WorldWideScience

Sample records for passive integrating dosimetry

  1. Dosimetry optimization at COGEMA-La Hague

    International Nuclear Information System (INIS)

    Kalimbadjian, J.

    2000-01-01

    At the present time, the la Hague site strives to apply international recommendations together with national regulations concerning radiation protection, and especially the respect of limitation and optimization principles. The application of these principles is based on the implementation of a passive dosimetry and an active dosimetry. The monthly passive dosimetry is monitored by means of a photographic dosimetry film, completed with lithium fluorine thermoluminescent film badges. This personal dosimetry common to X, β, γ and neutron radiations is carried out in close relationship between the Radiation Protection Department, the Occupational Medical Department and the staff running the Plant. The application or ALARA's principle as well as that of radiation protection optimization implies to implement a complementary active dosimetry enabling to gain in real time, the personal dosimetry of each intervening person, either they be COGEMA's workers or external companies'. This active dosimetry provides with following information: This preventive dosimetry is based on the knowledge of doses integration in real time and is fitted with alarm thresholds according to the total amount of doses and dose rates. Thresholds on the dose rate are also set relatively to the radiological environment. This knowledge of doses and dose rates allows a stricter management of the works, while analyzing them according to the nature of the work, to the location and to the skills of the intervening people. This dosimetry allows to analyze and optimize doses integration according to the works nature for the whole intervening staff. The la Hague Site has developed an active personal dosimetry system, common to every intervening person, COGEMA or external companies. The DOSICARD was thus elaborated, shaped as an electronic dosimeter fitted with an alarm and a smart card. The access to controlled areas is conditioned to information given by the DOSICARD concerning medical aptitudes and

  2. High-order passive photonic temporal integrators.

    Science.gov (United States)

    Asghari, Mohammad H; Wang, Chao; Yao, Jianping; Azaña, José

    2010-04-15

    We experimentally demonstrate, for the first time to our knowledge, an ultrafast photonic high-order (second-order) complex-field temporal integrator. The demonstrated device uses a single apodized uniform-period fiber Bragg grating (FBG), and it is based on a general FBG design approach for implementing optimized arbitrary-order photonic passive temporal integrators. Using this same design approach, we also fabricate and test a first-order passive temporal integrator offering an energetic-efficiency improvement of more than 1 order of magnitude as compared with previously reported passive first-order temporal integrators. Accurate and efficient first- and second-order temporal integrations of ultrafast complex-field optical signals (with temporal features as fast as approximately 2.5ps) are successfully demonstrated using the fabricated FBG devices.

  3. Integrating the DLD dosimetry system into the Almaraz NPP Corporative Database

    International Nuclear Information System (INIS)

    Gonzalez Crego, E.; Martin Lopez-Suevos, C.

    1996-01-01

    The article discusses the experience acquired during the integration of a new MGP Instruments DLD Dosimetry System into the Almaraz NPP corporative database and general communications network, following a client-server philosophy and taking into account the computer standards of the Plant. The most important results obtained are: Integration of DLD dosimetry information into corporative databases, permitting the use of new applications Sharing of existing personnel information with the DLD dosimetry application, thereby avoiding the redundant work of introducing data and improving the quality of the information. Facilitation of maintenance, both software and hardware, of the DLD system. Maximum explotation, from the computer point of view, of the initial investment. Adaptation of the application to the applicable legislation. (Author)

  4. BASACF, Integral Neutron Spectra Adjustment and Dosimetry

    International Nuclear Information System (INIS)

    Tichy, Milos

    1996-01-01

    1 - Description of program or function: Adjustment of a neutron spectrum based on integral detector measurements and calculation of an integral dosimetric quantity (integral flux, d.p.a., dose equivalent) and its variance. The program requires measured data (activities and their covariance matrix) and a priori information (spectrum, dosimetry cross sections, integral quantity conversion factor and their covariance matrices). All a priori covariance matrices can be read in from a file prepared by some other code or can be generated by means of three different methods (by subroutines included in the program). A subroutine which can normalize the a priori flux to measured data is also included. The program provides also adjusted dosimetry cross sections (with covariance matrix) so that it can be used for an adjustment of cross sections (or response functions of e.g. Bonner balls) by measurements in well-known neutron spectra. 2 - Method of solution: Bayesian theorem on conditional probability applied to linearized relation between activities, dosimetry cross sections and flux. All probability distributions are supposed to be normal and this supposition leads to minimizing of the same functional as least squares method (STAY'SL). This task is solved by a covariance filter method which avoids any matrix inversion and is numerically robust and stable. 3 - Restrictions on the complexity of the problem: This version can use 45 energy groups and 5 detectors and occupies 310 kB of main memory. This restriction can be modified according to available memory. The covariance matrix of activities is supposed diagonal. A solution is produced for any set of input data but in the case of non-consistent data, when measured activities do not match the a priori flux, the solution is not very meaningful

  5. Passive Dosimetry Of Nuclear Medicine Service Staff, Ibn Sina Hospital

    International Nuclear Information System (INIS)

    Sebihi, R.; Talsmat, K.; Cherkaoui, R.; Ben Rais, N.

    2010-01-01

    Full text: Since the implementation of Law No. 00571 of 21 Chaabane 1391 on protection against ionizing radiation and its decrees 2: 2-97-30 and 2-97-132 28 October 1997, surveillance of workers has the subject of major regulatory developments in Morocco, including individual registration delayed for dosimetry. As part of optimizing the protection of medical personnel, a dosimetric study was performed for the first time at the national level, the Nuclear Medicine Service of the Ibn Sina hospital in collaboration with the National Center for Energy Sciences and Nuclear Techniques (CNESTEN). Dosimetric monitoring was conducted for 2 weeks with the use of passive thermoluminescent dosimeters, (GR200A), covering all categories of staff. The administration of samarium (β emitter with energy substantially higher than the energies encountered in conventional nuclear medicine) has been studied, given his first service. Other cases of people concerned our study: a pregnant woman doctor, whose exposure of the unborn child must be reduced as much as possible, and a woman from a private company, working without dosimeter, handles maintenance of premises. To control the conditions imposed on all activities requiring exposure to ionizing radiation, we evaluated the dose at the extremities of operators with the use of ring dosimeters (GR200A) and the dose on the ambient environment of staff (dosimeters ALNOR). This experiment has shown exposure levels below legal limits, without been negligible for certain post. The evaluation results equivalent doses manipulators justify the wearing of dosimeter rings as a complementary dosimeter in Nuclear Medicine service and a way of controlling the normal working conditions. Finally Monitoring ambient dosimetry showed that the environment is low radiation doses. Lessons learned from this study, for the protection of personnel are as follows: from the simple awareness of staff and means of optimizing radiation can maintain a dosimetry annual

  6. A feasibility study using radiochromic films for fast neutron 2D passive dosimetry

    International Nuclear Information System (INIS)

    Brady, Samuel L; Fallin, Brent; Gunasingha, Rathnayaka; Yoshizumi, Terry T; Howell, Calvin R; Crowell, Alexander S; Tonchev, Anton P; Dewhirst, Mark W

    2010-01-01

    The objective of this paper is threefold: (1) to establish sensitivity of XRQA and EBT radiochromic films to fast neutron exposure; (2) to develop a film response to radiation dose calibration curve and (3) to investigate a two-dimensional (2D) film dosimetry technique for use in establishing an experimental setup for a radiobiological irradiation of mice and to assess the dose to the mice in this setup. The films were exposed to a 10 MeV neutron beam via the 2 H(d,n) 3 He reaction. The XRQA film response was a factor of 1.39 greater than EBT film response to the 10 MeV neutron beam when exposed to a neutron dose of 165 cGy. A film response-to-soft tissue dose calibration function was established over a range of 0-10 Gy and had a goodness of fit of 0.9926 with the calibration data. The 2D film dosimetry technique estimated the neutron dose to the mice by measuring the dose using a mouse phantom and by placing a piece of film on the exterior of the experimental mouse setup. The film results were benchmarked using Monte Carlo and aluminum (Al) foil activation measurements. The radiochromic film, Monte Carlo and Al foil dose measurements were strongly correlated, and the film within the mouse phantom agreed to better than 7% of the externally mounted films. These results demonstrated the potential application of radiochromic films for passive 2D neutron dosimetry.

  7. Neutron dosimetry for radiation damage in fission and fusion reactors

    International Nuclear Information System (INIS)

    Smith, D.L.

    1979-01-01

    The properties of materials subjected to the intense neutron radiation fields characteristic of fission power reactors or proposed fusion energy devices is a field of extensive current research. These investigations seek important information relevant to the safety and economics of nuclear energy. In high-level radiation environments, neutron metrology is accomplished predominantly with passive techniques which require detailed knowledge about many nuclear reactions. The quality of neutron dosimetry has increased noticeably during the past decade owing to the availability of new data and evaluations for both integral and differential cross sections, better quantitative understanding of radioactive decay processes, improvements in radiation detection technology, and the development of reliable spectrum unfolding procedures. However, there are problems caused by the persistence of serious integral-differential discrepancies for several important reactions. There is a need to further develop the data base for exothermic and low-threshold reactions needed in thermal and fast-fission dosimetry, and for high-threshold reactions needed in fusion-energy dosimetry. The unsatisfied data requirements for fission reactor dosimetry appear to be relatively modest and well defined, while the needs for fusion are extensive and less well defined because of the immature state of fusion technology. These various data requirements are examined with the goal of providing suggestions for continued dosimetry-related nuclear data research

  8. Individual dosimetry of workers and patients: implementation and perspectives; La dosimetrie individuelle des travailleurs et de patients: mise en oeuvre et perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Rannou, A.; Aubert, B.; Lahaye, Th.; Scaff, P.; Casanova, Ph.; Van Bladel, L.; Queinnec, F.; Valendru, N.; Jehanno, J.; Grude, E.; Berard, Ph.; Desbree, A.; Kafrouni, H.; Paquet, F.; Vanhavere, F.; Bridier, A.; Ginestet, Ch.; Magne, S.; Donadille, L.; Bordy, J.M.; Bottollier-Depois, J.F.; Barrere, J.L.; Ferragut, A.; Metivier, H.; Gaillard-Lecanu, E

    2008-07-01

    These days organised by the section of the technical protection of the S.F.R.P. review the different techniques of dosimetry used in France and Europe, and present the future orientations.The different interventions are as follow: Individual exposures of the workers: historic assessment and perspectives; medical exposure: where are the doses; legal obligations in individual dosimetry: which are the objective and the need on the subject; the dosimetry follow-up of workers by the S.I.S.E.R.I. system: assessment and perspectives; impact of the norm ISO 20553 on the follow-up of internal exposure; the implementation of the patient dose measurement in Belgium; techniques of passive dosimetry used in Europe; Supervision radiation protection at EDF: long term and short term approach; Comparison active and passive dosimetry at Melox; methodology for the choice of new neutron dosemeters; the working group M.E.D.O.R.: guide of internal dosimetry for the use of practitioners; O.E.D.I.P.E.: tool of modeling for the personalized internal dosimetry; the use of the Monte-Carlo method for the planning of the cancer treatment by radiotherapy becomes a reality; the works of the committee 2 of the ICRP; passive dosimetry versus operational dosimetry: situation in Europe; Implementation of the in vivo dosimetry in a radiotherapy department: experience of the Gustave Roussy institute; experience feedback on the in vivo measures in radiotherapy, based on the use of O.S.L. pellets; multi points O.S.L. instrumentation for the radiation dose monitoring in radiotherapy; dosimetry for extremities for medical applications: principle results of the European contract C.O.N.R.A.D.; references and perspectives in dosimetry; what perspectives for numerical dosimetry, an example: Sievert; system of dose management: how to answer to needs; the last technical evolutions in terms of electronic dosimetry in nuclear power plant; the fourth generation type reactors: what dosimetry. (N.C.)

  9. Individual dosimetry of workers and patients: implementation and perspectives

    International Nuclear Information System (INIS)

    Rannou, A.; Aubert, B.; Lahaye, Th.; Scaff, P.; Casanova, Ph.; Van Bladel, L.; Queinnec, F.; Valendru, N.; Jehanno, J.; Grude, E.; Berard, Ph.; Desbree, A.; Kafrouni, H.; Paquet, F.; Vanhavere, F.; Bridier, A.; Ginestet, Ch.; Magne, S.; Donadille, L.; Bordy, J.M.; Bottollier-Depois, J.F.; Barrere, J.L.; Ferragut, A.; Metivier, H.; Gaillard-Lecanu, E.

    2008-01-01

    These days organised by the section of the technical protection of the S.F.R.P. review the different techniques of dosimetry used in France and Europe, and present the future orientations.The different interventions are as follow: Individual exposures of the workers: historic assessment and perspectives; medical exposure: where are the doses; legal obligations in individual dosimetry: which are the objective and the need on the subject; the dosimetry follow-up of workers by the S.I.S.E.R.I. system: assessment and perspectives; impact of the norm ISO 20553 on the follow-up of internal exposure; the implementation of the patient dose measurement in Belgium; techniques of passive dosimetry used in Europe; Supervision radiation protection at EDF: long term and short term approach; Comparison active and passive dosimetry at Melox; methodology for the choice of new neutron dosemeters; the working group M.E.D.O.R.: guide of internal dosimetry for the use of practitioners; O.E.D.I.P.E.: tool of modeling for the personalized internal dosimetry; the use of the Monte-Carlo method for the planning of the cancer treatment by radiotherapy becomes a reality; the works of the committee 2 of the ICRP; passive dosimetry versus operational dosimetry: situation in Europe; Implementation of the in vivo dosimetry in a radiotherapy department: experience of the Gustave Roussy institute; experience feedback on the in vivo measures in radiotherapy, based on the use of O.S.L. pellets; multi points O.S.L. instrumentation for the radiation dose monitoring in radiotherapy; dosimetry for extremities for medical applications: principle results of the European contract C.O.N.R.A.D.; references and perspectives in dosimetry; what perspectives for numerical dosimetry, an example: Sievert; system of dose management: how to answer to needs; the last technical evolutions in terms of electronic dosimetry in nuclear power plant; the fourth generation type reactors: what dosimetry. (N.C.)

  10. Dosimetry of ionizing radiation

    International Nuclear Information System (INIS)

    Musilek, L.; Seda, J.; Trousil, J.

    1992-01-01

    The publication deals with a major field of ionizing radiation dosimetry, viz., integrating dosimetric methods, which are the basic means of operative dose determination. It is divided into the following sections: physical and chemical effects of ionizing radiation; integrating dosimetric methods for low radiation doses (film dosimetry, nuclear emulsions, thermoluminescence, radiophotoluminescence, solid-state track detectors, integrating ionization dosemeters); dosimetry of high ionizing radiation doses (chemical dosimetric methods, dosemeters based on the coloring effect, activation detectors); additional methods applicable to integrating dosimetry (exoelectron emission, electron spin resonance, lyoluminescence, etc.); and calibration techniques for dosimetric instrumentation. (Z.S.). 422 refs

  11. Design of integrated passive safety system (IPSS) for ultimate passive safety of nuclear power plants

    International Nuclear Information System (INIS)

    Chang, Soon Heung; Kim, Sang Ho; Choi, Jae Young

    2013-01-01

    Highlights: • We newly propose the design concept of integrated passive safety system (IPSS). • It has five safety functions for decay heat removal and severe accident mitigation. • Simulations for IPSS show that core melt does not occur in accidents with SBO. • IPSS can achieve the passive in-vessel retention and ex-vessel cooling strategy. • The applicability of IPSS is high due to the installation outside the containment. -- Abstract: The design concept of integrated passive safety system (IPSS) which can perform various passive safety functions is proposed in this paper. It has the various functions of passive decay heat removal system, passive safety injection system, passive containment cooling system, passive in-vessel retention and cavity flooding system, and filtered venting system with containment pressure control. The objectives of this paper are to propose the conceptual design of an IPSS and to estimate the design characters of the IPSS with accident simulations using MARS code. Some functions of the IPSS are newly proposed and the other functions are reviewed with the integration of the functions. Consequently, all of the functions are modified and integrated for simplicity of the design in preparation for beyond design based accidents (BDBAs) focused on a station black out (SBO). The simulation results with the IPSS show that the decay heat can be sufficiently removed in accidents that occur with a SBO. Also, the molten core can be retained in a vessel via the passive in-vessel retention strategy of the IPSS. The actual application potential of the IPSS is high, as numerous strong design characters are evaluated. The installation of the IPSS into the original design of a nuclear power plant requires minimal design change using the current penetrations of the containment. The functions are integrated in one or two large tanks outside the containment. Furthermore, the operation time of the IPSS can be increased by refilling coolant from the

  12. SU-E-T-486: In Vivo Skin Dosimetry Using the Exradin W1 Plastic Scintillation Detector for Passively Scattered Proton Beam Therapy

    International Nuclear Information System (INIS)

    Alsanea, F; Kudchadker, R; Usama, M; Beddar, S; Wootton, L

    2015-01-01

    Purpose: To evaluate the accuracy and usefulness of plastic scintillation detectors used for skin dosimetry of patients undergoing passive scatter proton therapy. Methods: Following an IRB approved protocol, six patients undergoing passively scattered proton beam therapy for prostate cancer were selected for in vivo skin dosimetry using the Exradin W1 plastic scintillator. The detector was calibrated on a Cobalt-60 unit, and phantom measurements in the proton beam with the W1 and a calibrated parallel plate ion chamber were used to account for the under-response due to high LET at energies used for treatment. Measurements made in a heated water tank were used to account for temperature dependence. For in vivo measurements, the W1 is fixed to the patient’s skin with medical tape in the center of each of two laterally opposed treatment fields. Measurements will be performed once per week for each patient for the duration of treatment, for a total of thirty six measurements. The measured dose will be compared to the expected dose, extracted from the Eclipse treatment planning system. The average difference over all measurements and per-patient will be computed, as well as standard deviations. Results: The calibrated detector exhibited a 7% under-response in 225 and 250 MeV beams, and a 4% under-response when used at 37 °C (relative to the response at the calibration temperature of 20 °C). Patient measurements are ongoing. Conclusion: The Exradin W1 plastic scintillator detector is a strong candidate for in vivo skin dosimetry in passively scattered proton beams as PSDs are water equivalent and very small (2mm in diameter), permitting accurate measurements that do not perturb the delivered dose. This project was supported in part by award number CA182450 from the National Cancer Institute

  13. JENDL Dosimetry File

    International Nuclear Information System (INIS)

    Nakazawa, Masaharu; Iguchi, Tetsuo; Kobayashi, Katsuhei; Iwasaki, Shin; Sakurai, Kiyoshi; Ikeda, Yujiro; Nakagawa, Tsuneo.

    1992-03-01

    The JENDL Dosimetry File based on JENDL-3 was compiled and integral tests of cross section data were performed by the Dosimetry Integral Test Working Group of the Japanese Nuclear Data Committee. Data stored in the JENDL Dosimetry File are the cross sections and their covariance data for 61 reactions. The cross sections were mainly taken from JENDL-3 and the covariances from IRDF-85. For some reactions, data were adopted from other evaluated data files. The data are given in the neutron energy region below 20 MeV in both of point-wise and group-wise files in the ENDF-5 format. In order to confirm reliability of the data, several integral tests were carried out; comparison with the data in IRDF-85 and average cross sections measured in fission neutron fields, fast reactor spectra, DT neutron fields and Li(d, n) neutron fields. As a result, it has been found that the JENDL Dosimetry File gives better results than IRDF-85 but there are some problems to be improved in future. The contents of the JENDL Dosimetry File and the results of the integral tests are described in this report. All of the dosimetry cross sections are shown in a graphical form. (author) 76 refs

  14. JENDL Dosimetry File

    Energy Technology Data Exchange (ETDEWEB)

    Nakazawa, Masaharu; Iguchi, Tetsuo [Tokyo Univ. (Japan). Faculty of Engineering; Kobayashi, Katsuhei [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Iwasaki, Shin [Tohoku Univ., Sendai (Japan). Faculty of Engineering; Sakurai, Kiyoshi; Ikeda, Yujior; Nakagawa, Tsuneo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1992-03-15

    The JENDL Dosimetry File based on JENDL-3 was compiled and integral tests of cross section data were performed by the Dosimetry Integral Test Working Group of the Japanese Nuclear Data Committee. Data stored in the JENDL Dosimetry File are the cross sections and their covariance data for 61 reactions. The cross sections were mainly taken from JENDL-3 and the covariances from IRDF-85. For some reactions, data were adopted from other evaluated data files. The data are given in the neutron energy region below 20 MeV in both of point-wise and group-wise files in the ENDF-5 format. In order to confirm reliability of the data, several integral tests were carried out; comparison with the data in IRDF-85 and average cross sections measured in fission neutron fields, fast reactor spectra, DT neutron fields and Li(d,n) neutron fields. As a result, it has been found that the JENDL Dosimetry File gives better results than IRDF-85 but there are some problems to be improved in future. The contents of the JENDL Dosimetry File and the results of the integral tests are described in this report. All of the dosimetry cross sections are shown in a graphical form.

  15. Activity Of EURADOS In Environmental Solid State Dosimetry

    International Nuclear Information System (INIS)

    Ranogajec-Komor, M.; Duch, M. A.; Haninger, T.

    2015-01-01

    Working Group 3 (WG3) of the European Radiation Dosimetry Group (EURADOS) carries out research projects and coordinated activities to advance the scientific understanding of environmental dosimetry and especially to promote the technical development of new methods in environmental monitoring. In this field of dosimetry, the measurement of small additional doses caused by artificial radiation on top of the natural environmental radiation is a challenge. Further, WG3 stimulates the organisation of intercomparison programmes and the definition of standards and recommendations in the field of environmental radiation monitoring (ERM). WG3 has played a significant role in the harmonisation of early warning dosimetry network stations in Europe and has organised 6 EURADOS intercomparison exercises; in which 42 institutions from 19 countries have participated. Today, about 5000 stations provide real-time dose rate data to a database run by the European Commission. Within WG3 a subgroup (S1) on spectrometry system was formed in 2013. Since then, WG3 has been involved in the field of spectrometry systems used both for dosimetric and spectrometric monitoring in the environment. A remarkable result of the WG3 - S1 is that many members contributed to the new European Joint Research Project 'Metrology for radiological early warning networks in Europe' which started in 2014. A second subgroup WG3 - S2 on passive dosimetry in ERM was inaugurated in 2014. To gain an overview of the passive dosimetry practice in ERM, WG3 - S2 decided to collect information by means of a questionnaire which has been send to European dosimetry services. One of the results was the identification of some open questions, problems in ERM (for example terminology, protocol of routine dosimetry, uncertainty assessment) which require clarification for harmonisation of ERM using passive dosimeters. Another result was that there exists a need for intercomparisons. The first intercomparison for passive

  16. SBO simulations for Integrated Passive Safety System (IPSS) using MARS

    International Nuclear Information System (INIS)

    Kim, Sang Ho; Jeong, Sung Yeop; Chang, Soon Heung

    2012-01-01

    The current nuclear power plants have lots of active safety systems with some passive safety systems. The safety of current and future nuclear power plants can be enhanced by the application of additional passive safety systems for the ultimate safety. It is helpful to install the passive safety systems on current nuclear power plants without the design change for the licensibility. For solving the problem about the system complexity shown in the Fukushima accidents, the current nuclear power plants are needed to be enhanced by an additional integrated and simplified system. As a previous research, the integrated passive safety system (IPSS) was proposed to solve the safety issues related with the decay heat removal, containment integrity and radiation release. It could be operated by natural phenomena like gravity, natural circulation and pressure difference without AC power. The five main functions of IPSS are: (a) Passive decay heat removal, (b) Passive emergency core cooling, (c) Passive containment cooling, (d) Passive in vessel retention and ex-vessel cooling, and (e) Filtered venting and pressure control. The purpose of this research is to analyze the performances of each function by using MARS code. The simulated accident scenarios were station black out (SBO) and the additional accidents accompanied by SBO

  17. EURADOS intercomparisons in external radiation dosimetry: similarities and differences among exercises for whole-body photon, whole-body neutron, extremity, eye-lens and passive area dosemeters

    International Nuclear Information System (INIS)

    Romero, Ana M.; Grimbergen, Tom; McWhan, Andrew; Stadtmann, Hannes; Fantuzzi, Elena; Clairand, Isabelle; Neumaier, Stefan; Dombrowski, Harald; Figel, Markus

    2016-01-01

    The European Radiation Dosimetry Group (EURADOS) has been organising dosimetry intercomparisons for many years in response to an identified requirement from individual monitoring services (IMS) for independent performance tests for dosimetry systems. The participation in intercomparisons gives IMS the opportunity to show compliance with their own quality management system, compare results with other participants and develop plans for improving their dosimetry systems. In response to growing demand, EURADOS has increased the number of intercomparisons for external radiation dosimetry. Most of these fit into the programme of self-financing intercomparisons for dosemeters routinely used by IMS. This programme is being coordinated by EURADOS working group 2 (WG2). Up to now, this programme has included four intercomparisons for whole-body dosemeters in photon fields, one for extremity dosemeters in photon and beta fields, and one for whole-body dosemeters in neutron fields. Other EURADOS working groups have organised additional intercomparisons including events in 2014 for eye-lens dosemeters and passive area dosemeters for environmental monitoring. In this paper, the organisation and achievements of these intercomparisons are compared in detail focusing on the similarities and differences in their execution. (authors)

  18. A Review on Passive and Integrated Near-Field Microwave Biosensors

    Science.gov (United States)

    Guha, Subhajit; Jamal, Farabi Ibne

    2017-01-01

    In this paper we review the advancement of passive and integrated microwave biosensors. The interaction of microwave with biological material is discussed in this paper. Passive microwave biosensors are microwave structures, which are fabricated on a substrate and are used for sensing biological materials. On the other hand, integrated biosensors are microwave structures fabricated in standard semiconductor technology platform (CMOS or BiCMOS). The CMOS or BiCMOS sensor technology offers a more compact sensing approach which has the potential in the future for point of care testing systems. Various applications of the passive and the integrated sensors have been discussed in this review paper. PMID:28946617

  19. Dosimetry systems for radiation processing

    International Nuclear Information System (INIS)

    McLaughlin, W.L.; Desrosiers, M.F.

    1995-01-01

    Dosimetry serves important functions in radiation processing, where large absorbed doses and dose rates from photon and electron sources have to be measured with reasonable accuracy. Proven dosimetry systems are widely used to perform radiation measurements in development of new processes, validation, qualification and verification (quality control) of established processes and archival documentation of day-to-day and plant-to-plant processing uniformity. Proper calibration and traceability of routine dosimetry systems to standards are crucial to the success of many large-volume radiation processes. Recent innovations and advances in performance of systems that enhance radiation measurement assurance and process diagnostics include dose-mapping media (new radiochromic film and solutions), optical waveguide systems for food irradiation, solid-state devices for real-time and passive dosimetry over wide dose-rate and dose ranges, and improved analytical instruments and data acquisition. (author)

  20. A high-performance trench capacitor integrated in a passive integration technology

    International Nuclear Information System (INIS)

    Geiselbrechtinger, Angelika; Büyüktas, Kevni; Allers, Karl-Heinz; Hartung, Wolfgang

    2009-01-01

    The requirements for the electrical characteristics of passive on-chip devices become more and more important. The electrical performance of RF circuits is predominantly restricted by the passives. New technologies and new device concepts are necessary to meet the demands. In this work, a trench capacitor developed for RF applications is presented for the first time. This so-called SilCap (silicon capacitor) device features very high capacitance density, extreme low-voltage dependence, excellent temperature stability, good RF performance and a high breakthrough voltage. First, the device function and the technological concept are introduced. The concept is realized without implementing cost-intensive high-k materials. This trench capacitor is integrated in the front end of line of a passive integration technology. The achieved specific capacitance density is compared to a standard planar capacitor. Performance of the SilCap in terms of quality factor and breakthrough voltage is shown. Finally, reliability data of this trench capacitor are presented with special focus on extrinsic and dielectric lifetime

  1. Integration of quantum cascade lasers and passive waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, Juan, E-mail: juan.montoya@ll.mit.edu; Wang, Christine; Goyal, Anish; Creedon, Kevin; Connors, Michael; Daulton, Jeffrey; Donnelly, Joseph; Missaggia, Leo; Aleshire, Chris; Sanchez-Rubio, Antonio; Herzog, William [MIT Lincoln Laboratory, 244 Wood St, Lexington, Massachusetts 02420 (United States)

    2015-07-20

    We report on monolithic integration of active quantum cascade laser (QCL) materials with passive waveguides formed by using proton implantation. Proton implantation reduces the electron concentration in the QCL layers by creating deep levels that trap carriers. This strongly reduces the intersubband absorption and the free-carrier absorption in the gain region and surrounding layers, thus significantly reducing optical loss. We have measured loss as low as α = 0.33 cm{sup −1} in λ = 9.6 μm wavelength proton-implanted QCL material. We have also demonstrated lasing in active-passive integrated waveguides. This simple integration technique is anticipated to enable low-cost fabrication in infrared photonic integrated circuits in the mid-infrared (λ ∼ 3–16 μm)

  2. Integration of quantum cascade lasers and passive waveguides

    International Nuclear Information System (INIS)

    Montoya, Juan; Wang, Christine; Goyal, Anish; Creedon, Kevin; Connors, Michael; Daulton, Jeffrey; Donnelly, Joseph; Missaggia, Leo; Aleshire, Chris; Sanchez-Rubio, Antonio; Herzog, William

    2015-01-01

    We report on monolithic integration of active quantum cascade laser (QCL) materials with passive waveguides formed by using proton implantation. Proton implantation reduces the electron concentration in the QCL layers by creating deep levels that trap carriers. This strongly reduces the intersubband absorption and the free-carrier absorption in the gain region and surrounding layers, thus significantly reducing optical loss. We have measured loss as low as α = 0.33 cm −1 in λ = 9.6 μm wavelength proton-implanted QCL material. We have also demonstrated lasing in active-passive integrated waveguides. This simple integration technique is anticipated to enable low-cost fabrication in infrared photonic integrated circuits in the mid-infrared (λ ∼ 3–16 μm)

  3. Active and passive silica waveguide integration

    DEFF Research Database (Denmark)

    Hübner, Jörg; Guldberg-Kjær, Søren Andreas

    2001-01-01

    . The increasing complexity and functionality of optical networks prompts a demand for highly integrated optical circuits. On-board optical amplifiers, monolithically integrated with functionalities like switching or multiplexing/demultiplexing will allow flexible incorporation of optical integrated circuits...... in existing and future networks without affecting the power budget of the system. Silica on silicon technology offers a unique possibility to selectively dope sections of the integrated circuit with erbium where amplification is desired. Some techniques for active/passive integration are reviewed and a silica......Integrated optical amplifiers are currently regaining interest. Stand-alone single integrated amplifiers offer only limited advantage over current erbium doped fiber amplifiers, whereas arrays of integrated amplifiers are very attractive due to miniaturization and the possibility of mass production...

  4. Measurements of the radiation dose to LDEF by means of passive dosimetry

    International Nuclear Information System (INIS)

    Blake, J.B.; Imamoto, S.S.

    1992-01-01

    A very simple experiment was fielded on LDEF to measure the energetic radiation dose by means of passive dosimetry. It consisted of two identical packets of 16 LiF thermoluminescent dosimeters (TLD) arranged in planar arrays. One array was placed on the leading edge of the spacecraft, the other on the trailing edge. These arrays were installed in opaque packets of 1 mil Al foil and Kapton tape mounted behind an Al plate of 30 mils thickness. The nominal energy thresholds were 14 MeV for protons and 650 keV for electrons. In addition to the flight arrays, two control arrays were prepared which were kept with the flight arrays as long as possible during experimental integration and then stored in the lab. The flight and control arrays were read out alternating in groups of four; it was found that the control dose was negligible. The flight and control detectors were exposed to a 55 MeV proton beam in order to provide a recalibration of the detectors. It was found that the post-flight and pre-flight calibrations were in good agreement. A comparison of results with the prediction shows that the measured dose was a factor of 4 to 5 low. It is possible that there was in-flight annealing of the TLDs as a result of the long mission and perhaps temperature excursions of the sensors. The East-West effect was larger than expected. The ratio of 1.65 is approximately what was expected for the protons alone. Electrons should reduce the dose ratio since electrons add equally to the leading and trailing edge dose. A possible explanation is that the electron dose was negligible compared to the proton dose

  5. Dosimetry as an integral part of radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1999-01-01

    Different connections between high-dose dosimetry and radiation processing are discussed. Radiation processing cannot be performed without proper dosimetry. Accurate high dose and high dose rate dosimetry exhibits several aspects: first of all it is the preservation of the quality of the product, then fulfillment of legal aspects and last but not the least the safety of processing. Further, seldom discussed topics are as follow: dosimetric problems occurring with double-side EB irradiations, discussed in connection with the deposition of electric charge during electron beam irradiation. Although dosimetry for basic research and for medical purposes are treated here only shortly, some conclusions reached from these fields are considered in dosimetry for radiation processing. High-dose dosimetry of radiation has become a separate field, with many papers published every year, but applied dosimetric projects are usually initiated by a necessity of particular application. (author)

  6. Synthetic diamond devices for medical dosimetry applied to radiotherapy

    International Nuclear Information System (INIS)

    Descamps, C.

    2007-06-01

    The aim of this thesis, lead in the framework of an integrated European project entitled M.A.E.S.T.R.O. for ' Methods and Advanced Equipment for Simulation and Treatment in Radio Oncology', was to develop and test synthetic diamond detector in clinical environment for new modalities used in radiotherapy. Diamond is a good candidate for the detection of high energy beams in medical fields. It can be used for passive dosimetry, as thermoluminescent dosimeters or for active dosimetry as ionisation chambers. These two applications are presented here. Concerning the thermoluminescence, several impurities or dopants (boron, phosphorus, and nitrogen) have been incorporated in the diamond films during growth, in order to modify the material dosimetric properties and a detailed study of nitrogen-containing films is proposed. The second part presents the results obtained in active dosimetry. Two guide lines were followed: the measurement set-up optimisation and the material modification. The first dosimetric studies under radiotherapy beams concerning nitrogen-containing polycrystalline diamond as well as high purity single crystal diamond are conclusive. The detectors behaviours are in agreement with the recommendations of the International Atomic Energy Agency (IAEA). (author)

  7. An Integrated Passive (Battery-Free) Seals-and-Tag for International Safeguards

    International Nuclear Information System (INIS)

    Nekoogar, F.; Dowla, F.

    2015-01-01

    The ability to reliably and securely automate the monitoring of SNM is an important goal in Safeguards. Although item level monitoring of SNM requires both seal and tag technologies, the two technologies thus far have been developed more or less independently, and had been a lack of an integrated compact system. An integrated seal-and-tag approach not only aids inspectors to perform their tasks effectively, this approach also allows real-time inspection in large scale facilities. A typical facility could be the size of a large warehouse with hundreds or thousands of items that need to be sealed and monitored in real-time. Previously we reported on advanced secure RF passive (battery-less) tags with special features including, long-range interrogation of passive tags, communicating with passive tags with strong encryption and dynamic authentication features, and the ability to place the tags directly on metal objects. In this paper, we report on a novel secure passive tag integrated with fibre optics seal that allows real-time monitoring of items through secure wireless communications that employs AES encryption and dynamic authentication. Furthermore, the devices can be networked for large scale operations. The proposed passive seal has the same capabilities as active seals in that it allows realtime monitoring. However, the battery lifetimes of conventional active seals are limited or unpredictable. As the long-term storage of SNM might last for several years, these passive seals having been integrated with passive RF tags, extends the lifetime of the physical seals and tags indefinitely, while getting the same performance of active seals and tags. The integrated seal-and-tag is transformational in addressing a critical need in Safeguards area for long-term real-time monitoring. (author)

  8. Synthetic diamond devices for medical dosimetry applied to radiotherapy; Etude et developpement de dispositifs en diamant synthetique pour la dosimetrie medicale: applications en radiotherapie

    Energy Technology Data Exchange (ETDEWEB)

    Descamps, C

    2007-06-15

    The aim of this thesis, lead in the framework of an integrated European project entitled M.A.E.S.T.R.O. for ' Methods and Advanced Equipment for Simulation and Treatment in Radio Oncology', was to develop and test synthetic diamond detector in clinical environment for new modalities used in radiotherapy. Diamond is a good candidate for the detection of high energy beams in medical fields. It can be used for passive dosimetry, as thermoluminescent dosimeters or for active dosimetry as ionisation chambers. These two applications are presented here. Concerning the thermoluminescence, several impurities or dopants (boron, phosphorus, and nitrogen) have been incorporated in the diamond films during growth, in order to modify the material dosimetric properties and a detailed study of nitrogen-containing films is proposed. The second part presents the results obtained in active dosimetry. Two guide lines were followed: the measurement set-up optimisation and the material modification. The first dosimetric studies under radiotherapy beams concerning nitrogen-containing polycrystalline diamond as well as high purity single crystal diamond are conclusive. The detectors behaviours are in agreement with the recommendations of the International Atomic Energy Agency (IAEA). (author)

  9. Synthetic diamond devices for medical dosimetry applied to radiotherapy; Etude et developpement de dispositifs en diamant synthetique pour la dosimetrie medicale: applications en radiotherapie

    Energy Technology Data Exchange (ETDEWEB)

    Descamps, C

    2007-06-15

    The aim of this thesis, lead in the framework of an integrated European project entitled M.A.E.S.T.R.O. for ' Methods and Advanced Equipment for Simulation and Treatment in Radio Oncology', was to develop and test synthetic diamond detector in clinical environment for new modalities used in radiotherapy. Diamond is a good candidate for the detection of high energy beams in medical fields. It can be used for passive dosimetry, as thermoluminescent dosimeters or for active dosimetry as ionisation chambers. These two applications are presented here. Concerning the thermoluminescence, several impurities or dopants (boron, phosphorus, and nitrogen) have been incorporated in the diamond films during growth, in order to modify the material dosimetric properties and a detailed study of nitrogen-containing films is proposed. The second part presents the results obtained in active dosimetry. Two guide lines were followed: the measurement set-up optimisation and the material modification. The first dosimetric studies under radiotherapy beams concerning nitrogen-containing polycrystalline diamond as well as high purity single crystal diamond are conclusive. The detectors behaviours are in agreement with the recommendations of the International Atomic Energy Agency (IAEA). (author)

  10. Passive BWR integral LOCA testing at the Karlstein test facility INKA

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, Robert [AREVA GmbH, Erlangen (Germany); Wagner, Thomas [AREVA GmbH, Karlstein am Main (Germany); Leyer, Stephan [TH University of Applied Sciences, Deggendorf (Germany)

    2014-05-15

    KERENA is an innovative AREVA GmbH boiling water reactor (BWR) with passive safety systems (Generation III+). In order to verify the functionality of the reactor design an experimental validation program was executed. Therefore the INKA (Integral Teststand Karlstein) test facility was designed and erected. It is a mockup of the BWR containment, with integrated pressure suppression system. While the scaling of the passive components and the levels match the original values, the volume scaling of the containment compartments is approximately 1:24. The storage capacity of the test facility pressure vessel corresponds to approximately 1/6 of the KERENA RPV and is supplied by a benson boiler with a thermal power of 22 MW. In March 2013 the first integral test - Main Steam Line Break (MSLB) - was executed. The test measured the combined response of the passive safety systems to the postulated initiating event. The main goal was to demonstrate the ability of the passive systems to ensure core coverage, decay heat removal and to maintain the containment within defined limits. The results of the test showed that the passive safety systems are capable to bring the plant to stable conditions meeting all required safety targets with sufficient margins. Therefore the test verified the function of those components and the interplay between them. The test proved that INKA is an unique test facility, capable to perform integral tests of passive safety concepts under plant-like conditions. (orig.)

  11. Dosimetry program for characterization of the FMIT facility

    International Nuclear Information System (INIS)

    Gold, R.; McElroy, W.N.; Fuller, J.L.; Sheen, E.M.; Dierckx, R.

    1979-01-01

    The environmental characterization program for the Fusion Materials Irradiaton Test (FMIT) facility is presented. Requirements for the development and testing of Magnetic Fusion Energy (MFE) materials together with the complexity of the FMIT (d,Li) generated radiation field warrant a multifaceted dosimetric approach. Specific passive, active and calculational dosimetry efforts comprising this multifaceted approach are described. Special emphasis is given to those dosimetry capabilities uniquely required to characterize FMIT

  12. Integrated Active and Passive Polymer Optical Components with nm to mm Features

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Schøler, Mikkel; Kristensen, Anders

    2007-01-01

    We present wafer-scale fabrication of integrated active and passive polymer optics with nm to mm features. First order DFB lasers, defined in dye doped SU-8 resist are integrated with SU-8 waveguides.......We present wafer-scale fabrication of integrated active and passive polymer optics with nm to mm features. First order DFB lasers, defined in dye doped SU-8 resist are integrated with SU-8 waveguides....

  13. Cross sections required for FMIT dosimetry

    International Nuclear Information System (INIS)

    Gold, R.; McElroy, W.N.; Lippincott, E.P.; Mann, F.M.; Oberg, D.L.; Roberts, J.H.; Ruddy, F.H.

    1980-01-01

    The Fusion Materials Irradiation Test (FMIT) facility, currently under construction, is designed to produce a high flux of high energy neutrons for irradiation effects experiments on fusion reactor materials. Characterization of the flux-fluence-spectrum in this rapidly varying neutron field requires adaptation and extension of currently available dosimetry techniques. This characterization will be carried out by a combination of active, passive, and calculational dosimetry. The goal is to provide the experimenter with accurate neutron flux-fluence-spectra at all positions in the test cell. Plans have been completed for a number of experimental dosimetry stations and provision for these facilities has been incorporated into the FMIT design. Overall needs of the FMIT irradiation damage program delineate goal accuracies for dosimetry that, in turn, create new requirements for high energy neutron cross section data. Recommendations based on these needs have been derived for required cross section data and accuracies

  14. Radiation dosimetry and spectrometry with superheated emulsions

    International Nuclear Information System (INIS)

    D'Errico, Francesco

    2001-01-01

    Detectors based on emulsions of overexpanded halocarbon droplets in tissue equivalent aqueous gels or soft polymers, known as 'superheated drop detectors' or 'bubble (damage) detectors', have been used in radiation detection, dosimetry and spectrometry for over two decades. Recent technological advances have led to the introduction of several instruments for individual and area monitoring: passive integrating meters based on the optical or volumetric registration of the bubbles, and active counters detecting bubble nucleations acoustically. These advances in the instrumentation have been matched by the progress made in the production of stable and well-specified emulsions of superheated droplets. A variety of halocarbons are employed in the formulation of the detectors, and this permits a wide range of applications. In particular, halocarbons with a moderate degree of superheat, i.e. a relatively small difference between their operating temperature and boiling point, can be used in neutron dosimetry and spectrometry since they are only nucleated by energetic heavy ions such as those produced by fast neutrons. More recently, halocarbons with an elevated degree of superheat have been utilised to produce emulsions that nucleate with much smaller energy deposition and detect low linear energy transfer radiations, such as photons and electrons. This paper reviews the detector physics of superheated emulsions and their applications in radiation measurements, particularly in neutron dosimetry and spectrometry

  15. Neutron personal dosimetry: state-of-art

    International Nuclear Information System (INIS)

    Spurný, František

    2005-03-01

    State-of-art of the personal neutron dosimetry is presented, analysed and discussed. Particular attention is devoted to the problems of this type of the dosimetry of external exposure for radiation fields at nuclear power plants. A review of general problems of neutron dosimetry is given and the active individual dosimetry methods available and/or in the stage of development are briefly reviewed. Main attention is devoted to the analysis of the methods available for passive individual neutron dosimetry. The characteristics of these dosemeters were studied and are compared: their energy response functions, detection thresholds and the highest detection limits, the linearity of response, the influence of environmental factors, etc. Particular attention is devoted to their behavior in reactor neutron fields. It is concluded that the choice of the neutron personal dosemeter depends largely on the conditions in which the instrument should be used (neutron spectrum, the level of exposure and the exposure rate, etc.). The results obtained with some of these dosemeters during international intercomparisons are also presented. Particular attention is paid to the personal neutron dosimeter developed and routinely used by National Personal Dosimetry Service Ltd. in the Czech Republic. (author)

  16. Results of the third CEC intercomparison of active and passive detectors for the measurement of radon and radon decay products

    International Nuclear Information System (INIS)

    Miles, J.C.H.; Sinnaeve, J.

    1988-01-01

    In 1982 and 1984 the radiation protection research programme of the European Communities organized intercomparisons of radon and radon daughter measurement techniques, and the results were published (Miles et al., 1983; Miles and Sinnaeve, 1986. The second of these intercomparisons was carried out as part of a wider exercise sponsored jointly by the CEC and the OECD/NEA (OECD, 1983). The third CEC intercomparison, held at the National Radiological Protection Board (NRPB) in the United Kingdom in 1987, again constituted the European regional part of this wider exercise. The intercomparison on the European region was carried out in two stages, the first for passive integrating detectors and the second for active instruments, usually by spot measurements. Twenty-one laboratories participated in the intercomparison, of passive dosimetry and 17 in that for active dosimetry. Passive detectors have been used in many European countries to carry out surveys of exposure in homes and to monitor occupational exposure. The exposures for the intercomparison of passive detectors were carried out in June, July and August 1987 at NRPB. The intercomparison of active detectors was carried out over three days in October 1987, when scientists from the participating laboratories brought their equipment to NRPB

  17. Time-resolved diode dosimetry calibration through Monte Carlo modeling for in vivo passive scattered proton therapy range verification.

    Science.gov (United States)

    Toltz, Allison; Hoesl, Michaela; Schuemann, Jan; Seuntjens, Jan; Lu, Hsiao-Ming; Paganetti, Harald

    2017-11-01

    Our group previously introduced an in vivo proton range verification methodology in which a silicon diode array system is used to correlate the dose rate profile per range modulation wheel cycle of the detector signal to the water-equivalent path length (WEPL) for passively scattered proton beam delivery. The implementation of this system requires a set of calibration data to establish a beam-specific response to WEPL fit for the selected 'scout' beam (a 1 cm overshoot of the predicted detector depth with a dose of 4 cGy) in water-equivalent plastic. This necessitates a separate set of measurements for every 'scout' beam that may be appropriate to the clinical case. The current study demonstrates the use of Monte Carlo simulations for calibration of the time-resolved diode dosimetry technique. Measurements for three 'scout' beams were compared against simulated detector response with Monte Carlo methods using the Tool for Particle Simulation (TOPAS). The 'scout' beams were then applied in the simulation environment to simulated water-equivalent plastic, a CT of water-equivalent plastic, and a patient CT data set to assess uncertainty. Simulated detector response in water-equivalent plastic was validated against measurements for 'scout' spread out Bragg peaks of range 10 cm, 15 cm, and 21 cm (168 MeV, 177 MeV, and 210 MeV) to within 3.4 mm for all beams, and to within 1 mm in the region where the detector is expected to lie. Feasibility has been shown for performing the calibration of the detector response for three 'scout' beams through simulation for the time-resolved diode dosimetry technique in passive scattered proton delivery. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  18. Reactor dosimetry integral reaction rate data in LMFBR Benchmark and standard neutron fields: status, accuracy and implications

    International Nuclear Information System (INIS)

    Fabry, A.; Ceulemans, H.; Vandeplas, P.; McElroy, W.N.; Lippincott, E.P.

    1977-01-01

    This paper provides conclusions that may be drawn regarding the consistency and accuracy of dosimetry cross-section files on the basis of integral reaction rate data measured in U.S. and European benchmark and standard neutron fields. In a discussion of the major experimental facilities CFRMF (Idaho Falls), BIGTEN (Los Alamos), ΣΣ (Mol, Bucharest), NISUS (London), TAPIRO (Roma), FISSION SPECTRA (NBS, Mol, PTB), attention is paid to quantifying the sensitivity of computed integral data relative to the presently evaluated accuracy of the various neutron spectral distributions. The status of available integral data is reviewed and the assigned uncertainties are appraised, including experience gained by interlaboratory comparisons. For all reactions studied and for the various neutron fields, the measured integral data are compared to the ones computed from the ENDF/B-IV and the SAND-II dosimetry cross-section libraries as well as to some other differential data in relevant cases. This comparison, together with the proposed sensitivity and accuracy assessments, is used, whenever possible, to establish how well the best cross-sections evaluated on the basis of differential measurements (category I dosimetry reactions) are reliable in terms of integral reaction rates prediction and, for those reactions for which discrepancies are indicated, in which energy range it is presumed that additional differential measurements might help. For the other reactions (category II), the inconsistencies and trends are examined. The need for further integral measurements and interlaboratory comparisons is also considered

  19. INTEGRATED OPERATIONAL DOSIMETRY SYSTEM AT CERN.

    Science.gov (United States)

    Dumont, Gérald; Pedrosa, Fernando Baltasar Dos Santos; Carbonez, Pierre; Forkel-Wirth, Doris; Ninin, Pierre; Fuentes, Eloy Reguero; Roesler, Stefan; Vollaire, Joachim

    2017-04-01

    CERN, the European Organization for Nuclear Research, upgraded its operational dosimetry system in March 2013 to be prepared for the first Long Shutdown of CERN's facilities. The new system allows the immediate and automatic checking and recording of the dosimetry data before and after interventions in radiation areas. To facilitate the analysis of the data in context of CERN's approach to As Low As Reasonably Achievable (ALARA), this new system is interfaced to the Intervention Management Planning and Coordination Tool (IMPACT). IMPACT is a web-based application widely used in all CERN's accelerators and their associated technical infrastructures for the planning, the coordination and the approval of interventions (work permit principle). The coupling of the operational dosimetry database with the IMPACT repository allows a direct and almost immediate comparison of the actual dose with the estimations, in addition to enabling the configuration of alarm levels in the dosemeter in function of the intervention to be performed. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Passive safety systems for integral reactors

    International Nuclear Information System (INIS)

    Kuul, V.S.; Samoilov, O.B.

    1996-01-01

    In this paper, a wide range of passive safety systems intended for use on integral reactors is considered. The operation of these systems relies on natural processes and does not require external power supplies. Using these systems, there is the possibility of preventing serious consequences for all classes of accidents including reactivity, loss-of-coolant and loss of heat sink as well as severe accidents. Enhancement of safety system reliability has been achieved through the use of self-actuating devices, capable of providing passive initiation of protective and isolation systems, which respond immediately to variations in the physical parameters of the fluid in the reactor or in a guard vessel. For beyond design base accidents accompanied by complete loss of heat removal capability, autonomous self-actuated ERHR trains have been proposed. These trains are completely independent of the secondary loops and need no action to isolate them from the steam turbine plant. Passive safety principles have been consistently implemented in AST-500, ATETS-200 and VPBER 600 which are new generation NPPs developed by OKBM. Their main characteristic is enhanced stability over a wide range of internal and external emergency initiators. (author). 10 figs

  1. Passive safety systems for integral reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kuul, V S; Samoilov, O B [OKB Mechanical Engineering (Russian Federation)

    1996-12-01

    In this paper, a wide range of passive safety systems intended for use on integral reactors is considered. The operation of these systems relies on natural processes and does not require external power supplies. Using these systems, there is the possibility of preventing serious consequences for all classes of accidents including reactivity, loss-of-coolant and loss of heat sink as well as severe accidents. Enhancement of safety system reliability has been achieved through the use of self-actuating devices, capable of providing passive initiation of protective and isolation systems, which respond immediately to variations in the physical parameters of the fluid in the reactor or in a guard vessel. For beyond design base accidents accompanied by complete loss of heat removal capability, autonomous self-actuated ERHR trains have been proposed. These trains are completely independent of the secondary loops and need no action to isolate them from the steam turbine plant. Passive safety principles have been consistently implemented in AST-500, ATETS-200 and VPBER 600 which are new generation NPPs developed by OKBM. Their main characteristic is enhanced stability over a wide range of internal and external emergency initiators. (author). 10 figs.

  2. Alanine dosimetry for clinical applications. Proceedings

    International Nuclear Information System (INIS)

    Anton, M.

    2006-05-01

    The following topics are dealt with: Therapy level alanine dosimetry at the UK Nationational Physical Laboratory, alanine as a precision validation tool for reference dosimetry, composition of alanine pellet dosimeters, the angular dependence of the alanine ESR spectrum, the CIAE alanine dosimeter for radiotherapy level, a correction for temporal evolution effects in alanine dosimetry, next-generation services foe e-traceability to ionization radiation national standards, establishing e-traceability to HIST high-dose measurement standards, alanine dosimetry of dose delivery from clinical accelerators, the e-scan alanine dosimeter reader, alanine dosimetry at ISS, verification of the integral delivered dose for IMRT treatment in the head and neck region with ESR/alanine dosimetry, alanine dosimetry in helical tomotherapy beams, ESR dosimetry research and development at the University of Palermo, lithium formate as a low-dose EPR radiation dosimeter, sensitivity enhancement of alanine/EPR dosimetry. (HSI)

  3. Czech results at criticality dosimetry intercomparison 2002.

    Science.gov (United States)

    Frantisek, Spurný; Jaroslav, Trousil

    2004-01-01

    Two criticality dosimetry systems were tested by Czech participants during the intercomparison held in Valduc, France, June 2002. The first consisted of the thermoluminescent detectors (TLDs) (Al-P glasses) and Si-diodes as passive neutron dosemeters. Second, it was studied to what extent the individual dosemeters used in the Czech routine personal dosimetry service can give a reliable estimation of criticality accident exposure. It was found that the first system furnishes quite reliable estimation of accidental doses. For routine individual dosimetry system, no important problems were encountered in the case of photon dosemeters (TLDs, film badge). For etched track detectors in contact with the 232Th or 235U-Al alloy, the track density saturation for the spark counting method limits the upper dose at approximately 1 Gy for neutrons with the energy >1 MeV.

  4. Radiation protection dosimetry in medicine - Report of the working group n.9 of the European radiation dosimetry group (EURADOS) - coordinated network for radiation dosimetry (CONRAD - contract EC N) fp6-12684; Dosimetrie pour la radioprotection en milieu medical - rapport du groupe de travail n. 9 du European radiation dosimetry group (EURADOS) - coordinated netword for radiation dosimetry (CONRAD - contrat CE fp6-12684)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This report present the results achieved within the frame of the work the WP 7 (Radiation Protection Dosimetry of Medical Staff) of the coordination action CONRAD (Coordinated Network for Radiation Dosimetry) funded through the 6. EU Framework Program. This action was coordinated by EURADOS (European Radiation Dosimetry Group). EURADOS is an organization founded in 1981 to advance the scientific understanding and the technical development of the dosimetry of ionising radiation in the fields of radiation protection, radiobiology, radiation therapy and medical diagnosis by promoting collaboration between European laboratories. WP7 coordinates and promotes European research for the assessment of occupational exposures to staff in therapeutic and diagnostic radiology workplaces. Research is coordinated through sub-groups covering three specific areas: 1. Extremity dosimetry in nuclear medicine and interventional radiology: this sub-group coordinates investigations in the specific fields of the hospitals and studies of doses to different parts of the hands, arms, legs and feet; 2. Practice of double dosimetry: this sub-group reviews and evaluates the different methods and algorithms for the use of dosemeters placed above and below lead aprons in large exposure during interventional radiology procedures, especially to determine effective doses to cardiologists during cardiac catheterization; and 3. Use of electronic personal dosemeters in interventional radiology: this sub-group coordinates investigations in laboratories and hospitals, and intercomparisons with passive dosemeters with the aim to enable the formulation of standards. (authors)

  5. COMPARISON OF RESPONSE OF PASSIVE DOSIMETRY SYSTEMS IN SCANNING PROTON RADIOTHERAPY-A STUDY USING PAEDIATRIC ANTHROPOMORPHIC PHANTOMS.

    Science.gov (United States)

    Kneževic, Ž; Ambrozova, I; Domingo, C; De Saint-Hubert, M; Majer, M; Martínez-Rovira, I; Miljanic, S; Mojzeszek, N; Porwol, P; Ploc, O; Romero-Expósito, M; Stolarczyk, L; Trinkl, S; Harrison, R M; Olko, P

    2017-11-18

    Proton beam therapy has advantages in comparison to conventional photon radiotherapy due to the physical properties of proton beams (e.g. sharp distal fall off, adjustable range and modulation). In proton therapy, there is the possibility of sparing healthy tissue close to the target volume. This is especially important when tumours are located next to critical organs and while treating cancer in paediatric patients. On the other hand, the interactions of protons with matter result in the production of secondary radiation, mostly neutrons and gamma radiation, which deposit their energy at a distance from the target. The aim of this study was to compare the response of different passive dosimetry systems in mixed radiation field induced by proton pencil beam inside anthropomorphic phantoms representing 5 and 10 years old children. Doses were measured in different organs with thermoluminescent (MTS-7, MTS-6 and MCP-N), radiophotoluminescent (GD-352 M and GD-302M), bubble and poly-allyl-diglycol carbonate (PADC) track detectors. Results show that RPL detectors are the less sensitive for neutrons than LiF TLDs and can be applied for in-phantom dosimetry of gamma component. Neutron doses determined using track detectors, bubble detectors and pairs of MTS-7/MTS-6 are consistent within the uncertainty range. This is the first study dealing with measurements on child anthropomorphic phantoms irradiated by a pencil scanning beam technique. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Miniature semiconductor detectors for in vivo dosimetry

    International Nuclear Information System (INIS)

    Rosenfeld, A. B.; Cutajar, D.; Lerch, M. L. F.; Takacs, G.; Cornelius, I. M.; Yudelev, M.; Zaider, M.

    2006-01-01

    Silicon mini-semiconductor detectors are found in wide applications for in vivo personal dosimetry and dosimetry and Micro-dosimetry of different radiation oncology modalities. These applications are based on integral and spectroscopy modes of metal oxide semiconductor field effect transistor and silicon p-n junction detectors. The advantages and limitations of each are discussed. (authors)

  7. Integration of active and passive polymer optics

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Schøler, Mikkel; Kristensen, Anders

    2007-01-01

    We demonstrate a wafer scale fabrication process for integration of active and passive polymer optics: Polymer DFB lasers and waveguides. Polymer dye DFB lasers are fabricated by combined nanoimprint and photolithography (CNP). The CNP fabrication relies on an UV transparent stamp with nm sized...... wavelength from temperature and refractive index changes in the surroundings is investigated, pointing towards the use of the described fabrication method for on-chip polymer sensor systems....

  8. Trends of personal dosimetry at atomic power plants

    International Nuclear Information System (INIS)

    Yamamura, Seini

    1998-01-01

    The individual dosimetry at the atomic power station is sorted for monthly dosimetry, daily dosimetry and special job dosimetry in high dose circumstance. Film badge (passive dosimeter) can measure gamma dose, beta dose and neutron dose respectively lower than about 0.1 mSv. While workers are in the radiation controlled area, they have to wear the dosimeters and the individual dose is accumulated for every one month. Recently the Silicon semiconductors detecting beta ray and neutron have been developed. With microcircuit technology and these new sensors, new multiple function dosimeter of the card size had been put to practical use. The result of dose measurement obtained by the electronic dosimeter is consistent well with the measurement of usual film badge and new dosimeter can determine the dose as low as 0.01 mSv. The result is stored in the non-volatile memory in the electronic personal dosimeter and held for more than one year without the power supply. The function to read data directly from the memory improves the reliability of the data protection. The realization of the unified radiation control system that uses the electronic personal dosimeter for monthly dosimetry is expected. (J.P.N.)

  9. Detection of anatomical changes in lung cancer patients with 2D time-integrated, 2D time-resolved and 3D time-integrated portal dosimetry: a simulation study

    Science.gov (United States)

    Wolfs, Cecile J. A.; Brás, Mariana G.; Schyns, Lotte E. J. R.; Nijsten, Sebastiaan M. J. J. G.; van Elmpt, Wouter; Scheib, Stefan G.; Baltes, Christof; Podesta, Mark; Verhaegen, Frank

    2017-08-01

    The aim of this work is to assess the performance of 2D time-integrated (2D-TI), 2D time-resolved (2D-TR) and 3D time-integrated (3D-TI) portal dosimetry in detecting dose discrepancies between the planned and (simulated) delivered dose caused by simulated changes in the anatomy of lung cancer patients. For six lung cancer patients, tumor shift, tumor regression and pleural effusion are simulated by modifying their CT images. Based on the modified CT images, time-integrated (TI) and time-resolved (TR) portal dose images (PDIs) are simulated and 3D-TI doses are calculated. The modified and original PDIs and 3D doses are compared by a gamma analysis with various gamma criteria. Furthermore, the difference in the D 95% (ΔD 95%) of the GTV is calculated and used as a gold standard. The correlation between the gamma fail rate and the ΔD 95% is investigated, as well the sensitivity and specificity of all combinations of portal dosimetry method, gamma criteria and gamma fail rate threshold. On the individual patient level, there is a correlation between the gamma fail rate and the ΔD 95%, which cannot be found at the group level. The sensitivity and specificity analysis showed that there is not one combination of portal dosimetry method, gamma criteria and gamma fail rate threshold that can detect all simulated anatomical changes. This work shows that it will be more beneficial to relate portal dosimetry and DVH analysis on the patient level, rather than trying to quantify a relationship for a group of patients. With regards to optimizing sensitivity and specificity, different combinations of portal dosimetry method, gamma criteria and gamma fail rate should be used to optimally detect certain types of anatomical changes.

  10. Detection of anatomical changes in lung cancer patients with 2D time-integrated, 2D time-resolved and 3D time-integrated portal dosimetry: a simulation study.

    Science.gov (United States)

    Wolfs, Cecile J A; Brás, Mariana G; Schyns, Lotte E J R; Nijsten, Sebastiaan M J J G; van Elmpt, Wouter; Scheib, Stefan G; Baltes, Christof; Podesta, Mark; Verhaegen, Frank

    2017-07-12

    The aim of this work is to assess the performance of 2D time-integrated (2D-TI), 2D time-resolved (2D-TR) and 3D time-integrated (3D-TI) portal dosimetry in detecting dose discrepancies between the planned and (simulated) delivered dose caused by simulated changes in the anatomy of lung cancer patients. For six lung cancer patients, tumor shift, tumor regression and pleural effusion are simulated by modifying their CT images. Based on the modified CT images, time-integrated (TI) and time-resolved (TR) portal dose images (PDIs) are simulated and 3D-TI doses are calculated. The modified and original PDIs and 3D doses are compared by a gamma analysis with various gamma criteria. Furthermore, the difference in the D 95% (ΔD 95% ) of the GTV is calculated and used as a gold standard. The correlation between the gamma fail rate and the ΔD 95% is investigated, as well the sensitivity and specificity of all combinations of portal dosimetry method, gamma criteria and gamma fail rate threshold. On the individual patient level, there is a correlation between the gamma fail rate and the ΔD 95% , which cannot be found at the group level. The sensitivity and specificity analysis showed that there is not one combination of portal dosimetry method, gamma criteria and gamma fail rate threshold that can detect all simulated anatomical changes. This work shows that it will be more beneficial to relate portal dosimetry and DVH analysis on the patient level, rather than trying to quantify a relationship for a group of patients. With regards to optimizing sensitivity and specificity, different combinations of portal dosimetry method, gamma criteria and gamma fail rate should be used to optimally detect certain types of anatomical changes.

  11. Integration of external and internal dosimetry in Switzerland

    International Nuclear Information System (INIS)

    Frei, D.; Wernli, C.; Baechler, S.; Fischer, G.; Jossen, H.; Leupin, A.; Lortscher, Y.; Mini, R.; Otto, T.; Schuh, R.; Weidmann, U.

    2007-01-01

    Individual monitoring regulations in Switzerland are based on the ICRP60 recommendations. The annual limit of 20 mSv for the effective dose applies to the sum of external and internal radiation. External radiation is monitored monthly or quarterly with TLD, DIS or CR-39 dosemeters by 10 approved external dosimetry services and reported as H p (10) and H p (0.07). Internal monitoring is done in two steps. At the workplace, simple screening measurements are done frequently in order to recognise a possible incorporation. If a nuclide dependent activity threshold is exceeded then one of the seven approved dosimetry services for internal radiation does an incorporation measurement to assess the committed effective dose E 50 . The dosimetry services report all the measured or assessed dose values to the employer and to the National Dose Registry. The employer records the annually accumulated dose values into the individual dose certificate of the occupationally exposed person, both the external dose H p (10) and the internal dose E 50 as well as the total effective dose E = H p (10) + E 50 . Based on the national dose registry an annual report on the dosimetry in Switzerland is published which contains the statistics for the total effective dose, as well as separate statistics for external and internal exposure. (authors)

  12. Radiation protection dosimetry in medicine - Report of the working group n.9 of the European radiation dosimetry group (EURADOS) - coordinated network for radiation dosimetry (CONRAD - contract EC N) fp6-12684

    International Nuclear Information System (INIS)

    2009-01-01

    This report present the results achieved within the frame of the work the WP 7 (Radiation Protection Dosimetry of Medical Staff) of the coordination action CONRAD (Coordinated Network for Radiation Dosimetry) funded through the 6. EU Framework Program. This action was coordinated by EURADOS (European Radiation Dosimetry Group). EURADOS is an organization founded in 1981 to advance the scientific understanding and the technical development of the dosimetry of ionising radiation in the fields of radiation protection, radiobiology, radiation therapy and medical diagnosis by promoting collaboration between European laboratories. WP7 coordinates and promotes European research for the assessment of occupational exposures to staff in therapeutic and diagnostic radiology workplaces. Research is coordinated through sub-groups covering three specific areas: 1. Extremity dosimetry in nuclear medicine and interventional radiology: this sub-group coordinates investigations in the specific fields of the hospitals and studies of doses to different parts of the hands, arms, legs and feet; 2. Practice of double dosimetry: this sub-group reviews and evaluates the different methods and algorithms for the use of dosemeters placed above and below lead aprons in large exposure during interventional radiology procedures, especially to determine effective doses to cardiologists during cardiac catheterization; and 3. Use of electronic personal dosemeters in interventional radiology: this sub-group coordinates investigations in laboratories and hospitals, and intercomparisons with passive dosemeters with the aim to enable the formulation of standards. (authors)

  13. A passive integrating charcoal detector for indoor radon survey

    International Nuclear Information System (INIS)

    Lin Lianqing; Ren Tianshan; Li Guiyun

    1986-01-01

    This paper describes the principle, design, calibration and characteristics of a passive integrating charcoal detector for measuring average radon concentration indoors. The uncertainties of the detector are also evaluated. Under conditions of room temperature at 17 deg C and relative humidity at 30%, the minimum limit of detection is 0.16 pCi/1 for 72 hours exposure. Besides higher sensitivity, the other advantages of this detector are passive, simple and less expensive. It requires no power and makes no noise and gives no interference to daily activities of the residents of dwellings being surveyed. Therefore the detector is suitable for a large-scale survey of radon levels indoors

  14. Dosimetry of industrial sources

    International Nuclear Information System (INIS)

    Vega C, H.R.; Rodriguez J, R.; Manzanares A, E.; Hernandez V, R.; Ramirez G, J.; Rivera M, T.

    2007-01-01

    The gamma rays are produced during the disintegration of the atomic nuclei, its high energy allows them to cross thick materials. The capacity to attenuate a photons beam allows to determine the density, in line, of industrial interest materials as the mining. By means of two active dosemeters and a TLDs group (passive dosimetry) the dose rates of two sources of Cs-137 used for determining in line the density of mining materials were determined. With the dosemeters the dose levels in diverse points inside the grave that it harbors the sources and by means of calculations the isodoses curves were determined. In the phase of calculations was supposed that both sources were punctual and the isodose curves were calculated for two situations: naked sources and in their Pb packings. The dosimetry was carried out around two sources of 137 Cs. The measured values allowed to develop a calculation procedure to obtain the isodoses curves in the grave where the sources are installed. (Author)

  15. Dosimetry; La dosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    Le Couteulx, I.; Apretna, D.; Beaugerie, M.F. [Electricite de France (EDF), 75 - Paris (France)] [and others

    2003-07-01

    Eight articles treat the dosimetry. Two articles evaluate the radiation doses in specific cases, dosimetry of patients in radiodiagnosis, three articles are devoted to detectors (neutrons and x and gamma radiations) and a computer code to build up the dosimetry of an accident due to an external exposure. (N.C.)

  16. State of the art of solid state dosimetry

    International Nuclear Information System (INIS)

    Souza, Susana O.; Yamamoto, Takayoshi; D'Errico, Francesco

    2014-01-01

    Passive solid-state detectors still dominate the personal dosimetry field. This article provides state of the art in this field and summarizes the most recent works presented on TL, OSL and RPL during the 17th International Conference on Solid State Dosimetry held in Recife in September 2013. The Article contains in particular the techniques Thermoluminescence (TL), Optically Stimulated Luminescence (OSL), radio photoluminescence (RPL). Thermoluminescence has the biggest advantage of the wide availability of commercial materials for dosimetry, and the nature tissue-equivalent of several of these materials. The limitation of the TL dosimetry presents fading luminance signal and the need for high temperatures to obtain the signal. The Optically Stimulated Luminescence has the advantages of high sensitivity, the possibility of multiple reading, while its limit is the need to use response compensating filters in addition to the high cost of equipment and dosimeters still restricted very few options trading . The radio photoluminescence has a reading that is completely non-destructive, but their dosimeters present lack of tissue-equivalent and a high cost. Presents the details of the techniques and the advantages and limitations of each of these will be discussed

  17. Integration of Fricke gel dosimetry with Ag nanoparticles for experimental dose enhancement determination in theranostics

    International Nuclear Information System (INIS)

    Vedelago, J.; Valente, M.; Mattea, F.

    2017-10-01

    The use and implementation of nanoparticles in medicine has grown exponentially in the last twenty years. Their main applications include drug delivery, theranostics, tissue engineering and magneto function. Dosimetry techniques can take advantage of inorganic nanoparticles properties and their combination with gel dosimetry techniques could be used as a first step for their later inclusion in radio-diagnostics or radiotherapy treatments. This work presents preliminary results of properly synthesized and purify silver nanoparticles integration with Fricke gel dosimeters. Used nanoparticles presented mean sizes ranging from 2 to 20 nm, with a lognormal distribution. Xylenol orange concentration in Fricke gel dosimeter was adjust in order to allow sample optical readout, accounting nanoparticles plasmon. Dose enhancement was assessed irradiating dosimeters setting X-ray beams energies below and above silver K-edge. (Author)

  18. Integration of Fricke gel dosimetry with Ag nanoparticles for experimental dose enhancement determination in theranostics

    Energy Technology Data Exchange (ETDEWEB)

    Vedelago, J.; Valente, M. [Instituto de Fisica Enrique Gaviola - CONICET, Av. Medina Allende s/n, Ciudad Universitaria, X5000HUA Cordoba (Argentina); Mattea, F., E-mail: jvedelago@famaf.unc.edu.ar [Universidad Nacional de Cordoba, FAMAF, Laboratorio de Investigacion e Instrumentacion en Fisica Aplicada a la Medicina e Imagenes por Rayos X, Av. Medina Allende s/n, Ciudad Universitaria, X5000HUA Cordoba (Argentina)

    2017-10-15

    The use and implementation of nanoparticles in medicine has grown exponentially in the last twenty years. Their main applications include drug delivery, theranostics, tissue engineering and magneto function. Dosimetry techniques can take advantage of inorganic nanoparticles properties and their combination with gel dosimetry techniques could be used as a first step for their later inclusion in radio-diagnostics or radiotherapy treatments. This work presents preliminary results of properly synthesized and purify silver nanoparticles integration with Fricke gel dosimeters. Used nanoparticles presented mean sizes ranging from 2 to 20 nm, with a lognormal distribution. Xylenol orange concentration in Fricke gel dosimeter was adjust in order to allow sample optical readout, accounting nanoparticles plasmon. Dose enhancement was assessed irradiating dosimeters setting X-ray beams energies below and above silver K-edge. (Author)

  19. Foundations of ionizing radiation dosimetry

    International Nuclear Information System (INIS)

    Denisenko, O.N.; Pereslegin, I.A.

    1985-01-01

    Foundations of dosimetry in application to radiotherapy are presented. General characteristics of ionizing radiations and main characteristics of ionizing radiation sources, mostly used in radiotherapy, are given. Values and units for measuring ionizing radiation (activity of a radioactive substance, absorbed dose, exposure dose, integral dose and dose equivalent are considered. Different methods and instruments for ionizing radiation dosimetry are discussed. The attention is paid to the foundations of clinical dosimetry (representation of anatomo-topographic information, choice of radiation conditions, realization of radiation methods, corrections for a configuration and inhomogeneity of a patient's body, account of biological factors of radiation effects, instruments of dose field formation, control of irradiation procedure chosen)

  20. A passive decay heat removal strategy of the integrated passive safety system (IPSS) for SBO combined with LOCA

    International Nuclear Information System (INIS)

    Kim, Sang Ho; Chang, Soon Heung; Choi, Yu Jung; Jeong, Yong Hoon

    2015-01-01

    Highlights: • A new PDHR strategy is proposed to cope with SBO-combined accidents. • The concept of integrated passive safety system (IPSS) is used in this strategy. • This strategy performs the functions of passive safety injection and SG gravity injection. • LOCAs in SBO are classified by the pressures in reactor coolant system for passive functions. • The strategy can be integrated with EOP and SAMG as a complementary strategy for ensuring safety. - Abstract: An integrated passive safety system (IPSS), to be achieved by the use of a large water tank placed at high elevation outside the containment, was proposed to achieve various passive functions. These include decay heat removal, safety injection, containment cooling, in-vessel retention through external reactor vessel cooling, and containment filtered venting. The purpose of the passive decay heat removal (PDHR) strategy using the IPSS is to cope with SBO and SBO-combined accidents under the assumption that existing engineered safety features have failed. In this paper, a PDHR strategy was developed based on the design and accident management strategy of Korean representative PWR, the OPR1000. The functions of a steam generator gravity injection and a passive safety injection system in the IPSS with safety depressurization systems were included in the PDHR strategy. Because the inadvertent opening of pressurizer valves and seal water leakage from RCPs could cause a loss of coolant in an SBO, LOCAs during a SBO were simulated to verify the performance of the strategy. The failure of active safety injection in LOCAs could also be covered by this strategy. Although LOCAs have generally been categorized according to their equivalent break diameters, the RCS pressure is used to classify the LOCAs during SBOs. The criteria values for categorization were determined from the proposed systems, which could maintain a reactor in a safe state by removing the decay heat for the SBO coping time of 8 h. The

  1. A passive decay heat removal strategy of the integrated passive safety system (IPSS) for SBO combined with LOCA

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Ho [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Chang, Soon Heung [Handong Global University, 558, Handong-ro, Buk-gu, Pohang Gyeongbuk 37554 (Korea, Republic of); Choi, Yu Jung [Korea Hydro and Nuclear Power Co.—Central Research Institute, 70, 1312-gil, Yuseong-daero, Yuseong-gu, Daejeon 34101 (Korea, Republic of); Jeong, Yong Hoon, E-mail: jeongyh@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of)

    2015-12-15

    Highlights: • A new PDHR strategy is proposed to cope with SBO-combined accidents. • The concept of integrated passive safety system (IPSS) is used in this strategy. • This strategy performs the functions of passive safety injection and SG gravity injection. • LOCAs in SBO are classified by the pressures in reactor coolant system for passive functions. • The strategy can be integrated with EOP and SAMG as a complementary strategy for ensuring safety. - Abstract: An integrated passive safety system (IPSS), to be achieved by the use of a large water tank placed at high elevation outside the containment, was proposed to achieve various passive functions. These include decay heat removal, safety injection, containment cooling, in-vessel retention through external reactor vessel cooling, and containment filtered venting. The purpose of the passive decay heat removal (PDHR) strategy using the IPSS is to cope with SBO and SBO-combined accidents under the assumption that existing engineered safety features have failed. In this paper, a PDHR strategy was developed based on the design and accident management strategy of Korean representative PWR, the OPR1000. The functions of a steam generator gravity injection and a passive safety injection system in the IPSS with safety depressurization systems were included in the PDHR strategy. Because the inadvertent opening of pressurizer valves and seal water leakage from RCPs could cause a loss of coolant in an SBO, LOCAs during a SBO were simulated to verify the performance of the strategy. The failure of active safety injection in LOCAs could also be covered by this strategy. Although LOCAs have generally been categorized according to their equivalent break diameters, the RCS pressure is used to classify the LOCAs during SBOs. The criteria values for categorization were determined from the proposed systems, which could maintain a reactor in a safe state by removing the decay heat for the SBO coping time of 8 h. The

  2. Some recent measurements onboard spacecraft with passive detector

    Czech Academy of Sciences Publication Activity Database

    Spurný, František; Jadrníčková, Iva

    2005-01-01

    Roč. 116, 1-4 (2005), s. 228-231 ISSN 0144-8420 R&D Projects: GA ČR GA202/04/0795 Institutional research plan: CEZ:AV0Z10480505 Keywords : space research * radiation dosimetry * passive detectors Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 0.490, year: 2005

  3. Topics in radiation dosimetry radiation dosimetry

    CERN Document Server

    1972-01-01

    Radiation Dosimetry, Supplement 1: Topics in Radiation Dosimetry covers instruments and techniques in dealing with special dosimetry problems. The book discusses thermoluminescence dosimetry in archeological dating; dosimetric applications of track etching; vacuum chambers of radiation measurement. The text also describes wall-less detectors in microdosimetry; dosimetry of low-energy X-rays; and the theory and general applicability of the gamma-ray theory of track effects to various systems. Dose equivalent determinations in neutron fields by means of moderator techniques; as well as developm

  4. A holistic passive integrative sampling approach for assessing the presence and potential impacts of waterborne environmental contaminants

    Science.gov (United States)

    Petty, J.D.; Huckins, J.N.; Alvarez, D.A.; Brumbaugh, W. G.; Cranor, W.L.; Gale, R.W.; Rastall, A.C.; Jones-Lepp, T. L.; Leiker, T.J.; Rostad, C. E.; Furlong, E.T.

    2004-01-01

    As an integral part of our continuing research in environmental quality assessment approaches, we have developed a variety of passive integrative sampling devices widely applicable for use in defining the presence and potential impacts of a broad array of contaminants. The semipermeable membrane device has gained widespread use for sampling hydrophobic chemicals from water and air, the polar organic chemical integrative sampler is applicable for sequestering waterborne hydrophilic organic chemicals, the stabilized liquid membrane device is used to integratively sample waterborne ionic metals, and the passive integrative mercury sampler is applicable for sampling vapor phase or dissolved neutral mercury species. This suite of integrative samplers forms the basis for a new passive sampling approach for assessing the presence and potential toxicological significance of a broad spectrum of environmental contaminants. In a proof-of-concept study, three of our four passive integrative samplers were used to assess the presence of a wide variety of contaminants in the waters of a constructed wetland, and to determine the effectiveness of the constructed wetland in removing contaminants. The wetland is used for final polishing of secondary-treatment municipal wastewater and the effluent is used as a source of water for a state wildlife area. Numerous contaminants, including organochlorine pesticides, polycyclic aromatic hydrocarbons, organophosphate pesticides, and pharmaceutical chemicals (e.g., ibuprofen, oxindole, etc.) were detected in the wastewater. Herein we summarize the results of the analysis of the field-deployed samplers and demonstrate the utility of this holistic approach.

  5. Dosimetry techniques applied to thermoluminescent age estimation

    International Nuclear Information System (INIS)

    Erramli, H.

    1986-12-01

    The reliability and the ease of the field application of the measuring techniques of natural radioactivity dosimetry are studied. The natural radioactivity in minerals in composed of the internal dose deposited by alpha and beta radiations issued from the sample itself and the external dose deposited by gamma and cosmic radiations issued from the surroundings of the sample. Two technics for external dosimetry are examined in details. TL Dosimetry and field gamma dosimetry. Calibration and experimental conditions are presented. A new integrated dosimetric method for internal and external dose measure is proposed: the TL dosimeter is placed in the soil in exactly the same conditions as the sample ones, during a time long enough for the total dose evaluation [fr

  6. Trends in light water reactor dosimetry programs

    International Nuclear Information System (INIS)

    Rahn, F.J.; Serpan, C.Z.; Fabry, A.; McElroy, W.N.; Grundl, J.A.; Debrue, J.

    1977-01-01

    Dosimetry programs and techniques play an essential role in the continued assurance of the safety and reliability of components of light water reactors. Primary concern focuses on the neutron irradiation embrittlement of reactor pressure vessels and methods by which the integrity of a pressure vessel can be predicted and monitored throughout its service life. Research in these areas requires a closely coordinated program which integrates the elements of the calculational and material sciences, the development of advanced dosimetric techniques and the use of benchmarks and validation of these methods. The paper reviews the status of the various international efforts in the dosimetry area

  7. Thermoluminescence, a universal tool for dosimetry

    International Nuclear Information System (INIS)

    Barthe, J.

    1999-01-01

    Radio-thermoluminescence is a transient light emission occurring when certain substances, which have been exposed to ionizing radiation, are heated. Under some conditions the quantity of emitted light is proportional to the absorbed dose. This linearity allows thermoluminescence to be used in various fields such as dosimetry, geology and age determination. Dosimeters based on thermoluminescence are passive, they do not require a source of energy and they can sustain high temperatures and high levels of irradiation. Thermoluminescence has been applied for determining the dose absorbed by meteorites and lunar rocks

  8. Personal dosimetry service of VF, a.s. company

    International Nuclear Information System (INIS)

    Prasek, P.

    2009-01-01

    The VF, a.s. Company will extend its services in the area of personal dosimetry at the end of 2008, which is fully in compliance with the requirements of the Atomic Act, section 9 paragraph (1) letter r) and Decree on Radiation Protection, section 59 paragraph (1) letter a). Optically stimulated luminescence was selected in VF .a.s. as the most advantageous and the most advanced technology for the integral personal dosimetry. Optically stimulated luminescence (OSL) has been using in dosimetry for more than ten years. Although it is relatively new technology , its indisputable advantages predetermine that technology has significantly benefited in personal dosimetry services within a short time all over the advanced world. The VF, a.s. personal dosimetry service is based on the licensed products of LANDAUER, the US company, which is the world leader in OSL dosimetry. Crystalline Al 2 O 3 :C was selected as the detection material. All equipment of personal dosimetry service is installed in the VF Centre of Technology in Cerna Hora. The personal dosimetry service is incorporated in the International LANDAUER Dosimetry Service Network, and in the European Union, it is directly linked to the LANDAUER European Headquarters with its office in Paris. As a part of the OSL technology licence, the VF personal dosimetry service was included in the inter-laboratory comparison programme of the LANDAUER syndicate. (author)

  9. Personal dosimetry service of VF, a.s. company

    International Nuclear Information System (INIS)

    Prasek, P.

    2008-01-01

    The VF, a.s. Company will extend its services in the area of personal dosimetry at the end of 2008, which is fully in compliance with the requirements of the Atomic Act, section 9 paragraph (1) letter r) and Decree on Radiation Protection, section 59 paragraph (1) letter a). Optically stimulated luminescence was selected in VF .a.s. as the most advantageous and the most advanced technology for the integral personal dosimetry . Optically stimulated luminescence (OSL) has been using in dosimetry for more than ten years. Although it is relatively new technology , its indisputable advantages predetermine that technology has significantly benefited in personal dosimetry services within a short time all over the advanced world. The VF, a.s. personal dosimetry service is based on the licensed products of LANDAUER, the US company, which is the world leader in OSL dosimetry. Crystalline Al 2 O 3 :C was selected as the detection material. All equipment of personal dosimetry service is installed in the VF Centre of Technology in Cerna Hora. The personal dosimetry service is incorporated in the International LANDAUER Dosimetry Service Network, and in the European Union, it is directly linked to the LANDAUER European Headquarters with its office in Paris. As a part of the OSL technology licence, the VF personal dosimetry service was included in the inter-laboratory comparison programme of the LANDAUER syndicate. (author)

  10. The development of differential inductors using double air-bridge structure based on integrated passive device technology

    Science.gov (United States)

    Li, Yang; Yao, Zhao; Fu, Xiao-Qian; Li, Zhi-Ming; Shan, Fu-Kai; Wang, Cong

    2017-05-01

    Recently, integrated passive devices have become increasingly popular; inductor realization, in particular, offers interesting high performance for RF modules and systems. In this paper, a development of differential inductor fabricated by integrated passive devices technology using a double air-bridge structure is presented. A study of the model development of the differential inductor is first demonstrated. In this model section, a segment box analysis method is applied to provide a clear presentation of the differential inductor. Compared with other work that only shows a brief description of the process, the integrated passive devices process used to fabricate the inductor in this study is elaborated on. Finally, a characterization of differential inductors with different physical layout parameters is illustrated based on inductance and quality factors, which provides a valuable reference for realizing high performance. The proposed work provides a good solution for the design, fabrication and practical application of RF modules and systems.

  11. The EURADOS/CONRAD activities on radiation protection dosimetry in medicine

    International Nuclear Information System (INIS)

    Vanhavere, F.; Struelens, L.; Bordy, J.M.; Daures, J.; Denozieres, M.; Buls, N.; Clerinx, P.; Carinou, E.; Clairand, I.; Debroas, J.; Donadille, L.; Itie, C.; Ginjaume, M.; Jansen, J.; Jaervinen, H.; Miljanic, S.; Ranogajec-Komor, M.; Nikodemova, D.; Rimpler, A.; Sans Merce, M.; D'Errico, F.

    2008-01-01

    Full text: This presentation gives an overview on the research activities that EURADOS coordinates in the field of radiation protection dosimetry in medicine. EURADOS is an organization founded in 1981 to advance the scientific understanding and the technical development of the dosimetry of ionising radiation in the fields of radiation protection, radiobiology, radiation therapy and medical diagnosis by promoting collaboration between European laboratories. EURADOS operates by setting up Working Groups dealing with particular topics. Currently funded through the CONRAD project of the 6th EU Framework Programme, EURADOS has working groups on Computational Dosimetry, Internal Dosimetry, Complex mixed radiation fields at workplaces, and Radiation protection dosimetry of medical staff. The latter working group coordinates and promotes European research for the assessment of occupational exposures to staff in therapeutic and diagnostic radiology workplaces. Research is coordinated by sub-groups covering three specific areas: 1: Extremity dosimetry in nuclear medicine and interventional radiology: this sub-group coordinates investigations in the specific fields of the hospitals and studies of doses to different parts of the hands, arms, legs and feet; 2: Practice of double dosimetry: this sub-group reviews and evaluates the different methods and algorithms for the use of dosemeters placed above and below lead aprons, especially to determine personal doses to cardiologists during cardiac catheterisation, but also in CT-fluoroscopy and some nuclear medicine developments (e.g. use of Re-188); and 3: Use of electronic personal dosemeters in interventional radiology: this sub-group coordinates investigations in laboratories and hospitals, and intercomparisons with passive dosemeters with the aim to enable the formulation of standards. (author)

  12. Dosimetry computer module of the gamma irradiator of ININ

    International Nuclear Information System (INIS)

    Ledezma F, L. E.; Baldomero J, R.; Agis E, K. A.

    2012-10-01

    This work present the technical specifications for the upgrade of the dosimetry module of the computer system of the gamma irradiator of the Instituto Nacional de Investigaciones Nucleares (ININ) whose result allows the integration and consultation of information in industrial dosimetry subject under an outline client-server. (Author)

  13. Neutron dosimetry in biology

    International Nuclear Information System (INIS)

    Sigurbjoernsson, B.; Smith, H.H.; Gustafsson, A.

    1965-01-01

    To study adequately the biological effects of different energy neutrons it is necessary to have high-intensity sources which are not contaminated by other radiations, the most serious of which are gamma rays. An effective dosimetry must provide an accurate measure of the absorbed dose, in biological materials, of each type of radiation at any reactor facility involved in radiobiological research. A standardized biological dosimetry, in addition to physical and chemical methods, may be desirable. The ideal data needed to achieve a fully documented dosimetry has been compiled by H. Glubrecht: (1) Energy spectrum and intensity of neutrons; (2) Angular distribution of neutrons on the whole surface of the irradiated object; (3) Additional undesired radiation accompanying the neutrons; (4) Physical state and chemical composition of the irradiated object. It is not sufficient to note only an integral dose value (e.g. in 'rad') as the biological effect depends on the above data

  14. Passive solar technology

    Energy Technology Data Exchange (ETDEWEB)

    Watson, D

    1981-04-01

    The present status of passive solar technology is summarized, including passive solar heating, cooling and daylighting. The key roles of the passive solar system designer and of innovation in the building industry are described. After definitions of passive design and a summary of passive design principles are given, performance and costs of passive solar technology are discussed. Passive energy design concepts or methods are then considered in the context of the overall process by which building decisions are made to achieve the integration of new techniques into conventional design. (LEW).

  15. Measurements of integrated components' parameters versus irradiation doses gamma radiation (60Co) dosimetry-methodology-tests

    International Nuclear Information System (INIS)

    Fuan, J.

    1991-01-01

    This paper describes the methodology used for the irradiation of the integrated components and the measurements of their parameters, using Quality Insurance of dosimetry: - Measurement of the integrated dose using the competences of the Laboratoire Central des Industries Electriques (LCIE): - Measurement of irradiation dose versus source/component distance, using a calibrated equipment. - Use of ALANINE dosimeters, placed on the support of the irradiated components. - Assembly and polarization of components during the irradiations. Selection of the irradiator. - Measurement of the irradiated components's parameters, using the competences of the societies: - GenRad: GR130 tests equipement placed in the DEIN/SIR-CEN SACLAY. - Laboratoire Central des Industries Electriques (LCIE): GR125 tests equipment and this associated programmes test [fr

  16. Integral test of International Reactor Dosimetry and Fusion File with Li{sub 2}O assembly and DT neutron source at JAEA/FNS

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Satoshi, E-mail: sato.satoshi92@jaea.go.jp [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken (Japan); Kwon, Saerom; Ohta, Masayuki [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken (Japan); Ochiai, Kentaro [Japan Atomic Energy Agency, Rokkasho-mura, Kamikita-gun, Aomori-ken (Japan); Konno, Chikara [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken (Japan)

    2016-11-01

    In order to validate a new library of dosimetry cross section data, International Reactor Dosimetry and Fusion File release 1.0 (IRDFF 1.0), not only for DT neutrons but also for neutrons with energy of less than 14 MeV, we perform an integral test with a Li{sub 2}O rectangular assembly of 60.7 cm in thickness and a DT neutron source at JAEA/FNS. We place a lot of activation foils at depths of 10.1 cm and 30.4 cm for measurements of dosimetry reaction rates in small space along the central axis in the assembly, measure decay gamma-rays from the activation foils with high-purity Ge detectors after the DT neutron irradiation by the foil activation technique, and deduce a variety of dosimetry reaction rates. We calculate the reaction rates by using a Monte Carlo code MCNP5-1.40 and the nuclear data library ENDF/B-VII.1 with the IRDFF-v.1.05 as the response functions for the dosimetry reactions. The calculation results generally show good agreements with the measured ones, and it can be confirmed that most of the data in IRDFF-v.1.05 are valid for the neutron field in the Li{sub 2}O assembly with the DT neutrons.

  17. Radiation dosimetry and radiation biophysics

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Radiation dosimetry and radiation biophysics are two closely integrated programs whose joint purpose is to explore the connections between the primary physical events produced by radiation and their biological consequences in cellular systems. The radiation dosimetry program includes the theoretical description of primary events and their connection with the observable biological effects. This program also is concerned with the design and measurement of physical parameters used in theory or to support biological experiments. The radiation biophysics program tests and uses the theoretical developments for experimental design, and provides information for further theoretical development through experiments on cellular systems

  18. Radiation dosimetry and radiation biophysics

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Radiation dosimetry and radiation biophysics are two closely integrated programs whose joint purpose is to explore the connections between the primary physical events produced by radiation and their biological consequences in cellular systems. The radiation dosimetry program includes the theoretical description of primary events and their connection with the observable biological effects. This program also is concerned with design and measurement of those physical parameters used in the theory or to support biological experiments. The radiation biophysics program tests and makes use of the theoretical developments for experimental design. Also, this program provides information for further theoretical development through experiments on cellular systems

  19. Chemical dosimetry principles in high dose dosimetry

    International Nuclear Information System (INIS)

    Mhatre, Sachin G.V.

    2016-01-01

    In radiation processing, activities of principal concern are process validation and process control. The objective of such formalized procedures is to establish documentary evidence that the irradiation process has achieved the desired results. The key element of such activities is inevitably a well characterized reliable dosimetry system that is traceable to recognized national and international dosimetry standards. Only such dosimetry systems can help establish the required documentary evidence. In addition, industrial radiation processing such as irradiation of foodstuffs and sterilization of health careproducts are both highly regulated, in particular with regard to dose. Besides, dosimetry is necessary for scaling up processes from the research level to the industrial level. Thus, accurate dosimetry is indispensable

  20. Passive solar offices: integrated design

    Energy Technology Data Exchange (ETDEWEB)

    Evans, B

    1992-05-06

    Passive solar design in out-of-town offices can remove the need for air-conditioning by making greater use of daylight and natural ventilation. To promote the use of passive solar energy a series of design studies are being run by the Energy Technology Support Unit on behalf of the Department of Energy. The three reported here are designs for out-of-town business buildings. Each is a hypothetical building designed to a realistic brief for an organisation taking the role of real client. (author).

  1. Evidence Integration in Natural Acoustic Textures during Active and Passive Listening.

    Science.gov (United States)

    Górska, Urszula; Rupp, Andre; Boubenec, Yves; Celikel, Tansu; Englitz, Bernhard

    2018-01-01

    Many natural sounds can be well described on a statistical level, for example, wind, rain, or applause. Even though the spectro-temporal profile of these acoustic textures is highly dynamic, changes in their statistics are indicative of relevant changes in the environment. Here, we investigated the neural representation of change detection in natural textures in humans, and specifically addressed whether active task engagement is required for the neural representation of this change in statistics. Subjects listened to natural textures whose spectro-temporal statistics were modified at variable times by a variable amount. Subjects were instructed to either report the detection of changes (active) or to passively listen to the stimuli. A subset of passive subjects had performed the active task before (passive-aware vs passive-naive). Psychophysically, longer exposure to pre-change statistics was correlated with faster reaction times and better discrimination performance. EEG recordings revealed that the build-up rate and size of parieto-occipital (PO) potentials reflected change size and change time. Reduced effects were observed in the passive conditions. While P2 responses were comparable across conditions, slope and height of PO potentials scaled with task involvement. Neural source localization identified a parietal source as the main contributor of change-specific potentials, in addition to more limited contributions from auditory and frontal sources. In summary, the detection of statistical changes in natural acoustic textures is predominantly reflected in parietal locations both on the skull and source level. The scaling in magnitude across different levels of task involvement suggests a context-dependent degree of evidence integration.

  2. Fast electromagnetic characterization of integrated circuit passive isolation structures based on interference blocking

    NARCIS (Netherlands)

    Grau Novellas, M.; Serra, R.; Rose, Matthias

    2017-01-01

    An early characterization of integrated circuit passive isolation structures is crucial to predict their performance and effectiveness in minimizing substrate coupling. In this paper, an electromagnetic (EM) modeling methodology is proposed, which can be applied to different types of isolation

  3. Passive Strategy with Integrated Passive Safety System (IPSS) for DBAs in SBO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Ho; Kim, Jihee; Choi, Jae Young; Jeon, Inseop; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-10-15

    Beznau nuclear power plant. The third solution is to make a cooling redundancy. Integrated passive safety system (IPSS) proposed in 2011 is a representative design adding big water tanks outside containment on a top of auxiliary building as a heat sink and water supplier. Three methods are each merit and demerit. After the design concept of IPSS was proposed, main functions were analyzed to be verified. With the simulated performances of IPSS in conservative conditions, passive counter strategies to cope with design based accidents (DBAs) were proposed and described in a basic condition of a SBO.

  4. A Novel Control Algorithm for Integration of Active and Passive Vehicle Safety Systems in Frontal Collisions

    Directory of Open Access Journals (Sweden)

    Daniel Wallner

    2010-10-01

    Full Text Available The present paper investigates an approach to integrate active and passive safety systems of passenger cars. Worldwide, the introduction of Integrated Safety Systems and Advanced Driver Assistance Systems (ADAS is considered to continue the today

  5. 100 years of solid state dosimetry and radiation protection dosimetry

    International Nuclear Information System (INIS)

    Bartlett, David T.

    2008-01-01

    The use of solid state detectors in radiation dosimetry has passed its 100th anniversary. The major applications of these detectors in radiation dosimetry have been in personal dosimetry, retrospective dosimetry, dating, medical dosimetry, the characterization of radiation fields, and also in microdosimetry and radiobiology research. In this introductory paper for the 15th International Conference, I shall speak of the history of solid state dosimetry and of the radiation measurement quantities that developed at the same time, mention some landmark developments in detectors and applications, speak a bit more about dosimetry and measurement quantities, and briefly look at the past and future

  6. Integral test facilities for validation of the performance of passive safety systems and natural circulation

    International Nuclear Information System (INIS)

    Choi, J. H.

    2010-10-01

    Passive safety systems are becoming an important component in advanced reactor designs. This has led to an international interest in examining natural circulation phenomena as this may play an important role in the operation of these passive safety systems. Understanding reactor system behaviour is a challenging process due to the complex interactions between components and associated phenomena. Properly scaled integral test facilities can be used to explore these complex interactions. In addition, system analysis computer codes can be used as predictive tools in understanding the complex reactor system behaviour. However, before the application of system analysis computer codes for reactor design, it is capability in making predictions needs to be validated against the experimental data from a properly scaled integral test facility. The IAEA has organized a coordinated research project (CRP) on natural circulation phenomena, modeling and reliability of passive systems that utilize natural circulation. This paper is a part of research results from this CRP and describes representative international integral test facilities that can be used for data collection for reactor types in which natural circulation may play an important role. Example experiments were described along with the analyses of these example cases in order to examine the ability of system codes to model the phenomena that are occurring in the test facilities. (Author)

  7. Characterization of internal dosimetry practices

    International Nuclear Information System (INIS)

    Traub, R.J.; Heid, K.R.; Mann, J.C.

    1983-01-01

    Current practices in internal dosimetry at DOE facilities were evaluated with respect to consistency among DOE Contractors. All aspects of an internal dosimetry program were addressed. Items considered include, but are not necessarily limited to, record systems and ease of information retrieval; ease of integrating internal dose and external dose; modeling systems employed, including ability to modify models depending on excretion data, and verification of computer codes utilized; bioassay procedures, including quality control; and ability to relate air concentration data to individual workers and bioassay data. Feasibility of uranium analysis in solution by laser fluorescence excitation at uranium concentrations of one part per billion was demonstrated

  8. Passive sampling of selected pesticides in aquatic environment using polar organic chemical integrative samplers.

    Science.gov (United States)

    Thomatou, Alphanna-Akrivi; Zacharias, Ierotheos; Hela, Dimitra; Konstantinou, Ioannis

    2011-08-01

    Polar chemical integrative samplers (POCIS) were examined for their sampling efficiency of 12 pesticides and one metabolite commonly detected in surface waters. Laboratory-based calibration experiments of POCISs were conducted. The determined passive sampling rates were applied for the monitoring of pesticides levels in Lake Amvrakia, Western Greece. Spot sampling was also performed for comparison purposes. Calibration experiments were performed on the basis of static renewal exposure of POCIS under stirred conditions for different time periods of up to 28 days. The analytical procedures were based on the coupling of POCIS and solid phase extraction by Oasis HLB cartridges with gas chromatography-mass spectrometry. The recovery of the target pesticides from the POCIS was generally >79% with relative standard deviation (RSD) monitoring campaign using both passive and spot sampling whereas higher concentrations were measured by spot sampling in most cases. Passive sampling by POCIS provides a useful tool for the monitoring of pesticides in aquatic systems since integrative sampling at rates sufficient for analytical quantitation of ambient levels was observed. Calibration data are in demand for a greater number of compounds in order to extend the use in environmental monitoring.

  9. Three new projects for the CERN Dosimetry Service

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    The measures for the protection of personnel against ionising radiation at CERN are very strict. As soon as a new directive is issued by EURATOM, the Laboratory ensures it is adopted quickly. Since every system can be perfected, Pierre Carbonez and the Dosimetry Service team are working on three new projects aimed at improving the safety of workers exposed to ionising radiation in the course of their work on the CERN sites.       The two types of dosimeters currently in use at CERN. 4,700 people at CERN have a dosimeter. Every month, they have to have their dosimeter scanned by one of the 45 readers installed at various strategic locations around the Laboratory. Each month, the dosimetry team led by Pierre Carbonez exchanges around 450 dosimeters to recalibrate them and prepare them for further use. “These dosimeters are passive detectors which record the doses caused by beta, gamma and neutron radiation," explains Pierre Carbonez. &a...

  10. Dosimetry of industrial sources; Dosimetria de fuentes industriales

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Rodriguez J, R.; Manzanares A, E.; Hernandez V, R.; Ramirez G, J. [Universidad Autonoma de Zacatecas, 98068 Zacatecas (Mexico); Rivera M, T. [CICATA-IPN, 11500 Mexico D.F. (Mexico)]. e-mail: fermineutron@yahoo.com

    2007-07-01

    The gamma rays are produced during the disintegration of the atomic nuclei, its high energy allows them to cross thick materials. The capacity to attenuate a photons beam allows to determine the density, in line, of industrial interest materials as the mining. By means of two active dosemeters and a TLDs group (passive dosimetry) the dose rates of two sources of Cs-137 used for determining in line the density of mining materials were determined. With the dosemeters the dose levels in diverse points inside the grave that it harbors the sources and by means of calculations the isodoses curves were determined. In the phase of calculations was supposed that both sources were punctual and the isodose curves were calculated for two situations: naked sources and in their Pb packings. The dosimetry was carried out around two sources of {sup 137}Cs. The measured values allowed to develop a calculation procedure to obtain the isodoses curves in the grave where the sources are installed. (Author)

  11. Integral nuclear power reactor with natural coolant circulation. Investigation of passive RHR system

    International Nuclear Information System (INIS)

    Samoilov, O.B.; Kuul, V.S.; Malamud, V.A.; Tarasov, G.I.

    1996-01-01

    The development of a small power (up to 240 MWe) integral PWR for nuclear co-generation power plants has been carried out. The distinctive features of this advanced reactor are: primary circuit arrangement in a single pressure vessel; natural coolant circulation; passive safety systems with self-activated control devices; use of a second (guard) vessel housing the reactor; favourable conditions for the most severe accident management. A passive steam condensing channel has been developed which is activated by the direct action of the primary circuit pressure without an automatic controlling action or manual intervention for emergency cooling of an integral reactor with an in-built pressurizer. In an emergency situation as pressure rises in the reactor a self-activated device blows out non-condensable gases from the condenser tube bundle and returns them in the steam-condensing mode of the operation with the returing primary coolant condensate into the reactor. The thermo-physical test facility is constructed and the experimental development of the steam-condensing channels is performed aiming at the verification of mathematical models for these channels operation in integral reactors both at loss-of-heat removal and LOCA accidents. (orig.)

  12. Status report on dosimetry benchmark neutron field development, characterization, and application

    International Nuclear Information System (INIS)

    Fabry, A.; Grundl, J.A.; McElroy, W.N.; Lippincott, E.P.; Farrar, H. IV.

    1977-01-01

    The report attempts to present a brief, but comprehensive review of the status and future directions of benchmark neutron field development, characterization and application in perspective with two major objectives of reactor dosimetry: (1) fuel fission rate and burn-up passive monitoring, and (2) correlation of materials irradiation damage effects and projection to commercial power plants. The report focuses on the Light Water Reactor and Fast Breeder Reactor program needs

  13. Dosimetry

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The purpose of ionizing radiation dosimetry is the measurement of the physical and biological consequences of exposure to radiation. As these consequences are proportional to the local absorption of energy, the dosimetry of ionizing radiation is based on the measurement of this quantity. Owing to the size of the effects of ionizing radiation on materials in all of these area, dosimetry plays an essential role in the prevention and the control of radiation exposure. Its use is of great importance in two areas in particular where the employment of ionizing radiation relates to human health: radiation protection, and medical applications. Dosimetry is different for various reasons: owing to the diversity of the physical characteristics produced by different kinds of radiation according to their nature (X- and γ-photons, electrons, neutrons,...), their energy (from several keV to several MeV), the orders of magnitude of the doses being estimated (a factor of about 10 5 between diagnostic and therapeutic applications); and the temporal and spatial variation of the biological parameters entering into the calculations. On the practical level, dosimetry poses two distinct yet closely related problems: the determination of the absorbed dose received by a subject exposed to radiation from a source external to his body (external dosimetry); and the determination of the absorbed dose received by a subject owing to the presence within his body of some radioactive substance (internal dosimetry)

  14. Neutron dosimetry at a high-energy electron-positron collider

    Science.gov (United States)

    Bedogni, Roberto

    Electron-positron colliders with energy of hundreds of MeV per beam have been employed for studies in the domain of nuclear and sub-nuclear physics. The typical structure of such a collider includes an LINAC, able to produce both types of particles, an accumulator ring and a main ring, whose diameter ranges from several tens to hundred meters and allows circulating particle currents of several amperes per beam. As a consequence of the interaction of the primary particles with targets, shutters, structures and barriers, a complex radiation environment is produced. This paper addresses the neutron dosimetry issues associated with the operation of such accelerators, referring in particular to the DAΦ NE complex, operative since 1997 at INFN-Frascati National Laboratory (Italy). Special attention is given to the active and passive techniques used for the spectrometric and dosimetric characterization of the workplace neutron fields, for radiation protection dosimetry purposes.

  15. Measurements of Integral Cross Section Ratios in Two Dosimetry Benchmark Neutron Fields

    International Nuclear Information System (INIS)

    Fabry, A.; Czock, K.H.

    1974-12-01

    In the frame of a current interlaboratory effort devoted to the standardization of fuels and materials neutron dosimetry, the 103 Rh(n,n') 103m Rh and 58 Ni(n,p) 58 Co integral cross sections have been accurately measured relatively to the 115 In(n,n') 115m In cross section in the 235 U thermal dission neutron spectrum and in the MOLΣΣ Intermediate-Energy Standard Neutron field. In this last neutron field, the data are related also to the 235 U(n,f) cross section. The measurements are extensively documented and the results briefly compared to literature. Most noticeably, decisive support is provided for the selection of a specific 103 Rh(n,n') 103m Rh differential-energy cross section among the existing, conflicting data. (author)

  16. Measurements of integral cross section ratios in two dosimetry benchmark neutron fields

    International Nuclear Information System (INIS)

    Fabry, A.; Czock, K.H.

    1974-12-01

    In the frame of a current interlaboratory effort devoted to the standardization of fuels and materials neutron dosimetry, the 103 Rh(n,n') 103m Rh and 58 Ni(n,p) 58 Co integral cross sections have been accurately measured relatively to the 115 In(n,n') 115m In cross section in the 235 U thermal fission neutron spectrum and in the MOL-ΣΣ intermediate-energy standard neutron field. In this last neutron field, the data are related also to the 235 U(n,f) cross section. The measurements are extensively documented and the results briefly compared to literature. Most noticeably, decisive support is provided for the selection of a specific 103 Rh(n,n') 103m Rh differential-energy cross section among the existing, conflicting data. (author)

  17. Review of microscopic integral cross section data in fundamental reactor dosimetry benchmark neutron fields

    International Nuclear Information System (INIS)

    Fabry, A.; McElroy, W.N.; Kellogg, L.S.; Lippincott, E.P.; Grundl, J.A.; Gilliam, D.M.; Hansen, G.E.

    1976-01-01

    This paper is intended to review and critically discuss microscopic integral cross section measurement and calculation data for fundamental reactor dosimetry benchmark neutron fields. Specifically the review covers the following fundamental benchmarks: the spontaneous californium-252 fission neutron spectrum standard field; the thermal-neutron induced uranium-235 fission neutron spectrum standard field; the (secondary) intermediate-energy standard neutron field at the center of the Mol-ΣΣ, NISUS, and ITN-ΣΣ facilities; the reference neutron field at the center of the Coupled Fast Reactor Measurement Facility; the reference neutron field at the center of the 10% enriched uranium metal, cylindrical, fast critical; the (primary) Intermediate-Energy Standard Neutron Field

  18. Dosimetry Service

    CERN Multimedia

    2006-01-01

    Cern Staff and Users can now consult their dose records for an individual or an organizational unit with HRT. Please see more information on our web page: http://cern.ch/rp-dosimetry Dosimetry Service is open every morning from 8.30 - 12.00. Closed in the afternoons. We would like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCT's) must always be returned to the Service after the use and must not be left on the racks in the experimental areas or in the secretariats. Dosimetry Service Tel. 7 2155 Dosimetry.service@cern.ch http://cern.ch/rp-dosimetry

  19. Dosimetry system 1986

    International Nuclear Information System (INIS)

    Woolson, William A.; Egbert, Stephen D.; Gritzner, Michael L.

    1987-01-01

    In May 1983, the authors proposed a dosimetry system for use by the Radiation Effects Research Foundation (RERF) that would incorporate the new findings and calculations of the joint United States - Japan working groups on the reassessment of A-bomb dosimetry. The proposed dosimetry system evolved from extensive discussions with RERF personnel, numerous meetings of the scientists from Japan and the United States involved in the dosimetry reassessment research, and requirements expressed by epidemiologists and radiobiologists on the various review panels. The dosimetry system proposed was based on considerations of the dosimetry requirements for the normal work of RERF and for future research in radiobiology, the computerized input data on A-bomb survivors available in the RERF data base, the level of detail, precision, and accuracy of various components of the dosimetric estimates, and the computer resources available at RERF in Hiroshima. These discussions and our own experience indicated that, in light of the expansion of computer and radiation technologies and the desire for more detail in the dosimetry, an entirely new approach to the dosimetry system was appropriate. This resulted in a complete replacement of the T65D system as distinguished from a simpler approach involving a renormalization of T65D parameters to reflect the new dosimetry. The proposed dosimetry system for RERF and the plan for implementation was accepted by the Department of Energy (DOE) Working Group on A-bomb Dosimetry chaired by Dr. R.F. Christy. The dosimetry system plan was also presented to the binational A-bomb dosimetry review groups for critical comment and was discussed at joint US-Japan workshop. A prototype dosimetry system incorporating preliminary dosimetry estimates and applicable to only a limited set of A-bomb survivors was installed on the RERF computer system in the fall of 1984. This system was successfully operated at RERF and provided an initial look at the impact of

  20. Passive AC network supplying the integration of CCC-HVDC and VSC-HVDC systems

    OpenAIRE

    BIDADFAR, Ali; ABEDI, Mehrdad; KARRARI, Mehdi

    2014-01-01

    The integration of a capacitor-commutated converter (CCC) high-voltage direct current (HVDC) (CCC-HVDC) and voltage source converter (VSC) HVDC (VSC-HVDC) is proposed in this paper to supply entirely passive AC networks. The key point of this integration is the flat characteristic of the DC voltage of the CCC-HVDC, which provides the condition for the VSC to connect to the CCC DC link via a current regulator. The advantages of the proposed combined infeeding system are the requirement o...

  1. Measurements of integral cross section ratios in two dosimetry benchmark neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A [CEN-SCK, Mol (Belgium); Czock, K H [International Atomic Energy Agency, Laboratory Seibersdorf, Vienna (Austria)

    1974-12-01

    In the frame of a current interlaboratory effort devoted to the standardization of fuels and materials neutron dosimetry, the {sup 103}Rh(n,n'){sup 103m}Rh and {sup 58}Ni(n,p){sup 58}Co integral cross sections have been accurately measured relatively to the {sup 115}In(n,n'){sup 115m} In cross section in the {sup 235}U thermal fission neutron spectrum and in the MOL-{sigma}{sigma} intermediate-energy standard neutron field. In this last neutron field, the data are related also to the {sup 235}U(n,f) cross section. The measurements are extensively documented and the results briefly compared to literature. Most noticeably, decisive support is provided for the selection of a specific {sup 103}Rh(n,n'){sup 103m}Rh differential-energy cross section among the existing, conflicting data. (author)

  2. Measurements of Integral Cross Section Ratios in Two Dosimetry Benchmark Neutron Fields

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A. [CEN-SCK, Mol (Belgium); Czock, K. H. [International Atomic Energy Agency, Vienna (Austria)

    1974-12-15

    In the frame of a current interlaboratory effort devoted to the standardization of fuels and materials neutron dosimetry, the {sup 103}Rh(n,n'){sup 103m}Rh and {sup 58}Ni(n,p){sup 58}Co integral cross sections have been accurately measured relatively to the {sup 115}In(n,n'){sup 115m}In cross section in the {sup 235}U thermal dission neutron spectrum and in the MOL{Sigma}{Sigma} Intermediate-Energy Standard Neutron field. In this last neutron field, the data are related also to the {sup 235}U(n,f) cross section. The measurements are extensively documented and the results briefly compared to literature. Most noticeably, decisive support is provided for the selection of a specific {sup 103}Rh(n,n'){sup 103m}Rh differential-energy cross section among the existing, conflicting data. (author)

  3. Passive dosimetry aboard the Mir Orbital Station: internal measurements

    International Nuclear Information System (INIS)

    Benton, E.R.; Benton, E.V.; Frank, A.L.

    2002-01-01

    Passive radiation dosimeters were exposed aboard the Mir Orbital Station over a substantial portion of the solar cycle in order to measure the change in dose and dose equivalent rates as a function of time. During solar minimum, simultaneous measurements of the radiation environment throughout the habitable volume of the Mir were made using passive dosimeters in order to investigate the effect of localized shielding on dose and dose equivalent. The passive dosimeters consisted of a combination of thermoluminescent detectors to measure absorbed dose and CR-39 PNTDs to measure the linear energy transfer (LET) spectrum from charged particles of LET ∞ H 2 O≥5 keV/μm. Results from the two detector types were then combined to yield mean total dose rate, mean dose equivalent rate, and average quality factor. Contrary to expectations, both dose and dose equivalent rates measured during May-October 1991 near solar maximum were higher than similar measurements carried out in 1996-1997 during solar minimum. The elevated dose and dose equivalent rates measured in 1991 were probably due to a combination of intense solar activity, including a large solar particle event on 9 June 1991, and the temporary trapped radiation belt created in the slot region by the solar particle event and ensuing magnetic storm of 24 March 1991. During solar minimum, mean dose and dose equivalent rates were found to vary by factors of 1.55 and 1.37, respectively, between different locations through the interior of Mir. More heavily shielded locations tended to yield lower total dose and dose equivalent rates, but higher average quality factor than did more lightly shielding locations. However, other factors such as changes in the immediate shielding environment surrounding a given detector location, changes in the orientation of the Mir relative to its velocity vector, and changes in the altitude of the station also contributed to the variation. Proton and neutron-induced target fragment

  4. Review of microscopic integral cross section data in fundamental reactor dosimetry benchmark neutron fields

    International Nuclear Information System (INIS)

    Fabry, A.; McElroy, W.N.; Kellogg, L.S.; Lippincott, E.P.; Grundl, J.A.; Gilliam, D.M.; Hansen, G.E.

    1976-10-01

    The paper is intended to review and critically discuss microscopic integral cross section measurement and calculation data for fundamental reactor dosimetry benchmark neutron fields. Specifically the review covers the following fundamental benchmarks: (1) the spontaneous californium-252 fission neutron spectrum standard field; (2) the thermal-neutron induced uranium-235 fission neutron spectrum standard field; (3) the (secondary) intermediate-energy standard neutron field at the center of the Mol-ΣΣ, NISUS, and ITN--ΣΣ facilities; (4) the reference neutron field at the center of the Coupled Fast Reactor Measurement Facility (CFRMF); (5) the reference neutron field at the center of the 10 percent enriched uranium metal, cylindrical, fast critical; and (6) the (primary) Intermediate-Energy Standard Neutron Field

  5. EURADOS strategic research agenda: vision for dosimetry of ionising radiation

    International Nuclear Information System (INIS)

    Ruehm, W.; Woda, C.; Fantuzzi, E.; Harrison, R.; Schuhmacher, H.; Neumaier, S.; Vanhavere, F.; Alves, J.; Bottollier Depois, J.F.; Fattibene, P.; Knezevic, Z.; Miljanic, S.; Lopez, M. A.; Mayer, S.; Olko, P.; Stadtmann, H.; Tanner, R.

    2016-01-01

    Since autumn 2012, the European Radiation Dosimetry Group (EURADOS) has been developing its Strategic Research Agenda (SRA), which is intended to contribute to the identification of future research needs in radiation dosimetry in Europe. The present article summarises-based on input from EURADOS Working Groups (WGs) and Voting Members-five visions in dosimetry and defines key issues in dosimetry research that are considered important for the next decades. The five visions include scientific developments required towards (a) updated fundamental dose concepts and quantities, (b) improved radiation risk estimates deduced from epidemiological cohorts, (c) efficient dose assessment for radiological emergencies, (d) integrated personalised dosimetry in medical applications and (e) improved radiation protection of workers and the public. The SRA of EURADOS will be used as a guideline for future activities of the EURADOS WGs. A detailed version of the SRA can be downloaded as a EURADOS report from the EURADOS web site (www.eurados.org). (authors)

  6. SU-F-J-100: Standardized Biodistribution Template for Nuclear Medicine Dosimetry Collection and Reporting

    Energy Technology Data Exchange (ETDEWEB)

    Kesner, A [University of Colorado, Anschutz Medical Campus, Aurora, Colorado (United States); Poli, G [International Atomic Energy Agency, Vienna, Vienna (Austria); Beykan, S; Lassman, M [University of Wuerzburg, Wuerzberg, Wuerzberg (Germany)

    2016-06-15

    Purpose: As the field of Nuclear Medicine moves forward with efforts to integrate radiation dosimetry into clinical practice we can identify the challenge posed by the lack of standardized dose calculation methods and protocols. All personalized internal dosimetry is derived by projecting biodistribution measurements into dosimetry calculations. In an effort to standardize organization of data and its reporting, we have developed, as a sequel to the EANM recommendation of “Good Dosimetry Reporting”, a freely available biodistribution template, which can be used to create a common point of reference for dosimetry data. It can be disseminated, interpreted, and used for method development widely across the field. Methods: A generalized biodistribution template was built in a comma delineated format (.csv) to be completed by users performing biodistribution measurements. The template is available for free download. The download site includes instructions and other usage details on the template. Results: This is a new resource developed for the community. It is our hope that users will consider integrating it into their dosimetry operations. Having biodistribution data available and easily accessible for all patients processed is a strategy for organizing large amounts of information. It may enable users to create their own databases that can be analyzed for multiple aspects of dosimetry operations. Furthermore, it enables population data to easily be reprocessed using different dosimetry methodologies. With respect to dosimetry-related research and publications, the biodistribution template can be included as supplementary material, and will allow others in the community to better compare calculations and results achieved. Conclusion: As dosimetry in nuclear medicine become more routinely applied in clinical applications, we, as a field, need to develop the infrastructure for handling large amounts of data. Our organ level biodistribution template can be used as a

  7. JENDL dosimetry file 99 (JENDL/D-99)

    International Nuclear Information System (INIS)

    Kobayashi, Katsuhei; Iwasaki, Shin

    2002-01-01

    The JENDL Dosimetry File 99 (JENDL/D-99), which is a revised version of the JENDL Dosimetry File 91 (JENDL/D-91), has been compiled and released for the determination of neutron flux and energy spectra. This work was undertaken to remove the inconsistency between the cross sections and their covariances in JENDL/D-91 since the covariances were mainly taken from IRDF-85 although the cross sections were based on JENDL-3. Dosimetry cross sections have been evaluated for 67 reactions on 47 nuclides together with covariances. The cross sections for 34 major reactions and their covariances were simultaneously generated, and the remaining 33 reaction data were mainly taken from JENDL/D-91. Latest measurements were taken into account in the evaluation. The resultant evaluated data are given in the neutron energy region below 20 MeV in both of point-wise and group-wise files in the ENDF-6 format. In order to confirm the reliability of the evaluated data, several integral tests have been carried out: comparisons with average cross sections measured in fission neutron fields, fast/thermal reactor spectra, DT neutron fields and Li(d,n) neutron fields. It was found from the comparisons that the cross sections calculated from JENDL/D-99 are generally in good agreement with the measured data. The contents of JENDL/D-99 and the results of the integral tests are described in this report. All of the dosimetry cross sections are shown in a graphical form in the Appendix. (author)

  8. Determination of workplace neutron spectra at a high energy hadron accelerator using active and passive Bonner sphere spectrometers

    International Nuclear Information System (INIS)

    Bedogni, R.; Esposito, A.; Chiti, M.

    2008-01-01

    In the framework of the 2006 experimental benchmark organized at the GSI (Darmstadt, Germany) by the EC CONRAD network, a neutron dosimetry intercomparison was performed in a workplace field around a carbon target hit by 400 MeV/u 12 C ions. The radiation protection group of the INFN-LNF participated to the intercomparison with a Bonner sphere spectrometer equipped with an active 6 LiI(Eu) scintillator and a set of passive detectors, namely MCP-6s (80mgcm -2 )/MCP-7 TLD pairs from TLD Poland. Both active and passive spectrometers, independently tested and calibrated, were used to determine the field and dosimetric quantities in the measurement point. The FRUIT unfolding code, developed at the INFN-LNF radiation protection group, was used to unfold the raw BSS data. This paper compares the results of the active or passive spectrometers, obtaining a satisfactory agreement in terms of both spectrum shape and value of the integral quantities, as the neutron fluence or the ambient dose equivalent. These results allow qualifying the BSS based on TLD pairs as a reliable passive method to be used around high energy particle accelerators even in low dose rate areas. This is particularly useful in those workplaces where the active instruments could be disturbed by the presence of pulsed fields, large photon fluence or electromagnetic noise

  9. Passive dosimetry: introduction of a new dosimeter based on OSL technology

    International Nuclear Information System (INIS)

    Archambault, V.; Le Roy, G.; Prugnaud, B.

    2005-01-01

    A new passive dosimeter based on OSL technology has been introduced on the French market. In this article are described: the technology and the material on which this new detector relied, the dosimeter itself. (author)

  10. Neutron personnel dosimetry

    International Nuclear Information System (INIS)

    Griffith, R.V.

    1981-01-01

    The current state-of-the-art in neutron personnel dosimetry is reviewed. Topics covered include dosimetry needs and alternatives, current dosimetry approaches, personnel monitoring devices, calibration strategies, and future developments

  11. RRDF-98. Russian reactor dosimetry file. Summary documentation

    International Nuclear Information System (INIS)

    Pashchenko, A.B.

    1999-01-01

    This document summarizes the contents and documentation of the new version of tile Russian Reactor Dosimetry File (RRDF-98) released in December 1998 by the Russian Center on Nuclear Data (CJD) at the Institute of Physics and Power Engineering, Russian Federation. This file contains the original evaluations of cross section data and covariance matrixes for 22 reactions which are used for neutron flux dosimetry by foil activation. The majority of the evaluations included in previous versions of the Russian Reactor Dosimetry Files (BOSPOR-80, RRGF-94 and RRDF-96) have been superseded by new evaluations. The evaluated cross sections of RRDF-98 averaged over 252-Cf and 235-U fission spectra are compared with relevant integral data. The data file is available from the IAEA Nuclear Data Section on diskette, cost free. (author)

  12. Overview of physical dosimetry methods for triage application integrated in the new European network RENEB.

    Science.gov (United States)

    Trompier, François; Burbidge, Christopher; Bassinet, Céline; Baumann, Marion; Bortolin, Emanuela; De Angelis, Cinzia; Eakins, Jonathan; Della Monaca, Sara; Fattibene, Paola; Quattrini, Maria Cristina; Tanner, Rick; Wieser, Albrecht; Woda, Clemens

    2017-01-01

    In the EC-funded project RENEB (Realizing the European Network in Biodosimetry), physical methods applied to fortuitous dosimetric materials are used to complement biological dosimetry, to increase dose assessment capacity for large-scale radiation/nuclear accidents. This paper describes the work performed to implement Optically Stimulated Luminescence (OSL) and Electron Paramagnetic Resonance (EPR) dosimetry techniques. OSL is applied to electronic components and EPR to touch-screen glass from mobile phones. To implement these new approaches, several blind tests and inter-laboratory comparisons (ILC) were organized for each assay. OSL systems have shown good performances. EPR systems also show good performance in controlled conditions, but ILC have also demonstrated that post-irradiation exposure to sunlight increases the complexity of the EPR signal analysis. Physically-based dosimetry techniques present high capacity, new possibilities for accident dosimetry, especially in the case of large-scale events. Some of the techniques applied can be considered as operational (e.g. OSL on Surface Mounting Devices [SMD]) and provide a large increase of measurement capacity for existing networks. Other techniques and devices currently undergoing validation or development in Europe could lead to considerable increases in the capacity of the RENEB accident dosimetry network.

  13. Development a high-resolution radiation dosimetry system based on Fricke solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vedelago, J. [Laboratorio de Investigaciones e Instrumentacion en Fisica Aplicada a la Medicina e Imagenes por Rayos X, Laboratorio 448 FaMAF - UNC, Ciudad Universitaria, 5000 Cordoba (Argentina); Mattea, F. [Universidad Nacional de Cordoba, Facultad de Ciencias Quimicas, Departamento de Quimica Organica, Ciudad Universitaria, 5000 Cordoba (Argentina); Valente, M., E-mail: josevedelago@gmail.com [Instituto de Fisica E. Gaviola, Oficina 102 FaMAF - UNC, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2014-08-15

    Due to the growing complexity of modern medical procedures involving the use of ionizing radiation, dosimetry by non-conventional techniques is one of the research areas in the field of greatest interest nowadays. Tissue-equivalent high-resolution dosimetry systems capable of attaining continuous dose mapping are required. In this scenario, Fricke gel dosimetry is a very promising option for in-phantom dose measurements in complex radiation techniques. Implementation of this technique requires dedicated instruments capable of measuring and performing the immediate in situ analysis of the acquired data at the radiation facility. The versatility of Fricke gel dosimetry in different applications depending on the chemical and isotopic composition of the dosimeter extends its application to different high performance conventional and non-conventional radiation procedures involving diverse types of radiation treatments and also radiation diagnosis procedures. This work presents an integral dosimetry system, based on Fricke gel solutions and their analysis by optical techniques, aiming for an increase in the precision on dose determinations. The chemical synthesis and dosimeter preparation were accomplished at LIIFAMIRx facilities, following the procedures and protocols described in previous works. Additionally, specific instrumentation for optical sample analysis was completely designed and constructed at LIIFAMIRx facilities. The main outcome of this work was the development of a methodology that improves the integral dose determination performance by the pre-irradiation of Fricke gel dosimeters. (author)

  14. Development a high-resolution radiation dosimetry system based on Fricke solutions

    International Nuclear Information System (INIS)

    Vedelago, J.; Mattea, F.; Valente, M.

    2014-08-01

    Due to the growing complexity of modern medical procedures involving the use of ionizing radiation, dosimetry by non-conventional techniques is one of the research areas in the field of greatest interest nowadays. Tissue-equivalent high-resolution dosimetry systems capable of attaining continuous dose mapping are required. In this scenario, Fricke gel dosimetry is a very promising option for in-phantom dose measurements in complex radiation techniques. Implementation of this technique requires dedicated instruments capable of measuring and performing the immediate in situ analysis of the acquired data at the radiation facility. The versatility of Fricke gel dosimetry in different applications depending on the chemical and isotopic composition of the dosimeter extends its application to different high performance conventional and non-conventional radiation procedures involving diverse types of radiation treatments and also radiation diagnosis procedures. This work presents an integral dosimetry system, based on Fricke gel solutions and their analysis by optical techniques, aiming for an increase in the precision on dose determinations. The chemical synthesis and dosimeter preparation were accomplished at LIIFAMIRx facilities, following the procedures and protocols described in previous works. Additionally, specific instrumentation for optical sample analysis was completely designed and constructed at LIIFAMIRx facilities. The main outcome of this work was the development of a methodology that improves the integral dose determination performance by the pre-irradiation of Fricke gel dosimeters. (author)

  15. Dosimetry

    International Nuclear Information System (INIS)

    Rezende, D.A.O. de

    1976-01-01

    The fundamental units of dosimetry are defined, such as exposure rate, absorbed dose and equivalent dose. A table is given of relative biological effectiveness values for the different types of radiation. The relation between the roentgen and rad units is calculated and the concepts of physical half-life, biological half-life and effective half-life are discussed. Referring to internal dosimetry, a mathematical treatment is given to β particle-and γ radiation dosimetry. The absorbed dose is calculated and a practical example is given of the calculation of the exposure and of the dose rate for a gama source [pt

  16. Ultra-fast photon counting with a passive quenching silicon photomultiplier in the charge integration regime

    Science.gov (United States)

    Zhang, Guoqing; Lina, Liu

    2018-02-01

    An ultra-fast photon counting method is proposed based on the charge integration of output electrical pulses of passive quenching silicon photomultipliers (SiPMs). The results of the numerical analysis with actual parameters of SiPMs show that the maximum photon counting rate of a state-of-art passive quenching SiPM can reach ~THz levels which is much larger than that of the existing photon counting devices. The experimental procedure is proposed based on this method. This photon counting regime of SiPMs is promising in many fields such as large dynamic light power detection.

  17. Fate of As, Se, and Hg in a Passive Integrated System for Treatment of Fossil Plant Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Terry Yost; Paul Pier; Gregory Brodie

    2007-12-31

    TVA is collaborating with EPRI and DOE to demonstrate a passive treatment system for removing SCR-derived ammonia and trace elements from a coal-fired power plant wastewater stream. The components of the integrated system consist of trickling filters for ammonia oxidation, reaction cells containing zero-valent iron (ZVI) for trace contaminant removal, a settling basin for storage of iron hydroxide floc, and anaerobic vertical-flow wetlands for biological denitrification. The passive integrated treatment system will treat up to 0.25 million gallons per day (gpd) of flue gas desulfurization (FGD) pond effluent, with a configuration requiring only gravity flow to obviate the need for pumps. The design of the system will enable a comparative evaluation of two parallel treatment trains, with and without the ZVI extraction trench and settling/oxidation basin components. One of the main objectives is to gain a better understanding of the chemical transformations that species of trace elements such as arsenic, selenium, and mercury undergo as they are treated in passive treatment system components with differing environmental conditions. This progress report details the design criteria for the passive integrated system for treating fossil power plant wastewater as well as performance results from the first several months of operation. Engineering work on the project has been completed, and construction took place during the summer of 2005. Monitoring of the passive treatment system was initiated in October 2005 and continued until May 18 2006. The results to date indicate that the treatment system is effective in reducing levels of nitrogen compounds and trace metals. Concentrations of both ammonia and trace metals were lower than expected in the influent FGD water, and additions to increase these concentrations will be done in the future to further test the removal efficiency of the treatment system. In May 2006, the wetland cells were drained of FGD water, refilled with

  18. Role of Active Versus Passive Complementary and Integrative Health Approaches in Pain Management.

    Science.gov (United States)

    Cosio, David; Lin, Erica

    2018-01-01

    A general conclusion about the treatment of chronic, noncancer pain is that the results from traditional, passive modalities are disheartening. Perhaps this may be due to the propensity of patients to seek out passive versus active treatments. In pain management, active treatments should be the primary focus, with passive interventions as an adjunct. The current study tested the hypotheses that Veterans would report a greater significant increase in active versus transitional and active versus passive complementary and integrative health (CIH) utilization after completing a formal pain education program. The current study is a secondary analysis of existing data from an original study. The current study used a quasi-experimental, 1-group, pre-/posttest design. One hundred three Veterans completed a 12-week, "Pain Education School" program at a Midwestern VA Medical Center between November 4, 2011, and October 26, 2012. As part of the introduction and conclusion of the program, all Veterans completed a pre- and posteducation assessment which included an adaptation of the Complementary and Alternative Medicine Questionnaire©, SECTION A: Use of Alternative Health Care Providers measure. Significant differences were found between the pre- and posttest measures of use of active ( P  = .000) ( p pain education program also seems to be aligned with the goal of pain self-management, which is to utilize more active interventions as a primary therapy.

  19. EURADOS strategic research agenda: vision for dosimetry of ionising radiation.

    Science.gov (United States)

    Rühm, W; Fantuzzi, E; Harrison, R; Schuhmacher, H; Vanhavere, F; Alves, J; Bottollier Depois, J F; Fattibene, P; Knežević, Ž; Lopez, M A; Mayer, S; Miljanić, S; Neumaier, S; Olko, P; Stadtmann, H; Tanner, R; Woda, C

    2016-02-01

    Since autumn 2012, the European Radiation Dosimetry Group (EURADOS) has been developing its Strategic Research Agenda (SRA), which is intended to contribute to the identification of future research needs in radiation dosimetry in Europe. The present article summarises-based on input from EURADOS Working Groups (WGs) and Voting Members-five visions in dosimetry and defines key issues in dosimetry research that are considered important for the next decades. The five visions include scientific developments required towards (a) updated fundamental dose concepts and quantities, (b) improved radiation risk estimates deduced from epidemiological cohorts, (c) efficient dose assessment for radiological emergencies, (d) integrated personalised dosimetry in medical applications and (e) improved radiation protection of workers and the public. The SRA of EURADOS will be used as a guideline for future activities of the EURADOS WGs. A detailed version of the SRA can be downloaded as a EURADOS report from the EURADOS website (www.eurados.org). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Modeling, Calibration, and Verification of a Fission Chamber for ACRR Experimentersa

    Directory of Open Access Journals (Sweden)

    Coburn Jonathan

    2016-01-01

    Full Text Available When performing research at a reactor facility, experimenters often need to determine the neutron fluence achieved during an operation. Facilities typically provide guidance in the form of neutron fluence per megajoule (MJ or through passive dosimetry results. After experiment completion, there is sometimes a delay of several days (or weeks before the passive dosimetry results are available. In the interim, an experimenter does not have confirmation that the desired irradiation levels were reached. Active dosimetry may provide an estimate of neutron fluxes, but few active detectors are available that have been calibrated to measure neutron fluxes obtained inside the Annular Core Research Reactor (ACRR central cavity environment. For past experiments at the ACRR, the neutron fluence was calculated by integrating the response of a fission chamber rate detection signal and then normalizing this integral to fluence determined from passive dosimetry. An alternative method of directly measuring neutron flux is desired; the new methodology described provides a complete neutron flux profile after a reactor pulse, utilizing fission chamber physics in combination with a compensating ion chamber to extract and convert a current signal to neutron flux as a function of time.

  1. RRDF-98. Russian reactor dosimetry file. Summary documentation

    Energy Technology Data Exchange (ETDEWEB)

    Pashchenko, A B

    1999-03-01

    This document summarizes the contents and documentation of the new version of tile Russian Reactor Dosimetry File (RRDF-98) released in December 1998 by the Russian Center on Nuclear Data (CJD) at the Institute of Physics and Power Engineering, Russian Federation. This file contains the original evaluations of cross section data and covariance matrixes for 22 reactions which are used for neutron flux dosimetry by foil activation. The majority of the evaluations included in previous versions of the Russian Reactor Dosimetry Files (BOSPOR-80, RRGF-94 and RRDF-96) have been superseded by new evaluations. The evaluated cross sections of RRDF-98 averaged over 252-Cf and 235-U fission spectra are compared with relevant integral data. The data file is available from the IAEA Nuclear Data Section on diskette, cost free. (author) 9 refs, 22 figs, 2 tabs

  2. Optically stimulated luminescence dosimetry performance of natural Brazilian topaz exposed to beta radiation

    International Nuclear Information System (INIS)

    Bernal, R.; Souza, D. N.; Valerio, M. E. G.; Cruz-Vazquez, C.; Barboza-Flores, M.

    2006-01-01

    Optically stimulated luminescence (OSL) has become the technique of choice in many areas of dosimetry. Natural materials like topaz are available in large quantities in Brazil and other countries. They have been studied to investigate the possibility of use its thermoluminescence (TL) properties for dosimetric applications. In this work, we investigate the possibility of utilising the OSL properties of natural Brazilian topaz in dosimetry. Bulk topaz samples were exposed to doses up to 100 Gy of beta radiation and the integrated OSL as a function of the dose showed linear behaviour. The fading occurs in the first 20 min after irradiation but it is <6% of the integrated OSL measured shortly after exposure. We conclude that natural colourless topaz is a very suitable phosphor for OSL dosimetry. (authors)

  3. Integral test of JENDL dosimetry file using fast neutron field in the Experimental Fast Reactor JOYO

    International Nuclear Information System (INIS)

    Aoyama, Takafumi; Sekine, Takashi

    1999-09-01

    In order to evaluate the applicability of the JENDL dosimetry file, an integral test using a fast neutron spectrum field in the Experimental Fast Reactor JOYO Mark-II core was performed. The dosimeter set consisting of eight reactions of 46 Ti(n,p) 46 Sc, 54 Fe(n,p) 54 Mn, 58 Fe(n,γ) 59 Fe, 58 Ni(n,p) 58 Co, 59 Co(n,γ) 60 Co, 63 Cu(n,α) 60 Co, 238 U fission and 237 Np fission was irradiated for approximately 30 days near the core center of the JOYO Mk-II. Neutron flux at the dosimeter position was calculated using the two dimensional discrete ordinate transport code 'DORT'. The core configuration was modeled in XY geometry, and the 100 group cross section set of JSD-J2 / JFT-J2, which was processed from JENDL-2, was utilized. The absolute value of neutron flux was normalized so that the 235 U fission rate using the calculated neutron spectrum agreed with the measured reaction rate. The 103 group cross section data were processed by 'NJOY' code for nuclides to be used in the JOYO dosimetry. As the results of integral test for JENDL/D-99 (new file) and JENDL/D-91 (previous file), calculated values by JENDL/D-99 agreed well with the experimental values, and the C/E ratios ranged from 0.95 to 1.22. By comparing the results between JENDL/D-99 and JENDL/D-91, small differences exist, except for 58 Fe(n, γ) 59 Fe reaction, which was improved significantly in JENDL/D-99. (author)

  4. Integrated passive and wireless sensor for magnetic fields, temperature and humidity

    KAUST Repository

    Li, Bodong; Yassine, Omar; Kosel, Jü rgen

    2013-01-01

    This paper presents a surface acoustic wave-based passive and wireless sensor that can measure magnetic field, temperature and humidity. A thin film giant magnetoimpedance sensor, a thermally sensitive LiNbO3 substrate and a humidity sensitive hydrogel are integrated together with a surface acoustic wave transducer to realize the multifunctional sensor. The device is characterized using a network analyzer under sequentially changing humidity, temperature and magnetic field conditions. The first hand results show the sensor response to all three sensing parameters with small temperature interference on the magnetic signals. © 2013 IEEE.

  5. Integrated passive and wireless sensor for magnetic fields, temperature and humidity

    KAUST Repository

    Li, Bodong

    2013-11-01

    This paper presents a surface acoustic wave-based passive and wireless sensor that can measure magnetic field, temperature and humidity. A thin film giant magnetoimpedance sensor, a thermally sensitive LiNbO3 substrate and a humidity sensitive hydrogel are integrated together with a surface acoustic wave transducer to realize the multifunctional sensor. The device is characterized using a network analyzer under sequentially changing humidity, temperature and magnetic field conditions. The first hand results show the sensor response to all three sensing parameters with small temperature interference on the magnetic signals. © 2013 IEEE.

  6. Polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Baldock, C [Institute of Medical Physics, School of Physics, University of Sydney (Australia); De Deene, Y [Radiotherapy and Nuclear Medicine, Ghent University Hospital (Belgium); Doran, S [CRUK Clinical Magnetic Resonance Research Group, Institute of Cancer Research, Surrey (United Kingdom); Ibbott, G [Radiation Physics, UT M D Anderson Cancer Center, Houston, TX (United States); Jirasek, A [Department of Physics and Astronomy, University of Victoria, Victoria, BC (Canada); Lepage, M [Centre d' imagerie moleculaire de Sherbrooke, Departement de medecine nucleaire et de radiobiologie, Universite de Sherbrooke, Sherbrooke, QC (Canada); McAuley, K B [Department of Chemical Engineering, Queen' s University, Kingston, ON (Canada); Oldham, M [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Schreiner, L J [Cancer Centre of South Eastern Ontario, Kingston, ON (Canada)], E-mail: c.baldock@physics.usyd.edu.au, E-mail: yves.dedeene@ugent.be

    2010-03-07

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. (topical review)

  7. A passive radon dosemeter suitable for workplaces

    International Nuclear Information System (INIS)

    Orlando, C.; Orlando, P.; Patrizii, L.; Tommasino, L.; Tonnarini, S.; Trevisi, R.; Viola, P.

    2002-01-01

    The results obtained in different international intercomparisons on passive radon monitors have been analysed with the aim of identifying a suitable radon monitoring device for workplaces. From this analysis, the passive radon device, first developed for personal dosimetry in mines by the National Radiation Protection Board, UK (NRPB), has shown the most suitable set of characteristics. This radon monitor consists of a diffusion chamber, made of conductive plastic with less than 2 cm height, containing a CR-39 film (Columbia Resin 1939), as track detector. Radon detectors in workplaces may be exposed only during the working hours, thus requiring the storage of the detectors in low-radon zones when not exposed. This paper describes how this problem can be solved. Since track detectors are also efficient neutron dosemeters, care should be taken when radon monitors are used in workplaces, where they may be exposed to neutrons, such as on high altitude mountains, in the surroundings of high energy X ray facilities (where neutrons are produced by (gamma, n) reactions) or around high energy particle accelerators. To this end, the response of these passive radon monitors to high energy neutron fields has been investigated. (author)

  8. State of the art of solid state dosimetry; Estado da arte em dosimetria do estado solido

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Susana O., E-mail: sosouza@ufs.br [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil); Yamamoto, Takayoshi [Radioisotope Research Center, Osaka University (Japan); D' Errico, Francesco, E-mail: francesco.derrico@yale.edu [Yale University, School of Medicine, CT (United States)

    2014-07-01

    Passive solid-state detectors still dominate the personal dosimetry field. This article provides state of the art in this field and summarizes the most recent works presented on TL, OSL and RPL during the 17th International Conference on Solid State Dosimetry held in Recife in September 2013. The Article contains in particular the techniques Thermoluminescence (TL), Optically Stimulated Luminescence (OSL), radio photoluminescence (RPL). Thermoluminescence has the biggest advantage of the wide availability of commercial materials for dosimetry, and the nature tissue-equivalent of several of these materials. The limitation of the TL dosimetry presents fading luminance signal and the need for high temperatures to obtain the signal. The Optically Stimulated Luminescence has the advantages of high sensitivity, the possibility of multiple reading, while its limit is the need to use response compensating filters in addition to the high cost of equipment and dosimeters still restricted very few options trading . The radio photoluminescence has a reading that is completely non-destructive, but their dosimeters present lack of tissue-equivalent and a high cost. Presents the details of the techniques and the advantages and limitations of each of these will be discussed.

  9. The passive response of the Integral Fast Reactor concept to the chilled inlet accident

    International Nuclear Information System (INIS)

    Vilim, R.B.

    1990-01-01

    Simple methods are described for bounding the passive response of a metal fueled liquid-metal cooled reactor to the chilled inlet accident. Calculation of these bounds for a prototype of the Integral Fast Reactor concept shows that failure limits --- eutectic melting, sodium boiling and fuel pin failure --- are not exceeded. 2 refs., 1 fig., 2 tabs

  10. Integrated anode structure for passive direct methanol fuel cells with neat methanol operation

    Science.gov (United States)

    Wu, Huijuan; Zhang, Haifeng; Chen, Peng; Guo, Jing; Yuan, Ting; Zheng, Junwei; Yang, Hui

    2014-02-01

    A microporous titanium plate based integrated anode structure (Ti-IAS) suitable for passive direct methanol fuel cells (DMFCs) fueled with neat methanol is reported. This anode structure incorporates a porous titanium plate as a methanol mass transfer barrier and current collector, pervaporation film for passively vaporizing methanol, vaporous methanol cavity for evenly distributing fuel, and channels for carbon dioxide venting. With the effective control of methanol delivery rate, the Ti-IAS based DMFC allows the direct use of neat methanol as the fuel source. In the meantime, the required water for methanol-oxidation reaction at the anode can also be fully recovered from the cathode with the help of the highly hydrophobic microporous layer in the cathode. DMFCs incorporating this new anode structure exhibit a power density as high as 40 mW cm-2 and a high volumetric energy density of 489 Wh L-1 operating with neat methanol and at 25 °C. Importantly, no obvious performance degradation of the passive DMFC system is observed after more than 90 h of continuous operation. The experimental results reveal that the compact DMFC based on the Ti-IAS exhibits a substantial potential as power sources for portable applications.

  11. Quantitative radiological characterization of waste. Integration of gamma spectrometry and passive/active neutron assay

    Energy Technology Data Exchange (ETDEWEB)

    Simone, Gianluca; Mauro, Egidio; Gagliardi, Filippo; Gorello, Edoardo [Nucleco S.p.A., Rome (Italy)

    2016-06-15

    The radiological characterization of drums through Non-Destructive Assay (NDA) techniques commonly relies on gamma spectrometry. This paper introduces the procedure developed in Nucleco for the NDA radiological characterization of drums when the presence of Special Nuclear Material (SNM) is expected/observed. The procedure is based on the integration of a gamma spectrometry in SGS mode (Segmented Gamma Scanner) and a passive/active neutron assay. The application of this procedure is discussed on a real case of drums. The extension of the integration procedure to other gamma spectrometry systems is also discussed.

  12. Internal sources dosimetry

    International Nuclear Information System (INIS)

    Savio, Eduardo

    1994-01-01

    The absorbed dose, need of estimation in risk evaluation in the application of radiopharmaceuticals in Nuclear Medicine practice,internal dosimetry,internal and external sources. Calculation methodology,Marinelli model,MIRD system for absorbed dose calculation based on biological parameters of radiopharmaceutical in human body or individual,energy of emitted radiations by administered radionuclide, fraction of emitted energy that is absorbed by target body.Limitation of the MIRD calculation model. A explanation of Marinelli method of dosimetry calculation,β dosimetry. Y dosimetry, effective dose, calculation in organs and tissues, examples. Bibliography .

  13. Review of retrospective dosimetry techniques for external ionising radiation exposures

    International Nuclear Information System (INIS)

    Ainsbury, E. A.; Bakhanova, E.; Barquinero, J. F.; Brai, M.; Chumak, V.; Correcher, V.; Darroudi, F.; Fattibene, P.; Gruel, G.; Guclu, I.; Horn, S.; Jaworska, A.; Kulka, U.; Lindholm, C.; Lloyd, D.; Longo, A.; Marrale, M.; Monteiro Gil, O.; Oestreicher, U.; Pajic, J.; Rakic, B.; Romm, H.; Trompier, F.; Veronese, I.; Voisin, P.; Vral, A.; Whitehouse, C. A.; Wieser, A.; Woda, C.; Wojcik, A.; Rothkamm, K.

    2011-01-01

    The current focus on networking and mutual assistance in the management of radiation accidents or incidents has demonstrated the importance of a joined-up approach in physical and biological dosimetry. To this end, the European Radiation Dosimetry Working Group 10 on 'Retrospective Dosimetry' has been set up by individuals from a wide range of disciplines across Europe. Here, established and emerging dosimetry methods are reviewed, which can be used immediately and retrospectively following external ionising radiation exposure. Endpoints and assays include dicentrics, translocations, premature chromosome condensation, micronuclei, somatic mutations, gene expression, electron paramagnetic resonance, thermoluminescence, optically stimulated luminescence, neutron activation, haematology, protein biomarkers and analytical dose reconstruction. Individual characteristics of these techniques, their limitations and potential for further development are reviewed, and their usefulness in specific exposure scenarios is discussed. Whilst no single technique fulfils the criteria of an ideal dosemeter, an integrated approach using multiple techniques tailored to the exposure scenario can cover most requirements. (authors)

  14. Internal in vitro dosimetry for fish using hydroxyapatite-based EPR detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, D.V. [Urals Division of Russian Academy of Sciences, Institute of Metal Physics, Yekaterinburg (Russian Federation); Ural Federal University, Yekaterinburg (Russian Federation); Shishkina, E.A.; Osipov, D.I.; Pryakhin, E.A. [Urals Research Center for Radiation Medicine, Chelyabinsk (Russian Federation); Razumeev, R.A. [Ural Federal University, Yekaterinburg (Russian Federation)

    2015-08-15

    A number of aquatic ecosystems were exposed to ionizing radiation as a result of the activities of the Mayak Production Association in the Southern Urals, former Soviet Union, in the 1950s. Currently, fishes inhabiting contaminated lakes are being actively studied. These investigations need dosimetric support. In the present paper the results of a pilot study for elaborating an EPR dosimeter which can be used for internal dosimetry in vitro are described. Biological hydroxyapatite is proposed here to be used as a detecting substance. More specifically, small hydroxyapatite grains are proposed for use as point detectors fixed in a solid matrix. After having been pelletized, the detectors were covered by Mylar and placed in the body of a fish to be stored in the fridge for several months. Application of the detectors for internal fish dosimetry demonstrated that the enamel sensitivity is sufficient for passive detection of ionizing radiation in fishes inhabiting contaminated lakes in the Southern Urals. (orig.)

  15. Characterization of a 15 GHz integrated bulk InGaAsP passively modelocked ring laser at 1.53microm.

    Science.gov (United States)

    Barbarin, Yohan; Bente, Erwin A J M; Heck, Martijn J R; Oei, Y S; Nötzel, Richard; Smit, Meint K

    2006-10-16

    We report on an extensive characterization of a 15GHz integrated bulk InGaAsP passively modelocked ring laser at 1530 nm. The laser is modelocked for a wide range of amplifier currents and reverse bias voltages on the saturable absorber. We have measured a timing jitter of 7.1 ps (20 kHz - 80 MHz), which is low for an all-active device using bulk material and due to the ring configuration. Measured output pulses are highly chirped, a FWHM bandwidth is obtained of up to 4.5 nm. Such lasers with high bandwidth pulses and compatible with active-passive integration are of great interest for OCDMA applications.

  16. Personnel neutron dose assessment upgrade: Volume 1, Personnel neutron dosimetry assessment: [Final report

    International Nuclear Information System (INIS)

    Hadlock, D.E.; Brackenbush, L.W.; Griffith, R.V.; Hankins, D.E.; Parkhurst, M.A.; Stroud, C.M.; Faust, L.G.; Vallario, E.J.

    1988-07-01

    This report provides guidance on the characteristics, use, and calibration criteria for personnel neutron dosimeters. The report is applicable for neutrons with energies ranging from thermal to less than 20 MeV. Background for general neutron dosimetry requirements is provided, as is relevant federal regulations and other standards. The characteristics of personnel neutron dosimeters are discussed, with particular attention paid to passive neutron dosimetry systems. Two of the systems discussed are used at DOE and DOE-contractor facilities (nuclear track emulsion and thermoluminescent-albedo) and another (the combination TLD/TED) was recently developed. Topics discussed in the field applications of these dosimeters include their theory of operation, their processing, readout, and interpretation, and their advantages and disadvantages for field use. The procedures required for occupational neutron dosimetry are discussed, including radiation monitoring and the wearing of dosimeters, their exchange periods, dose equivalent evaluations, and the documenting of neutron exposures. The coverage of dosimeter testing, maintenance, and calibration includes guidance on the selection of calibration sources, the effects of irradiation geometries, lower limits of detectability, fading, frequency of calibration, spectrometry, and quality control. 49 refs., 6 figs., 8 tabs

  17. Techniques for radiation measurements: Micro-dosimetry and dosimetry

    International Nuclear Information System (INIS)

    Waker, A. J.

    2006-01-01

    Experimental Micro-dosimetry is concerned with the determination of radiation quality and how this can be specified in terms of the distribution of energy deposition arising from the interaction of a radiation field with a particular target site. This paper discusses various techniques that have been developed to measure radiation energy deposition over the three orders of magnitude of site-size; nano-meter, micrometer and millimetre, which radiation biology suggests is required to fully account for radiation quality. Inevitably, much of the discussion will concern the use of tissue-equivalent proportional counters and variants of this device, but other technologies that have been studied, or are under development, for their potential in experimental Micro-dosimetry are also covered. Through an examination of some of the quantities used in radiation metrology and dosimetry the natural link with Micro-dosimetric techniques will be shown and the particular benefits of using Micro-dosimetric methods for dosimetry illustrated. (authors)

  18. Thermoluminescence albedo-neutron dosimetry

    International Nuclear Information System (INIS)

    Strand, T.; Storruste, A.

    1986-10-01

    The report discusses neutron detection with respect to dosimetry and compares different thermoluminescent dosimetry materials for neutron dosimetry. Construction and calibration of a thermoluminescence albedo neutron dosemeter, developed by the authors, is described

  19. Applications of gel dosimetry

    International Nuclear Information System (INIS)

    Ibbott, Geoffrey S

    2004-01-01

    Gel dosimetry has been examined as a clinical dosimeter since the 1950s. During the last two decades, however, a rapid increase in the number of investigators has been seen, and the body of knowledge regarding gel dosimetry has expanded considerably. Gel dosimetry is still considered a research project, and the introduction of this tool into clinical use is proceeding slowly. This paper will review the characteristics of gel dosimetry that make it desirable for clinical use, the postulated and demonstrated applications of gel dosimetry, and some complications, set-backs, and failures that have contributed to the slow introduction into routine clinical use

  20. Integration of Active and Passive Safety Technologies--A Method to Study and Estimate Field Capability.

    Science.gov (United States)

    Hu, Jingwen; Flannagan, Carol A; Bao, Shan; McCoy, Robert W; Siasoco, Kevin M; Barbat, Saeed

    2015-11-01

    The objective of this study is to develop a method that uses a combination of field data analysis, naturalistic driving data analysis, and computational simulations to explore the potential injury reduction capabilities of integrating passive and active safety systems in frontal impact conditions. For the purposes of this study, the active safety system is actually a driver assist (DA) feature that has the potential to reduce delta-V prior to a crash, in frontal or other crash scenarios. A field data analysis was first conducted to estimate the delta-V distribution change based on an assumption of 20% crash avoidance resulting from a pre-crash braking DA feature. Analysis of changes in driver head location during 470 hard braking events in a naturalistic driving study found that drivers' head positions were mostly in the center position before the braking onset, while the percentage of time drivers leaning forward or backward increased significantly after the braking onset. Parametric studies with a total of 4800 MADYMO simulations showed that both delta-V and occupant pre-crash posture had pronounced effects on occupant injury risks and on the optimal restraint designs. By combining the results for the delta-V and head position distribution changes, a weighted average of injury risk reduction of 17% and 48% was predicted by the 50th percentile Anthropomorphic Test Device (ATD) model and human body model, respectively, with the assumption that the restraint system can adapt to the specific delta-V and pre-crash posture. This study demonstrated the potential for further reducing occupant injury risk in frontal crashes by the integration of a passive safety system with a DA feature. Future analyses considering more vehicle models, various crash conditions, and variations of occupant characteristics, such as age, gender, weight, and height, are necessary to further investigate the potential capability of integrating passive and DA or active safety systems.

  1. MO-B-BRB-04: 3D Dosimetry in End-To-End Dosimetry QA

    Energy Technology Data Exchange (ETDEWEB)

    Ibbott, G. [UT MD Anderson Cancer Center (United States)

    2016-06-15

    Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by the development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an

  2. Fast component placement with optimized long-stroke passive gravity compensation integrated in a cylindrical/tubular PM actuator

    NARCIS (Netherlands)

    Paulides, J.J.H.; Encica, L.; Meessen, K.J.; Lomonova, E.A.

    2013-01-01

    Applications such as vibration isolation, gravity compensation, pick-and-place machines, etc., would benefit from (long-stroke) cylindrical/tubular permanent magnet (PM) actuators with integrated passive gravity compensation to minimize the power consumption. As an example, in component placing

  3. CMT scaling analysis and distortion evaluation in passive integral test facility

    International Nuclear Information System (INIS)

    Deng Chengcheng; Qin Benke; Wang Han; Chang Huajian

    2013-01-01

    Core makeup tank (CMT) is the crucial device of AP1000 passive core cooling system, and reasonable scaling analysis of CMT plays a key role in the design of passive integral test facilities. H2TS method was used to perform scaling analysis for both circulating mode and draining mode of CMT. And then, the similarity criteria for CMT important processes were applied in the CMT scaling design of the ACME (advanced core-cooling mechanism experiment) facility now being built in China. Furthermore, the scaling distortion results of CMT characteristic Ⅱ groups of ACME were calculated. At last, the reason of scaling distortion was analyzed and the distortion evaluation was conducted for ACME facility. The dominant processes of CMT circulating mode can be adequately simulated in the ACME facility, but the steam condensation process during CMT draining is not well preserved because the excessive CMT mass leads to more energy to be absorbed by cold metal. However, comprehensive analysis indicates that the ACME facility with high-pressure simulation scheme is able to properly represent CMT's important phenomena and processes of prototype nuclear plant. (authors)

  4. Integrated hydrogen control solutions for severe accidents using passive autocatalytic recombiners

    International Nuclear Information System (INIS)

    Bauer, M.; Tietsch, W.; Sabate Farnos, R.

    2012-01-01

    In a severe accident or a beyond-design-basis-accident, the reaction of water with zirconium alloy cladding, radiolysis of water, corium-concrete reactions and other corrosion phenomena generate hydrogen (H2). The detonation of this H2 in containment or in auxiliary buildings can result in damage to structures or loss of containment integrity. Identifying the generation and special distribution of hydrogen and controlling its concentration with Passive Autocatalytic Recombiners (PARs) solves this concern. Westinghouse's approach for hydrogen management starts by defining the quantities and transport/distribution of H 2 in-containment and out of containment with analysis tools such as MAAP, MELCOR, GASFLOW or FATE. Based on the results of these analyses, an optimized H2 Control Strategy is proposed in terms of number and location of PARs, and efficient integration with other H 2 management devices like e.g. existing igniters, H 2 monitors, etc.

  5. Verification of shielding effect by the water-filled materials for space radiation in the International Space Station using passive dosimeters

    Czech Academy of Sciences Publication Activity Database

    Kodaira, S.; Tolochek, R. V.; Ambrožová, Iva; Kawashima, H.; Yasuda, N.; Kurano, M.; Kitamura, H.; Uchihori, Y.; Kobayashi, I.; Hakamada, H.; Suzuki, A.; Kartsev, I. S.; Yarmanova, E. N.; Nikolaev, I. V.; Shurshakov, V. A.

    2014-01-01

    Roč. 53, č. 1 (2014), s. 1-7 ISSN 0273-1177 Institutional support: RVO:61389005 Keywords : space radiation dosimetry * water shield * dose reduction * passive dosimeters * CR-39 * TLD Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.358, year: 2014

  6. System integration for radiation records

    International Nuclear Information System (INIS)

    Lawson, B.J.; Farrell, L.; Meacham, C.; Tapio, J.

    1994-01-01

    System integration is the process where through networking and/or software development, necessary business information is available in a common computing environment. System integration is becoming an important objective for many businesses. System integration can improve productivity and efficiency, reduce redundant stored information and errors, and improve availability of information. This paper will discuss the information flow in a radiation health environment, and how system integration can help. Information handled includes external dosimetry and internal dosimetry. The paper will focus on an ORACLE based system integration software product

  7. Assessment of Integrated Pedestrian Protection Systems with Autonomous Emergency Braking (AEB) and Passive Safety Components.

    Science.gov (United States)

    Edwards, Mervyn; Nathanson, Andrew; Carroll, Jolyon; Wisch, Marcus; Zander, Oliver; Lubbe, Nils

    2015-01-01

    Autonomous emergency braking (AEB) systems fitted to cars for pedestrians have been predicted to offer substantial benefit. On this basis, consumer rating programs-for example, the European New Car Assessment Programme (Euro NCAP)-are developing rating schemes to encourage fitment of these systems. One of the questions that needs to be answered to do this fully is how the assessment of the speed reduction offered by the AEB is integrated with the current assessment of the passive safety for mitigation of pedestrian injury. Ideally, this should be done on a benefit-related basis. The objective of this research was to develop a benefit-based methodology for assessment of integrated pedestrian protection systems with AEB and passive safety components. The method should include weighting procedures to ensure that it represents injury patterns from accident data and replicates an independently estimated benefit of AEB. A methodology has been developed to calculate the expected societal cost of pedestrian injuries, assuming that all pedestrians in the target population (i.e., pedestrians impacted by the front of a passenger car) are impacted by the car being assessed, taking into account the impact speed reduction offered by the car's AEB (if fitted) and the passive safety protection offered by the car's frontal structure. For rating purposes, the cost for the assessed car is normalized by comparing it to the cost calculated for a reference car. The speed reductions measured in AEB tests are used to determine the speed at which each pedestrian in the target population will be impacted. Injury probabilities for each impact are then calculated using the results from Euro NCAP pedestrian impactor tests and injury risk curves. These injury probabilities are converted into cost using "harm"-type costs for the body regions tested. These costs are weighted and summed. Weighting factors were determined using accident data from Germany and Great Britain and an independently

  8. Dosimetry Service

    CERN Multimedia

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service - Tel. 72155 http://cern.ch/rp-dosimetry

  9. Wireless passive polymer-derived SiCN ceramic sensor with integrated resonator/antenna

    Science.gov (United States)

    Li, Yan; Yu, Yuxi; San, Haisheng; Wang, Yansong; An, Linan

    2013-10-01

    This paper presents a passive wireless polymer-derived silicon carbonitride (SiCN) ceramic sensor based on cavity radio frequency resonator together with integrated slot antenna. The effect of the cavity sensor dimensions on the Q-factor and resonant frequency is investigated by numerical simulation. A sensor with optimal dimensions is designed and fabricated. It is demonstrated that the sensor signal can be wirelessly detected at distances up to 20 mm. Given the high-temperature stability of the SiCN, the sensor is very promising for high-temperature wireless sensing applications.

  10. Thermoluminescence in medical dosimetry

    International Nuclear Information System (INIS)

    Rivera, T.

    2011-10-01

    The dosimetry by thermoluminescence (Tl) is applied in the entire world for the dosimetry of ionizing radiations specially to personal and medical dosimetry. This dosimetry method has been very interesting for measures in vivo because the Tl dosimeters have the advantage of being very sensitive in a very small volume and they are also equivalent to tissue and they do not need additional accessories (for example, cable, electrometer, etc.) The main characteristics of the diverse Tl materials to be used in the radiation measures and practical applications are: the Tl curve, the share homogeneity, the signal stability after the irradiation, precision and exactitude, the response in function with the dose and the energy influence. In this work a brief summary of the advances of the radiations dosimetry is presented by means of the thermally stimulated luminescence and its application to the dosimetry in radiotherapy. (Author)

  11. Passive Decay Heat Removal Strategy of Integrated Passive Safety System (IPSS) for SBO-combined Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Ho; Chang, Soon Heung; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    The weak points of nuclear safety would be in outmoded nuclear power plants like the Fukushima reactors. One of the systems for the safety enhancement is integrated passive safety system (IPSS) proposed after the Fukushima accidents. It has the five functions for the prevention and mitigation of a severe accident. Passive decay heat removal (PDHR) strategy using IPSS is proposed for coping with SBO-combined accidents in this paper. The two systems for removing decay heat before core-melt were applied in the strategy. The accidents were simulated by MARS code. The reference reactor was OPR1000, specifically Ulchin-3 and 4. The accidents included loss-of-coolant accidents (LOCA) because the coolant losses could be occurred in the SBO condition. The examples were the stuck open of PSV, the abnormal open of SDV and the leakage of RCP seal water. Also, as LOCAs with the failure of active safety injection systems were considered, various LOCAs were simulated in SBO. Based on the thermal hydraulic analysis, the probabilistic safety analysis was carried out for the PDHR strategy to estimate the safety enhancement in terms of the variation of core damage frequency. AIMS-PSA developed by KAERI was used for calculating CDF of the plant. The IPSS was applied in the PDHR strategy which was developed in order to cope with the SBO-combined accidents. The estimation for initiating SGGI or PSIS was based on the pressure in RCS. The simulations for accidents showed that the decay heat could be removed for the safety duration time in SBO. The increase of safety duration time from the strategy provides the increase of time for the restoration of AC power.

  12. Neutron dosimetry - A review

    Energy Technology Data Exchange (ETDEWEB)

    Baum, J W

    1955-03-29

    This review summarizes information on the following subjects: (1) physical processes of importance in neutron dosimetry; (2) biological effects of neutrons; (3) neutron sources; and (4) instruments and methods used in neutron dosimetry. Also, possible improvements in dosimetry instrumentation are outlined and discussed. (author)

  13. Dosimetry Service

    CERN Multimedia

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service - Tel. 7 2155 http://cern.ch/rp-dosimetry

  14. Dosimetry Service

    CERN Multimedia

    Dosimetry Service

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service Tel. 7 2155 http://cern.ch/rp-dosimetry

  15. Dosimetry for radiation processing

    DEFF Research Database (Denmark)

    Miller, Arne

    1986-01-01

    During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both...... and sterilization dosimetry, optichromic dosimeters in the shape of small tubes for food processing, and ESR spectroscopy of alanine for reference dosimetry. In this paper the special features of radiation processing dosimetry are discussed, several commonly used dosimeters are reviewed, and factors leading...

  16. Boron dose determination for BNCT using Fricke and EPR dosimetry

    International Nuclear Information System (INIS)

    Wielopolski, L.; Ciesielski, B.

    1995-01-01

    In Boron Neutron Capture Therapy (BNCT) the dominant dose delivered to the tumor is due to α and 7 Li charged particles resulting from a neutron capture by 10 B and is referred to herein as the boron dose. Boron dose is directly attributable to the following two independent factors, one boron concentration and the neutron capture energy dependent cross section of boron, and two the energy spectrum of the neutrons that interact with boron. The neutron energy distribution at a given point is dictated by the incident neutron energy distribution, the depth in tissue, geometrical factors such as beam size and patient's dimensions. To account for these factors can be accommodated by using Monte Carlo theoretical simulations. However, in conventional experimental BNCT dosimetry, e.g., using TLDs or ionization chambers, it is only possible to estimate the boron dose. To overcome some of the limitations in the conventional dosimetry, modifications in ferrous sulfate dosimetry (Fricke) and Electron Paramagnetic Resonance (EPR) dosimetry in alanine, enable to measure specifically boron dose in a mixed gamma neutron radiation fields. The boron dose, in either of the dosimeters, is obtained as a difference between measurements with boronated and unboronated dosimeters. Since boron participates directly in the measurements, the boron dosimetry reflects the true contribution, integral of the neutron energy spectrum with boron cross section, of the boron dose to the total dose. Both methods are well established and used extensively in dosimetry, they are presented briefly here

  17. Increasing the density of passive photonic-integrated circuits via nanophotonic cloaking

    Science.gov (United States)

    Shen, Bing; Polson, Randy; Menon, Rajesh

    2016-11-01

    Photonic-integrated devices need to be adequately spaced apart to prevent signal cross-talk. This fundamentally limits their packing density. Here we report the use of nanophotonic cloaking to render neighbouring devices invisible to one another, which allows them to be placed closer together than is otherwise feasible. Specifically, we experimentally demonstrated waveguides that are spaced by a distance of ~λ0/2 and designed waveguides with centre-to-centre spacing as small as 600 nm (-2 dB and an extinction ratio >15 dB over a bandwidth larger than 60 nm. This performance can be improved with better design algorithms and industry-standard lithography. The nanophotonic cloak relies on multiple guided-mode resonances, which render such devices very robust to fabrication errors. Our devices are broadly complimentary-metal-oxide-semiconductor compatible, have a minimum pitch of 200 nm and can be fabricated with a single lithography step. The nanophotonic cloaks can be generally applied to all passive integrated photonics.

  18. Increasing the density of passive photonic-integrated circuits via nanophotonic cloaking.

    Science.gov (United States)

    Shen, Bing; Polson, Randy; Menon, Rajesh

    2016-11-09

    Photonic-integrated devices need to be adequately spaced apart to prevent signal cross-talk. This fundamentally limits their packing density. Here we report the use of nanophotonic cloaking to render neighbouring devices invisible to one another, which allows them to be placed closer together than is otherwise feasible. Specifically, we experimentally demonstrated waveguides that are spaced by a distance of ∼λ 0 /2 and designed waveguides with centre-to-centre spacing as small as 600 nm (-2 dB and an extinction ratio >15 dB over a bandwidth larger than 60 nm. This performance can be improved with better design algorithms and industry-standard lithography. The nanophotonic cloak relies on multiple guided-mode resonances, which render such devices very robust to fabrication errors. Our devices are broadly complimentary-metal-oxide-semiconductor compatible, have a minimum pitch of 200 nm and can be fabricated with a single lithography step. The nanophotonic cloaks can be generally applied to all passive integrated photonics.

  19. Passive Sensor Integration for Vehicle Self-Localization in Urban Traffic Environment

    Directory of Open Access Journals (Sweden)

    Yanlei Gu

    2015-12-01

    Full Text Available This research proposes an accurate vehicular positioning system which can achieve lane-level performance in urban canyons. Multiple passive sensors, which include Global Navigation Satellite System (GNSS receivers, onboard cameras and inertial sensors, are integrated in the proposed system. As the main source for the localization, the GNSS technique suffers from Non-Line-Of-Sight (NLOS propagation and multipath effects in urban canyons. This paper proposes to employ a novel GNSS positioning technique in the integration. The employed GNSS technique reduces the multipath and NLOS effects by using the 3D building map. In addition, the inertial sensor can describe the vehicle motion, but has a drift problem as time increases. This paper develops vision-based lane detection, which is firstly used for controlling the drift of the inertial sensor. Moreover, the lane keeping and changing behaviors are extracted from the lane detection function, and further reduce the lateral positioning error in the proposed localization system. We evaluate the integrated localization system in the challenging city urban scenario. The experiments demonstrate the proposed method has sub-meter accuracy with respect to mean positioning error.

  20. Developments in physical dosimetry and radiation protection; Entwicklungen in der physikalischen Dosimetrie im Strahlenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Fiebich, Martin [Technische Hochschule Mittelhessen, Giessen (Germany). Inst. fuer Medizinische Physik und Strahlenschutz

    2017-07-01

    In the frame of physical dosimetry new dose units have been defined: the depth personal dose (equivalent dose in 10 mm depth) and the surface personal dose (equivalent dose in 0.07 mm depth). Physical dosimetry is applied for the determination of occupational radiation exposure, the radiation protected area control, the estimation of radiation exposure of patients during radiotherapy, for quality assurance and in research projects and optimization challenges. Developments have appeared with respect to punctual measuring chambers, eye lens dosimetry, OSL (optically stimulated luminescence) dosimetry, real-time dosimetry and Monte Carlo methods. New detection limits of about 1 micro Gy were reached.

  1. Textbook of dosimetry. 4. ed.

    International Nuclear Information System (INIS)

    Ivanov, V.I.

    1999-01-01

    This textbook of dosimetry is devoted to the students in physics and technical physics of high education institutions, confronted with different application of atomic energy as well as with protection of population and environment against ionizing radiations. Atomic energy is highly beneficial for man but unfortunately incorporates potential dangers which manifest in accidents, the source of which is either insufficient training of the personnel, a criminal negligence or insufficient reliability of the nuclear facilities. The majority of the incident and accident events have had as origin the personnel errors. This was the case with both the 'Three Miles Island' (1979) and Chernobyl (1986) NPP accidents. The dosimetry science acquires a vital significance in accident situations since the data obtained by its procedures are essential in choosing the correct immediate actions, behaviour tactics, orientation of liquidation of accident consequences as well as in ensuring the health of population. An important accent is placed in this manual on clarification of the nature of physical processes taken place in dosimetric detectors, in establishing the relation between radiation field characteristics and the detector response as well as in defining different dosimetric quantities. The terminology and the units of physical quantities is based on the international system of units. The book contains the following 15 chapters: 1. Ionizing radiation field; 2. Radiation doses; 3. Physical bases of gamma radiation dosimetry; 4. Ionization dosimetric detectors; 5. Semiconductor dosimetric detectors; 6. Scintillation detection in the gamma radiation dosimetry; 7. Luminescent methods in dosimetry; 8. The photographic and chemical methods of gamma radiation dosimetry; 9. Neutron dosimetry; 10. Dosimetry of high intensity radiation; 11. Dosimetry of high energy Bremsstrahlung; 12. Measurement of the linear energy transfer; 13. Microdosimetry; 14. Dosimetry of incorporated

  2. Personnel neutron dosimetry

    International Nuclear Information System (INIS)

    Hankins, D.

    1982-04-01

    This edited transcript of a presentation on personnel neutron discusses the accuracy of present dosimetry practices, requirements, calibration, dosemeter types, quality factors, operational problems, and dosimetry for a criticality accident. 32 figs

  3. Skin dosimetry - radiological protection aspects of skin dosimetry

    International Nuclear Information System (INIS)

    Dennis, J.A.

    1991-01-01

    Following a Workshop in Skin Dosimetry, a summary of the radiological protection aspects is given. Aspects discussed include routine skin monitoring and dose limits, the need for careful skin dosimetry in high accidental exposures, techniques for assessing skin dose at all relevant depths and the specification of dose quantities to be measured by personal dosemeters and the appropriate methods to be used in their calibration. (UK)

  4. ESR Dosimetry

    International Nuclear Information System (INIS)

    Baffa, Oswaldo; Rossi, Bruno; Graeff, Carlos; Kinoshita, Angela; Chen Abrego, Felipe; Santos, Adevailton Bernardo dos

    2004-01-01

    ESR dosimetry is widely used for several applications such as dose assessment in accidents, medical applications and sterilization of food and other materials. In this work the dosimetric properties of natural and synthetic Hydroxyapatite, Alanine, and 2-Methylalanine are presented. Recent results on the use of a K-Band (24 GHz) ESR spectrometer in dosimetry are also presented

  5. Chip-integrated optical power limiter based on an all-passive micro-ring resonator

    Science.gov (United States)

    Yan, Siqi; Dong, Jianji; Zheng, Aoling; Zhang, Xinliang

    2014-10-01

    Recent progress in silicon nanophotonics has dramatically advanced the possible realization of large-scale on-chip optical interconnects integration. Adopting photons as information carriers can break the performance bottleneck of electronic integrated circuit such as serious thermal losses and poor process rates. However, in integrated photonics circuits, few reported work can impose an upper limit of optical power therefore prevent the optical device from harm caused by high power. In this study, we experimentally demonstrate a feasible integrated scheme based on a single all-passive micro-ring resonator to realize the optical power limitation which has a similar function of current limiting circuit in electronics. Besides, we analyze the performance of optical power limiter at various signal bit rates. The results show that the proposed device can limit the signal power effectively at a bit rate up to 20 Gbit/s without deteriorating the signal. Meanwhile, this ultra-compact silicon device can be completely compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may pave the way of very large scale integrated photonic circuits for all-optical information processors and artificial intelligence systems.

  6. Radiation processing dosimetry - past, present and future

    International Nuclear Information System (INIS)

    McLaughlin, W.L.

    1999-01-01

    Since the two United Nations Conferences were held in Geneva in 1955 and 1958 on the Peaceful Uses of Atomic Energy and the concurrent foundation of the International Atomic Energy Agency in 1957, the IAEA has fostered high-dose dosimetry and its applications. This field is represented in industrial radiation processing, agricultural programmes, and therapeutic and preventative medicine. Such dosimetry is needed specifically for pest and quarantine control and in the processing of medical products, pharmaceuticals, blood products, foodstuffs, solid, liquid and gaseous wastes, and a variety of useful commodities, e.g. polymers, composites, natural rubber and elastomers, packaging, electronic, and automotive components, as well as in radiotherapy. Improvements and innovations of dosimetry materials and analytical systems and software continue to be important goals for these applications. Some of the recent advances in high-dose dosimetry include tetrazolium salts and substituted polydiacetylene as radiochromic media, on-line real-time as well as integrating semiconductor and diamond-detector monitors, quantitative label dosimeters, photofluorescent sensors for broad dose range applications, and improved and simplified parametric and computational codes for imaging and simulating 3D radiation dose distributions in model products. The use of certain solid-state devices, e.g. optical quality LiF, at low (down to 4K) and high (up to 500 K) temperatures, is of interest for materials testing. There have also been notable developments in experimental dose mapping procedures, e.g. 2D and 3D dose distribution analyses by flat-bed optical scanners and software applied to radiochromic and photofluorescent images. In addition, less expensive EPR spectrometers and new EPR dosimetry materials and high-resolution semiconductor diode arrays, charge injection devices, and photostimulated storage phosphors have been introduced. (author)

  7. GENMOD - A program for internal dosimetry calculations

    International Nuclear Information System (INIS)

    Dunford, D.W.; Johnson, J.R.

    1987-12-01

    The computer code GENMOD was created to calculate the retention and excretion, and the integrated retention for selected radionuclides under a variety of exposure conditions. Since the creation of GENMOD new models have been developed and interfaced to GENMOD. This report describes the models now included in GENMOD, the dosimetry factors database, and gives a brief description of the GENMOD program

  8. Passive detectors for neutron fluence measurement

    International Nuclear Information System (INIS)

    Holt, P.D.

    1985-01-01

    The use of neutron activation detectors (slow neutron detectors and threshold detectors) and fission track detectors for radiological protection purposes, principally in criticality dosimetry, dosimetry of pulsed accelerators and calibration of neutron fluxes is discussed. References are given to compilations of cross sections. For the determination of the activity induced, either beta ray or gamma ray counting may be used. For beta-ray counting, thin foils are usually necessary which result in low neutron sensitivity. When fission track detectors are used, it is necessary to know the efficiency of track registration. Alternatively, a detector-counter system may be calibrated by exposure to a known flux of monoenergetic neutrons. Usually, the sensitivity of activation detectors is low because small foils are used. For criticality dosimetry, calibration work and shielding studies on accelerators, low sensitivity is acceptable. However, there are some instances where, by the use of long integration times, or very large quantities of detector material with gamma ray detection, neutron fluences in operational areas have been measured. (author)

  9. Clinical dosimetry

    International Nuclear Information System (INIS)

    Rassow, J.

    1973-01-01

    The main point of this paper on clinical dosimetry which is to be understood here as application of physical dosimetry on accelerators in medical practice, is based on dosimetric methodics. Following an explanation of the dose parameters and description of the dose distribution important for clinical practice as well as geometric irradiation parameters, the significance of a series of physical parameters such as accelerator energy, surface energy of average stopping power etc. is dealt with in detail. Following a section on field homogenization with bremsstrahlung and electron radiation, details on dosimetry in clinical practice are given. Finally, a few problems of dosemeter or monitor calibration on accelerators are described. The explanations are supplemented by a series of diagrams and tables. (ORU/LH) [de

  10. Fast neutron spectrometry and dosimetry; Spectrometrie et dosimetrie des neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Blaize, S; Ailloud, J; Mariani, J; Millot, J P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    We have studied fast neutron spectrometry and dosimetry through the recoil protons they produce in hydrogenated samples. In spectrometric, we used nuclear emulsions, in dosimetric, we used polyethylene coated with zinc sulphide and placed before a photomultiplier. (author)Fren. [French] Nous avons etudie la spectrometrie et la dosimetrie des neutrons rapides en utilisant les protons de recul qu'ils produisent dans une matiere hydrogenee. En spectrometrie, nous avons employe des emulsions nucleaires, en dosimetrie, du polyethylene recouvert de sulfure de zinc place devant un photomultiplicateur. (auteur)

  11. Interior design for passive solar homes

    Science.gov (United States)

    Breen, J. C.

    1981-07-01

    The increasing emphasis on refinement of passive solar systems brought recognition to interior design as an integral part of passive solar architecture. Interior design can be used as a finetuning tool minimizing many of the problems associated with passive solar energy use in residential buildings. In addition, treatment of interior space in solar model homes may be a prime factor in determining sales success. A new style of interior design is evolving in response to changes in building from incorporating passive solar design features. The psychology behind passive solar architecture is reflected in interiors, and selection of interior components increasingly depends on the functional suitably of various interior elements.

  12. Interior design for passive solar homes

    Energy Technology Data Exchange (ETDEWEB)

    Breen, J. C.

    1981-07-01

    The increasing emphasis on refinement of passive solar systems has brought recognition to interior design as an integral part of passive solar architecture. Interior design can be used as a finetuning tool minimizing many of the problems associated with passive solar energy use in residential buildings. In addition, treatment of interior space in solar model homes may be a prime factor in determining sales success. A new style of interior design is evolving in response to changes in building form incorporating passive solar design features. The psychology behind passive solar architecture is reflected in interiors, and selection of interior components increasingly depends on the functional suitability of various interior elements.

  13. Dosimetry Control: Technic and methods. Proceedings of the international workshop 'Actual problems of dosimetry'

    International Nuclear Information System (INIS)

    Lyutsko, A.M.; Nesterenko, V.B.; Chudakov, V.A.; Konoplya, E.F.; Milyutin, A.A.

    1997-10-01

    There is a number of unsolved problems of both dosimetric and radiometric control, questions of the biological dosimetry, reconstruction of dozes of irradiation of the population at radiation incidents, which require coordination of efforts of scientists in various areas of a science. The submitted materials are grouped on five units: dosimetry engineering, biological dosimetry and markers of radiation impact, dosimetry of a medical irradiation, normative and measurement assurance of the dosimetric control, monitoring and reconstruction of dozes at radiation incidents

  14. An approved personal dosimetry service based on an electronic dosimeter

    International Nuclear Information System (INIS)

    Marshall, T.O.; Bartlett, D.T.; Burgess, P.H.; Campbell, J.I.; Hill, C.E.; Pook, E.A.; Sandford, D.J.

    1991-01-01

    At the Second Conference on Radiation Protection and Dosimetry a paper was presented which, in part, announced the development of an electronic dosimeter to be undertaken in the UK by the National Radiological Protection Board (NRPB) and Siemens Plessey Controls Ltd. This dosimeter was to be of a standard suitable for use as the basis of an approved personal dosimetry service for photon and beta radiations. The project has progressed extremely well and dosimeters and readers are about to become commercially available. The system and the specification of the dosimeter are presented. The NRPB is in the process of applying for approval by the Health and Safety Executive (HSE) to operate as personal monitoring service based on this dosimeter. As part of the approval procedure the dosimeter is being type tested and is also undergoing an HSE performance test and wearer trials. The tests and the wearer trials are described and a summary of the results to date presented. The way in which the service will be organized and operated is described and a comparison is made between the running of the service and others based on passive dosimeters at NRPB

  15. Non-conventional personal dosimetry techniques

    International Nuclear Information System (INIS)

    Regulla, D.F.

    1984-01-01

    Established dosimetry has achieved a high standard in personnel monitoring. This applies particularly to photon dosimetry. Nevertheless, even in photon dosimetry, improvements and changes are being made. The reason may be technological progress, or the introduction of new tasks on the basis of the recommendations of international bodies (e.g. the new ICRU measurement unit) of national legislation. Since we are restricting ourselves here to technical trends the author would like to draw attention to various activities of current interest, e.g. the computation of receptor-related conversion coefficients from personal dose to organ or body doses, taking into account the conditions of exposure with respect to differential energy and angular distribution of the radiation field. Realistic data on exposure geometry are taken from work place analyses. Furthermore, the data banks of central personal dosimetry services are subject to statistical evaluation and radiation protection trend analysis. Technological progress and developments are considered from the point of view of personal dosimetry, partial body or extremity dosimetry and accidental dosimetry

  16. Dosimetry and Calibration Section

    International Nuclear Information System (INIS)

    Otto, T.

    1999-01-01

    The Dosimetry and Calibration Section fulfils two tasks within CERN's Radiation Protection Group: the Individual Dosimetry Service monitors more than 5000 persons potentially exposed to ionizing radiation on the CERN sites, and the Calibration Laboratory verifies throughout the year, at regular intervals, over 1000 instruments, monitors, and electronic dosimeters used by RP Group. The establishment of a Quality Assurance System for the Individual Dosimetry Service, a requirement of the new Swiss Ordinance for personal dosimetry, put a considerable workload on the section. Together with an external consultant it was decided to identify and then describe the different 'processes' of the routine work performed in the dosimetry service. The resulting Quality Manual was submitted to the Federal Office for Public Health in Bern in autumn. The CERN Individual Dosimetry Service will eventually be officially endorsed after a successful technical test in March 1999. On the technical side, the introduction of an automatic development machine for gamma films was very successful. It processes the dosimetric films without an operator being present, and its built-in regeneration mechanism keeps the concentration of the processing chemicals at a constant level

  17. Dosimetry for radiation processing

    International Nuclear Information System (INIS)

    McLaughlin, W.L.; Boyd, A.W.; Chadwick, K.H.; McDonald, J.C.; Miller, A.

    1989-01-01

    Radiation processing is a relatively young industry with broad applications and considerable commercial success. Dosimetry provides an independent and effective way of developing and controlling many industrial processes. In the sterilization of medical devices and in food irradiation, where the radiation treatment impacts directly on public health, the measurements of dose provide the official means of regulating and approving its use. In this respect, dosimetry provides the operator with a means of characterizing the facility, of proving that products are treated within acceptable dose limits and of controlling the routine operation. This book presents an up-to-date review of the theory, data and measurement techniques for radiation processing dosimetry in a practical and useful way. It is hoped that this book will lead to improved measurement procedures, more accurate and precise dosimetry and a greater appreciation of the necessity of dosimetry for radiation processing. (author)

  18. Thin film tritium dosimetry

    Science.gov (United States)

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  19. Lithium Blanket Module dosimetry measurements at the LOTUS 14-MeV neutron source facility

    International Nuclear Information System (INIS)

    Tsang, F.Y.; Leo, W.R.; Sahraoui, C.; Wuthrich, S.; Harker, Y.D.

    1986-01-01

    This paper describes the measurements and results of the dosimeter material reaction rates inside the Lithium Blanket Module (LBM) after irradiation by the LOTUS 14-MeV neutron source at the Ecole Polytechnique Federale de Lausanne. The measurement program has been designed to utilize sets of passive dosimeter materials in the form of foils and wires. The dosimetry materials reaction thresholds and interaction response ranges chosen for this series of measurements encompass the entire neutron spectra along the full length of the LBM fuel rods

  20. Dosimetry computer module of the gamma irradiator of ININ; Modulo informatico de dosimetria del irradiador gamma del ININ

    Energy Technology Data Exchange (ETDEWEB)

    Ledezma F, L. E.; Baldomero J, R. [ININ, Gerencia de Sistemas Informaticos, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Agis E, K. A., E-mail: luis.ledezma@inin.gob.mx [Universidad Autonoma del Estado de Mexico, Facultad de Ingenieria, Cerro de Coatepec s/n, Ciudad Universitaria, 50100 Toluca, Estado de Mexico (Mexico)

    2012-10-15

    This work present the technical specifications for the upgrade of the dosimetry module of the computer system of the gamma irradiator of the Instituto Nacional de Investigaciones Nucleares (ININ) whose result allows the integration and consultation of information in industrial dosimetry subject under an outline client-server. (Author)

  1. Measure Guideline: Passive Vents

    Energy Technology Data Exchange (ETDEWEB)

    Berger, David [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Neri, Robin [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2016-02-05

    This document addresses the use of passive vents as a source of outdoor air in multifamily buildings. The challenges associated with implementing passive vents and the factors affecting performance are outlined. A comprehensive design methodology and quantified performance metrics are provided. Two hypothetical design examples are provided to illustrate the process. This document is intended to be useful to designers, decision-makers, and contractors implementing passive ventilation strategies. It is also intended to be a resource for those responsible for setting high-performance building program requirements, especially pertaining to ventilation and outdoor air. To ensure good indoor air quality, a dedicated source of outdoor air is an integral part of high-performance buildings. Presently, there is a lack of guidance pertaining to the design and installation of passive vents, resulting in poor system performance. This report details the criteria necessary for designing, constructing, and testing passive vent systems to enable them to provide consistent and reliable levels of ventilation air from outdoors.

  2. Effects of plasma-deposited silicon nitride passivation on the radiation hardness of CMOS integrated circuits

    International Nuclear Information System (INIS)

    Clement, J.J.

    1980-01-01

    The use of plasma-deposited silicon nitride as a final passivation over metal-gate CMOS integrated circuits degrades the radiation hardness of these devices. The hardness degradation is manifested by increased radiation-induced threshold voltage shifts caused principally by the charging of new interface states and, to a lesser extent, by the trapping of holes created upon exposure to ionizing radiation. The threshold voltage shifts are a strong function of the deposition temperature, and show very little dependence on thickness for films deposited at 300 0 C. There is some correlation between the threshold voltage shifts and the hydrogen content of the PECVD silicon nitride films used as the final passivation layer as a function of deposition temperature. The mechanism by which the hydrogen contained in these films may react with the Si/SiO 2 interface is not clear at this point

  3. Integration of canal and otolith inputs by central vestibular neurons is subadditive for both active and passive self-motion: implication for perception.

    Science.gov (United States)

    Carriot, Jerome; Jamali, Mohsen; Brooks, Jessica X; Cullen, Kathleen E

    2015-02-25

    Traditionally, the neural encoding of vestibular information is studied by applying either passive rotations or translations in isolation. However, natural vestibular stimuli are typically more complex. During everyday life, our self-motion is generally not restricted to one dimension, but rather comprises both rotational and translational motion that will simultaneously stimulate receptors in the semicircular canals and otoliths. In addition, natural self-motion is the result of self-generated and externally generated movements. However, to date, it remains unknown how information about rotational and translational components of self-motion is integrated by vestibular pathways during active and/or passive motion. Accordingly, here, we compared the responses of neurons at the first central stage of vestibular processing to rotation, translation, and combined motion. Recordings were made in alert macaques from neurons in the vestibular nuclei involved in postural control and self-motion perception. In response to passive stimulation, neurons did not combine canal and otolith afferent information linearly. Instead, inputs were subadditively integrated with a weighting that was frequency dependent. Although canal inputs were more heavily weighted at low frequencies, the weighting of otolith input increased with frequency. In response to active stimulation, neuronal modulation was significantly attenuated (∼ 70%) relative to passive stimulation for rotations and translations and even more profoundly attenuated for combined motion due to subadditive input integration. Together, these findings provide insights into neural computations underlying the integration of semicircular canal and otolith inputs required for accurate posture and motor control, as well as perceptual stability, during everyday life. Copyright © 2015 the authors 0270-6474/15/353555-11$15.00/0.

  4. Main activities of the Latin American Network of Biological Dosimetry (LBDNet)

    International Nuclear Information System (INIS)

    Di Giorgio, M.; Vallerga, M.B.; Radl, A.; Taja, M.R.; Stuck Oliveira, M.; Valdivia, P.; Garcia Lima, O.; Lamadrid, A.; Gonzalez Mesa, J.E.; Romero Aguilera, I.; Mandina Cardoso, T.; Guerrero Carbajal, C.; Arceo Maldonado, C.; Espinoza, M.; Martinez Lopez, W.; Di Tomasso, M.; Barquinero, F.; Roy, L.

    2010-01-01

    The Latin American Biological Dosimetry Network (LBDNET) was constituted in 2007 for mutual assistance in case of a radiation emergency in the region supported by IAEA Technical Cooperation Projects RLA/9/054 and RLA/9/061. The main objectives are: a) to strengthen the technical capacities of Biological Dosimetry Services belonging to laboratories existing in the region (Argentine, Brazil, Chile, Cuba, Mexico, Peru and Uruguay) integrated in National Radiological Emergency Plans to provide a rapid biodosimetric response in a coordinated manner between countries and with RANET-IAEA/BioDoseNet-WHO, b) to provide support to other countries in the region lacking Biological Dosimetry laboratories, c) to consolidate the organization of the Latin American Biological Dosimetry Network for mutual assistance. The activities developed include technical meetings for protocols and chromosomal aberration scoring criteria unification, blood samples cultures exercises, chromosomal aberrations analysis at microscope, discussion of statistical methods and specialized software for dose calculation, the intercomparison between laboratory data after the analysis of slides with irradiated material and the intercomparison of the analysis of captured images distributed electronically in the WEB. The last exercise was the transportation of an irradiated human blood sample to countries inside and outside of the region. At the moment the exercises are concluded and they are pending to be published in reference journals. Results obtained show the capacity in the region for a biodosimetric response to a radiological accident. In the future the network will integrate techniques for high dose exposure evaluation and will enhance the interaction with other emergency systems in the region. (authors) [es

  5. Fundamentals of x-ray dosimetry

    International Nuclear Information System (INIS)

    Roesch, W.C.

    1976-01-01

    Fundamental information about x-ray dosimetry is presented. Definitions are given and expanded on for dose, absorbed dose including microdosimetry, radiation physics (properties of the radiation that are important to dosimetry), and dosimetry (how the properties are dealt with in determining dose). 5 figs, 12 refs

  6. Thermoluminescent dosimetry in veterinary diagnostic radiology

    International Nuclear Information System (INIS)

    Hernández-Ruiz, L.; Jimenez-Flores, Y.; Rivera-Montalvo, T.; Arias-Cisneros, L.; Méndez-Aguilar, R.E.; Uribe-Izquierdo, P.

    2012-01-01

    This paper presents the results of Environmental and Personnel Dosimetry made in a radiology area of a veterinary hospital. Dosimetry was realized using thermoluminescent (TL) materials. Environmental Dosimetry results show that areas closer to the X-ray equipment are safe. Personnel Dosimetry shows important measurements of daily workday in some persons near to the limit established by ICRP. TL results of radiation measurement suggest TLDs are good candidates as a dosimeter to radiation dosimetry in veterinary radiology. - Highlights: ► Personnel dosimetry in laboratory veterinary diagnostic was determined. ► Student workplaces are safe against radiation. ► Efficiency value of apron lead was determined. ► X-ray beams distribution into veterinarian laboratory was measured.

  7. Sixth symposium on neutron dosimetry

    International Nuclear Information System (INIS)

    1987-01-01

    This booklet contains all abstracts of papers presented in 13 sessions. Main topics: Cross sections and Kerma factors; analytical radiobiology; detectors for personnel monitoring; secondary charged particles and microdosimetric basis of q-value for neutrons; personnel dosimetry; concepts for radiation protection; ambient monitoring; TEPC and ion chambers in radiation protection; beam dosimetry; track detectors (CR-39); dosimetry at biomedical irradiation facilities; health physics at therapy facilities; calibration for radiation protection; devices for beam dosimetry (TLD and miscellaneous); therapy and biomedical irradiation facilities; treatment planning. (HP)

  8. Environmental dosimetry

    International Nuclear Information System (INIS)

    Gold, R.

    1977-01-01

    For more than 60 years, natural radiation has offered broad opportunities for basic research as evidenced by many fundamental discoveries. Within the last decade, however, dramatic changes have occurred in the motivation and direction of this research. The urgent need for economical energy sources entailing acceptably low levels of environmental impact has compelled the applied aspects of our radiation environment to become overriding considerations. It is within this general framework that state-of-the-art environmental dosimetry techniques are reviewed. Although applied motivation and relevance underscores the current milieu for both reactor and environmental dosimetry, a perhaps even more unifying force is the broad similarity of reactor and environmental radiation fields. In this review, a comparison of these two mixed radiation fields is presented stressing the underlying similarities that exist. On this basis, the evolution of a strong inner bond between dosimetry methods for both reactor and environmental radiation fields is described. The existence of this bond will be illustrated using representative examples of observed spectra. Dosimetry methods of particularly high applicability for both of these fields are described. Special emphasis is placed on techniques of high sensitivity and absolute accuracy which are capable of resolving the components of these mixed radiation fields

  9. Nuclear accident dosimetry

    International Nuclear Information System (INIS)

    1982-01-01

    The film presents statistical data on criticality accidents. It outlines past IAEA activities on criticality accident dosimetry and the technical documents that resulted from this work. The film furthermore illustrates an international comparison study on nuclear accident dosimetry conducted at the Atomic Energy Research Establishment, Harwell, United Kingdom

  10. Nuclear accident dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-12-31

    The film presents statistical data on criticality accidents. It outlines past IAEA activities on criticality accident dosimetry and the technical documents that resulted from this work. The film furthermore illustrates an international comparison study on nuclear accident dosimetry conducted at the Atomic Energy Research Establishment, Harwell, United Kingdom

  11. Performance testing of dosimetry processors, status of NRC rulemaking for improved personnel dosimetry processing, and some beta dosimetry and instrumentation problems observed by NRC regional inspectors

    International Nuclear Information System (INIS)

    Dennis, N.A.; Kinneman, J.D.; Costello, F.M.; White, J.R.; Nimitz, R.L.

    1983-01-01

    Early dosimetry processor performance studies conducted between 1967 and 1979 by several different investigators indicated that a significant percentage of personnel dosimetry processors may not be performing with a reasonable degree of accuracy. Results of voluntary performance testing of US personnel dosimetry processors against the final Health Physics Society Standard, Criteria for Testing Personnel Dosimetry Performance by the University of Michigan for the Nuclear Regulatory Commission (NRC) will be summarized with emphasis on processor performance in radiation categories involving beta particles and beta particles and photon mixtures. The current status of the NRC's regulatory program for improved personnel dosimetry processing will be reviewed. The NRC is proposing amendments to its regulations, 10 CFR Part 20, that would require its licensees to utilize specified personnel dosimetry services from processors accredited by the National Voluntary Laboratory Accreditation Program of the National Bureau of Standards. Details of the development and schedule for implementation of the program will be highlighted. Finally, selected beta dosimetry and beta instrumentation problems observed by NRC Regional Staff during inspections of NRC licensed facilities will be discussed

  12. Quantitative imaging for clinical dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bardies, Manuel [INSERM U601, 9 Quai Moncousu, 44093 Nantes (France)]. E-mail: manu@nantes.inserm.fr; Flux, Glenn [Department of Physics, Royal Marsden NHS Trust, Sutton (United Kingdom); Lassmann, Michael [Department of Nuclear Medicine, Julis-Maximilians University, Wuerzburg (Germany); Monsieurs, Myriam [Department of Health Physics, University of Ghent, 9000 Ghent (Belgium); Savolainen, Sauli [Department of Physical Sciences, University of Helsinki and HUS, Helsinki Medical Imaging Center, Helsinki University Central Hospital (Finland); Strand, Sven-Erik [Medical Radiation Physics, Department of Clinical Sciences Lund, Lund University (Sweden)

    2006-12-20

    Patient-specific dosimetry in nuclear medicine is now a legal requirement in many countries throughout the EU for targeted radionuclide therapy (TRT) applications. In order to achieve that goal, an increased level of accuracy in dosimetry procedures is needed. Current research in nuclear medicine dosimetry should not only aim at developing new methods to assess the delivered radiation absorbed dose at the patient level, but also to ensure that the proposed methods can be put into practice in a sufficient number of institutions. A unified dosimetry methodology is required for making clinical outcome comparisons possible.

  13. Demonstration of Passive Fuel Cell Thermal Management Technology

    Science.gov (United States)

    Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony; Wynne, Robert; Miller, Michael; Meyer, Al; Smith, William

    2012-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.

  14. The task of official personal monitoring in Germany using electronic dosimetry systems

    International Nuclear Information System (INIS)

    Huebner, Stephan; Wahl, Wolfgang; Busch, Frank; Martini, Ekkehard

    2008-01-01

    Full text: Since the establishment of the first German personal monitoring services as competent measuring bodies in the year 1952, official personal dosimetry is carried out using passive dosimeters such as film batches, RPL- and TL-dosimeters solely. On the other hand, electronic dosimeters are in use in some big institutions like Nuclear Power Plants, hospitals or industrial units for operational purposes. In most cases, these dosimeters are regulated by competent authorities. For more than 20 years electronic dosimeters proved their worth of being appropriate personal dosimeters. Since 2001 concepts to implement electronic personal dosimeters into the official individual monitoring of occupational exposed workers were developed in different research projects. The EU market of personal dosimetry changes to an open and competitive one, the number of outside workers, especially during the outages of Nuclear Power Plants increases, the landscape of customers is getting more and more heterogeneous. Being able to face these tasks of a sustainable personal monitoring requires the introduction of modern electronic dosimeters into to the official monitoring. Doing so, the needed prompt exchange of dose-data between different monitoring services as well as between the customers and the related monitoring service can be warranted. In cooperation with the industry, competent authorities and a research centre a method for official dosimetry using electronic dosimetry systems was developed, realised and tested successfully by the three big monitoring services of Germany. These investigations are supported by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety. For this purpose a network between customers and monitoring services was built up in order to monitor people, who work in different places related to different measuring bodies in only one period of surveillance. (author)

  15. Alanine EPR dosimetry of therapeutic irradiators

    International Nuclear Information System (INIS)

    Bugay, O.; Bartchuk, V.; Kolesnik, S.; Mazin, M.; Gaponenko, H.

    1999-01-01

    The high-dose alanine EPR dosimetry is a very precise method in the dose range 1-100 kGy. The system is used generally as the standard high-dose transfer dosimetry in many laboratories. This is comparatively expensive technique so it is important to use it as a more universal dosimetry system also in the middle and low dose ranges. The problems of the middle-dose alanine dosimetry are discussed and the solution of several problems is proposed. The alanine EPR dosimetry has been applied to the dose measurements of medical irradiators in the Kiev City Oncology Center. (author)

  16. Thermocurrent dosimetry with high purity aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Fullerton, G.D.; Cameron, J.R.; Moran, P.R.

    1976-01-01

    The application of thermocurrent (TC) to ionizing radiation dosimetry was studied. It was shown that TC in alumina (Al/sub 2/O/sub 3/) has properties that are suited to personnel dosimetry and environmental monitoring. TC dosimeters were made from thin disks of alumina. Aluminum electrodes were evaporated on each side: on one face a high voltage electrode and on the opposite face a measuring electrode encircled by a guard ring. Exposure to ionizing radiation resulted in stored electrons and holes in metastable trapping sites. The signal was read-out by heating the dosimeter with a voltage source and picnometer connected in series between the opposite electrodes. The thermally remobilized charge caused a transient TC. The thermogram, TC versus time or temperature, is similar to a TL glow curve. Either the peak current or the integrated current is a measure of absorbed dose. Six grades of alumina were studied from a total of four commercial suppliers. All six materials displayed radiation induced TC signals. Sapphire of uv-grade quality from the Adolf Meller Co. (AM) had the best dosimetry properties of those investigated. Sources of interference were studied. Thermal fading, residual signal and radiation damage do not limit TC dosimetry. Ultraviolet light can induce a TC response but it is readily excluded with uv-opaque cladding. Improper surface preparation prior to electrode evaporation was shown to cause interference. A spurious TC signal resulted from polarization of surface contaminants. Spurious TC was reduced by improved cleaning prior to electrode application. Polished surfaces resulted in blocking electrodes and caused a sensitivity shift due to radiation induced thermally activated polarization. This was not observed with rough cut surfaces.

  17. Thermocurrent dosimetry with high purity aluminum oxide

    International Nuclear Information System (INIS)

    Fullerton, G.D.; Cameron, J.R.; Moran, P.R.

    1976-01-01

    The application of thermocurrent (TC) to ionizing radiation dosimetry was studied. It was shown that TC in alumina (Al 2 O 3 ) has properties that are suited to personnel dosimetry and environmental monitoring. TC dosimeters were made from thin disks of alumina. Aluminum electrodes were evaporated on each side: on one face a high voltage electrode and on the opposite face a measuring electrode encircled by a guard ring. Exposure to ionizing radiation resulted in stored electrons and holes in metastable trapping sites. The signal was read-out by heating the dosimeter with a voltage source and picnometer connected in series between the opposite electrodes. The thermally remobilized charge caused a transient TC. The thermogram, TC versus time or temperature, is similar to a TL glow curve. Either the peak current or the integrated current is a measure of absorbed dose. Six grades of alumina were studied from a total of four commercial suppliers. All six materials displayed radiation induced TC signals. Sapphire of uv-grade quality from the Adolf Meller Co. (AM) had the best dosimetry properties of those investigated. Sources of interference were studied. Thermal fading, residual signal and radiation damage do not limit TC dosimetry. Ultraviolet light can induce a TC response but it is readily excluded with uv-opaque cladding. Improper surface preparation prior to electrode evaporation was shown to cause interference. A spurious TC signal resulted from polarization of surface contaminants. Spurious TC was reduced by improved cleaning prior to electrode application. Polished surfaces resulted in blocking electrodes and caused a sensitivity shift due to radiation induced thermally activated polarization. This was not observed with rough cut surfaces

  18. Comparison of Real-Time Intraoperative Ultrasound-Based Dosimetry With Postoperative Computed Tomography-Based Dosimetry for Prostate Brachytherapy

    International Nuclear Information System (INIS)

    Nag, Subir; Shi Peipei; Liu Bingren; Gupta, Nilendu; Bahnson, Robert R.; Wang, Jian Z.

    2008-01-01

    Purpose: To evaluate whether real-time intraoperative ultrasound (US)-based dosimetry can replace conventional postoperative computed tomography (CT)-based dosimetry in prostate brachytherapy. Methods and Materials: Between December 2001 and November 2002, 82 patients underwent 103 Pd prostate brachytherapy. An interplant treatment planning system was used for real-time intraoperative transrectal US-guided treatment planning. The dose distribution was updated according to the estimated seed position to obtain the dose-volume histograms. Postoperative CT-based dosimetry was performed a few hours later using the Theraplan-Plus treatment planning system. The dosimetric parameters obtained from the two imaging modalities were compared. Results: The results of this study revealed correlations between the US- and CT-based dosimetry. However, large variations were found in the implant-quality parameters of the two modalities, including the doses covering 100%, 90%, and 80% of the prostate volume and prostate volumes covered by 100%, 150%, and 200% of the prescription dose. The mean relative difference was 38% and 16% for doses covering 100% and 90% of the prostate volume and 10% and 21% for prostate volumes covered by 100% and 150% of the prescription dose, respectively. The CT-based volume covered by 200% of the prescription dose was about 30% greater than the US-based one. Compared with CT-based dosimetry, US-based dosimetry significantly underestimated the dose to normal organs, especially for the rectum. The average US-based maximal dose and volume covered by 100% of the prescription dose for the rectum was 72 Gy and 0.01 cm 3 , respectively, much lower than the 159 Gy and 0.65 cm 3 obtained using CT-based dosimetry. Conclusion: Although dosimetry using intraoperative US-based planning provides preliminary real-time information, it does not accurately reflect the postoperative CT-based dosimetry. Until studies have determined whether US-based dosimetry or

  19. Dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Miller, Arne

    1986-01-01

    During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both by international organizations (IAEA) and national laboratories have helped to improve the reliability of dose measurements. In this paper the special features of radiation processing dosimetry are discussed, several commonly used dosimeters are reviewed, and factors leading to traceable and reliable dosimetry are discussed. (author)

  20. Radiochromic film dosimetry

    International Nuclear Information System (INIS)

    Xu Zhiyong

    2002-01-01

    Radiochromic film dosimetry was developed to measure ionization irradiation dose for industry and medicine. At this time, there are no comprehensive guideline on the medical application, calibration method and densitometer system for medicine. The review gives update on Radiochromic film dosimetry used for medicine, including principles, film model and material, characteristics, calibration method, scanning densitometer system and medical application

  1. Passive heat removal characteristics of SMART

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jae Kwang; Kang, Hyung Seok; Yoon, Joo Hyun; Kim, Hwan Yeol; Cho, Bong Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A new advanced integral reactor of 330 MWt thermal capacity named SMART (System-Integrated Modular Advanced Reactor) is currently under development in Korea Atomic Energy Research Institute (KAERI) for multi-purpose applications. Modular once-through steam generator (SG) and self-pressurizing pressurizer equipped with wet thermal insulator and cooler are essential components of the SMART. The SMART provides safety systems such as Passive Residual Heat Removal System (PRHRS). In this study, a computer code for performance analysis of the PRHRS is developed by modeling relevant components and systems of the SMART. Using this computer code, a performance analysis of the PRHRS is performed in order to check whether the passive cooling concept using the PRHRS is feasible. The results of the analysis show that PRHRS of the SMART has excellent passive heat removal characteristics. 2 refs., 4 figs., 1 tab. (Author)

  2. 11. International conference on solid radiation dosimetry

    International Nuclear Information System (INIS)

    Krylova, I.V.

    1996-01-01

    The main problems discussed during the international conference on solid radiation dosimetry which took place in June 1995 in Budapest are briefly considered. These are the basic physical processes, materials applied for dosimetry, special techniques, personnel monitoring, monitoring of environmental effects, large-dose dosimetry, clinic dosimetry, track detector used for dosimetry, dosimetry in archaeology and geology, equipment and technique for dosimetric measurements. The special attention was paid to superlinearity in the TLD-100 (LiF, Mg, Ti) response function when determining doses of gamma radiation, heavy charged particles, low-energy particle fluxes in particular. New theoretical models were considered

  3. A microcomputer controlled thermoluminescence dosimetry system

    International Nuclear Information System (INIS)

    Huyskens, C.J.; Kicken, P.J.H.

    1980-01-01

    Using a microcomputer, an automatic thermoluminescence dosimetry system for personal dosimetry and thermoluminescence detector (TLD) research was developed. Process automation, statistical computation and dose calculation are provided by this microcomputer. Recording of measurement data, as well as dose record keeping for radiological workers is carried out with floppy disk. The microcomputer also provides a human/system interface by means of a video display and a printer. The main features of this dosimetry system are its low cost, high degree of flexibility, high degree of automation and the feasibility for use in routine dosimetry as well as in TLD research. The system is in use for personal dosimetry, environmental dosimetry and for TL-research work. Because of its modular set-up several components of the system are in use for other applications, too. The system seems suited for medium sized health physics groups. (author)

  4. Characterising an aluminium oxide dosimetry system.

    Science.gov (United States)

    Conheady, Clement F; Gagliardi, Frank M; Ackerly, Trevor

    2015-09-01

    In vivo dosimetry is recommended as a defence-in-depth strategy in radiotherapy treatments and is currently employed by clinics around the world. The characteristics of a new optically stimulated luminescence dosimetry system were investigated for the purpose of replacing an aging thermoluminescence dosimetry system for in vivo dosimetry. The stability of the system was not sufficient to satisfy commissioning requirements and therefore it has not been released into clinical service at this time.

  5. Passive cavitation imaging with ultrasound arrays.

    Science.gov (United States)

    Salgaonkar, Vasant A; Datta, Saurabh; Holland, Christy K; Mast, T Douglas

    2009-12-01

    A method is presented for passive imaging of cavitational acoustic emissions using an ultrasound array, with potential application in real-time monitoring of ultrasound ablation. To create such images, microbubble emissions were passively sensed by an imaging array and dynamically focused at multiple depths. In this paper, an analytic expression for a passive image is obtained by solving the Rayleigh-Sommerfield integral, under the Fresnel approximation, and passive images were simulated. A 192-element array was used to create passive images, in real time, from 520-kHz ultrasound scattered by a 1-mm steel wire. Azimuthal positions of this target were accurately estimated from the passive images. Next, stable and inertial cavitation was passively imaged in saline solution sonicated at 520 kHz. Bubble clusters formed in the saline samples were consistently located on both passive images and B-scans. Passive images were also created using broadband emissions from bovine liver sonicated at 2.2 MHz. Agreement was found between the images and source beam shape, indicating an ability to map therapeutic ultrasound beams in situ. The relation between these broadband emissions, sonication amplitude, and exposure conditions are discussed.

  6. Thermally stimulated current in PTFE and its application in radiation dosimetry

    International Nuclear Information System (INIS)

    Ozdemir, S.

    1985-01-01

    Thermally Stimulated Current (TSC) measurement was made on PTFE (Polytetrafluoro ethylene) in an attempt to develop an integrating radiation dosimeter material and the system. TSC spectra, dose response, energy response, fading and background charge stability characteristics were used as a measure of suitability of various untreated and heat treated PTFE samples for dosimetry applications. For practical TSC dosimetry system, it was discovered that the PTFE samples should be subjected to a specific heat treatment in order to produce samples with better dosimeter characteristics. A treatment at a temperature of 240 C produces a high dose response and low fading characteristics. It was found that the spurious charges due to storage and low sensitivity to irradiation caused the limitation in the measurement of low doses with PTFE samples for personnel protection. However, a TSC Dosimetry system using PTFE is proposed which is suitable for radiation doses in the radiotherapy range from *approx* 50 to *approx* 800 mGy. (author)

  7. Variation of absorbed doses onboard of ISS Russian Service Module as measured with passive detectors

    Czech Academy of Sciences Publication Activity Database

    Jadrníčková, Iva; Tateyama, R.; Yasuda, N.; Kawashima, H.; Kurano, M.; Uchihori, Y.; Kitamura, H.; Akatov, YU.; Shurshakov, V.; Kobayashi, I.; Ohguchi, H.; Koguchi, Y.; Spurný, František

    2009-01-01

    Roč. 44, 9-10 (2009), s. 901-904 ISSN 1350-4487. [International Conference on Nuclear Tracks in Solids /24./. Bologna, 01.09.2008-05.09.2008] R&D Projects: GA AV ČR KJB100480901; GA ČR GA205/09/0171 Institutional research plan: CEZ:AV0Z10480505 Keywords : space dosimetry * International Space Station * passive detector * track etch detector Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.973, year: 2009

  8. Introduction [International Reactor Dosimetry File 2002 (IRDF-2002)

    International Nuclear Information System (INIS)

    Paviotti-Corcuera, R.; Zolnay, E.M.

    2006-01-01

    service life of reactor pressure vessels. Accurate cross-section data are also essential in other neutron metrology applications such as boron neutron capture therapy, therapeutic uses of medical radioisotopes, nuclear physics measurements and reactor safety studies. The work undertaken within the project included the following tasks: Detailed analyses and comparisons of the cross-section data and the related uncertainty information present in different reactor dosimetry and general purpose libraries, including IRDF-90.2, JENDL/D-99 and 2 RRDF-98, and the most recent releases of ENDF/B-VI, JEFF-3.0 and CENDL-2. Comparisons were also made of the calculated integral cross section data with experimental reaction rates in standard neutron fields; Selection of the best quality cross-section information based on the above comparisons; Evaluation and testing of new reaction cross-sections, as requested by the reactor dosimetry community for extension of the library; Selection of evaluated and up to date nuclear decay characteristics and isotopic abundances; Testing of important dosimetry cross-sections in reference benchmark neutron fields. Although the release of IRDF-2002 and publication of the related documentation occurred after 2002, participants attending the second Technical Meeting decided to retain the title IRDF-2002, since the library has been referred to as this in the open literature. A CD-ROM containing the full contents of IRDF-2002 accompanies this report. Updated versions of this library will also be released by the IAEA on CD-ROM (author)

  9. The dosimetry of ionizing radiation

    CERN Document Server

    1990-01-01

    A continuation of the treatise The Dosimetry of Ionizing Radiation, Volume III builds upon the foundations of Volumes I and II and the tradition of the preceeding treatise Radiation Dosimetry. Volume III contains three comprehensive chapters on the applications of radiation dosimetry in particular research and medical settings, a chapter on unique and useful detectors, and two chapters on Monte Carlo techniques and their applications.

  10. Secondary standard dosimetry laboratory (SSDL)

    International Nuclear Information System (INIS)

    Md Saion bin Salikin.

    1983-01-01

    A secondary Standard Dosimetry Laboratory has been established in the Tun Ismail Research Centre, Malaysia as a national laboratory for reference and standardization purposes in the field of radiation dosimetry. This article gives brief accounts on the general information, development of the facility, programmes to be carried out as well as other information on the relevant aspects of the secondary standard dosimetry laboratory. (author)

  11. Gamma environmental dosimetry and radon concentration in Venezuela

    International Nuclear Information System (INIS)

    Sajo B, L.; Greaves E, D.

    1996-01-01

    The environmental radiation levels have been determined in Venezuela by means of different techniques including the passive dosimeters and the alpha and gamma dosimetry besides the gross alpha/beta counting. The most important conclusion is that the presence of artificial radionuclides (Cesium-137, Beryllium-7 and Cadmium-109) was observed in different environmental samples and in food considered contaminant. The values of gamma levels are between 28 and 40 mGy/day and the mean value of radon concentration in closed environment is 36 Bq/m 3 ; the higher values of a factor 10 have been measured in the Andes region. The 20% of analysed drinking water has a concentration of alpha radionuclides emitters less than 0.005 Bq/l and only the 8% is greater than 0.450 Bq/l. (authors). 6 refs., 1 fig

  12. Dosimetry in nuclear power plants

    International Nuclear Information System (INIS)

    Lastra B, J. A.

    2008-12-01

    To control the occupationally exposed personnel dose working at the Laguna Verde nuclear power plant, two types of dosemeters are used, the thermoluminescent (TLD) which is processed monthly, and the direct reading dosemeter that is electronic and works as daily control of personal dose. In the case of the electronic dosemeters of direct reading conventional, the readings and dose automatic registers and the user identity to which he was assigned to each dosemeter was to carry out the restricted area exit. In activities where the ionizing radiation sources are not fully characterized, it is necessary to relocate the personal dosemeter or assigned auxiliary dosemeters (TLDs and electronics) to determine the dose received by the user to both whole body and in any specific area of it. In jobs more complicated are used a tele dosimetry system where the radiation protection technician can be monitoring the user dose to remote control, the data transmission is by radio. The dosimetry activities are documented in procedures that include dosemeter inventories realization, the equipment and dosemeters calibration, the dosimetry quality control and the discrepancies investigation between the direct reading and TLD systems. TLD dosimetry to have technical expertise in direct and indirect dosimetry and two technicians in TLD dosimetry; electronic dosimetry to have 4 calibration technicians. For the electronic dosemeters are based on a calibrator source of Cesium-137. TLD dosemeters to have an automatic radiator, an automatic reader which can read up to 100 TLD dosemeters per hour and a semiautomatic reader. To keep the equipment under a quality process was development a process of initial entry into service and carried out a periodic verification of the heating cycles. It also has a maintenance contract for the equipment directly with the manufacturer to ensure their proper functioning. The vision in perspective of the dosimetry services of Laguna Verde nuclear power plant

  13. Next decade in external dosimetry

    International Nuclear Information System (INIS)

    Griffith, R.V.

    1988-01-01

    In recent years, a number of external dosimetry problems have been solved. However, changes in standards and legal concepts relating to the application of dosimetry results will require further enhancements in measurement techniques and philosophy in the next 10 y. The introduction of effective dose equivalent and the legal use of probability of causation will require that much greater attention be given to determination of weighted organ dose from external exposure. An imminent change--an increase in the fast neutron quality factor--will require a new round of technology development in a field that has just received a decade of close scrutiny. For the future, we must take advantage of developments in microelectronics. The use of random access memory (RAM) and metal-on-silicon (MOS) devices as detector elements, particularly for neutron dosimetry, has exciting possibilities that are just beginning to be explored. Advances in microcircuitry are leading, and will continue to lead, in the development of a new generation of small, rugged and smart radiation survey instruments that will make the most of detector data. It has become possible with very compact instruments to obtain energy spectra, linear-energy-transfer (LET) spectra, and quality factors in addition to the usual integrated dosimetric quantities: exposure, absorbed dose, and dose equivalent. These instruments will be reliable and easy to use. The user will be able to select the level of sophistication that is required for any specific application. Moreover, since the processing algorithms can be changed, changes in conversion factors can be accommodated with relative ease. During the next decade, the use of computers will continue to grow in value to the health physicist

  14. Design and implementation of a high sensitivity fully integrated passive UHF RFID tag

    International Nuclear Information System (INIS)

    Li Shoucheng; Wang Xin'an; Lin Ke; Shen Jinpeng; Zhang Jinhai

    2014-01-01

    A fully integrated passive UHF RFID tag complying with the ISO18000-6B protocol is presented, which includes an analog front-end, a baseband processor, and an EEPROM memory. To extend the communication range, a high efficiency differential-drive CMOS rectifier is adopted. A novel high performance voltage limiter is used to provide a stable limiting voltage, with a 172 mV voltage variation against temperature variation and process dispersion. The dynamic band-enhancement technique is used in the regulator circuit to improve the regulating capacity. A rail-to-rail hysteresis comparator is adopted to demodulate the signal correctly in any condition. The whole transponder chip is implemented in a 0.18 μm CMOS process, with a die size of 900 × 800 μm 2 . Our measurement results show that the total power consumption of the tag chip is only 6.8 μW, with a sensitivity of −13.5 dBm (semiconductor integrated circuits)

  15. Modern methods of personnel dosimetry

    International Nuclear Information System (INIS)

    Kraus, W.; Herrmann, D.; Kiesewetter, W.

    The physical properties of radiation detectors for personnel dosimetry are described and compared. The suitability of different types of dosimeters for operational and central monitoring of normal occupational exposure, for accident and catastrophe dosimetry and for background and space-flight dosimetry is discussed. The difficulties in interpreting the dosimeter reading with respect to the dose in individual body organs are discussed briefly. 430 literature citations (up to Spring 1966) are given

  16. Integral-capture measurements and cross-section adjustments for Nd, Sm, and Eu

    International Nuclear Information System (INIS)

    Anderl, R.A.; Schmittroth, F.; Harker, Y.D.

    1981-07-01

    Integral-capture reaction rates are reported for 143 Nd, 144 Nd, 145 Nd, 147 Sm, 151 Eu, 152 Eu, 153 Eu, and 154 Eu irradiated in different neutron spectra in EBR-II. These reaction rates are based primarily on mass-spectrometric measurements of the isotopic atom ratios of the capture product to the target nuclide. The neutron spectra are characterized using passive neutron dosimetry and spectrum-unfolding with the FERRET least-squares data analysis code. Reaction rates for the neutron spectrum monitors were determined by the radiometric technique using Ge(Li) spectrometers. These rates are also reported here. The integral data for the rare-earth samples and for the spectrum monitors were used in multigroup flux/cross-section adtustment analyses with FERRET to generate adjustments to 47 group representations of the ENDF/B-IV capture cross sections for the rare-earth isotopes. These adjusted cross sections are in good agreement with recent differential data and with adjusted cross sections based on STEK integral data. Examples are given of the use of the adjusted cross sections and covariance matrices for cross-section evaluation

  17. Latest developments in silica fibre luminescence dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D. A.; Abdul S, S. F.; Jafari, S. M.; Alanazi, A. [University of Surrey, Department of Physics, GU2 7XH Guildford, Surrey (United Kingdom); Amouzad M, G. [University of Malaya, Faculty of Engineering, Department of Electrical Engineering, Integrated Lightwave Research Group, 50603 Kuala Lumpur (Malaysia); Addul R, H. A.; Mizanur R, A. K. M.; Zubair, H. T.; Begum, M.; Yusoff, Z.; Omar, N. Y. M. [Multimedia University, Faculty of Engineering, 2010 Cyberjaya, Selangor (Malaysia); Maah, M. J. [University of Malaya, Department of Chemistry, 50603 Kuala Lumpur (Malaysia); Collin, S. [National Physical Laboratory, Hampton Road, Teddington, TW11 OLW Middlesex (United Kingdom); Mat-Sharif, K. A.; Muhd-Yassin, S. Z.; Zulkifli, M. I., E-mail: d.a.bradley@surrey.ac.uk [Telekom Malaysia Research and Development Sdn Bhd., 63000 Cyberjaya, Selangor (Malaysia)

    2015-10-15

    Full text: Using tailor made sub-mm diameter doped-silica fibres, we are carrying out luminescence dosimetry studies for a range of situations, including thermoluminescence (Tl)investigations on a liquid alpha source formed of {sup 223}RaCl (the basis of the Bayer Health care product Xofigo), the Tl response to a 62 MeV proton source and Tl response to irradiation from an {sup 241}Am-Be neutron source. In regard to the former, in accord with the intrinsic high linear energy transfer (Let) and short path length (<100 um) of the α-particles in calcified tissue, the product is in part intended as a bone-seeking radionuclide for treatment of metastatic cancer, offering high specificity and efficacy. The Tl yield of Ge-doped SiO{sub 2} fibres has been investigated including for photonic crystal fibre un collapsed, flat fibres and single mode fibres, these systems offering many advantages over conventional passive dosimetry types. In particular, one can mention comparable and even superior sensitivity, an effective atomic number Z{sub eff} of the silica dosimetric material close to that of bone, and the glassy nature of the fibres offering the additional advantage of being able to place such dosimeters directly into liquid environments. Finally we review the use of our tailor made fibres for on-line radioluminescence measurements of radiotherapy beams. The outcome from these various lines of research is expected to inform development of doped fiber radiation dosimeters of versatile utility, ranging from clinical applications through to industrial studies and environmental evaluations. (Author)

  18. Theoretical basis for dosimetry

    International Nuclear Information System (INIS)

    Carlsson, G.A.

    1985-01-01

    Radiation dosimetry is fundamental to all fields of science dealing with radiation effects and is concerned with problems which are often intricate as hinted above. A firm scientific basis is needed to face increasing demands on accurate dosimetry. This chapter is an attempt to review and to elucidate the elements for such a basis. Quantities suitable for radiation dosimetry have been defined in the unique work to coordinate radiation terminology and usage by the International Commission on Radiation Units and Measurements, ICRU. Basic definitions and terminology used in this chapter conform with the recent ''Radiation Quantities and Units, Report 33'' of the ICRU

  19. Guide for dosimetry in radiation research on food and agricultural products

    International Nuclear Information System (INIS)

    2002-01-01

    This guide covers the minimum requirements for dosimetry and absorbed-dose validation needed to conduct research on the irradiation of food and agricultural products. Such research includes establishment of the quantitative relationship between the absorbed dose and the relevant effects in these products. This guide also describes the overall need for dosimetry in such research, and in reporting of the results. This guide is intended for use by research scientists in the food and agricultural communities, and not just scientists conducting irradiation research. It, therefore, includes more tutorial information than most other ASTM and ISO/ASTM dosimetry standards for radiation processing. This guide is in no way intended to limit the flexibility of the experimenter in the experimental design. However, the radiation source and experimental set up should be chosen such that the results of the experiment will be beneficial and understandable to other scientists, regulatory agencies, and the food and agricultural communities. The effects produced by ionizing radiation in biological systems depend on a large number of factors which may be physical, physiological, or chemical. Although not treated in detail in this guide, quantitative data of environmental factors that may affect the absorbed-dose response of dosimeters, such as temperature and moisture content in the food or agricultural products should be reported. The overall uncertainty in the absorbed-dose measurement and the inherent absorbed-dose range within the specimen should be taken into account in the design of an experiment. The guide covers research conducted using the following types of ionizing radiation: gamma rays, bremsstrahlung X-rays, and electron beams. This guide does not include other aspects of radiation processing research, such as planning of the experimental design. Dosimetry must be considered as an integral part of the experimental design. The guide does not include dosimetry for irradiator

  20. Film dosimetry for IMRT: sensitivity corrections

    International Nuclear Information System (INIS)

    Suchowerska, N.; Hoban, P.; Davison, A.; Metcalfe, P.

    2000-01-01

    Full text: The trend towards conformal, dynamic and intensity modulated radiotherapy treatments has furthered the need for true integrating dosimetry. In traditional radiotherapy, film dosimetry is commonly used. The accuracy and reproducibility of film optical density as an indicator of dose, has been associated with several variables. These include the effects of film specific sensitivity, direction of exposure, chemical processing and film scanner sensitivity. In this study, a procedure is developed to account for these variables, with a particular view to film being used as a dosimeter for conformal treatments. An effective sensitometric curve was established by exposing part of a single sheet of film to known doses. All films were processed together and scanned using a DuoscanT1200 transmission scanner, resulting in 12 bit image files. The images were analysed using Osiris software and the results fitted to the modified Williamson equation: P P s (l - 10 αD ) This yields values of α [film sensitivity], and P s [saturation pixel value], allowing individual dosimetry films to be normalised to this sensitometric calibration curve. For validation, a piece of Kodak X Omat-V film was sealed in a head phantom and exposed to a total of 51 IMRT fields, delivered from 6 gantry angles. The rest of the sheet of film was resealed and exposed to four known doses, providing sensitometric data, specific to this exposure. All films were then processed, scanned and analysed as described above. Observed variations in serial films exposed to 50cGy is in the order of 9% [mean 25.0,standard deviation = 3.2]. The automatic gain of the scanner system typically contributed 4% variation and needs to be carefully monitored. Results indicate that by using the sensitometric data from each exposure, the collective errors can be minimised. The IMRT exposure results confirm that the above process is viable for use in dosimetry for conformal radiation therapy. Copyright (2000) Australasian

  1. Fostering a culture of interprofessional education for radiation therapy and medical dosimetry students

    International Nuclear Information System (INIS)

    Lavender, Charlotte; Miller, Seth; Church, Jessica; Chen, Ronald C.; Muresan, Petronella A.; Adams, Robert D.

    2014-01-01

    A less-studied aspect of radiation therapy and medical dosimetry education is experiential learning through attendance at interprofessional conferences. University of North Carolina radiation therapy and medical dosimetry students regularly attended morning conferences and daily pretreatment peer review, including approximately 145 hours of direct interaction with medical attending physicians and residents, medical physicists, and other faculty. We herein assessed the effect of their participation in these interprofessional conferences on knowledge and communication. The students who graduated from our radiation therapy and medical dosimetry programs who were exposed to the interprofessional education initiative were compared with those who graduated in the previous years. The groups were compared with regard to their knowledge (as assessed by grades on end-of-training examinations) and team communication (assessed via survey). The results for the 2 groups were compared via exact tests. There was a trend for the examination scores for the 2012 cohort to be higher than for the 2007 to 2011 groups. Survey results suggested that students who attended the interprofessional education sessions were more comfortable speaking with attending physicians, residents, physicists, and faculty compared with earlier students who did not attend these educational sessions. Interprofessional education, particularly vertical integration, appears to provide an enhanced educational experience both in regard to knowledge (per the examination scores) and in building a sense of communication (via the survey results). Integration of interprofessional education into radiation therapy and medical dosimetry educational programs may represent an opportunity to enrich the learning experience in multiple ways and merits further study

  2. Fostering a culture of interprofessional education for radiation therapy and medical dosimetry students

    Energy Technology Data Exchange (ETDEWEB)

    Lavender, Charlotte, E-mail: charlavender@gmail.com; Miller, Seth; Church, Jessica; Chen, Ronald C.; Muresan, Petronella A.; Adams, Robert D.

    2014-04-01

    A less-studied aspect of radiation therapy and medical dosimetry education is experiential learning through attendance at interprofessional conferences. University of North Carolina radiation therapy and medical dosimetry students regularly attended morning conferences and daily pretreatment peer review, including approximately 145 hours of direct interaction with medical attending physicians and residents, medical physicists, and other faculty. We herein assessed the effect of their participation in these interprofessional conferences on knowledge and communication. The students who graduated from our radiation therapy and medical dosimetry programs who were exposed to the interprofessional education initiative were compared with those who graduated in the previous years. The groups were compared with regard to their knowledge (as assessed by grades on end-of-training examinations) and team communication (assessed via survey). The results for the 2 groups were compared via exact tests. There was a trend for the examination scores for the 2012 cohort to be higher than for the 2007 to 2011 groups. Survey results suggested that students who attended the interprofessional education sessions were more comfortable speaking with attending physicians, residents, physicists, and faculty compared with earlier students who did not attend these educational sessions. Interprofessional education, particularly vertical integration, appears to provide an enhanced educational experience both in regard to knowledge (per the examination scores) and in building a sense of communication (via the survey results). Integration of interprofessional education into radiation therapy and medical dosimetry educational programs may represent an opportunity to enrich the learning experience in multiple ways and merits further study.

  3. Personal dosimetry in Kazakhstan

    International Nuclear Information System (INIS)

    Khvoshnyanskaya, I.R.; Vdovichenko, V.G.; Lozbin, A.Yu.

    2003-01-01

    KATEP-AE Radiation Laboratory is the first organization in Kazakhstan officially licensed by the Kazakhstan Atomic Energy Committee to provide individual dosimetry services. The Laboratory was established according to the international standards. Nowadays it is the largest company providing personal dosimetry services in the Republic of Kazakhstan. (author)

  4. Status of neutron dosimetry cross sections

    International Nuclear Information System (INIS)

    Griffin, P.J.; Kelly, J.G.

    1992-01-01

    Several new cross section libraries, such as ENDF/B-VI(release 2), IRDF-90,JEF-2.2, and JENDL-3 Dosimetry, have recently been made available to the dosimetry community. the Sandia National Laboratories (SNL) Radiation Metrology Laboratory (RML) has worked with these libraries since pre-release versions were available. this paper summarizes the results of the intercomparison and testing of dosimetry cross sections. As a result of this analysis, a compendium of the best dosimetry cross sections was assembled from the available libraries for use within the SNL RML. this library, referred to as the SNLRML Library, contains 66 general dosimetry sensors and 3 special dosimeters unique to the RML sensor inventory. The SNLRML cross sections have been put into a format compatible with commonly used spectrum determination codes

  5. Establishing personal dosimetry procedure using optically stimulated luminescence dosimeters in photon and mixed photon-neutron radiation fields

    International Nuclear Information System (INIS)

    Le Ngoc Thiem; Bui Duc Ky; Trinh Van Giap; Nguyen Huu Quyet; Ho Quang Tuan; Vu Manh Khoi; Chu Vu Long

    2017-01-01

    According to Vietnamese Law on Atomic Energy, personal dosimetry (PD) for radiation workers is required periodically in order to fulfil the national legal requirements on occupational radiation dose management. Since the radiation applications have become popular in Vietnamese society, the thermal luminescence dosimeters (TLDs) have been used as passive dosimeters for occupational monitoring in the nation. Together with the quick increase in radiation applications and the number of personnel working in radiation fields, the Optically Stimulated Luminescence Dosimeters (OSLDs) have been first introduced since 2015. This work presents the establishment of PD measuring procedure using OSLDs which are used for measuring photons and betas known as Inlight model 2 OSL (OSLDs-p,e) and for measuring mixed radiations of neutrons, photons and betas known as Inlight LDR model 2 (OSLDs-n,p,e). Such following features of OSLDs are investigated: detection limit, energy response, linearity, reproducibility, angular dependency and fading with both types of OSLDs-p,e and OSLDs-n,p,e. The result of an intercomparison in PD using OSLDs is also presented in the work. The research work also indicates that OSL dosimetry can be an alternative method applied in PD and possibly become one of the most popular personal dosimetry method in the future. (author)

  6. MO-B-BRB-00: Three Dimensional Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by the development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an

  7. Sum rules and constraints on passive systems

    International Nuclear Information System (INIS)

    Bernland, A; Gustafsson, M; Luger, A

    2011-01-01

    A passive system is one that cannot produce energy, a property that naturally poses constraints on the system. A system in convolution form is fully described by its transfer function, and the class of Herglotz functions, holomorphic functions mapping the open upper half-plane to the closed upper half-plane, is closely related to the transfer functions of passive systems. Following a well-known representation theorem, Herglotz functions can be represented by means of positive measures on the real line. This fact is exploited in this paper in order to rigorously prove a set of integral identities for Herglotz functions that relate weighted integrals of the function to its asymptotic expansions at the origin and infinity. The integral identities are the core of a general approach introduced here to derive sum rules and physical limitations on various passive physical systems. Although similar approaches have previously been applied to a wide range of specific applications, this paper is the first to deliver a general procedure together with the necessary proofs. This procedure is described thoroughly and exemplified with examples from electromagnetic theory.

  8. Dosimetry and shielding

    International Nuclear Information System (INIS)

    Farinelli, U.

    1977-01-01

    Today, reactor dosimetry and shielding have wide areas of overlap as concerns both problems and methods. Increased interchange of results and know-how would benefit both. The areas of common interest include calculational methods, sensitivity studies, theoretical and experimental benchmarks, cross sections and other nuclear data, multigroup libraries and procedures for their adjustment, experimental techniques and damage functions. This paper reviews the state-of-the-art and the latest development in each of these areas as far as shielding is concerned, and suggests a number of interactions that could be profitable for reactor dosimetry. Among them, re-evaluation of the potentialities of calculational methods (in view of the recent developments) in predicting radiation environments of interest; the application of sensitivity analysis to dosimetry problems; a common effort in the field of theoretical benchmarks; the use of the shielding one-material propagation experiments as reference spectra for detector cross sections; common standardization of the detector nuclear data used in both fields; the setting up of a common (or compatible) multigroup structure and library applicable to shielding, dosimetry and core physics; the exchange of information and experience in the fields of cross section errors, correlations and adjustment; and the intercomparison of experimental techniques

  9. The Latin American Biological Dosimetry Network (LBDNet)

    International Nuclear Information System (INIS)

    Garcia, O.; Lamadrid, A.I.; Gonzalez, J.E.; Romero, I.; Mandina, T.; Di Giorgio, M.; Radl, A.; Taja, M.R.; Sapienza, C.E.; Deminge, M.M.; Fernandez Rearte, J.; Stuck Oliveira, M.; Valdivia, P.; Guerrero-Carbajal, C.; Arceo Maldonado, C.; Cortina Ramirez, G.E.; Espinoza, M.; Martinez-Lopez, W.; Di Tomasso, M.

    2016-01-01

    Biological Dosimetry is a necessary support for national radiation protection programmes and emergency response schemes. The Latin American Biological Dosimetry Network (LBDNet) was formally founded in 2007 to provide early biological dosimetry assistance in case of radiation emergencies in the Latin American Region. Here are presented the main topics considered in the foundational document of the network, which comprise: mission, partners, concept of operation, including the mechanism to request support for biological dosimetry assistance in the region, and the network capabilities. The process for network activation and the role of the coordinating laboratory during biological dosimetry emergency response is also presented. This information is preceded by historical remarks on biological dosimetry cooperation in Latin America. A summary of the main experimental and practical results already obtained by the LBDNet is also included. (authors)

  10. The performance of passive flow monitors and phosphate accumulating passive samplers when exposed to pulses in external water flow rate and/or external phosphate concentrations

    International Nuclear Information System (INIS)

    O'Brien, Dominique; Hawker, Darryl; Shaw, Melanie; Mueller, Jochen F.

    2011-01-01

    Passive samplers are typically calibrated under constant flow and concentration conditions. This study assessed whether concentration and/or flow pulses could be integrated using a phosphate passive sampler (P-sampler). Assessment involved three 21-day experiments featuring a pulse in flow rate, a pulse of filterable reactive phosphate (FRP) concentration and a simultaneous concentration and flow pulse. FRP concentrations were also determined by parallel grab sampling and the P-sampler calibrated with passive flow monitors (PFMs) and direct measurement of flow rates. The mass lost from the PFM over the deployment periods predicted water velocity to within 5.1, 0.48 and 7.1% when exposed to a flow rate pulse (7.5-50 cm s -1 ), concentration pulse (5-100 μg P L -1 ), or both simultaneously. For the P-sampler, good agreement was observed between the grab and passive measurements of FRP concentration when exposed to a pulse in flow (6% overestimation) or concentration (2% underestimation). - Highlights: → We assess the performance of the passive flow monitor and a phosphate passive sampler when exposed to changing environmental conditions. → The PFM responded quickly and accurately to a pulse in flow rate but showed little response to an external FRP pulse. → The ability of the sampler to provide an integrated measure of the average phosphate concentrations has been demonstrated. → The results presented demonstrate under which conditions the greatest accuracy is achieved when employing passive samplers. - The performance of an integrative phosphate passive sampler has been assessed when exposed to pulses in flow rate and concentration, both individually and simultaneously.

  11. The neutron and low-energy gamma operational dosimetry in Melox plant

    International Nuclear Information System (INIS)

    Devita, A.D.

    2006-01-01

    M.E.L.O.X., subsidiary of A.R.E.V.A., produce M.O.X. fuels, a mixture of uranium and plutonium oxides. With the use in the process of plutonium oxide, there is a risk of external exposure to neutrons and low -energy gamma rays. By their characteristics, both these types of radiation are difficult to measure. The difficulty in measuring neutron doses lies in the fact that the fluence -to-dose equivalent conversion factor varies with the neutron energy level. In low -energy gamma (between 20 and 60 keV) dose measurement, the problem is detection using an electronic system. Just some years ago, very few industrial players were tempted to develop dosimeters in these areas in view of the poor demand and market prospects. Furthermore, radiation protection specialists needed a highly functional and robust direct reading dosimeters or, in other words, a device that was simple, reliable, inexpensive, small, and quick and easy to use in a wide range of working environments that could vary in terms of both the workstation and external exposure. In addition, at sites such as Melox, where company employees work alongside personnel from outside companies, the same types of dosimeters must be used so that dose -related data can be managed globally in one data base. Two technical solutions are available for neutron operational dosimetry - spectrometer-dosimeters and calibration dosimeters. Melox has opted for the use of calibration dosimeters. The reasons for this choice (technical, financial and organizational criteria) are given in this presentation. Before and during the various campaigns of M.O.X. fuels, the spectral characteristics relating to neutron fluence at different workstations and representative of personnel exposure levels were determined. A reference spectrometer was then used to determine the transfer function between fluence and dose in order to calibrate passive and operational dosimeters appropriately.The methodology to be set up should guarantee good

  12. Internal dosimetry, past and future

    International Nuclear Information System (INIS)

    Johnson, J.R.

    1989-03-01

    This paper is a review of the progress in the dosimetry of internally deposited radionuclides (internal dosimetry) since World War II. Previous to that, only naturally occurring radionuclides were available and only a limited number of studies of biokinetics and dosimetry were done. The main radionuclides studied were 226 Ra, 228 Ra, and 224 Ra but natural uranium was also studied mainly because of its toxic effect as a heavy metal, and not because it was radioactive. The effects of 226 Ra in bone, mainly from the radium dial painters, also formed the only bases for the radiotoxicity of radionuclides in bone for many years, and it is still, along with 224 Ra, the main source of information on the effects of alpha emitters in bone. The publications of the International Commission on Radiological Protection that have an impact on internal dosimetry are used as mileposts for this review. These series of publications, more than any other, represent a broad consensus of opinion within the radiation protection community at the time of their publication, and have formed the bases for radiation protection practice throughout the world. This review is not meant to be exhaustive; it is meant to be a personnel view of the evolution of internal dosimetry, and to present the author's opinion of what the future directions in internal dosimetry will be. 39 refs., 2 tabs

  13. A linear 180 nm SOI CMOS antenna switch module using integrated passive device filters for cellular applications

    International Nuclear Information System (INIS)

    Cui Jie; Chen Lei; Liu Yi; Zhao Peng; Niu Xu

    2014-01-01

    A broadband monolithic linear single pole, eight throw (SP8T) switch has been fabricated in 180 nm thin film silicon-on-insulator (SOI) CMOS technology with a quad-band GSM harmonic filter in integrated passive devices (IPD) technology, which is developed for cellular applications. The antenna switch module (ASM) features 1.2 dB insertion loss with filter on 2G bands and 0.4 dB insertion loss in 3G bands, less than −45 dB isolation and maximum −103 dB intermodulation distortion for mobile front ends by applying distributed architecture and adaptive supply voltage generator. (semiconductor integrated circuits)

  14. Individual neutron dosimetry

    International Nuclear Information System (INIS)

    Mauricio, C.L.P.

    1987-01-01

    The most important concepts and development in individual neutron dosimetry are presented, especially the dosimetric properties of the albedo technique. The main problem in albedo dosimetry is to calibrate the dosemeter in the environs of each neutron source. Some of the most used calibration techniques are discussed. The IRD albedo dosemeter used in the routine neutron individual monitoring is described in detail. Its dosimetric properties and calibration methods are discussed. (Author) [pt

  15. Advantages and disadvantages of luminescence dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Olko, Pawel, E-mail: Pawel.Olko@ifj.edu.p [Institute of Nuclear Physics Polish Academy of Science (IFJ PAN), Krakow (Poland)

    2010-03-15

    Owing to their excellent dosimetric properties, luminescence detectors of ionizing radiation are now extensively applied in individual dosimetry services. The most frequently used personal dosemeters are based on Optically Stimulated Luminescence (OSL), radiophotoluminescence (RPL) or thermoluminescence (TL). Luminescence detectors have also found several applications in clinical dosimetry, especially around new radiation modalities in radiotherapy, such as Intensity Modulated Radiotherapy (IMRT) or ion beam radiotherapy. Requirements of luminescence detectors applied in individual and clinical dosimetry and some recent developments in luminescence of detectors and techniques leading to significant improvements of the functionality and accuracy of dosimetry systems are reviewed and discussed.

  16. Accidental and retrospective dosimetry using TL method

    International Nuclear Information System (INIS)

    Mesterházy, D.; Osvay, M.; Kovács, A.; Kelemen, A.

    2012-01-01

    Retrospective dosimetry is one of the most important tools of accidental dosimetry for dose estimation when dose measurement was not planned. In the affected area many objects can be applied as natural dosimeters. The paper discusses our recent investigations on various electronic components and common salt (NaCl) having useful thermoluminescence (TL) properties. Among materials investigated the electronic components of cell phones seem promising for retrospective dosimetry purposes, having high TL responses, proper glow curve peaks and the intensity of TL peaks vs. gamma dose received provided nearly linear response in the dose range of 10 mGy–1.5 Gy. - Highlights: ► Electronic components and common salt were investigated for accidental and retrospective dosimetry. ► SMD resistors seem promising for retrospective dosimetry purposes. ► Table salt can be used effectively for accidental dosimetry purposes, as well.

  17. Development of a silicon calorimeter for dosimetry applications in a water-moderated reactor

    International Nuclear Information System (INIS)

    DePriest, Kendall Russell; King, Donald Bryan; Naranjo, Gerald E.; Luker, Spencer Michael; Keltner, Ned R.; Suo-Anttila, Ahti Jorma; Griffin, Patrick Joseph

    2005-01-01

    High fidelity active dosimetry in the mixed neutron/gamma field of a research reactor is a very complex issue. For passive dosimetry applications, the use of activation foils addresses the neutron environment while the use of low neutron response CaF 2 :Mn thermoluminescent dosimeters (TLDs) addresses the gamma environment. While radiation-hardened diamond photoconducting detectors (PCD) have been developed that provide a very precise fast response (picosecond) dosimeter and can provide a time-dependent profile for the radiation environment, the mixed field response of the PCD is still uncertain and this interferes with the calibration of the PCD response. In order to address the research reactor experimenter's need for a dosimeter that reports silicon dose and dose rate at a test location during a pulsed reactor operation, a silicon calorimeter has been developed. This dosimeter can be used by itself to provide a dose in rad(Si) up to a point in a reactor pulsed operation, or, in conjunction with the diamond PCD, to provide a dose rate. This paper reports on the development, testing, and validation of this silicon calorimeter for applications in water-moderated research reactors.

  18. Dosimetry and Calibration Section

    International Nuclear Information System (INIS)

    Otto, T.

    1998-01-01

    The two tasks of the Dosimetry and Calibration Section at CERN are the Individual Dosimetry Service which assures the personal monitoring of about 5000 persons potentially exposed to ionizing radiation at CERN, and the Calibration Laboratory which verifies all the instruments and monitors. This equipment is used by the sections of the RP Group for assuring radiation protection around CERN's accelerators, and by the Environmental Section of TISTE. In addition, nearly 250 electronic and 300 quartz fibre dosimeters, employed in operational dosimetry, are calibrated at least once a year. The Individual Dosimetry Service uses an extended database (INDOS) which contains information about all the individual doses ever received at CERN. For most of 1997 it was operated without the support of a database administrator as the technician who had assured this work retired. The Software Support Section of TIS-TE took over the technical responsibility of the database, but in view of the many other tasks of this Section and the lack of personnel, only a few interventions for solving immediate problems were possible

  19. Recent developments of optically stimulated luminescence materials and techniques for radiation dosimetry and clinical applications

    Directory of Open Access Journals (Sweden)

    Pradhan A

    2008-01-01

    Full Text Available During the last 10 years, optically stimulated luminescence (OSL has emerged as a formidable competitor not only to thermoluminescence dosimetry (TLD but also to several other dosimetry systems. Though a large number of materials have been synthesized and studied for OSL, Al 2 O 3 :C continues to dominate the dosimetric applications. Re-investigations of OSL in BeOindicate that this material might provide an alternative to Al 2 O 3 :C. Study of OSL of electronic components of mobile phones and ID cards appears to have opened up a feasibility of dosimetry and dose reconstruction using the electronic components of gadgets of everyday use in the events of unforeseen situations of radiological accidents, including the event of a dirty bomb by terrorist groups. Among the newly reported materials, a very recent development of NaMgF 3 :Eu 2+ appears fascinating because of its high OSL sensitivity and tolerable tissue equivalence. In clinical dosimetry, an OSL as a passive dosimeter could do all that TLD can do, much faster with a better or at least the same efficiency; and in addition, it provides a possibility of repeated readout unlike TLD, in which all the dose information is lost in a single readout. Of late, OSL has also emerged as a practical real-time dosimeter for in vivo measurements in radiation therapy (for both external beams and brachytherapy and in various diagnostic radiological examinations including mammography and CT dosimetry. For in vivo measurements, a probe of Al 2 O 3 :C of size of a fraction of a millimeter provides the information on both the dose rate and the total dose from the readout of radioluminescence and OSL signals respectively, from the same probe. The availability of OSL dosimeters in various sizes and shapes and their performance characteristics as compared to established dosimeters such as plastic scintillation dosimeters, diode detectors, MOSFET detectors, radiochromic films, etc., shows that OSL may soon become

  20. Results of a Demonstration Assessment of Passive System Reliability Utilizing the Reliability Method for Passive Systems (RMPS)

    Energy Technology Data Exchange (ETDEWEB)

    Bucknor, Matthew; Grabaskas, David; Brunett, Acacia; Grelle, Austin

    2015-04-26

    Advanced small modular reactor designs include many advantageous design features such as passively driven safety systems that are arguably more reliable and cost effective relative to conventional active systems. Despite their attractiveness, a reliability assessment of passive systems can be difficult using conventional reliability methods due to the nature of passive systems. Simple deviations in boundary conditions can induce functional failures in a passive system, and intermediate or unexpected operating modes can also occur. As part of an ongoing project, Argonne National Laboratory is investigating various methodologies to address passive system reliability. The Reliability Method for Passive Systems (RMPS), a systematic approach for examining reliability, is one technique chosen for this analysis. This methodology is combined with the Risk-Informed Safety Margin Characterization (RISMC) approach to assess the reliability of a passive system and the impact of its associated uncertainties. For this demonstration problem, an integrated plant model of an advanced small modular pool-type sodium fast reactor with a passive reactor cavity cooling system is subjected to a station blackout using RELAP5-3D. This paper discusses important aspects of the reliability assessment, including deployment of the methodology, the uncertainty identification and quantification process, and identification of key risk metrics.

  1. Integrated Passive And Wireless Sensor

    KAUST Repository

    Li, Bodong; Kosel, Jü rgen

    2015-01-01

    A passive and wireless sensor is provided for sensing at least one of magnetic field, temperature or humidity. The sensor can provide only one of the sensing functions, individually or any combination of them simultaneously. It can be used for various applications where magnetic field changes, temperature and/or humidity need to be measured. In one or more embodiments, a surface acoustic wave (SAW) sensor is provided that can measure one or more of a magnetic field (or current that generates the magnetic field), temperature and humidity. In one or more embodiments, a magnetoimpedence (MI) sensor (for example a thin film giant magnetoimpedance (GMI) sensor), a thermally sensitive (for example a Lithium Niobite (LiNbO.sub.3)) substrate, and a humidity sensitive film (for example a hydrogel film) can be used as sensing elements.

  2. Integrated Passive And Wireless Sensor

    KAUST Repository

    Li, Bodong

    2015-04-30

    A passive and wireless sensor is provided for sensing at least one of magnetic field, temperature or humidity. The sensor can provide only one of the sensing functions, individually or any combination of them simultaneously. It can be used for various applications where magnetic field changes, temperature and/or humidity need to be measured. In one or more embodiments, a surface acoustic wave (SAW) sensor is provided that can measure one or more of a magnetic field (or current that generates the magnetic field), temperature and humidity. In one or more embodiments, a magnetoimpedence (MI) sensor (for example a thin film giant magnetoimpedance (GMI) sensor), a thermally sensitive (for example a Lithium Niobite (LiNbO.sub.3)) substrate, and a humidity sensitive film (for example a hydrogel film) can be used as sensing elements.

  3. Internal dosimetry technical basis manual

    International Nuclear Information System (INIS)

    1990-01-01

    The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophical discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs

  4. Internal dosimetry technical basis manual

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-20

    The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophical discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs.

  5. Information from the Dosimetry Service

    CERN Multimedia

    2006-01-01

    Please note the following opening hours of the Service: From 31st July onwards: Every morning from 8:30 to 12:00 The Service is closed in the afternoons. We should like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCTs) must always be returned to the Service after use and must not be left on the racks in the experimental areas or in the secretariats. Dosimetry Service Tel 72155 Bldg. 24 E 011 Dosimetry.service@cern.ch http://cern.ch/rp-dosimetry

  6. NucleDyne's passive containment system

    International Nuclear Information System (INIS)

    Falls, O.B. Jr.; Kleimola, F.W.

    1987-01-01

    A simple definition of the passive containment system is that it is a total safeguards system for light water reactors designed to prevent and contain any accidental release of radioactivity. Its passive features utilize the natural laws of physics and thermodynamics. The system encompasses three basic containments constructed as one integrated structure on the reactor building foundation. The primary containment encloses the reactor pressure vessel and coolant system and passive engineered safety systems and components. Auxiliary containment enclosures house auxiliary systems and components. Secondary containment (the reactor building), housing the primary and auxiliary containment structures, provides a second containment barrier as added defense-in-depth against leakage of radioactivity for all accidents assumed by the industry. The generic features of the passive containment system are applicable to both the boiling water reactors and the pressurized water reactors as standardized features for all power ranges. These features provide for a zero source term, the industry's ultimate safety goal. This paper relates to a four-loop pressurized water reactor

  7. In vivo dosimetry in radiation therapy in Sweden; In vivo-dosimetri inom straalbehandling i Sverige

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Jacob; Blomquist, Michael (Norrlands universitetssjukhus, Umeaa (Sweden))

    2010-07-15

    A prerequisite for achieving high radiation safety for patients receiving external beam radiation therapy is that the hospitals have a quality assurance program. The program should include include monitoring of the radiation dose given to the patient. Control measurements are performed both at the system level and at the individual level. Control measurement is normally performed using in vivo dosimetry, e.g. a method to measure the radiation dose at the individual level during the actual radiation treatment time. In vivo dosimetry has proven to be an important tool to detect and prevent serious errors in patient treatment. The purpose of this research project was to identify the extent to which vivo dosimetry is used and the methods available for this at Swedish radiation therapy clinics. The authority also wanted to get an overall picture of how hospitals manage results of in vivo dosimetry, and how clinics control radiation dose when using modern treatment techniques. The report reflects the situation in Swedish radiotherapy clinics 2007. The report shows that all hospitals use some form of in vivo dosimetry. The instruments used are mainly diodes and termoluminiscence dosimeters

  8. Hybrid Active-Passive Radiation Shielding System

    Data.gov (United States)

    National Aeronautics and Space Administration — A radiation shielding system is proposed that integrates active magnetic fields with passive shielding materials. The objective is to increase the shielding...

  9. The Latin American Biological Dosimetry Network (LBDNet).

    Science.gov (United States)

    García, O; Di Giorgio, M; Radl, A; Taja, M R; Sapienza, C E; Deminge, M M; Fernández Rearte, J; Stuck Oliveira, M; Valdivia, P; Lamadrid, A I; González, J E; Romero, I; Mandina, T; Guerrero-Carbajal, C; ArceoMaldonado, C; Cortina Ramírez, G E; Espinoza, M; Martínez-López, W; Di Tomasso, M

    2016-09-01

    Biological Dosimetry is a necessary support for national radiation protection programmes and emergency response schemes. The Latin American Biological Dosimetry Network (LBDNet) was formally founded in 2007 to provide early biological dosimetry assistance in case of radiation emergencies in the Latin American Region. Here are presented the main topics considered in the foundational document of the network, which comprise: mission, partners, concept of operation, including the mechanism to request support for biological dosimetry assistance in the region, and the network capabilities. The process for network activation and the role of the coordinating laboratory during biological dosimetry emergency response is also presented. This information is preceded by historical remarks on biological dosimetry cooperation in Latin America. A summary of the main experimental and practical results already obtained by the LBDNet is also included. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Research and innovation in radiation dosimetry

    International Nuclear Information System (INIS)

    Delgado, A.

    1999-01-01

    In this article some relevant lines of research in radiation dosimetry are presented. In some of them innovative approaches have been recently proposed in recent years. In others innovation is still to come as it is necessary in view of the insufficiency of the actual methods and techniques. mention is made to Thermoluminescence Dosimetry an to the improvement produced by new computational methods for the analysis of the usually complex TL signals. A solid state dosimetric technique recently proposed, Optically Stimulated Luminescence, OSL, is briefly presented. This technique promises advantages over TLD for personal and environmental dosimetry. The necessity of improving the measurement characteristics of neutron personal dosemeters is commented, making reference to some very recent developments. The situation of the dosimetry in connection with radiobiology research is overviewed, commenting the controversy on the adequacy and utility of the quality absorbed dose for these activities. Finally the special problematic of internal dosimetry is discussed. (Author) 25 refs

  11. A CMOS pressure sensor with integrated interface for passive RFID applications

    International Nuclear Information System (INIS)

    Deng, Fangming; He, Yigang; Wu, Xiang; Fu, Zhihui

    2014-01-01

    This paper presents a CMOS pressure sensor with integrated interface for passive RFID sensing applications. The pressure sensor consists of three parts: top electrode, dielectric layer and bottom electrode. The dielectric layer consists of silicon oxide and an air gap. The bottom electrode is made of polysilicon. The gap is formed by sacrificial layer release and the Al vapor process is used to seal the gap and form the top electrode. The sensor interface is based on phase-locked architecture, which allows the use of fully digital blocks. The proposed pressure sensor and interface is fabricated in a 0.18 μm CMOS process. The measurement results show the pressure sensor achieves excellent linearity with a sensitivity of 1.2 fF kPa −1 . The sensor interface consumes only 1.1 µW of power at 0.5 V voltage supply, which is at least an order of magnitude better than state-of-the-art designs. (paper)

  12. Dosimetry control for radiation processing - basic requirements and standards

    International Nuclear Information System (INIS)

    Ivanova, M.; Tsrunchev, Ts.

    2004-01-01

    A brief review of the basic international codes and standards for dosimetry control for radiation processing (high doses dosimetry), setting up a dosimetry control for radiation processing and metrology control of the dosimetry system is made. The present state of dosimetry control for food processing and the Bulgarian long experience in food irradiation (three irradiation facilities are operational at these moment) are presented. The absence of neither national standard for high doses nor accredited laboratory for calibration and audit of radiation processing dosimetry systems is also discussed

  13. Dosimetry in dentistry.

    Science.gov (United States)

    Asha, M L; Chatterjee, Ingita; Patil, Preeti; Naveen, S

    2015-01-01

    The purpose of this paper was to review various dosimeters used in dentistry and the cumulative results of various studies done with various dosimeters. Several relevant PubMed indexed articles from 1999 to 2013 were electronically searched by typing "dosimeters", "dosimeters in dentistry", "properties of dosimeters", "thermoluminescent and optically stimulated dosimeters", "recent advancements in dosimetry in dentistry." The searches were limited to articles in English to prepare a concise review on dental dosimetry. Titles and abstracts were screened, and articles that fulfilled the criteria of use of dosimeters in dental applications were selected for a full-text reading. Article was divided into four groups: (1) Biological effects of radiation, (2) properties of dosimeters, (3) types of dosimeters and (4) results of various studies using different dosimeters. The present review on dosimetry based on various studies done with dosimeters revealed that, with the advent of radiographic technique the effective dose delivered is low. Therefore, selection of radiological technique plays an important role in dental dose delivery.

  14. Secondary standard dosimetry system with automatic dose/rate calculation

    International Nuclear Information System (INIS)

    Duftschmid, K.E.; Bernhart, J.; Stehno, G.; Klosch, W.

    1980-01-01

    A versatile and automated secondary standard instrument has been designed for quick and accurate dose/rate measurement in a wide range of radiation intensity and quality (between 1 μR and 100 kR; 0.2 nC/kg - 20C/kg) for protection and therapy level dosimetry. The system is based on a series of secondary standard ionization chambers connected to a precision digital current integrator with microprocessor circuitry for data evaluation and control. Input of measurement parameters and calibration factors stored in an exchangeable memory chip provide computation of dose/rate values in the desired units. The ionization chambers provide excellent long-term stability and energy response and can be used with internal check sources to test validity of calibration. The system is a useful tool particularly for daily measurements in a secondary standard dosimetry laboratory or radiation therapy center. (H.K.)

  15. International Intercomparison Exercise for Nuclear Accident Dosimetry at the DAF Using GODIVA-IV

    Energy Technology Data Exchange (ETDEWEB)

    Hickman, David [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hudson, Becka [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-15

    The Nuclear Criticality Safety Program operated under the direction of Dr. Jerry McKamy completed the first NNSA Nuclear Accident Dosimetry exercise on May 27, 2016. Participants in the exercise were from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), Savanah River Site (SRS), Pacific Northwest National Laboratory (PNNL), US Navy, the Atomic Weapons Establishment (United Kingdom) under the auspices of JOWOG 30, and the Institute for Radiological Protection and Nuclear Safety (France) by special invitation and NCSP memorandum of understanding. This exercise was the culmination of a series of Integral Experiment Requests (IER) that included the establishment of the Nuclear Criticality Experimental Research Center, (NCERC) the startup of the Godiva Reactor (IER-194), the establishment of a the Nuclear Accident Dosimetry Laboratory (NAD LAB) in Mercury, NV, and the determination of reference dosimetry values for the mixed neutron and photon radiation field of Godiva within NCERC.

  16. Official dosimetry with individual electronic dosemeters - the concept in Germany

    International Nuclear Information System (INIS)

    Czarwinski, R.; Kaulard, J.; Pfeffer, W.

    2005-01-01

    Full text: Presently, in Germany passive dosemeters (film batches, RPL, TLD) are used for the official individual monitoring of occupational exposed personal. The application of electronic individual dosemeters (EPD) is carried out mainly for the operative radiation protection control particularly in nuclear power engineering companies, big hospitals und research centres. This means in such institutions double monitoring exists - legally and operatively. A crucial advantage of EPD compared to passive dosemeter is the possibility to adapt the monitoring period to the working time in the control area, e.g. a job related monitoring is available. Germany started a project for an optimized implementation of EPD into the official dosimetry. Objective of the project whose results will be described in the paper is the harmonization of radiation protection of companies workers and outside workers concerning the record of individual and job related exposures. The approval of the EPD by the Federal and Laender authorities as an official dosimetric system demands the implementation of special requirements concerning the data acquisition, data transfer and data evaluation. These issues are focuses of the Federal research project, supervised by the Federal Office for Radiation Protection (BfS) and performed by the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS), Cologne to develop a concept in the first stage. (author)

  17. Results of the dosimetry intercomparison

    International Nuclear Information System (INIS)

    Dure, Elsa S.

    2000-07-01

    The appropriate way to verify the accuracy of the results of dose reported by the laboratories that offer lend personal dosimetry service is in the periodic participation of round of intercomparison dosimetry, undertaken by laboratories whose standards are trace (Secondary Laboratory). The Laboratory of External Personal Dosimetry of the CNEA-PY has participated in three rounds of intercomparison. The first two were organized in the framework of the Model Project RLA/9/030 RADIOLOGICAL WASTE SECURITY, and the irradiations were carried out in the Laboratory of Regional Calibration of the Center of Nuclear Technology Development, Belo Horizonte-Brazil (1998) and in the National Laboratory of Metrology of the ionizing radiations of the Institute of Radioprotection and Dosimetry, Rio de Janeiro-Brazil (1999). The third was organized by the IAEA and the irradiations were made in the Physikalisch-Technische Bundesanstalt PTB, Braunschweig - Federal Republic of Germany (1999-2000) [es

  18. Dosimetry standards for radiation processing

    International Nuclear Information System (INIS)

    Farrar, H. IV

    1999-01-01

    For irradiation treatments to be reproducible in the laboratory and then in the commercial environment, and for products to have certified absorbed doses, standardized dosimetry techniques are needed. This need is being satisfied by standards being developed by experts from around the world under the auspices of Subcommittee E10.01 of the American Society for Testing and Materials (ASTM). In the time period since it was formed in 1984, the subcommittee has grown to 150 members from 43 countries, representing a broad cross-section of industry, government and university interests. With cooperation from other international organizations, it has taken the combined part-time effort of all these people more than 13 years to complete 24 dosimetry standards. Four are specifically for food irradiation or agricultural applications, but the majority apply to all forms of gamma, x-ray, Bremsstrahlung and electron beam radiation processing, including dosimetry for sterilization of health care products and the radiation processing of fruits, vegetables, meats, spices, processed foods, plastics, inks, medical wastes and paper. An additional 6 standards are under development. Most of the standards provide exact procedures for using individual dosimetry systems or for characterizing various types of irradiation facilities, but one covers the selection and calibration of dosimetry systems, and another covers the treatment of uncertainties. Together, this set of standards covers essentially all aspects of dosimetry for radiation processing. The first 20 of these standards have been adopted in their present form by the International Organization of Standardization (ISO), and will be published by ISO in 1999. (author)

  19. Application of solid state track detector to neutron dosimetry

    International Nuclear Information System (INIS)

    Tsuruta, Takao

    1979-01-01

    Though solid state track detectors (SSTD) are radiation measuring instrument for heavy charged particles by itself, it can be used as radiation measuring instrument for neutrons, if nuclear reactions such as (n, f) or (n, α) reaction are utilized. Since the means was found, which permits to observe the tracks of heavy charged particles in a solid with an optical microscope by chemically etching the tracks to enlarge them to etch pits, various types of detectors have been developed for the purpose of measuring neutron dose. The paper is described on the materials and construction of the SSTDs for neutron dosimetry, and the sensitivity is explained with mathematical equations. The features of neutron dosimetry with SSTDs are as follows: They are compact, and scarcely disturb neutron field, thus delicate dose distribution can be known; integration measurement is possible regardless of dose rate values because of integrating type detectors; it is not influenced by β-ray or γ-ray except the case when there is high energy radiation such as causing photonuclear reactions or high dose such as degrading solids, it has pretty high sensitivity; track fading is negligible during the normal measuring time around room temperature; and the etching images of tracks are relatively clear, and various automatic counting systems can be employed. (Wakatsuki, Y.)

  20. The dosimetry programme of the IAEA

    International Nuclear Information System (INIS)

    1987-01-01

    Describes the activities of the IAEA's Dosimetry Laboratory which provides calibration and comparison services for secondary standard dosimetry laboratories (SSDLs) of Member States. In addition, a joint IAEA/WHO postal dosimetry service has been established for radiotherapy centers. The International Measurement System and the calibration ''chain'' from measurement standard instruments of the International Bureau of Weights and Measurements (BIPM) through the primary and secondary standards to the dosimeters of the users are presented as well

  1. Internal Dosimetry Intake Estimation using Bayesian Methods

    International Nuclear Information System (INIS)

    Miller, G.; Inkret, W.C.; Martz, H.F.

    1999-01-01

    New methods for the inverse problem of internal dosimetry are proposed based on evaluating expectations of the Bayesian posterior probability distribution of intake amounts, given bioassay measurements. These expectation integrals are normally of very high dimension and hence impractical to use. However, the expectations can be algebraically transformed into a sum of terms representing different numbers of intakes, with a Poisson distribution of the number of intakes. This sum often rapidly converges, when the average number of intakes for a population is small. A simplified algorithm using data unfolding is described (UF code). (author)

  2. Hematological dosimetry

    International Nuclear Information System (INIS)

    Fluery-Herard, A.

    1991-01-01

    The principles of hematological dosimetry after acute or protracted whole-body irradiation are reviewed. In both cases, over-exposure is never homogeneous and the clinical consequences, viz medullary aplasia, are directly associated with the mean absorbed dose and the seriousness and location of the overexposure. The main hematological data required to assess the seriousness of exposure are the following: repeated blood analysis, blood precursor cultures, as indicators of whole-body exposure; bone marrow puncture, medullary precursor cultures and medullary scintigraphy as indicators of the importance of a local over-exposure and capacity for spontaneous repair. These paraclinical investigations, which are essential for diagnosis and dosimetry, are also used for surveillance and for the main therapeutic issues [fr

  3. Design, comparison, and testing of a new user-friendly extremity dosimetry system

    Energy Technology Data Exchange (ETDEWEB)

    Stadtmann, H.; Schmitzer, C.; Michler, E. [Austrian Research Centre, Seibersdorf (Austria); Fellinger, J.; Velbeck, K.J.; Rotunda, J.E. [BICRON RMP, Solon (United States)

    2000-05-01

    A new extremity TLD system has been developed and tested that provides for user convenience and automated processing while meeting various accreditation requirements. The design is a result of successful collaboration among organisational entities in different countries and included research centres, users, and the manufacturer. The primary consideration was to meet the needs of the medical market, without losing sight of the needs of research laboratories and power plants. This dosimetry system design provides various detector designs based on the need to measure photons or betas. Beyond the fundamental need for accurate dosimetry, the system meets the customers need for a versatile and comfortable ring and provides for both hot and cold sterilisation. The system represents a unique integration of components comprising the finger ring, dosimeter and dosimeter identification system, and TLD Instruments. The dosimeter identification system in the TLD Reader incorporates a CCD Camera and Machine Vision Technology to interpret the circular bar codes used to quickly and accurately identifies each individual dosimeter. Portability of this dosimetry system has been realised with the adaptation into multiple TLD Instruments. (author)

  4. Design, comparison, and testing of a new user-friendly extremity dosimetry system

    International Nuclear Information System (INIS)

    Stadtmann, H.; Schmitzer, C.; Michler, E.; Fellinger, J.; Velbeck, K.J.; Rotunda, J.E.

    2000-01-01

    A new extremity TLD system has been developed and tested that provides for user convenience and automated processing while meeting various accreditation requirements. The design is a result of successful collaboration among organisational entities in different countries and included research centres, users, and the manufacturer. The primary consideration was to meet the needs of the medical market, without losing sight of the needs of research laboratories and power plants. This dosimetry system design provides various detector designs based on the need to measure photons or betas. Beyond the fundamental need for accurate dosimetry, the system meets the customers need for a versatile and comfortable ring and provides for both hot and cold sterilisation. The system represents a unique integration of components comprising the finger ring, dosimeter and dosimeter identification system, and TLD Instruments. The dosimeter identification system in the TLD Reader incorporates a CCD Camera and Machine Vision Technology to interpret the circular bar codes used to quickly and accurately identifies each individual dosimeter. Portability of this dosimetry system has been realised with the adaptation into multiple TLD Instruments. (author)

  5. Development and current state of dosimetry in Cuba

    International Nuclear Information System (INIS)

    Prieto Miranda, E.F.; Cuesta Fuente, G.; Chavez Ardanza, A.

    1999-01-01

    In Cuba, the application of the radiation technologies has been growing in the last years, and at present there are several dosimetry systems with different ranges of absorbed dose. Diverse researches were carried out on high dose dosimetry with the following dosimetry systems: Fricke, ceric-cerous sulfate, ethanol-chlorobenzene, cupric sulfate and Perspex (Red 4034 AE and Clear HX). In this paper the development achieved during the last 15 years in the high dose dosimetry for radiation processing in Cuba is presented, as well as, the current state of different dosimetry systems employed for standardization and for process control. The paper also reports the results of dosimetry intercomparison studies that were performed with the Ezeiza Atomic Center of Argentine and the International Dose Assurance Service (IDAS) of IAEA. (author)

  6. Evaluation of remote delivery of Passive Integrated Transponder (PIT technology to mark large mammals.

    Directory of Open Access Journals (Sweden)

    W David Walter

    Full Text Available Methods to individually mark and identify free-ranging wildlife without trapping and handling would be useful for a variety of research and management purposes. The use of Passive Integrated Transponder technology could be an efficient method for collecting data for mark-recapture analysis and other strategies for assessing characteristics about populations of various wildlife species. Passive Integrated Transponder tags (PIT have unique numbered frequencies and have been used to successfully mark and identify mammals. We tested for successful injection of PIT and subsequent functioning of PIT into gelatin blocks using 4 variations of a prototype dart. We then selected the prototype dart that resulted in the least depth of penetration in the gelatin block to assess the ability of PIT to be successfully implanted into muscle tissue of white-tailed deer (Odocoileus virginianus post-mortem and long-term in live, captive Rocky Mountain elk (Cervus elaphus. The prototype dart with a 12.7 mm (0.5 inch needle length and no powder charge resulted in the shallowest mean (± SD penetration depth into gelatin blocks of 27.0 mm (± 5.6 mm with 2.0 psi setting on the Dan-Inject CO(2-pressured rifle. Eighty percent of PIT were successfully injected in the muscle mass of white-tailed deer post-mortem with a mean (± SD penetration depth of 22.2 mm (± 3.8 mm; n = 6. We injected PIT successfully into 13 live, captive elk by remote delivery at about 20 m that remained functional for 7 months. We successfully demonstrated that PIT could be remotely delivered in darts into muscle mass of large mammals and remain functional for >6 months. Although further research is warranted to fully develop the technique, remote delivery of PIT technology to large mammals is possible using prototype implant darts.

  7. Thermoluminescence dosimetry and its applications in medicine. Part 2: history and applications

    International Nuclear Information System (INIS)

    Kron, T.

    1995-01-01

    Thermoluminescence dosimetry (TLD) has been available for dosimetry of ionising radiation for nearly 100 years. The variety of materials and their different physical forms allow the determination of different radiation qualities over a wide range of absorbed dose. This makes TL dosimeters useful in radiation protection where dose levels of μ Gy are monitored as well as in radiotherapy where doses up to several Gray are to be measured. The major advantages of TL detectors are their small physical size and that no cables or auxiliary equipment is required during the dose assessment. TLD is considered to be a good method for point dose measurements in phantoms as well as for in vivo dosimetry on patients during radiotherapy treatment. As an integrative dosimetric technique, it can be applied to personal dosimetry and it lends itself to the determination of dose distributions due to multiple or moving radiation sources (e.g. conformal and dynamic radiotherapy, computed tomography). In addition, TL dosimeters are easy to transport, and they can be mailed. This makes them well suited for intercomparison of doses delivered in different institutions. The present article aims at describing the various applications TLD has found in medicine by taking into consideration the physics and practice of TLD measurements which have been discussed in the first part of this review. 198 refs., 4 tabs., 2 figs

  8. Chemical dosimetry system for criticality accidents.

    Science.gov (United States)

    Miljanić, Saveta; Ilijas, Boris

    2004-01-01

    Ruder Bosković Institute (RBI) criticality dosimetry system consists of a chemical dosimetry system for measuring the total (neutron + gamma) dose, and a thermoluminescent (TL) dosimetry system for a separate determination of the gamma ray component. The use of the chemical dosemeter solution chlorobenzene-ethanol-trimethylpentane (CET) is based on the radiolytic formation of hydrochloric acid, which protonates a pH indicator, thymolsulphonphthalein. The high molar absorptivity of its red form at 552 nm is responsible for a high sensitivity of the system: doses in the range 0.2-15 Gy can be measured. The dosemeter has been designed as a glass ampoule filled with the CET solution and inserted into a pen-shaped plastic holder. For dose determinations, a newly constructed optoelectronic reader has been used. The RBI team took part in the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002, with the CET dosimetry system. For gamma ray dose determination TLD-700 TL detectors were used. The results obtained with CET dosemeter show very good agreement with the reference values.

  9. Holographic method coupled with an optoelectronic interface applied in the ionizing radiation dosimetry

    International Nuclear Information System (INIS)

    Nicolau-Rebigan, S.; Sporea, D.; Niculescu, V.I.R.

    2000-01-01

    The paper presents a holographic method applied in the ionizing radiation dosimetry. It is possible to use two types of holographic interferometry like as double exposure holographic interferometry, or fast real time holographic interferometry. In this paper the applications of holographic interferometry to ionizing radiation dosimetry are presented. The determination of the accurate value of dose delivered by an ionizing radiation source (released energy per mass unit) is a complex problem which imposes different solutions depending on experimental parameters and it is solved with a double exposure holographic interferometric method associated with an optoelectronic interface and Z80 microprocessor. The method can determine the absorbed integral dose as well as the three-dimensional distribution of dose in given volume. The paper presents some results obtained in radiation dosimetry. Original mathematical relations for integral absorbed dose in irreversible radiolyzing liquids where derived. Irradiation effects can be estimated from the holographic fringes displacement and density. To measure these parameters, the obtained holographic interferograms were picked-up by a closed TV circuit system in such a way that a selected TV line explores the picture along the direction of interest using a special designed interface, a Z80 and our microprocessor system captures data along the selected TV line. When the integral dose is to be measured the microprocessor computes it from the information contained in the fringes distribution, according to the proposed formulae. Integral absorbed dose and spatial dose distribution can be estimated with an accuracy better than 4%. Some advantages of this method are outlined comparatively with conventional method in radiation dosimetry. The paper presents an original holographic set-up with an electronic interface, assisted by a Z80 microprocessor and used for nondestructive testing of transparent objects at the laser wave length

  10. The work programme of EURADOS on internal and external dosimetry.

    Science.gov (United States)

    Rühm, W; Bottollier-Depois, J F; Gilvin, P; Harrison, R; Knežević, Ž; Lopez, M A; Tanner, R; Vargas, A; Woda, C

    2018-01-01

    Since the early 1980s, the European Radiation Dosimetry Group (EURADOS) has been maintaining a network of institutions interested in the dosimetry of ionising radiation. As of 2017, this network includes more than 70 institutions (research centres, dosimetry services, university institutes, etc.), and the EURADOS database lists more than 500 scientists who contribute to the EURADOS mission, which is to promote research and technical development in dosimetry and its implementation into practice, and to contribute to harmonisation of dosimetry in Europe and its conformance with international practices. The EURADOS working programme is organised into eight working groups dealing with environmental, computational, internal, and retrospective dosimetry; dosimetry in medical imaging; dosimetry in radiotherapy; dosimetry in high-energy radiation fields; and harmonisation of individual monitoring. Results are published as freely available EURADOS reports and in the peer-reviewed scientific literature. Moreover, EURADOS organises winter schools and training courses on various aspects relevant for radiation dosimetry, and formulates the strategic research needs in dosimetry important for Europe. This paper gives an overview on the most important EURADOS activities. More details can be found at www.eurados.org .

  11. Dosimetry and operation of irradiation facilities

    International Nuclear Information System (INIS)

    Vidal, P.E.

    1985-01-01

    The industrial use of ionizing radiation has required, from the very first, the measurement of delivered and absorbed doses; hence the necessity of providing dosimetric systems. Laboratories, scientists, industries and potential equipment manufacturers have all collaborated in this new field of activity. Dosimetric intercomparisons have been made by each industry at their own facilities and in collaboration with specialists, national organizations and the IAEA. Dosimetry has become a way of ensuring that treatment by irradiation has been carried out in accordance with the rules. It has become in effect assurance of quality. Routine dosimetry should determine a maximum and minimum dose. Numerous factors play a part in dosimetry. Industry is currently in possession of routine dosimetric systems that are sufficiently accurate, fairly easy to handle and reasonable in cost, thereby satisfying all the requirements of industry and the need for control. Dosimetry is important in the process of marketing irradiated products. The operator of an industrial irradiation facility bases his dosimetry on comparison with reference systems. Research aimed at simplifying the practice of routine dosimetry should be continued. New physical and chemical techniques will be incorporated into systems already in use. The introduction of microcomputers into the operation of radiation facilities has increased the value of dosimetry and made the conditions of treatment more widespread. Stress should be placed on research in several areas apart from reference systems, for example: dosimetric systems at temperatures from +8 deg. C to -45 deg. C, over the dose range 100 krad to a little more than 1 Mrad, liquids and fluidized solids carried at high speed through ducts, thin-film liquids circulating at a high flow rate, and various other problems. (author)

  12. OSL Based Anthropomorphic Phantom and Real-Time Organ Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    David E. Hintenlang, Ph.D

    2009-02-10

    The overall objective of this project was the development of a dosimetry system that provides the direct measurement of organ does in real-time with a sensitivity that makes it an effective tool for applications in a wide variety of health physics applications. The system included the development of a real-time readout system for fiber optic coupled (FOC) dosimeters that is integrated with a state-of-art anthropomorphic phantom to provide instantaneous measures of organ doses throughout the phantom. The small size of the FOC detectors and optical fibers allow the sensitive volume of the detector to be located at organ centroids (or multiple locations distributed through the organ) within a tissue equivalent, anthropomorphic phantom without perturbing the tissue equivalent features of the phantom. The developed phantom/dosimetry system can be used in any environment where personnel may be exposed to gamma or x-ray radiations to provide the most accurate determinations of organ and effective doses possible to date.

  13. OSL Based Anthropomorphic Phantom and Real-Time Organ Dosimetry

    International Nuclear Information System (INIS)

    Hintenlang, David E.

    2009-01-01

    The overall objective of this project was the development of a dosimetry system that provides the direct measurement of organ doses in real-time with a sensitivity that makes it an effective tool for applications in a wide variety of health physics applications. The system included the development of a real-time readout system for fiber optic coupled (FOC) dosimeters that is integrated with a state-of-art anthropomorphic phantom to provide instantaneous measures of organ doses throughout the phantom. The small size of the FOC detectors and optical fibers allow the sensitive volume of the detector to be located at organ centroids (or multiple locations distributed through the organ) within a tissue equivalent, anthropomorphic phantom without perturbing the tissue equivalent features of the phantom. The developed phantom/dosimetry system can be used in any environment where personnel may be exposed to gamma or x-ray radiations to provide the most accurate determinations of organ and effective doses possible to date

  14. Dosimetry of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez C, G; Restrepo, J; Aguirre, C A [Hospital Universitario del Valle, Cali (Colombia)

    1996-08-01

    The systemic therapy of breast cancer has also changed profoundly during the last 60 years, and in this time the integration of treatment modalities involve a major area of investigation. The dosimetry of breast cancer presents different complications which can range from the Physician`s handling of the neoplasia up to the simple aspects of physical simulation, contour design, radiation fields, irregular surfaces and computer programs containing mathematical equations which differ little or largely with the reality of the radiation distribution into the volume to be irradiated. We have studied the problem using two types of measurements to determine how the radiation distribution is in irregular surfaces, and designing an easier skill to be used with each patient, in order to optimize the treatment with respect to the simulation and verification process. (author). 7 refs.

  15. Production of analysis code for 'JOYO' dosimetry experiment

    International Nuclear Information System (INIS)

    Sasaki, Makoto; Nakazawa, Masaharu.

    1981-01-01

    As part of the measurement and analysis plan for the Dosimetry Experiment at the ''JOYO'' experimental fast reactor, neutron flux spectra analysis is performed using the NEUPAC (Neutron Unfolding Code Package) computer program. The code calculates the neutron flux spectra and other integral quantities from the activation data of the dosimeter foils. The NEUPAC code is based on the J1-type unfolding method, and the estimated neutron flux spectra is obtained as its solution. The program is able to determine the integral quantities and their sensitivities, together with an error estimate of the unfolded spectra and integral quantities. The code also performs a chi-square test of the input/output data, and contains many options for the calculational routines. This report presents the analytic theory, the program algorithms, and a description of the functions and use of the NEUPAC code. (author)

  16. On the use of new generation mobile phone (smart phone) for retrospective accident dosimetry

    International Nuclear Information System (INIS)

    Lee, J.I.; Chang, I.; Pradhan, A.S.; Kim, J.L.; Kim, B.H.; Chung, K.S.

    2015-01-01

    Optically stimulated luminescence (OSL) characteristics of resistors, inductors and integrated-circuit (IC) chips, extracted from new generation smart phones, were investigated for the purpose of retrospective accident dosimetry. Inductor samples were found to exhibit OSL sensitivity about 5 times and 40 times higher than that of the resistors and the IC chips, respectively. On post-irradiation storage, the resistors exhibited a much higher OSL fading (about 80 % in 36 h as compared to the value 3 min after irradiation) than IC chips (about 20 % after 36 h) and inductors (about 50 % in 36 h). Higher OSL sensitivity, linear dose response (from 8.7 mGy up to 8.9 Gy) and acceptable fading make inductors more attractive for accident dosimetry than widely studied resistors. - Highlights: • OSL properties of electronic components from a smart phone were investigated. • OSL Sensitivity of inductor was estimated to 5 times higher than that of resistor. • Inductor exhibits most attractive properties for retrospective accident dosimetry.

  17. A passive monitor for radon using electrochemical track etch detector

    International Nuclear Information System (INIS)

    Massera, G.E.; Hassib, G.M.; Piesch, E.

    1980-01-01

    A passive, inexpensive monitor for radon detection and dosimetry is described in detail. It consists of a Makrofoil track etch detector inside a diffusion chamber which is sealed by a fibreglass filter through which radon may diffuse while radon daughters and aerosols are retained on the surface of the filter. The α-particle tracks are revealed by etching the Makrofoil in KOH. The lower detection limit of the radon dosimeter is equivalent to a mean dose in the lung of 130 mrem. After an exposure period of 3 months, a mean radon concentration of 0.3 pCi/l can be detected. The instrument is intended for use in a study to measure the long-term radon exposure in buildings in West Germany. (UK)

  18. Thermoluminescence in medical dosimetry; Termoluminiscencia en dosimetria medica

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, T., E-mail: trivera@ipn.mx [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico)

    2011-10-15

    The dosimetry by thermoluminescence (Tl) is applied in the entire world for the dosimetry of ionizing radiations specially to personal and medical dosimetry. This dosimetry method has been very interesting for measures in vivo because the Tl dosimeters have the advantage of being very sensitive in a very small volume and they are also equivalent to tissue and they do not need additional accessories (for example, cable, electrometer, etc.) The main characteristics of the diverse Tl materials to be used in the radiation measures and practical applications are: the Tl curve, the share homogeneity, the signal stability after the irradiation, precision and exactitude, the response in function with the dose and the energy influence. In this work a brief summary of the advances of the radiations dosimetry is presented by means of the thermally stimulated luminescence and its application to the dosimetry in radiotherapy. (Author)

  19. Calibration and field performance of membrane-enclosed sorptive coating for integrative passive sampling of persistent organic pollutants in water

    International Nuclear Information System (INIS)

    Vrana, Branislav; Paschke, Albrecht; Popp, Peter

    2006-01-01

    Membrane-enclosed sorptive coating (MESCO) is a miniaturised monitoring device that enables integrative passive sampling of persistent, hydrophobic organic pollutants in water. The system combines the passive sampling with solventless preconcentration of organic pollutants from water and subsequent desorption of analytes on-line into a chromatographic system. Exchange kinetics of chemicals between water and MESCO was studied at different flow rates of water, in order to characterize the effect of variable environmental conditions on the sampler performance, and to identify a method for in situ correction of the laboratory-derived calibration data. It was found that the desorption of chemicals from MESCO into water is isotropic to the absorption of the analytes onto the sampler under the same exposure conditions. This allows for the in situ calibration of the uptake of pollutants using elimination kinetics of performance reference compounds and more accurate estimates of target analyte concentrations. A field study was conducted to test the sampler performance alongside spot sampling. A good agreement of contaminant patterns and water concentrations was obtained by the two sampling techniques. - A robust calibration method of a passive sampling device for monitoring of persistent organic pollutants in water is described

  20. Concerted Uranium Research in Europe (CURE): toward a collaborative project integrating dosimetry, epidemiology and radiobiology to study the effects of occupational uranium exposure.

    Science.gov (United States)

    Laurent, Olivier; Gomolka, Maria; Haylock, Richard; Blanchardon, Eric; Giussani, Augusto; Atkinson, Will; Baatout, Sarah; Bingham, Derek; Cardis, Elisabeth; Hall, Janet; Tomasek, Ladislav; Ancelet, Sophie; Badie, Christophe; Bethel, Gary; Bertho, Jean-Marc; Bouet, Ségolène; Bull, Richard; Challeton-de Vathaire, Cécile; Cockerill, Rupert; Davesne, Estelle; Ebrahimian, Teni; Engels, Hilde; Gillies, Michael; Grellier, James; Grison, Stephane; Gueguen, Yann; Hornhardt, Sabine; Ibanez, Chrystelle; Kabacik, Sylwia; Kotik, Lukas; Kreuzer, Michaela; Lebacq, Anne Laure; Marsh, James; Nosske, Dietmar; O'Hagan, Jackie; Pernot, Eileen; Puncher, Matthew; Rage, Estelle; Riddell, Tony; Roy, Laurence; Samson, Eric; Souidi, Maamar; Turner, Michelle C; Zhivin, Sergey; Laurier, Dominique

    2016-06-01

    The potential health impacts of chronic exposures to uranium, as they occur in occupational settings, are not well characterized. Most epidemiological studies have been limited by small sample sizes, and a lack of harmonization of methods used to quantify radiation doses resulting from uranium exposure. Experimental studies have shown that uranium has biological effects, but their implications for human health are not clear. New studies that would combine the strengths of large, well-designed epidemiological datasets with those of state-of-the-art biological methods would help improve the characterization of the biological and health effects of occupational uranium exposure. The aim of the European Commission concerted action CURE (Concerted Uranium Research in Europe) was to develop protocols for such a future collaborative research project, in which dosimetry, epidemiology and biology would be integrated to better characterize the effects of occupational uranium exposure. These protocols were developed from existing European cohorts of workers exposed to uranium together with expertise in epidemiology, biology and dosimetry of CURE partner institutions. The preparatory work of CURE should allow a large scale collaborative project to be launched, in order to better characterize the effects of uranium exposure and more generally of alpha particles and low doses of ionizing radiation.

  1. Radiochromic film dosimetry

    International Nuclear Information System (INIS)

    Soares, Christopher G.

    2006-01-01

    The object of this paper is to give a new user some practical information on the use of radiochromic films for medical applications. While various aspects of radiochromic film dosimetry for medical applications have been covered in some detail in several other excellent review articles which have appeared in the last few years [Niroomand-Rad, A., Blackwell, C.R., Coursey, B.M., Gall, K.P., McLaughlin, W.L., Meigooni, A.S., Nath, R., Rodgers, J.E., Soares, C.G., 1998. Radiochromic dosimetry: recommendations of the AAPM Radiation Therapy Committee Task Group 55. Med. Phys. 25, 2093-2115; Dempsey, J.F., Low, D.A., Mutic, S., Markman, J., Kirov, A.S., Nussbaum, G.H., Williamson, J.F., 2000. Validation of a precision radiochromic film dosimetry system for quantitative two-dimensional imaging of acute exposure dose distributions. Med. Phys. 27, 2462-2475; Butson, M.J., Yu, P.K.N., Cheung, T., Metcalfe, P., 2003. Radiochromic film for medical radiation dosimetry. Mater. Sci. Eng. R41, 61-120], it is the intent of the present author to present material from a more user-oriented and practical standpoint. That is, how the films work will be stressed much less than how to make the films work well. The strength of radiochromic films is most evident in applications where there is a very high dose gradient and relatively high absorbed dose rates. These conditions are associated with brachytherapy applications, measurement of small fields, and at the edges (penumbra regions) of larger fields

  2. Development of the containment transient analysis code for the passive reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Young Dong; Kim, Young In; Bae, Yoon Young; Chang, Moon Hi [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-05-01

    This study was performed to develop the analysis tools for the passively cooled steel containment and to construct the integrated code system which can analyze a thermal hydraulic behavior of the containment and reactor system during a loss of coolant accident. The computer code CONTEMPT4/MOD5/PCCS was developed by incorporating the passive containment cooling models to the containment pressure and temperature transient analysis computer code CONTEMPT4/MOD5. The integrated reactor thermal hydraulic analysis code system for passive reactor was constructed by coupling the best estimate thermal hydraulic system analysis code RELAP5/MOD3 and CONTEMPT4/MOD5/PCCS through the process control method. In addition, to evaluate the applicability of the code the CONTEMPT4/MOD5/PCCS was applied to the SMART(System-Integrated Modular Advanced Reactor). The pressure and temperature transient following the small break LOCA of SMART was analysed by modeling the safeguard vessel using both the newly added passive containment cooling model and existing pool model. (author). 16 refs., 22 figs., 7 tabs.

  3. Performing personnel dosimetry investigations and records quality assurance

    International Nuclear Information System (INIS)

    Perle, S.C.

    2002-01-01

    Radiation Safety Officers (RSOs) sometimes face situations in which personnel dosimetry estimates are required after dosimeters issued to radiation workers (film or TLD badges, extremity dosimeters, etc.) are lost or damaged before processing. This article was prepared to help those involved with personnel dosimetry investigations became aquatinted with this process. A factor that contributes to the anxiety of those unfamiliar with dosimetry investigations is the lack of published guidance available in this subject. More printed resources are needed to help radiation safety professionals familiarize themselves and understand personnel dosimetry investigations. Topics discussed in this presentation include the justification of performing dosimetry investigations, recommendations on how to perform them and the advantages of performing such investigations

  4. Dosimetry and Shielding of X and Gamma Radiation

    International Nuclear Information System (INIS)

    Oncescu, M.; Panaitescu, I.

    1992-01-01

    This book covers the following problems: 1. X and Gamma radiations, 2. Interaction of X-ray and gamma radiations with matter, 3. Interaction of electrons with matter, 4. Principles and basic concepts of dosimetry, 5. Ionization dosimetry, 6. Calorimetric chemical and photographic dosimetry, 7. Solid state dosimetry, 8. Computation of dosimetric quantities, 9. Dosimetry in radiation protection, 10. Shielding of X and gamma radiations. The authors, well-known Romanian experts in Radiation Physics and Engineering, gave an up-dated, complete and readable account of this subject matter. The analyses of physical principles and concepts, of materials and instruments and of computational methods and applications are all well balanced to meat the needs of a broad readership

  5. Radiotherapy Based On α Emitting Radionuclides: Geant4 For Dosimetry And Micro-/Nano-Dosimetry

    International Nuclear Information System (INIS)

    Guatelli, Susanna

    2013-01-01

    Possible physics approaches to evaluate the efficacy of TAT are dosimetry, microdosimetry and nanodosimetry. Dosimetry is adequate when mean absorbed dose to a macroscopic target volume is important to understand the biological effect of radiation. General purpose Monte Carlo (MC) codes, based on condensed history approach, are a very useful, cost effective tool to solve dosimetric problems. The condensed history approach is based on the use of multiple scattering theories to calculate the energy losses and angular changes in the direction of the particle. The short α particle range and high LET make the microdosimetric approach more suitable than dosimetry to study TAT from first physics principles, as this approach takes into account the stochastic nature of energy deposition at cellular level

  6. Updating the INDAC computer application of internal dosimetry

    International Nuclear Information System (INIS)

    Bravo Perez-Tinao, B.; Marchena Gonzalez, P.; Sollet Sanudo, E.; Serrano Calvo, E.

    2013-01-01

    The initial objective of this project is to expand the application INDAC currently used in internal dosimetry services of the Spanish nuclear power plants and Tecnatom for estimating the effective doses of internal dosimetry of workers in direct action. or in-vivo dosimetry. (Author)

  7. Dosimetry methods

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Miller, A.; Kovacs, A.

    2003-01-01

    Chemical and physical radiation dosimetry methods, used for the measurement of absorbed dose mainly during the practical use of ionizing radiation, are discussed with respect to their characteristics and fields of application....

  8. Radiation dosimetry in nuclear medicine

    International Nuclear Information System (INIS)

    Stabin, M.G.; Tagesson, M.; Ljungberg, M.; Strand, S.E.; Thomas, S.R.

    1999-01-01

    Radionuclides are used in nuclear medicine in a variety of diagnostic and therapeutic procedures. A knowledge of the radiation dose received by different organs in the body is essential to an evaluation of the risks and benefits of any procedure. In this paper, current methods for internal dosimetry are reviewed, as they are applied in nuclear medicine. Particularly, the Medical Internal Radiation Dose (MIRD) system for dosimetry is explained, and many of its published resources discussed. Available models representing individuals of different age and gender, including those representing the pregnant woman are described; current trends in establishing models for individual patients are also evaluated. The proper design of kinetic studies for establishing radiation doses for radiopharmaceuticals is discussed. An overview of how to use information obtained in a dosimetry study, including that of the effective dose equivalent (ICRP 30) and effective dose (ICRP 60), is given. Current trends and issues in internal dosimetry, including the calculation of patient-specific doses and in the use of small scale and microdosimetry techniques, are also reviewed

  9. Passive scalar transport in peripheral regions of random flows

    International Nuclear Information System (INIS)

    Chernykh, A.; Lebedev, V.

    2011-01-01

    We investigate statistical properties of the passive scalar mixing in random (turbulent) flows assuming its diffusion to be weak. Then at advanced stages of the passive scalar decay, its unmixed residue is primarily concentrated in a narrow diffusive layer near the wall and its transport to the bulk goes through the peripheral region (laminar sublayer of the flow). We conducted Lagrangian numerical simulations of the process for different space dimensions d and revealed structures responsible for the transport, which are passive scalar tongues pulled from the diffusive boundary layer to the bulk. We investigated statistical properties of the passive scalar and of the passive scalar integrated along the wall. Moments of both objects demonstrate scaling behavior outside the diffusive boundary layer. We propose an analytic scheme for the passive scalar statistics, explaining the features observed numerically.

  10. An IAEA Survey of Dosimetry Audit Networks for Radiotherapy

    International Nuclear Information System (INIS)

    Grochowska, Paulina; Izewska, Joanna

    2013-01-01

    A Survey: In 2010, the IAEA undertook a task to investigate and review the coverage and operations of national and international dosimetry audit programmes for radiotherapy. The aim was to organize the global database describing the activities of dosimetry audit networks in radiotherapy. A dosimetry audit questionnaire has been designed at an IAEA consultants' meeting held in 2010 for organizations conducting various levels of dosimetry audits for radiotherapy. Using this questionnaire, a survey was conducted for the first time in 2010 and repeated in 2011. Request for information on different aspects of the dosimetry audit was included, such as the audit framework and resources, its coverage and scope, the dosimetry system used and the modes of audit operation, i.e. remotely and through on-site visits. The IAEA questionnaire was sent to over 80 organizations, members of the IAEA/WHO Network of Secondary Standards Dosimetry Laboratories (SSDLs) and other organizations known for having operated dosimetry audits for radiotherapy in their countries or internationally. Survey results and discussion: In response to the IAEA survey, 53 organizations in 45 countries confirmed that they operate dosimetry audit services for radiotherapy. Mostly, audits are conducted nationally, however there are five organizations offering audits abroad, with two of them operating in various parts of the world and three of them at the regional level, auditing radiotherapy centres in neighbouring countries. The distribution of dosimetry audit services in the world is given. (author)

  11. Personnel neutron dosimetry at Department of Energy facilities

    International Nuclear Information System (INIS)

    Brackenbush, L.W.; Endres, G.W.R.; Selby, J.M.; Vallario, E.J.

    1980-08-01

    This study assesses the state of personnel neutron dosimetry at DOE facilities. A survey of the personnel dosimetry systems in use at major DOE facilities was conducted, a literature search was made to determine recent advances in neutron dosimetry, and several dosimetry experts were interviewed. It was concluded that personnel neutron dosimeters do not meet current needs and that serious problems exist now and will increase in the future if neutron quality factors are increased and/or dose limits are lowered

  12. Internal dosimetry hazard and risk assessments: methods and applications

    International Nuclear Information System (INIS)

    Roberts, G.A.

    2006-01-01

    Routine internal dose exposures are typically (in the UK nuclear industry) less than external dose exposures: however, the costs of internal dosimetry monitoring programmes can be significantly greater than those for external dosimetry. For this reason decisions on when to apply routine monitoring programmes, and the nature of these programmes, can be more critical than for external dosimetry programmes. This paper describes various methods for performing hazard and risk assessments which are being developed by RWE NUKEM Limited Approved Dosimetry Services to provide an indication when routine internal dosimetry monitoring should be considered. (author)

  13. Neutron personnel dosimetry considerations for fusion reactors

    International Nuclear Information System (INIS)

    Barton, T.P.; Easterly, C.E.

    1979-07-01

    The increasing development of fusion reactor technology warrants an evaluation of personnel neutron dosimetry systems to aid in the concurrent development of a radiation protection program. For this reason, current state of knowledge neutron dosimeters have been reviewed with emphasis placed on practical utilization and the problems inherent in each type of dosimetry system. Evaluations of salient parameters such as energy response, latent image instability, and minimum detectable dose equivalent are presented for nuclear emulsion films, track etch techniques, albedo and other thermoluminescent dosimetry techniques, electrical conductivity damage effects, lyoluminescence, thermocurrent, and thermally stimulated exoelectron emission. Brief summaries of dosimetry regulatory requirements and intercomparison study results help to establish compliance and recent trends, respectively. Spectrum modeling data generated by the Neutron Physics Division of Oak Ridge National Laboratory for the Princeton Tokamak Fusion Test Reactor (TFTR) Facility have been analyzed by both International Commission on Radiological Protection fluence to dose conversion factors and an adjoint technique of radiation dosimetry, in an attempt to determine the applicability of current neutron dosimetry systems to deuterium and tritium fusion reactor leakage spectra. Based on the modeling data, a wide range of neutron energies will probably be present in the leakage spectra of the TFTR facility, and no appreciable risk of somatic injury to occupationally exposed workers is expected. The relative dose contributions due to high energy and thermal neutrons indicate that neutron dosimetry will probably not be a serious limitation in the development of fusion power

  14. Accuracy Requirements in Medical Radiation Dosimetry

    International Nuclear Information System (INIS)

    Andreo, P.

    2011-01-01

    The need for adopting unambiguous terminology on 'accuracy in medical radiation dosimetry' which is consistent with international recommendations for metrology is emphasized. Uncertainties attainable, or the need for improving their estimates, are analysed for the fields of radiotherapy, diagnostic radiology and nuclear medicine dosimetry. This review centres on uncertainties related to the first step of the dosimetry chain in the three fields, which in all cases involves the use of a detector calibrated by a standards laboratory to determine absorbed dose, air kerma or activity under reference conditions in a clinical environment. (author)

  15. Characterization of commercial MOSFETS electron dosimetry

    International Nuclear Information System (INIS)

    Carvajal, M. A.; Simancas, F.; Guirado, D.; Banqueri, J.; Vilches, M.; Lallena, A. M.; Palma, A. J.

    2011-01-01

    In recent years there have been commercial dosimetry devices based on transistors Metal-Oxide-Semiconductor (MOSFET) having a number of advantages over traditional systems for dosimetry in medical applications. These include the portability of the sensor element and a reading process quick and relatively simple dose, linearity, and so on. The use of electron beams is important in modern radiotherapy include its use in intra-operative radiotherapy (RIO). This paper presents an initial characterization of different business models MOSFET, not specific for radiation detection, to demonstrate their potential as sensors for electron beam dosimetry. (Author)

  16. Radiographic film orientation in radiotherapy dosimetry

    International Nuclear Information System (INIS)

    Suchowerska, N.; Davison, A.; Drew, J.; Metcalfe, P.

    1996-01-01

    Since the discovery of x-rays, film has been used as a detection medium for radiation. More recently radiographic film has become established as a practical tool for the measurement of dose distribution in radiotherapy. The accuracy and reproducibility of film dosimetry depends on photon energy, processing conditions and film plane orientation. The relationship between photon energy, processing conditions and film dosimetry accuracy has been studied. The role of film plane orientation is still controversial. The current work aims to clarify the effects film plane orientation has on film dosimetry. Poster 205. (author)

  17. The personal dosimetry in Mexico

    International Nuclear Information System (INIS)

    Salazar, M.A.

    2006-01-01

    The Personal Dosimetry in Mexico, has an approximately 30 year-old history; and it had been and it is at the moment, one of the more important resources with which the personnel that works with ionizing radiation sources counts for its protection. The Personal Dosimetry begins with the film dosimetry, technique that even continues being used at the present time by some users, and the main reason of its use is for economic reasons. At the moment this technique, it has been surpassed, by the Thermoluminescent dosimetry, which has taken a lot of peak, mainly by the technological development with which it is counted at the present time; what has given as a result that this technique becomes tip technology; that supported in the characteristic of the used materials, as the handling and processing of the information associated with the new PC, digitizer cards, software etc, what has allowed increases it potential. In this work the current necessities of the market are presented as well as an analysis of the future real necessities in Mexico, at national level, the companies that provide this service and that they spread to satisfy this necessity of the market, including the different used technologies are also mentioned. The application ranges, at the same time, of the advantages and disadvantages of the different systems of Personal Dosimetry in the market. The companies that at the moment provide the service of Personal Dosimetry, its use materials and equipment in indistinct form, for the monitoring of gamma radiation, beta particles, different qualities of x-ray radiation, and sometimes neutrons. The monitoring of the exposed personnel at the diverse sources of ionizing radiation mentioned is carried out in many occasions without having with the materials (detectors), neither the appropriate infrastructure and therefore without the quality control that guarantees a correct evaluation of the dose equivalent, as a result of the exposure to the ionizing radiations; it

  18. Report on external occupational dosimetry in Canada

    International Nuclear Information System (INIS)

    1995-12-01

    In light of the new recommendations of the ICRP in Report 60 on dose quantities and dose limits, this working group was set up to examine the implications for external dosimetry in Canada. The operational quantities proposed by the ICRU are discussed in detail with regard to their applicability in Canada. The current occupational dosimetry services available in Canada are described as well as the several performance intercomparisons that have been carried out within the country as well as internationally. Recommendations are given with respect to standards for dosimetry, including accuracy and precision. More practical advice is given on the choice of dosimeter to use for external dosimetry, frequency of monitoring, and who should be monitored. Specific advice is given on the monitoring of pregnant workers and problem of non-uniform irradiation. Accident and emergency dosimetry are dealt with briefly. Suggestions are given regarding record keeping both for employers and for the national dose registry. 48 refs., 6 tabs., 1 fig

  19. Design of integrated optics all-optical label swappers for spectral amplitude code label swapping optical packet networks on active/passive InP technology

    NARCIS (Netherlands)

    Habib, C.; Munoz, P.; Leijtens, X.J.M.; Chen, Lawrence; Smit, M.K.; Capmany, J.

    2009-01-01

    In this paper the designs of optical label swapper devices, for spectral amplitude coded labels, monolithically integrated on InP active/passive technology are pre sented. The devices are based on cross-gain modulation in a semiconductor optical amplifier. Multi-wavelength operation is enabled by

  20. ESR/tooth enamel dosimetry application to Chernobyl case: individual retrospective dosimetry of the liquidators and wild animals

    International Nuclear Information System (INIS)

    Bugai, A.; Baryakchtar, V.G.; Baran, N.

    1996-01-01

    ESR/tooth enamel dosimetry technique was used for individual retrospective dosimetry of the servicemen who had worked in 1986-1987 at the liquidation of consequences of the Chernobyl accident. For 18 investigated cases, the values varied from 0,10 (sensitivity limit) to 1,75 Gy. The same technique was used for individual dosimetry of wild animals boars, red deers, elks) hunted at contaminated 30-km area around the Chernobyl Power Plant. Measured values varied from 0,20 to 5,0 Gy/year and were compared with calculated for external and internal irradiation

  1. Dosimetry methods for fuels, cladding and structural materials

    International Nuclear Information System (INIS)

    Roettger, H.

    1980-01-01

    This volume of the proceedings of the symposium on reactor dosimetry covers the following topics: the metallurgy and dosimetry interface, radiation damage correlations of structural materials and damage analyses techniques, dosimetry for fusion materials, light water reactor pressure vessel surveillance in practice and irradiation experiments, fast reactor and reseach reactor characterization

  2. Teledosimetry: Personal and Area Dosimetry Control in order to evaluate the risk in real time

    International Nuclear Information System (INIS)

    Galan Montenegro, P.; Macias Jaen, J.; Bodineau Gil, C.; Sanchez Hidalgo, M.

    2004-01-01

    Telemedicine is now an essential part of Health care and so, in addition to the scientific programme in the Carlos Haya Hospital in Malaga, Physics Department is involved into a process of change about the vision as a new Health Centre of XXI Century: Knowledge Hospital, by digital architecture and digitally integrated in its world. The Integrating the Health care Enterprise is the model used in order to get a big grade of relationship between medical images and information system. This change must be done in colaboration between some Departments of our centre, because it is a multidisciplinary task. It is understood that Teledosimetry can be considered as an important part of Telemedicine in the Radiological Protection field for workers and general public. In order to get this objective, the first step since 2000 it has been to prepare the internal hospital network with personal dosimetry information. From here workers in our hospital can obtain their dosimetry information data in more than 300 computers and since 2003, from home too. For access, each one of all have got an user identification and a password and so it can be guaranteed the privacy. We transform dose data reported by CND (Dosimetry National Center) in a big and visible database in PHP4 and Javascript format. This process is marked of problems about all due to the big manipulated information. Our intention is to make a better and friendly control, customisable and in real-time of the information dosimetry by a modular monitoring system of electronic dosimeters by the web. These radiation detectors would be located in representatives places. (Author)

  3. Teledosimetry: Personal and Area Dosimetry Control in order to evaluate the risk in real time

    Energy Technology Data Exchange (ETDEWEB)

    Galan Montenegro, P.; Macias Jaen, J.; Bodineau Gil, C.; Sanchez Hidalgo, M.

    2004-07-01

    Telemedicine is now an essential part of Health care and so, in addition to the scientific programme in the Carlos Haya Hospital in Malaga, Physics Department is involved into a process of change about the vision as a new Health Centre of XXI Century: Knowledge Hospital, by digital architecture and digitally integrated in its world. The Integrating the Health care Enterprise is the model used in order to get a big grade of relationship between medical images and information system. This change must be done in colaboration between some Departments of our centre, because it is a multidisciplinary task. It is understood that Teledosimetry can be considered as an important part of Telemedicine in the Radiological Protection field for workers and general public. In order to get this objective, the first step since 2000 it has been to prepare the internal hospital network with personal dosimetry information. From here workers in our hospital can obtain their dosimetry information data in more than 300 computers and since 2003, from home too. For access, each one of all have got an user identification and a password and so it can be guaranteed the privacy. We transform dose data reported by CND (Dosimetry National Center) in a big and visible database in PHP4 and Javascript format. This process is marked of problems about all due to the big manipulated information. Our intention is to make a better and friendly control, customisable and in real-time of the information dosimetry by a modular monitoring system of electronic dosimeters by the web. These radiation detectors would be located in representatives places. (Author)

  4. Glucinium dosimetry in beryl

    International Nuclear Information System (INIS)

    Kremer, M.

    1949-05-01

    The application of the method developed by Kolthoff and Sandell (1928) for the dosimetry of glucinium (beryllium) in beryl gives non-reproducible results with up to 20% discrepancies. This method recommends to separate beryllium and aluminium using 8 hydroxyquinoline and then to directly precipitate glucinium in the filtrate using ammonia. One possible reason of the problems generated by this method should be the formation of a volatile complex between beryllium and the oxine. This work shows that when the oxine is eliminated before the precipitation with ammonia the dosimetry of beryllium becomes accurate. The destruction of the oxine requires the dry evaporation of the filtrate, which is a long process. Thus the search for a reagent allowing the quantitative precipitation of beryllium in its solutions and in presence of oxine has been made. It has been verified also that the quantitative precipitation of the double beryllium and ammonium phosphate is not disturbed by the oxine in acetic buffer. This method, which gives good results, has also the advantage to separate beryllium from the alkaline-earth compounds still present in the filtrate. The report details the operation mode of the method: beryllium dosimetry using ammonium phosphate, aluminium-beryllium separation, application to beryl dosimetry (ore processing, insolubilization of silica, precipitation with ammonia, precipitation with oxine, precipitation of PO 4 NH 4 Gl, preciseness). (J.S.)

  5. Automatic neutron dosimetry system based on fluorescent nuclear track detector technology

    International Nuclear Information System (INIS)

    Akselrod, M.S.; Fomenko, V.V.; Bartz, J.A.; Haslett, T.L.

    2014-01-01

    For the first time, the authors are describing an automatic fluorescent nuclear track detector (FNTD) reader for neutron dosimetry. FNTD is a luminescent integrating type of detector made of aluminium oxide crystals that does not require electronics or batteries during irradiation. Non-destructive optical readout of the detector is performed using a confocal laser scanning fluorescence imaging with near-diffraction limited resolution. The fully automatic table-top reader allows one to load up to 216 detectors on a tray, read their engraved IDs using a CCD camera and optical character recognition, scan and process simultaneously two types of images in fluorescent and reflected laser light contrast to eliminate false-positive tracks related to surface and volume crystal imperfections. The FNTD dosimetry system allows one to measure neutron doses from 0.1 mSv to 20 Sv and covers neutron energies from thermal to 20 MeV. The reader is characterised by a robust, compact optical design, fast data processing electronics and user-friendly software. The first table-top automatic FNTD neutron dosimetry system was successfully tested for LLD, linearity and ability to measure neutrons in mixed neutron-photon fields satisfying US and ISO standards. This new neutron dosimetry system provides advantages over other technologies including environmental stability of the detector material, wide range of detectable neutron energies and doses, detector re-readability and re-usability and all-optical readout. A new adaptive image processing algorithm reliably removes false-positive tracks associated with surface and bulk crystal imperfections. (authors)

  6. A low cost integrated transceiver for mobile UHF passive RFID reader applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jingchao; Zhang Chun; Chi Baoyong; Wang Ziqiang; Li Fule; Wang Zhihua, E-mail: wangjc@gmail.co [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China)

    2009-09-15

    A low cost integrated transceiver for mobile UHF passive RFID reader applications is implemented in a 0.18-{mu}m CMOS process. The transceiver contains an OOK modulator and a power amplifier in the transmitter chain, an IQ direct-down converter, variable-gain amplifiers, channel-select filters and a 10-bit ADC in the receiver chain. The measured output P{sub 1DB} power of the transmitter is 17.6 dBm and the measured receiver sensitivity is -70 dBm. The on-chip integer N synthesizer achieves a frequency resolution of 200 kHz with a phase noise of -104 dBc/Hz at 100 kHz frequency offset and -120.83 dBc/Hz at 1 MHz frequency offset. The transmitter, the receiver and the frequency synthesizer consume 201.34, 25.3 and 54 mW, respectively. The chip has a die area of 4 x 2.5 mm{sup 2} including pads.

  7. Experimental integration of quantum key distribution and gigabit-capable passive optical network

    Science.gov (United States)

    Sun, Wei; Wang, Liu-Jun; Sun, Xiang-Xiang; Mao, Yingqiu; Yin, Hua-Lei; Wang, Bi-Xiao; Chen, Teng-Yun; Pan, Jian-Wei

    2018-01-01

    Quantum key distribution (QKD) ensures information-theoretic security for the distribution of random bits between two remote parties. To extend QKD applications to fiber-to-the-home optical communications, such as gigabit-capable passive optical networks (GPONs), an effective method is the use of wavelength-division multiplexing. However, the Raman scattering noise from intensive classical traffic and the huge loss introduced by the beam splitter in a GPON severely limits the performance of QKD. Here, we demonstrate the integration of QKD and a commercial GPON system with fiber lengths up to 14 km, in which the maximum splitting ratio of the beam splitter reaches 1:64. By placing the QKD transmitter on the optical line terminal side, we reduce the Raman noise collected at the QKD receiver. Using a bypass structure, the loss of the beam splitter is circumvented effectively. Our results pave the way to extending the applications of QKD to last-mile communications.

  8. A low cost integrated transceiver for mobile UHF passive RFID reader applications

    International Nuclear Information System (INIS)

    Wang Jingchao; Zhang Chun; Chi Baoyong; Wang Ziqiang; Li Fule; Wang Zhihua

    2009-01-01

    A low cost integrated transceiver for mobile UHF passive RFID reader applications is implemented in a 0.18-μm CMOS process. The transceiver contains an OOK modulator and a power amplifier in the transmitter chain, an IQ direct-down converter, variable-gain amplifiers, channel-select filters and a 10-bit ADC in the receiver chain. The measured output P 1DB power of the transmitter is 17.6 dBm and the measured receiver sensitivity is -70 dBm. The on-chip integer N synthesizer achieves a frequency resolution of 200 kHz with a phase noise of -104 dBc/Hz at 100 kHz frequency offset and -120.83 dBc/Hz at 1 MHz frequency offset. The transmitter, the receiver and the frequency synthesizer consume 201.34, 25.3 and 54 mW, respectively. The chip has a die area of 4 x 2.5 mm 2 including pads.

  9. Proceedings of the 5. symposium on neutron dosimetry. Beam dosimetry

    International Nuclear Information System (INIS)

    Schraube, H.; Burger, G.; Booz, J.

    1985-01-01

    Proceedings of the fifth symposium on neutron dosimetry, organized at Neuherberg, 17-21 September 1984, by the Commission of the European Communities and the GSF Neuherberg, with the co-sponsorship of the US Department of Energy, Office of Health and Environmental Research. The proceedings deal with research on concepts, instruments and methods in radiological protection for neutrons and mixed neutron-gamma fields, including the generation, collection and evaluation of new dosimetric data, the derivation of relevant radiation protection quantitites, and the harmonization of experimental methods and instrumentation by intercomparison programmes. Besides radiation protection monitoring, the proceedings also report on the improvement of neutron beam dosimetry in the fields of radiobiology and radiation therapy

  10. Standardized physics-dosimetry for US pressure vessel cavity surveillance programs

    International Nuclear Information System (INIS)

    Ruddy, F.H.; McElroy, W.N.; Lippincott, E.P.

    1984-01-01

    This paper summarizes the applications of ASTM standard methods, guides and practices to define the selection and deployment of recommended dosimetry sets, the selection of dosimetry capsules and thermal neutron shields, the placement of dosimetry, the methods of measurement of dosimetry sensor reaction products, data analysis procedures, and uncertainty evaluation procedures. It also describes the validation of these standards both by in-reactor testing of advanced PV cavity surveillance physics-dosimetry and by data development. The use of these standards to guide selection and development of advanced dosimetry sets for commercial reactors is also summarized. (Auth.)

  11. Integration of the functional reliability of two passive safety systems to mitigate a SBLOCA+BO in a CAREM-like reactor PSA

    Energy Technology Data Exchange (ETDEWEB)

    Mezio, Federico, E-mail: federico.mezio@cab.cnea.gov.ar [CNEA, Sede Central, Av. Del Libertador 8250, CABA (Argentina); Grinberg, Mariela [CNEA, Centro Atómico Bariloche, S.C. de Bariloche, Río Negro (Argentina); Lorenzo, Gabriel [CNEA, Sede Central, Av. Del Libertador 8250, CABA (Argentina); Giménez, Marcelo [CNEA, Centro Atómico Bariloche, S.C. de Bariloche, Río Negro (Argentina)

    2014-04-01

    Highlights: • An estimation of the Functional Unreliability was performed using RMPS methodology. • The methodology uses an improved response surface in order to estimate the FU. • The FU may become relevant to be analyzed in the Passive Safety Systems. • There were proposed two ways to incorporate the FU into an APS. - Abstract: This paper describes a case study of a methodological approach for assessing the functional reliability of passive safety systems (PSS) and its treatment within a probabilistic safety assessment (PSA). The functional unreliability (FU) can be understood as the failure probability of PSS to fulfill its mission due to the impairment of the related passive safety function. The safety function accomplishment is characterized and quantified by a performance indicator (PI), which is a measure of how far the system is from verifying its mission. PI uncertainties are estimated from uncertainty propagation of selected parameters. A methodology based on the reliability methodology for passive system (RMPS) one is used to estimate the FU associated to the isolation condensers (ICs) in combination with the accumulators (medium pressure injection system) of a CAREM-like integral advanced reactor. A small break loss of coolant accident with black-out is selected as an evaluation case. This implies success of reactor shut-down (inherent) and failure of residual heat removal by active systems. The safety function to accomplish is to refill the reactor pressure vessel (RPV) in order to avoid core damage. For this case, to allow the discharge of accumulators into RPV, the pressure must be reduced by the IC. The methodology for passive safety function assessment considers uncertainties in code parameters, besides uncertainties in engineering parameters (design, construction, operation and maintenance), in order to perform Monte Carlo simulations based on best estimate (B-E) plant model. Then, response surfaces based on PI are used for improving the

  12. Analysis and databasing software for integrated tomographic gamma scanner (TGS) and passive-active neutron (PAN) assay systems

    International Nuclear Information System (INIS)

    Estep, R.J.; Melton, S.G.; Buenafe, C.

    2000-01-01

    The CTEN-FIT program, written for Windows 9x/NT in C++,performs databasing and analysis of combined thermal/epithermal neutron (CTEN) passive and active neutron assay data and integrates that with isotopics results and gamma-ray data from methods such as tomographic gamma scanning (TGS). The binary database is reflected in a companion Excel database that allows extensive customization via Visual Basic for Applications macros. Automated analysis options make the analysis of the data transparent to the assay system operator. Various record browsers and information displays simplify record keeping tasks

  13. Special workshop on lung dosimetry

    International Nuclear Information System (INIS)

    Fisher, D.R.

    1983-01-01

    A Special Workshop on Lung Dosimetry was convened in Salt Lake City, Utah, on April 21-22, 1982, to stimulate the use of improved radiation dosimetry and to formulate a stronger basis for dose-response relationships for inhaled radionuclides. The two-day workshop was held in conjunction with the 30th Annual Meeting of the Radiation Research Society. Publication is planned

  14. {sup 177}Lutetium-DOTATATE peptide radio-receptor therapy for patients with endocrine neoplasm and the individualized semi-automatic dosimetry. A retrospective analysis; {sup 177}Lutetium-DOTATATE-Peptid-Radio-Rezeptor-Therapie bei Patienten mit neuroendokrinen Neoplasien und die individualisierte, semi-automatische-Dosimetrie. Eine retrospektive Analyse

    Energy Technology Data Exchange (ETDEWEB)

    Loeser, Anastassia

    2016-09-28

    The {sup 177}lutetium-DOTATATE peptide radio-receptor therapy is a promising approach for the palliative treatment of patients with inoperable endocrine neoplasm. The individually variable biological dispersion and the tumor uptake including the protection of critical organs require a precise and reliable organ and tumor dosimetry. The HERMES Hybrid dosimetry module has appeared as reliable and user-friendly tool for clinical application. The next step is supposed to by the complete integration of 3D SPECT imaging.

  15. Dosimetry of internal emitters

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The Dosimetry of Internal Emitter Program endeavors to refine the correlation between radiation dose and observed biological effects. The program is presently engaged in the development of studies that will demonstrate the applicability of microdosimetry models developed under the Microdosimetry of Internal Sources Program. The program also provides guidance and assistance to Pacific Northwest Laboratory's Biology Department in the dosimetric analysis of internally deposited radionuclides. This report deals with alpha particle dosimetry plutonium 239 inhalation, and in vitro studies of chromosomal observations

  16. Nuclear medicine radiation dosimetry

    CERN Document Server

    McParland, Brian J

    2010-01-01

    Complexities of the requirements for accurate radiation dosimetry evaluation in both diagnostic and therapeutic nuclear medicine (including PET) have grown over the past decade. This is due primarily to four factors: growing consideration of accurate patient-specific treatment planning for radionuclide therapy as a means of improving the therapeutic benefit, development of more realistic anthropomorphic phantoms and their use in estimating radiation transport and dosimetry in patients, design and use of advanced Monte Carlo algorithms in calculating the above-mentioned radiation transport and

  17. Information from the Dosimetry Service

    CERN Multimedia

    2006-01-01

    Please note the following opening hours of the Service: In June: Every morning from 8:30 to 12:00 In July: Mondays, Wednesdays and Fridays from 8:30 to 11:30 Closed all day on Tuesdays and Thursdays From 31st July onwards: Every morning from 8:30 to 12:00 The Service is closed in the afternoons. We should like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCTs) must always be returned to the Service after use and must not be left on the racks in the experimental areas or in the secretariats. Dosimetry Service Tel 72155 Bldg. 24 E 011 Dosimetry.service@cern.ch http://cern.ch/rp-dosimetry

  18. INDIVIDUAL DOSIMETRY SERVICE

    CERN Multimedia

    2000-01-01

    Personnel in the distribution groups Aleph, Delphi, L3, Opal who also work for other experiments than at LEP, should contact their dispatchers to explain their activities for the future, after LEP dismantling in order to be maintained on the regular distribution list at Individual DosimetryWe inform all staff and users under regular dosimetric control that the dosimeters for the monitoring period MAY/JUNE will be available from their usual dispatchers on Tuesday 2 May.Please have your films changed before the 12 May.The colour of the dosimeter valid in is MAY/JUNE is YELLOW.Individual Dosimetry Service will be closed on Friday 28 April.

  19. Individual monitoring with official electronic dosemeters in Germany - concepts and reality

    International Nuclear Information System (INIS)

    Martini, E.; Wahl, W.; Huebner, S.; Freynhagen, D.; Staemmler, M.

    2005-01-01

    Full text: Active (electronic) personal dosemeters (APD) are radiometers, which are equipped as active or passive dosimeters. They can directly indicate a dose rate and/or the dose integrated during a certain period (direct-indicating, active electronic personal dosemeters mentioned) or only over a separate reader (direct-selectable, passive electronic personal dosemeters mentioned). A concept is presented for the use of passive or active electronic personal dosemeters in Germany as official dosemeters, e.g. in hospitals. The concept features a net-based approach for secure data communication between readers for passive and active electronic personal dosemeters und the official personal dosimetry monitoring service(s), taking the German policies (StrISchV und RoeV in hospitals) into account. The net-based solution includes a processor controlled interface via TCP/IP connected to the dosimetry reader(s), und reader interfaces, an official interim data bank and all the necessary equipment such as PC, Raid-configuration, USV support, network connection and further details. Investigations have been started to achieve highest-level data manipulation security, data completeness und data correctness. (author)

  20. Dosimetry system of the RB reactor

    International Nuclear Information System (INIS)

    Lolic, B.; Vukadin, D.

    1962-01-01

    Although RB reactor is operated at very low power levels, safety and dosimetry systems have high importance. This paper shows detailed dosimetry system with fundamental typical components. Estimated radiation doses dependent on reactor power are given at some characteristic points in the rooms nearby reactor

  1. Experimental verification of internal dosimetry calculations. Annual progress report

    International Nuclear Information System (INIS)

    1980-05-01

    During the past year a dosimetry research program has been established in the School of Nuclear Engineering at the Georgia Institute of Technology. The major objective of this program has been to provide research results upon which a useful internal dosimetry system could be based. The important application of this dosimetry system will be the experimental verification of internal dosimetry calculations such as those published by the MIRD Committee

  2. Dosimetry: an ARDENT topic

    CERN Multimedia

    CERN Bulletin

    2012-01-01

    The first annual ARDENT workshop took place in Vienna from 20 to 23 November. The workshop gathered together the Early-Stage Researchers (ESR) and their supervisors, plus other people involved from all the participating institutions.   “The meeting, which was organised with the local support of the Austrian Institute of Technology, was a nice opportunity for the ESRs to get together, meet each other, and present their research plans and some preliminary results of their work,” says Marco Silari, a member of CERN Radiation Protection Group and the scientist in charge of the programme. Two full days were devoted to a training course on radiation dosimetry, delivered by renowned experts. The workshop closed with a half-day visit to the MedAustron facility in Wiener Neustadt. ARDENT (Advanced Radiation Dosimetry European Network Training) is a Marie Curie ITN project funded under EU FP7 with €4 million. The project focuses on radiation dosimetry exploiting se...

  3. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    International Nuclear Information System (INIS)

    Rathbone, Bruce A.

    2006-01-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL's Hanford External Dosimetry Program which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL's Electronic Records & Information Capture Architecture (ERICA) database

  4. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2005-02-25

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database.

  5. Report on high energy neutron dosimetry workshop

    International Nuclear Information System (INIS)

    Alvar, K.R.; Gavron, A.

    1993-01-01

    The workshop was called to assess the performance of neutron dosimetry per the responses from ten DOE accelerator facilities to an Office of Energy Research questionnaire regarding implementation of a personnel dosimetry requirement in DRAFT DOE 5480.ACC, ''Safety of Accelerator Facilities''. The goals of the workshop were to assess the state of dosimetry at high energy accelerators and if such dosimetry requires improvement, to reach consensus on how to proceed with such improvements. There were 22 attendees, from DOE Programs and contract facilities, DOE, Office of Energy Research (ER), Office of Environmental Safety and Health (EH), Office of Fusion Energy, and the DOE high energy accelerator facilities. A list of attendees and the meeting agenda are attached. Copies of the presentations are also attached

  6. Results from 2010 Caliban Criticality Dosimetry Intercomparison

    Energy Technology Data Exchange (ETDEWEB)

    Veinot, K. G.

    2011-10-12

    The external dosimetry program participated in a criticality dosimetry intercomparison conducted at the Caliban facility in Valduc, France in 2010. Representatives from the dosimetry and instrumentation groups were present during testing which included irradiations of whole-body beta/gamma (HBGT) and neutron thermoluminescent dosimeters (TLDs), a fixed nuclear accident dosimeter (FNAD), electronic alarming dosimeters, and a humanoid phantom filled with reference man concentrations of sodium. This report reviews the testing procedures, preparations, irradiations, and presents results of the tests.

  7. Reactor Dosimetry State of the Art 2008

    Science.gov (United States)

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    Oral session 1: Retrospective dosimetry. Retrospective dosimetry of VVER 440 reactor pressure vessel at the 3rd unit of Dukovany NPP / M. Marek ... [et al.]. Retrospective dosimetry study at the RPV of NPP Greifswald unit 1 / J. Konheiser ... [et al.]. Test of prototype detector for retrospective neutron dosimetry of reactor internals and vessel / K. Hayashi ... [et al.]. Neutron doses to the concrete vessel and tendons of a magnox reactor using retrospective dosimetry / D. A. Allen ... [et al.]. A retrospective dosimetry feasibility study for Atucha I / J. Wagemans ... [et al.]. Retrospective reactor dosimetry with zirconium alloy samples in a PWR / L. R. Greenwood and J. P. Foster -- Oral session 2: Experimental techniques. Characterizing the Time-dependent components of reactor n/y environments / P. J. Griffin, S. M. Luker and A. J. Suo-Anttila. Measurements of the recoil-ion response of silicon carbide detectors to fast neutrons / F. H. Ruddy, J. G. Seidel and F. Franceschini. Measurement of the neutron spectrum of the HB-4 cold source at the high flux isotope reactor at Oak Ridge National Laboratory / J. L. Robertson and E. B. Iverson. Feasibility of cavity ring-down laser spectroscopy for dose rate monitoring on nuclear reactor / H. Tomita ... [et al.]. Measuring transistor damage factors in a non-stable defect environment / D. B. King ... [et al.]. Neutron-detection based monitoring of void effects in boiling water reactors / J. Loberg ... [et al.] -- Poster session 1: Power reactor surveillance, retrospective dosimetry, benchmarks and inter-comparisons, adjustment methods, experimental techniques, transport calculations. Improved diagnostics for analysis of a reactor pulse radiation environment / S. M. Luker ... [et al.]. Simulation of the response of silicon carbide fast neutron detectors / F. Franceschini, F. H. Ruddy and B. Petrović. NSV A-3: a computer code for least-squares adjustment of neutron spectra and measured dosimeter responses / J. G

  8. Technical Basis Document for PFP Area Monitoring Dosimetry Program

    CERN Document Server

    Cooper, J R

    2000-01-01

    This document describes the phantom dosimetry used for the PFP Area Monitoring program and establishes the basis for the Plutonium Finishing Plant's (PFP) area monitoring dosimetry program in accordance with the following requirements: Title 10, Code of Federal Regulations (CFR), part 835, ''Occupational Radiation Protection'' Part 835.403; Hanford Site Radiological Control Manual (HSRCM-1), Part 514; HNF-PRO-382, Area Dosimetry Program; and PNL-MA-842, Hanford External Dosimetry Technical Basis Manual.

  9. Technical Basis Document for PFP Area Monitoring Dosimetry Program

    International Nuclear Information System (INIS)

    COOPER, J.R.

    2000-01-01

    This document describes the phantom dosimetry used for the PFP Area Monitoring program and establishes the basis for the Plutonium Finishing Plant's (PFP) area monitoring dosimetry program in accordance with the following requirements: Title 10, Code of Federal Regulations (CFR), part 835, ''Occupational Radiation Protection'' Part 835.403; Hanford Site Radiological Control Manual (HSRCM-1), Part 514; HNF-PRO-382, Area Dosimetry Program; and PNL-MA-842, Hanford External Dosimetry Technical Basis Manual

  10. Hanford internal dosimetry program manual

    International Nuclear Information System (INIS)

    Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.; Aldridge, T.L.

    1989-10-01

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs

  11. Dosimetry in diagnostic and interventional radiology - ICRU and IAEA activities

    International Nuclear Information System (INIS)

    Zoetelief, J.; Pernicka, F.

    2002-01-01

    , the entrance surface air kerma (ESAK), the entrance air kerma, the air kerma, the entrance surface dose (ESD), the entrance skin dose (ESD) and the integral skin dose. Different names are used for the same quantity, e.g. entrance surface air kerma, air kerma and entrance air kerma. The same abbreviation ESD is used for both entrance surface dose (absorbed dose most likely expressed in air) and entrance skin dose (absorbed dose most likely expressed in skin tissue). Similar problems exist for dosimetry in mammography and CT. The present situation in dosimetry for medical x-ray imaging clearly indicates the need for dose quantities recommended for the different applications and the need for a harmonised system for names, symbols and units. This has been recognised by the International Commission on Radiation Units and Measurements (ICRU) and resulted in the establishment of an ICRU Report Committee on patient dosimetry in medical imaging. The report proposes a harmonised system of quantities and units for patient dosimetry in medical imaging using x-rays. New symbols are proposed for various quantities. General information is provided on measurement methods, including various aspects of calibration of dosemeters, and methods of determining organ and tissue doses. The International Atomic Energy Agency (IAEA) is developing an international code of practice for dosimetry in x-ray diagnostic radiology. The main objective of the code of practice is to help to achieve and maintain a high level of quality in dosimetry, to improve the implementation of traceable standards at the national level and to ensure control of radiation dose in x-ray medical imaging worldwide. Compared to the ICRU, the IAEA activities put more emphasis on the practical aspects of establishment of proper calibration facilities, e.g. at the Secondary Standard Dosimetry Laboratories, and provide more detailed recommendations for clinical dosimetry. Co-ordination between ICRU and IAEA activities is

  12. Uncertainty analysis of dosimetry spectrum unfolding

    International Nuclear Information System (INIS)

    Perey, F.G.

    1977-01-01

    The propagation of uncertainties in the input data is analyzed for the usual dosimetry unfolding solution. A new formulation of the dosimetry unfolding problem is proposed in which the most likely value of the spectrum is obtained. The relationship of this solution to the usual one is discussed

  13. GENII: The Hanford Environmental Radiation Dosimetry Software System: Volume 2, Users' manual: Hanford Environmental Dosimetry Upgrade Project

    International Nuclear Information System (INIS)

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-11-01

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). The purpose of this coupled system of computer codes is to analyze environmental contamination of, air, water, or soil. This is accomplished by calculating radiation doses to individuals or populations. GENII is described in three volumes of documentation. This second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. The first volume describes the theoretical considerations of the system. The third volume is a Code Maintenance Manual for the user who requires knowledge of code detail. It includes logic diagrams, global dictionary, worksheets, example hand calculations, and listings of the code and its associated data libraries. 27 refs., 17 figs., 23 tabs

  14. Technical Basis Document for PFP Area Monitoring Dosimetry Program

    Energy Technology Data Exchange (ETDEWEB)

    COOPER, J.R.

    2000-04-17

    This document describes the phantom dosimetry used for the PFP Area Monitoring program and establishes the basis for the Plutonium Finishing Plant's (PFP) area monitoring dosimetry program in accordance with the following requirements: Title 10, Code of Federal Regulations (CFR), part 835, ''Occupational Radiation Protection'' Part 835.403; Hanford Site Radiological Control Manual (HSRCM-1), Part 514; HNF-PRO-382, Area Dosimetry Program; and PNL-MA-842, Hanford External Dosimetry Technical Basis Manual.

  15. Introduction to radiological physics and radiation dosimetry

    CERN Document Server

    Attix, Frank Herbert

    2004-01-01

    A straightforward presentation of the broad concepts underlying radiological physics and radiation dosimetry for the graduate-level student. Covers photon and neutron attenuation, radiation and charged particle equilibrium, interactions of photons and charged particles with matter, radiotherapy dosimetry, as well as photographic, calorimetric, chemical, and thermoluminescence dosimetry. Includes many new derivations, such as Kramers X-ray spectrum, as well as topics that have not been thoroughly analyzed in other texts, such as broad-beam attenuation and geometrics, and the reciprocity theorem

  16. Sixth international radiopharmaceutical dosimetry symposium: Proceedings. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    S.-Stelson, A.T. [ed.] [comp.; Stabin, M.G.; Sparks, R.B. [eds.; Smith, F.B. [comp.

    1999-01-01

    This conference was held May 7--10 in Gatlinburg, Tennessee. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on radiopharmaceutical dosimetry. Attention is focused on the following: quantitative analysis and treatment planning; cellular and small-scale dosimetry; dosimetric models; radiopharmaceutical kinetics and dosimetry; and animal models, extrapolation, and uncertainty.

  17. Proceedings of the recent developments in radiation dosimetry

    International Nuclear Information System (INIS)

    Bhat, Nagesh; Palani Selvan, T.

    2016-01-01

    Whilst 'Dosimetry' in its original sense deals with methods for a quantitative determination of energy deposited in a given medium by directly or indirectly ionizing radiations, the term is better known as a scientific sub-specialty in the fields of health physics and medical physics, where it is the calculation and assessment of the radiation dose received by the human body. Dosimetry is used extensively for radiation protection and is routinely applied to ensure radiological safety of occupational radiation workers. Internal dosimetry due to the ingestion or inhalation of radioactive materials relies on a variety of physiological or imaging techniques. External dosimetry, due to irradiation from an external source is based on measurements with a dosimeter, or inferred from other radiological protection instruments. Radiation dosimetry is one of the important research areas of Department of Atomic Energy (DAE). This research work is centered on the facilities such as nuclear reactors, reprocessing plants, high energy accelerators (research/industry/medical), radiation standards, food processing, radiation technology development, etc. In each of these facilities, radiation field environment is different and the associated dosimetry concepts are different. Papers relevant to INIS are indexed separately

  18. Quality control through dosimetry at a contract radiation processing facility

    International Nuclear Information System (INIS)

    Du Plessis, T.A.; Roediger, A.H.A.

    1985-01-01

    Reliable dosimetry procedures constitute a very important part of process control and quality assurance at a contract gamma radiation processing facility that caters for a large variety of different radiation applications. The choice, calibration and routine intercalibration of the dosimetry systems employed form the basis of a sound dosimetry policy in radiation processing. With the dosimetric procedures established, detailed dosimetric mapping of the irradiator upon commissioning (and whenever source modifications take place) is carried out to determine the radiation processing characteristics and peformance of the plant. Having established the irradiator parameters, routine dosimetry procedures, being part of the overall quality control measures, are employed. In addition to routine dosimetry, independent monitoring of routine dosimetry is performed on a bi-monthly basis and the results indicate a variation of better than 3%. On an annaul basis the dosimetry systems are intercalibrated through at least one primary standard dosimetry laboratory and to date a variation of better than 5% has been experienced. The company also participates in the Pilot Dose Assurance Service of the International Atomic Energy Agency, using the alanine/ESR dosimetry system. Routine calibration of the instrumentation employed is carried out on a regular basis. Detailed permanent records are compiled on all dosimetric and instrumentation calibrations, and the routine dosimetry employed at the plant. Certificates indicating the measured absorbed radiation doses are issued on request and in many cases are used for the dosimetric release of sterilized medical and pharmaceutical products. These procedures, used by Iso-Ster at its industrial gamma radiation facility, as well as the experience built up over a number of years using radiation dosimetry for process control and quality assurance are discussed. (author)

  19. Glass badge dosimetry system for large scale personal monitoring

    International Nuclear Information System (INIS)

    Norimichi Juto

    2002-01-01

    Glass Badge using silver activated phosphate glass dosemeter was specially developed for large scale personal monitoring. And dosimetry systems such as an automatic leader and a dose equipment calculation algorithm were developed at once to achieve reasonable personal monitoring. In large scale personal monitoring, both of precision for dosimetry and confidence for lot of personal data handling become very important. The silver activated phosphate glass dosemeter has basically excellent characteristics for dosimetry such as homogeneous and stable sensitivity, negligible fading and so on. Glass Badge was designed to measure 10 keV - 10 MeV range of photon. 300 keV - 3 MeV range of beta, and 0.025 eV - 15 MeV range of neutron by included SSNTD. And developed Glass Badge dosimetry system has not only these basic characteristics but also lot of features to keep good precision for dosimetry and data handling. In this presentation, features of Glass Badge dosimetry systems and examples for practical personal monitoring systems will be presented. (Author)

  20. A-bomb survivor dosimetry update

    International Nuclear Information System (INIS)

    Loewe, W.E.

    1982-06-01

    A-bomb survivor data have been generally accepted as applicable. Also, the initial radiations have tended to be accepted as the dominant radiation source for all survivors. There was general acceptance of the essential reliability of both the biological effects data and the causative radiation dose values. There are considerations casting doubt on these acceptances, but very little quantification of th implied uncertainties has been attempted. The exception was A-bomb survivor dosimetry, where free-field kerma values for initial radiations were thought to be accurate to about 30%, and doses to individual survivors were treated as effectively error-free. In 1980, a major challenge to the accepted A-bomb survivor dosimetry was announced, and was quickly followed by a succession of explanations and displays showing the soundness of that challenge. In fact, a complete replacement set of free-field kerma values was provided which was suitable for use in constructing an entire new dosimetry for Hiroshima and Nagasaki. The new values showed many changes greater than the accepted 30% uncertainty. An approximate new dosimetry was indeed constructed, and used to convert existing leukemia cause-and-effect data from the old to the new dose values, by way of assessing the impact

  1. Standardized physics-dosimetry for US pressure vessel cavity surveillance programs

    International Nuclear Information System (INIS)

    Ruddy, F.H.; McElroy, W.N.; Lippincott, E.P.

    1984-01-01

    Standardized Physics-Dosimetry procedures and data are being developed and tested for monitoring the neutron doses accumulated by reactor pressure vessels (PV) and their support structures. These procedures and data are governed by a set of 21 ASTM standard practices, guides, and methods for the prediction of neutron-induced changes in light water reactor (LWR) PVs and support structure steels throughout the service life of the PV. This paper summarizes the applications of these standards to define the selection and deployment of recommended dosimetry sets, the selection of dosimetry capsules and thermal neutron shields, the placement of dosimetry, the methods of measurement of dosimetry sensor reaction products, data analysis procedures, and uncertainty evaluation procedures. It also describes the validation of these standards both by in-reactor testing of advanced PV cavity surveillance physics-dosimetry and by data development. The use of these standards to guide selection and deployment of advanced dosimetry sets for commercial reactors is also summarized

  2. Cellular dosimetry in nuclear medicine imaging: training

    International Nuclear Information System (INIS)

    Gardin, I.; Faraggi, M.; Stievenart, J.L.; Le Guludec, D.; Bok, B.

    1998-01-01

    The radionuclides used in nuclear medicine imaging emit not only diagnostically useful photons, but also energy electron emissions, responsible for dose heterogeneity at the cellular level. The mean dose delivered to the cell nucleus by electron emissions of 99m Tc, 123 I, 111 In, 67 Ga, and 201 Tl, has been calculated, for the cell nucleus, a cytoplasmic and a cell membrane distribution of radioactivity. This model takes into account both the self-dose which results from the radionuclide located in the target cell, and the cross-dose, which comes from the surrounding cells. The results obtained by cellular dosimetry (D cel ) have been compared with those obtained with conventional dosimetry (D conv ), by assuming the same amount of radioactivity per cell. Cellular dosimetry shows, for a cytoplasmic and a cell membrane distributions of radioactivity, that the main contribution to the dose to the cell nucleus, comes from the surrounding cells. On the other hand, for a cell nucleus distribution of radioactivity, the self-dose is not negligible and may be the main contribution. The comparison between cellular and conventional dosimetry shows that D cel /D conv ratio ranges from 0.61 and O.89, in case of a cytoplasmic and a cell membrane distributions of radioactivity, depending on the radionuclide and cell dimensions. Thus, conventional dosimetry slightly overestimates the mean dose to the cell nucleus. On the other hand, D cel /D conv ranges from 1.1 to 75, in case of a cell nucleus distribution of radioactivity. Conventional dosimetry may strongly underestimates the absorbed dose to the nucleus, when radioactivity is located in the nucleus. The study indicates that in nuclear medicine imaging, cellular dosimetry may lead to a better understanding of biological effects of radiopharmaceuticals. (authors)

  3. A linear 180 nm SOI CMOS antenna switch module using integrated passive device filters for cellular applications

    Science.gov (United States)

    Jie, Cui; Lei, Chen; Peng, Zhao; Xu, Niu; Yi, Liu

    2014-06-01

    A broadband monolithic linear single pole, eight throw (SP8T) switch has been fabricated in 180 nm thin film silicon-on-insulator (SOI) CMOS technology with a quad-band GSM harmonic filter in integrated passive devices (IPD) technology, which is developed for cellular applications. The antenna switch module (ASM) features 1.2 dB insertion loss with filter on 2G bands and 0.4 dB insertion loss in 3G bands, less than -45 dB isolation and maximum -103 dB intermodulation distortion for mobile front ends by applying distributed architecture and adaptive supply voltage generator.

  4. The Sandia MEMS passive shock sensor : FY07 maturation activities.

    Energy Technology Data Exchange (ETDEWEB)

    Houston, Jack E.; Blecke, Jill; Mitchell, John Anthony; Wittwer, Jonathan W.; Crowson, Douglas A.; Clemens, Rebecca C.; Walraven, Jeremy Allen; Epp, David S.; Baker, Michael Sean

    2008-08-01

    This report describes activities conducted in FY07 to mature the MEMS passive shock sensor. The first chapter of the report provides motivation and background on activities that are described in detail in later chapters. The second chapter discusses concepts that are important for integrating the MEMS passive shock sensor into a system. Following these two introductory chapters, the report details modeling and design efforts, packaging, failure analysis and testing and validation. At the end of FY07, the MEMS passive shock sensor was at TRL 4.

  5. Dosimetry in life sciences

    International Nuclear Information System (INIS)

    1975-01-01

    The uses of radiation in medicine and biology have grown in scope and diversity to make the Radiological Sciences a significant factor in both research and medical practice. Of critical importance in the applications and development of biomedical and radiological techniques is the precision with which the dose may be determined at all points of interest in the absorbing medium. This has developed as a result of efficacy of investigations in clinical radiation therapy, concern for patient safety and diagnostic accuracy in diagnostic radiology and the advent of clinical trials and research into the use of heavily ionizing radiations in biology and medicine. Since the last IAEA Symposium on Dosimetry Techniques applied to Agriculture, Industry, Biology and Medicine, held in Vienna in 1972, it has become increasingly clear that advances in the techniques and hardware of biomedical dosimetry have been rapid. It is for these reasons that this symposium was organized in a concerted effort to focus on the problems, developments and areas of further research in dosimetry in the Life Sciences. (author)

  6. Dosimetry in life sciences

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-06-15

    The uses of radiation in medicine and biology have grown in scope and diversity to make the Radiological Sciences a significant factor in both research and medical practice. Of critical importance in the applications and development of biomedical and radiological techniques is the precision with which the dose may be determined at all points of interest in the absorbing medium. This has developed as a result of efficacy of investigations in clinical radiation therapy, concern for patient safety and diagnostic accuracy in diagnostic radiology and the advent of clinical trials and research into the use of heavily ionizing radiations in biology and medicine. Since the last IAEA Symposium on Dosimetry Techniques applied to Agriculture, Industry, Biology and Medicine, held in Vienna in 1972, it has become increasingly clear that advances in the techniques and hardware of biomedical dosimetry have been rapid. It is for these reasons that this symposium was organized in a concerted effort to focus on the problems, developments and areas of further research in dosimetry in the Life Sciences. (author)

  7. 3D dosimetry by optical-CT scanning

    Science.gov (United States)

    Oldham, Mark

    2006-12-01

    The need for an accurate, practical, low-cost 3D dosimetry system is becoming ever more critical as modern dose delivery techniques increase in complexity and sophistication. A recent report from the Radiological Physics Center (RPC) (1), revealed that 38% of institutions failed the head-and-neck IMRT phantom credentialing test at the first attempt. This was despite generous passing criteria (within 7% dose-difference or 4mm distance-to-agreement) evaluated at a half-dozen points and a single axial plane. The question that arises from this disturbing finding is - what percentage of institutions would have failed if a comprehensive 3D measurement had been feasible, rather than measurements restricted to the central film-plane and TLD points? This question can only be adequately answered by a comprehensive 3D-dosimetry system, which presents a compelling argument for its development as a clinically viable low cost dosimetry solution. Optical-CT dosimetry is perhaps the closest system to providing such a comprehensive solution. In this article, we review the origins and recent developments of optical-CT dosimetry systems. The principle focus is on first generation systems known to have highest accuracy but longer scan times.

  8. Thermoluminescent measurement in space radiation dosimetry

    International Nuclear Information System (INIS)

    Chen Mei; Qi Zhangnian; Li Xianggao; Huang Zengxin; Jia Xianghong; Wang Genliang

    1999-01-01

    The author introduced the space radiation environment and the application of thermoluminescent measurement in space radiation dosimetry. Space ionization radiation is charged particles radiation. Space radiation dosimetry was developed for protecting astronauts against space radiation. Thermoluminescent measurement is an excellent method used in the spaceship cabin. Also the authors mentioned the recent works here

  9. Fifth international radiopharmaceutical dosimetry symposium

    International Nuclear Information System (INIS)

    Watson, E.E.; Schlafke-Stelson, A.T.

    1992-05-01

    This meeting was held to exchange information on how to get better estimates of the radiation absorbed dose. There seems to be a high interest of late in patient dosimetry; discussions were held in the light of revised risk estimates for radiation. Topics included: Strategies of Dose Assessment; Dose Estimation for Radioimmunotherapy; Dose Calculation Techniques and Models; Dose Estimation for Positron Emission Tomography (PET); Kinetics for Dose Estimation; and Small Scale Dosimetry and Microdosimetry. (VC)

  10. SU-E-T-214: Intensity Modulated Proton Therapy (IMPT) Based On Passively Scattered Protons and Multi-Leaf Collimation: Prototype TPS and Dosimetry Study

    International Nuclear Information System (INIS)

    Sanchez-Parcerisa, D; Carabe-Fernandez, A

    2014-01-01

    Purpose. Intensity-modulated proton therapy is usually implemented with multi-field optimization of pencil-beam scanning (PBS) proton fields. However, at the view of the experience with photon-IMRT, proton facilities equipped with double-scattering (DS) delivery and multi-leaf collimation (MLC) could produce highly conformal dose distributions (and possibly eliminate the need for patient-specific compensators) with a clever use of their MLC field shaping, provided that an optimal inverse TPS is developed. Methods. A prototype TPS was developed in MATLAB. The dose calculation process was based on a fluence-dose algorithm on an adaptive divergent grid. A database of dose kernels was precalculated in order to allow for fast variations of the field range and modulation during optimization. The inverse planning process was based on the adaptive simulated annealing approach, with direct aperture optimization of the MLC leaves. A dosimetry study was performed on a phantom formed by three concentrical semicylinders separated by 5 mm, of which the inner-most and outer-most were regarded as organs at risk (OARs), and the middle one as the PTV. We chose a concave target (which is not treatable with conventional DS fields) to show the potential of our technique. The optimizer was configured to minimize the mean dose to the OARs while keeping a good coverage of the target. Results. The plan produced by the prototype TPS achieved a conformity index of 1.34, with the mean doses to the OARs below 78% of the prescribed dose. This Result is hardly achievable with traditional conformal DS technique with compensators, and it compares to what can be obtained with PBS. Conclusion. It is certainly feasible to produce IMPT fields with MLC passive scattering fields. With a fully developed treatment planning system, the produced plans can be superior to traditional DS plans in terms of plan conformity and dose to organs at risk

  11. Dosimetry on the radiological risks prevention in radiotherapy

    International Nuclear Information System (INIS)

    Fornet R, O. M.; Perez G, F.

    2014-08-01

    Dosimetry in its various forms plays a determining role on the radiological risks prevention in radiotherapy. To prove this in this paper is shown an analysis based on the risk matrix method, how the dosimetry can influence in each stages of a radiotherapy service; installation and acceptance, operation, maintenance and calibration. For each one of these stages the role that can play is analyzed as either the initiating event of a radiological accident or limiting barrier of these events of the dosimetric processes used for the individual dosimetry, the area monitoring, fixed or portable, for radiation beam dosimetry and of the patients for a radiotherapy service with cobalt-therapy equipment. The result of the study shows that the application of a prospective approach in the role evaluation of dosimetry in the prevention and mitigation of the consequences of a radiological accident in radiotherapy is crucial and should be subject to permanent evaluation at each development stage of these services. (author)

  12. Dosimetry in support of wholesomeness studies

    International Nuclear Information System (INIS)

    Jarrett, R.D.; Halliday, J.W.

    1979-01-01

    Interest in dosimetry procedures in the context of a large-scale processing situation exceeds the purely documentary aspects of this report. The numerous combinations afforded by the various types, strengths and configurations of irradiation sources and the possibilities for various conveyors and other facility design factors impacting on irradiation logistics render a completely general treatment of dosimetry procedures in such instances almost impossible. While the exact combination of these various factors represented by the irradiation facilities at NARADCOM may be duplicated nowhere else, the dosimetry procedures documented in this report offer both experience and solutions that might be more generally useful. Therefore, this report complements and supplements more general discussions found in the literature and cited in the text

  13. Radiation dosimetry activities in the Netherlands

    International Nuclear Information System (INIS)

    Broerse, J.J.; Mijnheer, B.J.

    1986-07-01

    The Netherlands Commission for Radiation Dosimetry (NCS) was officially established on 3 September 1982 with the aim of promoting the appropriate use of dosimetry of ionizing radiation both for scientific research and practical applications. The present report provides a compilation of the dosimetry acitivities and expertise available in the Netherlands, based on the replies to a questionnaire mailed under the auspices of the NCS and might suffer from some incompleteness in specific details. The addresses of the Dutch groups with the names of the scientists are given. Individual scientists, not connected with a scientific group, hospital or organization have not been included in this list. Also the names of commercial firms producing dosimetric systems have been omitted. (Auth.)

  14. Highly air stable passivation of graphene based field effect devices.

    Science.gov (United States)

    Sagade, Abhay A; Neumaier, Daniel; Schall, Daniel; Otto, Martin; Pesquera, Amaia; Centeno, Alba; Elorza, Amaia Zurutuza; Kurz, Heinrich

    2015-02-28

    The sensitivity of graphene based devices to surface adsorbates and charge traps at the graphene/dielectric interface requires proper device passivation in order to operate them reproducibly under ambient conditions. Here we report on the use of atomic layer deposited aluminum oxide as passivation layer on graphene field effect devices (GFETs). We show that successful passivation produce hysteresis free DC characteristics, low doping level GFETs stable over weeks though operated and stored in ambient atmosphere. This is achieved by selecting proper seed layer prior to deposition of encapsulation layer. The passivated devices are also demonstrated to be robust towards the exposure to chemicals and heat treatments, typically used during device fabrication. Additionally, the passivation of high stability and reproducible characteristics is also shown for functional devices like integrated graphene based inverters.

  15. Temperature dependence of the Al2O3:C response in medical luminescence dosimetry

    International Nuclear Information System (INIS)

    Edmund, Jens M.; Andersen, Claus E.

    2007-01-01

    Over the last years, attention has been given to applications of Al 2 O 3 :C in space and medical dosimetry. One such application is in vivo dose verification in radiotherapy of cancer patients and here we investigate the temperature effects on the radioluminescence (RL) and optically stimulated luminescence (OSL) signals in the room-to-body temperature region. We found that the OSL response changes with both irradiation and stimulation temperatures as well as the OSL integration time. We conclude that temperature effects on the OSL response can be removed by integration if the irradiation temperature is not varied. The RL response only depends on the irradiation temperature. We recommend that calibration should be carried out at the same irradiation temperature at which the measurement is performed (i.e. at body temperature for in vivo measurements). The overall change in the integrated OSL and RL signals with irradiation and stimulation temperature covers an interval from -0.2% to 0.6% per deg. C. This indicates the correction factor one must take into account when performing luminescence dosimetry at different temperatures. The same effects were observed regardless of crystal type, test doses and stimulation and detection wavelengths. The reported temperature dependence seems to be a general property of Al 2 O 3 :C

  16. Fast neutron dosimetry and spectrometry using radioactivation (1963); Dosimetrie et spectrometrie des neutrons rapides par radioactivation (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Lamberieux, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    The author first recalls rapidly a few generalities concerning induced radioactivity detectors and gives, in an appendix, tables summarizing the properties of detector elements which may be used in radioprotection. The excitation functions found in the literature and also given. The technological characteristics of the detectors used are given, together with the counting methods. The many advantages of activation dosimetry for strong or periodic neutron fluxes and for those in the presence of {gamma}-radiation are stressed. The main problem in activation dosimetry is, however, the calculation of the dose absorbed from the results of the measurements. It is shown how the dose is expressed, fairly accurately, as a function of the radioactivities induced in a series of detectors. As an example, the spectrometry and the dosimetry of the neutron flux emitted by a Po-Be source are presented. (author) [French] L'auteur fait d'abord un bref rappel des generalites sur les detecteurs a radioactivite induite, accompagne, en annexe, des tableaux resumant les proprietes d'elements detecteurs utilisables en radioprotection. Les fonctions d'excitation trouvees dans la litterature y sont egalement annexees. On donne ensuite les caracteristiques technologiques des detecteurs employes ainsi que les methodes de comptage utilisees. On souligne les nombreux avantages de la dosimetrie par activation dans les flux de neutrons intenses ou periodiques et en presence de rayonnement {gamma}. Il reste que le probleme central de la dosimetrie par activation est le calcul de la dose absorbee a partir des resultats de mesure. On montre comment la dose s'exprime, de maniere approchee, en fonction des radioactivites induites dans une serie de detecteurs. A titre d'exemple, la spectrometrie et la dosimetrie du flux de neutrons emis par une source de Po-Be sont presentees. (auteur)

  17. Integrated prioritization method for active and passive highway-rail crossings.

    Science.gov (United States)

    2013-01-01

    This two-year research project developed a prioritization system for highway-rail at-grade crossings that addressed the following major concerns: (1) warrants to identify low-volume, passive crossings with risk factors; (2) a broader priority index t...

  18. Dosimetry of high energy radiation

    CERN Document Server

    Sahare, P D

    2018-01-01

    High energy radiation is hazardous to living beings and a threat to mankind. The correct estimation of the high energy radiation is a must and a single technique may not be very successful. The process of estimating the dose (the absorbed energy that could cause damages) is called dosimetry. This book covers the basic technical knowledge in the field of radiation dosimetry. It also makes readers aware of the dangers and hazards of high energy radiation.

  19. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2009-08-28

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document.

  20. External audit in radiotherapy dosimetry

    International Nuclear Information System (INIS)

    Thwaites, D.I.; Western General Hospital, Edinburgh

    1996-01-01

    Quality audit forms an essential part of any comprehensive quality assurance programme. This is true in radiotherapy generally and in specific areas such as radiotherapy dosimetry. Quality audit can independently test the effectiveness of the quality system and in so doing can identify problem areas and minimize their possible consequences. Some general points concerning quality audit applied to radiotherapy are followed by specific discussion of its practical role in radiotherapy dosimetry, following its evolution from dosimetric intercomparison exercises to routine measurement-based on-going audit in the various developing audit networks both in the UK and internationally. Specific examples of methods and results are given from some of these, including the Scottish+ audit group. Quality audit in radiotherapy dosimetry is now well proven and participation by individual centres is strongly recommended. Similar audit approaches are to be encouraged in other areas of the radiotherapy process. (author)

  1. Poster - 16: Time-resolved diode dosimetry for in vivo proton therapy range verification: calibration through numerical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Toltz, Allison; Hoesl, Michaela; Schuemann, Jan; Seuntjens, Jan; Lu, Hsiao-Ming; Paganetti, Harald [McGill University, Harvard University, Massachusetts General Hospital, McGill University, Massachusetts General Hospital, Massachusetts General Hospital (United States)

    2016-08-15

    Purpose: A method to refine the implementation of an in vivo, adaptive proton therapy range verification methodology was investigated. Simulation experiments and in-phantom measurements were compared to validate the calibration procedure of a time-resolved diode dosimetry technique. Methods: A silicon diode array system has been developed and experimentally tested in phantom for passively scattered proton beam range verification by correlating properties of the detector signal to the water equivalent path length (WEPL). The implementation of this system requires a set of calibration measurements to establish a beam-specific diode response to WEPL fit for the selected ‘scout’ beam in a solid water phantom. This process is both tedious, as it necessitates a separate set of measurements for every ‘scout’ beam that may be appropriate to the clinical case, as well as inconvenient due to limited access to the clinical beamline. The diode response to WEPL relationship for a given ‘scout’ beam may be determined within a simulation environment, facilitating the applicability of this dosimetry technique. Measurements for three ‘scout’ beams were compared against simulated detector response with Monte Carlo methods using the Tool for Particle Simulation (TOPAS). Results: Detector response in water equivalent plastic was successfully validated against simulation for spread out Bragg peaks of range 10 cm, 15 cm, and 21 cm (168 MeV, 177 MeV, and 210 MeV) with adjusted R{sup 2} of 0.998. Conclusion: Feasibility has been shown for performing calibration of detector response for a given ‘scout’ beam through simulation for the time resolved diode dosimetry technique.

  2. Recent progress in application of JAERI alanine/ESR dosimetry system

    International Nuclear Information System (INIS)

    Kojima, T.

    1995-01-01

    Feasibility studies of application of JAERI alanine/ESR dosimetry system were performed on radiotherapy level dosimetry, low dose-rate dosimetry for residual life estimation of cable insulators used in nuclear power facilities, and dose monitoring for electron processing. (author)

  3. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Science.gov (United States)

    2010-01-01

    ...) Methods and equipment for analysis of biological materials; (3) A system of fixed nuclear accident... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... 10 Energy 4 2010-01-01 2010-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304...

  4. Mixed field dosimetry with paired ionization chambers

    International Nuclear Information System (INIS)

    Coppola, M.; Porro, F.

    1977-01-01

    This report describes the results of neutron and gamma mixed-field dosimetry obtained by the Ispra Group in the framework of the European Neutron Dosimetry intercomparison Project (ENDIP). The experimental method and the formulation employed for the derivation of Kerma results are also present

  5. Dosimetry. Standard practice for dosimetry in gamma irradiation facilities for food and non-food processing

    International Nuclear Information System (INIS)

    2008-01-01

    This Ghana Standard outlines the installation qualification program for an irradiator and the dosimetry procedures to be followed during operational qualification, performance qualification and routine processing in facilities that process food and non-food with gamma rays. This is to ensure that the product has been treated with predetermined range of absorbed dose. It is not intended for use in X-ray and electron beam facilities and therefore dosimetry systems in such facilities are not covered

  6. Alanine-ESR dosimetry for radiotherapy IAEA experience

    International Nuclear Information System (INIS)

    Mehta, K.; Girzikowsky, R.; )

    1997-01-01

    At present, the most commonly used transfer dosimeters for radiotherapy applications are TL dosemeters. They are being used for intercomparison between SSDLs (about 70) and the IAEA dosimetry laboratory. However, there are some undesirable characteristics of this dosimetry system. We have a study in progress at the IAEA to evaluate the alanine-ESR systems as an alternative to TLDs. There are several desirable qualities which make alanine an attractive dosemeter. Preliminary data suggest that the alanine-ESR dosimetry system has the potential to replace TLDs for intercomparison amongst SSDLs in the therapy-level dose regions. (Author)

  7. Review of the correlation between results of cytogenetic dosimetry from blood lymphocytes and EPR dosimetry from tooth enamel for victims of radiation accidents

    International Nuclear Information System (INIS)

    Khvostunov, I.K.; Ivannikov, A.I.; Skvortsov, V.G.; Golub, E.V.; Nugis, V. Yu.

    2015-01-01

    The goal of this study was to compare dose estimates from electron paramagnetic resonance (EPR) dosimetry with teeth and cytogenetic dosimetry with blood lymphocytes for 30 victims of radiation accidents. The whole-body exposures estimated by tooth enamel EPR dosimetry were ranging from 0.01 to 9.3 Gy. Study group comprised victims exposed to acute and prolonged irradiation at high and low dose rate in different accidents. Blood samples were taken from each of them for cytogenetic analysis. Aberrations were scored and analysed according to International Atomic Energy Agency (IAEA) guidelines for conventional and FISH analysis. Tooth samples were collected in dental clinics after they had been extracted during ordinary practice. EPR dosimetry was performed according to the IAEA protocol. EPR dosimetry showed good correlation with dosimetry based on chromosomal analysis. All estimations of cytogenetic dose below detection limit coincide with EPR dose estimates within the ranges of uncertainty. The differences between cytogenetic and EPR assays may occur in a case of previous unaccounted exposure, non-homogeneous irradiation and due to contribution to absorbed dose from neutron irradiation. (authors)

  8. Image in nuclear dosimetry using thermoluminescent dosimetry

    International Nuclear Information System (INIS)

    Guinsburg, G.; Matsuoka, M.; Watanabe, S.

    1987-01-01

    A low cost methodology to produce images of internal sick organs by radioisotopic intake, is presented. Dosimetries of thermoluminescent material and Teflon (ratio:50%) in bidimensional matrix shape are used with a Pb collimator. This collimator-bidimensional matrix system was tested ''in vivo'' and in thyroid phantoms using 99m Tc. A comparative evaluation between this method and the scintigraphy one is presented. (M.A.C.) [pt

  9. The physics of small megavoltage photon beam dosimetry.

    Science.gov (United States)

    Andreo, Pedro

    2018-02-01

    The increased interest during recent years in the use of small megavoltage photon beams in advanced radiotherapy techniques has led to the development of dosimetry recommendations by different national and international organizations. Their requirement of data suitable for the different clinical options available, regarding treatment units and dosimetry equipment, has generated a considerable amount of research by the scientific community during the last decade. The multiple publications in the field have led not only to the availability of new invaluable data, but have also contributed substantially to an improved understanding of the physics of their dosimetry. This work provides an overview of the most important aspects that govern the physics of small megavoltage photon beam dosimetry. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. WE-AB-BRB-02: Methods and Applications of 3D Radiochromic Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Oldham, M. [Duke University Medical Center (United States)

    2016-06-15

    Despite widespread IMRT treatments at modern radiation therapy clinics, precise dosimetric commissioning of an IMRT system remains a challenge. In the most recent report from the Radiological Physics Center (RPC), nearly 20% of institutions failed an end-to-end test with an anthropomorphic head and neck phantom, a test that has rather lenient dose difference and distance-to-agreement criteria of 7% and 4 mm. The RPC report provides strong evidence that IMRT implementation is prone to error and that improved quality assurance tools are required. At the heart of radiation therapy dosimetry is the multidimensional dosimeter. However, due to the limited availability of water-equivalent dosimetry materials, research and development in this important field is challenging. In this session, we will review a few dosimeter developments that are either in the laboratory phase or in the pre-commercialization phase. 1) Radiochromic plastic. Novel formulations exhibit light absorbing optical contrast with very little scatter, enabling faster, broad beam optical CT design. 2) Storage phosphor. After irradiation, the dosimetry panels will be read out using a dedicated 2D scanning apparatus in a non-invasive, electro-optic manner and immediately restored for further use. 3) Liquid scintillator. Scintillators convert the energy from x-rays and proton beams into visible light, which can be recorded with a scientific camera (CCD or CMOS) from multiple angles. The 3D shape of the dose distribution can then be reconstructed. 4) Cherenkov emission imaging. Gated intensified imaging allows video-rate passive detection of Cherenkov emission during radiation therapy with the room lights on. Learning Objectives: To understand the physics of a variety of dosimetry techniques based upon optical imaging To investigate the strategies to overcome respective challenges and limitations To explore novel ideas of dosimeter design Supported in part by NIH Grants R01CA148853, R01CA182450, R01CA109558

  11. WE-AB-BRB-03: Real-Time Volumetric Scintillation Dosimetry for Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Beddar, S. [UT MD Anderson Cancer Center (United States)

    2016-06-15

    Despite widespread IMRT treatments at modern radiation therapy clinics, precise dosimetric commissioning of an IMRT system remains a challenge. In the most recent report from the Radiological Physics Center (RPC), nearly 20% of institutions failed an end-to-end test with an anthropomorphic head and neck phantom, a test that has rather lenient dose difference and distance-to-agreement criteria of 7% and 4 mm. The RPC report provides strong evidence that IMRT implementation is prone to error and that improved quality assurance tools are required. At the heart of radiation therapy dosimetry is the multidimensional dosimeter. However, due to the limited availability of water-equivalent dosimetry materials, research and development in this important field is challenging. In this session, we will review a few dosimeter developments that are either in the laboratory phase or in the pre-commercialization phase. 1) Radiochromic plastic. Novel formulations exhibit light absorbing optical contrast with very little scatter, enabling faster, broad beam optical CT design. 2) Storage phosphor. After irradiation, the dosimetry panels will be read out using a dedicated 2D scanning apparatus in a non-invasive, electro-optic manner and immediately restored for further use. 3) Liquid scintillator. Scintillators convert the energy from x-rays and proton beams into visible light, which can be recorded with a scientific camera (CCD or CMOS) from multiple angles. The 3D shape of the dose distribution can then be reconstructed. 4) Cherenkov emission imaging. Gated intensified imaging allows video-rate passive detection of Cherenkov emission during radiation therapy with the room lights on. Learning Objectives: To understand the physics of a variety of dosimetry techniques based upon optical imaging To investigate the strategies to overcome respective challenges and limitations To explore novel ideas of dosimeter design Supported in part by NIH Grants R01CA148853, R01CA182450, R01CA109558

  12. WE-AB-BRB-02: Methods and Applications of 3D Radiochromic Dosimetry

    International Nuclear Information System (INIS)

    Oldham, M.

    2016-01-01

    Despite widespread IMRT treatments at modern radiation therapy clinics, precise dosimetric commissioning of an IMRT system remains a challenge. In the most recent report from the Radiological Physics Center (RPC), nearly 20% of institutions failed an end-to-end test with an anthropomorphic head and neck phantom, a test that has rather lenient dose difference and distance-to-agreement criteria of 7% and 4 mm. The RPC report provides strong evidence that IMRT implementation is prone to error and that improved quality assurance tools are required. At the heart of radiation therapy dosimetry is the multidimensional dosimeter. However, due to the limited availability of water-equivalent dosimetry materials, research and development in this important field is challenging. In this session, we will review a few dosimeter developments that are either in the laboratory phase or in the pre-commercialization phase. 1) Radiochromic plastic. Novel formulations exhibit light absorbing optical contrast with very little scatter, enabling faster, broad beam optical CT design. 2) Storage phosphor. After irradiation, the dosimetry panels will be read out using a dedicated 2D scanning apparatus in a non-invasive, electro-optic manner and immediately restored for further use. 3) Liquid scintillator. Scintillators convert the energy from x-rays and proton beams into visible light, which can be recorded with a scientific camera (CCD or CMOS) from multiple angles. The 3D shape of the dose distribution can then be reconstructed. 4) Cherenkov emission imaging. Gated intensified imaging allows video-rate passive detection of Cherenkov emission during radiation therapy with the room lights on. Learning Objectives: To understand the physics of a variety of dosimetry techniques based upon optical imaging To investigate the strategies to overcome respective challenges and limitations To explore novel ideas of dosimeter design Supported in part by NIH Grants R01CA148853, R01CA182450, R01CA109558

  13. WE-AB-BRB-03: Real-Time Volumetric Scintillation Dosimetry for Radiation Therapy

    International Nuclear Information System (INIS)

    Beddar, S.

    2016-01-01

    Despite widespread IMRT treatments at modern radiation therapy clinics, precise dosimetric commissioning of an IMRT system remains a challenge. In the most recent report from the Radiological Physics Center (RPC), nearly 20% of institutions failed an end-to-end test with an anthropomorphic head and neck phantom, a test that has rather lenient dose difference and distance-to-agreement criteria of 7% and 4 mm. The RPC report provides strong evidence that IMRT implementation is prone to error and that improved quality assurance tools are required. At the heart of radiation therapy dosimetry is the multidimensional dosimeter. However, due to the limited availability of water-equivalent dosimetry materials, research and development in this important field is challenging. In this session, we will review a few dosimeter developments that are either in the laboratory phase or in the pre-commercialization phase. 1) Radiochromic plastic. Novel formulations exhibit light absorbing optical contrast with very little scatter, enabling faster, broad beam optical CT design. 2) Storage phosphor. After irradiation, the dosimetry panels will be read out using a dedicated 2D scanning apparatus in a non-invasive, electro-optic manner and immediately restored for further use. 3) Liquid scintillator. Scintillators convert the energy from x-rays and proton beams into visible light, which can be recorded with a scientific camera (CCD or CMOS) from multiple angles. The 3D shape of the dose distribution can then be reconstructed. 4) Cherenkov emission imaging. Gated intensified imaging allows video-rate passive detection of Cherenkov emission during radiation therapy with the room lights on. Learning Objectives: To understand the physics of a variety of dosimetry techniques based upon optical imaging To investigate the strategies to overcome respective challenges and limitations To explore novel ideas of dosimeter design Supported in part by NIH Grants R01CA148853, R01CA182450, R01CA109558

  14. Integrating techniques for neutron dosimetry in Linac 18 MV

    International Nuclear Information System (INIS)

    Ceron R, P. V.; Diaz G, J. A. I.; Rivera M, T.; Paredes G, L. C.; Vega C, H. R.

    2015-10-01

    In this paper thermoluminescent dosimetry, analytical techniques and Monte Carlo calculations were used to estimate the neutron dose equivalent in a radiotherapy room with a linear electron accelerator of 18 MV. The equivalent dose was measured at isocenter to 1.42 m of target and at the entrance of the labyrinth of the room of a Novalis Tx. The neutron detectors were constructed with pairs of thermoluminescent dosimeters TLD 600 ( 6 LiF: Mg, Ti) and TLD 700 ( 7 LiF: Mg, Ti) which are placed inside a paraffin sphere of 20 cm in diameter. These measurements enabled the calculation of equivalent dose in the gate and the source term, using the relationships contained in the NCRP-151. Through the models carried out with the code MCNPX the absorbed dose distribution with regard to depth in a paraffin phantom are included and the neutron spectrum produced by the head, taking into account the geometry and component materials. The results are in the order of neutron milli sievert by gray of X-rays (mSv/Gy x) which are in the same order as those found in other reports for different accelerators. (Author)

  15. Status of neutron cross sections for reactor dosimetry

    International Nuclear Information System (INIS)

    Vlasov, M.F.; Fabry, A.; McElroy, W.N.

    1977-03-01

    The status of current international efforts to develop standardized sets of evaluated energy-dependent (differential) neutron cross sections for reactor dosimetry is reviewed. The status and availability of differential data are considered, some recent results of the data testing of the ENDF/B-IV dosimetry file using 252 Cf and 235 U benchmark reference neutron fields are presented, and a brief review is given of the current efforts to characterize and identify dosimetry benchmark radiation fields

  16. Reassessment of the atomic bomb radiation dosimetry for Hiroshima and Nagasaki. Dosimetry system 2002. DS02. Volume 1

    International Nuclear Information System (INIS)

    Young, Robert W.; Kerr, George D.

    2005-01-01

    The extensive efforts to review the dosimetry of the atomic-bomb survivors and formulate the new dosimetry system DS02 have been greatly welcomed by the Radiation Effects Research Foundation (RERF). This accomplishment is a fine tribute to the importance of the epidemiological studies being conducted at RERF. No other study is so informative of the effects of radiation on human health. The gracious participation in the RERF program by the atomic-bomb survivors allows us to contribute to the well being of these individuals, and the high quality of the data obtained allows the RERF results to feature so prominently in the formulation of international guidelines for radiation protection. Such a great effort to improve and substantiate the dosimetry would not otherwise have been justified. RERF greatly appreciates the independent work of the U.S. and Japanese Working Groups on the atomic-bomb dosimetry and the review by the Joint Senior Review Group of this overall effort. We are assured that unbiased development of the new dosimetry system will reflect well in its application in the RERF epidemiology study. The documentation included in this report will serve as reference for the many deliberations concluded. The title publications are divided into 2 volumes. This is the first volume. The 8 of the reports in each chapter are indexed individually. (J.P.N.)

  17. Reassessment of the atomic bomb radiation dosimetry for Hiroshima and Nagasaki. Dosimetry system 2002. DS02. Volume 2

    International Nuclear Information System (INIS)

    Young, Robert W.; Kerr, George D.

    2005-01-01

    The extensive efforts to review the dosimetry of the atomic-bomb survivors and formulate the new dosimetry system DS02 have been greatly welcomed by the Radiation Effects Research Foundation (RERF). This accomplishment is a fine tribute to the importance of the epidemiological studies being conducted at RERF. No other study is so informative of the effects of radiation on human health. The gracious participation in the RERF program by the atomic-bomb survivors allows us to contribute to the well being of these individuals, and the high quality of the data obtained allows the RERF results to feature so prominently in the formulation of international guidelines for radiation protection. Such a great effort to improve and substantiate the dosimetry would not otherwise have been justified. RERF greatly appreciates the independent work of the U.S. and Japanese Working Groups on the atomic-bomb dosimetry and the review by the Joint Senior Review Group of this overall effort. We are assured that unbiased development of the new dosimetry system will reflect well in its application in the RERF epidemiology study. The documentation included in this report will serve as reference for the many deliberations concluded. The title publications are divided into 2 volumes. This is the second volume. The 29 of the reports in each chapter are indexed individually. (J.P.N.)

  18. Advances in biomedical dosimetry

    International Nuclear Information System (INIS)

    1981-01-01

    Full text: Radiation dosimetry, the accurate determination of the absorbed dose within an irradiated body or a piece of material, is a prerequisite for all applications of ionizing radiation. This has been known since the very first radiation applications in medicine and biology, and increasing efforts are being made by radiation researchers to develop more reliable, effective and safe instruments, and to further improve dosimetric accuracy for all types of radiation used. Development of new techniques and instrumentation was particularly fast in the field of both medical diagnostic and therapeutic radiology. Thus, in Paris in October the IAEA held the latest symposium in its continuing series on dosimetry in medicine and biology. The last one was held in Vienna in 1975. High-quality dosimetry is obviously of great importance for human health, whether the objectives lie in the prevention and control of risks associated with the nuclear industry, in medical uses of radioactive substances or X-ray beams for diagnostic purposes, or in the application of photon, electron or neutron beams in radiotherapy. The symposium dealt with the following subjects: General aspects of dosimetry; Special physical and biomedical aspects; Determination of absorbed dose; Standardization and calibration of dosimetric systems; and Development of dosimetric systems. The forty or so papers presented and the discussions that followed them brought out a certain number of dominant themes, among which three deserve particular mention. - The recent generalization of the International System of Units having prompted a fundamental reassessment of the dosimetric quantities to be considered in calibrating measuring instruments, various proposals were advanced by the representatives of national metrology laboratories to replace the quantity 'exposure' (SI unit = coulomb/kg) by 'Kerma' or 'absorbed dose' (unit joule/kg, the special name of which is 'gray'), this latter being closer to the practical

  19. Individual dosimetry and calibration

    International Nuclear Information System (INIS)

    Otto, T.

    1997-01-01

    In 1996, the Dosimetry and Calibration Section was, as in previous years, mainly engaged in routine tasks: the distribution of over 6000 dosimeters (with a total of more than 10,000 films) every two months and the calibration of about 900 fixed and mobile instruments used in the radiation survey sections of RP group. These tasks were, thanks to an experienced team, well mastered. Special efforts had to be made in a number of areas to modernize the service or to keep it in line with new prescriptions. The Individual Dosimetry Service had to assure that CERN's contracting firms comply with the prescriptions in the Radiation Safety Manual (1996) that had been inspired by the Swiss Ordinance of 1994: Companies must file for authorizations with the Swiss Federal Office for Public Health requiring that in every company an 'Expert in Radiation Protection' be nominated and subsequently trained. CERN's Individual Dosimetry Service is accredited by the Swiss Federal Authorities and works closely together with other, similar services on a rigorous quality assurance programme. Within this framework, CERN was mandated to organize this year the annual Swiss 'Intercomparison of Dosimeters'. All ten accredited dosimetry services - among others those of the Paul Scherrer Institute (PSI) in Villigen and of the four Swiss nuclear power stations - sent dosimeters to CERN, where they were irradiated in CERN's calibration facility with precise photon doses. After return to their origin they were processed and evaluated. The results were communicated to CERN and were compared with the originally given doses. A report on the results was subsequently prepared and submitted to the Swiss 'Group of Experts on Personal Dosimetry'. Reference monitors for photon and neutron radiation were brought to standard laboratories to assure the traceability of CERN's calibration service to the fundamental quantities. For photon radiation, a set of ionization chambers was calibrated in the reference field

  20. Software for evaluation of EPR-dosimetry performance

    International Nuclear Information System (INIS)

    Shishkina, E.A.; Timofeev, Yu.S.; Ivanov, D.V.

    2014-01-01

    Electron paramagnetic resonance (EPR) with tooth enamel is a method extensively used for retrospective external dosimetry. Different research groups apply different equipment, sample preparation procedures and spectrum processing algorithms for EPR dosimetry. A uniform algorithm for description and comparison of performances was designed and implemented in a new computer code. The aim of the paper is to introduce the new software 'EPR-dosimetry performance'. The computer code is a user-friendly tool for providing a full description of method-specific capabilities of EPR tooth dosimetry, from metrological characteristics to practical limitations in applications. The software designed for scientists and engineers has several applications, including support of method calibration by evaluation of calibration parameters, evaluation of critical value and detection limit for registration of radiation-induced signal amplitude, estimation of critical value and detection limit for dose evaluation, estimation of minimal detectable value for anthropogenic dose assessment and description of method uncertainty. (authors)

  1. Dosimetry-based treatment planning for molecular radiotherapy: a summary of the 2017 report from the Internal Dosimetry Task Force

    Directory of Open Access Journals (Sweden)

    Caroline Stokke

    2017-11-01

    Full Text Available Abstract Background The European directive on basic safety standards (Council directive 2013/59 Euratom mandates dosimetry-based treatment planning for radiopharmaceutical therapies. The directive comes into operation February 2018, and the aim of a report produced by the Internal Dosimetry Task Force of the European Association of Nuclear Medicine is to address this aspect of the directive. A summary of the report is presented. Results A brief review of five of the most common therapy procedures is included in the current text, focused on the potential to perform patient-specific dosimetry. In the full report, 11 different therapeutic procedures are included, allowing additional considerations of effectiveness, references to specific literature on quantitative imaging and dosimetry, and existing evidence for absorbed dose-effect correlations for each treatment. Individualized treatment planning with tracer diagnostics and verification of the absorbed doses delivered following therapy is found to be scientifically feasible for almost all procedures investigated, using quantitative imaging and/or external monitoring. Translation of this directive into clinical practice will have significant implications for resource requirements. Conclusions Molecular radiotherapy is undergoing a significant expansion, and the groundwork for dosimetry-based treatment planning is already in place. The mandated individualization is likely to improve the effectiveness of the treatments, although must be adequately resourced.

  2. Role of secondary standard dosimetry laboratory in radiation protection program

    International Nuclear Information System (INIS)

    Rahman, Sohaila; Ali, Noriah Mohd.

    2008-01-01

    Full text: The radiation dosimetry program is an important element of operational radiation protection. Dosimetry data enable workers and radiation protection professionals to evaluate and control work practices to eliminate unnecessary exposure to ionizing radiation. The usefulness of the data produced however depends on its quality and traceability. The emphasis of the global dosimetry program is focused through the IAEA/WHO network of secondary standard dosimetry laboratories (SSDLs), which aims for the determination of SI quantities through proper traceable calibration of radiation protection equipment. The responsibility of SSDL-NUCLEAR MALAYSIA to guarantee a reliable dosimetry service, which is traceable to international standards, is elucidated. It acts as the basis for harmonized occupational radiation monitoring in Malaysia.

  3. EPR Dosimetry - Present and Future

    Energy Technology Data Exchange (ETDEWEB)

    Regulla, D.F. [GSF - National Research Centre for Environment and Health, Institute of Radiation Protection, 85764 Neuherberg (Germany)

    1999-07-01

    In the past, IAEA has played a central role in stipulating research and development in EPR high-dose standardisation as well as in coordinating and organising international dose intercomparison programs, within the Member States of the United Nations from the mid-seventies till today. The future tasks of EPR dosimetry seem to tend towards different subjects such as bio markers, biological radiation effects, post-accident dose reconstruction in the environment, and retrospective human dosimetry. The latter may be considered a promising tool for epidemiology on the way to re-define radiation risk of man for chronicle radiation exposures, based on e.g. South Ural civil population and radiation workers. There are on-going international activities in the field of standardising high-level dosimetry by the American Standards on Testing and Materials (Astm), and by the International Organisation of Standards (ISO). The International Commission on Radiation Units and Measurements (ICRU) is considering the establishment of relevant recommendations concerning industrial radiation processing, but also human dose reconstruction. (Author)

  4. Fundamentals of Dosimetry. Chapter 3

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, E. M. [Universidade de São Paulo, São Paulo (Brazil)

    2014-09-15

    Determination of the energy imparted to matter by radiation is the subject of dosimetry. The energy deposited as radiation interacts with atoms of the material, as seen in the previous chapter. The imparted energy is responsible for the effects that radiation causes in matter, for instance, a rise in temperature, or chemical or physical changes in the material properties. Several of the changes produced in matter by radiation are proportional to the absorbed dose, giving rise to the possibility of using the material as the sensitive part of a dosimeter. Also, the biological effects of radiation depend on the absorbed dose. A set of quantities related to the radiation field is also defined within the scope of dosimetry. It will be shown in this chapter that, under special conditions, there are simple relations between dosimetric and field description quantities. Thus, the framework of dosimetry is the set of physical and operational quantities that are studied in this chapter.

  5. EPR Dosimetry - Present and Future

    International Nuclear Information System (INIS)

    Regulla, D.F.

    1999-01-01

    In the past, IAEA has played a central role in stipulating research and development in EPR high-dose standardisation as well as in coordinating and organising international dose intercomparison programs, within the Member States of the United Nations from the mid-seventies till today. The future tasks of EPR dosimetry seem to tend towards different subjects such as bio markers, biological radiation effects, post-accident dose reconstruction in the environment, and retrospective human dosimetry. The latter may be considered a promising tool for epidemiology on the way to re-define radiation risk of man for chronicle radiation exposures, based on e.g. South Ural civil population and radiation workers. There are on-going international activities in the field of standardising high-level dosimetry by the American Standards on Testing and Materials (Astm), and by the International Organisation of Standards (ISO). The International Commission on Radiation Units and Measurements (ICRU) is considering the establishment of relevant recommendations concerning industrial radiation processing, but also human dose reconstruction. (Author)

  6. I-124 Imaging and Dosimetry

    Directory of Open Access Journals (Sweden)

    Russ Kuker

    2017-02-01

    Full Text Available Although radioactive iodine imaging and therapy are one of the earliest applications of theranostics, there still remain a number of unresolved clinical questions as to the optimization of diagnostic techniques and dosimetry protocols. I-124 as a positron emission tomography (PET radiotracer has the potential to improve the current clinical practice in the diagnosis and treatment of differentiated thyroid cancer. The higher sensitivity and spatial resolution of PET/computed tomography (CT compared to standard gamma scintigraphy can aid in the detection of recurrent or metastatic disease and provide more accurate measurements of metabolic tumor volumes. However the complex decay schema of I-124 poses challenges to quantitative PET imaging. More prospective studies are needed to define optimal dosimetry protocols and to improve patient-specific treatment planning strategies, taking into account not only the absorbed dose to tumors but also methods to avoid toxicity to normal organs. A historical perspective of I-124 imaging and dosimetry as well as future concepts are discussed.

  7. Use of the GATE Monte Carlo package for dosimetry applications

    Energy Technology Data Exchange (ETDEWEB)

    Visvikis, D. [INSERM U650, LaTIM, University Hospital Medical School, F 29609 Brest (France)]. E-mail: Visvikis.Dimitris@univ-brest.fr; Bardies, M. [INSERM U601, CHU Nantes, F 44093 Nantes (France); Chiavassa, S. [INSERM U601, CHU Nantes, F 44093 Nantes (France); Danford, C. [Department of Medical Physics, MSKCC, New York (United States); Kirov, A. [Department of Medical Physics, MSKCC, New York (United States); Lamare, F. [INSERM U650, LaTIM, University Hospital Medical School, F 29609 Brest (France); Maigne, L. [Departement de Curietherapie-Radiotherapie, Centre Jean Perrin, F 63000 Clemont-Ferrand (France); Staelens, S. [UGent-ELIS, St-Pietersnieuwstraat, 41, B 9000 Gent (Belgium); Taschereau, R. [CRUMP Institute for Molecular Imaging, UCLA, Los Angeles (United States)

    2006-12-20

    One of the roles for Monte Carlo (MC) simulation studies is in the area of dosimetry. A number of different codes dedicated to dosimetry applications are available and widely used today, such as MCNP, EGSnrc and PTRAN. However, such codes do not easily facilitate the description of complicated 3D sources or emission tomography systems and associated data flow, which may be useful in different dosimetry application domains. Such problems can be overcome by the use of specific MC codes such as GATE (GEANT4 Application to Tomographic Emission), which is based on Geant4 libraries, providing a scripting interface with a number of advantages for the simulation of SPECT and PET systems. Despite this potential, its major disadvantage is in terms of efficiency involving long execution times for applications such as dosimetry. The strong points and disadvantages of GATE in comparison to other dosimetry specific codes are discussed and illustrated in terms of accuracy, efficiency and flexibility. A number of features, such as the use of voxelised and moving sources, as well as developments such as advanced visualization tools and the development of dose estimation maps allowing GATE to be used for dosimetry applications are presented. In addition, different examples from dosimetry applications with GATE are given. Finally, future directions with respect to the use of GATE for dosimetry applications are outlined.

  8. Database to manage personal dosimetry Hospital Universitario de La Ribera

    International Nuclear Information System (INIS)

    Melchor, M.; Martinez, D.; Asensio, M.; Candela, F.; Camara, A.

    2011-01-01

    For the management of professionally exposed personnel dosimetry, da La are required for the use and return of dosimeters. in the Department of Radio Physics and Radiation Protection have designed and implemented a database management staff dosimetry Hospital and Area Health Centers. The specific objectives were easily import data from the National Center dosimetric dosimetry, consulting records in a simple dosimetry, dosimeters allow rotary handle, and also get reports from different periods of time to know the return data for users, services, etc.

  9. Medical reference dosimetry using EPR measurements of alanine

    DEFF Research Database (Denmark)

    Helt-Hansen, Jakob; Rosendal, F.; Kofoed, I.M.

    2009-01-01

    Background. Electron spin resonance (EPR) is used to determine the absorbed dose of alanine dosimeters exposed to clinical photon beams in a solid-water phantom. Alanine is potentially suitable for medical reference dosimetry, because of its near water equivalence over a wide energy spectrum, low...... methods the proposed algorithm can be applied without normalisation of phase shifts caused by changes in the g-value of the cavity. The study shows that alanine dosimetry is a suitable candidate for medical reference dosimetry especially for quality control applications.......Background. Electron spin resonance (EPR) is used to determine the absorbed dose of alanine dosimeters exposed to clinical photon beams in a solid-water phantom. Alanine is potentially suitable for medical reference dosimetry, because of its near water equivalence over a wide energy spectrum, low...

  10. Optical fronthauling for 5G mobile: A perspective of passive metro WDM technology

    DEFF Research Database (Denmark)

    Zou, Shihuan Jim; Wagner, Christoph; Eiselt, Michael

    2017-01-01

    We discuss the necessity of passive WDM technology in the 5G fronthaul application. The proof-of-concept field trial showed that the proposed system integrated seamlessly with the current wireless equipment and had no impact on services.......We discuss the necessity of passive WDM technology in the 5G fronthaul application. The proof-of-concept field trial showed that the proposed system integrated seamlessly with the current wireless equipment and had no impact on services....

  11. Human biodistribution and radiation dosimetry of 82Rb.

    Science.gov (United States)

    Senthamizhchelvan, Srinivasan; Bravo, Paco E; Esaias, Caroline; Lodge, Martin A; Merrill, Jennifer; Hobbs, Robert F; Sgouros, George; Bengel, Frank M

    2010-10-01

    Prior estimates of radiation-absorbed doses from (82)Rb, a frequently used PET perfusion tracer, yielded discrepant results. We reevaluated (82)Rb dosimetry using human in vivo biokinetic measurements. Ten healthy volunteers underwent dynamic PET/CT (6 contiguous table positions, each with separate (82)Rb infusion). Source organ volumes of interest were delineated on the CT images and transferred to the PET images to obtain time-integrated activity coefficients. Radiation doses were estimated using OLINDA/EXM 1.0. The highest mean absorbed organ doses (μGy/MBq) were observed for the kidneys (5.81), heart wall (3.86), and lungs (2.96). Mean effective doses were 1.11 ± 0.22 and 1.26 ± 0.20 μSv/MBq using the tissue-weighting factors of the International Commission on Radiological Protection (ICRP), publications 60 and 103, respectively. Our current (82)Rb dosimetry suggests reasonably low radiation exposure. On the basis of this study, a clinical (82)Rb injection of 2 × 1,480 MBq (80 mCi) would result in a mean effective dose of 3.7 mSv using the weighting factors of the ICRP 103-only slightly above the average annual natural background exposure in the United States (3.1 mSv).

  12. Passive safety systems reliability and integration of these systems in nuclear power plant PSA

    International Nuclear Information System (INIS)

    La Lumia, V.; Mercier, S.; Marques, M.; Pignatel, J.F.

    2004-01-01

    Innovative nuclear reactor concepts could lead to use passive safety features in combination with active safety systems. A passive system does not need active component, external energy, signal or human interaction to operate. These are attractive advantages for safety nuclear plant improvements and economic competitiveness. But specific reliability problems, linked to physical phenomena, can conduct to stop the physical process. In this context, the European Commission (EC) starts the RMPS (Reliability Methods for Passive Safety functions) program. In this RMPS program, a quantitative reliability evaluation of the RP2 system (Residual Passive heat Removal system on the Primary circuit) has been realised, and the results introduced in a simplified PSA (Probabilistic Safety Assessment). The scope is to get out experience of definition of characteristic parameters for reliability evaluation and PSA including passive systems. The simplified PSA, using event tree method, is carried out for the total loss of power supplies initiating event leading to a severe core damage. Are taken into account: failures of components but also failures of the physical process involved (e.g. natural convection) by a specific method. The physical process failure probabilities are assessed through uncertainty analyses based on supposed probability density functions for the characteristic parameters of the RP2 system. The probabilities are calculated by MONTE CARLO simulation coupled to the CATHARE thermalhydraulic code. The yearly frequency of the severe core damage is evaluated for each accident sequence. This analysis has identified the influence of the passive system RP2 and propose a re-dimensioning of the RP2 system in order to satisfy the safety probabilistic objectives for reactor core severe damage. (authors)

  13. The IAEA/WHO thermoluminescent dosimetry intercomparison used for the improvement of clinical dosimetry

    International Nuclear Information System (INIS)

    Racoveanu, N.T.

    1981-01-01

    Results of thermoluminescent dosimetry collected over 5 years in the Eastern Mediterranean region of WHO were analyzed in an attempt to improve clinical dosimetry. Data for 16 radiotherapy departments showed considerable inconsistencies. It was found that the clinical dosemeters used by 3 of the departments were not working properly. The remainder of the departments had one or more dosemeters in perfect working order but the procedure for measuring machine output was inadequate or the correction factors (pressure, temperature) were wrongly applied due to lack of reliable instruments for such measurements. Problems encountered in the sending and returning of TLD dosemeters for assessment are discussed

  14. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2010-04-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision

  15. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2011-04-04

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision

  16. Optimized ultra-thin manganin alloy passivated fine-pitch damascene compatible bump-less Cu-Cu bonding at sub 200 °C for three-dimensional Integration applications

    Science.gov (United States)

    Panigrahi, Asisa Kumar; Hemanth Kumar, C.; Bonam, Satish; Ghosh, Tamal; Rama Krishna Vanjari, Siva; Govind Singh, Shiv

    2018-02-01

    Enhanced Cu diffusion, Cu surface passivation, and smooth surface at the bonding interface are the key essentials for high quality Cu-Cu bonding. Previously, we have demonstrated optimized 3 nm thin Manganin metal-alloy passivation from oxidation and also helps to reduce the surface roughness to about 0.8 nm which substantially led to high quality Cu-Cu bonding. In this paper, we demonstrated an ultra fine-pitch (indication of high quality bonding for future multilayer integrations. Furthermore, electrical characterization of the bonded structure was performed under various robust conditions as per International Technology Roadmap for Semiconductors (ITRS Roadmap) in order to satisfy the stability of the bonded structure.

  17. Fundamental studies of passivity and passivity breakdown

    International Nuclear Information System (INIS)

    Macdonald, D.D.; Urquidi-Macdonald, M.; Song, H.; Biaggio-Rocha, S.; Searson, P.

    1991-11-01

    This report summarizes the findings of our fundamental research program on passivity and passivity breakdown. During the past three and one half years in this program (including the three year incrementally-funded grant prior to the present grant), we developed and experimentally tested various physical models for the growth and breakdown of passive films on metal surfaces. These models belong to a general class termed ''point defects models'' (PDMs), in which the growth and breakdown of passive films are described in terms of the movement of anion and cation vacancies

  18. Radiation dosimetry in human bone using electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Breen, S.L.

    1995-01-01

    Accurate measurements of dose in bone are required in order to improve the dosimetry of systemic radiotherapy for osseous metastases. Bone is an integrating dosimeter which records the radiation history of the skeleton. During irradiation, electrons become trapped in the crystalline component of bone mineral (hydroxyapatite). The traps are very stable; at room temperature, emptying of the traps occurs with a half-life of many years. The population of trapped unpaired electrons is proportional to the radiation dose administered to the bone and can be measured in excised bone samples using electron paramagnetic resonance (EPR). EPR spectra of synthetic hydroxyapatite, irradiated with Co-60, were obtained at room temperature and at 77 K. At room temperature, the radiation-induced signal, with a g-value of 2.001 ± 0.001 increased linearly with absorbed dose above a lower threshold of 3 Gy, up to doses of 200 Gy. In contrast with pure hydroxyapatite, EPR spectra of excised human bone showed a broad 'native' signal, due to the organic component of bone, which masks the dosimetrically important signal. This native signal is highly variable from sample to sample and precludes the use of EPR as an absolute dosimetry technique. However, after subtraction of the background signal, irradiated human bone showed a linear response with a lower limit of measurement similar to that of synthetic hydroxyapatite. Bone is an in vivo linear dosimeter which can be exploited to develop accurate estimates of the radiation dose delivered during systemic radiotherapy and teletherapy. However, improved sensitivity of the EPR dosimetry technique is necessary before it can be applied reliably in clinical situations. (author)

  19. Computerized dosimetry management systems within EDF

    International Nuclear Information System (INIS)

    Daubert, G.

    1996-01-01

    EDF, using the ALARA approach, has embarked an ambitious project of optimising the doses received in its power plants. In directing its choice of actions and the effectiveness of such actions, the French operator is using a computerized personal and collective dosimetry management system. This system provides for ongoing monitoring of dosimetry at personal, site and unit level or indeed for the entire population of EDF nuclear power plants. (author)

  20. In vivo dosimetry in radiation therapy in Sweden

    International Nuclear Information System (INIS)

    Eriksson, Jacob; Blomquist, Michael

    2010-07-01

    A prerequisite for achieving high radiation safety for patients receiving external beam radiation therapy is that the hospitals have a quality assurance program. The program should include include monitoring of the radiation dose given to the patient. Control measurements are performed both at the system level and at the individual level. Control measurement is normally performed using in vivo dosimetry, e.g. a method to measure the radiation dose at the individual level during the actual radiation treatment time. In vivo dosimetry has proven to be an important tool to detect and prevent serious errors in patient treatment. The purpose of this research project was to identify the extent to which vivo dosimetry is used and the methods available for this at Swedish radiation therapy clinics. The authority also wanted to get an overall picture of how hospitals manage results of in vivo dosimetry, and how clinics control radiation dose when using modern treatment techniques. The report reflects the situation in Swedish radiotherapy clinics 2007. The report shows that all hospitals use some form of in vivo dosimetry. The instruments used are mainly diodes and termoluminiscence dosimeters

  1. Information from the Dosimetry Service

    CERN Multimedia

    2006-01-01

    CERN Staff and Users can now consult their dose records for an individual or an organizational unit with HRT. Please see more information on our web page http://cern.ch/rp-dosimetry. The Dosimetry Service is open every morning from 8.30 - 12.00, and closed in the afternoons. We would like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCT's) must always be returned to the Service after use and must not be left on the racks in the experimental areas or in the secretariats.

  2. Integration of new biological and physical retrospective dosimetry methods into EU emergency response plans - joint RENEB and EURADOS inter-laboratory comparisons.

    Science.gov (United States)

    Ainsbury, Elizabeth; Badie, Christophe; Barnard, Stephen; Manning, Grainne; Moquet, Jayne; Abend, Michael; Antunes, Ana Catarina; Barrios, Lleonard; Bassinet, Celine; Beinke, Christina; Bortolin, Emanuela; Bossin, Lily; Bricknell, Clare; Brzoska, Kamil; Buraczewska, Iwona; Castaño, Carlos Huertas; Čemusová, Zina; Christiansson, Maria; Cordero, Santiago Mateos; Cosler, Guillaume; Monaca, Sara Della; Desangles, François; Discher, Michael; Dominguez, Inmaculada; Doucha-Senf, Sven; Eakins, Jon; Fattibene, Paola; Filippi, Silvia; Frenzel, Monika; Georgieva, Dimka; Gregoire, Eric; Guogyte, Kamile; Hadjidekova, Valeria; Hadjiiska, Ljubomira; Hristova, Rositsa; Karakosta, Maria; Kis, Enikő; Kriehuber, Ralf; Lee, Jungil; Lloyd, David; Lumniczky, Katalin; Lyng, Fiona; Macaeva, Ellina; Majewski, Matthaeus; Vanda Martins, S; McKeever, Stephen W S; Meade, Aidan; Medipally, Dinesh; Meschini, Roberta; M'kacher, Radhia; Gil, Octávia Monteiro; Montero, Alegria; Moreno, Mercedes; Noditi, Mihaela; Oestreicher, Ursula; Oskamp, Dominik; Palitti, Fabrizio; Palma, Valentina; Pantelias, Gabriel; Pateux, Jerome; Patrono, Clarice; Pepe, Gaetano; Port, Matthias; Prieto, María Jesús; Quattrini, Maria Cristina; Quintens, Roel; Ricoul, Michelle; Roy, Laurence; Sabatier, Laure; Sebastià, Natividad; Sholom, Sergey; Sommer, Sylwester; Staynova, Albena; Strunz, Sonja; Terzoudi, Georgia; Testa, Antonella; Trompier, Francois; Valente, Marco; Hoey, Olivier Van; Veronese, Ivan; Wojcik, Andrzej; Woda, Clemens

    2017-01-01

    RENEB, 'Realising the European Network of Biodosimetry and Physical Retrospective Dosimetry,' is a network for research and emergency response mutual assistance in biodosimetry within the EU. Within this extremely active network, a number of new dosimetry methods have recently been proposed or developed. There is a requirement to test and/or validate these candidate techniques and inter-comparison exercises are a well-established method for such validation. The authors present details of inter-comparisons of four such new methods: dicentric chromosome analysis including telomere and centromere staining; the gene expression assay carried out in whole blood; Raman spectroscopy on blood lymphocytes, and detection of radiation-induced thermoluminescent signals in glass screens taken from mobile phones. In general the results show good agreement between the laboratories and methods within the expected levels of uncertainty, and thus demonstrate that there is a lot of potential for each of the candidate techniques. Further work is required before the new methods can be included within the suite of reliable dosimetry methods for use by RENEB partners and others in routine and emergency response scenarios.

  3. European protocol for neutron dosimetry for external beam therapy

    International Nuclear Information System (INIS)

    Broerse, J.J.; Mijnheer, B.J.; Williams, J.R.

    1981-01-01

    The paper attempts to serve the needs of European centres participating in the High LET Therapy Project Group set up under the sponsorship of The European Organization for Research on Treatment of Cancer, to promote cooperation between physicists involved in fast neutron therapy and establish a common basis for neutron dosimetry. Differences in dosimetry procedures between European and American Groups are indicated if relevant. The subject is dealt with under the following main headings: principles of dosimetry of neutron fields, dosimetric methods, physical parameters, determination of absorbed dose at a reference point, determination of absorbed dose at any point, check of absorbed dose given to a patient, dosimetry intercomparisons between institutes. There is an ample bibliography. (U.K.)

  4. Neutron beam measurement dosimetry

    International Nuclear Information System (INIS)

    Amaro, C.R.

    1995-01-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR

  5. WIPP radiation dosimetry program

    International Nuclear Information System (INIS)

    Wu, C.F.

    1991-01-01

    Radiation dosimetry is the process by which various measurement results and procedures are applied to quantify the radiation exposure of an individual. Accurate and precise determination of radiation dose is a key factor to the success of a radiation protection program. The Waste Isolation Pilot Plant (WIPP), a Department of Energy (DOE) facility designed for permanent repository of transuranic wastes in a 2000-foot-thick salt bed 2150 feet underground, has established a dosimetry program developed to meet the requirements of DOE Order 5480.11, ''Radiation Protection for Occupational Workers''; ANSI/ASME NQA-1, ''Quality Assurance Program Requirements for Nuclear Facilities''; DOE Order 5484.1, ''Environmental Protection, Safety, and Health Protection Information Reporting Requirements''; and other applicable regulations

  6. Passive Solar Techniques to Improve Thermal Comfort and Reduce Energy Consumption of Domestic Use

    OpenAIRE

    Naci Kalkan; Ihsan Dagtekin

    2016-01-01

    Passive design responds to improve indoor thermal comfort and minimize the energy consumption. The present research analyzed the how efficiently passive solar technologies generate heating and cooling and provide the system integration for domestic applications. In addition to this, the aim of this study is to increase the efficiency of solar systems system with integration some innovation and optimization. As a result, outputs of the project might start a new sector to provide environmentall...

  7. Development and implementation of own software for dosimetry multichannel film

    International Nuclear Information System (INIS)

    Jimenez Feltstrom, D.; Reyes Garcia, R.; Luis Simon, F. J.; Carrasco Herrera, M.; Sanchez Carmona, G.; Herrador Cordoba, M.

    2013-01-01

    The objective of this work is to develop its own software for multichannel film dosimetry Radiochromic EBT2. Compare the results obtained with its use in multichannel and single-channel dosimetry. Check that the multi-channel dosimetry eliminates much of the artifacts caused by dirt, fingerprints, scratches, etc. Radiochromic in film and scanner devices. (Author)

  8. WE-AB-BRB-01: Memorial Introduction; Storage Phosphor Panels for Radiation Therapy Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. [Washington University School of Medicine (United States)

    2016-06-15

    Despite widespread IMRT treatments at modern radiation therapy clinics, precise dosimetric commissioning of an IMRT system remains a challenge. In the most recent report from the Radiological Physics Center (RPC), nearly 20% of institutions failed an end-to-end test with an anthropomorphic head and neck phantom, a test that has rather lenient dose difference and distance-to-agreement criteria of 7% and 4 mm. The RPC report provides strong evidence that IMRT implementation is prone to error and that improved quality assurance tools are required. At the heart of radiation therapy dosimetry is the multidimensional dosimeter. However, due to the limited availability of water-equivalent dosimetry materials, research and development in this important field is challenging. In this session, we will review a few dosimeter developments that are either in the laboratory phase or in the pre-commercialization phase. 1) Radiochromic plastic. Novel formulations exhibit light absorbing optical contrast with very little scatter, enabling faster, broad beam optical CT design. 2) Storage phosphor. After irradiation, the dosimetry panels will be read out using a dedicated 2D scanning apparatus in a non-invasive, electro-optic manner and immediately restored for further use. 3) Liquid scintillator. Scintillators convert the energy from x-rays and proton beams into visible light, which can be recorded with a scientific camera (CCD or CMOS) from multiple angles. The 3D shape of the dose distribution can then be reconstructed. 4) Cherenkov emission imaging. Gated intensified imaging allows video-rate passive detection of Cherenkov emission during radiation therapy with the room lights on. Learning Objectives: To understand the physics of a variety of dosimetry techniques based upon optical imaging To investigate the strategies to overcome respective challenges and limitations To explore novel ideas of dosimeter design Supported in part by NIH Grants R01CA148853, R01CA182450, R01CA109558

  9. WE-AB-BRB-01: Memorial Introduction; Storage Phosphor Panels for Radiation Therapy Dosimetry

    International Nuclear Information System (INIS)

    Li, H.

    2016-01-01

    Despite widespread IMRT treatments at modern radiation therapy clinics, precise dosimetric commissioning of an IMRT system remains a challenge. In the most recent report from the Radiological Physics Center (RPC), nearly 20% of institutions failed an end-to-end test with an anthropomorphic head and neck phantom, a test that has rather lenient dose difference and distance-to-agreement criteria of 7% and 4 mm. The RPC report provides strong evidence that IMRT implementation is prone to error and that improved quality assurance tools are required. At the heart of radiation therapy dosimetry is the multidimensional dosimeter. However, due to the limited availability of water-equivalent dosimetry materials, research and development in this important field is challenging. In this session, we will review a few dosimeter developments that are either in the laboratory phase or in the pre-commercialization phase. 1) Radiochromic plastic. Novel formulations exhibit light absorbing optical contrast with very little scatter, enabling faster, broad beam optical CT design. 2) Storage phosphor. After irradiation, the dosimetry panels will be read out using a dedicated 2D scanning apparatus in a non-invasive, electro-optic manner and immediately restored for further use. 3) Liquid scintillator. Scintillators convert the energy from x-rays and proton beams into visible light, which can be recorded with a scientific camera (CCD or CMOS) from multiple angles. The 3D shape of the dose distribution can then be reconstructed. 4) Cherenkov emission imaging. Gated intensified imaging allows video-rate passive detection of Cherenkov emission during radiation therapy with the room lights on. Learning Objectives: To understand the physics of a variety of dosimetry techniques based upon optical imaging To investigate the strategies to overcome respective challenges and limitations To explore novel ideas of dosimeter design Supported in part by NIH Grants R01CA148853, R01CA182450, R01CA109558

  10. An integrated approach for the in vitro dosimetry of engineered nanomaterials

    Science.gov (United States)

    2014-01-01

    Background There is a great need for screening tools capable of rapidly assessing nanomaterial toxicity. One impediment to the development of reliable in vitro screening methods is the need for accurate measures of cellular dose. We present here a methodology that enables accurate determination of delivered to cell dose metrics. This methodology includes (1) standardization of engineered nanomaterial (ENM) suspension preparation; (2) measurement of ENM characteristics controlling delivery to cells in culture; and (3) calculation of delivered dose as a function of exposure time using the ISDD model. The approach is validated against experimentally measured doses, and simplified analytical expressions for the delivered dose (Relevant In Vitro Dose (RID)f function) are derived for 20 ENMs. These functions can be used by nanotoxicologists to accurately calculate the total mass (RIDM), surface area (RIDSA), or particle number (RIDN) delivered to cells as a function of exposure time. Results The proposed methodology was used to derive the effective density, agglomerate diameter and RID functions for 17 industrially-relevant metal and metal oxide ENMs, two carbonaceous nanoparticles, and non-agglomerating gold nanospheres, for two well plate configurations (96 and 384 well plates). For agglomerating ENMs, the measured effective density was on average 60% below the material density. We report great variability in delivered dose metrics, with some materials depositing within 24 hours while others require over 100 hours for delivery to cells. A neutron-activated tracer particle system was employed to validate the proposed in vitro dosimetry methodology for a number of ENMs (measured delivered to cell dose within 9% of estimated). Conclusions Our findings confirm and extend experimental and computational evidence that agglomerate characteristics affect the dose delivered to cells. Therefore measurement of these characteristics is critical for effective use of in vitro systems

  11. Summary report of the technical meeting on 'International Reactor Dosimetry File: IRDF-2002'

    International Nuclear Information System (INIS)

    Greenwood, L.R.; Paviotti-Corcuera, R.

    2002-09-01

    This report summarizes the presentations, recommendations and conclusions of the Technical Meeting on 'International Reactor Dosimetry File: IRDF-2002.' The purpose of this meeting was to discuss scientific and technical matters related to the subject and coordinate related tasks. Discussions were held and recommendations were given for the preparation of the files on topics related to: reactions to be included, need for new evaluations or revisions, decay data, radiation damage data, integral testing in benchmark fields, and computer codes to be included. Tasks were assigned and deadlines were set. The participants emphasized that accurate and complete knowledge of nuclear data for reactor dosimetry are essential for improving the accuracy of the reactor pressure vessel service life assessment of nuclear power plants as well as in other neutron metrology applications such as boron neutron capture therapy, therapeutic use of medical isotopes, nuclear physics measurements, and reactor safety applications. (author)

  12. A nephron-based model of the kidneys for macro-to-micro α-particle dosimetry

    Science.gov (United States)

    Hobbs, Robert F.; Song, Hong; Huso, David L.; Sundel, Margaret H.; Sgouros, George

    2012-07-01

    Targeted α-particle therapy is a promising treatment modality for cancer. Due to the short path-length of α-particles, the potential efficacy and toxicity of these agents is best evaluated by microscale dosimetry calculations instead of whole-organ, absorbed fraction-based dosimetry. Yet time-integrated activity (TIA), the necessary input for dosimetry, can still only be quantified reliably at the organ or macroscopic level. We describe a nephron- and cellular-based kidney dosimetry model for α-particle radiopharmaceutical therapy, more suited to the short range and high linear energy transfer of α-particle emitters, which takes as input kidney or cortex TIA and through a macro to micro model-based methodology assigns TIA to micro-level kidney substructures. We apply a geometrical model to provide nephron-level S-values for a range of isotopes allowing for pre-clinical and clinical applications according to the medical internal radiation dosimetry (MIRD) schema. We assume that the relationship between whole-organ TIA and TIA apportioned to microscale substructures as measured in an appropriate pre-clinical mammalian model also applies to the human. In both, the pre-clinical and the human model, microscale substructures are described as a collection of simple geometrical shapes akin to those used in the Cristy-Eckerman phantoms for normal organs. Anatomical parameters are taken from the literature for a human model, while murine parameters are measured ex vivo. The murine histological slides also provide the data for volume of occupancy of the different compartments of the nephron in the kidney: glomerulus versus proximal tubule versus distal tubule. Monte Carlo simulations are run with activity placed in the different nephron compartments for several α-particle emitters currently under investigation in radiopharmaceutical therapy. The S-values were calculated for the α-emitters and their descendants between the different nephron compartments for both the

  13. A nephron-based model of the kidneys for macro-to-micro α-particle dosimetry

    International Nuclear Information System (INIS)

    Hobbs, Robert F; Song Hong; H Sundel, Margaret; Sgouros, George; Huso, David L

    2012-01-01

    Targeted α-particle therapy is a promising treatment modality for cancer. Due to the short path-length of α-particles, the potential efficacy and toxicity of these agents is best evaluated by microscale dosimetry calculations instead of whole-organ, absorbed fraction-based dosimetry. Yet time-integrated activity (TIA), the necessary input for dosimetry, can still only be quantified reliably at the organ or macroscopic level. We describe a nephron- and cellular-based kidney dosimetry model for α-particle radiopharmaceutical therapy, more suited to the short range and high linear energy transfer of α-particle emitters, which takes as input kidney or cortex TIA and through a macro to micro model-based methodology assigns TIA to micro-level kidney substructures. We apply a geometrical model to provide nephron-level S-values for a range of isotopes allowing for pre-clinical and clinical applications according to the medical internal radiation dosimetry (MIRD) schema. We assume that the relationship between whole-organ TIA and TIA apportioned to microscale substructures as measured in an appropriate pre-clinical mammalian model also applies to the human. In both, the pre-clinical and the human model, microscale substructures are described as a collection of simple geometrical shapes akin to those used in the Cristy–Eckerman phantoms for normal organs. Anatomical parameters are taken from the literature for a human model, while murine parameters are measured ex vivo. The murine histological slides also provide the data for volume of occupancy of the different compartments of the nephron in the kidney: glomerulus versus proximal tubule versus distal tubule. Monte Carlo simulations are run with activity placed in the different nephron compartments for several α-particle emitters currently under investigation in radiopharmaceutical therapy. The S-values were calculated for the α-emitters and their descendants between the different nephron compartments for both the

  14. Evaluation of BICRON NE MCP DXT-RAD passive extremity dosemeter

    CERN Document Server

    Yuen, P S; Frketich, G; Rotunda, J

    1999-01-01

    Passive extremity dosemeters currently used in dosimetry communities worldwide have shortcomings. In general, an extremity dosemeter has too thick a detector element, and the dosemeter response is highly energy dependent for beta rays with energies ranging from 200 keV to 2 MeV. It often does not have dosemeter identification, causing problems in the chain of custody. It is often read manually, rendering reading/packing operations very labour intensive. As a result of collaboration between AECL and BICRON NE, a new extremity dosemeter, incorporating a highly sensitive LiF:Mg,Cu,P TLD and tentatively code named MCP DXT-RAD, was developed. It has been evaluated for radiological performance against an ISO draft standard for extremity dosemeters in twelve categories: homogeneity, detection threshold, beta ray energy response, beta angular response, photon energy response, photon angular response, reproducibility, stability under various climatic conditions, linearity, residue, self irradiation, and effect of ligh...

  15. Report of a consultants meeting on dosimetry in diagnostic radiology

    International Nuclear Information System (INIS)

    Pernicka, F.

    1999-01-01

    During its biennial meeting in 1996, the Standing Advisory Committee 'SSDL Scientific Committee', recommended extending the long experience of the Agency in the field of standardization and monitoring dosimetry calibrations at radiotherapy and radiation protection level for the Secondary Standard Dosimetry Laboratory (SSDL) Network, to the field of diagnostic x-ray dosimetry. It was emphasized that 'Measurements on diagnostic x-ray machines have become increasingly important and some SSDLs are involved in such measurements. The Agency's dosimetry laboratory should, therefore, have proper radiation sources available to provide traceable calibrations to the SSDLs'. The purpose of the consultants' meeting was to advise the Agency on dosimetry in diagnostic radiology. They were specifically requested to overview scientific achievements in the field and to give advice to the Agency on the need for further developments. The purpose of the consultants' meeting was to advise the Agency on dosimetry in diagnostic radiology. They were specifically requested to overview scientific achievements in the field and to give advice to the Agency on the need for further developments

  16. Biological dosimetry in cases gives occupational high exposition to ionizing radiations

    International Nuclear Information System (INIS)

    Ramalho, Adriana T.; Costa, Maria Lucia P.; Oliveira, Monica S.; Silva, Francisco Cesar A.

    1998-01-01

    From 1983 the cytogenetics dosimetry method it has been used as routine in the IRD laboratory in the period 1983 at 1997 but a high exposition occupational case the physical dosimeters happened in Brazil they were investigated through the cytogenetics dosimetry technique. This technique is employ when the dosimetry personal marks a high dose to 100 mSv (0,1 Gy) that is the cut-off minimum detected in the dosimetry cytogenetics

  17. EPR dosimetry - present and future

    International Nuclear Information System (INIS)

    Regulla, D.F.

    1999-01-01

    In the past, IAEA has played a central role in stipulating research and development in EPR high-dose standardisation as well as co-ordinating and organising international dose intercomparison programs, within the Member States of the United Nations from the mid-seventies till today. The future tasks of EPR dosimetry seem to tend towards different subjects such as biomarkers, biological radiation effects, post-accident dose reconstruction in the environment, and retrospective human dosimetry. The latter may be considered a promising tool for epidemiology on the way to re-define radiation risk of man for chronicle radiation exposures, based on e.g. South Ural civil population and radiation workers. There are on-going international activities in the field of standardising high-level dosimetry by the American Standards on Testing and Materials (ASTM), and the International Organisation of Standards (ISO) as well as those of the International Commission on Radiation Units and Measurements (ICRU) considering the establishment of relevant recommendations concerning industrial radiation processing, but also human dose reconstruction. (author)

  18. Hemispherical reflectance model for passive images in an outdoor environment.

    Science.gov (United States)

    Kim, Charles C; Thai, Bea; Yamaoka, Neil; Aboutalib, Omar

    2015-05-01

    We present a hemispherical reflectance model for simulating passive images in an outdoor environment where illumination is provided by natural sources such as the sun and the clouds. While the bidirectional reflectance distribution function (BRDF) accurately produces radiance from any objects after the illumination, using the BRDF in calculating radiance requires double integration. Replacing the BRDF by hemispherical reflectance under the natural sources transforms the double integration into a multiplication. This reduces both storage space and computation time. We present the formalism for the radiance of the scene using hemispherical reflectance instead of BRDF. This enables us to generate passive images in an outdoor environment taking advantage of the computational and storage efficiencies. We show some examples for illustration.

  19. Whole-remnant and maximum-voxel SPECT/CT dosimetry in {sup 131}I-NaI treatments of differentiated thyroid cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mínguez, Pablo, E-mail: pablo.minguezgabina@osakidetza.eus [Department of Medical Radiation Physics, Lund University, Lund 22185, Sweden and Department of Medical Physics, Gurutzeta/Cruces University Hospital, Barakaldo 48903 (Spain); Flux, Glenn [Joint Department of Physics, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Sutton SM2 5PT (United Kingdom); Genollá, José; Delgado, Alejandro; Rodeño, Emilia [Department of Nuclear Medicine, Gurutzeta/Cruces University Hospital, Barakaldo 48903 (Spain); Sjögreen Gleisner, Katarina [Department of Medical Radiation Physics, Lund University, Lund 22185 (Sweden)

    2016-10-15

    Purpose: To investigate the possible differences between SPECT/CT based whole-remnant and maximum-voxel dosimetry in patients receiving radio-iodine ablation treatment of differentiated thyroid cancer (DTC). Methods: Eighteen DTC patients were administered 1.11 GBq of {sup 131}I-NaI after near-total thyroidectomy and rhTSH stimulation. Two patients had two remnants, so in total dosimetry was performed for 20 sites. Three SPECT/CT scans were performed for each patient at 1, 2, and 3–7 days after administration. The activity, the remnant mass, and the maximum-voxel activity were determined from these images and from a recovery-coefficient curve derived from experimental phantom measurements. The cumulated activity was estimated using trapezoidal-exponential integration. Finally, the absorbed dose was calculated using S-values for unit-density spheres in whole-remnant dosimetry and S-values for voxels in maximum-voxel dosimetry. Results: The mean absorbed dose obtained from whole-remnant dosimetry was 40 Gy (range 2–176 Gy) and from maximum-voxel dosimetry 34 Gy (range 2–145 Gy). For any given patient, the activity concentrations for each of the three time-points were approximately the same for the two methods. The effective half-lives varied (R = 0.865), mainly due to discrepancies in estimation of the longer effective half-lives. On average, absorbed doses obtained from whole-remnant dosimetry were 1.2 ± 0.2 (1 SD) higher than for maximum-voxel dosimetry, mainly due to differences in the S-values. The method-related differences were however small in comparison to the wide range of absorbed doses obtained in patients. Conclusions: Simple and consistent procedures for SPECT/CT based whole-volume and maximum-voxel dosimetry have been described, both based on experimentally determined recovery coefficients. Generally the results from the two approaches are consistent, although there is a small, systematic difference in the absorbed dose due to differences in the

  20. Phantom positioning variation in the Gamma Knife® Perfexion dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Nathalia Almeida; Potiens, Maria da Penha Albuquerque [Instituto de Pesquisas Energeticas e Nucleres (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Saraiva, Crystian [Hospital do Coracao, Sao Paulo, SP (Brazil)

    2015-07-01

    The use of small volume ionization chamber has become required for the dosimetry of equipment that use small radiation fields. A pinpoint ionization chamber is ideal for the dosimetry of a Gamma Knife® Perfexion (GKP) unit. In this work, this chamber was inserted into the phantom, and measurements were performed with the phantom in different positions, in order to verify if the change in the phantom positioning affects the dosimetry of the GKP. Three different phantom positions were performed. The variation in the result is within the range allowed for the dosimetry of a GKP equipment. (author)

  1. Cytogenetic dosimetry in suspected cases of ionizing radiation occupational exposure

    International Nuclear Information System (INIS)

    Ramalho, Adriana T.; Costa, Maria Lucia P.; Oliveira, Monica S.; Silva, Francisco Cesar A. da

    2001-01-01

    Cytogenetic dosimetry is very useful in routine as well as in serious accident situations in which exposed individuals do not wear physical dosimeters. Since 1984, the technique of cytogenetic dosimetry has been used as a routine in our laboratory at IRD/CNEN to complement the data of physical dosimetry. In the period from 1984 to 2000, 138 cases of occupational overexposure of individual dosimeters were investigated by us. In total, only in 36 of the 138 cases investigated the overexposure was confirmed by cytogenetic dosimetry. The data indicates a total confirmation index of just 26% of the suspected cases.(author)

  2. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    International Nuclear Information System (INIS)

    Rathbone, Bruce A.

    2007-01-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL's Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL's Electronic Records and Information Capture Architecture (ERICA) database. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Revision Log: Rev. 0 (2/25/2005) Major revision and expansion. Rev. 0.1 (3/12/2007) Minor

  3. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2007-03-12

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Revision Log: Rev. 0 (2/25/2005) Major revision and expansion. Rev. 0.1 (3/12/2007) Minor

  4. SU-E-T-483: In Vivo Dosimetry of Conventional and Rotational Intensity Modulated Radiotherapy Using Integral Quality Monitor (IQM)

    Energy Technology Data Exchange (ETDEWEB)

    Lin, L; Qian, J; Gonzales, R; Keck, J; Armour, E; Wong, J [Johns Hopkins University, Baltimore, MD (United States)

    2015-06-15

    Purpose: To investigate the accuracy, sensitivity and constancy of integral quality monitor (IQM), a new system for in vivo dosimetry of conventional intensity modulated radiation therapy (IMRT) or rotational volumetric modulated arc therapy (VMAT) Methods: A beta-version IQM system was commissioned on an Elekta Infinity LINAC equipped with 160-MLCs Agility head. The stationary and rotational dosimetric constancy of IQM was evaluated, using five-field IMRT and single-or double-arc VMAT plans for prostate and head-and-neck (H&N) patients. The plans were delivered three times over three days to assess the constancy of IQM response. Picket fence (PF) fields were used to evaluate the sensitivity of detecting MLC leaf errors. A single leaf offset was intentionally introduced during delivery of various PF fields with segment apertures of 3×1, 5×1, 10×1, and 24×1cm2. Both 2mm and 5mm decrease in the field width were used. Results: Repeated IQM measurements of prostate and H&N IMRT deliveries showed 0.4 and 0.5% average standard deviation (SD) for segment-by-segment comparison and 0.1 and 0.2% for cumulative comparison. The corresponding SDs for VMAT deliveries were 6.5, 9.4% and 0.7, 1.3%, respectively. Statistical analysis indicates that the dosimetric differences detected by IQM were significant (p < 0.05) in all PF test deliveries. The largest average IQM signal response of a 2 mm leaf error was found to be 2.1% and 5.1% by a 5mm leaf error for 3×1 cm2 field size. The same error in 24×1 cm2 generates a 0.7% and 1.4% difference in the signal. Conclusion: IQM provides an effective means for real-time dosimetric verification of IMRT/ VMAT treatment delivery. For VMAT delivery, the cumulative dosimetry of IQM needs to be used in clinical practice.

  5. User's guide for survey-meter- and film-badge-dosimetry data bases

    International Nuclear Information System (INIS)

    Phillips, W.G.; Sherman, S.; Young, R.

    1981-05-01

    This manual describes the data storage and retrieval system designed by Environmental Monitoring Systems Laboratory Las Vegas (EMSL-LV) for radiation exposure data recorded in offsite areas during and after nuclear weapons tests conducted at the Nevada Test Site in the 1950's and early 1960's. Referred to hereinafter as the EMSL-LV system, this system contains two distinct subsets of offsite radiological measurements collected during early nuclear atmospheric tests at the Nevada Test Site. The purpose of the manual is to present the methods for using the EMSL-LV system to examine all or any portion of either data subset. The two distinct subsets which comprise the EMSL-LV system are survey meter data and film badge dosimetry data. The survey meter data consist of readings obtained from portable radiation monitoring instruments used around the Nevada Test Site during the 1950's and early 1960's to measure radiation exposure rates resulting from the nuclear testing program. The dosimetry data consist of measurements of integrated radiation exposure made with film badge type dosimeters in areas surrounding the Nevada Test Site

  6. Evaluation of the excitation function for the dosimetry reaction La-139(n,g)La-140

    International Nuclear Information System (INIS)

    Zolotarev, K.

    1997-01-01

    The activation detectors on the basis of La-139(n,g)La-140 reaction are used very often in the reactor dosimetry for determination of thermal and epithermal components of neutron spectra. At present, the cross section data for this reaction are absent in the IRDF-90 ver.2 file and in the national dosimetry files such as ENDF/B-VI Dosimetry File and JENDL-3.2 Dosimetry File. The evaluation of the La-139(n,g)La-140 reaction excitation function for the Russian Reactor Dosimetry File (RRDF-96) was carried out in the energy region 1.000E-05 eV - 20 MeV. The capture cross section in the energy range from 0.00001 eV to 160 keV is given through the evaluated MLBW resolved and unresolved resonance parameters. Small background cross section was added in the resolved resonance region for taking into account the non-statistical reaction mechanism contribution. Data for En=160 keV - 1.2 MeV were obtained from evaluated average parameters in the unresolved resonance region with taking into account the competition with the neutron inelastic channels. The La-139 radiative capture cross section between 1.2 MeV and 7.6 MeV was evaluated by means of statistical analysis of the experimental data. Above 7.6 MeV the data fit was joint to the theoretical capture cross sections calculated between 7.6 and 20 MeV. Theoretical results were normalized to the evaluated value obtained from analysis experimental data at En= 14.4 - 14.8 MeV. The results of the present evaluation were compared with the ENDF/B-VI cross section data and the recommended values of resonance integral and capture cross section at En=0.0253 eV. (author)

  7. Passive heat transport in advanced CANDU containment

    International Nuclear Information System (INIS)

    Krause, M.; Mathew, P.M.

    1994-01-01

    A passive CANDU containment design has been proposed to provide the necessary heat removal following a postulated accident to maintain containment integrity. To study its feasibility and to optimize the design, multi-dimensional containment modelling may be required. This paper presents a comparison of two CFD codes, GOTHIC and PHOENICS, for multi-dimensional containment analysis and gives pressure transient predictions from a lumped-parameter and a three-dimensional GOTHIC model for a modified CANDU-3 containment. GOTHIC proved suitable for multidimensional post-accident containment analysis, as shown by the good agreement with pressure transient predictions from PHOENICS. GOTHIC is, therefore, recommended for passive CANDU containment modelling. (author)

  8. Medical radiation dosimetry with radiochromic film

    International Nuclear Information System (INIS)

    Butson, M.J.; Cancer Services, NSW; Cheung, T.; Yu, P.K.N.; Metcalfe, P.

    2004-01-01

    Full text: Photon, electron and proton radiation are used extensively for medical purposes in diagnostic and therapeutic procedures. Dosimetry of these radiation sources can be performed with radiochromic films, devices that have the ability to produce a permanent visible colour change upon irradiation. Within the last ten years, the use of radiochromic films has expanded rapidly in the medical world due to commercial products becoming more readily available, higher sensitivity films and technology advances in imaging which have allowed scientists to use two-dimensional dosimetry more accurately and inexpensively. Radiochromic film dosimeters are now available in formats, which have accurate dose measurement ranges from less than 1 Gy up to many kGy. A relatively energy independent dose response combined with automatic development of radiochromic film products has made these detectors most useful in medical radiation dosimetry. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  9. Personal dosimetry and information platforms

    International Nuclear Information System (INIS)

    Sanchez Hidalgo, M.; Galan Montenegro, P.; Bodineau Gil, C.; Hernandez Rodriguez, R.; Jimenez Nartin, A.; Cano Sanchez, J. J.

    2011-01-01

    One question often raised by the hospital personnel dosimetry is the high incidence in the no monthly turnover of dosimeters, which is currently a high number of administrative dose assignments. The high number of workers with personal dosimetry and in many cases, the dispersion of workplaces makes it impossible to personalized management. To make a more direct and personal, and transmit information quickly and with guaranteed reception, has developed and implemented a system of personalized dosimetric information through messaging Short Message Service (SMS) and access to the history of dosimetric dosimetric and management through web space Service Hospital Radio physics.

  10. Information from the Dosimetry Service

    CERN Multimedia

    2006-01-01

    CERN Staff and Users can now consult their dose records for an individual or an organizational unit with HRT. Please see more information on our web page: http://cern.ch/rp-dosimetry. The Dosimetry Service is open every morning from 8.30 to 12.00 and is closed in the afternoons. We would like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCT's) must always be returned to the Service after use and must not be left on the racks in the experimental areas or in the secretariats.

  11. Sizewell B Power Station control dosimetry system

    International Nuclear Information System (INIS)

    Renn, G.

    1995-01-01

    Sizewell B Power Station is the first Pressurized Water Reactor (PWR) built in the UK for commercial electricity production. An effective control dosimetry system is a crucial tool, in allowing the station to assess its radiological performance against targets. This paper gives an overview of the control dosimetry system at Sizewell B and describes early operating experience with the system. (UK)

  12. Retrospective dosimetry (or self dosimetry): Application to French Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lloret, R.

    1993-01-01

    In this text we give the dosimetry principle on irradiated materials such baffle screw, pressure vessel and control element cans. This measure, made by gammametry, is based on the steel activation and comparison with calculated measures by Actige code. 4 figs., 6 refs

  13. Three-dimensional high dose rate dosimetry of electron beams. A combined radiochromic film, EPR and calorimetric dosimetry

    International Nuclear Information System (INIS)

    Secerov, B.; Milosavljevic, B.H.; Bacic, G.; Belgrade Univ.

    2002-01-01

    Complete text of publication follows. Aim. To examine the suitability of radiochromic film (RCF) dosimeters in determining 3D dose distribution from a pulsed electron beam source by comparing their response with alanine EPR dosimetry and calorimetry. Experimental. A FWT-60 radiochromic films (Far West Technology Inc) were used while alanine films were home made. To obtain the dose vs. penetration depth relationship, a stack of 13 films separated by aluminium plates and/or alanine films was placed perpendicular to the electron beam (Febetron, 20 ns, 1.8 MeV, 10 12 Gy/s, dose range up to 100 kGy). RC films were calibrated using 60-Co source and Fricke dosimetry. The absorbance of irradiated films was measured using 2D microdensitometry. Calorimetry was performed with a homemade quasy-adiabatic aluminum calorimeter. Results and Discussion. Microdensitometry of films (5 x 5 cm) enabled the 3D mapping of the entire radiation field with in plane resolution of 0.12 mm. The total dose for each film was obtained by image segmentation to correct for the non-linear response of films. Integrated dose for the entire stack was in good agreement (within 5%) with total absorbed energy as determined with calorimetry. The dose distribution along the beam center was determined using alanine films (1 x 1 cm) and EPR spectroscopy, and again a good agreement with the dose determined by microdensitometry of the central portion of RC films. In conclusion, the results indicate that RC films can be used for determination of 3D dose distribution even at very high dose rates

  14. Advances on radiation protection dosimetry research, development and services at AEOI

    International Nuclear Information System (INIS)

    Sohrabi, M.

    1993-01-01

    Radiation dosimetry is the main counterpart of an effective national radiation protection program to protect radiation workers, public and the environment against harmful effects of radiation. Research and development on radiation dosimetry are of vital needs to support national dosimetry services. The National Radiation Protection Department (NRPD) of the Atomic Energy Organization of Iran (AEOI) being a National Authority on radiation protection is also responsible for radiation dosimetry research, development and services. Some highlights of such activities at NRPD are reviewed and discussed

  15. Legal aspects of dosimetry

    International Nuclear Information System (INIS)

    Pomarola, H.

    1976-01-01

    The use of ionizing radiations is regulated in France in all fields of application. The main principles governing inspection activities in the food industry are outlined. Conventional preservation methods are mentioned, after which a discussion is devoted to the preservation of food products by irradiation treatment and the increasing importance given to this technique. Consumer protection automatically implies the obligatory use of dosimetry by inspection organisms if the irradiated merchandise is likely to serve for human or animal consumption. Irradiation treatment permits are granted in a context of specific statutory texts mentioned here. Supervision is constant, but always both realistic and flexible. Each aspect of this treatment is discussed in maximum detail if not quite exhaustively, with special emphasis on dosimetry as an indispensable safety factor [fr

  16. Is intraoperative real-time dosimetry in prostate seed brachytherapy predictive of biochemical outcome?

    Directory of Open Access Journals (Sweden)

    Daniel Taussky

    2017-06-01

    Full Text Available Purpose : To analyze intraoperative (IO dosimetry using transrectal ultrasound (TRUS, performed before and after prostate low-dose-rate brachytherapy (LDR-BT, and compare it to dosimetry performed 30 days following the LDR-BT implant (Day 30. Material and methods : A total of 236 patients underwent prostate LDR-BT using 125 I that was performed with a three-dimensional TRUS-guided interactive inverse preplanning system (preimplant dosimetry. After the implant procedure, the TRUS was repeated in the operating room, and the dosimetry was recalculated (postimplant dosimetry and compared to dosimetry on Day 30 computed tomography (CT scans. Area under curve (AUC statistics was used for models predictive of dosimetric parameters at Day 30. Results : The median follow-up for patients without BF was 96 months, the 5-year and 8-year biochemical recurrence (BR-free rate was 96% and 90%, respectively. The postimplant median D 90 was 3.8 Gy lower (interquartile range [IQR], 12.4-0.9, and the V 100 only 1% less (IQR, 2.9-0.2% than the preimplant dosimetry. When comparing the postimplant and the Day 30 dosimetries, the postimplant median D 90 was 9.6 Gy higher (IQR [–] 9.5-30.3 Gy, and the V 100 was 3.2% greater (0.2-8.9% than Day 30 postimplant dosimetry. The variables that best predicted the D 90 of Day 30 was the postimplant D 90 (AUC = 0.62, p = 0.038. None of the analyzed values for IO or Day 30 dosimetry showed any predictive value for BR. Conclusions : Although improving the IO preimplant and postimplant dosimetry improved dosimetry on Day 30, the BR-free rate was not dependent on any dosimetric parameter. Unpredictable factors such as intraprostatic seed migration and IO factors, prevented the accurate prediction of Day 30 dosimetry.

  17. Dosimetry services for internal and external radiation sources

    International Nuclear Information System (INIS)

    1988-01-01

    The Canadian Atomic Energy Control Board (AECB) sets radiation dose limits for the operation of nuclear facilities and the possession of prescribed substances within Canada. To administer these regulations the AECB must be satisfied that the dosimetry services used by a licensee meet adequate standards. Licensees are required to use the Occupational Dosimetry Service operated by the Bureau of Radiation and Medical Devices, Department of National Health and Welfare (BRMD) to determine doses from external sources of radiation, except where a detailed rationale is given for using another service. No national dosimetry service exists for internal sources of radiation. Licensees who operate or use a dosimetry service other than the BRMD must provide the AECB with evidence of the competence of the staff and adequacy of the equipment, techniques and procedures; provide the AECB with evidence that a quality assurance program has been implemented; and send individual dose or exposure data to the National Dose Registry. (L.L.)

  18. High Energy Electron Dosimetry by Alanine/ESR Spectroscopy

    International Nuclear Information System (INIS)

    Chu, Sung Sil

    1989-01-01

    Dosimetry based on electron spin resonance(ESR) analysis of radiation induced free radicals in amino acids is relevant to biological dosimetry applications. Alanine detectors are without walls and are tissue equivalent. Therefore, alanine ESR dosimetry looks promising for use in the therapy level. The dose range of the alanine/ESR dosimetry system can be extended down to l Gy. In a water phantom the absorbed dose of electrons generated by a medical linear accelerator of different initial energies (6-21 MeV) and therapeutic dose levels(1-60 Gy) was measured. Furthermore, depth dose measurements carried out with alanine dosimeters were compared with ionization chamber measurements. As the results, the measured absorbed doses for shallow depth of initial electron energies above 15 MeV were higher by 2-5% than those calculated by nominal energy CE factors. This seems to be caused by low energy scattered beams generated from the scattering foil and electron cones of beam projecting device in medical linear accelerator

  19. Dosimetry applied to radiology and radiotherapy

    International Nuclear Information System (INIS)

    Yoshimura, Elisabeth Mateus

    2010-01-01

    Full text. The uses of ionizing radiation in medicine are increasing worldwide, and the population doses increase as well. The actual radiation protection philosophy is based on the balance of risks and benefits related to the practices, and patient dosimetry has an important role in the implementation of this point of view. In radiology the goal is to obtain an image with diagnostic quality with the minimum patient dose. In modern Radiotherapy the cure indexes are higher, giving rise to longer survival times to the patients. Dosimetry in radiotherapy helps the treatment planning systems to get a better protection to critical organs, with higher doses to the tumor, with a guarantee of better life quality to the patient. We will talk about the new trends in dosimetry of medical procedures, including experimental techniques and calculation tools developed to increase reliability and precision of dose determination. In radiology the main concerns of dosimetry are: the transition from film- radiography to digital image, the pediatric patient doses, and the choice of dosimetric quantities to quantify fluoroscopy and tomography patient doses. As far as Radiotherapy is concerned, there is a search for good experimental techniques to quantify doses to tissues adjacent to the target volumes in patients treated with new radiotherapy techniques, as IMRT and heavy particle therapy. (author)

  20. Guide for selection and calibration of dosimetry systems for radiation processing

    International Nuclear Information System (INIS)

    2002-01-01

    This guide covers the basis for selecting and calibrating dosimetry systems used to measure absorbed dose in gamma ray or X-ray fields and in electron beams used for radiation processing. It discusses the types of dosimetry systems that may be employed during calibration or on a routine basis as part of quality assurance in commercial radiation processing of products. This guide also discusses interpretation of absorbed dose and briefly outlines measurements of the uncertainties associated with the dosimetry. The details of the calibration of the analytical instrumentation are addressed in individual dosimetry system standard practices. The absorbed-dose range covered is up to 1 MGy (100 Mrad). Source energies covered are from 0.1 to 50 MeV photons and electrons. This guide should be used along with standard practices and guides for specific dosimetry systems and applications covered in other standards. Dosimetry for radiation processing with neutrons or heavy charged particles is not covered in this guide

  1. Active components for integrated plasmonic circuits

    DEFF Research Database (Denmark)

    Krasavin, A.V.; Bolger, P.M.; Zayats, A.V.

    2009-01-01

    We present a comprehensive study of highly efficient and compact passive and active components for integrated plasmonic circuit based on dielectric-loaded surface plasmon polariton waveguides.......We present a comprehensive study of highly efficient and compact passive and active components for integrated plasmonic circuit based on dielectric-loaded surface plasmon polariton waveguides....

  2. Current internal-dosimetry practices at US Department of Energy facilities

    International Nuclear Information System (INIS)

    Traub, R.J.; Murphy, B.L.; Selby, J.M.; Vallario, E.J.

    1985-04-01

    The internal dosimetry practice at DOE facilities were characterized. The purpose was to determine the size of the facilities' internal dosimetry programs, the uniformity of the programs among the facilities, and the areas of greatest concern to health physicists in providing and reporting accurate estimates of internal radiation dose and in meeting proposed changes in internal dosimetry. The differences among the internal-dosimetry programs are related to the radioelements in use at each facility and, to some extent, the number of workers at each facility. The differences include different frequencies in the use of quality control samples, different minimum detection levels, different methods of recording radionuclides, different amounts of data recorded in the permanent record, and apparent differences in modeling the metabolism of radionuclides within the body. Recommendations for improving internal-dosimetry practices include studying the relationship between air-monitoring/survey readings and bioassay data, establishing uniform methods for recording bioassay results, developing more sensitive direct-bioassay procedures, establishing a mechanism for sharing information on internal-dosimetry procedures among DOE facilities, and developing mathematical models and interactive computer codes that can help quantify the uptake of radioactive materials and predict their distribution in the body. 19 refs., 8 tabs

  3. The PADE dosimetry system at the Brokdorf nuclear power station

    International Nuclear Information System (INIS)

    Poetter, Karl-Friedrich; Eckelmann, Joerg; Kuegow, Mario; Spahn, Werner; Franz, Manfred

    2002-01-01

    The PADE program system is used in nuclear power plants for personnel and workplace dosimetry and for managing access to the controlled area. On-line interfaces with existing dose determination systems allow collection, surveillance and evaluation functions to be achieved for person-related and workplace-related dose data. This is managed by means of open, non-proprietary communication of PADE with the computer system coupled via interfaces. In systems communication, PADE is limited to main interventions into outside systems, thus ensuring flexible adaptation to existing systems. As a client-server solution, PADE has been developed on the basis of an ORACLE-8 database; the version presented here runs on a Windows NT server. The system described has been used at the Brokdorf Nuclear Power Station since early 2000 and has so far reliably managed more than one million individual access movements of more than 6 000 persons. It is currently being integrated into a comprehensive plant operations management system. Among other things, PADE offers a considerable development potential for a tentatively planned future standardization of parts of the dosimetry systems in German nuclear power plants and for the joint management of in-plant and official dose data. (orig.) [de

  4. Theory, development and principal application trends of lyoluminescence in integral radiation dosimetry

    International Nuclear Information System (INIS)

    Kubicek, I.

    1984-01-01

    The mechanism of lyoluminescence (LL) of inorganic and organic compounds is described in detail and discussed are the basic characteristics of the LL process, the physico-chemical properties of the system, the principle of measurement and the possibility of increasing the LL yield. Attention is also devoted to the design of evaluation kits developed and used by different laboratories. A substantial part of the study is devoted to the response of LL dosemeters to different types of ionizing radiation (gamma radiation, fast and slow neutrons and heavy charged particles). The high level of tissue equivalence of some organic materials, their sensitivity to gamma radiation and fast neutrons and finally the possible use of human biological tissue as a dosemeter predestinates the LL method for uses mainly in clinical and accident dosimetry. (author)

  5. Dosimetry in Interventional Radiology - Effective Dose Estimation

    International Nuclear Information System (INIS)

    Miljanic, S.; Buls, N.; Clerinx, P.; Jarvinen, H.; Nikodemova, D.; Ranogajec-Komor, M; D'Errico, F.

    2008-01-01

    Interventional radiological procedures can lead to significant radiation doses to patients and to staff members. In order to evaluate the personal doses with respect to the regulatory dose limits, doses measured by dosimeters have to be converted to effective doses (E). Measurement of personal dose equivalent Hp(10) using a single unshielded dosimeter above the lead apron can lead to significant overestimation of the effective dose, while the measurement with dosimeter under the apron can lead to underestimation. To improve the accuracy, measurements with two dosimeters, one above and the other under the apron have been suggested ( d ouble dosimetry ) . The ICRP has recommended that interventional radiology departments develop a policy that staff should wear two dosimeters. The aim of this study was to review the double dosimetry algorithms for the calculation of effective dose in high dose interventional radiology procedures. The results will be used to develop general guidelines for personal dosimetry in interventional radiology procedures. This work has been carried out by Working Group 9 (Radiation protection dosimetry of medical staff) of the CONRAD project, which is a Coordination Action supported by the European Commission within its 6th Framework Program.(author)

  6. Advances in kilovoltage x-ray beam dosimetry

    Science.gov (United States)

    Hill, Robin; Healy, Brendan; Holloway, Lois; Kuncic, Zdenka; Thwaites, David; Baldock, Clive

    2014-03-01

    This topical review provides an up-to-date overview of the theoretical and practical aspects of therapeutic kilovoltage x-ray beam dosimetry. Kilovoltage x-ray beams have the property that the maximum dose occurs very close to the surface and thus, they are predominantly used in the treatment of skin cancers but also have applications for the treatment of other cancers. In addition, kilovoltage x-ray beams are used in intra operative units, within animal irradiators and in on-board imagers on linear accelerators and kilovoltage dosimetry is important in these applications as well. This review covers both reference and relative dosimetry of kilovoltage x-ray beams and provides recommendations for clinical measurements based on the literature to date. In particular, practical aspects for the selection of dosimeter and phantom material are reviewed to provide suitable advice for medical physicists. An overview is also presented of dosimeters other than ionization chambers which can be used for both relative and in vivo dosimetry. Finally, issues related to the treatment planning and the use of Monte Carlo codes for solving radiation transport problems in kilovoltage x-ray beams are presented.

  7. Impact of risk considerations on dosimetry of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Eckerman, K.F.

    1981-01-01

    Estimates of the absorbed dose from clinical procedures involving the administration of radiopharmaceuticals are used primarily to determine the presumed risk of various procedures so that, in-so-far as possible, the selection of a given procedure can be based on a comparison of risk. Although this has been the basic objective, risk evaluation has generally been separated from the dosimetry considerations. In the recent revision of its radiation protection guidance, the International Commission on Radiological Protection (ICRP) has embodied risk considerations in its recommendations and risk concepts have become an integral part of the dosimetric framework. The impact of these considerations on the dosimetric assessments of radiopharmaceuticals and the resulting need for additional information is discussed

  8. Problems facing the use of passive safety systems

    International Nuclear Information System (INIS)

    Burgazzi, L.

    2012-01-01

    This study will analyze the current state of the art in the reliability of passive systems for extensive use in future nuclear power plants. This case study uncovers the insights on the technological issues associated with the reliability of the systems based on thermal-hydraulics, for which, methods are still in developing phase. The paper is organized as follows: at first the current available methodologies are illustrated and compared, the open issues coming out from their analysis are identified. Five open issues have been identified: 1) the assessment of the uncertainties related to passive system performance; 2) the dependencies among parameters in thermo-hydraulics; 3) the integration of the passive systems within an accident sequence in combination with active systems; 4) the development of dynamic event tree to incorporate the evolution upon time of the physical processes; and 5) the comparison between active and passive systems, mainly on a functional viewpoint. For each open issue the state of the art and the outlook is presented; the relative importance of each of them within the evaluation process is presented as well. (authors)

  9. An experimental system for thermoluminescent dosimetry

    International Nuclear Information System (INIS)

    Perry, K.E.G.; George, E.

    1965-08-01

    A thermoluminescent dosimeter (T.L.D.) reader has been developed for experimental investigations on the use of lithium fluoride for 'finger tip' dosimetry. The design of the reader is based on the maximum use of standard electronic units in the A.E.R.E. Type 2000 series but some new unit development has been necessary. The reader gives improved experimental facilities over present commercially-available designs. The technique for 'finger-tip' dosimetry is described and the initial experimental results are given. (author)

  10. Investigation of a new generation of dosimeter based on BaFBr(Eu)-type photostimulable sensors: characterization and application to environmental and individual dosimetry

    International Nuclear Information System (INIS)

    Mouhssine, Dounia

    2004-01-01

    This research thesis deals with the characterization and implementation of a new dosimetry system for alpha, gamma and neutron radiations in compliance with new recommendations. This system is based on the use of photostimulable sensors (radio-luminescent films) which have some benefits with respect to conventional dosimeters. After an overview of radiation-matter interaction processes and of the main physical, radiometric and dosimetric quantities used in the field of radiation protection and dosimetry, the author presents various radiation detection methods based on semiconductors, on solid sensors of nuclear traces, and on luminophores. She presents and discusses experimental results obtained with the herein developed dosimeters, as well as the investigation of several parameters. Experimental results are compared with computation results obtained with the MCNP simulation code (Monte Carlo N Particles). Then, after an overview of radon (properties, origin, health risks) and of different active and passive methods of measurement of radon concentrations and of its descendants, the authors comments the first feasibility tests of this system for the detection of a radon signal

  11. EURADOS strategic research agenda. Visions for dosimetry of ionising radiation; Die strategische Forschungsagenda von EURADOS. Visionen fuer die Dosimetrie ionisierender Strahlung

    Energy Technology Data Exchange (ETDEWEB)

    Ruehm, W. [Helmholtz Zentrum Muenchen (Germany). Inst. fuer Strahlenschutz

    2016-07-01

    Since its foundation in 1981, EURADOS (the European Radiation Dosimetry Group e.V.) has been pursuing the goal to harmonise dosimetric practice of ionizing radiation in Europe, and to promote dosimetric research. As of August 2016, EURADOS had 67 institutional members, and up to 500 individual scientists, organized in eight Working Groups, work on improvements in dosimetry. In 2013, the EURADOS Council installed an ad-hoc editorial group, to identify open questions in radiation dosimetry research and to develop strategies that would allow answering these questions. In a joint effort of all EURADOS Working Groups, proposals were developed and summarized in a EURADOS Report. A short version of this report was published early this year in the peer reviewed international literature, in Radiation Protection Dosimetry. The present paper summarizes the proposals made. It is noted that this first version of the EURADOS Strategic Research Agenda already served as an input for a recent call published in Europe for Radiation Protection Research.

  12. High-dosage dosimetry programme of the IAEA

    International Nuclear Information System (INIS)

    Mehta, K.

    1999-01-01

    The high-dose dosimetry programme was initiated by the International Atomic Energy Agency in 1977. Like any other Agency programme, this one has various activities. These cover: research contracts and research agreements, co-ordinated research projects (CRP), training courses, and laboratory-based activities. The Agency's dose quality audit service (International Dose Assurance Service, IDAS), initiated in 1985, is one of the key elements of the programme. At earlier times, the technical part was operated through a laboratory in Germany. However, after purchasing the Bruker ESR spectrometer, the entire service has been operated from the Agency since 1992. This audit service has served well the needs of various institutes around the world involved with radiation processing. We have had two Co-ordinated Research Projects (the second one is in its last year) over the last several years. Both were/are aimed at standardization of dosimetry for radiation processing. Nine or ten participants of each CRP were about evenly distributed between the developed and developing Member States. In collaboration with the Food and Environmental Protection Section and the Industrial Applications and Chemistry Section, the Dosimetry and Medical Radiation Physics Section has participated in several training courses; these have been mainly regional courses. This collaboration has worked well since such courses combine specific radiation processing applications with the needs of good dosimetry and process control. Also, the Agency has organised several dose intercomparisons in recent time. The activities of the high-dose dosimetry programme since the last symposium (November 1990) are reviewed here. (author)

  13. Highly Sensitive Reentrant Cavity-Microstrip Patch Antenna Integrated Wireless Passive Pressure Sensor for High Temperature Applications

    Directory of Open Access Journals (Sweden)

    Fei Lu

    2017-01-01

    Full Text Available A novel reentrant cavity-microstrip patch antenna integrated wireless passive pressure sensor was proposed in this paper for high temperature applications. The reentrant cavity was analyzed from aspects of distributed model and equivalent lumped circuit model, on the basis of which an optimal sensor structure integrated with a rectangular microstrip patch antenna was proposed to better transmit/receive wireless signals. In this paper, the proposed sensor was fabricated with high temperature resistant alumina ceramic and silver metalization with weld sealing, and it was measured in a hermetic metal tank with nitrogen pressure loading. It was verified that the sensor was highly sensitive, keeping stable performance up to 300 kPa with an average sensitivity of 981.8 kHz/kPa at temperature 25°C, while, for high temperature measurement, the sensor can operate properly under pressure of 60–120 kPa in the temperature range of 25–300°C with maximum pressure sensitivity of 179.2 kHz/kPa. In practical application, the proposed sensor is used in a method called table lookup with a maximum error of 5.78%.

  14. Thermo-luminescent dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Reither, M; Schorn, B; Schneider, E

    1981-01-01

    The development of paediatric radiology which began in the late 195O's has been characterised by the need to limit the dose of ionising radiation to which the child is subjected. The aim has been to keep radiation exposure as low as possible by the introduction of suitable techniques and by the development of new methods. It is therefore surprising that studies in dosimetry in the paediaytric age range have only been carried out in recent years. One reason for this may have been the fact that a suitable technique of measurement was not available at the time. The introduction of solid state dosimetry based on thermo-luminescence, first into radiotherapy (1968) and subsequently into radiodiagnosis, has made it possible to abandon the previously widely used ionisation chamber. The purpose of the present paper is to indicate the suitability of this form of dose measurement for paediatric radiological purposes and to stimulate its application in this field.

  15. GENII [Generation II]: The Hanford Environmental Radiation Dosimetry Software System: Volume 3, Code maintenance manual: Hanford Environmental Dosimetry Upgrade Project

    International Nuclear Information System (INIS)

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-09-01

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). This coupled system of computer codes is intended for analysis of environmental contamination resulting from acute or chronic releases to, or initial contamination of, air, water, or soil, on through the calculation of radiation doses to individuals or populations. GENII is described in three volumes of documentation. This volume is a Code Maintenance Manual for the serious user, including code logic diagrams, global dictionary, worksheets to assist with hand calculations, and listings of the code and its associated data libraries. The first volume describes the theoretical considerations of the system. The second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. 7 figs., 5 tabs

  16. GENII (Generation II): The Hanford Environmental Radiation Dosimetry Software System: Volume 3, Code maintenance manual: Hanford Environmental Dosimetry Upgrade Project

    Energy Technology Data Exchange (ETDEWEB)

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-09-01

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). This coupled system of computer codes is intended for analysis of environmental contamination resulting from acute or chronic releases to, or initial contamination of, air, water, or soil, on through the calculation of radiation doses to individuals or populations. GENII is described in three volumes of documentation. This volume is a Code Maintenance Manual for the serious user, including code logic diagrams, global dictionary, worksheets to assist with hand calculations, and listings of the code and its associated data libraries. The first volume describes the theoretical considerations of the system. The second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. 7 figs., 5 tabs.

  17. Stopping-power ratios for dosimetry

    International Nuclear Information System (INIS)

    Andreo, P.

    1988-01-01

    The determination of the absorbed dose at a specified location in a medium irradiated with an electron or photon beam normally consists of two steps: (1) the determination of the mean absorbed dose to a detector by using a calibration factor or performing an absolute measurement, (2) the determination of the absorbed dose to the medium at the point of interest by calculations based on the knowledge of the absorbed dose to the detector and the different stopping and scattering properties of the medium and the detector material. When the influence of the detector is so small that the electron fluence in the medium is not modified, the ratio of the mass collision stopping power of the two materials accounts for the differences in energy deposition, and provides a conversion factor to relate the absorbed dose in both materials. Today, all national and international dosimetry protocols and codes of practice are based on such procedures, and the user easily can carry out these steps using tabulated data to convert a measured quantity to absorbed dose in the irradiated medium at the location of interest. Effects due to the spatial extension of the detector are taken into account using perturbation correction factors. The Monte Carlo method has become the most common and powerful calculational technique for determining the electron fluence (energy spectra) under different irradiation conditions. Cavity theory is then used to calculate stopping-power ratios. In this chapter, the different steps needed to evaluate s-ratios will be considered, emphasizing the different types of cavity-theory integrals and the Monte Carlo techniques used to derive the necessary electron spectra in the range of energies commonly used in radiation dosimetry, i.e., photon and electron beams with energies up to 50 MeV

  18. Shell model for time-correlated random advection of passive scalars

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Muratore-Ginanneschi, P.

    1999-01-01

    We study a minimal shell model for the advection of a passive scalar by a Gaussian time-correlated velocity field. The anomalous scaling properties of the white noise limit are studied analytically. The effect of the time correlations are investigated using perturbation theory around the white...... noise limit and nonperturbatively by numerical integration. The time correlation of the velocity field is seen to enhance the intermittency of the passive scalar. [S1063-651X(99)07711-9]....

  19. Retrospective dosimetry of Chernobyl liquidators

    International Nuclear Information System (INIS)

    Chumak, V.V.; Bakhanova, E.V.; Sholom, S.V.; Pasalskaya, L.F.; Bouville, A.; Krjuchkov, V.P.

    2000-01-01

    The numerous cohort of Chernobyl liquidators is a very attractive subject for epidemiological follow up due to high levels of exposure, age-gender distribution and availability of patients for medical examination. However, dosimetric information related to this population is incomplete, in many cases the quality of available dose records is doubtful and uncertainties of all dose values are not determined. Naive attempts to evaluate average doses on the basis of such factors as 'distance from the reactor' obviously fail due to large variation of tasks and workplace contamination. Therefore, prior to any sensible consideration of liquidators as a subject of epidemiological study, their doses should be evaluated (reevaluated) using the methods of retrospective dosimetry. Retrospective dosimetry in general got significant development over the last decade. However, most of the retrospective dosimetry techniques are time consuming, expensive and possess sensitivity threshold. Therefore, application of retrospective dosimetry for the needs of epidemiological follow up studies requires development of certain strategy. This strategy depends, of coarse, on the epidemiological design of the study, availability of resources and dosimetric information related to the time of clean up. One of the strategies of application of retrospective dosimetry may be demonstrated on the example of a cohort study with occasional nested case control consideration. In this case, the tools are needed for validation of existing dose records (of not always known quality), screening of the study cohort with express dosimetric method called to determine possible dose ranges, and 'state-of-the-art' assessment of individual doses for selected subjects (cases and controls). Verification of dose records involves analysis of the statistical regularities of dose distributions and detection of possible extraneous admixtures (presumably falsified dose records). This work is performed on impersonified data

  20. Radiotherapy gel dosimetry

    International Nuclear Information System (INIS)

    Baldock, C.

    2002-01-01

    shapes and sizes while sparing normal tissue. The situation is further complicated if the normal tissues are critical organs or are particularly sensitive to radiation. Radiotherapy techniques employed to obtain a closer conformation of the dose distribution to the tumour volume are referred to as conformal radiotherapy techniques. The clinical implementation of conformal therapy has been delayed by limitations in the verification of conformal dose distributions calculated by treatment planning systems prior to the irradiation of the patient and the verification of complex treatments during its delivery to the patient. There are several aspects of conformal therapy that complicate dose verification. To achieve the dose distributions conforming to complex 3D volumes, high dose gradients arise in the treatment volume. Further, overdose or underdose regions can exist when separate radiation fields are used to deliver additional radiation. These aspects require that practical dose measurement (dosimetry) techniques be able to integrate dose over time and easily measure dose distributions in 3D with high spatial resolution. Traditional dosimeters, such as ion chambers, thermoluminescent dosimeters and radiographic film do not fulfil these requirements. Novel gel dosimetry techniques are being developed in which dose distributions can potentially be determined in vitro in 3D using anthropomorphic phantoms to simulate a clinically irradiated situation. As long ago as the 1950's, radiation-induced colour change in dyes was used to investigate radiation doses in gels. It was subsequently shown that radiation induced changes in nuclear magnetic resonance (NMR) relaxation properties of gels infused with conventional Fricke dosimetry solutions could be measured using magnetic resonance imaging (MRI). In Fricke gels, Fe 2+ ions in ferrous sulphate solutions are usually dispersed throughout a gelatin, agarose or PVA matrix. Radiation-induced changes in the dosimeters are considered to

  1. Possibilities and problems of modern dosimetry techniques in dentistry

    International Nuclear Information System (INIS)

    Regulla, D.F.

    Basic requirement for an optimized application of radiation in dentistry is a qualified dosimetry. The paper introduces into new dosimetry techniques based on solid state phenomena, such as luminescence an exoelectron emission, which, in case of dentistry, appear superior to conventional methods such as film and ionization chamber dosimetry. Advantages of the TLDs dosimeters, such as miniature detector volume, dynamic detection range, tissue equivalence etc., and their dosimetric possibilities are described together with hints on operational problems with respect to achieving high dosimetric measurement accuracy. (orig.) [de

  2. Next generation platforms for high-throughput bio-dosimetry

    International Nuclear Information System (INIS)

    Repin, Mikhail; Turner, Helen C.; Garty, Guy; Brenner, David J.

    2014-01-01

    Here the general concept of the combined use of plates and tubes in racks compatible with the American National Standards Institute/the Society for Laboratory Automation and Screening microplate formats as the next generation platforms for increasing the throughput of bio-dosimetry assays was described. These platforms can be used at different stages of bio-dosimetry assays starting from blood collection into micro-tubes organised in standardised racks and ending with the cytogenetic analysis of samples in standardised multi-well and multichannel plates. Robotically friendly platforms can be used for different bio-dosimetry assays in minimally equipped laboratories and on cost-effective automated universal biotech systems. (authors)

  3. HSE statement on the approval of dosimetry services

    International Nuclear Information System (INIS)

    1992-09-01

    This statement is intended to assist dosimetry services who may wish to be approved by the U.K. Health and Safety Executive under Regulation 15 of the Ionising Radiations Regulations 1985. It also serves to inform approved dosimetry services of changes in the arrangements which HSE makes for approval and reassessment of dosimetry services. A general description of the administrative arrangements for making application is given and the subsequent processing of such applications by the HSE is outlined. Background notes on the requirements of the Regulations are given in Appendix I. The fees which are chargeable from 20/8/92 are given in Appendix II. (Author)

  4. Reassessment of the RERF dosimetry system - overview of the new dosimetry system DS02

    International Nuclear Information System (INIS)

    Young, R.W.

    2003-01-01

    This paper describes a major reassessment of the system used at the Radiation Effects Research Foundation (RERF) to determine radiation doses for atomic-bomb survivors. This effort has resolved the neutron discrepancy in RERF dosimetry, and has defined the parameters for a replacement system for survivor dose calculation. A Joint US-Japan Working Group undertook a comprehensive evaluation of the calculations that comprise the RERF dosimetry system and the measurements used to verify those calculations. During the course of this reassessment, the working groups, with members from American, German and Japanese universities and national laboratories, have recomputed all of the Hiroshima and Nagasaki radiation calculations, made fast-neutron and low-background thermal-neutron measurements, upgraded the calculation of the radiation shielding provided by terrain and large buildings, and conducted a comprehensive reassessment of all radiation measurements. The new calculations produced during this reassessment agree with both gamma and neutron measurements out to distances from the detonations at which in-situ measurements become indistinguishable from background, effectively resolving the long-standing neutron dose discrepancy. The calculations that produce this agreement are the basis for the new DS02 dosimetry system. New calculations and measurements confirmed the yield and epicenter for the Nagasaki detonation while refining both these values for Hiroshima. Current measurements and calculations confirm a 21-kiloton-yield for the Nagasaki bomb and a burst point to within two meters of previous assessments. In Hiroshima, the estimated yield has been increased from 15 kt to 16 kt and the epicenter has been repositioned 20 meters higher and 15 meters to the west. While these refined parameters make the dosimetry system more accurate and users of the system more confident in the results, the calculated dose to survivors will change only about ten percent

  5. Individual monitoring dosimetry in Europe

    International Nuclear Information System (INIS)

    Menzel, H.G.

    1991-01-01

    This report discusses the various types of individual monitoring systems presently in use within the European community and neutron dosimetry research being coordinated by the EURADOS working group. Research is currently being conducted on nuclear track dosimeters, primarily with CR-39 (TM), and TLD-albedo dosimeters. Studies are being conducted on the energy and angular response of each type of dosimeter. Because the response of dosimeters depends on the energy of the neutrons, it is necessary to have spectral information to accurately assess the dose. Neutron energy spectrum measurements are being performed in typical work place environments. Work is also progressing on development of calibration sources which will be representative of the neutron energy spectrum found in typical neutron exposure situations. This work utilizes 14 MeV neutrons incident on a uranium block with various other filters. Research is also continuing on neutron dosimetry using tissue equivalent proportional counters and microdosimetric techniques. The results of intercomparisons between several different instruments are discussed. In addition to personnel dosimetry, these systems are being used to record the dose to passengers and flight crews aboard commercial aircraft

  6. RCT: Module 2.04, Dosimetry, Course 8769

    Energy Technology Data Exchange (ETDEWEB)

    Hillmer, Kurt T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-11

    This course will introduce the types of instruments used to measure external and internal radiation to people. Dosimetry is the quantitative assessment of radiation received by the human body. Several types of dosimeters are used worldwide. This information is valuable to all radiological control personnel because dosimeters are the only direct method to measure and document personnel radiation exposure and ensure regulatory compliance with applicable limits. This course will cover dosimetry terms, Department of Energy (DOE) limits, Los Alamos National Laboratory (LANL) administrative guidelines, thermoluminescent dosimeters (TLDs), LANL dosimetry, and bioassay assessment methods. This course will prepare the student with the skills necessary for radiological control technician (RCT) qualification by passing quizzes, tests, and the RCT Comprehensive Phase 1, Unit 2 Examination (TEST 27566) and providing in-thefield skills.

  7. Sandia National Laboratories Internal Dosimetry Technical Basis Manual (Rev 4)

    Energy Technology Data Exchange (ETDEWEB)

    Goke, Sarah Hayes [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Elliott, Nathan Ryan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    The Sandia National Laboratories’ Internal Dosimetry Technical Basis Manual is intended to provide extended technical discussion and justification of the internal dosimetry program at SNL. It serves to record the approach to evaluating internal doses from radiobioassay data, and where appropriate, from workplace monitoring data per the Department of Energy Internal Dosimetry Program Guide DOE G 441.1C. The discussion contained herein is directed primarily to current and future SNL internal dosimetrists. In an effort to conserve space in the TBM and avoid duplication, it contains numerous references providing an entry point into the internal dosimetry literature relevant to this program. The TBM is not intended to act as a policy or procedure statement, but will supplement the information normally found in procedures or policy documents. The internal dosimetry program outlined in this manual is intended to meet the requirements of Federal Rule 10CFR835 for monitoring the workplace and for assessing internal radiation doses to workers.

  8. Practical applications of the new ICRP recommendation to external dosimetry

    International Nuclear Information System (INIS)

    Kraus, W.

    1992-01-01

    Focussing on external dosimetry for occupational exposure the consequences of the new quantities equivalent dose (radiation weighting factor), effective dose (tissue weighting factor) and the ICRU operational quantities for individual and area dosimetry are discussed. Despite some arguments against the new quantities they should be introduced as rapidly as possible to keep international uniformity in radiation protection monitoring. It is shown that they provide a conservative estimate of the effective dose for photons and neutrons. In photon dosimetry only minor changes of the conversion factors relating operational quantities to effective dose is observed. In neutron dosimetry the conversion factors change by a factor of up to 2. It is pointed out that there is a urgent need to calculate standardized conversion factors for field quantities -operational quantities- organ and effective dose in a joint effort of ICRP and ICRU. This includes standardization of calibration methods for individual dosimetry using suitable phantoms instead of the sphere. (author)

  9. Performance of dichromate dosimetry systems in calibration and dose intercomparison

    International Nuclear Information System (INIS)

    Bof, E.S.; Smolko, E.

    1999-01-01

    This report presents the results of the High Dose Dosimetry Laboratory of Argentina during ten years of international intercomparisons for high dose with the International Dose Assurance Service (IDAS) of the IAEA, using the standard high dose dichromate dosimetry system, and the results of a high dose intercomparison regional exercise in which our Laboratory acted as a reference laboratory, using the standard high dose and low dose dichromate dosimetry system. (author)

  10. Student Perceptions of an Online Medical Dosimetry Program

    International Nuclear Information System (INIS)

    Lenards, Nishele

    2011-01-01

    The University of Wisconsin-La Crosse offers the first online medical dosimetry program in the nation. There is no data to research a program of this type. This research consisted of the evaluation of other distance education programs including health profession programs in addition to face-to-face medical dosimetry programs. There was a need to collect and analyze student perceptions of online learning in medical dosimetry. This research provided a guide for future implementation by other programs as well as validated the University of Wisconsin-La Crosse program. Methodology used consisted of an electronic survey sent to all previous and currently enrolled students in the University of Wisconsin-La Crosse medical dosimetry program. The survey was both quantitative and qualitative in demonstrating attitudinal perceptions of students in the program. Quantitative data was collected and analyzed using a 5-point Likert scale. Qualitative data was gathered based on the open-ended responses and the identifying themes from the responses. The results demonstrated an overall satisfaction with this program, the instructor, and the online courses. Students felt a sense of belonging to the courses and the program. Considering that a majority of the students had never taken an online course previously, the students felt there were no technology issues. Future research should include an evaluation of board exam statistics for students enrolled in the online and face-to-face medical dosimetry programs.

  11. Revue of some dosimetry and dose assessment European projects

    International Nuclear Information System (INIS)

    Bolognese-Milsztajn, T.; Frank, D.; Lacoste, V.; Pihet, P.

    2006-01-01

    Full text of publication follows: Within the 5. Framework Programme of the European Commission several project dealing with dosimetry and dose assessment for internal and external exposure have been supported. A revue of the results of some of them is presented in this paper. The EURADOS network which involved 50 dosimetry institutes in EUROPE has coordinated the project DOSIMETRY NETWORK: the main results achieved within this action are the following: - The release on the World Wide Web of the EURADOS Database of Dosimetry Research Facilities; - The realisation of the report 'Harmonization of Individual Monitoring (IM) in Europe'; - The continuation of the intercomparisons programme of environmental radiation monitoring systems; - The realisation of the report Cosmic radiation exposure of aircraft crew. The EVIDOS project aimed at evaluating state of the art dosimetry techniques in representative workplaces of the nuclear industry with complex mixed neutron-photon radiation fields. This paper summarises the main findings from a practical point of view. Conclusions and recommendations will be given concerning characterisation of radiation fields, methods to derive radiation protection quantities and dosimeters results. The IDEA project aimed to improve the assessment of incorporated radionuclides through developments of advanced in-vivo and bioassay monitoring techniques and making use of such enhancements for improvements in routine monitoring. The primary goal was to categorize those new developments regarding their potential and eligibility for the routine monitoring community. The costs of monitoring for internal exposures in the workplace are usually significantly greater than the equivalent costs for external exposures. There is therefore a need to ensure that resources are employed with maximum effectiveness. The EC-funded OMINEX (Optimisation of Monitoring for Internal Exposure) project has developed methods for optimising the design and implementation of

  12. External dosimetry sources and shielding

    International Nuclear Information System (INIS)

    Calisto, Washington

    1994-01-01

    A definition of external dosimetry r external sources dosimetry,physical and mathematical treatment of the interaction of gamma radiation with a minimal area in that direction. Concept of attenuation coefficient, cumulated effect by polyenergetic sources, exposition rate, units, cumulated dose,shielding, foton shielding, depth calculation, materials used for shielding.Beta shielding, consideration of range and maximum β energy , low stopping radiation by use of low Z shielding. Tables for β energy of β emitters, I (tau) factor, energy-range curves for β emitters in aqueous media, gamma attenuation factors for U, W and Pb. Y factor for bone tissue,muscle and air, build-up factors

  13. Calorimetric dosimetry of reactor radiation

    International Nuclear Information System (INIS)

    Radak, B.; Markovic, V.; Draganic, I.

    1961-01-01

    Calorimetric dosimetry of reactor radiation is relatively new reactor dosimetry method and the number of relevant papers is rather small. Some difficulties in applying standard methods (chemical dosemeters, ionization chambers) exist because of the complexity of radiation. In general application of calorimetric dosemeters for measuring absorbed doses is most precise. In addition to adequate choice of calorimetric bodies there is a possibility of determining the yields of each component of the radiation mixture in the total absorbed dose. This paper contains a short review of the basic calorimetry methods and some results of measurements at the RA reactor in Vinca performed by isothermal calorimeter [sr

  14. Dosimetry of ionizing radiation. Fundamentals and applications. Dosimetrie ionisierender Strahlen. Grundlagen und Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Reich, H [ed.

    1990-01-01

    In the first chapter of the book, a brief description is given of the historical development of dosimetry, of its objectives and special role within the context of general physical metrology, followed by detailed explanations of the physical fundamentals of this science: the sources and fields of radiation, interactions between radiation and matter as well as radiation detectors. The terminology and units of measurement used in dosimetry are explained in a separate chapter. Chapters 7 and 8, which outline the various theoretical and experimental methods of dose determination, are the most essential contributions to this volume. Chapter 9 deals with the ways in which dosimetry is used in special cases in radiotherapy as well as in the measurement of very small or very large doses. Chapter 10 gives a survey of recently introduced units of measurements and methods to calculate the body dose with reference to the particular type of exposure used. Appendix A contains tables of measuring units, physical constants and measuring techniques along with at-a-glance information on the legal regulations concerning the calibration of dosimeters. Appendix B gives practical guidance on the handling of hardware-related inaccuracies of measurement in dose determination procedures and appendix C embraces 22 pages of tables showing data on radiation physics. (orig./HP) With 150 figs., 50 tabs. in the text, and annex with tables.

  15. Personnel neutron dosimetry using electrochemically etched CR-39 foils

    International Nuclear Information System (INIS)

    Hankins, D.E.; Homann, S.; Westermark, J.

    1986-01-01

    A personnel neutron dosimetry system has been developed based on the electrochemical etching of CR-39 plastic at elevated temperatures. The doses obtained using this dosimeter system are more accurate than those obtained using other dosimetry systems, especially when varied neutron spectra are encountered. This Cr-39 dosimetry system does not have the severe energy dependence that exists with albedo neutron dosimeters or the fading and reading problems encountered with NTA film. The dosimetry system employs an electrochemical etch procedure that be used to process large numbers of Cr-39 dosimeters. The etch procedure is suitable for operations where the number of personnel requires that many CR-39 dosimeters be processed. Experience shows that one full-time technician can etch and evaluate 2000 foils per month. The energy response to neutrons is fairly flat from about 80 keV to 3.5 MeV, but drops by about a factor of three in the 13 to 16 MeV range. The sensitivity of the dosimetry system is about 7 tracks/cm 2 /mrem, with a background equivalent to about 8 mrem for new CR-39 foils. The limit of sensitivity is approximately 10 mrem. The dosimeter has a significant variation in directional dependence, dropping to about 20% at 90 0 . This dosimeter has been used for personnel neutron dosimetry at the Lawrence Livermore National Laboratory for more tha 18 months. 6 refs., 23 figs., 2 tabs

  16. Electronic band-gap modified passive silicon optical modulator at telecommunications wavelengths.

    Science.gov (United States)

    Zhang, Rui; Yu, Haohai; Zhang, Huaijin; Liu, Xiangdong; Lu, Qingming; Wang, Jiyang

    2015-11-13

    The silicon optical modulator is considered to be the workhorse of a revolution in communications. In recent years, the capabilities of externally driven active silicon optical modulators have dramatically improved. Self-driven passive modulators, especially passive silicon modulators, possess advantages in compactness, integration, low-cost, etc. Constrained by a large indirect band-gap and sensitivity-related loss, the passive silicon optical modulator is scarce and has been not advancing, especially at telecommunications wavelengths. Here, a passive silicon optical modulator is fabricated by introducing an impurity band in the electronic band-gap, and its nonlinear optics and applications in the telecommunications-wavelength lasers are investigated. The saturable absorption properties at the wavelength of 1.55 μm was measured and indicates that the sample is quite sensitive to light intensity and has negligible absorption loss. With a passive silicon modulator, pulsed lasers were constructed at wavelengths at 1.34 and 1.42 μm. It is concluded that the sensitive self-driven passive silicon optical modulator is a viable candidate for photonics applications out to 2.5 μm.

  17. Accuracy and precision in thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    Marshall, T.O.

    1984-01-01

    The question of accuracy and precision in thermoluminescent dosimetry, particularly in relation to lithium fluoride phosphor, is discussed. The more important sources of error, including those due to the detectors, the reader, annealing and dosemeter design, are identified and methods of reducing their effects on accuracy and precision to a minimum are given. Finally, the accuracy and precision achievable for three quite different applications are discussed, namely, for personal dosimetry, environmental monitoring and for the measurement of photon dose distributions in phantoms. (U.K.)

  18. Sorbent Film-Coated Passive Samplers for Explosives Vapour Detection Part A: Materials Optimisation and Integration with Analytical Technologies.

    Science.gov (United States)

    McEneff, Gillian L; Murphy, Bronagh; Webb, Tony; Wood, Dan; Irlam, Rachel; Mills, Jim; Green, David; Barron, Leon P

    2018-04-11

    A new thin-film passive sampler is presented as a low resource dependent and discrete continuous monitoring solution for explosives-related vapours. Using 15 mid-high vapour pressure explosives-related compounds as probes, combinations of four thermally stable substrates and six film-based sorbents were evaluated. Meta-aramid and phenylene oxide-based materials showed the best recoveries from small voids (~70%). Analysis was performed using liquid chromatography-high resolution accurate mass spectrometry which also enabled tentative identification of new targets from the acquired data. Preliminary uptake kinetics experiments revealed plateau concentrations on the device were reached between 3-5 days. Compounds used in improvised explosive devices, such as triacetone triperoxide, were detected within 1 hour and were stably retained by the sampler for up to 7 days. Sampler performance was consistent for 22 months after manufacture. Lastly, its direct integration with currently in-service explosives screening equipment including ion mobility spectrometry and thermal desorption mass spectrometry is presented. Following exposure to several open environments and targeted interferences, sampler performance was subsequently assessed and potential interferences identified. High-security building and area monitoring for concealed explosives using such cost-effective and discrete passive samplers can add extra assurance to search routines while minimising any additional burden on personnel or everyday site operation.

  19. Aqueous chemical dosimetry

    International Nuclear Information System (INIS)

    Matthews, R.W.

    1982-01-01

    Aqueous chemical dosimetry based on ceric and ferrous sulfate solutions and on a number of fluorescence-induced systems is reviewed. Particular attention is given to the factors affecting the response of these dosimeters to radiation and the corrections necessary for more accurate dosimetry under various irradiation conditions. The effect of cerous and ceric ion, oxygen, and sulfuric acid concentration on the ceric dosimeter is discussed together with the effects of temperature, energy of radiation, degraded energy spectra, and peroxysulfuric acids. Practical aspects of ceric/cerous dosimetry are given. Although ferrous sulfate solution is the most important and widely studied reference dosimeter, general agreement has not been reached on the ''best'' value for the molar extinction coefficient of ferric ions nor on the correction necessary to the G(Fe 3 - ) value for irradiations at temperatures significantly different from 25 0 C. New data are presented which indicate that the larger temperature coefficients given in the literature are more accurate. The ferrous sulfate system has been of great importance in establishing the primary radiolytic yields for 0.4 M sulfuric acid solution; it is shown how the failure to take into account the effect of oxygen and ferrous sulfate concentrations has led to erroneously high estimates of the zero solute concentration values in acid solutions. Some of the methods for extending the dose ranges measurable with ferrous sulfate-based solutions are reviewed. Substances which on irradiation give highly fluorescent products are among the most sensitive aqueous chemical dosimeters. These include benzoate and terephthalate solutions and the more recent coumarin and trimesate solutions. Advantages and disadvantages system are discussed. (author)

  20. Review of unfolding methods for neutron flux dosimetry

    International Nuclear Information System (INIS)

    Stallmann, F.W.; Kam, F.B.K.

    1975-01-01

    The primary method in reactor dosimetry is the foil activation technique. To translate the activation measurements into neutron fluxes, a special data processing technique called unfolding is needed. Some general observations about the problems and the reliability of this approach to reactor dosimetry are presented. Current unfolding methods are reviewed. 12 references. (auth)

  1. Radiation chemical dosimetry by means of nitrate-nitrite

    International Nuclear Information System (INIS)

    Tormo Ferrero, M.J.

    1977-01-01

    The different chemical systems used in dosimetry and the selection criteria for them are described. The general topics in dosimetry with alkali nitrates as well as the phenomena occurring in their radiolisis are also treated. The possibility of application in dosimetric areas useful in radiosterilization and industrial processes is studied too. (author) [es

  2. Application of numerical analysis methods to thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    Gomez Ros, J. M.; Delgado, A.

    1989-01-01

    This report presents the application of numerical methods to thermoluminescence dosimetry (TLD), showing the advantages obtained over conventional evaluation systems. Different configurations of the analysis method are presented to operate in specific dosimetric applications of TLD, such as environmental monitoring and mailed dosimetry systems for quality assurance in radiotherapy facilities. (Author) 10 refs

  3. Evaluation of personal integrating dosimeters

    International Nuclear Information System (INIS)

    Correa, C.A.; Bisauta, Mauricio A.

    2007-01-01

    The objective of this work is to analyze the different types of dosimeters present in the international market that are used to provide personal dose monitoring, specifically for external gamma and beta radiation, Hp(10) and Hp (0,07), as well as to add comments of advances in the field of passive and operative dosimetry, and the changes that are being produced in the regulating policy in other countries regarding the use of this devices. The technical specification of each dosimeter has been extracted of different catalogues of products. To conclude, the importance has been stressed in a proper selection of dosimeters with its advantages and disadvantages before its use. (author) [es

  4. Integration method of 3D MR spectroscopy into treatment planning system for glioblastoma IMRT dose painting with integrated simultaneous boost

    International Nuclear Information System (INIS)

    Ken, Soléakhéna; Cassol, Emmanuelle; Delannes, Martine; Celsis, Pierre; Cohen-Jonathan, Elizabeth Moyal; Laprie, Anne; Vieillevigne, Laure; Franceries, Xavier; Simon, Luc; Supper, Caroline; Lotterie, Jean-Albert; Filleron, Thomas; Lubrano, Vincent; Berry, Isabelle

    2013-01-01

    To integrate 3D MR spectroscopy imaging (MRSI) in the treatment planning system (TPS) for glioblastoma dose painting to guide simultaneous integrated boost (SIB) in intensity-modulated radiation therapy (IMRT). For sixteen glioblastoma patients, we have simulated three types of dosimetry plans, one conventional plan of 60-Gy in 3D conformational radiotherapy (3D-CRT), one 60-Gy plan in IMRT and one 72-Gy plan in SIB-IMRT. All sixteen MRSI metabolic maps were integrated into TPS, using normalization with color-space conversion and threshold-based segmentation. The fusion between the metabolic maps and the planning CT scans were assessed. Dosimetry comparisons were performed between the different plans of 60-Gy 3D-CRT, 60-Gy IMRT and 72-Gy SIB-IMRT, the last plan was targeted on MRSI abnormalities and contrast enhancement (CE). Fusion assessment was performed for 160 transformations. It resulted in maximum differences <1.00 mm for translation parameters and ≤1.15° for rotation. Dosimetry plans of 72-Gy SIB-IMRT and 60-Gy IMRT showed a significantly decreased maximum dose to the brainstem (44.00 and 44.30 vs. 57.01 Gy) and decreased high dose-volumes to normal brain (19 and 20 vs. 23% and 7 and 7 vs. 12%) compared to 60-Gy 3D-CRT (p < 0.05). Delivering standard doses to conventional target and higher doses to new target volumes characterized by MRSI and CE is now possible and does not increase dose to organs at risk. MRSI and CE abnormalities are now integrated for glioblastoma SIB-IMRT, concomitant with temozolomide, in an ongoing multi-institutional phase-III clinical trial. Our method of MR spectroscopy maps integration to TPS is robust and reliable; integration to neuronavigation systems with this method could also improve glioblastoma resection or guide biopsies

  5. Personnel radiation dosimetry laboratory accreditation programme for thermoluminescent dosimeters : a proposal

    International Nuclear Information System (INIS)

    Bhatt, B.C.; Srivastava, J.K.; Iyer, P.S.; Venkatraman, G.

    1993-01-01

    Accreditation for thermoluminescent dosimeters is the process of evaluating a programme intending to use TL personnel dosimeters to measure, report and record dose equivalents received by radiation workers. In order to test the technical competence for conducting personnel dosimetry service as well as to decentralize personnel monitoring service, it has been proposed by Radiological Physics Division (RPhD) to accredit some of the laboratories, in the country. The objectives of this accreditation programme are: (i) to give recognition to competent dosimetry processors, and (ii) to provide periodic evaluation of dosimetry processors, including review of internal quality assurance programme to improve the quality of personnel dosimetry processing. The scientific support for the accreditation programme will be provided by the scientific staff from Radiological Physics Division (RPhD) and Radiation Protection Services Division (RPSD). This paper describes operational and technical requirements for the Personnel Radiation Dosimetry Laboratory Accreditation Programme for Thermoluminescent Dosimeters for Personnel Dosimetry Processors. Besides, many technical documents dealing with the TL Personnel Dosimeter System have been prepared. (author). 5 refs., 2 figs

  6. Interest of numerical dosimetry in radiation protection: mean of substitution or measurements consolidation?; Interet de la dosimetrie numerique en radioprotection: moyen de substitution ou de consolidation des mesures?

    Energy Technology Data Exchange (ETDEWEB)

    Lahaye, T.; Chau, Q. [Institut de Radioprotection et de Surete Nucleaire (IRSN/DPHD/SDOS), Service Dosimetrie, 92 - Fontenay-aux-Roses (France); Ferragut, A.; Gillot, J.Y. [SAPHYMO, 91 - Massy (France)

    2003-07-01

    The use of calculation codes allows to reduce the costs and the time limits. These codes brings to operators elements to reinforce their projected dosimetry. In the cases of accidental overexposure, the numerical dosimetry comes in complement of clinical and biological investigations to give an estimation as precise as possible of the received dose. For particular situations where it does not exist an adapted instrumentation, the numerical dosimetry can substitute to conventional techniques used by regulatory dosimetry (project for aviation personnel). (N.C.)

  7. Neutron Dosimetry and Irradiation of Solids; Dosimetrie des neutrons et irradiation des solides

    Energy Technology Data Exchange (ETDEWEB)

    Perriot, G; Schmitt, A P [Commissariat a l' Energie Atomique. Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1962-07-01

    Results of work at C.E.A. from 1958 to 1960 are reviewed. The possibilities offered by classical dosimetry methods are discussed. The tests which led to the utilization, for fast neutron dosimetry, of resistivity variations induced in solid W by such neutrons are described. Experimental W irradiation results led to a definition of neutron efficiency which describes the relations between neutron energy and their effects on materials. Possibilities offered by detectors which make use of radiation damage and are sensitive to neutrons at keV energies were explored. In other work, the principal French reactors were classified according to their ability to produce damage in materials such as W. (authors) [French] Dans ce rapport on a presente les resultats essentiels de travaux qui ont ete effectues de 1958 a 1980 par des chercheurs du CEA issus de differents services. En meme temps qu'une revue des possibilites offertes a l'epoque par les methodes classiques de dosimetrie (utilisation des detecteurs par activation), on a decrit les essais qui devaient permettre d'utiliser, a la dosimetrie les neutrons rapides, les variations de resistivite qu'ils creent dans un corps solide (tungstene). L'irradiation du tungstene a montre l'importance qu'il y avait a definir 'l'efficacite' des neutrons, c'est-a-dire leur aptitude plus ou moins grande, selon leur energie, a creer des defauts dans les materiaux. L'efficacite d'un emplacement d'irradiation se trouvant liee au spectre neutronique, on a vu les difficultes qu'il y avait a utiliser les detecteurs par activation des qu'on n'avait plus affaire a un spectre en 1/E ou de fission et on a pu entrevoir les possibilites offertes par les detecteurs utilisant la creation des defauts qui repondent a tous les neutrons d'energies, superieures a quelques keV. Enfin, on a classe les principaux types de Piles Francaises selon leur aptitude a creer plus ou moins rapidement des dommages dans des materiaux comme le tungstene. (auteur)

  8. New developments in radiochromic film dosimetry

    International Nuclear Information System (INIS)

    Soares, C. G.

    2006-01-01

    NIST has been a pioneer in the use of radiochromic film for medical dosimetry applications. Beginning in 1988 with experiments with 90 Sr/Y ophthalmic applicators, this work has continued into the present. A review of the latest applications is presented, which include high activity low-energy photon source dosimetry and ultra-high resolution film densitometry for dose enhancement near stents and microbeam radiation therapy dosimetry. An exciting recent development is the availability of a new radiochromic emulsion which has been developed for IMRT dosimetry. This emulsion is an order of magnitude more sensitive than was previously available. Measurements of the sensitivity and uniformity of samples of this new film are reported, using a spectrophotometer and two scanning laser densitometers. A unique feature of the new emulsion is that the peak of the absorbance spectrum falls at the wavelength of the HeNe lasers used in the densitometer, maximising sensitivity. When read at a wavelength of 633 nm, sensitivities on the order of 900 mAU Gy -1 were determined for this new film type, compared with about 40 mAU Gy -1 for type HS film, 20 mAU Gy -1 for type MD-55-2 film, and 3 mAU Gy -1 for type HD-810. Film uniformities were found to be good, on the order of 6% peak to peak. However, there is a strong polarisation effect in the samples examined, requiring care in film orientation during readout. (authors)

  9. Development of A-bomb survivor dosimetry

    International Nuclear Information System (INIS)

    Kerr, G.D.

    1995-01-01

    An all important datum in risk assessment is the radiation dose to individual survivors of the bombings in Hiroshima and Nagasaki. The first set of dose estimates for survivors was based on a dosimetry system developed in 1957 by the Oak Ridge National Laboratory (ORNL). These Tentative 1957 Doses (T57D) were later replaced by a more extensive and refined set of Tentative 1965 Doses (T65D). The T65D system of dose estimation for survivors was also developed at ORNL and served as a basis for risk assessment throughout the 1970s. In the late 1970s, it was suggested that there were serious inadequacies with the T65D system, and these inadequacies were the topic of discussion at two symposia held in 1981. In early 1983, joint US- Japan research programs were established to conduct a thorough review of all aspects of the radiation dosimetry for the Hiroshima and Nagasaki A-bomb survivors. A number of important contributions to this review were made by ORNL staff members. The review was completed in 1986 and a new Dosimetry System 1986 (DS86) was adopted for use. This paper discusses the development of the various systems of A-bomb survivor dosimetry, and the status of the current DS86 system as it is being applied in the medical follow-up studies of the A-bomb survivors and their offspring

  10. Development of A-bomb survivor dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, G.D.

    1995-12-31

    An all important datum in risk assessment is the radiation dose to individual survivors of the bombings in Hiroshima and Nagasaki. The first set of dose estimates for survivors was based on a dosimetry system developed in 1957 by the Oak Ridge National Laboratory (ORNL). These Tentative 1957 Doses (T57D) were later replaced by a more extensive and refined set of Tentative 1965 Doses (T65D). The T65D system of dose estimation for survivors was also developed at ORNL and served as a basis for risk assessment throughout the 1970s. In the late 1970s, it was suggested that there were serious inadequacies with the T65D system, and these inadequacies were the topic of discussion at two symposia held in 1981. In early 1983, joint US- Japan research programs were established to conduct a thorough review of all aspects of the radiation dosimetry for the Hiroshima and Nagasaki A-bomb survivors. A number of important contributions to this review were made by ORNL staff members. The review was completed in 1986 and a new Dosimetry System 1986 (DS86) was adopted for use. This paper discusses the development of the various systems of A-bomb survivor dosimetry, and the status of the current DS86 system as it is being applied in the medical follow-up studies of the A-bomb survivors and their offspring.

  11. Integral effect test and code analysis on the cooling performance of the PAFS (passive auxiliary feedwater system) during an FLB (feedwater line break) accident

    International Nuclear Information System (INIS)

    Bae, Byoung-Uhn; Kim, Seok; Park, Yu-Sun; Kang, Kyoung-Ho

    2014-01-01

    Highlights: • This study focuses on the experimental validation of the operational performance of the PAFS (passive auxiliary feedwater system). • A transient simulation of the FLB (feedwater line break) in the integral effect test facility, ATLAS-PAFS, was performed to investigate thermal hydraulic behavior during the PAFS actuation. • The test result confirmed that the APR+ has the capability of coping with the FLB scenario by adopting the PAFS and proper set-points for its operation. • The experimental result was utilized to evaluate the prediction capability of a thermal hydraulic system analysis code, MARS-KS. - Abstract: APR+ (Advanced Power Reactor Plus), which is a GEN-III+ nuclear power plant developed in Korea, adopts PAFS (passive auxiliary feedwater system) as an advanced safety feature. The PAFS can completely replace an active auxiliary feedwater system by cooling down the secondary side of steam generators with a natural convection mechanism. This study focuses on experimental and analytical investigation for cooling and operational performance of the PAFS during an FLB (feedwater line break) transient with an integral effect test facility, ATLAS-PAFS. To realistically simulate the FLB accident of the APR+, the three-level scaling methodology was taken into account to design the test facility and determine the test condition. From the test result, the PAFS was actuated to successfully cool down the decay heat of the reactor core by the condensation heat transfer at the PCHX (passive condensation heat exchanger), and thus it could be confirmed that the APR+ has the capability of coping with a FLB scenario by adopting the PAFS and proper set-points for its operation. This integral effect test data were used to evaluate the prediction capability of a thermal hydraulic system analysis code, MARS-KS. The code analysis result proved that it could reasonably predict the FLB transient including the actuation of the PAFS and the natural convection

  12. Neutron dosimetry: problems, solutions, prospects and the role of trace detectors

    International Nuclear Information System (INIS)

    Fernandez, F.

    2009-10-01

    It is present in schematic way, the origin of the neutrons; their interaction with matter, until its application in the field of dosimetry. It describes some measuring instruments based on thermoluminescence dosimetry, some activation detectors and trace detectors. Finally, it summarizes the work in neutron dosimetry have been carried out at the Autonomous University of Barcelona. (Author)

  13. Radiation chemical dosimetry by means of nitrate-nitrite

    International Nuclear Information System (INIS)

    Tormo Ferrero, M. J.

    1977-01-01

    The different chemical systems used in dosimetry and the selection criteria for them are described. The general topics in dosimetry with alkali nitrates as well as the phenomena occurring in their radiolysis are also treated. The possibility of application in dosimetric areas useful in radiosterilization and industrial processes is studied too. (Author) 22 refs

  14. In vivo dosimetry with silicon diodes in total body irradiation

    International Nuclear Information System (INIS)

    Oliveira, F.F.; Amaral, L.L.; Costa, A.M.; Netto, T.G.

    2014-01-01

    The aim of this work is the characterization and application of silicon diode detectors for in vivo dosimetry in total body irradiation (TBI) treatments. It was evaluated the diode response with temperature, dose rate, gantry angulations and field size. A maximum response variation of 2.2% was obtained for temperature dependence. The response variation for dose rate and angular was within 1.2%. For field size dependence, the detector response increased with field until reach a saturation region, where no more primary radiation beam contributes for dose. The calibration was performed in a TBI setup. Different lateral thicknesses from one patient were simulated and then the calibration factors were determined by means of maximum depth dose readings. Subsequent to calibration, in vivo dosimetry measurements were performed. The response difference between diode readings and the prescribed dose for all treatments was below 4%. This difference is in agreement as recommended by the International Commission on Radiation Units and Measurements (ICRU), which is ±5%. The present work to test the applicability of a silicon diode dosimetry system for performing in vivo dose measurements in TBI techniques presented good results. These measurements demonstrated the value of diode dosimetry as a treatment verification method and its applicability as a part of a quality assurance program in TBI treatments. - Highlights: ► Characterization of a silicon diode dosimetry system. ► Application of the diodes for in vivo dosimetry in total body irradiation treatments. ► Implementation of in vivo dosimetry as a part of a quality assurance program in radiotherapy

  15. Worldwide QA networks for radiotherapy dosimetry

    International Nuclear Information System (INIS)

    Izewska, J.; Svensson, H.; Ibbott, G.

    2002-01-01

    A number of national or international organizations have developed various types and levels of external audits for radiotherapy dosimetry. There are three major programmes who make available external audits, based on mailed TLD (thermoluminescent dosimetry), to local radiotherapy centres on a regular basis. These are the IAEA/WHO TLD postal dose audit service operating worldwide, the European Society for Therapeutic Radiology and Oncology (ESTRO) system, EQUAL, in European Union (EU) and the Radiological Physics Center (RPC) in North America. The IAEA, in collaboration with WHO, was the first organization to initiate TLD audits on an international scale in 1969, using mailed system, and has a well-established programme for providing dose verification in reference conditions. Over 32 years, the IAEA/WHO TLD audit service has checked the calibration of more than 4300 radiotherapy beams in about 1200 hospitals world-wide. Only 74% of those hospitals who receive TLDs for the first time have results with deviation between measured and stated dose within acceptance limits of ±5%, while approximately 88% of the users that have benefited from a previous TLD audit are successful. EQUAL, an audit programme set up in 1998 by ESTRO, involves the verification of output for high energy photon and electron beams, and the audit of beam parameters in non-reference conditions. More than 300 beams are checked each year, mainly in the countries of EU, covering approximately 500 hospitals. The results show that although 98% of the beam calibrations are within the tolerance level of ±5%, a second check was required in 10% of the participating centres, because a deviation larger than ±5% was observed in at least one of the beam parameters in non-reference conditions. EQUAL has been linked to another European network (EC network) which tested the audit methodology prior to its application. The RPC has been funded continuously since 1968 to monitor radiation therapy dose delivery at

  16. Quasi 3D dosimetry (EPID, conventional 2D/3D detector matrices)

    International Nuclear Information System (INIS)

    Bäck, A

    2015-01-01

    Patient specific pretreatment measurement for IMRT and VMAT QA should preferably give information with a high resolution in 3D. The ability to distinguish complex treatment plans, i.e. treatment plans with a difference between measured and calculated dose distributions that exceeds a specified tolerance, puts high demands on the dosimetry system used for the pretreatment measurements and the results of the measurement evaluation needs a clinical interpretation. There are a number of commercial dosimetry systems designed for pretreatment IMRT QA measurements. 2D arrays such as MapCHECK ® (Sun Nuclear), MatriXX Evolution (IBA Dosimetry) and OCTAVIOUS ® 1500 (PTW), 3D phantoms such as OCTAVIUS ® 4D (PTW), ArcCHECK ® (Sun Nuclear) and Delta 4 (ScandiDos) and software for EPID dosimetry and 3D reconstruction of the dose in the patient geometry such as EPIDose TM (Sun Nuclear) and Dosimetry Check TM (Math Resolutions) are available. None of those dosimetry systems can measure the 3D dose distribution with a high resolution (full 3D dose distribution). Those systems can be called quasi 3D dosimetry systems. To be able to estimate the delivered dose in full 3D the user is dependent on a calculation algorithm in the software of the dosimetry system. All the vendors of the dosimetry systems mentioned above provide calculation algorithms to reconstruct a full 3D dose in the patient geometry. This enables analyzes of the difference between measured and calculated dose distributions in DVHs of the structures of clinical interest which facilitates the clinical interpretation and is a promising tool to be used for pretreatment IMRT QA measurements. However, independent validation studies on the accuracy of those algorithms are scarce. Pretreatment IMRT QA using the quasi 3D dosimetry systems mentioned above rely on both measurement uncertainty and accuracy of calculation algorithms. In this article, these quasi 3D dosimetry systems and their use in patient specific

  17. Monolithic microwave integrated circuit with integral array antenna

    International Nuclear Information System (INIS)

    Stockton, R.J.; Munson, R.E.

    1984-01-01

    A monolithic microwave integrated circuit including an integral array antenna. The system includes radiating elements, feed network, phasing network, active and/or passive semiconductor devices, digital logic interface circuits and a microcomputer controller simultaneously incorporated on a single substrate by means of a controlled fabrication process sequence

  18. Accumulation of brevetoxins by passive sampling devices | Shea ...

    African Journals Online (AJOL)

    We report on initial investigations into the use of polymer-based passive sampling devices for the chronic time-integrated measure of brevetoxins in natural waters. Polyethylene membranes readily accumulated brevetoxins, but reached steady state within a few days, likely owing to surface saturation on the polyethylene ...

  19. A Simple Fully Passive Safety Option for SMART SBLOCA

    International Nuclear Information System (INIS)

    Lee, Won Jae

    2012-01-01

    SMART reactor, an integral pressurized water reactor (iPWR), is developed by KAERI and now under standard design licensing review. Integral reactor design of the SMART has small diameter penetrations below 2 inches at upper parts of reactor pressure vessel (RPV) and the core is located at very lower part. Amount of reactor coolant inventory is around 0.55tons/MWth during normal operations, which is seven times more than that of conventional PWRs. Such intrinsic safety features of the SMART can provide prolonged core cooling during a small-break loss-of-coolant accident (SBLOCA). As an engineered safety feature for SBLOCA, electrically two-train and mechanically four-train active safety injection (SI) systems are provided to refill the RPV, whose safety been proven through safety analysis and experiments. In addition, four-train passive residual heat removal systems (PRHRSs) are provided to remove core decay heat by natural circulation in the secondary side of steam generators during transient and accident conditions. After Fukushima disaster, a passive safety of nuclear power plants has become more emphasized than conventional active safety, even though there are still debates whether it can really insure the realistic safety. Passive safety is defined such that the core safety is ensured for 72 hours after accidents without any active safety systems and operator actions. In light of this, a simple fully passive safety option for SBLOCA is proposed: low-pressure safety injection tanks (SITs) and heat pipes submerged in the PRHRS emergency coolant tanks (ECTs). Post-LOCA long-term cooling after 72 hours is provided by sump recirculation using shutdown cooling system. Realistic analysis method using MARS3.1 is used to derive fully passive safety option, and then to screen design and operating parameters and to demonstrate the safety performance of SITs. SI line break is selected as a reference SBLOCA scenario

  20. Dosimetry intercomparison of four proton therapy institutions in Germany employing spot scanning

    Energy Technology Data Exchange (ETDEWEB)

    Baeumer, Christian; Koska, Benjamin [Westdeutsches Protonentherapiezentrum, Essen (Germany); Ackermann, Benjamin; Latzel, Harald [Heidelberger Ionenstrahl-Therapiezentrum, Heidelberg (Germany); Heidelberg Institute for Radiation Oncology (Germany); Hillbrand, Martin; Kaiser, Franz-Joachim [Rinecker Proton Therapy Center, Muenchen (Germany); Luehr, Armin [German Cancer Consortium (DKTK), Heidelberg (Germany); Technische Univ. Dresden (Germany). OncoRay - National Center for Radiation Research in Oncology; German Cancer Research Center (DKFZ), Heidelberg (Germany); Menkel, Stefan [Technische Univ. Dresden (Germany). Dept. of Radiation Oncology; Timmermann, Beate [Westdeutsches Protonentherapiezentrum, Essen (Germany); German Cancer Consortium (DKTK), Heidelberg (Germany); Essen Univ. Hospital (Germany). West German Cancer Center (WTZ)

    2017-08-01

    To verify the consistency of dose and range measurement in an interinstitution comparison among proton therapy institutions in Germany which use the pencil-beam scanning technique. Following a peer-to-peer approach absorbed dose and range have been intercompared in several missions at two hosting centers with two or three visiting physics teams of participating institutions using their own dosimetry equipment. A meta-analysis has been performed integrating the results of the individual missions. Dose has been determined with ionization chambers according to the dosimetry protocol IAEA TRS-398. For determination of the depth of the distal 80% dose the teams used either a scanning water phantom, a variable water column or a multi-layer ionization chamber. The systematic deviation between measured doses of the participating institutions is less than 1%. Ranges differ systematically less than 0.4 mm. The match of measured dose and range is better than expected from the respective uncertainties. As all physics teams agree on the assessment of absorbed dose and range, an important prerequisite for a start of joint clinical studies is fulfilled.