Parton fragmentation and string dynamics
International Nuclear Information System (INIS)
Andersson, B.; Gustafson, G.; Ingelman, G.; Sjoestrand, T.
1983-01-01
While much has been learned recently about quark and gluon interactions in the framework of perturbative Quantum Chromodynamics, the relation between calculated parton properties and observed hadron densities involves models where dynamics and jet empirical rules have to be combined. The purpose of this article is to describe a presently successful approach which is based on a cascade jet model using String dynamics. It can readily lead to Monte Carlo jet programmes of great use when analyzing data. Production processes in an iterative cascade approach, with tunneling in a constant force field, are reviewed. Expected differences between quark and gluon jets are discussed. Low transverse momentum phenomena are also reviewed with emphasis on hyperon polarization. In so far as this approach uses a fragmentation scheme based on String dynamics, it was deemed appropriate to also include under the same cover a special report on the Classical theory of relativistic Strings, seen as the classical limit of the Dual Resonance model. The Equations of motion and interaction among strings are presented. (orig.)
Remarks on Remnants by Fermions’ Tunnelling from Black Strings
Directory of Open Access Journals (Sweden)
Deyou Chen
2014-01-01
Full Text Available Hawking’s calculation is unable to predict the final stage of the black hole evaporation. When effects of quantum gravity are taken into account, there is a minimal observable length. In this paper, we investigate fermions’ tunnelling from the charged and rotating black strings. With the influence of the generalized uncertainty principle, the Hawking temperatures are not only determined by the rings, but also affected by the quantum numbers of the emitted fermions. Quantum gravity corrections slow down the increases of the temperatures, which naturally leads to remnants left in the evaporation.
International Nuclear Information System (INIS)
Lugovoj, V.V.
1998-01-01
At proton-(anti) proton scattering in the frame of two-string Dual Parton Model the semihard parton-parton interactions can lead to the valence (anti) (di) quark excitations which lead to the production of up to four fast hadron leaders, and the process of soft colour interaction between constituents leads to formation of two primary strings, which decay into secondary hadrons according to a new cascade model of string breaking, which corresponds to the fundamental interaction of the theory of the open string. Therefore the recent results of the theory of QCD open string (about the small deviations of the string stretch direction near the longitudinal direction) are used in the algorithm of string breaking. For the fitted values of the free parameters in the process of decay of mother string into two daughter strings the energy (momentum) distributions for the first and second daughter strings are similar to momentum distributions for valence quark and antiquark in meson. This Monte Carlo model with 9 free parameters agrees well with the multiplicity, pseudorapidity, transverse momentum (up to p T =4GeV) distributions and correlations between the average transverse momentum and multiplicity of secondary particles produced by ISR, SS, Tevatron experiments (√s=27 to 1800 GeV). There is quantitative (and qualitative) explanation for correlations between the average transverse momentum and multiplicity for different types of secondary particles (antiprotons, kaons, pions) at √s =1800 GeV. A cascade model of string breaking is a new Monte Carlo model for hadronization which agrees well with the experimental multiplicity, rapidity, transverse momentum distributions of secondary particles produced by e + e - annihilation at E c.m. =3GeV. (author)
Jet Hadronization via Recombination of Parton Showers in Vacuum and in Medium
Energy Technology Data Exchange (ETDEWEB)
Fries, Rainer J.; Han, Kyongchol; Ko, Che Ming
2016-12-15
We introduce a hadronization algorithm for jet parton showers based on a hybrid approach involving recombination of quarks and fragmentation of strings. The algorithm can be applied to parton showers from a shower Monte Carlo generator at the end of their perturbative evolution. The algorithm forces gluon decays and then evaluates the recombination probabilities for quark-antiquark pairs into mesons and (anti)quark triplets into (anti)baryons. We employ a Wigner phase space formulation based on the assumption of harmonic oscillator wave functions for stable hadrons and resonances. Partons too isolated in phase space to find recombination partners are connected by QCD strings to other quarks. Fragmentation of those remnant strings and the decay of all hadron resonances complete the hadronization process. We find that our model applied to parton showers from the PYTHIA Monte Carlo event generator leads to results very similar to pure Lund string fragmentation. We suggest that our algorithm can be readily generalized to jets embedded in quark-gluon plasma by adding sampled thermal partons from the phase transition hypersurface. The recombination of thermal partons and shower partons leads to an enhancement of pions and protons at intermediate momentum at both RHIC and LHC.
International Nuclear Information System (INIS)
Cohen-Tannoudji, G.
1990-01-01
This paper is devoted to a review of the connections between quantumchromodynamics (QCD) and string theories. One reviews the phenomenological models leading to string pictures in non perturbative QCD and the string effects, related to soft gluon coherence, which arise in perturbative QCD. One tries to build a string theory which goes to QCD at the zero slope limit. A specific model, based on superstring theories is shown to agree with QCD four point amplitudes at the Born approximation and with one loop corrections. One shows how this approach can provide a theoretical framework to account for the phenomenological property of parton-hadron duality
International Nuclear Information System (INIS)
Cohen-Tannoudji, G.
1989-01-01
This series of lectures is devoted to review ot he connections between QCD and string theories. One reviews the phenomenological models leading to string pictures in non perturbative QCD and the string effects, related to soft gluon coherence, which arise in perturbative QCD. One tries to build a string theory which goes to QCD at the zero slope limit. A specific model, based on superstring theories is shown to agree with QCD four point amplitudes at the Born approximation and with one loop corrections. One shows how this approach can provide a theoretical framework to account for the phenomenological property of parton-hadron duality.(author)
Energy Technology Data Exchange (ETDEWEB)
Ebata, T [Tohoku Univ., Sendai (Japan). Coll. of General Education
1976-06-01
The geometrical distribution inferred from the inelastic cross section is assumed to be proportional to the partial waves. The precocious scaling and the Q/sup 2/-dependence of various quantities are treated from the geometrical point of view. It is shown that the approximate conservation of the orbital angular momentum may be a very practical rule to understand the helicity structure of various hadronic and electromagnetic reactions. The rule can be applied to inclusive reactions as well. The model is also applied to large angle processes. Through the discussion, it is suggested that many peculiar properties of the quark-parton can be ascribed to the geometrical effects.
String Formation Beyond Leading Colour
Christiansen, Jesper R.
2015-08-03
We present a new model for the hadronisation of multi-parton systems, in which colour correlations beyond leading $N_C$ are allowed to influence the formation of confining potentials (strings). The multiplet structure of $SU(3)$ is combined with a minimisation of the string potential energy, to decide between which partons strings should form, allowing also for "baryonic" configurations (e.g., two colours can combine coherently to form an anticolour). In $e^+e^-$collisions, modifications to the leading-colour picture are small, suppressed by both colour and kinematics factors. But in $pp$ collisions, multi-parton interactions increase the number of possible subleading connections, counteracting their naive $1/N_C^2$ suppression. Moreover, those that reduce the overall string lengths are kinematically favoured. The model, which we have implemented in the PYTHIA 8 generator, is capable of reaching agreement not only with the important $\\left(n_\\mathrm{charged})$ distribution but also with measured rates (and ra...
DEFF Research Database (Denmark)
Varbo, Anette; Nordestgaard, Børge G.
2017-01-01
Purpose of review: To review recent advances in the field of remnant lipoproteins and remnant cholesterol with a focus on cardiovascular disease risk. Recent findings: In line with previous years' research, current observational, genetic, and mechanistic studies find remnant lipoproteins (defined...... of cardiovascular disease risk reduction through remnant lipoprotein lowering are under way....
Instability of colliding metastable strings
Energy Technology Data Exchange (ETDEWEB)
Hiramatsu, Takashi [Kyoto Univ. (Japan). Yukawa Inst. for Theoretical Physics; Eto, Minoru [Yamagata Univ. (Japan). Dept. of Physics; Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics; Ookouchi, Yutaka [Kyoto Univ. (Japan). Dept. of Physics; Kyoto Univ. (Japan). The Hakubi Center for Advanced Research
2013-04-15
We investigate the collision dynamics of two metastable strings which can be viewed as tube-like domain walls with winding numbers interpolating a false vacuum and a true vacuum. We find that depending on the relative angle and speed of two strings, instability of strings increases and the false vacuum is filled out by rapid expansion of the strings or of a remnant of the collision.
Instability of colliding metastable strings
International Nuclear Information System (INIS)
Hiramatsu, Takashi; Kobayashi, Tatsuo; Ookouchi, Yutaka; Kyoto Univ.
2013-04-01
We investigate the collision dynamics of two metastable strings which can be viewed as tube-like domain walls with winding numbers interpolating a false vacuum and a true vacuum. We find that depending on the relative angle and speed of two strings, instability of strings increases and the false vacuum is filled out by rapid expansion of the strings or of a remnant of the collision.
Bellm, Johannes; Richardson, Peter; Siódmok, Andrzej; Webster, Stephen
2016-01-01
We report on the possibility of reweighting parton-shower Monte Carlo predictions for scale variations in the parton-shower algorithm. The method is based on a generalization of the Sudakov veto algorithm. We demonstrate the feasibility of this approach using example physical distributions. Implementations are available for both the parton-shower modules in the Herwig 7 event generator.
Varbo, Anette; Nordestgaard, Børge G
2017-08-01
To review recent advances in the field of remnant lipoproteins and remnant cholesterol with a focus on cardiovascular disease risk. In line with previous years' research, current observational, genetic, and mechanistic studies find remnant lipoproteins (defined in different ways) to be involved in atherosclerosis development and cardiovascular disease risk. High concentrations of remnant cholesterol could explain some of the residual risk of cardiovascular disease seen after LDL cholesterol lowering. This will be increasingly important as populations worldwide become more obese and more have diabetes, both of which elevate remnant cholesterol concentrations. Many smaller scale studies and post hoc analyses show that remnant cholesterol can be lowered by different types of drugs; however, results from large scale studies with the primary aim of reducing cardiovascular disease risk through lowering of remnant cholesterol in individuals with elevated concentrations are still missing, although some are under way. Remnant cholesterol is a risk factor for cardiovascular disease, and can be lowered by different types of drugs; however, large scale studies of cardiovascular disease risk reduction through remnant lipoprotein lowering are under way.
Dynamical equilibration in strongly-interacting parton-hadron matter
Directory of Open Access Journals (Sweden)
Gorenstein M.
2011-04-01
Full Text Available We study the kinetic and chemical equilibration in 'infinite' parton-hadron matter within the Parton-Hadron-String Dynamics transport approach, which is based on a dynamical quasiparticle model for partons matched to reproduce lattice-QCD results – including the partonic equation of state – in thermodynamic equilibrium. The 'infinite' matter is simulated within a cubic box with periodic boundary conditions initialized at different baryon density (or chemical potential and energy density. The transition from initially pure partonic matter to hadronic degrees of freedom (or vice versa occurs dynamically by interactions. Different thermody-namical distributions of the strongly-interacting quark-gluon plasma (sQGP are addressed and discussed.
Structure functions and parton distributions
International Nuclear Information System (INIS)
Olness, F.; Tung, Wu-Ki
1991-04-01
Activities of the structure functions and parton distributions group is summarized. The impact of scheme-dependence of parton distributions (especially sea-quarks and gluons) on the quantitative formulation of the QCD parton model is highlighted. Recent progress on the global analysis of parton distributions is summarized. Issues on the proper use of the next-to-leading parton distributions are stressed
String fragmentation; La fragmentation des cordes
Energy Technology Data Exchange (ETDEWEB)
Drescher, H.J.; Werner, K. [Laboratoire de Physique Subatomique et des Technologies Associees - SUBATECH, Centre National de la Recherche Scientifique, 44 - Nantes (France)
1997-10-01
The classical string model is used in VENUS as a fragmentation model. For the soft domain simple 2-parton strings were sufficient, whereas for higher energies up to LHC, the perturbative regime of the QCD gives additional soft gluons, which are mapped on the string as so called kinks, energy singularities between the leading partons. The kinky string model is chosen to handle fragmentation of these strings by application of the Lorentz invariant area law. The `kinky strings` model, corresponding to the perturbative gluons coming from pQCD, takes into consideration this effect by treating the partons and gluons on the same footing. The decay law is always the Artru-Menessier area law which is the most realistic since it is invariant to the Lorentz and gauge transformations. For low mass strings a manipulation of the rupture point is necessary if the string corresponds already to an elementary particle determined by the mass and the flavor content. By means of the fragmentation model it will be possible to simulate the data from future experiments at LHC and RHIC 3 refs.
Parton showers in a phenomenological context
International Nuclear Information System (INIS)
Bengtsson, M.
1987-08-01
Models for generating multiple parton final states, based on the Altarelli-Parisi equations, are presented. Algorithms are described for applications in e + e - physics, leptoproduction and hadron physics. The two latter cases are somewhat special since composite objects are present in the initial state. Constraints from structure function evolution are properly taken into account. The scheme in leptoproduction is made selfconsistent in the sense that parton shower evolution does not affect the measurable structure functions. The scheme developed in e + e - allows for a number of different features which are not given directly in this approach, i.e. matching onto matrix elements, coherence effects, argument in α s , implementation of kinematics etc. These options are systematically studied, using Lund string fragmentation for hadronization, and compared with experimental data. A note on α s determinations in hadron-hadron collisions is also included. (author)
Are Parton Distributions Positive?
Forte, Stefano; Ridolfi, Giovanni; Altarelli, Guido; Forte, Stefano; Ridolfi, Giovanni
1999-01-01
We show that the naive positivity conditions on polarized parton distributions which follow from their probabilistic interpretation in the naive parton model are reproduced in perturbative QCD at the leading log level if the quark and gluon distribution are defined in terms of physical processes. We show how these conditions are modified at the next-to-leading level, and discuss their phenomenological implications, in particular in view of the determination of the polarized gluon distribution
Are parton distributions positive?
International Nuclear Information System (INIS)
Forte, Stefano; Altarelli, Guido; Ridolfi, Giovanni
1999-01-01
We show that the naive positivity conditions on polarized parton distributions which follow from their probabilistic interpretation in the naive parton model are reproduced in perturbative QCD at the leading log level if the quark and gluon distribution are defined in terms of physical processes. We show how these conditions are modified at the next-to-leading level, and discuss their phenomenological implications, in particular in view of the determination of the polarized gluon distribution
Parton Distributions Working Group
International Nuclear Information System (INIS)
Barbaro, L. de; Keller, S. A.; Kuhlmann, S.; Schellman, H.; Tung, W.-K.
2000-01-01
This report summarizes the activities of the Parton Distributions Working Group of the QCD and Weak Boson Physics workshop held in preparation for Run II at the Fermilab Tevatron. The main focus of this working group was to investigate the different issues associated with the development of quantitative tools to estimate parton distribution functions uncertainties. In the conclusion, the authors introduce a Manifesto that describes an optimal method for reporting data
String formation beyond leading colour
Energy Technology Data Exchange (ETDEWEB)
Christiansen, Jesper R. [Department of Astronomy and Theoretical Physics, Lund University,Sölvegatan 14, Lund (Sweden); Theoretical Physics, CERN,CH-1211, Geneva 23 (Switzerland); Skands, Peter Z. [Theoretical Physics, CERN,CH-1211, Geneva 23 (Switzerland); School of Physics and Astronomy, Monash University,VIC-3800 (Australia)
2015-08-03
We present a new model for the hadronisation of multi-parton systems, in which colour correlations beyond leading N{sub C} are allowed to influence the formation of confining potentials (strings). The multiplet structure of SU(3) is combined with a minimisation of the string potential energy, to decide between which partons strings should form, allowing also for “baryonic” configurations (e.g., two colours can combine coherently to form an anticolour). In e{sup +}e{sup −}collisions, modifications to the leading-colour picture are small, suppressed by both colour and kinematics factors. But in pp collisions, multi-parton interactions increase the number of possible subleading connections, counteracting their naive 1/N{sub C}{sup 2} suppression. Moreover, those that reduce the overall string lengths are kinematically favoured. The model, which we have implemented in the PYTHIA 8 generator, is capable of reaching agreement not only with the important 〈p{sub ⊥}〉(n{sub charged}) distribution but also with measured rates (and ratios) of kaons and hyperons, in both ee and pp collisions. Nonetheless, the shape of their p{sub ⊥} spectra remains challenging to explain.
Parton distribution functions in the context of parton showers
International Nuclear Information System (INIS)
Nagy, Zoltán; Soper, Davison E.
2014-01-01
When the initial state evolution of a parton shower is organized according to the standard “backward evolution” prescription, ratios of parton distribution functions appear in the splitting probabilities. The shower thus organized evolves from a hard scale to a soft cutoff scale. At the end of the shower, one expects that only the parton distributions at the soft scale should affect the results. The other effects of the parton distributions should have cancelled. This means that the kernels for parton evolution should be related to the shower splitting functions. If the initial state partons can have non-zero masses, this requires that the evolution kernels cannot be the usual (MS)-bar kernels. We work out what the parton evolution kernels should be to match the shower evolution contained in the parton shower event generator DEDUCTOR, in which the b and c quarks have non-zero masses.
International Nuclear Information System (INIS)
Close, F.E.
1976-01-01
The studies of inelastic electron scattering at SLAC and of neutrino scattering at CERN have been widely interpreted as giving support to the idea that the nucleon is built from elementary constituents, called partons, and that these partons have the same quantum numbers as the quarks that are familiar in spectroscopy. In particular, a very simple regularity in the data, known as scale invariance or just 'scaling' was seen at least at moderate energies (2 2 > approximately 1 GeV) which is natural in the parton model. The data on e + e - annihilation also appear to be consistent with scaling when Esub(cm) approximately 5 GeV. These lectures are concerned with the scaling phenomena. One may expect the new hadronic degree of freedom to generate scaling violations in inelastic electron and neutrino scattering. These are mentioned briefly in these lectures. (Auth.)
Multi parton interactions and multi parton distributions in QCD
International Nuclear Information System (INIS)
Diehl, M.
2012-01-01
After a brief recapitulation of the general interest of parton densities, we discuss multiple hard interactions and multi parton distributions. We report on recent theoretical progress in their QCD description, on outstanding conceptual problems and on possibilities to use multi parton distributions as a laboratory to test and improve our understanding of hadron structure. (author)
Multiplicities and parton dynamics
International Nuclear Information System (INIS)
Knuteson, R.O.
1987-01-01
The production of strongly interacting particles from the annihilation of electrons and positrons at high energies is studied, with emphasis on the multiplicity, or number, of particles produced. A probabilistic branching model based on the leading log approximation in QCD is formulated to predict the evolution of particle number with the energy of collision. Direct integration of a master equation for the probabilities allows a comparison to the experimentally observed particle distribution. The production of strongly interacting particles from proton-antiproton collisions is also considered. A model for the production of particles from parton-parton collisions is presented and the growth in multiplicity with energy demonstrated
Ordering variable for parton showers
Energy Technology Data Exchange (ETDEWEB)
Nagy, Zoltan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Soper, Davison E. [Oregon Univ., Eugene, OR (United States). Inst. of Theoretical Science
2014-01-15
The parton splittings in a parton shower are ordered according to an ordering variable, for example the transverse momentum of the daughter partons relative to the direction of the mother, the virtuality of the splitting, or the angle between the daughter partons. We analyze the choice of the ordering variable and conclude that one particular choice has the advantage of factoring softer splittings from harder splittings graph by graph in a physical gauge.
Ordering variable for parton showers
Energy Technology Data Exchange (ETDEWEB)
Nagy, Zoltán [DESY,Notkestrasse 85, 22607 Hamburg (Germany); Soper, Davison E. [Institute of Theoretical Science, University of Oregon,Eugene, OR 97403-5203 (United States)
2014-06-30
The parton splittings in a parton shower are ordered according to an ordering variable, for example the transverse momentum of the daughter partons relative to the direction of the mother, the virtuality of the splitting, or the angle between the daughter partons. We analyze the choice of the ordering variable and conclude that one particular choice has the advantage of factoring softer splittings from harder splittings graph by graph in a physical gauge.
Ordering variable for parton showers
International Nuclear Information System (INIS)
Nagy, Zoltan; Soper, Davison E.
2014-01-01
The parton splittings in a parton shower are ordered according to an ordering variable, for example the transverse momentum of the daughter partons relative to the direction of the mother, the virtuality of the splitting, or the angle between the daughter partons. We analyze the choice of the ordering variable and conclude that one particular choice has the advantage of factoring softer splittings from harder splittings graph by graph in a physical gauge.
Are partons confined tachyons?
International Nuclear Information System (INIS)
Noyes, H.P.
1996-03-01
The author notes that if hadrons are gravitationally stabilized ''black holes'', as discrete physics suggests, it is possible that partons, and in particular quarks, could be modeled as tachyons, i.e. particles having v 2 > c 2 , without conflict with the observational fact that neither quarks nor tachyons have appeared as ''free particles''. Some consequences of this model are explored
International Nuclear Information System (INIS)
Hwa, R.C.
1978-08-01
Low P/sub T/ meson production in hadronic collisions is described in the framework of the parton model. The recombination of quark and antiquark is suggested as the dominant mechanism in the large x region. Phenomenological evidences for the mechanism are given. The application to meson initiated reactions yields the quark distribution in mesons. 21 references
Thermalization through parton transport
International Nuclear Information System (INIS)
Zhang Bin
2010-01-01
A radiative transport model is used to study kinetic equilibration during the early stage of a relativistic heavy ion collision. The parton system is found to be able to overcome expansion and move toward thermalization via parton collisions. Scaling behaviors show up in both the pressure anisotropy and the energy density evolutions. In particular, the pressure anisotropy evolution shows an approximate α s scaling when radiative processes are included. It approaches an asymptotic time evolution on a time scale of 1 to 2 fm/c. The energy density evolution shows an asymptotic time evolution that decreases slower than the ideal hydro evolution. These observations indicate that partial thermalization can be achieved and viscosity is important for the evolution during the early longitudinal expansion stage of a relativistic heavy ion collision.
Are partons confined tachyons?
Energy Technology Data Exchange (ETDEWEB)
Noyes, H.P.
1996-03-01
The author notes that if hadrons are gravitationally stabilized ``black holes``, as discrete physics suggests, it is possible that partons, and in particular quarks, could be modeled as tachyons, i.e. particles having v{sup 2} > c{sup 2}, without conflict with the observational fact that neither quarks nor tachyons have appeared as ``free particles``. Some consequences of this model are explored.
International Nuclear Information System (INIS)
Paschos, E.A.
1976-08-01
The quark parton model describes the inclusive electro- and neutrino production data if a clear distinction is made between reactions which take place at high and at low energies. For the low energy region the classical view of six structure functions of the proton is still adequate. For the high energy region models can be constructed which are consistent with the experimental data. (BJ) [de
International Nuclear Information System (INIS)
Chan Hongmo.
1987-10-01
The paper traces the development of the String Theory, and was presented at Professor Sir Rudolf Peierls' 80sup(th) Birthday Symposium. The String theory is discussed with respect to the interaction of strings, the inclusion of both gauge theory and gravitation, inconsistencies in the theory, and the role of space-time. The physical principles underlying string theory are also outlined. (U.K.)
International Nuclear Information System (INIS)
Nagy, Zoltan; Soper, Davison E.
2017-05-01
We consider idealized parton shower event generators that treat parton spin and color exactly, leaving aside the choice of practical approximations for spin and color. We investigate how the structure of such a parton shower generator is related to the structure of QCD. We argue that a parton shower with splitting functions proportional to αs can be viewed not just as a model, but as the lowest order approximation to a shower that is defined at any perturbative order. To support this argument, we present a formulation for a parton shower at order α k s for any k. Since some of the input functions needed are specified by their properties but not calculated, this formulation does not provide a useful recipe for an order α k s parton shower algorithm. However, in this formulation we see how the operators that generate the shower are related to operators that specify the infrared singularities of QCD.
Double parton scattering. A tale of two partons
Energy Technology Data Exchange (ETDEWEB)
Kasemets, Tomas
2013-08-15
Double parton scattering in proton-proton collisions can give sizable contributions to final states in parts of phase space. We investigate the correlations between the partons participating in the two hard interactions of double parton scattering. With a detailed calculation of the differential cross section for the double Drell-Yan process we demonstrate how initial state correlations between the partons affect the rate and distribution of final state particles. We present our results with focus on correlations between the polarizations of the partons. In particular transversely polarized quarks lead to a dependence of the cross section on angles between final state particles of the two hard interactions, and thereby on the invariant mass of particle pairs. The size of the spin correlations, and therewith the degree to which the final state particles are correlated, depends on unknown double parton distributions. We derive positivity bounds on the double parton distributions that follow from their interpretation as probability densities, taking into account all possible spin correlations between two partons in an unpolarized proton. We show that the bounds are stable under homogeneous leading-order DGLAP evolution to higher scales. We make direct use of the positivity bounds in numerical investigations on the double DGLAP evolution for two linearly polarized gluons and for two transversely polarized quarks. We find that the linearly polarized gluons are likely to be negligible at high scales but that transversely polarized quarks can still play a significant role. We examine the dependence of the double parton distributions on the transverse distance between the two partons, and therewith between the two hard interactions. We further study the interplay between transverse and longitudinal variables of the distributions, as well as the impact of the differences in integration limits between the evolution equations for single and double parton distributions. (orig.)
International Nuclear Information System (INIS)
Popov, A.D.
1991-01-01
We introduce hyperbolic strings as closed bosonic strings with the target space R d-1,1 xT q+1,1 which has an additional time-like dimension in the internal space. The Fock spaces of the q-parametric family of standard bosonic, fermionic and heterotic strings with the target spaces of dimension n≤d+q are shown to be embedded into the Fock space of hyperbolic strings. The condition of the absence of anomaly fixes d and q for all three types of strings written in a bosonized form. (orig.)
Directory of Open Access Journals (Sweden)
Kulagin S. A.
2017-01-01
Full Text Available We review a microscopic model of the nuclear parton distribution functions, which accounts for a number of nuclear effects including Fermi motion and nuclear binding, nuclear meson-exchange currents, off-shell corrections to bound nucleon distributions and nuclear shadowing. We also discuss applications of this model to a number of processes including lepton-nucleus deep inelastic scattering, proton-nucleus Drell-Yan lepton pair production at Fermilab, as well as W± and Z0 boson production in proton-lead collisions at the LHC.
Parton distributions with QED corrections
Collaboration, The NNPDF; Ball, Richard D.; Bertone, Valerio; Carrazza, Stefano; Debbio, Luigi Del; Forte, Stefano; Guffanti, Alberto; Hartland, Nathan P.; Rojo, Juan
2013-01-01
We present a set of parton distribution functions (PDFs), based on the NNPDF2.3 set, which includes a photon PDF, and QED contributions to parton evolution. We describe the implementation of the combined QCD+QED evolution in the NNPDF framework. We then provide a first determination of the full set
Parton distribution in relativistic hadrons
International Nuclear Information System (INIS)
Kopeliovich, B.Z.; Lapidus, L.I.; Zamolodchikov, Al.B.
1979-01-01
The distribution in the slow-parton number in the relativistic hadron is considered as a function of its rapidity (y). Neglecting corrections due to the tarton chain recombination the equation is derived and its explicit solution is found. It describes this distribution depending on the initial distribution at y approximately 1. Comparison with the reggeon diagrams results in relations between the parton model and the regaeon field theory parameters. The interpretation of the cutting rules in the framework of the parton model is presented. The numerical estimation of the parton model parameters is performed. It is shown that the slow-parton density corresponding to accessible energies seems to be close to the saturated density. Therefore, the enhanced graphs contributions turn out to be of considerable importance
Clan properties in parton showers
International Nuclear Information System (INIS)
Ugoccioni, R.; Giovannini, A.; Lupia, S.
1994-01-01
By considering clans as genuine elementary sub-processes, i.e., intermediate parton sources in the Simplified Parton Shower model, a generalized version of this model is defined. It predicts analytically clan properties at parton level in agreement with the general trends observed experimentally at hadronic level and in Monte Carlo simulations both at partonic and hadronic level. In particular the model shows a linear rising in rapidity of the average number of clans at fixed energy of the initial parton and its subsequent bending for rapidity intervals at the border of phase space, and approximate energy independence of the average number of clans in fixed rapidity intervals. The energy independence becomes stricter by properly normalizing the average number of clans (orig.)
Clan properties in parton showers
Energy Technology Data Exchange (ETDEWEB)
Ugoccioni, R. (Dipt. di Fisica Teorica, Univ. di Torino (Italy) INFN (Italy)); Giovannini, A. (Dipt. di Fisica Teorica, Univ. di Torino (Italy) INFN (Italy)); Lupia, S. (Dipt. di Fisica Teorica, Univ. di Torino (Italy) INFN (Italy))
1994-11-01
By considering clans as genuine elementary sub-processes, i.e., intermediate parton sources in the Simplified Parton Shower model, a generalized version of this model is defined. It predicts analytically clan properties at parton level in agreement with the general trends observed experimentally at hadronic level and in Monte Carlo simulations both at partonic and hadronic level. In particular the model shows a linear rising in rapidity of the average number of clans at fixed energy of the initial parton and its subsequent bending for rapidity intervals at the border of phase space, and approximate energy independence of the average number of clans in fixed rapidity intervals. The energy independence becomes stricter by properly normalizing the average number of clans (orig.)
Rossing, Thomas D.; Hanson, Roger J.
In the next eight chapters, we consider some aspects of the science of bowed string instruments, old and new. In this chapter, we present a brief discussion of bowed strings, a subject that will be developed much more thoroughly in Chap. 16. Chapters 13-15 discuss the violin, the cello, and the double bass. Chapter 17 discusses viols and other historic string instruments, and Chap. 18 discusses the Hutchins-Schelleng violin octet.
Nucleon-generalized parton distributions in the light-front quark model
Indian Academy of Sciences (India)
2016-01-12
Jan 12, 2016 ... 1. Introduction. Generalized parton distributions (GPDs) are the important set of parameters that give us ... The AdS/CFT is the correspondence between the string theory on a higher-dimensional anti-de Sitter ... matching the soft-wall model of AdS/QCD and light-front QCD for EFFs of hadrons with arbitrary ...
String Resonances at Hadron Colliders
Anchordoqui, Luis A; Dai, De-Chang; Feng, Wan-Zhe; Goldberg, Haim; Huang, Xing; Lust, Dieter; Stojkovic, Dejan; Taylor, Tomasz R
2014-01-01
[Abridged] We consider extensions of the standard model based on open strings ending on D-branes. Assuming that the fundamental string mass scale M_s is in the TeV range and that the theory is weakly coupled, we discuss possible signals of string physics at the upcoming HL-LHC run (3000 fb^{-1}) with \\sqrt{s} = 14 TeV, and at potential future pp colliders, HE-LHC and VLHC, operating at \\sqrt{s} = 33 and 100 TeV, respectively. In such D-brane constructions, the dominant contributions to full-fledged string amplitudes for all the common QCD parton subprocesses leading to dijets and \\gamma + jet are completely independent of the details of compactification, and can be evaluated in a parameter-free manner. We make use of these amplitudes evaluated near the first (n=1) and second (n=2) resonant poles to determine the discovery potential for Regge excitations of the quark, the gluon, and the color singlet living on the QCD stack. We show that for string scales as large as 7.1 TeV (6.1 TeV), lowest massive Regge exc...
Jost, Jürgen
2007-01-01
This book presents a mathematical treatment of Bosonic string theory from the point of view of global geometry. As motivation, Jost presents the theory of point particles and Feynman path integrals. He provides detailed background material, including the geometry of Teichmüller space, the conformal and complex geometry of Riemann surfaces, and the subtleties of boundary regularity questions. The high point is the description of the partition function for Bosonic strings as a finite-dimensional integral over a moduli space of Riemann surfaces. Jost concludes with some topics related to open and closed strings and D-branes. Bosonic Strings is suitable for graduate students and researchers interested in the mathematics underlying string theory.
The partonic nature of instantons
International Nuclear Information System (INIS)
Collie, Benjamin; Tong, David
2009-01-01
In both Yang-Mills theories and sigma models, instantons are endowed with degrees of freedom associated to their scale size and orientation. It has long been conjectured that these degrees of freedom have a dual interpretation as the positions of partonic constituents of the instanton. These conjectures are usually framed in d = 3+1 and d = 1+1 dimensions respectively where the partons are supposed to be responsible for confinement and other strong coupling phenomena. We revisit this partonic interpretation of instantons in the context of d = 4+1 and d = 2+1 dimensions. Here the instantons are particle-like solitons and the theories are non-renormalizable. We present an explicit and calculable model in d = 2+1 dimensions where the single soliton in the CP N sigma-model can be shown to be a multi-particle state whose partons are identified with the ultra-violet degrees of freedom which render the theory well-defined at high energies. We introduce a number of methods which reveal the partons inside the soliton, including deforming the sigma model and a dual version of the Bogomolnyi equations. We conjecture that partons inside Yang-Mills instantons hold the key to understanding the ultra-violet completion of five-dimensional gauge theories.
Energy Technology Data Exchange (ETDEWEB)
Nagy, Zoltan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Soper, Davison E. [Oregon Univ., Eugene, OR (United States). Inst. of Theoretical Science
2017-05-15
We consider idealized parton shower event generators that treat parton spin and color exactly, leaving aside the choice of practical approximations for spin and color. We investigate how the structure of such a parton shower generator is related to the structure of QCD. We argue that a parton shower with splitting functions proportional to αs can be viewed not just as a model, but as the lowest order approximation to a shower that is defined at any perturbative order. To support this argument, we present a formulation for a parton shower at order α{sup k}{sub s} for any k. Since some of the input functions needed are specified by their properties but not calculated, this formulation does not provide a useful recipe for an order α{sup k}{sub s} parton shower algorithm. However, in this formulation we see how the operators that generate the shower are related to operators that specify the infrared singularities of QCD.
International Nuclear Information System (INIS)
Wang, F.; Chun, W.
1985-01-01
The use of basis states described as hadronic (or hadron-hadron) or hidden-colour (or colour-colour) for a system of quarks does not necessarily imply that connected exotic multiquark hadrons do exist. Antisymmetrization of quark wave functions tends to make these descriptions ill defined. It appears necessary to have stable collective structures called strings or bags to provide the physical connections required by quark confinement. The masses of multiquark hadrons can then be estimated by using semplified string, bag and NR potential models. The results turn out to be qualitatively similar in all these models. The stability problem for multiquark strings is briefly discussed
International Nuclear Information System (INIS)
Bennett, D.P.
1988-07-01
Cosmic strings are linear topological defects that are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation that are based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characteristic microwave background anistropy. It has recently been discovered by F. Bouchet and myself that details of cosmic string evolution are very different from the so-called ''standard model'' that has been assumed in most of the string induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain. 29 refs., 9 figs
International Nuclear Information System (INIS)
Chaves, Max
2006-01-01
The conception of the magnetic string is presented as an infinitely thin bundle of magnetic flux lines. The magnetic strings are surrounded by a film of current that rotates around them, and are a solution of Maxwell's equations. The magnetic potential contains a line singularity, and its stability can be established topologically. A few comments are added on the possibility that they may exist at a cosmological scale as relics of the Big Bang. (author) [es
International Nuclear Information System (INIS)
Thorn, C.B.
1988-01-01
The possibility of studying non-perturbative effects in string theory using a world sheet lattice is discussed. The light-cone lattice string model of Giles and Thorn is studied numerically to assess the accuracy of ''coarse lattice'' approximations. For free strings a 5 by 15 lattice seems sufficient to obtain better than 10% accuracy for the bosonic string tachyon mass squared. In addition a crude lattice model simulating string like interactions is studied to find out how easily a coarse lattice calculation can pick out effects such as bound states which would qualitatively alter the spectrum of the free theory. The role of the critical dimension in obtaining a finite continuum limit is discussed. Instead of the ''gaussian'' lattice model one could use one of the vertex models, whose continuum limit is the same as a gaussian model on a torus of any radius. Indeed, any critical 2 dimensional statistical system will have a stringy continuum limit in the absence of string interactions. 8 refs., 1 fig. , 9 tabs
Charge symmetry at the partonic level
Energy Technology Data Exchange (ETDEWEB)
Londergan, J. T.; Peng, J. C.; Thomas, A. W.
2010-07-01
This review article discusses the experimental and theoretical status of partonic charge symmetry. It is shown how the partonic content of various structure functions gets redefined when the assumption of charge symmetry is relaxed. We review various theoretical and phenomenological models for charge symmetry violation in parton distribution functions. We summarize the current experimental upper limits on charge symmetry violation in parton distributions. A series of experiments are presented, which might reveal partonic charge symmetry violation, or alternatively might lower the current upper limits on parton charge symmetry violation.
Hadron seagulls and parton jets
International Nuclear Information System (INIS)
Satz, H.; Zarmi, Y.
1976-01-01
For the lepton production of hadrons in the current fragmentation region it was recently shown that the two-level partonic picture leads to a broadening of the average transverse momentum of the observed secondaries. This ''seagull'' effect is well known for hadron-hadron interactions. In the note it is considered the possibility that parton arguments can explain it here as well and it is discussed what information on the constituent structure of hadrons can be obtained through an investigation of the seagull effect from such a point of view. It is shown that a non trivial seagull effect is a consequence of a simple two step production mechanism and the parton model predicts significant differences between baryon, meson and virtual-photon fragmentation seagull
New information on parton distributions
International Nuclear Information System (INIS)
Martin, A.D.; Stirling, W.J.; Roberts, R.G.
1992-04-01
New data on structure functions from deep-inelastic scattering provide new information on parton distributions, particularly in the 0.01 2 data from the New Muon Collaboration (NMC) and its implications for other processes, and the evidence for SU(2) symmetry breaking in the light quark sea. We show that although good fits can be obtained with or without this symmetry breaking, more physically reasonable parton distributions are obtained if we allow d-bar > u-bar at small x. With the inclusion of the latest deep-inelastic data we find α s (M Z ) = 0.111 -0.005 +0.004 . We also show how W, Z and Drell-Yan production at p-barp colliders can give information on parton distributions. (Author)
On positivity of parton distributions
International Nuclear Information System (INIS)
Altarelli, G.; Forte, S.; Ridolfi, G.
1998-01-01
We discuss the bounds on polarized parton distributions which follow from their definition in terms of cross section asymmetries. We spell out how the bounds obtained in the naive parton model can be derived within perturbative QCD at leading order when all quark and gluon distributions are defined in terms of suitable physical processes. We specify a convenient physical definition for the polarized and unpolarized gluon distributions in terms of Higgs production from gluon fusion. We show that these bounds are modified by subleading corrections, and we determine them up to NLO. We examine the ensuing phenomenological implications, in particular in view of the determination of the polarized gluon distribution. (orig.)
On positivity of parton distributions
Altarelli, Guido; Ridolfi, G; Altarelli, Guido; Forte, Stefano; Ridolfi, Giovanni
1998-01-01
We discuss the bounds on polarized parton distributions which follow from their definition in terms of cross section asymmetries. We spell out how the bounds obtained in the naive parton model can be derived within perturbative QCD at leading order when all quark and gluon distributions are defined in terms of suitable physical processes. We specify a convenient physical definition for the polarized and unpolarized gluon distributions in terms of Higgs production from gluon fusion. We show that these bounds are modified by subleading corrections, and we determine them up to NLO. We examine the ensuing phenomenological implications, in particular in view of the determination of the polarized gluon distribution.
Parton showers with quantum interference
Nagy, Zoltan
2007-01-01
We specify recursive equations that could be used to generate a lowest order parton shower for hard scattering in hadron-hadron collisions. The formalism is based on the factorization soft and collinear interactions from relatively harder interactions in QCD amplitudes. It incorporates quantum interference between different amplitudes in those cases in which the interference diagrams have leading soft or collinear singularities. It incorporates the color and spin information carried by partons emerging from a hard interaction. One motivation for this work is to have a method that can naturally cooperate with next-to-leading order calculations.
Parton showers with quantum interference
International Nuclear Information System (INIS)
Nagy, Zoltan; Soper, Davison E.
2007-01-01
We specify recursive equations that could be used to generate a lowest order parton shower for hard scattering in hadron-hadron collisions. The formalism is based on the factorization soft and collinear interactions from relatively harder interactions in QCD amplitudes. It incorporates quantum interference between different amplitudes in those cases in which the interference diagrams have leading soft or collinear singularities. It incorporates the color and spin information carried by partons emerging from a hard interaction. One motivation for this work is to have a method that can naturally cooperate with next-to-leading order calculations
Imaging partons in exclusive scattering processes
Energy Technology Data Exchange (ETDEWEB)
Diehl, Markus
2012-06-15
The spatial distribution of partons in the proton can be probed in suitable exclusive scattering processes. I report on recent performance estimates for parton imaging at a proposed Electron-Ion Collider.
International Nuclear Information System (INIS)
Engquist, J.; Sundell, P.; Tamassia, L.
2007-01-01
The group theoretical structure underlying physics in anti de Sitter (AdS) spacetime is intrinsically different with respect to the flat case, due to the presence of special ultra-short representations, named singletons, that do not admit a flat space limit. The purpose of this collaboration is to exploit this feature in the study of string and brane dynamics in AdS spacetime, in particular while trying to establish a connection between String Theory in AdS backgrounds (in the tensionless limit) and Higher-Spin Gauge Theory. (orig.)
Constraints on cosmic strings due to black holes formed from collapsed cosmic string loops
International Nuclear Information System (INIS)
Caldwell, R.R.; Gates, E.
1993-05-01
The cosmological features of primordial black holes formed from collapsed cosmic string loops are studied. Observational restrictions on a population of primordial black holes are used to restrict f, the fraction of cosmic string loops which collapse to form black holes, and μ, the cosmic string mass-per-unit-length. Using a realistic model of cosmic strings, we find the strongest restriction on the parameters f and μ is due to the energy density in 100MeV photons radiated by the black holes. We also find that inert black hole remnants cannot serve as the dark matter. If earlier, crude estimates of f are reliable, our results severely restrict μ, and therefore limit the viability of the cosmic string large-scale structure scenario
Summing threshold logs in a parton shower
International Nuclear Information System (INIS)
Nagy, Zoltan; Soper, Davison E.
2016-05-01
When parton distributions are falling steeply as the momentum fractions of the partons increases, there are effects that occur at each order in α s that combine to affect hard scattering cross sections and need to be summed. We show how to accomplish this in a leading approximation in the context of a parton shower Monte Carlo event generator.
Summing threshold logs in a parton shower
Energy Technology Data Exchange (ETDEWEB)
Nagy, Zoltán [DESY,Notkestrasse 85, 22607 Hamburg (Germany); Soper, Davison E. [Institute of Theoretical Science, University of Oregon,Eugene, OR 97403-5203 (United States)
2016-10-05
When parton distributions are falling steeply as the momentum fractions of the partons increases, there are effects that occur at each order in α{sub s} that combine to affect hard scattering cross sections and need to be summed. We show how to accomplish this in a leading approximation in the context of a parton shower Monte Carlo event generator.
Remnant lipoproteins and atherosclerosis
Twickler, Th. B.; Dallinga-Thie, G. M.; Chapman, M. J.; Cohn, J. S.
2005-01-01
A recently developed assay for quantification of remnant-like particle cholesterol has provided considerable evidence that reinforces the concept that elevated levels of plasma remnants are associated with increased cardiovascular disease in different populations and distinct patient groups. In this
Hadron Correlations and Parton Recombination
Energy Technology Data Exchange (ETDEWEB)
Fries, R.J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)]. E-mail: rjfries@comp.tamu.edu
2007-02-15
Parton recombination has been found to be an extremely useful model to understand hadron production at the Relativistic Heavy Ion Collider. It is particularly important to explore its connections with hard processes. This article reviews some of the aspects of the quark recombination model and places particular emphasis on hadron correlations.
Hadronization of dense partonic matter
Energy Technology Data Exchange (ETDEWEB)
Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)
2006-12-15
The parton recombination model has turned out to be a valuable tool to describe hadronization in high-energy heavy-ion collisions. I review the model and revisit recent progress in our understanding of hadron correlations. I also discuss higher Fock states in the hadrons, possible violations of the elliptic flow scaling and recombination effects in more dilute systems.
Parton distributions with LHC data
Ball, Richard D.; Bertone, Valerio; Carrazza, Stefano; Deans, Christopher S.; Debbio, Luigi Del; Forte, Stefano; Guffanti, Alberto; Hartland, Nathan P.; Latorre, Jose I.; Rojo, Juan; Ubiali, Maria
2013-01-01
We present the first determination of parton distributions of the nucleon at NLO and NNLO based on a global data set which includes LHC data: NNPDF2.3. Our data set includes, besides the deep inelastic, Drell-Yan, gauge boson production and jet data already used in previous global PDF
Dual model for parton densities
International Nuclear Information System (INIS)
El Hassouni, A.; Napoly, O.
1981-01-01
We derive power-counting rules for quark densities near x=1 and x=0 from parton interpretations of one-particle inclusive dual amplitudes. Using these rules, we give explicit expressions for quark distributions (including charm) inside hadrons. We can then show the compatibility between fragmentation and recombination descriptions of low-p/sub perpendicular/ processes
Three-Dimensional parton structure of light nuclei
Scopetta, Sergio; Del Dotto, Alessio; Kaptari, Leonid; Pace, Emanuele; Rinaldi, Matteo; Salmè, Giovanni
2018-03-01
Two promising directions beyond inclusive deep inelastic scattering experiments, aimed at unveiling the three dimensional structure of the bound nucleon, are reviewed, considering in particular the 3He nuclear target. The 3D structure in coordinate space can be accessed through deep exclusive processes, whose non-perturbative part is encoded in generalized parton distributions. In this way, the distribution of partons in the transverse plane can be obtained. As an example of a deep exclusive process, coherent deeply virtual Compton scattering off 3He nuclei, important to access the neutron generalized parton distributions (GPDs), will be discussed. In Impulse Approximation (IA), the sum of the two leading twist, quark helicity conserving GPDs of 3He, H and E, at low momentum transfer, turns out to be dominated by the neutron contribution. Besides, a technique, able to take into account the nuclear effects included in the Impulse Approximation analysis, has been developed. The spin dependent GPD \\tilde H of 3He is also found to be largely dominated, at low momentum transfer, by the neutron contribution. The knowledge of the GPDs H,E and \\tilde H of 3He is relevant for the planning of coherent DVCS off 3He measurements. Semi-inclusive deep inelastic scattering processes access the momentum space 3D structure parameterized through transverse momentum dependent parton distributions. A distorted spin-dependent spectral function has been recently introduced for 3He, in a non-relativistic framework, to take care of the final state interaction between the observed pion and the remnant in semi-inclusive deep inelastic electron scattering off transversely polarized 3He. The calculation of the Sivers and Collins single spin asymmetries for 3He, and a straightforward procedure to effectively take into account nuclear dynamics and final state interactions, will be reviewed. The Light-front dynamics generalization of the analysis is also addressed.
Ibáñez, Luis E
2015-01-01
This chapter reviews a number of topics in the field of string phenomenology, focusing on orientifold/F-theory models yielding semirealistic low-energy physics. The emphasis is on the extraction of the low-energy effective action and possible tests of specific models at the LHC.
International Nuclear Information System (INIS)
Aldazabal, G.; Ibanez, L.E.; Uranga, A.M.
1995-01-01
Standard SUSY-GUTs such as those based on SU(5) or SO(10) lead to predictions for the values of α s and sin 2 θ W in amazing agreement with experiment. In this article we investigate how these models may be obtained from string theory, thus bringing them into the only known consistent framework for quantum gravity. String models with matter in standard GUT representations require the realization of affine Lie algebras at higher levels. We start by describing some methods to build level k=2 symmetric orbifold string models with gauge groups SU(5) or SO(10). We present several examples and identify generic features of the type of models constructed. Chiral fields appropriate to break the symmetry down to the standard model generically appear in the massless spectrum. However, unlike in standard SUSY-GUTs, they often behave as string moduli, i.e., they do not have self-couplings. We also discuss briefly the doublet-triplet Higgs splitting. We find that, in some models, built-in sliding-singlet type of couplings exist. (orig.)
What Exactly is a Parton Density ?
International Nuclear Information System (INIS)
Collins, J.C.
2003-01-01
I give an account of the definitions of parton densities, both the conventional ones, integrated over parton transverse momentum, and unintegrated transverse-momentum-dependent densities. The aim is to get a precise and correct definition of a parton density as the target expectation value of a suitable quantum mechanical operator, so that a clear connection to non-perturbative QCD is provided. Starting from the intuitive ideas in the parton model that predate QCD, we will see how the simplest operator definitions suffer from divergences. Corrections to the definition are needed to eliminate the divergences. An improved definition of unintegrated parton densities is proposed. (author)
Cervical Chondrocutaneous Branchial Remnants.
Klockars, Tuomas; Kajosaari, Lauri
2017-03-01
Cervical chondrocutaneous branchial remnants are rare malformations usually found in the lower neck. As high as 76% of patients have been reported to have associated anomalies. We review the literature and report a case series of seven patients with cervical cartilaginous remnants. A retrospective case series of seven patients identified from the electronic hospital records. Seven patients with cervical chondrocutaneous branchial remnants were identified (six boys and one girl). Only one of the patients had associated anomalies. A review of the literature revealed no evidence for sinuses or cysts related to cervical chondrocutaneous branchial remnants. Operative treatment can be postponed to a suitable and safe age. There is marked variation in the reported prevalence of associated anomalies, ranging from 11% to 76%.
Parton distributions with threshold resummation
Bonvini, Marco; Rojo, Juan; Rottoli, Luca; Ubiali, Maria; Ball, Richard D.; Bertone, Valerio; Carrazza, Stefano; Hartland, Nathan P.
2015-01-01
We construct a set of parton distribution functions (PDFs) in which fixed-order NLO and NNLO calculations are supplemented with soft-gluon (threshold) resummation up to NLL and NNLL accuracy respectively, suitable for use in conjunction with any QCD calculation in which threshold resummation is included at the level of partonic cross sections. These resummed PDF sets, based on the NNPDF3.0 analysis, are extracted from deep-inelastic scattering, Drell-Yan, and top quark pair production data, for which resummed calculations can be consistently used. We find that, close to threshold, the inclusion of resummed PDFs can partially compensate the enhancement in resummed matrix elements, leading to resummed hadronic cross-sections closer to the fixed-order calculation. On the other hand, far from threshold, resummed PDFs reduce to their fixed-order counterparts. Our results demonstrate the need for a consistent use of resummed PDFs in resummed calculations.
Parton distributions with LHC data
DEFF Research Database (Denmark)
Ball, R.D.; Deans, C.S.; Del Debbio, L.
2013-01-01
We present the first determination of parton distributions of the nucleon at NLO and NNLO based on a global data set which includes LHC data: NNPDF2.3. Our data set includes, besides the deep inelastic, Drell-Yan, gauge boson production and jet data already used in previous global PDF determinati......We present the first determination of parton distributions of the nucleon at NLO and NNLO based on a global data set which includes LHC data: NNPDF2.3. Our data set includes, besides the deep inelastic, Drell-Yan, gauge boson production and jet data already used in previous global PDF...... fraction of the proton. We also present collider PDF sets, constructed using only data from HERA, the Tevatron and the LHC, but find that this data set is neither precise nor complete enough for a competitive PDF determination....
Review of Parton Recombination Models
International Nuclear Information System (INIS)
Bass, Steffen A
2006-01-01
Parton recombination models have been very successful in explaining data taken at RHIC on hadron spectra and emission patterns in Au+Au collisions at transverse momenta above 2 GeV/c, which have exhibited features which could not be understood in the framework of basic perturbative QCD. In this article I will review the current status on recombination models and outline which future challenges need to be addressed by this class of models
Structure functions and parton distributions
International Nuclear Information System (INIS)
Martin, A.D.; Stirling, W.J.; Roberts, R.G.
1995-01-01
The MRS parton distribution analysis is described. The latest sets are shown to give an excellent description of a wide range of deep-inelastic and other hard scattering data. Two important theoretical issues-the behavior of the distributions at small x and the flavor structure of the quark sea-are discussed in detail. A comparison with the new structure function data from HERA is made, and the outlook for the future is discussed
Flavor changing strings and domain walls
International Nuclear Information System (INIS)
Dvali, G.; Senjanovic, G.
1993-04-01
We consider the cosmological consequences of a spontaneous breaking of non-abelian discrete symmetries, which may appear as a natural remnant of a continuous symmetry, such as a family symmetry. The result may be a stable domain wall across which an electron would turn into a muon (orν e into ν μ ) or a flavor analogue of an Alice string-domain wall structure with the same property. (author). 16 refs
Brandenberger, Robert H.
2008-01-01
String gas cosmology is a string theory-based approach to early universe cosmology which is based on making use of robust features of string theory such as the existence of new states and new symmetries. A first goal of string gas cosmology is to understand how string theory can effect the earliest moments of cosmology before the effective field theory approach which underlies standard and inflationary cosmology becomes valid. String gas cosmology may also provide an alternative to the curren...
Multi-parton interactions at the LHC
Energy Technology Data Exchange (ETDEWEB)
Kulesza, A. [RWTH Aachen (Germany). Inst. fuer Theoretische Teilchenphysik und Kosmologie; Nagy, Z. (eds.) [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2011-11-15
We review the recent progress in the theoretical description and experimental observation of multiple parton interactions. Subjects covered include experimental measurements of minimum bias interactions and of the underlying event, models of soft physics implemented in Monte Carlo generators, developments in the theoretical description of multiple parton interactions and phenomenological studies of double parton scattering. This article stems from contributions presented at the Helmholtz Alliance workshop on ''Multi-Parton Interactions at the LHC'', DESY Hamburg, 13-15 September 2010. (orig.)
Framework for evolution in double parton scattering
Energy Technology Data Exchange (ETDEWEB)
Buffing, Maarten G.A.
2017-07-15
Double parton scattering (DPS) describes two colliding hadrons having interactions in the form of two hard processes, each initiated by a separate pair of partons. Just as for single parton scattering, the resummation of soft gluon exchange gives rise to a soft function, which is a necessary ingredient for obtaining rapidity evolution equations. For various regions of phase space, we derive the rapidity evolution and the scale evolution of double transverse momentum dependent parton distribution functions (DTMDs) as well as of the p{sub T}-resummed cross section for double Drell-Yan like processes. This contributes to a framework that can be used for phenomenological DPS studies including resummation.
International Nuclear Information System (INIS)
Strominger, A.
1987-01-01
A gauge invariant cubic action describing bosonic closed string field theory is constructed. The gauge symmetries include local spacetime diffeomorphisms. The conventional closed string spectrum and trilinear couplings are reproduced after spontaneous symmetry breaking. The action S is constructed from the usual ''open string'' field of ghost number minus one half. It is given by the associator of the string field product which is non-vanishing because of associativity anomalies. S does not describe open string propagation because open string states associate and can thereby be shifted away. A field theory of closed and open strings can be obtained by adding to S the cubic open string action. (orig.)
Multiple Parton Interactions in ALICE
CERN. Geneva
2013-01-01
We will present in detail the measurement of the charged particle multiplicity dependence of per-trigger pair yields in azimuthal direction induced by low-energetic di-jets produced in proton-proton collisions. Using two-particle angular correlations with low transverse momentum thresholds, jet properties are measured on a statistical basis down to the lowest possible jet energies. The analysis can give information about the contribution from multiple parton interactions to particle production. Moreover, the results allow to optimize the parametrization of the jet fragmentation in phenomenological mode...
International Nuclear Information System (INIS)
Liu Qingjun; Guo Liqun; Piao Xingliang
2006-01-01
Partonic effects on two-particle transverse momentum correlations are studied for Au + Au collisions at √S NN =130 GeV in the Monte Carlo model, AMPT. This study demonstrates that in these collisions partonic interactions contribute significantly to the correlations. Additionally, model calculations are compared with data of the two-particle transverse momentum correlations measured by the STAR Collaboration at RHIC, and it is found that AMPT with string melting can well reproduce the measured centrality dependence of the two-particle transverse momentum correlations in Au + Au collisions at √S NN =130 GeV. (authors)
Parton Distribution Benchmarking with LHC Data
Ball, Richard D.; Carrazza, Stefano; Debbio, Luigi Del; Forte, Stefano; Gao, Jun; Hartland, Nathan; Huston, Joey; Nadolsky, Pavel; Rojo, Juan; Stump, Daniel; Thorne, Robert S.; Yuan, C. -P.
2012-01-01
We present a detailed comparison of the most recent sets of NNLO PDFs from the ABM, CT, HERAPDF, MSTW and NNPDF collaborations. We compare parton distributions at low and high scales and parton luminosities relevant for LHC phenomenology. We study the PDF dependence of LHC benchmark inclusive cross
The neural network approach to parton fitting
International Nuclear Information System (INIS)
Rojo, Joan; Latorre, Jose I.; Del Debbio, Luigi; Forte, Stefano; Piccione, Andrea
2005-01-01
We introduce the neural network approach to global fits of parton distribution functions. First we review previous work on unbiased parametrizations of deep-inelastic structure functions with faithful estimation of their uncertainties, and then we summarize the current status of neural network parton distribution fits
Calculations with off-shell matrix elements, TMD parton densities and TMD parton showers
Energy Technology Data Exchange (ETDEWEB)
Bury, Marcin; Hameren, Andreas van; Kutak, Krzysztof; Sapeta, Sebastian [Polish Academy of Sciences, Institute of Nuclear Physics, Cracow (Poland); Jung, Hannes [Polish Academy of Sciences, Institute of Nuclear Physics, Cracow (Poland); DESY, Hamburg (Germany); Serino, Mirko [Polish Academy of Sciences, Institute of Nuclear Physics, Cracow (Poland); Ben Gurion University of the Negev, Department of Physics, Beersheba (Israel)
2018-02-15
A new calculation using off-shell matrix elements with TMD parton densities supplemented with a newly developed initial state TMD parton shower is described. The calculation is based on the KaTie package for an automated calculation of the partonic process in high-energy factorization, making use of TMD parton densities implemented in TMDlib. The partonic events are stored in an LHE file, similar to the conventional LHE files, but now containing the transverse momenta of the initial partons. The LHE files are read in by the Cascade package for the full TMD parton shower, final state shower and hadronization from Pythia where events in HEPMC format are produced. We have determined a full set of TMD parton densities and developed an initial state TMD parton shower, including all flavors following the TMD distribution. As an example of application we have calculated the azimuthal de-correlation of high p{sub t} dijets as measured at the LHC and found very good agreement with the measurement when including initial state TMD parton showers together with conventional final state parton showers and hadronization. (orig.)
Evolution of Supernova Remnants
Arbutina, B.
2017-12-01
This book, both a monograph and a graduate textbook, is based on my original research and partly on the materials prepared earlier for the 2007 and 2008 IARS Astrophysics Summer School in Istanbul, AstroMundus course 'Supernovae and Their Remnants' that was held for the first time in 2011 at the Department of Astronomy, Faculty of Mathematics, University of Belgrade, and a graduate course 'Evolution of Supernova Remnants' that I teach at the aforementioned university. The first part Supernovae (introduction, thermonuclear supernovae, core-collapse supernovae) provides introductory information and explains the classification and physics of supernova explosions, while the second part Supernova remnants (introduction, shock waves, cosmic rays and particle acceleration, magnetic fields, synchrotron radiation, hydrodynamic and radio evolution of supernova remnants), which is the field I work in, is more detailed in scope i.e. technical/mathematical. Special attention is paid to details of mathematical derivations that often cannot be found in original works or available literature. Therefore, I believe it can be useful to both, graduate students and researchers interested in the field.
International Nuclear Information System (INIS)
Sikivie, P.
1991-01-01
The topics are: global strings; the gravitational field of a straight global string; how do global strings behave?; the axion cosmological energy density; computer simulations of the motion and decay of global strings; electromagnetic radiation from the conversion of Nambu-Goldstone bosons in astrophysical magnetic fields. (orig.)
Evidence for string substructure
International Nuclear Information System (INIS)
Bergman, O.
1996-06-01
The author argues that the behavior of string theory at high temperature and high longitudinal boosts, combined with the emergence of p-branes as necessary ingredients in various string dualities, point to a possible reformulation of strings, as well as p-branes, as composites of bits. He reviews the string-bit models, and suggests generalizations to incorporate p-branes
Parton-parton scattering at two-loops
International Nuclear Information System (INIS)
Tejeda Yeomans, M.E.
2001-01-01
Abstract We present an algorithm for the calculation of scalar and tensor one- and two-loop integrals that contribute to the virtual corrections of 2 → 2 partonic scattering. First, the tensor integrals are related to scalar integrals that contain an irreducible propagator-like structure in the numerator. Then, we use Integration by Parts and Lorentz Invariance recurrence relations to build a general system of equations that enables the reduction of any scalar integral (with and without structure in the numerator) to a basis set of master integrals. Their expansions in ε = 2 - D/2 have already been calculated and we present a summary of the techniques that have been used to this end, as well as a compilation of the expansions we need in the different physical regions. We then apply this algorithm to the direct evaluation of the Feynman diagrams contributing to the O(α s 4 ) one- and two-loop matrix-elements for massless like and unlike quark-quark, quark-gluon and gluon-gluon scattering. The analytic expressions we provide are regularised in Convensional Dimensional Regularisation and renormalised in the MS-bar scheme. Finally, we show that the structure of the infrared divergences agrees with that predicted by the application of Catani's formalism to the analysis of each partonic scattering process. The results presented in this thesis provide the complete calculation of the one- and two-loop matrix-elements for 2 → 2 processes needed for the next-to-next-to-leading order contribution to inclusive jet production at hadron colliders. (author)
International Nuclear Information System (INIS)
Turok, N.
1987-11-01
It is argued that, in fundamental string theories, as one traces the universe back in time a point is reached when the expansion rate is so fast that the rate of string creation due to quantum effects balances the dilution of the string density due to the expansion. One is therefore led into a phase of constant string density and an exponentially expanding universe. Fundamental strings therefore seem to lead naturally to inflation. 17 refs., 1 fig
Lowe, D. A.; Thorlacius, L.
1994-01-01
Above the Hagedorn energy density closed fundamental strings form a long string phase. The dynamics of weakly interacting long strings is described by a simple Boltzmann equation which can be solved explicitly for equilibrium distributions. The average total number of long strings grows logarithmically with total energy in the microcanonical ensemble. This is consistent with calculations of the free single string density of states provided the thermodynamic limit is carefully defined. If the ...
International Nuclear Information System (INIS)
Turok, N.
1988-01-01
It is argued that, in fundamental string theories, as one traces the universe back in time a point is reached when the expansion rate is so fast that the rate of string creation due to quantum effects balances the dilution of the string density due to the expansion. One is therefore led into a phase of constant string density and an exponentially expanding universe. Fundamental strings therefore seem to lead naturally to inflation
The strings connection: MSSM-like models from strings
Energy Technology Data Exchange (ETDEWEB)
Nilles, Hans Peter [Bethe Center for Theoretical Physics (BCTP) and Physikalisches Institut der Universitaet Bonn, Bonn (Germany)
2014-05-15
String theory constructions towards the MSSM allow us to identify some general properties that could be relevant for tests at the LHC. They originate from the geometric structure of compactification and the location of fields in extra-dimensional space. Within the framework of the heterotic MiniLandscape we extract some generic lessons for supersymmetric model building. Among them is a specific pattern of SUSY breakdown based on mirage mediation and remnants of extended supersymmetry. This leads to a split spectrum with heavy scalars of the first two families of quarks and leptons and suppressed masses for gauginos, top partners and Higgs bosons. The models exhibit some specific form of hidden supersymmetry consistent with the high mass of the Higgs boson and all presently available experimental constraints. The most compelling picture is based on precision gauge coupling unification that might be in the kinematic reach of the LHC. (orig.)
International Nuclear Information System (INIS)
Gross, D.J.
1986-01-01
Traditional string theories, either bosonic or supersymmetric, came in two varieties, closed string theories and open string theories. Closed string are neutral objects which describe at low energies gravity or supergravity. Open strings have geometrically invariant ends to which charge can be attached, thereby obtaining, in addition to gravity, Yang-Mills gauge interactions. Recently a new kind of string theory was discovered--the heterotic string, which is a chiral hybrid of the closed superstring and the closed bosonic string, and which produces by an internal dynamical mechanism gauge interactions of a totally specified kind. Although this theory is found in an attempt to produce a superstring theory which would yield a low energy E/sub 8/xE/sub 8/ supersymmetric, anomaly free, gauge theory, as suggested by the anomaly cancellation mechanism of Green and Schwarz, it fits naturally into the general framework of consistent string theories
Endpoint singularities in unintegrated parton distributions
Hautmann, F
2007-01-01
We examine the singular behavior from the endpoint region x -> 1 in parton distributions unintegrated in both longitudinal and transverse momenta. We identify and regularize the singularities by using the subtraction method, and compare this with the cut-off regularization method. The counterterms for the distributions with subtractive regularization are given in coordinate space by compact all-order expressions in terms of eikonal-line operators. We carry out an explicit calculation at one loop for the unintegrated quark distribution. We discuss the relation of the unintegrated parton distributions in subtractive regularization with the ordinary parton distributions.
Implementing NLO DGLAP evolution in parton showers
Energy Technology Data Exchange (ETDEWEB)
Höche, Stefan; Krauss, Frank; Prestel, Stefan
2017-10-01
We present a parton shower which implements the DGLAP evolution of parton densities and fragmentation functions at next-to-leading order precision up to effects stemming from local four-momentum conservation. The Monte-Carlo simulation is based on including next-to-leading order collinear splitting functions in an existing parton shower and combining their soft enhanced contributions with the corresponding terms at leading order. Soft double counting is avoided by matching to the soft eikonal. Example results from two independent realizations of the algorithm, implemented in the two event generation frameworks Pythia and Sherpa, illustrate the improved precision of the new formalism.
Photons in a partonic transport approach
Energy Technology Data Exchange (ETDEWEB)
Greif, Moritz; Senzel, Florian; Greiner, Carsten [Goethe Universitaet Frankfurt, Max-von-Laue-Str. 1 60438 Frankfurt am Main (Germany)
2015-07-01
Partonic transport approaches have proved to be valuable tools in describing the quark-gluon plasma, created in heavy-ion collisions. In this work, first steps towards a dynamical understanding of photonproduction in expanding heavy-ion collisions are presented. Several photon production processes are included in the partonic cascade BAMPS (Boltzmann Approach to Multi-Parton Scatterings). BAMPS provides a microscopic tool to study expanding fireballs, employing a stochastic method to solve the relativistic 3+1d Boltzmann equation. Subsequently, photon spectra can be investigated, and in particular, the influence of the quark-gluon plasma phase for the elliptic flow of photons is studied.
Eikonal propagators and high-energy parton-parton scattering in gauge theories
International Nuclear Information System (INIS)
Meggiolaro, Enrico
2001-01-01
In this paper we consider 'soft' high-energy parton-parton scattering processes in gauge theories, i.e., elastic scattering processes involving partons at very high squared energies s in the center of mass and small squared transferred momentum t (s→∞, t 2 ). By a direct resummation of perturbation theory in the limit we are considering, we derive expressions for the truncated-connected quark (antiquark) propagator in an external gluon field, as well as for the residue at the pole of the full unrenormalized propagator, both for scalar and fermion gauge theories. These are the basic ingredients to derive high-energy parton-parton scattering amplitudes, using the LSZ reduction formulae and a functional integral approach. The above procedure is also extended to include the case in which at least one of the partons is a gluon. The meaning and the validity of the results are discussed
An analytic initial-state parton shower
Energy Technology Data Exchange (ETDEWEB)
Kilian, W. [Siegen Univ. (Germany). Dept. Physik; Reuter, J.; Schmidt, S.; Wiesler, D. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2011-12-15
We present a new algorithm for an analytic parton shower. While the algorithm for the final-state shower has been known in the literature, the construction of an initial-state shower along these lines is new. The aim is to have a parton shower algorithm for which the full analytic form of the probability distribution for all branchings is known. For these parton shower algorithms it is therefore possible to calculate the probability for a given event to be generated, providing the potential to reweight the event after the simulation. We develop the algorithm for this shower including scale choices and angular ordering. Merging to matrix elements is used to describe high-energy tails of distributions correctly. Finally, we compare our results with those of other parton showers and with experimental data from LEP, Tevatron and LHC. (orig.)
Parton distributions beyond the leading order
International Nuclear Information System (INIS)
Chyla, J.
1993-01-01
The importance of properly taking into account the factorization scheme dependence of parton distribution functions is emphasized. A serious error in the usual handling of this topic is pointed out and the correct procedure for transforming parton distribution functions from one factorization scheme to another recalled. It is shown that the conventional M bar S and DIS definitions thereof are ill defined due to the lack of distinction between the factorization scheme dependence of parton distribution functions and renormalization scheme dependence of the strong coupling constant α s . A novel definition of parton distribution functions is suggested and its role in the construction of consistent next-to-leading-order event generators briefly outlined
An analytic initial-state parton shower
International Nuclear Information System (INIS)
Kilian, W.
2011-12-01
We present a new algorithm for an analytic parton shower. While the algorithm for the final-state shower has been known in the literature, the construction of an initial-state shower along these lines is new. The aim is to have a parton shower algorithm for which the full analytic form of the probability distribution for all branchings is known. For these parton shower algorithms it is therefore possible to calculate the probability for a given event to be generated, providing the potential to reweight the event after the simulation. We develop the algorithm for this shower including scale choices and angular ordering. Merging to matrix elements is used to describe high-energy tails of distributions correctly. Finally, we compare our results with those of other parton showers and with experimental data from LEP, Tevatron and LHC. (orig.)
Pre-equilibrium parton dynamics: Proceedings
Energy Technology Data Exchange (ETDEWEB)
Wang, Xin-Nian [ed.
1993-12-31
This report contains papers on the following topics: parton production and evolution; QCD transport theory; interference in the medium; QCD and phase transition; and future heavy ion experiments. This papers have been indexed separately elsewhere on the data base.
Pre-equilibrium parton dynamics: Proceedings
International Nuclear Information System (INIS)
Wang, Xin-Nian
1993-01-01
This report contains papers on the following topics: parton production and evolution; QCD transport theory; interference in the medium; QCD and phase transition; and future heavy ion experiments. This papers have been indexed separately elsewhere on the data base
Unraveling hadron structure with generalized parton distributions
Energy Technology Data Exchange (ETDEWEB)
Andrei Belitsky; Anatoly Radyushkin
2004-10-01
The recently introduced generalized parton distributions have emerged as a universal tool to describe hadrons in terms of quark and gluonic degrees of freedom. They combine the features of form factors, parton densities and distribution amplitudes - the functions used for a long time in studies of hadronic structure. Generalized parton distributions are analogous to the phase-space Wigner quasi-probability function of non-relativistic quantum mechanics which encodes full information on a quantum-mechanical system. We give an extensive review of main achievements in the development of this formalism. We discuss physical interpretation and basic properties of generalized parton distributions, their modeling and QCD evolution in the leading and next-to-leading orders. We describe how these functions enter a wide class of exclusive reactions, such as electro- and photo-production of photons, lepton pairs, or mesons.
Partons and their applications at high energies
International Nuclear Information System (INIS)
Drell, Sidney D.; Yan, Tung-Mow
2000-01-01
We discuss Feynman's parton model for deep inelastic weak or electromagnetic processes as an application of the impulse approximation to elementary particle interactions. The special features and conditions permitting this application are elaborated upon in some detail including the dependence of the parton model and the impulse treatment on an appropriate choice of coordinate frames and the role of the very soft or wee partons. Application of the parton model is made to the calculation of the cross section for massive lepton pair production in very high energy hadron-hadron collisions and compared with experiment. The conjectured role of light cone singularities in describing this and the other deep inelastic amplitudes is also discussed. (c) 2000 Academic Press, Inc
Fully NLO Parton Shower in QCD
International Nuclear Information System (INIS)
Skrzypek, M.; Jadach, S.; Slawinska, M.; Gituliar, O.; Kusina, A.; Placzek, W.
2011-01-01
The project of constructing a complete NLO-level Parton Shower Monte Carlo for the QCD processes developed in IFJ PAN in Krakow is reviewed. Four issues are discussed: (1) the extension of the standard inclusive collinear factorization into a new, fully exclusive scheme; (2) reconstruction of the LO Parton Shower in the new scheme; (3) inclusion of the exclusive NLO corrections into the hard process and (4) inclusion of the exclusive NLO corrections into the evolution (ladder) part. (authors)
Triple collinear emissions in parton showers
Energy Technology Data Exchange (ETDEWEB)
Höche, Stefan; Prestel, Stefan
2017-10-01
A framework to include triple collinear splitting functions into parton showers is presented, and the implementation of flavor-changing NLO splitting kernels is discussed as a first application. The correspondence between the Monte-Carlo integration and the analytic computation of NLO DGLAP evolution kernels is made explicit for both timelike and spacelike parton evolution. Numerical simulation results are obtained with two independent implementations of the new algorithm, using the two independent event generation frameworks Pythia and Sherpa.
Color correlations in parton jet decay
International Nuclear Information System (INIS)
Levin, E.M.; Ryskin, M.G.
1983-01-01
The pre-confinement effect is discussed. Colour correlations are calculated for the decays of parton jets with account for the coherence of the gluon interaction. It is shown that, in contrast to the results of previous works, the colour correlations between two gluons with a high pair mass can be appreciable. In any kinematical interval, however, the energy carried away be the particles correlated in the colour is always much less than the total energy carried away by the partons
Relativistic classical strings. II
International Nuclear Information System (INIS)
Galvao, C.A.P.
1985-01-01
The interactions of strings with electromagnetic and gravitational fields are extensively discussed. Some concepts of differential geometry are reviewed. Strings in Kaluza-Klein manifolds are studied. (L.C.) [pt
Indian Academy of Sciences (India)
strongly motivate a detailed search for inflation within string theory, although it has ... between string theory and observations provides a strong incentive for ..... sonably be expected to arise for any system having very many degrees of freedom.
International Nuclear Information System (INIS)
Chudnovsky, E.; Vilenkin, A.
1988-01-01
If light superconducting strings were formed in the early Universe, then it is very likely that now they exist in abundance in the interstellar plasma and in stars. The dynamics of such strings can be dominated by friction, so that they are ''frozen'' into the plasma. Turbulence of the plasma twists and stretches the strings, forming a stochastic string network. Such networks must generate particles and magnetic fields, and may play an important role in the physics of stars and of the Galaxy
Conlon, Joseph
2016-01-01
Is string theory a fraud or one of the great scientific advances? Why do so many physicists work on string theory if it cannot be tested? This book provides insight into why such a theory, with little direct experimental support, plays such a prominent role in theoretical physics. The book gives a modern and accurate account of string theory and science, explaining what string theory is, why it is regarded as so promising, and why it is hard to test.
Parton distributions with LHC data
Ball, Richard D.; Carrazza, Stefano; Deans, Christopher S.; Del Debbio, Luigi; Forte, Stefano; Guffanti, Alberto; Hartland, Nathan P.; Latorre, Jose I.; Rojo, Juan; Ubiali, Maria
2013-01-01
We present the first determination of parton distributions of the nucleon at NLO and NNLO based on a global data set which includes LHC data: NNPDF2.3. Our data set includes, besides the deep inelastic, Drell-Yan, gauge boson production and jet data already used in previous global PDF determinations, all the relevant LHC data for which experimental systematic uncertainties are currently available: ATLAS and LHCb W and Z lepton rapidity distributions from the 2010 run, CMS W electron asymmetry data from the 2011 run, and ATLAS inclusive jet cross-sections from the 2010 run. We introduce an improved implementation of the FastKernel method which allows us to fit to this extended data set, and also to adopt a more effective minimization methodology. We present the NNPDF2.3 PDF sets, and compare them to the NNPDF2.1 sets to assess the impact of the LHC data. We find that all the LHC data are broadly consistent with each other and with all the older data sets included in the fit. We present predictions for various ...
Introduction to string theory and string compactifications
International Nuclear Information System (INIS)
GarcIa-Compean, Hugo
2005-01-01
Basics of some topics on perturbative and non-perturbative string theory are reviewed. After a mathematical survey of the Standard Model of particle physics and GUTs, the bosonic string kinematics for the free case and with interaction is described. The effective action of the bosonic string and the spectrum is also discussed. T-duality in closed and open strings and the definition of D-brane are surveyed. Five perturbative superstring theories and their spectra is briefly outlined. Calabi-Yau three-fold compactifications of heterotic strings and their relation to some four-dimensional physics are given. Finally, non-perturbative issues like S-duality, M-theory and F-theory are also reviewed
International Nuclear Information System (INIS)
Ambjoern, J.
1987-08-01
The theory of strings is the theory of random surfaces. I review the present attempts to regularize the world sheet of the string by triangulation. The corresponding statistical theory of triangulated random surfaces has a surprising rich structure, but the connection to conventional string theory seems non-trivial. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Cardona, Biel [Departament d’Estructura i Constituents de la Matèriaand Institut de Ciències del Cosmos (ICCUB) Facultat de Física, Universitat de Barcelona,Diagonal 647, E-08028 Barcelona, Catalonia (Spain); Gomis, Joaquim [Departament d’Estructura i Constituents de la Matèriaand Institut de Ciències del Cosmos (ICCUB) Facultat de Física, Universitat de Barcelona,Diagonal 647, E-08028 Barcelona, Catalonia (Spain); Department of Physics, Faculty of Science, Chulalongkorn University,Bangkok 10330 (Thailand); Pons, Josep M. [Departament d’Estructura i Constituents de la Matèriaand Institut de Ciències del Cosmos (ICCUB) Facultat de Física, Universitat de Barcelona,Diagonal 647, E-08028 Barcelona, Catalonia (Spain)
2016-07-11
We construct the canonical action of a Carroll string doing the Carroll limit of a canonical relativistic string. We also study the Killing symmetries of the Carroll string, which close under an infinite dimensional algebra. The tensionless limit and the Carroll p-brane action are also discussed.
The series of String-Math conferences has developed into a central event on the interface between mathematics and physics related to string theory, quantum field theory and neighboring subjects. The conference will take place from July 24-28 in the main building of Hamburg university. The String-Math conference is organised by the University of Hamburg jointly with DESY Hamburg.
Di-hadron azimuthal correlation and Mach-like cone structure in a parton/hadron transport model
International Nuclear Information System (INIS)
Ma, G.L.; Zhang, S.; Ma, Y.G.; Huang, H.Z.; Cai, X.Z.; Chen, J.H.; He, Z.J.; Long, J.L.; Shen, W.Q.; Shi, X.H.; Zuo, J.X.
2006-01-01
In the framework of a multi-phase transport model (AMPT) with both partonic and hadronic interactions, azimuthal correlations between trigger particles and associated scattering particles have been studied by the mixing-event technique. The momentum ranges of these particles are 3 T trig T assoc T trig T assoc NN =200 GeV. A Mach-like structure has been observed in correlation functions for central collisions. By comparing scenarios with and without parton cascade and hadronic rescattering, we show that both partonic and hadronic dynamical mechanisms contribute to the Mach-like structure of the associated particle azimuthal correlations. The contribution of hadronic dynamical process cannot be ignored in the emergence of Mach-like correlations of the soft scattered associated hadrons. However, hadronic rescattering alone cannot reproduce experimental amplitude of Mach-like cone on away-side, and the parton cascade process is essential to describe experimental amplitude of Mach-like cone on away-side. In addition, both the associated multiplicity and the sum of p T decrease, while the T > increases, with the impact parameter in the AMPT model including partonic dynamics from string melting scenario
Transverse nucleon structure and diagnostics of hard parton-parton processes at LHC
Energy Technology Data Exchange (ETDEWEB)
L. Frankfurt, M. Strikman, C. Weiss
2011-03-01
We propose a new method to determine at what transverse momenta particle production in high-energy pp collisions is governed by hard parton-parton processes. Using information on the transverse spatial distribution of partons obtained from hard exclusive processes in ep/\\gamma p scattering, we evaluate the impact parameter distribution of pp collisions with a hard parton-parton process as a function of p_T of the produced parton (jet). We find that the average pp impact parameters in such events depend very weakly on p_T in the range 2 < p_T < few 100 GeV, while they are much smaller than those in minimum-bias inelastic collisions. The impact parameters in turn govern the observable transverse multiplicity in such events (in the direction perpendicular to the trigger particle or jet). Measuring the transverse multiplicity as a function of p_T thus provides an effective tool for determining the minimum p_T for which a given trigger particle originates from a hard parton-parton process.
International Nuclear Information System (INIS)
Vishniac, E.T.
1987-01-01
We examine the compatibility of inflation with the cosmic string theory for galaxy formation. There is a general conflict between having sufficient string tension to effect galaxy formation, and reheating after inflation to a high enough temperature that strings may form in a thermal phase transition. To escape this conflict, we propose a class of models where the inflation is coupled to the string-producing field. The strings are formed late in inflation as the inflaton rolls towards its zero-temperature value. A large subset of these models have a novel large-scale distribution of galaxies that is fractal, displays biasing without dynamics or feedback mechanisms, and contains voids. (orig.)
International Nuclear Information System (INIS)
Hosomichi, Kazuo
2008-01-01
We study FZZT-branes and open string amplitudes in (p, q) minimal string theory. We focus on the simplest boundary changing operators in two-matrix models, and identify the corresponding operators in worldsheet theory through the comparison of amplitudes. Along the way, we find a novel linear relation among FZZT boundary states in minimal string theory. We also show that the boundary ground ring is realized on physical open string operators in a very simple manner, and discuss its use for perturbative computation of higher open string amplitudes.
Energy Technology Data Exchange (ETDEWEB)
Lawrence, Albion
2001-07-25
We study the physics of open strings in bosonic and type II string theories in the presence of unstable D-branes. When the potential energy of the open string tachyon is at its minimum, Sen has argued that only closed strings remain in the perturbative spectrum. We explore the scenario of Yi and of Bergman, Hori and Yi, who argue that the open string degrees of freedom are strongly coupled and disappear through confinement. We discuss arguments using open string field theory and worldsheet boundary RG flows, which seem to indicate otherwise. We then describe a solitonic excitation of the open string tachyon and gauge field with the charge and tension of a fundamental closed string. This requires a double scaling limit where the tachyon is taken to its minimal value and the electric field is taken to its maximum value. The resulting flux tube has an unconstrained spatial profile; and for large fundamental string charge, it appears to have light, weakly coupled open strings living in the core. We argue that the flux tube acquires a size or order {alpha}' through sigma model and string coupling effects; and we argue that confinement effects make the light degrees of freedom heavy and strongly interacting.
International Nuclear Information System (INIS)
Lawrence, Albion
2001-01-01
We study the physics of open strings in bosonic and type II string theories in the presence of unstable D-branes. When the potential energy of the open string tachyon is at its minimum, Sen has argued that only closed strings remain in the perturbative spectrum. We explore the scenario of Yi and of Bergman, Hori and Yi, who argue that the open string degrees of freedom are strongly coupled and disappear through confinement. We discuss arguments using open string field theory and worldsheet boundary RG flows, which seem to indicate otherwise. We then describe a solitonic excitation of the open string tachyon and gauge field with the charge and tension of a fundamental closed string. This requires a double scaling limit where the tachyon is taken to its minimal value and the electric field is taken to its maximum value. The resulting flux tube has an unconstrained spatial profile; and for large fundamental string charge, it appears to have light, weakly coupled open strings living in the core. We argue that the flux tube acquires a size or order α' through sigma model and string coupling effects; and we argue that confinement effects make the light degrees of freedom heavy and strongly interacting
International Nuclear Information System (INIS)
Freund, P.G.O.
1988-01-01
According to the author nobody has succeeded as yet in extracting any new numbers from string theory. This paper discusses how if one cannot get new numbers from string theory, maybe one can get new strings out of number theory. Number theory is generally regarded as the purest form of mathematics. So how can it conceivably make contact with physics which aims at describing nature? The author discusses how the connecting link of these two disciplines is provided by the compact Riemann surfaces. These appear as world sheets of interacting strings. For instance, string-string scattering at the three-loop level involves the four external strings attaching themselves to a genus three compact surface
Multiplicity distributions in the dual parton model
International Nuclear Information System (INIS)
Batunin, A.V.; Tolstenkov, A.N.
1985-01-01
Multiplicity distributions are calculated by means of a new mechanism of production of hadrons in a string, which was proposed previously by the authors and takes into account explicitly the valence character of the ends of the string. It is shown that allowance for this greatly improves the description of the low-energy multiplicity distributions. At superhigh energies, the contribution of the ends of the strings becomes negligibly small, but in this case multi-Pomeron contributions must be taken into account
PROGENITORS OF RECOMBINING SUPERNOVA REMNANTS
Energy Technology Data Exchange (ETDEWEB)
Moriya, Takashi J., E-mail: takashi.moriya@ipmu.jp [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8583 (Japan)
2012-05-01
Usual supernova remnants have either ionizing plasma or plasma in collisional ionization equilibrium, i.e., the ionization temperature is lower than or equal to the electron temperature. However, the existence of recombining supernova remnants, i.e., supernova remnants with ionization temperature higher than the electron temperature, has been recently confirmed. One suggested way to have recombining plasma in a supernova remnant is to have a dense circumstellar medium at the time of the supernova explosion. If the circumstellar medium is dense enough, collisional ionization equilibrium can be established in the early stage of the evolution of the supernova remnant and subsequent adiabatic cooling, which occurs after the shock wave gets out of the dense circumstellar medium, makes the electron temperature lower than the ionization temperature. We study the circumstellar medium around several supernova progenitors and show which supernova progenitors can have a circumstellar medium dense enough to establish collisional ionization equilibrium soon after the explosion. We find that the circumstellar medium around red supergiants (especially massive ones) and the circumstellar medium dense enough to make Type IIn supernovae can establish collisional ionization equilibrium soon after the explosion and can evolve to become recombining supernova remnants. Wolf-Rayet stars and white dwarfs have the possibility to be recombining supernova remnants but the fraction is expected to be very small. As the occurrence rate of the explosions of red supergiants is much higher than that of Type IIn supernovae, the major progenitors of recombining supernova remnants are likely to be red supergiants.
Coherence effects in parton showers
International Nuclear Information System (INIS)
Pettersson, U.
1988-10-01
A model for gluon emission based on the colour dipole approximation is presented. Gluons are radiated from dipoles that are stretched from one colour charge to the corresponding anti-charge, with probability distribution given by generalizations of the Altarelli-Parisi equations. The model agrees very well with experimental data on e + e - annihilation. For the reaction e + e - -> W + W - -> qq ' QQ ' it is pointed out how to extract information about the QCD vacuum and the confinement mechanism by varying the CM energy. Finally the model is applied to deep inelastic lepton scattering. When a quark is kicked out in the lepton-proton interaction, separation of the colour charges leads to gluon emission. Since the proton remnant is not a pointlike object, coherence conditions lead to an asymmetry between gluons emitted in the forward and in the backward region. The asymmetry is controlled by the energy distribution in the force field. Experimental data are reproduced with a linear energy distribution, which is consistent with the proton behaving as a vortex line in a type II superconductor. (author)
BRST invariant mixed string vertex for the bosonic string
International Nuclear Information System (INIS)
Clarizia, A.; Pezzella, F.
1987-09-01
We construct a BRST invariant (N+M)-string vertex including both open and closed string states. When we saturate it with N open string and M closed string physical states it reproduces their corresponding scattering amplitude. As a particular case we obtain BRST invariant vertex for the open-closed string transition. (orig.)
Open-closed string correspondence in open string field theory
International Nuclear Information System (INIS)
Baumgartl, M.; Sachs, I.
2008-01-01
We address the problem of describing different closed string backgrounds in background independent open string field theory: A shift in the closed string background corresponds to a collective excitation of open strings. As an illustration we apply the formalism to the case where the closed string background is a group manifold. (Abstract Copyright [2008], Wiley Periodicals, Inc.)
Strings, texture, and inflation
International Nuclear Information System (INIS)
Hodges, H.M.; Primack, J.R.
1991-01-01
We examine mechanisms, several of which are proposed here, to generate structure formation, or to just add large-scale features, through either gauged or global cosmic strings or global texture, within the framework of inflation. We first explore the possibility that strings or texture form if there is no coupling between the topological theory and the inflaton or spacetime curvature, via (1) quantum creation, and (2) a sufficiently high reheat temperature. In addition, we examine the prospects for the inflaton field itself to generate strings or texture. Then, models with the string/texture field coupled to the curvature, and an equivalent model with coupling to the inflaton field, are considered in detail. The requirement that inflationary density fluctuations are not so large as to conflict with observations leads to a number of constraints on model parameters. We find that strings of relevance for structure formation can form in the absence of coupling to the inflaton or curvature through the process of quantum creation, but only if the strings are strongly type I, or if they are global strings. If formed after reheating, naturalness suggests that gauged cosmic strings correspond to a type-I superconductor. Similarly, gauged strings formed during inflation via conformal coupling ξ=1/6 to the spacetime curvature (in a model suggested by Yokoyama in order to evade the millisecond pulsar constraint on cosmic strings) are expected to be strongly type I
A Parton Shower for High Energy Jets
Andersen, Jeppe R; Smillie, Jennifer M
2011-01-01
We present a method to match the multi-parton states generated by the High Energy Jets Monte Carlo with parton showers generated by the Ariadne program using the colour dipole model. The High Energy Jets program already includes a full resummation of soft divergences. Hence, in the matching it is important that the corresponding divergences in the parton shower are subtracted, keeping only the collinear parts. We present a novel, shower-independent method for achieving this, enabling us to generate fully exclusive and hadronized events with multiple hard jets, in hadronic collisions. We discuss in detail the arising description of the soft, collinear and hard regions by examples in pure QCD jet-production.
Evolution of parton densities beyond leading order
International Nuclear Information System (INIS)
Curci, G.; Petronzio, R.; Furmanski, W.
1980-01-01
We develop a technique, based explicitly on the factorization properties of mass singularities, which allows one to calculate the evolution of parton densities beyond leading order. We present the results for the evolution of hadronic structure functions as well as for parton fragmentation functions into hadrons. Within our scheme the predictions for a particular process are obtained by convoluting a universal parton density with a short-distance cross section specific to the process. As an application, we calculate the QCD predictions for the Q 2 dependence of deep inelastic lepton-hadron scattering and of one-particle inclusive e + e - annihilation cross sections. Our results for electroproduction agree with those obtained with the operator product expansion technique. Physical quantitites in scattering are related to the corresponding ones in annihilation by analytic continuation, whereas the Gribov-Lipatov relation is strongly violated. (orig.)
Nucleon parton distributions in chiral perturbation theory
International Nuclear Information System (INIS)
Moiseeva, Alena
2013-01-01
Properties of the chiral expansion of nucleon light-cone operators have been studied. In the framework of the chiral perturbation theory we have demonstrated that convergency of the chiral expansion of nucleon parton distributions strongly depends on the value of the variable x. Three regions in x with essentially different analytical properties of the resulting chiral expansion for parton distributions were found. For each of the regions we have elaborated special power counting rules corresponding to the partial resummation of the chiral series. The nonlocal effective operators for the vector and the axial nucleon parton distributions have been constructed at the zeroth and the first chiral order. Using the derived nonlocal operators and the derived power counting rules we have obtained the second order expressions for the nucleon GPDs H(x,ξ,Δ 2 ), H(x,ξ,Δ 2 ),E(x,ξ,Δ 2 ) valid in the region x>or similar a 2 χ .
Parton Propagation and Fragmentation in QCD Matter
Energy Technology Data Exchange (ETDEWEB)
Alberto Accardi, Francois Arleo, William Brooks, David D' Enterria, Valeria Muccifora
2009-12-01
We review recent progress in the study of parton propagation, interaction and fragmentation in both cold and hot strongly interacting matter. Experimental highlights on high-energy hadron production in deep inelastic lepton-nucleus scattering, proton-nucleus and heavy-ion collisions, as well as Drell-Yan processes in hadron-nucleus collisions are presented. The existing theoretical frameworks for describing the in-medium interaction of energetic partons and the space-time evolution of their fragmentation into hadrons are discussed and confronted to experimental data. We conclude with a list of theoretical and experimental open issues, and a brief description of future relevant experiments and facilities.
Improved modelling of independent parton hadronization
International Nuclear Information System (INIS)
Biddulph, P.; Thompson, G.
1989-01-01
A modification is proposed to current versions of the Field-Feynman ansatz for the hadronization of a quark in Monte Carlo models of QCD interactions. This faster-running algorithm has no more parameters and imposes a better degree of energy conservation. It results in naturally introducing a limitation of the transverse momentum distribution, similar to the experimentally observed ''seagull'' effect. There is now a much improved conservation of quantum numbers between the original parton and resultant hadrons, and the momentum of the emitted parton is better preserved in the summed momentum vectors of the final state particles. (orig.)
Measurement of parton shower observables with OPAL
Directory of Open Access Journals (Sweden)
Fischer N.
2016-01-01
Full Text Available A study of QCD coherence is presented based on a sample of about 397,000 e+e- hadronic annihilation events collected at √s = 91 GeV with the OPAL detector at LEP. The study is based on four recently proposed observables that are sensitive to coherence effects in the perturbative regime. The measurement of these observables is presented, along with a comparison with the predictions of different parton shower models. The models include both conventional parton shower models and dipole antenna models. Different ordering variables are used to investigate their influence on the predictions.
Positivity bounds on double parton distributions
International Nuclear Information System (INIS)
Diehl, Markus; Kasemets, Tomas
2013-03-01
Double hard scattering in proton-proton collisions is described in terms of double parton distributions. We derive bounds on these distributions that follow from their interpretation as probability densities, taking into account all possible spin correlations between two partons in an unpolarized proton. These bounds constrain the size of the polarized distributions and can for instance be used to set upper limits on the effects of spin correlations in double hard scattering. We show that the bounds are stable under leading-order DGLAP evolution to higher scales.
Partons and the EMC spin effect
International Nuclear Information System (INIS)
Bass, S.D.
1992-03-01
We focus on the patron model and the role of the axial anomaly in polarised deep inelastic scattering. We show that the axial anomaly is relevant to each of the higher moments of the spin dependent structure function g 1 (x) and not just the first moment. This result implies that the factorisation of mass singularities is not sufficient to define the parton model in spin dependent quantum chromodynamics (QCD). (It is certainly a necessary condition.) We also need to consider the locality of the photon parton interaction. The anomaly is observed over all x in the (EMC)g 1 (x) data. (author)
Complex conjugate poles and parton distributions
International Nuclear Information System (INIS)
Tiburzi, B.C.; Detmold, W.; Miller, G.A.
2003-01-01
We calculate parton and generalized parton distributions in Minkowski space using a scalar propagator with a pair of complex conjugate poles. Correct spectral and support properties are obtained only after careful analytic continuation from Euclidean space. Alternately the quark distribution function can be calculated from modified cutting rules, which put the intermediate state on its complex mass shells. Distribution functions agree with those resulting from the model's Euclidean space double distribution which we calculate via nondiagonal matrix elements of twist-two operators. Thus one can use a wide class of analytic parametrizations of the quark propagator to connect Euclidean space Green functions to light-cone dominated amplitudes
International Nuclear Information System (INIS)
Neveu, A.
1986-01-01
There exist several string models. In the first lecture, the simplest one, the open bosonic string, which turns out to live most naturally in 26 dimensions will be described in some detail. In the second lecture, the closed bosonic strings, and the open and closed 10-dimensional strings (superstrings) are reviewed. In the third lecture, various compactification schemes which have been proposed to deal with the extra space dimensions, from 4 to 10 or 26 are dealt with; in particular, the Frenkel-Kac construction which builds non-Abelian internal symmetry groups out of the compactified dimensions, and the resulting heterotic string are described. Finally, in the fourth lecture, the important problem of the second quantization of string theories, and of the underlying gauge invariance which is responsible for the possibility of dealing, in a consistent fashion, with interacting high-spin states without negative metric is addressed. 41 references, 8 figures
Partons and quarks. Daresbury lecture note series No. 12
Energy Technology Data Exchange (ETDEWEB)
Close, F. E.
1973-04-15
The report is based on a series of lectures given at Daresbury Laboratory on 2 to 12 Apri1 1973. It is stated that the purpose was to show the reasons why parton models describe the data, show what other phenomena can be understood and what predictions can be made within the parton hypothesis. The report is in sections: elastic electron scattering; inelastic electron scattering; deep inelastic scattering and partons; structure functions and surn rules in the quark parton model; inelastic neutrinto scattering; forward Compton scattering; Compton scattering in simple models; a J = 0 fixed pole in Compton scattering; the non-perturbative parton model without tears; the parton model and vector-meson dominance-rivals or partners; do resonances scale; resonances, SU(6) and the quark parton model; towards a dynamical parton model. (UK)
International Nuclear Information System (INIS)
Vega, H.J. de
1990-01-01
One of the main challenges in theoretical physics today is the unification of all interactions including gravity. At present, string theories appear as the most promising candidates to achieve such a unification. However, gravity has not completely been incorporated in string theory, many technical and conceptual problems remain and a full quantum theory of gravity is still non-existent. Our aim is to properly understand strings in the context of quantum gravity. Attempts towards this are reviewed. (author)
Constraints on parton density functions from D0
Energy Technology Data Exchange (ETDEWEB)
Hays, Jonathan M.; /Imperial Coll., London
2008-04-01
Five recent results from D0 which either impact or have the potential to impact on uncertainties in parton density functions are presented. Many analyses at D0 are sensitive to the modeling of the partonic structure of the proton. When theoretical and experimental uncertainties are well controlled there exists the possibility for additional constraints on parton density functions (PDF). Five measurements are presented which either have already been included in global parton fits or have the potential to contribute in the future.
Gadde, Abhijit; Haghighat, Babak; Kim, Joonho; Kim, Seok; Lockhart, Guglielmo; Vafa, Cumrun
2018-02-01
We consider bound states of strings which arise in 6d (1,0) SCFTs that are realized in F-theory in terms of linear chains of spheres with negative self-intersections 1,2, and 4. These include the strings associated to N small E 8 instantons, as well as the ones associated to M5 branes probing A and D type singularities in M-theory or D5 branes probing ADE singularities in Type IIB string theory. We find that these bound states of strings admit (0,4) supersymmetric quiver descriptions and show how one can compute their elliptic genera.
Thermodynamics of quantum strings
Morgan, M J
1994-01-01
A statistical mechanical analysis of an ideal gas of non-relativistic quantum strings is presented, in which the thermodynamic properties of the string gas are calculated from a canonical partition function. This toy model enables students to gain insight into the thermodynamics of a simple 'quantum field' theory, and provides a useful pedagogical introduction to the more complicated relativistic string theories. A review is also given of the thermodynamics of the open bosonic string gas and the type I (open) superstring gas. (author)
Interpolating string field theories
International Nuclear Information System (INIS)
Zwiebach, B.
1992-01-01
This paper reports that a minimal area problem imposing different length conditions on open and closed curves is shown to define a one-parameter family of covariant open-closed quantum string field theories. These interpolate from a recently proposed factorizable open-closed theory up to an extended version of Witten's open string field theory capable of incorporating on shell closed strings. The string diagrams of the latter define a new decomposition of the moduli spaces of Riemann surfaces with punctures and boundaries based on quadratic differentials with both first order and second order poles
International Nuclear Information System (INIS)
Becker, Katrin; Becker, Melanie; Krause, Axel
2006-01-01
We show that all three conditions for the cosmological relevance of heterotic cosmic strings, the right tension, stability and a production mechanism at the end of inflation, can be met in the strongly coupled M-theory regime. Whereas cosmic strings generated from weakly coupled heterotic strings have the well-known problems posed by Witten in 1985, we show that strings arising from M5-branes wrapped around 4-cycles (divisors) of a Calabi-Yau in heterotic M-theory compactifications solve these problems in an elegant fashion
International Nuclear Information System (INIS)
Turok, N.; Bhattacharjee, P.
1984-01-01
The evolution of a network of strings produced at a grand-unification phase transition in an expanding universe is discussed, with particular reference to the processes of energy exchange between the strings and the rest of the universe. This is supported by numerical calculations simulating the behavior of strings in an expanding universe. It is found that in order that the energy density of the strings does not come to dominate the total energy density there must be an efficient mechanism for energy loss: the only plausible one being the production of closed loops and their subsequent decay via gravitational radiation
2003-01-01
[figure removed for brevity, see original site] In eastern Arabia Terra, remnants of a once vast layered terrain are evident as isolated buttes, mesas, and deeply-filled craters. The origin of the presumed sediments that created the layers is unknown, but those same sediments, now eroded, may be the source of the thick mantle of dust that covers much of Arabia Terra today.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Image information: VIS instrument. Latitude 20.5, Longitude 50 East (310 West). 19 meter/pixel resolution.
Relativistic strings and dual models of strong interactions
International Nuclear Information System (INIS)
Marinov, M.S.
1977-01-01
The theory of strong interactions,based on the model depicting a hardon as a one-dimentional elastic relativistic system(''string'') is considered. The relationship between this model and the concepts of quarks and partons is discussed. Presented are the principal results relating to the Veneziano dual theory, which may be considered as the consequence of the string model, and to its modifications. The classical string theory is described in detail. Attention is focused on questions of importance to the construction of the quantum theory - the Hamilton mechanisms and conformal symmetry. Quantization is described, and it is shown that it is not contradictory only in the 26-dimentional space and with a special requirement imposed on the spectrum of states. The theory of a string with a distributed spin is considered. The spin is introduced with the aid of the Grassman algebra formalism. In this case quantization is possible only in the 10-dimentional space. The strings interact by their ruptures and gluings. A method for calculating the interaction amplitudes is indicated
Collinear and transverse momentum dependent parton densities obtained with a parton branching method
Energy Technology Data Exchange (ETDEWEB)
Lelek, Aleksandra
2017-10-15
We present a solution of the DGLAP evolution equations, written in terms of Sudakov form factors to describe the branching and no-branching probabilities, using a parton branching Monte Carlo method. We demonstrate numerically that this method reproduces the semi-analytical solutions. We show how this method can be used to determine Transverse Momentum Dependent (TMD) parton distribution functions, in addition to the usual integrated parton distributions functions. We discuss numerical effects of the boundary of soft gluon resolution scale parameter on the resulting parton distribution functions. We show that a very good fit of the integrated TMDs to high precision HERA data can be obtained over a large range in x and Q{sup 2}.
Collinear and transverse momentum dependent parton densities obtained with a parton branching method
International Nuclear Information System (INIS)
Lelek, Aleksandra
2017-10-01
We present a solution of the DGLAP evolution equations, written in terms of Sudakov form factors to describe the branching and no-branching probabilities, using a parton branching Monte Carlo method. We demonstrate numerically that this method reproduces the semi-analytical solutions. We show how this method can be used to determine Transverse Momentum Dependent (TMD) parton distribution functions, in addition to the usual integrated parton distributions functions. We discuss numerical effects of the boundary of soft gluon resolution scale parameter on the resulting parton distribution functions. We show that a very good fit of the integrated TMDs to high precision HERA data can be obtained over a large range in x and Q 2 .
What is the transverse momentum of partons
International Nuclear Information System (INIS)
Close, F.E.; Halzen, F.; Scott, D.M.
1977-01-01
Theoretical arguments for a picture where the average transverse momentum of partons inside hadrons increases when x increases towards x=0.4 approximately 0.5, peaks and subsequently decreases when x approaches 1. This result is contrary to that suggested by asymptotic freedom arguments. Phenomenological support for this is discussed. (Auth.)
Parton dynamics in hadronic processes. Final report
International Nuclear Information System (INIS)
Sukhatme, U.P.
1984-07-01
We have elucidated several aspects of the dual parton fragmentation model for low transverse momentum multiparticle production in hadronic collisions previously developed by the author and collaborators at Orsay, France. In particular, we have verified that the dual parton model correctly reproduces recently obtained two particle inclusive distributions and particle ratios in the central region of pp and anti pp collisions. This work sheds light on the dynamics of partons in a hadronic collision since it strongly indicates that a valence quark from each initial hadron is held back with a small momentum fraction. Also, we have extended the dual parton approach to include diffraction dissocation and studied the consequences on inclusive pion production in pp interactions. We have investigated the virtues and limitations of logarithmic perturbation theory, which is often a much simpler alternative to standard Rayleigh-Schroedinger perturbation theory. Finally, we have developed and studied the shifted 1/N expansion for the enrgy eigenstates in non-relativistic quantum mechanics. Our results provide an accurate, rapidly convergent, powerful new way of handling any spherically symmetric potential. 18 references
QCD parton model at collider energies
International Nuclear Information System (INIS)
Ellis, R.K.
1984-09-01
Using the example of vector boson production, the application of the QCD improved parton model at collider energies is reviewed. The reliability of the extrapolation to SSC energies is assessed. Predictions at √S = 0.54 TeV are compared with data. 21 references
Correlations in the Parton Recombination Model
Energy Technology Data Exchange (ETDEWEB)
Bass, S.A. [Department of Physics, Duke University, Durham, NC 27708-0305 (United States); RIKEN BNL Research Center, Brookhaven Nat. Lab., Upton, NY 11973 (United States); Fries, R.J. [School of Physics and Astronomy, Univ. of Minnesota, Minneapolis, MN 55455 (United States); Mueller, B. [Department of Physics, Duke University, Durham, NC 27708-0305 (United States)
2006-08-07
We describe how parton recombination can address the recent measurement of dynamical jet-like two particle correlations. In addition we discuss the possible effect realistic light-cone wave-functions including higher Fock-states may have on the well-known elliptic flow valence-quark number scaling law.
A Parton Shower for High Energy Jets
DEFF Research Database (Denmark)
Andersen, Jeppe Rosenkrantz; Lonnblad, Leif; M. Smillie, Jennifer
2011-01-01
it is important that the corresponding divergences in the parton shower are subtracted, keeping only the collinear parts. We present a novel, shower-independent method for achieving this, enabling us to generate fully exclusive and hadronized events with multiple hard jets, in hadronic collisions. We discuss...
Parton distribution and Tevatron jet data
International Nuclear Information System (INIS)
Alekhin, S.; Bluemlein, J.; Moch, S.
2011-05-01
We study the impact of Tevatron jet data on a global fit of parton distribution functions and on the determination of the value of the strong coupling constant α s (M Z ). The consequences are illustrated for cross sections of Higgs boson production at Tevatron and the LHC. (orig.)
From form factors to generalized parton distributions
Energy Technology Data Exchange (ETDEWEB)
Diehl, Markus
2013-06-15
I present an extraction of generalized parton distributions from selected data on the electromagnetic nucleon form factors. The extracted distributions can in particular be used to quantify the contribution to the proton spin from the total angular momentum carried by valence quarks, as well as their transverse spatial distribution inside the proton.
Indian Academy of Sciences (India)
Partons and jets at the LHC. DAVISON E SOPER. Institute of Theoretical Science, University of Oregon, Eugene, OR 97403-5203, USA. Abstract. I review some issues related to short distance QCD and its relation to the experimental program of the large hadron collider (LHC) now under construction in Geneva. Keywords.
Systematic improvement of QCD parton showers
Winter, Jan; Hoeth, Hendrik; Krauss, Frank; Schonherr, Marek; Schumann, Steffen; Siegert, Frank; Zapp, Korinna
2012-01-01
In this contribution, we will give a brief overview of the progress that has been achieved in the field of combining matrix elements and parton showers. We exemplify this by focusing on the case of electron--positron collisions and by reporting on recent developments as accomplished within the Sherpa event generation framework.
Semilocal and electroweak strings
Achucarro, A; Vachaspati, T
We review a class of non-topological defects in the standard electroweak model, and their implications. Starting with the semilocal string, which provides a counterexample to many well-known properties of topological vortices, we discuss electroweak strings and their stability with and without
DEFF Research Database (Denmark)
Schäfer, Mirko; Greiner, Martin
2011-01-01
to chaotic strings. Inhomogeneous coupling weights as well as small-world perturbations of the ring-network structure are discussed. It is found that certain combinations of coupling and network disorder preserve the empirical relationship between chaotic strings and the weak and strong sector...
International Nuclear Information System (INIS)
Jensen, B.
1993-06-01
The author presents a global solution of Einstein's equations which represents a rotating cosmic string with a finite coreradius. The importance of pressure for the generation of closed timelike curves outside the coreregion of such strings is clearly displayed in this model due to the simplicity of the source. 10 refs
Derandomizing from random strings
Buhrman, H.; Fortnow, L.; Koucký, M.; Loff, B.
2010-01-01
In this paper we show that BPP is truth-table reducible to the set of Kolmogorov random strings R(K). It was previously known that PSPACE, and hence BPP is Turing-reducible to R(K). The earlier proof relied on the adaptivity of the Turing-reduction to find a Kolmogorov-random string of polynomial
Unification of string dualities
International Nuclear Information System (INIS)
Sen, A.
1997-01-01
We argue that all conjectured dualities involving various string, M- and F-theory compactifications can be 'derived' from the conjectured duality between type I and SO(32) heterotic string theory, T-dualities and the definition of M-and F-theories. (orig.)
Optimal Packed String Matching
DEFF Research Database (Denmark)
Ben-Kiki, Oren; Bille, Philip; Breslauer, Dany
2011-01-01
In the packed string matching problem, each machine word accommodates – characters, thus an n-character text occupies n/– memory words. We extend the Crochemore-Perrin constantspace O(n)-time string matching algorithm to run in optimal O(n/–) time and even in real-time, achieving a factor – speed...
CERN. Geneva. Audiovisual Unit
2002-01-01
I will present a simple and non-technical overview of string theory, aimed for non-experts who like to get some idea what string theory is about. Besides introductory material, I intend to cover also some of the more recent developments.
Probe initial parton density and formation time via jet quenching
International Nuclear Information System (INIS)
Wang, Xin-Nian
2002-01-01
Medium modification of jet fragmentation function due to multiple scattering and induced gluon radiation leads directly to jet quenching or suppression of leading particle distribution from jet fragmentation. One can extract an effective total parton energy loss which can be related to the total transverse momentum broadening. For an expanding medium, both are shown to be sensitive to the initial parton density and formation time. Therefore, one can extract the initial parton density and formation time from simultaneous measurements of parton energy loss and transverse momentum broadening. Implication of the recent experimental data on effects of detailed balance in parton energy loss is also discussed
Correlations in double parton distributions. Effects of evolution
International Nuclear Information System (INIS)
Diehl, Markus; Keane, Shane; Kasemets, Tomas; Vrije Univ., Amsterdam
2014-01-01
We numerically investigate the impact of scale evolution on double parton distributions, which are needed to compute multiple hard scattering processes. Assuming correlations between longitudinal and transverse variables or between the parton spins to be present at a low scale, we study how they are affected by evolution to higher scales, i.e. by repeated parton emission. We find that generically evolution tends to wash out correlations, but with a speed that may be slow or fast depending on kinematics and on the type of correlation. Nontrivial parton correlations may hence persist in double parton distributions at the high scales relevant for hard scattering processes.
DEFF Research Database (Denmark)
Barendregt, Wolmet; Börjesson, Peter; Eriksson, Eva
2017-01-01
In this paper, we present the forced collaborative interaction game StringForce. StringForce is developed for a special education context to support training of collaboration skills, using readily available technologies and avoiding the creation of a "mobile bubble". In order to play String......Force two or four physically collocated tablets are required. These tablets are connected to form one large shared game area. The game can only be played by collaborating. StringForce extends previous work, both technologically and regarding social-emotional training. We believe String......Force to be an interesting demo for the IDC community, as it intertwines several relevant research fields, such as mobile interaction and collaborative gaming in the special education context....
2015-01-01
Welcome to String-Math 2015 at Sanya. The conference will be opened in December 31, 2015- January 4, 2016. String theory plays a central role in theoretical physics as a candidate for the quantum theory unifying gravity with other interactions. It has profound connections with broad branches of modern mathematics ever since the birth. In the last decades, the prosperous interaction, built upon the joint efforts from both mathematicians and physicists, has given rise to marvelous deep results in supersymmetric gauge theory, topological string, M-theory and duality on the physics side as well as in algebraic geometry, differential geometry, algebraic topology, representation theory and number theory on the mathematics side. The interplay is two-fold. The mathematics has provided powerful tools to fulfill the physical interconnection of ideas and clarify physical structures to understand the nature of string theory. On the other hand, ideas from string theory and quantum field theory have been a source of sign...
International Nuclear Information System (INIS)
Ishibashi, Nobuyuki; Onogi, Tetsuya
1989-01-01
Consistency conditions of open string theories, which can be a powerful tool in open string model building, are proposed. By making use of these conditions and assuming a simple prescription for the Chan-Paton factors, open string theories in several backgrounds are studied. We show that 1. there exist a large number of consistent bosonic open string theories on Z 2 orbifolds, 2. SO(32) type I superstring is the unique consistent model among fermionic string theories on the ten-dimensional flat Minkowski space, and 3. with our prescription for the Chan-Paton factors, there exist no consistent open superstring theories on (six-dimensional Minkowski space-time) x (Z 2 orbifold). (orig.)
A reduced covariant string model for the extrinsic string
International Nuclear Information System (INIS)
Botelho, L.C.L.
1989-01-01
It is studied a reduced covariant string model for the extrinsic string by using Polyakov's path integral formalism. On the basis of this reduced model it is suggested that the extrinsic string has its critical dimension given by 13. Additionally, it is calculated in a simple way Poliakov's renormalization group law for the string rigidity coupling constants. (A.C.A.S.) [pt
Postprandial Hyperlipidemia and Remnant Lipoproteins.
Masuda, Daisaku; Yamashita, Shizuya
2017-02-01
Fasting hypertriglyceridemia is positively associated with the morbidity of coronary heart disease (CHD), and postprandial (non-fasting) hypertriglyceridemia is also correlated with the risk status for CHD, which is related to the increase in chylomicron (CM) remnant lipoproteins produced from the intestine. CM remnant particles, as well as oxidized low density lipoprotein (LDL) or very low density lipoprotein (VLDL) remnants, are highly atherogenic and act by enhancing systemic inflammation, platelet activation, coagulation, thrombus formation, and macrophage foam cell formation. The cholesterol levels of remnant lipoproteins significantly correlate with small, dense LDL; impaired glucose tolerance (IGT) and CHD prevalence. We have developed an assay of apolipoprotein (apo)B-48 levels to evaluate the accumulation of CM remnants. Fasting apoB-48 levels correlate with the morbidity of postprandial hypertriglyceridemia, obesity, type III hyperlipoproteinemia, the metabolic syndrome, hypothyroidism, chronic kidney disease, and IGT. Fasting apoB-48 levels also correlate with carotid intima-media thickening and CHD prevalence, and a high apoB-48 level is a significant predictor of CHD risk, independent of the fasting TG level. Diet interventions, such as dietary fibers, polyphenols, medium-chain fatty acids, diacylglycerol, and long-chain n-3 polyunsaturated fatty acids (PUFA), ameliorate postprandial hypertriglyceridemia, moreover, drugs for dyslipidemia (n-3 PUFA, statins, fibrates or ezetimibe) and diabetes concerning incretins (dipeptidyl-peptidase IV inhibitor or glucagon like peptide-1 analogue) may improve postprandial hypertriglyceridemia. Since the accumulation of CM remnants correlates to impaired lipid and glucose metabolism and atherosclerotic cardiovascular events, further studies are required to investigate the characteristics, physiological activities, and functions of CM remnants for the development of new interventions to reduce atherogenicity.
International Nuclear Information System (INIS)
Kaku, M.
1987-01-01
In this article, the authors summarize the rapid progress in constructing string field theory actions, such as the development of the covariant BRST theory. They also present the newer geometric formulation of string field theory, from which the BRST theory and the older light cone theory can be derived from first principles. This geometric formulation allows us to derive the complete field theory of strings from two geometric principles, in the same way that general relativity and Yang-Mills theory can be derived from two principles based on global and local symmetry. The geometric formalism therefore reduces string field theory to a problem of finding an invariant under a new local gauge group they call the universal string group (USG). Thus, string field theory is the gauge theory of the universal string group in much the same way that Yang-Mills theory is the gauge theory of SU(N). The geometric formulation places superstring theory on the same rigorous group theoretical level as general relativity and gauge theory
Duality relation between charged elastic strings and superconducting cosmic strings
International Nuclear Information System (INIS)
Carter, B.
1989-01-01
The mechanical properties of macroscopic electromagnetically coupled string models in a flat or curved background are treated using a covariant formalism allowing the construction of a duality transformation that relates the category of uniform ''electric'' string models, constructed as the (nonconducting) charged generalisation of ordinary uncoupled (violin type) elastic strings, to a category of ''magnetic'' string models comprising recently discussed varieties of ''superconducting cosmic strings''. (orig.)
Multiple parton interactions at the LHC
Gaunt, Jonathan Richard
2018-01-01
Many high-energy collider experiments (including the current Large Hadron Collider at CERN) involve the collision of hadrons. Hadrons are composite particles consisting of partons (quarks and gluons), and this means that in any hadron–hadron collision there will typically be multiple collisions of the constituents — i.e. multiple parton interactions (MPI). Understanding the nature of the MPI is important in terms of searching for new physics in the products of the scatters, and also in its own right to gain a greater understanding of hadron structure. This book aims at providing a pedagogical introduction and a comprehensive review of different research lines linked by an involvement of MPI phenomena. It is written by pioneers as well as young leading scientists, and reviews both experimental findings and theoretical developments, discussing also the remaining open issues.
Momentum transfer dependence of generalized parton distributions
Energy Technology Data Exchange (ETDEWEB)
Sharma, Neetika [Indian Institute of Science Education and Research Mohali, S.A.S. Nagar, Punjab (India)
2016-11-15
We revisit the model for parametrization of the momentum dependence of nucleon generalized parton distributions in the light of recent MRST measurements of parton distribution functions (A.D. Martin et al., Eur. Phys. J. C 63, 189 (2009)). Our parametrization method with a minimum set of free parameters give a sufficiently good description of data for Dirac and Pauli electromagnetic form factors of proton and neutron at small and intermediate values of momentum transfer. We also calculate the GPDs for up- and down-quarks by decomposing the electromagnetic form factors for the nucleon using the charge and isospin symmetry and also study the evolution of GPDs to a higher scale. We further investigate the transverse charge densities for both the unpolarized and transversely polarized nucleon and compare our results with Kelly's distribution. (orig.)
New results in the Dual Parton Model
International Nuclear Information System (INIS)
Van, J.T.T.; Capella, A.
1984-01-01
In this paper, the similarity between the x distribution for particle production and the fragmentation functions are observed in e+e- collisions and in deep inelastic scattering are presented. Based on the observation, the authors develop a complete approach to multiparticle production which incorporates the most important features and concepts learned about high energy collisions. 1. Topological expansion : the dominant diagram at high energy corresponds to the simplest topology. 2. Unitarity : diagrams of various topology contribute to the cross sections in a way that unitary is preserved. 3. Regge behaviour and Duality. 4. Partonic structure of hadrons. These general theoretical ideas, result from many joint experimental and theoretical efforts on the study of soft hadron physics. The dual parton model is able to explain all the experimental features from FNAL to SPS collider energies. It has all the properties of an S-matrix theory and provides a unified description of hadron-hadron, hadron-nucleus and nucleus-nucleus collisions
Structure functions are not parton probabilities
International Nuclear Information System (INIS)
Brodsky, Stanley J.; Hoyer, Paul; Sannino, Francesco; Marchal, Nils; Peigne, Stephane
2002-01-01
The common view that structure functions measured in deep inelastic lepton scattering are determined by the probability of finding quarks and gluons in the target is not correct in gauge theory. We show that gluon exchange between the fast, outgoing partons and target spectators, which is usually assumed to be an irrelevant gauge artifact, affects the leading twist structure functions in a profound way. This observation removes the apparent contradiction between the projectile (eikonal) and target (parton model) views of diffractive and small x B phenomena. The diffractive scattering of the fast outgoing quarks on spectators in the target causes shadowing in the DIS cross section. Thus the depletion of the nuclear structure functions is not intrinsic to the wave function of the nucleus, but is a coherent effect arising from the destructive interference of diffractive channels induced by final state interactions. This is consistent with the Glauber-Gribov interpretation of shadowing as a rescattering effect
Parton Distributions in the Higgs Boson Era
Rojo, Juan
2013-01-01
Parton distributions are an essential ingredient of the LHC program. PDFs are relevant for precision Standard Model measurements, for Higgs boson characterization as well as for New Physics searches. In this contribution I review recent progress in the determination of the parton distributions of the proton during the last year. Important developments include the impact of new LHC measurements to pin down poorly known PDFs, studies of theoretical uncertainties, higher order calculations for processes relevant for PDF determinations, PDF benchmarking exercises with LHC data, as well as methodological and statistical improvements in the global analysis framework. I conclude with some speculative considerations about future directions in PDF determinations from the theory point of view.
International Nuclear Information System (INIS)
Jevicki, A.; Ninomiya, M.
1985-01-01
We are concerned with applications of the simplicial discretization method (Regge calculus) to two-dimensional quantum gravity with emphasis on the physically relevant string model. Beginning with the discretization of gravity and matter we exhibit a discrete version of the conformal trace anomaly. Proceeding to the string problem we show how the direct approach of (finite difference) discretization based on Nambu action corresponds to unsatisfactory treatment of gravitational degrees. Based on the Regge approach we then propose a discretization corresponding to the Polyakov string. In this context we are led to a natural geometric version of the associated Liouville model and two-dimensional gravity. (orig.)
Superconducting cosmic strings
International Nuclear Information System (INIS)
Chudnovsky, E.M.; Field, G.B.; Spergel, D.N.; Vilenkin, A.
1986-01-01
Superconducting loops of string formed in the early Universe, if they are relatively light, can be an important source of relativistic particles in the Galaxy. They can be observed as sources of synchrotron radiation at centimeter wavelengths. We propose a string model for two recently discovered radio sources, the ''thread'' in the galactic center and the source G357.7-0.1, and predict that the filaments in these sources should move at relativistic speeds. We also consider superheavy superconducting strings, and the possibility that they be observed as extragalactic radio sources
Energy Technology Data Exchange (ETDEWEB)
Witten, Edward
2015-10-21
The Strings 2014 meeting was held at Princeton University June 23-27, 2014, co-sponsored by Princeton University and the Institute for Advanced Study. The goal of the meeting was to provide a stimulating and up-to-date overview of research in string theory and its relations to other areas of physics and mathematics, ranging from geometry to quantum field theory, condensed matter physics, and more. This brief report lists committee members and speakers but contains no scientific information. Note that the talks at Strings 2014 were videotaped and are available on the conference website: http://physics.princeton.edustrings2014/Talk_titles.shtml.
A disintegrating cosmic string
International Nuclear Information System (INIS)
Griffiths, J B; Docherty, P
2002-01-01
We present a simple sandwich gravitational wave of the Robinson-Trautman family. This is interpreted as representing a shock wave with a spherical wavefront which propagates into a Minkowski background minus a wedge (i.e. the background contains a cosmic string). The deficit angle (the tension) of the string decreases through the gravitational wave, which then ceases. This leaves an expanding spherical region of Minkowski space behind it. The decay of the cosmic string over a finite interval of retarded time may be considered to generate the gravitational wave. (letter to the editor)
International Nuclear Information System (INIS)
Klimenko, S.V.; Kochin, V.N.; Plyushchaj, M.S.; Pron'ko, G.P.; Razumov, A.V.; Samarin, A.V.
1985-01-01
Partial solutions to classical equations of three-string motion are considered. Simplest solutions, when three-string center moving with high velocity, are co nsidered. Single-mode solutions are studied. Explicit form of their parametrization is obtained and three-string dynamics visualization is made. Means of graphic packet ''Atom'' were used for visualization. A set of processes for graphic representation of multiparametric functions is developed. Peculiarity of these processes is a wide class of functions, which are represented by parametric, coordinate and functional isolines
Deep inelastic processes and the parton model
International Nuclear Information System (INIS)
Altarelli, G.
The lecture was intended as an elementary introduction to the physics of deep inelastic phenomena from the point of view of theory. General formulae and facts concerning inclusive deep inelastic processes in the form: l+N→l'+hadrons (electroproduction, neutrino scattering) are first recalled. The deep inelastic annihilation e + e - →hadrons is then envisaged. The light cone approach, the parton model and their relation are mainly emphasized
Generalized Parton Distributions and their Singularities
Energy Technology Data Exchange (ETDEWEB)
Anatoly Radyushkin
2011-04-01
A new approach to building models of generalized parton distributions (GPDs) is discussed that is based on the factorized DD (double distribution) Ansatz within the single-DD formalism. The latter was not used before, because reconstructing GPDs from the forward limit one should start in this case with a very singular function $f(\\beta)/\\beta$ rather than with the usual parton density $f(\\beta)$. This results in a non-integrable singularity at $\\beta=0$ exaggerated by the fact that $f(\\beta)$'s, on their own, have a singular $\\beta^{-a}$ Regge behavior for small $\\beta$. It is shown that the singularity is regulated within the GPD model of Szczepaniak et al., in which the Regge behavior is implanted through a subtracted dispersion relation for the hadron-parton scattering amplitude. It is demonstrated that using proper softening of the quark-hadron vertices in the regions of large parton virtualities results in model GPDs $H(x,\\xi)$ that are finite and continuous at the "border point'' $x=\\xi$. Using a simple input forward distribution, we illustrate the implementation of the new approach for explicit construction of model GPDs. As a further development, a more general method of regulating the $\\beta=0$ singularities is proposed that is based on the separation of the initial single DD $f(\\beta, \\alpha)$ into the "plus'' part $[f(\\beta,\\alpha)]_{+}$ and the $D$-term. It is demonstrated that the "DD+D'' separation method allows to (re)derive GPD sum rules that relate the difference between the forward distribution $f(x)=H(x,0)$ and the border function $H(x,x)$ with the $D$-term function $D(\\alpha)$.
Experimental studies of generalized parton distributions
International Nuclear Information System (INIS)
Kabuss, E.M.
2014-01-01
Generalized parton distributions (GPD) provide a new way to study the nucleon structure. Experimentally they can be accessed using hard exclusive processes such as deeply virtual Compton scattering and meson production. First insights to GPDs were already obtained from measurements at DESY, JLAB and CERN, while new ambitious studies are planned at the upgraded JLAB at 12 GeV and at CERN. Here, some emphasis will be put onto the planned COMPASS II programme. (author)
An introduction to the Generalized Parton Distributions
International Nuclear Information System (INIS)
Michel Garcon
2002-01-01
The concepts of Generalized Parton Distributions (GPD) are reviewed in an introductory and phenomenological fashion. These distributions provide a rich and unifying picture of the nucleon structure. Their physical meaning is discussed. The GPD are in principle measurable through exclusive deeply virtual production of photons (DVCS) or of mesons (DVMP). Experiments are starting to test the validity of these concepts. First results are discussed and new experimental projects presented, with an emphasis on this program at Jefferson Lab
Exceptional groups from open strings
International Nuclear Information System (INIS)
Gaberdiel, M.R.; Zwiebach, B.
1998-01-01
We consider type IIB theory compactified on a two-sphere in the presence of mutually non-local 7-branes. The BPS states associated with the gauge vectors of exceptional groups are seen to arise from open strings connecting the 7-branes, and multi-pronged open strings capable of ending on more than two 7-branes. These multi-pronged strings are built from open string junctions that arise naturally when strings cross 7-branes. The different string configurations can be multiplied as traditional open strings, and are shown to generate the structure of exceptional groups. (orig.)
Cosmic strings and cosmic structure
International Nuclear Information System (INIS)
Albrecht, A.; Brandenberger, R.; Turok, N.
1987-01-01
The paper concerns the application of the theory of cosmic strings to explain the structure of the Universe. The formation of cosmic strings in the early Universe is outlined, along with the Big Bang theory, Grand Unified theories, and the first three minutes after the Big Bang. A description is given of the shaping of the Universe by cosmic strings, including the evolution of the string. The possibility for direct observation of cosmic strings is discussed. (U.K.)
International conference on string theory
2017-01-01
The Strings 2017 conference is part of the "Strings" series of annual conferences, that bring the entire string theory community together. It will include reviews of major developments in the field, and specialized talks on specific topics. There will also be several public lectures given by conference participants, a pre-Strings school at the Technion, and a post-Strings workshop at the Weizmann Institute.
Katz, Sheldon; Klemm, Albrecht; Morrison, David R
2015-01-01
This volume contains the proceedings of the conference String-Math 2012, which was held July 16-21, 2012, at the Hausdorff Center for Mathematics, Universitat Bonn. This was the second in a series of annual large meetings devoted to the interface of mathematics and string theory. These meetings have rapidly become the flagship conferences in the field. Topics include super Riemann surfaces and their super moduli, generalized moonshine and K3 surfaces, the latest developments in supersymmetric and topological field theory, localization techniques, applications to knot theory, and many more. The contributors include many leaders in the field, such as Sergio Cecotti, Matthias Gaberdiel, Rahul Pandharipande, Albert Schwarz, Anne Taormina, Johannes Walcher, Katrin Wendland, and Edward Witten. This book will be essential reading for researchers and students in this area and for all mathematicians and string theorists who want to update themselves on developments in the math-string interface.
Hydroball string sensing system
International Nuclear Information System (INIS)
Hurwitz, M.J.; Ekeroth, D.E.; Squarer, D.
1991-01-01
This patent describes a hydroball string sensing system for a nuclear reactor having a core containing a fluid at a fluid pressure. It comprises a tube connectable to the nuclear reactor so that the fluid can flow within the tube at a fluid pressure that is substantially the same as the fluid pressure of the nuclear reactor core; a hydroball string including - a string member having objects positioned therealong with a specified spacing, the object including a plurality of hydroballs, and bullet members positioned at opposing ends of the string member; first sensor means, positioned outside a first segment of the tube, for sensing one of the objects being positioned within the first segment, and for providing a sensing signal responsive to the sensing of the first sensing means
International Nuclear Information System (INIS)
Espriu, D.
2003-01-01
QCD can be described in a certain kinematical regime by an effective string theory. This string must couple to background chiral fields in a chirally invariant manner, thus taking into account the true chirally non-invariant QCD vacuum. By requiring conformal symmetry of the string and the unitarity constraint on chiral fields we reconstruct the equations of motion for the latter ones. These provide a consistent background for the propagation of the string. By further requiring locality of the effective action we recover the Lagrangian of non-linear sigma model of pion interactions. The prediction is unambiguous and parameter-free. The estimated chiral structural constants of Gasser and Leutwyler fit very well the phenomenological values. (author)
International Nuclear Information System (INIS)
Ramond, P.
1987-01-01
We review the construction of the free equations of motion for open and closed strings in 26 dimensions, using the methods of the Florida Group. Differing from previous treatments, we argue that the constraint L 0 -anti L 0 =0 should not be imposed on all the fields of the closed string in the gauge invariant formalism; we show that it can be incorporated in the gauge invariant formalism at the price of being unable to extract the equations of motion from a Langrangian. We then describe our purely algebraic method to introduce interactions, which works equally well for open and closed strings. Quartic interactions are absent except in the Physical Gauge. Finally, we speculate on the role of the measure of the open string path functional. (orig.)
2008-01-01
String Theory supporters argue that the universe we live in has eleven dimensions, out of which three spacial dimensions and a temporal one, which define the void and the space-time environment we experience daily.
Nonrelativistic closed string theory
International Nuclear Information System (INIS)
Gomis, Jaume; Ooguri, Hirosi
2001-01-01
We construct a Galilean invariant nongravitational closed string theory whose excitations satisfy a nonrelativistic dispersion relation. This theory can be obtained by taking a consistent low energy limit of any of the conventional string theories, including the heterotic string. We give a finite first order worldsheet Hamiltonian for this theory and show that this string theory has a sensible perturbative expansion, interesting high energy behavior of scattering amplitudes and a Hagedorn transition of the thermal ensemble. The strong coupling duals of the Galilean superstring theories are considered and are shown to be described by an eleven-dimensional Galilean invariant theory of light membrane fluctuations. A new class of Galilean invariant nongravitational theories of light-brane excitations are obtained. We exhibit dual formulations of the strong coupling limits of these Galilean invariant theories and show that they exhibit many of the conventional dualities of M theory in a nonrelativistic setting
String theory compactifications
Graña, Mariana
2017-01-01
The lectures in this book provide graduate students and non-specialist researchers with a concise introduction to the concepts and formalism required to reduce the ten-dimensional string theories to the observable four-dimensional space-time - a procedure called string compactification. The text starts with a very brief introduction to string theory, first working out its massless spectrum and showing how the condition on the number of dimensions arises. It then dwells on the different possible internal manifolds, from the simplest to the most relevant phenomenologically, thereby showing that the most elegant description is through an extension of ordinary Riemannian geometry termed generalized geometry, which was first introduced by Hitchin. Last but not least, the authors review open problems in string phenomenology, such as the embedding of the Standard Model and obtaining de Sitter solutions.
International Nuclear Information System (INIS)
Schellekens, A.N.
1989-01-01
In this paper an elementary introduction to the principles of four-dimensional string construction will be given. Although the emphasis is on lattice constructions, almost all results have further, and often quite straightforward generalizations to other constructions. Since heterotic strings look phenomenologically more promising than type-II theories the authors only consider the former, although everything can easily be generalized to type-II theories. Some additional aspects of lattice constructions are discussed, and an extensive review can be found
Confusing the heterotic string
International Nuclear Information System (INIS)
Benett, D.L.; Mizrachi, L.
1986-01-01
A confusion mechanism is proposed as a global modification of the heterotic string model. It envolves a confusion hypersurface across which the two E 8 's of the heterotic string are permuted. A remarkable numerical coincidence is found which prevents an inconsistency in the model. The low energy limit of this theory (after compactification) is typically invariant under one E 8 only, thereby removing the shadow world from the original model. (orig.)
Confusing the heterotic string
Benett, D.; Brene, N.; Mizrachi, Leah; Nielsen, H. B.
1986-10-01
A confusion mechanism is proposed as a global modification of the heterotic string model. It envolves a confusion hypersurface across which the two E 8's of the heterotic string are permuted. A remarkable numerical coincidence is found which prevents an inconsistency in the model. The low energy limit of this theory (after compactification) is typically invariant under one E 8 only, thereby removing the shadow world from the original model.
Confusing the heterotic string
Energy Technology Data Exchange (ETDEWEB)
Benett, D.L.; Brene, N.; Nielsen, H.B.; Mizrachi, L.
1986-10-02
A confusion mechanism is proposed as a global modification of the heterotic string model. It envolves a confusion hypersurface across which the two E/sub 8/'s of the heterotic string are permuted. A remarkable numerical coincidence is found which prevents an inconsistency in the model. The low energy limit of this theory (after compactification) is typically invariant under one E/sub 8/ only, thereby removing the shadow world from the original model.
International Nuclear Information System (INIS)
Thorn, C.B.
1988-01-01
Several topics are discussed in string theory presented as three lectures to the Spring School on Superstrings at the ICTP at Trieste, Italy, in April, 1988. The first lecture is devoted to some general aspects of conformal invariance and duality. The second sketches methods for carrying out perturbative calculations in string field theory. The final lecture presents an alternative lattice approach to a nonperturbative formulation of the sum over world surfaces. 35 refs., 12 figs
International Nuclear Information System (INIS)
Gervais, J.L.; Neveu, A.
1980-01-01
Recent works of the authors on string interpretation of the Wilson loop operators in QCD are reviewed in a self-contained fashion. Although most of the results habe already appeared in print, some new material is presented in renormalization of the Wilson loop operator and on the use of light-cone expansion to derive a linear string-like equation in light-cone formalism. (orig.)
Dijkgraaf, R; Verlinde, Herman L
1997-01-01
Via compactification on a circle, the matrix model of M-theory proposed by Banks et al suggests a concrete identification between the large N limit of two-dimensional N=8 supersymmetric Yang-Mills theory and type IIA string theory. In this paper we collect evidence that supports this identification. We explicitly identify the perturbative string states and their interactions, and describe the appearance of D-particle and D-membrane states.
Manipulating Strings in Python
Directory of Open Access Journals (Sweden)
William J. Turkel
2012-07-01
Full Text Available This lesson is a brief introduction to string manipulation techniques in Python. Knowing how to manipulate strings plays a crucial role in most text processing tasks. If you’d like to experiment with the following lessons, you can write and execute short programs as we’ve been doing, or you can open up a Python shell / Terminal to try them out on the command line.
The average number of partons per clan in rapidity intervals in parton showers
Energy Technology Data Exchange (ETDEWEB)
Giovannini, A. [Turin Univ. (Italy). Ist. di Fisica Teorica; Lupia, S. [Max-Planck-Institut fuer Physik, Muenchen (Germany). Werner-Heisenberg-Institut; Ugoccioni, R. [Lund Univ. (Sweden). Dept. of Theoretical Physics
1996-04-01
The dependence of the average number of partons per clan on virtuality and rapidity variables is analytically predicted in the framework of the Generalized Simplified Parton Shower model, based on the idea that clans are genuine elementary subprocesses. The obtained results are found to be qualitatively consistent with experimental trends. This study extends previous results on the behavior of the average number of clans in virtuality and rapidity and shows how important physical quantities can be calculated analytically in a model based on essentials of QCD allowing local violations of the energy-momentum conservation law, still requiring its global validity. (orig.)
The average number of partons per clan in rapidity intervals in parton showers
International Nuclear Information System (INIS)
Giovannini, A.; Lupia, S.; Ugoccioni, R.
1996-01-01
The dependence of the average number of partons per clan on virtuality and rapidity variables is analytically predicted in the framework of the Generalized Simplified Parton Shower model, based on the idea that clans are genuine elementary subprocesses. The obtained results are found to be qualitatively consistent with experimental trends. This study extends previous results on the behavior of the average number of clans in virtuality and rapidity and shows how important physical quantities can be calculated analytically in a model based on essentials of QCD allowing local violations of the energy-momentum conservation law, still requiring its global validity. (orig.)
Parton-hadron cascade approach at SPS and RHIC
Energy Technology Data Exchange (ETDEWEB)
Nara, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1998-07-01
A parton-hadron cascade model which is the extension of hadronic cascade model incorporating hard partonic scattering based on HIJING is presented to describe the space-time evolution of parton/hadron system produced by ultra-relativistic nuclear collisions. Hadron yield, baryon stopping and transverse momentum distribution are calculated and compared with HIJING and VNI. Baryon density, energy density and temperature for RHIC are calculated within this model. (author)
Parton Shower Uncertainties with Herwig 7: Benchmarks at Leading Order
Bellm, Johannes; Plätzer, Simon; Schichtel, Peter; Siódmok, Andrzej
2016-01-01
We perform a detailed study of the sources of perturbative uncertainty in parton shower predictions within the Herwig 7 event generator. We benchmark two rather different parton shower algorithms, based on angular-ordered and dipole-type evolution, against each other. We deliberately choose leading order plus parton shower as the benchmark setting to identify a controllable set of uncertainties. This will enable us to reliably assess improvements by higher-order contributions in a follow-up work.
Antoniadis, Ignatios; Giveon, Amit; Antoniadis, Ignatios; Dimopoulos, Savas; Giveon, Amit
2001-01-01
We propose a framework where the string scale as well as all compact dimensions are at the electroweak scale $\\sim$ TeV$^{-1}$. The weakness of gravity is attributed to the small value of the string coupling $g_s \\sim 10^{-16}$, presumably a remnant of the dilaton's runaway behavior, suggesting the possibility of a common solution to the hierarchy and dilaton-runaway problems. In spite of the small $g_s$, in type II string theories with gauge interactions localized in the vicinity of NS5-branes, the standard model gauge couplings are of order one and are associated with the sizes of compact dimensions. At a TeV these theories exhibit higher dimensional and stringy behavior. The models are holographically dual to a higher dimensional non-critical string theory and this can be used to compute the experimentally accessible spectrum and self-couplings of the little strings. In spite of the stringy behavior, gravity remains weak and can be ignored at collider energies. The Damour-Polyakov mechanism is an automatic...
QCD evolution equations for high energy partons in nuclear matter
Kinder-Geiger, Klaus; Geiger, Klaus; Mueller, Berndt
1994-01-01
We derive a generalized form of Altarelli-Parisi equations to decribe the time evolution of parton distributions in a nuclear medium. In the framework of the leading logarithmic approximation, we obtain a set of coupled integro- differential equations for the parton distribution functions and equations for the virtuality (``age'') distribution of partons. In addition to parton branching processes, we take into account fusion and scattering processes that are specific to QCD in medium. Detailed balance between gain and loss terms in the resulting evolution equations correctly accounts for both real and virtual contributions which yields a natural cancellation of infrared divergences.
Deterministic indexing for packed strings
DEFF Research Database (Denmark)
Bille, Philip; Gørtz, Inge Li; Skjoldjensen, Frederik Rye
2017-01-01
Given a string S of length n, the classic string indexing problem is to preprocess S into a compact data structure that supports efficient subsequent pattern queries. In the deterministic variant the goal is to solve the string indexing problem without any randomization (at preprocessing time...... or query time). In the packed variant the strings are stored with several character in a single word, giving us the opportunity to read multiple characters simultaneously. Our main result is a new string index in the deterministic and packed setting. Given a packed string S of length n over an alphabet σ...
ABM11 parton distributions and benchmarks
International Nuclear Information System (INIS)
Alekhin, Sergey; Bluemlein, Johannes; Moch, Sven-Olaf
2012-08-01
We present a determination of the nucleon parton distribution functions (PDFs) and of the strong coupling constant α s at next-to-next-to-leading order (NNLO) in QCD based on the world data for deep-inelastic scattering and the fixed-target data for the Drell-Yan process. The analysis is performed in the fixed-flavor number scheme for n f =3,4,5 and uses the MS scheme for α s and the heavy quark masses. The fit results are compared with other PDFs and used to compute the benchmark cross sections at hadron colliders to the NNLO accuracy.
ABM11 parton distributions and benchmarks
Energy Technology Data Exchange (ETDEWEB)
Alekhin, Sergey [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Institut Fiziki Vysokikh Ehnergij, Protvino (Russian Federation); Bluemlein, Johannes; Moch, Sven-Olaf [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2012-08-15
We present a determination of the nucleon parton distribution functions (PDFs) and of the strong coupling constant {alpha}{sub s} at next-to-next-to-leading order (NNLO) in QCD based on the world data for deep-inelastic scattering and the fixed-target data for the Drell-Yan process. The analysis is performed in the fixed-flavor number scheme for n{sub f}=3,4,5 and uses the MS scheme for {alpha}{sub s} and the heavy quark masses. The fit results are compared with other PDFs and used to compute the benchmark cross sections at hadron colliders to the NNLO accuracy.
Quasi parton distributions and the gradient flow
International Nuclear Information System (INIS)
Monahan, Christopher; Orginos, Kostas
2017-01-01
We propose a new approach to determining quasi parton distribution functions (PDFs) from lattice quantum chromodynamics. By incorporating the gradient flow, this method guarantees that the lattice quasi PDFs are finite in the continuum limit and evades the thorny, and as yet unresolved, issue of the renormalization of quasi PDFs on the lattice. In the limit that the flow time is much smaller than the length scale set by the nucleon momentum, the moments of the smeared quasi PDF are proportional to those of the lightfront PDF. Finally, we use this relation to derive evolution equations for the matching kernel that relates the smeared quasi PDF and the light-front PDF.
A Lattice Calculation of Parton Distributions
International Nuclear Information System (INIS)
Alexandrou, Constantia; Cichy, Krzysztof; Poznan Univ.; Drach, Vincent; Univ. of Southern Denmark, Odense; Garcia-Ramos, Elena; Humboldt-Universitaet, Berlin; Hadjiyiannakou, Kyriakos; Jansen, Karl; Steffens, Fernanda; Wiese, Christian
2015-04-01
We report on our exploratory study for the direct evaluation of the parton distribution functions from lattice QCD, based on a recently proposed new approach. We present encouraging results using N f =2+1+1 twisted mass fermions with a pion mass of about 370 MeV. The focus of this work is a detailed description of the computation, including the lattice calculation, the matching to an infinite momentum and the nucleon mass correction. In addition, we test the effect of gauge link smearing in the operator to estimate the influence of the Wilson line renormalization, which is yet to be done.
Einstein Observations of Galactic supernova remnants
Seward, Frederick D.
1990-01-01
This paper summarizes the observations of Galactic supernova remnants with the imaging detectors of the Einstein Observatory. X-ray surface brightness contours of 47 remnants are shown together with gray-scale pictures. Count rates for these remnants have been derived and are listed for the HRI, IPC, and MPC detectors.
Casali, Eduardo; Tourkine, Piotr
2018-03-01
Twistor string models have been known for more than a decade now but have come back under the spotlight recently with the advent of the scattering equation formalism which has greatly generalized the scope of these models. A striking ubiquitous feature of these models has always been that, contrary to usual string theory, they do not admit vibrational modes and thus describe only conventional field theory. In this paper we report on the surprising discovery of a whole new sector of one of these theories which we call "twisted strings," when spacetime has compact directions. We find that the spectrum is enhanced from a finite number of states to an infinite number of interacting higher spin massive states. We describe both bosonic and world sheet supersymmetric models, their spectra and scattering amplitudes. These models have distinctive features of both string and field theory, for example they are invariant under stringy T-duality but have the high energy behavior typical of field theory. Therefore they describe a new kind of field theories in target space, sitting on their own halfway between string and field theory.
Strings and fundamental physics
International Nuclear Information System (INIS)
Baumgartl, Marco; Brunner, Ilka; Haack, Michael
2012-01-01
The basic idea, simple and revolutionary at the same time, to replace the concept of a point particle with a one-dimensional string, has opened up a whole new field of research. Even today, four decades later, its multifaceted consequences are still not fully conceivable. Up to now string theory has offered a new way to view particles as different excitations of the same fundamental object. It has celebrated success in discovering the graviton in its spectrum, and it has naturally led scientists to posit space-times with more than four dimensions - which in turn has triggered numerous interesting developments in fields as varied as condensed matter physics and pure mathematics. This book collects pedagogical lectures by leading experts in string theory, introducing the non-specialist reader to some of the newest developments in the field. The carefully selected topics are at the cutting edge of research in string theory and include new developments in topological strings, AdS/CFT dualities, as well as newly emerging subfields such as doubled field theory and holography in the hydrodynamic regime. The contributions to this book have been selected and arranged in such a way as to form a self-contained, graduate level textbook. (orig.)
Strings and fundamental physics
Energy Technology Data Exchange (ETDEWEB)
Baumgartl, Marco [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Brunner, Ilka; Haack, Michael (eds.) [Muenchen Univ. (Germany). Fakultaet fuer Physik
2012-07-01
The basic idea, simple and revolutionary at the same time, to replace the concept of a point particle with a one-dimensional string, has opened up a whole new field of research. Even today, four decades later, its multifaceted consequences are still not fully conceivable. Up to now string theory has offered a new way to view particles as different excitations of the same fundamental object. It has celebrated success in discovering the graviton in its spectrum, and it has naturally led scientists to posit space-times with more than four dimensions - which in turn has triggered numerous interesting developments in fields as varied as condensed matter physics and pure mathematics. This book collects pedagogical lectures by leading experts in string theory, introducing the non-specialist reader to some of the newest developments in the field. The carefully selected topics are at the cutting edge of research in string theory and include new developments in topological strings, AdS/CFT dualities, as well as newly emerging subfields such as doubled field theory and holography in the hydrodynamic regime. The contributions to this book have been selected and arranged in such a way as to form a self-contained, graduate level textbook. (orig.)
Perspectives on string phenomenology
Kane, Gordon; Kumar, Piyush
2015-01-01
The remarkable recent discovery of the Higgs boson at the CERN Large Hadron Collider completed the Standard Model of particle physics and has paved the way for understanding the physics which may lie beyond it. String/M theory has emerged as a broad framework for describing a plethora of diverse physical systems, which includes condensed matter systems, gravitational systems as well as elementary particle physics interactions. If string/M theory is to be considered as a candidate theory of Nature, it must contain an effectively four-dimensional universe among its solutions that is indistinguishable from our own. In these solutions, the extra dimensions of string/M Theory are “compactified” on tiny scales which are often comparable to the Planck length. String phenomenology is the branch of string/M theory that studies such solutions, relates their properties to data, and aims to answer many of the outstanding questions of particle physics beyond the Standard Model. This book contains perspectives on stri...
Coulomb string tension, asymptotic string tension, and the gluon chain
Greensite, Jeff; Szczepaniak, Adam P.
2014-01-01
We compute, via numerical simulations, the non-perturbative Coulomb potential of pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.
Interacting-string picture of the fermionic string
International Nuclear Information System (INIS)
Mandelstam, S.
1986-01-01
This report gives a review of the interacting-string picture of the Bose string. In the present lecture, the author outlines a similar treatment of the Fermionic string. The quantization of the free Fermionic string is carried out to the degrees of freedom x, representing the displacement of the string. Also presented are Grassman degrees of freedom S distributed along the string. The report pictures the fermionic string as a string of dipoles. The general picture of the interaction of such strings by joining and splitting is the same as for the Bose string. The author does not at present have the simplest formula for fermion string scattering amplitudes. A less detailed treatment is given than for the Bose string. The report sets up the functional-integration formalism, derives the analog mode, and indicates in general, terms how the conformal transformation to the z-plane may be performed. The paper concludes by stating without proof the formula for the N-article tree amplitude in the manifestly supersymmetric formalism
String field theory solution for any open string background
Czech Academy of Sciences Publication Activity Database
Erler, T.; Maccaferri, Carlo
2014-01-01
Roč. 10, Oct (2014), 1-37 ISSN 1029-8479 R&D Projects: GA ČR GBP201/12/G028 Institutional support: RVO:68378271 Keywords : tachyon condensation * string field theory * conformal field models in string theory * bosonic strings Subject RIV: BE - Theoretical Physics Impact factor: 6.111, year: 2014
Are Stopped Strings Preferred in Sad Music?
David Huron; Caitlyn Trevor
2017-01-01
String instruments may be played either with open strings (where the string vibrates between the bridge and a hard wooden nut) or with stopped strings (where the string vibrates between the bridge and a performer's finger pressed against the fingerboard). Compared with open strings, stopped strings permit the use of vibrato and exhibit a darker timbre. Inspired by research on the timbre of sad speech, we test whether there is a tendency to use stopped strings in nominally sad music. Specifica...
Strings for quantumchromodynamics
International Nuclear Information System (INIS)
Schomerus, V.
2007-04-01
During the last decade, intriguing dualities between gauge and string theory have been found and explored. they provide a novel window on strongly couplde gauge physics, including QCD-like models. Based on a short historical review of modern string theory, we explain how so-called AdS/CFT dualities emerged at the end of the 1990s. Some of their concrete implications and remarkable recent progress are then illustrated for the simplest example, namely the multicolor limit of N=4 SYM theory in four dimensions. We end with a few comments on existing extensions to more realistic models and applications, in particular to the sQGP. This text is meant as a non-technical introduction to gauge/string dualities for (particle) physicists. (orig.)
Kiritsis, E; Nitti, F
2014-01-01
We extend the holographic trailing string picture of a heavy quark to the case of a bulk geometry dual to a confining gauge theory. We compute the classical trailing confining string solution for a static as well as a uniformly moving quark. The trailing string is infinitely extended and approaches a confining horizon, situated at a critical value of the radial coordinate, along one of the space-time directions, breaking boundary rotational invariance. We compute the equations for the fluctuations around the classical solutions, which are used to obtain boundary force correlators controlling the Langevin dynamics of the quark. The imaginary part of the correlators has a non-trivial low-frequency limit, which gives rise to a viscous friction coefficient induced by the confining vacuum. The vacuum correlators are used to define finite-temperature dressed Langevin correlators with an appropriate high-frequency behavior.
Strings for quantumchromodynamics
Energy Technology Data Exchange (ETDEWEB)
Schomerus, V.
2007-04-15
During the last decade, intriguing dualities between gauge and string theory have been found and explored. they provide a novel window on strongly couplde gauge physics, including QCD-like models. Based on a short historical review of modern string theory, we explain how so-called AdS/CFT dualities emerged at the end of the 1990s. Some of their concrete implications and remarkable recent progress are then illustrated for the simplest example, namely the multicolor limit of N=4 SYM theory in four dimensions. We end with a few comments on existing extensions to more realistic models and applications, in particular to the sQGP. This text is meant as a non-technical introduction to gauge/string dualities for (particle) physicists. (orig.)
Quark potential of spontaneous strings
International Nuclear Information System (INIS)
German, G.; Kleinert, H.
1989-01-01
The authors present some recent developments in string models with an extrinsic curvature term in action. Particular emphasis is placed upon the static quark potential and on the thermal deconfinement properties of spontaneous strings
Cosmic strings and galaxy formation
International Nuclear Information System (INIS)
Bertschinger, E.
1989-01-01
Cosmic strings have become increasingly popular candidates as seeds for the formation of structure in the universe. This scenario, remains a serious cosmogonical model despite close scrutiny. In constrast, magnetic monopoles and domain walls - relic topological defects as are cosmic strings - are disastrous for cosmology if they are left over from the early universe. The production of heavy cosmic strings is speculative, as it depends on the details of ultrahigh energy physics. Fortunately, speculation about cosmic strings is not entirely idle because, if they exist and are heavy enough to seed galaxy formation, cosmic strings can be detected astronomically. Failure to detect cosmic strings would impose some constraints on grand unified theories (GUTs); their discovery would have exciting consequences for high energy physics and cosmology. This article reviews the basic physics of nonsuperconducting cosmic strings, highlighting the field theory aspects, and provides a progress report on calculations of structure formation with cosmic strings
Generalized parton distribution for non zero skewness
International Nuclear Information System (INIS)
Kumar, Narinder; Dahiya, Harleen; Teryaev, Oleg
2012-01-01
In the theory of strong interactions the main open question is how the nucleon and other hadrons are built from quarks and gluons, the fundamental degrees of freedom in QCD. An essential tool to investigate hadron structure is the study of deep inelastic scattering processes, where individual quarks and gluons can be resolved. The parton densities extracted from such processes encode the distribution of longitudinal momentum and polarization carried by quarks, antiquarks and gluons within a fast moving hadron. They have provided much to shape the physical picture of hadron structure. In the recent years, it has become clear that appropriate exclusive scattering processes may provide such information encoded in the general parton distributions (GPDs). Here, we investigate the GPD for deep virtual compton scattering (DVCS) for the non zero skewness. The study has investigated the GPDs by expressing them in terms of overlaps of light front wave functions (LFWFs). The work represented a spin 1/2 system as a composite of spin 1/2 fermion and spin 1 boson with arbitrary masses
HI Absorption in Merger Remnants
Teng, Stacy H.; Veileux, Sylvain; Baker, Andrew J.
2012-01-01
It has been proposed that ultraluminous infrared galaxies (ULIRGs) pass through a luminous starburst phase, followed by a dust-enshrouded AGN phase, and finally evolve into optically bright "naked" quasars once they shed their gas/dust reservoirs through powerful wind events. We present the results of our recent 21- cm HI survey of 21 merger remnants with the Green Bank Telescope. These remnants were selected from the QUEST (Quasar/ULIRG Evolution Study) sample of ULIRGs and PG quasars; our targets are all bolometrically dominated by AGN and sample all phases of the proposed ULIRG -> IR-excess quasar -> optical quasar sequence. We explore whether there is an evolutionary connection between ULIRGs and quasars by looking for the occurrence of HI absorption tracing neutral gas outflows; our results will allow us to identify where along the sequence the majority of a merger's gas reservoir is expelled.
International Nuclear Information System (INIS)
Olness, F.I.; Tung, Wu-Ki
1989-10-01
Applications of the QCD-based parton model to new physics processes involving heavy partons are illustrated using charged Higgs production. The naive parton model predictions are found to over-estimate the actual cross section by a factor of 2 to 5. The role of the top quark as a ''parton'' is examined, and the energy range over which heavy quarks (or other particles) should or should not be naturally treated as ''partons'' is delineated. 12 refs., 5 figs
Large psub(T) pion production and clustered parton model
Energy Technology Data Exchange (ETDEWEB)
Kanki, T [Osaka Univ., Toyonaka (Japan). Coll. of General Education
1977-05-01
Recent experimental results on the large p sub(T) inclusive ..pi../sup 0/ productions by pp and ..pi..p collisions are interpreted by the parton model in which the constituent quarks are defined to be the clusters of the quark-partons and gluons.
Comparison of parton distributions and structure functions for the proton
International Nuclear Information System (INIS)
Abramowicz, H.; Charchula, K.; Krawczyk, M.; Levy, A.
1990-09-01
A comparative study of the most popular parton parametrizations is presented. The individual parton distributions as well as the F 2 structure function are discussed with a particular emphasis on the low x region, 10 -4 -2 . The predictions of these parametrizations for the F 2 structure function have a wide spread which persists also in the HERA kinematical region. (orig.)
Nucleon generalized parton distributions from full lattice QCD
International Nuclear Information System (INIS)
Haegler, P.; Schroers, W.; Bratt, J.; Negele, J.W.; Pochinsky, A.V.
2007-07-01
We present a comprehensive study of the lowest moments of nucleon generalized parton distributions in N f =2+1 lattice QCD using domain wall valence quarks and improved staggered sea quarks. Our investigation includes helicity dependent and independent generalized parton distributions for pion masses as low as 350 MeV and volumes as large as (3.5 fm) 3 . (orig.)
Pion and kaon valence-quark parton quasidistributions
Xu, Shu-Sheng; Chang, Lei; Roberts, Craig D.; Zong, Hong-Shi
2018-05-01
Algebraic Ansätze for the Poincaré-covariant Bethe-Salpeter wave functions of the pion and kaon are used to calculate their light-front wave functions, parton distribution amplitudes, parton quasidistribution amplitudes, valence parton distribution functions, and parton quasidistribution functions (PqDFs). The light-front wave functions are broad, concave functions, and the scale of flavor-symmetry violation in the kaon is roughly 15%, being set by the ratio of emergent masses in the s - and u -quark sectors. Parton quasidistribution amplitudes computed with longitudinal momentum Pz=1.75 GeV provide a semiquantitatively accurate representation of the objective parton distribution amplitude, but even with Pz=3 GeV , they cannot provide information about this amplitude's end point behavior. On the valence-quark domain, similar outcomes characterize PqDFs. In this connection, however, the ratio of kaon-to-pion u -quark PqDFs is found to provide a good approximation to the true parton distribution function ratio on 0.4 ≲x ≲0.8 , suggesting that with existing resources computations of ratios of parton quasidistributions can yield results that support empirical comparison.
DEFF Research Database (Denmark)
Szklarczyk, Damian; Franceschini, Andrea; Wyder, Stefan
2015-01-01
, and the available data exhibit notable differences in terms of quality and completeness. The STRING database (http://string-db.org) aims to provide a critical assessment and integration of protein-protein interactions, including direct (physical) as well as indirect (functional) associations. The new version 10...... into families at various levels of phylogenetic resolution. Further improvements in version 10.0 include a completely redesigned prediction pipeline for inferring protein-protein associations from co-expression data, an API interface for the R computing environment and improved statistical analysis...
International Nuclear Information System (INIS)
Arnowitt, R.; Bryan, R.; Duff, M.J.; Nanopoulos, D.; Pope, C.N.
1990-01-01
Does string theory provide us with a consistent quantum theory of gravity? Is it that Holy Grail of elementary particle physics, a Theory of Everything with embraces all the forces and particles of Nature? Even if it is, can we extract concrete predictions about our low-energy world that can be tested experimentally at the SSC and other particle accelerators? What does it have to say about the origin of the Universe and the thorny problem of the cosmological constant? Are superstring theories unique, or might the eleven-dimensional supermembrane prove equally consistent? These are just some of the question posed and debated at Strings '89
Strings draw theorists together
International Nuclear Information System (INIS)
Green, Michael
2000-01-01
Theorists are confident that they are closer than ever to finding a quantum theory that unites gravity with the three other fundamental forces in nature. Many of the leading figures in the world of string theory met at the California Institute of Technology in January to discuss recent progress in the field and to reflect on the state of the theory. The enthusiastic mood of the gathering was based on the fact that string theory provides an elegant framework for a unified theory of all the forces and particles in nature, and also gives a consistent quantum-mechanical description of general relativity. String theory, and more precisely superstring theory, describes the assortment of elementary particles such as quarks and leptons, and the gauge bosons responsible for mediating forces in a unified manner as different modes of vibration of a single extended string. This version of the theory also embodies supersymmetry a conjectured symmetry that unifies fermions and bosons. Furthermore, the fact that the string has a fundamental length scale - the ''string length'' - apparently cures the short-distance problems of uniting general relativity with quantum theory. The main problem with the early formulations of superstring theory was that they emphasized the ''perturbative'' point of view, an approximation that describes string-like quantum-mechanical particles moving through classical (that is non quantum-mechanical) space-time. However, very general arguments require that any quantum theory of gravity should also describe space-time geometry in a quantum-mechanical manner. The classical geometry of space-time should then emerge as an approximate description at distance scales much larger than the so-called Planck scale of 10 -33 m. This requires an understanding of the theory beyond the perturbative approximation. It is the quest for this more fundamental description of string theory that has provided the main challenge for string theorists over the past decade. Much
International Nuclear Information System (INIS)
Randjbar-Daemi, S.; Strathdee, J.
1987-10-01
These notes are based on a set of six introductory lectures given jointly by the authors. After developing the canonical methods we discuss the covariant quantization of the bosonic as well as the fermionic string. Conformal field theory methods are also introduced and used to calculate the anomaly coefficient, c, as well as the critical dimensions for bosonic and superstrings. We briefly sketch the BRS quantization and then offer an elementary derivation of the anomaly in the ghost number current. Finally, we address the one-loop partition function of the bosonic string and the question of SL(2,Z) invariance. (author). 15 refs
Matrix string partition function
Kostov, Ivan K; Kostov, Ivan K.; Vanhove, Pierre
1998-01-01
We evaluate quasiclassically the Ramond partition function of Euclidean D=10 U(N) super Yang-Mills theory reduced to a two-dimensional torus. The result can be interpreted in terms of free strings wrapping the space-time torus, as expected from the point of view of Matrix string theory. We demonstrate that, when extrapolated to the ultraviolet limit (small area of the torus), the quasiclassical expressions reproduce exactly the recently obtained expression for the partition of the completely reduced SYM theory, including the overall numerical factor. This is an evidence that our quasiclassical calculation might be exact.
Deriving the four-string and open-closed string interactions from geometric string field theory
International Nuclear Information System (INIS)
Kaku, M.
1990-01-01
One of the questions concerning the covariant open string field theory is why there are two distinct BRST theories and why the four-string interaction appears in one version but not the other. The authors solve this mystery by showing that both theories are gauge-fixed versions of a higher gauge theory, called the geometric string field theory, with a new field, a string verbein e μσ νρ , which allows us to gauge the string length and σ parametrization. By fixing the gauge, the authors can derive the endpoint gauge (the covariantized light cone gauge), the midpoint gauge of Witten, or the interpolating gauge with arbitrary string length. The authors show explicitly that the four-string interaction is a gauge artifact of the geometric theory (the counterpart of the four-fermion instantaneous Coulomb term of QED). By choosing the interpolating gauge, they produce a new class of four-string interactions which smoothly interpolate between the endpoint gauge and the midpoint gauge (where it vanishes). Similarly, they can extract the closed string as a bound state of the open string, which appears in the endpoint gauge but vanishes in the midpoint gauge. Thus, the four-string and open-closed string interactions do not have to be added to the action as long as the string vierbein is included
Molecular clouds near supernova remnants
International Nuclear Information System (INIS)
Wootten, H.A.
1978-01-01
The physical properties of molecular clouds near supernova remnants were investigated. Various properties of the structure and kinematics of these clouds are used to establish their physical association with well-known remmnants. An infrared survey of the most massive clouds revealed embedded objects, probably stars whose formation was induced by the supernova blast wave. In order to understand the relationship between these and other molecular clouds, a control group of clouds was also observed. Excitation models for dense regions of all the clouds are constructed to evaluate molecular abundances in these regions. Those clouds that have embedded stars have lower molecular abundances than the clouds that do not. A cloud near the W28 supernova remnant also has low abundances. Molecular abundances are used to measure an important parameter, the electron density, which is not directly observable. In some clouds extensive deuterium fractionation is observed which confirms electron density measurements in those clouds. Where large deuterium fractionation is observed, the ionization rate in the cloud interior can also be measured. The electron density and ionization rate in the cloud near W28 are higher than in most clouds. The molecular abundances and electron densities are functions of the chemical and dynamical state of evolution of the cloud. Those clouds with lowest abundances are probably the youngest clouds. As low-abundance clouds, some clouds near supernova remnants may have been recently swept from the local interstellar material. Supernova remnants provide sites for star formation in ambient clouds by compressing them, and they sweep new clouds from more diffuse local matter
Racetrack inflation and cosmic strings
Energy Technology Data Exchange (ETDEWEB)
Brax, P. [CEA-Saclay, Gif sur Yvette (France). CEA/DSM/SPhT, Unite de Recherche Associee au CNRS, Service de Physique Theorique; Bruck, C. van de [Sheffield Univ. (United Kingdom). Dept. of Applied Mathematics; Davis, A.C.; Davis, S.C. [Cambridge Univ. (United Kingdom). DAMTP, Centre for Mathematical Sciences; Jeannerot, R. [Instituut-Lorentz for Theoretical Physics, Leiden (Netherlands); Postma, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands)
2008-05-15
We consider the coupling of racetrack inflation to matter fields as realised in the D3/D7 brane system. In particular, we investigate the possibility of cosmic string formation in this system. We find that string formation before or at the onset of racetrack inflation is possible, but they are then inflated away. Furthermore, string formation at the end of inflation is prevented by the presence of the moduli sector. As a consequence, no strings survive racetrack inflation. (orig.)
String theory in four dimensions
International Nuclear Information System (INIS)
Dine, M.
1988-01-01
A representative sample of current ideas about how one might develop a string phenomenology is presented. Some of the obstacles which lie in between string theory and contact with experiment are described. It is hoped that this volume will provide the reader with ways of thinking about string theory in four dimensions and provide tools for asking questions about string theory and ordinary physics. 102 refs
DEFF Research Database (Denmark)
Szklarczyk, Damian; Franceschini, Andrea; Kuhn, Michael
2011-01-01
present an update on the online database resource Search Tool for the Retrieval of Interacting Genes (STRING); it provides uniquely comprehensive coverage and ease of access to both experimental as well as predicted interaction information. Interactions in STRING are provided with a confidence score...... models, extensive data updates and strongly improved connectivity and integration with third-party resources. Version 9.0 of STRING covers more than 1100 completely sequenced organisms; the resource can be reached at http://string-db.org....
Cosmic strings and galaxy formation
Bertschinger, Edmund
1989-01-01
The cosmogonical model proposed by Zel'dovich and Vilenkin (1981), in which superconducting cosmic strings act as seeds for the origin of structure in the universe, is discussed, summarizing the results of recent theoretical investigations. Consideration is given to the formation of cosmic strings, the microscopic structure of strings, gravitational effects, cosmic string evolution, and the formation of galaxies and large-scale structure. Simulation results are presented in graphs, and several outstanding issues are listed and briefly characterized.
Racetrack inflation and cosmic strings
International Nuclear Information System (INIS)
Brax, P.; Postma, M.
2008-05-01
We consider the coupling of racetrack inflation to matter fields as realised in the D3/D7 brane system. In particular, we investigate the possibility of cosmic string formation in this system. We find that string formation before or at the onset of racetrack inflation is possible, but they are then inflated away. Furthermore, string formation at the end of inflation is prevented by the presence of the moduli sector. As a consequence, no strings survive racetrack inflation. (orig.)
Transverse momentum in double parton scattering. Factorisation, evolution and matching
International Nuclear Information System (INIS)
Buffing, Maarten G.A.; Diehl, Markus; Kasemets, Tomas
2017-08-01
We give a description of double parton scattering with measured transverse momenta in the final state, extending the formalism for factorisation and resummation developed by Collins, Soper and Sterman for the production of colourless particles. After a detailed analysis of their colour structure, we derive and solve evolution equations in rapidity and renormalisation scale for the relevant soft factors and double parton distributions. We show how in the perturbative regime, transverse momentum dependent double parton distributions can be expressed in terms of simpler nonperturbative quantities and compute several of the corresponding perturbative kernels at one-loop accuracy. We then show how the coherent sum of single and double parton scattering can be simplified for perturbatively large transverse momenta, and we discuss to which order resummation can be performed with presently available results. As an auxiliary result, we derive a simple form for the square root factor in the Collins construction of transverse momentum dependent parton distributions.
Transverse momentum in double parton scattering. Factorisation, evolution and matching
Energy Technology Data Exchange (ETDEWEB)
Buffing, Maarten G.A.; Diehl, Markus [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kasemets, Tomas [Nikhef, Amsterdam (Netherlands). Theory Group; VU Univ. Amsterdam (Netherlands)
2017-08-15
We give a description of double parton scattering with measured transverse momenta in the final state, extending the formalism for factorisation and resummation developed by Collins, Soper and Sterman for the production of colourless particles. After a detailed analysis of their colour structure, we derive and solve evolution equations in rapidity and renormalisation scale for the relevant soft factors and double parton distributions. We show how in the perturbative regime, transverse momentum dependent double parton distributions can be expressed in terms of simpler nonperturbative quantities and compute several of the corresponding perturbative kernels at one-loop accuracy. We then show how the coherent sum of single and double parton scattering can be simplified for perturbatively large transverse momenta, and we discuss to which order resummation can be performed with presently available results. As an auxiliary result, we derive a simple form for the square root factor in the Collins construction of transverse momentum dependent parton distributions.
String theory and quark confinement
International Nuclear Information System (INIS)
Polyakov, A.M.
1998-01-01
This article is based on a talk given at the ''Strings '97'' conference. It discusses the search for the universality class of confining strings. The key ingredients include the loop equations, the zigzag symmetry, the non-linear renormalization group. Some new tests for the equivalence between gauge fields and strings are proposed. (orig.)
String theory in four dimensions
1988-01-01
``String Theory in Four Dimensions'' contains a representative collection of papers dealing with various aspects of string phenomenology, including compactifications on smooth manifolds and more general conformal field theories. Together with the lucid introduction by M. Dine, this material gives the reader a good working knowledge of our present ideas for connecting string theory to nature.
String necklaces and primordial black holes from type IIB strings
International Nuclear Information System (INIS)
Lake, Matthew; Thomas, Steve; Ward, John
2009-01-01
We consider a model of static cosmic string loops in type IIB string theory, where the strings wrap cycles within the internal space. The strings are not topologically stabilised, however the presence of a lifting potential traps the windings giving rise to kinky cycloops. We find that PBH formation occurs at early times in a small window, whilst at late times we observe the formation of dark matter relics in the scaling regime. This is in stark contrast to previous predictions based on field theoretic models. We also consider the PBH contribution to the mass density of the universe, and use the experimental data to impose bounds on the string theory parameters.
SUPERCOLLIDER: String test success
International Nuclear Information System (INIS)
Anon.
1992-01-01
On 14 August at the Superconducting Supercollider (SSC) Laboratory in Ellis County, Texas, the Accelerator Systems String Test (ASST) successfully met its objective by operating a half-cell of five collider dipole magnets, one quadrupole magnet, and two spool pieces at the design current of 6500 amperes
2007-01-01
"How can the nature of basic particles be defined beyond the mechanisms presiding over their creation? Besides the standard model of particle physics - resulting from the postulations of quantum mechanics - contemporary science has pinned its hopes on the totally new unifying notion provided by the highly mathematical string theory."(2 pages)
Directory of Open Access Journals (Sweden)
Marco A.C. Kneipp
2016-12-01
Full Text Available We consider a Yang–Mills–Higgs theory with the gauge group SU(3 broken to its center Z3 by two scalar fields in the adjoint representation and obtain new Z3 strings asymptotic configurations with the gauge field and magnetic field in the direction of the step operators.
On exceptional instanton strings
Del Zotto, M.; Lockhart, G.
According to a recent classification of 6d (1, 0) theories within F-theory there are only six “pure” 6d gauge theories which have a UV superconformal fixed point. The corresponding gauge groups are SU(3), SO(8), F4, E6, E7, and E8. These exceptional models have BPS strings which are also instantons
String perturbation theory diverges
International Nuclear Information System (INIS)
Gross, D.J.; Periwal, V.
1988-01-01
We prove that perturbation theory for the bosonic string diverges for arbitrary values of the coupling constant and is not Borel summable. This divergence is independent of the existence of the infinities that occur in the theory due to the presence of tachyons and dilaton tadpoles. We discuss the physical implications of such a divergence
International Nuclear Information System (INIS)
Akama, Keiichi
1988-01-01
Starting with the space-time action of the transversally extended string, we derive its world-sheet action, which is that of a gravitational and gauge theory with matter fields on the world-sheet, with additional effects of the second fundamental quantity. (author)
Lectures on strings and dualities
International Nuclear Information System (INIS)
Vafa, C.
1997-01-01
In this set of lectures I review recent developments in string theory emphasizing their non-perturbative aspects and their recently discovered duality symmetries. The goal of the lectures is to make the recent exciting developments in string theory accessible to those with no previous background in string theory who wish to join the research effort in this area. Topics covered include a brief review of string theory, its compactifications, solitons and D-branes, black hole entropy and wed of string dualities. (author)
Macroscopic fundamental strings in cosmology
Energy Technology Data Exchange (ETDEWEB)
Aharonov, Y; Englert, F; Orloff, J
1987-12-24
We show that, when D greater than or equal to 4, theories of closed strings of closed strings in D, non-compact space-time dimensions exhibit a phase transition. The high-temperature phase is characterized by a condensate of arbitrarily long strings with Hausdorff dimension two (area filling curves). We suggest that this stringy phase is the ancestor of the adiabatic era. Fundamental strings could then both drive the inflation and seed, in a way reminiscent of the cosmic string mechanism, the large structures in the universe.
Strings draw theorists together
Energy Technology Data Exchange (ETDEWEB)
Green, Michael [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge (United Kingdom)
2000-03-01
Theorists are confident that they are closer than ever to finding a quantum theory that unites gravity with the three other fundamental forces in nature. Many of the leading figures in the world of string theory met at the California Institute of Technology in January to discuss recent progress in the field and to reflect on the state of the theory. The enthusiastic mood of the gathering was based on the fact that string theory provides an elegant framework for a unified theory of all the forces and particles in nature, and also gives a consistent quantum-mechanical description of general relativity. String theory, and more precisely superstring theory, describes the assortment of elementary particles such as quarks and leptons, and the gauge bosons responsible for mediating forces in a unified manner as different modes of vibration of a single extended string. This version of the theory also embodies supersymmetry a conjectured symmetry that unifies fermions and bosons. Furthermore, the fact that the string has a fundamental length scale - the ''string length'' - apparently cures the short-distance problems of uniting general relativity with quantum theory. The main problem with the early formulations of superstring theory was that they emphasized the ''perturbative'' point of view, an approximation that describes string-like quantum-mechanical particles moving through classical (that is non quantum-mechanical) space-time. However, very general arguments require that any quantum theory of gravity should also describe space-time geometry in a quantum-mechanical manner. The classical geometry of space-time should then emerge as an approximate description at distance scales much larger than the so-called Planck scale of 10{sup -33} m. This requires an understanding of the theory beyond the perturbative approximation. It is the quest for this more fundamental description of string theory that has provided the main challenge for
Introduction to path integrals, matrix models and strings
International Nuclear Information System (INIS)
Jevicki, A.
1995-01-01
The major strength of the theory is then that it is integrable and exactly solvable. Its integrable nature leads to understanding of a w ∞ algebra as a space-time symmetry of string theory. This algebra acts in a nonlinear way on the basic collective field representing a massless tachyon. It is interpreted as a spectrum-generating algebra allowing to build an infinite sequence of discrete imaginary energy states which turn out to be remnants of higher string modes in two dimensions. The presence and interplay of discrete modes with the scalar tachyon are particularly interesting. The w ∞ symmetry is seen to serve as an organizational principle and is of much broader relevance. (orig.)
Parton shower evolution with subleading color
International Nuclear Information System (INIS)
Nagy, Zoltan; Soper, Davison E.
2012-02-01
Parton shower Monte Carlo event generators in which the shower evolves from hard splittings to soft splittings generally use the leading color approximation, which is the leading term in an expansion in powers of 1/N c 2 , where N c =3 is the number of colors. We introduce a more general approximation, the LC+ approximation, that includes some of the color suppressed contributions. There is a cost: each generated event comes with a weight. There is a benefit: at each splitting the leading soft x collinear singularity and the leading collinear singularity are treated exactly with respect to color. In addition, an LC+ shower can start from a state of the color density matrix in which the bra state color and the ket state color do not match. (orig.)
Parton shower evolution with subleading color
Energy Technology Data Exchange (ETDEWEB)
Nagy, Zoltan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Soper, Davison E. [Oregon Univ., Eugene, OR (United States). Inst. of Theoretical Science
2012-02-15
Parton shower Monte Carlo event generators in which the shower evolves from hard splittings to soft splittings generally use the leading color approximation, which is the leading term in an expansion in powers of 1/N{sub c}{sup 2}, where N{sub c}=3 is the number of colors. We introduce a more general approximation, the LC+ approximation, that includes some of the color suppressed contributions. There is a cost: each generated event comes with a weight. There is a benefit: at each splitting the leading soft x collinear singularity and the leading collinear singularity are treated exactly with respect to color. In addition, an LC+ shower can start from a state of the color density matrix in which the bra state color and the ket state color do not match. (orig.)
On chiral-odd Generalized Parton Distributions
Energy Technology Data Exchange (ETDEWEB)
Wallon, Samuel [Laboratoire de Physique Theorique d' Orsay - LPT, Bat. 210, Univ. Paris-Sud 11, 91405 Orsay Cedex (France); UPMC Univ. Paris 6, Paris (France); Pire, Bernard [Centre de Physique Theorique - CPHT, UMR 7644, Ecole Polytechnique, Bat. 6, RDC, F91128 Palaiseau Cedex (France); Szymanowski, Lech [Soltan Institute for Nuclear Studies, Hoza 69, 00691, Warsaw (Poland)
2010-07-01
The chiral-odd transversity generalized parton distributions of the nucleon can be accessed experimentally through the exclusive photoproduction process {gamma} + N {yields} {pi} + {rho} + N', in the kinematics where the meson pair has a large invariant mass and the final nucleon has a small transverse momentum, provided the vector meson is produced in a transversally polarized state. Estimated counting rates show that the experiment is feasible with real or quasi real photon beams expected at JLab at 12 GeV and in the COMPASS experiment. (Phys Letters B688,154,2010) In addition, a consistent classification of the chiral-odd pion GPDs beyond the leading twist 2 is presented. Based on QCD equations of motion and on the invariance under rotation on the light-cone of any scattering amplitude involving such GPDs, we reduce the basis of these chiral-odd GPDs to a minimal set. (author)
Insights into nucleon structure from parton distributions
Energy Technology Data Exchange (ETDEWEB)
Melnitchouk, Wally [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2017-05-01
We review recent progress in understanding the substructure of the nucleon from global QCD analysis of parton distribution functions (PDFs). New high-precision data onW-boson production in p ¯ p collisions have significantly reduced the uncertainty on the d=u PDF ratio at large values of x, indirectly constraining models of the medium modification of bound nucleons. Drell-Yan data from pp and pd scattering reveal new information on the d¯-u¯ asymmetry, clarifying the role of chiral symmetry breaking in the nucleon. In the strange sector, a new chiral SU(3) analysis finds a valence-like component of the strange-quark PDF, giving rise to a nontrivial s- ¯ s asymmetry at moderate x values. We also review recent analyses of charm in the nucleon, which have found conflicting indications of the size of the nonperturbative charm component.
Updated lattice results for parton distributions
International Nuclear Information System (INIS)
Alexandrou, Constantia; Cichy, Krzysztof; Hadjiyiannakou, Kyriakos; Jansen, Karl; Steffens, Fernanda; Wiese, Christian
2017-07-01
We provide an analysis of the x-dependence of the bare unpolarized, helicity and transversity iso-vector parton distribution functions (PDFs) from lattice calculations employing (maximally) twisted mass fermions. The x-dependence of the calculated PDFs resembles the one of the phenomenological parameterizations, a feature that makes this approach very promising. Furthermore, we apply momentum smearing for the relevant matrix elements to compute the lattice PDFs and find a large improvement factor when compared to conventional Gaussian smearing. This allows us to extend the lattice computation of the distributions to higher values of the nucleon momentum, which is essential for the prospects of a reliable extraction of the PDFs in the future.
Updated lattice results for parton distributions
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, Constantia [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus); Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Poznan Univ. (Poland). Faculty of Physics; Constantinou, Martha [Temple Univ., Philadelphia, PA (United States); Hadjiyiannakou, Kyriakos [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Jansen, Karl; Steffens, Fernanda; Wiese, Christian [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2017-07-15
We provide an analysis of the x-dependence of the bare unpolarized, helicity and transversity iso-vector parton distribution functions (PDFs) from lattice calculations employing (maximally) twisted mass fermions. The x-dependence of the calculated PDFs resembles the one of the phenomenological parameterizations, a feature that makes this approach very promising. Furthermore, we apply momentum smearing for the relevant matrix elements to compute the lattice PDFs and find a large improvement factor when compared to conventional Gaussian smearing. This allows us to extend the lattice computation of the distributions to higher values of the nucleon momentum, which is essential for the prospects of a reliable extraction of the PDFs in the future.
Gravitational effects of global strings
International Nuclear Information System (INIS)
Aryal, M.; Everett, A.E.
1986-01-01
We have obtained the gravitational field, in the weak-field approximation, of cosmic strings formed in a phase transition in which a global symmetry is broken (global strings). The effect of this field on light rays passing a global string is found, and the resulting formation of double images and production of discontinuities in the microwave background temperature compared with the corresponding results for gauge strings. There are some differences in the case of global strings, reflecting the fact that the space surrounding such strings is not purely conical. However, the differences between gauge and global strings with masses suitable to explain galaxy formation are small, and the task of distinguishing them observationally appears difficult at best
Device for balancing parallel strings
Mashikian, Matthew S.
1985-01-01
A battery plant is described which features magnetic circuit means in association with each of the battery strings in the battery plant for balancing the electrical current flow through the battery strings by equalizing the voltage across each of the battery strings. Each of the magnetic circuit means generally comprises means for sensing the electrical current flow through one of the battery strings, and a saturable reactor having a main winding connected electrically in series with the battery string, a bias winding connected to a source of alternating current and a control winding connected to a variable source of direct current controlled by the sensing means. Each of the battery strings is formed by a plurality of batteries connected electrically in series, and these battery strings are connected electrically in parallel across common bus conductors.
An analytic parton shower. Algorithms, implementation and validation
Energy Technology Data Exchange (ETDEWEB)
Schmidt, Sebastian
2012-06-15
The realistic simulation of particle collisions is an indispensable tool to interpret the data measured at high-energy colliders, for example the now running Large Hadron Collider at CERN. These collisions at these colliders are usually simulated in the form of exclusive events. This thesis focuses on the perturbative QCD part involved in the simulation of these events, particularly parton showers and the consistent combination of parton showers and matrix elements. We present an existing parton shower algorithm for emissions off final state partons along with some major improvements. Moreover, we present a new parton shower algorithm for emissions off incoming partons. The aim of these particular algorithms, called analytic parton shower algorithms, is to be able to calculate the probabilities for branchings and for whole events after the event has been generated. This allows a reweighting procedure to be applied after the events have been simulated. We show a detailed description of the algorithms, their implementation and the interfaces to the event generator WHIZARD. Moreover we discuss the implementation of a MLM-type matching procedure and an interface to the shower and hadronization routines from PYTHIA. Finally, we compare several predictions by our implementation to experimental measurements at LEP, Tevatron and LHC, as well as to predictions obtained using PYTHIA. (orig.)
An analytic parton shower. Algorithms, implementation and validation
International Nuclear Information System (INIS)
Schmidt, Sebastian
2012-06-01
The realistic simulation of particle collisions is an indispensable tool to interpret the data measured at high-energy colliders, for example the now running Large Hadron Collider at CERN. These collisions at these colliders are usually simulated in the form of exclusive events. This thesis focuses on the perturbative QCD part involved in the simulation of these events, particularly parton showers and the consistent combination of parton showers and matrix elements. We present an existing parton shower algorithm for emissions off final state partons along with some major improvements. Moreover, we present a new parton shower algorithm for emissions off incoming partons. The aim of these particular algorithms, called analytic parton shower algorithms, is to be able to calculate the probabilities for branchings and for whole events after the event has been generated. This allows a reweighting procedure to be applied after the events have been simulated. We show a detailed description of the algorithms, their implementation and the interfaces to the event generator WHIZARD. Moreover we discuss the implementation of a MLM-type matching procedure and an interface to the shower and hadronization routines from PYTHIA. Finally, we compare several predictions by our implementation to experimental measurements at LEP, Tevatron and LHC, as well as to predictions obtained using PYTHIA. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Riordan, M. [Stanford University and the University of California, Santa Cruz (United States)]. E-mail: mriordan@ucsc.edu
2007-02-15
In the last few decades, however, physical theory has drifted away from the professional norms advocated by Newton and other enlightenment philosophers. A vast outpouring of hypotheses has occurred under the umbrella of what is widely called string theory. But string theory is not really a 'theory' at all - at least not in the strict sense that scientists generally use the term. It is instead a dense, weedy thicket of hypotheses and conjectures badly in need of pruning. That pruning, however, can come only from observation and experiment, to which string theory (a phrase I will grudgingly continue using) is largely inaccessible. String theory was invented in the 1970s in the wake of the Standard Model of particle physics. Encouraged by the success of gauge theories of the strong, weak and electromagnetic forces, theorists tried to extend similar ideas to energy and distance scales that are orders of magnitude beyond what can be readily observed or measured. The normal, healthy intercourse between theory and experiment - which had led to the Standard Model - has broken down, and fundamental physics now finds itself in a state of crisis. So it is refreshing to hear from a theorist - one who was deeply involved with string theory and championed it in his previous book, Three Roads to Quantum Gravity - that all is not well in this closeted realm. Smolin argues from the outset that viable hypotheses must lead to observable consequences by which they can be tested and judged. String theory by its very nature does not allow for such probing, according to Smolin, and therefore it must be considered as an unprovable conjecture. Towards the end of his book, Smolin suggests other directions fundamental physics can take, particularly in the realm of quantum gravity, to resolve its crisis and reconnect with the observable world. From my perspective, he leans a bit too heavily towards highly speculative ideas such as doubly special relativity, modified Newtonian
Remnant cholesterol and ischemic heart disease
DEFF Research Database (Denmark)
Varbo, Anette; Nordestgaard, Børge G
2014-01-01
PURPOSE OF REVIEW: To review recent advances in the field of remnant cholesterol as a contributor to the development of ischemic heart disease (IHD). RECENT FINDINGS: Epidemiologic, mechanistic, and genetic studies all support a role for elevated remnant cholesterol (=cholesterol in triglyceride......-rich lipoproteins) as a contributor to the development of atherosclerosis and IHD. Observational studies show association between elevated remnant cholesterol and IHD, and mechanistic studies show remnant cholesterol accumulation in the arterial wall like LDL-cholesterol (LDL-C) accumulation. Furthermore, large...... genetic studies show evidence of remnant cholesterol as a causal risk factor for IHD independent of HDL-cholesterol levels. Genetic studies also show that elevated remnant cholesterol is associated with low-grade inflammation, whereas elevated LDL-C is not. There are several pharmacologic ways of lowering...
Parton Distributions and the LHC W and Z Production
Martin, A D; Stirling, William James; Thorne, R S
2000-01-01
W and Z bosons will be produced copiously at the LHC proton-proton collider. We study the parton distribution dependence of the total production cross sections and rapidity distributions, paying particular attention to the uncertainties arising from uncertainties in the parton distributions themselves. Variations in the gluon, the strong coupling, the sea quarks and the overall normalisation are shown to lead to small but non-negligible variations in the cross section predictions. Ultimately, therefore, the measurement of these cross sections will provide a powerful cross check on our knowledge of parton distributions and their evolution.
Neutron Stars in Supernova Remnants and Beyond
Gvaramadze, V. V.
We discuss a concept of off-centred cavity supernova explosion as applied to neutron star/supernova remnant associations and show how this concept could be used to preclude the anti-humane decapitating the Duck (G5.4-1.2 + G5.27-0.9) and dismembering the Swan (Cygnus Loop), as well as to search for a stellar remnant associated with the supernova remnant RCW86.
Neutron Stars in Supernova Remnants and Beyond
Gvaramadze, V. V.
2002-01-01
We discuss a concept of off-centred cavity supernova explosion as applied to neutron star/supernova remnant associations and show how this concept could be used to preclude the anti-humane decapitating the Duck (G5.4-1.2 + G5.27-0.9) and dismembering the Swan (Cygnus Loop), as well as to search for a stellar remnant associated with the supernova remnant RCW86.
A parton description of the nucleus fragmentation region in heavy-ion collisions
International Nuclear Information System (INIS)
Hwa, R.C.; Oregon Univ., Eugene
1984-01-01
In nucleus-nucleus collisions, the rapidity distribution of partons in the nucleus fragmentation region is highly asymmetrical. Thermalization that randomizes the momenta of partons far apart in rapidity cannot be expected. A local thermalization model is introduced which relates temperature to the range of parton interaction in rapidity. The parton number density and energy density are then calculated. (orig.)
Real topological string amplitudes
Energy Technology Data Exchange (ETDEWEB)
Narain, K.S. [The Abdus Salam International Centre for Theoretical Physics (ICTP),Strada Costiera 11, Trieste, 34151 (Italy); Piazzalunga, N. [Simons Center for Geometry and Physics, State University of New York,Stony Brook, NY, 11794-3636 (United States); International School for Advanced Studies (SISSA) and INFN, Sez. di Trieste,via Bonomea 265, Trieste, 34136 (Italy); Tanzini, A. [International School for Advanced Studies (SISSA) and INFN, Sez. di Trieste,via Bonomea 265, Trieste, 34136 (Italy)
2017-03-15
We discuss the physical superstring correlation functions in type I theory (or equivalently type II with orientifold) that compute real topological string amplitudes. We consider the correlator corresponding to holomorphic derivative of the real topological amplitude G{sub χ}, at fixed worldsheet Euler characteristic χ. This corresponds in the low-energy effective action to N=2 Weyl multiplet, appropriately reduced to the orientifold invariant part, and raised to the power g{sup ′}=−χ+1. We show that the physical string correlator gives precisely the holomorphic derivative of topological amplitude. Finally, we apply this method to the standard closed oriented case as well, and prove a similar statement for the topological amplitude F{sub g}.
International Nuclear Information System (INIS)
Stefanski, B. Jr.
2004-01-01
We find classical open string solutions in the AdS 5 x S 5 /Z 2 orientifold with angular momenta along the five-sphere. The energy of these solutions has an expansion in integral powers of λ with sigma-model corrections suppressed by inverse powers of J - the total angular momentum. This gives a prediction for the exact anomalous dimensions of operators in the large N limit of an N = 2 Sp, Super-Yang-Mills theory with matter. We also find a simple map between open and closed string solutions. This gives a prediction for an all-loop planar relationship between the anomalous dimensions of single-trace and two-quark operators in the dual gauge theory. (author)
New Supersymmetric String Compactifications
Energy Technology Data Exchange (ETDEWEB)
Kachru, Shamit
2002-11-25
We describe a new class of supersymmetric string compactifications to 4d Minkowski space. These solutions involve type II strings propagating on (orientifolds of) non Calabi-Yau spaces in the presence of background NS and RR fluxes. The simplest examples have descriptions as cosets, generalizing the three-dimensional nilmanifold. They can also be thought of as twisted tori. We derive a formula for the (super)potential governing the light fields, which is generated by the fluxes and certain ''twists'' in the geometry. Detailed consideration of an example also gives strong evidence that in some cases, these exotic geometries are related by smooth transitions to standard Calabi-Yau or G2 compactifications of M-theory.
International Nuclear Information System (INIS)
Gross, D.J.
1985-01-01
String theories offer a way of realizing the potential of supersymmetry, Kaluza-Klein and much more. They represent a radical departure from ordinary quantum field theory, but in the direction of increased symmetry and structure. They are based on an enormous increase in the number of degrees of freedom, since in addition to fermionic coordinates and extra dimensions, the basic entities are extended one dimensional objects instead of points. Correspondingly the symmetry group is greatly enlarged, in a way that we are only beginning to comprehend. At the very least this extended symmetry contains the largest group of symmetries that can be contemplated within the framework of point field theories-those of ten-dimensional supergravity and super Yang-Mills theory. Types of string theories and the phenomenology to be expected from them are reviewed
Diaz, Victor Alfonzo; Giusti, Andrea
2018-03-01
The aim of this paper is to present a simple generalization of bosonic string theory in the framework of the theory of fractional variational problems. Specifically, we present a fractional extension of the Polyakov action, for which we compute the general form of the equations of motion and discuss the connection between the new fractional action and a generalization the Nambu-Goto action. Consequently, we analyze the symmetries of the modified Polyakov action and try to fix the gauge, following the classical procedures. Then we solve the equations of motion in a simplified setting. Finally, we present a Hamiltonian description of the classical fractional bosonic string and introduce the fractional light-cone gauge. It is important to remark that, throughout the whole paper, we thoroughly discuss how to recover the known results as an "integer" limit of the presented model.
International Nuclear Information System (INIS)
Volovich, I.V.
1987-01-01
The hypothesis of the possible p-adic structure of spacetime is considered. The p-adic Veneziano amplitude is proposed and the main properties of the p-adic string theory are discussed. The analogous questions on the Galois field are also discussed. In this case the Jacobi sum plays the role of the Veneziano amplitude which can be expressed by means of the I-adic cohomology of the Fermat curves. The corresponding vertex operator is given. (author)
Exactly soluble dynamics of (p,q) string near macroscopic fundamental strings
International Nuclear Information System (INIS)
Bak, Dongsu; Rey, Soojong; Yee, Houng
2004-01-01
We study dynamics of type-IIB bound-state of a Dirichlet string and n fundamental strings in the background of N fundamental strings. Because of supergravity potential, the bound-state string is pulled to the background fundamental strings, whose motion is described by open string rolling radion field. The string coupling can be made controllably weak and, in the limit 1 2 st n 2 st N, the bound-state energy involved is small compared to the string scale. We thus propose rolling dynamics of open string radion in this system as an exactly solvable analog for rolling dynamics of open string tachyon in decaying D-brane. The dynamics bears a novel feature that the worldsheet electric field increases monotonically to the critical value as the bound-state string falls into the background string. Close to the background string, D string constituent inside the bound-state string decouples from fundamental string constituents. (author)
The theta-structure in string theories - 1: bosonic strings
International Nuclear Information System (INIS)
Li Miao.
1985-09-01
We explored the theta-structures in bosonic string theories which are similar to those in gauge field theories. The theta-structure of string is due to the multiply connected spatial compact subspace of space-time. The work of this paper shows that there is an energy band E(theta) in the string theory and one may move the tachyon out in theory by choosing some proper theta parameters. (author)
An invariant string propagator
International Nuclear Information System (INIS)
Cohen, A.; Moore, G.; Nelson, P.; Polchinski, J.
1986-01-01
The authors show that the Polyakov path integral is used to define off-shell quantities in string theory. The path integral of Polyakov gives an elegant description of strings and their interactions. However, its use has been limited to obtaining the Koba-Nielsen expressions for S-matrix elements. It is not yet clear what quantities make sense in string theory. This study shows that the path integral can be used to define off-shell quantities as well. In particular it defines a natural n-point function in loop space as the sum of all world surfaces bounded by n specific spacetime curves. The reader is referred for more detail. The report first outlines general evaluation then discusses the additional features added by boundaries. Locally, the three gauge freedoms ξ/sup a/ and δphi can be used to take g/sub ab/ (σ) to the unit matrix. Globally, this is not quite possible. In general the researchers choose a family of fiducial metrics g/sub ab/ (σ,tau), depending on a finite number of Teichmuller parameters tau, and every metric is gauge equivalent to one of these
Thermodynamical string fragmentation
Energy Technology Data Exchange (ETDEWEB)
Fischer, Nadine [Theoretical Particle Physics, Department of Astronomy and Theoretical Physics, Lund University,Sölvegatan 14A, Lund, SE-223 62 (Sweden); School of Physics and Astronomy, Monash University,Wellington Road, Clayton, VIC-3800 (Australia); Sjöstrand, Torbjörn [Theoretical Particle Physics, Department of Astronomy and Theoretical Physics, Lund University,Sölvegatan 14A, Lund, SE-223 62 (Sweden)
2017-01-31
The observation of heavy-ion-like behaviour in pp collisions at the LHC suggests that more physics mechanisms are at play than traditionally assumed. The introduction e.g. of quark-gluon plasma or colour rope formation can describe several of the observations, but as of yet there is no established paradigm. In this article we study a few possible modifications to the Pythia event generator, which describes a wealth of data but fails for a number of recent observations. Firstly, we present a new model for generating the transverse momentum of hadrons during the string fragmentation process, inspired by thermodynamics, where heavier hadrons naturally are suppressed in rate but obtain a higher average transverse momentum. Secondly, close-packing of strings is taken into account by making the temperature or string tension environment-dependent. Thirdly, a simple model for hadron rescattering is added. The effect of these modifications is studied, individually and taken together, and compared with data mainly from the LHC. While some improvements can be noted, it turns out to be nontrivial to obtain effects as big as required, and further work is called for.
International Nuclear Information System (INIS)
Aldazabal, G.; Ibanez, L.E.; Uranga, A.M.
1996-01-01
We study in detail the structure of Grand Unified Theories derived as the low-energy limit of orbifold four-dimensional strings. To this aim, new techniques for building level-two symmetric orbifold theories are presented. New classes of GUTs in the context of symmetric orbifolds are then constructed. The method of permutation modding is further explored and SO(10) GUTs with both 45- or 54-plets are obtained. SU(5) models are also found through this method. It is shown that, in the context of symmetric orbifold SO(10) GUTs, only a single GUT Higgs, either a 54 or a 45, can be present and it always resides in an order-two untwisted sector. Very restrictive results also hold in the case of SU(5). General properties and selection rules for string GUTs are described. Some of these selection rules forbid the presence of some particular GUT-Higgs couplings which are sometimes used in SUSY-GUT model building. Some semi-realistic string GUT examples are presented and their properties briefly discussed. (orig.)
Fingerprints in Compressed Strings
DEFF Research Database (Denmark)
Bille, Philip; Cording, Patrick Hagge; Gørtz, Inge Li
2013-01-01
The Karp-Rabin fingerprint of a string is a type of hash value that due to its strong properties has been used in many string algorithms. In this paper we show how to construct a data structure for a string S of size N compressed by a context-free grammar of size n that answers fingerprint queries...... derivative that captures LZ78 compression and its variations) we get O(loglogN) query time. Hence, our data structures has the same time and space complexity as for random access in SLPs. We utilize the fingerprint data structures to solve the longest common extension problem in query time O(logNlogℓ) and O....... That is, given indices i and j, the answer to a query is the fingerprint of the substring S[i,j]. We present the first O(n) space data structures that answer fingerprint queries without decompressing any characters. For Straight Line Programs (SLP) we get O(logN) query time, and for Linear SLPs (an SLP...
How to simulate global cosmic strings with large string tension
Energy Technology Data Exchange (ETDEWEB)
Klaer, Vincent B.; Moore, Guy D., E-mail: vklaer@theorie.ikp.physik.tu-darmstadt.de, E-mail: guy.moore@physik.tu-darmstadt.de [Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße 2, Darmstadt, D-64289 Germany (Germany)
2017-10-01
Global string networks may be relevant in axion production in the early Universe, as well as other cosmological scenarios. Such networks contain a large hierarchy of scales between the string core scale and the Hubble scale, ln( f {sub a} / H ) ∼ 70, which influences the network dynamics by giving the strings large tensions T ≅ π f {sub a} {sup 2} ln( f {sub a} / H ). We present a new numerical approach to simulate such global string networks, capturing the tension without an exponentially large lattice.
Maximal unbordered factors of random strings
DEFF Research Database (Denmark)
Cording, Patrick Hagge; Knudsen, Mathias Bæk Tejs
2016-01-01
A border of a string is a non-empty prefix of the string that is also a suffix of the string, and a string is unbordered if it has no border. Loptev, Kucherov, and Starikovskaya [CPM 2015] conjectured the following: If we pick a string of length n from a fixed alphabet uniformly at random...
Multiple parton interactions in photoproduction at HERA/H1
Energy Technology Data Exchange (ETDEWEB)
Magro, Lluis Marti
2009-02-15
Photoproduction data of HERA-I are analysed by requiring dijets with transverse momenta of at least 5 GeV. The two jets define in azimuth a towards region (leading jet), an away region (usually the 2nd jet) and transverse regions between them. The charged particle and jet with low transverse momentum multiplicity, so called minijets, are measured in these regions as a function of the variables x{sup obs}{sub {gamma}} and P{sup Jet{sub 1T}} (leading jet). The measurement is compared to predictions including parton showers and matrix elements at leading order in {alpha}{sub s}. Some predictions include contributions from multiple parton interactions and use different parton evolution equations. It was found that existing MC programs do not fully describe the measurements but the description can be improved by including multiple parton interactions. (orig.)
Probing early parton kinetics by photons, dileptons and charm
International Nuclear Information System (INIS)
Kaempfer, B.; Technische Univ. Dresden; Pavlenko, O.P.
1993-07-01
Equilibration processes in pre-equilibrium parton matter are considered. We investigate chemical quark equilibration, partial thermalization and overall thermalization, and their influence on electromagnetic (photons, dileptons) and charmed probes. (orig.)
Generalized parton distributions and transversity from full lattice QCD
Göckeler, M.; Hägler, Ph.; Horsley, R.; Pleiter, D.; Rakow, P. E. L.; Schäfer, A.; Schierholz, G.; Zanotti, J. M.; Qcdsf Collaboration
2005-06-01
We present here the latest results from the QCDSF collaboration for moments of gener- alized parton distributions and transversity in two-flavour QCD, including a preliminary analysis of the pion mass dependence.
Parton distributions andαs for the LHC
International Nuclear Information System (INIS)
Alekhin, S.; Bluemlein, J.; Moch, S.O.; Univ. Hamburg
2013-03-01
We report on recent determinations of NNLO parton distributions and of α s (M Z ) based on the world deep-inelastic data, supplemented by collider data. Some applications are discussed for semi-inclusive processes at the LHC.
Transverse momentum dependent (TMD) parton distribution functions : status and prospects
Angeles-Martinez, R.; Bacchetta, A.; Balitsky, I.I.; Boer, D.; Boglione, M.; Boussarie, R.; Ceccopieri, F.A.; Cherednikov, I.O.; Connor, P.; Echevarria, M. G.; Ferrera, G.; Luyando, J. Grados; Hautmann, F.; Jung, H.; Kasemets, T.; Kutak, K.; Lansberg, J.P.; Lelek, A.; Lykasov, G.; Martinez, J. D. Madrigal; Mulders, P. J.; Nocera, Emanuele R.; Petreska, E.; Pisano, C.; Placakyte, R.; Radescu, V.; Radici, M.; Schnell, G.; Scimemi, I.; Signori, A.; Szymanowski, L.; Monfared, S. Taheri; van der Veken, F.F.; van Haevermaet, H.J.; van Mechelen, P.; Vladimirov, A.; Wallon, S.
2015-01-01
We review transverse momentum dependent (TMD) parton distribution functions, their application to topical issues in high-energy physics phenomenology, and their theoretical connections with QCD resummation, evolution and factorization theorems. We illustrate the use of TMDs via examples of
Nucleon parton distributions in a light-front quark model
International Nuclear Information System (INIS)
Gutsche, Thomas; Lyubovitskij, Valery E.; Schmidt, Ivan
2017-01-01
Continuing our analysis of parton distributions in the nucleon, we extend our light-front quark model in order to obtain both the helicity-independent and the helicity-dependent parton distributions, analytically matching the results of global fits at the initial scale μ∝ 1 GeV; they also contain the correct Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution. We also calculate the transverse parton, Wigner and Husimi distributions from a unified point of view, using our light-front wave functions and expressing them in terms of the parton distributions q_v(x) and δq_v(x). Our results are very relevant for the current and future program of the COMPASS experiment at SPS (CERN). (orig.)
Parton model (Moessbauer) sum rules for b → c decays
International Nuclear Information System (INIS)
Lipkin, H.J.
1993-01-01
The parton model is a starting point or zero-order approximation in many treatments. The author follows an approach previously used for the Moessbauer effect and shows how parton model sum rules derived for certain moments of the lepton energy spectrum in b → c semileptonic decays remain valid even when binding effects are included. The parton model appears as a open-quote semiclassical close-quote model whose results for certain averages also hold (correspondence principle) in quantum mechanics. Algebraic techniques developed for the Moessbauer effect exploit simple features of the commutator between the weak current operator and the bound state Hamiltonian to find the appropriate sum rules and show the validity of the parton model in the classical limit, ℎ → 0, where all commutators vanish
Improved quasi parton distribution through Wilson line renormalization
Energy Technology Data Exchange (ETDEWEB)
Chen, Jiunn-Wei [Department of Physics, Center for Theoretical Sciences, and Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei, 106, Taiwan (China); Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ji, Xiangdong [INPAC, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 (China); Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742 (United States); Zhang, Jian-Hui, E-mail: jianhui.zhang@physik.uni-regensburg.de [Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg (Germany)
2017-02-15
Recent developments showed that hadron light-cone parton distributions could be directly extracted from spacelike correlators, known as quasi parton distributions, in the large hadron momentum limit. Unlike the normal light-cone parton distribution, a quasi parton distribution contains ultraviolet (UV) power divergence associated with the Wilson line self energy. We show that to all orders in the coupling expansion, the power divergence can be removed by a “mass” counterterm in the auxiliary z-field formalism, in the same way as the renormalization of power divergence for an open Wilson line. After adding this counterterm, the quasi quark distribution is improved such that it contains at most logarithmic divergences. Based on a simple version of discretized gauge action, we present the one-loop matching kernel between the improved non-singlet quasi quark distribution with a lattice regulator and the corresponding quark distribution in dimensional regularization.
Improved quasi parton distribution through Wilson line renormalization
Directory of Open Access Journals (Sweden)
Jiunn-Wei Chen
2017-02-01
Full Text Available Recent developments showed that hadron light-cone parton distributions could be directly extracted from spacelike correlators, known as quasi parton distributions, in the large hadron momentum limit. Unlike the normal light-cone parton distribution, a quasi parton distribution contains ultraviolet (UV power divergence associated with the Wilson line self energy. We show that to all orders in the coupling expansion, the power divergence can be removed by a “mass” counterterm in the auxiliary z-field formalism, in the same way as the renormalization of power divergence for an open Wilson line. After adding this counterterm, the quasi quark distribution is improved such that it contains at most logarithmic divergences. Based on a simple version of discretized gauge action, we present the one-loop matching kernel between the improved non-singlet quasi quark distribution with a lattice regulator and the corresponding quark distribution in dimensional regularization.
Parton jet fragmentation at small momentum fraction (x)
International Nuclear Information System (INIS)
Kirschner, R.
1984-05-01
The parton fragmentation function is calculated at small x and the angular ordering condition is rederived by extending the method of separation of the softest particle, which is based on unitarity and gauge invariance. (author)
Nucleon parton distributions in a light-front quark model
Energy Technology Data Exchange (ETDEWEB)
Gutsche, Thomas [Universitaet Tuebingen, Institut fuer Theoretische Physik, Kepler Center for Astro and Particle Physics, Tuebingen (Germany); Lyubovitskij, Valery E. [Universitaet Tuebingen, Institut fuer Theoretische Physik, Kepler Center for Astro and Particle Physics, Tuebingen (Germany); Tomsk State University, Department of Physics, Tomsk (Russian Federation); Tomsk Polytechnic University, Laboratory of Particle Physics, Mathematical Physics Department, Tomsk (Russian Federation); Universidad Tecnica Federico Santa Maria, Departamento de Fisica y Centro Cientifico Tecnologico de Valparaiso (CCTVal), Valparaiso (Chile); Schmidt, Ivan [Universidad Tecnica Federico Santa Maria, Departamento de Fisica y Centro Cientifico Tecnologico de Valparaiso (CCTVal), Valparaiso (Chile)
2017-02-15
Continuing our analysis of parton distributions in the nucleon, we extend our light-front quark model in order to obtain both the helicity-independent and the helicity-dependent parton distributions, analytically matching the results of global fits at the initial scale μ∝ 1 GeV; they also contain the correct Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution. We also calculate the transverse parton, Wigner and Husimi distributions from a unified point of view, using our light-front wave functions and expressing them in terms of the parton distributions q{sub v}(x) and δq{sub v}(x). Our results are very relevant for the current and future program of the COMPASS experiment at SPS (CERN). (orig.)
Insight into nucleon structure from generalized parton distributions
International Nuclear Information System (INIS)
J.W. Negele; R.C. Brower; P. Dreher; R. Edwards; G. Fleming; Ph. Hagler; Th. Lippert; A.V.Pochinsky; D.B. Renner; D. Richards; K. Schilling; W. Schroers
2004-01-01
The lowest three moments of generalized parton distributions are calculated in full QCD and provide new insight into the behavior of nucleon electromagnetic form factors, the origin of the nucleon spin, and the transverse structure of the nucleon
Study of the partonic structure of the helium nucleus
International Nuclear Information System (INIS)
Perrin, Y.
2012-01-01
The structure of the nucleons and of the nuclei was actively studied during the twentieth century through electron elastic scattering (measuring the electromagnetic form factors) and deep inelastic electron scattering (measuring the parton distributions). The formalism of generalized parton distributions (GPD) achieved the unification of the form factors and the parton distributions. This link gives a source of information about parton dynamics, such as the distribution of nuclear forces and orbital momentum inside hadrons. The easiest experimental access to the GPD is the deeply virtual Compton scattering (DVCS), which corresponds to the hard electroproduction of a real photon. While several experiments focussed on DVCS off the nucleon, only a few experiments studied DVCS off a nuclear target. This thesis deals with the study of the coherent channel of DVCS off helium 4, with the aim of extracting the real and imaginary parts of the Compton form factor thanks to the beam spin asymmetry. (author)
International Nuclear Information System (INIS)
Schaefer, Mirko
2011-01-01
The main topic of this thesis is the investigation of dynamical properties of coupled Tchebycheff map networks. The results give insights into the chaotic string model and its network generalization from a dynamical point of view. As a first approach, discrete symmetry transformations of the model are studied. These transformations are formulated in a general way in order to be also applicable to similar dynamics on bipartite network structures. The dynamics is studied numerically via Lyapunov measures, spatial correlations, and ergodic properties. It is shown that the zeros of the interaction energy are distinguished only with respect to this specific observable, but not by a more general dynamical principle. The original chaotic string model is defined on a one-dimensional lattice (ring-network) as the underlying network topology. This thesis studies a modification of the model based on the introduction of tunable disorder. The effects of inhomogeneous coupling weights as well as small-world perturbations of the ring-network structure on the interaction energy are discussed. Synchronization properties of the chaotic string model and its network generalization are studied in later chapters of this thesis. The analysis is based on the master stability formalism, which relates the stability of the synchronized state to the spectral properties of the network. Apart from complete synchronization, where the dynamics at all nodes of the network coincide, also two-cluster synchronization on bipartite networks is studied. For both types of synchronization it is shown that depending on the type of coupling the synchronized dynamics can display chaotic as well as periodic or quasi-periodic behaviour. The semi-analytical calculations reveal that the respective synchronized states are often stable for a wide range of coupling values even for the ring-network, although the respective basins of attraction may inhabit only a small fraction of the phase space. To provide
Quantum backreaction in string theory
International Nuclear Information System (INIS)
Evnin, O.
2012-01-01
There are situations in string theory when a finite number of string quanta induce a significant backreaction upon the background and render the perturbation theory infrared-divergent. The simplest example is D0-brane recoil under an impact by closed strings. A more physically interesting case is backreaction on the evolution of a totally compact universe due to closed string gas. Such situations necessitate qualitative amendments to the traditional formulation of string theory in a fixed classical background. In this contribution to the proceedings of the XVII European Workshop on String Theory in Padua, I review solved problems and current investigations in relation to this kind of quantum backreaction effects. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Fast Searching in Packed Strings
DEFF Research Database (Denmark)
Bille, Philip
2009-01-01
Given strings P and Q the (exact) string matching problem is to find all positions of substrings in Q matching P. The classical Knuth-Morris-Pratt algorithm [SIAM J. Comput., 1977] solves the string matching problem in linear time which is optimal if we can only read one character at the time....... However, most strings are stored in a computer in a packed representation with several characters in a single word, giving us the opportunity to read multiple characters simultaneously. In this paper we study the worst-case complexity of string matching on strings given in packed representation. Let m...... word-RAM with logarithmic word size we present an algorithm using time O(n/log(sigma) n + m + occ) Here occ is the number of occurrences of P in Q. For m = o(n) this improves the O(n) bound...
Comparing double string theory actions
International Nuclear Information System (INIS)
De Angelis, L.; Gionti, S.J.G.; Marotta, R.; Pezzella, F.
2014-01-01
Aimed to a deeper comprehension of a manifestly T-dual invariant formulation of string theory, in this paper a detailed comparison between the non-covariant action proposed by Tseytlin and the covariant one proposed by Hull is done. These are obtained by making both the string coordinates and their duals explicitly appear, on the same footing, in the world-sheet action, so “doubling” the string coordinates along the compact dimensions. After a discussion on the nature of the constraints in both the models and the relative quantization, it results that the string coordinates and their duals behave like “non-commuting” phase space coordinates but their expressions in terms of Fourier modes generate the oscillator algebra of the standard bosonic string. A proof of the equivalence of the two formulations is given. Furthermore, open-string solutions are also discussed
Comparing double string theory actions
Energy Technology Data Exchange (ETDEWEB)
De Angelis, L. [Dipartimento di Fisica, Università degli Studi “Federico II” di Napoli,Complesso Universitario Monte S. Angelo ed. 6, via Cintia, 80126 Napoli (Italy); Gionti, S.J.G. [Specola Vaticana, Vatican City, V-00120, Vatican City State and Vatican Observatory Research Group, Steward Observatory, The University Of Arizona, 933 North Cherry Avenue, Tucson, Arizona 85721 (United States); Marotta, R.; Pezzella, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Napoli,Complesso Universitario di Monte S. Angelo ed. 6, via Cintia, 80126 Napoli (Italy)
2014-04-28
Aimed to a deeper comprehension of a manifestly T-dual invariant formulation of string theory, in this paper a detailed comparison between the non-covariant action proposed by Tseytlin and the covariant one proposed by Hull is done. These are obtained by making both the string coordinates and their duals explicitly appear, on the same footing, in the world-sheet action, so “doubling” the string coordinates along the compact dimensions. After a discussion on the nature of the constraints in both the models and the relative quantization, it results that the string coordinates and their duals behave like “non-commuting” phase space coordinates but their expressions in terms of Fourier modes generate the oscillator algebra of the standard bosonic string. A proof of the equivalence of the two formulations is given. Furthermore, open-string solutions are also discussed.
QCD collinear factorization, its extensions and the partonic distributions
Szymanowski, Lech
2012-01-01
I review the basics of the collinear factorization theorem applied primarily to deep inelastic scattering (DIS) involving forward parton distributions (PDFs) and the extensions of this theorem for exclusive processes probing non-forward parton distributions (GPDs), the generalized distribution amplitudes (GDAs) and the transition distribution amplitudes (TDAs). These QCD factorization theorem is an important tool in the description of hard processes in QCD. Whenever valid, it permits to repre...
Experimental tests of charge symmetry violation in parton distributions
International Nuclear Information System (INIS)
Londergan, J.T.; Murdock, D.P.; Thomas, A.W.
2005-01-01
Recently, a global phenomenological fit to high energy data has included charge symmetry breaking terms, leading to limits on the allowed magnitude of such effects. We discuss two possible experiments that could search for isospin violation in valence parton distributions. We show that, given the magnitude of charge symmetry violation consistent with existing global data, such experiments might expect to see effects at a level of several percent. Alternatively, such experiments could significantly decrease the upper limits on isospin violation in parton distributions
Calculation of parton fragmentation functions from jet calculus: gluon applications
International Nuclear Information System (INIS)
Lassila, K.E.; Ng, A.
1985-01-01
A method is presented for calculation of general parton fragmentation functions based on jet calculus plus meson and baryon wave functions. Results for gluon fragmentation into mesons and baryons are discussed and related to recent information on upsilon decay into gluons. The expressions derived can be used directly in e + e - cross section predictions and will need to be folded in with baryon parton distribution functions when used in p-barp collisions. (author)
Reweighting QCD matrix-element and parton-shower calculations
Energy Technology Data Exchange (ETDEWEB)
Bothmann, Enrico; Schumann, Steffen [Universitaet Goettingen, II. Physikalisches Institut, Goettingen (Germany); Schoenherr, Marek [Universitaet Zuerich, Physik-Institut, Zuerich (Switzerland)
2016-11-15
We present the implementation and validation of the techniques used to efficiently evaluate parametric and perturbative theoretical uncertainties in matrix-element plus parton-shower simulations within the Sherpa event-generator framework. By tracing the full α{sub s} and PDF dependences, including the parton-shower component, as well as the fixed-order scale uncertainties, we compute variational event weights on-the-fly, thereby greatly reducing the computational costs to obtain theoretical-uncertainty estimates. (orig.)
Regularized strings with extrinsic curvature
International Nuclear Information System (INIS)
Ambjoern, J.; Durhuus, B.
1987-07-01
We analyze models of discretized string theories, where the path integral over world sheet variables is regularized by summing over triangulated surfaces. The inclusion of curvature in the action is a necessity for the scaling of the string tension. We discuss the physical properties of models with extrinsic curvature terms in the action and show that the string tension vanishes at the critical point where the bare extrinsic curvature coupling tends to infinity. Similar results are derived for models with intrinsic curvature. (orig.)
Classical theory of radiating strings
Copeland, Edmund J.; Haws, D.; Hindmarsh, M.
1990-01-01
The divergent part of the self force of a radiating string coupled to gravity, an antisymmetric tensor and a dilaton in four dimensions are calculated to first order in classical perturbation theory. While this divergence can be absorbed into a renormalization of the string tension, demanding that both it and the divergence in the energy momentum tensor vanish forces the string to have the couplings of compactified N = 1 D = 10 supergravity. In effect, supersymmetry cures the classical infinities.
Cosmic string induced CMB maps
International Nuclear Information System (INIS)
Landriau, M.; Shellard, E. P. S.
2011-01-01
We compute maps of CMB temperature fluctuations seeded by cosmic strings using high resolution simulations of cosmic strings in a Friedmann-Robertson-Walker universe. We create full-sky, 18 deg. and 3 deg. CMB maps, including the relevant string contribution at each resolution from before recombination to today. We extract the angular power spectrum from these maps, demonstrating the importance of recombination effects. We briefly discuss the probability density function of the pixel temperatures, their skewness, and kurtosis.
Introduction to strings and superstrings
International Nuclear Information System (INIS)
Traubenberg, M.R. de.
1988-01-01
We discuss the main features on the formulation of string theory that, in a primitive level, describe the hadronic phenomenon of duality. We also study an extension of the models of closed and strings with spin. Then, by using supersymmetry, it is formulated the theory of superstrings and heterotic strings with the aim of unify the fundamental interactions and matter. (M.W.O.) [pt
Experimenting with string musical instruments
LoPresto, Michael C.
2012-03-01
What follows are several investigations involving string musical instruments developed for and used in a Science of Sound & Light course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when used in physics, represent reality that can actually be observed, in this case, the operation of string musical instruments.
String breaking with Wilson loops?
Kratochvila, S; Kratochvila, Slavo; Forcrand, Philippe de
2003-01-01
A convincing, uncontroversial observation of string breaking, when the static potential is extracted from Wilson loops only, is still missing. This failure can be understood if the overlap of the Wilson loop with the broken string is exponentially small. In that case, the broken string ground state will only be seen if the Wilson loop is long enough. Our preliminary results show string breaking in the context of the 3d SU(2) adjoint static potential, using the L\\"uscher-Weisz exponential variance reduction approach. As a by-product, we measure the fundamental SU(2) static potential with improved accuracy and see clear deviations from Casimir scaling.
Schomerus, Volker
2017-01-01
Since its conception in the 1960s, string theory has been hailed as one of the most promising routes we have to unify quantum mechanics and general relativity. This book provides a concise introduction to string theory explaining central concepts, mathematical tools and covering recent developments in physics including compactifications and gauge/string dualities. With string theory being a multidisciplinary field interfacing with high energy physics, mathematics and quantum field theory, this book is ideal for both students with no previous knowledge of the field and scholars from other disciplines who are looking for an introduction to basic concepts.
Open problems in string cosmology
International Nuclear Information System (INIS)
Toumbas, N.
2010-01-01
Some of the open problems in string cosmology are highlighted within the context of the recently constructed thermal and quantum superstring cosmological solutions. Emphasis is given on the high temperature cosmological regime, where it is argued that thermal string vacua in the presence of gravito-magnetic fluxes can be used to bypass the Hagedorn instabilities of string gas cosmology. This article is based on a talk given at the workshop on ''Cosmology and Strings'', Corfu, September 6-13, 2009. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
Lin, Chien-Hung
2017-05-01
We generalize the string-net construction to multiple flavors of strings, each of which is labeled by the elements of an Abelian group Gi. The same flavor of strings can branch, while different flavors of strings can cross one another and thus they form intersecting string nets. We systematically construct the exactly soluble lattice Hamiltonians and the ground-state wave functions for the intersecting string-net condensed phases. We analyze the braiding statistics of the low-energy quasiparticle excitations and find that our model can realize all the topological phases as the string-net model with group G =∏iGi . In this respect, our construction provides various ways of building lattice models which realize topological order G , corresponding to different partitions of G and thus different flavors of string nets. In fact, our construction concretely demonstrates the Künneth formula by constructing various lattice models with the same topological order. As an example, we construct the G =Z2×Z2×Z2 string-net model which realizes a non-Abelian topological phase by properly intersecting three copies of toric codes.
Haouzi, Nathan; Kozçaz, Can
2017-01-01
Starting from type IIB string theory on an $ADE$ singularity, the (2,0) little string arises when one takes the string coupling $g_s$ to 0. In this setup, we give a unified description of the codimension-two defects of the little string, for any simple Lie algebra ${\\mathfrak{g}}$. Geometrically, these are D5 branes wrapping 2-cycles of the singularity. Equivalently, the defects are specified by a certain set of weights of $^L {\\mathfrak{g}}$, the Langlands dual of ${\\mathfrak{g}}$. As a firs...
Kiritsis, Elias
2007-01-01
This book is the essential new introduction to modern string theory, by one of the world's authorities on the subject. Concise, clearly presented, and up-to-date, String Theory in a Nutshell brings together the best understood and most important aspects of a theory that has been evolving since the early 1980s. A core model of physics that substitutes one-dimensional extended ""strings"" for zero-dimensional point-like particles (as in quantum field theory), string theory has been the leading candidate for a theory that would successfully unify all fundamental forces of nature, includin
Splitting strings on integrable backgrounds
Energy Technology Data Exchange (ETDEWEB)
Vicedo, Benoit
2011-05-15
We use integrability to construct the general classical splitting string solution on R x S{sup 3}. Namely, given any incoming string solution satisfying a necessary self-intersection property at some given instant in time, we use the integrability of the worldsheet {sigma}-model to construct the pair of outgoing strings resulting from a split. The solution for each outgoing string is expressed recursively through a sequence of dressing transformations, the parameters of which are determined by the solutions to Birkhoff factorization problems in an appropriate real form of the loop group of SL{sub 2}(C). (orig.)
Dynamical study of merger remnants
International Nuclear Information System (INIS)
Lake, G.; Dressler, A.; ATandT Bell Labs., Murray Hill, NJ; Mount Wilson and Las Campanas Observatories, Pasadena, CA; Carnegie Institution of Washington, Washington, DC)
1986-01-01
The velocity dispersion of objects from the Arp and the Arp-Madore atlases that have characteristics of recently merged galaxies is measured. These data are used to test the hypothesis that the remnants become normal elliptical galaxies after the fireworks of recent star formation subside. Accurate velocity dispersions of objects dominated by Balmer lines in the blue were measured using the uncontaminated Ca triplet feature in the extreme red (8400-8700 A). No deviation from the velocity dispersion expected for elliptical galaxies of comparable luminosity, is found, e.g., these systems follow the usual L-sigma relation with no zero-point shift. For a few galaxies without Balmer contamination, stellar rotation velocities are determined. One slow, one moderate, and one fast rotator are found. 54 references
Parton distributions from SMC and SLAC data
International Nuclear Information System (INIS)
Ramsey, G.P.
1996-01-01
We have extracted spin-weighted parton distributions in a proton from recent data at CERN and SLAC. The valence, sea quark and Antiquark spin-weighted distributions are determined separately. The data are all consistent with a small to moderate polarized gluon distribution, so that the anomaly term is not significant in the determination of the constituent contributions to the spin of the proton. We have analyzed the consistency of the results obtained from various sets of data and the Biorken sum rule. Although all data are consistent with the sum rule, the polarized distributions from different experiments vary, even with higher order QCD corrections taken into account. Results split into two models, one set implying a large polarized strange sea which violates the positivity bound, and the other set yielding a smaller polarized strange sea. Only further experiments which extract information about the polarized sea will reconcile these differences. We suggest specific experiments which can be performed to determine the size of the polarized sea and gluons
Parton distributions for the LHC Run II
Ball, Richard D.; Carrazza, Stefano; Deans, Christopher S.; Del Debbio, Luigi; Forte, Stefano; Guffanti, Alberto; Hartland, Nathan P.; Latorre, José I.; Rojo, Juan; Ubiali, Maria
2015-01-01
We present NNPDF3.0, the first set of parton distribution functions (PDFs) determined with a methodology validated by a closure test. NNPDF3.0 uses a global dataset including HERA-II deep-inelastic inclusive cross-sections, the combined HERA charm data, jet production from ATLAS and CMS, vector boson rapidity and transverse momentum distributions from ATLAS, CMS and LHCb, W+c data from CMS and top quark pair production total cross sections from ATLAS and CMS. Results are based on LO, NLO and NNLO QCD theory and also include electroweak corrections. To validate our methodology, we show that PDFs determined from pseudo-data generated from a known underlying law correctly reproduce the statistical distributions expected on the basis of the assumed experimental uncertainties. This closure test ensures that our methodological uncertainties are negligible in comparison to the generic theoretical and experimental uncertainties of PDF determination. This enables us to determine with confidence PDFs at different pertu...
Progenitor's Signatures in Type Ia Supernova Remnants
Chiotellis, A.; Kosenko, D.; Schure, K.M.; Vink, J.
2013-01-01
The remnants of Type Ia supernovae (SNe Ia) can provide important clues about their progenitor histories. We discuss two well-observed supernova remnants (SNRs) that are believed to have resulted from SNe Ia, and use various tools to shed light on the possible progenitor histories. We find that
Strings and superstrings. Electron linear colliders
International Nuclear Information System (INIS)
Alessandrini, V.; Bambade, P.; Binetruy, P.; Kounnas, C.; Le Duff, J.; Schwimmer, A.
1989-01-01
Basic string theory; strings in interaction; construction of strings and superstrings in arbitrary space-time dimensions; compactification and phenomenology; linear e+e- colliders; and the Stanford linear collider were discussed [fr
Strings, Branes and Symmetries
International Nuclear Information System (INIS)
Westerberg, A.
1997-01-01
Recent dramatic progress in the understanding of the non-perturbative structure of superstring theory shows that extended objects of various kinds, collectively referred to as p-branes, are an integral part of the theory. In this thesis, comprising an introductory text and seven appended research papers, we study various aspects of p-branes with relevance for superstring theory. The first part of the introductory text is a brief review of string theory focussing on the role of p-branes. In particular, we consider the so-called D-branes which currently are attracting a considerable amount of attention. The purpose of this part is mainly to put into context the results of paper 4, 5 and 6 concerning action functionals describing the low-energy dynamics of D-branes. The discussion of perturbative string theory given in this part of the introduction is also intended to provide some background to paper 2 which contains an application of the Reggeon-sewing approach to the construction of string vertices. The second part covers a rather different subject, namely higher-dimensional loop algebras and their cohomology, with the aim of facilitating the reading of papers 1, 3 and 7. The relation to p-branes is to be found in paper 1 where we introduce a certain higher-dimensional generalization of the loop algebra and discuss its potential applicability as a symmetry algebra for p-branes. Papers 3 and 7 are mathematically oriented out-growths of this paper addressing the issue of realizing algebras of this kind, known in physics as current algebras, in terms of pseudo differential operators (PSDOs). The main result of paper 3 is a proof of the equivalence between certain Lie-algebra cocycles on the space of second-quantizable PSDOs
Gorbatov, Elie
In the first part of the dissertation we study noncommutative field theories at finite temperature. We find evidence for winding states and observe the existence of a transition to a new phase where there is a reduction of the degrees of freedom in the non-planar sector of the theory. We emphasize that such a transition is generic and insensitive to the particulars of the UV definition of the theory. In the second part we investigate some aspects of M-theory compactifications on orbifolds. The heterotic E8 x E 8 string compactified on T4/ ZN has gauge group G x G˜ with massless states in the twisted sector charged under both factors. In the dual M-theory description on T4/ ZN x S1/Z 2 the two groups do not communicate with each other since they reside on the boundary of the eleven dimensional spacetime. This leads to a conundrum for the twisted states of the perturbative heterotic string for there does not seem to be local degrees of freedom which carry charges under both G and G˜. We propose a resolution of this apparent paradox by nonperturbative states in M-theory. In support of our argument we review the consideration of six-dimensional gauge couplings and verify the local anomaly cancellation. In order to understand the dynamical properties of these states we deform the orbifold geometry, find an equivalent string theory background, and brane engineer the low energy six-dimensional field theories. In the process we encounter many exotic and surprising phenomena which are intrinsically M-theoretic and completely invisible to the perturbative observer.
Energy Technology Data Exchange (ETDEWEB)
Siciliano, E.R.
1998-05-12
Data and supporting documentation were compiled and analyzed for 26 cases of gas grab samples taken during waste-tank core sampling activities between September 1, 1995 and December 31, 1997. These cases were tested against specific criteria to reduce uncertainties associated with in-tank sampling location and conditions. Of the 26 possible cases, 16 qualified as drill-string grab samples most likely to represent recently released waste gases. The data from these 16 ``confirmed`` cases were adjusted to remove non-waste gas contributions from core-sampling activities (argon or nitrogen purge), the atmospheric background, and laboratory sampler preparation (helium). The procedure for subtracting atmospheric, laboratory, and argon purge gases was unambiguous. No reliable method for determining the exact amount of nitrogen purge gas was established. Thus, the final set of ``Adjusted`` drill string gas data for the 6 nitrogen-purged cases had a greater degree of uncertainty than the final results for the 10 argon-purged cases. Including the appropriate amounts of uncertainty, this final set of data was added to the set of high-quality results from the Retained Gas Sampler (RGS), and good agreement was found for the N{sub 2}, H{sub 2}, and N{sub 2}O mole fractions sampled from common tanks. These results indicate that under favorable sampling conditions, Drill-String (DS) grab samples can provide reasonably accurate information about the dominant species of released gas. One conclusion from this set of total gas data is that the distribution of the H{sub 2} mole fractions is bimodal in shape, with an upper bound of 78%.
Directory of Open Access Journals (Sweden)
Amin Boumenir
2008-07-01
Full Text Available We investigate the existence and representation of transmutations, also known as transformation operators, for strings. Using measure theory and functional analytic methods we prove their existence and study their representation. We show that in general they are not close to unity since their representation does not involve a Volterra operator but rather the eigenvalue parameter. We also obtain conditions under which the transmutation is either a bounded or a compact operator. Explicit examples show that they cannot be reduced to Volterra type operators.
International Nuclear Information System (INIS)
Kachru, Shamit; McAllister, Liam; Sundrum, Raman
2007-01-01
We study sequestering, a prerequisite for flavor-blind supersymmetry breaking in several high-scale mediation mechanisms, in compactifications of type IIB string theory. We find that although sequestering is typically absent in unwarped backgrounds, strongly warped compactifications do readily sequester. The AdS/CFT dual description in terms of conformal sequestering plays an important role in our analysis, and we establish how sequestering works both on the gravity side and on the gauge theory side. We pay special attention to subtle compactification effects that can disrupt sequestering. Our result is a step toward realizing an appealing pattern of soft terms in a KKLT compactification
Energy Technology Data Exchange (ETDEWEB)
Shakhobalov, A B; Galiopa, A A; Ponomarev, G V; Ushakov, A M
1981-04-28
A drilling string lifter is suggested which includes a rotating tower installed on a fixed base, hydraulic cylinder and pipe-clamping assembly connected through a chain gear to the drive motor. In order to simplify the design of the hydraulic lifter, the drive motor is installed on a fixed base so that the axis of the outlet shaft of the drive motor coincides with the axis of rotation of the tower. In addition, the axis of rotation of the tower is made in the form of a tubular element, and the outlet shaft of the drive motor is ranged between the tubular element.
International Nuclear Information System (INIS)
Ip, A.K.; Koyanagi, K.; Tarasuk, W.R.
1976-01-01
A method of fabricating rodded fuels suitable for use in pressure tube type reactors and in pressure vessel type reactors is described. Fuel rods are secured as an inner and an outer sub-assembly, each rod attached between mounting rings secured to the rod ends. The two sub-assemblies are telescoped together and positioned by spaced thimbles located between them to provide precise positioning while permittng differential axial movement between the sub-assemblies. Such sub-assemblies are particularly suited for mounting as bundle strings. The method provides particular advantages in the assembly of annular-section fuel pins, which includes booster fuel containing enriched fuel material. (LL)
Correlators of Ramond-Neveu-Schwarz fields in string theory
Energy Technology Data Exchange (ETDEWEB)
Haertl, Daniel
2011-07-15
In this thesis we provide calculational tools in order to calculate scattering amplitudes in string theory at tree- and loop-level. In particular, we discuss the calculation of correlation functions consisting of Ramond-Neveu-Schwarz fields in four, six, eight and ten space-time dimensions and calculate the amplitude involving two gauge fields and four gauginos at tree-level. Multi-parton superstring amplitudes are of considerable theoretical interest in the frame-work of a full-fledged superstring theory and of phenomenological interest in describing corrections to four-dimensional scattering processes. The Neveu-Schwarz fermions and Ramond spin fields enter the scattering amplitudes through vertex operators of bosonic and fermionic string states and determine the Lorentz structure of the total amplitude. Due to their interacting nature their correlators cannot be evaluated using Wick's theorem but must be calculated from first principles. At tree-level such correlation functions can be determined by analyzing their Lorentz and singularity structure. In four space-time dimensions we show how to calculate Ramond- Neveu-Schwarz correlators with any number of fields. This method is based on factorizing the expressions into correlators involving only left- or right-handed spin fields and calculating these functions. This factorization property does not hold in higher dimensions. Nevertheless, we are able to calculate certain classes of correlators with arbitrary many fields. Additionally, in eight dimensions we can profit from SO(8) triality to derive further tree-level correlation functions. Ramond-Neveu-Schwarz correlators at loop-level can be evaluated by re-expressing the fermions and spin fields in terms of SO(2) spin system operators. Using this method we present expressions for all correlators up to six-point level and show in addition results for certain classes of correlators with any number of fields. Our findings hold for string scattering at arbitrary
Correlators of Ramond-Neveu-Schwarz fields in string theory
International Nuclear Information System (INIS)
Haertl, Daniel
2011-01-01
In this thesis we provide calculational tools in order to calculate scattering amplitudes in string theory at tree- and loop-level. In particular, we discuss the calculation of correlation functions consisting of Ramond-Neveu-Schwarz fields in four, six, eight and ten space-time dimensions and calculate the amplitude involving two gauge fields and four gauginos at tree-level. Multi-parton superstring amplitudes are of considerable theoretical interest in the frame-work of a full-fledged superstring theory and of phenomenological interest in describing corrections to four-dimensional scattering processes. The Neveu-Schwarz fermions and Ramond spin fields enter the scattering amplitudes through vertex operators of bosonic and fermionic string states and determine the Lorentz structure of the total amplitude. Due to their interacting nature their correlators cannot be evaluated using Wick's theorem but must be calculated from first principles. At tree-level such correlation functions can be determined by analyzing their Lorentz and singularity structure. In four space-time dimensions we show how to calculate Ramond- Neveu-Schwarz correlators with any number of fields. This method is based on factorizing the expressions into correlators involving only left- or right-handed spin fields and calculating these functions. This factorization property does not hold in higher dimensions. Nevertheless, we are able to calculate certain classes of correlators with arbitrary many fields. Additionally, in eight dimensions we can profit from SO(8) triality to derive further tree-level correlation functions. Ramond-Neveu-Schwarz correlators at loop-level can be evaluated by re-expressing the fermions and spin fields in terms of SO(2) spin system operators. Using this method we present expressions for all correlators up to six-point level and show in addition results for certain classes of correlators with any number of fields. Our findings hold for string scattering at arbitrary loop
Energy Technology Data Exchange (ETDEWEB)
Dyer, C C; Oattes, L M; Starkman, G D
1988-01-01
The authors find that vacuum string solutions cannot be embedded in an FRW model in the spirit of the swiss cheese model for inhomogeneities. Since all standard lensing calculations rely implicitly on the Swiss Cheese model, this result indicates that the previous lensing results for the vacuum string may be in error.
Tadpole resummations in string theory
International Nuclear Information System (INIS)
Kitazawa, Noriaki
2008-01-01
While R-R tadpoles should be canceled for consistency, string models with broken supersymmetry generally have uncanceled NS-NS tadpoles. Their presence signals that the background does not solve the field equations, so that these models are in 'wrong' vacua. In this Letter we investigate, with reference to some prototype examples, whether the true values of physical quantities can be recovered resumming the NS-NS tadpoles, hence by an approach that is related to the analysis based on String Field Theory by open-closed duality. We show that, indeed, the positive classical vacuum energy of a Dp-brane of the bosonic string is exactly canceled by the negative contribution arising from tree-level tadpole resummation, in complete agreement with Sen's conjecture on open-string tachyon condensation and with the consequent analysis based on String Field Theory. We also show that the vanishing classical vacuum energy of the SO(8192) unoriented bosonic open-string theory does not receive any tree-level corrections from the tadpole resummation. This result is consistent with the fact that this (unstable) configuration is free from tadpoles of massless closed-string modes, although there is a tadpole of the closed string tachyon. The application of this method to superstring models with broken supersymmetry is also discussed
International Nuclear Information System (INIS)
Iyer, Ramakrishnan; Johnson, Clifford V; Pennington, Jeffrey S
2011-01-01
We uncover a remarkable role that an infinite hierarchy of nonlinear differential equations plays in organizing and connecting certain c-hat <1 string theories non-perturbatively. We are able to embed the type 0A and 0B (A, A) minimal string theories into this single framework. The string theories arise as special limits of a rich system of equations underpinned by an integrable system known as the dispersive water wave hierarchy. We observe that there are several other string-like limits of the system, and conjecture that some of them are type IIA and IIB (A, D) minimal string backgrounds. We explain how these and several string-like special points arise and are connected. In some cases, the framework endows the theories with a non-perturbative definition for the first time. Notably, we discover that the Painleve IV equation plays a key role in organizing the string theory physics, joining its siblings, Painleve I and II, whose roles have previously been identified in this minimal string context.
2001-01-01
String 2 is a series of superconducting magnets that are prototypes of those which will be installed in the LHC. It was cooled down to 1.9 Kelvin on September 14th. On Thursday last week, the dipoles of String 2 were successfully taken to nominal current, 11850 A.
International Nuclear Information System (INIS)
Mandelstam, S.
1986-06-01
Work on the derivation of an explicit perturbation series for string and superstring amplitudes is reviewed. The light-cone approach is emphasized, but some work on the Polyakov approach is also mentioned, and the two methods are compared. The calculation of the measure factor is outlined in the interacting-string picture
String-localized quantum fields
International Nuclear Information System (INIS)
Mund, Jens; Santos, Jose Amancio dos; Silva, Cristhiano Duarte; Oliveira, Erichardson de
2009-01-01
Full text. The principles of physics admit (unobservable) quantum fields which are localized not on points, but on strings in the sense of Mandelstam: a string emanates from a point in Minkowski space and extends to infinity in some space-like direction. This type of localization might permit the construction of new models, for various reasons: (a) in general, weaker localization implies better UV behaviour. Therefore, the class of renormalizable interactions in the string-localized has a chance to be larger than in the point-localized case; (b) for certain particle types, there are no point-localized (free) quantum fields - for example Anyons in d = 2 + 1, and Wigner's massless 'infinite spin' particles. For the latter, free string-localized quantum fields have been constructed; (c) in contrast to the point-localized case, string-localization admits covariant vector/tensor potentials for fotons and gravitons in a Hilbert space representation with positive energy. We shall present free string-localized quantum fields for various particle types, and some ideas about the perturbative construction of interacting string-localized fields. A central point will be an analogue of gauge theories, completely within a Hilbert space and without ghosts, trading gauge dependence with dependence on the direction of the localization string. In order to discuss renormalizability (item (a)), methods from microlocal analysis (wave front set and scaling degree) are needed. (author)
Schaffer, Karl
2012-01-01
The use of traditional string figures by the Dr. Schaffer and Mr. Stern Dance Ensemble led to experimentation with polyhedral string constructions. This article presents a series of polyhedra made with six loops of three colors which sequence through all the Platonic Solids.
Symmetry breaking in string theory
International Nuclear Information System (INIS)
Potting, R.
1998-01-01
A mechanism for a spontaneous breakdown of CPT symmetry appears in string theory, with possible implications for particle models. A realistic string theory might exhibit CPT violation at levels detectable in current or future experiments. A possible new mechanism for baryogenesis in the early Universe is also discussed
Ng, Chiu-king
2010-01-01
When one end of a taut horizontal elastic string is shaken repeatedly up and down, a transverse wave (assume sine waveform) will be produced and travel along it. College students know this type of wave motion well. They know when the wave passes by, each element of the string will perform an oscillating up-down motion, which in mechanics is termed…
String theory : physics or metaphysics?
Veneziano, Gabriele
2010-01-01
I will give arguments for why the enormous progress made during the last century on understanding elementary particles and their fundamental interactions suggests strings as the truly elementary constituents of Nature. I will then address the issue of whether the string paradigm can in principle be falsified or whether it should be considered as mere metaphysics.
Differential formulation in string theories
International Nuclear Information System (INIS)
Guzzo, M.M.
1987-01-01
The equations of gauge invariance motion for theories of boson open strings and Neveu-Schwarz and Ramond superstring are derived. A construction for string theories using differential formalism, is introduced. The importance of BRST charge for constructing such theories and the necessity of introduction of auxiliary fields are verified. (M.C.K.) [pt
Deformations of topological open strings
Hofman, C.; Ma, Whee Ky
Deformations of topological open string theories are described, with an emphasis on their algebraic structure. They are encoded in the mixed bulk-boundary correlators. They constitute the Hochschild complex of the open string algebra - the complex of multilinear maps on the boundary Hilbert space.
Towards optimal packed string matching
DEFF Research Database (Denmark)
Ben-Kiki, Oren; Bille, Philip; Breslauer, Dany
2014-01-01
-size string-matching instruction wssm is available in contemporary commodity processors. The other word-size maximum-suffix instruction wslm is only required during the pattern pre-processing. Benchmarks show that our solution can be efficiently implemented, unlike some prior theoretical packed string...
Experimenting with String Musical Instruments
LoPresto, Michael C.
2012-01-01
What follows are several investigations involving string musical instruments developed for and used in a "Science of Sound & Light" course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when…
Progress in string theory research
2016-01-01
At the first look, the String Theory seems just an interesting and non-trivial application of the quantum mechanics and the special relativity to vibrating strings. By itself, the quantization of relativistic strings does not call the attention of the particle physicist as a significant paradigm shift. However, when the string quantization is performed by applying the standard rules of the perturbative Quantum Field Theory, one discovers that the strings in certain states have the same physical properties as the gravity in the flat space-time. Chapter one of this book reviews the construction of the thermal bosonic string and D-brane in the framework of the Thermo Field Dynamics (TFD). It briefly recalls the wellknown light-cone quantization of the bosonic string in the conformal gauge in flat space-time, and gives a bird’s eye view of the fundamental concepts of the TFD. Chapter two examines a visual model inspired by string theory, on the system of interacting anyons. Chapter three investigate the late-ti...
Gauge invariance of string fields
International Nuclear Information System (INIS)
Banks, T.; Peskin, M.E.
1985-10-01
Some work done to understand the appearance of gauge bosons and gravitons in string theories is reported. An action has been constructed for free (bosonic) string field theory which is invariant under an infinite set of gauge transformations which include Yang-Mills transformations and general coordinate transformations as special cases. 15 refs., 1 tab
String dualities and superpotential
International Nuclear Information System (INIS)
Ha, Tae-Won
2010-09-01
The main objective of this thesis is the computation of the superpotential induced by D5- branes in the type IIB string theory and by five-branes in the heterotic string theory. Both superpotentials have the same functional form which is the chain integral of the holomorphic three-form. Using relative (co)homology we can unify the flux and brane superpotential. The chain integral can be seen as an example of the Abel-Jacobi map. We discuss many structures such as mixed Hodge structure which allows for the computation of Picard-Fuchs differential equations crucial for explicit computations. We blow up the Calabi-Yau threefold along the submanifold wrapped by the brane to obtain geometrically more appropriate configuration. The resulting geometry is non-Calabi-Yau and we have a canonically given divisor. This blown-up geometry makes it possible to restrict our attention to complex structure deformations. However, the direct computation is yet very difficult, thus the main tool for computation will be the lift of the brane configuration to a F-theory compactification. In F-theory, since complex structure, brane and, if present, bundlemoduli are all contained in the complex structure moduli space of the elliptic Calabi-Yau fourfold, the computation can be dramatically simplified. The heterotic/F-theory duality is extended to include the blow-up geometry and thereby used to give the blow-up geometry amore physical meaning. (orig.)
String dualities and superpotential
Energy Technology Data Exchange (ETDEWEB)
Ha, Tae-Won
2010-09-15
The main objective of this thesis is the computation of the superpotential induced by D5- branes in the type IIB string theory and by five-branes in the heterotic string theory. Both superpotentials have the same functional form which is the chain integral of the holomorphic three-form. Using relative (co)homology we can unify the flux and brane superpotential. The chain integral can be seen as an example of the Abel-Jacobi map. We discuss many structures such as mixed Hodge structure which allows for the computation of Picard-Fuchs differential equations crucial for explicit computations. We blow up the Calabi-Yau threefold along the submanifold wrapped by the brane to obtain geometrically more appropriate configuration. The resulting geometry is non-Calabi-Yau and we have a canonically given divisor. This blown-up geometry makes it possible to restrict our attention to complex structure deformations. However, the direct computation is yet very difficult, thus the main tool for computation will be the lift of the brane configuration to a F-theory compactification. In F-theory, since complex structure, brane and, if present, bundlemoduli are all contained in the complex structure moduli space of the elliptic Calabi-Yau fourfold, the computation can be dramatically simplified. The heterotic/F-theory duality is extended to include the blow-up geometry and thereby used to give the blow-up geometry amore physical meaning. (orig.)
International Nuclear Information System (INIS)
Anchordoqui, Luis; Nawata, Satoshi; Goldberg, Haim; Nunez, Carlos
2007-01-01
We explore the cosmological content of Salam-Sezgin six-dimensional supergravity, and find a solution to the field equations in qualitative agreement with observation of distant supernovae, primordial nucleosynthesis abundances, and recent measurements of the cosmic microwave background. The carrier of the acceleration in the present de Sitter epoch is a quintessence field slowly rolling down its exponential potential. Intrinsic to this model is a second modulus which is automatically stabilized and acts as a source of cold dark matter, with a mass proportional to an exponential function of the quintessence field (hence realizing varying mass particle models within a string context). However, any attempt to saturate the present cold dark matter component in this manner leads to unacceptable deviations from cosmological data--a numerical study reveals that this source can account for up to about 7% of the total cold dark matter budget. We also show that (1) the model will support a de Sitter energy in agreement with observation at the expense of a miniscule breaking of supersymmetry in the compact space; (2) variations in the fine structure constant are controlled by the stabilized modulus and are negligible; (3) ''fifth'' forces are carried by the stabilized modulus and are short range; (4) the long time behavior of the model in four dimensions is that of a Robertson-Walker universe with a constant expansion rate (w=-1/3). Finally, we present a string theory background by lifting our six-dimensional cosmological solution to ten dimensions
Poisson hierarchy of discrete strings
International Nuclear Information System (INIS)
Ioannidou, Theodora; Niemi, Antti J.
2016-01-01
The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.
Basic Concepts of String Theory
Blumenhagen, Ralph; Theisen, Stefan
2013-01-01
The purpose of this book is to thoroughly prepare the reader for research in string theory. It is intended as a textbook in the sense that, starting from the basics, the material is presented in a pedagogical and self-contained fashion. The emphasis is on the world-sheet perspective of closed strings and of open strings ending on D-branes, where two-dimensional conformal field theory is the main tool. Compactifications of string theory, with and without fluxes, and string dualities are also discussed from the space-time point of view, i.e. in geometric language. End-of-chapter references have been added to guide the reader intending to pursue further studies or to start research in the topics covered by this book.
Strings, conformal fields and topology
International Nuclear Information System (INIS)
Kaku, Michio
1991-01-01
String Theory has advanced at an astonishing pace in the last few years, and this book aims to acquaint the reader with the most active topics of research in the field. Building on the foundations laid in his Introduction to Superstrings, Professor Kaku discusses such topics as the classification of conformal string theories, knot theory, the Yang-Baxter relation, quantum groups, the non-polynominal closed string field theory, matrix models, and topological field theory. Several chapters review the fundamentals of string theory, making the presentation of the material self-contained while keeping overlap with the earlier book to a minimum. The book conveys the vitality of current research in string theory and places readers at its forefront. (orig.) With 40 figs. in 50 parts
Poisson hierarchy of discrete strings
Energy Technology Data Exchange (ETDEWEB)
Ioannidou, Theodora, E-mail: ti3@auth.gr [Faculty of Civil Engineering, School of Engineering, Aristotle University of Thessaloniki, 54249, Thessaloniki (Greece); Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se [Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108, Uppsala (Sweden); Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200, Tours (France); Department of Physics, Beijing Institute of Technology, Haidian District, Beijing 100081 (China)
2016-01-28
The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.
Basic concepts of string theory
International Nuclear Information System (INIS)
Blumenhagen, Ralph
2013-01-01
The purpose of this book is to thoroughly prepare the reader for research in string theory. It is intended as a textbook in the sense that, starting from the basics, the material is presented in a pedagogical and self-contained fashion. The emphasis is on the world-sheet perspective of closed strings and of open strings ending on D-branes, where two-dimensional conformal field theory is the main tool. Compactifications of string theory, with and without fluxes, and string dualities are also discussed from the space-time point of view, i.e. in geometric language. End-of-chapter references have been added to guide the reader intending to pursue further studies or to start research in the topics covered by this book.
CERN. Geneva
2002-01-01
A theory with such mathematical beauty cannot be wrong: this is one of the main arguments in favour of string theory, which unifies all known physical theories of fundamental interactions in a single coherent description of the universe. But no one has ever observed strings, not even indirectly, nor the space of extra dimensions where they live. However there are good reasons to believe that the 'hidden' dimensions of string theory may be much larger than what we thought in the past and that they may be within experimental reach in the near future - together with the strings themselves. In my talk, I will give an elementary introduction of string theory and describe the main experimental predictions.Organiser(s): Jasper Kirkby / EP DivisionNote: Tea & coffee will be served at 16.00 hrs.
Hydrodynamic evolution of neutron star merger remnants
Liu, Men-Quan; Zhang, Jie
2017-11-01
Based on the special relativistic hydrodynamic equations and updated cooling function, we investigate the long-term evolution of neutron stars merger (NSM) remnants by a one-dimensional hydrodynamic code. Three NSM models from one soft equation of state, SFHo, and two stiff equations of state, DD2 and TM1, are used to compare their influences on the hydrodynamic evolution of remnants. We present the luminosity, mass and radius of remnants, as well as the velocity, temperature and density of shocks. For a typical interstellar medium (ISM) density with solar metallicity, we find that the NSM remnant from the SFHo model makes much more changes to ISM in terms of velocity, density and temperature distributions, compared with the case of DD2 and TM1 models. The maximal luminosity of the NSM remnant from the SFHo model is 3.4 × 1038 erg s-1, which is several times larger than that from DD2 and TM1 models. The NSM remnant from the SFHo model can maintain high luminosity (>1038 erg s-1) for 2.29 × 104 yr. Furthermore, the density and temperature of remnants at the maximal luminosity are not sensitive to the power of the original remnant. For the ISM with the solar metallicity and nH = 1 cm- 3, the density of the first shock ∼10-23 g cm-3 and the temperature ∼3 × 105 K in the maximal luminosity phase; The temperature of the first shock decreases and there is a thin 'dense' shell with density ∼10-21 g cm-3 after the maximal luminosity. These characteristics may be helpful for future observations of NSM remnants.
Oriented open-closed string theory revisited
International Nuclear Information System (INIS)
Zwiebach, B.
1998-01-01
String theory on D-brane backgrounds is open-closed string theory. Given the relevance of this fact, we give details and elaborate upon our earlier construction of oriented open-closed string field theory. In order to incorporate explicitly closed strings, the classical sector of this theory is open strings with a homotopy associative A ∞ algebraic structure. We build a suitable Batalin-Vilkovisky algebra on moduli spaces of bordered Ricmann surfaces, the construction of which involves a few subtleties arising from the open string punctures and cyclicity conditions. All vertices coupling open and closed strings through disks are described explicitly. Subalgebras of the algebra of surfaces with boundaries are used to discuss symmetries of classical open string theory induced by the closed string sector, and to write classical open string field theory on general closed string backgrounds. We give a preliminary analysis of the ghost-dilaton theorem. copyright 1998 Academic Press, Inc
A string theory which isn't about strings
Lee, Kanghoon; Rey, Soo-Jong; Rosabal, J. A.
2017-11-01
Quantization of closed string proceeds with a suitable choice of worldsheet vacuum. A priori, the vacuum may be chosen independently for left-moving and right-moving sectors. We construct ab initio quantized bosonic string theory with left-right asymmetric worldsheet vacuum and explore its consequences and implications. We critically examine the validity of new vacuum and carry out first-quantization using standard operator formalism. Remarkably, the string spectrum consists only of a finite number of degrees of freedom: string gravity (massless spin-two, Kalb-Ramond and dilaton fields) and two massive spin-two Fierz-Pauli fields. The massive spin-two fields have negative norm, opposite mass-squared, and provides a Lee-Wick type extension of string gravity. We compute two physical observables: tree-level scattering amplitudes and one-loop cosmological constant. Scattering amplitude of four dilatons is shown to be a rational function of kinematic invariants, and in D = 26 factorizes into contributions of massless spin-two and a pair of massive spin-two fields. The string one loop partition function is shown to perfectly agree with one loop Feynman diagram of string gravity and two massive spin-two fields. In particular, it does not exhibit modular invariance. We critically compare our construction with recent studies and contrast differences.
Conformal techniques in string theory and string field theory
International Nuclear Information System (INIS)
Giddings, S.B.
1987-01-01
The application of some conformal and Riemann surface techniques to string theory and string field theory is described. First a brief review of Riemann surface techniques and of the Polyakov approach to string theory is presented. This is followed by a discussion of some features of string field theory and of its Feynman rules. Specifically, it is shown that the Feynman diagrams for Witten's string field theory respect modular invariance, and in particular give a triangulation of moduli space. The Polyakov formalism is then used to derive the Feynman rules that should follow from this theory upon gauge-fixing. It should also be possible to apply this derivation to deduce the Feynman rules for other gauge-fixed string field theories. Following this, Riemann surface techniques are turned to the problem of proving the equivalence of the Polyakov and light-cone formalisms. It is first shown that the light-cone diagrams triangulate moduli space. Then the Polyakov measure is worked out for these diagrams, and shown to equal that deduced from the light-cone gauge fixed formalism. Also presented is a short description of the comparison of physical states in the two formalisms. The equivalence of the two formalisms in particular constitutes a proof of the unitarity of the Polyakov framework for the closed bosonic string
Density and energy of supernova remnants
Energy Technology Data Exchange (ETDEWEB)
Canto, J [Manchester Univ. (UK). Dept. of Astronomy
1977-12-01
The effects of an interstellar magnetic field on the gas flow behind a strong shock front are considered. The ambient density and energy of supernova remnants are estimated from the intensity ratio of sulphur lines I(6717)/I(6731). It is found that, on average, the ambient density around galactic supernova remnants is 4 cm/sup -3/. The total energy appears to be the same for all supernova remnants (to within a factor = approximately 5). A mean value of 4 10/sup 51/ erg is found.
Remnants of strong tidal interactions
International Nuclear Information System (INIS)
Mcglynn, T.A.
1990-01-01
This paper examines the properties of stellar systems that have recently undergone a strong tidal shock, i.e., a shock which removes a significant fraction of the particles in the system, and where the shocked system has a much smaller mass than the producer of the tidal field. N-body calculations of King models shocked in a variety of ways are performed, and the consequences of the shocks are investigated. The results confirm the prediction of Jaffe for shocked systems. Several models are also run where the tidal forces on the system are constant, simulating a circular orbit around a primary, and the development of tidal radii under these static conditions appears to be a mild process which does not dramatically affect material that is not stripped. The tidal radii are about twice as large as classical formulas would predict. Remnant density profiles are compared with a sample of elliptical galaxies, and the implications of the results for the development of stellar populations and galaxies are considered. 38 refs
Charge modulation as fingerprints of phase-string triggered interference
Energy Technology Data Exchange (ETDEWEB)
Zhu, Zheng; Tian, Chushun; Jiang, Hong-Chen; Qi, Yang; Weng, Zheng-Yu; Zaanen, Jan
2015-07-07
Charge order appears to be an ubiquitous phenomenon in doped Mott insulators, which is currently under intense experimental and theoretical investigations particularly in the high T _{c} cuprates. This phenomenon is conventionally understood in terms of Hartree-Fock-type mean-field theory. Here we demonstrate a mechanism for charge modulation which is rooted in the many-particle quantum physics arising in the strong coupling limit. Specifically, we consider the problem of a single hole in a bipartite t - J ladder. As a remnant of the fermion signs, the hopping hole picks up subtle phases pending the fluctuating spins, the so-called phase-string effect. We demonstrate the presence of charge modulations in the density matrix renormalization group solutions which disappear when the phase strings are switched off. This form of charge modulation can be understood analytically in a path-integral language with a mean-field-like approximation adopted, showing that the phase strings give rise to constructive interferences leading to self-localization. When the latter occurs, left- and right-moving propagating modes emerge inside the localization volume and their interference is responsible for the real space charge modulation.
String model of elementary particles
International Nuclear Information System (INIS)
Kikkawa, Keiji
1975-01-01
Recent development of the models of elementary particles is described. The principal features of elementary particle physics can be expressed by quark model, mass spectrum, the Regge behavior of scattering amplitude, and duality. Venezians showed in 1968 that the B function can express these features. From the analysis of mass spectrum, the string model was introduced. The quantization of the string is performed with the same procedure as the ordinary quantum mechanics. The motion of the string is determined by the Nambu-Goto action integral, and the Schroedinger equation is obtained. Mass spectrum from the string model was same as that from the duality model such as Veneziano model. The interaction between strings can be introduced, and the Lagrangian can be formulated. The relation between the string model and the duality model has been studied. The string model is the first theory of non-local field, and the further development is attractive. The relation between this model and the quark model is still not clear. (Kato, T.)
String bit models for superstring
International Nuclear Information System (INIS)
Bergman, O.; Thorn, C.B.
1995-01-01
The authors extend the model of string as a polymer of string bits to the case of superstring. They mainly concentrate on type II-B superstring, with some discussion of the obstacles presented by not II-B superstring, together with possible strategies for surmounting them. As with previous work on bosonic string work within the light-cone gauge. The bit model possesses a good deal less symmetry than the continuous string theory. For one thing, the bit model is formulated as a Galilei invariant theory in (D - 2) + 1 dimensional space-time. This means that Poincare invariance is reduced to the Galilei subgroup in D - 2 space dimensions. Naturally the supersymmetry present in the bit model is likewise dramatically reduced. Continuous string can arise in the bit models with the formation of infinitely long polymers of string bits. Under the right circumstances (at the critical dimension) these polymers can behave as string moving in D dimensional space-time enjoying the full N = 2 Poincare supersymmetric dynamics of type II-B superstring
String bit models for superstring
Energy Technology Data Exchange (ETDEWEB)
Bergman, O.; Thorn, C.B.
1995-12-31
The authors extend the model of string as a polymer of string bits to the case of superstring. They mainly concentrate on type II-B superstring, with some discussion of the obstacles presented by not II-B superstring, together with possible strategies for surmounting them. As with previous work on bosonic string work within the light-cone gauge. The bit model possesses a good deal less symmetry than the continuous string theory. For one thing, the bit model is formulated as a Galilei invariant theory in (D {minus} 2) + 1 dimensional space-time. This means that Poincare invariance is reduced to the Galilei subgroup in D {minus} 2 space dimensions. Naturally the supersymmetry present in the bit model is likewise dramatically reduced. Continuous string can arise in the bit models with the formation of infinitely long polymers of string bits. Under the right circumstances (at the critical dimension) these polymers can behave as string moving in D dimensional space-time enjoying the full N = 2 Poincare supersymmetric dynamics of type II-B superstring.
Fermions on the electroweak string
Moreno, J M; Quirós, Mariano; Moreno, J M; Oaknin, D H; Quiros, M
1995-01-01
We construct a simple class of exact solutions of the electroweak theory including the naked Z--string and fermion fields. It consists in the Z--string configuration (\\phi,Z_\\theta), the {\\it time} and z components of the neutral gauge bosons (Z_{0,3},A_{0,3}) and a fermion condensate (lepton or quark) zero mode. The Z--string is not altered (no feed back from the rest of fields on the Z--string) while fermion condensates are zero modes of the Dirac equation in the presence of the Z--string background (no feed back from the {\\it time} and z components of the neutral gauge bosons on the fermion fields). For the case of the n--vortex Z--string the number of zero modes found for charged leptons and quarks is (according to previous results by Jackiw and Rossi) equal to |n|, while for (massless) neutrinos is |n|-1. The presence of fermion fields in its core make the obtained configuration a superconducting string, but their presence (as well as that of Z_{0,3},A_{0,3}) does not enhance the stability of the Z--stri...
Ortín, Tomás
2015-01-01
Self-contained and comprehensive, this definitive new edition of Gravity and Strings is a unique resource for graduate students and researchers in theoretical physics. From basic differential geometry through to the construction and study of black-hole and black-brane solutions in quantum gravity - via all the intermediate stages - this book provides a complete overview of the intersection of gravity, supergravity, and superstrings. Now fully revised, this second edition covers an extensive array of topics, including new material on non-linear electric-magnetic duality, the electric-tensor formalism, matter-coupled supergravity, supersymmetric solutions, the geometries of scalar manifolds appearing in 4- and 5-dimensional supergravities, and much more. Covering reviews of important solutions and numerous solution-generating techniques, and accompanied by an exhaustive index and bibliography, this is an exceptional reference work.
Fingerprints in compressed strings
DEFF Research Database (Denmark)
Bille, Philip; Gørtz, Inge Li; Cording, Patrick Hagge
2017-01-01
In this paper we show how to construct a data structure for a string S of size N compressed into a context-free grammar of size n that supports efficient Karp–Rabin fingerprint queries to any substring of S. That is, given indices i and j, the answer to a query is the fingerprint of the substring S......[i,j]. We present the first O(n) space data structures that answer fingerprint queries without decompressing any characters. For Straight Line Programs (SLP) we get O(logN) query time, and for Linear SLPs (an SLP derivative that captures LZ78 compression and its variations) we get O(loglogN) query time...
International Nuclear Information System (INIS)
Bonara, L.; Cotta-Ramusino, P.; Rinaldi, M.
1987-01-01
It is well-known that type I and heterotic superstring theories have a zero mass spectrum which correspond to the field content of N=1 supergravity theory coupled to supersymmetric Yang-Mills theory in 10-D. The authors study the field theory ''per se'', in the hope that simple consistency requirements will determine the theory completely once one knows the field content inherited from string theory. The simplest consistency requirements are: N=1 supersymmetry; and absence of chiral anomalies. This is what the authors discuss in this paper here leaving undetermined the question of the range of validity of the resulting field theory. As is known, a model of N=1 supergravity (SUGRA) coupled to supersymmetric Yang-Mills (SYM) theory was known in the form given by Chapline and Manton. The coupling of SUGRA to SYM was determined by the definition of the ''field strength'' 3-form H in this paper
Systematic improvement of parton showers with effective theory
International Nuclear Information System (INIS)
Baumgart, Matthew; Marcantonini, Claudio; Stewart, Iain W.
2011-01-01
We carry out a systematic classification and computation of next-to-leading order kinematic power corrections to the fully differential cross section in the parton shower. To do this we devise a map between ingredients in a parton shower and operators in a traditional effective field theory framework using a chain of soft-collinear effective theories. Our approach overcomes several difficulties including avoiding double counting and distinguishing approximations that are coordinate choices from true power corrections. Branching corrections can be classified as hard-scattering, that occur near the top of the shower, and jet-structure, that can occur at any point inside it. Hard-scattering corrections include matrix elements with additional hard partons, as well as power suppressed contributions to the branching for the leading jet. Jet-structure corrections require simultaneous consideration of potential 1→2 and 1→3 branchings. The interference structure induced by collinear terms with subleading powers remains localized in the shower.
Polarized 3 parton production in inclusive DIS at small x
Energy Technology Data Exchange (ETDEWEB)
Ayala, Alejandro [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, Ciudad de México 04510 (Mexico); Centre for Theoretical and Mathematical Physics, and Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa); Hentschinski, Martin, E-mail: hentschinski@correo.nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, Ciudad de México 04510 (Mexico); Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla 1152 (Mexico); Jalilian-Marian, Jamal [Department of Natural Sciences, Baruch College, CUNY, 17 Lexington Avenue, New York, NY 10010 (United States); CUNY Graduate Center, 365 Fifth Avenue, New York, NY 10016 (United States); Tejeda-Yeomans, Maria Elena [Departamento de Física, Universidad de Sonora, Boulevard Luis Encinas J. y Rosales, Colonia Centro, Hermosillo, Sonora 83000 (Mexico)
2016-10-10
Azimuthal angular correlations between produced hadrons/jets in high energy collisions are a sensitive probe of the dynamics of QCD at small x. Here we derive the triple differential cross section for inclusive production of 3 polarized partons in DIS at small x. The target proton or nucleus is described using the Color Glass Condensate (CGC) formalism. The resulting expressions are used to study azimuthal angular correlations between produced partons in order to probe the gluon structure of the target hadron or nucleus. Our analytic expressions can also be used to calculate the real part of the Next to Leading Order (NLO) corrections to di-hadron production in DIS by integrating out one of the three final state partons.
Polarized 3 parton production in inclusive DIS at small x
International Nuclear Information System (INIS)
Ayala, Alejandro; Hentschinski, Martin; Jalilian-Marian, Jamal; Tejeda-Yeomans, Maria Elena
2016-01-01
Azimuthal angular correlations between produced hadrons/jets in high energy collisions are a sensitive probe of the dynamics of QCD at small x. Here we derive the triple differential cross section for inclusive production of 3 polarized partons in DIS at small x. The target proton or nucleus is described using the Color Glass Condensate (CGC) formalism. The resulting expressions are used to study azimuthal angular correlations between produced partons in order to probe the gluon structure of the target hadron or nucleus. Our analytic expressions can also be used to calculate the real part of the Next to Leading Order (NLO) corrections to di-hadron production in DIS by integrating out one of the three final state partons.
Polarized 3 parton production in inclusive DIS at small x
Directory of Open Access Journals (Sweden)
Alejandro Ayala
2016-10-01
Full Text Available Azimuthal angular correlations between produced hadrons/jets in high energy collisions are a sensitive probe of the dynamics of QCD at small x. Here we derive the triple differential cross section for inclusive production of 3 polarized partons in DIS at small x. The target proton or nucleus is described using the Color Glass Condensate (CGC formalism. The resulting expressions are used to study azimuthal angular correlations between produced partons in order to probe the gluon structure of the target hadron or nucleus. Our analytic expressions can also be used to calculate the real part of the Next to Leading Order (NLO corrections to di-hadron production in DIS by integrating out one of the three final state partons.
Reconstruction of Monte Carlo replicas from Hessian parton distributions
Energy Technology Data Exchange (ETDEWEB)
Hou, Tie-Jiun [Department of Physics, Southern Methodist University,Dallas, TX 75275-0181 (United States); Gao, Jun [INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology,Department of Physics and Astronomy, Shanghai Jiao-Tong University, Shanghai 200240 (China); High Energy Physics Division, Argonne National Laboratory,Argonne, Illinois, 60439 (United States); Huston, Joey [Department of Physics and Astronomy, Michigan State University,East Lansing, MI 48824 (United States); Nadolsky, Pavel [Department of Physics, Southern Methodist University,Dallas, TX 75275-0181 (United States); Schmidt, Carl; Stump, Daniel [Department of Physics and Astronomy, Michigan State University,East Lansing, MI 48824 (United States); Wang, Bo-Ting; Xie, Ke Ping [Department of Physics, Southern Methodist University,Dallas, TX 75275-0181 (United States); Dulat, Sayipjamal [Department of Physics and Astronomy, Michigan State University,East Lansing, MI 48824 (United States); School of Physics Science and Technology, Xinjiang University,Urumqi, Xinjiang 830046 (China); Center for Theoretical Physics, Xinjiang University,Urumqi, Xinjiang 830046 (China); Pumplin, Jon; Yuan, C.P. [Department of Physics and Astronomy, Michigan State University,East Lansing, MI 48824 (United States)
2017-03-20
We explore connections between two common methods for quantifying the uncertainty in parton distribution functions (PDFs), based on the Hessian error matrix and Monte-Carlo sampling. CT14 parton distributions in the Hessian representation are converted into Monte-Carlo replicas by a numerical method that reproduces important properties of CT14 Hessian PDFs: the asymmetry of CT14 uncertainties and positivity of individual parton distributions. The ensembles of CT14 Monte-Carlo replicas constructed this way at NNLO and NLO are suitable for various collider applications, such as cross section reweighting. Master formulas for computation of asymmetric standard deviations in the Monte-Carlo representation are derived. A correction is proposed to address a bias in asymmetric uncertainties introduced by the Taylor series approximation. A numerical program is made available for conversion of Hessian PDFs into Monte-Carlo replicas according to normal, log-normal, and Watt-Thorne sampling procedures.
New advances in the statistical parton distributions approach*
Directory of Open Access Journals (Sweden)
Soffer Jacques
2016-01-01
Full Text Available The quantum statistical parton distributions approach proposed more than one decade ago is revisited by considering a larger set of recent and accurate Deep Inelastic Scattering experimental results. It enables us to improve the description of the data by means of a new determination of the parton distributions. This global next-to-leading order QCD analysis leads to a good description of several structure functions, involving unpolarized parton distributions and helicity distributions, in terms of a rather small number of free parameters. There are many serious challenging issues. The predictions of this theoretical approach will be tested for single-jet production and charge asymmetry in W± production in p̄p and pp collisions up to LHC energies, using recent data and also for forthcoming experimental results.
Neural network determination of parton distributions: the nonsinglet case
International Nuclear Information System (INIS)
Del Debbio, Luigi; Forte, Stefano; Latorre, Jose I.; Piccione, Andrea; Rojo, Joan
2007-01-01
We provide a determination of the isotriplet quark distribution from available deep-inelastic data using neural networks. We give a general introduction to the neural network approach to parton distributions, which provides a solution to the problem of constructing a faithful and unbiased probability distribution of parton densities based on available experimental information. We discuss in detail the techniques which are necessary in order to construct a Monte Carlo representation of the data, to construct and evolve neural parton distributions, and to train them in such a way that the correct statistical features of the data are reproduced. We present the results of the application of this method to the determination of the nonsinglet quark distribution up to next-to-next-to-leading order, and compare them with those obtained using other approaches
The breaking of Bjorken scaling in the covariant parton model
International Nuclear Information System (INIS)
Polkinghorne, J.C.
1976-01-01
Scale breaking is investigated in terms of a covariant parton model formulation of deep inelastic processes. It is shown that a consistent theory requires that the convergence properties of parton-hadron amplitudes should be modified as well as the parton being given form factors. Purely logarithmic violation is possible and the resulting model has many features in common with asymtotically free gauge theories. Behaviour at large and small ω and fixed q 2 is investigated. γW 2 should increase with q 2 at large ω and decrease with q 2 at small ω. Heuristic arguments are also given which suggest that the model would only lead to logarithmic modifications of dimensional counting results in purely hadronic deep scattering. (Auth.)
Instanton partons in 5-dimensional SU(N) gauge theory
International Nuclear Information System (INIS)
Bolognesi, Stefano; Lee, Kimyeong
2011-01-01
The circle compactification of the 6-dimensional (2,0) superconformal theory of A N-1 type leads to the 5-dimensional SU(N) maximally supersymmetric gauge theory. Instanton solitons embody Kaluza-Klein modes and are conjectured to be composed of partonic constituents. We realize such a parton of 1/N instanton topological charge at the intersection of magnetic flux sheets. After a further compactification with nontrivial Wilson-line expectation value, instantons or calorons have been shown to be split into fundamental monopoles of fractional instanton charge. In the symmetric phase with trivial Wilson-line expectation value, Bogomol'nyi-Prasad-Sommerfield instanton partons emerge more concretely as non-Abelian Bogomol'nyi-Prasad-Sommerfield monopoles of minimum charge allowed in Dirac quantization.
Unbiased determination of polarized parton distributions and their uncertainties
Ball, Richard D.; Guffanti, Alberto; Nocera, Emanuele R.; Ridolfi, Giovanni; Rojo, Juan
2013-01-01
We present a determination of a set of polarized parton distributions (PDFs) of the nucleon, at next-to-leading order, from a global set of longitudinally polarized deep-inelastic scattering data: NNPDFpol1.0. The determination is based on the NNPDF methodology: a Monte Carlo approach, with neural networks used as unbiased interpolants, previously applied to the determination of unpolarized parton distributions, and designed to provide a faithful and statistically sound representation of PDF uncertainties. We present our dataset, its statistical features, and its Monte Carlo representation. We summarize the technique used to solve the polarized evolution equations and its benchmarking, and the method used to compute physical observables. We review the NNPDF methodology for parametrization and fitting of neural networks, the algorithm used to determine the optimal fit, and its adaptation to the polarized case. We finally present our set of polarized parton distributions. We discuss its statistical properties, ...
QCD's Partner Needed for Mass Spectra and Parton Structure Functions
International Nuclear Information System (INIS)
Kim, Y.S.
2009-01-01
as in the case of the hydrogen atom, bound-state wave functions are needed to generate hadronic spectra. For this purpose, in 1971, Feynman and his students wrote down a Lorentz-invariant harmonic oscillator equation. This differential equation has one set of solutions satisfying the Lorentz-covariant boundary condition. This covariant set generates Lorentz-invariant mass spectra with their degeneracies. Furthermore, the Lorentz-covariant wave functions allow us to calculate the valence parton distribution by Lorentz-boosting the quark-model wave function from the hadronic rest frame. However, this boosted wave function does not give an accurate parton distribution. The wave function needs QCD corrections to make a contact with the real world. Likewise, QCD needs the wave function as a starting point for calculating the parton structure function. (author)
Soft factors for double parton scattering at NNLO
Energy Technology Data Exchange (ETDEWEB)
Vladimirov, Alexey [Institut für Theoretische Physik, Universität Regensburg,D-93040 Regensburg (Germany)
2016-12-13
We show at NNLO that the soft factors for double parton scattering (DPS) for both integrated and unintegrated kinematics, can be presented entirely in the terms of the soft factor for single Drell-Yan process, i.e. the transverse momentum dependent (TMD) soft factor. Using the linearity of the logarithm of TMD soft factor in rapidity divergences, we decompose the DPS soft factor matrices into a product of matrices with rapidity divergences in given sectors, and thus, define individual double parton distributions at NNLO. The rapidity anomalous dimension matrices for double parton distributions are presented in the terms of TMD rapidity anomalous dimension. The analysis is done using the generating function approach to web diagrams. Significant part of the result is obtained from the symmetry properties of web diagrams without referring to explicit expressions or a particular rapidity regularization scheme. Additionally, we present NNLO expression for the web diagram generating function for Wilson lines with two light-like directions.
Dynamical evolution of cosmic strings
International Nuclear Information System (INIS)
Bouchet, F.R.
1988-01-01
The author have studied by means of numerical simulations the dynamical evolution of a network of cosmic strings, both in the radiation and matter era. Our basic conclusion is that a scaling solution exists, i.e., the string energy density evolves as t -2 . This means that the process by which long strings dump their energy into closed loops (which can gravitationally radiate away) is efficient enough to prevent the string domination over other forms of energy. This conclusion does not depend on the initial string energy density, nor on the various numerical parameters. On the other hand, the generated spectrum of loop sizes does depend on the value of our numerical lower cutoff (i.e., the minimum length of loop we allow to be chopped off the network). Furthermore, the network evolution is very different from what was assumed before), namely the creation of a few horizon sized loops per horizon volume and per hubble time, which subsequently fragment into about 10 smaller daughter loops. Rather, many tiny loops are directly cut from the network of infinite strings, and it appears that the only fundamental scale (the horizon) has been lost. This is probably because a fundamental ingredient had been overlooked, namely the kinks. These kinks are created in pairs at each intercommutation, and very rapidly, the long strings appear to be very kinky. Thus the number of long strings per horizon is still of the order of a few, but their total length is fairly large. Furthermore, a large number of kinks favors the formation of small loops, and their sizes might well be governed by the kink density along the long strings. Finally, we computed the two-point correlation function of the loops and found significant differences from the work of Turok
A Model of the Vela Supernova Remnant
Gvaramadze, Vasilii
2000-10-01
A model of the Vela supernova remnant (SNR) based on a cavity explosion of a supernova (SN) star is proposed. It is suggested that the general structure of the remnant is determined by the interaction of the SN blast wave with a massive shell created by the SN progenitor (15-20 M_solar) star. A possible origin of the nebula of hard X-ray emission detected around the Vela pulsar is discussed.
Evolution of supernova remnants. III. Thermal waves
International Nuclear Information System (INIS)
Chevalier, R.A.
1975-01-01
The effect of heat conduction on the evolution of supernova remnants is investigated. A thermal wave, or electron conduction front, can travel more rapidly than a shock wave during the first thousand years of the remnant's evolution. A self-similar solution describing this phase has been found by Barenblatt. Numerical computations verify the solution and give the evolution past the thermal wave phase. While shell formation is not impeded, the interior density and temperature profiles are smoothed by the action of conduction
Casimir energy of a nonuniform string
Hadasz, L.; Lambiase, G.; Nesterenko, V. V.
2000-07-01
The Casimir energy of a nonuniform string built up from two pieces with different speeds of sound is calculated. A standard procedure of subtracting the energy of an infinite uniform string is applied, the subtraction being interpreted as the renormalization of the string tension. It is shown that in the case of a homogeneous string this method is completely equivalent to zeta renormalization.
Test particle trajectories near cosmic strings
Indian Academy of Sciences (India)
We present a detailed analysis of the motion of test particle in the gravitational ﬁeld of cosmic strings in different situations using the Hamilton–Jacobi (H–J) formalism. We have discussed the trajectories near static cosmic string, cosmic string in Brans–Dicke theory and cosmic string in dilaton gravity.
String Formatting Considered Harmful for Novice Programmers
Hughes, Michael C.; Jadud, Matthew C.; Rodrigo, Ma. Mercedes T.
2010-01-01
In Java, "System.out.printf" and "String.format" consume a specialised kind of string commonly known as a format string. In our study of first-year students at the Ateneo de Manila University, we discovered that format strings present a substantial challenge for novice programmers. Focusing on their first laboratory we found…
J/Ψ production in an equilibrating partonic system
International Nuclear Information System (INIS)
Xu, Xiao-Ming
1999-01-01
Any color singlet or octet cc-bar pair is created at short distances and then expands to a full size of J/Ψ. Such a dynamical evolution process is included here in calculations for the J/Ψ number distribution as a function of transverse momentum and rapidity in central Au-Au collisions at both RHIC and LHC energies. The cc-bar pairs are produced in the initial collision and in the partonic system during the prethermal and thermal stages through the partonic channels ab → cc-bar[ 2S+1 L J ] and ab → cc-bar[ 2S+1 L J ]x, and then they dissociate in the latter two stages. Dissociation of cc-bar in the medium occurs via two reactions: (a) color singlet cc-bar plus a gluon turns to color octet cc-bar, (b) color octet cc-bar plus a gluon persists as color octet. There are modest yields of cc-bar in the prethermal stage at RHIC energy and through the reactions ab → cc-bar[ 2S+1 L J ] at LHC energy for partons with large average momentum in the prethermal stage at both collider energies and in the thermal stage at LHC energy. Production from the partonic system competes with the suppression of the initial yield in the deconfined medium. Consequently, a bulge within -1.5 < y < 1.5 has been found for the J/Ψ number distribution and the ratio of J/Ψ number distributions for Au-Au collisions to nucleon-nucleon collisions. This bulge is caused by the partonic system and is thus an indicator of a deconfined partonic medium. Based on this result we suggest the rapidity region worth measuring in future experiments at RHIC and LHC to be -3 < y < 3
M-strings, Elliptic Genera and N=4 String Amplitudes
Hohenegger, Stefan
2014-01-01
We study mass-deformed N=2 gauge theories from various points of view. Their partition functions can be computed via three dual approaches: firstly, (p,q)-brane webs in type II string theory using Nekrasov's instanton calculus, secondly, the (refined) topological string using the topological vertex formalism and thirdly, M theory via the elliptic genus of certain M-strings configurations. We argue for a large class of theories that these approaches yield the same gauge theory partition function which we study in detail. To make their modular properties more tangible, we consider a fourth approach by connecting the partition function to the equivariant elliptic genus of R^4 through a (singular) theta-transform. This form appears naturally as a specific class of one-loop scattering amplitudes in type II string theory on T^2, which we calculate explicitly.
2009-01-01
[figure removed for brevity, see original site] Click on the image for the movie For the first time, a multiwavelength three-dimensional reconstruction of a supernova remnant has been created. This stunning visualization of Cassiopeia A, or Cas A, the result of an explosion approximately 330 years ago, uses data from several telescopes: X-ray data from NASA's Chandra X-ray Observatory, infrared data from NASA's Spitzer Space Telescope and optical data from the National Optical Astronomy Observatory 4-meter telescope at Kitt Peak, Ariz., and the Michigan-Dartmouth-MIT 2.4-meter telescope, also at Kitt Peak. In this visualization, the green region is mostly iron observed in X-rays. The yellow region is a combination of argon and silicon seen in X-rays, optical, and infrared including jets of silicon plus outer debris seen in the optical. The red region is cold debris seen in the infrared. Finally, the blue reveals the outer blast wave, most prominently detected in X-rays. Most of the material shown in this visualization is debris from the explosion that has been heated by a shock moving inwards. The red material interior to the yellow/orange ring has not yet encountered the inward moving shock and so has not yet been heated. These unshocked debris were known to exist because they absorb background radio light, but they were only recently discovered in infrared emission with Spitzer. The blue region is composed of gas surrounding the explosion that was heated when it was struck by the outgoing blast wave, as clearly seen in Chandra images. To create this visualization, scientists took advantage of both a previously known phenomenon the Doppler effect and a new technology that bridges astronomy and medicine. When elements created inside a supernova, such as iron, silicon and argon, are heated they emit light at certain wavelengths. Material moving towards the observer will have shorter wavelengths and material moving away will have longer wavelengths. Since the amount
International Nuclear Information System (INIS)
Di Vecchia, P.; Sciuto, S.; Nakayama, R.; Petersen, J.L.; Sidenius, J.R.
1986-11-01
The BRST-invariant N-Reggeon vertex (for the bosonic string) previously given by us in the operator formulation is considered in more detail. In particular we present a direct derivation from the string path integral. Several crucial symmetry properties found a posteriori before, become a priori clearer in this formulation. A number of delicate points related to zero modes, cut off procedures and normal ordering prescriptions are treated in some detail. The old technique of letting the string field acquire a small dimension ε/2 → 0 + is found especially elegant. (orig.)
Plucked Strings and the Harpsichord
GIORDANO, N.; WINANS, J. P.
1999-07-01
The excitation of a harpsichord string when it is set into motion, i.e., plucked, by a plectrum is studied. We find that the amplitude of the resulting string vibration is approximately independent of the velocity with which the key is depressed. This result is in accord with conventional wisdom, but at odds with a recent theoretical model. A more realistic theoretical treatment of the plucking process is then described, and shown to be consistent with our measurements. The experiments reveal several other interesting aspects of the plectrum-string interaction.
Worldsheet geometries of ambitwistor string
Energy Technology Data Exchange (ETDEWEB)
Ohmori, Kantaro [Department of Physics, the University of Tokyo,Hongo, Bunkyo-ku, Tokyo 133-0022 (Japan)
2015-06-12
Mason and Skinner proposed the ambitwistor string theory which directly reproduces the formulas for the amplitudes of massless particles proposed by Cachazo, He and Yuan. In this paper we discuss geometries of the moduli space of worldsheets associated to the bosonic or the RNS ambitwistor string. Further, we investigate the factorization properties of the amplitudes when an internal momentum is near on-shell in the abstract CFT language. Along the way, we propose the existence of the ambitwistor strings with three or four fermionic worldsheet currents.
Spin chain for quantum strings
International Nuclear Information System (INIS)
Beisert, N.
2005-01-01
We review and compare the integrable structures in N=4 gauge theory and string theory on AdS 5 x S 5 . Recently, Bethe ansaetze for gauge theory/weak coupling and string theory/strong coupling were proposed to describe scaling dimensions in the su(2) subsector. Here we investigate the Bethe equations for quantum string theory, naively extrapolated to weak coupling. Excitingly, we find a spin chain Hamiltonian similar, but not equal, to the gauge theory dilatation operator. (Abstract Copyright [2005], Wiley Periodicals, Inc.)
Geometry, topology, and string theory
Energy Technology Data Exchange (ETDEWEB)
Varadarajan, Uday [Univ. of California, Berkeley, CA (United States)
2003-01-01
A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated.
Geometry, topology, and string theory
International Nuclear Information System (INIS)
Varadarajan, Uday
2003-01-01
A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated
Unbiased Polarised Parton Distribution Functions and their Uncertainties
Nocera, Emanuele R.; Ridolfi, Giovanni; Rojo, Juan
2012-01-01
We present preliminary results on the determination of spin-dependent, or polarised, Parton Distribution Functions (PDFs) from all relevant inclusive polarised DIS data. The analysis is performed within the NNPDF approach, which provides a faithful and statistically sound representation of PDFs and their uncertainties. We describe how the NNPDF methodology has been extended to the polarised case, and compare our results with other recent polarised parton sets. We show that polarised PDF uncertainties can be sizeably underestimated in standard determinations, most notably for the gluon.
Renormalization in Large Momentum Effective Theory of Parton Physics.
Ji, Xiangdong; Zhang, Jian-Hui; Zhao, Yong
2018-03-16
In the large-momentum effective field theory approach to parton physics, the matrix elements of nonlocal operators of quark and gluon fields, linked by straight Wilson lines in a spatial direction, are calculated in lattice quantum chromodynamics as a function of hadron momentum. Using the heavy-quark effective theory formalism, we show a multiplicative renormalization of these operators at all orders in perturbation theory, both in dimensional and lattice regularizations. The result provides a theoretical basis for extracting parton properties through properly renormalized observables in Monte Carlo simulations.
The role of the input scale in parton distribution analyses
International Nuclear Information System (INIS)
Jimenez-Delgado, Pedro
2012-01-01
A first systematic study of the effects of the choice of the input scale in global determinations of parton distributions and QCD parameters is presented. It is shown that, although in principle the results should not depend on these choices, in practice a relevant dependence develops as a consequence of what is called procedural bias. This uncertainty should be considered in addition to other theoretical and experimental errors, and a practical procedure for its estimation is proposed. Possible sources of mistakes in the determination of QCD parameter from parton distribution analysis are pointed out.
Controlling inclusive cross sections in parton shower + matrix element merging
International Nuclear Information System (INIS)
Plaetzer, Simon
2012-11-01
We propose an extension of matrix element plus parton shower merging at tree level to preserve inclusive cross sections obtained from the merged and showered sample. Implementing this constraint generates approximate next-to-leading order (NLO) contributions similar to the LoopSim approach. We then show how full NLO, or in principle even higher order, corrections can be added consistently, including constraints on inclusive cross sections to account for yet missing parton shower accuracy at higher logarithmic order. We also show how NLO accuracy below the merging scale can be obtained.
Controlling inclusive cross sections in parton shower + matrix element merging
Energy Technology Data Exchange (ETDEWEB)
Plaetzer, Simon
2012-11-15
We propose an extension of matrix element plus parton shower merging at tree level to preserve inclusive cross sections obtained from the merged and showered sample. Implementing this constraint generates approximate next-to-leading order (NLO) contributions similar to the LoopSim approach. We then show how full NLO, or in principle even higher order, corrections can be added consistently, including constraints on inclusive cross sections to account for yet missing parton shower accuracy at higher logarithmic order. We also show how NLO accuracy below the merging scale can be obtained.
Chemical and kinetic equilibrations via radiative parton transport
International Nuclear Information System (INIS)
Zhang Bin; Wortman, Warner A
2011-01-01
A hot and dense partonic system can be produced in the early stage of a relativistic heavy ion collision. How it equilibrates is important for the extraction of Quark-Gluon Plasma properties. We study the chemical and kinetic equilibrations of the Quark-Gluon Plasma using a radiative transport model. Thermal and Color-Glass-Condensate motivated initial conditions are used. We observe that screened parton interactions always lead to partial pressure isotropization. Different initial pressure anisotropies result in the same asymptotic evolution. Comparison of evolutions with and without radiative processes shows that chemical equilibration interacts with kinetic equilibration and radiative processes can contribute significantly to pressure isotropization.
Probing lumps of wee partons in deep inelastic scattering
International Nuclear Information System (INIS)
Buchmueller, W.
1994-06-01
Recently, the ZEUS collaboration has reported on several remarkable properties of events with a large rapidity gap in deep inelastic scattering. We suggest that the mechanism underlying these events is the scattering of electrons off lumps of wee partons inside the proton. Based on an effective lagrangian approach the Q 2 -, x- and W-distributions are evaluated. For sufficiently small invariant mass of the detected hadronic system, the mechanism implies leading twist behaviour. The x- and W-distributions are determined by the Lipatov exponent which governs the behaviour of parton densities at small x. (orig.)
Transverse momentum dependent (TMD) parton distribution functions. Status and prospects
International Nuclear Information System (INIS)
Angeles-Martinez, R.; Bacchetta, A.; Pavia Univ.; Balitsky, I.I.
2015-07-01
We provide a concise overview on transverse momentum dependent (TMD) parton distribution functions, their application to topical issues in high-energy physics phenomenology, and their theoretical connections with QCD resummation, evolution and factorization theorems. We illustrate the use of TMDs via examples of multi-scale problems in hadronic collisions. These include transverse momentum q T spectra of Higgs and vector bosons for low q T , and azimuthal correlations in the production of multiple jets associated with heavy bosons at large jet masses. We discuss computational tools for TMDs, and present an application of a new tool, TMDlib, to parton density fits and parameterizations.
Possible signatures of the hadronisation scale in parton jets
International Nuclear Information System (INIS)
Ochs, W.
1987-01-01
Models for hardon production in hard collisions differ widely in the energy scale characteristic of the transition from the primary partonic to the secondary hadronic phase of jet evolution. We investigate possible experimental signatures for the existence of both phases. In particular, we consider multiplicity and energy moments, long range charge correlations and angular correlations as a function of total energy or near the exclusive two body limit in e + e - annihilation and deep inelastic scattering processes. The possibility of a dual correspondence between hadronic and partonic states is discussed. (orig.)
On the use of the KMR unintegrated parton distribution functions
Golec-Biernat, Krzysztof; Staśto, Anna M.
2018-06-01
We discuss the unintegrated parton distribution functions (UPDFs) introduced by Kimber, Martin and Ryskin (KMR), which are frequently used in phenomenological analyses of hard processes with transverse momenta of partons taken into account. We demonstrate numerically that the commonly used differential definition of the UPDFs leads to erroneous results for large transverse momenta. We identify the reason for that, being the use of the ordinary PDFs instead of the cutoff dependent distribution functions. We show that in phenomenological applications, the integral definition of the UPDFs with the ordinary PDFs can be used.
String cosmology modern string theory concepts from the cosmic structure
2009-01-01
The field of string cosmology has matured considerably over the past few years, attracting many new adherents to this multidisciplinary Field. This book fills a critical gap by bringing together strains of current research into one single volume. The resulting collection of selected articles presents the latest, ongoing results from renowned experts currently working in the field. This offers the possibility for practitioners to become conversant with many different aspects of string cosmology
String cosmology. Large-field inflation in string theory
International Nuclear Information System (INIS)
Westphal, Alexander
2014-09-01
This is a short review of string cosmology. We wish to connect string-scale physics as closely as possible to observables accessible to current or near-future experiments. Our possible best hope to do so is a description of inflation in string theory. The energy scale of inflation can be as high as that of Grand Unification (GUT). If this is the case, this is the closest we can possibly get in energy scales to string-scale physics. Hence, GUT-scale inflation may be our best candidate phenomenon to preserve traces of string-scale dynamics. Our chance to look for such traces is the primordial gravitational wave, or tensor mode signal produced during inflation. For GUT-scale inflation this is strong enough to be potentially visible as a B-mode polarization of the cosmic microwave background (CMB). Moreover, a GUT-scale inflation model has a trans-Planckian excursion of the inflaton scalar field during the observable amount of inflation. Such large-field models of inflation have a clear need for symmetry protection against quantum corrections. This makes them ideal candidates for a description in a candidate fundamental theory like string theory. At the same time the need of large-field inflation models for UV completion makes them particularly susceptible to preserve imprints of their string-scale dynamics in the inflationary observables, the spectral index n s and the fractional tensor mode power r. Hence, we focus this review on axion monodromy inflation as a mechanism of large-field inflation in string theory.
Charting the Landscape of Supercritical String Theory
International Nuclear Information System (INIS)
Hellerman, Simeon; Swanson, Ian
2007-01-01
Special solutions of string theory in supercritical dimensions can interpolate in time between theories with different numbers of spacetime dimensions and different amounts of world sheet supersymmetry. These solutions connect supercritical string theories to the more familiar string duality web in ten dimensions and provide a precise link between supersymmetric and purely bosonic string theories. Dimension quenching and c duality appear to be natural concepts in string theory, giving rise to large networks of interconnected theories
String and Sticky Tape Experiments.
Edge, R. D., Ed.
1979-01-01
Explains how to demonstrate the fundamentals of one dimensional kinematics such as Newton's third law of motion, and collision between bodies, using simple materials of marbles, strings, sticky tape, drinking straws, and rubber bands. (GA)
String theory or field theory?
International Nuclear Information System (INIS)
Marshakov, A.V.
2002-01-01
The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments, which are our concern in this review [ru
String moduli inflation. An overview
Energy Technology Data Exchange (ETDEWEB)
Cicoli, Michele [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Quevedo, Fernando [Cambridge Univ. (United Kingdom). DAMTP/CMS; Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)
2011-06-15
We present an overview of inflationary models derived from string theory focusing mostly on closed string moduli as inflatons. After a detailed discussion of the {eta}-problem and different approaches to address it, we describe possible ways to obtain a de Sitter vacuum with all closed string moduli stabilised. We then look for inflationary directions and present some of the most promising scenarios where the inflatons are either the real or the imaginary part of Kaehler moduli. We pay particular attention on extracting potential observable implications, showing how most of the scenarios predict negligible gravitational waves and could therefore be ruled out by the Planck satellite. We conclude by briefly mentioning some open challenges in string cosmology beyond deriving just inflation. (orig.)
Spin chains and string theory.
Kruczenski, Martin
2004-10-15
Recently, an important test of the anti de Sitter/conformal field theory correspondence has been done using rotating strings with two angular momenta. We show that such a test can be described more generally as the agreement between two actions: one a low energy description of a spin chain appearing in the field theory side, and the other a limit of the string action in AdS5xS5. This gives a map between the mean value of the spin in the boundary theory and the position of the string in the bulk, and shows how a string action can emerge from a gauge theory in the large-N limit.
Pattern recognition and string matching
Cheng, Xiuzhen
2002-01-01
The research and development of pattern recognition have proven to be of importance in science, technology, and human activity. Many useful concepts and tools from different disciplines have been employed in pattern recognition. Among them is string matching, which receives much theoretical and practical attention. String matching is also an important topic in combinatorial optimization. This book is devoted to recent advances in pattern recognition and string matching. It consists of twenty eight chapters written by different authors, addressing a broad range of topics such as those from classifica tion, matching, mining, feature selection, and applications. Each chapter is self-contained, and presents either novel methodological approaches or applications of existing theories and techniques. The aim, intent, and motivation for publishing this book is to pro vide a reference tool for the increasing number of readers who depend upon pattern recognition or string matching in some way. This includes student...
String moduli inflation. An overview
International Nuclear Information System (INIS)
Cicoli, Michele; Quevedo, Fernando
2011-06-01
We present an overview of inflationary models derived from string theory focusing mostly on closed string moduli as inflatons. After a detailed discussion of the η-problem and different approaches to address it, we describe possible ways to obtain a de Sitter vacuum with all closed string moduli stabilised. We then look for inflationary directions and present some of the most promising scenarios where the inflatons are either the real or the imaginary part of Kaehler moduli. We pay particular attention on extracting potential observable implications, showing how most of the scenarios predict negligible gravitational waves and could therefore be ruled out by the Planck satellite. We conclude by briefly mentioning some open challenges in string cosmology beyond deriving just inflation. (orig.)
Strings in the abelized picture
International Nuclear Information System (INIS)
Embacher, F.
1990-01-01
The transformation properties of the bosonic string variables under the recently discovered abelizing operator are exhibited. The intimate relation of this operator to the light-cone gauge condition is illustrated for the classical string. As an application of the formalism, the derivation of the BRST cohomology by the method of Freemann and Olive is carried over to the abelized picture, where it takes a particularly simple from. (orig.)
International Nuclear Information System (INIS)
Pope, C.N.; Stelle, K.S.
1991-08-01
We study the spectrum of W 3 strings. In particular, we show that for appropriately chosen space-time signature, one of the scalar fields is singled out be the spin-3 constraint and is ''frozen'': no creation operators from it can appear in physical states and the corresponding momentum must assume a specific fixed value. The remaining theory is unitary and resembles an ordinary string theory in d contains 26 with anomalies cancelled by appropriate background charges. (author). 8 refs
Cooldown of superconducting magnet strings
International Nuclear Information System (INIS)
Yuecel, A.; Carcagno, R.H.
1995-01-01
A numerical model for the cooldown of the superconducting magnet strings in the Accelerator System String Test (ASST) Facility at the Superconducting Super Collider (SSC) Laboratory is presented. Numerical results are compared with experimental data from the ASST test runs. Agreement between the numerical predictions and experiments is very good over the entire range from room temperature to liquid helium temperatures. The model can be readily adapted to predict the cooldown and warmup behavior of other superconducting magnets or cold masses
Strings in the abelized picture
International Nuclear Information System (INIS)
Embacher, F.
1990-01-01
The transformation properties of the bosonic string variables under the recently discovered abelizing operator are exhibited. The intimate relation of this operator to the light-cone gauge condition is illustrated for the classical string. As an application of the formalism, the derivation of the BRST cohomology by the method of Freeman and Olive is carried over to the abelized picture, where it takes a particulary simple form. 14 refs. (Author)
An introduction to string theory
West, Peter C
1989-01-01
These notes are based on lectures given by Michael Green during Part III of the Mathematics Tripos (the Certificate for Advanced Study in Mathematics) in the Spring of 2003. The course provided an introduction to string theory, focussing on the Bosonic string, but treating the superstring as well. A background in quantum field theory and general relativity is assumed. Some background in particle physics, group theory and conformal field theory is useful, though not essential. A number of appe...
Black strings and classical hair
International Nuclear Information System (INIS)
Horowitz, G.T.; Yang, H.
1997-01-01
We examine the geometry near the event horizon of a family of black string solutions with traveling waves. It has previously been shown that the metric is continuous there. Contrary to expectations, we find that the geometry is not smooth, and the horizon becomes singular whenever a wave is present. Both five-dimensional and six-dimensional black strings are considered with similar results. copyright 1997 The American Physical Society
On Field Theory of Open Strings, Tachyon Condensation and Closed Strings
Shatashvili, Samson L.
2001-01-01
I review the physical properties of different vacua in the background independent open string field theory. Talk presented at Strings 2001, Mumbai, India, http://theory.theory.tifr.res.in/strings/Proceedings/#sha-s.
Wee partons in large nuclei: from virtual dream to hard reality
International Nuclear Information System (INIS)
Venugopalan, R.
1995-01-01
We construct a weak coupling, many body theory to compute parton distributions in large nuclei for x -1/3 . The wee partons are highly coherent, non-Abelian Weizsaecker-Williams fields. Radiative corrections to the classical results are discussed. The parton distributions for a single nucleus provide the initial conditions for the dynamical evolution of matter formed in ultrarelativistic nuclear collisions. (orig.)
Fast searching in packed strings
DEFF Research Database (Denmark)
Bille, Philip
2011-01-01
Given strings P and Q the (exact) string matching problem is to find all positions of substrings in Q matching P. The classical Knuth–Morris–Pratt algorithm [SIAM J. Comput. 6 (2) (1977) 323–350] solves the string matching problem in linear time which is optimal if we can only read one character...... at the time. However, most strings are stored in a computer in a packed representation with several characters in a single word, giving us the opportunity to read multiple characters simultaneously. In this paper we study the worst-case complexity of string matching on strings given in packed representation....... Let m⩽n be the lengths P and Q, respectively, and let σ denote the size of the alphabet. On a standard unit-cost word-RAM with logarithmic word size we present an algorithm using timeO(nlogσn+m+occ). Here occ is the number of occurrences of P in Q. For m=o(n) this improves the O(n) bound of the Knuth...
Experimental observation of Bethe strings
Wang, Zhe; Wu, Jianda; Yang, Wang; Bera, Anup Kumar; Kamenskyi, Dmytro; Islam, A. T. M. Nazmul; Xu, Shenglong; Law, Joseph Matthew; Lake, Bella; Wu, Congjun; Loidl, Alois
2018-02-01
Almost a century ago, string states—complex bound states of magnetic excitations—were predicted to exist in one-dimensional quantum magnets. However, despite many theoretical studies, the experimental realization and identification of string states in a condensed-matter system have yet to be achieved. Here we use high-resolution terahertz spectroscopy to resolve string states in the antiferromagnetic Heisenberg-Ising chain SrCo2V2O8 in strong longitudinal magnetic fields. In the field-induced quantum-critical regime, we identify strings and fractional magnetic excitations that are accurately described by the Bethe ansatz. Close to quantum criticality, the string excitations govern the quantum spin dynamics, whereas the fractional excitations, which are dominant at low energies, reflect the antiferromagnetic quantum fluctuations. Today, Bethe’s result is important not only in the field of quantum magnetism but also more broadly, including in the study of cold atoms and in string theory; hence, we anticipate that our work will shed light on the study of complex many-body systems in general.
Dynamics of strings between walls
International Nuclear Information System (INIS)
Eto, Minoru; Fujimori, Toshiaki; Nagashima, Takayuki; Nitta, Muneto; Ohashi, Keisuke; Sakai, Norisuke
2009-01-01
Configurations of vortex strings stretched between or ending on domain walls were previously found to be 1/4 Bogomol'nyi-Prasad-Sommerfield (BPS) states in N=2 supersymmetric gauge theories in 3+1 dimensions. Among zero modes of string positions, the center of mass of strings in each region between two adjacent domain walls is shown to be non-normalizable whereas the rests are normalizable. We study dynamics of vortex strings stretched between separated domain walls by using two methods, the moduli space (geodesic) approximation of full 1/4 BPS states and the charged particle approximation for string end points in the wall effective action. In the first method we explicitly obtain the effective Lagrangian in the strong coupling limit, which is written in terms of hypergeometric functions, and find the 90 deg. scattering for head-on collision. In the second method the domain wall effective action is assumed to be U(1) N gauge theory, and we find a good agreement between two methods for well-separated strings.
International Nuclear Information System (INIS)
Le Meur, H.; Daninos, F.; Bachas, C.
2007-01-01
Since its beginning, in the sixties, the string theory has succeeded in overcoming a lot of theoretical difficulties but now the complete absence of experimental validation entertains doubts about its ability to represent the real world and questions its hegemony in today's theoretical physics. Other space-time theories like the twistors, or the non-commutative geometry, or the loop quantum gravity, or the causal dynamics triangulation might begin receiving more attention. Despite all that, the string theory can be given credit for 4 achievements. First, the string theory has provided a consistent quantum description of gravity. Secondly, the string theory has built a theoretical frame that has allowed the unification of the 4 basic interactions. Thirdly, the string theory applied to astrophysics issues has demonstrated that the evaporation of a black hole does not necessarily lead to a loss of information which comforts the universality of the conservation of the quantity of information in any system and as a consequence put a fatal blow to the so-called paradox observed in black holes. Fourthly, the string theory has given a new and original meaning on the true nature of space-time. (A.C.)
International Nuclear Information System (INIS)
Thorlacius, L.
1989-01-01
Open string vacuum configurations are described in terms of a one-dimensional field theory on the worldsheet boundary. The one-dimensional path integral has direct physical interpretation as a source term for closed string fields. This means that the vacuum divergences (Mobius infinities) of the path integral must be renormalized correctly. The author shows that reparametrization invariance Ward identities, apart from specifying the equations of motion of spacetime background gauge fields, also serve to fix the renormalization scheme of the vacuum divergences. He argues that vacuum configurations of open strings correspond to Caldeira-Leggett models of dissipative quantum mechanics (DQM) evaluated at a delocalization critical point. This connection reveals that critical DQM will manifest reparametrization invariance (inherited from the conformal invariance of string theory) rather than just scale invariance. This connection should open up new ways of constructing analytic and approximate solutions of open string theory (in particular, topological solitons such as monopoles and instantons). Type I superstring theory gives rise to a supersymmetric boundary field theory. Bose-Fermi cancellation eliminates vacuum divergences but the one-loop beta function remains the same as in the bosonic theory. Reparametrization invariance Ward identities dictate a boundary state normalization which yields consistent string-loop corrections to spacetime equations of motion, in both the periodic and anti-periodic fermion sectors
Radioiodine Remnant Ablation: A Critical Review
International Nuclear Information System (INIS)
Bal, Chandra Sekhar; Padhy, Ajit Kumar
2015-01-01
Radioiodine remnant ablation (RRA) is considered a safe and effective method for eliminating residual thyroid tissue, as well as microscopic disease if at all present in thyroid bed following thyroidectomy. The rationale of RRA is that in the absence of thyroid tissue, serum thyroglobulin (Tg) measurement can be used as an excellent tumor marker. Other considerations are like the presence of significant remnant thyroid tissue makes detection and treatment of nodal or distant metastases difficult. Rarely, microscopic disease in the thyroid bed if not ablated, in the future, could be a source of anaplastic transformation. On the other hand, microscopic tumor emboli in distant sites could be the cause of distant metastasis too. The ablation of remnant tissue would in all probability eliminate these theoretical risks. It may be noted that all these are unproven contentious issues except postablation serum Tg estimation that could be a good tumor marker for detecting early biochemical recurrence in long-term follow-up strategy. Radioactive iodine is administered as a form of “adjuvant therapy” for remnant ablation. There have been several reports with regard to the administered dose for remnant ablation. The first report of a prospective randomized clinical trial was published from India by a prospective randomized study conducted at the All India Institute of Medical Sciences, New Delhi in the year 1996. The study reported that increasing the empirical 131 I initial dose to more than 50 mCi results in plateauing of the dose-response curve and thus, conventional high-dose remnant ablation needs critical evaluation. Recently, two important studies were published: One from French group and the other from UK on a similar line. Interestingly, all three studies conducted in three different geographical regions of the world showed exactly similar conclusion. The new era of low-dose remnant ablation has taken a firm scientific footing across the continents
Chern-Simons couplings for dielectric F-strings in matrix string theory
International Nuclear Information System (INIS)
Brecher, Dominic; Janssen, Bert; Lozano, Yolanda
2002-01-01
We compute the non-abelian couplings in the Chern-Simons action for a set of coinciding fundamental strings in both the type IIA and type IIB Matrix string theories. Starting from Matrix theory in a weakly curved background, we construct the linear couplings of closed string fields to type IIA Matrix strings. Further dualities give a type IIB Matrix string theory and a type IIA theory of Matrix strings with winding. (Abstract Copyright[2002], Wiley Periodicals, Inc.)
New expressions for string loop amplitudes leading to an ultra-simple conception of string dynamics
International Nuclear Information System (INIS)
Chan Hongmo; Tsou Sheungtsun; Bordes, J.; Nellen, L.
1990-11-01
New expressions are derived for string loop amplitudes as overlap integrals of string wave functionals. They are shown to take the form of exchange terms coming from the Bose-Einstein symmetrisation between string segments. One is thus led to the ultra-simple conception that string theory is basically free, and that 'string interactions' are due merely to the fact that strings are composite objects with Bose-Einstein segments as constituents. (author)
Chiotellis, A.; Kosenko, D.; Schure, K.M.; Vink, J.; Kaastra, J.S.
2013-01-01
The well-established Type Ia remnant of Tycho's supernova (SN 1572) reveals discrepant ambient medium-density estimates based on either the measured dynamics or the X-ray emission properties. This discrepancy can potentially be solved by assuming that the supernova remnant (SNR) shock initially
Global study of nuclear modifications on parton distribution functions
Directory of Open Access Journals (Sweden)
Rong Wang
2017-07-01
Full Text Available A global analysis of nuclear medium modifications of parton distributions is presented using deeply inelastic scattering data of various nuclear targets. Two obtained data sets are provided for quark and gluon nuclear modification factors, referred as nIMParton16. One is from the global fit only to the experimental data of isospin-scalar nuclei (Set A, and the other is from the fit to all the measured nuclear data (Set B. The scale-dependence is described by DGLAP equations with nonlinear corrections in this work. The Fermi motion and off-shell effect, nucleon swelling, and parton–parton recombination are taken into account together for modeling the complicated x-dependence of nuclear modification. The nuclear gluon shadowing in this paper is dynamically generated by the QCD evolution of parton splitting and recombination processes with zero gluon density at the input scale. Sophisticated nuclear dependence of nuclear medium effects is studied with only two free parameters. With the obtained free parameters from the global analysis, the nuclear modifications of parton distribution functions of unmeasured nuclei can be predicted in our model. Nuclear modification of deuteron is also predicted and shown with recent measurement at JLab.
Parton degrees of freedom from the path-integral formalism
International Nuclear Information System (INIS)
Liu, Keh-Fei
2000-01-01
We formulate the hadronic tensor W μν of deep inelastic scattering in the path-integral formalism. It is shown that there are 3 gauge invariant and topologically distinct contributions. In addition to the valence contribution, there are two sources for the sea--one in the connected insertion and the other in the disconnected insertion. The operator product expansion is carried out in this formalism. The operator rescaling and mixing reveal that the connected sea partons evolve the same way as the valence; i.e., their evolution is decoupled from the disconnected sea and the gluon distribution functions. We explore the phenomenological consequences of this classification in terms of the small x behavior, Gottfried sum rule violation, and flavor dependence. In particular, we point out that in the nucleon u(bar sign) and d(bar sign) partons have both connected and disconnected sea contributions, whereas the s(bar sign) parton has only the disconnected sea contribution. This difference between u(bar sign)+d(bar sign) and s(bar sign), as far as we know, has not been taken into account in the fitting of parton distribution functions to experiments. (c) 2000 The American Physical Society
Unbiased determination of polarized parton distributions and their uncertainties
Energy Technology Data Exchange (ETDEWEB)
Ball, Richard D. [Tait Institute, University of Edinburgh, JCMB, KB, Mayfield Rd, Edinburgh EH9 3JZ, Scotland (United Kingdom); Forte, Stefano, E-mail: forte@mi.infn.it [Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Guffanti, Alberto [The Niels Bohr International Academy and Discovery Center, The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Nocera, Emanuele R. [Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Ridolfi, Giovanni [Dipartimento di Fisica, Università di Genova and INFN, Sezione di Genova, Genova (Italy); Rojo, Juan [PH Department, TH Unit, CERN, CH-1211 Geneva 23 (Switzerland)
2013-09-01
We present a determination of a set of polarized parton distributions (PDFs) of the nucleon, at next-to-leading order, from a global set of longitudinally polarized deep-inelastic scattering data: NNPDFpol1.0. The determination is based on the NNPDF methodology: a Monte Carlo approach, with neural networks used as unbiased interpolants, previously applied to the determination of unpolarized parton distributions, and designed to provide a faithful and statistically sound representation of PDF uncertainties. We present our dataset, its statistical features, and its Monte Carlo representation. We summarize the technique used to solve the polarized evolution equations and its benchmarking, and the method used to compute physical observables. We review the NNPDF methodology for parametrization and fitting of neural networks, the algorithm used to determine the optimal fit, and its adaptation to the polarized case. We finally present our set of polarized parton distributions. We discuss its statistical properties, test for its stability upon various modifications of the fitting procedure, and compare it to other recent polarized parton sets, and in particular obtain predictions for polarized first moments of PDFs based on it. We find that the uncertainties on the gluon, and to a lesser extent the strange PDF, were substantially underestimated in previous determinations.
Unbiased determination of polarized parton distributions and their uncertainties
International Nuclear Information System (INIS)
Ball, Richard D.; Forte, Stefano; Guffanti, Alberto; Nocera, Emanuele R.; Ridolfi, Giovanni; Rojo, Juan
2013-01-01
We present a determination of a set of polarized parton distributions (PDFs) of the nucleon, at next-to-leading order, from a global set of longitudinally polarized deep-inelastic scattering data: NNPDFpol1.0. The determination is based on the NNPDF methodology: a Monte Carlo approach, with neural networks used as unbiased interpolants, previously applied to the determination of unpolarized parton distributions, and designed to provide a faithful and statistically sound representation of PDF uncertainties. We present our dataset, its statistical features, and its Monte Carlo representation. We summarize the technique used to solve the polarized evolution equations and its benchmarking, and the method used to compute physical observables. We review the NNPDF methodology for parametrization and fitting of neural networks, the algorithm used to determine the optimal fit, and its adaptation to the polarized case. We finally present our set of polarized parton distributions. We discuss its statistical properties, test for its stability upon various modifications of the fitting procedure, and compare it to other recent polarized parton sets, and in particular obtain predictions for polarized first moments of PDFs based on it. We find that the uncertainties on the gluon, and to a lesser extent the strange PDF, were substantially underestimated in previous determinations
On neutrino and antineutrino scattering by electrons, and by partons
Bell, J S
1975-01-01
Assuming a non-derivative point interaction, and Born approximation, there are some simple relations between neutrino and antineutrino scattering on electrons or partons. They have been observed already, for some special cases, in the results of explicit calculations. Here they are obtained from simple and general considerations. (8 refs).
Parton Distributions at a 100 TeV Hadron Collider
Rojo, Juan
2016-01-01
The determination of the parton distribution functions (PDFs) of the proton will be an essential input for the physics program of a future 100 TeV hadron collider. The unprecedented center-of-mass energy will require knowledge of PDFs in currently unexplored kinematical regions such as the ultra
Spin-dependent parton distributions and structure functions
International Nuclear Information System (INIS)
Bentz, W.; Ito, T.; Cloet, I.C.; Thomas, A.W.; Yazaki, K.
2008-01-01
Nuclear parton distributions and structure functions are determined in an effective chiral quark theory. We also discuss an extension of our model to fragmentation functions. Presented at the 20th Few-Body Conference, Pisa, Italy, 10-14 September 2007. (author)
Probing the partonic structure of exotic particles in hard electroproduction
International Nuclear Information System (INIS)
Anikin, I.V.; Pire, B.; Szymanowski, L.; Teryaev, O.V.; Wallon, S.
2005-01-01
We argue that the electroproduction of exotic particles is a useful tool for study of their partonic structure. In the case of hybrid mesons, the magnitude of their cross sections shows that they are accessible for measurements in existing electroproduction experiments
Diffraction scattering and the parton model in QCD
International Nuclear Information System (INIS)
White, A.
1985-01-01
Arguments are presented that the validity of the parton model for hadron scattering in QCD is directly related to the occurrence of the Critical Pomeron description of diffraction scattering. An attractive route suggested for Electroweak and Grand Unification is also briefly described
The QCD coupling and parton distributions at high precision
International Nuclear Information System (INIS)
Bluemlein, Johannes
2010-07-01
A survey is given on the present status of the nucleon parton distributions and related precision calculations and precision measurements of the strong coupling constant α s (M 2 Z ). We also discuss the impact of these quantities on precision observables at hadron colliders. (orig.)
The QCD coupling and parton distributions at high precision
Energy Technology Data Exchange (ETDEWEB)
Bluemlein, Johannes
2010-07-15
A survey is given on the present status of the nucleon parton distributions and related precision calculations and precision measurements of the strong coupling constant {alpha}{sub s}(M{sup 2}{sub Z}). We also discuss the impact of these quantities on precision observables at hadron colliders. (orig.)
Extent of sensitivity of single photon production to parton distribution ...
Indian Academy of Sciences (India)
used the BFG-I parton to photon fragmentation function by Bourhis et al [17], which includes correction in the fragmentation function beyond leading logarithmic approxima- tion. The three scales μf,μR,μF are set equal to a common scale μ to reduce theoretical uncertainties in the calculation. The scale μ is further defined as ...
Spin structure at the partonic level. Pt. 2
International Nuclear Information System (INIS)
Leader, E.
1983-01-01
Knowledge of the spin and momentum distribution of partons inside a polarised nucleon, as deduced from lepton scattering, is combined with lowest order QCD to calculate spin dependent parameters in large psub(T) hadronic reactions. Clear predictions emerge in some cases and are in conflict with present experimental results. There is a real challenge to improve both theory and experiment. (orig.)
Parton distributions and{alpha}{sub s} for the LHC
Energy Technology Data Exchange (ETDEWEB)
Alekhin, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Institut Fiziki Vysokikh Ehnergij, Protvino (Russian Federation); Bluemlein, J. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Moch, S.O. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Univ. Hamburg (Germany). 2. Inst fuer Theoretische Physik
2013-03-15
We report on recent determinations of NNLO parton distributions and of {alpha}{sub s}(M{sub Z}) based on the world deep-inelastic data, supplemented by collider data. Some applications are discussed for semi-inclusive processes at the LHC.
PARTON SATURATION, PRODUCTION, AND EQUILIBRATION IN HIGH ENERGY NUCLEAR COLLISIONS
International Nuclear Information System (INIS)
VENUGOPALAN, R.
1999-01-01
Deeply inelastic scattering of electrons off nuclei can determine whether parton distributions saturate at HERA energies. If so, this phenomenon will also tell us a great deal about how particles are produced, and whether they equilibrate, in high energy nuclear collisions
Comparative study of the uncertainties in parton distribution functions
International Nuclear Information System (INIS)
Alekhin, S.I.
2003-01-01
Comparison of the methods used to extract the uncertainties in parton distributions is given, including their statistical properties and practical issues of implementation. Advantages and disadvantages of different methods are illustrated using the examples based on the analysis of real data. Available PDFs sets with associated uncertainties are reviewed and critically compared
Nuclear physics aspects in the parton model of Feynman
International Nuclear Information System (INIS)
Pauchy Hwang, W.Y.
1995-01-01
The basic fact that pions couple strongly to nucleons has dominated various nuclear physics thinkings since the birth of the field more than sixty years ago. The parton model of Feynman, in which the structure of a nucleon (or a hadron) is characterized by a set of parton distributions, was proposed originally in late 1960's to treat high energy deep inelastic scattering, and later many other high energy physics experiments involving hadrons. Introduction of the concept of parton distributions signifies the departure of particle physics from nuclear physics. Following the suggestion that the sea quark distributions in a nucleon, at low and moderate Q 2 (at least up to a few GeV 2 ), can be attributed primarily to the probability of finding such quarks or antiquarks in the mesons (or recoiling baryons) associated with the nucleon, the author examines how nuclear physics aspects offer quantitative understanding of several recent experimental results, including the observed violation of the Gotfried sum rule and the so-called open-quotes proton spin crisisclose quotes. These results suggest that determination of parton distributions of a hadron at Q 2 of a few GeV 2 (and at small x) must in general take into account nuclear physics aspects. Implication of these results for other high-energy reactions, such as semi-inclusive hadron production in deep inelastic scattering, are also discussed
On neutrino and antineutrino scattering by electrons, and by partons
International Nuclear Information System (INIS)
Bell, J.S.; Dass, G.V.
1975-09-01
Assuming a non-derivative point interaction, and Born approximation, there are some simple relations between neutrino and antineutrino scattering on electrons or partons. They have been observed already, for some special cases, in the results of explicit calculations. Here they are obtained from simple general considerations. (author)
A determination of parton distributions with faithful uncertainty estimation
International Nuclear Information System (INIS)
Ball, Richard D.; Del Debbio, Luigi; Forte, Stefano; Guffanti, Alberto; Latorre, Jose I.; Piccione, Andrea; Rojo, Juan; Ubiali, Maria
2009-01-01
We present the determination of a set of parton distributions of the nucleon, at next-to-leading order, from a global set of deep-inelastic scattering data: NNPDF1.0. The determination is based on a Monte Carlo approach, with neural networks used as unbiased interpolants. This method, previously discussed by us and applied to a determination of the nonsinglet quark distribution, is designed to provide a faithful and statistically sound representation of the uncertainty on parton distributions. We discuss our dataset, its statistical features, and its Monte Carlo representation. We summarize the technique used to solve the evolution equations and its benchmarking, and the method used to compute physical observables. We discuss the parametrization and fitting of neural networks, and the algorithm used to determine the optimal fit. We finally present our set of parton distributions. We discuss its statistical properties, test for its stability upon various modifications of the fitting procedure, and compare it to other recent parton sets. We use it to compute the benchmark W and Z cross sections at the LHC. We discuss issues of delivery and interfacing to commonly used packages such as LHAPDF
International Nuclear Information System (INIS)
Deser, S.
1987-01-01
We obtain the Einstein action plus quadratic curvature corrections generated by closed bosonic, heterotic and supersymmetric strings by matching the four-graviton amplitude (to first order in the slope parameter and fourth power of momenta) with an effective local gravitational action. The resulting corrections are first shown to be of the Gauss-Bonnet form. It is then noted that, by the very nature of the slope expansion, the field-redefinition theorem applies. Consequently, only the curvature-squared term is determined, while squares of its contractions are explicitly seen not to contribute. This latter property has a generalization to all orders which implies that the effective gravitational action is unavoidably ghost-free. The properties of solutions to these corrected theories are then examined. First neglecting dilatons, we find the explicit 'Schwarzschild' metrics. Both asymptotically flat and de Sitter solutions are present. The latter are however shown to be unstable. The former have horizons and singularities which are respectively smaller and less violent than in Einstein gravity; the correct sign of the slope parameter also ensures absence of naked singularities. When dilatons are included, the cosmological vacua are gratifyingly excluded. (orig.)
Huston, J
2001-01-01
This talk is intended to serve as a pedagogical guide on the determination of, the proper use of, and the uncertainties of parton distribution functions and their impact on physics cross sections at the Tevatron and LHC. A longer writeup of this talk is available at http://www.pa.msu.edu./~huston/lhc/lhc_pdfnote.ps. (12 refs).
Autopsy of the Supernova Remnant Cassiopeia A
Milisavljevic, Dan; Fesen, Robert A.
2014-01-01
Three-dimensional kinematic reconstructions of optically emitting ejecta in the young Galactic supernova remnant Cassiopeia A (Cas A) are discussed. The reconstructions encompass the remnant's faint outlying ejecta knots, including the exceptionally high-velocity NE and SW streams of debris often referred to as `jets'. The bulk of Cas A's ejecta are arranged in several circular rings with diameters between approximately 30'' (0.5 pc) and 2' (2 pc). We suggest that similar large-scale ejecta rings may be a common phenomenon of young core-collapse remnants and may explain lumpy emission line profile substructure sometimes observed in spectra of extragalactic core-collapse supernovae years after explosion. A likely origin for these large ejecta rings is post-explosion input of energy from plumes of radioactive 56Ni-rich ejecta that rise, expand, and compress non-radioactive material to form bubble-like structures.
Functional integral approach to string theories
International Nuclear Information System (INIS)
Sakita, B.
1987-01-01
Fermionic string theory can be made supersymmetric: the superstring. It contains among others mass zero gauge fields of spin 1 and 2. The recent revival of interests in string field theories is due to the recognition of the compactified superstring theory as a viable theory of grandunification of all interactions, especially after Green and Schwarz's discovery of the gauge and gravitational anomaly cancellation in 0(32) superstring theory. New developments include string phenomenology, general discussions of compactification, new models, especially the heterotic string. These are either applications or extensions of string field theories. Although these are very exciting developments, the author limits his attention to the basics of the bosonic string theory
String Theory for Pedestrians (1/3)
CERN. Geneva
2009-01-01
This is a non-technical rapid course on string theory. Lecture 1 is an introduction to the basics of the subject: classical and quantum strings, D(irichlet) branes and string-string dualities. In lecture 2 I will discuss string unification of the fundamental forces, covering both its successes and failures. Finally in lecture 3 I will review string models of black hole microstates, the holographic gauge/gravity duality and, if time permits, potential applications to the physics of the strong interactions.
String Theory for Pedestrians (2/3)
CERN. Geneva
2009-01-01
This is a non-technical rapid course on string theory. Lecture 1 is an introduction to the basics of the subject: classical and quantum strings, D(irichlet) branes and string-string dualities. In lecture 2 I will discuss string unification of the fundamental forces, covering both its successes and failures. Finally in lecture 3 I will review string models of black hole microstates, the holographic gauge/gravity duality and, if time permits, potential applications to the physics of the strong interactions.
String Theory for Pedestrians (3/3)
CERN. Geneva
2009-01-01
This is a non-technical rapid course on string theory. Lecture 1 is an introduction to the basics of the subject: classical and quantum strings, D(irichlet) branes and string-string dualities. In lecture 2 I will discuss string unification of the fundamental forces, covering both its successes and failures. Finally in lecture 3 I will review string models of black hole microstates, the holographic gauge/gravity duality and, if time permits, potential applications to the physics of the strong interactions.
Cosmic Ray Acceleration in Supernova Remnants
International Nuclear Information System (INIS)
O'C Drury, Luke
2005-01-01
This paper describes some recent developments in our understanding of cosmic ray acceleration in supernova remnant shocks. It is pointed out that while good agreement now exists as to steady nonlinear modifications to the shock structure, there is also growing evidence that the mesoscopic scales may not in fact be steady and that significant instabilities associated with magnetic field amplification may be a feature of strong collisionless plasma shocks. There is strong observational evidence for such magnetic field amplification, and it appears to solve a number of long-standing issues concerned with acceleration of cosmic rays in supernova remnants
X-ray haloes around supernova remnants
International Nuclear Information System (INIS)
Morfill, G.E.; Aschenbach, B.
1984-01-01
Recent observations of the Cas-A supernova remnant have shown X-ray emissions not only from the interior, but also from a fainter 'halo' extending beyond what is normally regarded as the outer boundary, or shock front. The authors suggest that this may be due to the diffusion of energetic, charged particles out of the remnant giving rise to precursor structure of the type predicted by the theory of diffusive shock acceleration. If this is the case we are seeing thermal emission from ambient gas heated by compression and wave dissipation. (author)
X-ray haloes around supernova remnants
Energy Technology Data Exchange (ETDEWEB)
Morfill, G.E.; Aschenbach, B. (Max-Planck-Institut fuer Physik und Astrophysik, Garching (Germany, F.R.). Inst. fuer Extraterrestrische Physik); Drury, L.O' C. (Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany, F.R.))
1984-09-27
Recent observations of the Cas-A supernova remnant have shown X-ray emissions not only from the interior, but also from a fainter 'halo' extending beyond what is normally regarded as the outer boundary, or shock front. The authors suggest that this may be due to the diffusion of energetic charged particles out of the remnant giving rise to precursor structure of the type predicted by the theory of diffusive shock acceleration. If this is the case we are seeing thermal emission from ambient gas heated by compression and wave dissipation.
International Nuclear Information System (INIS)
Skenderis, Kostas
2007-01-01
The book 'String Theory in a Nutshell' by Elias Kiritsis provides a comprehensive introduction to modern string theory. String theory is the leading candidate for a theory that successfully unifies all fundamental forces of nature, including gravity. The subject has been continuously developing since the early 1970s, with classic textbooks on the subject being those of Green, Schwarz and Witten (1987) and Polchinski (1998). Since the latter was published there have been substantial developments, in particular in understanding black holes and gravity/gauge theory dualities. A textbook treatment of this important material is clearly needed, both by students and researchers in string theory and by mathematicians and physicists working in related fields. This book has a good selection of material, starting from basics and moving into classic and modern topics. In particular, Kiritsis' presentation of the basic material is complementary to that of the earlier textbooks and he includes a number of topics which are not easily found or covered adequately elsewhere, for example, loop corrections to string effective couplings. Overall the book nicely covers the major advances of the last ten years, including (non-perturbative) string dualities, black hole physics, AdS/CFT and matrix models. It provides a concise but fairly complete introduction to these subjects which can be used both by students and by researchers. Moreover the emphasis is on results that are reasonably established, as is appropriate for a textbook; concise summaries are given for subjects which are still in flux, with references to relevant reviews and papers. A positive feature of the book is that the bibliography sections at the end of each chapter provide a comprehensive guide to the literature. The bibliographies point to reviews and pedagogical papers on subjects covered in this book as well as those that were omitted. It is rare for a textbook to contain such a self-contained and detailed guide to
Baryon stopping and strangeness baryon production in a parton cascade model
International Nuclear Information System (INIS)
Nara, Yasushi
1999-01-01
A parton cascade model which is based on pQCD incorporating hard partonic scattering and dynamical hadronization scheme describes the space-time evolution of parton/hadron system produced by ultra-relativistic nuclear collisions. Hadron yield, baryon stopping and transverse momentum distribution are calculated and compared with experimental data at SPS energies. Using new version of parton cascade code VNI in which baryonic cluster formation is implemented, we calculate the net baryon number distributions and Λ yield. It is found that baryon stopping behavior at SPS energies is well accounted for within the parton cascade picture. As a consequence of the production of the baryon (u and d quark) rich parton matter, parton coalescence naturally explains the enhanced yield of Λ particle which has been observed in experiment. (author)
Differential geometry in string models
International Nuclear Information System (INIS)
Alvarez, O.
1986-01-01
In this article the author reviews the differential geometric approach to the quantization of strings. A seminal paper demonstrates the connection between the trace anomaly and the critical dimension. The role played by the Faddeev-Popov ghosts has been instrumental in much of the subsequent work on the quantization of strings. This paper discusses the differential geometry of two dimensional surfaces and its importance in the quantization of strings. The path integral quantization approach to strings will be carefully analyzed to determine the correct effective measure for string theories. The choice of measure for the path integral is determined by differential geometric considerations. Once the measure is determined, the manifest diffeomorphism invariance of the theory will have to be broken by using the Faddeev-Popov ansatz. The gauge fixed theory is studied in detail with emphasis on the role of conformal and gravitational anomalies. In the analysis, the path integral formulation of the gauge fixed theory requires summing over all the distinct complex structures on the manifold
String theory or field theory?
International Nuclear Information System (INIS)
Marshakov, Andrei V
2002-01-01
The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of string theory in the modern picture of the physical world. Even though quantum field theory describes a wide range of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments which are our concern in this review. (reviews of topical problems)
Topological strings from quantum mechanics
International Nuclear Information System (INIS)
Grassi, Alba; Marino, Marcos; Hatsuda, Yasuyuki
2014-12-01
We propose a general correspondence which associates a non-perturbative quantum-mechanical operator to a toric Calabi-Yau manifold, and we conjecture an explicit formula for its spectral determinant in terms of an M-theoretic version of the topological string free energy. As a consequence, we derive an exact quantization condition for the operator spectrum, in terms of the vanishing of a generalized θ function. The perturbative part of this quantization condition is given by the Nekrasov-Shatashvili limit of the refined topological string, but there are non-perturbative corrections determined by the conventional topological string. We analyze in detail the cases of local P 2 , local P 1 x P 1 and local F 1 . In all these cases, the predictions for the spectrum agree with the existing numerical results. We also show explicitly that our conjectured spectral determinant leads to the correct spectral traces of the corresponding operators, which are closely related to topological string theory at orbifold points. Physically, our results provide a Fermi gas picture of topological strings on toric Calabi-Yau manifolds, which is fully non-perturbative and background independent. They also suggest the existence of an underlying theory of M2 branes behind this formulation. Mathematically, our results lead to precise, surprising conjectures relating the spectral theory of functional difference operators to enumerative geometry.
An exact bosonization rule for c = 1 noncritical string theory
International Nuclear Information System (INIS)
Ishibashi, Nobuyuki; Yamaguchi, Atsushi
2007-01-01
We construct a string field theory for c = 1 noncritical strings using the loop variables as the string field. We show how one can express the nonrelativistic free fermions which describes the theory, in terms of these string fields
Cosmic strings and black holes
International Nuclear Information System (INIS)
Aryal, M.; Ford, L.H.; Vilenkin, A.
1986-01-01
The metric for a Schwarzschild black hole with a cosmic string passing through it is discussed. The thermodynamics of such an object is considered, and it is shown that S = (1/4)A, where S is the entropy and A is the horizon area. It is noted that the Schwarzschild mass parameter M, which is the gravitational mass of the system, is no longer identical to its energy. A solution representing a pair of black holes held apart by strings is discussed. It is nearly identical to a static, axially symmetric solution given long ago by Bach and Weyl. It is shown how these solutions, which were formerly a mathematical curiosity, may be given a more physical interpretation in terms of cosmic strings
Cooperative strings and glassy interfaces.
Salez, Thomas; Salez, Justin; Dalnoki-Veress, Kari; Raphaël, Elie; Forrest, James A
2015-07-07
We introduce a minimal theory of glass formation based on the ideas of molecular crowding and resultant string-like cooperative rearrangement, and address the effects of free interfaces. In the bulk case, we obtain a scaling expression for the number of particles taking part in cooperative strings, and we recover the Adam-Gibbs description of glassy dynamics. Then, by including thermal dilatation, the Vogel-Fulcher-Tammann relation is derived. Moreover, the random and string-like characters of the cooperative rearrangement allow us to predict a temperature-dependent expression for the cooperative length ξ of bulk relaxation. Finally, we explore the influence of sample boundaries when the system size becomes comparable to ξ. The theory is in agreement with measurements of the glass-transition temperature of thin polymer films, and allows quantification of the temperature-dependent thickness hm of the interfacial mobile layer.
Vector superconductivity in cosmic strings
International Nuclear Information System (INIS)
Dvali, G.R.; Mahajan, S.M.
1992-03-01
We argue that in most realistic cases, the usual Witten-type bosonic superconductivity of the cosmic string is automatically (independent of the existence of superconducting currents) accompanied by the condensation of charged gauge vector bosons in the core giving rise to a new vector type superconductivity. The value of the charged vector condensate is related with the charged scalar expectation value, and vanishes only if the latter goes to zero. The mechanism for the proposed vector superconductivity, differing fundamentally from those in the literature, is delineated using the simplest realistic example of the two Higgs doublet standard model interacting with the extra cosmic string. It is shown that for a wide range of parameters, for which the string becomes scalarly superconducting, W boson condensates (the sources of vector superconductivity) are necessarily excited. (author). 14 refs
International Nuclear Information System (INIS)
Kalashnikova, Yu.S.; Nefediev, A.V.
1997-01-01
The QCD-motivated constituent string model is extended to consider the baryon. The system of three quarks propagating in the confining background field is studied in the Wilson loop approach, and the effective action is obtained. The resulting Lagrangian at large interquark distances corresponds to the Mercedes Benz string configuration. Assuming the quarks to be heavy enough to allow the adiabatic separation of quark and string junction motion and using the hyperspherical expansion for the quark subsystem we write out and solve the classical equation of motion for the junction. We quantize the motion of the junction and demonstrate that the account of these modes leads to the effective swelling of baryon in comparison with standard potential picture. The effects of finite gluonic correlation length which do not affect the excited states but appear to be substantial for the baryonic ground state, reducing the swelling considerably is discussed
Noncompact symmetries in string theory
International Nuclear Information System (INIS)
Maharana, J.; Schwarz, J.H.
1993-01-01
Noncompact groups, similar to those that appeared in various supergravity theories in the 1970's have been turning up in recent studies of string theory. First it was discovered that moduli spaces of toroidal compactification are given by noncompact groups modded out by their maximal compact subgroups and discrete duality groups. Then it was found that many other moduli spaces have analogous descriptions. More recently, noncompact group symmetries have turned up in effective actions used to study string cosmology and other classical configurations. This paper explores these noncompact groups in the case of toroidal compactification both from the viewpoint of low-energy effective field theory, using the method of dimensional reduction, and from the viewpoint of the string theory world-sheet. The conclusion is that all these symmetries are intimately related. In particular, we find that Chern-Simons terms in the three-form field strength H μνρ play a crucial role. (orig.)
Introduction to strings and superstrings
International Nuclear Information System (INIS)
Rausch de Traubenberg, M.
1988-01-01
The string theory is applied in the construction of a theory which allows the coupling of the four fundamental interactions and matter. The original model of the string theory describes the hadronic phenomenon of duality. The model extension, which describes the closed strings and those with a spin, is studied. The supersymmetry and the supersymmetric partner concepts are considered, in order to obtain a superstrings theory. The supersymmetry allows the formulation of a ''supertheory'', including matter, fields and gravitation. In order to explain the mass of the observable particles, the mechanism of symmetry breaking must be taken into account. The scalar state concept, originated from the supersymmetry breaking, is analyzed. This ''supertheory'' is not entirely accepted by the scientific world [fr
DEFF Research Database (Denmark)
Franceschini, A.; Simonovic, M.; Roth, A.
2013-01-01
for certain model organisms and functional systems. Currently, protein interactions and associations are annotated at various levels of detail in online resources, ranging from raw data repositories to highly formalized pathway databases. For many applications, a global view of all the available interaction...... data is desirable, including lower-quality data and/or computational predictions. The STRING database (http://string-db.org/) aims to provide such a global perspective for as many organisms as feasible. Known and predicted associations are scored and integrated, resulting in comprehensive protein...... networks covering >1100 organisms. Here, we describe the update to version 9.1 of STRING, introducing several improvements: (i) we extend the automated mining of scientific texts for interaction information, to now also include full-text articles; (ii) we entirely re-designed the algorithm for transferring...
International Nuclear Information System (INIS)
Lebedev, Oleg; Ramos-Sanchez, Saul
2009-12-01
We study the possibility of constructing the NMSSM from the heterotic string. String derived NMSSMs are much more rare than MSSMs due to the extra requirement that there exist a light singlet which couples to the Higgs pairs. They share the common feature that the singlet self-interactions are typically suppressed, leading to either the ''decoupling'' or to the Peccei-Quinn limit of the NMSSM. In the latter case, the spectrum contains a light pseudoscalar which may be relevant to the MSSM fine-tuning problem.We provide a Z 6 heterotic orbifold example of the NMSSM with approximate Peccei-Quinn symmetry, whose origin lies in the string selection rules combined with our choice of the vacuum configuration. (orig.)
International Nuclear Information System (INIS)
Nakatsu, Toshio.
1994-07-01
The analogue of the string equation which specifies the partition function of c=1 string with a compactification radius β is an element of Z ≥1 is described in the framework of Toda lattice hierarchy. (author)
Metastable cosmic strings in realistic models
International Nuclear Information System (INIS)
Holman, R.
1992-01-01
The stability of the electroweak Z-string is investigated at high temperatures. The results show that, while finite temperature corrections can improve the stability of the Z-string, their effect is not strong enough to stabilize the Z-string in the standard electroweak model. Consequently, the Z-string will be unstable even under the conditions present during the electroweak phase transition. Phenomenologically viable models based on the gauge group SU(2) L x SU(2) R x U(1) B-L are then considered, and it is shown that metastable strings exist and are stable to small perturbations for a large region of the parameter space for these models. It is also shown that these strings are superconducting with bosonic charge carriers. The string superconductivity may be able to stabilize segments and loops against dynamical contraction. Possible implications of these strings for cosmology are discussed
Covariant amplitudes in Polyakov string theory
International Nuclear Information System (INIS)
Aoyama, H.; Dhar, A.; Namazie, M.A.
1986-01-01
A manifestly Lorentz-covariant and reparametrization-invariant procedure for computing string amplitudes using Polyakov's formulation is described. Both bosonic and superstring theories are dealt with. The computation of string amplitudes is greatly facilitated by this formalism. (orig.)
Cosmic string induced peculiar velocities
International Nuclear Information System (INIS)
van Dalen, A.; Schramm, D.N.
1987-02-01
We calculate analytically the probability distribution for peculiar velocities on scales from 10h -1 to 60h -1 Mpc with cosmic string loops as the dominant source of primordial gravitational perturbations. We consider a range of parameters βGμ appropriate for both hot (HDM) and cold (CDM) dark matter scenarios. An Ω = 1 CDM Universe is assumed with the loops randomly placed on a smooth background. It is shown how the effects can be estimated of loops breaking up and being born with a spectrum of sizes. It is found that to obtain large scale streaming velocities of at least 400 km/s it is necessary that either a large value for βGμ or the effect of loop fissioning and production details be considerable. Specifically, for optimal CDM string parameters Gμ = 10 -6 , β = 9, h = .5, and scales of 60h -1 Mpc, the parent size spectrum must be 36 times larger than the evolved daughter spectrum to achieve peculiar velocities of at least 400 km/s with a probability of 63%. With this scenario the microwave background dipole will be less than 800 km/s with only a 10% probability. The string induced velocity spectrum is relatively flat out to scales of about 2t/sub eq//a/sub eq/ and then drops off rather quickly. The flatness is a signature of string models of galaxy formation. With HDM a larger value of βGμ is necessary for galaxy formation since accretion on small scales starts later. Hence, with HDM, the peculiar velocity spectrum will be larger on large scales and the flat region will extend to larger scales. If large scale peculiar velocities greater than 400 km/s are real then it is concluded that strings plus CDM have difficulties. The advantages of strings plus HDM in this regard will be explored in greater detail in a later paper. 27 refs., 4 figs., 1 tab
Jejjala, Vishnumohan
2002-01-01
This Thesis explores aspects of superstring theory on orbifold spaces and applies some of the intuition gleaned from the study of the non-commutative geometry of space-time to understanding the fractional quantum Hall effect. The moduli space of vacua of marginal and relevant deformations of N = 4 super-Yang-Mills gauge theory in four dimensions is interpreted in terms of non-commutative geometry. A formalism for thinking about the algebraic geometry of the moduli space is developed. Within this framework, the representation theory of the algebras studied provides a natural exposition of D-brane fractionation. The non-commutative moduli space of deformations preserving N = 1 supersymmetry is examined in detail through various examples. In string theory, by the AdS/CFT correspondence, deformations of the N = 4 field theory are dual to the near-horizon geometries of D-branes on orbifolds of AdS5 x S 5. The physics of D-branes on the dual AdS backgrounds is explored. Quivers encapsulate the matter content of supersymmetric field theories on the worldvolumes of D-branes at orbifold singularities. New techniques for constructing quivers are presented here. When N is a normal subgroup of a finite group G, the quiver corresponding to fixed points of the orbifold M/G is computed from a G/N action on the quiver corresponding to M/G . These techniques prove useful for constructing non-Abelian quivers and for examining discrete torsion orbifolds. Quivers obtained through our constructions contain interesting low-energy phenomenology. The matter content on a brane at an isolated singularity of the Delta27 orbifold embeds the Standard Model. The symmetries of the quiver require exactly three generations of fields in the particle spectrum. Lepton masses are suppressed relative to quark masses because lepton Yukawa couplings do not appear in the superpotential. Lepton masses are generated through the Kahler potential and are related to the supersymmetry breaking scale. The model
Warped models in string theory
International Nuclear Information System (INIS)
Acharya, B.S.; Benini, F.; Valandro, R.
2006-12-01
Warped models, originating with the ideas of Randall and Sundrum, provide a fascinating extension of the standard model with interesting consequences for the LHC. We investigate in detail how string theory realises such models, with emphasis on fermion localisation and the computation of Yukawa couplings. We find, in contrast to the 5d models, that fermions can be localised anywhere in the extra dimension, and that there are new mechanisms to generate exponential hierarchies amongst the Yukawa couplings. We also suggest a way to distinguish these string theory models with data from the LHC. (author)