reservoir is exposed to strain, its volume changes and consequently the fill level inside the microchannel varies. The wireless detection of the microchannel's strain-dependent fill level is based on ultrasound. The WIPSS' sensing principle is proved by finite-element simulations and the reservoir's design is optimized toward maximum volume change, in order to achieve high sensitivity. A fabrication process for WIPSS sensor devices entirely made from PMMA is presented. The obtained measurement results confirmed the sensor's functionality and showed very good agreement with the obtained results of the conducted FE simulations regarding the sensor's sensitivity. A strain resolution of 1.7 ± 0.2 × 10 −5 was achieved. Further, the determination of the cross-sensitivity to temperature and strains applied out of the sensing direction is presented. The response to dynamic inputs (0.1–5 Hz) has been measured and showed decreasing sensor output with increasing frequency. Test structures of the sensor device allow the application of a signal bandwidth up to 1 Hz. Therefore, the proposed sensor concept of the WIPSS presents a promising new sensor system for static in vivo strain monitoring of orthopedic implants. In combination with the developed ultrasound-based read-out method, this new sensor system offers the potential of wireless sensor read-out with medical ultrasound scanners, which are commercially available.

  18. Results of the third CEC intercomparison of active and passive detectors for the measurement of radon and radon decay products

    International Nuclear Information System (INIS)

    Miles, J.C.H.; Sinnaeve, J.

    1988-01-01

    In 1982 and 1984 the radiation protection research programme of the European Communities organized intercomparisons of radon and radon daughter measurement techniques, and the results were published (Miles et al., 1983; Miles and Sinnaeve, 1986. The second of these intercomparisons was carried out as part of a wider exercise sponsored jointly by the CEC and the OECD/NEA (OECD, 1983). The third CEC intercomparison, held at the National Radiological Protection Board (NRPB) in the United Kingdom in 1987, again constituted the European regional part of this wider exercise. The intercomparison on the European region was carried out in two stages, the first for passive integrating detectors and the second for active instruments, usually by spot measurements. Twenty-one laboratories participated in the intercomparison, of passive dosimetry and 17 in that for active dosimetry. Passive detectors have been used in many European countries to carry out surveys of exposure in homes and to monitor occupational exposure. The exposures for the intercomparison of passive detectors were carried out in June, July and August 1987 at NRPB. The intercomparison of active detectors was carried out over three days in October 1987, when scientists from the participating laboratories brought their equipment to NRPB

  19. The link between exercise and titin passive stiffness.

    Science.gov (United States)

    Lalande, Sophie; Mueller, Patrick J; Chung, Charles S

    2017-09-01

    What is the topic of this review? This review focuses on how in vivo and molecular measurements of cardiac passive stiffness can predict exercise tolerance and how exercise training can reduce cardiac passive stiffness. What advances does it highlight? This review highlights advances in understanding the relationship between molecular (titin-based) and in vivo (left ventricular) passive stiffness, how passive stiffness modifies exercise tolerance, and how exercise training may be therapeutic for cardiac diseases with increased passive stiffness. Exercise can help alleviate the negative effects of cardiovascular disease and cardiovascular co-morbidities associated with sedentary behaviour; this may be especially true in diseases that are associated with increased left ventricular passive stiffness. In this review, we discuss the inverse relationship between exercise tolerance and cardiac passive stiffness. Passive stiffness is the physical property of cardiac muscle to produce a resistive force when stretched, which, in vivo, is measured using the left ventricular end diastolic pressure-volume relationship or is estimated using echocardiography. The giant elastic protein titin is the major contributor to passive stiffness at physiological muscle (sarcomere) lengths. Passive stiffness can be modified by altering titin isoform size or by post-translational modifications. In both human and animal models, increased left ventricular passive stiffness is associated with reduced exercise tolerance due to impaired diastolic filling, suggesting that increased passive stiffness predicts reduced exercise tolerance. At the same time, exercise training itself may induce both short- and long-term changes in titin-based passive stiffness, suggesting that exercise may be a treatment for diseases associated with increased passive stiffness. Direct modification of passive stiffness to improve exercise tolerance is a potential therapeutic approach. Titin passive stiffness itself may

  20. Design of a Fully-Passive Transfemoral Prosthesis Prototype

    NARCIS (Netherlands)

    Behrens, Sebastiaan Maria; Behrens, S.M.; Ünal, Ramazan; Unal, R.; Hekman, Edsko E.G.; Carloni, Raffaella; Stramigioli, Stefano; Koopman, Hubertus F.J.M.

    In this study, we present the mechanical design of a prototype of a fully-passive transfemoral prosthesis for normal walking. The conceptual working principle at the basis of the design is inspired by the power flow in human gait, with the main purpose of realizing an energy efficient device. The

  1. 10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide Passivation.

    Science.gov (United States)

    Lan, Xinzheng; Voznyy, Oleksandr; García de Arquer, F Pelayo; Liu, Mengxia; Xu, Jixian; Proppe, Andrew H; Walters, Grant; Fan, Fengjia; Tan, Hairen; Liu, Min; Yang, Zhenyu; Hoogland, Sjoerd; Sargent, Edward H

    2016-07-13

    Colloidal quantum dot (CQD) solar cells are solution-processed photovoltaics with broad spectral absorption tunability. Major advances in their efficiency have been made via improved CQD surface passivation and device architectures with enhanced charge carrier collection. Herein, we demonstrate a new strategy to improve further the passivation of CQDs starting from the solution phase. A cosolvent system is employed to tune the solvent polarity in order to achieve the solvation of methylammonium iodide (MAI) and the dispersion of hydrophobic PbS CQDs simultaneously in a homogeneous phase, otherwise not achieved in a single solvent. This process enables MAI to access the CQDs to confer improved passivation. This, in turn, allows for efficient charge extraction from a thicker photoactive layer device, leading to a certified solar cell power conversion efficiency of 10.6%, a new certified record in CQD photovoltaics.

  2. AlN/GaN-Based MOS-HEMT Technology: Processing and Device Results

    Directory of Open Access Journals (Sweden)

    S. Taking

    2011-01-01

    Full Text Available Process development of AlN/GaN MOS-HEMTs is presented, along with issues and problems concerning the fabrication processes. The developed technology uses thermally grown Al2O3 as a gate dielectric and surface passivation for devices. Significant improvement in device performance was observed using the following techniques: (1 Ohmic contact optimisation using Al wet etch prior to Ohmic metal deposition and (2 mesa sidewall passivation. DC and RF performance of the fabricated devices will be presented and discussed in this paper.

  3. Evaluation on thermal-hydraulic characteristics for passive safety device of APR1400

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seong Yeon; Lee, S. H.; Son, M. K. [Korea Association for Nuclear Technology, Taejon (Korea, Republic of); Jee, M. S.; Chung, M. H. [Chungnam National Univ., Taejon (Korea, Republic of)

    2001-07-15

    To establish evaluation and verification guideline for the APR1400, thermal-hydraulic characteristics for fuel rod bundle, reactor vessel and fluidic device is analyzed using FLUENT. Scope and major results of research are as follows : Thermal-hydraulic characteristics for nuclear fuel rod bundle: design data for nuclear fuel rod bundle and structure are surveyed, and 3 x 3 sub-channel model is adopted to investigate the fluid flow and heat transfer characteristics in fuel rod bundle. Computational results are compared with the heat transfer data measured by naphthalene sublimation method, and numerical analysis and evaluation are performed at various design conditions and flow conditions. Thermal-hydraulic characteristics for reactor vessel: reactor vessel design data are surveyed to develop numerical model. Porous media model is applied for fuel rod bundle, and full-scale, three dimensional simulation is performed at actual operating conditions. Distributions of velocity, pressure and temperature are discussed. Flow characteristics for fluidic device: three dimensional numerical model for fluidic device is developed, and numerical results are compared with experimental data obtained at KAERI in order to verify numerical simulation. In addition, variation of flow rate is investigated at various elapsed times after valve operating, and flow characteristics is analyzed at low and high flow rate conditions, respectively.

  4. Newnes passive and discrete circuits pocket book

    CERN Document Server

    MARSTON, R M

    2000-01-01

    Newnes Passive and Discrete Circuits Pocket Book is aimed at all engineers, technicians, students and experimenters who can build a design directly from a circuit diagram. In a highly concise form Ray Marston presents a huge compendium of circuits that can be built as they appear, adapted or used as building blocks. The devices used have been carefully chosen for their ease of availability and reasonable price. The selection of devices has been thoroughly updated for the second edition, which has also been expanded to cover the latest ICs.The three sections of the book cover: Moder

  5. Retrieval of Effective Correlation Length and Snow Water Equivalent from Radar and Passive Microwave Measurements

    Directory of Open Access Journals (Sweden)

    Juha Lemmetyinen

    2018-01-01

    Full Text Available Current methods for retrieving SWE (snow water equivalent from space rely on passive microwave sensors. Observations are limited by poor spatial resolution, ambiguities related to separation of snow microstructural properties from the total snow mass, and signal saturation when snow is deep (~>80 cm. The use of SAR (Synthetic Aperture Radar at suitable frequencies has been suggested as a potential observation method to overcome the coarse resolution of passive microwave sensors. Nevertheless, suitable sensors operating from space are, up to now, unavailable. Active microwave retrievals suffer, however, from the same difficulties as the passive case in separating impacts of scattering efficiency from those of snow mass. In this study, we explore the potential of applying active (radar and passive (radiometer microwave observations in tandem, by using a dataset of co-incident tower-based active and passive microwave observations and detailed in situ data from a test site in Northern Finland. The dataset spans four winter seasons with daily coverage. In order to quantify the temporal variability of snow microstructure, we derive an effective correlation length for the snowpack (treated as a single layer, which matches the simulated microwave response of a semi-empirical radiative transfer model to observations. This effective parameter is derived from radiometer and radar observations at different frequencies and frequency combinations (10.2, 13.3 and 16.7 GHz for radar; 10.65, 18.7 and 37 GHz for radiometer. Under dry snow conditions, correlations are found between the effective correlation length retrieved from active and passive measurements. Consequently, the derived effective correlation length from passive microwave observations is applied to parameterize the retrieval of SWE using radar, improving retrieval skill compared to a case with no prior knowledge of snow-scattering efficiency. The same concept can be applied to future radar

  6. Instruments to measure radon activity concentration or exposure to radon. Interlaboratory comparison 2011

    International Nuclear Information System (INIS)

    Foerster, Elisabeth; Beck, Thomas; Buchroeder, Helmut; Doering, Joachim; Schmidt, Volkmar

    2011-10-01

    According to the Directive 96/29/EURATOM the monitoring of occupational radiation exposures shall base on individual measurements carried out by an approved dosimetric service. Pursuant to the European Directive an approved dosimetric service is a body responsible for the calibration, reading or interpretation of individual monitoring devices.., whose capacity to act in this respect is recognized by the competent authorities. This concept will also be applied to radon services issuing passive radon measurement devices. Passive radon measurement devices 1 using solid state nuclear track detectors or electrets are recommended for individual monitoring of exposures to radon. German regulations lay down that radon measuring devices are appropriate for purposes of occupational radiation monitoring if the devices are issued by recognized radon measurement services, and the measurement service submits devices of the same type issued for radon monitoring to regular intercomparisons conducted by BfS. A radon measuring service is recognized by the competent authority if it proves its organizational and technical competence, e. g. by accreditation. These regulations have been introduced in the area of occupational radiation exposures. Nevertheless, it is recommended that radon measuring services which carry out radon measurements in other areas (e.g. dwellings) should subject themselves to these measures voluntarily. The interlaboratory comparisons comprise the organization, exposure, and evaluation of measurements of radon activity concentration or exposure to radon. The comparisons only concern radon-222; radon-220 is not in the scope. Radon services being interested can get further information from the website www.bfs.de/de/ion/radon/fachinfomessung/vergleichspruefungen.html and from the European Information System on Proficiency Testing Schemes (eptis) available in the internet. (orig.)

  7. Processing and characterization of device solder interconnection and module attachment for power electronics modules

    Science.gov (United States)

    Haque, Shatil

    This research is focused on the processing of an innovative three-dimensional packaging architecture for power electronics building blocks with soldered device interconnections and subsequent characterization of the module's critical interfaces. A low-cost approach termed metal posts interconnected parallel plate structure (MPIPPS) was developed for packaging high-performance modules of power electronics building blocks (PEBB). The new concept implemented direct bonding of copper posts, not wire bonding of fine aluminum wires, to interconnect power devices as well as joining the different circuit planes together. We have demonstrated the feasibility of this packaging approach by constructing PEBB modules (consisting of Insulated Gate Bipolar Transistors (IGBTs), diodes, and a few gate driver elements and passive components). In the 1st phase of module fabrication with IGBTs with Si3N 4 passivation, we had successfully fabricated packaged devices and modules using the MPIPPS technique. These modules were tested electrically and thermally, and they operated at pulse-switch and high power stages up to 6kW. However, in the 2nd phase of module fabrication with polyimide passivated devices, we experienced significant yield problems due to metallization difficulties of these devices. The under-bump metallurgy scheme for the development of a solderable interface involved sputtering of Ti-Ni-Cu and Cr-Cu, and an electroless deposition of Zn-Ni-Au metallization. The metallization process produced excellent yield in the case of Si3N4 passivated devices. However, under the same metallization schemes, devices with a polyimide passivation exhibited inconsistent electrical contact resistance. We found that organic contaminants such as hydrocarbons remain in the form of thin monolayers on the surface, even in the case of as-received devices from the manufacturer. Moreover, in the case of polyimide passivated devices, plasma cleaning introduced a few carbon constituents on the

  8. The measurement test of uranium in a uranium-contaminated waste by passive gamma-rays measurement method

    CERN Document Server

    Sukegawa, Y; Ohki, K; Suzuki, S; Yoshida, M

    2002-01-01

    This report is completed about the measurement test and the proofreading of passive gamma - rays measurement method for Non - destructive assay of uranium in a uranium-contaminated waste. The following are the results of the test. 1) The estimation of the amount of uranium by ionization survey meter is difficult for low intensity of gamma-rays emitted from uranium under about 50g. 2) The estimation of the amount of uranium in the waste by NaI detector is possible in case of only uranium, but the estimation from mixed spectrums with transmission source (60-cobalt) is difficult to confirm target peaks. 3) If daughter nuclides of uranium and thorium chain of uranium ore exist, measurement by NaI detector is affected by gamma-rays from the daughter nuclides seriously-As a result, the estimation of the amount of uranium is difficult. 4) The measurement of uranium in a uranium-contaminated waste by germanium detector is possible to estimate of uranium and other nuclides. 5) As to estimation of the amount of uranium...

  9. Smart portable rehabilitation devices

    Directory of Open Access Journals (Sweden)

    Leahey Matt

    2005-07-01

    Full Text Available Abstract Background The majority of current portable orthotic devices and rehabilitative braces provide stability, apply precise pressure, or help maintain alignment of the joints with out the capability for real time monitoring of the patient's motions and forces and without the ability for real time adjustments of the applied forces and motions. Improved technology has allowed for advancements where these devices can be designed to apply a form of tension to resist motion of the joint. These devices induce quicker recovery and are more effective at restoring proper biomechanics and improving muscle function. However, their shortcoming is in their inability to be adjusted in real-time, which is the most ideal form of a device for rehabilitation. This introduces a second class of devices beyond passive orthotics. It is comprised of "active" or powered devices, and although more complicated in design, they are definitely the most versatile. An active or powered orthotic, usually employs some type of actuator(s. Methods In this paper we present several new advancements in the area of smart rehabilitation devices that have been developed by the Northeastern University Robotics and Mechatronics Laboratory. They are all compact, wearable and portable devices and boast re-programmable, real time computer controlled functions as the central theme behind their operation. The sensory information and computer control of the three described devices make for highly efficient and versatile systems that represent a whole new breed in wearable rehabilitation devices. Their applications range from active-assistive rehabilitation to resistance exercise and even have applications in gait training. The three devices described are: a transportable continuous passive motion elbow device, a wearable electro-rheological fluid based knee resistance device, and a wearable electrical stimulation and biofeedback knee device. Results Laboratory tests of the devices

  10. Smart portable rehabilitation devices.

    Science.gov (United States)

    Mavroidis, Constantinos; Nikitczuk, Jason; Weinberg, Brian; Danaher, Gil; Jensen, Katherine; Pelletier, Philip; Prugnarola, Jennifer; Stuart, Ryan; Arango, Roberto; Leahey, Matt; Pavone, Robert; Provo, Andrew; Yasevac, Dan

    2005-07-12

    The majority of current portable orthotic devices and rehabilitative braces provide stability, apply precise pressure, or help maintain alignment of the joints with out the capability for real time monitoring of the patient's motions and forces and without the ability for real time adjustments of the applied forces and motions. Improved technology has allowed for advancements where these devices can be designed to apply a form of tension to resist motion of the joint. These devices induce quicker recovery and are more effective at restoring proper biomechanics and improving muscle function. However, their shortcoming is in their inability to be adjusted in real-time, which is the most ideal form of a device for rehabilitation. This introduces a second class of devices beyond passive orthotics. It is comprised of "active" or powered devices, and although more complicated in design, they are definitely the most versatile. An active or powered orthotic, usually employs some type of actuator(s). In this paper we present several new advancements in the area of smart rehabilitation devices that have been developed by the Northeastern University Robotics and Mechatronics Laboratory. They are all compact, wearable and portable devices and boast re-programmable, real time computer controlled functions as the central theme behind their operation. The sensory information and computer control of the three described devices make for highly efficient and versatile systems that represent a whole new breed in wearable rehabilitation devices. Their applications range from active-assistive rehabilitation to resistance exercise and even have applications in gait training. The three devices described are: a transportable continuous passive motion elbow device, a wearable electro-rheological fluid based knee resistance device, and a wearable electrical stimulation and biofeedback knee device. Laboratory tests of the devices demonstrated that they were able to meet their design

  11. Accuracy of an improved device for remote measuring of tree-trunk diameters

    International Nuclear Information System (INIS)

    Matsushita, T.; Kato, S.; Komiyama, A.

    2000-01-01

    For measuring the diameters of tree trunks from a distant position, a recent device using a laser beam was developed by Kantou. We improved this device to serve our own practical purposes. The improved device consists of a 1-m-long metal caliper and a small telescope sliding smoothly onto it. Using the cross hairs in the scope, one can measure both edges of an object on the caliper and calculate its length. The laser beam is used just for guiding the telescopic sights to the correct positions on the object. In this study, the accuracy of this new device was examined by measuring objects of differing lengths, the distance from the object, and the angle of elevation to the object. Since each result of the experiment predicted absolute errors of measurement of less than 3 mm, this new device will be suitable for the measurement of trunk diameters in the field

  12. Contributing to shipping container security: can passive sensors bring a solution?

    International Nuclear Information System (INIS)

    Janssens-Maenhout, G.; De Roo, F.; Janssens, W.

    2010-01-01

    Illicit trafficking of fissionable material in container cargoes is recognized as a potential weakness in Nuclear Security. Triggered by the attacks of 11 September 2001, measures were undertaken to enhance maritime security in extension to the Safety Of Life At Sea Convention and in line with the US Container Security Initiatives. Effective detection techniques are needed that allow the inspector to intercept illicit trafficking of nuclear weapons components or components of other nuclear explosive devices. Many security measures focus on active interrogation of the container content by X-ray scan, which might be extended with the newly developed tagged neutron inspection system. Both active interrogation techniques can, with the current huge volume of container traffic, only be applied to a limited number of selected containers. The question arises whether a passive detection technique can offer an alternative solution. This study investigates if containers equipped with a small passive detector will register during transport the neutron irradiation by fissionable material such as plutonium in a measurable way. In practice, 4/5 of the containers are about 1/8 filled with hydrogenous material and undergo a typical 2 months route. For this reference case, it was found that the most compatible passive detector would be an activation foil of iridium. Monte-Carlo simulations showed that for the reference case the activity of a 250 μm thin foil with 6 cm 2 cross-section would register 1.2 Bq when it is irradiated by a significant quantity of Reactor-Grade PuO 2 . However this activity drops with almost two orders of magnitude for other fillings and other isotopic compositions and forms of the Pu-source. The procedure of selecting the target material for Pu detection is detailed with the theoretical methods, in order to be useful for other applications. Moreover the value of such additional passive sensors for securing maritime container transport is situated within

  13. Measurements of Energy Performance and Indoor Environmental Quality in 10 Danish Passive Houses

    DEFF Research Database (Denmark)

    Larsen, Tine Steen; Jensen, Rasmus Lund

    2009-01-01

    The paper describes the first results from a large Danish project regarding measurements of energy performance and indoor environmental quality in 10 Danish Passive Houses. The project includes both qualitative and quantitative analyses. This paper describes the first results from the quantitative...... part. The house considered in this paper has an air change rate (ACR) of 0.34 h-1 and the results from the first few months of measurements show excellent results when relative humidity (RH) and CO2-levels are considered. When the temperatures are assessed problems with slight overheating are found...... used for heating domestic hot water is very similar to conventional houses....

  14. Indoor environment in Swedish passive houses

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Langer, Sarka; Bloom, Erica Bloom

    2014-01-01

    The purpose of this study was to evaluate the indoor air quality (IAQ) in newly built low energy houses. Measurements were performed in 22 passive houses and 21 conventional buildings during 2012-2013 and 2013-2014 heating seasons. The measured parameters were temperature, relative humidity......, concentration of CO2, NO2, formaldehyde, volatile organic compounds, and live microbiological flora. Air exchange rates (AER) were determined from the concentration-time profiles of CO2. The median AER was slightly higher in the passive houses than in conventional buildings (0.66 h-1 vs. 0.60 h-1). The median...... concentrations in passive houses and conventional buildings were 9.7 and 11 μg/m3, respectively, for NO2, 12 and 16 μg/m3 for formaldehyde, and 230 and 145 μg/m3 for TVOC. The indoor microbiological flora did not differ, with a few exceptions, from outdoors. The IAQ in the passive buildings was judged...

  15. Thin film device applications

    CERN Document Server

    Kaur, Inderjeet

    1983-01-01

    Two-dimensional materials created ab initio by the process of condensation of atoms, molecules, or ions, called thin films, have unique properties significantly different from the corresponding bulk materials as a result of their physical dimensions, geometry, nonequilibrium microstructure, and metallurgy. Further, these characteristic features of thin films can be drasti­ cally modified and tailored to obtain the desired and required physical characteristics. These features form the basis of development of a host of extraordinary active and passive thin film device applications in the last two decades. On the one extreme, these applications are in the submicron dimensions in such areas as very large scale integration (VLSI), Josephson junction quantum interference devices, magnetic bubbles, and integrated optics. On the other extreme, large-area thin films are being used as selective coatings for solar thermal conversion, solar cells for photovoltaic conver­ sion, and protection and passivating layers. Ind...

  16. Small Device For Short-Range Antenna Measurements Using Optics

    DEFF Research Database (Denmark)

    Yanakiev, Boyan Radkov; Nielsen, Jesper Ødum; Christensen, Morten

    2011-01-01

    This paper gives a practical solution for implementing an antenna radiation pattern measurement device using optical fibers. It is suitable for anechoic chambers as well as short range channel sounding. The device is optimized for small size and provides a cheap and easy way to make optical antenna...

  17. SHORT COMMUNICATION: Time measurement device with four femtosecond stability

    Science.gov (United States)

    Panek, Petr; Prochazka, Ivan; Kodet, Jan

    2010-10-01

    We present the experimental results of extremely precise timing in the sense of time-of-arrival measurements in a local time scale. The timing device designed and constructed in our laboratory is based on a new concept using a surface acoustic wave filter as a time interpolator. Construction of the device is briefly described. The experiments described were focused on evaluating the timing precision and stability. Low-jitter test pulses with a repetition frequency of 763 Hz were generated synchronously to the local time base and their times of arrival were measured. The resulting precision of a single measurement was typically 900 fs RMS, and a timing stability TDEV of 4 fs was achieved for time intervals in the range from 300 s to 2 h. To our knowledge this is the best value reported to date for the stability of a timing device. The experimental results are discussed and possible improvements are proposed.

  18. Passive Wireless Hydrogen Sensors Using Orthogonal Frequency Coded Acoustic Wave Devices, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive surface acoustic wave (SAW) based hydrogen sensors for NASA application to distributed wireless hydrogen leak...

  19. Improving the accuracy of smart devices to measure noise exposure.

    Science.gov (United States)

    Roberts, Benjamin; Kardous, Chucri; Neitzel, Richard

    2016-11-01

    Occupational noise exposure is one of the most frequent hazards present in the workplace; up to 22 million workers have potentially hazardous noise exposures in the U.S. As a result, noise-induced hearing loss is one of the most common occupational injuries in the U.S. Workers in manufacturing, construction, and the military are at the highest risk for hearing loss. Despite the large number of people exposed to high levels of noise at work, many occupations have not been adequately evaluated for noise exposure. The objective of this experiment was to investigate whether or not iOS smartphones and other smart devices (Apple iPhones and iPods) could be used as reliable instruments to measure noise exposures. For this experiment three different types of microphones were tested with a single model of iPod and three generations of iPhones: the internal microphones on the device, a low-end lapel microphone, and a high-end lapel microphone marketed as being compliant with the International Electrotechnical Commission's (IEC) standard for a Class 2-microphone. All possible combinations of microphones and noise measurement applications were tested in a controlled environment using several different levels of pink noise ranging from 60-100 dBA. Results were compared to simultaneous measurements made using a Type 1 sound level measurement system. Analysis of variance and Tukey's honest significant difference (HSD) test were used to determine if the results differed by microphone or noise measurement application. Levels measured with external microphones combined with certain noise measurement applications did not differ significantly from levels measured with the Type 1 sound measurement system. Results showed that it may be possible to use iOS smartphones and smart devices, with specific combinations of measurement applications and calibrated external microphones, to collect reliable, occupational noise exposure data under certain conditions and within the limitations of the

  20. Test device for measuring permeability of a barrier material

    Science.gov (United States)

    Reese, Matthew; Dameron, Arrelaine; Kempe, Michael

    2014-03-04

    A test device for measuring permeability of a barrier material. An exemplary device comprises a test card having a thin-film conductor-pattern formed thereon and an edge seal which seals the test card to the barrier material. Another exemplary embodiment is an electrical calcium test device comprising: a test card an impermeable spacer, an edge seal which seals the test card to the spacer and an edge seal which seals the spacer to the barrier material.

  1. Passive, Collapsible Contingency Urinal for Human Space Flight

    Science.gov (United States)

    Jenson, Ryan

    2015-01-01

    Fluid transport systems for spacecraft face acute challenges because of the persistently unfamiliar and unforgiving low-gravity environment. IRPI, LLC, has developed a contingency wastewater collection and processing device that provides passive liquid collation, containment, bubble separation, and droplet coalescence functions. The lightweight, low-volume, low-cost, and potentially disposable device may be used for subsequent sampling, metering, storage, disposal, and/or reuse. The approach includes a fractal wetting design that incorporates smart capillary fluidics. This work could have a broad impact on capillary-based fluid management on spacecraft and on Earth.

  2. Enhancing Efficiency of Perovskite Solar Cells via Surface Passivation with Graphene Oxide Interlayer.

    Science.gov (United States)

    Li, Hao; Tao, Leiming; Huang, Feihong; Sun, Qiang; Zhao, Xiaojuan; Han, Junbo; Shen, Yan; Wang, Mingkui

    2017-11-08

    Perovskite solar cells have been demonstrated as promising low-cost and highly efficient next-generation solar cells. Enhancing V OC by minimization the interfacial recombination kinetics can further improve device performance. In this work, we for the first time reported on surface passivation of perovskite layers with chemical modified graphene oxides, which act as efficient interlayer to reduce interfacial recombination and enhance hole extraction as well. Our modeling points out that the passivation effect mainly comes from the interaction between functional group (4-fluorophenyl) and under-coordinated Pb ions. The resulting perovskite solar cells achieved high efficient power conversion efficiency of 18.75% with enhanced high open circuit V OC of 1.11 V. Ultrafast spectroscopy, photovoltage/photocurrent transient decay, and electronic impedance spectroscopy characterizations reveal the effective passivation effect and the energy loss mechanism. This work sheds light on the importance of interfacial engineering on the surface of perovskite layers and provides possible ways to improve device efficiency.

  3. Settlement substantiation of the passive devices shutdown fast reactors by trip the absorbing rod in case of anticipated accident

    International Nuclear Information System (INIS)

    Portianoy, A.G.; Serdun, E.N.; Sorokin, A.P.; Uhov, V.A.; Egorov, V.S.

    2000-01-01

    Results of improvement of the passive device shutdown fast reactors BN-600 (PDSR) are considered. The device works (lets off a neutron absorber) at increase of coolant temperature above 660 deg. C (650 deg. C). The PDSR working element represents a design of a sylphon-container type, filled with aluminium (magnesium) and operates (extended) under melting it at the expense of energy of a compressed high-temperature spring, and/or increases of a volume (6% of aluminium) at melting, and/or increases of a volume at further growth of a temperature. Account of the characteristics of PDSR working elements is carried out. Mathematical models, describing dependence of the basic of the characteristics (sluggishness, size of lengthening) from the constructive factors and modes of anticipated accident, are received. Is shown, that the PDSR characteristics provide an emergency stop of the reactor BN-600 in a case of a heaviest anticipated accident prior to the beginning sodium boiling in a core. The developed PDSR have a number of advantages before known, for example, magnetic with a Curie point, first of all, at the expense of significant efforts generation, multichannels of operation and weak dependence on the operational factors, first of all, neutron fluence. (author)

  4. Some recent measurements onboard spacecraft with passive detector

    Czech Academy of Sciences Publication Activity Database

    Spurný, František; Jadrníčková, Iva

    2005-01-01

    Roč. 116, 1-4 (2005), s. 228-231 ISSN 0144-8420 R&D Projects: GA ČR GA202/04/0795 Institutional research plan: CEZ:AV0Z10480505 Keywords : space research * radiation dosimetry * passive detectors Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 0.490, year: 2005

  5. Sidewall passivation for InGaN/GaN nanopillar light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Won Hyuck; Abraham, Michael; Yu, Shih-Ying [Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); You, Guanjun; Liu, Jie; Wang, Li; Xu, Jian, E-mail: jianxu@engr.psu.edu [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Mohney, Suzanne E., E-mail: mohney@ems.psu.edu [Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2014-07-07

    We studied the effect of sidewall passivation on InGaN/GaN multiquantum well-based nanopillar light emitting diode (LED) performance. In this research, the effects of varying etch rate, KOH treatment, and sulfur passivation were studied for reducing nanopillar sidewall damage and improving device efficiency. Nanopillars prepared under optimal etching conditions showed higher photoluminescence intensity compared with starting planar epilayers. Furthermore, nanopillar LEDs with and without sulfur passivation were compared through electrical and optical characterization. Suppressed leakage current under reverse bias and four times higher electroluminescence (EL) intensity were observed for passivated nanopillar LEDs compared with unpassivated nanopillar LEDs. The suppressed leakage current and EL intensity enhancement reflect the reduction of non-radiative recombination at the nanopillar sidewalls. In addition, the effect of sulfur passivation was found to be very stable, and further insight into its mechanism was gained through transmission electron microscopy.

  6. Passive measurement of flux nucleation in the current-induced resistive state of type I superconductors

    International Nuclear Information System (INIS)

    Selig, K.P.; Chimenti, D.E.; Huebener, R.P.

    1978-01-01

    Flux-tube nucleation rates have been measured in the current-induced resistive state of type I superconducting In films between 1.5 and 2.0 K by a completely passive technique. Indication of periodic nucleation is observed only in narrow regions of sample voltage drop, whose position is a sensitive function of temperature. Frequency bandwidth measurements of the nucleation rate yield a spectral purity of one part in 10 4 within the narrow regions where an experimental signal can be detected. (orig.) [de

  7. Passivation process of X80 pipeline steel in bicarbonate solutions

    Science.gov (United States)

    Zhou, Jian-Long; Li, Xiao-Gang; Du, Cui-Wei; Pan, Ying; Li, Tao; Liu, Qian

    2011-04-01

    The passivation process of X80 pipeline steel in bicarbonate solutions was investigated using potentiodynamic, dynamic electrochemical impedance spectroscopy (DEIS), and Mott-Schottky measurements. The results show that the shape of polarization curves changes with HCO{3/-} concentration. The critical `passive' concentration is 0.009 mol/L HCO{3/-} for X80 pipeline steel in bicarbonate solutions. No anodic current peak exists in HCO3/- solutions when the concentration is lower than 0.009 mol/L, whereas there are one and two anodic current peaks when the HCO3/- concentration ranges from 0.009 to 0.05 mol/L and is higher than 0.1 mol/L, respectively. DEIS measurements show that there exist active dissolution range, transition range, pre-passive range, passive layer formation range, passive range, and trans-passive range for X80 pipeline steel in the 0.1 mol/L HCO{3/-} solutions. The results of DEIS measurements are in complete agreement with the potentiodynamic diagram. An equivalent circuit containing three sub-layers is used to explain the Nyquist plots in the passive range. Analyses are well made for explaining the corresponding fitted capacitance and impedance. The Mott-Schottky plots show that the passive film of X80 pipeline steel is an n-type semiconductor, and capacitance measurements are in good accordance with the results of DEIS experiment.

  8. Design of passive decay heat removal system using thermosyphon for low temperature and low pressure pool type LWR

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jangsik; You, Byung Hyun; Jung, Yong Hun; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-10-15

    In seawater desalination process which doesn't need high temperature steam, the reactor has profitability. KAIST has be developing the new reactor design, AHR400, for only desalination. For maximizing safety, the reactor requires passive decay heat removal system. In many nuclear reactors, DHR system is loop form. The DHR system can be designed simple by applying conventional thermosyphon, which is fully passive device, shows high heat transfer performance and simple structure. DHR system utilizes conventional thermosyphon and its heat transfer characteristics are analyzed for AHR400. For maximizing safety of the reactor, passive decay heat removal system are prepared. Thermosyphon is useful device for DHR system of low pressure and low temperature pool type reactor. Thermosyphon is operated fully passive and has simple structure. Bundle of thermosyphon get the goal to prohibit boiling in reactor and high pressure in reactor vessel.

  9. Full-Scale Passive Earth Entry Vehicle Landing Tests: Methods and Measurements

    Science.gov (United States)

    Littell, Justin D.; Kellas, Sotiris

    2018-01-01

    During the summer of 2016, a series of drop tests were conducted on two passive earth entry vehicle (EEV) test articles at the Utah Test and Training Range (UTTR). The tests were conducted to evaluate the structural integrity of a realistic EEV vehicle under anticipated landing loads. The test vehicles were lifted to an altitude of approximately 400m via a helicopter and released via release hook into a predesignated 61 m landing zone. Onboard accelerometers were capable of measuring vehicle free flight and impact loads. High-speed cameras on the ground tracked the free-falling vehicles and data was used to calculate critical impact parameters during the final seconds of flight. Additional sets of high definition and ultra-high definition cameras were able to supplement the high-speed data by capturing the release and free flight of the test articles. Three tests were successfully completed and showed that the passive vehicle design was able to withstand the impact loads from nominal and off-nominal impacts at landing velocities of approximately 29 m/s. Two out of three test resulted in off-nominal impacts due to a combination of high winds at altitude and the method used to suspend the vehicle from the helicopter. Both the video and acceleration data captured is examined and discussed. Finally, recommendations for improved release and instrumentation methods are presented.

  10. Passive acoustic measurement of bedload grain size distribution using self-generated noise

    Directory of Open Access Journals (Sweden)

    T. Petrut

    2018-01-01

    Full Text Available Monitoring sediment transport processes in rivers is of particular interest to engineers and scientists to assess the stability of rivers and hydraulic structures. Various methods for sediment transport process description were proposed using conventional or surrogate measurement techniques. This paper addresses the topic of the passive acoustic monitoring of bedload transport in rivers and especially the estimation of the bedload grain size distribution from self-generated noise. It discusses the feasibility of linking the acoustic signal spectrum shape to bedload grain sizes involved in elastic impacts with the river bed treated as a massive slab. Bedload grain size distribution is estimated by a regularized algebraic inversion scheme fed with the power spectrum density of river noise estimated from one hydrophone. The inversion methodology relies upon a physical model that predicts the acoustic field generated by the collision between rigid bodies. Here we proposed an analytic model of the acoustic energy spectrum generated by the impacts between a sphere and a slab. The proposed model computes the power spectral density of bedload noise using a linear system of analytic energy spectra weighted by the grain size distribution. The algebraic system of equations is then solved by least square optimization and solution regularization methods. The result of inversion leads directly to the estimation of the bedload grain size distribution. The inversion method was applied to real acoustic data from passive acoustics experiments realized on the Isère River, in France. The inversion of in situ measured spectra reveals good estimations of grain size distribution, fairly close to what was estimated by physical sampling instruments. These results illustrate the potential of the hydrophone technique to be used as a standalone method that could ensure high spatial and temporal resolution measurements for sediment transport in rivers.

  11. Passive acoustic measurement of bedload grain size distribution using self-generated noise

    Science.gov (United States)

    Petrut, Teodor; Geay, Thomas; Gervaise, Cédric; Belleudy, Philippe; Zanker, Sebastien

    2018-01-01

    Monitoring sediment transport processes in rivers is of particular interest to engineers and scientists to assess the stability of rivers and hydraulic structures. Various methods for sediment transport process description were proposed using conventional or surrogate measurement techniques. This paper addresses the topic of the passive acoustic monitoring of bedload transport in rivers and especially the estimation of the bedload grain size distribution from self-generated noise. It discusses the feasibility of linking the acoustic signal spectrum shape to bedload grain sizes involved in elastic impacts with the river bed treated as a massive slab. Bedload grain size distribution is estimated by a regularized algebraic inversion scheme fed with the power spectrum density of river noise estimated from one hydrophone. The inversion methodology relies upon a physical model that predicts the acoustic field generated by the collision between rigid bodies. Here we proposed an analytic model of the acoustic energy spectrum generated by the impacts between a sphere and a slab. The proposed model computes the power spectral density of bedload noise using a linear system of analytic energy spectra weighted by the grain size distribution. The algebraic system of equations is then solved by least square optimization and solution regularization methods. The result of inversion leads directly to the estimation of the bedload grain size distribution. The inversion method was applied to real acoustic data from passive acoustics experiments realized on the Isère River, in France. The inversion of in situ measured spectra reveals good estimations of grain size distribution, fairly close to what was estimated by physical sampling instruments. These results illustrate the potential of the hydrophone technique to be used as a standalone method that could ensure high spatial and temporal resolution measurements for sediment transport in rivers.

  12. Design of a Soft Robotic Elbow Sleeve with Passive and Intent-Controlled Actuation

    Directory of Open Access Journals (Sweden)

    Tze Hui Koh

    2017-10-01

    Full Text Available The provision of continuous passive, and intent-based assisted movements for neuromuscular training can be incorporated into a robotic elbow sleeve. The objective of this study is to propose the design and test the functionality of a soft robotic elbow sleeve in assisting flexion and extension of the elbow, both passively and using intent-based motion reinforcement. First, the elbow sleeve was developed, using elastomeric and fabric-based pneumatic actuators, which are soft and lightweight, in order to address issues of non-portability and poor alignment with joints that conventional robotic rehabilitation devices are faced with. Second, the control system was developed to allow for: (i continuous passive actuation, in which the actuators will be activated in cycles, alternating between flexion and extension; and (ii an intent-based actuation, in which user intent is detected by surface electromyography (sEMG sensors attached to the biceps and triceps, and passed through a logic sequence to allow for flexion or extension of the elbow. Using this setup, the elbow sleeve was tested on six healthy subjects to assess the functionality of the device, in terms of the range of motion afforded by the device while in the continuous passive actuation. The results showed that the elbow sleeve is capable of achieving approximately 50% of the full range of motion of the elbow joint among all subjects. Next, further experiments were conducted to test the efficacy of the intent-based actuation on these healthy subjects. The results showed that all subjects were capable of achieving electromyography (EMG control of the elbow sleeve. These preliminary results show that the elbow sleeve is capable of carrying out continuous passive and intent-based assisted movements. Further investigation of the clinical implementation of the elbow sleeve for the neuromuscular training of neurologically-impaired persons, such as stroke survivors, is needed.

  13. Effective Passivation and Tunneling Hybrid a-SiOx(In) Layer in ITO/n-Si Heterojunction Photovoltaic Device.

    Science.gov (United States)

    Gao, Ming; Wan, Yazhou; Li, Yong; Han, Baichao; Song, Wenlei; Xu, Fei; Zhao, Lei; Ma, Zhongquan

    2017-05-24

    In this article, using controllable magnetron sputtering of indium tin oxide (ITO) materials on single crystal silicon at 100 °C, the optoelectronic heterojunction frame of ITO/a-SiO x (In)/n-Si is simply fabricated for the purpose of realizing passivation contact and hole tunneling. It is found that the gradation profile of indium (In) element together with silicon oxide (SiO x /In) within the ultrathin boundary zone between ITO and n-Si occurs and is characterized by X-ray photoelectron spectroscopy with the ion milling technique. The atomistic morphology and physical phase of the interfacial layer has been observed with a high-resolution transmission electron microscope. X-ray diffraction, Hall effect measurement, and optical transmittance with Tauc plot have been applied to the microstructure and property analyses of ITO thin films, respectively. The polycrystalline and amorphous phases have been verified for ITO films and SiO x (In) hybrid layer, respectively. For the quantum transport, both direct and defect-assisted tunneling of photogenerated holes through the a-SiO x (In) layer is confirmed. Besides, there is a gap state correlative to the indium composition and located at E v + 4.60 eV in the ternary hybrid a-SiO x (In) layer that is predicted by density functional theory of first-principles calculation, which acts as an "extended delocalized state" for direct tunneling of the photogenerated holes. The reasonable built-in potential (V bi = 0.66 V) and optimally controlled ternary hybrid a-SiO x (In) layer (about 1.4 nm) result in that the device exhibits excellent PV performance, with an open-circuit voltage of 0.540 V, a short-circuit current density of 30.5 mA/cm 2 , a high fill factor of 74.2%, and a conversion efficiency of 12.2%, under the AM 1.5 illumination. The work function difference between ITO (5.06 eV) and n-Si (4.31 eV) is determined by ultraviolet photoemission spectroscopy and ascribed to the essence of the built-in-field of the PV device

  14. Instruments to measure radon-222 activity concentration or exposure to radon-222. Intercomparison 2014

    International Nuclear Information System (INIS)

    Foerster, Elisabeth; Beck, Thomas; Buchroeder, Helmut; Doering, Joachim; Schmidt, Volkmar

    2014-10-01

    According to the Directive 96/29/EURATOM the monitoring of occupational radiation exposures shall base on individual measurements carried out by an approved dosimetric service. Pursuant to the European Directive an approved dosimetric service is a body responsible for the calibration, reading or interpretation of individual monitoring devices.., whose capacity to act in this respect is recognized by the competent authorities. This concept will also be applied to radon services issuing passive radon measurement devices. Passive radon measurement devices 1 using solid state nuclear track detectors or electrets are recommended for individual monitoring of exposures to radon. German regulations lay down that radon measuring devices are appropriate for purposes of occupational radiation monitoring if the devices are issued by recognized radon measurement services, and the measurement service submits devices of the same type issued for radon monitoring to regular intercomparisons conducted by the Bundesamt fuer Strahlenschutz (BfS). A radon measuring service is recognized by the competent authority if it proves its organisational and technical competence, e. g. by accreditation. These regulations have been introduced in the area of occupational radiation exposures. Nevertheless, it is recommended that radon measuring services which carry out radon measurements in other areas (e.g. dwellings) should subject themselves to these measures voluntarily. The interlaboratory comparisons comprise the organization, exposure, and evaluation of measurements of radon activity concentration or exposure to radon. The comparisons only concern radon-222; radon-220 is not in the scope. Radon services being interested can get further information from the European Information System on Proficiency Testing Schemes (EPTIS) and from the BfS websites.

  15. Passivation of laser-treated nickel aluminum bronze as measured by electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Klassen, R.D.; Hyatt, C.V.; Roberge, P.R.

    2000-01-01

    Electrochemical impedance spectroscopy was used to assess the corrosion behavior of the weld zones and surface conditions of a laser-clad nickel aluminum bronze immersed in a 3.5% neutral saline solution. The zones and conditions examined included: (i) as-cast base material; (ii) laser-clad material with the high temperature oxide from welding intact; (iii) polished laser-clad material and (iv) specimens representative of just the as-deposited and reheated zones of the laser-clad surface. A pseudo steady-state level of passivation was reached in all the samples within 40 hours. The reheated zone passivated more slowly than the as-deposited region and both weld zones passivated more quickly than the base material. Electrochemical impedance data illustrated a transition during the passivation process of the polished specimens that is consistent with the development of a film layer that restricted mass transfer. The welding oxide from the laser treatment immediately behaved as a passivation film that was indistinguishable from that which eventually develops on polished specimens. (author)

  16. Effective surface passivation of InP nanowires by atomic-layer-deposited Al2O3 with POx interlayer

    NARCIS (Netherlands)

    Black, L.E.; Cavalli, A.; Verheijen, M.A.; Haverkort, J.E.M.; Bakkers, E.P.A.M.; Kessels, W.M.M.

    2017-01-01

    III/V semiconductor nanostructures have significant potential in device applications, but effective surface passivation is critical due to their large surface-to-volume ratio. For InP such passivation has proven particularly difficult, with substantial depassivation generally observed following

  17. Reactor power measuring device

    International Nuclear Information System (INIS)

    Izumi, Mikio; Sano, Yuji; Seki, Eiji; Yoshida, Toshifumi; Ito, Toshiaki.

    1993-01-01

    The present invention provides a self-powered long detector having a sensitivity over the entire length of a reactor core as an entire control rod withdrawal range of a BWR type reactor, and a reactor power measuring device using a gamma ray thermometer which scarcely causes sensitivity degradation. That is, a hollow protection pipe is disposed passing through the reactor core from the outside of a reactor pressure vessel. The self-powered long detectors and the gamma ray thermometers are inserted and installed in the protection pipe. An average reactor power in an axial direction of the reactor relative to a certain position in the horizontal cross section of the reactor core is determined based on the power of the self-powered long detector over the entire length of the reactor core. Since the response of the self-powered detector relative to a local power change is rapid, the output is used as an input signal to a safety protection device of the reactor core. Further, a gamma ray thermometer secured in the reactor and having scarce sensitivity degradation is used instead of an incore travelling neutron monitor used for relative calibration of an existent neutron monitor secured in the reactor. (I.S.)

  18. A passive sampler for atmospheric ozone

    International Nuclear Information System (INIS)

    Grosjean, D.; Hisham, M.W.M.

    1992-01-01

    A simple, cost-effective passive sampler has been developed for the determination of atmospheric ozone. This passive sampler is based on a colorant which fades upon reaction with ozone, whose concentration can be determined by reflectance measurement of the color change. Direct, on-site measurements are possible, and no chemical analyses are needed. Sampler design and validation studies have been carried out and included quantitative determination of color change vs exposure time (1-8 days), color change vs. ozone concentration (30-350 ppb), and response to changes in sampler configuration that modify the passive sampling rate. With indigo carmine as the colorant, the detection limits are 30 ppb. day and 120 ppb. day using a plastic grid and Teflon filter, respectively, as diffusion barriers. Interferences from nitrogen dioxide, formaldehyde and peroxyacetyl nitrate are 15, 4 and 16%, respectively, thus resulting in a negligible bias when measuring ozone in ambient air

  19. Grain orientation and strain measurements in sub-micron wide passivated individual aluminum test structures

    International Nuclear Information System (INIS)

    Tamura, N.; Valek, B.C.; Spolenak, R.; MacDowell, A.A.; Celestre, R.S.; Padmore, H.A.; Brown, W.L.; Marieb, T.; Bravman, J.C.; Batterman, B.W.; Patel, J.R.

    2001-01-01

    An X-ray microdiffraction dedicated beamline, combining white and monochromatic beam capabilities, has been built at the Advanced Light Source. The purpose of this beamline is to address the myriad of problems in Materials Science and Physics that require submicron x-ray beams for structural characterization. Many such problems are found in the general area of thin films and nano-materials. For instance, the ability to characterize the orientation and strain state in individual grains of thin films allows us to measure structural changes at a very local level. These microstructural changes are influenced heavily by such parameters as deposition conditions and subsequent treatment. The accurate measurement of strain gradients at the micron and sub-micron level finds many applications ranging from the strain state under nano-indenters to gradients at crack tips. Undoubtedly many other applications will unfold in the future as we gain experience with the capabilities and limitations of this instrument. We have applied this technique to measure grain orientation and residual stress in single grains of pure Al interconnect lines and preliminary results on post-electromigration test experiments are presented. It is shown that measurements with this instrument can be used to resolve the complete stress tensor (6 components) in a submicron volume inside a single grain of Al under a passivation layer with an overall precision of about 20 MPa. The microstructure of passivated lines appears to be complex, with grains divided into identifiable subgrains and noticeable local variations of both tensile/compressive and shear stresses within single grains

  20. Measurement of uranium and plutonium in solid waste by passive photon or neutron counting and isotopic neutron source interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Crane, T.W.

    1980-03-01

    A summary of the status and applicability of nondestructive assay (NDA) techniques for the measurement of uranium and plutonium in 55-gal barrels of solid waste is reported. The NDA techniques reviewed include passive gamma-ray and x-ray counting with scintillator, solid state, and proportional gas photon detectors, passive neutron counting, and active neutron interrogation with neutron and gamma-ray counting. The active neutron interrogation methods are limited to those employing isotopic neutron sources. Three generic neutron sources (alpha-n, photoneutron, and /sup 252/Cf) are considered. The neutron detectors reviewed for both prompt and delayed fission neutron detection with the above sources include thermal (/sup 3/He, /sup 10/BF/sub 3/) and recoil (/sup 4/He, CH/sub 4/) proportional gas detectors and liquid and plastic scintillator detectors. The instrument found to be best suited for low-level measurements (< 10 nCi/g) is the /sup 252/Cf Shuffler. The measurement technique consists of passive neutron counting followed by cyclic activation using a /sup 252/Cf source and delayed neutron counting with the source withdrawn. It is recommended that a waste assay station composed of a /sup 252/Cf Shuffler, a gamma-ray scanner, and a screening station be tested and evaluated at a nuclear waste site. 34 figures, 15 tables.

  1. The Effect of Interacting with Two Devices when Creating the Illusion of Internal State in Tangible Widgets

    DEFF Research Database (Denmark)

    Bech, Christoffer; Bork, Andreas Heldbjerg; Memborg, Jakob Birch

    2017-01-01

    This paper investigates whether the illusion of internal state in passive tangible widgets is stronger when using one touchscreen device or two devices. Passive tangible widgets are an increasingly popular way to interact with tablet games. Since the production of passive widgets is usually cheaper...... than the production of widgets with internal state, it is much more cost-efficient to induce the illusion of internal state in passive widgets than to use tangible widgets with an actual internal state. An experiment was conducted where the participants’ belief in the illusion was determined by means...

  2. Measurement of 235U enrichment in UF6 by passive gamma spectrometry

    International Nuclear Information System (INIS)

    Sawai, Hideo; Ochiai, Ken-ichi; Kaya, Akira

    1979-01-01

    For the assay of UF 6 , a single-channel analyzer (SCA) system of a passive gamma spectrometer has been developed. Basic measuring conditions were studied: such as the effects of sample density and heterogeneity and the effects of cylinder material and wall thickness. Called ''enrichment analyzer'', the system is operated to carry out the measurement and calculation of 235 U enrichment by a directive of the program in a calculator. The resulting data are available in real time output. Measurements were carried out in two modes: ''all way'' mode which measured in the rotation of the cylinder and the up-and-down motion of the detector, and ''spot'' mode which measured at one point on the cylinder. The average accuracy was about 1.8% in case of the former, and 3.2% in case of the latter. It was shown that the ''all way'' mode is preferable, but the ''spot'' mode is also necessary for the assay of large cylinders such as 30 A type. (J.P.N.)

  3. UNIVERSAL AUTO-CALIBRATION FOR A RAPID BATTERY IMPEDANCE SPECTRUM MEASUREMENT DEVICE

    Energy Technology Data Exchange (ETDEWEB)

    Jon P. Christophersen; John L. Morrison; William H. Morrison

    2014-03-01

    Electrochemical impedance spectroscopy has been shown to be a valuable tool for diagnostics and prognostics of energy storage devices such as batteries and ultra-capacitors. Although measurements have been typically confined to laboratory environments, rapid impedance spectrum measurement techniques have been developed for on-line, embedded applications as well. The prototype hardware for the rapid technique has been validated using lithium-ion batteries, but issues with calibration had also been identified. A new, universal automatic calibration technique was developed to address the identified issues while also enabling a more simplified approach. A single, broad-frequency range is used to calibrate the system and then scaled to the actual range and conditions used when measuring a device under test. The range used for calibration must be broad relative to the expected measurement conditions for the scaling to be successful. Validation studies were performed by comparing the universal calibration approach with data acquired from targeted calibration ranges based on the expected range of performance for the device under test. First, a mid-level shunt range was used for calibration and used to measure devices with lower and higher impedance. Next, a high excitation current level was used for calibration, followed by measurements using lower currents. Finally, calibration was performed over a wide frequency range and used to measure test articles with a lower set of frequencies. In all cases, the universal calibration approach compared very well with results acquired following a targeted calibration. Additionally, the shunts used for the automated calibration technique were successfully characterized such that the rapid impedance measurements compare very well with laboratory-scale measurements. These data indicate that the universal approach can be successfully used for onboard rapid impedance spectra measurements for a broad set of test devices and range of

  4. Passive safety systems for integral reactors

    International Nuclear Information System (INIS)

    Kuul, V.S.; Samoilov, O.B.

    1996-01-01

    In this paper, a wide range of passive safety systems intended for use on integral reactors is considered. The operation of these systems relies on natural processes and does not require external power supplies. Using these systems, there is the possibility of preventing serious consequences for all classes of accidents including reactivity, loss-of-coolant and loss of heat sink as well as severe accidents. Enhancement of safety system reliability has been achieved through the use of self-actuating devices, capable of providing passive initiation of protective and isolation systems, which respond immediately to variations in the physical parameters of the fluid in the reactor or in a guard vessel. For beyond design base accidents accompanied by complete loss of heat removal capability, autonomous self-actuated ERHR trains have been proposed. These trains are completely independent of the secondary loops and need no action to isolate them from the steam turbine plant. Passive safety principles have been consistently implemented in AST-500, ATETS-200 and VPBER 600 which are new generation NPPs developed by OKBM. Their main characteristic is enhanced stability over a wide range of internal and external emergency initiators. (author). 10 figs

  5. Passive safety systems for integral reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kuul, V S; Samoilov, O B [OKB Mechanical Engineering (Russian Federation)

    1996-12-01

    In this paper, a wide range of passive safety systems intended for use on integral reactors is considered. The operation of these systems relies on natural processes and does not require external power supplies. Using these systems, there is the possibility of preventing serious consequences for all classes of accidents including reactivity, loss-of-coolant and loss of heat sink as well as severe accidents. Enhancement of safety system reliability has been achieved through the use of self-actuating devices, capable of providing passive initiation of protective and isolation systems, which respond immediately to variations in the physical parameters of the fluid in the reactor or in a guard vessel. For beyond design base accidents accompanied by complete loss of heat removal capability, autonomous self-actuated ERHR trains have been proposed. These trains are completely independent of the secondary loops and need no action to isolate them from the steam turbine plant. Passive safety principles have been consistently implemented in AST-500, ATETS-200 and VPBER 600 which are new generation NPPs developed by OKBM. Their main characteristic is enhanced stability over a wide range of internal and external emergency initiators. (author). 10 figs.

  6. Passive mode locking of a GaSb-based quantum well diode laser emitting at 2.1 μm

    Energy Technology Data Exchange (ETDEWEB)

    Merghem, K.; Aubin, G.; Ramdane, A. [CNRS, Laboratory for Photonics and Nanostructures, Route de Nozay, 91460 Marcoussis (France); Teissier, R.; Baranov, A. N. [Institute of Electronics and Systems, CNRS UMR 5214, University of Montpellier, 34095 Montpellier (France); Monakhov, A. M. [Ioffe Institute, 194021 Saint Petersburg (Russian Federation)

    2015-09-14

    We demonstrate passive mode locking of a GaSb-based diode laser emitting at 2.1 μm. The active region of the studied device consists in two 10-nm-thick GaInSbAs/GaAlSbAs quantum wells. Passive mode locking has been achieved in a two-section laser with one of the sections used as a saturable absorber. A microwave signal at 20.6 GHz, measured in the electrical circuit of the absorber, corresponds to the fundamental photon round-trip frequency in the laser resonator. The linewidth of this signal as low as ∼10 kHz has been observed at certain operating conditions, indicating low phase noise mode-locked operation.

  7. Passive mode locking of a GaSb-based quantum well diode laser emitting at 2.1 μm

    International Nuclear Information System (INIS)

    Merghem, K.; Aubin, G.; Ramdane, A.; Teissier, R.; Baranov, A. N.; Monakhov, A. M.

    2015-01-01

    We demonstrate passive mode locking of a GaSb-based diode laser emitting at 2.1 μm. The active region of the studied device consists in two 10-nm-thick GaInSbAs/GaAlSbAs quantum wells. Passive mode locking has been achieved in a two-section laser with one of the sections used as a saturable absorber. A microwave signal at 20.6 GHz, measured in the electrical circuit of the absorber, corresponds to the fundamental photon round-trip frequency in the laser resonator. The linewidth of this signal as low as ∼10 kHz has been observed at certain operating conditions, indicating low phase noise mode-locked operation

  8. Bi-layer SixNy passivation on AlGaN/GaN HEMTs to suppress current collapse and improve breakdown

    International Nuclear Information System (INIS)

    Lee, K B; Green, R T; Houston, P A; Tan, W S; Uren, M J; Wallis, D J; Martin, T

    2010-01-01

    Si x N y deposited at low temperature was found to improve the breakdown voltage of AlGaN/GaN HEMTs at the expense of current collapse due to the presence of a high density of charge trapping states. On the other hand, stoichiometric Si 3 N 4 film deposited at high temperature was effective in mitigating current slump but no improvement in the breakdown voltage was observed. Combining the benefit of both films, a bi-layer stacked passivation has been employed on the HEMTs. Gate lag measurements revealed that the current collapse was mitigated and the breakdown voltage of the devices was found to increase from 120 V to 238 V upon passivation

  9. Design and development of a device to measure the deformities of clubfoot.

    Science.gov (United States)

    Khas, Kanwaljit S; Pandey, Pulak M; Ray, Alok R

    2015-03-01

    Clubfoot describes a range of foot abnormalities usually present at birth, in which the foot of a baby is twisted out of shape or position. In order to develop an effective treatment plan for clubfoot and/or assess the extent to which existing interventions are successful, medical practitioners need to be able to accurately measure the nature and extent of the deformity. This is typically performed using a goniometer. However, this device is only able to measure one dimension at a time. As such, a complete assessment of the condition of a foot can be extremely burdensome and time-consuming. This article describes a new device that can quickly and efficiently take several measurements on feet of various sizes and shapes. The use of this device was verified by measuring the deformities of real clubfeet. A silicone rubber clubfoot model was also used in this study to clearly illustrate the effectiveness with which the proposed device can measure the various deformities of clubfoot. It is envisaged that the use of this device will significantly reduce the time and effort orthopedists require to measure clubfoot deformities and develop and assess treatment plans. © IMechE 2015.

  10. Passive elimination of static electricity in oil industry

    Directory of Open Access Journals (Sweden)

    Gaćanović Mićo

    2014-01-01

    Full Text Available This study explains the existing and real conditions of a possible passive elimination of static electricity when loading oil and oil derivatives. We are considering the formation and survival of gas bubbles both in the volume of oil in its depth, but also at the surface of oil and oil derivatives of the partly filled reservoir, and formation of both volume and surface electric charge in oil and oil derivatives. The study presents the research of formation and survival of static electricity in both reservoirs and tank trucks of different geometric shapes partly filled with oil and oil derivatives. We are proposing a new original possibility of passive elimination of static electricity when loading oil and oil derivatives in reservoirs and tank trucks. The proposed passive device for elimination of static electricity is protected at the international level in the domain of intellectual property (with a patent, model and distinctive mark.

  11. Passive active neutron radioassay measurement uncertainty for combustible and glass waste matrices

    International Nuclear Information System (INIS)

    Blackwood, L.G.; Harker, Y.D.; Meachum, T.R.; Yoon, Woo Y.

    1997-01-01

    Using a modified statistical sampling and verification approach, total uncertainty of INEL's Passive Active Neutron (PAN) radioassay system was evaluated for combustible and glass content codes. Waste structure and content of 100 randomly selected drums in each the waste categories were computer modeled based on review of real-time radiography video tapes. Specific quantities of Pu were added to the drum models according to an experimental design. These drum models were then submitted to the Monte Carlo Neutron Photon code processing and subsequent calculations to produce simulated PAN system measurements. The reported Pu masses from the simulation runs were compared with the corresponding input masses. Analysis of the measurement errors produced uncertainty estimates. This paper presents results of the uncertainty calculations and compares them to previous reported results obtained for graphite waste

  12. Chalcogen passivation: an in-situ method to manipulate the morphology and electrical property of GaAs nanowires.

    Science.gov (United States)

    Yang, Zai-Xing; Yin, Yanxue; Sun, Jiamin; Bian, Luozhen; Han, Ning; Zhou, Ziyao; Shu, Lei; Wang, Fengyun; Chen, Yunfa; Song, Aimin; Ho, Johnny C

    2018-05-02

    Recently, owing to the large surface-area-to-volume ratio of nanowires (NWs), manipulation of their surface states becomes technologically important and being investigated for various applications. Here, an in-situ surfactant-assisted chemical vapor deposition is developed with various chalcogens (e.g. S, Se and Te) as the passivators to enhance the NW growth and to manipulate the controllable p-n conductivity switching of fabricated NW devices. Due to the optimal size effect and electronegativity matching, Se is observed to provide the best NW surface passivation in diminishing the space charge depletion effect induced by the oxide shell and yielding the less p-type (i.e. inversion) or even insulating conductivity, as compared with S delivering the intense p-type conductivity for thin NWs with the diameter of ~30 nm. Te does not only provide the surface passivation, but also dopes the NW surface into n-type conductivity by donating electrons. All of the results can be extended to other kinds of NWs with similar surface effects, resulting in careful device design considerations with appropriate surface passivation for achieving the optimal NW device performances.

  13. Impurity diffusion, point defect engineering, and surface/interface passivation in germanium

    KAUST Repository

    Chroneos, Alexander I.; Schwingenschlö gl, Udo; Dimoulas, Athanasios Dimoulas

    2012-01-01

    in view of recent results. The importance of electrically active defects on the Ge surface and interfaces is addressed considering strategies to suppress them and to passivate the surfaces/interfaces, bearing in mind their importance for advanced devices

  14. Comparison of Monolithic Optical Frequency Comb Generators Based on Passively Mode-Locked Lasers for Continuous Wave mm-Wave and Sub-THz Generation

    DEFF Research Database (Denmark)

    Criado, A. R.; de Dios, C.; Acedo, P.

    2012-01-01

    In this paper, two different Passive Mode-Locked Laser Diodes (PMLLD) structures, a Fabry–Perot cavity and a ring cavity laser are characterized and evaluated as monolithic Optical Frequency Comb Generators (OFCG) for CW sub-THz generation. An extensive characterization of the devices under study...... is carried out based on an automated measurement system that systematically evaluates the dynamic characteristics of the devices, focusing on the figures of merit that define the optimum performance of a pulsed laser source when considered as an OFCG. Sub-THz signals generated with both devices at 60 GHz...... topologies that can be used for the implementation of photonic integrated sub-THz CW generation....

  15. External shading devices for energy efficient building

    Science.gov (United States)

    Shahdan, M. S.; Ahmad, S. S.; Hussin, M. A.

    2018-02-01

    External shading devices on a building façade is an important passive design strategy as they reduce solar radiation. Although studies have proven the benefits of external shading devices, many are designed solely for aesthetic purposes without fully considering its high potential to reduce solar radiation and glare. Furthermore, explorations into shading devices by the design team are mostly left too late in the design development phases. Hence, the paper looks into the effectiveness of external shading devices on a building towards more energy efficient building. The study aims to analyse the effects of various configurations of external shading devices towards the energy consumption of a case study building based on computer simulations. This study uses Building Information Modelling (BIM) through Autodesk Revit software as simulation tool. The constant variables for the simulation are the orientation of the building, types of glazing used by the building and the internal loads of the building. Whereas, the manipulated variable is the types of shading device used. The data were sorted according to the categories and translated into a chart. Analysis of the findings indicate that shading devices with different configurations show significant results in the energy consumption and the best configuration is the egg-crate shading devices. The study recommends that the consideration for shading device as a passive design strategy needs to be developed at the early stage of the building design.

  16. Passivated emitters in silicon solar cells

    International Nuclear Information System (INIS)

    King, R.R.; Gruenbaum, P.E.; Sinton, R.A.; Swanson, R.M.

    1990-01-01

    In high-efficiency silicon solar cells with low metal contact coverage fractions and high bulk lifetimes, cell performance is often dominated by recombination in the oxide-passivated diffusions on the cell surface. Measurements of the emitter saturation current density, J o , of oxide-passivated, boron and phosphorus diffusions are presented, and from these measurements, the dependence of surface recombination velocity on dopant concentration was extracted. The lowest observed values of J o which are stable under UV light are given for both boron- and phosphorus-doped, oxide-passivated diffusions, for both textured and untextured surfaces. Contour plots which incorporate the above data have been applied to two types of backside-contact solar cells with large area (37.5 cm 2 ) and one-sun efficiencies up to 22.7%

  17. A handheld optical device for skin profile measurement

    Science.gov (United States)

    Sun, Jiuai; Liu, Xiaojin

    2018-04-01

    This paper describes a portable optical scanning device designed for skin surface measurement on both colour and 3D geometry through a relative easy and cost effective multiple light source photometric stereo method. The validation of colour recovered had been verified through its application on skin lesion segmentation in our early work. This paper focuses on the reconstructed topographic data which are subject to further evaluation and advancement. The evaluation work takes the skin in vitro as an application scenario and compares the experimental result to that obtained by using a commercial product. The experiments show that this handheld device can measure the skin profile significantly closer to that of the ground truth and have the additional function of skin colour recovery.

  18. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells.

    Science.gov (United States)

    Chen, Qi; Zhou, Huanping; Song, Tze-Bin; Luo, Song; Hong, Ziruo; Duan, Hsin-Sheng; Dou, Letian; Liu, Yongsheng; Yang, Yang

    2014-07-09

    To improve the performance of the polycrystalline thin film devices, it requires a delicate control of its grain structures. As one of the most promising candidates among current thin film photovoltaic techniques, the organic/inorganic hybrid perovskites generally inherit polycrystalline nature and exhibit compositional/structural dependence in regard to their optoelectronic properties. Here, we demonstrate a controllable passivation technique for perovskite films, which enables their compositional change, and allows substantial enhancement in corresponding device performance. By releasing the organic species during annealing, PbI2 phase is presented in perovskite grain boundaries and at the relevant interfaces. The consequent passivation effects and underlying mechanisms are investigated with complementary characterizations, including scanning electron microscopy (SEM), X-ray diffraction (XRD), time-resolved photoluminescence decay (TRPL), scanning Kelvin probe microscopy (SKPM), and ultraviolet photoemission spectroscopy (UPS). This controllable self-induced passivation technique represents an important step to understand the polycrystalline nature of hybrid perovskite thin films and contributes to the development of perovskite solar cells judiciously.

  19. Fundamental studies of passivity and passivity breakdown

    International Nuclear Information System (INIS)

    Macdonald, D.D.; Urquidi-Macdonald, M.; Song, H.; Biaggio-Rocha, S.; Searson, P.

    1991-11-01

    This report summarizes the findings of our fundamental research program on passivity and passivity breakdown. During the past three and one half years in this program (including the three year incrementally-funded grant prior to the present grant), we developed and experimentally tested various physical models for the growth and breakdown of passive films on metal surfaces. These models belong to a general class termed ''point defects models'' (PDMs), in which the growth and breakdown of passive films are described in terms of the movement of anion and cation vacancies

  20. APR1400 Fluidic Device Sensitivity Test

    International Nuclear Information System (INIS)

    Choi, Nam Hyun; Chu, In Cheol; Min, Kyong Ho; Song, Chul Hwa

    2005-12-01

    In the safety injection tank at the emergency core cooling system of APR1400, a new safety design feature, passive fluidic device is equipped which includes no active driving system. It is essential to evaluate the new design feature with various experiments. For this reason, three categories of sensitivity tests have been performed in the present study. As the first sensitivity experiment, the effect of the height of the stand pipe was investigated. The second sensitivity test was conducted with removing the insert plate gasket to examine its effect. The effect of the expansion of the control nozzle width was ascertained from the third sensitivity test. The results of each test showed that the passive fluidic device which will be equipped in the SIT tank of APR1400 has great integrity and repeatability

  1. Measuring devices for the modular switch system; Messgeraete fuer den Schaltschrank

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Rudolf [Janitza Electronics GmbH, Lahnau (Germany). Sales und Marketing

    2008-10-15

    The advantages of digital universal measuring instruments are: lower device cost for more information and functionality. Furtheron digital measuring technology is more exactly during service life. Cost advantages result due to low installation cost and reduced installation of wires and cables. So universal devices replace all analogue systems and offer further functions. (orig./GL)

  2. Surface Passivation by Quantum Exclusion Using Multiple Layers

    Science.gov (United States)

    Hoenk, Michael E. (Inventor)

    2015-01-01

    A semiconductor device has a multilayer doping to provide improved passivation by quantum exclusion. The multilayer doping includes at least two doped layers fabricated using MBE methods. The dopant sheet densities in the doped layers need not be the same, but in principle can be selected to be the same sheet densities or to be different sheet densities. The electrically active dopant sheet densities are quite high, reaching more than 1.times.10.sup.14 cm.sup.-2, and locally exceeding 10.sup.22 per cubic centimeter. It has been found that silicon detector devices that have two or more such dopant layers exhibit improved resistance to degradation by UV radiation, at least at wavelengths of 193 nm, as compared to conventional silicon p-on-n devices.

  3. Passivation of black phosphorus saturable absorbers for reliable pulse formation of fiber lasers.

    Science.gov (United States)

    Na, Dongsoo; Park, Kichul; Park, Ki-Hwan; Song, Yong-Won

    2017-11-24

    Black phosphorus (BP) has attracted increasing attention due to its unique electrical properties. In addition, the outstanding optical nonlinearity of BP has been demonstrated in various ways. Its functionality as a saturable absorber, in particular, has been validated in demonstrations of passive mode-locked lasers. However, normally, the performance of BP is degraded eventually by both thermal and chemical damage in ambient conditions. The passivation of BP is the critical issue to guarantee a stable performance of the optical devices. We quantitatively characterized the mode-locked lasers operated by BP saturable absorbers with diversified passivation materials such as polydimethylsiloxane (PDMS) or Al 2 O 3 , considering the atomic structure of the materials, and therefore the hydro-permeability of the passivation layers. Unlike the BP layers without passivation, we demonstrated that the Al 2 O 3 -passivated BP layer was protected from the surface oxidation reaction in the long-term, and the PDMS-passivated one had a short-term blocking effect. The quantitative analysis showed that the time-dependent characteristics of the pulsed laser without passivation were changed with respect to the pulse duration, spectral width, and time-bandwidth product displaying 550 fs, 2.8 nm, and 0.406, respectively. With passivation, the changes were limited to <43 fs, <0.3 nm, and <0.012, respectively.

  4. Passivation of black phosphorus saturable absorbers for reliable pulse formation of fiber lasers

    Science.gov (United States)

    Na, Dongsoo; Park, Kichul; Park, Ki-Hwan; Song, Yong-Won

    2017-11-01

    Black phosphorus (BP) has attracted increasing attention due to its unique electrical properties. In addition, the outstanding optical nonlinearity of BP has been demonstrated in various ways. Its functionality as a saturable absorber, in particular, has been validated in demonstrations of passive mode-locked lasers. However, normally, the performance of BP is degraded eventually by both thermal and chemical damage in ambient conditions. The passivation of BP is the critical issue to guarantee a stable performance of the optical devices. We quantitatively characterized the mode-locked lasers operated by BP saturable absorbers with diversified passivation materials such as polydimethylsiloxane (PDMS) or Al2O3, considering the atomic structure of the materials, and therefore the hydro-permeability of the passivation layers. Unlike the BP layers without passivation, we demonstrated that the Al2O3-passivated BP layer was protected from the surface oxidation reaction in the long-term, and the PDMS-passivated one had a short-term blocking effect. The quantitative analysis showed that the time-dependent characteristics of the pulsed laser without passivation were changed with respect to the pulse duration, spectral width, and time-bandwidth product displaying 550 fs, 2.8 nm, and 0.406, respectively. With passivation, the changes were limited to <43 fs, <0.3 nm, and <0.012, respectively.

  5. Significantly enhanced thermal conductivity of indium arsenide nanowires via sulfur passivation.

    Science.gov (United States)

    Xiong, Yucheng; Tang, Hao; Wang, Xiaomeng; Zhao, Yang; Fu, Qiang; Yang, Juekuan; Xu, Dongyan

    2017-10-16

    In this work, we experimentally investigated the effect of sulfur passivation on thermal transport in indium arsenide (InAs) nanowires. Our measurement results show that thermal conductivity can be enhanced by a ratio up to 159% by sulfur passivation. Current-voltage (I-V) measurements were performed on both unpassivated and S-passivated InAs nanowires to understand the mechanism of thermal conductivity enhancement. We observed a remarkable improvement in electrical conductivity upon sulfur passivation and a significant contribution of electrons to thermal conductivity, which account for the enhanced thermal conductivity of the S-passivated InAs nanowires.

  6. Passive Temperature Stabilization of Silicon Photonic Devices Using Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Joanna Ptasinski

    2014-03-01

    Full Text Available In this work we explore the negative thermo-optic properties of liquid crystal claddings for passive temperature stabilization of silicon photonic integrated circuits. Photonic circuits are playing an increasing role in communications and computing, but they suffer from temperature dependent performance variation. Most existing techniques aimed at compensation of thermal effects rely on power hungry Joule heating. We show that integrating a liquid crystal cladding helps to minimize the effects of a temperature dependent drift. The advantage of liquid crystals lies in their high negative thermo-optic coefficients in addition to low absorption at the infrared wavelengths.

  7. Experimental Assessment of Orientation Sensing and Constructive Interference in Passive RFID Systems

    DEFF Research Database (Denmark)

    Krigslund, Rasmus

    2012-01-01

    This thesis focus on passive Radio Frequency IDentication (RFID), a tech- nology designed for automated identication of tagged objects. The tags are small passive devices powered by the wireless signal from the reader. Their simple operation thus solely allows them to reply with their unique ID...... when requested by the reader, which is a high power handheld or stationary transceiver. The RFID technology has matured over the past two decades, but still there exist ambiguities regarding the reading, or interrogation, of tags. Due to the passive nature of the tags, they are severely aected...... experience. Moreover, this thesis proposes to use passive RFID tags as orientation sensors. This is an innovative application for RFID technology in itself, but orientation sensing can also help existing RFID applications that relies on the Received Signal Strength (RSS) in the tag reply. Many Ultra High...

  8. Single-Image Distance Measurement by a Smart Mobile Device.

    Science.gov (United States)

    Chen, Shangwen; Fang, Xianyong; Shen, Jianbing; Wang, Linbo; Shao, Ling

    2017-12-01

    Existing distance measurement methods either require multiple images and special photographing poses or only measure the height with a special view configuration. We propose a novel image-based method that can measure various types of distance from single image captured by a smart mobile device. The embedded accelerometer is used to determine the view orientation of the device. Consequently, pixels can be back-projected to the ground, thanks to the efficient calibration method using two known distances. Then the distance in pixel is transformed to a real distance in centimeter with a linear model parameterized by the magnification ratio. Various types of distance specified in the image can be computed accordingly. Experimental results demonstrate the effectiveness of the proposed method.

  9. Benchmark and parametric study of a passive flow controller (fluidic device) for the development of optimal designs using a CFD code

    International Nuclear Information System (INIS)

    Lim, Sang-Gyu; Lee, Seok-Ho; Kim, Han-Gon

    2010-01-01

    A passive flow controller or a fluidic device (FD) is used for a safety injection system (SIS) for efficient use of nuclear reactor emergency cooling water since it can control the injection flow rate in a passive and optimal way. The performance of the FD is represented by pressure loss coefficient (K-factor) which is further affected by the configuration of the components such as a control port direction and a nozzle angle. The flow control mechanism that is varied according to the water level inside a vortex chamber determines the duration of the safety injection. This paper deals with a computational fluid dynamics (CFD) analysis for simulating the flow characteristics of the FD using the ANSYS CFX 11.0. The CFD analysis is benchmarked against existing experimental data to obtain applicability to the prediction of the FD performance in terms of K-factor. The CFD calculation is implemented with Shear Stress Transport (SST) model for a swirling flow and a strong streamline curvature in the vortex chamber of the FD, considering a numerical efficiency. Based on the benchmark results, parametric analyses are performed for an optimal design of the FD by varying the control port direction and the nozzle angle. Consequently, the FD performance is enhanced according to the angle of the control port nozzle.

  10. 40 CFR 1065.275 - N2O measurement devices.

    Science.gov (United States)

    2010-07-01

    ... measurement devices. (a) General component requirements. We recommend that you use an analyzer that meets the... functions of other gaseous measurements and the engine's known or assumed fuel properties. The target value... gaseous measurements. The target value for any compensation algorithm is 0.0% (that is, no bias high and...

  11. The making of pressure measurement device on heating-02 based realtime

    International Nuclear Information System (INIS)

    Giarno; Kussigit Santosa; Agus Nur Rachman; G B Heru K

    2013-01-01

    In order to modify the installation strand BETA Test Section Test integrated with heating-02 into a closed loop, it would require an additional system that can measure pressure changes in the closed-loop system. By making the measurement device to test the system pressure at the heating-expected 02 researchers can monitor the pressure changes that occur in the system. The pressure gauge device fabrication using manufacturing simulation methodology, the preparation of the hardware and software and test functions. Manufacturing simulation using measuring devices HIOKI DC current source Signal Source, preparation of pressure measurement devices require hardware such as pressure transducers, NI cRIO-9074, NI 9203 analog module, Computer and software LabVIEW 2011 as programming. In the test process function method is used to provide flow simulation module that is connected to the 9203 NI NI cRIO-9074. Current provision tailored to the specifics pressure transducer is 4 mA s/d 20 mA. Based on the test results obtained function value of the lowest current is 4.00 mA = 0.001 bar, and the highest current value of 20.00 mA = 4995 bar. From the results of calculations using the linear equations obtained correlation coefficient (R 2 ) of 0.999, so it is evident that the pressure changes in LabVIEW is affected by changes in flow. The results obtained from this activity is a device that can measure the pressure in the heating-02 test. (author)

  12. Electronic devices and circuits

    CERN Document Server

    Pridham, Gordon John

    1968-01-01

    Electronic Devices and Circuits, Volume 1 deals with the design and applications of electronic devices and circuits such as passive components, diodes, triodes and transistors, rectification and power supplies, amplifying circuits, electronic instruments, and oscillators. These topics are supported with introductory network theory and physics. This volume is comprised of nine chapters and begins by explaining the operation of resistive, inductive, and capacitive elements in direct and alternating current circuits. The theory for some of the expressions quoted in later chapters is presented. Th

  13. Time-to-impact estimation in passive missile warning systems

    Science.gov (United States)

    Şahıngıl, Mehmet Cihan

    2017-05-01

    A missile warning system can detect the incoming missile threat(s) and automatically cue the other Electronic Attack (EA) systems in the suit, such as Directed Infrared Counter Measure (DIRCM) system and/or Counter Measure Dispensing System (CMDS). Most missile warning systems are currently based on passive sensor technology operating in either Solar Blind Ultraviolet (SBUV) or Midwave Infrared (MWIR) bands on which there is an intensive emission from the exhaust plume of the threatening missile. Although passive missile warning systems have some clear advantages over pulse-Doppler radar (PDR) based active missile warning systems, they show poorer performance in terms of time-to-impact (TTI) estimation which is critical for optimizing the countermeasures and also "passive kill assessment". In this paper, we consider this problem, namely, TTI estimation from passive measurements and present a TTI estimation scheme which can be used in passive missile warning systems. Our problem formulation is based on Extended Kalman Filter (EKF). The algorithm uses the area parameter of the threat plume which is derived from the used image frame.

  14. Stretching positions for the coracohumeral ligament: Strain measurement during passive motion using fresh/frozen cadaver shoulders

    Directory of Open Access Journals (Sweden)

    Izumi Tomoki

    2011-01-01

    Full Text Available Abstract Background Contracture of the coracohumeral ligament is reported to restrict external rotation of the shoulder with arm at the side and restrict posterior-inferior shift of the humeral head. The contracture is supposed to restrict range of motion of the glenohumeral joint. Methods To obtain stretching position of the coracohumeral ligament, strain on the ligament was measured at the superficial fibers of the ligament using 9 fresh/frozen cadaver shoulders. By sequential measurement using a strain gauge, the ligament strain was measured from reference length (L0. Shoulder positions were determined using a 3 Space Tracker System. Through a combination of previously reported coracohumeral stretching positions and those observed in preliminary measurement, ligament strain were measured by passive external rotation from 10° internal rotation, by adding each 10° external rotation, to maximal external rotation. Results Stretching positions in which significantly larger strain were obtained compared to the L0 values were 0° elevation in scapula plane with 40°, 50° and maximum external rotation (5.68%, 7.2%, 7.87%, 30° extension with 50°, maximum external rotation (4.20%, 4.79%, and 30° extension + adduction with 30°, 40°, 50° and maximum external rotation (4.09%, 4.67%, 4.78%, 5.05%(P Conclusions Significant strain of the coracohumeral ligament will be achieved by passive external rotation at lower shoulder elevations, extension, and extension with adduction.

  15. Bidentate Ligand-passivated CsPbI3 Perovskite Nanocrystals for Stable Near-unity Photoluminescence Quantum Yield and Efficient Red Light-emitting Diodes

    KAUST Repository

    Pan, Jun

    2017-12-17

    Although halide perovskite nanocrystals (NCs) are promising materials for optoelectronic devices, they suffer severely from chemical and phase instabilities. Moreover, the common capping ligands like oleic acid and oleylamine that encapsulate the NCs will form an insulating layer, precluding their utility in optoelectronic devices. To overcome these limitations, we develop a post-synthesis passivation process for CsPbI3 NCs by using a bidentate ligand, namely 2,2’-Iminodibenzoic acid. Our passivated NCs exhibit narrow red photoluminescence with exceptional quantum yield (close to unity) and substantially improved stability. The passivated NCs enabled us to realize red light-emitting diodes (LEDs) with 5.02% external quantum efficiency and 748 cd/m2 luminance, surpassing by far LEDs made from the non-passivated NCs.

  16. Bidentate Ligand-passivated CsPbI3 Perovskite Nanocrystals for Stable Near-unity Photoluminescence Quantum Yield and Efficient Red Light-emitting Diodes

    KAUST Repository

    Pan, Jun; Shang, Yuequn; Yin, Jun; de Bastiani, Michele; Peng, Wei; Dursun, Ibrahim; Sinatra, Lutfan; El-Zohry, Ahmed M.; Hedhili, Mohamed N.; Emwas, Abdul-Hamid M.; Mohammed, Omar F.; Ning, Zhijun; Bakr, Osman

    2017-01-01

    Although halide perovskite nanocrystals (NCs) are promising materials for optoelectronic devices, they suffer severely from chemical and phase instabilities. Moreover, the common capping ligands like oleic acid and oleylamine that encapsulate the NCs will form an insulating layer, precluding their utility in optoelectronic devices. To overcome these limitations, we develop a post-synthesis passivation process for CsPbI3 NCs by using a bidentate ligand, namely 2,2’-Iminodibenzoic acid. Our passivated NCs exhibit narrow red photoluminescence with exceptional quantum yield (close to unity) and substantially improved stability. The passivated NCs enabled us to realize red light-emitting diodes (LEDs) with 5.02% external quantum efficiency and 748 cd/m2 luminance, surpassing by far LEDs made from the non-passivated NCs.

  17. Sulfidic photochemical passivation of GaAs surfaces in alcoholic solutions

    International Nuclear Information System (INIS)

    Simonsmeier, T.; Ivankov, A.; Bauhofer, W.

    2005-01-01

    We report on a remarkable enhancement of the passivation effect of sulfidic solutions through illumination with above band gap light. Luminescence measurements on GaAs surfaces which have been illuminated during chemical passivation reveal in comparison to nonilluminated samples a further reduction of their surface density of states as well as a significantly increased stability of the passivation. Investigations with photoelectron spectroscopy show that illumination leads to a nearly complete removal of oxides on the surface. Measurements on Schottky diodes which have been manufactured with photochemically passivated GaAs indicate a noticeable decrease in band bending and a depinning of the Fermi level

  18. Radiation dose measurements of the insertion devices using radiachromic film dosimeters

    International Nuclear Information System (INIS)

    Alderman, J.; Semones, E.; Job, P. K.

    2004-01-01

    The Advanced Photon Source (APS) uses Nd-Fe-B permanent magnets in the insertion devices to produce x-rays for scientific research [1,2]. Earlier investigations have exhibited varying degrees of demagnetization of these magnets [3] due to irradiation from electron beams [4,5,6], 60 Co γ-rays [5], and high-energy neutrons [7,8]. Radiation-induced demagnetization has been observed in the APS insertion devices [9] and was first measured in December of 2001. Partial demagnetization has also been observed in insertion devices at the European Synchrotron Radiation Facility (ESRF) [4,6], where Nd-Fe-B permanent magnets are also used. Growing concern for the lifetime of APS insertion devices, as well as the permanent magnets that will be used in next-generation, high-power light sources, like the FEL [10,11], resulted from the partial demagnetization observations made at both facilities. This concern in relation to radiation-induced demagnetization spurred a long-term project to measure and analyze the absorbed doses received by the APS insertion devices. The project required a reliable photon high-dose dosimetry technique capable of measuring absorbed doses greater than 10 6 rad, which was not readily available at the APS. Through a collaboration with the National Institute of Standards and Technology (NIST), one such technique using radiachromic films was considered, tested, and calibrated at the APS. This consequently led to the implementation of radiachromic film dosimetry for measuring the absorbed doses received by the insertion devices for each of the APS runs

  19. Passive WiFi monitoring of the rhythm of the campus

    NARCIS (Netherlands)

    Kalogianni, E.; Sileryte, R.; Lam, M.; Zhou, K.; Van der Ham, M.; Van der Spek, S.C.; Verbree, E.

    2015-01-01

    Within this research-driven project, passive WiFi monitoring of WiFi enabled devices was used to detect users (students, employees, visitors) of buildings at the campus of Delft University of Technology to gain insight into the Rhythm of the Campus: the occupation, duration of stay and moving

  20. Opto-mechanical design of small infrared cloud measuring device

    Science.gov (United States)

    Zhang, Jiao; Yu, Xun; Tao, Yu; Jiang, Xu

    2018-01-01

    In order to make small infrared cloud measuring device can be well in a wide temperature range and day-night environment, a design idea using catadioptric infrared panoramic imaging optical system and simple mechanical structure for realizing observation clode under all-weather conditions was proposed. Firstly, the optical system of cloud measuring device was designed. An easy-to-use numerical method was proposed to acquire the profile of a catadioptric mirror, which brought the property of equidistance projection and played the most important role in a catadioptric panoramic lens. Secondly, the mechanical structure was studied in detail. Overcoming the limitations of traditional primary mirror support structure, integrative design was used for refractor and mirror support structure. Lastly, temperature adaptability and modes of the mirror support structure were analyzed. Results show that the observation range of the cloud measuring device is wide and the structure is simple, the fundamental frequency of the structure is greater than 100 Hz, the surface precision of the system reflector reaches PV of λ/10 and RMS of λ/40under the load of temperature range - 40 60°C, it can meet the needs of existing meteorological observation.

  1. Enhanced photoelectrochemical water splitting performance of anodic TiO(2) nanotube arrays by surface passivation.

    Science.gov (United States)

    Gui, Qunfang; Xu, Zhen; Zhang, Haifeng; Cheng, Chuanwei; Zhu, Xufei; Yin, Min; Song, Ye; Lu, Linfeng; Chen, Xiaoyuan; Li, Dongdong

    2014-10-08

    One-dimensional anodic titanium oxide nanotube (TONT) arrays provide a direct pathway for charge transport, and thus hold great potential as working electrodes for electrochemical energy conversion and storage devices. However, the prominent surface recombination due to the large amount surface defects hinders the performance improvement. In this work, the surface states of TONTs were passivated by conformal coating of high-quality Al2O3 onto the tubular structures using atomic layer deposition (ALD). The modified TONT films were subsequently employed as anodes for photoelectrochemical (PEC) water splitting. The photocurrent (0.5 V vs Ag/AgCl) recorded under air mass 1.5 global illumination presented 0.8 times enhancement on the electrode with passivation coating. The reduction of surface recombination rate is responsible for the substantially improved performance, which is proposed to have originated from a decreased interface defect density in combination with a field-effect passivation induced by a negative fixed charge in the Al2O3 shells. These results not only provide a physical insight into the passivation effect, but also can be utilized as a guideline to design other energy conversion devices.

  2. Fast New Method for Temporary Chemical Passivation

    Directory of Open Access Journals (Sweden)

    Marek Solčanský

    2012-12-01

    Full Text Available The main material parameter of silicon, that influences the effectiveness of photovoltaic cells, is the minority carrier bulk lifetime.It may change in the technological process especially during high temperature operations. Monitoring of the carrier bulk-lifetimeis necessary for modifying the whole technological process of production. For the measurement of the minority carrier bulk-lifetimethe characterization method MW PCD (Microwave Photoconductance Decay is used, where the result of measurement is the effectivecarrier lifetime, which is very dependent on the surface recombination velocity and therefore on the quality of a silicon surfacepassivation.This work deals with an examination of a different solution types for the chemical passivation of a silicon surface. Varioussolutions are tested on silicon wafers for their consequent comparison. The main purpose of this work is to find optimal solution, whichsuits the requirements of a time stability and start-up velocity of passivation, reproducibility of the measurements and a possibilityof a perfect cleaning of a passivating solution remains from a silicon surface. Another purpose of this work is to identify the parametersof other quinhydrone solutions with different concentrations as compared with the quinhydrone solution in methanol witha concentration of 0.07 mol/dm³ marked QM007 (referential solution.The method of an effective chemical passivation with a quinhydrone in methanol solution was suggested. The solution witha concentration of 0.07 mol /dm3 fulfills all required criteria. The work also confirms the influence of increased concentrationquinhydrone on the temporal stability of the passivation layer and the effect for textured silicon wafers. In conclusion, the influenceof an illumination and the temperature on the properties of the passivating solution QM007 is discussed.

  3. Measurement-device-independent quantum digital signatures

    Science.gov (United States)

    Puthoor, Ittoop Vergheese; Amiri, Ryan; Wallden, Petros; Curty, Marcos; Andersson, Erika

    2016-08-01

    Digital signatures play an important role in software distribution, modern communication, and financial transactions, where it is important to detect forgery and tampering. Signatures are a cryptographic technique for validating the authenticity and integrity of messages, software, or digital documents. The security of currently used classical schemes relies on computational assumptions. Quantum digital signatures (QDS), on the other hand, provide information-theoretic security based on the laws of quantum physics. Recent work on QDS Amiri et al., Phys. Rev. A 93, 032325 (2016);, 10.1103/PhysRevA.93.032325 Yin, Fu, and Zeng-Bing, Phys. Rev. A 93, 032316 (2016), 10.1103/PhysRevA.93.032316 shows that such schemes do not require trusted quantum channels and are unconditionally secure against general coherent attacks. However, in practical QDS, just as in quantum key distribution (QKD), the detectors can be subjected to side-channel attacks, which can make the actual implementations insecure. Motivated by the idea of measurement-device-independent quantum key distribution (MDI-QKD), we present a measurement-device-independent QDS (MDI-QDS) scheme, which is secure against all detector side-channel attacks. Based on the rapid development of practical MDI-QKD, our MDI-QDS protocol could also be experimentally implemented, since it requires a similar experimental setup.

  4. Device for measuring high temperature heat conductivity of solids and melts

    International Nuclear Information System (INIS)

    Magomedov, Ya.B.; Gadzhiev, G.G.

    1990-01-01

    A modification of a device for measuring heat conductivity by a compensation method when a thermocouple with gadolinium sulfide being used is suggested. Such a device has less error of measurement (8%), wider interval of working temperatures (300-1600K) and it permits to investigate the material in the wide range of heat conductivity values (0.5-30 W/(mxK)). The stainless steel 12Kh18N10T, lanthanum sulfide and melted quartz were used for the device calibration. The results obtained and the literature data on these materials agree well between each other

  5. Portable devices for monitoring radon and its progeny in air

    International Nuclear Information System (INIS)

    Zhang Huaiqin; Yao Wanyuan; Su Jingling; Liu Jinhua

    1990-01-01

    We have developed two kinds of portable monitoring devices to measure the concentration and potential energy concentration of radon and its progeny in air. The thermoluminescence material CaSO4 (Tm) is used as the detection element. One of the devices is called passive radon monitor. The lowest detectable limit for radon in air is about 1.5 Bq/m 3 , as a sampling time being one week. Good reliability and ease to operate are its main advantages. The second kind of device is called a working level monitor which consists of a miniature remembrane pump and an integrating sampling probe. The lowest detectable limit is about 0.00043 WL (9x10 -9 J/m 3 ) for a sampling time of 6 hours. It weighs only 0.35 kg, but maintenance is necessary sometimes. (author). 6 refs, 2 figs, 4 tabs

  6. Zero G Mass Measurement Device (ZGMMD), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Zero G Mass Measurement Device (ZGMMD) will provide the ability to quantify the mass of objects up to 2,000 grams, including live animal specimens in a zero G...

  7. Environmental monitoring of tritium in air with passive diffusion samplers

    International Nuclear Information System (INIS)

    Wood, M.J.; Workman, W.J.G.

    1992-01-01

    This paper reports on a field trail in which outdoor air was sampled with an active reference sampler and several passive HTO-in-air samplers simultaneously carried out at Chalk River Laboratories. Both passive and active samplers were changed on an approximately monthly schedule from 1990 September 2 to 1991 April 18. Average temperatures for the sampling intervals ranged from -8.06 degrees C to +15.5 degrees C and HTO-in-air concentrations measured by the active sampler were typically 10 Bq/m 3 . A total of 1290 passive HTO-in-air sampler measurements were made during the seven sampling intervals. The passive samplers used for the field trial were prepared with either tritium-free water or a solution of 50% tritium-free water and 50% ethylene glycol. As expected, the samplers prepared with the water-glycol solution performed more consistently than the samplers prepared with water only. Good agreement between passive and active sampler measurements was observed throughout the field trial

  8. Passive solar technology

    Energy Technology Data Exchange (ETDEWEB)

    Watson, D

    1981-04-01

    The present status of passive solar technology is summarized, including passive solar heating, cooling and daylighting. The key roles of the passive solar system designer and of innovation in the building industry are described. After definitions of passive design and a summary of passive design principles are given, performance and costs of passive solar technology are discussed. Passive energy design concepts or methods are then considered in the context of the overall process by which building decisions are made to achieve the integration of new techniques into conventional design. (LEW).

  9. The non-linear fitting method to analyze the measured M-S plots of bipolar passive films

    International Nuclear Information System (INIS)

    Jiang Ruijing; Chen Changfeng; Zheng Shuqi

    2010-01-01

    Mott-Schottky (M-S) analysis is an effective approach to investigate the electronic property of passive films of metals, and it is well suitable for the passive film with single space charge capacitance. But there is no proper method to analyze the C sc -2 vs. V m plots of passive films with several space charge capacitances in series connection, such as bipolar passive films. In this paper, the relationship between the space charge capacitance of the bipolar passive film and the applied potential was deduced and the features of corresponding plots were given out simultaneously. Accordingly, a non-linear fitting method was presented to analyze the C sc -2 vs. V m plots of bipolar passive films. Then the method was used to study the semiconductor characteristics of bipolar passive films formed on the surface of Nickel base alloy after being corroded in the environments with high temperatures and high partial pressures of H 2 S/CO 2 . The fitting results indicate that the non-linear fitting of M-S plots can well help to understand the anti-corrosion mechanism of bipolar passive films.

  10. Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al2O3 with POx Interlayer.

    Science.gov (United States)

    Black, L E; Cavalli, A; Verheijen, M A; Haverkort, J E M; Bakkers, E P A M; Kessels, W M M

    2017-10-11

    III/V semiconductor nanostructures have significant potential in device applications, but effective surface passivation is critical due to their large surface-to-volume ratio. For InP such passivation has proven particularly difficult, with substantial depassivation generally observed following dielectric deposition on InP surfaces. We present a novel approach based on passivation with a phosphorus-rich interfacial oxide deposited using a low-temperature process, which is critical to avoid P-desorption. For this purpose we have chosen a PO x layer deposited in a plasma-assisted atomic layer deposition (ALD) system at room temperature. Since PO x is known to be hygroscopic and therefore unstable in atmosphere, we encapsulate this layer with a thin ALD Al 2 O 3 capping layer to form a PO x /Al 2 O 3 stack. This passivation scheme is capable of improving the photoluminescence (PL) efficiency of our state-of-the-art wurtzite (WZ) InP nanowires by a factor of ∼20 at low excitation. If we apply the rate equation analysis advocated by some authors, we derive a PL internal quantum efficiency (IQE) of 75% for our passivated wires at high excitation. Our results indicate that it is more reliable to calculate the IQE as the ratio of the integrated PL intensity at room temperature to that at 10 K. By this means we derive an IQE of 27% for the passivated wires at high excitation (>10 kW cm -2 ), which constitutes an unprecedented level of performance for undoped InP nanowires. This conclusion is supported by time-resolved PL decay lifetimes, which are also shown to be significantly higher than previously reported for similar wires. The passivation scheme displays excellent long-term stability (>7 months) and is additionally shown to substantially improve the thermal stability of InP surfaces (>300 °C), significantly expanding the temperature window for device processing. Such effective surface passivation is a key enabling technology for InP nanowire devices such as

  11. Efficient approximate eigensolution for structures equipped with a passive damping device

    Czech Academy of Sciences Publication Activity Database

    Hračov, Stanislav

    2018-01-01

    Roč. 144, č. 5 (2018), č. článku 06018002. ISSN 0733-9445 R&D Projects: GA ČR(CZ) GA15-01035S; GA ČR(CZ) GC17-26353J Institutional support: RVO:68378297 Keywords : nonclassical damping * eigensolution * perturbation method * passive damper Subject RIV: JM - Building Engineering OBOR OECD: Construction engineering, Municipal and structural engineering Impact factor: 2.021, year: 2016 https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29ST.1943-541X.0002017

  12. Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices

    Science.gov (United States)

    Liang, Lin-Mei; Sun, Shi-Hai; Jiang, Mu-Sheng; Li, Chun-Yan

    2014-10-01

    In general, quantum key distribution (QKD) has been proved unconditionally secure for perfect devices due to quantum uncertainty principle, quantum noncloning theorem and quantum nondividing principle which means that a quantum cannot be divided further. However, the practical optical and electrical devices used in the system are imperfect, which can be exploited by the eavesdropper to partially or totally spy the secret key between the legitimate parties. In this article, we first briefly review the recent work on quantum hacking on some experimental QKD systems with respect to imperfect devices carried out internationally, then we will present our recent hacking works in details, including passive faraday mirror attack, partially random phase attack, wavelength-selected photon-number-splitting attack, frequency shift attack, and single-photon-detector attack. Those quantum attack reminds people to improve the security existed in practical QKD systems due to imperfect devices by simply adding countermeasure or adopting a totally different protocol such as measurement-device independent protocol to avoid quantum hacking on the imperfection of measurement devices [Lo, et al., Phys. Rev. Lett., 2012, 108: 130503].

  13. Sulfur passivation of semi-insulating GaAs: Transition from Coulomb blockade to weak localization regime

    Energy Technology Data Exchange (ETDEWEB)

    Bagraev, N. T., E-mail: Bagraev@mail.ioffe.ru [Ioffe Institute (Russian Federation); Chaikina, E. I. [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Division de Fisica Aplicada (Mexico); Danilovskii, E. Yu.; Gets, D. S.; Klyachkin, L. E.; L’vova, T. V.; Malyarenko, A. M. [Ioffe Institute (Russian Federation)

    2016-04-15

    The sulfur passivation of the semi-insulating GaAs bulk (SI GaAs) grown in an excess phase of arsenic is used to observe the transition from the Coulomb blockade to the weak localization regime at room temperature. The I–V characteristics of the SI GaAs device reveal nonlinear behavior that appears to be evidence of the Coulomb blockade process as well as the Coulomb oscillations. The sulfur passivation of the SI GaAs device surface results in enormous transformation of the I–V characteristics that demonstrate the strong increase of the resistance and Coulomb blockade regime is replaced by the electron tunneling processes. The results obtained are analyzed within frameworks of disordering SI GaAs surface that is caused by inhomogeneous distribution of the donor and acceptor anti-site defects which affects the conditions of quantum- mechanical tunneling. Weak localization processes caused by the preservation of the Fermi level pinning are demonstrated by measuring the negative magnetoresistance in weak magnetic fields at room temperature. Finally, the studies of the magnetoresistance at higher magnetic fields reveal the h/2e Aharonov–Altshuler–Spivak oscillations with the complicated behavior due to possible statistical mismatch of the interference paths in the presence of different microdefects.

  14. Use of piezoelectric multicomponent force measuring devices in fluid mechanics

    Science.gov (United States)

    Richter, A.; Stefan, K.

    1979-01-01

    The characterisitics of piezoelectric multicomponent transducers are discussed, giving attention to the advantages of quartz over other materials. The main advantage of piezoelectric devices in aerodynamic studies is their ability to indicate rapid changes in the values of physical parameters. Problems in the accuracy of measurments by piezoelectric devices can be overcome by suitable design approaches. A practical example is given of how such can be utilized to measure rapid fluctuations of fluid forces exerted on a circular cylinder mounted in a water channel.

  15. Gigabit Access Passive Optical Network Using Wavelength Division Multiplexing—GigaWaM

    DEFF Research Database (Denmark)

    Iglesias Olmedo, Miguel; Suhr, Lau; Prince, Kamau

    2014-01-01

    passive optical network (WDM-PON) architecture that can deliver symmetric 1 Gb/s to 64 users over 20 km standard single mode fiber using the L and C bands for down and upstream, respectively. During the course of the project, a number of key enabling technologies were developed including tunable......This paper summarizes the research and technical achievements done under the EU project GigaWaM. The goal of this project was to develop a cost-effective solution that can meet the increasing bandwidth demands in access networks. The approach was to use a novel wavelength division multiplexing...... transceivers, athermal 50 GHz spaced arrayed waveguide grating multiplexer devices, novel hybridization technologies for integration of passive and active electro-optic devices, and system-level algorithms that ensure the quality of service. The outcome of the project proved a reliable, cost...

  16. Passive residual energy utilization system in thermal cycles on water-cooled power reactors

    International Nuclear Information System (INIS)

    Placco, Guilherme M.; Guimaraes, Lamartine N.F.; Santos, Rubens S. dos

    2013-01-01

    This work presents a concept of a residual energy utilization in nuclear plants thermal cycles. After taking notice of the causes of the Fukushima nuclear plant accident, an idea arose to adapt a passive thermal circuit as part of the ECCS (Emergency Core Cooling System). One of the research topics of IEAv (Institute for Advanced Studies), as part of the heat conversion of a space nuclear power system is a passive multi fluid turbine. One of the main characteristics of this device is its passive capability of staying inert and be brought to power at moments notice. During the first experiments and testing of this passive device, it became clear that any small amount of gas flow would generate power. Given that in the first stages of the Fukushima accident and even during the whole event there was plenty availability of steam flow that would be the proper condition to make the proposed system to work. This system starts in case of failure of the ECCS, including loss of site power, loss of diesel generators and loss of the battery power. This system does not requires electricity to run and will work with bleed steam. It will generate enough power to supply the plant safety system avoiding overheating of the reactor core produced by the decay heat. This passive system uses a modified Tesla type turbine. With the tests conducted until now, it is possible to ensure that the operation of this new turbine in a thermal cycle is very satisfactory and it performs as expected. (author)

  17. Study of gaseous interactions in carbon nanotube field-effect transistors through selective Si3N4 passivation

    International Nuclear Information System (INIS)

    Peng Ning; Zhang Qing; Tan, O K; Marzari, Nicola

    2008-01-01

    Carbon nanotube field-effect transistors with Si 3 N 4 passivated source and drain contacts and exposed carbon nanotube channel show n-type characteristics in air. In contrast, by passivating only the source contact, a diode-like behavior with a maximum current rectification ratio of 4.6 x 10 3 is observed. The rectifying characteristic vanishes in a vacuum but recovers once the devices are exposed to air. From our experiments, key parameters, such as critical gas pressure, adsorption energy of oxygen molecules and the contact barrier height modulation, can be obtained for studying the gaseous interaction in the carbon nanotube devices.

  18. On the origin of the photocurrent of electrochemically passivated p-InP(100) photoelectrodes.

    Science.gov (United States)

    Goryachev, Andrey; Gao, Lu; van Veldhoven, René P J; Haverkort, Jos E M; Hofmann, Jan P; Hensen, Emiel J M

    2018-05-15

    III-V semiconductors such as InP are highly efficient light absorbers for photoelectrochemical (PEC) water splitting devices. Yet, their cathodic stability is limited due to photocorrosion and the measured photocurrents do not necessarily originate from H2 evolution only. We evaluated the PEC stability and activation of model p-InP(100) photocathodes upon photoelectrochemical passivation (i.e. repeated surface oxidation/reduction). The electrode was subjected to a sequence of linear potential scans with or without intermittent passivation steps (repeated passivation and continuous reduction, respectively). The evolution of H2 and PH3 gases was monitored by online electrochemical mass spectrometry (OLEMS) and the Faradaic efficiencies of these processes were determined. Repeated passivation led to an increase of the photocurrent in 0.5 M H2SO4, while continuous reduction did not affect the photocurrent of p-InP(100). Neither H2 nor PH3 formation increased to the same extent as the photocurrent during the repeated passivation treatment. Surface analysis of the spent electrodes revealed substantial roughening of the electrode surface by repeated passivation, while continuous reduction left the surface unaltered. On the other hand, photocathodic conditioning performed in 0.5 M HCl led to the expected correlation between photocurrent increase and H2 formation. Ultimately, the H2 evolution rates of the photoelectrodes in H2SO4 and HCl are comparable. The much higher photocurrent in H2SO4 is due to competing side-reactions. The results emphasize the need for a detailed evaluation of the Faradaic efficiencies of all the involved processes using a chemical-specific technique like OLEMS. Photo-OLEMS can be beneficial in the study of photoelectrochemical reactions enabling the instantaneous detection of small amounts of reaction by-products.

  19. Interface passivation and trap reduction via hydrogen fluoride for molybdenum disulfide on silicon oxide back-gate transistors

    Science.gov (United States)

    Hu, Yaoqiao; San Yip, Pak; Tang, Chak Wah; Lau, Kei May; Li, Qiang

    2018-04-01

    Layered semiconductor molybdenum disulfide (MoS2) has recently emerged as a promising material for flexible electronic and optoelectronic devices because of its finite bandgap and high degree of gate control. Here, we report a hydrogen fluoride (HF) passivation technique for improving the carrier mobility and interface quality of chemical vapor deposited monolayer MoS2 on a SiO2/Si substrate. After passivation, the fabricated MoS2 back-gate transistors demonstrate a more than double improvement in average electron mobility, a reduced gate hysteresis gap of 3 V, and a low interface trapped charge density of ˜5.8 × 1011 cm-2. The improvements are attributed to the satisfied interface dangling bonds, thus a reduction of interface trap states and trapped charges. Surface x-ray photoelectron spectroscopy analysis and first-principles simulation were performed to verify the HF passivation effect. The results here highlight the necessity of a MoS2/dielectric passivation strategy and provides a viable route for enhancing the performance of MoS2 nano-electronic devices.

  20. Three-input gate logic circuits on chemically assembled single-electron transistors with organic and inorganic hybrid passivation layers.

    Science.gov (United States)

    Majima, Yutaka; Hackenberger, Guillaume; Azuma, Yasuo; Kano, Shinya; Matsuzaki, Kosuke; Susaki, Tomofumi; Sakamoto, Masanori; Teranishi, Toshiharu

    2017-01-01

    Single-electron transistors (SETs) are sub-10-nm scale electronic devices based on conductive Coulomb islands sandwiched between double-barrier tunneling barriers. Chemically assembled SETs with alkanethiol-protected Au nanoparticles show highly stable Coulomb diamonds and two-input logic operations. The combination of bottom-up and top-down processes used to form the passivation layer is vital for realizing multi-gate chemically assembled SET circuits, as this combination enables us to connect conventional complementary metal oxide semiconductor (CMOS) technologies via planar processes. Here, three-input gate exclusive-OR (XOR) logic operations are demonstrated in passivated chemically assembled SETs. The passivation layer is a hybrid bilayer of self-assembled monolayers (SAMs) and pulsed laser deposited (PLD) aluminum oxide (AlO[Formula: see text]), and top-gate electrodes were prepared on the hybrid passivation layers. Top and two-side-gated SETs showed clear Coulomb oscillation and diamonds for each of the three available gates, and three-input gate XOR logic operation was clearly demonstrated. These results show the potential of chemically assembled SETs to work as logic devices with multi-gate inputs using organic and inorganic hybrid passivation layers.

  1. Validation of a laser-assisted wound measurement device in a wound healing model.

    Science.gov (United States)

    Constantine, Ryan S; Bills, Jessica D; Lavery, Lawrence A; Davis, Kathryn E

    2016-10-01

    In the treatment and monitoring of a diabetic or chronic wound, accurate and repeatable measurement of the wound provides indispensable data for the patient's medical record. This study aims to measure the accuracy of the laser-assisted wound measurement (LAWM) device against traditional methods in the measurement of area, depth and volume. We measured four 'healing' wounds in a Play-Doh(®) -based model over five subsequent states of wound healing progression in which the model was irregularly filled in to replicate the healing process. We evaluated the LAWM device against traditional methods including digital photograph assessment with National Institutes of Health ImageJ software, measurements of depth with a ruler and weight-to-volume assessment with dental paste. Statistical analyses included analysis of variance (ANOVA) and paired t-tests. We demonstrate that there are significantly different and nearly statistically significant differences between traditional ruler depth measurement and LAWM device measurement, but there are no statistically significant differences in area measurement. Volume measurements were found to be significantly different in two of the wounds. Rate of percentage change was analysed for volume and depth in the wound healing model, and the LAWM device was not significantly different than the traditional measurement technique. While occasionally inaccurate in its absolute measurement, the LAWM device is a useful tool in the clinician's arsenal as it reliably measures rate of percentage change in depth and volume and offers a potentially aseptic alternative to traditional measurement techniques. © 2014 The Authors. International Wound Journal © 2014 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  2. Measurements of waste tank passive ventilation rates using tracer gases

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Olsen, K.B.; Sklarew, D.S.; Evans, J.C.; Remund, K.M.

    1997-09-01

    This report presents the results of ventilation rate studies of eight passively ventilated high-level radioactive waste tanks using tracer gases. Head space ventilation rates were determined for Tanks A-101, AX-102, AX-103, BY-105, C-107, S-102, U-103, and U-105 using sulfur hexafluoride (SF 6 ) and/or helium (He) as tracer gases. Passive ventilation rates are needed for the resolution of several key safety issues. These safety issues are associated with the rates of flammable gas production and ventilation, the rates at which organic salt-nitrate salt mixtures dry out, and the estimation of organic solvent waste surface areas. This tracer gas study involves injecting a tracer gas into the tank headspace and measuring its concentration at different times to establish the rate at which the tracer is removed by ventilation. Tracer gas injection and sample collection were performed by SGN Eurisys Service Corporation and/or Lockheed Martin Hanford Corporation, Characterization Project Operations. Headspace samples were analyzed for He and SF 6 by Pacific Northwest National Laboratory (PNNL). The tracer gas method was first demonstrated on Tank S-102. Tests were conducted on Tank S-102 to verify that the tracer gas was uniformly distributed throughout the tank headspace before baseline samples were collected, and that mixing was sufficiently vigorous to maintain an approximately uniform distribution of tracer gas in the headspace during the course of the study. Headspace samples, collected from a location about 4 in away from the injection point and 15, 30, and 60 minutes after the injection of He and SF 6 , indicated that both tracer gases were rapidly mixed. The samples were found to have the same concentration of tracer gases after 1 hour as after 24 hours, suggesting that mixing of the tracer gas was essentially complete within 1 hour

  3. Direct evidence of void passivation in Cu(InGa)(SSe)2 absorber layers

    International Nuclear Information System (INIS)

    Lee, Dongho; Kim, Young-Su; Mo, Chan B.; Huh, Kwangsoo; Yang, JungYup; Nam, Junggyu; Baek, Dohyun; Park, Sungchan; Kim, ByoungJune; Kim, Dongseop; Lee, Jaehan; Heo, Sung; Park, Jong-Bong; Kang, Yoonmook

    2015-01-01

    We have investigated the charge collection condition around voids in copper indium gallium sulfur selenide (CIGSSe) solar cells fabricated by sputter and a sequential process of selenization/sulfurization. In this study, we found direct evidence of void passivation by using the junction electron beam induced current method, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The high sulfur concentration at the void surface plays an important role in the performance enhancement of the device. The recombination around voids is effectively suppressed by field-assisted void passivation. Hence, the generated carriers are easily collected by the electrodes. Therefore, when the S/(S + Se) ratio at the void surface is over 8% at room temperature, the device performance degradation caused by the recombination at the voids is negligible at the CIGSSe layer

  4. Passive propulsion in vortex wakes

    Science.gov (United States)

    Beal, D. N.; Hover, F. S.; Triantafyllou, M. S.; Liao, J. C.; Lauder, G. V.

    A dead fish is propelled upstream when its flexible body resonates with oncoming vortices formed in the wake of a bluff cylinder, despite being well outside the suction region of the cylinder. Within this passive propulsion mode, the body of the fish extracts sufficient energy from the oncoming vortices to develop thrust to overcome its own drag. In a similar turbulent wake and at roughly the same distance behind a bluff cylinder, a passively mounted high-aspect-ratio foil is also shown to propel itself upstream employing a similar flow energy extraction mechanism. In this case, mechanical energy is extracted from the flow at the same time that thrust is produced. These results prove experimentally that, under proper conditions, a body can follow at a distance or even catch up to another upstream body without expending any energy of its own. This observation is also significant in the development of low-drag energy harvesting devices, and in the energetics of fish dwelling in flowing water and swimming behind wake-forming obstacles.

  5. Design of the passive personal dosimeter for miners using an allyl diglycol carbonate plastic. Phase 1

    International Nuclear Information System (INIS)

    1983-12-01

    The report summarizes the results of the feasibility study on the design and development of a passive personal dosimeter incorporating an allyl diglycol carbonate plastic (CR39) detector, for use by uranium miners. Based upon the feasibility study, a passive personal dosimeter using a capacitor-type electrostatic enhancement device has been designed. Preliminary tests indicate that the prototype could be used in the mine environment to differentiate radon and thoron daughters with a detection efficiency comparable to that of a typical active device. Further study is required, however, into the possible influence in the mine environment of local variations in charged fraction, upon the calibration of this dosimeter

  6. Low-Temperature Process for Atomic Layer Chemical Vapor Deposition of an Al2O3 Passivation Layer for Organic Photovoltaic Cells.

    Science.gov (United States)

    Kim, Hoonbae; Lee, Jihye; Sohn, Sunyoung; Jung, Donggeun

    2016-05-01

    Flexible organic photovoltaic (OPV) cells have drawn extensive attention due to their light weight, cost efficiency, portability, and so on. However, OPV cells degrade quickly due to organic damage by water vapor or oxygen penetration when the devices are driven in the atmosphere without a passivation layer. In order to prevent damage due to water vapor or oxygen permeation into the devices, passivation layers have been introduced through methods such as sputtering, plasma enhanced chemical vapor deposition, and atomic layer chemical vapor deposition (ALCVD). In this work, the structural and chemical properties of Al2O3 films, deposited via ALCVD at relatively low temperatures of 109 degrees C, 200 degrees C, and 300 degrees C, are analyzed. In our experiment, trimethylaluminum (TMA) and H2O were used as precursors for Al2O3 film deposition via ALCVD. All of the Al2O3 films showed very smooth, featureless surfaces without notable defects. However, we found that the plastic flexible substrate of an OPV device passivated with 300 degrees C deposition temperature was partially bended and melted, indicating that passivation layers for OPV cells on plastic flexible substrates need to be formed at temperatures lower than 300 degrees C. The OPV cells on plastic flexible substrates were passivated by the Al2O3 film deposited at the temperature of 109 degrees C. Thereafter, the photovoltaic properties of passivated OPV cells were investigated as a function of exposure time under the atmosphere.

  7. The Effect of Passive Movement for Paretic Ankle-Foot and Brain Activity in Post-Stroke Patients.

    Science.gov (United States)

    Vér, Csilla; Emri, Miklós; Spisák, Tamás; Berényi, Ervin; Kovács, Kázmér; Katona, Péter; Balkay, László; Menyhárt, László; Kardos, László; Csiba, László

    2016-01-01

    This study aims at investigating the short-term efficacy of the continuous passive motion (CPM) device developed for the therapy of ankle-foot paresis and to investigate by fMRI the blood oxygen level-dependent responses (BOLD) during ankle passive movement (PM). Sixty-four stroke patients were investigated. Patients were assigned into 2 groups: 49 patients received both 15 min manual and 30 min device therapy (M + D), while the other group (n = 15) received only 15 min manual therapy (M). A third group of stroke patients (n = 12) was investigated by fMRI before and immediately after 30 min CPM device therapy. There was no direct relation between the fMRI group and the other 2 groups. All subjects were assessed using the Modified Ashworth Scale (MAS) and a goniometer. Mean MAS decreased, the ankle's mean plantar flexion and dorsiflexion passive range of motion (PROM) increased and the equinovalgus improved significantly in the M + D group. In the fMRI group, the PM of the paretic ankle increased BOLD responses; this was observed in the contralateral pre- and postcentral gyrus, superior temporal gyrus, central opercular cortex, and in the ipsilateral postcentral gyrus, frontal operculum cortex and cerebellum. Manual therapy with CPM device therapy improved the ankle PROM, equinovalgus and severity of spasticity. The ankle PM increased ipsi- and contralateral cortical activation. © 2016 S. Karger AG, Basel.

  8. Development of a magnetic measurement device for thin ribbon samples

    International Nuclear Information System (INIS)

    Sato, Yuta; Todaka, Takashi; Enokizono, Masato

    2008-01-01

    This paper presents a magnetic measurement device for thin ribbon samples, which are produced by rapid cooling technique. This device enables us to measure magnetic properties easily by only inserting a ribbon sample into a sample holder. The sample holder was made by bakelite to fix any width sample. A long solenoid coil was used to generate a uniform magnetic field and the sample holder was placed at the mid part of the solenoid. The magnetic field strength was measured using a shunt resistor and the magnetic flux density and magnetization in sample ribbons were evaluated by using search coils. The accuracy of measurement was verified with an amorphous metal ribbon sample. Next, we have measured magnetic properties of some magnetic shape memory alloys, which have different compositions. The measured results are compared and we clarified the effect of Sm contents on the magnetic properties

  9. Achieving bifunctional cloak via combination of passive and active schemes

    Science.gov (United States)

    Lan, Chuwen; Bi, Ke; Gao, Zehua; Li, Bo; Zhou, Ji

    2016-11-01

    In this study, a simple and delicate approach to realizing manipulation of multi-physics field simultaneously through combination of passive and active schemes is proposed. In the design, one physical field is manipulated with passive scheme while the other with active scheme. As a proof of this concept, a bifunctional device is designed and fabricated to behave as electric and thermal invisibility cloak simultaneously. It is found that the experimental results are consistent with the simulated ones well, confirming the feasibility of our method. Furthermore, the proposed method could also be extended to other multi-physics fields, which might lead to potential applications in thermal, electric, and acoustic areas.

  10. Door and window image-based measurement using a mobile device

    Science.gov (United States)

    Ma, Guangyao; Janakaraj, Manishankar; Agam, Gady

    2015-03-01

    We present a system for door and window image-based measurement using an Android mobile device. In this system a user takes an image of a door or window that needs to be measured and using interaction measures specific dimensions of the object. The existing object is removed from the image and a 3D model of a replacement is rendered onto the image. The visualization provides a 3D model with which the user can interact. When tested on a mobile Android platform with an 8MP camera we obtain an average measurement error of roughly 0.5%. This error rate is stable across a range of view angles, distances from the object, and image resolutions. The main advantages of our mobile device application for image measurement include measuring objects for which physical access is not readily available, documenting in a precise manner the locations in the scene where the measurements were taken, and visualizing a new object with custom selections inside the original view.

  11. End-of-Mission Passivation: Successes and Challenges

    Science.gov (United States)

    Johnson, Nicholas; Matney, Mark

    2012-01-01

    The passivation of spacecraft and launch vehicle orbital stages at end-of-mission has been a principal space debris mitigation measure world-wide since the 1980 s. Space vehicle passivation includes the removal of stored energies, especially those associated with propulsion and electrical power systems. Prior to 2007 the breakup of non-functioning, non-passivated space vehicles was the major source of hazardous debris in Earth orbit. The United Nations and the Inter-Agency Space Debris Coordination Committee have both included passivation in their formal space debris mitigation guidelines. This often simple countermeasure has been adopted by many spacefaring countries and organizations and has undoubtedly prevented numerous major satellite breakups. For some existing space vehicle designs, passivation requires changes in hardware, software, and/or operational procedures. Questions about the permissible degree of passivation for both current and future space vehicles have arisen and are addressed herein. An important element to be considered is the potentially long period in which the space vehicle will remain in orbit, i.e., up to 25 years after mission termination in LEO and for centuries in orbits above LEO. Finally, the issue of passivation of space vehicles which have failed prematurely is addressed.

  12. Various Recipes of SiNx Passivated AlGaN/GaN High Electron Mobility Transistors in Correlation with Current Slump

    International Nuclear Information System (INIS)

    Ling, Yang; Yue, Hao; Xiao-Hua, Ma; Si, Quan; Gui-Zhou, Hu; Shou-Gao, Jiang; Li-Yuan, Yang

    2009-01-01

    The current slump of different recipes of SiN x passivated AlGaN/GaN high electron mobility transistors (HEMTs) is investigated. The dc and pulsed current-voltage curves of AlGaN/GaN HEMTs using different recipes are analyzed. It is found that passivation leakage has a strong relationship with NH 3 flow in the plasma-enhanced chemical vapor phase deposition process, which has impacted on the current collapse of SiN x passivated devices. We analyze the pulsed I DS – V DS characteristics of different recipes of SiN x passivation devices for different combinations of gate and drain quiescent biases (V GS0 , V DS0 ) of (0, 0), (−6, 0), (−6, 15) and (0, 15)V. The possible mechanisms are the traps in SiN x passivation capturing the electrons and the surface states at the SiN x /AlGaN interface, which can affect the channel of two-dimensional electron gas and cause the current collapse. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  13. A Simple Laser-Based Device for Simultaneous Microbial Culture and Absorbance Measurement

    OpenAIRE

    Abrevaya, X. C.; Cortón, E.; Areso, O.; Mauas, P. J. D.

    2012-01-01

    In this work we present a device specifically designed to study microbial growth with several applications related to environmental microbiology and other areas of research as astrobiology. The Automated Measuring and Cultivation device (AMC-d) enables semi-continuous absorbance measurements directly during cultivation. It can measure simultaneously up to 16 samples. Growth curves using low and fast growing microorganism were plotted, including Escherichia coli and Haloferax volcanii, a halop...

  14. A simple laser-based device for simultaneous microbial culture and absorbance measurement

    Science.gov (United States)

    Abrevaya, X. C.; Cortón, E.; Areso, O.; Mauas, P. J. D.

    2013-07-01

    In this work we present a device specifically designed to study microbial growth with several applications related to environmental microbiology and other areas of research as astrobiology. The Automated Measuring and Cultivation device (AMC-d) enables semi-continuous absorbance measurements directly during cultivation. It can measure simultaneously up to 16 samples. Growth curves using low and fast growing microorganism were plotted, including Escherichia coli and Haloferax volcanii, a halophilic archaeon.

  15. Characterization of Semiconductor Nanocrystal Assemblies as Components of Optoelectronic Devices

    Science.gov (United States)

    Malfavon-Ochoa, Mario

    This dissertation presents new insight into the ability of small molecule passivated NCs to achieve intimate approach distances, despite being well passivated, while developing guiding principles in the area of ligand mediated microstructure control and the resulting macroscopic optical and electronic properties that close packing of high quality NCs enables. NC ligand coverage will be characterized quantitatively through thermogravimetric analysis (TGA), and qualitatively by photoluminescence and electroluminescence, in the case of functional devices; illustrating the importance of practitioner dependent control of ligand coverage through variations in the dispersion precipitation purification procedure. A unique examination of the relative contribution of energy and charge transfer in NC LEDs will demonstrate the ability to achieve charge transfer, at a level competitive with energy transfer, to well passivated NCs at various wt% loading in a polymer matrix. The observation of potential dependent recombination zones within an active layer further suggest novel, NC surface passivation mediated control of blend microstructure during solution processing towards the development of a bi-continuous network. Next, NC self-assembly and resulting microstructure dependent optical and electronic properties will be examined through electroluminescence and high-resolution transmission electron microscopy (TEM) micrographs of functional NC/polymer bulk heterojunction LEDs. The joint characterization of NC optical properties, and self-assembly microstructure provide a deeper understanding of the significant and inseparable effects of minimal changes in NC surface passivation on structure and function, and emphasize the potential to rely on strongly passivating ligands to control physical properties and processing parameters concurrently towards higher efficiency devices via low cost processing. Finally, micro-contact printing of blazed transmission gratings, using stable

  16. Measuring device for control rod driving time

    International Nuclear Information System (INIS)

    Tanaka, Kazuhiko; Hanabusa, Masatoshi.

    1993-01-01

    The present invention concerns a measuring device for control driving time having a function capable of measuring a selected control rod driving time and measuring an entire control rod driving time simultaneously. A calculation means and a store means for the selected rod control rod driving time, and a calculation means and a store means for the entire control rod driving time are disposed individually. Each of them measures the driving time and stores the data independent of each other based on a selected control rod insert ion signal and an entire control rod insertion signal. Even if insertion of selected and entire control rods overlaps, each of the control rod driving times can be measured reliably to provide an advantageous effect capable of more accurately conducting safety evaluation for the nuclear reactor based on the result of the measurement. (N.H.)

  17. Hydrogen passivation of polycrystalline Si thin film solar cells

    International Nuclear Information System (INIS)

    Gorka, Benjamin

    2010-01-01

    Hydrogen passivation is a key process step in the fabrication of polycrystalline Si (poly-Si) thin film solar cells. In this work a parallel plate rf plasma setup was used for the hydrogen passivation treatment. The main topics that have been investigated are (i) the role of plasma parameters (like hydrogen pressure, electrode gap and plasma power), (ii) the dynamics of the hydrogen treatment and (iii) passivation of poly-Si with different material properties. Passivation was characterized by measuring the open-circuit voltage V OC of poly-Si reference samples. Optimum passivation conditions were found by measurements of the breakdown voltage V brk of the plasma for different pressures p and electrode gaps d. For each pressure, the best passivation was achieved at a gap d that corresponded to the minimum in V brk . Plasma simulations were carried out, which indicate that best V OC corresponds to a minimum in ion energy. V OC was not improved by a larger H flux. Investigations of the passivation dynamic showed that a plasma treatment in the lower temperature range (≤400 C) is slow and takes several hours for the V OC to saturate. Fast passivation can be successfully achieved at elevated temperatures around 500 C to 600 C with a plateau time of 10 min. It was found that prolonged hydrogenation leads to a loss in V OC , which is less pronounced within the observed optimum temperature range (500 C-600 C). Electron beam evaporation has been investigated as an alternative method to fabricate poly-Si absorbers. The material properties have been tuned by alteration of substrate temperature T dep =200-700 C and were characterized by Raman, ESR and V OC measurements. Largest grains were obtained after solid phase crystallization (SPC) of a-Si, deposited in the temperature range of 300 C. The defect concentration of Si dangling bonds was lowered by passivation by about one order of magnitude. The lowest dangling bond concentration of 2.5.10 16 cm -3 after passivation was

  18. Compact and high-efficiency device for Raman scattering measurement using optical fibers.

    Science.gov (United States)

    Mitsui, Tadashi

    2014-11-01

    We describe the design and development of a high-efficiency optical measurement device for operation within the small bore of a high-power magnet at low temperature. For the high-efficiency measurement of light emitted from this small region, we designed a compact confocal optics with lens focusing and tilting systems, and used a piezodriven translation stage that allows micron-scale focus control of the sample position. We designed a measurement device that uses 10 m-long optical fibers in order to avoid the influence of mechanical vibration and magnetic field leakage of high-power magnets, and we also describe a technique for minimizing the fluorescence signal of optical fibers. The operation of the device was confirmed by Raman scattering measurements of monolayer graphene on quartz glass with a high signal-to-noise ratio.

  19. A pilot study of a new spectrophotometry device to measure tissue oxygen saturation.

    Science.gov (United States)

    Abel, Gemma; Allen, John; Drinnan, Michael

    2014-09-01

    Tissue oxygen saturation (SO2) measurements have the potential for far wider use than at present but are limited by device availability and portability for many potential applications. A device based on a small, low-cost general-purpose spectrophotometer (the Harrison device) might facilitate wider use. The aim of this study was to compare the Harrison device with a commercial instrument, the LEA O2C.Measurements were carried out on the forearm and finger of 20 healthy volunteers, using a blood pressure cuff on the upper arm to induce different levels of oxygenation. Repeatability of both devices was assessed, and the Bland-Altman method was used to assess agreement between them.The devices showed agreement in overall tracking of changes in SO2. Test-retest agreement for the Harrison device was worse than for O2C, with SD repeatability of 10.6% (forearm) or 18.6% (finger). There was no overall bias between devices, but mean (SD) difference of 1.2 (11.8%) (forearm) or 4.4 (11.5%) (finger) were outside of a clinically acceptable range.Disagreements were attributed to the stability of the Harrison probe and the natural SO2 variations across the skin surface increasing the random error. Therefore, though not equivalent to the LEA O2C, a probe redesign and averaged measurements may help establish the Harrison device as a low cost alternative.

  20. A pilot study of a new spectrophotometry device to measure tissue oxygen saturation

    International Nuclear Information System (INIS)

    Abel, Gemma; Allen, John; Drinnan, Michael

    2014-01-01

    Tissue oxygen saturation (SO2) measurements have the potential for far wider use than at present but are limited by device availability and portability for many potential applications. A device based on a small, low-cost general-purpose spectrophotometer (the Harrison device) might facilitate wider use. The aim of this study was to compare the Harrison device with a commercial instrument, the LEA O2C. Measurements were carried out on the forearm and finger of 20 healthy volunteers, using a blood pressure cuff on the upper arm to induce different levels of oxygenation. Repeatability of both devices was assessed, and the Bland–Altman method was used to assess agreement between them. The devices showed agreement in overall tracking of changes in SO2. Test–retest agreement for the Harrison device was worse than for O2C, with SD repeatability of 10.6% (forearm) or 18.6% (finger). There was no overall bias between devices, but mean (SD) difference of 1.2 (11.8%) (forearm) or 4.4 (11.5%) (finger) were outside of a clinically acceptable range. Disagreements were attributed to the stability of the Harrison probe and the natural SO2 variations across the skin surface increasing the random error. Therefore, though not equivalent to the LEA O2C, a probe redesign and averaged measurements may help establish the Harrison device as a low cost alternative. (paper)