WorldWideScience

Sample records for partition functions

  1. Matrix string partition function

    CERN Document Server

    Kostov, Ivan K; Kostov, Ivan K.; Vanhove, Pierre

    1998-01-01

    We evaluate quasiclassically the Ramond partition function of Euclidean D=10 U(N) super Yang-Mills theory reduced to a two-dimensional torus. The result can be interpreted in terms of free strings wrapping the space-time torus, as expected from the point of view of Matrix string theory. We demonstrate that, when extrapolated to the ultraviolet limit (small area of the torus), the quasiclassical expressions reproduce exactly the recently obtained expression for the partition of the completely reduced SYM theory, including the overall numerical factor. This is an evidence that our quasiclassical calculation might be exact.

  2. Generalised twisted partition functions

    CERN Document Server

    Petkova, V B

    2001-01-01

    We consider the set of partition functions that result from the insertion of twist operators compatible with conformal invariance in a given 2D Conformal Field Theory (CFT). A consistency equation, which gives a classification of twists, is written and solved in particular cases. This generalises old results on twisted torus boundary conditions, gives a physical interpretation of Ocneanu's algebraic construction, and might offer a new route to the study of properties of CFT.

  3. Hemisphere partition function and monodromy

    Energy Technology Data Exchange (ETDEWEB)

    Erkinger, David; Knapp, Johanna [Institute for Theoretical Physics, TU Wien,Wiedner Hauptstrasse 8-10, 1040 Vienna (Austria)

    2017-05-29

    We discuss D-brane monodromies from the point of view of the gauged linear sigma model. We give a prescription on how to extract monodromy matrices directly from the hemisphere partition function. We illustrate this procedure by recomputing the monodromy matrices associated to one-parameter Calabi-Yau hypersurfaces in weighted projected space.

  4. EXTENSION OF FORMULAS FOR PARTITION FUNCTIONS

    African Journals Online (AJOL)

    Ladan et al.

    2Department of Mathematics, Ahmadu Bello University, Zaria. ... 2 + 1 + 1. = 1 + 1 + 1 + 1. Partition function ( ). Andrew and Erikson (2004) stated that the ..... Andrews, G.E., 1984, The Theory of Partitions, Cambridge ... Pure Appl. Math.

  5. Topological string partition functions as polynomials

    International Nuclear Information System (INIS)

    Yamaguchi, Satoshi; Yau Shingtung

    2004-01-01

    We investigate the structure of the higher genus topological string amplitudes on the quintic hypersurface. It is shown that the partition functions of the higher genus than one can be expressed as polynomials of five generators. We also compute the explicit polynomial forms of the partition functions for genus 2, 3, and 4. Moreover, some coefficients are written down for all genus. (author)

  6. Partition functions for supersymmetric black holes

    NARCIS (Netherlands)

    Manschot, J.

    2008-01-01

    This thesis presents a number of results on partition functions for four-dimensional supersymmetric black holes. These partition functions are important tools to explain the entropy of black holes from a microscopic point of view. Such a microscopic explanation was desired after the association of a

  7. Compactified webs and domain wall partition functions

    Energy Technology Data Exchange (ETDEWEB)

    Shabbir, Khurram [Government College University, Department of Mathematics, Lahore (Pakistan)

    2017-04-15

    In this paper we use the topological vertex formalism to calculate a generalization of the ''domain wall'' partition function of M-strings. This generalization allows calculation of partition function of certain compactified webs using a simple gluing algorithm similar to M-strings case. (orig.)

  8. Disk partition function and oscillatory rolling tachyons

    International Nuclear Information System (INIS)

    Jokela, Niko; Jaervinen, Matti; Keski-Vakkuri, Esko; Majumder, Jaydeep

    2008-01-01

    An exact cubic open string field theory rolling tachyon solution was recently found by Kiermaier et al and Schnabl. This oscillatory solution has been argued to be related by a field redefinition to the simple exponential rolling tachyon deformation of boundary conformal theory. In the latter approach, the disk partition function takes a simple form. Out of curiosity, we compute the disk partition function for an oscillatory tachyon profile, and find that the result is nevertheless almost the same

  9. Combinatorics and complexity of partition functions

    CERN Document Server

    Barvinok, Alexander

    2016-01-01

    Partition functions arise in combinatorics and related problems of statistical physics as they encode in a succinct way the combinatorial structure of complicated systems. The main focus of the book is on efficient ways to compute (approximate) various partition functions, such as permanents, hafnians and their higher-dimensional versions, graph and hypergraph matching polynomials, the independence polynomial of a graph and partition functions enumerating 0-1 and integer points in polyhedra, which allows one to make algorithmic advances in otherwise intractable problems. The book unifies various, often quite recent, results scattered in the literature, concentrating on the three main approaches: scaling, interpolation and correlation decay. The prerequisites include moderate amounts of real and complex analysis and linear algebra, making the book accessible to advanced math and physics undergraduates. .

  10. Domain wall partition functions and KP

    International Nuclear Information System (INIS)

    Foda, O; Wheeler, M; Zuparic, M

    2009-01-01

    We observe that the partition function of the six-vertex model on a finite square lattice with domain wall boundary conditions is (a restriction of) a KP τ function and express it as an expectation value of charged free fermions (up to an overall normalization)

  11. A statistical mechanical approach to restricted integer partition functions

    Science.gov (United States)

    Zhou, Chi-Chun; Dai, Wu-Sheng

    2018-05-01

    The main aim of this paper is twofold: (1) suggesting a statistical mechanical approach to the calculation of the generating function of restricted integer partition functions which count the number of partitions—a way of writing an integer as a sum of other integers under certain restrictions. In this approach, the generating function of restricted integer partition functions is constructed from the canonical partition functions of various quantum gases. (2) Introducing a new type of restricted integer partition functions corresponding to general statistics which is a generalization of Gentile statistics in statistical mechanics; many kinds of restricted integer partition functions are special cases of this restricted integer partition function. Moreover, with statistical mechanics as a bridge, we reveal a mathematical fact: the generating function of restricted integer partition function is just the symmetric function which is a class of functions being invariant under the action of permutation groups. Using this approach, we provide some expressions of restricted integer partition functions as examples.

  12. Dual little strings and their partition functions

    Science.gov (United States)

    Bastian, Brice; Hohenegger, Stefan; Iqbal, Amer; Rey, Soo-Jong

    2018-05-01

    We study the topological string partition function of a class of toric, double elliptically fibered Calabi-Yau threefolds XN ,M at a generic point in the Kähler moduli space. These manifolds engineer little string theories in five dimensions or lower and are dual to stacks of M5-branes probing a transverse orbifold singularity. Using the refined topological vertex formalism, we explicitly calculate a generic building block which allows us to compute the topological string partition function of XN ,M as a series expansion in different Kähler parameters. Using this result, we give further explicit proof for a duality found previously in the literature, which relates XN ,M˜XN',M' for N M =N'M' and gcd (N ,M )=gcd (N',M') .

  13. Rotational partition functions for linear molecules

    International Nuclear Information System (INIS)

    McDowell, R.S.

    1988-01-01

    An accurate closed-form expression for the rotational partition function of linear polyatomic molecules in 1 summation electronic states is derived, including the effect of nuclear spin (significant at very low temperatures) and of quartic and sextic centrifugal distortion terms (significant at moderate and high temperatures). The proper first-order quantum correction to the classical rigid-rotator partition function is shown to yield Q/sub r/ ≅β -1 exp(β/3), where βequivalenthcB/kT and B is the rotational constant in cm -1 ; for β≥0.2 additional power-series terms in β are necessary. Comparison between the results of this treatment and exact summations are made for HCN and C 2 H 2 at temperatures from 2 to 5000 K, including separate evaluation of the contributions of nuclear spin and centrifugal distortion

  14. Two-loop superstring partition function

    International Nuclear Information System (INIS)

    Morozov, A.Y.

    1988-01-01

    Is it possible to choose the odd moduli on super-Riemann surfaces of genus p≥2 in such a way that the corresponding contributions to the superstring partition function vanish before the integration over the space of the moduli? It is shown that, at least for p = 2, the answer to this question is affirmative, and in this case the odd moduli should be localized at branch points

  15. Superfluid Kubo formulas from partition function

    International Nuclear Information System (INIS)

    Chapman, Shira; Hoyos, Carlos; Oz, Yaron

    2014-01-01

    Linear response theory relates hydrodynamic transport coefficients to equilibrium retarded correlation functions of the stress-energy tensor and global symmetry currents in terms of Kubo formulas. Some of these transport coefficients are non-dissipative and affect the fluid dynamics at equilibrium. We present an algebraic framework for deriving Kubo formulas for such thermal transport coefficients by using the equilibrium partition function. We use the framework to derive Kubo formulas for all such transport coefficients of superfluids, as well as to rederive Kubo formulas for various normal fluid systems

  16. Partition function for a singular background

    International Nuclear Information System (INIS)

    McKenzie-Smith, J.J.; Naylor, W.

    2005-01-01

    We present a method for evaluating the partition function in a varying external field. Specifically, we look at the case of a non-interacting, charged, massive scalar field at finite temperature with an associated chemical potential in the background of a delta-function potential. Whilst we present a general method, valid at all temperatures, we only give the result for the leading order term in the high temperature limit. Although the derivative expansion breaks down for inhomogeneous backgrounds we are able to obtain the high temperature expansion, as well as an analytic expression for the zero point energy, by way of a different approximation scheme, which we call the local Born approximation (LBA)

  17. Partition function for a singular background

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie-Smith, J.J. [Financial Risk Management Ltd, 15 Adam Street, London WC2N 6AH (United Kingdom)]. E-mail: julian.mckenzie-smith@frmhedge.com; Naylor, W. [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)]. E-mail: naylor@yukawa.kyoto-u.ac.jp

    2005-03-17

    We present a method for evaluating the partition function in a varying external field. Specifically, we look at the case of a non-interacting, charged, massive scalar field at finite temperature with an associated chemical potential in the background of a delta-function potential. Whilst we present a general method, valid at all temperatures, we only give the result for the leading order term in the high temperature limit. Although the derivative expansion breaks down for inhomogeneous backgrounds we are able to obtain the high temperature expansion, as well as an analytic expression for the zero point energy, by way of a different approximation scheme, which we call the local Born approximation (LBA)

  18. The position value for partition function form network games

    NARCIS (Netherlands)

    Nouweland, van den C.G.A.M.; Slikker, M.

    We use the axiomatization of the position value for network situations in van den Nouweland and Slikker (2012) to define a position value for partition function form network situations. We do this by generalizing the axioms to the partition function form value function setting as studied in Navarro

  19. A partition function approximation using elementary symmetric functions.

    Directory of Open Access Journals (Sweden)

    Ramu Anandakrishnan

    Full Text Available In statistical mechanics, the canonical partition function [Formula: see text] can be used to compute equilibrium properties of a physical system. Calculating [Formula: see text] however, is in general computationally intractable, since the computation scales exponentially with the number of particles [Formula: see text] in the system. A commonly used method for approximating equilibrium properties, is the Monte Carlo (MC method. For some problems the MC method converges slowly, requiring a very large number of MC steps. For such problems the computational cost of the Monte Carlo method can be prohibitive. Presented here is a deterministic algorithm - the direct interaction algorithm (DIA - for approximating the canonical partition function [Formula: see text] in [Formula: see text] operations. The DIA approximates the partition function as a combinatorial sum of products known as elementary symmetric functions (ESFs, which can be computed in [Formula: see text] operations. The DIA was used to compute equilibrium properties for the isotropic 2D Ising model, and the accuracy of the DIA was compared to that of the basic Metropolis Monte Carlo method. Our results show that the DIA may be a practical alternative for some problems where the Monte Carlo method converge slowly, and computational speed is a critical constraint, such as for very large systems or web-based applications.

  20. The SOS model partition function and the elliptic weight functions

    International Nuclear Information System (INIS)

    Pakuliak, S; Silantyev, A; Rubtsov, V

    2008-01-01

    We generalized a recent observation (Khoroshkin and Pakuliak 2005 Theor. Math. Phys. 145 1373) that the partition function of the six-vertex model with domain wall boundary conditions can be obtained from a calculation of projections of the product of total currents in the quantum affine algebra U q (sl 2 -hat) in its current realization. A generalization is done for the elliptic current algebra (Enriquez and Felder 1998 Commun. Math. Phys. 195 651, Enriquez and Rubtsov 1997 Ann. Sci. Ecole Norm. Sup. 30 821). The projections of the product of total currents in this case are calculated explicitly and are presented as integral transforms of a product of the total currents. It is proved that the integral kernel of this transform is proportional to the partition function of the SOS model with domain wall boundary conditions

  1. Factorisations for partition functions of random Hermitian matrix models

    International Nuclear Information System (INIS)

    Jackson, D.M.; Visentin, T.I.

    1996-01-01

    The partition function Z N , for Hermitian-complex matrix models can be expressed as an explicit integral over R N , where N is a positive integer. Such an integral also occurs in connection with random surfaces and models of two dimensional quantum gravity. We show that Z N can be expressed as the product of two partition functions, evaluated at translated arguments, for another model, giving an explicit connection between the two models. We also give an alternative computation of the partition function for the φ 4 -model.The approach is an algebraic one and holds for the functions regarded as formal power series in the appropriate ring. (orig.)

  2. Off-diagonal series expansion for quantum partition functions

    Science.gov (United States)

    Hen, Itay

    2018-05-01

    We derive an integral-free thermodynamic perturbation series expansion for quantum partition functions which enables an analytical term-by-term calculation of the series. The expansion is carried out around the partition function of the classical component of the Hamiltonian with the expansion parameter being the strength of the off-diagonal, or quantum, portion. To demonstrate the usefulness of the technique we analytically compute to third order the partition functions of the 1D Ising model with longitudinal and transverse fields, and the quantum 1D Heisenberg model.

  3. Exact partition functions for gauge theories on Rλ3

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Wallet

    2016-11-01

    Full Text Available The noncommutative space Rλ3, a deformation of R3, supports a 3-parameter family of gauge theory models with gauge-invariant harmonic term, stable vacuum and which are perturbatively finite to all orders. Properties of this family are discussed. The partition function factorizes as an infinite product of reduced partition functions, each one corresponding to the reduced gauge theory on one of the fuzzy spheres entering the decomposition of Rλ3. For a particular sub-family of gauge theories, each reduced partition function is exactly expressible as a ratio of determinants. A relation with integrable 2-D Toda lattice hierarchy is indicated.

  4. Dominant partition method. [based on a wave function formalism

    Science.gov (United States)

    Dixon, R. M.; Redish, E. F.

    1979-01-01

    By use of the L'Huillier, Redish, and Tandy (LRT) wave function formalism, a partially connected method, the dominant partition method (DPM) is developed for obtaining few body reductions of the many body problem in the LRT and Bencze, Redish, and Sloan (BRS) formalisms. The DPM maps the many body problem to a fewer body one by using the criterion that the truncated formalism must be such that consistency with the full Schroedinger equation is preserved. The DPM is based on a class of new forms for the irreducible cluster potential, which is introduced in the LRT formalism. Connectivity is maintained with respect to all partitions containing a given partition, which is referred to as the dominant partition. Degrees of freedom corresponding to the breakup of one or more of the clusters of the dominant partition are treated in a disconnected manner. This approach for simplifying the complicated BRS equations is appropriate for physical problems where a few body reaction mechanism prevails.

  5. Modular invariant partition functions for toroidally compactified bosonic string

    International Nuclear Information System (INIS)

    Ardalan, F.; Arfaei, H.

    1988-06-01

    We systematically find all the modular invariant partition functions for the toroidally compactified closed bosonic string defined on a subset of a simply laced simple Lie algebra lattice, or equivalently for the closed bosonic string moving on a group manifold with the WZW coefficient k=1. We examine the relation between modular invariance of partition function and the possibility of describing it by an even Lorentzian self dual lattice in our context. (author). 23 refs

  6. A brief history of partitions of numbers, partition functions and their modern applications

    Science.gov (United States)

    Debnath, Lokenath

    2016-04-01

    'Number rules the universe.' The Pythagoras 'If you wish to forsee the future of mathematics our course is to study the history and present conditions of the science.' Henri Poincaré 'The primary source (Urqell) of all mathematics are integers.' Hermann Minkowski This paper is written to commemorate the centennial anniversary of the Mathematical Association of America. It deals with a short history of different kinds of natural numbers including triangular, square, pentagonal, hexagonal and k-gonal numbers, and their simple properties and their geometrical representations. Included are Euclid's and Pythagorean's main contributions to elementary number theory with the main contents of the Euclid Elements of the 13-volume masterpiece of mathematical work. This is followed by Euler's new discovery of the additive number theory based on partitions of numbers. Special attention is given to many examples, Euler's theorems on partitions of numbers with geometrical representations of Ferrers' graphs, Young's diagrams, Lagrange's four-square theorem and the celebrated Waring problem. Included are Euler's generating functions for the partitions of numbers, Euler's pentagonal number theorem, Gauss' triangular and square number theorems and the Jacobi triple product identity. Applications of the theory of partitions of numbers to different statistics such as the Bose- Einstein, Fermi- Dirac, Gentile, and Maxwell- Boltzmann statistics are briefly discussed. Special attention is given to pedagogical information through historical approach to number theory so that students and teachers at the school, college and university levels can become familiar with the basic concepts of partitions of numbers, partition functions and their modern applications, and can pursue advanced study and research in analytical and computational number theory.

  7. Pure spinor partition function and the massive superstring spectrum

    International Nuclear Information System (INIS)

    Aisaka, Yuri; Arroyo, E. Aldo; Berkovits, Nathan; Nekrasov, Nikita

    2008-01-01

    We explicitly compute up to the fifth mass-level the partition function of ten-dimensional pure spinor worldsheet variables including the spin dependence. After adding the contribution from the (x μ , θ α , p α ) matter variables, we reproduce the massive superstring spectrum. Even though pure spinor variables are bosonic, the pure spinor partition function contains fermionic states which first appear at the second mass-level. These fermionic states come from functions which are not globally defined in pure spinor space, and are related to the b ghost in the pure spinor formalism. This result clarifies the proper definition of the Hilbert space for pure spinor variables.

  8. Genus two partition functions of extremal conformal field theories

    International Nuclear Information System (INIS)

    Gaiotto, Davide; Yin Xi

    2007-01-01

    Recently Witten conjectured the existence of a family of 'extremal' conformal field theories (ECFTs) of central charge c = 24k, which are supposed to be dual to three-dimensional pure quantum gravity in AdS 3 . Assuming their existence, we determine explicitly the genus two partition functions of k = 2 and k = 3 ECFTs, using modular invariance and the behavior of the partition function in degenerating limits of the Riemann surface. The result passes highly nontrivial tests and in particular provides a piece of evidence for the existence of the k = 3 ECFT. We also argue that the genus two partition function of ECFTs with k ≤ 10 are uniquely fixed (if they exist)

  9. Approximation methods for the partition functions of anharmonic systems

    International Nuclear Information System (INIS)

    Lew, P.; Ishida, T.

    1979-07-01

    The analytical approximations for the classical, quantum mechanical and reduced partition functions of the diatomic molecule oscillating internally under the influence of the Morse potential have been derived and their convergences have been tested numerically. This successful analytical method is used in the treatment of anharmonic systems. Using Schwinger perturbation method in the framework of second quantization formulism, the reduced partition function of polyatomic systems can be put into an expression which consists separately of contributions from the harmonic terms, Morse potential correction terms and interaction terms due to the off-diagonal potential coefficients. The calculated results of the reduced partition function from the approximation method on the 2-D and 3-D model systems agree well with the numerical exact calculations

  10. Linearization of non-commuting operators in the partition function

    International Nuclear Information System (INIS)

    Ahmed, M.

    1983-06-01

    A generalization of the Stratonovich-Hubbard scheme for evaluating the grand canonical partition function is given. The scheme involves linearization of products of non-commuting operators using the functional integral method. The non-commutivity of the operators leads to an additional term which can be absorbed in the single-particle Hamiltonian. (author)

  11. One-loop partition functions of 3D gravity

    International Nuclear Information System (INIS)

    Giombi, Simone; Yin Xi; Maloney, Alexander

    2008-01-01

    We consider the one-loop partition function of free quantum field theory in locally Anti-de Sitter space-times. In three dimensions, the one loop determinants for scalar, gauge and graviton excitations are computed explicitly using heat kernel techniques. We obtain precisely the result anticipated by Brown and Henneaux: the partition function includes a sum over 'boundary excitations' of AdS 3 , which are the Virasoro descendants of empty Anti-de Sitter space. This result also allows us to compute the one-loop corrections to the Euclidean action of the BTZ black hole as well its higher genus generalizations.

  12. Marginal Consistency: Upper-Bounding Partition Functions over Commutative Semirings.

    Science.gov (United States)

    Werner, Tomás

    2015-07-01

    Many inference tasks in pattern recognition and artificial intelligence lead to partition functions in which addition and multiplication are abstract binary operations forming a commutative semiring. By generalizing max-sum diffusion (one of convergent message passing algorithms for approximate MAP inference in graphical models), we propose an iterative algorithm to upper bound such partition functions over commutative semirings. The iteration of the algorithm is remarkably simple: change any two factors of the partition function such that their product remains the same and their overlapping marginals become equal. In many commutative semirings, repeating this iteration for different pairs of factors converges to a fixed point when the overlapping marginals of every pair of factors coincide. We call this state marginal consistency. During that, an upper bound on the partition function monotonically decreases. This abstract algorithm unifies several existing algorithms, including max-sum diffusion and basic constraint propagation (or local consistency) algorithms in constraint programming. We further construct a hierarchy of marginal consistencies of increasingly higher levels and show than any such level can be enforced by adding identity factors of higher arity (order). Finally, we discuss instances of the framework for several semirings, including the distributive lattice and the max-sum and sum-product semirings.

  13. Further Stable methods for the calculation of partition functions

    International Nuclear Information System (INIS)

    Wilson, B G; Gilleron, F; Pain, J

    2007-01-01

    The extension to recursion over holes of the Gilleron and Pain method for calculating partition functions of a canonical ensemble of non-interacting bound electrons is presented as well as a generalization for the efficient computation of collisional line broadening

  14. Zeta Function Expression of Spin Partition Functions on Thermal AdS3

    Directory of Open Access Journals (Sweden)

    Floyd L.Williams

    2015-07-01

    Full Text Available We find a Selberg zeta function expression of certain one-loop spin partition functions on three-dimensional thermal anti-de Sitter space. Of particular interest is the partition function of higher spin fermionic particles. We also set up, in the presence of spin, a Patterson-type formula involving the logarithmic derivative of zeta.

  15. Many-body formalism for fermions: The partition function

    Science.gov (United States)

    Watson, D. K.

    2017-09-01

    The partition function, a fundamental tenet in statistical thermodynamics, contains in principle all thermodynamic information about a system. It encapsulates both microscopic information through the quantum energy levels and statistical information from the partitioning of the particles among the available energy levels. For identical particles, this statistical accounting is complicated by the symmetry requirements of the allowed quantum states. In particular, for Fermi systems, the enforcement of the Pauli principle is typically a numerically demanding task, responsible for much of the cost of the calculations. The interplay of these three elements—the structure of the many-body spectrum, the statistical partitioning of the N particles among the available levels, and the enforcement of the Pauli principle—drives the behavior of mesoscopic and macroscopic Fermi systems. In this paper, we develop an approach for the determination of the partition function, a numerically difficult task, for systems of strongly interacting identical fermions and apply it to a model system of harmonically confined, harmonically interacting fermions. This approach uses a recently introduced many-body method that is an extension of the symmetry-invariant perturbation method (SPT) originally developed for bosons. It uses group theory and graphical techniques to avoid the heavy computational demands of conventional many-body methods which typically scale exponentially with the number of particles. The SPT application of the Pauli principle is trivial to implement since it is done "on paper" by imposing restrictions on the normal-mode quantum numbers at first order in the perturbation. The method is applied through first order and represents an extension of the SPT method to excited states. Our method of determining the partition function and various thermodynamic quantities is accurate and efficient and has the potential to yield interesting insight into the role played by the Pauli

  16. Anyonic partition functions and windings of planar Brownian motion

    International Nuclear Information System (INIS)

    Desbois, J.; Heinemann, C.; Ouvry, S.

    1995-01-01

    The computation of the N-cycle Brownian paths contribution F N (α) to the N-anyon partition function is addressed. A detailed numerical analysis based on a random walk on a lattice indicates that F N 0 (α)=product k=1 N-1 [1-(N/k)α]. In the paramount three-anyon case, one can show that F 3 (α) is built by linear states belonging to the bosonic, fermionic, and mixed representations of S 3

  17. Commuting quantum circuits and complexity of Ising partition functions

    International Nuclear Information System (INIS)

    Fujii, Keisuke; Morimae, Tomoyuki

    2017-01-01

    Instantaneous quantum polynomial-time (IQP) computation is a class of quantum computation consisting only of commuting two-qubit gates and is not universal. Nevertheless, it has been shown that if there is a classical algorithm that can simulate IQP efficiently, the polynomial hierarchy collapses to the third level, which is highly implausible. However, the origin of the classical intractability is still less understood. Here we establish a relationship between IQP and computational complexity of calculating the imaginary-valued partition functions of Ising models. We apply the established relationship in two opposite directions. One direction is to find subclasses of IQP that are classically efficiently simulatable by using exact solvability of certain types of Ising models. Another direction is applying quantum computational complexity of IQP to investigate (im)possibility of efficient classical approximations of Ising partition functions with imaginary coupling constants. Specifically, we show that a multiplicative approximation of Ising partition functions is #P-hard for almost all imaginary coupling constants even on planar lattices of a bounded degree. (paper)

  18. Generalised partition functions: inferences on phase space distributions

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2016-06-01

    Full Text Available It is demonstrated that the statistical mechanical partition function can be used to construct various different forms of phase space distributions. This indicates that its structure is not restricted to the Gibbs–Boltzmann factor prescription which is based on counting statistics. With the widely used replacement of the Boltzmann factor by a generalised Lorentzian (also known as the q-deformed exponential function, where κ = 1∕|q − 1|, with κ, q ∈ R both the kappa-Bose and kappa-Fermi partition functions are obtained in quite a straightforward way, from which the conventional Bose and Fermi distributions follow for κ → ∞. For κ ≠ ∞ these are subject to the restrictions that they can be used only at temperatures far from zero. They thus, as shown earlier, have little value for quantum physics. This is reasonable, because physical κ systems imply strong correlations which are absent at zero temperature where apart from stochastics all dynamical interactions are frozen. In the classical large temperature limit one obtains physically reasonable κ distributions which depend on energy respectively momentum as well as on chemical potential. Looking for other functional dependencies, we examine Bessel functions whether they can be used for obtaining valid distributions. Again and for the same reason, no Fermi and Bose distributions exist in the low temperature limit. However, a classical Bessel–Boltzmann distribution can be constructed which is a Bessel-modified Lorentzian distribution. Whether it makes any physical sense remains an open question. This is not investigated here. The choice of Bessel functions is motivated solely by their convergence properties and not by reference to any physical demands. This result suggests that the Gibbs–Boltzmann partition function is fundamental not only to Gibbs–Boltzmann but also to a large class of generalised Lorentzian distributions as well as to the

  19. Finite volume gauge theory partition functions in three dimensions

    International Nuclear Information System (INIS)

    Szabo, Richard J.

    2005-01-01

    We determine the fermion mass dependence of Euclidean finite volume partition functions for three-dimensional QCD in the ε-regime directly from the effective field theory of the pseudo-Goldstone modes by using zero-dimensional non-linear σ-models. New results are given for an arbitrary number of flavours in all three cases of complex, pseudo-real and real fermions, extending some previous considerations based on random matrix theory. They are used to describe the microscopic spectral correlation functions and smallest eigenvalue distributions of the QCD 3 Dirac operator, as well as the corresponding massive spectral sum rules

  20. Zeros of the partition function for some generalized Ising models

    International Nuclear Information System (INIS)

    Dunlop, F.

    1981-01-01

    The author considers generalized Ising Models with two and four body interactions in a complex external field h such that Re h>=mod(Im h) + C, where C is an explicit function of the interaction parameters. The partition function Z(h) is then shown to satisfy mod(Z(h))>=Z(c), so that the pressure is analytic in h inside the given region. The method is applied to specific examples: the gauge invariant Ising Model, and the Widom Rowlinson model on the lattice. (Auth.)

  1. Partition functions. I. Improved partition functions and thermodynamic quantities for normal, equilibrium, and ortho and para molecular hydrogen

    Science.gov (United States)

    Popovas, A.; Jørgensen, U. G.

    2016-11-01

    Context. Hydrogen is the most abundant molecule in the Universe. Its thermodynamic quantities dominate the physical conditions in molecular clouds, protoplanetary disks, etc. It is also of high interest in plasma physics. Therefore thermodynamic data for molecular hydrogen have to be as accurate as possible in a wide temperature range. Aims: We here rigorously show the shortcomings of various simplifications that are used to calculate the total internal partition function. These shortcomings can lead to errors of up to 40 percent or more in the estimated partition function. These errors carry on to calculations of thermodynamic quantities. Therefore a more complicated approach has to be taken. Methods: Seven possible simplifications of various complexity are described, together with advantages and disadvantages of direct summation of experimental values. These were compared to what we consider the most accurate and most complete treatment (case 8). Dunham coefficients were determined from experimental and theoretical energy levels of a number of electronically excited states of H2. Both equilibrium and normal hydrogen was taken into consideration. Results: Various shortcomings in existing calculations are demonstrated, and the reasons for them are explained. New partition functions for equilibrium, normal, and ortho and para hydrogen are calculated and thermodynamic quantities are reported for the temperature range 1-20 000 K. Our results are compared to previous estimates in the literature. The calculations are not limited to the ground electronic state, but include all bound and quasi-bound levels of excited electronic states. Dunham coefficients of these states of H2 are also reported. Conclusions: For most of the relevant astrophysical cases it is strongly advised to avoid using simplifications, such as a harmonic oscillator and rigid rotor or ad hoc summation limits of the eigenstates to estimate accurate partition functions and to be particularly careful when

  2. Random trees between two walls: exact partition function

    International Nuclear Information System (INIS)

    Bouttier, J; Di Francesco, P; Guitter, E

    2003-01-01

    We derive the exact partition function for a discrete model of random trees embedded in a one-dimensional space. These trees have vertices labelled by integers representing their position in the target space, with the solid-on-solid constraint that adjacent vertices have labels differing by ±1. A non-trivial partition function is obtained whenever the target space is bounded by walls. We concentrate on the two cases where the target space is (i) the half-line bounded by a wall at the origin or (ii) a segment bounded by two walls at a finite distance. The general solution has a soliton-like structure involving elliptic functions. We derive the corresponding continuum scaling limit which takes the remarkable form of the Weierstrass p function with constrained periods. These results are used to analyse the probability for an evolving population spreading in one dimension to attain the boundary of a given domain with the geometry of the target (i) or (ii). They also translate, via suitable bijections, into generating functions for bounded planar graphs

  3. On the relativistic partition function of ideal gases

    International Nuclear Information System (INIS)

    Sinyukov, Yu.M.

    1983-01-01

    The covariant partition function method for ideal Boltzmann and Bose gases is developed within quantum field theory. This method is a basis to describe the statistical and thermodynamical properties of the gases in canonical, grand canonical and pressure ensembles in an arbitrary inertial system. It is shown that when statistical systems are described relativistically it is very important to take into account the boundary conditions. This is due to the fact that an equilibrium system is not closed mechanically. The results may find application in hadron physics. (orig.)

  4. Finiteness of Lorentzian 10j symbols and partition functions

    International Nuclear Information System (INIS)

    Christensen, J Daniel

    2006-01-01

    We give a short and simple proof that the Lorentzian 10j symbol, which forms a key part of the Barrett-Crane model of Lorentzian quantum gravity, is finite. The argument is very general, and applies to other integrals. For example, we show that the Lorentzian and Riemannian causal 10j symbols are finite, despite their singularities. Moreover, we show that integrals that arise in Cherrington's work are finite. Cherrington has shown that this implies that the Lorentzian partition function for a single triangulation is finite, even for degenerate triangulations. Finally, we also show how to use these methods to prove finiteness of integrals based on other graphs and other homogeneous domains

  5. Minimal models on Riemann surfaces: The partition functions

    International Nuclear Information System (INIS)

    Foda, O.

    1990-01-01

    The Coulomb gas representation of the A n series of c=1-6/[m(m+1)], m≥3, minimal models is extended to compact Riemann surfaces of genus g>1. An integral representation of the partition functions, for any m and g is obtained as the difference of two gaussian correlation functions of a background charge, (background charge on sphere) x (1-g), and screening charges integrated over the surface. The coupling constant x (compacitification radius) 2 of the gaussian expressions are, as on the torus, m(m+1), and m/(m+1). The partition functions obtained are modular invariant, have the correct conformal anomaly and - restricting the propagation of states to a single handle - one can verify explicitly the decoupling of the null states. On the other hand, they are given in terms of coupled surface integrals, and it remains to show how they degenerate consistently to those on lower-genus surfaces. In this work, this is clear only at the lattice level, where no screening charges appear. (orig.)

  6. Minimal models on Riemann surfaces: The partition functions

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O. (Katholieke Univ. Nijmegen (Netherlands). Inst. voor Theoretische Fysica)

    1990-06-04

    The Coulomb gas representation of the A{sub n} series of c=1-6/(m(m+1)), m{ge}3, minimal models is extended to compact Riemann surfaces of genus g>1. An integral representation of the partition functions, for any m and g is obtained as the difference of two gaussian correlation functions of a background charge, (background charge on sphere) x (1-g), and screening charges integrated over the surface. The coupling constant x (compacitification radius){sup 2} of the gaussian expressions are, as on the torus, m(m+1), and m/(m+1). The partition functions obtained are modular invariant, have the correct conformal anomaly and - restricting the propagation of states to a single handle - one can verify explicitly the decoupling of the null states. On the other hand, they are given in terms of coupled surface integrals, and it remains to show how they degenerate consistently to those on lower-genus surfaces. In this work, this is clear only at the lattice level, where no screening charges appear. (orig.).

  7. Restoring canonical partition functions from imaginary chemical potential

    Science.gov (United States)

    Bornyakov, V. G.; Boyda, D.; Goy, V.; Molochkov, A.; Nakamura, A.; Nikolaev, A.; Zakharov, V. I.

    2018-03-01

    Using GPGPU techniques and multi-precision calculation we developed the code to study QCD phase transition line in the canonical approach. The canonical approach is a powerful tool to investigate sign problem in Lattice QCD. The central part of the canonical approach is the fugacity expansion of the grand canonical partition functions. Canonical partition functions Zn(T) are coefficients of this expansion. Using various methods we study properties of Zn(T). At the last step we perform cubic spline for temperature dependence of Zn(T) at fixed n and compute baryon number susceptibility χB/T2 as function of temperature. After that we compute numerically ∂χ/∂T and restore crossover line in QCD phase diagram. We use improved Wilson fermions and Iwasaki gauge action on the 163 × 4 lattice with mπ/mρ = 0.8 as a sandbox to check the canonical approach. In this framework we obtain coefficient in parametrization of crossover line Tc(µ2B) = Tc(C-ĸµ2B/T2c) with ĸ = -0.0453 ± 0.0099.

  8. Chamber identity programs drive early functional partitioning of the heart.

    Science.gov (United States)

    Mosimann, Christian; Panáková, Daniela; Werdich, Andreas A; Musso, Gabriel; Burger, Alexa; Lawson, Katy L; Carr, Logan A; Nevis, Kathleen R; Sabeh, M Khaled; Zhou, Yi; Davidson, Alan J; DiBiase, Anthony; Burns, Caroline E; Burns, C Geoffrey; MacRae, Calum A; Zon, Leonard I

    2015-08-26

    The vertebrate heart muscle (myocardium) develops from the first heart field (FHF) and expands by adding second heart field (SHF) cells. While both lineages exist already in teleosts, the primordial contributions of FHF and SHF to heart structure and function remain incompletely understood. Here we delineate the functional contribution of the FHF and SHF to the zebrafish heart using the cis-regulatory elements of the draculin (drl) gene. The drl reporters initially delineate the lateral plate mesoderm, including heart progenitors. Subsequent myocardial drl reporter expression restricts to FHF descendants. We harnessed this unique feature to uncover that loss of tbx5a and pitx2 affect relative FHF versus SHF contributions to the heart. High-resolution physiology reveals distinctive electrical properties of each heart field territory that define a functional boundary within the single zebrafish ventricle. Our data establish that the transcriptional program driving cardiac septation regulates physiologic ventricle partitioning, which successively provides mechanical advantages of sequential contraction.

  9. Higher genus partition functions of meromorphic conformal field theories

    International Nuclear Information System (INIS)

    Gaberdiel, Matthias R.; Volpato, Roberto

    2009-01-01

    It is shown that the higher genus vacuum amplitudes of a meromorphic conformal field theory determine the affine symmetry of the theory uniquely, and we give arguments that suggest that also the representation content with respect to this affine symmetry is specified, up to automorphisms of the finite Lie algebra. We illustrate our findings with the self-dual theories at c = 16 and c = 24; in particular, we give an elementary argument that shows that the vacuum amplitudes of the E 8 x E 8 theory and the Spin(32)/Z 2 theory differ at genus g = 5. The fact that the discrepancy only arises at rather high genus is a consequence of the modular properties of higher genus amplitudes at small central charges. In fact, we show that for c ≤ 24 the genus one partition function specifies already the partition functions up to g ≤ 4 uniquely. Finally we explain how our results generalise to non-meromorphic conformal field theories.

  10. Colour-independent partition functions in coloured vertex models

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O., E-mail: omar.foda@unimelb.edu.au [Dept. of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010 (Australia); Wheeler, M., E-mail: mwheeler@lpthe.jussieu.fr [Laboratoire de Physique Théorique et Hautes Energies, CNRS UMR 7589 (France); Université Pierre et Marie Curie – Paris 6, 4 place Jussieu, 75252 Paris cedex 05 (France)

    2013-06-11

    We study lattice configurations related to S{sub n}, the scalar product of an off-shell state and an on-shell state in rational A{sub n} integrable vertex models, n∈{1,2}. The lattice lines are colourless and oriented. The state variables are n conserved colours that flow along the line orientations, but do not necessarily cover every bond in the lattice. Choosing boundary conditions such that the positions where the colours flow into the lattice are fixed, and where they flow out are summed over, we show that the partition functions of these configurations, with these boundary conditions, are n-independent. Our results extend to trigonometric A{sub n} models, and to all n. This n-independence explains, in vertex-model terms, results from recent studies of S{sub 2} (Caetano and Vieira, 2012, [1], Wheeler, (arXiv:1204.2089), [2]). Namely, 1.S{sub 2}, which depends on two sets of Bethe roots, {b_1} and {b_2}, and cannot (as far as we know) be expressed in single determinant form, degenerates in the limit {b_1}→∞, and/or {b_2}→∞, into a product of determinants, 2. Each of the latter determinants is an A{sub 1} vertex-model partition function.

  11. Colour-independent partition functions in coloured vertex models

    International Nuclear Information System (INIS)

    Foda, O.; Wheeler, M.

    2013-01-01

    We study lattice configurations related to S n , the scalar product of an off-shell state and an on-shell state in rational A n integrable vertex models, n∈{1,2}. The lattice lines are colourless and oriented. The state variables are n conserved colours that flow along the line orientations, but do not necessarily cover every bond in the lattice. Choosing boundary conditions such that the positions where the colours flow into the lattice are fixed, and where they flow out are summed over, we show that the partition functions of these configurations, with these boundary conditions, are n-independent. Our results extend to trigonometric A n models, and to all n. This n-independence explains, in vertex-model terms, results from recent studies of S 2 (Caetano and Vieira, 2012, [1], Wheeler, (arXiv:1204.2089), [2]). Namely, 1.S 2 , which depends on two sets of Bethe roots, {b 1 } and {b 2 }, and cannot (as far as we know) be expressed in single determinant form, degenerates in the limit {b 1 }→∞, and/or {b 2 }→∞, into a product of determinants, 2. Each of the latter determinants is an A 1 vertex-model partition function

  12. The wave function behavior of the open topological string partition function on the conifold

    International Nuclear Information System (INIS)

    Kashani-Poor, Amir-Kian

    2007-01-01

    We calculate the topological string partition function to all genus on the conifold, in the presence of branes. We demonstrate that the partition functions for different brane backgrounds (smoothly connected along a quantum corrected moduli space) can be interpreted as the same wave function in different polarizations. This behavior has a natural interpretation in the Chern-Simons target space description of the topological theory. Our detailed analysis however indicates that non-perturbatively, a modification of real Chern-Simons theory is required to capture the correct target space theory of the topological string. We perform our calculations in the framework of a free fermion representation of the open topological string, demonstrating that this framework extends beyond the simple C 3 geometry. The notion of a fermionic brane creation operator arises in this setting, and we study to what extent the wave function properties of the partition function can be extended to this operator

  13. The partition function of an interacting many body system

    International Nuclear Information System (INIS)

    Rummel, C.; Ankerhold, J.

    2002-01-01

    Based on the path integral approach the partition function of a many body system with separable two body interaction is calculated in the sense of a semiclassical approximation. The commonly used Gaussian type of approximation, known as the perturbed static path approximation (PSPA), breaks down near a crossover temperature due to instabilities of the classical mean field solution. It is shown how the PSPA is systematically improved within the crossover region by taking into account large non-Gaussian fluctuation and an approximation applicable down to very low temperatures is carried out. These findings are tested against exact results for the archetypical cases of a particle moving in a one dimensional double well and the exactly solvable Lipkin-Meshkov-Glick model. The extensions should have applications in finite systems at low temperatures as in nuclear physics and mesoscopic systems, e. g. for gap fluctuations in nano-scale superconducting devices previously studied within a PSPA type of approximation. (author)

  14. Natural Microbial Assemblages Reflect Distinct Organismal and Functional Partitioning

    Science.gov (United States)

    Wilmes, P.; Andersson, A.; Kalnejais, L. H.; Verberkmoes, N. C.; Lefsrud, M. G.; Wexler, M.; Singer, S. W.; Shah, M.; Bond, P. L.; Thelen, M. P.; Hettich, R. L.; Banfield, J. F.

    2007-12-01

    The ability to link microbial community structure to function has long been a primary focus of environmental microbiology. With the advent of community genomic and proteomic techniques, along with advances in microscopic imaging techniques, it is now possible to gain insights into the organismal and functional makeup of microbial communities. Biofilms growing within highly acidic solutions inside the Richmond Mine (Iron Mountain, Redding, California) exhibit distinct macro- and microscopic morphologies. They are composed of microorganisms belonging to the three domains of life, including archaea, bacteria and eukarya. The proportion of each organismal type depends on sampling location and developmental stage. For example, mature biofilms floating on top of acid mine drainage (AMD) pools exhibit layers consisting of a densely packed bottom layer of the chemoautolithotroph Leptospirillum group II, a less dense top layer composed mainly of archaea, and fungal filaments spanning across the entire biofilm. The expression of cytochrome 579 (the most highly abundant protein in the biofilm, believed to be central to iron oxidation and encoded by Leptospirillum group II) is localized at the interface of the biofilm with the AMD solution, highlighting that biofilm architecture is reflected at the functional gene expression level. Distinct functional partitioning is also apparent in a biological wastewater treatment system that selects for distinct polyphosphate accumulating organisms. Community genomic data from " Candidatus Accumulibacter phosphatis" dominated activated sludge has enabled high mass-accuracy shotgun proteomics for identification of key metabolic pathways. Comprehensive genome-wide alignment of orthologous proteins suggests distinct partitioning of protein variants involved in both core-metabolism and specific metabolic pathways among the dominant population and closely related species. In addition, strain- resolved proteogenomic analysis of the AMD biofilms

  15. Canonical partition functions: ideal quantum gases, interacting classical gases, and interacting quantum gases

    Science.gov (United States)

    Zhou, Chi-Chun; Dai, Wu-Sheng

    2018-02-01

    In statistical mechanics, for a system with a fixed number of particles, e.g. a finite-size system, strictly speaking, the thermodynamic quantity needs to be calculated in the canonical ensemble. Nevertheless, the calculation of the canonical partition function is difficult. In this paper, based on the mathematical theory of the symmetric function, we suggest a method for the calculation of the canonical partition function of ideal quantum gases, including ideal Bose, Fermi, and Gentile gases. Moreover, we express the canonical partition functions of interacting classical and quantum gases given by the classical and quantum cluster expansion methods in terms of the Bell polynomial in mathematics. The virial coefficients of ideal Bose, Fermi, and Gentile gases are calculated from the exact canonical partition function. The virial coefficients of interacting classical and quantum gases are calculated from the canonical partition function by using the expansion of the Bell polynomial, rather than calculated from the grand canonical potential.

  16. Characterisations of Partition of Unities Generated by Entire Functions in Cd

    DEFF Research Database (Denmark)

    Christensen, Ole; Kim, Hong Oh; Kim, Rae Young

    2017-01-01

    Collections of functions forming a partition of unity play an important role in analysis. In this paper we characterise for any N∈N the entire functions P for which the partition of unity condition ∑n∈ZdP(x+n)χ[0,N]d(x+n)=1 holds for all x∈Rd. The general characterisation leads to various easy wa...

  17. On entire functions restricted to intervals, partition of unities, and dual Gabor frames

    DEFF Research Database (Denmark)

    Christensen, Ole; Kim, Hong Oh; Kim, Rae Young

    2014-01-01

    Partition of unities appears in many places in analysis. Typically it is generated by compactly supported functions with a certain regularity. In this paper we consider partition of unities obtained as integer-translates of entire functions restricted to finite intervals. We characterize the enti...

  18. 2D CFT partition functions at late times

    Science.gov (United States)

    Dyer, Ethan; Gur-Ari, Guy

    2017-08-01

    We consider the late time behavior of the analytically continued partition function Z( β + it) Z( β - it) in holographic 2 d CFTs. This is a probe of information loss in such theories and in their holographic duals. We show that each Virasoro character decays in time, and so information is not restored at the level of individual characters. We identify a universal decaying contribution at late times, and conjecture that it describes the behavior of generic chaotic 2 d CFTs out to times that are exponentially large in the central charge. It was recently suggested that at sufficiently late times one expects a crossover to random matrix behavior. We estimate an upper bound on the crossover time, which suggests that the decay is followed by a parametrically long period of late time growth. Finally, we discuss gravitationally-motivated integrable theories and show how information is restored at late times by a series of characters. This hints at a possible bulk mechanism, where information is restored by an infinite sum over non-perturbative saddles.

  19. Partition function of free conformal fields in 3-plet representation

    Energy Technology Data Exchange (ETDEWEB)

    Beccaria, Matteo [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento & INFN,Via Arnesano, 73100 Lecce (Italy); Tseytlin, Arkady A. [The Blackett Laboratory, Imperial College,London SW7 2AZ (United Kingdom)

    2017-05-10

    Simplest examples of AdS/CFT duality correspond to free CFTs in d dimensions with fields in vector or adjoint representation of an internal symmetry group dual in the large N limit to a theory of massless or massless plus massive higher spins in AdS{sub d+1}. One may also study generalizations when conformal fields belong to higher dimensional representations, i.e. carry more than two internal symmetry indices. Here we consider the case of the 3-fundamental (“3-plet”) representation. One motivation is a conjectured connection to multiple M5-brane theory: heuristic arguments suggest that it may be related to an (interacting) CFT of 6d (2,0) tensor multiplets in 3-plet representation of large N symmetry group that has an AdS{sub 7} dual. We compute the singlet partition function Z on S{sup 1}×S{sup d−1} for a free field in 3-plet representation of U(N) and analyse its novel large N behaviour. The large N limit of the low temperature expansion of Z which is convergent in the vector and adjoint cases here is only asymptotic, reflecting the much faster growth of the number of singlet operators with dimension, indicating a phase transition at very low temperature. Indeed, while the critical temperatures in the vector (T{sub c}∼N{sup γ}, γ>0) and adjoint (T{sub c}∼1) cases are finite, we find that in the 3-plet case T{sub c}∼(log N){sup −1}, i.e. it approaches zero at large N. We discuss some details of large N solution for the eigenvalue distribution. Similar conclusions apply to higher p-plet representations of U(N) or O(N) and also to the free p-tensor theories invariant under [U(N)]{sup p} or [O(N)]{sup p} with p≥3.

  20. Computing the Partition Function for Kinetically Trapped RNA Secondary Structures

    Science.gov (United States)

    Lorenz, William A.; Clote, Peter

    2011-01-01

    An RNA secondary structure is locally optimal if there is no lower energy structure that can be obtained by the addition or removal of a single base pair, where energy is defined according to the widely accepted Turner nearest neighbor model. Locally optimal structures form kinetic traps, since any evolution away from a locally optimal structure must involve energetically unfavorable folding steps. Here, we present a novel, efficient algorithm to compute the partition function over all locally optimal secondary structures of a given RNA sequence. Our software, RNAlocopt runs in time and space. Additionally, RNAlocopt samples a user-specified number of structures from the Boltzmann subensemble of all locally optimal structures. We apply RNAlocopt to show that (1) the number of locally optimal structures is far fewer than the total number of structures – indeed, the number of locally optimal structures approximately equal to the square root of the number of all structures, (2) the structural diversity of this subensemble may be either similar to or quite different from the structural diversity of the entire Boltzmann ensemble, a situation that depends on the type of input RNA, (3) the (modified) maximum expected accuracy structure, computed by taking into account base pairing frequencies of locally optimal structures, is a more accurate prediction of the native structure than other current thermodynamics-based methods. The software RNAlocopt constitutes a technical breakthrough in our study of the folding landscape for RNA secondary structures. For the first time, locally optimal structures (kinetic traps in the Turner energy model) can be rapidly generated for long RNA sequences, previously impossible with methods that involved exhaustive enumeration. Use of locally optimal structure leads to state-of-the-art secondary structure prediction, as benchmarked against methods involving the computation of minimum free energy and of maximum expected accuracy. Web server

  1. Computing the partition function for kinetically trapped RNA secondary structures.

    Directory of Open Access Journals (Sweden)

    William A Lorenz

    Full Text Available An RNA secondary structure is locally optimal if there is no lower energy structure that can be obtained by the addition or removal of a single base pair, where energy is defined according to the widely accepted Turner nearest neighbor model. Locally optimal structures form kinetic traps, since any evolution away from a locally optimal structure must involve energetically unfavorable folding steps. Here, we present a novel, efficient algorithm to compute the partition function over all locally optimal secondary structures of a given RNA sequence. Our software, RNAlocopt runs in O(n3 time and O(n2 space. Additionally, RNAlocopt samples a user-specified number of structures from the Boltzmann subensemble of all locally optimal structures. We apply RNAlocopt to show that (1 the number of locally optimal structures is far fewer than the total number of structures--indeed, the number of locally optimal structures approximately equal to the square root of the number of all structures, (2 the structural diversity of this subensemble may be either similar to or quite different from the structural diversity of the entire Boltzmann ensemble, a situation that depends on the type of input RNA, (3 the (modified maximum expected accuracy structure, computed by taking into account base pairing frequencies of locally optimal structures, is a more accurate prediction of the native structure than other current thermodynamics-based methods. The software RNAlocopt constitutes a technical breakthrough in our study of the folding landscape for RNA secondary structures. For the first time, locally optimal structures (kinetic traps in the Turner energy model can be rapidly generated for long RNA sequences, previously impossible with methods that involved exhaustive enumeration. Use of locally optimal structure leads to state-of-the-art secondary structure prediction, as benchmarked against methods involving the computation of minimum free energy and of maximum expected

  2. Operator bases, S-matrices, and their partition functions

    Science.gov (United States)

    Henning, Brian; Lu, Xiaochuan; Melia, Tom; Murayama, Hitoshi

    2017-10-01

    Relativistic quantum systems that admit scattering experiments are quantitatively described by effective field theories, where S-matrix kinematics and symmetry considerations are encoded in the operator spectrum of the EFT. In this paper we use the S-matrix to derive the structure of the EFT operator basis, providing complementary descriptions in (i) position space utilizing the conformal algebra and cohomology and (ii) momentum space via an algebraic formulation in terms of a ring of momenta with kinematics implemented as an ideal. These frameworks systematically handle redundancies associated with equations of motion (on-shell) and integration by parts (momentum conservation). We introduce a partition function, termed the Hilbert series, to enumerate the operator basis — correspondingly, the S-matrix — and derive a matrix integral expression to compute the Hilbert series. The expression is general, easily applied in any spacetime dimension, with arbitrary field content and (linearly realized) symmetries. In addition to counting, we discuss construction of the basis. Simple algorithms follow from the algebraic formulation in momentum space. We explicitly compute the basis for operators involving up to n = 5 scalar fields. This construction universally applies to fields with spin, since the operator basis for scalars encodes the momentum dependence of n-point amplitudes. We discuss in detail the operator basis for non-linearly realized symmetries. In the presence of massless particles, there is freedom to impose additional structure on the S- matrix in the form of soft limits. The most na¨ıve implementation for massless scalars leads to the operator basis for pions, which we confirm using the standard CCWZ formulation for non-linear realizations. Although primarily discussed in the language of EFT, some of our results — conceptual and quantitative — may be of broader use in studying conformal field theories as well as the AdS/CFT correspondence.

  3. Estimating the Partition Function Zeros by Using the Wang-Landau Monte Carlo Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung-Yeon [Korea National University of Transportation, Chungju (Korea, Republic of)

    2017-03-15

    The concept of the partition function zeros is one of the most efficient methods for investigating the phase transitions and the critical phenomena in various physical systems. Estimating the partition function zeros requires information on the density of states Ω(E) as a function of the energy E. Currently, the Wang-Landau Monte Carlo algorithm is one of the best methods for calculating Ω(E). The partition function zeros in the complex temperature plane of the Ising model on an L × L square lattice (L = 10 ∼ 80) with a periodic boundary condition have been estimated by using the Wang-Landau Monte Carlo algorithm. The efficiency of the Wang-Landau Monte Carlo algorithm and the accuracies of the partition function zeros have been evaluated for three different, 5%, 10%, and 20%, flatness criteria for the histogram H(E).

  4. Partition function zeros of the one-dimensional Potts model: the recursive method

    International Nuclear Information System (INIS)

    Ghulghazaryan, R G; Ananikian, N S

    2003-01-01

    The Yang-Lee, Fisher and Potts zeros of the one-dimensional Q-state Potts model are studied using the theory of dynamical systems. An exact recurrence relation for the partition function is derived. It is shown that zeros of the partition function may be associated with neutral fixed points of the recurrence relation. Further, a general equation for zeros of the partition function is found and a classification of the Yang-Lee, Fisher and Potts zeros is given. It is shown that the Fisher zeros in a nonzero magnetic field are located on several lines in the complex temperature plane and that the number of these lines depends on the value of the magnetic field. Analytical expressions for the densities of the Yang-Lee, Fisher and Potts zeros are derived. It is shown that densities of all types of zeros of the partition function are singular at the edge singularity points with the same critical exponent

  5. Partition Function and Configurational Entropy in Non-Equilibrium States: A New Theoretical Model

    Directory of Open Access Journals (Sweden)

    Akira Takada

    2018-03-01

    Full Text Available A new model of non-equilibrium thermodynamic states has been investigated on the basis of the fact that all thermodynamic variables can be derived from partition functions. We have thus attempted to define partition functions for non-equilibrium conditions by introducing the concept of pseudo-temperature distributions. These pseudo-temperatures are configurational in origin and distinct from kinetic (phonon temperatures because they refer to the particular fragments of the system with specific energies. This definition allows thermodynamic states to be described either for equilibrium or non-equilibrium conditions. In addition; a new formulation of an extended canonical partition function; internal energy and entropy are derived from this new temperature definition. With this new model; computational experiments are performed on simple non-interacting systems to investigate cooling and two distinct relaxational effects in terms of the time profiles of the partition function; internal energy and configurational entropy.

  6. Partitioning taxonomic diversity of aquatic insect assemblages and functional feeding groups in Neotropical Savanna headwater streams

    Science.gov (United States)

    Biological diversity can be divided into: alpha (α, local), beta (β, difference in assemblage composition among locals), and gamma (γ, total diversity). We assessed the partitioning of taxonomic diversity of Ephemeroptera, Plecoptera and Trichoptera (EPT) and of functional feedin...

  7. Schwinger's formula and the partition function for the bosonic and fermionic harmonic oscillators

    International Nuclear Information System (INIS)

    Albuquerque, L.C. de; Farina, C.; Rabello, S.J.

    1994-01-01

    We use Schwinger's formula, introduced by himself in the early fifties to compute effective actions for Qed, and recently applied to the Casimir effect, to obtain the partition functions for both the bosonic and fermionic harmonic oscillators. (author)

  8. On the partition function of d+1 dimensional kink-bearing systems

    International Nuclear Information System (INIS)

    Radosz, A.; Salejda, W.

    1987-01-01

    It is suggested that the problem of finding a partition function of d+1 dimensional kink-bearing system in the classical approximation may be formulated as an eigenvalue problem of an appropriate d dimensional quantum

  9. Sound intensity as a function of sound insulation partition

    OpenAIRE

    Cvetkovic , S.; Prascevic , R.

    1994-01-01

    In the modern engineering practice, the sound insulation of the partitions is the synthesis of the theory and of the experience acquired in the procedure of the field and of the laboratory measurement. The science and research public treat the sound insulation in the context of the emission and propagation of the acoustic energy in the media with the different acoustics impedance. In this paper, starting from the essence of physical concept of the intensity as the energy vector, the authors g...

  10. A partitioned conjugate gradient algorithm for lattice Green functions

    International Nuclear Information System (INIS)

    Bowler, K.C.; Kenway, R.D.; Pawley, G.S.; Wallace, D.J.

    1984-01-01

    Partitioning reduces by one the dimensionality of the lattice on which a propagator need be calculated using, for example, the conjugate gradient algorithm. Thus the quark propagator in lattice QCD may be determined by a computation on a single spatial hyperplane. For free fermions on a 16 3 x N lattice 2N-bit accuracy in the propagator is required to avoid rounding errors. (orig.)

  11. A paradox in the electronic partition function or how to be cautious with mathematics

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, E.N. [CRICYT - CONICET, Mendoza (Argentina); Departamento de Fisica, Universidad Nacional de San Luis, San Luis (Argentina)

    2001-09-01

    When the electronic partition functions of atoms or molecules are evaluated in textbooks, only the contribution of the ground state is considered. The excited states' contribution is argued to be negligible. However, a closer look shows that the partition function diverges if such states are taken into account. This paper shows that the blind use of mathematics is the reason behind this odd behaviour. (author)

  12. On the analytical evaluation of the partition function for unit hypercubes in four dimensions

    International Nuclear Information System (INIS)

    Hari Dass, N.D.

    1984-10-01

    The group integrations required for the analytic evaluation of the partition function for unit hypercubes in four dimensions are carried out. Modifications of the graphical rules for SU 2 group integrations cited in the literature are developed for this purpose. A complete classification of all surfaces that can be embedded in the unit hypercube is given and their individual contribution to the partition function worked out. Applications are discussed briefly. (orig.)

  13. A paradox in the electronic partition function or how to be cautious with mathematics

    International Nuclear Information System (INIS)

    Miranda, E.N.

    2001-01-01

    When the electronic partition functions of atoms or molecules are evaluated in textbooks, only the contribution of the ground state is considered. The excited states' contribution is argued to be negligible. However, a closer look shows that the partition function diverges if such states are taken into account. This paper shows that the blind use of mathematics is the reason behind this odd behaviour. (author)

  14. One loop partition function of six dimensional conformal gravity using heat kernel on AdS

    Energy Technology Data Exchange (ETDEWEB)

    Lovreković, Iva [Institute for Theoretical Physics, Technische Universität Wien,Wiedner Hauptstrasse 8-10/136, A-1040 Vienna (Austria)

    2016-10-13

    We compute the heat kernel for the Laplacians of symmetric transverse traceless fields of arbitrary spin on the AdS background in even number of dimensions using the group theoretic approach introduced in http://dx.doi.org/10.1007/JHEP11(2011)010 and apply it on the partition function of six dimensional conformal gravity. The obtained partition function consists of the Einstein gravity, conformal ghost and two modes that contain mass.

  15. 1-loop partition function in AdS{sub 3}/CFT{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bin [Department of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University,5 Yiheyuan Rd, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter,5 Yiheyuan Rd, Beijing 100871 (China); Center for High Energy Physics, Peking University,5 Yiheyuan Rd, Beijing 100871 (China); Wu, Jie-qiang [Department of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University,5 Yiheyuan Rd, Beijing 100871 (China)

    2015-12-16

    The 1-loop partition function of the handlebody solutions in the AdS{sub 3} gravity have been derived some years ago using the heat kernel techniques and the method of images. In the semiclassical limit, such partition function should correspond to the order O(c{sup 0}) part in the partition function of dual conformal field theory(CFT) on the boundary Riemann surface. The higher genus partition function could be computed by the multi-point functions in the Riemann sphere via sewing prescription. In the large central charge limit, the CFT is effectively free in the sense that to the leading order of c the multi-point function is further simplified to be a summation over the products of two-point functions of single-particle states. Correspondingly in the bulk, the graviton is freely propagating without interaction. Furthermore the product of the two-point functions may define the links, each of which is in one-to-one correspondence with the conjugacy class of the Schottky group of the Riemann surface. Moreover, the value of a link is determined by the multiplier of the element in the conjugacy class. This allows us to reproduce exactly the gravitational 1-loop partition function. The proof can be generalized to the higher spin gravity and its dual CFT.

  16. The calculation of isotopic partition function ratios by a perturbation theory technique

    International Nuclear Information System (INIS)

    Singh, G.; Wolfsberg, M.

    1975-01-01

    The vibrational Hamiltonian of a molecule in the harmonic approximation, H = (1/2) Σ (g/subi/jp/subi/p/subj/ + f/subi/jq/subi/q/subj/), has been divided into a diagonal part (terms with i=j) and an off-diagonal part (inot-equalj), which is regarded as the perturbation. The vibrational partition function of the molecule is then calculated by Schwinger perturbation theory as the partition function of the unperturbed problem, corresponding to a collection of oscillators with frequencies 2πν/subi/' = (f/subi/ig/subi/i)/sup 1 / 2 /, plus perturbation correction terms which are calculated to second order. With the usual assumptions of isotope effect calculations that the molecular translations and rotations are classical and separable from the vibrations, the perturbation formulation of the vibrational partition function is easily transformed into a perturbation theory formulation of (reduced) isotopic partition function ratios. If, for example, the molecular potential function is expressed in terms of the displacements of bond stretches and bond angle bends from their respective equilibrium values, the unperturbed partition function ratio corresponds to the isotope effect expected for noninteracting bond-stretch and bond-angle-bend oscillators. Detailed comparison is made for a number of molecular systems of perturbation theory calculations of partition functions and isotopic partition function ratios with exact calculations carried out by actually obtaining the normal mode vibrational frequencies of the vibrational Hamiltonian. Good agreement is found. The utility of the perturbation theory formulation resides in the fact that it permits one to look at isotope effects in a very simple manner; some demonstrations are given

  17. Wigner expansions for partition functions of nonrelativistic and relativistic oscillator systems

    Science.gov (United States)

    Zylka, Christian; Vojta, Guenter

    1993-01-01

    The equilibrium quantum statistics of various anharmonic oscillator systems including relativistic systems is considered within the Wigner phase space formalism. For this purpose the Wigner series expansion for the partition function is generalized to include relativistic corrections. The new series for partition functions and all thermodynamic potentials yield quantum corrections in terms of powers of h(sup 2) and relativistic corrections given by Kelvin functions (modified Hankel functions) K(sub nu)(mc(sup 2)/kT). As applications, the symmetric Toda oscillator, isotonic and singular anharmonic oscillators, and hindered rotators, i.e. oscillators with cosine potential, are addressed.

  18. Coexistence via resource partitioning fails to generate an increase in community function.

    Directory of Open Access Journals (Sweden)

    John P DeLong

    Full Text Available Classic ecological theory suggests that resource partitioning facilitates the coexistence of species by reducing inter-specific competition. A byproduct of this process is an increase in overall community function, because a greater spectrum of resources can be used. In contrast, coexistence facilitated by neutral mechanisms is not expected to increase function. We studied coexistence in laboratory microcosms of the bactivorous ciliates Paramecium aurelia and Colpidium striatum to understand the relationship between function and coexistence mechanism. We quantified population and community-level function (biomass and oxygen consumption, competitive interactions, and resource partitioning. The two ciliates partitioned their bacterial resource along a size axis, with the larger ciliate consuming larger bacteria than the smaller ciliate. Despite this, there was no gain in function at the community level for either biomass or oxygen consumption, and competitive effects were symmetrical within and between species. Because other potential coexistence mechanisms can be ruled out, it is likely that inter-specific interference competition diminished the expected gain in function generated by resource partitioning, leading to a system that appeared competitively neutral even when structured by niche partitioning. We also analyzed several previous studies where two species of protists coexisted and found that the two-species communities showed a broad range of biomass levels relative to the single-species states.

  19. The partition function of the supersymmetric two-dimensional black hole and little string theory

    International Nuclear Information System (INIS)

    Israel, Dan; Kounnas, Costas; Troost, Jan; Pakman, Ari

    2004-01-01

    We compute the partition function of the supersymmetric two-dimensional euclidean black hole geometry described by the SL(2,R)/U(1) superconformal field theory. We decompose the result in terms of characters of the N = 2 superconformal symmetry. We point out puzzling sectors of states besides finding expected discrete and continuous contributions to the partition function. By adding an N = 2 minimal model factor of the correct central charge and projecting on integral N = 2 charges we compute the partition function of the background dual to little string theory in a double scaling limit. We show the precise correspondence between this theory and the background for NS5-branes on a circle, due to an exact description of the background as a null gauging of SL(2,R) x SU(2). Finally, we discuss the interplay between GSO projection and target space geometry. (author)

  20. Quantum Mechanical Single Molecule Partition Function from PathIntegral Monte Carlo Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Chempath, Shaji; Bell, Alexis T.; Predescu, Cristian

    2006-10-01

    An algorithm for calculating the partition function of a molecule with the path integral Monte Carlo method is presented. Staged thermodynamic perturbation with respect to a reference harmonic potential is utilized to evaluate the ratio of partition functions. Parallel tempering and a new Monte Carlo estimator for the ratio of partition functions are implemented here to achieve well converged simulations that give an accuracy of 0.04 kcal/mol in the reported free energies. The method is applied to various test systems, including a catalytic system composed of 18 atoms. Absolute free energies calculated by this method lead to corrections as large as 2.6 kcal/mol at 300 K for some of the examples presented.

  1. Quantum Statistical Mechanics, L-Series and Anabelian Geometry I: Partition Functions

    NARCIS (Netherlands)

    Marcolli, Matilde; Cornelissen, Gunther

    2014-01-01

    The zeta function of a number field can be interpreted as the partition function of an associated quantum statistical mechanical (QSM) system, built from abelian class field theory. We introduce a general notion of isomorphism of QSM-systems and prove that it preserves (extremal) KMS equilibrium

  2. Functional representation for the grand partition function of a multicomponent system of charged particles: Correlation functions of the reference system

    Directory of Open Access Journals (Sweden)

    O.V.Patsahan

    2006-01-01

    Full Text Available Based on the method of collective variables (CV with a reference system, the exact expression for the functional of the grand partition function of a m-component ionic model with charge and size asymmetry is found. Particular attention is paid to the n-th particle correlation functions of the reference system which is presented as a m-component system of "colour" hard spheres of the same diameter. A two-component model is considered in more detail. In this case the recurrence formulas for the correlation functions are found. A general case of a m-component inhomogeneous system of the "colour" hard spheres is also analysed.

  3. Quantum corrections to Bekenstein–Hawking black hole entropy and gravity partition functions

    International Nuclear Information System (INIS)

    Bytsenko, A.A.; Tureanu, A.

    2013-01-01

    Algebraic aspects of the computation of partition functions for quantum gravity and black holes in AdS 3 are discussed. We compute the sub-leading quantum corrections to the Bekenstein–Hawking entropy. It is shown that the quantum corrections to the classical result can be included systematically by making use of the comparison with conformal field theory partition functions, via the AdS 3 /CFT 2 correspondence. This leads to a better understanding of the role of modular and spectral functions, from the point of view of the representation theory of infinite-dimensional Lie algebras. Besides, the sum of known quantum contributions to the partition function can be presented in a closed form, involving the Patterson–Selberg spectral function. These contributions can be reproduced in a holomorphically factorized theory whose partition functions are associated with the formal characters of the Virasoro modules. We propose a spectral function formulation for quantum corrections to the elliptic genus from supergravity states

  4. Partitioning heritability by functional category using GWAS summary statistics

    DEFF Research Database (Denmark)

    Finucane, Hilary K.; Bulik-Sullivan, Brendan; Gusev, Alexander

    2015-01-01

    Recent work has demonstrated that some functional categories of the genome contribute disproportionately to the heritability of complex diseases. Here we analyze a broad set of functional elements, including cell type-specific elements, to estimate their polygenic contributions to heritability in...

  5. Partition function zeros for the one-dimensional ordered plasma in Dirichlet boundary conditions

    International Nuclear Information System (INIS)

    Roumeliotis, J.; Smith, E.R.

    1992-01-01

    The authors consider the grand canonical partition function for the ordered one-dimensional, two-component plasma at fugacity ζ in an applied electric field E with Dirichlet boundary conditions. The system has a phase transition from a low-coupling phase with equally spaced particles to a high-coupling phase with particles clustered into dipolar pairs. An exact expression for the partition function is developed. In zero applied field the zeros in the ζ plane occupy the imaginary axis from -i∞ to -iζ c and iζ c to i∞ for some ζ c . They also occupy the diamond shape of four straight lines from ±iζ c to ζ c and from ±iζ c to -ζ c . The fugacity ζ acts like a temperature or coupling variable. The symmetry-breaking field is the applied electric field E. A finite-size scaling representation for the partition in scaled coupling and scaled electric field is developed. It has standard mean field form. When the scaled coupling is real, the zeros in the scaled field lie on the imaginary axis and pinch the real scaled field axis as the scaled coupling increases. The scaled partition function considered as a function of two complex variables, scaled coupling and scaled field, has zeros on a two-dimensional surface in a domain of four real variables. A numerical discussion of some of the properties of this surface is presented

  6. On the definition of the partition function in quantum Regge calculus

    International Nuclear Information System (INIS)

    Nishimura, Jun

    1995-01-01

    We argue that the definition of the partition function used recently to demonstrate the failure of Regge calculus is wrong. In fact, in the one-dimensional case, we show that there is a more natural definition, with which one can reproduce the correct results. (author)

  7. Grand partition function in field theory with applications to sine-Gordon field theory

    International Nuclear Information System (INIS)

    Samuel, S.

    1978-01-01

    Certain relativistic field theories are shown to be equivalent to the grand partition function of an interacting gas. Using the physical insight given by this analogy many field-theoretic results are obtained, particularly for the sine-Gordon field theory. The main results are enumerated in the summary to which the reader is referred

  8. How Incorrect Is the Classical Partition Function for the Ideal Gas?

    Science.gov (United States)

    Kroemer, Herbert

    1980-01-01

    Discussed is the classical partition function for the ideal gas and how it differs from the exact value for bosons or fermions in the classical regime. The differences in the two values are negligible hence the classical treatment leads in the end to correct answers for all observables. (Author/DS)

  9. Functional integral representation of the nuclear many-body grand partition function

    International Nuclear Information System (INIS)

    Kerman, A.K.; Troudet, T.

    1984-01-01

    A local functional integral formulation of the nuclear many-body problem is proposed which is a generalization of the method previously developed. Its most interesting feature is that it allows an expansion of the many-body evolution operator around any arbitrary mean-field which takes into account the pairing correlations between the nucleons. This is explicitly illustrated for the nuclear many-body grand partition function for which special attention is paid to the static temperature-dependent Hartree-Fock-Bogolyubov (H.F.B.) approximation. Indeed, the temperature-dependent H.F.B. configuration appears to be the optimal choice from a variational point of view among all the possible independent quasi-particle motion approximations. An analytic approximation of the energy level density rho (E,A) is given using explicitly the arbitrariness in the choice of the mean-field and a possible numerical application is proposed. Finally, a new compact formulation of our functional integral that might be useful for future Monte Carlo calculations is proposed

  10. Note on Nahm's partition function of the dual spectrum II

    CERN Document Server

    Minimi, M

    1977-01-01

    For pt.I see CERN publication TH2240. In part I, in considering the Nahm dual resonance mass spectra theory, it was noticed that there is another modular form; a generating function that transforms automorphically under T:w to -1/w and would realize the Veneziano dualism. The group structure associated with this form is studied since it appears, to the authors, to be more natural than Nahm's original. (6 refs).

  11. Use of JANAF Tables in Equilibrium Calculations and Partition Function Calculations for an Undergraduate Physical Chemistry Course

    Science.gov (United States)

    Cleary, David A.

    2014-01-01

    The usefulness of the JANAF tables is demonstrated with specific equilibrium calculations. An emphasis is placed on the nature of standard chemical potential calculations. Also, the use of the JANAF tables for calculating partition functions is examined. In the partition function calculations, the importance of the zero of energy is highlighted.

  12. Partition functions for quantum gravity, black holes, elliptic genera and Lie algebra homologies

    Energy Technology Data Exchange (ETDEWEB)

    Bonora, L., E-mail: bonora@sissa.it [International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste (Italy); INFN, Sezione di Trieste (Italy); Bytsenko, A.A., E-mail: abyts@uel.br [Departamento de Fisica, Universidade Estadual de Londrina, Caixa Postal 6001, Londrina (Brazil)

    2011-11-11

    There is a remarkable connection between quantum generating functions of field theory and formal power series associated with dimensions of chains and homologies of suitable Lie algebras. We discuss the homological aspects of this connection with its applications to partition functions of the minimal three-dimensional gravities in the space-time asymptotic to AdS{sub 3}, which also describe the three-dimensional Euclidean black holes, the pure N=1 supergravity, and a sigma model on N-fold generalized symmetric products. We also consider in the same context elliptic genera of some supersymmetric sigma models. These examples can be considered as a straightforward application of the machinery of modular forms and spectral functions (with values in the congruence subgroup of SL(2,Z)) to partition functions represented by means of formal power series that encode Lie algebra properties.

  13. Generalized finite polynomial approximation (WINIMAX) to the reduced partition function of isotopic molecules

    International Nuclear Information System (INIS)

    Lee, M.W.; Bigeleisen, J.

    1978-01-01

    The MINIMAX finite polynomial approximation to an arbitrary function has been generalized to include a weighting function (WINIMAX). It is suggested that an exponential is a reasonable weighting function for the logarithm of the reduced partition function of a harmonic oscillator. Comparison of the error function for finite orthogonal polynomial (FOP), MINIMAX, and WINIMAX expansions of the logarithm of the reduced vibrational partition function show WINIMAX to be the best of the three approximations. A condensed table of WINIMAX coefficients is presented. The FOP, MINIMAX, and WINIMAX approximations are compared with exact calculations of the logarithm of the reduced partition function ratios for isotopic substitution in H 2 O, CH 4 , CH 2 O, C 2 H 4 , and C 2 H 6 at 300 0 K. Both deuterium and heavy atom isotope substitution are studied. Except for a third order expansion involving deuterium substitution, the WINIMAX method is superior to FOP and MINIMAX. At the level of a second order expansion WINIMAX approximations to ln(s/s')f are good to 2.5% and 6.5% for deuterium and heavy atom substitution, respectively

  14. Self-similar structure in the distribution and density of the partition function zeros

    International Nuclear Information System (INIS)

    Huang, M.-C.; Luo, Y.-P.; Liaw, T.-M.

    2003-01-01

    Based on the knowledge of the partition function zeros for the cell-decorated triangular Ising model, we analyze the similar structures contained in the distribution pattern and density function of the zeros. The two own the same symmetries, and the arising of the similar structure in the road toward the infinite decoration-level is exhibited explicitly. The distinct features of the formation of the self-similar structure revealed from this model may be quite general

  15. Supersymmetric partition functions and the three-dimensional A-twist

    Energy Technology Data Exchange (ETDEWEB)

    Closset, Cyril [Theory Department, CERN,CH-1211, Geneva 23 (Switzerland); Kim, Heeyeon [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, N2L 2Y5, Ontario (Canada); Willett, Brian [Kavli Institute for Theoretical Physics, University of California,Santa Barbara, CA 93106 (United States)

    2017-03-14

    We study three-dimensional N=2 supersymmetric gauge theories on M{sub g,p}, an oriented circle bundle of degree p over a closed Riemann surface, Σ{sub g}. We compute the M{sub g,p} supersymmetric partition function and correlation functions of supersymmetric loop operators. This uncovers interesting relations between observables on manifolds of different topologies. In particular, the familiar supersymmetric partition function on the round S{sup 3} can be understood as the expectation value of a so-called “fibering operator” on S{sup 2}×S{sup 1} with a topological twist. More generally, we show that the 3d N=2 supersymmetric partition functions (and supersymmetric Wilson loop correlation functions) on M{sub g,p} are fully determined by the two-dimensional A-twisted topological field theory obtained by compactifying the 3d theory on a circle. We give two complementary derivations of the result. We also discuss applications to F-maximization and to three-dimensional supersymmetric dualities.

  16. Unique Path Partitions

    DEFF Research Database (Denmark)

    Bessenrodt, Christine; Olsson, Jørn Børling; Sellers, James A.

    2013-01-01

    We give a complete classification of the unique path partitions and study congruence properties of the function which enumerates such partitions.......We give a complete classification of the unique path partitions and study congruence properties of the function which enumerates such partitions....

  17. Partition functions with spin in AdS2 via quasinormal mode methods

    International Nuclear Information System (INIS)

    Keeler, Cynthia; Lisbão, Pedro; Ng, Gim Seng

    2016-01-01

    We extend the results of http://dx.doi.org/10.1007/JHEP06(2014)099, computing one loop partition functions for massive fields with spin half in AdS 2 using the quasinormal mode method proposed by Denef, Hartnoll, and Sachdev http://dx.doi.org/10.1088/0264-9381/27/12/125001. We find the finite representations of SO(2,1) for spin zero and spin half, consisting of a highest weight state |h〉 and descendants with non-unitary values of h. These finite representations capture the poles and zeroes of the one loop determinants. Together with the asymptotic behavior of the partition functions (which can be easily computed using a large mass heat kernel expansion), these are sufficient to determine the full answer for the one loop determinants. We also discuss extensions to higher dimensional AdS 2n and higher spins.

  18. Partition functions of web diagrams with an O7{sup −}-plane

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Hirotaka [Tokai University, 4-1-1 Kitakaname,Hiratsuka, Kanagawa 259-1292 (Japan); Departamento de Física Teórica and Instituto de Física Teórica UAM/CSIC,Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Zoccarato, Gianluca [Departamento de Física Teórica and Instituto de Física Teórica UAM/CSIC,Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2017-03-22

    We consider the computation of the topological string partition function for 5-brane web diagrams with an O7{sup −}-plane. Since upon quantum resolution of the orientifold plane these diagrams become non-toric web diagrams without the orientifold we are able to apply the topological vertex to obtain the Nekrasov partition function of the corresponding 5d theory. We apply this procedure to the case of 5d SU(N) theories with one hypermultiplet in the antisymmetric representation and to the case of 5d pure USp(2N) theories. For these cases we discuss the dictionary between parameters and moduli of the 5d gauge theory and lengths of 5-branes in the web diagram and moreover we perform comparison of the results obtained via application of the topological vertex and the one obtained via localisation techniques, finding in all instances we consider perfect agreement.

  19. Partition function as a Laplace transform of a positive measure in the strength parameter

    International Nuclear Information System (INIS)

    Bessis, D.

    1980-01-01

    We shall consider the partition function Z(lambda), of an N-body system whose Hamiltonian reads: H = H/sub O/ + lambdaH/sub I/. H/sub O/ is an exactly solvable Hamiltonian, one for which, for example all thermodynamical quantities can be calculated. H/sub I/ is the perturbation. We are interested in the analytic properties in the strength parameter lambda of the partition function Z(lambda) = Tr e/sup -ν[H 0 + lambdaH/sub I/]/ where for convenience the volume V and inverse temperature ν dependence has been suppressed on the left hand side. The representation for Z(lambda) is given and discussed, and applications are described

  20. Partition functions with spin in AdS{sub 2} via quasinormal mode methods

    Energy Technology Data Exchange (ETDEWEB)

    Keeler, Cynthia [Niels Bohr International Academy, Niels Bohr Institute,University of Copenhagen, Blegdamsvej 17, DK 2100, Copenhagen (Denmark); Lisbão, Pedro [Department of Physics, University of Michigan,Ann Arbor, MI-48109 (United States); Ng, Gim Seng [Department of Physics, McGill University,Montréal, QC H3A 2T8 (Canada)

    2016-10-12

    We extend the results of http://dx.doi.org/10.1007/JHEP06(2014)099, computing one loop partition functions for massive fields with spin half in AdS{sub 2} using the quasinormal mode method proposed by Denef, Hartnoll, and Sachdev http://dx.doi.org/10.1088/0264-9381/27/12/125001. We find the finite representations of SO(2,1) for spin zero and spin half, consisting of a highest weight state |h〉 and descendants with non-unitary values of h. These finite representations capture the poles and zeroes of the one loop determinants. Together with the asymptotic behavior of the partition functions (which can be easily computed using a large mass heat kernel expansion), these are sufficient to determine the full answer for the one loop determinants. We also discuss extensions to higher dimensional AdS{sub 2n} and higher spins.

  1. Domain wall partition function of the eight-vertex model with a non-diagonal reflecting end

    International Nuclear Information System (INIS)

    Yang Wenli; Chen Xi; Feng Jun; Hao Kun; Shi Kangjie; Sun Chengyi; Yang Zhanying; Zhang Yaozhong

    2011-01-01

    With the help of the Drinfeld twist or factorizing F-matrix for the eight-vertex SOS model, we derive the recursion relations of the partition function for the eight-vertex model with a generic non-diagonal reflecting end and domain wall boundary condition. Solving the recursion relations, we obtain the explicit determinant expression of the partition function. Our result shows that, contrary to the eight-vertex model without a reflecting end, the partition function can be expressed as a single determinant.

  2. Partition functions of classical Heisenberg spin chains with arbitrary and different exchange

    International Nuclear Information System (INIS)

    Cregg, P J; GarcIa-Palacios, J L; Svedlindh, P

    2008-01-01

    The classical Heisenberg model has been effective in modelling exchange interactions in molecular magnets. In this model, the partition function is important as it allows the calculation of the magnetization and susceptibility. For an ensemble of N-spin sites, this typically involves integrals in 2N dimensions. Here, for two-, three- and four-spin nearest neighbour open linear Heisenberg chains these integrals are reduced to sums of known functions, using a result due to Gegenbauer. For the case of the three- and four-spin chains, the sums are equivalent in form to the results of Joyce. The general result for an N-spin chain is also obtained

  3. Partitioning inter annual variability in net ecosystem exchange between climatic variability and functional change

    International Nuclear Information System (INIS)

    Hui, D.; Luo, Y.; Katul, G.

    2003-01-01

    Inter annual variability in net ecosystem exchange of carbon is investigated using a homogeneity-of-slopes model to identify the function change contributing to inter annual variability, net ecosystem carbon exchange, and night-time ecosystem respiration. Results of employing this statistical approach to a data set collected at the Duke Forest AmeriFlux site from August 1997 to December 2001 are discussed. The results demonstrate that it is feasible to partition the variation in ecosystem carbon fluxes into direct effects of seasonal and inter annual climatic variability and functional change. 51 refs., 4 tabs., 5 figs

  4. String partition functions, Hilbert schemes and affine Lie algebra representations on homology groups

    International Nuclear Information System (INIS)

    Bonora, Loriano; Bytsenko, Andrey; Elizalde, Emilio

    2012-01-01

    This review paper contains a concise introduction to highest weight representations of infinite-dimensional Lie algebras, vertex operator algebras and Hilbert schemes of points, together with their physical applications to elliptic genera of superconformal quantum mechanics and superstring models. The common link of all these concepts and of the many examples considered in this paper is to be found in a very important feature of the theory of infinite-dimensional Lie algebras: the modular properties of the characters (generating functions) of certain representations. The characters of the highest weight modules represent the holomorphic parts of the partition functions on the torus for the corresponding conformal field theories. We discuss the role of the unimodular (and modular) groups and the (Selberg-type) Ruelle spectral functions of hyperbolic geometry in the calculation of elliptic genera and associated q-series. For mathematicians, elliptic genera are commonly associated with new mathematical invariants for spaces, while for physicists elliptic genera are one-loop string partition function. (Therefore, they are applicable, for instance, to topological Casimir effect calculations.) We show that elliptic genera can be conveniently transformed into product expressions, which can then inherit the homology properties of appropriate polygraded Lie algebras. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker’s 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’. (review)

  5. Replica analysis of partition-function zeros in spin-glass models

    International Nuclear Information System (INIS)

    Takahashi, Kazutaka

    2011-01-01

    We study the partition-function zeros in mean-field spin-glass models. We show that the replica method is useful to find the locations of zeros in a complex parameter plane. For the random energy model, we obtain the phase diagram in the plane and find that there are two types of distributions of zeros: two-dimensional distribution within a phase and one-dimensional one on a phase boundary. Phases with a two-dimensional distribution are characterized by a novel order parameter defined in the present replica analysis. We also discuss possible patterns of distributions by studying several systems.

  6. Loop averages and partition functions in U(N) gauge theory on two-dimensional manifolds

    International Nuclear Information System (INIS)

    Rusokov, B.Y.

    1990-01-01

    Loop averages and partition functions in the U(N) gauge theory are calculated for loops without intersections on arbitrary two-dimensional manifolds including non-orientable one. The physical quantities are directly expressed through geometrical characteristics of a manifold (areas enclosed by loops and the genus) and gauge group parameters (Casimir eigenvalues and dimensions of the irreducible representations). It is shown that, from the physical quantities' point of view, non-orientability of the manifold is equivalent to its non-compactness

  7. Partition function of a chiral boson on a 2-torus from the Floreanini–Jackiw Lagrangian

    International Nuclear Information System (INIS)

    Chen, Wei-Ming; Ho, Pei-Ming; Kao, Hsien-chung; Khoo, Fech Scen; Matsuo, Yutaka

    2014-01-01

    We revisit the problem of quantizing a chiral boson on a torus. The conventional approach is to extract the partition function of a chiral boson from the path integral of a non-chiral boson. Instead we compute it directly from the chiral boson Lagrangian of Floreanini and Jackiw modified by topological terms involving an auxiliary field. A careful analysis of the gauge-fixing condition for the extra gauge symmetry reproduces the correct results for the free chiral boson, and has the advantage of being applicable to a wider class of interacting chiral boson theories

  8. Off-critical local height probabilities on a plane and critical partition functions on a cylinder

    Directory of Open Access Journals (Sweden)

    Omar Foda

    2018-03-01

    Full Text Available We compute off-critical local height probabilities in regime-III restricted solid-on-solid models in a 4N-quadrant spiral geometry, with periodic boundary conditions in the angular direction, and fixed boundary conditions in the radial direction, as a function of N, the winding number of the spiral, and τ, the departure from criticality of the model, and observe that the result depends only on the product Nτ. In the limit N→1, τ→τ0, such that τ0 is finite, we recover the off-critical local height probability on a plane, τ0-away from criticality. In the limit N→∞, τ→0, such that Nτ=τ0 is finite, and following a conformal transformation, we obtain a critical partition function on a cylinder of aspect-ratio τ0. We conclude that the off-critical local height probability on a plane, τ0-away from criticality, is equal to a critical partition function on a cylinder of aspect-ratio τ0, in agreement with a result of Saleur and Bauer.

  9. BPS/CFT Correspondence III: Gauge Origami Partition Function and qq-Characters

    Science.gov (United States)

    Nekrasov, Nikita

    2018-03-01

    We study generalized gauge theories engineered by taking the low energy limit of the Dp branes wrapping {X × {T}^{p-3}}, with X a possibly singular surface in a Calabi-Yau fourfold Z. For toric Z and X the partition function can be computed by localization, making it a statistical mechanical model, called the gauge origami. The random variables are the ensembles of Young diagrams. The building block of the gauge origami is associated with a tetrahedron, whose edges are colored by vector spaces. We show the properly normalized partition function is an entire function of the Coulomb moduli, for generic values of the {Ω} -background parameters. The orbifold version of the theory defines the qq-character operators, with and without the surface defects. The analytic properties are the consequence of a relative compactness of the moduli spaces M({ěc n}, k) of crossed and spiked instantons, demonstrated in "BPS/CFT correspondence II: instantons at crossroads, moduli and compactness theorem".

  10. Asymptotic expansion of a partition function related to the sinh-model

    CERN Document Server

    Borot, Gaëtan; Kozlowski, Karol K

    2016-01-01

    This book elaborates on the asymptotic behaviour, when N is large, of certain N-dimensional integrals which typically occur in random matrices, or in 1+1 dimensional quantum integrable models solvable by the quantum separation of variables. The introduction presents the underpinning motivations for this problem, a historical overview, and a summary of the strategy, which is applicable in greater generality. The core aims at proving an expansion up to o(1) for the logarithm of the partition function of the sinh-model. This is achieved by a combination of potential theory and large deviation theory so as to grasp the leading asymptotics described by an equilibrium measure, the Riemann-Hilbert approach to truncated Wiener-Hopf in order to analyse the equilibrium measure, the Schwinger-Dyson equations and the boostrap method to finally obtain an expansion of correlation functions and the one of the partition function. This book is addressed to researchers working in random matrices, statistical physics or integra...

  11. Application of radial basis function neural network to predict soil sorption partition coefficient using topological descriptors.

    Science.gov (United States)

    Sabour, Mohammad Reza; Moftakhari Anasori Movahed, Saman

    2017-02-01

    The soil sorption partition coefficient logK oc is an indispensable parameter that can be used in assessing the environmental risk of organic chemicals. In order to predict soil sorption partition coefficient for different and even unknown compounds in a fast and accurate manner, a radial basis function neural network (RBFNN) model was developed. Eight topological descriptors of 800 organic compounds were used as inputs of the model. These 800 organic compounds were chosen from a large and very diverse data set. Generalized Regression Neural Network (GRNN) was utilized as the function in this neural network model due to its capability to adapt very quickly. Hence, it can be used to predict logK oc for new chemicals, as well. Out of total data set, 560 organic compounds were used for training and 240 to test efficiency of the model. The obtained results indicate that the model performance is very well. The correlation coefficients (R2) for training and test sets were 0.995 and 0.933, respectively. The root-mean square errors (RMSE) were 0.2321 for training set and 0.413 for test set. As the results for both training and test set are extremely satisfactory, the proposed neural network model can be employed not only to predict logK oc of known compounds, but also to be adaptive for prediction of this value precisely for new products that enter the market each year. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Supersymmetric localization for BPS black hole entropy: 1-loop partition function from vector multiplets

    International Nuclear Information System (INIS)

    Gupta, Rajesh Kumar; Ito, Yuto; Jeon, Imtak

    2015-01-01

    We use the techniques of supersymmetric localization to compute the BPS black hole entropy in N=2 supergravity. We focus on the n_v+1 vector multiplets on the black hole near horizon background which is AdS_2× S"2 space. We find the localizing saddle point of the vector multiplets by solving the localization equations, and compute the exact one-loop partition function on the saddle point. Furthermore, we propose the appropriate functional integration measure. Through this measure, the one-loop determinant is written in terms of the radius of the physical metric, which depends on the localizing saddle point value of the vector multiplets. The result for the one-loop determinant is consistent with the logarithmic corrections to the BPS black hole entropy from vector multiplets.

  13. Partition functions in even dimensional AdS via quasinormal mode methods

    International Nuclear Information System (INIS)

    Keeler, Cynthia; Ng, Gim Seng

    2014-01-01

    In this note, we calculate the one-loop determinant for a massive scalar (with conformal dimension Δ) in even-dimensional AdS d+1 space, using the quasinormal mode method developed in http://dx.doi.org/10.1088/0264-9381/27/12/125001 by Denef, Hartnoll, and Sachdev. Working first in two dimensions on the related Euclidean hyperbolic plane H 2 , we find a series of zero modes for negative real values of Δ whose presence indicates a series of poles in the one-loop partition function Z(Δ) in the Δ complex plane; these poles contribute temperature-independent terms to the thermal AdS partition function computed in http://dx.doi.org/10.1088/0264-9381/27/12/125001. Our results match those in a series of papers by Camporesi and Higuchi, as well as Gopakumar et al. http://dx.doi.org/10.1007/JHEP11(2011)010 and Banerjee et al. http://dx.doi.org/10.1007/JHEP03(2011)147. We additionally examine the meaning of these zero modes, finding that they Wick-rotate to quasinormal modes of the AdS 2 black hole. They are also interpretable as matrix elements of the discrete series representations of SO(2,1) in the space of smooth functions on S 1 . We generalize our results to general even dimensional AdS 2n , again finding a series of zero modes which are related to discrete series representations of SO(2n,1), the motion group of H 2n .

  14. Local-scale Partitioning of Functional and Phylogenetic Beta Diversity in a Tropical Tree Assemblage.

    Science.gov (United States)

    Yang, Jie; Swenson, Nathan G; Zhang, Guocheng; Ci, Xiuqin; Cao, Min; Sha, Liqing; Li, Jie; Ferry Slik, J W; Lin, Luxiang

    2015-08-03

    The relative degree to which stochastic and deterministic processes underpin community assembly is a central problem in ecology. Quantifying local-scale phylogenetic and functional beta diversity may shed new light on this problem. We used species distribution, soil, trait and phylogenetic data to quantify whether environmental distance, geographic distance or their combination are the strongest predictors of phylogenetic and functional beta diversity on local scales in a 20-ha tropical seasonal rainforest dynamics plot in southwest China. The patterns of phylogenetic and functional beta diversity were generally consistent. The phylogenetic and functional dissimilarity between subplots (10 × 10 m, 20 × 20 m, 50 × 50 m and 100 × 100 m) was often higher than that expected by chance. The turnover of lineages and species function within habitats was generally slower than that across habitats. Partitioning the variation in phylogenetic and functional beta diversity showed that environmental distance was generally a better predictor of beta diversity than geographic distance thereby lending relatively more support for deterministic environmental filtering over stochastic processes. Overall, our results highlight that deterministic processes play a stronger role than stochastic processes in structuring community composition in this diverse assemblage of tropical trees.

  15. Conformal partition functions of critical percolation from D 3 thermodynamic Bethe Ansatz equations

    Science.gov (United States)

    Morin-Duchesne, Alexi; Klümper, Andreas; Pearce, Paul A.

    2017-08-01

    Using the planar Temperley-Lieb algebra, critical bond percolation on the square lattice can be reformulated as a loop model. In this form, it is incorporated as {{ L}}{{ M}}(2, 3) in the Yang-Baxter integrable family of logarithmic minimal models {{ L}}{{ M}}( p, p\\prime) . We consider this model of percolation in the presence of boundaries and with periodic boundary conditions. Inspired by Kuniba, Sakai and Suzuki, we rewrite the recently obtained infinite Y-system of functional equations. In this way, we obtain nonlinear integral equations in the form of a closed finite set of TBA equations described by a D 3 Dynkin diagram. Following the methods of Klümper and Pearce, we solve the TBA equations for the conformal finite-size corrections. For the ground states of the standard modules on the strip, these agree with the known central charge c  =  0 and conformal weights Δ1, s for \\renewcommand≥≥slant} s\\in {{ Z}≥slant 1} with Δr, s=\\big((3r-2s){\\hspace{0pt}}^2-1\\big)/24 . For the periodic case, the finite-size corrections agree with the conformal weights Δ0, s , Δ1, s with \\renewcommand{≥{≥slant} s\\in\\frac{1}{2}{{ Z}≥slant 0} . These are obtained analytically using Rogers dilogarithm identities. We incorporate all finite excitations by formulating empirical selection rules for the patterns of zeros of all the eigenvalues of the standard modules. We thus obtain the conformal partition functions on the cylinder and the modular invariant partition function (MIPF) on the torus. By applying q-binomial and q-Narayana identities, it is shown that our refined finitized characters on the strip agree with those of Pearce, Rasmussen and Zuber. For percolation on the torus, the MIPF is a non-diagonal sesquilinear form in affine u(1) characters given by the u(1) partition function Z2, 3(q)=Z2, 3{Circ}(q) . The u(1) operator content is {{ N}}Δ, \\barΔ=1 for Δ=\\barΔ=-\\frac{1}{24}, \\frac{35}{24} and {{ N}}Δ, \\barΔ=2 for

  16. Partition function expansion on region graphs and message-passing equations

    International Nuclear Information System (INIS)

    Zhou, Haijun; Wang, Chuang; Xiao, Jing-Qing; Bi, Zedong

    2011-01-01

    Disordered and frustrated graphical systems are ubiquitous in physics, biology, and information science. For models on complete graphs or random graphs, deep understanding has been achieved through the mean-field replica and cavity methods. But finite-dimensional 'real' systems remain very challenging because of the abundance of short loops and strong local correlations. A statistical mechanics theory is constructed in this paper for finite-dimensional models based on the mathematical framework of the partition function expansion and the concept of region graphs. Rigorous expressions for the free energy and grand free energy are derived. Message-passing equations on the region graph, such as belief propagation and survey propagation, are also derived rigorously. (letter)

  17. The star-triangle relation, lens partition function, and hypergeometric sum/integrals

    Energy Technology Data Exchange (ETDEWEB)

    Gahramanov, Ilmar [Max Planck Institute for Gravitational Physics (Albert Einstein Institute),Am Mühlenberg 1, D-14476 Potsdam (Germany); Institute of Radiation Problems ANAS,B. Vahabzade 9, AZ1143 Baku (Azerbaijan); Department of Mathematics, Khazar University,Mehseti St. 41, AZ1096 Baku (Azerbaijan); Kels, Andrew P. [Institute of Physics, University of Tokyo,Komaba, Tokyo 153-8902 (Japan)

    2017-02-08

    The aim of the present paper is to consider the hyperbolic limit of an elliptic hypergeometric sum/integral identity, and associated lattice model of statistical mechanics previously obtained by the second author. The hyperbolic sum/integral identity obtained from this limit, has two important physical applications in the context of the so-called gauge/YBE correspondence. For statistical mechanics, this identity is equivalent to a new solution of the star-triangle relation form of the Yang-Baxter equation, that directly generalises the Faddeev-Volkov models to the case of discrete and continuous spin variables. On the gauge theory side, this identity represents the duality of lens (S{sub b}{sup 3}/ℤ{sub r}) partition functions, for certain three-dimensional N=2 supersymmetric gauge theories.

  18. Anharmonic Rovibrational Partition Functions for Fluxional Species at High Temperatures via Monte Carlo Phase Space Integrals

    Energy Technology Data Exchange (ETDEWEB)

    Jasper, Ahren W. [Chemical Sciences and Engineering; Gruey, Zackery B. [Chemical Sciences and Engineering; Harding, Lawrence B. [Chemical Sciences and Engineering; Georgievskii, Yuri [Chemical Sciences and Engineering; Klippenstein, Stephen J. [Chemical Sciences and Engineering; Wagner, Albert F. [Chemical Sciences and Engineering

    2018-02-03

    Monte Carlo phase space integration (MCPSI) is used to compute full dimensional and fully anharmonic, but classical, rovibrational partition functions for 22 small- and medium-sized molecules and radicals. Several of the species considered here feature multiple minima and low-frequency nonlocal motions, and efficiently sampling these systems is facilitated using curvilinear (stretch, bend, and torsion) coordinates. The curvilinear coordinate MCPSI method is demonstrated to be applicable to the treatment of fluxional species with complex rovibrational structures and as many as 21 fully coupled rovibrational degrees of freedom. Trends in the computed anharmonicity corrections are discussed. For many systems, rovibrational anharmonicities at elevated temperatures are shown to vary consistently with the number of degrees of freedom and with temperature once rovibrational coupling and torsional anharmonicity are accounted for. Larger corrections are found for systems with complex vibrational structures, such as systems with multiple large-amplitude modes and/or multiple minima.

  19. The star-triangle relation, lens partition function, and hypergeometric sum/integrals

    International Nuclear Information System (INIS)

    Gahramanov, Ilmar; Kels, Andrew P.

    2017-01-01

    The aim of the present paper is to consider the hyperbolic limit of an elliptic hypergeometric sum/integral identity, and associated lattice model of statistical mechanics previously obtained by the second author. The hyperbolic sum/integral identity obtained from this limit, has two important physical applications in the context of the so-called gauge/YBE correspondence. For statistical mechanics, this identity is equivalent to a new solution of the star-triangle relation form of the Yang-Baxter equation, that directly generalises the Faddeev-Volkov models to the case of discrete and continuous spin variables. On the gauge theory side, this identity represents the duality of lens (S b 3 /ℤ r ) partition functions, for certain three-dimensional N=2 supersymmetric gauge theories.

  20. Partitioning of functional and taxonomic diversity in surface-associated microbial communities.

    Science.gov (United States)

    Roth-Schulze, Alexandra J; Zozaya-Valdés, Enrique; Steinberg, Peter D; Thomas, Torsten

    2016-12-01

    Surfaces, including those submerged in the marine environment, are subjected to constant interactions and colonisation by surrounding microorganisms. The principles that determine the assembly of those epibiotic communities are however poorly understood. In this study, we employed a hierarchical design to assess the functionality and diversity of microbial communities on different types of host surfaces (e.g. macroalgae, seagrasses). We found that taxonomic diversity was unique to each type of host, but that the majority of functions (> 95%) could be found in any given surface community, suggesting a high degree of functional redundancy. However, some community functions were enriched on certain surfaces and were related to host-specific properties (e.g. the degradation of specific polysaccharides). Together these observations support a model, whereby communities on surfaces are assembled from guilds of microorganisms with a functionality that is partitioned into general properties for a surface-associated life-style, but also specific features that mediate host-specificity. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Spin glass: thermal properties and characterization of the ± J Sherrington-Kirkpatrick model partition function zeros

    International Nuclear Information System (INIS)

    Faria, A.C. de.

    1990-01-01

    A detailed study of the S-K model through the analysis of the zeros of the partition function in the complex temperature plane is performed. By the exact way, the notable thermodynamical properties of the system to a variety of the length (N=5→25 spins) are calculated, using only standards concepts (without the use of tricks like that of replicas). Dilute models had been also considered. The principal result of this work is the characterization of the zeros of the partition function of the S-K model. (author)

  2. A partitioned correlation function interaction approach for describing electron correlation in atoms

    International Nuclear Information System (INIS)

    Verdebout, S; Godefroid, M; Rynkun, P; Jönsson, P; Gaigalas, G; Fischer, C Froese

    2013-01-01

    The traditional multiconfiguration Hartree–Fock (MCHF) and configuration interaction (CI) methods are based on a single orthonormal orbital basis. For atoms with many closed core shells, or complicated shell structures, a large orbital basis is needed to saturate the different electron correlation effects such as valence, core–valence and correlation within the core shells. The large orbital basis leads to massive configuration state function (CSF) expansions that are difficult to handle, even on large computer systems. We show that it is possible to relax the orthonormality restriction on the orbital basis and break down the originally very large calculations into a series of smaller calculations that can be run in parallel. Each calculation determines a partitioned correlation function (PCF) that accounts for a specific correlation effect. The PCFs are built on optimally localized orbital sets and are added to a zero-order multireference (MR) function to form a total wave function. The expansion coefficients of the PCFs are determined from a low dimensional generalized eigenvalue problem. The interaction and overlap matrices are computed using a biorthonormal transformation technique (Verdebout et al 2010 J. Phys. B: At. Mol. Phys. 43 074017). The new method, called partitioned correlation function interaction (PCFI), converges rapidly with respect to the orbital basis and gives total energies that are lower than the ones from ordinary MCHF and CI calculations. The PCFI method is also very flexible when it comes to targeting different electron correlation effects. Focusing our attention on neutral lithium, we show that by dedicating a PCF to the single excitations from the core, spin- and orbital-polarization effects can be captured very efficiently, leading to highly improved convergence patterns for hyperfine parameters compared with MCHF calculations based on a single orthogonal radial orbital basis. By collecting separately optimized PCFs to correct the

  3. A partitioned correlation function interaction approach for describing electron correlation in atoms

    Science.gov (United States)

    Verdebout, S.; Rynkun, P.; Jönsson, P.; Gaigalas, G.; Froese Fischer, C.; Godefroid, M.

    2013-04-01

    The traditional multiconfiguration Hartree-Fock (MCHF) and configuration interaction (CI) methods are based on a single orthonormal orbital basis. For atoms with many closed core shells, or complicated shell structures, a large orbital basis is needed to saturate the different electron correlation effects such as valence, core-valence and correlation within the core shells. The large orbital basis leads to massive configuration state function (CSF) expansions that are difficult to handle, even on large computer systems. We show that it is possible to relax the orthonormality restriction on the orbital basis and break down the originally very large calculations into a series of smaller calculations that can be run in parallel. Each calculation determines a partitioned correlation function (PCF) that accounts for a specific correlation effect. The PCFs are built on optimally localized orbital sets and are added to a zero-order multireference (MR) function to form a total wave function. The expansion coefficients of the PCFs are determined from a low dimensional generalized eigenvalue problem. The interaction and overlap matrices are computed using a biorthonormal transformation technique (Verdebout et al 2010 J. Phys. B: At. Mol. Phys. 43 074017). The new method, called partitioned correlation function interaction (PCFI), converges rapidly with respect to the orbital basis and gives total energies that are lower than the ones from ordinary MCHF and CI calculations. The PCFI method is also very flexible when it comes to targeting different electron correlation effects. Focusing our attention on neutral lithium, we show that by dedicating a PCF to the single excitations from the core, spin- and orbital-polarization effects can be captured very efficiently, leading to highly improved convergence patterns for hyperfine parameters compared with MCHF calculations based on a single orthogonal radial orbital basis. By collecting separately optimized PCFs to correct the MR

  4. Transfer functions for solid solution partitioning of cadmium for Australian soils

    NARCIS (Netherlands)

    Vries, de W.; Mc Laughlin, M.J.; Groenenberg, J.E.

    2011-01-01

    To assess transport and ecotoxicological risks of metals, such as cadmium (Cd) in soils, models are needed for partitioning and speciation. We derived regression-based “partition-relations” based on adsorption and desorption experiments for main Australian soil types. First, batch adsorption

  5. Hierarchical partitioning of metazoan protein conservation profiles provides new functional insights.

    Directory of Open Access Journals (Sweden)

    Jonathan Witztum

    Full Text Available The availability of many complete, annotated proteomes enables the systematic study of the relationships between protein conservation and functionality. We explore this question based solely on the presence or absence of protein homologues (a.k.a. conservation profiles. We study 18 metazoans, from two distinct points of view: the human's and the fly's. Using the GOrilla gene ontology (GO analysis tool, we explore functional enrichment of the "universal proteins", those with homologues in all 17 other species, and of the "non-universal proteins". A large number of GO terms are strongly enriched in both human and fly universal proteins. Most of these functions are known to be essential. A smaller number of GO terms, exhibiting markedly different properties, are enriched in both human and fly non-universal proteins. We further explore the non-universal proteins, whose conservation profiles are consistent with the "tree of life" (TOL consistent, as well as the TOL inconsistent proteins. Finally, we applied Quantum Clustering to the conservation profiles of the TOL consistent proteins. Each cluster is strongly associated with one or a small number of specific monophyletic clades in the tree of life. The proteins in many of these clusters exhibit strong functional enrichment associated with the "life style" of the related clades. Most previous approaches for studying function and conservation are "bottom up", studying protein families one by one, and separately assessing the conservation of each. By way of contrast, our approach is "top down". We globally partition the set of all proteins hierarchically, as described above, and then identify protein families enriched within different subdivisions. While supporting previous findings, our approach also provides a tool for discovering novel relations between protein conservation profiles, functionality, and evolutionary history as represented by the tree of life.

  6. Modular relations for the Rogers-Ramanujan-Slater type functions of order fifteen and its applications to partitions

    Directory of Open Access Journals (Sweden)

    Chandrashekar Adiga

    2013-10-01

    Full Text Available In a manuscript of Ramanujan, published with his Lost Notebook [20] there are forty identities involving the Rogers-Ramanujan functions. In this paper, we establish several modular relations involving the Rogers-Ramanujan functions and the Rogers-Ramanujan-Slater type functions of order fifteen which are analogues to Ramanujan’s well known forty identities. Furthermore, we give partition theoretic interpretations of two modular relations.

  7. Pattern-Driven Architectural Partitioning. Balancing Functional and Non-functional Requirements

    NARCIS (Netherlands)

    Harrison, Neil; Avgeriou, Paris

    2007-01-01

    One of the vexing challenges of software architecture is the problem of satisfying the functional specifications of the system to be created while at the same time meeting its non-functional needs. In this work we focus on the early stages of the software architecture process, when initial

  8. Development of particle multiplicity distributions using a general form of the grand canonical partition function

    International Nuclear Information System (INIS)

    Lee, S.J.; Mekjian, A.Z.

    2004-01-01

    Various phenomenological models of particle multiplicity distributions are discussed using a general form of a unified model which is based on the grand canonical partition function and Feynman's path integral approach to statistical processes. These models can be written as special cases of a more general distribution which has three control parameters which are a,x,z. The relation to these parameters to various physical quantities are discussed. A connection of the parameter a with Fisher's critical exponent τ is developed. Using this grand canonical approach, moments, cumulants and combinants are discussed and a physical interpretation of the combinants are given and their behavior connected to the critical exponent τ. Various physical phenomena such as hierarchical structure, void scaling relations, Koba-Nielson-Olesen or KNO scaling features, clan variables, and branching laws are shown in terms of this general approach. Several of these features which were previously developed in terms of the negative binomial distribution are found to be more general. Both hierarchical structure and void scaling relations depend on the Fisher exponent τ. Applications of our approach to the charged particle multiplicity distribution in jets of L3 and H1 data are given

  9. Exact partition functions for deformed N=2 theories with N{sub f}=4 flavours

    Energy Technology Data Exchange (ETDEWEB)

    Beccaria, Matteo; Fachechi, Alberto; Macorini, Guido; Martina, Luigi [Dipartimento di Matematica e Fisica Ennio De Giorgi, Università del Salento,Via Arnesano, 73100 Lecce (Italy); INFN, Via Arnesano, 73100 Lecce (Italy)

    2016-12-07

    We consider the Ω-deformed N=2SU(2) gauge theory in four dimensions with N{sub f}=4 massive fundamental hypermultiplets. The low energy effective action depends on the deformation parameters ε{sub 1},ε{sub 2}, the scalar field expectation value a, and the hypermultiplet masses m=(m{sub 1},m{sub 2},m{sub 3},m{sub 4}). Motivated by recent findings in the N=2{sup ∗} theory, we explore the theories that are characterized by special fixed ratios ε{sub 2}/ε{sub 1} and m/ε{sub 1} and propose a simple condition on the structure of the multi-instanton contributions to the prepotential determining the effective action. This condition determines a finite set Π{sub N} of special points such that the prepotential has N poles at fixed positions independent on the instanton number. In analogy with what happens in the N=2{sup ∗} gauge theory, the full prepotential of the Π{sub N} theories may be given in closed form as an explicit function of a and the modular parameter q appearing in special combinations of Eisenstein series and Jacobi theta functions with well defined modular properties. The resulting finite pole partition functions are related by AGT correspondence to special 4-point spherical conformal blocks of the Virasoro algebra. We examine in full details special cases where the closed expression of the block is known and confirms our Ansatz. We systematically study the special features of Zamolodchikov’s recursion for the Π{sub N} conformal blocks. As a result, we provide a novel effective recursion relation that can be exactly solved and allows to prove the conjectured closed expressions analytically in the case of the Π{sub 1} and Π{sub 2} conformal blocks.

  10. Exact partition functions for deformed N=2 theories with N_f=4 flavours

    International Nuclear Information System (INIS)

    Beccaria, Matteo; Fachechi, Alberto; Macorini, Guido; Martina, Luigi

    2016-01-01

    We consider the Ω-deformed N=2SU(2) gauge theory in four dimensions with N_f=4 massive fundamental hypermultiplets. The low energy effective action depends on the deformation parameters ε_1,ε_2, the scalar field expectation value a, and the hypermultiplet masses m=(m_1,m_2,m_3,m_4). Motivated by recent findings in the N=2"∗ theory, we explore the theories that are characterized by special fixed ratios ε_2/ε_1 and m/ε_1 and propose a simple condition on the structure of the multi-instanton contributions to the prepotential determining the effective action. This condition determines a finite set Π_N of special points such that the prepotential has N poles at fixed positions independent on the instanton number. In analogy with what happens in the N=2"∗ gauge theory, the full prepotential of the Π_N theories may be given in closed form as an explicit function of a and the modular parameter q appearing in special combinations of Eisenstein series and Jacobi theta functions with well defined modular properties. The resulting finite pole partition functions are related by AGT correspondence to special 4-point spherical conformal blocks of the Virasoro algebra. We examine in full details special cases where the closed expression of the block is known and confirms our Ansatz. We systematically study the special features of Zamolodchikov’s recursion for the Π_N conformal blocks. As a result, we provide a novel effective recursion relation that can be exactly solved and allows to prove the conjectured closed expressions analytically in the case of the Π_1 and Π_2 conformal blocks.

  11. Generalized partition function zeros of 1D spin models and their critical behavior at edge singularities

    International Nuclear Information System (INIS)

    Dalmazi, D; Sa, F L

    2010-01-01

    Here we study the partition function zeros of the one-dimensional Blume-Emery-Griffiths model close to their edge singularities. The model contains four couplings (H, J, Δ, K) including the magnetic field H and the Ising coupling J. We assume that only one of the three couplings (J, Δ, K) is complex and the magnetic field is real. The generalized zeros z i tend to form continuous curves on the complex z-plane in the thermodynamic limit. The linear density at the edges z E diverges usually with ρ(z) ∼ |z - z E | σ and σ = -1/2. However, as in the case of complex magnetic fields (Yang-Lee edge singularity), if we have a triple degeneracy of the transfer matrix eigenvalues a new critical behavior with σ = -2/3 can appear as we prove here explicitly for the cases where either Δ or K is complex. Our proof applies for a general three-state spin model with short-range interactions. The Fisher zeros (complex J) are more involved; in practice, we have not been able to find an explicit example with σ = -2/3 as far as the other couplings (H, Δ, K) are kept as real numbers. Our results are supported by numerical computations of zeros. We show that it is absolutely necessary to have a non-vanishing magnetic field for a new critical behavior. The appearance of σ = -2/3 at the edge closest to the positive real axis indicates its possible relevance for tricritical phenomena in higher-dimensional spin models.

  12. Coding Partitions

    Directory of Open Access Journals (Sweden)

    Fabio Burderi

    2007-05-01

    Full Text Available Motivated by the study of decipherability conditions for codes weaker than Unique Decipherability (UD, we introduce the notion of coding partition. Such a notion generalizes that of UD code and, for codes that are not UD, allows to recover the ``unique decipherability" at the level of the classes of the partition. By tacking into account the natural order between the partitions, we define the characteristic partition of a code X as the finest coding partition of X. This leads to introduce the canonical decomposition of a code in at most one unambiguouscomponent and other (if any totally ambiguouscomponents. In the case the code is finite, we give an algorithm for computing its canonical partition. This, in particular, allows to decide whether a given partition of a finite code X is a coding partition. This last problem is then approached in the case the code is a rational set. We prove its decidability under the hypothesis that the partition contains a finite number of classes and each class is a rational set. Moreover we conjecture that the canonical partition satisfies such a hypothesis. Finally we consider also some relationships between coding partitions and varieties of codes.

  13. Gene Duplication of the zebrafish kit ligand and partitioning of melanocyte development functions to kit ligand a.

    Directory of Open Access Journals (Sweden)

    Keith A Hultman

    2007-01-01

    Full Text Available The retention of particular genes after the whole genome duplication in zebrafish has given insights into how genes may evolve through partitioning of ancestral functions. We examine the partitioning of expression patterns and functions of two zebrafish kit ligands, kit ligand a (kitla and kit ligand b (kitlb, and discuss their possible coevolution with the duplicated zebrafish kit receptors (kita and kitb. In situ hybridizations show that kitla mRNA is expressed in the trunk adjacent to the notochord in the middle of each somite during stages of melanocyte migration and later expressed in the skin, when the receptor is required for melanocyte survival. kitla is also expressed in other regions complementary to kita receptor expression, including the pineal gland, tail bud, and ear. In contrast, kitlb mRNA is expressed in brain ventricles, ear, and cardinal vein plexus, in regions generally not complementary to either zebrafish kit receptor ortholog. However, like kitla, kitlb is expressed in the skin during stages consistent with melanocyte survival. Thus, it appears that kita and kitla have maintained congruent expression patterns, while kitb and kitlb have evolved divergent expression patterns. We demonstrate the interaction of kita and kitla by morpholino knockdown analysis. kitla morphants, but not kitlb morphants, phenocopy the null allele of kita, with defects for both melanocyte migration and survival. Furthermore, kitla morpholino, but not kitlb morpholino, interacts genetically with a sensitized allele of kita, confirming that kitla is the functional ligand to kita. Last, we examine kitla overexpression in embryos, which results in hyperpigmentation caused by an increase in the number and size of melanocytes. This hyperpigmentation is dependent on kita function. We conclude that following genome duplication, kita and kitla have maintained their receptor-ligand relationship, coevolved complementary expression patterns, and that

  14. RNAdualPF: software to compute the dual partition function with sample applications in molecular evolution theory.

    Science.gov (United States)

    Garcia-Martin, Juan Antonio; Bayegan, Amir H; Dotu, Ivan; Clote, Peter

    2016-10-19

    RNA inverse folding is the problem of finding one or more sequences that fold into a user-specified target structure s 0 , i.e. whose minimum free energy secondary structure is identical to the target s 0 . Here we consider the ensemble of all RNA sequences that have low free energy with respect to a given target s 0 . We introduce the program RNAdualPF, which computes the dual partition function Z ∗ , defined as the sum of Boltzmann factors exp(-E(a,s 0 )/RT) of all RNA nucleotide sequences a compatible with target structure s 0 . Using RNAdualPF, we efficiently sample RNA sequences that approximately fold into s 0 , where additionally the user can specify IUPAC sequence constraints at certain positions, and whether to include dangles (energy terms for stacked, single-stranded nucleotides). Moreover, since we also compute the dual partition function Z ∗ (k) over all sequences having GC-content k, the user can require that all sampled sequences have a precise, specified GC-content. Using Z ∗ , we compute the dual expected energy 〈E ∗ 〉, and use it to show that natural RNAs from the Rfam 12.0 database have higher minimum free energy than expected, thus suggesting that functional RNAs are under evolutionary pressure to be only marginally thermodynamically stable. We show that C. elegans precursor microRNA (pre-miRNA) is significantly non-robust with respect to mutations, by comparing the robustness of each wild type pre-miRNA sequence with 2000 [resp. 500] sequences of the same GC-content generated by RNAdualPF, which approximately [resp. exactly] fold into the wild type target structure. We confirm and strengthen earlier findings that precursor microRNAs and bacterial small noncoding RNAs display plasticity, a measure of structural diversity. We describe RNAdualPF, which rapidly computes the dual partition function Z ∗ and samples sequences having low energy with respect to a target structure, allowing sequence constraints and specified GC

  15. Partitioning the regional and local drivers of phylogenetic and functional diversity along temperate elevational gradients on an East Asian peninsula.

    Science.gov (United States)

    Chun, Jung-Hwa; Lee, Chang-Bae

    2018-02-12

    Species-centric approaches to biodiversity in ecological research are limited in their ability to reflect the evolutionary history and functional diversity of community assembly. Recently, the introduction of alternative facets of biodiversity, such as phylogenetic and functional diversity, has shed light on this problem and improved our understanding of the processes underlying biodiversity patterns. Here, we investigated the phylogenetic and functional diversity patterns of α, β and γ components in woody plant assemblages along regional and local elevational gradients in South Korea. Although the patterns of phylogenetic and functional diversity varied along regional and local elevational transects, the main drivers were partitioned into two categories: regional area or climate for phylogenetic diversity, depending on whether the transect was at a regional or local scale; and habitat heterogeneity for functional diversity, which was derived in elevational bands. Moreover, environmental distance was more important than was geographic distance for phylogenetic and functional β diversity between paired elevational bands. These results support the hypothesis that niche-based deterministic processes such as environmental filtering and competitive exclusion are fundamental in structuring woody plant assemblages along temperate elevational gradients regardless of scale (regional vs. local) in our study areas.

  16. The one-loop partition function of N=4 super-Yang-Mills theory on RxS3

    International Nuclear Information System (INIS)

    Spradlin, Marcus; Volovich, Anastasia

    2005-01-01

    We study weakly coupled SU(N)N=4 super-Yang-Mills theory on RxS 3 at infinite N, which has interesting thermodynamics, including a Hagedorn transition, even at zero Yang-Mills coupling. We calculate the exact one-loop partition function below the Hagedorn temperature. Our calculation employs the representation of the one-loop dilatation operator as a spin chain Hamiltonian acting on neighboring sites and a generalization of Polya's counting of necklaces (gauge-invariant operators) to include necklaces with a 'pendant' (an operator which acts on neighboring beads). We find that the one-loop correction to the Hagedorn temperature is δlnT H =+λ/8π 2

  17. Resource partitioning along multiple niche axes drives functional diversity in parrotfishes on Caribbean coral reefs.

    Science.gov (United States)

    Adam, Thomas C; Kelley, Megan; Ruttenberg, Benjamin I; Burkepile, Deron E

    2015-12-01

    The recent loss of key consumers to exploitation and habitat degradation has significantly altered community dynamics and ecosystem function across many ecosystems worldwide. Predicting the impacts of consumer losses requires knowing the level of functional diversity that exists within a consumer assemblage. In this study, we document functional diversity among nine species of parrotfishes on Caribbean coral reefs. Parrotfishes are key herbivores that facilitate the maintenance and recovery of coral-dominated reefs by controlling algae and provisioning space for the recruitment of corals. We observed large functional differences among two genera of parrotfishes that were driven by differences in diet. Fishes in the genus Scarus targeted filamentous algal turf assemblages, crustose coralline algae, and endolithic algae and avoided macroalgae, while fishes in the genus Sparisoma preferentially targeted macroalgae. However, species with similar diets were dissimilar in other attributes, including the habitats they frequented, the types of substrate they fed from, and the spatial scale at which they foraged. These differences indicate that species that appear to be functionally redundant when looking at diet alone exhibit high levels of complementarity when we consider multiple functional traits. By identifying key functional differences among parrotfishes, we provide critical information needed to manage parrotfishes to enhance the resilience of coral-dominated reefs and reverse phase shifts on algal-dominated reefs throughout the wider Caribbean. Further, our study provides a framework for predicting the impacts of consumer losses in other species rich ecosystems.

  18. Exact partition functions for the Ω-deformed N=2{sup ∗}SU(2) gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Beccaria, Matteo; Macorini, Guido [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento,Via Arnesano, 73100 Lecce (Italy); INFN,Via Arnesano, 73100 Lecce (Italy)

    2016-07-12

    We study the low energy effective action of the Ω-deformed N=2{sup ∗}SU(2) gauge theory. It depends on the deformation parameters ϵ{sub 1},ϵ{sub 2}, the scalar field expectation value a, and the hypermultiplet mass m. We explore the plane ((m/(ϵ{sub 1})),((ϵ{sub 2})/(ϵ{sub 1}))) looking for special features in the multi-instanton contributions to the prepotential, motivated by what happens in the Nekrasov-Shatashvili limit ϵ{sub 2}→0. We propose a simple condition on the structure of poles of the k-instanton prepotential and show that it is admissible at a finite set of points in the above plane. At these special points, the prepotential has poles at fixed positions independent on the instanton number. Besides and remarkably, both the instanton partition function and the full prepotential, including the perturbative contribution, may be given in closed form as functions of the scalar expectation value a and the modular parameter q appearing in special combinations of Eisenstein series and Dedekind η function. As a byproduct, the modular anomaly equation can be tested at all orders at these points. We discuss these special features from the point of view of the AGT correspondence and provide explicit toroidal 1-blocks in non-trivial closed form. The full list of solutions with 1, 2, 3, and 4 poles is determined and described in details.

  19. Gentile statistics and restricted partitions

    Indian Academy of Sciences (India)

    The partition function of Gentile statistics also has the property that it nicely interpolates between the ... We now construct the partition function for such a system which also incorporates the property of interpolation ... As in [4], we however keep s arbitrary even though for s > 2 there are no quadratic. Hamiltonian systems.

  20. A method for partitioning the information contained in a protein sequence between its structure and function.

    Science.gov (United States)

    Possenti, Andrea; Vendruscolo, Michele; Camilloni, Carlo; Tiana, Guido

    2018-05-23

    Proteins employ the information stored in the genetic code and translated into their sequences to carry out well-defined functions in the cellular environment. The possibility to encode for such functions is controlled by the balance between the amount of information supplied by the sequence and that left after that the protein has folded into its structure. We study the amount of information necessary to specify the protein structure, providing an estimate that keeps into account the thermodynamic properties of protein folding. We thus show that the information remaining in the protein sequence after encoding for its structure (the 'information gap') is very close to what needed to encode for its function and interactions. Then, by predicting the information gap directly from the protein sequence, we show that it may be possible to use these insights from information theory to discriminate between ordered and disordered proteins, to identify unknown functions, and to optimize artificially-designed protein sequences. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  1. Cadmium induces changes in sucrose partitioning, invertase activities, and membrane functionality in roots of Rangpur lime (Citrus limonia L. Osbeck).

    Science.gov (United States)

    Podazza, G; Rosa, M; González, J A; Hilal, M; Prado, F E

    2006-09-01

    Cadmium (Cd) uptake effects on sucrose content, invertase activities, and plasma membrane functionality were investigated in Rangpur lime roots ( CITRUS LIMONIA L. Osbeck). Cadmium accumulation was significant in roots but not in shoots and leaves. Cadmium produced significant reduction in roots DW and increment in WC. Leaves and shoots did not show significant differences on both parameters. Sucrose content was higher in control roots than in Cd-exposed ones. Apoplastic sucrose content was much higher in Cd-exposed roots than in control ones. Cd-exposed roots showed a significant decrease in both cell wall-bound and cytoplasmic (neutral) invertase activities; while the vacuolar isoform did not show any change. Alterations in lipid composition and membrane fluidity of Cd-exposed roots were also observed. In Cd-exposed roots phospholipid and glycolipid contents decreased about 50 %, while sterols content was reduced about 22 %. Proton extrusion was inhibited by Cd. Lipid peroxidation and proton extrusion inhibition were also detected by histochemical analysis. This work's findings demonstrate that Cd affects sucrose partitioning and invertase activities in apoplastic and symplastic regions in Rangpur lime roots as well as the plasma membrane functionality and H (+)-ATPase activity.

  2. Temporal energy partitions of Florida extreme sea level events as a function of Atlantic multidecadal oscillation

    Directory of Open Access Journals (Sweden)

    J. Park

    2010-06-01

    Full Text Available An energy-conservative metric based on the discrete wavelet transform is applied to assess the relative energy distribution of extreme sea level events across different temporal scales. The metric is applied to coastal events at Key West and Pensacola Florida as a function of two Atlantic Multidecadal Oscillation (AMO regimes. Under AMO warm conditions there is a small but significant redistribution of event energy from nearly static into more dynamic (shorter duration timescales at Key West, while at Pensacola the AMO-dependent changes in temporal event behaviour are less pronounced. Extreme events with increased temporal dynamics might be consistent with an increase in total energy of event forcings which may be a reflection of more energetic storm events during AMO warm phases. As dynamical models mature to the point of providing regional climate index predictability, coastal planners may be able to consider such temporal change metrics in planning scenarios.

  3. Plane partition vesicles

    International Nuclear Information System (INIS)

    Rensburg, E J Janse van; Ma, J

    2006-01-01

    We examine partitions and their natural three-dimensional generalizations, plane partitions, as models of vesicles undergoing an inflation-deflation transition. The phase diagrams of these models include a critical point corresponding to an inflation-deflation transition, and exhibits multicritical scaling in the vicinity of a multicritical point located elsewhere on the critical curve. We determine the locations of the multicritical points by analysing the generating functions using analytic and numerical means. In addition, we determine the numerical values of the multicritical scaling exponents associated with the multicritical scaling regimes in these models

  4. A tree-decomposed transfer matrix for computing exact Potts model partition functions for arbitrary graphs, with applications to planar graph colourings

    International Nuclear Information System (INIS)

    Bedini, Andrea; Jacobsen, Jesper Lykke

    2010-01-01

    Combining tree decomposition and transfer matrix techniques provides a very general algorithm for computing exact partition functions of statistical models defined on arbitrary graphs. The algorithm is particularly efficient in the case of planar graphs. We illustrate it by computing the Potts model partition functions and chromatic polynomials (the number of proper vertex colourings using Q colours) for large samples of random planar graphs with up to N = 100 vertices. In the latter case, our algorithm yields a sub-exponential average running time of ∼ exp(1.516√N), a substantial improvement over the exponential running time ∼exp (0.245N) provided by the hitherto best-known algorithm. We study the statistics of chromatic roots of random planar graphs in some detail, comparing the findings with results for finite pieces of a regular lattice.

  5. Calculation of site affinity constants and cooperativity coefficients for binding of ligands and/or protons to macromolecules. II. Relationships between chemical model and partition function algorithm.

    Science.gov (United States)

    Fisicaro, E; Braibanti, A; Lamb, J D; Oscarson, J L

    1990-05-01

    The relationships between the chemical properties of a system and the partition function algorithm as applied to the description of multiple equilibria in solution are explained. The partition functions ZM, ZA, and ZH are obtained from powers of the binary generating functions Jj = (1 + kappa j gamma j,i[Y])i tau j, where i tau j = p tau j, q tau j, or r tau j represent the maximum number of sites in sites in class j, for Y = M, A, or H, respectively. Each term of the generating function can be considered an element (ij) of a vector Jj and each power of the cooperativity factor gamma ij,i can be considered an element of a diagonal cooperativity matrix gamma j. The vectors Jj are combined in tensor product matrices L tau = (J1) [J2]...[Jj]..., thus representing different receptor-ligand combinations. The partition functions are obtained by summing elements of the tensor matrices. The relationship of the partition functions with the total chemical amounts TM, TA, and TH has been found. The aim is to describe the total chemical amounts TM, TA, and TH as functions of the site affinity constants kappa j and cooperativity coefficients bj. The total amounts are calculated from the sum of elements of tensor matrices Ll. Each set of indices (pj..., qj..., rj...) represents one element of a tensor matrix L tau and defines each term of the summation. Each term corresponds to the concentration of a chemical microspecies. The distinction between microspecies MpjAqjHrj with ligands bound on specific sites and macrospecies MpAqHR corresponding to a chemical stoichiometric composition is shown. The translation of the properties of chemical model schemes into the algorithms for the generation of partition functions is illustrated with reference to a series of examples of gradually increasing complexity. The equilibria examined concern: (1) a unique class of sites; (2) the protonation of a base with two classes of sites; (3) the simultaneous binding of ligand A and proton H to a

  6. Spectrum of Singly Charged Uranium (U II : Theoretical Interpretation of Energy Levels, Partition Function and Classified Ultraviolet Lines

    Directory of Open Access Journals (Sweden)

    Ali Meftah

    2017-06-01

    Full Text Available In an attempt to improve U II analysis, the lowest configurations of both parities have been interpreted by means of the Racah-Slater parametric method, using Cowan codes. In the odd parity, including the ground state, 253 levels of the interacting configurations 5 f 3 7 s 2 + 5 f 3 6 d 7 s + 5 f 3 6 d 2 + 5 f 4 7 p + 5 f 5 are interpreted by 24 free parameters and 64 constrained ones, with a root mean square (rms deviation of 60 cm − 1 . In the even parity, the four known configurations 5 f 4 7 s , 5 f 4 6 d , 5 f 2 6 d 2 7 s , 5 f 2 6 d 7 s 2 and the unknown 5 f 2 6 d 3 form a basis for interpreting 125 levels with a rms deviation of 84 cm − 1 . Due to perturbations, the theoretical description of the higher configurations 5 f 3 7 s 7 p + 5 f 3 6 d 7 p remains unsatisfactory. The known and predicted levels of U II are used for a determination of the partition function. The parametric study led us to a re-investigation of high resolution ultraviolet spectrum of uranium recorded at the Meudon Observatory in the late eighties, of which the analysis was unachieved. In the course of the present study, a number of 451 lines of U II has been classified in the region 2344 –2955 Å. One new level has been established as 5 f 3 6 d 7 p ( 4 I 6 K ( J = 5.5 at 39113.98 ± 0.1 cm − 1 .

  7. Exploiting on-node heterogeneity for in-situ analytics of climate simulations via a functional partitioning framework

    Science.gov (United States)

    Sapra, Karan; Gupta, Saurabh; Atchley, Scott; Anantharaj, Valentine; Miller, Ross; Vazhkudai, Sudharshan

    2016-04-01

    Efficient resource utilization is critical for improved end-to-end computing and workflow of scientific applications. Heterogeneous node architectures, such as the GPU-enabled Titan supercomputer at the Oak Ridge Leadership Computing Facility (OLCF), present us with further challenges. In many HPC applications on Titan, the accelerators are the primary compute engines while the CPUs orchestrate the offloading of work onto the accelerators, and moving the output back to the main memory. On the other hand, applications that do not exploit GPUs, the CPU usage is dominant while the GPUs idle. We utilized Heterogenous Functional Partitioning (HFP) runtime framework that can optimize usage of resources on a compute node to expedite an application's end-to-end workflow. This approach is different from existing techniques for in-situ analyses in that it provides a framework for on-the-fly analysis on-node by dynamically exploiting under-utilized resources therein. We have implemented in the Community Earth System Model (CESM) a new concurrent diagnostic processing capability enabled by the HFP framework. Various single variate statistics, such as means and distributions, are computed in-situ by launching HFP tasks on the GPU via the node local HFP daemon. Since our current configuration of CESM does not use GPU resources heavily, we can move these tasks to GPU using the HFP framework. Each rank running the atmospheric model in CESM pushes the variables of of interest via HFP function calls to the HFP daemon. This node local daemon is responsible for receiving the data from main program and launching the designated analytics tasks on the GPU. We have implemented these analytics tasks in C and use OpenACC directives to enable GPU acceleration. This methodology is also advantageous while executing GPU-enabled configurations of CESM when the CPUs will be idle during portions of the runtime. In our implementation results, we demonstrate that it is more efficient to use HFP

  8. BKP plane partitions

    International Nuclear Information System (INIS)

    Foda, Omar; Wheeler, Michael

    2007-01-01

    Using BKP neutral fermions, we derive a product expression for the generating function of volume-weighted plane partitions that satisfy two conditions. If we call a set of adjacent equal height-h columns, h > 0, an h-path, then 1. Every h-path can assume one of two possible colours. 2. There is a unique way to move along an h-path from any column to another

  9. BKP plane partitions

    Energy Technology Data Exchange (ETDEWEB)

    Foda, Omar; Wheeler, Michael [Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010 (Australia)

    2007-01-15

    Using BKP neutral fermions, we derive a product expression for the generating function of volume-weighted plane partitions that satisfy two conditions. If we call a set of adjacent equal height-h columns, h > 0, an h-path, then 1. Every h-path can assume one of two possible colours. 2. There is a unique way to move along an h-path from any column to another.

  10. Classification algorithms using adaptive partitioning

    KAUST Repository

    Binev, Peter; Cohen, Albert; Dahmen, Wolfgang; DeVore, Ronald

    2014-01-01

    © 2014 Institute of Mathematical Statistics. Algorithms for binary classification based on adaptive tree partitioning are formulated and analyzed for both their risk performance and their friendliness to numerical implementation. The algorithms can be viewed as generating a set approximation to the Bayes set and thus fall into the general category of set estimators. In contrast with the most studied tree-based algorithms, which utilize piecewise constant approximation on the generated partition [IEEE Trans. Inform. Theory 52 (2006) 1335.1353; Mach. Learn. 66 (2007) 209.242], we consider decorated trees, which allow us to derive higher order methods. Convergence rates for these methods are derived in terms the parameter - of margin conditions and a rate s of best approximation of the Bayes set by decorated adaptive partitions. They can also be expressed in terms of the Besov smoothness β of the regression function that governs its approximability by piecewise polynomials on adaptive partition. The execution of the algorithms does not require knowledge of the smoothness or margin conditions. Besov smoothness conditions are weaker than the commonly used Holder conditions, which govern approximation by nonadaptive partitions, and therefore for a given regression function can result in a higher rate of convergence. This in turn mitigates the compatibility conflict between smoothness and margin parameters.

  11. Classification algorithms using adaptive partitioning

    KAUST Repository

    Binev, Peter

    2014-12-01

    © 2014 Institute of Mathematical Statistics. Algorithms for binary classification based on adaptive tree partitioning are formulated and analyzed for both their risk performance and their friendliness to numerical implementation. The algorithms can be viewed as generating a set approximation to the Bayes set and thus fall into the general category of set estimators. In contrast with the most studied tree-based algorithms, which utilize piecewise constant approximation on the generated partition [IEEE Trans. Inform. Theory 52 (2006) 1335.1353; Mach. Learn. 66 (2007) 209.242], we consider decorated trees, which allow us to derive higher order methods. Convergence rates for these methods are derived in terms the parameter - of margin conditions and a rate s of best approximation of the Bayes set by decorated adaptive partitions. They can also be expressed in terms of the Besov smoothness β of the regression function that governs its approximability by piecewise polynomials on adaptive partition. The execution of the algorithms does not require knowledge of the smoothness or margin conditions. Besov smoothness conditions are weaker than the commonly used Holder conditions, which govern approximation by nonadaptive partitions, and therefore for a given regression function can result in a higher rate of convergence. This in turn mitigates the compatibility conflict between smoothness and margin parameters.

  12. Exact low-temperature series expansion for the partition function of the zero-field Ising model on the infinite square lattice

    Science.gov (United States)

    Siudem, Grzegorz; Fronczak, Agata; Fronczak, Piotr

    2016-01-01

    In this paper, we provide the exact expression for the coefficients in the low-temperature series expansion of the partition function of the two-dimensional Ising model on the infinite square lattice. This is equivalent to exact determination of the number of spin configurations at a given energy. With these coefficients, we show that the ferromagnetic–to–paramagnetic phase transition in the square lattice Ising model can be explained through equivalence between the model and the perfect gas of energy clusters model, in which the passage through the critical point is related to the complete change in the thermodynamic preferences on the size of clusters. The combinatorial approach reported in this article is very general and can be easily applied to other lattice models. PMID:27721435

  13. The grand partition function Z (α,β) of a quantum system is studied, using diagrammatic representations of the perturbation expansion

    International Nuclear Information System (INIS)

    Dominicis, C. de

    1961-01-01

    The grand partition function Z (α,β) of a quantum system is studied, using diagrammatic representations of the perturbation expansion. For a fermions system, it is possible to show, by proper resummation, without approximations but under some 'regularity hypothesis', that Log Z (α,β) takes a form where, besides trivial dependences, α and β only appear through a statistical factor F k - = [1 + e -α+βε k 0 -βW k ] -1 . W k is a (real) self-consistent potential, generalized to all orders and can be defined by a stationary condition on Log Z (α,β) under variations of F k - . The thermodynamical quantities take a form analogous to the expressions Landau introduced for the Fermi liquids. The zero temperature limit (for isotropic systems) gives back Goldstone expressions for the ground state of a system. (author) [fr

  14. Improved models for the prediction of activity coefficients in nearly athermal mixtures .2. A theoretically-based G(E)-model based on the van der Waals partition function

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Georgios, Nikolopoulos; Fredenslund, Aage

    1997-01-01

    of the generalized van der Waals partition function and attempts to account for all non-energetic effects of solutions of both short- and long-chain alkanes, including alkane polymers. Both the free-volume effects and the density-dependent rotational degrees of freedom are considered. The resulting G(E)-model which......, despite its derivation from a partition function resembles the Flory-Huggins formula, is suitable for vapor-liquid and solid-liquid equilibrium calculations for nearly athermal polymer solutions as well as for alkane systems. We show that using plausible assumptions for the free-volume and the external...

  15. A Systematic Approach for Computing Zero-Point Energy, Quantum Partition Function, and Tunneling Effect Based on Kleinert's Variational Perturbation Theory.

    Science.gov (United States)

    Wong, Kin-Yiu; Gao, Jiali

    2008-09-09

    In this paper, we describe an automated integration-free path-integral (AIF-PI) method, based on Kleinert's variational perturbation (KP) theory, to treat internuclear quantum-statistical effects in molecular systems. We have developed an analytical method to obtain the centroid potential as a function of the variational parameter in the KP theory, which avoids numerical difficulties in path-integral Monte Carlo or molecular dynamics simulations, especially at the limit of zero-temperature. Consequently, the variational calculations using the KP theory can be efficiently carried out beyond the first order, i.e., the Giachetti-Tognetti-Feynman-Kleinert variational approach, for realistic chemical applications. By making use of the approximation of independent instantaneous normal modes (INM), the AIF-PI method can readily be applied to many-body systems. Previously, we have shown that in the INM approximation, the AIF-PI method is accurate for computing the quantum partition function of a water molecule (3 degrees of freedom) and the quantum correction factor for the collinear H(3) reaction rate (2 degrees of freedom). In this work, the accuracy and properties of the KP theory are further investigated by using the first three order perturbations on an asymmetric double-well potential, the bond vibrations of H(2), HF, and HCl represented by the Morse potential, and a proton-transfer barrier modeled by the Eckart potential. The zero-point energy, quantum partition function, and tunneling factor for these systems have been determined and are found to be in excellent agreement with the exact quantum results. Using our new analytical results at the zero-temperature limit, we show that the minimum value of the computed centroid potential in the KP theory is in excellent agreement with the ground state energy (zero-point energy) and the position of the centroid potential minimum is the expectation value of particle position in wave mechanics. The fast convergent property

  16. A multilevel search algorithm for the maximization of submodular functions applied to the quadratic cost partition problem

    NARCIS (Netherlands)

    Goldengorin, B.; Ghosh, D.

    Maximization of submodular functions on a ground set is a NP-hard combinatorial optimization problem. Data correcting algorithms are among the several algorithms suggested for solving this problem exactly and approximately. From the point of view of Hasse diagrams data correcting algorithms use

  17. Robust extrapolation scheme for fast estimation of 3D Ising field partition functions: application to within subject fMRI data

    Energy Technology Data Exchange (ETDEWEB)

    Risser, L.; Vincent, T.; Ciuciu, Ph. [NeuroSpin CEA, F-91191 Gif sur Yvette (France); Risser, L.; Vincent, T. [Laboratoire de Neuroimagerie Assistee par Ordinateur (LNAO) CEA - DSV/I2BM/NEUROSPIN (France); Risser, L. [Institut de mecanique des fluides de Toulouse (IMFT), CNRS: UMR5502 - Universite Paul Sabatier - Toulouse III - Institut National Polytechnique de Toulouse - INPT (France); Idier, J. [Institut de Recherche en Communications et en Cybernetique de Nantes (IRCCyN) CNRS - UMR6597 - Universite de Nantes - ecole Centrale de Nantes - Ecole des Mines de Nantes - Ecole Polytechnique de l' Universite de Nantes (France)

    2009-07-01

    In this paper, we present a first numerical scheme to estimate Partition Functions (PF) of 3D Ising fields. Our strategy is applied to the context of the joint detection-estimation of brain activity from functional Magnetic Resonance Imaging (fMRI) data, where the goal is to automatically recover activated regions and estimate region-dependent, hemodynamic filters. For any region, a specific binary Markov random field may embody spatial correlation over the hidden states of the voxels by modeling whether they are activated or not. To make this spatial regularization fully adaptive, our approach is first based upon it, classical path-sampling method to approximate a small subset of reference PFs corresponding to pre-specified regions. Then, file proposed extrapolation method allows its to approximate the PFs associated with the Ising fields defined over the remaining brain regions. In comparison with preexisting approaches, our method is robust; to topological inhomogeneities in the definition of the reference regions. As a result, it strongly alleviates the computational burden and makes spatially adaptive regularization of whole brain fMRI datasets feasible. (authors)

  18. Niche partitioning of feeding microhabitats produces a unique function for herbivorous rabbitfishes (Perciformes, Siganidae) on coral reefs

    Science.gov (United States)

    Fox, R. J.; Bellwood, D. R.

    2013-03-01

    Niche theory predicts that coexisting species minimise competition by evolving morphological or behavioural specialisations that allow them to spread out along resource axes such as space, diet and temporal activity. These specialisations define how a species interacts with its environment and, by extension, determine its functional role. Here, we examine the feeding niche of three species of coral reef-dwelling rabbitfishes (Siganidae, Siganus). By comparing aspects of their feeding behaviour (bite location, bite rate, foraging distance) with that of representative species from two other abundant herbivorous fish families, the parrotfishes (Labridae, Scarus) and surgeonfishes (Acanthuridae, Acanthurus), we examine whether rabbitfishes have a feeding niche distinct from other members of the herbivore guild. Measurements of the penetration of the fishes' snouts and bodies into reef concavities when feeding revealed that rabbitfish fed to a greater degree from reef crevices and interstices than other herbivores. There was just a 40 % overlap in the penetration-depth niche between rabbitfish and surgeonfish and a 45 % overlap between rabbitfish and parrotfish, compared with the almost complete niche overlap (95 %) recorded for parrotfish and surgeonfish along this spatial niche axis. Aspects of the morphology of rabbitfish which may contribute to this niche segregation include a comparatively longer, narrower snout and narrower head. Our results suggest that sympatric coexistence of rabbitfish and other reef herbivores is facilitated by segregation along a spatial (and potentially dietary) axis. This segregation results in a unique functional role for rabbitfishes among roving herbivores that of "crevice-browser": a group that specifically feeds on crevice-dwelling algal or benthic organisms. This functional trait may have implications for reef ecosystem processes in terms of controlling the successional development of crevice-based algal communities, reducing their

  19. Synchrotron Micro-XANES Measurements of Vanadium Oxidation State in Glasses as a Function of Oxygen Fugacity: Experimental Calibration of Data Relevant to Partition Coefficient Determination

    Science.gov (United States)

    Delaney, J. S.; Sutton, S. R.; Newville, M.; Jones, J. H.; Hanson, B.; Dyar, M. D.; Schreiber, H.

    2000-01-01

    Oxidation state microanalyses for V in glass have been made by calibrating XANES spectral features with optical spectroscopic measurements. The oxidation state change with fugacity of O2 will strongly influence partitioning results.

  20. Modeling response of species to microcontaminants: comparative ecotoxicology by (sub)lethal body burdens as a function of species size and partition ratio of chemicals.

    Science.gov (United States)

    Hendriks, A J

    1995-11-01

    A model was designed and calibrated with accumulation data to calculate the internal concentrations of microcontaminants in organisms as a function of a few constants and variables. The main factors are the exposure time, the external exposure concentration, the partition ratio of the compound, and the size of the taxon concerned. The model was applied to calculate the lethal and sublethal body burdens of several priority compounds and some major taxa. Estimations were generally confirmed at the order of magnitude level by measured residues and applied doses if available. According to the estimations, most priority compounds chosen were critical for most taxa above internal concentrations of 0.1 mmol.kg-1 wet wt. Trichloromethane, 1,2,4-trichlorobenzene, and hexachlorobenzene were lethal above this level only, whereas other organic microcontaminants affected at least some taxa at lower body burdens. The log(Kow) of the organic compounds ranged from 2.0 to 7.0. Keeping in mind that bioconcentration and -magnification ratios for metals may be quite variable, the lowest critical residues estimated were just below the value of 0.1 mmol.kg-1 wet wt. Here, external concentrations encountered in natural habitats seem to be a promising tool for predictive comparative ecotoxicology. The critical body burdens for plants and invertebrates may have been overestimated due to uncertainty about the parameters. Among the different taxa, however, the fish families chosen (Salmonidae and Cyprinidae) seem to be most sensitive to most compounds. Internal response concentrations of the herbicide atrazine were the lowest in micro- and macrophytes, whereas parathion affected invertebrates at low levels. The database that provided the external response concentrations was also consulted to estimate so-called extrapolation or safety factors. On average, long-term no effect concentrations in water are estimated to be about 10-30 times below short-term median lethal levels. In general, short

  1. High-temperature partition functions, specific heats and spectral radiative properties of diatomic molecules with an improved calculation of energy levels

    Science.gov (United States)

    Qin, Z.; Zhao, J. M.; Liu, L. H.

    2018-05-01

    The level energies of diatomic molecules calculated by the frequently used Dunham expansion will become less accurate for high-lying vibrational and rotational levels. In this paper, the potential curves for the lower-lying electronic states with accurate spectroscopic constants are reconstructed using the Rydberg-Klein-Rees (RKR) method, which are extrapolated to the dissociation limits by fitting of the theoretical potentials, and the rest of the potential curves are obtained from the ab-initio results in the literature. Solving the rotational dependence of the radial Schrödinger equation over the obtained potential curves, we determine the rovibrational level energies, which are then used to calculate the equilibrium and non-equilibrium thermodynamic properties of N2, N2+, NO, O2, CN, C2, CO and CO+. The partition functions and the specific heats are systematically validated by available data in the literature. Finally, we calculate the radiative source strengths of diatomic molecules in thermodynamic equilibrium, which agree well with the available values in the literature. The spectral radiative intensities for some diatomic molecules in thermodynamic non-equilibrium are calculated and validated by available experimental data.

  2. Measurement of polyurethane foam - air partition coefficients for semivolatile organic compounds as a function of temperature: Application to passive air sampler monitoring.

    Science.gov (United States)

    Francisco, Ana Paula; Harner, Tom; Eng, Anita

    2017-05-01

    Polyurethane foam - air partition coefficients (K PUF-air ) for 9 polycyclic aromatic hydrocarbons (PAHs), 10 alkyl-substituted PAHs, 4 organochlorine pesticides (OCPs) and dibenzothiophene were measured as a function of temperature over the range 5 °C-35 °C, using a generator column approach. Enthalpies of PUF-to-air transfer (ΔH PUF-air , kJ/mol) were determined from the slopes of log K PUF-air versus 1000/T (K), and have an average value of 81.2 ± 7.03 kJ/mol. The log K PUF-air values at 22 °C ranged from 4.99 to 7.25. A relationship for log K PUF-air versus log K OA was shown to agree with a previous relationship based on only polychlorinated biphenyls (PCBs) and derived from long-term indoor uptake study experiments. The results also confirm that the existing K OA -based model for predicting log K PUF-air values is accurate. This new information is important in the derivation of uptake profiles and effective air sampling volumes for PUF disk samplers so that results can be reported in units of concentration in air. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  3. Partitioning the impact of environment and spatial structure on alpha and beta components of taxonomic, functional, and phylogenetic diversity in European ants.

    Science.gov (United States)

    Arnan, Xavier; Cerdá, Xim; Retana, Javier

    2015-01-01

    We analyze the relative contribution of environmental and spatial variables to the alpha and beta components of taxonomic (TD), phylogenetic (PD), and functional (FD) diversity in ant communities found along different climate and anthropogenic disturbance gradients across western and central Europe, in order to assess the mechanisms structuring ant biodiversity. To this aim we calculated alpha and beta TD, PD, and FD for 349 ant communities, which included a total of 155 ant species; we examined 10 functional traits and phylogenetic relatedness. Variation partitioning was used to examine how much variation in ant diversity was explained by environmental and spatial variables. Autocorrelation in diversity measures and each trait's phylogenetic signal were also analyzed. We found strong autocorrelation in diversity measures. Both environmental and spatial variables significantly contributed to variation in TD, PD, and FD at both alpha and beta scales; spatial structure had the larger influence. The different facets of diversity showed similar patterns along environmental gradients. Environment explained a much larger percentage of variation in FD than in TD or PD. All traits demonstrated strong phylogenetic signals. Our results indicate that environmental filtering and dispersal limitations structure all types of diversity in ant communities. Strong dispersal limitations appear to have led to clustering of TD, PD, and FD in western and central Europe, probably because different historical and evolutionary processes generated different pools of species. Remarkably, these three facets of diversity showed parallel patterns along environmental gradients. Trait-mediated species sorting and niche conservatism appear to structure ant diversity, as evidenced by the fact that more variation was explained for FD and that all traits had strong phylogenetic signals. Since environmental variables explained much more variation in FD than in PD, functional diversity should be a

  4. The Euler–Riemann gases, and partition identities

    International Nuclear Information System (INIS)

    Chair, Noureddine

    2013-01-01

    The Euler theorem in partition theory and its generalization are derived from a non-interacting quantum field theory in which each bosonic mode with a given frequency is equivalent to a sum of bosonic mode whose frequency is twice (s-times) as much, and a fermionic (parafermionic) mode with the same frequency. Explicit formulas for the graded parafermionic partition functions are obtained, and the inverse of the graded partition function (IGPPF), turns out to be bosonic (fermionic) partition function depending on the parity of the order s of the parafermions. It is also shown that these partition functions are generating functions of partitions of integers with restrictions, the Euler generating function is identified with the inverse of the graded parafermionic partition function of order 2. As a result we obtain new sequences of partitions of integers with given restrictions. If the parity of the order s is even, then mixing a system of parafermions with a system whose partition function is (IGPPF), results in a system of fermions and bosons. On the other hand, if the parity of s is odd, then, the system we obtain is still a mixture of fermions and bosons but the corresponding Fock space of states is truncated. It turns out that these partition functions are given in terms of the Jacobi theta function θ 4 , and generate sequences in partition theory. Our partition functions coincide with the overpartitions of Corteel and Lovejoy, and jagged partitions in conformal field theory. Also, the partition functions obtained are related to the Ramond characters of the superconformal minimal models, and in the counting of the Moore–Read edge spectra that appear in the fractional quantum Hall effect. The different partition functions for the Riemann gas that are the counter parts of the Euler gas are obtained by a simple change of variables. In particular the counter part of the Jacobi theta function is (ζ(2t))/(ζ(t) 2 ) . Finally, we propose two formulas which brings

  5. Construction of Scaling Partitions of Unity

    Directory of Open Access Journals (Sweden)

    Ole Christensen

    2017-11-01

    Full Text Available Partitions of unity in ℝd formed by (matrix scales of a fixed function appear in many parts of harmonic analysis, e.g., wavelet analysis and the analysis of Triebel-Lizorkin spaces. We give a simple characterization of the functions and matrices yielding such a partition of unity. For expanding matrices, the characterization leads to easy ways of constructing appropriate functions with attractive properties like high regularity and small support. We also discuss a class of integral transforms that map functions having the partition of unity property to functions with the same property. The one-dimensional version of the transform allows a direct definition of a class of nonuniform splines with properties that are parallel to those of the classical B-splines. The results are illustrated with the construction of dual pairs of wavelet frames.

  6. The Benefits of Adaptive Partitioning for Parallel AMR Applications

    Energy Technology Data Exchange (ETDEWEB)

    Steensland, Johan [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Advanced Software Research and Development

    2008-07-01

    Parallel adaptive mesh refinement methods potentially lead to realistic modeling of complex three-dimensional physical phenomena. However, the dynamics inherent in these methods present significant challenges in data partitioning and load balancing. Significant human resources, including time, effort, experience, and knowledge, are required for determining the optimal partitioning technique for each new simulation. In reality, scientists resort to using the on-board partitioner of the computational framework, or to using the partitioning industry standard, ParMetis. Adaptive partitioning refers to repeatedly selecting, configuring and invoking the optimal partitioning technique at run-time, based on the current state of the computer and application. In theory, adaptive partitioning automatically delivers superior performance and eliminates the need for repeatedly spending valuable human resources for determining the optimal static partitioning technique. In practice, however, enabling frameworks are non-existent due to the inherent significant inter-disciplinary research challenges. This paper presents a study of a simple implementation of adaptive partitioning and discusses implied potential benefits from the perspective of common groups of users within computational science. The study is based on a large set of data derived from experiments including six real-life, multi-time-step adaptive applications from various scientific domains, five complementing and fundamentally different partitioning techniques, a large set of parameters corresponding to a wide spectrum of computing environments, and a flexible cost function that considers the relative impact of multiple partitioning metrics and diverse partitioning objectives. The results show that even a simple implementation of adaptive partitioning can automatically generate results statistically equivalent to the best static partitioning. Thus, it is possible to effectively eliminate the problem of determining the

  7. Confocal Raman Microscopy for in Situ Measurement of Octanol-Water Partitioning within the Pores of Individual C18-Functionalized Chromatographic Particles.

    Science.gov (United States)

    Kitt, Jay P; Harris, Joel M

    2015-05-19

    Octanol-water partitioning is one of the most widely used predictors of hydrophobicity and lipophilicity. Traditional methods for measuring octanol-water partition coefficients (K(ow)), including shake-flasks and generator columns, require hours for equilibration and milliliter quantities of sample solution. These challenges have led to development of smaller-scale methods for measuring K(ow). Recent advances in microfluidics have produced faster and smaller-volume approaches to measuring K(ow). As flowing volumes are reduced, however, separation of water and octanol prior to measurement and detection in small volumes of octanol phase are especially challenging. In this work, we reduce the receiver volume of octanol-water partitioning measurements from current practice by six-orders-of-magnitude, to the femtoliter scale, by using a single octanol-filled reversed-phase, octadecylsilane-modified (C18-silica) chromatographic particle as a collector. The fluid-handling challenges of working in such small volumes are circumvented by eliminating postequilibration phase separation. Partitioning is measured in situ within the pore-confined octanol phase using confocal Raman microscopy, which is capable of detecting and quantifying a wide variety of molecular structures. Equilibration times are fast (less than a minute) because molecular diffusion is efficient over distance scales of micrometers. The demonstrated amount of analyte needed to carry out a measurement is very small, less than 50 fmol, which would be a useful attribute for drug screening applications or testing of small quantities of environmentally sensitive compounds. The method is tested for measurements of pH-dependent octanol-water partitioning of naphthoic acid, and the results are compared to both traditional shake-flask measurements and sorption onto C18-modified silica without octanol present within the pores.

  8. Energy partition in nuclear fission

    International Nuclear Information System (INIS)

    Ruben, A.; Maerten, H.; Seeliger, D.

    1990-01-01

    A scission point model (two spheroid model TSM) including semi-empirical temperature-dependent shell correction energies for deformed fragments at scission is presented. It has been used to describe the mass-asymmetry-dependent partition of the total energy release on both fragments from spontaneous and induced fission. Characteristic trends of experimental fragment energy and neutron multiplicity data as function of incidence energy in the Th-Cf region of fissioning nuclei are well reproduced. Based on model applications, information on the energy dissipated during the descent from second saddle of fission barrier to scission point have been deduced. (author). 39 refs, 13 figs

  9. Composition and partition functions of partially ionized hydrogen plasma in Non-Local Thermal Equilibrium (Non-LThE) and Non-Local Chemical Equilibrium (Non-LChE)

    International Nuclear Information System (INIS)

    Chen Kuan; Eddy, T.L.

    1993-01-01

    A GTME (Generalized MultiThermodynamic Equilibrium) plasma model is developed for plasmas in both Non-LThE (Non-Local Thermal Equilibrium) and Non-LChE (Non-Local Chemical Equilibrium). The model uses multitemperatures for thermal nonequilibrium and non-zero chemical affinities as a measure of the deviation from chemical equilibrium. The plasma is treated as an ideal gas with the Debye-Hueckel approximation employed for pressure correction. The proration method is used when the cutoff energy level is between two discrete levels. The composition and internal partition functions of a hydrogen plasma are presented for electron temperatures ranging from 5000 to 35000 K and pressures from 0.1 to 1000 kPa. Number densities of 7 different species of hydrogen plasma and internal partition functions of different energy modes (rotational, vibrational, and electronic excitation) are computed for three affinity values. The results differ from other plasma properties in that they 1) are not based on equilibrium properties; and 2) are expressed as a function of different energy distribution parameters (temperatures) within each energy mode of each species as appropriate. The computed number densities and partition functions are applicable to calculating the thermodynamic, transport, and radiation properties of a hydrogen plasma not in thermal and chemical equilibria. The nonequilibrium plasma model and plasma compositions presented in this paper are very useful to the diagnosis of high-speed and/or low-pressure plasma flows in which the assumptions of local thermal and chemical equilibrium are invalid. (orig.)

  10. Hashing for Statistics over K-Partitions

    DEFF Research Database (Denmark)

    Dahlgaard, Soren; Knudsen, Mathias Baek Tejs; Rotenberg, Eva

    2015-01-01

    In this paper we analyze a hash function for k-partitioning a set into bins, obtaining strong concentration bounds for standard algorithms combining statistics from each bin. This generic method was originally introduced by Flajolet and Martin [FOCS'83] in order to save a factor Ω(k) of time per...... concentration bounds on the most popular applications of k-partitioning similar to those we would get using a truly random hash function. The analysis is very involved and implies several new results of independent interest for both simple and double tabulation, e.g. A simple and efficient construction...

  11. Partitional clustering algorithms

    CERN Document Server

    2015-01-01

    This book summarizes the state-of-the-art in partitional clustering. Clustering, the unsupervised classification of patterns into groups, is one of the most important tasks in exploratory data analysis. Primary goals of clustering include gaining insight into, classifying, and compressing data. Clustering has a long and rich history that spans a variety of scientific disciplines including anthropology, biology, medicine, psychology, statistics, mathematics, engineering, and computer science. As a result, numerous clustering algorithms have been proposed since the early 1950s. Among these algorithms, partitional (nonhierarchical) ones have found many applications, especially in engineering and computer science. This book provides coverage of consensus clustering, constrained clustering, large scale and/or high dimensional clustering, cluster validity, cluster visualization, and applications of clustering. Examines clustering as it applies to large and/or high-dimensional data sets commonly encountered in reali...

  12. Why partition nuclear waste

    International Nuclear Information System (INIS)

    Cohen, J.J.

    1976-01-01

    A cursory review of literature dealing with various separatory processes involved in the handling of high-level liquid nuclear waste discloses that, for the most part, discussion centers on separation procedures and methodology for handling the resulting fractions, particularly the actinide wastes. There appears to be relatively little discussion on the incentives or motivations for performing these separations in the first place. Discussion is often limited to the assumption that we must separate out ''long-term'' from our ''short-term'' management problems. This paper deals with that assumption and devotes primary attention to the question of ''why partition waste'' rather than the question of ''how to partition waste'' or ''what to do with the segregated waste.''

  13. Periodic Schur process, cylindric partitions and N=2* theory

    International Nuclear Information System (INIS)

    Iqbal, Amer; Kozcaz, Can; Sohail, Tanweer

    2011-01-01

    Type IIA string theory compactified on an elliptic CY3-fold gives rise to N=2U(1) gauge theory with an adjoint hypermultiplet. We study the refined open and closed topological string partition functions of this geometry using the refined topological vertex. We show that these partition functions, open and closed, are examples of periodic Schur process and are related to the generating function of the cylindric partitions if the Kaehler parameters are quantized in units of string coupling. The level-rank duality appears as the exchange symmetry of the two Kaehler parameters of the elliptic CY3-fold.

  14. Transfer functions for solid-solution partitioning of cadmium, copper, nickel, lead and zinc in soils. Derivation of relationships for free metal ion activities and validation with independent data

    Energy Technology Data Exchange (ETDEWEB)

    Groenenberg, J.E.; Roemkens, P.F.A.M.; De Vries, W. [Soil Science Centre, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Comans, R.N.J. [Energy Research Centre of the Netherlands, P.O. Box 1, 1755 ZG Petten (Netherlands); Luster, J. [Research Unit Soil Sciences, Swiss Federal Institute for Forest, Snow and Landscape Research, Zuercherstrasse 111 CH-8903 Birmensdorf (Switzerland); Pampura, T. [Laboratory of Physical Chemistry of Soils, Institute of Physicochemical and Biological Problems in Soil Science RAS, Pushchino, Moscow Region, 142290 (Russian Federation); Shotbolt, L. [Department of Geography, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Tipping, E. [Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP (United Kingdom)

    2010-07-01

    Models to predict the solid-solution partitioning of trace metals are important tools in risk assessment, providing information on the biological availability of metals and their leaching. Empirically based models, or transfer functions, published to date differ with respect to the mathematical model used, the optimization method, the methods used to determine metal concentrations in the solid and solution phases and the soil properties accounted for. Here we review these methodological aspects before deriving our own transfer functions that relate free metal ion activities to reactive metal contents in the solid phase. One single function was able to predict free-metal ion activities estimated by a variety of soil solution extraction methods. Evaluation of the mathematical formulation showed that transfer functions derived to optimize the Freundlich adsorption constant (Kf ), in contrast to functions derived to optimize either the solid or solution concentration, were most suitable for predicting concentrations in solution from solid phase concentrations and vice versa. The model was shown to be generally applicable on the basis of a large number of independent data, for which predicted free metal activities were within one order of magnitude of the observations. The model only over-estimated free-metal ion activities at alkaline pH (>7). The use of the reactive metal content measured by 0.43 m HNO3 rather than the total metal content resulted in a close correlation with measured data, particularly for nickel and zinc.

  15. The grand partition function Z ({alpha},{beta}) of a quantum system is studied, using diagrammatic representations of the perturbation expansion; La grande fonction de partition Z ({alpha},{beta}) d'un systeme quantique est etudies en utilisant des representations diagrammatiques du developpement en serie des perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Dominicis, C. de [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1961-07-01

    The grand partition function Z ({alpha},{beta}) of a quantum system is studied, using diagrammatic representations of the perturbation expansion. For a fermions system, it is possible to show, by proper resummation, without approximations but under some 'regularity hypothesis', that Log Z ({alpha},{beta}) takes a form where, besides trivial dependences, {alpha} and {beta} only appear through a statistical factor F{sub k}{sup -} = [1 + e{sup -{alpha}}{sup +{beta}}{sup {epsilon}{sub k}{sup 0}}{sup -{beta}}{sup W{sub k}}]{sup -1}. W{sub k} is a (real) self-consistent potential, generalized to all orders and can be defined by a stationary condition on Log Z ({alpha},{beta}) under variations of F{sub k}{sup -}. The thermodynamical quantities take a form analogous to the expressions Landau introduced for the Fermi liquids. The zero temperature limit (for isotropic systems) gives back Goldstone expressions for the ground state of a system. (author) [French] La grande fonction de partition Z ({alpha},{beta}) d'un systeme quantique est etudiee en utilisant des representations diagrammatiques du developpement en serie des perturbations. Pour un systeme de fermions on peut, par des resommations adequates, sans approximations mais sous reserve d'une 'hypothese de regularite', mettre Log Z ({alpha},{beta}) sous une forme ou, en dehors de dependances triviales, {alpha} et {beta} n'interviennent que par l'intermediaire d'un facteur statistique F{sub k}{sup -} = [1 + e{sup -{alpha}}{sup +{beta}}{sup {epsilon}{sub k}{sup 0}}{sup -{beta}}{sup W{sub k}}]{sup -1}. W{sub k} est ici un potentiel self-consistant (reel) generalise a tous les ordres et peut etre defini par une condition de stationnarite de Log Z ({alpha},{beta}) pour des variations de F{sub k}{sup -}. Les grandeurs thermodynamiques prennent une forme analogue aux expressions que LANDAU a introduites pour les liquides de FERMI. A la limite de la temperature nulle (et pour un

  16. The grand partition function Z ({alpha},{beta}) of a quantum system is studied, using diagrammatic representations of the perturbation expansion; La grande fonction de partition Z ({alpha},{beta}) d'un systeme quantique est etudies en utilisant des representations diagrammatiques du developpement en serie des perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Dominicis, C de [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1961-07-01

    The grand partition function Z ({alpha},{beta}) of a quantum system is studied, using diagrammatic representations of the perturbation expansion. For a fermions system, it is possible to show, by proper resummation, without approximations but under some 'regularity hypothesis', that Log Z ({alpha},{beta}) takes a form where, besides trivial dependences, {alpha} and {beta} only appear through a statistical factor F{sub k}{sup -} = [1 + e{sup -{alpha}}{sup +{beta}}{sup {epsilon}{sub k}{sup 0}}{sup -{beta}}{sup W{sub k}}]{sup -1}. W{sub k} is a (real) self-consistent potential, generalized to all orders and can be defined by a stationary condition on Log Z ({alpha},{beta}) under variations of F{sub k}{sup -}. The thermodynamical quantities take a form analogous to the expressions Landau introduced for the Fermi liquids. The zero temperature limit (for isotropic systems) gives back Goldstone expressions for the ground state of a system. (author) [French] La grande fonction de partition Z ({alpha},{beta}) d'un systeme quantique est etudiee en utilisant des representations diagrammatiques du developpement en serie des perturbations. Pour un systeme de fermions on peut, par des resommations adequates, sans approximations mais sous reserve d'une 'hypothese de regularite', mettre Log Z ({alpha},{beta}) sous une forme ou, en dehors de dependances triviales, {alpha} et {beta} n'interviennent que par l'intermediaire d'un facteur statistique F{sub k}{sup -} = [1 + e{sup -{alpha}}{sup +{beta}}{sup {epsilon}{sub k}{sup 0}}{sup -{beta}}{sup W{sub k}}]{sup -1}. W{sub k} est ici un potentiel self-consistant (reel) generalise a tous les ordres et peut etre defini par une condition de stationnarite de Log Z ({alpha},{beta}) pour des variations de F{sub k}{sup -}. Les grandeurs thermodynamiques prennent une forme analogue aux expressions que LANDAU a introduites pour les liquides de FERMI. A la limite de la temperature nulle (et pour un systeme isotrope) on retrouve terme a terme les

  17. Analytical model for macromolecular partitioning during yeast cell division

    International Nuclear Information System (INIS)

    Kinkhabwala, Ali; Khmelinskii, Anton; Knop, Michael

    2014-01-01

    Asymmetric cell division, whereby a parent cell generates two sibling cells with unequal content and thereby distinct fates, is central to cell differentiation, organism development and ageing. Unequal partitioning of the macromolecular content of the parent cell — which includes proteins, DNA, RNA, large proteinaceous assemblies and organelles — can be achieved by both passive (e.g. diffusion, localized retention sites) and active (e.g. motor-driven transport) processes operating in the presence of external polarity cues, internal asymmetries, spontaneous symmetry breaking, or stochastic effects. However, the quantitative contribution of different processes to the partitioning of macromolecular content is difficult to evaluate. Here we developed an analytical model that allows rapid quantitative assessment of partitioning as a function of various parameters in the budding yeast Saccharomyces cerevisiae. This model exposes quantitative degeneracies among the physical parameters that govern macromolecular partitioning, and reveals regions of the solution space where diffusion is sufficient to drive asymmetric partitioning and regions where asymmetric partitioning can only be achieved through additional processes such as motor-driven transport. Application of the model to different macromolecular assemblies suggests that partitioning of protein aggregates and episomes, but not prions, is diffusion-limited in yeast, consistent with previous reports. In contrast to computationally intensive stochastic simulations of particular scenarios, our analytical model provides an efficient and comprehensive overview of partitioning as a function of global and macromolecule-specific parameters. Identification of quantitative degeneracies among these parameters highlights the importance of their careful measurement for a given macromolecular species in order to understand the dominant processes responsible for its observed partitioning

  18. Incentives for partitioning, revisited

    International Nuclear Information System (INIS)

    Cloninger, M.O.

    1980-01-01

    The incentives for separating and eliminating various elements from radioactive waste prior to final geologic disposal were investigated. Exposure pathways to humans were defined, and potential radiation doses to an individual living within the region of influence of the underground storage site were calculated. The assumed radionuclide source was 1/5 of the accumulated high-level waste from the US nuclear power economy through the year 2000. The repository containing the waste was assumed to be located in a reference salt site geology. The study required numerous assumptions concerning the transport of radioactivity from the geologic storage site to man. The assumptions used maximized the estimated potential radiation doses, particularly in the case of the intrusion water well scenario, where hydrologic flow field dispersion effects were ignored. Thus, incentives for removing elements from the waste tended to be maximized. Incentives were also maximized by assuming that elements removed from the waste could be eliminated from the earth without risk. The results of the study indicate that for reasonable disposal conditions, incentives for partitioning any elements from the waste in order to minimize the risk to humans are marginal at best

  19. Partitioning ecosystems for sustainability.

    Science.gov (United States)

    Murray, Martyn G

    2016-03-01

    Decline in the abundance of renewable natural resources (RNRs) coupled with increasing demands of an expanding human population will greatly intensify competition for Earth's natural resources during this century, yet curiously, analytical approaches to the management of productive ecosystems (ecological theory of wildlife harvesting, tragedy of the commons, green economics, and bioeconomics) give only peripheral attention to the driving influence of competition on resource exploitation. Here, I apply resource competition theory (RCT) to the exploitation of RNRs and derive four general policies in support of their sustainable and equitable use: (1) regulate resource extraction technology to avoid damage to the resource base; (2) increase efficiency of resource use and reduce waste at every step in the resource supply chain and distribution network; (3) partition ecosystems with the harvesting niche as the basic organizing principle for sustainable management of natural resources by multiple users; and (4) increase negative feedback between consumer and resource to bring about long-term sustainable use. A simple policy framework demonstrates how RCT integrates with other elements of sustainability science to better manage productive ecosystems. Several problem areas of RNR management are discussed in the light of RCT, including tragedy of the commons, overharvesting, resource collapse, bycatch, single species quotas, and simplification of ecosystems.

  20. Present status of partitioning developments

    International Nuclear Information System (INIS)

    Nakamura, Haruto; Kubota, Masumitsu; Tachimori, Shoichi

    1978-09-01

    Evolution and development of the concept of partitioning of high-level liquid wastes (HLLW) in nuclear fuel reprocessing are reviewed historically from the early phase of separating useful radioisotopes from HLLW to the recent phase of eliminating hazardous nuclides such as transuranium elements for safe waste disposal. Since the criteria in determining the nuclides for elimination and the respective decontamination factors are important in the strategy of partitioning, current views on the criteria are summarized. As elimination of the transuranium is most significant in the partitioning, various methods available of separating them from fission products are evaluated. (auth.)

  1. Min-max Extrapolation Scheme for Fast Estimation of 3D Potts Field Partition Functions. Application to the Joint Detection-Estimation of Brain Activity in fMRI

    International Nuclear Information System (INIS)

    Risser, L.; Vincent, T.; Ciuciu, P.; Risser, L.; Idier, J.; Risser, L.; Forbes, F.

    2011-01-01

    In this paper, we propose a fast numerical scheme to estimate Partition Functions (PF) of symmetric Potts fields. Our strategy is first validated on 2D two-color Potts fields and then on 3D two- and three-color Potts fields. It is then applied to the joint detection-estimation of brain activity from functional Magnetic Resonance Imaging (fMRI) data, where the goal is to automatically recover activated, deactivated and inactivated brain regions and to estimate region dependent hemodynamic filters. For any brain region, a specific 3D Potts field indeed embodies the spatial correlation over the hidden states of the voxels by modeling whether they are activated, deactivated or inactive. To make spatial regularization adaptive, the PFs of the Potts fields over all brain regions are computed prior to the brain activity estimation. Our approach is first based upon a classical path-sampling method to approximate a small subset of reference PFs corresponding to pre-specified regions. Then, we propose an extrapolation method that allows us to approximate the PFs associated to the Potts fields defined over the remaining brain regions. In comparison with preexisting methods either based on a path sampling strategy or mean-field approximations, our contribution strongly alleviates the computational cost and makes spatially adaptive regularization of whole brain fMRI datasets feasible. It is also robust against grid inhomogeneities and efficient irrespective of the topological configurations of the brain regions. (authors)

  2. The impact of aerosol composition on the particle to gas partitioning of reactive mercury.

    Science.gov (United States)

    Rutter, Andrew P; Schauer, James J

    2007-06-01

    A laboratory system was developed to study the gas-particle partitioning of reactive mercury (RM) as a function of aerosol composition in synthetic atmospheric particulate matter. The collection of RM was achieved by filter- and sorbent-based methods. Analyses of the RM collected on the filters and sorbents were performed using thermal extraction combined with cold vapor atomic fluorescence spectroscopy (CVAFS), allowing direct measurement of the RM load on the substrates. Laboratory measurements of the gas-particle partitioning coefficients of RM to atmospheric aerosol particles revealed a strong dependence on aerosol composition, with partitioning coefficients that varied by orders of magnitude depending on the composition of the particles. Particles of sodium nitrate and the chlorides of potassium and sodium had high partitioning coefficients, shifting the RM partitioning toward the particle phase, while ammonium sulfate, levoglucosan, and adipic acid caused the RM to partition toward the gas phase and, therefore, had partitioning coefficients that were lower by orders of magnitude.

  3. Developing Key Parameters for Green Performance of Partition Wall Blocks

    Directory of Open Access Journals (Sweden)

    Goh Cheng Siew

    2016-01-01

    Full Text Available To promote sustainable construction, it is important to consider green performance of construction materials throughout the life cycle. Selecting inappropriate materials could not only affect the functional performance but also preclude the achievement of green building performance as a whole. Green performance of construction materials has therefore been one of the primary considerations of green building assessment systems. Using partition wall blocks as an example, this paper examines green performance of building materials primarily from the cradle to gate boundaries. Nine key parameters are proposed for the green performance of partition wall blocks. Apart from environmental features, technical performance of partition wall blocks is also taken into consideration since it is the determinant of the lifecycle performance. This paper offers a roadmap to decision makers to make environmentally responsible choices for their materials of internal walls and partitions, and hence provides a potential sustainable solution for green buildings.

  4. Hawk: A Runtime System for Partitioned Objects

    NARCIS (Netherlands)

    Ben Hassen, S.; Bal, H.E.; Tanenbaum, A.S.

    1997-01-01

    Hawk is a language-independent runtime system for writing data-parallel programs using partitioned objects. A partitioned object is a multidimensional array of elements that can be partitioned and distributed by the programmer. The Hawk runtime system uses the user-defined partitioning of objects

  5. Minimum nonuniform graph partitioning with unrelated weights

    Science.gov (United States)

    Makarychev, K. S.; Makarychev, Yu S.

    2017-12-01

    We give a bi-criteria approximation algorithm for the Minimum Nonuniform Graph Partitioning problem, recently introduced by Krauthgamer, Naor, Schwartz and Talwar. In this problem, we are given a graph G=(V,E) and k numbers ρ_1,\\dots, ρ_k. The goal is to partition V into k disjoint sets (bins) P_1,\\dots, P_k satisfying \\vert P_i\\vert≤ ρi \\vert V\\vert for all i, so as to minimize the number of edges cut by the partition. Our bi-criteria algorithm gives an O(\\sqrt{log \\vert V\\vert log k}) approximation for the objective function in general graphs and an O(1) approximation in graphs excluding a fixed minor. The approximate solution satisfies the relaxed capacity constraints \\vert P_i\\vert ≤ (5+ \\varepsilon)ρi \\vert V\\vert. This algorithm is an improvement upon the O(log \\vert V\\vert)-approximation algorithm by Krauthgamer, Naor, Schwartz and Talwar. We extend our results to the case of 'unrelated weights' and to the case of 'unrelated d-dimensional weights'. A preliminary version of this work was presented at the 41st International Colloquium on Automata, Languages and Programming (ICALP 2014). Bibliography: 7 titles.

  6. Development of partitioning method : cold experiment with partitioning test facility in NUCEF (I)

    International Nuclear Information System (INIS)

    Yamaguchi, Isoo; Morita, Yasuji; Kondo, Yasuo

    1996-03-01

    A test facility in which about 1.85 x 10 14 Bq of high-level liquid waste can be treated has been completed in 1994 at Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF) for research and development of Partitioning Method. The outline of the partitioning test facility and support equipments for it which were design terms, constructions, arrangements, functions and inspections were given in JAERI-Tech 94-030. The present report describes the results of the water transfer test and partitioning tests, which are methods of precipitation by denitration, oxalate precipitation, solvent extraction, and adsorption with inorganic ion exchanger, using nitric acid to master operation method of the test facility. As often as issues related to equipments occurred during the tests, they were improved. As to issues related to processes such as being stopped up of columns, their measures of solution were found by testing in laboratories. They were reflected in operation of the Partitioning Test Facility. Their particulars and improving points were described in this report. (author)

  7. Analysis of load balance in hybrid partitioning | Talib | Botswana ...

    African Journals Online (AJOL)

    In information retrieval systems, there are three types of index partitioning schemes - term partitioning, document partitioning, and hybrid partitioning. The hybrid-partitioning scheme combines both term and document partitioning schemes. Term partitioning provides high concurrency, which means that queries can be ...

  8. The part-frequency matrices of a partition

    Directory of Open Access Journals (Sweden)

    William J. Keith

    2016-09-01

    Full Text Available A new combinatorial object is introduced, the part-frequency matrix sequence of a partition, whichis elementary to describe and is naturally motivated by Glaisher’s bijection. We prove results thatsuggest surprising usefulness for such a simple tool, including the existence of a related statistic thatrealizes every possible Ramanujan-type congruence for the partition function. To further exhibit itsresearch utility, we give an easy generalization of a theorem of Andrews, Dixit and Yee [1] on the mocktheta functions. Throughout, we state a number of observations and questions that can motivate anarray of investigations.

  9. Partition Functions for Supersymmetric Black Holes

    NARCIS (Netherlands)

    Manschot, Jan

    2008-01-01

    Dit proefschrift presenteert recente ontdekkingen voor partitiefuncties van vierdimensionale zwarte gaten. Deze partitiefuncties zijn belangrijke instrumenten om de entropie van zwarte gaten microscopisch te verklaren in snaartheorie en M-theorie. De resultaten zijn toegepast in twee centrale

  10. Partitioning of Nanoparticles into Organic Phases and Model Cells

    Energy Technology Data Exchange (ETDEWEB)

    Posner, J.D.; Westerhoff, P.; Hou, W-C.

    2011-08-25

    dissolved substances" or "more like colloids" as the division between behaviors of macromolecules versus colloids remains ill-defined. Below we detail our work on two broadly defined objectives: (i) Partitioning of ENP into octanol, lipid bilayer, and water, and (ii) disruption of lipid bilayers by ENPs. We have found that the partitioning of NP reaches pseudo-equilibrium distributions between water and organic phases. The equilibrium partitioning most strongly depends on the particle surface charge, which leads us to the conclusion that electrostatic interactions are critical to understanding the fate of NP in the environment. We also show that the kinetic rate at which particle partition is a function of their size (small particles partition faster by number) as can be predicted from simple DLVO models. We have found that particle number density is the most effective dosimetry to present our results and provide quantitative comparison across experiments and experimental platforms. Cumulatively, our work shows that lipid bilayers are a more effective organic phase than octanol because of the definable surface area and ease of interpretation of the results. Our early comparison of NP partitioning between water and lipids suggest that this measurement can be predictive of bioaccumulation in aquatic organisms. We have shown that nanoparticle disrupt lipid bilayer membranes and detail how NP-bilayer interaction leads to the malfunction of lipid bilayers in regulating the fluxes of ionic charges and molecules. Our results show that the disruption of the lipid membranes is similar to that of toxin melittin, except single particles can disrupt a bilayer. We show that only a single particle is required to disrupt a 150 nm DOPC liposome. The equilibrium leakage of membranes is a function of the particle number density and particle surface charge, consistent with results from our partitioning experiments. Our disruption experiments with varying surface functionality show that

  11. Gentile statistics and restricted partitions

    Indian Academy of Sciences (India)

    In a recent paper (Tran et al, Ann. Phys. 311, 204 (2004)), some asymptotic number theoretical results on the partitioning of an integer were derived exploiting its connection to the quantum density of states of a many-particle system. We generalise these results to obtain an asymptotic formula for the restricted or coloured ...

  12. Monomial Crystals and Partition Crystals

    Science.gov (United States)

    Tingley, Peter

    2010-04-01

    Recently Fayers introduced a large family of combinatorial realizations of the fundamental crystal B(Λ0) for ^sln, where the vertices are indexed by certain partitions. He showed that special cases of this construction agree with the Misra-Miwa realization and with Berg's ladder crystal. Here we show that another special case is naturally isomorphic to a realization using Nakajima's monomial crystal.

  13. Partitioning in P-T concept

    International Nuclear Information System (INIS)

    Zhang Peilu; Qi Zhanshun; Zhu Zhixuan

    2000-01-01

    Comparison of dry- and water-method for partitioning fission products and minor actinides from the spent fuels, and description of advance of dry-method were done. Partitioning process, some typical concept and some results of dry-method were described. The problems fond in dry-method up to now were pointed out. The partitioning study program was suggested

  14. The partitioning of uranium and neptunium onto hydrothermally altered concrete

    International Nuclear Information System (INIS)

    Zhao, P.; Allen, P.G.; Sylwester, E.R.; Viani, B.E.

    2000-01-01

    Partition coefficients (K d ) of U(VI) and Np(V) on untreated and hydrothermally altered concrete were measured in 0.01 M NaCl and 0.01 M NaHCO 3 solutions as functions of concentration of the radionuclides, pH, and time. The partition coefficients for both U(VI) and Np(V) on hydrothermally altered concrete are significantly lower than those on untreated concrete. The partition of both U(VI) and Np(V) are pH dependent, although the pH dependence does not appear to reflect precipitation of U and Np-bearing phases. Both sorption and precipitation are likely processes controlling partitioning of U to concrete; sorption is the most likely process controlling the partitioning of Np to concrete. The presence of 0.01 M carbonate species in solution decreases K d of U(VI) for both hydrothermally altered and untreated concrete from ≥ 10 4 mL/g to ∝ 400 to 1000 mL/g indicating a significant impact on U(VI) sorption. In contrast, the presence of carbonate only reduced the K d of Np(V) by one order of magnitude or less. X-ray absorption spectroscopy analysis of U/concrete mixtures at different pHs and times indicate that uranyl ions are partitioned as monomeric species on untreated concrete, but oligomeric species on hydrothermally altered concrete. Similar analysis of Np/concrete mixtures shows that about half of the partitioned Np(V) is reduced to Np(IV) over a period of 6 months. (orig.)

  15. The partition coefficients of 133Xe between blood and bone

    International Nuclear Information System (INIS)

    Lahtinen, T.; Karjalainen, P.; Vaeaenaenen, A.; Lahtinen, R.; Alhava, E.M.

    1981-01-01

    The partition coefficients of 133 Xe between blood and haematopoietic bone marrow and homogenised bone have been determined in vitro. The partition coefficient lambda 1 corresponding to haematopoietic marrow was 0.95 ml g -1 while that corresponding to homogenised bone was a function of age, lambda 2 = 3.11 + 0.049(age)(ml g -1 ). These data can be used for calculating regional blood flow in healthy human femur by means of a simple 133 Xe radionuclide method. (author)

  16. Exact Finite Differences. The Derivative on Non Uniformly Spaced Partitions

    Directory of Open Access Journals (Sweden)

    Armando Martínez-Pérez

    2017-10-01

    Full Text Available We define a finite-differences derivative operation, on a non uniformly spaced partition, which has the exponential function as an exact eigenvector. We discuss some properties of this operator and we propose a definition for the components of a finite-differences momentum operator. This allows us to perform exact discrete calculations.

  17. Partitioning sparse rectangular matrices for parallel processing

    Energy Technology Data Exchange (ETDEWEB)

    Kolda, T.G.

    1998-05-01

    The authors are interested in partitioning sparse rectangular matrices for parallel processing. The partitioning problem has been well-studied in the square symmetric case, but the rectangular problem has received very little attention. They will formalize the rectangular matrix partitioning problem and discuss several methods for solving it. They will extend the spectral partitioning method for symmetric matrices to the rectangular case and compare this method to three new methods -- the alternating partitioning method and two hybrid methods. The hybrid methods will be shown to be best.

  18. PAQ: Partition Analysis of Quasispecies.

    Science.gov (United States)

    Baccam, P; Thompson, R J; Fedrigo, O; Carpenter, S; Cornette, J L

    2001-01-01

    The complexities of genetic data may not be accurately described by any single analytical tool. Phylogenetic analysis is often used to study the genetic relationship among different sequences. Evolutionary models and assumptions are invoked to reconstruct trees that describe the phylogenetic relationship among sequences. Genetic databases are rapidly accumulating large amounts of sequences. Newly acquired sequences, which have not yet been characterized, may require preliminary genetic exploration in order to build models describing the evolutionary relationship among sequences. There are clustering techniques that rely less on models of evolution, and thus may provide nice exploratory tools for identifying genetic similarities. Some of the more commonly used clustering methods perform better when data can be grouped into mutually exclusive groups. Genetic data from viral quasispecies, which consist of closely related variants that differ by small changes, however, may best be partitioned by overlapping groups. We have developed an intuitive exploratory program, Partition Analysis of Quasispecies (PAQ), which utilizes a non-hierarchical technique to partition sequences that are genetically similar. PAQ was used to analyze a data set of human immunodeficiency virus type 1 (HIV-1) envelope sequences isolated from different regions of the brain and another data set consisting of the equine infectious anemia virus (EIAV) regulatory gene rev. Analysis of the HIV-1 data set by PAQ was consistent with phylogenetic analysis of the same data, and the EIAV rev variants were partitioned into two overlapping groups. PAQ provides an additional tool which can be used to glean information from genetic data and can be used in conjunction with other tools to study genetic similarities and genetic evolution of viral quasispecies.

  19. Wakefield Band Partitioning in LINAC Structures

    International Nuclear Information System (INIS)

    Jones, Roger M

    2003-01-01

    In the NLC project multiple bunches of electrons and positrons will be accelerated initially to a centre of mass of 500 GeV and later to 1 TeV or more. In the process of accelerating 192 bunches within a pulse train, wakefields are excited which kick the trailing bunches off axis and can cause luminosity dilution and BBU (Beam Break Up). Several structures to damp the wakefield have been designed and tested at SLAC and KEK and these have been found to successfully damp the wakefield [1]. However, these 2π/3 structures suffered from electrical breakdown and this has prompted us to explore lower group velocity structures operating at higher fundamental mode phase advances. The wakefield partitioning amongst the bands has been found to change markedly with increased phase advance. Here we report on general trends in the kick factor and associated wakefield band partitioning in dipole bands as a function of phase advance of the synchronous mode in linacs. These results are applicable to both TW (travelling wave) and SW (standing wave) structures

  20. A dynamic re-partitioning strategy based on the distribution of key in Spark

    Science.gov (United States)

    Zhang, Tianyu; Lian, Xin

    2018-05-01

    Spark is a memory-based distributed data processing framework, has the ability of processing massive data and becomes a focus in Big Data. But the performance of Spark Shuffle depends on the distribution of data. The naive Hash partition function of Spark can not guarantee load balancing when data is skewed. The time of job is affected by the node which has more data to process. In order to handle this problem, dynamic sampling is used. In the process of task execution, histogram is used to count the key frequency distribution of each node, and then generate the global key frequency distribution. After analyzing the distribution of key, load balance of data partition is achieved. Results show that the Dynamic Re-Partitioning function is better than the default Hash partition, Fine Partition and the Balanced-Schedule strategy, it can reduce the execution time of the task and improve the efficiency of the whole cluster.

  1. Mesh Partitioning Algorithm Based on Parallel Finite Element Analysis and Its Actualization

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2013-01-01

    Full Text Available In parallel computing based on finite element analysis, domain decomposition is a key technique for its preprocessing. Generally, a domain decomposition of a mesh can be realized through partitioning of a graph which is converted from a finite element mesh. This paper discusses the method for graph partitioning and the way to actualize mesh partitioning. Relevant softwares are introduced, and the data structure and key functions of Metis and ParMetis are introduced. The writing, compiling, and testing of the mesh partitioning interface program based on these key functions are performed. The results indicate some objective law and characteristics to guide the users who use the graph partitioning algorithm and software to write PFEM program, and ideal partitioning effects can be achieved by actualizing mesh partitioning through the program. The interface program can also be used directly by the engineering researchers as a module of the PFEM software. So that it can reduce the application of the threshold of graph partitioning algorithm, improve the calculation efficiency, and promote the application of graph theory and parallel computing.

  2. Cylindric partitions, {{\\boldsymbol{ W }}}_{r} characters and the Andrews-Gordon-Bressoud identities

    Science.gov (United States)

    Foda, O.; Welsh, T. A.

    2016-04-01

    We study the Andrews-Gordon-Bressoud (AGB) generalisations of the Rogers-Ramanujan q-series identities in the context of cylindric partitions. We recall the definition of r-cylindric partitions, and provide a simple proof of Borodin’s product expression for their generating functions, that can be regarded as a limiting case of an unpublished proof by Krattenthaler. We also recall the relationships between the r-cylindric partition generating functions, the principal characters of {\\hat{{sl}}}r algebras, the {{\\boldsymbol{ M }}}r r,r+d minimal model characters of {{\\boldsymbol{ W }}}r algebras, and the r-string abaci generating functions, providing simple proofs for each. We then set r = 2, and use two-cylindric partitions to re-derive the AGB identities as follows. Firstly, we use Borodin’s product expression for the generating functions of the two-cylindric partitions with infinitely long parts, to obtain the product sides of the AGB identities, times a factor {(q;q)}∞ -1, which is the generating function of ordinary partitions. Next, we obtain a bijection from the two-cylindric partitions, via two-string abaci, into decorated versions of Bressoud’s restricted lattice paths. Extending Bressoud’s method of transforming between restricted paths that obey different restrictions, we obtain sum expressions with manifestly non-negative coefficients for the generating functions of the two-cylindric partitions which contains a factor {(q;q)}∞ -1. Equating the product and sum expressions of the same two-cylindric partitions, and canceling a factor of {(q;q)}∞ -1 on each side, we obtain the AGB identities.

  3. Scheduling Driven Partitioning of Heterogeneous Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    1998-01-01

    In this paper we present an algorithm for system level hardware/software partitioning of heterogeneous embedded systems. The system is represented as an abstract graph which captures both data-flow and the flow of control. Given an architecture consisting of several processors, ASICs and shared...... busses, our partitioning algorithm finds the partitioning with the smallest hardware cost and is able to predict and guarantee the performance of the system in terms of worst case delay....

  4. Lift of dilogarithm to partition identities

    International Nuclear Information System (INIS)

    Terhoeven, M.

    1992-11-01

    For the whole set of dilogarithm identities found recently using the thermodynamic Bethe-Ansatz for the ADET series of purely elastic scattering theories we give partition identities which involve characters of those conformal field theories which correspond to the UV-limits of the scattering theories. These partition identities in turn allow to derive the dilogarithm identities using modular invariance and a saddle point approximation. We conjecture on possible generalizations of this correspondance, namely, a lift from dilogarithm to partition identities. (orig.)

  5. An OSKit-Based Implementation of Least Privilege Separation Kernel Memory Partitioning

    National Research Council Canada - National Science Library

    Carter, Donald W

    2007-01-01

    .... This work is to build a working prototype of selected TCX kernel functionality. The prototype is constructed and based on OSKit, and restricts information flow between memory partitions and resource accesses...

  6. COMPUTING VERTICES OF INTEGER PARTITION POLYTOPES

    Directory of Open Access Journals (Sweden)

    A. S. Vroublevski

    2015-01-01

    Full Text Available The paper describes a method of generating vertices of the polytopes of integer partitions that was used by the authors to calculate all vertices and support vertices of the partition polytopes for all n ≤ 105 and all knapsack partitions of n ≤ 165. The method avoids generating all partitions of n. The vertices are determined with the help of sufficient and necessary conditions; in the hard cases, the well-known program Polymake is used. Some computational aspects are exposed in more detail. These are the algorithm for checking the criterion that characterizes partitions that are convex combinations of two other partitions; the way of using two combinatorial operations that transform the known vertices to the new ones; and employing the Polymake to recognize a limited number (for small n of partitions that need three or more other partitions for being convexly expressed. We discuss the computational results on the numbers of vertices and support vertices of the partition polytopes and some appealing problems these results give rise to.

  7. Partitioning and Transmutation: IAEA Activities

    International Nuclear Information System (INIS)

    Basak, U.; Monti, S.; )

    2015-01-01

    Full text of publication follows: The importance of partitioning and transmutation (P and T) processes for sustaining nuclear energy growth in the world has been realised in several countries across the world. P and T processes aim at separation and recycling of actinides including minor actinides (MAs) from the spent fuel or high-level liquid waste. The objective of these processes include reuse of separated fissile materials from spent nuclear fuels to obtain energy, enhance resource utilisation, reduce the disposal of toxic radio-nuclides and improve long-term performance of geological repositories. R and D programmes have been launched in many of the Member States to develop advanced partitioning process based on either aqueous or pyro to recover MAs along with other actinides as well as automated and remote techniques for manufacturing fuels containing MAs for the purpose of transmuting them either in fast reactors or accelerator driven hybrids. A number of Member States have been also developing such transmutation systems with the aim to construct and operate demo plants and prototypes in the next decade. The International Atomic Energy Agency has a high priority for the activities on partitioning and transmutation and regularly organises conferences, workshops, seminars and technical meetings in the areas of P and T as a part of information exchange and knowledge sharing at the international level. In the recent past, the Agency organised two technical meetings on advanced partitioning processes and actinide recycle technologies with the objective of providing a common platform for the scientists and engineers working in the areas of separation of actinides along with MAs from spent nuclear fuels and manufacturing of advanced fuels containing MAs in order to bridge the technological gap between them. In 2010, the Agency concluded a Coordinated Research Project (CRP) related to Assessment of Partitioning Processes. The Agency also conducted a first CRP on

  8. An extensive analysis of the parity of broken 3-diamond partitions

    OpenAIRE

    Radu, Silviu; Sellers, James A.

    2013-01-01

    In 2007, Andrews and Paule introduced the family of functions ? k ( n ) which enumerate the number of broken k-diamond partitions for a fixed positive integer k. Since then, numerous mathematicians have considered partitions congruences satisfied by ? k ( n ) for small values of k. In this work, we provide an extensive analysis of the parity of the function ? 3 ( n ) , including a number of Ramanujan-like congruences modulo 2. This will be accomplished by completely characterizing the values ...

  9. Schmidt games and Markov partitions

    International Nuclear Information System (INIS)

    Tseng, Jimmy

    2009-01-01

    Let T be a C 2 -expanding self-map of a compact, connected, C ∞ , Riemannian manifold M. We correct a minor gap in the proof of a theorem from the literature: the set of points whose forward orbits are nondense has full Hausdorff dimension. Our correction allows us to strengthen the theorem. Combining the correction with Schmidt games, we generalize the theorem in dimension one: given a point x 0 in M, the set of points whose forward orbit closures miss x 0 is a winning set. Finally, our key lemma, the no matching lemma, may be of independent interest in the theory of symbolic dynamics or the theory of Markov partitions

  10. Assimilate partitioning during reproductive growth

    International Nuclear Information System (INIS)

    Finazzo, S.F.; Davenport, T.L.

    1987-01-01

    Leaves having various phyllotactic relationships to fruitlets were labeled for 1 hour with 10/sub r/Ci of 14 CO 2 . Fruitlets were also labeled. Fruitlets did fix 14 CO 2 . Translocation of radioactivity from the peel into the fruit occurred slowly and to a limited extent. No evidence of translocation out of the fruitlets was observed. Assimilate partitioning in avocado was strongly influenced by phyllotaxy. If a fruit and the labeled leaf had the same phyllotaxy then greater than 95% of the radiolabel was present in this fruit. When the fruit did not have the same phyllotaxy as the labeled leaf, the radiolabel distribution was skewed with 70% of the label going to a single adjacent position. Avocado fruitlets exhibit uniform labeling throughout a particular tissue. In avocado, assimilates preferentially move from leaves to fruits with the same phyllotaxy

  11. Generating Milton Babbitt's all-partition arrays

    DEFF Research Database (Denmark)

    Bemman, Brian; Meredith, David

    2016-01-01

    In most of Milton Babbitt's (1916–2011) works written since the early 1960s, both the pitch and rhythmic content is organized according to a highly constrained structure known as the all-partition array. The all-partition array provides a framework that ensures that as many different forms...

  12. Partitioning of resveratrol between pentane and DMSO

    DEFF Research Database (Denmark)

    Shen, Chen; Stein, Paul C.; Klösgen-Buchkremer, Beate Maria

    2015-01-01

    Partitioning of trans-3,5,4′-trihydroxy-stilbene (resveratrol) between n-pentane and DMSO was investigated as a contribution to understand the interaction between resveratrol and biomembranes. In order to determine the partition coefficient P* of resveratrol between pentane and DMSO, resveratrol ...

  13. [On the partition of acupuncture academic schools].

    Science.gov (United States)

    Yang, Pengyan; Luo, Xi; Xia, Youbing

    2016-05-01

    Nowadays extensive attention has been paid on the research of acupuncture academic schools, however, a widely accepted method of partition of acupuncture academic schools is still in need. In this paper, the methods of partition of acupuncture academic schools in the history have been arranged, and three typical methods of"partition of five schools" "partition of eighteen schools" and "two-stage based partition" are summarized. After adeep analysis on the disadvantages and advantages of these three methods, a new method of partition of acupuncture academic schools that is called "three-stage based partition" is proposed. In this method, after the overall acupuncture academic schools are divided into an ancient stage, a modern stage and a contemporary stage, each schoolis divided into its sub-school category. It is believed that this method of partition can remedy the weaknesses ofcurrent methods, but also explore a new model of inheritance and development under a different aspect through thedifferentiation and interaction of acupuncture academic schools at three stages.

  14. Partitions in languages and parallel computations

    Energy Technology Data Exchange (ETDEWEB)

    Burgin, M S; Burgina, E S

    1982-05-01

    Partitions of entries (linguistic structures) are studied that are intended for parallel data processing. The representations of formal languages with the aid of such structures is examined, and the relationships are considered between partitions of entries and abstract families of languages and automata. 18 references.

  15. Purification of biomaterials by phase partitioning

    Science.gov (United States)

    Harris, J. M.

    1984-01-01

    A technique which is particularly suited to microgravity environments and which is potentially more powerful than electrophoresis is phase partitioning. Phase partitioning is purification by partitioning between the two immiscible aqueous layers formed by solution of the polymers poly(ethylene glycol) and dextran in water. This technique proved to be very useful for separations in one-g but is limited for cells because the cells are more dense than the phase solutions thus tend to sediment to the bottom of the container before reaching equilibrium with the preferred phase. There are three phases to work in this area: synthesis of new polymers for affinity phase partitioning; development of automated apparatus for ground-based separations; and design of apparatus for performing simple phase partitioning space experiments, including examination of mechanisms for separating phases in the absence of gravity.

  16. Data Partitioning Technique for Improved Video Prioritization

    Directory of Open Access Journals (Sweden)

    Ismail Amin Ali

    2017-07-01

    Full Text Available A compressed video bitstream can be partitioned according to the coding priority of the data, allowing prioritized wireless communication or selective dropping in a congested channel. Known as data partitioning in the H.264/Advanced Video Coding (AVC codec, this paper introduces a further sub-partition of one of the H.264/AVC codec’s three data-partitions. Results show a 5 dB improvement in Peak Signal-to-Noise Ratio (PSNR through this innovation. In particular, the data partition containing intra-coded residuals is sub-divided into data from: those macroblocks (MBs naturally intra-coded, and those MBs forcibly inserted for non-periodic intra-refresh. Interactive user-to-user video streaming can benefit, as then HTTP adaptive streaming is inappropriate and the High Efficiency Video Coding (HEVC codec is too energy demanding.

  17. Generalized Enhanced Multivariance Product Representation for Data Partitioning: Constancy Level

    International Nuclear Information System (INIS)

    Tunga, M. Alper; Demiralp, Metin

    2011-01-01

    Enhanced Multivariance Product Representation (EMPR) method is used to represent multivariate functions in terms of less-variate structures. The EMPR method extends the HDMR expansion by inserting some additional support functions to increase the quality of the approximants obtained for dominantly or purely multiplicative analytical structures. This work aims to develop the generalized form of the EMPR method to be used in multivariate data partitioning approaches. For this purpose, the Generalized HDMR philosophy is taken into consideration to construct the details of the Generalized EMPR at constancy level as the introductory steps and encouraging results are obtained in data partitioning problems by using our new method. In addition, to examine this performance, a number of numerical implementations with concluding remarks are given at the end of this paper.

  18. Ligand-promoted protein folding by biased kinetic partitioning.

    Science.gov (United States)

    Hingorani, Karan S; Metcalf, Matthew C; Deming, Derrick T; Garman, Scott C; Powers, Evan T; Gierasch, Lila M

    2017-04-01

    Protein folding in cells occurs in the presence of high concentrations of endogenous binding partners, and exogenous binding partners have been exploited as pharmacological chaperones. A combined mathematical modeling and experimental approach shows that a ligand improves the folding of a destabilized protein by biasing the kinetic partitioning between folding and alternative fates (aggregation or degradation). Computationally predicted inhibition of test protein aggregation and degradation as a function of ligand concentration are validated by experiments in two disparate cellular systems.

  19. Partitioning taxonomic diversity of aquatic insect assemblages ...

    Science.gov (United States)

    Biological diversity can be divided into: alpha (α, local), beta (β, difference in assemblage composition among locals), and gamma (γ, total diversity). We assessed the partitioning of taxonomic diversity of Ephemeroptera, Plecoptera and Trichoptera (EPT) and of functional feeding groups (FFG) in Neotropical Savanna (southeastern Brazilian Cerrado) streams. To do so, we considered three diversity components: stream site (α), among stream sites (β1), and among hydrologic units (β2). We also evaluated the association of EPT genera composition with heterogeneity in land use, instream physical habitat structure, and instream water quality variables. The percent of EPT taxonomic α diversity (20.7%) was lower than the β1 and β2 diversities (53.1% and 26.2%, respectively). The EPT FFG α diversity (26.5%) was lower than the β1 diversity (55.8%) and higher than the β2 (17.7%) diversity. The collector-gatherer FFG was predominant and had the greatest β diversity among stream sites (β1, 55.8%). Our findings support the need for implementing regional scale conservation strategies in the Cerrado biome, which has been degraded by anthropogenic activities. Using adaptations of the US EPA’s National Aquatic Resource Survey (NARS) designs and methods, Ferreira and colleagues examined the distribution of taxonomic and functional diversity of aquatic insects among basins, stream sites within basins, and within stream sample reaches. They sampled 160 low-order stre

  20. The partition dimension of cycle books graph

    Science.gov (United States)

    Santoso, Jaya; Darmaji

    2018-03-01

    Let G be a nontrivial and connected graph with vertex set V(G), edge set E(G) and S ⊆ V(G) with v ∈ V(G), the distance between v and S is d(v,S) = min{d(v,x)|x ∈ S}. For an ordered partition ∏ = {S 1, S 2, S 3,…, Sk } of V(G), the representation of v with respect to ∏ is defined by r(v|∏) = (d(v, S 1), d(v, S 2),…, d(v, Sk )). The partition ∏ is called a resolving partition of G if all representations of vertices are distinct. The partition dimension pd(G) is the smallest integer k such that G has a resolving partition set with k members. In this research, we will determine the partition dimension of Cycle Books {B}{Cr,m}. Cycle books graph {B}{Cr,m} is a graph consisting of m copies cycle Cr with the common path P 2. It is shown that the partition dimension of cycle books graph, pd({B}{C3,m}) is 3 for m = 2, 3, and m for m ≥ 4. pd({B}{C4,m}) is 3 + 2k for m = 3k + 2, 4 + 2(k ‑ 1) for m = 3k + 1, and 3 + 2(k ‑ 1) for m = 3k. pd({B}{C5,m}) is m + 1.

  1. REE Partitioning in Lunar Minerals

    Science.gov (United States)

    Rapp, J. F.; Lapen, T. J.; Draper, D. S.

    2015-01-01

    Rare earth elements (REE) are an extremely useful tool in modeling lunar magmatic processes. Here we present the first experimentally derived plagioclase/melt partition coefficients in lunar compositions covering the entire suite of REE. Positive europium anomalies are ubiquitous in the plagioclase-rich rocks of the lunar highlands, and complementary negative Eu anomalies are found in most lunar basalts. These features are taken as evidence of a large-scale differentiation event, with crystallization of a global-scale lunar magma ocean (LMO) resulting in a plagioclase flotation crust and a mafic lunar interior from which mare basalts were subsequently derived. However, the extent of the Eu anomaly in lunar rocks is variable. Fagan and Neal [1] reported highly anorthitic plagioclase grains in lunar impact melt rock 60635,19 that displayed negative Eu anomalies as well as the more usual positive anomalies. Indeed some grains in the sample are reported to display both positive and negative anomalies. Judging from cathodoluminescence images, these anomalies do not appear to be associated with crystal overgrowths or zones.

  2. Generating Milton Babbitt's all-partition arrays

    OpenAIRE

    Bemman, Brian; Meredith, David

    2016-01-01

    In most of Milton Babbitt's (1916–2011) works written since the early 1960s, both the pitch and rhythmic content is organized according to a highly constrained structure known as the all-partition array. The all-partition array provides a framework that ensures that as many different forms of a tone row as possible (generated by any combination of transposition, inversion or reversal) are expressed 'horizontally' and that each integer partition of 12 whose cardinality is no greater than the n...

  3. Quantum Dilogarithms and Partition q-Series

    Science.gov (United States)

    Kato, Akishi; Terashima, Yuji

    2015-08-01

    In our previous work (Kato and Terashima, Commun Math Phys. arXiv:1403.6569, 2014), we introduced the partition q-series for mutation loop γ—a loop in exchange quiver. In this paper, we show that for a certain class of mutation sequences, called reddening sequences, the graded version of partition q-series essentially coincides with the ordered product of quantum dilogarithm associated with each mutation; the partition q-series provides a state-sum description of combinatorial Donaldson-Thomas invariants introduced by Keller.

  4. Equilibrium partitioning of macromolecules in confining geometries: Improved universality with a new molecular size parameter

    DEFF Research Database (Denmark)

    Wang, Yanwei; Peters, Günther H.J.; Hansen, Flemming Yssing

    2008-01-01

    structures (CABS), allows the computation of equilibrium partition coefficients as a function of confinement size solely based on a single sampling of the configuration space of a macromolecule in bulk. Superior in computational speed to previous computational methods, CABS is capable of handling slits...... parameter for characterization of spatial confinement effects on macromolecules. Results for the equilibrium partition coefficient in the weak confinement regime depend only on the ratio ofR-s to the confinement size regardless of molecular details....

  5. TEMPERATURE DEPENDENT PHASE BEHAVIOR AND PROTEIN PARTITIONING IN GIANT PLASMA MEMBRANE VESICLES

    OpenAIRE

    Johnson, SA; Stinson, BM; Go, M; Carmona, LM; Reminick, JI; Fang, X; Baumgart, T

    2010-01-01

    Liquid-ordered (Lo) and liquid-disordered (Ld) phase coexistence has been suggested to partition the plasma membrane of biological cells into lateral compartments, allowing for enrichment or depletion of functionally relevant molecules. This dynamic partitioning might be involved in fine-tuning cellular signaling fidelity through coupling to the plasma membrane protein and lipid composition. In earlier work, giant plasma membrane vesicles, obtained by chemically induced blebbing from cultured...

  6. Reconstruction of a piecewise constant conductivity on a polygonal partition via shape optimization in EIT

    Science.gov (United States)

    Beretta, Elena; Micheletti, Stefano; Perotto, Simona; Santacesaria, Matteo

    2018-01-01

    In this paper, we develop a shape optimization-based algorithm for the electrical impedance tomography (EIT) problem of determining a piecewise constant conductivity on a polygonal partition from boundary measurements. The key tool is to use a distributed shape derivative of a suitable cost functional with respect to movements of the partition. Numerical simulations showing the robustness and accuracy of the method are presented for simulated test cases in two dimensions.

  7. Fuzzy 2-partition entropy threshold selection based on Big Bang–Big Crunch Optimization algorithm

    Directory of Open Access Journals (Sweden)

    Baljit Singh Khehra

    2015-03-01

    Full Text Available The fuzzy 2-partition entropy approach has been widely used to select threshold value for image segmenting. This approach used two parameterized fuzzy membership functions to form a fuzzy 2-partition of the image. The optimal threshold is selected by searching an optimal combination of parameters of the membership functions such that the entropy of fuzzy 2-partition is maximized. In this paper, a new fuzzy 2-partition entropy thresholding approach based on the technology of the Big Bang–Big Crunch Optimization (BBBCO is proposed. The new proposed thresholding approach is called the BBBCO-based fuzzy 2-partition entropy thresholding algorithm. BBBCO is used to search an optimal combination of parameters of the membership functions for maximizing the entropy of fuzzy 2-partition. BBBCO is inspired by the theory of the evolution of the universe; namely the Big Bang and Big Crunch Theory. The proposed algorithm is tested on a number of standard test images. For comparison, three different algorithms included Genetic Algorithm (GA-based, Biogeography-based Optimization (BBO-based and recursive approaches are also implemented. From experimental results, it is observed that the performance of the proposed algorithm is more effective than GA-based, BBO-based and recursion-based approaches.

  8. Spatially Partitioned Embedded Runge--Kutta Methods

    KAUST Repository

    Ketcheson, David I.; MacDonald, Colin B.; Ruuth, Steven J.

    2013-01-01

    We study spatially partitioned embedded Runge--Kutta (SPERK) schemes for partial differential equations (PDEs), in which each of the component schemes is applied over a different part of the spatial domain. Such methods may be convenient for problems in which the smoothness of the solution or the magnitudes of the PDE coefficients vary strongly in space. We focus on embedded partitioned methods as they offer greater efficiency and avoid the order reduction that may occur in nonembedded schemes. We demonstrate that the lack of conservation in partitioned schemes can lead to nonphysical effects and propose conservative additive schemes based on partitioning the fluxes rather than the ordinary differential equations. A variety of SPERK schemes are presented, including an embedded pair suitable for the time evolution of fifth-order weighted nonoscillatory spatial discretizations. Numerical experiments are provided to support the theory.

  9. Spatially Partitioned Embedded Runge--Kutta Methods

    KAUST Repository

    Ketcheson, David I.

    2013-10-30

    We study spatially partitioned embedded Runge--Kutta (SPERK) schemes for partial differential equations (PDEs), in which each of the component schemes is applied over a different part of the spatial domain. Such methods may be convenient for problems in which the smoothness of the solution or the magnitudes of the PDE coefficients vary strongly in space. We focus on embedded partitioned methods as they offer greater efficiency and avoid the order reduction that may occur in nonembedded schemes. We demonstrate that the lack of conservation in partitioned schemes can lead to nonphysical effects and propose conservative additive schemes based on partitioning the fluxes rather than the ordinary differential equations. A variety of SPERK schemes are presented, including an embedded pair suitable for the time evolution of fifth-order weighted nonoscillatory spatial discretizations. Numerical experiments are provided to support the theory.

  10. Kinetic partitioning mechanism of HDV ribozyme folding

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiawen; Gong, Sha; Wang, Yujie; Zhang, Wenbing, E-mail: wbzhang@whu.edu.cn [Department of Physics, Wuhan University, Wuhan, Hubei 430072 (China)

    2014-01-14

    RNA folding kinetics is directly tied to RNA biological functions. We introduce here a new approach for predicting the folding kinetics of RNA secondary structure with pseudoknots. This approach is based on our previous established helix-based method for predicting the folding kinetics of RNA secondary structure. In this approach, the transition rates for an elementary step: (1) formation, (2) disruption of a helix stem, and (3) helix formation with concomitant partial melting of an incompatible helix, are calculated with the free energy landscape. The folding kinetics of the Hepatitis delta virus (HDV) ribozyme and the mutated sequences are studied with this method. The folding pathways are identified by recursive searching the states with high net flux-in(out) population starting from the native state. The theory results are in good agreement with that of the experiments. The results indicate that the bi-phasic folding kinetics for the wt HDV sequence is ascribed to the kinetic partitioning mechanism: Part of the population will quickly fold to the native state along the fast pathway, while another part of the population will fold along the slow pathway, in which the population is trapped in a non-native state. Single mutation not only changes the folding rate but also the folding pathway.

  11. Partitioning of L-methionine in aqueous two-phase systems containing poly(propylene glycol) and sodium phosphate salts

    Energy Technology Data Exchange (ETDEWEB)

    Salabat, Alireza, E-mail: a-salabat@araku.ac.ir [Chemistry Department, Arak University, P.O. Box 38156-879, Arak (Iran, Islamic Republic of); Sadeghi, Rahmat [Department of Chemistry, University of Kurdistan, Sanandaj, Kurdistan 66135 (Iran, Islamic Republic of); Moghadam, Somayeh Tiani [Chemistry Department, Arak University, P.O. Box 38156-879, Arak (Iran, Islamic Republic of); Jamehbozorg, Bahman [Department of Chemistry, University of Kurdistan, Sanandaj, Kurdistan 66135 (Iran, Islamic Republic of)

    2011-10-15

    Highlights: > Thermodynamics parameters for partitioning of L-methionine in ATPS. > Investigation of different effects on partition coefficient of the amino acid. > Propose the best condition for L-methionine partitioning. - Abstract: The partitioning behavior of L-methionine has been studied in aqueous two-phase systems of (poly(propylene glycol) + sodium phosphate salts + H{sub 2}O) at different temperatures. The salts used were sodium di-hydrogen phosphate (NaH{sub 2}PO{sub 4}), di-sodium hydrogen phosphate (Na{sub 2}HPO{sub 4}) and tri-sodium phosphate (Na{sub 3}PO{sub 4}). The effects of tie line length, salt type, and temperature on the partition coefficient of this amino acid have been studied. In addition, thermodynamic parameters ({Delta}H{sup o}, {Delta}S{sup o} and {Delta}G{sup o}) as a function of temperature were calculated. The results showed that increasing tie line length led to decreasing of the partition coefficient. We also showed that the partition coefficients of the amino acid in the systems containing Na{sub 3}PO{sub 4} are greater than the other two salts. Moreover, it is verified that increasing temperature led to decreasing the partition coefficient. The experimental partition coefficient data are correlated using a modified virial-type model.

  12. Partitioning of L-methionine in aqueous two-phase systems containing poly(propylene glycol) and sodium phosphate salts

    International Nuclear Information System (INIS)

    Salabat, Alireza; Sadeghi, Rahmat; Moghadam, Somayeh Tiani; Jamehbozorg, Bahman

    2011-01-01

    Highlights: → Thermodynamics parameters for partitioning of L-methionine in ATPS. → Investigation of different effects on partition coefficient of the amino acid. → Propose the best condition for L-methionine partitioning. - Abstract: The partitioning behavior of L-methionine has been studied in aqueous two-phase systems of (poly(propylene glycol) + sodium phosphate salts + H 2 O) at different temperatures. The salts used were sodium di-hydrogen phosphate (NaH 2 PO 4 ), di-sodium hydrogen phosphate (Na 2 HPO 4 ) and tri-sodium phosphate (Na 3 PO 4 ). The effects of tie line length, salt type, and temperature on the partition coefficient of this amino acid have been studied. In addition, thermodynamic parameters (ΔH o , ΔS o and ΔG o ) as a function of temperature were calculated. The results showed that increasing tie line length led to decreasing of the partition coefficient. We also showed that the partition coefficients of the amino acid in the systems containing Na 3 PO 4 are greater than the other two salts. Moreover, it is verified that increasing temperature led to decreasing the partition coefficient. The experimental partition coefficient data are correlated using a modified virial-type model.

  13. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The fourth international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Mito City in Japan, on 111-13 September 1996. The proceedings are presented in six sessions: the major programmes and international cooperation, the partitioning and transmutation programs, feasibility studies, particular separation processes, the accelerator driven transmutation, and the chemistry of the fuel cycle. (A.L.B.)

  14. The total position-spread tensor: Spin partition

    International Nuclear Information System (INIS)

    El Khatib, Muammar; Evangelisti, Stefano; Leininger, Thierry; Brea, Oriana; Fertitta, Edoardo; Bendazzoli, Gian Luigi

    2015-01-01

    The Total Position Spread (TPS) tensor, defined as the second moment cumulant of the position operator, is a key quantity to describe the mobility of electrons in a molecule or an extended system. In the present investigation, the partition of the TPS tensor according to spin variables is derived and discussed. It is shown that, while the spin-summed TPS gives information on charge mobility, the spin-partitioned TPS tensor becomes a powerful tool that provides information about spin fluctuations. The case of the hydrogen molecule is treated, both analytically, by using a 1s Slater-type orbital, and numerically, at Full Configuration Interaction (FCI) level with a V6Z basis set. It is found that, for very large inter-nuclear distances, the partitioned tensor growths quadratically with the distance in some of the low-lying electronic states. This fact is related to the presence of entanglement in the wave function. Non-dimerized open chains described by a model Hubbard Hamiltonian and linear hydrogen chains H n (n ≥ 2), composed of equally spaced atoms, are also studied at FCI level. The hydrogen systems show the presence of marked maxima for the spin-summed TPS (corresponding to a high charge mobility) when the inter-nuclear distance is about 2 bohrs. This fact can be associated to the presence of a Mott transition occurring in this region. The spin-partitioned TPS tensor, on the other hand, has a quadratical growth at long distances, a fact that corresponds to the high spin mobility in a magnetic system

  15. Polyacrylate–water partitioning of biocidal compounds: Enhancing the understanding of biocide partitioning between render and water

    DEFF Research Database (Denmark)

    Bollmann, Ulla E.; Ou, Yi; Mayer, Philipp

    2014-01-01

    -N-octylisothiazolinone). The correlation of the polyacrylate-water partition constants with the octanol-water partition constants is significant, but the polyacrylate-water partition constants were predominantly below octanol-water partition constants (Kow). The comparison with render-water distribution constants showed that estimating...

  16. Polymers as reference partitioning phase: polymer calibration for an analytically operational approach to quantify multimedia phase partitioning

    DEFF Research Database (Denmark)

    Gilbert, Dorothea; Witt, Gesine; Smedes, Foppe

    2016-01-01

    Polymers are increasingly applied for the enrichment of hydrophobic organic chemicals (HOCs) from various types of samples and media in many analytical partitioning-based measuring techniques. We propose using polymers as a reference partitioning phase and introduce polymer-polymer partitioning......-air) and multimedia partition coefficients (lipid-water, air-water) were calculated by applying the new concept of a polymer as reference partitioning phase and by using polymer-polymer partition coefficients as conversion factors. The present study encourages the use of polymer-polymer partition coefficients...

  17. The complex formation-partition and partition-association models of solvent extraction of ions

    International Nuclear Information System (INIS)

    Siekierski, S.

    1976-01-01

    Two models of the extraction process have been proposed. In the first model it is assumed that the partitioning neutral species is at first formed in the aqueous phase and then transferred into the organic phase. The second model is based on the assumption that equivalent amounts of cations are at first transferred from the aqueous into the organic phase and then associated to form a neutral molecule. The role of the solubility parameter in extraction and the relation between the solubility of liquid organic substances in water and the partition of complexes have been discussed. The extraction of simple complexes and complexes with organic ligands has been discussed using the first model. Partition coefficients have been calculated theoretically and compared with experimental values in some very simple cases. The extraction of ion pairs has been discussed using the partition-association model and the concept of single-ion partition coefficients. (author)

  18. Partitioning a macroscopic system into independent subsystems

    Science.gov (United States)

    Delle Site, Luigi; Ciccotti, Giovanni; Hartmann, Carsten

    2017-08-01

    We discuss the problem of partitioning a macroscopic system into a collection of independent subsystems. The partitioning of a system into replica-like subsystems is nowadays a subject of major interest in several fields of theoretical and applied physics. The thermodynamic approach currently favoured by practitioners is based on a phenomenological definition of an interface energy associated with the partition, due to a lack of easily computable expressions for a microscopic (i.e. particle-based) interface energy. In this article, we outline a general approach to derive sharp and computable bounds for the interface free energy in terms of microscopic statistical quantities. We discuss potential applications in nanothermodynamics and outline possible future directions.

  19. Partitioning of selected antioxidants in mayonnaise

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Schwarz, K.; Stockmann, H.

    1999-01-01

    This study examined partitioning of alpha-, beta-, and gamma- tocopherol and six polar antioxidants (Trolox, ferulic acid, caffeic acid, propyl gallate, gallic acid, and catechin) in mayonnaise. Partitioning of antioxidants between different phases was determined after separation of mayonnaise...... acid and catechin) to 83% (Trolox). Accordingly, proportions of 6% (Trolox) to 80% (gallic acid and catechin) were found in the aqueous phase. Similar trends were observed after dialysis. After ultracentrifugation, large proportions of polar antioxidants were found in the "emulsion phase...... by either (a) centrifugation + ultracentrifugation or (b) centrifugation + dialysis. Antioxidants partitioned in accordance with their chemical structure and polarity: Tocopherols were concentrated in the oil phase (93-96%), while the proportion of polar antioxidants in the oil phase ranged from 0% (gallic...

  20. Partitioning of unstructured meshes for load balancing

    International Nuclear Information System (INIS)

    Martin, O.C.; Otto, S.W.

    1994-01-01

    Many large-scale engineering and scientific calculations involve repeated updating of variables on an unstructured mesh. To do these types of computations on distributed memory parallel computers, it is necessary to partition the mesh among the processors so that the load balance is maximized and inter-processor communication time is minimized. This can be approximated by the problem, of partitioning a graph so as to obtain a minimum cut, a well-studied combinatorial optimization problem. Graph partitioning algorithms are discussed that give good but not necessarily optimum solutions. These algorithms include local search methods recursive spectral bisection, and more general purpose methods such as simulated annealing. It is shown that a general procedure enables to combine simulated annealing with Kernighan-Lin. The resulting algorithm is both very fast and extremely effective. (authors) 23 refs., 3 figs., 1 tab

  1. Consistent Estimation of Partition Markov Models

    Directory of Open Access Journals (Sweden)

    Jesús E. García

    2017-04-01

    Full Text Available The Partition Markov Model characterizes the process by a partition L of the state space, where the elements in each part of L share the same transition probability to an arbitrary element in the alphabet. This model aims to answer the following questions: what is the minimal number of parameters needed to specify a Markov chain and how to estimate these parameters. In order to answer these questions, we build a consistent strategy for model selection which consist of: giving a size n realization of the process, finding a model within the Partition Markov class, with a minimal number of parts to represent the process law. From the strategy, we derive a measure that establishes a metric in the state space. In addition, we show that if the law of the process is Markovian, then, eventually, when n goes to infinity, L will be retrieved. We show an application to model internet navigation patterns.

  2. VLSI PARTITIONING ALGORITHM WITH ADAPTIVE CONTROL PARAMETER

    Directory of Open Access Journals (Sweden)

    P. N. Filippenko

    2013-03-01

    Full Text Available The article deals with the problem of very large-scale integration circuit partitioning. A graph is selected as a mathematical model describing integrated circuit. Modification of ant colony optimization algorithm is presented, which is used to solve graph partitioning problem. Ant colony optimization algorithm is an optimization method based on the principles of self-organization and other useful features of the ants’ behavior. The proposed search system is based on ant colony optimization algorithm with the improved method of the initial distribution and dynamic adjustment of the control search parameters. The experimental results and performance comparison show that the proposed method of very large-scale integration circuit partitioning provides the better search performance over other well known algorithms.

  3. Uncertain Henry's law constants compromise equilibrium partitioning calculations of atmospheric oxidation products

    Directory of Open Access Journals (Sweden)

    C. Wang

    2017-06-01

    Full Text Available Gas–particle partitioning governs the distribution, removal, and transport of organic compounds in the atmosphere and the formation of secondary organic aerosol (SOA. The large variety of atmospheric species and their wide range of properties make predicting this partitioning equilibrium challenging. Here we expand on earlier work and predict gas–organic and gas–aqueous phase partitioning coefficients for 3414 atmospherically relevant molecules using COSMOtherm, SPARC Performs Automated Reasoning in Chemistry (SPARC, and poly-parameter linear free-energy relationships. The Master Chemical Mechanism generated the structures by oxidizing primary emitted volatile organic compounds. Predictions for gas–organic phase partitioning coefficients (KWIOM/G by different methods are on average within 1 order of magnitude of each other, irrespective of the numbers of functional groups, except for predictions by COSMOtherm and SPARC for compounds with more than three functional groups, which have a slightly higher discrepancy. Discrepancies between predictions of gas–aqueous partitioning (KW/G are much larger and increase with the number of functional groups in the molecule. In particular, COSMOtherm often predicts much lower KW/G for highly functionalized compounds than the other methods. While the quantum-chemistry-based COSMOtherm accounts for the influence of intra-molecular interactions on conformation, highly functionalized molecules likely fall outside of the applicability domain of the other techniques, which at least in part rely on empirical data for calibration. Further analysis suggests that atmospheric phase distribution calculations are sensitive to the partitioning coefficient estimation method, in particular to the estimated value of KW/G. The large uncertainty in KW/G predictions for highly functionalized organic compounds needs to be resolved to improve the quantitative treatment of SOA formation.

  4. Partitioning and transmutation. Annual Report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Enarsson, Aa; Landgren, A; Liljenzin, J O; Skaalberg, M; Spjuth, L [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry

    1997-12-01

    The current research project on partitioning and transmutation at the Dept. of Nuclear Chemistry, CTH, has the primary objective to investigate separation processes useful in connection with transmutation of long-lived radionuclides in high level nuclear waste. Partitioning is necessary in order to recover and purify the elements before and after each irradiation in a P and T treatment. In order to achieve a high transmutation efficiency the chemical separation process used must have small losses to various waste streams. At present, only aqueous based separation processes are known to be able to achieve the high recovery and separation efficiencies necessary for a useful P and T process. Refs, figs, tabs.

  5. AGT, N-Burge partitions and WN minimal models

    International Nuclear Information System (INIS)

    Belavin, Vladimir; Foda, Omar; Santachiara, Raoul

    2015-01-01

    Let B N,n p, p ′ , H be a conformal block, with n consecutive channels χ ι , ι=1,⋯,n, in the conformal field theory M N p, p ′ × M H , where M N p, p ′ is a W N minimal model, generated by chiral spin-2, ⋯, spin-N currents, and labeled by two co-prime integers p and p ′ , 1partition functions without modification to compute B N,n p, p ′ ,H , leads to ill-defined expressions. We show that restricting the states that flow in the channels χ ι , ι=1,⋯,n, to states labeled by N partitions that we call N-Burge partitions, that satisfy conditions that we call N-Burge conditions, leads to well-defined expressions that we propose to identify with B N,n p, p ′ , H . We check our identification by showing that a non-trivial conformal block that we compute, using the N-Burge conditions satisfies the expected differential equation. Further, we check that the generating functions of triples of Young diagrams that obey 3-Burge conditions coincide with characters of degenerate W 3 irreducible highest weight representations.

  6. A Discrete Dynamical Model of Signed Partitions

    Directory of Open Access Journals (Sweden)

    G. Chiaselotti

    2013-01-01

    Full Text Available We use a discrete dynamical model with three evolution rules in order to analyze the structure of a partially ordered set of signed integer partitions whose main properties are actually not known. This model is related to the study of some extremal combinatorial sum problems.

  7. Countering oversegmentation in partitioning-based connectivities

    NARCIS (Netherlands)

    Ouzounis, Georgios K.; Wilkinson, Michael H.F.

    2005-01-01

    A new theoretical development is presented for handling the over-segmentation problem in partitioning-based connected openings. The definition we propose treats singletons generated with the earlier method, as elements of a larger connected component. Unlike the existing formalism, this new method

  8. Entropy based file type identification and partitioning

    Science.gov (United States)

    2017-06-01

    energy spectrum,” Proceedings of the Twenty-Ninth International Florida Artificial Intelligence Research Society Conference, pp. 288–293, 2016...ABBREVIATIONS AES Advanced Encryption Standard ANN Artificial Neural Network ASCII American Standard Code for Information Interchange CWT...the identification of file types and file partitioning. This approach has applications in cybersecurity as it allows for a quick determination of

  9. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)

  10. Empirical Bayes Approaches to Multivariate Fuzzy Partitions.

    Science.gov (United States)

    Woodbury, Max A.; Manton, Kenneth G.

    1991-01-01

    An empirical Bayes-maximum likelihood estimation procedure is presented for the application of fuzzy partition models in describing high dimensional discrete response data. The model describes individuals in terms of partial membership in multiple latent categories that represent bounded discrete spaces. (SLD)

  11. Mapping Pesticide Partition Coefficients By Electromagnetic Induction

    Science.gov (United States)

    A potential method for reducing pesticide leaching is to base application rates on the leaching potential of a specific chemical and soil combination. However, leaching is determined in part by the partitioning of the chemical between the soil and soil solution, which varies across a field. Standard...

  12. Protium, an infrastructure for partitioned applications

    NARCIS (Netherlands)

    Young, Cliff; Lakshman, Y.N.; Szymanski, Tom; Reppy, John; Presotto, David; Pike, Rob; Narlikar, Girija; Mullender, Sape; Grosse, Eric

    Remote access feels different from local access. The major issues are consistency (machines vary in GUIs, applications, and devices) and responsiveness (the user must wait for network and server delays). Protium attacks these by partitioning programs into local viewers that connect to remote

  13. Set Partitions and the Multiplication Principle

    Science.gov (United States)

    Lockwood, Elise; Caughman, John S., IV

    2016-01-01

    To further understand student thinking in the context of combinatorial enumeration, we examine student work on a problem involving set partitions. In this context, we note some key features of the multiplication principle that were often not attended to by students. We also share a productive way of thinking that emerged for several students who…

  14. Plasmid and chromosome partitioning: surprises from phylogeny

    DEFF Research Database (Denmark)

    Gerdes, Kenn; Møller-Jensen, Jakob; Bugge Jensen, Rasmus

    2000-01-01

    Plasmids encode partitioning genes (par) that are required for faithful plasmid segregation at cell division. Initially, par loci were identified on plasmids, but more recently they were also found on bacterial chromosomes. We present here a phylogenetic analysis of par loci from plasmids and chr...

  15. European Europart integrated project on actinide partitioning

    International Nuclear Information System (INIS)

    Madic, C.; Hudson, M.J.

    2005-01-01

    This poster presents the objectives of EUROPART, a scientific integrated project between 24 European partners, mostly funded by the European Community within the FP6. EUROPART aims at developing chemical partitioning processes for the so-called minor actinides (MA) contained in nuclear wastes, i.e. from Am to Cf. In the case of dedicated spent fuels or targets, the actinides to be separated also include U, Pu and Np. The techniques considered for the separation of these radionuclides belong to the fields of hydrometallurgy and pyrometallurgy, as in the previous FP5 programs named PARTNEW and PYROREP. The two main axes of research within EUROPART will be: The partitioning of MA (from Am to Cf) from high burn-up UO x fuels and multi-recycled MOx fuels; the partitioning of the whole actinide family for recycling, as an option for advanced dedicated fuel cycles (and in connection with the studies to be performed in the EUROTRANS integrated project). In hydrometallurgy, the research is organised into five Work Packages (WP). Four WP are dedicated to the study of partitioning methods mainly based on the use of solvent extraction methods, one WP is dedicated to the development of actinide co-conversion methods for fuel or target preparation. The research in pyrometallurgy is organized into four WP, listed hereafter: development of actinide partitioning methods, study of the basic chemistry of trans-curium elements in molten salts, study of the conditioning of the wastes, some system studies. Moreover, a strong management team will be concerned not only with the technical and financial issues arising from EUROPART, but also with information, communication and benefits for Europe. Training and education of young researchers will also pertain to the project. EUROPART has also established collaboration with US DOE and Japanese CRIEPI. (authors)

  16. Open software tools for eddy covariance flux partitioning

    Science.gov (United States)

    Agro-ecosystem management and assessment will benefit greatly from the development of reliable techniques for partitioning evapotranspiration (ET) into evaporation (E) and transpiration (T). Among other activities, flux partitioning can aid in evaluating consumptive vs. non-consumptive agricultural...

  17. Probabilistic Decision Based Block Partitioning for Future Video Coding

    KAUST Repository

    Wang, Zhao; Wang, Shiqi; Zhang, Jian; Wang, Shanshe; Ma, Siwei

    2017-01-01

    , the mode decision problem is casted into a probabilistic framework to select the final partition based on the confidence interval decision strategy. Experimental results show that the proposed CIET algorithm can speed up QTBT block partitioning structure

  18. The importance of having an appropriate data segmentation (partitioning)

    CERN Document Server

    Dimitrov, Gancho; The ATLAS collaboration

    2014-01-01

    In this presentation will be shown real life examples from database applications in the ATLAS experiment @ LHC where we make use of many Oracle partitioning techniques available in Oracle 11g. With the broadly used range partitioning and its option of automatic interval partitioning we add our own logic in PLSQL for sustaining data sliding windows in order to enforce various data retention policies. We also make use of the reference partitioning in some use cases, however the most challenging was to segment the data of a large bookkeeping system which resulted in tens of thousands list partitions and list sub-partitions. Partition and sub-partition management, index strategy, statistics gathering and queries execution plan stability are important factors when choosing an appropriate for the use case data management model. The gained experience with all of those will be shared with the audience.

  19. The importance of applying an appropriate data partitioning

    CERN Document Server

    Dimitrov, Gancho; The ATLAS collaboration

    2015-01-01

    In this presentation are described specific technical solutions put in place in various database applications of the ATLAS experiment at LHC where we make use of several partitioning techniques available in Oracle 11g. With the broadly used range partitioning and its option of automatic interval partitioning we add our own logic in PLSQL procedures and scheduler jobs to sustain data sliding windows in order to enforce various data retention policies. We also make use of the new Oracle 11g reference partitioning in the ATLAS Nightly Build System to achieve uniform data segmentation. However the most challenging was to segment the data of the new ATLAS Distributed Data Management system, which resulted in tens of thousands list type partitions and sub-partitions. Partition and sub-partition management, index strategy, statistics gathering and queries execution plan stability are important factors when choosing an appropriate physical model for the application data management. The so-far accumulated knowledge wi...

  20. Partition of some key regulating services in terrestrial ecosystems: Meta-analysis and review

    Energy Technology Data Exchange (ETDEWEB)

    Viglizzo, E.F., E-mail: evigliz@cpenet.com.ar [INTA, EEA Anguil, Grupo de Investigaciones en Gestión Ambiental (GIGA), Av. Spinetto 785, 6300 Santa Rosa, La Pampa (Argentina); INCITAP-CONICET, Ruta 35, km 335, 6300 Santa Rosa, La Pampa (Argentina); UNLPam, Facultad de Ciencias Exactas y Naturales, Av. Uruguay 151, 6300 Santa Rosa, La Pampa (Argentina); Jobbágy, E.G. [CONICET, Andes 950, 5700 San Luis, San Luis (Argentina); Grupo de Estudios Ambientales IMASL, Ejército de los, Andes 950, 5700 San Luis, San Luis (Argentina); Ricard, M.F. [INCITAP-CONICET, Ruta 35, km 335, 6300 Santa Rosa, La Pampa (Argentina); UNLPam, Facultad de Ciencias Exactas y Naturales, Av. Uruguay 151, 6300 Santa Rosa, La Pampa (Argentina); Paruelo, J.M. [Laboratorio de Análisis Regional y Teledetección, Departamento de Métodos Cuantitativos Sistemas de información, Facultad de Agronomía and IFEVA, Universidad de Buenos Aires and CONICET, Av. San Martín 4453, 1417 Buenos Aires (Argentina)

    2016-08-15

    Our knowledge about the functional foundations of ecosystem service (ES) provision is still limited and more research is needed to elucidate key functional mechanisms. Using a simplified eco-hydrological scheme, in this work we analyzed how land-use decisions modify the partition of some essential regulatory ES by altering basic relationships between biomass stocks and water flows. A comprehensive meta-analysis and review was conducted based on global, regional and local data from peer-reviewed publications. We analyzed five datasets comprising 1348 studies and 3948 records on precipitation (PPT), aboveground biomass (AGB), AGB change, evapotranspiration (ET), water yield (WY), WY change, runoff (R) and infiltration (I). The conceptual framework was focused on ES that are associated with the ecological functions (e.g., intermediate ES) of ET, WY, R and I. ES included soil protection, carbon sequestration, local climate regulation, water-flow regulation and water recharge. To address the problem of data normality, the analysis included both parametric and non-parametric regression analysis. Results demonstrate that PPT is a first-order biophysical factor that controls ES release at the broader scales. At decreasing scales, ES are partitioned as result of PPT interactions with other biophysical and anthropogenic factors. At intermediate scales, land-use change interacts with PPT modifying ES partition as it the case of afforestation in dry regions, where ET and climate regulation may be enhanced at the expense of R and water-flow regulation. At smaller scales, site-specific conditions such as topography interact with PPT and AGB displaying different ES partition formats. The probable implications of future land-use and climate change on some key ES production and partition are discussed. - Highlights: • The partition of regulatory services in ecosystems poses a major policy challenge. • We examined how partitions occur at the hydrosphere

  1. Partition of some key regulating services in terrestrial ecosystems: Meta-analysis and review

    International Nuclear Information System (INIS)

    Viglizzo, E.F.; Jobbágy, E.G.; Ricard, M.F.; Paruelo, J.M.

    2016-01-01

    Our knowledge about the functional foundations of ecosystem service (ES) provision is still limited and more research is needed to elucidate key functional mechanisms. Using a simplified eco-hydrological scheme, in this work we analyzed how land-use decisions modify the partition of some essential regulatory ES by altering basic relationships between biomass stocks and water flows. A comprehensive meta-analysis and review was conducted based on global, regional and local data from peer-reviewed publications. We analyzed five datasets comprising 1348 studies and 3948 records on precipitation (PPT), aboveground biomass (AGB), AGB change, evapotranspiration (ET), water yield (WY), WY change, runoff (R) and infiltration (I). The conceptual framework was focused on ES that are associated with the ecological functions (e.g., intermediate ES) of ET, WY, R and I. ES included soil protection, carbon sequestration, local climate regulation, water-flow regulation and water recharge. To address the problem of data normality, the analysis included both parametric and non-parametric regression analysis. Results demonstrate that PPT is a first-order biophysical factor that controls ES release at the broader scales. At decreasing scales, ES are partitioned as result of PPT interactions with other biophysical and anthropogenic factors. At intermediate scales, land-use change interacts with PPT modifying ES partition as it the case of afforestation in dry regions, where ET and climate regulation may be enhanced at the expense of R and water-flow regulation. At smaller scales, site-specific conditions such as topography interact with PPT and AGB displaying different ES partition formats. The probable implications of future land-use and climate change on some key ES production and partition are discussed. - Highlights: • The partition of regulatory services in ecosystems poses a major policy challenge. • We examined how partitions occur at the hydrosphere

  2. Skeletonization and Partitioning of Digital Images Using Discrete Morse Theory.

    Science.gov (United States)

    Delgado-Friedrichs, Olaf; Robins, Vanessa; Sheppard, Adrian

    2015-03-01

    We show how discrete Morse theory provides a rigorous and unifying foundation for defining skeletons and partitions of grayscale digital images. We model a grayscale image as a cubical complex with a real-valued function defined on its vertices (the voxel values). This function is extended to a discrete gradient vector field using the algorithm presented in Robins, Wood, Sheppard TPAMI 33:1646 (2011). In the current paper we define basins (the building blocks of a partition) and segments of the skeleton using the stable and unstable sets associated with critical cells. The natural connection between Morse theory and homology allows us to prove the topological validity of these constructions; for example, that the skeleton is homotopic to the initial object. We simplify the basins and skeletons via Morse-theoretic cancellation of critical cells in the discrete gradient vector field using a strategy informed by persistent homology. Simple working Python code for our algorithms for efficient vector field traversal is included. Example data are taken from micro-CT images of porous materials, an application area where accurate topological models of pore connectivity are vital for fluid-flow modelling.

  3. On Partition of Unities Generated by Entire Functions and Gabor Frames in L2(Rd) and ℓ2(Zd)

    DEFF Research Database (Denmark)

    Christensen, Ole; Kim, Hong Oh; Kim, Rae Young

    2016-01-01

    characterize the maximal smoothness of Pχ[0,N]d, as well as the function that achieves it. A number of especially attractive constructions are achieved, e.g., of trigonometric polynomials leading to any desired (finite) regularity for a fixed support size. As an application we obtain easy constructions...

  4. The prediction of blood-tissue partitions, water-skin partitions and skin permeation for agrochemicals.

    Science.gov (United States)

    Abraham, Michael H; Gola, Joelle M R; Ibrahim, Adam; Acree, William E; Liu, Xiangli

    2014-07-01

    There is considerable interest in the blood-tissue distribution of agrochemicals, and a number of researchers have developed experimental methods for in vitro distribution. These methods involve the determination of saline-blood and saline-tissue partitions; not only are they indirect, but they do not yield the required in vivo distribution. The authors set out equations for gas-tissue and blood-tissue distribution, for partition from water into skin and for permeation from water through human skin. Together with Abraham descriptors for the agrochemicals, these equations can be used to predict values for all of these processes. The present predictions compare favourably with experimental in vivo blood-tissue distribution where available. The predictions require no more than simple arithmetic. The present method represents a much easier and much more economic way of estimating blood-tissue partitions than the method that uses saline-blood and saline-tissue partitions. It has the added advantages of yielding the required in vivo partitions and being easily extended to the prediction of partition of agrochemicals from water into skin and permeation from water through skin. © 2013 Society of Chemical Industry.

  5. Comparison of modeling approaches for carbon partitioning: Impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP

    Science.gov (United States)

    Takeshi Ise; Creighton M. Litton; Christian P. Giardina; Akihiko Ito

    2010-01-01

    Partitioning of gross primary production (GPP) to aboveground versus belowground, to growth versus respiration, and to short versus long�]lived tissues exerts a strong influence on ecosystem structure and function, with potentially large implications for the global carbon budget. A recent meta-analysis of forest ecosystems suggests that carbon partitioning...

  6. Ocean surface partitioning strategies using ocean colour remote Sensing: A review

    Science.gov (United States)

    Krug, Lilian Anne; Platt, Trevor; Sathyendranath, Shubha; Barbosa, Ana B.

    2017-06-01

    The ocean surface is organized into regions with distinct properties reflecting the complexity of interactions between environmental forcing and biological responses. The delineation of these functional units, each with unique, homogeneous properties and underlying ecosystem structure and dynamics, can be defined as ocean surface partitioning. The main purposes and applications of ocean partitioning include the evaluation of particular marine environments; generation of more accurate satellite ocean colour products; assimilation of data into biogeochemical and climate models; and establishment of ecosystem-based management practices. This paper reviews the diverse approaches implemented for ocean surface partition into functional units, using ocean colour remote sensing (OCRS) data, including their purposes, criteria, methods and scales. OCRS offers a synoptic, high spatial-temporal resolution, multi-decadal coverage of bio-optical properties, relevant to the applications and value of ocean surface partitioning. In combination with other biotic and/or abiotic data, OCRS-derived data (e.g., chlorophyll-a, optical properties) provide a broad and varied source of information that can be analysed using different delineation methods derived from subjective, expert-based to unsupervised learning approaches (e.g., cluster, fuzzy and empirical orthogonal function analyses). Partition schemes are applied at global to mesoscale spatial coverage, with static (time-invariant) or dynamic (time-varying) representations. A case study, the highly heterogeneous area off SW Iberian Peninsula (NE Atlantic), illustrates how the selection of spatial coverage and temporal representation affects the discrimination of distinct environmental drivers of phytoplankton variability. Advances in operational oceanography and in the subject area of satellite ocean colour, including development of new sensors, algorithms and products, are among the potential benefits from extended use, scope and

  7. On the partitioning method and the perturbation quantum theory - discrete spectra

    International Nuclear Information System (INIS)

    Logrado, P.G.

    1982-05-01

    Lower and upper bounds to eigenvalues of the Schroedinger equation H Ψ = E Ψ (H = H 0 + V) and the convergence condition, in Schonberg's perturbation theory, are presented. These results are obtained using the partitioning technique. It is presented for the first time a perturbation treatment obtained when the reference function in the partitioning technique is chosen to be a true eigenfunction Ψ. The convergence condition and upper and lower bounds for the true eigenvalues E are derived in this formulation. The concept of the reaction and wave operators is also discussed. (author)

  8. Unpartitioned versus incompletely partitioned cochleae: radiologic differentiation.

    Science.gov (United States)

    Sennaroglu, Levent; Saatci, Isil

    2004-07-01

    In the process of evaluating our patients, we realized that the term "Mondini deformity" was being used to describe two different types of incomplete partition of the cochlea. THE First one consisted of an unpartitioned, completely empty cochlea where the interscalar septum and entire modiolus were absent, giving the cochlea a cystic appearance; a grossly dilated vestibule accompanied this lesion. The second pathology fitted the classic description of Mondini deformity, consisting of a normal basal turn and cystic apex (where the middle and apical turns form a cystic cavity), dilated vestibule, and enlarged vestibular aqueduct. This study was planned to investigate the differences between the two types of incomplete partition for inner ear malformations based on radiologic features. We conducted a retrospective review of temporal bone computed tomography (CT) findings. The subjects were 18 patients with profound bilateral sensorineural hearing loss who had high-resolution CT with contiguous 1-mm thick images obtained through the petrous bone in axial sections. The CT results were reviewed as incomplete partition type I (IP-I) and type II (IP-II). Incomplete partition type I (unpartitioned cochlea, cystic cochleovestibular malformation) is defined as a malformation in which the cochlea lacks the entire modiolus and interscalar septa, resulting in a cystic appearance and there is an accompanying grossly dilated vestibule. In incomplete partition type II (incompletely partitioned cochlea, the Mondini deformity), there is a cochlea comprised of a normal basal turn and cystic apex accompanied by a minimally dilated vestibule and enlarged vestibular aqueduct (VA). Measurements involving the cochlea, vestibule, vestibular aqueduct, and internal auditory canal (IAC) were done to determine the characteristic features of these pathologies. : Thirteen ears had IP-I and 18 ears had IP-II anomaly. The size of the cochleae in both anomalies showed no significant difference from

  9. Partitioning and transmutation. Annual Report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Ekberg, C.; Enarsson, Aa.; Gustavsson, C.; Landgren, A.; Liljenzin, J.O.; Spjuth, L. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry

    2000-05-01

    The current research project on partitioning and transmutation at the Dept. of Nuclear Chemistry, CTH, has the primary objective to investigate separation processes useful in connection with transmutation of long-lived radionuclides in high level nuclear waste. Partitioning is necessary in order to recover and purify the elements before and after each irradiation in a P and T treatment. In order to achieve a high transmutation efficiency the chemical separation process used must have small losses to various waste streams. At present, only aqueous based separation processes are known to be able to achieve the high recovery and separation efficiencies necessary for a useful P and T process. During 1999 two of the three PhD students in this project have finalised their dissertations. Lena Spjuth has been working with oligo pyridines, triazines and malonamides; Anders Landgren has studied Aliquat-336 and redox kinetics. Two papers, included as appendices in the report, have been separately indexed.

  10. Nested partitions method, theory and applications

    CERN Document Server

    Shi, Leyuan

    2009-01-01

    There is increasing need to solve large-scale complex optimization problems in a wide variety of science and engineering applications, including designing telecommunication networks for multimedia transmission, planning and scheduling problems in manufacturing and military operations, or designing nanoscale devices and systems. Advances in technology and information systems have made such optimization problems more and more complicated in terms of size and uncertainty. Nested Partitions Method, Theory and Applications provides a cutting-edge research tool to use for large-scale, complex systems optimization. The Nested Partitions (NP) framework is an innovative mix of traditional optimization methodology and probabilistic assumptions. An important feature of the NP framework is that it combines many well-known optimization techniques, including dynamic programming, mixed integer programming, genetic algorithms and tabu search, while also integrating many problem-specific local search heuristics. The book uses...

  11. Partitioning and transmutation. Annual Report 1999

    International Nuclear Information System (INIS)

    Ekberg, C.; Enarsson, Aa.; Gustavsson, C.; Landgren, A.; Liljenzin, J.O.; Spjuth, L.

    2000-05-01

    The current research project on partitioning and transmutation at the Dept. of Nuclear Chemistry, CTH, has the primary objective to investigate separation processes useful in connection with transmutation of long-lived radionuclides in high level nuclear waste. Partitioning is necessary in order to recover and purify the elements before and after each irradiation in a P and T treatment. In order to achieve a high transmutation efficiency the chemical separation process used must have small losses to various waste streams. At present, only aqueous based separation processes are known to be able to achieve the high recovery and separation efficiencies necessary for a useful P and T process. During 1999 two of the three PhD students in this project have finalised their dissertations. Lena Spjuth has been working with oligo pyridines, triazines and malonamides; Anders Landgren has studied Aliquat-336 and redox kinetics. Two papers, included as appendices in the report, have been separately indexed

  12. Influence of lateral slab edge distance on plate velocity, trench velocity, and subduction partitioning

    NARCIS (Netherlands)

    Schellart, W. P.; Stegman, D. R.; Farrington, R. J.; Moresi, L.

    2011-01-01

    Subduction of oceanic lithosphere occurs through both trenchward subducting plate motion and trench retreat. We investigate how subducting plate velocity, trench velocity and the partitioning of these two velocity components vary for individual subduction zone segments as a function of proximity to

  13. Hanford soil partitioning and vapor extraction study

    International Nuclear Information System (INIS)

    Yonge, D.; Hossain, A.; Cameron, R.; Ford, H.; Storey, C.

    1996-07-01

    This report describes the testing and results of laboratory experiments conducted to assist the carbon tetrachloride soil vapor extraction project operating in the 200 West Area of the Hanford Site in Richland, Washington. Vapor-phase adsorption and desorption testing was performed using carbon tetrachloride and Hanford Site soils to estimate vapor-soil partitioning and reasonably achievable carbon tetrachloride soil concentrations during active vapor extractions efforts at the 200 West Area. (CCl 4 is used in Pu recovery from aqueous streams.)

  14. Fourier Transform Spectrometer Controller for Partitioned Architectures

    DEFF Research Database (Denmark)

    Tamas-Selicean, Domitian; Keymeulen, D.; Berisford, D.

    2013-01-01

    The current trend in spacecraft computing is to integrate applications of different criticality levels on the same platform using no separation. This approach increases the complexity of the development, verification and integration processes, with an impact on the whole system life cycle. Resear......, such as avionics and automotive. In this paper we investigate the challenges of developing and the benefits of integrating a scientific instrument, namely a Fourier Transform Spectrometer, in such a partitioned architecture....

  15. Gate-tunable current partition in graphene-based topological zero lines

    Science.gov (United States)

    Wang, Ke; Ren, Yafei; Deng, Xinzhou; Yang, Shengyuan A.; Jung, Jeil; Qiao, Zhenhua

    2017-06-01

    We demonstrate new mechanisms for gate-tunable current partition at topological zero-line intersections in a graphene-based current splitter. Based on numerical calculations of the nonequilibrium Green's functions and Landauer-Büttiker formula, we show that the presence of a perpendicular magnetic field on the order of a few Teslas allows for carrier sign dependent current routing. In the zero-field limit the control on current routing and partition can be achieved within a range of 10-90 % of the total incoming current by tuning the carrier density at tilted intersections or by modifying the relative magnitude of the bulk band gaps via gate voltage. We discuss the implications of our findings in the design of topological zero-line networks where finite orbital magnetic moments are expected when the current partition is asymmetric.

  16. A double-panel active segmented partition module using decoupled analog feedback controllers: numerical model.

    Science.gov (United States)

    Sagers, Jason D; Leishman, Timothy W; Blotter, Jonathan D

    2009-06-01

    Low-frequency sound transmission has long plagued the sound isolation performance of lightweight partitions. Over the past 2 decades, researchers have investigated actively controlled structures to prevent sound transmission from a source space into a receiving space. An approach using active segmented partitions (ASPs) seeks to improve low-frequency sound isolation capabilities. An ASP is a partition which has been mechanically and acoustically segmented into a number of small individually controlled modules. This paper provides a theoretical and numerical development of a single ASP module configuration, wherein each panel of the double-panel structure is independently actuated and controlled by an analog feedback controller. A numerical model is developed to estimate frequency response functions for the purpose of controller design, to understand the effects of acoustic coupling between the panels, to predict the transmission loss of the module in both passive and active states, and to demonstrate that the proposed ASP module will produce bidirectional sound isolation.

  17. Partitioning and Transmutation - Physics, Technology and Politics

    International Nuclear Information System (INIS)

    Gudowski, W.

    2002-01-01

    Nuclear reactions can be effectively used to destroy radio toxic isotopes through transmutation processes transforming those isotopes into less radio toxic or stable ones Spent nuclear fuel, a mixture of many isotopes with some of them being highly radio toxic for many hundred thousands of years, may be effectively transmuted through nuclear reactions with neutrons. In a dedicated, well designed transmutation system one can, in principle, reduce the radiotoxicity of the spent nuclear fuel to a level, which will require isolation from the biosphere for the period of time for which engineered barriers can be constructed and licensed (not more than 1-2 thousands of years). En effective transmutation process can not be achieved without a suitable partitioning. Only partitioning of the spent nuclear fuel into predetermined groups of elements makes possible an effective use of neutrons to transmute long-lived radioactive isotopes into short-lived or stable one. However, most of the chemical separation/partitioning processes are element- not isotope-specific, therefore the transmutation of the elements with an existing isotope composition is a typical alternative for transmutation processes. Isotope-specific separation is possible but still very expensive and technologically not matured

  18. Partitioning of TRU elements from Chinese HLLW

    International Nuclear Information System (INIS)

    Song Chongli; Zhu Yongjun

    1994-04-01

    The partitioning of TRU elements from the Chinese HLLW is feasible. The required D.F. values for producing a waste suitable for land disposal are given. The TRPO process developed in China could be used for this purpose. The research and development of the TRPO process is summarized and the general flowsheet is given. The Chinese HLLW has very high salt concentration. It causes the formation of third phase when contacted with TRPO extractant. The third phase would disappear by diluting the Chinese HLLW to 2∼3 times before extraction. The preliminary experiment shows very attractive results. The separation of Sr and Cs from the Chinese HLLW is also possible. The process is being studied. The partitioning of TRU elements and long lived ratio-nuclides from the Chinese HLLW provides an alternative method for its disposal. The partitioning of the Chinese HLLW could greatly reduce the waste volume, that is needed to be vitrified and to be disposed in to the deep repository, and then would drastically save the overall waste disposal cost

  19. Equilibrium Partitioning Sediment Benchmarks (ESBs) for the ...

    Science.gov (United States)

    This document describes procedures to determine the concentrations of nonionic organic chemicals in sediment interstitial waters. In previous ESB documents, the general equilibrium partitioning (EqP) approach was chosen for the derivation of sediment benchmarks because it accounts for the varying bioavailability of chemicals in different sediments and allows for the incorporation of the appropriate biological effects concentration. This provides for the derivation of benchmarks that are causally linked to the specific chemical, applicable across sediments, and appropriately protective of benthic organisms.  This equilibrium partitioning sediment benchmark (ESB) document was prepared by scientists from the Atlantic Ecology Division, Mid-Continent Ecology Division, and Western Ecology Division, the Office of Water, and private consultants. The document describes procedures to determine the interstitial water concentrations of nonionic organic chemicals in contaminated sediments. Based on these concentrations, guidance is provided on the derivation of toxic units to assess whether the sediments are likely to cause adverse effects to benthic organisms. The equilibrium partitioning (EqP) approach was chosen because it is based on the concentrations of chemical(s) that are known to be harmful and bioavailable in the environment.  This document, and five others published over the last nine years, will be useful for the Program Offices, including Superfund, a

  20. Partitioned key-value store with atomic memory operations

    Energy Technology Data Exchange (ETDEWEB)

    Bent, John M.; Faibish, Sorin; Grider, Gary

    2017-02-07

    A partitioned key-value store is provided that supports atomic memory operations. A server performs a memory operation in a partitioned key-value store by receiving a request from an application for at least one atomic memory operation, the atomic memory operation comprising a memory address identifier; and, in response to the atomic memory operation, performing one or more of (i) reading a client-side memory location identified by the memory address identifier and storing one or more key-value pairs from the client-side memory location in a local key-value store of the server; and (ii) obtaining one or more key-value pairs from the local key-value store of the server and writing the obtained one or more key-value pairs into the client-side memory location identified by the memory address identifier. The server can perform functions obtained from a client-side memory location and return a result to the client using one or more of the atomic memory operations.

  1. OPERATOR NORM INEQUALITIES BETWEEN TENSOR UNFOLDINGS ON THE PARTITION LATTICE.

    Science.gov (United States)

    Wang, Miaoyan; Duc, Khanh Dao; Fischer, Jonathan; Song, Yun S

    2017-05-01

    Interest in higher-order tensors has recently surged in data-intensive fields, with a wide range of applications including image processing, blind source separation, community detection, and feature extraction. A common paradigm in tensor-related algorithms advocates unfolding (or flattening) the tensor into a matrix and applying classical methods developed for matrices. Despite the popularity of such techniques, how the functional properties of a tensor changes upon unfolding is currently not well understood. In contrast to the body of existing work which has focused almost exclusively on matricizations, we here consider all possible unfoldings of an order- k tensor, which are in one-to-one correspondence with the set of partitions of {1, …, k }. We derive general inequalities between the l p -norms of arbitrary unfoldings defined on the partition lattice. In particular, we demonstrate how the spectral norm ( p = 2) of a tensor is bounded by that of its unfoldings, and obtain an improved upper bound on the ratio of the Frobenius norm to the spectral norm of an arbitrary tensor. For specially-structured tensors satisfying a generalized definition of orthogonal decomposability, we prove that the spectral norm remains invariant under specific subsets of unfolding operations.

  2. Safety-Critical Partitioned Software Architecture: A Partitioned Software Architecture for Robotic

    Science.gov (United States)

    Horvath, Greg; Chung, Seung H.; Cilloniz-Bicchi, Ferner

    2011-01-01

    The flight software on virtually every mission currently managed by JPL has several major flaws that make it vulnerable to potentially fatal software defects. Many of these problems can be addressed by recently developed partitioned operating systems (OS). JPL has avoided adopting a partitioned operating system on its flight missions, primarily because doing so would require significant changes in flight software design, and the risks associated with changes of that magnitude cannot be accepted by an active flight project. The choice of a partitioned OS can have a dramatic effect on the overall system and software architecture, allowing for realization of benefits far beyond the concerns typically associated with the choice of OS. Specifically, we believe that a partitioned operating system, when coupled with an appropriate architecture, can provide a strong infrastructure for developing systems for which reusability, modifiability, testability, and reliability are essential qualities. By adopting a partitioned OS, projects can gain benefits throughout the entire development lifecycle, from requirements and design, all the way to implementation, testing, and operations.

  3. Structuring heterogeneous biological information using fuzzy clustering of k-partite graphs

    Directory of Open Access Journals (Sweden)

    Theis Fabian J

    2010-10-01

    Full Text Available Abstract Background Extensive and automated data integration in bioinformatics facilitates the construction of large, complex biological networks. However, the challenge lies in the interpretation of these networks. While most research focuses on the unipartite or bipartite case, we address the more general but common situation of k-partite graphs. These graphs contain k different node types and links are only allowed between nodes of different types. In order to reveal their structural organization and describe the contained information in a more coarse-grained fashion, we ask how to detect clusters within each node type. Results Since entities in biological networks regularly have more than one function and hence participate in more than one cluster, we developed a k-partite graph partitioning algorithm that allows for overlapping (fuzzy clusters. It determines for each node a degree of membership to each cluster. Moreover, the algorithm estimates a weighted k-partite graph that connects the extracted clusters. Our method is fast and efficient, mimicking the multiplicative update rules commonly employed in algorithms for non-negative matrix factorization. It facilitates the decomposition of networks on a chosen scale and therefore allows for analysis and interpretation of structures on various resolution levels. Applying our algorithm to a tripartite disease-gene-protein complex network, we were able to structure this graph on a large scale into clusters that are functionally correlated and biologically meaningful. Locally, smaller clusters enabled reclassification or annotation of the clusters' elements. We exemplified this for the transcription factor MECP2. Conclusions In order to cope with the overwhelming amount of information available from biomedical literature, we need to tackle the challenge of finding structures in large networks with nodes of multiple types. To this end, we presented a novel fuzzy k-partite graph partitioning

  4. LHCb: Optimising query execution time in LHCb Bookkeeping System using partition pruning and partition wise joins

    CERN Multimedia

    Mathe, Z

    2013-01-01

    The LHCb experiment produces a huge amount of data which has associated metadata such as run number, data taking condition (detector status when the data was taken), simulation condition, etc. The data are stored in files, replicated on the Computing Grid around the world. The LHCb Bookkeeping System provides methods for retrieving datasets based on their metadata. The metadata is stored in a hybrid database model, which is a mixture of Relational and Hierarchical database models and is based on the Oracle Relational Database Management System (RDBMS). The database access has to be reliable and fast. In order to achieve a high timing performance, the tables are partitioned and the queries are executed in parallel. When we store large amounts of data the partition pruning is essential for database performance, because it reduces the amount of data retrieved from the disk and optimises the resource utilisation. This research presented here is focusing on the extended composite partitioning strategy such as rang...

  5. Partition wall structure in spent fuel storage pool and construction method for the partition wall

    International Nuclear Information System (INIS)

    Izawa, Masaaki

    1998-01-01

    A partitioning wall for forming cask pits as radiation shielding regions by partitioning inside of a spent fuel storage pool is prepared by covering both surface of a concrete body by shielding metal plates. The metal plate comprises opposed plate units integrated by welding while sandwiching a metal frame as a reinforcing material for the concrete body, the lower end of the units is connected to a floor of a pool by fastening members, and concrete is set while using the metal plate of the units as a frame to form the concrete body. The shielding metal plate has a double walled structure formed by welding a lining plate disposed on the outer surface of the partition wall and a shield plate disposed to the inner side. Then the term for construction can be shortened, and the capacity for storing spent fuels can be increased. (N.H.)

  6. Octanol-Water Partition Coefficient from 3D-RISM-KH Molecular Theory of Solvation with Partial Molar Volume Correction.

    Science.gov (United States)

    Huang, WenJuan; Blinov, Nikolay; Kovalenko, Andriy

    2015-04-30

    The octanol-water partition coefficient is an important physical-chemical characteristic widely used to describe hydrophobic/hydrophilic properties of chemical compounds. The partition coefficient is related to the transfer free energy of a compound from water to octanol. Here, we introduce a new protocol for prediction of the partition coefficient based on the statistical-mechanical, 3D-RISM-KH molecular theory of solvation. It was shown recently that with the compound-solvent correlation functions obtained from the 3D-RISM-KH molecular theory of solvation, the free energy functional supplemented with the correction linearly related to the partial molar volume obtained from the Kirkwood-Buff/3D-RISM theory, also called the "universal correction" (UC), provides accurate prediction of the hydration free energy of small compounds, compared to explicit solvent molecular dynamics [ Palmer , D. S. ; J. Phys.: Condens. Matter 2010 , 22 , 492101 ]. Here we report that with the UC reparametrized accordingly this theory also provides an excellent agreement with the experimental data for the solvation free energy in nonpolar solvent (1-octanol) and so accurately predicts the octanol-water partition coefficient. The performance of the Kovalenko-Hirata (KH) and Gaussian fluctuation (GF) functionals of the solvation free energy, with and without UC, is tested on a large library of small compounds with diverse functional groups. The best agreement with the experimental data for octanol-water partition coefficients is obtained with the KH-UC solvation free energy functional.

  7. Knowledge base rule partitioning design for CLIPS

    Science.gov (United States)

    Mainardi, Joseph D.; Szatkowski, G. P.

    1990-01-01

    This describes a knowledge base (KB) partitioning approach to solve the problem of real-time performance using the CLIPS AI shell when containing large numbers of rules and facts. This work is funded under the joint USAF/NASA Advanced Launch System (ALS) Program as applied research in expert systems to perform vehicle checkout for real-time controller and diagnostic monitoring tasks. The Expert System advanced development project (ADP-2302) main objective is to provide robust systems responding to new data frames of 0.1 to 1.0 second intervals. The intelligent system control must be performed within the specified real-time window, in order to meet the demands of the given application. Partitioning the KB reduces the complexity of the inferencing Rete net at any given time. This reduced complexity improves performance but without undo impacts during load and unload cycles. The second objective is to produce highly reliable intelligent systems. This requires simple and automated approaches to the KB verification & validation task. Partitioning the KB reduces rule interaction complexity overall. Reduced interaction simplifies the V&V testing necessary by focusing attention only on individual areas of interest. Many systems require a robustness that involves a large number of rules, most of which are mutually exclusive under different phases or conditions. The ideal solution is to control the knowledge base by loading rules that directly apply for that condition, while stripping out all rules and facts that are not used during that cycle. The practical approach is to cluster rules and facts into associated 'blocks'. A simple approach has been designed to control the addition and deletion of 'blocks' of rules and facts, while allowing real-time operations to run freely. Timing tests for real-time performance for specific machines under R/T operating systems have not been completed but are planned as part of the analysis process to validate the design.

  8. A hybrid nested partitions algorithm for banking facility location problems

    KAUST Repository

    Xia, Li

    2010-07-01

    The facility location problem has been studied in many industries including banking network, chain stores, and wireless network. Maximal covering location problem (MCLP) is a general model for this type of problems. Motivated by a real-world banking facility optimization project, we propose an enhanced MCLP model which captures the important features of this practical problem, namely, varied costs and revenues, multitype facilities, and flexible coverage functions. To solve this practical problem, we apply an existing hybrid nested partitions algorithm to the large-scale situation. We further use heuristic-based extensions to generate feasible solutions more efficiently. In addition, the upper bound of this problem is introduced to study the quality of solutions. Numerical results demonstrate the effectiveness and efficiency of our approach. © 2010 IEEE.

  9. Atom-partitioned multipole expansions for electrostatic potential boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M., E-mail: michael.s.lee131.civ@mail.mil [Simulation Sciences Branch, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Leiter, K. [Simulation Sciences Branch, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Eisner, C. [Secure Mission Solutions, a Parsons Company (United States); Simulation Sciences Branch, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Knap, J. [Simulation Sciences Branch, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States)

    2017-01-01

    Applications such as grid-based real-space density functional theory (DFT) use the Poisson equation to compute electrostatics. However, the expected long tail of the electrostatic potential requires either the use of a large and costly outer domain or Dirichlet boundary conditions estimated via multipole expansion. We find that the oft-used single-center spherical multipole expansion is only appropriate for isotropic mesh domains such as spheres and cubes. In this work, we introduce a method suitable for high aspect ratio meshes whereby the charge density is partitioned into atomic domains and multipoles are computed for each domain. While this approach is moderately more expensive than a single-center expansion, it is numerically stable and still a small fraction of the overall cost of a DFT calculation. The net result is that when high aspect ratio systems are being studied, form-fitted meshes can now be used in lieu of cubic meshes to gain computational speedup.

  10. OCL-BASED TEST CASE GENERATION USING CATEGORY PARTITIONING METHOD

    Directory of Open Access Journals (Sweden)

    A. Jalila

    2015-10-01

    Full Text Available The adoption of fault detection techniques during initial stages of software development life cycle urges to improve reliability of a software product. Specification-based testing is one of the major criterions to detect faults in the requirement specification or design of a software system. However, due to the non-availability of implementation details, test case generation from formal specifications become a challenging task. As a novel approach, the proposed work presents a methodology to generate test cases from OCL (Object constraint Language formal specification using Category Partitioning Method (CPM. The experiment results indicate that the proposed methodology is more effective in revealing specification based faults. Furthermore, it has been observed that OCL and CPM form an excellent combination for performing functional testing at the earliest to improve software quality with reduced cost.

  11. Partitioning of organic production in marine plankton communities

    DEFF Research Database (Denmark)

    Conan, P.; Søndergaard, Morten; Kragh, T.

    2007-01-01

    We investigated the partitioning of carbon, nitrogen, and phosphorus between particulate and dissolved production using 11-m(3) marine mesocosms (bags) in a Norwegian fjord with a salinity of 28.3, a chlorophyll concentration of 0.6 mu g L-1, an even biomass among five algal groups, and nitrogen...... between 17 and 58 in the P-replete bags. The C: P ratio of new DOM in the +Si bags was about 300 at all dosing regimes. Consequently, the range in N: P ratios was also large, with values from below 1 to about 30. Carbon-rich DOM in oceans and coastal waters is not necessarily a function of a slow...

  12. Partial transposition on bi-partite system

    OpenAIRE

    Han, Y. -J.; Ren, X. J.; Wu, Y. C.; Guo, G. -C.

    2006-01-01

    Many of the properties of the partial transposition are not clear so far. Here the number of the negative eigenvalues of K(T)(the partial transposition of K) is considered carefully when K is a two-partite state. There are strong evidences to show that the number of negative eigenvalues of K(T) is N(N-1)/2 at most when K is a state in Hilbert space N*N. For the special case, 2*2 system(two qubits), we use this result to give a partial proof of the conjecture sqrt(K(T))(T)>=0. We find that thi...

  13. Partitioning and transmutation: Radioactive waste management option

    International Nuclear Information System (INIS)

    Stanculescu, A.

    2005-01-01

    Growing world population with increasing energy needs, especially in the developing countries, Threat of global warming due to CO 2 emissions demands non-fossil electricity production. Nuclear will have to be part of a sustainable mix of energy production options Figures show that 350 GWe worldwide capacity is 'nuclear'. Present worldwide spent fuel (containing high Pu inventory) and HLW would need large repositories. In view of the previous facts this lecture deals Partitioning and transmutation as radioactive waste management option. Partitioning and transmutation (P and T) is a complex technology i.e. advanced reprocessing, and demand transuranics fuel fabrication plants, as well as innovative and/or dedicated transmutation reactors. In addition to U, Pu, and 129 I, 'partitioning' extracts from the liquid high level waste the minor actinides (MA) and the long-lived fission products (LLFP) 99-Tc, 93-Zr, 135-Cs, 107-Pd, and 79-Se). 'Transmutation' requires fully new fuel fabrication plants and reactor technologies to be developed and implemented on industrial scale. Present LWRs are not suited for MA and LLFP transmutation (safety consideration, plant operation, poor incineration capability). Only specially licensed LWRs can cope with MOX fuel; for increased Pu loadings (up to 100%), special reactor designs (e.g., ABB80+) are required; a combination of these reactor types could allow Pu inventory stabilization. Long-term waste radiotoxicity can be effectively reduced only if transuranics are 'incinerated' through fission with very hard neutron spectra. New reactor concepts (dedicated fast reactors, Accelerator Driven Systems (ADS), fusion/fission hybrid reactors) have been proposed as transmuters/incinerators. Significant Pu+MAs incineration rates can be achieved in symbiotic scenarios: LWR-MOX and dedicated fast reactors; fast neutron spectrum ADS mainly for MA incineration; very high thermal flux ADS concepts could also provide a significant transuranics

  14. Language Constructs for Data Partitioning and Distribution

    Directory of Open Access Journals (Sweden)

    P. Crooks

    1995-01-01

    Full Text Available This article presents a survey of language features for distributed memory multiprocessor systems (DMMs, in particular, systems that provide features for data partitioning and distribution. In these systems the programmer is freed from consideration of the low-level details of the target architecture in that there is no need to program explicit processes or specify interprocess communication. Programs are written according to the shared memory programming paradigm but the programmer is required to specify, by means of directives, additional syntax or interactive methods, how the data of the program are decomposed and distributed.

  15. A Note on Using Partitioning Techniques for Solving Unconstrained Optimization Problems on Parallel Systems

    Directory of Open Access Journals (Sweden)

    Mehiddin Al-Baali

    2015-12-01

    Full Text Available We deal with the design of parallel algorithms by using variable partitioning techniques to solve nonlinear optimization problems. We propose an iterative solution method that is very efficient for separable functions, our scope being to discuss its performance for general functions. Experimental results on an illustrative example have suggested some useful modifications that, even though they improve the efficiency of our parallel method, leave some questions open for further investigation.

  16. Divergent evapotranspiration partition dynamics between shrubs and grasses in a shrub-encroached steppe ecosystem.

    Science.gov (United States)

    Wang, Pei; Li, Xiao-Yan; Wang, Lixin; Wu, Xiuchen; Hu, Xia; Fan, Ying; Tong, Yaqin

    2018-06-04

    Previous evapotranspiration (ET) partitioning studies have usually neglected competitions and interactions between antagonistic plant functional types. This study investigated whether shrubs and grasses have divergent ET partition dynamics impacted by different water-use patterns, canopy structures, and physiological properties in a shrub-encroached steppe ecosystem in Inner Mongolia, China. The soil water-use patterns of shrubs and grasses have been quantified by an isotopic tracing approach and coupled into an improved multisource energy balance model to partition ET fluxes into soil evaporation, grass transpiration, and shrub transpiration. The mean fractional contributions to total ET were 24 ± 13%, 20 ± 4%, and 56 ± 16% for shrub transpiration, grass transpiration, and soil evaporation respectively during the growing season. Difference in ecohydrological connectivity and leaf development both contributed to divergent transpiration partitioning between shrubs and grasses. Shrub-encroachment processes result in larger changes in the ET components than in total ET flux, which could be well explained by changes in canopy resistance, an ecosystem function dominated by the interaction of soil water-use patterns and ecosystem structure. The analyses presented here highlight the crucial effects of vegetation structural changes on the processes of land-atmosphere interaction and climate feedback. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  17. Uncertainties associated with lacking data for predictions of solid-solution partitioning of metals in soil

    International Nuclear Information System (INIS)

    Le, T.T. Yen; Hendriks, A. Jan

    2014-01-01

    Soil properties, i.e., pH and contents of soil organic matter (SOM), dissolved organic carbon (DOC), clay, oxides, and reactive metals, are required inputs to both mechanistic and empirical modeling in assessing metal solid-solution partitioning. Several of these properties are rarely measured in site-specific risk assessment. We compared the uncertainties induced by lacking data on these soil properties in estimating metal soil solution concentrations. The predictions by the Orchestra framework were more sensitive to lacking soil property data than the predictions by the transfer functions. The deviations between soil solution concentrations of Cd, Ni, Zn, Ba, and Co estimated with measured SOM and those estimated with generic SOM by the Orchestra framework were about 10 times larger than the deviations in the predictions by the transfer functions. High uncertainties were induced by lacking data in assessing solid-solution partitioning of oxy-anions like As, Mo, Sb, Se, and V. Deviations associated with lacking data in predicting soil solution concentrations of these metals by the Orchestra framework reached three-to-six orders of magnitude. The solid-solution partitioning of metal cations was strongly influenced by pH and contents of organic matter, oxides, and reactive metals. Deviations of more than two orders of magnitude were frequently observed between the estimates of soil solution concentrations with the generic values of these properties and the estimates based on the measured data. Reliable information on these properties is preferred to be included in the assessment by either the Orchestra framework or transfer functions. - Highlights: • Estimates of metal solid-solution partitioning sensitive to soil property data. • Uncertainty mainly due to lacking reactive metal contents, pH, and organic matter. • Soil solution concentrations of oxy-anions highly influenced by oxide contents. • Clay contents had least effects on solid-solution partitioning

  18. Uncertainties associated with lacking data for predictions of solid-solution partitioning of metals in soil

    Energy Technology Data Exchange (ETDEWEB)

    Le, T.T. Yen, E-mail: YenLe@science.ru.nl; Hendriks, A. Jan

    2014-08-15

    Soil properties, i.e., pH and contents of soil organic matter (SOM), dissolved organic carbon (DOC), clay, oxides, and reactive metals, are required inputs to both mechanistic and empirical modeling in assessing metal solid-solution partitioning. Several of these properties are rarely measured in site-specific risk assessment. We compared the uncertainties induced by lacking data on these soil properties in estimating metal soil solution concentrations. The predictions by the Orchestra framework were more sensitive to lacking soil property data than the predictions by the transfer functions. The deviations between soil solution concentrations of Cd, Ni, Zn, Ba, and Co estimated with measured SOM and those estimated with generic SOM by the Orchestra framework were about 10 times larger than the deviations in the predictions by the transfer functions. High uncertainties were induced by lacking data in assessing solid-solution partitioning of oxy-anions like As, Mo, Sb, Se, and V. Deviations associated with lacking data in predicting soil solution concentrations of these metals by the Orchestra framework reached three-to-six orders of magnitude. The solid-solution partitioning of metal cations was strongly influenced by pH and contents of organic matter, oxides, and reactive metals. Deviations of more than two orders of magnitude were frequently observed between the estimates of soil solution concentrations with the generic values of these properties and the estimates based on the measured data. Reliable information on these properties is preferred to be included in the assessment by either the Orchestra framework or transfer functions. - Highlights: • Estimates of metal solid-solution partitioning sensitive to soil property data. • Uncertainty mainly due to lacking reactive metal contents, pH, and organic matter. • Soil solution concentrations of oxy-anions highly influenced by oxide contents. • Clay contents had least effects on solid-solution partitioning

  19. Structural and functional partitioning of bread wheat chromosome 3B

    Czech Academy of Sciences Publication Activity Database

    Choulet, F.; Alberti, A.; Theil, S.; Glover, N.; Barbe, V.; Daron, J.; Pingault, L.; Sourdille, P.; Couloux, A.; Paux, E.; LeRoy, P.; Bellec, A.; Gaspin, Ch.; Šafář, Jan; Doležel, Jaroslav; Rogers, J.; Vandepoele, K.; Mayer, K.; Wincker, P.; Feuillet, C.

    2014-01-01

    Roč. 345, č. 6194 (2014) ISSN 0036-8075 R&D Projects: GA ČR GBP501/12/G090; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : hexaploid wheat * sequencing * meiotic recombination Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 33.611, year: 2014 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=MEDLINE&DestLinkType=FullRecord&UT=25035497

  20. Graphs on Surfaces and the Partition Function of String Theory

    OpenAIRE

    Garcia-Islas, J. Manuel

    2007-01-01

    Graphs on surfaces is an active topic of pure mathematics belonging to graph theory. It has also been applied to physics and relates discrete and continuous mathematics. In this paper we present a formal mathematical description of the relation between graph theory and the mathematical physics of discrete string theory. In this description we present problems of the combinatorial world of real importance for graph theorists. The mathematical details of the paper are as follows: There is a com...

  1. On superconformal characters and partition functions in three dimensions

    NARCIS (Netherlands)

    Dolan, F.A.

    2010-01-01

    Possible short and semishort positive energy, unitary representations of the Osp(2N|4) superconformal group in three dimensions are discussed. Corresponding character formulas are obtained, consistent with character formulas for the SO(3,2) conformal group, revealing long multiplet decomposition at

  2. Gait Partitioning Methods: A Systematic Review

    Science.gov (United States)

    Taborri, Juri; Palermo, Eduardo; Rossi, Stefano; Cappa, Paolo

    2016-01-01

    In the last years, gait phase partitioning has come to be a challenging research topic due to its impact on several applications related to gait technologies. A variety of sensors can be used to feed algorithms for gait phase partitioning, mainly classifiable as wearable or non-wearable. Among wearable sensors, footswitches or foot pressure insoles are generally considered as the gold standard; however, to overcome some inherent limitations of the former, inertial measurement units have become popular in recent decades. Valuable results have been achieved also though electromyography, electroneurography, and ultrasonic sensors. Non-wearable sensors, such as opto-electronic systems along with force platforms, remain the most accurate system to perform gait analysis in an indoor environment. In the present paper we identify, select, and categorize the available methodologies for gait phase detection, analyzing advantages and disadvantages of each solution. Finally, we comparatively examine the obtainable gait phase granularities, the usable computational methodologies and the optimal sensor placements on the targeted body segments. PMID:26751449

  3. Partitioning an object-oriented terminology schema.

    Science.gov (United States)

    Gu, H; Perl, Y; Halper, M; Geller, J; Kuo, F; Cimino, J J

    2001-07-01

    Controlled medical terminologies are increasingly becoming strategic components of various healthcare enterprises. However, the typical medical terminology can be difficult to exploit due to its extensive size and high density. The schema of a medical terminology offered by an object-oriented representation is a valuable tool in providing an abstract view of the terminology, enhancing comprehensibility and making it more usable. However, schemas themselves can be large and unwieldy. We present a methodology for partitioning a medical terminology schema into manageably sized fragments that promote increased comprehension. Our methodology has a refinement process for the subclass hierarchy of the terminology schema. The methodology is carried out by a medical domain expert in conjunction with a computer. The expert is guided by a set of three modeling rules, which guarantee that the resulting partitioned schema consists of a forest of trees. This makes it easier to understand and consequently use the medical terminology. The application of our methodology to the schema of the Medical Entities Dictionary (MED) is presented.

  4. Nutrient and carbohydrate partitioning in sorghum stover

    International Nuclear Information System (INIS)

    Powell, J.M.; Hons, F.M.; McBee, G.G.

    1991-01-01

    Sorghum [Sorghum bicolor (L.) Moench] stover has been demonstrated to be a potential biomass energy source. Complete aboveground crop removal, however, can result in soil degradation. Differential dry matter, nutrient, and carbohydrate partitioning by sorghum cultivars may allow management strategies that return certain parts to the field while removing other portions for alternative uses, such as energy production. A field study was conducted to determine N,P,K, nonstructural carbohydrate, cellulose hemicellulose, and lignin distributions in stover of three diverse sorghum cultivars of differing harvest indices. Determinations were based on total vegetative biomass; total blades; total stalks; and upper middle, and lower blades and stalks. Concentrations of N and P were higher in blades than stalks and generally declines from upper to lower stover parts. Large carbohydrate and lignin concentration differences were observed on the basis of cultivar and stover part. Greater nutrient partitioning to the upper third of the intermediate and forage-type sorghum stovers was observed as compared to the conventional grain cultivar. Stover carbohydrates for all cultivars were mainly contained in the lower two-thirds of the stalk fraction. A system was proposed for returning upper stover portion to soil, while removing remaining portions for alternative uses

  5. Gait Partitioning Methods: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Juri Taborri

    2016-01-01

    Full Text Available In the last years, gait phase partitioning has come to be a challenging research topic due to its impact on several applications related to gait technologies. A variety of sensors can be used to feed algorithms for gait phase partitioning, mainly classifiable as wearable or non-wearable. Among wearable sensors, footswitches or foot pressure insoles are generally considered as the gold standard; however, to overcome some inherent limitations of the former, inertial measurement units have become popular in recent decades. Valuable results have been achieved also though electromyography, electroneurography, and ultrasonic sensors. Non-wearable sensors, such as opto-electronic systems along with force platforms, remain the most accurate system to perform gait analysis in an indoor environment. In the present paper we identify, select, and categorize the available methodologies for gait phase detection, analyzing advantages and disadvantages of each solution. Finally, we comparatively examine the obtainable gait phase granularities, the usable computational methodologies and the optimal sensor placements on the targeted body segments.

  6. Consolidated Incineration Facility metals partitioning test

    International Nuclear Information System (INIS)

    Burns, D.B.

    1993-01-01

    Test burns were conducted at Energy and Environmental Research Corporation's rotary kiln simulator, the Solid Waste Incineration Test Facility, using surrogate CIF wastes spiked with hazardous metals and organics. The primary objective for this test program was measuring heavy metals partition between the kiln bottom ash, scrubber blowdown solution, and incinerator stack gas. Also, these secondary waste streams were characterized to determine waste treatment requirements prior to final disposal. These tests were designed to investigate the effect of several parameters on metals partitioning: incineration temperature; waste chloride concentration; waste form (solid or liquid); and chloride concentration in the scrubber water. Tests were conducted at three kiln operating temperatures. Three waste simulants were burned, two solid waste mixtures (paper, plastic, latex, and one with and one without PVC), and a liquid waste mixture (containing benzene and chlorobenzene). Toxic organic and metal compounds were spiked into the simulated wastes to evaluate their fate under various combustion conditions. Kiln offgases were sampled for volatile organic compounds (VOC), semi-volatile organic compounds (SVOC), polychlorinated dibenz[p]dioxins and polychlorinated dibenzofurans (PCDD/PCDF), metals, particulate loading and size distribution, HCl, and combustion products. Stack gas sampling was performed to determine additional treatment requirements prior to final waste disposal. Significant test results are summarized below

  7. Partitioning and Transmutation of minor actinides

    International Nuclear Information System (INIS)

    Koch, L.; Wellum, R.

    1991-01-01

    The partitioning of minor actinides from spent fuels and their transmutation into short-lived fission products has been the topic of two dedicated meetings organized jointly by the European Commission and the OECD. The conclusion of the last meeting in 1980, in short, was that partitioning and transmutation of minor actinides, especially in fast reactors, seemed possible. However, the incentive, which would be a reduction of the radiological hazard to the public, was too small if long-lived fission products were not included. Furthermore this meeting showed that minor actinide targets or possible nuclear fuels containing minor actinides for transmutation had not yet been developed. The European Institute for Transuranium Elements took up this task and has carried it out as a small activity for several years. Interests expressed recently by an expert meeting of the OECD/NEA (Paris, 25 April 1989), which was initiated by the proposed Japanese project Omega, led us to the conclusion that the present state of knowledge should be looked at in a workshop environment. Since the Japanese proposal within the project Omega is based on a broader approach we needed this evaluation to assess the relevance of our present activity and wanted to identifiy additional studies which might be needed to cover possible future demands from the public. This workshop was therefore organized, and participants active in the field from EC countries, the USA and Japan were invited

  8. New parallel SOR method by domain partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Dexuan [Courant Inst. of Mathematical Sciences New York Univ., NY (United States)

    1996-12-31

    In this paper, we propose and analyze a new parallel SOR method, the PSOR method, formulated by using domain partitioning together with an interprocessor data-communication technique. For the 5-point approximation to the Poisson equation on a square, we show that the ordering of the PSOR based on the strip partition leads to a consistently ordered matrix, and hence the PSOR and the SOR using the row-wise ordering have the same convergence rate. However, in general, the ordering used in PSOR may not be {open_quote}consistently ordered{close_quotes}. So, there is a need to analyze the convergence of PSOR directly. In this paper, we present a PSOR theory, and show that the PSOR method can have the same asymptotic rate of convergence as the corresponding sequential SOR method for a wide class of linear systems in which the matrix is {open_quotes}consistently ordered{close_quotes}. Finally, we demonstrate the parallel performance of the PSOR method on four different message passing multiprocessors (a KSR1, the Intel Delta, an Intel Paragon and an IBM SP2), along with a comparison with the point Red-Black and four-color SOR methods.

  9. The Partition of Multi-Resolution LOD Based on Qtm

    Science.gov (United States)

    Hou, M.-L.; Xing, H.-Q.; Zhao, X.-S.; Chen, J.

    2011-08-01

    The partition hierarch of Quaternary Triangular Mesh (QTM) determine the accuracy of spatial analysis and application based on QTM. In order to resolve the problem that the partition hierarch of QTM is limited by the level of the computer hardware, the new method that Multi- Resolution LOD (Level of Details) based on QTM will be discussed in this paper. This method can make the resolution of the cells varying with the viewpoint position by partitioning the cells of QTM, selecting the particular area according to the viewpoint; dealing with the cracks caused by different subdivisions, it satisfies the request of unlimited partition in part.

  10. THE PARTITION OF MULTI-RESOLUTION LOD BASED ON QTM

    Directory of Open Access Journals (Sweden)

    M.-L. Hou

    2012-08-01

    Full Text Available The partition hierarch of Quaternary Triangular Mesh (QTM determine the accuracy of spatial analysis and application based on QTM. In order to resolve the problem that the partition hierarch of QTM is limited by the level of the computer hardware, the new method that Multi- Resolution LOD (Level of Details based on QTM will be discussed in this paper. This method can make the resolution of the cells varying with the viewpoint position by partitioning the cells of QTM, selecting the particular area according to the viewpoint; dealing with the cracks caused by different subdivisions, it satisfies the request of unlimited partition in part.

  11. Chaos synchronization basing on symbolic dynamics with nongenerating partition.

    Science.gov (United States)

    Wang, Xingyuan; Wang, Mogei; Liu, Zhenzhen

    2009-06-01

    Using symbolic dynamics and information theory, we study the information transmission needed for synchronizing unidirectionally coupled oscillators. It is found that when sustaining chaos synchronization with nongenerating partition, the synchronization error will be larger than a critical value, although the required coupled channel capacity can be smaller than the case of using a generating partition. Then we show that no matter whether a generating or nongenerating partition is in use, a high-quality detector can guarantee the lead of the response oscillator, while the lag responding can make up the low precision of the detector. A practicable synchronization scheme basing on a nongenerating partition is also proposed in this paper.

  12. Aspects of system modelling in Hardware/Software partitioning

    DEFF Research Database (Denmark)

    Knudsen, Peter Voigt; Madsen, Jan

    1996-01-01

    This paper addresses fundamental aspects of system modelling and partitioning algorithms in the area of Hardware/Software Codesign. Three basic system models for partitioning are presented and the consequences of partitioning according to each of these are analyzed. The analysis shows...... the importance of making a clear distinction between the model used for partitioning and the model used for evaluation It also illustrates the importance of having a realistic hardware model such that hardware sharing can be taken into account. Finally, the importance of integrating scheduling and allocation...

  13. Organic Matter Quality and Partitioning of Polychlorinated Biphenyls

    National Research Council Canada - National Science Library

    Brannon, James

    1997-01-01

    ...). Equilibrium partitioning of neutral organic chemicals between the organic carbon fraction of bedded sediments and the interstitial water of the sediments provides the theoretical basis for the most...

  14. Partitioning planning studies: Preliminary evaluation of metal and radionuclide partitioning the high-temperature thermal treatment systems

    International Nuclear Information System (INIS)

    Liekhus, K.; Grandy, J.; Chambers, A.

    1997-03-01

    A preliminary study of toxic metals and radionuclide partitioning during high-temperature processing of mixed waste has been conducted during Fiscal Year 1996 within the Environmental Management Technology Evaluation Project. The study included: (a) identification of relevant partitioning mechanisms that cause feed material to be distributed between the solid, molten, and gas phases within a thermal treatment system; (b) evaluations of existing test data from applicable demonstration test programs as a means to identify and understand elemental and species partitioning; and, (c) evaluation of theoretical or empirical partitioning models for use in predicting elemental or species partitioning in a thermal treatment system. This preliminary study was conducted to identify the need for and the viability of developing the tools capable of describing and predicting toxic metals and radionuclide partitioning in the most applicable mixed waste thermal treatment processes. This document presents the results and recommendations resulting from this study that may serve as an impetus for developing and implementing these predictive tools

  15. Partitioning planning studies: Preliminary evaluation of metal and radionuclide partitioning the high-temperature thermal treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Liekhus, K.; Grandy, J.; Chambers, A. [and others

    1997-03-01

    A preliminary study of toxic metals and radionuclide partitioning during high-temperature processing of mixed waste has been conducted during Fiscal Year 1996 within the Environmental Management Technology Evaluation Project. The study included: (a) identification of relevant partitioning mechanisms that cause feed material to be distributed between the solid, molten, and gas phases within a thermal treatment system; (b) evaluations of existing test data from applicable demonstration test programs as a means to identify and understand elemental and species partitioning; and, (c) evaluation of theoretical or empirical partitioning models for use in predicting elemental or species partitioning in a thermal treatment system. This preliminary study was conducted to identify the need for and the viability of developing the tools capable of describing and predicting toxic metals and radionuclide partitioning in the most applicable mixed waste thermal treatment processes. This document presents the results and recommendations resulting from this study that may serve as an impetus for developing and implementing these predictive tools.

  16. Highly Reducing Partitioning Experiments Relevant to the Planet Mercury

    Science.gov (United States)

    Rowland, Rick, II; Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Danielson, Lisa R.

    2017-01-01

    With the data returned from the MErcury Surface Space ENvironment GEochemistry and Ranging (MESSENGER) mission, there are now numerous constraints on the physical and chemical properties of Mercury, including its surface composition. The high S and low FeO contents observed from MESSENGER on the planet's surface suggests a low oxygen fugacity of the present planetary materials. Estimates of the oxygen fugacity for Mercurian magmas are approximately 3-7 log units below the Iron-Wüstite (Fe-FeO) oxygen buffer, several orders of magnitude more reducing than other terrestrial bodies we have data from such as the Earth, Moon, or Mars. Most of our understanding of elemental partitioning behavior comes from observations made on terrestrial rocks, but Mercury's oxygen fugacity is far outside the conditions of those samples. With limited oxygen available, lithophile elements may instead exhibit chalcophile, halophile, or siderophile behaviors. Furthermore, very few natural samples of rocks that formed under reducing conditions are available in our collections (e.g., enstatite chondrites, achondrites, aubrites). With this limited amount of material, we must perform experiments to determine the elemental partitioning behavior of typically lithophile elements as a function of decreasing oxygen fugacity. Experiments are being conducted at 4 GPa in an 880-ton multi-anvil press, at temperatures up to 1850degC. The composition of starting materials for the experiments were selected for the final run products to contain metal, silicate melt, and sulfide melt phases. Oxygen fugacity is controlled in the experiments by adding silicon metal to the samples, using the Si-SiO2 oxygen buffer, which is approximately 5 log units more reducing than the Fe-FeO oxygen buffer at our temperatures of interest. The target silicate melt compositional is diopside (CaMgSi2O6) because measured surface compositions indicate partial melting of a pyroxene-rich mantle. Elements detected on Mercury

  17. Siderophile Volatile Element Partitioning during Core Formation.

    Science.gov (United States)

    Loroch, D. C.; Hackler, S.; Rohrbach, A.; Klemme, S.

    2017-12-01

    Since the nineteen sixties it is known, that the Earth's mantle is depleted relative to CI chondrite in numerous elements as a result of accretion and core-mantle differentiation. Additionally, if we take the chondritic composition as the initial solar nebular element abundances, the Earth lacks 85 % of K and up to 98 % of other volatiles. However one potentially very important group of elements has received considerably less attention in this context and these elements are the siderophile but volatile elements (SVEs). SVEs perhaps provide important information regarding the timing of volatile delivery to Earth. Especially for the SVEs the partitioning between metal melt and silicate melt (Dmetal/silicate) at core formation conditions is poorly constrained, never the less they are very important for most of the core formation models. This study is producing new metal-silicate partitioning data for a wide range of SVEs (S, Se, Te, Tl, Ag, As, Au, Cd, Bi, Pb, Sn, Cu, Ge, Zn, In and Ga) with a focus on the P, T and fO2dependencies. The initial hypothesis that we are aiming to test uses the accretion of major portions of volatile elements while the core formation was still active. The key points of this study are: - What are the effects of P, T and fO2 on SVE metal-silicate partioning? - What is the effect of compositional complexity on SVE metal-silicate partioning? - How can SVE's D-values fit into current models of core formation? The partitioning experiments will be performed using a Walker type multi anvil apparatus in a pressure range between 10 and 20 GPa and temperatures of 1700 up to 2100 °C. To determine the Dmetal/silicate values we are using a field emission high-resolution JEOL JXA-8530F EPMA for major elements and a Photon Machines Analyte G2 Excimer laser (193 nm) ablation system coupled to a Thermo Fisher Element 2 single-collector ICP-MS (LA-ICP-MS) for the trace elements. We recently finished the first sets of experiments and can provide the

  18. Actinide and Fission Product Partitioning and Transmutation

    International Nuclear Information System (INIS)

    2015-06-01

    The benefits of partitioning and transmutation (P and T) have now been established worldwide and, as a result, many countries are pursuing R and D programmes to advance the technologies associated with P and T. In this context, the OECD Nuclear Energy Agency (NEA) has organised a series of biennial information exchange meetings to provide experts with a forum to present and discuss state-of-the-art developments in the field of partitioning and transmutation since 1990. The OECD Nuclear Energy Agency Information Exchange Meeting on Actinides and Fission Products Partitioning and Transmutation is a forum for experts to present and discuss the state-of-the-art development in the field of P and T. Thirteen meetings have been organised so far and held in Japan, the United States, France, Belgium, Spain, the Republic of Korea and the Czech Republic. This 13. meeting was hosted by Seoul National University (Seoul, Republic of Korea) and was organised in co-operation with the International Atomic Energy Agency (IAEA) and the European Community (EC). The meeting covered strategic and scientific developments in the field of P and T such as: fuel cycle strategies and transition scenarios, the role of P and T in the potential evolution of nuclear energy as part of the future energy mix; radioactive waste management strategies; transmutation fuels and targets; advances in pyro and aqueous separation processes; P and T specific technology requirements (materials, spallation targets, coolants, etc.); transmutation systems: design, performance and safety; impact of P and T on the fuel cycle; fabrication, handling and transportation of transmutation fuels. A total of 103 presentations (39 oral and 64 posters) were discussed among the 110 participants from 19 countries and 2 international organisations. The meeting consisted of one plenary session where national and international programmes were presented followed by 5 technical sessions: - Fuel Cycle Strategies and Transition

  19. Advanced Aqueous Separation Systems for Actinide Partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Kenneth L.; Clark, Sue; Meier, G Patrick; Alexandratos, Spiro; Paine, Robert; Hancock, Robert; Ensor, Dale

    2012-03-21

    One of the most challenging aspects of advanced processing of spent nuclear fuel is the need to isolate transuranium elements from fission product lanthanides. This project expanded the scope of earlier investigations of americium (Am) partitioning from the lanthanides with the synthesis of new separations materials and a centralized focus on radiochemical characterization of the separation systems that could be developed based on these new materials. The primary objective of this program was to explore alternative materials for actinide separations and to link the design of new reagents for actinide separations to characterizations based on actinide chemistry. In the predominant trivalent oxidation state, the chemistry of lanthanides overlaps substantially with that of the trivalent actinides and their mutual separation is quite challenging.

  20. Metal separations using aqueous biphasic partitioning systems

    International Nuclear Information System (INIS)

    Chaiko, D.J.; Zaslavsky, B.; Rollins, A.N.; Vojta, Y.; Gartelmann, J.; Mego, W.

    1996-01-01

    Aqueous biphasic extraction (ABE) processes offer the potential for low-cost, highly selective separations. This countercurrent extraction technique involves selective partitioning of either dissolved solutes or ultrafine particulates between two immiscible aqueous phases. The extraction systems that the authors have studied are generated by combining an aqueous salt solution with an aqueous polymer solution. They have examined a wide range of applications for ABE, including the treatment of solid and liquid nuclear wastes, decontamination of soils, and processing of mineral ores. They have also conducted fundamental studies of solution microstructure using small angle neutron scattering (SANS). In this report they review the physicochemical fundamentals of aqueous biphase formation and discuss the development and scaleup of ABE processes for environmental remediation

  1. Discrete and Continuous Models for Partitioning Problems

    KAUST Repository

    Lellmann, Jan

    2013-04-11

    Recently, variational relaxation techniques for approximating solutions of partitioning problems on continuous image domains have received considerable attention, since they introduce significantly less artifacts than established graph cut-based techniques. This work is concerned with the sources of such artifacts. We discuss the importance of differentiating between artifacts caused by discretization and those caused by relaxation and provide supporting numerical examples. Moreover, we consider in depth the consequences of a recent theoretical result concerning the optimality of solutions obtained using a particular relaxation method. Since the employed regularizer is quite tight, the considered relaxation generally involves a large computational cost. We propose a method to significantly reduce these costs in a fully automatic way for a large class of metrics including tree metrics, thus generalizing a method recently proposed by Strekalovskiy and Cremers (IEEE conference on computer vision and pattern recognition, pp. 1905-1911, 2011). © 2013 Springer Science+Business Media New York.

  2. Development of partitioning process: purification of DIDPA

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masayuki; Morita, Yasuji; Kubota, Masumitsu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    The partitioning process has developed and demonstrated that the solvent extraction with diisodecylphosphoric acid (DIDPA) can successfully separate transuranium elements from a high-level liquid waste. In the solvent extraction, DIDPA is decomposed by radiolysis and hydrolysis. The main degradation product is monoisodecyl phosphoric acid (MIDPA). Ethylene glycol has been used for removing the product by a solvent extraction method. However this method has two drawbacks that two phases separate slowly and the used ethylene glycol is not regeneratable. First it was found that the addition of acetone or methanol with 20 volume % improved the phase separation. Then a new purification method was developed by using an aqueous solution of methanol or acetone. The new purification method is as excellent as the ethylene glycol method for the removal of MIDPA. (author)

  3. Optical motion detection using image partitioning

    International Nuclear Information System (INIS)

    Hessel, K.R.; Stalker, K.T.; McCarthy, A.E.

    1976-08-01

    An optical system for surveillance or intrusion detection, based upon image partitioning, is proposed. The scene of interest is imaged onto a checkerboard pattern of transmissive and reflective areas and the transmitted and reflected light components are measured by detectors. Changes in the scene disturb the light balance and can cause an alarm indication. Several system configurations are proposed. Measurements and computer simulations are used to determine the operating characteristics of the several configurations. Depth of focus problems at the patterned reflector is the primary concern. Noise considerations determine the theoretical limitation of system performance and are analyzed in some detail. Indications are that, under good scene radiance conditions, a change in the scene of approximately one part in 10 3 is detectable with a signal-to-noise ratio sufficient for a false alarm rate of one every few months

  4. Yoink: An interaction-based partitioning API.

    Science.gov (United States)

    Zheng, Min; Waller, Mark P

    2018-05-15

    Herein, we describe the implementation details of our interaction-based partitioning API (application programming interface) called Yoink for QM/MM modeling and fragment-based quantum chemistry studies. Interactions are detected by computing density descriptors such as reduced density gradient, density overlap regions indicator, and single exponential decay detector. Only molecules having an interaction with a user-definable QM core are added to the QM region of a hybrid QM/MM calculation. Moreover, a set of molecule pairs having density-based interactions within a molecular system can be computed in Yoink, and an interaction graph can then be constructed. Standard graph clustering methods can then be applied to construct fragments for further quantum chemical calculations. The Yoink API is licensed under Apache 2.0 and can be accessed via yoink.wallerlab.org. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  5. An Association-Oriented Partitioning Approach for Streaming Graph Query

    Directory of Open Access Journals (Sweden)

    Yun Hao

    2017-01-01

    Full Text Available The volumes of real-world graphs like knowledge graph are increasing rapidly, which makes streaming graph processing a hot research area. Processing graphs in streaming setting poses significant challenges from different perspectives, among which graph partitioning method plays a key role. Regarding graph query, a well-designed partitioning method is essential for achieving better performance. Existing offline graph partitioning methods often require full knowledge of the graph, which is not possible during streaming graph processing. In order to handle this problem, we propose an association-oriented streaming graph partitioning method named Assc. This approach first computes the rank values of vertices with a hybrid approximate PageRank algorithm. After splitting these vertices with an adapted variant affinity propagation algorithm, the process order on vertices in the sliding window can be determined. Finally, according to the level of these vertices and their association, the partition where the vertices should be distributed is decided. We compare its performance with a set of streaming graph partition methods and METIS, a widely adopted offline approach. The results show that our solution can partition graphs with hundreds of millions of vertices in streaming setting on a large collection of graph datasets and our approach outperforms other graph partitioning methods.

  6. Random skew plane partitions with a piecewise periodic back wall

    DEFF Research Database (Denmark)

    Boutillier, Cedric; Mkrtchyan, Sevak; Reshetikhin, Nicolai

    Random skew plane partitions of large size distributed according to an appropriately scaled Schur process develop limit shapes. In the present work we consider the limit of large random skew plane partitions where the inner boundary approaches a piecewise linear curve with non-lattice slopes. Muc...

  7. On the partition dimension of two-component graphs

    Indian Academy of Sciences (India)

    D O Haryeni

    2017-11-17

    Nov 17, 2017 ... Partition dimension; disconnected graph; component. 2010 Mathematics Subject Classification. 05C12, 05C15. 1. Introduction. The study of the partition dimension for graphs was initiated by Chartrand et al. [2] aimed at finding a new way to solve the problem in metric dimensions of graphs. Many results.

  8. Polyhedral Computations for the Simple Graph Partitioning Problem

    DEFF Research Database (Denmark)

    Sørensen, Michael Malmros

    The simple graph partitioning problem is to partition an edge-weighted graph into mutually disjoint subgraphs, each containing no more than b nodes, such that the sum of the weights of all edges in the subgraphs is maximal. In this paper we present a branch-and-cut algorithm for the problem that ...

  9. PACE: A dynamic programming algorithm for hardware/software partitioning

    DEFF Research Database (Denmark)

    Knudsen, Peter Voigt; Madsen, Jan

    1996-01-01

    This paper presents the PACE partitioning algorithm which is used in the LYCOS co-synthesis system for partitioning control/dataflow graphs into hardware and software parts. The algorithm is a dynamic programming algorithm which solves both the problem of minimizing system execution time...

  10. Balanced partitions of 3-colored geometric sets in the plane

    NARCIS (Netherlands)

    Bereg, S.; Hurtado, F.; Kano, M.; Korman, M.; Lara, D.; Seara, C.; Silveira, R.I.; Urrutia, J.; Verbeek, K.A.B.

    2015-01-01

    Let SS be a finite set of geometric objects partitioned into classes or colors . A subset S'¿SS'¿S is said to be balanced if S'S' contains the same amount of elements of SS from each of the colors. We study several problems on partitioning 33-colored sets of points and lines in the plane into two

  11. Limit Shapes and Fluctuations of Bounded Random Partitions

    DEFF Research Database (Denmark)

    Beltoft, Dan

    Random partitions of integers, bounded both in the number of summands and the size of each summand are considered, subject to the probability measure which assigns a probability proportional to some fixed positive number to the power of the number being partitioned. This corresponds to considering...

  12. Dynamic State Space Partitioning for External Memory Model Checking

    DEFF Research Database (Denmark)

    Evangelista, Sami; Kristensen, Lars Michael

    2009-01-01

    We describe a dynamic partitioning scheme usable by model checking techniques that divide the state space into partitions, such as most external memory and distributed model checking algorithms. The goal of the scheme is to reduce the number of transitions that link states belonging to different...

  13. A conjugate gradient method for the spectral partitioning of graphs

    NARCIS (Netherlands)

    Kruyt, Nicolaas P.

    1997-01-01

    The partitioning of graphs is a frequently occurring problem in science and engineering. The spectral graph partitioning method is a promising heuristic method for this class of problems. Its main disadvantage is the large computing time required to solve a special eigenproblem. Here a simple and

  14. Quantum mechanical fragment methods based on partitioning atoms or partitioning coordinates.

    Science.gov (United States)

    Wang, Bo; Yang, Ke R; Xu, Xuefei; Isegawa, Miho; Leverentz, Hannah R; Truhlar, Donald G

    2014-09-16

    atoms for capping dangling bonds, and we have shown that they can greatly improve the accuracy. Finally we present a new approach that goes beyond QM/MM by combining the convenience of molecular mechanics with the accuracy of fitting a potential function to electronic structure calculations on a specific system. To make the latter practical for systems with a large number of degrees of freedom, we developed a method to interpolate between local internal-coordinate fits to the potential energy. A key issue for the application to large systems is that rather than assigning the atoms or monomers to fragments, we assign the internal coordinates to reaction, secondary, and tertiary sets. Thus, we make a partition in coordinate space rather than atom space. Fits to the local dependence of the potential energy on tertiary coordinates are arrayed along a preselected reaction coordinate at a sequence of geometries called anchor points; the potential energy function is called an anchor points reactive potential. Electrostatically embedded fragment methods and the anchor points reactive potential, because they are based on treating an entire system by quantum mechanical electronic structure methods but are affordable for large and complex systems, have the potential to open new areas for accurate simulations where combined QM/MM methods are inadequate.

  15. Development of the four group partitioning process at JAERI

    International Nuclear Information System (INIS)

    Kubota, Masumitsu; Morita, Yasuji; Yamaguchi, Isoo; Yamagishi, Isao; Fujiwara, T.; Watanabe, Masayuki; Mizoguchi, Kenichi; Tatsugae, Ryozo

    1999-01-01

    At JAERI, development of a partitioning method started about 24 years ago. From 1973 to 1984, a partitioning process was developed for separating elements in HLLW into 3 groups; TRU, Sr-Cs and others. The partitioning process consisted of three steps; solvent extraction of U and Pu with TBP, solvent extraction of Am and Cm with DIDPA, and adsorption of Sr and Cs with inorganic ion exchangers. The process was demonstrated with real HLLW. Since 1985, a four group partitioning process has been developed, in which a step for separating the Tc-PGM group was developed in addition to the three group separation. Effective methods for separating TRU, especially Np, and Tc have been developed. In this paper, the flow sheet of the four group partitioning and the results of tests with simulated and real HLLW in NUCEF hot-cell are shown. (J.P.N.)

  16. Phase Grouping Line Extraction Algorithm Using Overlapped Partition

    Directory of Open Access Journals (Sweden)

    WANG Jingxue

    2015-07-01

    Full Text Available Aiming at solving the problem of fracture at the discontinuities area and the challenges of line fitting in each partition, an innovative line extraction algorithm is proposed based on phase grouping using overlapped partition. The proposed algorithm adopted dual partition steps, which will generate overlapped eight partitions. Between the two steps, the middle axis in the first step coincides with the border lines in the other step. Firstly, the connected edge points that share the same phase gradients are merged into the line candidates, and fitted into line segments. Then to remedy the break lines at the border areas, the break segments in the second partition steps are refitted. The proposed algorithm is robust and does not need any parameter tuning. Experiments with various datasets have confirmed that the method is not only capable of handling the linear features, but also powerful enough in handling the curve features.

  17. Time and Space Partitioning the EagleEye Reference Misson

    Science.gov (United States)

    Bos, Victor; Mendham, Peter; Kauppinen, Panu; Holsti, Niklas; Crespo, Alfons; Masmano, Miguel; de la Puente, Juan A.; Zamorano, Juan

    2013-08-01

    We discuss experiences gained by porting a Software Validation Facility (SVF) and a satellite Central Software (CSW) to a platform with support for Time and Space Partitioning (TSP). The SVF and CSW are part of the EagleEye Reference mission of the European Space Agency (ESA). As a reference mission, EagleEye is a perfect candidate to evaluate practical aspects of developing satellite CSW for and on TSP platforms. The specific TSP platform we used consists of a simulated LEON3 CPU controlled by the XtratuM separation micro-kernel. On top of this, we run five separate partitions. Each partition runs its own real-time operating system or Ada run-time kernel, which in turn are running the application software of the CSW. We describe issues related to partitioning; inter-partition communication; scheduling; I/O; and fault-detection, isolation, and recovery (FDIR).

  18. New Linear Partitioning Models Based on Experimental Water: Supercritical CO2 Partitioning Data of Selected Organic Compounds.

    Science.gov (United States)

    Burant, Aniela; Thompson, Christopher; Lowry, Gregory V; Karamalidis, Athanasios K

    2016-05-17

    Partitioning coefficients of organic compounds between water and supercritical CO2 (sc-CO2) are necessary to assess the risk of migration of these chemicals from subsurface CO2 storage sites. Despite the large number of potential organic contaminants, the current data set of published water-sc-CO2 partitioning coefficients is very limited. Here, the partitioning coefficients of thiophene, pyrrole, and anisole were measured in situ over a range of temperatures and pressures using a novel pressurized batch-reactor system with dual spectroscopic detectors: a near-infrared spectrometer for measuring the organic analyte in the CO2 phase and a UV detector for quantifying the analyte in the aqueous phase. Our measured partitioning coefficients followed expected trends based on volatility and aqueous solubility. The partitioning coefficients and literature data were then used to update a published poly parameter linear free-energy relationship and to develop five new linear free-energy relationships for predicting water-sc-CO2 partitioning coefficients. A total of four of the models targeted a single class of organic compounds. Unlike models that utilize Abraham solvation parameters, the new relationships use vapor pressure and aqueous solubility of the organic compound at 25 °C and CO2 density to predict partitioning coefficients over a range of temperature and pressure conditions. The compound class models provide better estimates of partitioning behavior for compounds in that class than does the model built for the entire data set.

  19. Calculation of the octanol-water partition coefficient of armchair polyhex BN nanotubes

    Science.gov (United States)

    Mohammadinasab, E.; Pérez-Sánchez, H.; Goodarzi, M.

    2017-12-01

    A predictive model for determination partition coefficient (log P) of armchair polyhex BN nanotubes by using simple descriptors was built. The relationship between the octanol-water log P and quantum chemical descriptors, electric moments, and topological indices of some armchair polyhex BN nanotubes with various lengths and fixed circumference are represented. Based on density functional theory electric moments and physico-chemical properties of those nanotubes are calculated.

  20. Adiabatic partition effect on natural convection heat transfer inside a square cavity: experimental and numerical studies

    Science.gov (United States)

    Mahmoudinezhad, S.; Rezania, A.; Yousefi, T.; Shadloo, M. S.; Rosendahl, L. A.

    2018-02-01

    A steady state and two-dimensional laminar free convection heat transfer in a partitioned cavity with horizontal adiabatic and isothermal side walls is investigated using both experimental and numerical approaches. The experiments and numerical simulations are carried out using a Mach-Zehnder interferometer and a finite volume code, respectively. A horizontal and adiabatic partition, with angle of θ is adjusted such that it separates the cavity into two identical parts. Effects of this angel as well as Rayleigh number on the heat transfer from the side-heated walls are investigated in this study. The results are performed for the various Rayleigh numbers over the cavity side length, and partition angles ranging from 1.5 × 105 to 4.5 × 105, and 0° to 90°, respectively. The experimental verification of natural convective flow physics has been done by using FLUENT software. For a given adiabatic partition angle, the results show that the average Nusselt number and consequently the heat transfer enhance as the Rayleigh number increases. However, for a given Rayleigh number the maximum and the minimum heat transfer occurs at θ = 45°and θ = 90°, respectively. Two responsible mechanisms for this behavior, namely blockage ratio and partition orientation, are identified. These effects are explained by numerical velocity vectors and experimental temperatures contours. Based on the experimental data, a new correlation that fairly represents the average Nusselt number of the heated walls as functions of Rayleigh number and the angel of θ for the aforementioned ranges of data is proposed.

  1. DOE mixed waste metals partition in a rotary kiln wet off-gas system

    International Nuclear Information System (INIS)

    Burns, D.B.; Looper, M.G.

    1994-01-01

    In 1996, the Savannah River Site plans to begin operation of the Consolidated Incineration Facility (CIF) to treat solid and liquid RCRA hazardous and mixed wastes. Test burns were conducted using surrogate CIF wastes spiked with hazardous metals and organics. The partition of metals between the kiln bottom ash, scrubber blowdown solution, and stack gas was measured as a function of kiln temperature, waste chloride content, and waste form (liquid or solid). Three waste simulants were used in these tests, a high and low chloride solid waste mix (paper, plastic, latex, PVC), and a liquid waste mix (benzene and chlorobenzene). An aqueous solution containing: antimony, arsenic, barium, cadmium, chromium, lead, mercury, nickel, silver, and thallium was added to the waste to determine metals fate under various combustion conditions. Test results were used to divide the metals into three general groups, volatile, semi-volatile, and nonvolatile metals. Mercury was the only volatile metal. No mercury remained in the kiln bottom ash under any incineration condition. Lead, cadmium, thallium, and silver exhibited semi-volatile behavior. The partition between the kiln ash, blowdown, and stack gas depended on incineration conditions. Chromium, nickel, barium, antimony, and arsenic exhibited nonvolatile behavior, with greater than 90 wt % of the metal remaining in the kiln bottom ash. Incineration temperature had a significant effect on the partition of volatile and semi-volatile metals, and no effect on nonvolatile metal partition. As incineration temperatures were increased, the fraction of metal leaving the kiln increased. Three metals, lead, cadmium, and mercury showed a relationship between chloride concentration in the waste and metals partition. Increasing the concentration of chlorides in the waste or burning liquid waste versus solid waste resulted in a larger fraction of metal exiting the kiln

  2. Nitrogen partitioning during core-mantle differentiation

    Science.gov (United States)

    Speelmanns, I. M.; Schmidt, M. W.; Liebske, C.

    2016-12-01

    This study investiagtes nitrogen partitioing between metal and silicate melts as relevant for core segregation during the accretion of planetesimals into the Earth. On present day Earth, N belongs to the most important elements, as it is one of the key constituents of our atmosphere and forms the basis of life. However, the geochemistry of N, i.e. its distribution and isotopic fractionation between Earth's deep reservoirs is not well constrained. In order to determine the partitioning behaviour of N, a centrifuging piston cylinder was used to euqilibrate and then gravitationally separate metal-silicate melt pairs at 1250 °C, 1 GPa over the range of oxygen fugacities thought to have prevailied druing core segreagtion (IW-4 to IW). Complete segregation of the two melts was reached within 3 hours at 1000 g, the interface showing a nice meniscus The applied double capsule technique, using an outer metallic and inner non-metallic (mostly graphite) capsule, minimizes volatile loss over the course of the experiment compared to single non-metallic capsules. The two quenched melts were cut apart, cleaned at the outside and N concentrations of the melts were analysed on bulk samples by an elemental analyser. Nevertheless, the low amount of sample material and the N yield in the high pressure experiments required the developement of new analytical routines. Despite these experimental and analytical difficulties, we were able to determine a DNmetal/silicateof 13±0.25 at IW-1, N partitioning into the core froming metal. The few availible literature data [1],[2] suggest that N changes its compatibility favoring the silicate melt or magma ocean at around IW-2.5. In order to asses how much N may effectively be contained in the core and the silicate Earth, experiments characterizing N behaviour over the entire range of core formation condtitions are well under way. [1] Kadik et al., (2011) Geochemistry International 49.5: 429-438. [2] Roskosz et al., (2013) GCA 121: 15-28.

  3. Association mapping of partitioning loci in barley

    Directory of Open Access Journals (Sweden)

    Mackay Ian J

    2008-02-01

    Full Text Available Abstract Background Association mapping, initially developed in human disease genetics, is now being applied to plant species. The model species Arabidopsis provided some of the first examples of association mapping in plants, identifying previously cloned flowering time genes, despite high population sub-structure. More recently, association genetics has been applied to barley, where breeding activity has resulted in a high degree of population sub-structure. A major genotypic division within barley is that between winter- and spring-sown varieties, which differ in their requirement for vernalization to promote subsequent flowering. To date, all attempts to validate association genetics in barley by identifying major flowering time loci that control vernalization requirement (VRN-H1 and VRN-H2 have failed. Here, we validate the use of association genetics in barley by identifying VRN-H1 and VRN-H2, despite their prominent role in determining population sub-structure. Results By taking barley as a typical inbreeding crop, and seasonal growth habit as a major partitioning phenotype, we develop an association mapping approach which successfully identifies VRN-H1 and VRN-H2, the underlying loci largely responsible for this agronomic division. We find a combination of Structured Association followed by Genomic Control to correct for population structure and inflation of the test statistic, resolved significant associations only with VRN-H1 and the VRN-H2 candidate genes, as well as two genes closely linked to VRN-H1 (HvCSFs1 and HvPHYC. Conclusion We show that, after employing appropriate statistical methods to correct for population sub-structure, the genome-wide partitioning effect of allelic status at VRN-H1 and VRN-H2 does not result in the high levels of spurious association expected to occur in highly structured samples. Furthermore, we demonstrate that both VRN-H1 and the candidate VRN-H2 genes can be identified using association mapping

  4. Multimedia environmental chemical partitioning from molecular information

    International Nuclear Information System (INIS)

    Martinez, Izacar; Grifoll, Jordi; Giralt, Francesc; Rallo, Robert

    2010-01-01

    The prospect of assessing the environmental distribution of chemicals directly from their molecular information was analyzed. Multimedia chemical partitioning of 455 chemicals, expressed in dimensionless compartmental mass ratios, was predicted by SimpleBox 3, a Level III Fugacity model, together with the propagation of reported uncertainty for key physicochemical and transport properties, and degradation rates. Chemicals, some registered in priority lists, were selected according to the availability of experimental property data to minimize the influence of predicted information in model development. Chemicals were emitted in air or water in a fixed geographical scenario representing the Netherlands and characterized by five compartments (air, water, sediments, soil and vegetation). Quantitative structure-fate relationship (QSFR) models to predict mass ratios in different compartments were developed with support vector regression algorithms. A set of molecular descriptors, including the molecular weight and 38 counts of molecular constituents were adopted to characterize the chemical space. Out of the 455 chemicals, 375 were used for training and testing the QSFR models, while 80 were excluded from model development and were used as an external validation set. Training and test chemicals were selected and the domain of applicability (DOA) of the QSFRs established by means of self-organizing maps according to structural similarity. Best results were obtained with QSFR models developed for chemicals belonging to either the class [C] and [C; O], or the class with at least one heteroatom different than oxygen in the structure. These two class-specific models, with respectively 146 and 229 chemicals, showed a predictive squared coefficient of q 2 ≥ 0.90 both for air and water, which respectively dropped to q 2 ∼ 0.70 and 0.40 for outlying chemicals. Prediction errors were of the same order of magnitude as the deviations associated to the uncertainty of the

  5. Neuromuscular partitioning, architectural design, and myosin fiber types of the M. vastus lateralis of the llama (Lama glama).

    Science.gov (United States)

    Graziotti, Guillermo H; Palencia, Pablo; Delhon, Gustavo; Rivero, José-Luis L

    2004-11-01

    The llama (Lama glama) is one of the few mammals of relatively large body size in which three fast myosin heavy chain isoforms (i.e., IIA, IIX, IIB) are extensively expressed in their locomotory muscles. This study was designed to gain insight into the morphological and functional organization of skeletal musculature in this peculiar animal model. The neuromuscular partitioning, architectural design, and myosin fiber types were systematically studied in the M. vastus lateralis of adult llamas (n = 15). Four nonoverlapping neuromuscular partitions or compartments were identified macroscopically (using a modified Sihler's technique for muscle depigmentation), although they did not conform strictly to the definitions of "neuromuscular compartments." Each neuromuscular partition was innervated by primary branches of the femoral nerve and was arranged within the muscle as paired partitions, two in parallel (deep-superficial compartmentalization) and the other two in-series (proximo-distal compartmentalization). These neuromuscular partitions of the muscle varied in their respective architectural designs (studied after partial digestion with diluted nitric acid) and myosin fiber type characteristics (identified immunohistochemically with specific anti-myosin monoclonal antibodies, then examined by quantitative histochemistry and image analysis). The deep partitions of the muscle had longer fibers, with lower angles of pinnation, and higher percentages of fast-glycolytic fibers than the superficial partitions of the muscle. These differences clearly suggest a division of labor in the whole M. vastus lateralis of llamas, with deep partitions exhibiting features well adapted for dynamic activities in the extension of stifle, whereas superficial portions seem to be related to the antigravitational role of the muscle in preserving the extension of the stifle during standing and stance phase of the stride. This peculiar structural and functional organization of the llama M

  6. Partitioning of organochlorine pesticides from water to polyethylene passive samplers

    International Nuclear Information System (INIS)

    Hale, Sarah E.; Martin, Timothy J.; Goss, Kai-Uwe; Arp, Hans Peter H.; Werner, David

    2010-01-01

    The mass transfer rates and equilibrium partitioning behaviour of 14 diverse organochlorine pesticides (OCP) between water and polyethylene (PE) passive samplers, cut from custom made PE sheets and commercial polyethylene plastic bags, were quantified. Overall mass transfer coefficients, k O , estimated PE membrane diffusion coefficients, D PE , and PE-water partitioning coefficients, K PE-water, are reported. In addition, the partitioning of three polycyclic aromatic hydrocarbons (PAHs) from water to PE is quantified and compared with literature values. K PE-water values agreed mostly within a factor of two for both passive samplers and also with literature values for the reference PAHs. As PE is expected to exhibit similar sorption behaviour to long-chain alkanes, PE-water partitioning coefficients were compared to hexadecane-water partitioning coefficients estimated with the SPARC online calculator, COSMOtherm and a polyparameter linear free energy relationship based on the Abraham approach. The best correlation for all compounds tested was with COSMOtherm estimated hexadecane-water partitioning coefficients. - The partitioning of organochlorine pesticides between single phase polyethylene passive samplers and water is quantified.

  7. Fat polygonal partitions with applications to visualization and embeddings

    Directory of Open Access Journals (Sweden)

    Mark de Berg

    2013-12-01

    Full Text Available Let T be a rooted and weighted tree, where the weight of any node is equal to the sum of the weights of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in T is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partition necessarily depends on the weights and can become arbitrarily high.We introduce a new hierarchical partition scheme, called a polygonal partition, which uses convex polygons rather than just rectangles. We present two methods for constructing polygonal partitions, both having guarantees on the worst-case aspect ratio of the constructed polygons; in particular, both methods guarantee a bound on the aspect ratio that is independent of the weights of the nodes.We also consider rectangular partitions with slack, where the areas of the rectangles may differ slightly from the weights of the corresponding nodes. We show that this makes it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-rectangular partitions in ℝd. We use these partitions with slack for embedding ultrametrics into d-dimensional Euclidean space:  we give a polylog(Δ-approximation algorithm for embedding n-point ultrametrics into ℝd with minimum distortion, where Δ denotes the spread of the metric. The previously best-known approximation ratio for this problem was polynomial in n. This is the first algorithm for embedding a non-trivial family of weighted-graph metrics into a space of constant dimension that achieves polylogarithmic approximation ratio.

  8. Evaluation of actinide partitioning and transmutation

    International Nuclear Information System (INIS)

    1982-01-01

    After a few centuries of radioactive decay the long-lived actinides, the elements of atomic numbers 89-103, may constitute the main potential radiological health hazard in nuclear wastes. This is because all but a very few fission products (principally technetium-99 and iodine-129) have by then undergone radioactive decay to insignificant levels, leaving the actinides as the principal radionuclides remaining. It was therefore at first sight an attractive concept to recycle the actinides to nuclear reactors, so as to eliminate them by nuclear fission. Thus, investigations of the feasibility and potential benefits and hazards of the concept of 'actinide partitioning and transmutation' were started in numerous countries in the mid-1970s. This final report summarizes the results and conclusions of technical studies performed in connection with a four-year IAEA Co-ordinated Research Programme, started in 1976, on the ''Environmental Evaluation and Hazard Assessment of the Separation of Actinides from Nuclear Wastes followed by either Transmutation or Separate Disposal''. Although many related studies are still continuing, e.g. on waste disposal, long-term safety assessments, and waste actinide management (particularly for low and intermediate-level wastes), some firm conclusions on the overall concept were drawn by the programme participants, which are reflected in this report

  9. Liquid centrifugation for nuclear waste partitioning

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1992-01-01

    The performance of liquid centrifugation for nuclear waste partitioning is examined for the Accelerator Transmutation of Waste Program currently under study at the Los Alamos National Laboratory. Centrifugation might have application for the separation of the LiF-BeF 2 salt from heavier radioactive materials fission product and actinides in the separation of fission product from actinides, in the isotope separation of fission-product cesium before transmutation of the 137 Cs and 135 Cs, and in the removal of spallation product from the liquid lead target. It is found that useful chemical separations should be possible using existing materials for the centrifuge construction for all four cases with the actinide fraction in fission product perhaps as low as 1 part in 10 7 and the fraction of 137 CS in 133 Cs being as low as a few parts in 10 5 . A centrifuge cascade has the advantage that it can be assembled and operated as a completely closed system without a waste stream except that associated with maintenance or replacement of centrifuge components

  10. Dynamic criteria for partitioning and transmutation

    International Nuclear Information System (INIS)

    Lu, A.H.

    1991-11-01

    This paper addresses dynamic criteria intended to optimize partitioning and transmutation (P-T) concept development supporting improved nuclear waste management. Six criteria are proposed initially and the rationale for each is briefly explained. Each criterion is used as a measure (or dimension) on which the developed concepts can be evaluated. The criteria allow the P-T concepts to be evaluated in an integral system including long-term energy needs, fuel cycle, and waste management. New criteria will be identified along with the P-T concept development, and each criterion will be realistically weighted so that it is comparable in an overall criteria evaluation. The weights are subject to change as a result of technical advancements and public perception on various issues. Incomplete criteria will result in a poor choice because important factors may not be considered when the decision is made. A successful decision on the optimal P-T system depends on the completeness of criteria (dimensions) as well as realistic weights assigned to each criterion

  11. Optimistic protocol for partitioned distributed database systems

    International Nuclear Information System (INIS)

    Davidson, S.B.

    1982-01-01

    A protocol for transaction processing during partition failures is presented which guarantees mutual consistency between copies of data-items after repair is completed. The protocol is optimistic in that transactions are processed without restrictions during the failure; conflicts are detected at repair time using a precedence graph and are resolved by backing out transactions according to some backout strategy. The protocol is then evaluated using simulation and probabilistic modeling. In the simulation, several parameters are varied such as the number of transactions processed in a group, the type of transactions processed, the number of data-items present in the database, and the distribution of references to data-items. The simulation also uses different backout strategies. From these results we note conditions under which the protocol performs well, i.e., conditions under which the protocol backs out a small percentage of the transaction run. A probabilistic model is developed to estimate the expected number of transactions backed out using most of the above database and transaction parameters, and is shown to agree with simulation results. Suggestions are then made on how to improve the performance of the protocol. Insights gained from the simulation and probabilistic modeling are used to develop a backout strategy which takes into account individual transaction costs and attempts to minimize total backout cost. Although the problem of choosing transactions to minimize total backout cost is, in general, NP-complete, the backout strategy is efficient and produces very good results

  12. Assimilate partitioning in avocado, Persea americana

    Energy Technology Data Exchange (ETDEWEB)

    Finazzo, S.; Davenport, T.L.

    1986-04-01

    Assimilate partitioning is being studied in avocado, Persea americana cv. Millborrow in relation to fruit set. Single leaves on girdled branches of 10 year old trees were radiolabeled for 1 hr with 13..mu..Ci of /sup 14/CO/sub 2/. The source leaves were sampled during the experiment to measure translocation rates. At harvest the sink tissues were dissected and the incorporated radioactivity was measured. The translocation of /sup 14/C-labelled compounds to other leaves was minimal. Incorporation of label into fruitlets varied with the tissue and the stage of development. Sink (fruitlets) nearest to the labelled leaf and sharing the same phyllotaxy incorporated the most /sup 14/C. Source leaves for single non-abscising fruitlets retained 3X more /sup 14/C-labelled compounds than did source leaves for 2 or more fruitlets at 31 hrs. post-labelling. Export of label decreased appreciably when fruitlets abscised. If fruitlets abscised within 4 days of labeling then the translocation pattern was similar to the pattern for single fruitlets. If the fruitlet abscised later, the translocation pattern was intermediate between the single and double fruitlet pattern.

  13. Autocatalytic sets in a partitioned biochemical network.

    Science.gov (United States)

    Smith, Joshua I; Steel, Mike; Hordijk, Wim

    2014-01-01

    In previous work, RAF theory has been developed as a tool for making theoretical progress on the origin of life question, providing insight into the structure and occurrence of self-sustaining and collectively autocatalytic sets within catalytic polymer networks. We present here an extension in which there are two "independent" polymer sets, where catalysis occurs within and between the sets, but there are no reactions combining polymers from both sets. Such an extension reflects the interaction between nucleic acids and peptides observed in modern cells and proposed forms of early life. We present theoretical work and simulations which suggest that the occurrence of autocatalytic sets is robust to the partitioned structure of the network. We also show that autocatalytic sets remain likely even when the molecules in the system are not polymers, and a low level of inhibition is present. Finally, we present a kinetic extension which assigns a rate to each reaction in the system, and show that identifying autocatalytic sets within such a system is an NP-complete problem. Recent experimental work has challenged the necessity of an RNA world by suggesting that peptide-nucleic acid interactions occurred early in chemical evolution. The present work indicates that such a peptide-RNA world could support the spontaneous development of autocatalytic sets and is thus a feasible alternative worthy of investigation.

  14. Partitioning and transmutation. Annual Report 2001

    International Nuclear Information System (INIS)

    Andersson, S.; Ekberg, C.; Enarsson, Aa.; Liljenzin, J.O.; Mesmin, C.; Nilsson, M.; Skarnemark, G.

    2002-01-01

    The project Partition and Transmutation (PandT) at the department of Nuclear Chemistry, Chalmers University of Technology, is aimed at investigating new solvent extraction reagents and new processes for the separation of different chemical elements needed in a possible future PandT process. During the year 2001, the work has mainly been in five areas: 1) method development and testing of means to determine protonation constants of two model reagents (2,2':6',2''-terpyridine and 2,4,6-tri-(2-pyridyl)-1,3,5-triazine), 2) modelling the influence of organic phase composition on the extraction of trivalent metals (Pm, Am, Cm), 3) determination of the density and refractive index of 2,2':6',2''-terpyridine, 4) the extraction behaviour of four new nitrogen based reagents (2,6-bis-(benzoxazolyl)-4- dodecyloxylpyridine, 2,6-bis-(benzimidazol-2-yl)-4-dodecyloxylpyridine, 2,6-bis-( benzimidazolyl)-pyridine, 2,4-bis-(3,5-dimethylpyrazol-1-yl)-6-methoxy-1,3,5-triazine), and 5) a study of the effect of temperature on the synergistic extraction of Eu and Am with 2,2':6',2''-terpyridine or 2,4,6-tri-(2-pyridyl)-1,3,5-triazine in the presence of 2 -bromodecanoic acid dissolved in a series of organic diluents

  15. Partitioning and transmutation. Annual Report 2001

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, S.; Ekberg, C.; Enarsson, Aa.; Liljenzin, J.O.; Mesmin, C.; Nilsson, M.; Skarnemark, G. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry

    2002-01-01

    The project Partition and Transmutation (PandT) at the department of Nuclear Chemistry, Chalmers University of Technology, is aimed at investigating new solvent extraction reagents and new processes for the separation of different chemical elements needed in a possible future PandT process. During the year 2001, the work has mainly been in five areas: 1) method development and testing of means to determine protonation constants of two model reagents (2,2':6',2''-terpyridine and 2,4,6-tri-(2-pyridyl)-1,3,5-triazine), 2) modelling the influence of organic phase composition on the extraction of trivalent metals (Pm, Am, Cm), 3) determination of the density and refractive index of 2,2':6',2''-terpyridine, 4) the extraction behaviour of four new nitrogen based reagents (2,6-bis-(benzoxazolyl)-4- dodecyloxylpyridine, 2,6-bis-(benzimidazol-2-yl)-4-dodecyloxylpyridine, 2,6-bis-( benzimidazolyl)-pyridine, 2,4-bis-(3,5-dimethylpyrazol-1-yl)-6-methoxy-1,3,5-triazine), and 5) a study of the effect of temperature on the synergistic extraction of Eu and Am with 2,2':6',2''-terpyridine or 2,4,6-tri-(2-pyridyl)-1,3,5-triazine in the presence of 2 -bromodecanoic acid dissolved in a series of organic diluents.

  16. Assimilate partitioning in avocado, Persea americana

    International Nuclear Information System (INIS)

    Finazzo, S.; Davenport, T.L.

    1986-01-01

    Assimilate partitioning is being studied in avocado, Persea americana cv. Millborrow in relation to fruit set. Single leaves on girdled branches of 10 year old trees were radiolabeled for 1 hr with 13μCi of 14 CO 2 . The source leaves were sampled during the experiment to measure translocation rates. At harvest the sink tissues were dissected and the incorporated radioactivity was measured. The translocation of 14 C-labelled compounds to other leaves was minimal. Incorporation of label into fruitlets varied with the tissue and the stage of development. Sink (fruitlets) nearest to the labelled leaf and sharing the same phyllotaxy incorporated the most 14 C. Source leaves for single non-abscising fruitlets retained 3X more 14 C-labelled compounds than did source leaves for 2 or more fruitlets at 31 hrs. post-labelling. Export of label decreased appreciably when fruitlets abscised. If fruitlets abscised within 4 days of labeling then the translocation pattern was similar to the pattern for single fruitlets. If the fruitlet abscised later, the translocation pattern was intermediate between the single and double fruitlet pattern

  17. b-tree facets for the simple graph partitioning polytope

    DEFF Research Database (Denmark)

    Sørensen, Michael Malmros

    2004-01-01

    The simple graph partitioning problem is to partition an edge-weighted graph into mutually disjoint subgraphs, each consisting of no more than b nodes, such that the sum of the weights of all edges in the subgraphs is maximal. In this paper we introduce a large class of facet defining inequalities...... for the simple graph partitioning polytopes P_n(b), b >= 3, associated with the complete graph on n nodes. These inequalities are induced by a graph configuration which is built upon trees of cardinality b. We provide a closed-form theorem that states all necessary and sufficient conditions for the facet...... defining property of the inequalities. Udgivelsesdato: JUN...

  18. An evolutionary game theoretical model shows the limitations of the additive partitioning method for interpreting biodiversity experiments

    NARCIS (Netherlands)

    Vermeulen, Peter J.; Ruijven, van Jasper; Anten, Niels P.R.; Werf, van der Wopke; Satake, Akiko

    2017-01-01

    1.The relationship between diversity and ecosystem functioning is often analysed by partitioning the change in species performance in mixtures into a complementarity effect (CE) and a selection effect (SE). There is continuing ambiguity in the literature on the interpretation of these effects,

  19. Leaf nitrogen assimilation and partitioning differ among subtropical forest plants in response to canopy addition of nitrogen treatments

    Science.gov (United States)

    Nan Liu; Shuhua Wu; Qinfeng Guo; Jiaxin Wang; Ce Cao; Jun Wang

    2018-01-01

    Global increases in nitrogen deposition may alter forest structure and function by interferingwith plant nitrogen metabolism (e.g., assimilation and partitioning) and subsequent carbon assimilation, but it is unclear how these responses to nitrogen deposition differ among species. In this study, we conducted a 2-year experiment to investigate the effects of canopy...

  20. Using measured octanol-air partition coefficients to explain environmental partitioning of organochlorine pesticides.

    Science.gov (United States)

    Shoeib, Mahiba; Harner, Tom

    2002-05-01

    Octanol-air partition coefficients (Koa) were measured directly for 19 organochlorine (OC) pesticides over the temperature range of 5 to 35 degrees C. Values of log Koa at 25 degrees C ranged over three orders of magnitude, from 7.4 for hexachlorobenzene to 10.1 for 1,1-dichloro-2,2-bis(p-chlorophenyl) ethane. Measured values were compared to values calculated as KowRT/H (where R is the ideal gas constant [8.314 J mol(-1) K(-1)], T is absolute temperature, and H is Henry's law constant) were, in general, larger. Discrepancies of up to three orders of magnitude were observed, highlighting the need for direct measurements of Koa. Plots of Koa versus inverse absolute temperature exhibited a log-linear correlation. Enthalpies of phase transition between octanol and air (deltaHoa) were determined from the temperature slopes and were in the range of 56 to 105 kJ mol(-1) K(-1). Activity coefficients in octanol (gamma(o)) were determined from Koa and reported supercooled liquid vapor pressures (pL(o)), and these were in the range of 0.3 to 12, indicating near-ideal solution behavior. Differences in Koa values for structural isomers of hexachlorocyclohexane were also explored. A Koa-based model was described for predicting the partitioning of OC pesticides to aerosols and used to calculate particulate fractions at 25 and -10 degrees C. The model also agreed well with experimental results for several OC pesticides that were equilibrated with urban aerosols in the laboratory. A log-log regression of the particle-gas partition coefficient versus Koa had a slope near unity, indicating that octanol is a good surrogate for the aerosol organic matter.

  1. Axiomatic method of partitions in the theory of Noebeling spaces. I. Improvement of partition connectivity

    International Nuclear Information System (INIS)

    Ageev, S M

    2007-01-01

    The Noebeling space N k 2k+1 , a k-dimensional analogue of the Hilbert space, is considered; this is a topologically complete separable (that is, Polish) k-dimensional absolute extensor in dimension k (that is, AE(k)) and a strongly k-universal space. The conjecture that the above-listed properties characterize the Noebeling space N k 2k+1 in an arbitrary finite dimension k is proved. In the first part of the paper a full axiom system of the Noebeling spaces is presented and the problem of the improvement of a partition connectivity is solved on its basis. Bibliography: 29 titles.

  2. Partitioning Heritability of Regulatory and Cell-Type-Specific Variants across 11 Common Diseases

    DEFF Research Database (Denmark)

    Gusev, Alexander; Lee, S Hong; Trynka, Gosia

    2014-01-01

    Regulatory and coding variants are known to be enriched with associations identified by genome-wide association studies (GWASs) of complex disease, but their contributions to trait heritability are currently unknown. We applied variance-component methods to imputed genotype data for 11 common...... diseases to partition the heritability explained by genotyped SNPs (hg(2)) across functional categories (while accounting for shared variance due to linkage disequilibrium). Extensive simulations showed that in contrast to current estimates from GWAS summary statistics, the variance-component approach...... partitions heritability accurately under a wide range of complex-disease architectures. Across the 11 diseases DNaseI hypersensitivity sites (DHSs) from 217 cell types spanned 16% of imputed SNPs (and 24% of genotyped SNPs) but explained an average of 79% (SE = 8%) of hg(2) from imputed SNPs (5.1× enrichment...

  3. Linking biosensor responses to Cd, Cu and Zn partitioning in soils

    International Nuclear Information System (INIS)

    Dawson, J.J.C.; Campbell, C.D.; Towers, W.; Cameron, C.M.; Paton, G.I.

    2006-01-01

    Soils bind heavy metals according to fundamental physico-chemical parameters. Bioassays, using bacterial biosensors, were performed in pore waters extracted from 19 contrasting soils individually amended with Cd, Cu and Zn concentrations related to the EU Sewage Sludge Directive. The biosensors were responsive to pore waters extracted from Zn amended soils but less so to those of Cu and showed no toxicity to pore water Cd at these environmentally relevant amended concentrations. Across the range of soils, the solid-solution heavy metal partitioning coefficient (K d ) decreased (p d values. Gompertz functions of Cu and Zn, K d values against luminescence explained the relationship between heavy metals and biosensors. Consequently, biosensors provide a link between biologically defined hazard assessments of metals and standard soil-metal physico-chemical parameters for determining critical metal loadings in soils. - Biosensors link biological hazard assessments of metals in soils with physico-chemical partitioning

  4. Surface Modifications of Support Partitions for Stabilizing Biomimetic Membrane Arrays

    DEFF Research Database (Denmark)

    Perry, Mark; Hansen, Jesper Schmidt; Jensen, Karin Bagger Stibius

    2011-01-01

    with a high signal-to-noise (s/n) ratio. We demonstratesd this by reconstituting gA and α-hemolysin (α-HL) into BLM arrays. The improvement in membrane array lifetime and s/n ratio demonstrates that surface plasma polymerization of the supporting partition can be used to increase the stability of biomimetic......Black lipid membrane (BLM) formation across apertures in an ethylene tetra-fluoroethylene (ETFE) partition separating two aqueous compartments is an established technique for the creation of biomimetic membranes. Recently multi-aperture BLM arrays have attracted interest and in order to increase...... BLM array stability we studied the effect of covalently modifying the partition substrate using surface plasma polymerization with hydrophobic n-hexene, 1-decene and hexamethyldisiloxane (HMDSO) as modification groups. Average lifetimes across singlesided HMDSO modified partitions or using 1-decene...

  5. Metric Structures on Fibered Manifolds Through Partitions of Unity

    Directory of Open Access Journals (Sweden)

    Hulya Kadioglu

    2016-05-01

    Full Text Available The notion of partitions of unity is extremely useful as it allows one to extend local constructions on Euclidean patches to global ones. It is widely used in many fields in mathematics. Therefore, prolongation of this useful tool to another manifold may help constructing many geometric structures. In this paper, we construct a partition of unity on a fiber bundle by using a given partition of unity on the base manifold. On the other hand we show that the converse is also possible if it is a vector bundle. As an application, we define a Riemannian metric on the fiber bundle by using induced partition of unity on the fiber bundle.

  6. Constructing ordinal partition transition networks from multivariate time series.

    Science.gov (United States)

    Zhang, Jiayang; Zhou, Jie; Tang, Ming; Guo, Heng; Small, Michael; Zou, Yong

    2017-08-10

    A growing number of algorithms have been proposed to map a scalar time series into ordinal partition transition networks. However, most observable phenomena in the empirical sciences are of a multivariate nature. We construct ordinal partition transition networks for multivariate time series. This approach yields weighted directed networks representing the pattern transition properties of time series in velocity space, which hence provides dynamic insights of the underling system. Furthermore, we propose a measure of entropy to characterize ordinal partition transition dynamics, which is sensitive to capturing the possible local geometric changes of phase space trajectories. We demonstrate the applicability of pattern transition networks to capture phase coherence to non-coherence transitions, and to characterize paths to phase synchronizations. Therefore, we conclude that the ordinal partition transition network approach provides complementary insight to the traditional symbolic analysis of nonlinear multivariate time series.

  7. Scalable Partitioning Algorithms for FPGAs With Heterogeneous Resources

    National Research Council Canada - National Science Library

    Selvakkumaran, Navaratnasothie; Ranjan, Abhishek; Raje, Salil; Karypis, George

    2004-01-01

    As FPGA densities increase, partitioning-based FPGA placement approaches are becoming increasingly important as they can be used to provide high-quality and computationally scalable placement solutions...

  8. Vertical partitioning of relational OLTP databases using integer programming

    DEFF Research Database (Denmark)

    Amossen, Rasmus Resen

    2010-01-01

    A way to optimize performance of relational row store databases is to reduce the row widths by vertically partition- ing tables into table fractions in order to minimize the number of irrelevant columns/attributes read by each transaction. This pa- per considers vertical partitioning algorithms...... for relational row- store OLTP databases with an H-store-like architecture, meaning that we would like to maximize the number of single-sited transactions. We present a model for the vertical partitioning problem that, given a schema together with a vertical partitioning and a workload, estimates the costs...... applied to the TPC-C benchmark and the heuristic is shown to obtain solutions with costs close to the ones found using the quadratic program....

  9. Integrated Payload Data Handling Systems Using Software Partitioning

    Science.gov (United States)

    Taylor, Alun; Hann, Mark; Wishart, Alex

    2015-09-01

    An integrated Payload Data Handling System (I-PDHS) is one in which multiple instruments share a central payload processor for their on-board data processing tasks. This offers a number of advantages over the conventional decentralised architecture. Savings in payload mass and power can be realised because the total processing resource is matched to the requirements, as opposed to the decentralised architecture here the processing resource is in effect the sum of all the applications. Overall development cost can be reduced using a common processor. At individual instrument level the potential benefits include a standardised application development environment, and the opportunity to run the instrument data handling application on a fully redundant and more powerful processing platform [1]. This paper describes a joint program by SCISYS UK Limited, Airbus Defence and Space, Imperial College London and RAL Space to implement a realistic demonstration of an I-PDHS using engineering models of flight instruments (a magnetometer and camera) and a laboratory demonstrator of a central payload processor which is functionally representative of a flight design. The objective is to raise the Technology Readiness Level of the centralised data processing technique by address the key areas of task partitioning to prevent fault propagation and the use of a common development process for the instrument applications. The project is supported by a UK Space Agency grant awarded under the National Space Technology Program SpaceCITI scheme. [1].

  10. Octanol-air partition coefficients of polybrominated biphenyls.

    Science.gov (United States)

    Hongxia, Zhao; Jingwen, Chen; Xie, Quan; Baocheng, Qu; Xinmiao, Liang

    2009-03-01

    The octanol-air partition coefficients (K(OA)) for PBB15, PBB26, PBB31, PBB49, PBB103 and PBB153 were determined as a function of temperature using a gas chromatographic retention time technique with 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (p,p'-DDT) as a reference substance. The internal energies of phase change from octanol to air (Delta(OA)U) were calculated for the six compounds and were in the range from 74 to 116 kJ mol(-1). Simple regression equations of log K(OA) versus relative retention times (RRTs) on gas chromatography (GC), and log K(OA) versus molecular connectivity indexes (MCI) were obtained, for which the correlation coefficients (r(2)) were greater than 0.985 at 283.15K and 298.15K. Thus the K(OA) values of the remaining PBBs can be predicted by using their RRTs and MCI according to these relationships.

  11. Inverted temperature sequences: role of deformation partitioning

    Science.gov (United States)

    Grujic, D.; Ashley, K. T.; Coble, M. A.; Coutand, I.; Kellett, D.; Whynot, N.

    2015-12-01

    The inverted metamorphism associated with the Main Central thrust zone in the Himalaya has been historically attributed to a number of tectonic processes. Here we show that there is actually a composite peak and deformation temperature sequence that formed in succession via different tectonic processes. The deformation partitioning seems to the have played a key role, and the magnitude of each process has varied along strike of the orogen. To explain the formation of the inverted metamorphic sequence across the Lesser Himalayan Sequence (LHS) in eastern Bhutan, we used Raman spectroscopy of carbonaceous material (RSCM) to determine the peak metamorphic temperatures and Ti-in-quartz thermobarometry to determine the deformation temperatures combined with thermochronology including published apatite and zircon U-Th/He and fission-track data and new 40Ar/39Ar dating of muscovite. The dataset was inverted using 3D-thermal-kinematic modeling to constrain the ranges of geological parameters such as fault geometry and slip rates, location and rates of localized basal accretion, and thermal properties of the crust. RSCM results indicate that there are two peak temperature sequences separated by a major thrust within the LHS. The internal temperature sequence shows an inverted peak temperature gradient of 12 °C/km; in the external (southern) sequence, the peak temperatures are constant across the structural sequence. Thermo-kinematic modeling suggest that the thermochronologic and thermobarometric data are compatible with a two-stage scenario: an Early-Middle Miocene phase of fast overthrusting of a hot hanging wall over a downgoing footwall and inversion of the synkinematic isotherms, followed by the formation of the external duplex developed by dominant underthrusting and basal accretion. To reconcile our observations with the experimental data, we suggest that pervasive ductile deformation within the upper LHS and along the Main Central thrust zone at its top stopped at

  12. Multiphase flow modeling in centrifugal partition chromatography.

    Science.gov (United States)

    Adelmann, S; Schwienheer, C; Schembecker, G

    2011-09-09

    The separation efficiency in Centrifugal Partition Chromatography (CPC) depends on selection of a suitable biphasic solvent system (distribution ratio, selectivity factor, sample solubility) and is influenced by hydrodynamics in the chambers. Especially the stationary phase retention, the interfacial area for mass transfer and the flow pattern (backmixing) are important parameters. Their relationship with physical properties, operating parameters and chamber geometry is not completely understood and predictions are hardly possible. Experimental flow visualization is expensive and two-dimensional only. Therefore we simulated the flow pattern using a volume-of-fluid (VOF) method, which was implemented in OpenFOAM®. For the three-dimensional simulation of a rotating FCPC®-chamber, gravitational centrifugal and Coriolis forces were added to the conservation equation. For experimental validation the flow pattern of different solvent systems was visualized with an optical measurement system. The amount of mobile phase in a chamber was calculated from gray scale values of videos recorded by an image processing routine in ImageJ®. To visualize the flow of the stationary phase polyethylene particles were used to perform a qualitative particle image velocimetry (PIV) analysis. We found a good agreement between flow patterns and velocity profiles of experiments and simulations. By using the model we found that increasing the chamber depth leads to higher specific interfacial area. Additionally a circular flow in the stationary phase was identified that lowers the interfacial area because it pushes the jet of mobile phase to the chamber wall. The Coriolis force alone gives the impulse for this behavior. As a result the model is easier to handle than experiments and allows 3D prediction of hydrodynamics in the chamber. Additionally it can be used for optimizing geometry and operating parameters for given physical properties of solvent systems. Copyright © 2011 Elsevier B

  13. Review of partitioning proposals for spent nuclear fuels

    International Nuclear Information System (INIS)

    Bowersox, D.F.

    1976-07-01

    The initial phase of a study about recovery of valuable fission products from spent nuclear fuels has been to review various partitioning proposals. This report briefly describes the aqueous Purex process, the salt transport process, melt refining, fluoride volatility process, and gravimetric separations. All these processes appear to be possible technically, but further research will be necessary to determine which are most feasible. This review includes general recommendations for experimental research and development of several partitioning options

  14. Dynamics of vacuum-sealed, double-leaf partitions

    Science.gov (United States)

    Kavanaugh, Joshua Stephen

    The goal of this research is to investigate the feasibility and potential effectiveness of using vacuum-sealed, double-leaf partitions for applications in noise control. Substantial work has been done previously on double-leaf partitions where the acoustics of the inner chamber and mechanical vibrations of structural supports are passively and actively controlled. The work presented here is unique in that the proposed system aims to eliminate the need for active acoustic control of transmitted acoustic energy by removing all the air between the two panels of the double partition. Therefore, the only remaining energy paths would be along the boundary and at the points where there are intermediate structural supports connecting the two panels. The eventual goal of the research is to develop a high-loss double-leaf partition that simplifies active control by removing the need for control of the air cavity and channeling all the energy into discrete structural paths. The work presented here is a first step towards the goal of designing a high-loss, actively-controlled double-leaf partition with an air-evacuated inner chamber. One experiment is conducted to investigate the effects of various levels of vacuum on the response of a double-leaf partition whose panels are mechanically coupled only at the boundary. Another experiment is conducted which investigates the effect of changing the stiffness of an intermediate support coupling the two panels of a double-leaf partition in which a vacuum has been applied to the inner cavity. The available equipment was able to maintain a 99% vacuum between the panels. Both experiments are accompanied by analytical models used to investigate the importance of various dynamic parameters. Results show that the vacuum-sealed system shows some potential for increased transmission loss, primarily by the changing the natural frequencies of the double-leaf partition.

  15. Spatial partitions systematize visual search and enhance target memory.

    Science.gov (United States)

    Solman, Grayden J F; Kingstone, Alan

    2017-02-01

    Humans are remarkably capable of finding desired objects in the world, despite the scale and complexity of naturalistic environments. Broadly, this ability is supported by an interplay between exploratory search and guidance from episodic memory for previously observed target locations. Here we examined how the environment itself may influence this interplay. In particular, we examined how partitions in the environment-like buildings, rooms, and furniture-can impact memory during repeated search. We report that the presence of partitions in a display, independent of item configuration, reliably improves episodic memory for item locations. Repeated search through partitioned displays was faster overall and was characterized by more rapid ballistic orienting in later repetitions. Explicit recall was also both faster and more accurate when displays were partitioned. Finally, we found that search paths were more regular and systematic when displays were partitioned. Given the ubiquity of partitions in real-world environments, these results provide important insights into the mechanisms of naturalistic search and its relation to memory.

  16. Probabilistic Decision Based Block Partitioning for Future Video Coding

    KAUST Repository

    Wang, Zhao

    2017-11-29

    In the latest Joint Video Exploration Team development, the quadtree plus binary tree (QTBT) block partitioning structure has been proposed for future video coding. Compared to the traditional quadtree structure of High Efficiency Video Coding (HEVC) standard, QTBT provides more flexible patterns for splitting the blocks, which results in dramatically increased combinations of block partitions and high computational complexity. In view of this, a confidence interval based early termination (CIET) scheme is proposed for QTBT to identify the unnecessary partition modes in the sense of rate-distortion (RD) optimization. In particular, a RD model is established to predict the RD cost of each partition pattern without the full encoding process. Subsequently, the mode decision problem is casted into a probabilistic framework to select the final partition based on the confidence interval decision strategy. Experimental results show that the proposed CIET algorithm can speed up QTBT block partitioning structure by reducing 54.7% encoding time with only 1.12% increase in terms of bit rate. Moreover, the proposed scheme performs consistently well for the high resolution sequences, of which the video coding efficiency is crucial in real applications.

  17. A novel partitioning method for block-structured adaptive meshes

    Science.gov (United States)

    Fu, Lin; Litvinov, Sergej; Hu, Xiangyu Y.; Adams, Nikolaus A.

    2017-07-01

    We propose a novel partitioning method for block-structured adaptive meshes utilizing the meshless Lagrangian particle concept. With the observation that an optimum partitioning has high analogy to the relaxation of a multi-phase fluid to steady state, physically motivated model equations are developed to characterize the background mesh topology and are solved by multi-phase smoothed-particle hydrodynamics. In contrast to well established partitioning approaches, all optimization objectives are implicitly incorporated and achieved during the particle relaxation to stationary state. Distinct partitioning sub-domains are represented by colored particles and separated by a sharp interface with a surface tension model. In order to obtain the particle relaxation, special viscous and skin friction models, coupled with a tailored time integration algorithm are proposed. Numerical experiments show that the present method has several important properties: generation of approximately equal-sized partitions without dependence on the mesh-element type, optimized interface communication between distinct partitioning sub-domains, continuous domain decomposition which is physically localized and implicitly incremental. Therefore it is particularly suitable for load-balancing of high-performance CFD simulations.

  18. A novel partitioning method for block-structured adaptive meshes

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Lin, E-mail: lin.fu@tum.de; Litvinov, Sergej, E-mail: sergej.litvinov@aer.mw.tum.de; Hu, Xiangyu Y., E-mail: xiangyu.hu@tum.de; Adams, Nikolaus A., E-mail: nikolaus.adams@tum.de

    2017-07-15

    We propose a novel partitioning method for block-structured adaptive meshes utilizing the meshless Lagrangian particle concept. With the observation that an optimum partitioning has high analogy to the relaxation of a multi-phase fluid to steady state, physically motivated model equations are developed to characterize the background mesh topology and are solved by multi-phase smoothed-particle hydrodynamics. In contrast to well established partitioning approaches, all optimization objectives are implicitly incorporated and achieved during the particle relaxation to stationary state. Distinct partitioning sub-domains are represented by colored particles and separated by a sharp interface with a surface tension model. In order to obtain the particle relaxation, special viscous and skin friction models, coupled with a tailored time integration algorithm are proposed. Numerical experiments show that the present method has several important properties: generation of approximately equal-sized partitions without dependence on the mesh-element type, optimized interface communication between distinct partitioning sub-domains, continuous domain decomposition which is physically localized and implicitly incremental. Therefore it is particularly suitable for load-balancing of high-performance CFD simulations.

  19. High Pressure/Temperature Metal Silicate Partitioning of Tungsten

    Science.gov (United States)

    Shofner, G. A.; Danielson, L.; Righter, K.; Campbell, A. J.

    2010-01-01

    The behavior of chemical elements during metal/silicate segregation and their resulting distribution in Earth's mantle and core provide insight into core formation processes. Experimental determination of partition coefficients allows calculations of element distributions that can be compared to accepted values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Tungsten (W) is a moderately siderophile element and thus preferentially partitions into metal versus silicate under many planetary conditions. The partitioning behavior has been shown to vary with temperature, silicate composition, oxygen fugacity, and pressure. Most of the previous work on W partitioning has been conducted at 1-bar conditions or at relatively low pressures, i.e. pressure. Predictions based on extrapolation of existing data and parameterizations suggest an increased pressured dependence on metal/ silicate partitioning of W at higher pressures 5. However, the dependence on pressure is not as well constrained as T, fO2, and silicate composition. This poses a problem because proposed equilibration pressures for core formation range from 27 to 50 GPa, falling well outside the experimental range, therefore requiring exptrapolation of a parametereized model. Higher pressure data are needed to improve our understanding of W partitioning at these more extreme conditions.

  20. Mahlburg's Work on Crank Functions

    Indian Academy of Sciences (India)

    IAS Admin

    640–651, 2006. [8]. G N Watson, Ramanujan's Vermutung uber zerfallungsanzahlen, J. Reine Angew Math., Vol.179, pp.97–128, 1938. [9]. J Lehner, Ramanujan identities involving the partition function for the moduli 11α, Amer. J. Math.

  1. Interfacial thermodynamics and electrochemistry of protein partitioning in two-phase systems

    NARCIS (Netherlands)

    Fraaije, J.G.E.M.

    1987-01-01

    The subject of this thesis is protein partition between an aqueous salt solution and a surface or an apolair liquid and the concomitant co-partition of small ions. The extent of co-partitioning determines the charge regulation in the protein partitioning process.

    Chapters 2 and 3

  2. Structural analysis of the ParR/parC plasmid partition complex

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Ringgaard, Simon; Mercogliano, Christopher P

    2007-01-01

    Accurate DNA partition at cell division is vital to all living organisms. In bacteria, this process can involve partition loci, which are found on both chromosomes and plasmids. The initial step in Escherichia coli plasmid R1 partition involves the formation of a partition complex between the DNA...

  3. Space-partition method for the variance-based sensitivity analysis: Optimal partition scheme and comparative study

    International Nuclear Information System (INIS)

    Zhai, Qingqing; Yang, Jun; Zhao, Yu

    2014-01-01

    Variance-based sensitivity analysis has been widely studied and asserted itself among practitioners. Monte Carlo simulation methods are well developed in the calculation of variance-based sensitivity indices but they do not make full use of each model run. Recently, several works mentioned a scatter-plot partitioning method to estimate the variance-based sensitivity indices from given data, where a single bunch of samples is sufficient to estimate all the sensitivity indices. This paper focuses on the space-partition method in the estimation of variance-based sensitivity indices, and its convergence and other performances are investigated. Since the method heavily depends on the partition scheme, the influence of the partition scheme is discussed and the optimal partition scheme is proposed based on the minimized estimator's variance. A decomposition and integration procedure is proposed to improve the estimation quality for higher order sensitivity indices. The proposed space-partition method is compared with the more traditional method and test cases show that it outperforms the traditional one

  4. Allocation plasticity and plant-metal partitioning: Meta-analytical perspectives in phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Audet, Patrick [Ottawa-Carleton Institute of Biology, Department of Biology, University of Ottawa, 30 Marie-Curie Street, Ottawa, ON K1N 6N5 (Canada)], E-mail: paude086@uottawa.ca; Charest, Christiane [Ottawa-Carleton Institute of Biology, Department of Biology, University of Ottawa, 30 Marie-Curie Street, Ottawa, ON K1N 6N5 (Canada)], E-mail: ccharest@uottawa.ca

    2008-11-15

    In this meta-analysis of plant growth and metal uptake parameters, we selected 19 studies of heavy metal (HM) phytoremediation to evaluate trends of allocation plasticity and plant-metal partitioning in roots relative to shoots. We calculated indexes of biomass allocation and metal distribution for numerous metals and plant species among four families of interest for phytoremediation purposes (e.g. Brassicaceae, Fabaceae, Poaceae, and Solanaceae). We determined that plants shift their biomass and distribute metals more to roots than shoots possibly to circumvent the challenges of increasing soil-HM conditions. Although this shift is viewed as a stress-avoidance strategy complementing intrinsic stress-tolerance, our findings indicate that plants express different levels of allocation plasticity and metal partitioning depending on their overall growth strategy and status as 'fast-grower' or 'slow-grower' species. Accordingly, we propose a conceptual model of allocation plasticity and plant-metal partitioning comparing 'fast-grower' and 'slow-grower' strategies and outlining applications for remediation practices. - This meta-analysis has revealed a shift in plant biomass and metal distribution from shoots to roots possibly to protect vital functions when subjected to metal stress.

  5. Allocation plasticity and plant-metal partitioning: Meta-analytical perspectives in phytoremediation

    International Nuclear Information System (INIS)

    Audet, Patrick; Charest, Christiane

    2008-01-01

    In this meta-analysis of plant growth and metal uptake parameters, we selected 19 studies of heavy metal (HM) phytoremediation to evaluate trends of allocation plasticity and plant-metal partitioning in roots relative to shoots. We calculated indexes of biomass allocation and metal distribution for numerous metals and plant species among four families of interest for phytoremediation purposes (e.g. Brassicaceae, Fabaceae, Poaceae, and Solanaceae). We determined that plants shift their biomass and distribute metals more to roots than shoots possibly to circumvent the challenges of increasing soil-HM conditions. Although this shift is viewed as a stress-avoidance strategy complementing intrinsic stress-tolerance, our findings indicate that plants express different levels of allocation plasticity and metal partitioning depending on their overall growth strategy and status as 'fast-grower' or 'slow-grower' species. Accordingly, we propose a conceptual model of allocation plasticity and plant-metal partitioning comparing 'fast-grower' and 'slow-grower' strategies and outlining applications for remediation practices. - This meta-analysis has revealed a shift in plant biomass and metal distribution from shoots to roots possibly to protect vital functions when subjected to metal stress

  6. Spatio-temporal evaluation of emerging contaminants and their partitioning along a Brazilian watershed.

    Science.gov (United States)

    de Sousa, Diana Nara Ribeiro; Mozeto, Antonio Aparecido; Carneiro, Renato Lajarim; Fadini, Pedro Sergio

    2018-02-01

    The occurrence, partitioning, and spatio-temporal distribution of seven pharmaceuticals for human use, three steroid hormones and one personal care product were determined in surface water, suspended particulate matter (SPM), and sediment of Piraí Creek and Jundiaí River (Jundiaí River Basin, São Paulo, Brazil). The maximum average detected concentrations of the compounds in the Piraí River samples were contaminants most frequently detected in sediment and SPM samples. Triclosan had the highest average proportion of SPM as opposed to in the aqueous phase (> 75%). Contaminants with acid functional groups showed, in general, a lower tendency to bind to particulate matter and sediments. In addition, hydrophobicity had an important effect on their environmental partitioning. The spatial distribution of contaminants along the Jundiaí River was mainly affected by the higher concentration of contaminants in water samples collected downstream from a sewage treatment plant (STP). The results obtained here clearly showed the importance of the analysis of some contaminants in the whole water, meaning both dissolved and particulate compartments in the water, and that the partitioning is ruled by a set of parameters associated to the physicochemical characteristics of contaminants and the matrix properties of the studied, which need be considered in an integrated approach to understand the fate of emerging chemical contaminants in aquatic environments.

  7. Immiscible silicate liquids at high pressure: the influence of melt structure on elemental partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Vicenzi, E [Princeton Materials Laboratory, Princeton, NJ (United States); Green, T H [Macquarie Univ., North Ryde, NSW (Australia); Sie, S H [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1994-12-31

    Micro-PIXE analyses have been applied to study partitioning of trace elements between immiscible silicate melts stabilised at 0.5 and 1.0 GPa over a temperature range of 1160-1240 deg C in the system SiO{sub 2}-FeO-Al{sub 2}0{sub 3}-K{sub 2}0 (+P{sub 2}0{sub 5}). The system was doped with a suite of trace elements of geochemical interest: Rb, Ba, Pb, Sr, La, Ce, Sm, Ho, Y, Lu, Th, U, Zr, Hf, Nb and Ta at approximately 200 ppm level for all elements except for the REE`s, Ba and Ta (600-1200 ppm). Trace element partitioning was found to be a complex function of cation field strength (charge/radius{sup 2}). Although field strength is important in determining the nature and degree of partitioning, the authors emphasised that it is only one component of the underlying mechanism for the way in which elements distribute themselves between two silicate liquids. 8 refs., 2 figs.

  8. Immiscible silicate liquids at high pressure: the influence of melt structure on elemental partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Vicenzi, E. [Princeton Materials Laboratory, Princeton, NJ (United States); Green, T.H. [Macquarie Univ., North Ryde, NSW (Australia); Sie, S.H. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1993-12-31

    Micro-PIXE analyses have been applied to study partitioning of trace elements between immiscible silicate melts stabilised at 0.5 and 1.0 GPa over a temperature range of 1160-1240 deg C in the system SiO{sub 2}-FeO-Al{sub 2}0{sub 3}-K{sub 2}0 (+P{sub 2}0{sub 5}). The system was doped with a suite of trace elements of geochemical interest: Rb, Ba, Pb, Sr, La, Ce, Sm, Ho, Y, Lu, Th, U, Zr, Hf, Nb and Ta at approximately 200 ppm level for all elements except for the REE`s, Ba and Ta (600-1200 ppm). Trace element partitioning was found to be a complex function of cation field strength (charge/radius{sup 2}). Although field strength is important in determining the nature and degree of partitioning, the authors emphasised that it is only one component of the underlying mechanism for the way in which elements distribute themselves between two silicate liquids. 8 refs., 2 figs.

  9. Laparoscopic stomach-partitioning gastrojejunostomy with reduced-port techniques for unresectable distal gastric cancer.

    Science.gov (United States)

    Hirahara, Noriyuki; Matsubara, Takeshi; Hyakudomi, Ryoji; Hari, Yoko; Fujii, Yusuke; Tajima, Yoshitsugu

    2014-03-01

    The improvement of quality of life is of great importance in managing patients with far-advanced gastric cancer. We report a new cure and less invasive method of creating a stomach-partitioning gastrojejunostomy in reduced-port laparoscopic surgery for unresectable gastric cancers with gastric outlet obstruction. A 2.5-cm vertical intraumbilical incision was made, and EZ Access (Hakko Co., Ltd., Tokyo, Japan) was placed. After pneumoperitoneum was created, an additional 5-mm trocar was inserted in the right upper abdomen. A gastrojejunostomy was performed in the form of an antiperistaltic side-to-side anastomosis, in which the jejunal loop was elevated in the antecolic route and anastomosed to the greater curvature of the stomach using an endoscopic linear stapler. The jejunal loop together with the stomach was dissected with additional linear staplers just proximal to the common entry hole so that a functional end-to-end gastrojejunostomy was completed. At the same time, the stomach was partitioned using a linear stapler to leave a 2-cm-wide lumen in the lesser curvature. Subsequently, jejunojejunostomy was performed 30 cm distal to the gastrojejunostomy, and the stomach-partitioning gastrojejunostomy resembling Roux-en Y anastomosis was completed. All patients resumed oral intake on the day of operation. Neither anastomotic leakage nor anastomotic stricture was observed. Our less invasive palliative operation offers the utmost priority to improve quality of life for patients with unresectable gastric cancer.

  10. Theory of partitioning of disease prevalence and mortality in observational data.

    Science.gov (United States)

    Akushevich, I; Yashkin, A P; Kravchenko, J; Fang, F; Arbeev, K; Sloan, F; Yashin, A I

    2017-04-01

    In this study, we present a new theory of partitioning of disease prevalence and incidence-based mortality and demonstrate how this theory practically works for analyses of Medicare data. In the theory, the prevalence of a disease and incidence-based mortality are modeled in terms of disease incidence and survival after diagnosis supplemented by information on disease prevalence at the initial age and year available in a dataset. Partitioning of the trends of prevalence and mortality is calculated with minimal assumptions. The resulting expressions for the components of the trends are given by continuous functions of data. The estimator is consistent and stable. The developed methodology is applied for data on type 2 diabetes using individual records from a nationally representative 5% sample of Medicare beneficiaries age 65+. Numerical estimates show excellent concordance between empirical estimates and theoretical predictions. Evaluated partitioning model showed that both prevalence and mortality increase with time. The primary driving factors of the observed prevalence increase are improved survival and increased prevalence at age 65. The increase in diabetes-related mortality is driven by increased prevalence and unobserved trends in time-periods and age-groups outside of the range of the data used in the study. Finally, the properties of the new estimator, possible statistical and systematical uncertainties, and future practical applications of this methodology in epidemiology, demography, public health and health forecasting are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Plasma membrane partitioning: from macro-domains to new views on plasmodesmata

    Directory of Open Access Journals (Sweden)

    Yohann eBoutté

    2014-04-01

    Full Text Available Compartmentalization of cellular functions relies on partitioning of domains of diverse sizes within the plasma membrane (PM. Macro-domains measure several micrometers and contain specific proteins concentrated to specific sides (apical, basal and lateral of the PM conferring a polarity to the cell. Cell polarity is one of the driving forces in tissue and growth patterning. To maintain macro-domains within the PM, eukaryotic cells exert diverse mechanisms to counteract the free lateral diffusion of proteins. Protein activation/inactivation, endocytosis, PM recycling of transmembrane proteins and the role of diffusion barriers in macro-domains partitioning at PM will be discussed. Moreover, as plasmodesmata (PDs are domains inserted within the PM which also mediate tissue and growth patterning, it is essential to understand how segregation of specific set of proteins is maintained at PDs while PDs domains are smaller in size compared to macro-domains. Here, we will present mechanisms allowing restriction of proteins at PM macrodomains, but for which molecular components have been found in PDs proteome. We will explore the hypothesis that partitioning of macro-domains and PDs may be ruled by similar mechanisms.

  12. Intersexual trophic niche partitioning in an ant-eating spider (Araneae: Zodariidae.

    Directory of Open Access Journals (Sweden)

    Stano Pekár

    2011-01-01

    Full Text Available Divergence in trophic niche between the sexes may function to reduce competition between the sexes ("intersexual niche partitioning hypothesis", or may be result from differential selection among the sexes on maximizing reproductive output ("sexual selection hypothesis". The latter may lead to higher energy demands in females driven by fecundity selection, while males invest in mate searching. We tested predictions of the two hypotheses underlying intersexual trophic niche partitioning in a natural population of spiders. Zodarion jozefienae spiders specialize on Messor barbarus ants that are polymorphic in body size and hence comprise potential trophic niches for the spider, making this system well-suited to study intersexual trophic niche partitioning.Comparative analysis of trophic morphology (the chelicerae and body size of males, females and juveniles demonstrated highly female biased SSD (Sexual Size Dimorphism in body size, body weight, and in the size of chelicerae, the latter arising from sex-specific growth patterns in trophic morphology. In the field, female spiders actively selected ant sub-castes that were larger than the average prey size, and larger than ants captured by juveniles and males. Female fecundity was highly positively correlated with female body mass, which reflects foraging success during the adult stage. Females in laboratory experiments preferred the large ant sub-castes and displayed higher capture efficiency. In contrast, males occupied a different trophic niche and showed reduced foraging effort and reduced prey capture and feeding efficiency compared with females and juveniles.Our data indicate that female-biased dimorphism in trophic morphology and body size correlate with sex-specific reproductive strategies. We propose that intersexual trophic niche partitioning is shaped primarily by fecundity selection in females, and results from sex-differences in the route to successful reproduction where females are

  13. Study of the Relap5/mod3.2 wall heat flux partitioning model

    International Nuclear Information System (INIS)

    Hari, S.; Hassan, Y.A.

    2001-01-01

    The performance of the subcooled boiling model adapted in RELAP5/MOD3.2 computer code has been assessed in detail for low-pressure conditions and it has been found that the void fraction profile is under-predicted. In general, any subcooled boiling model is composed of individual sub-models that account for the different physical mechanism that govern the overall process, as the wall vapor generation, interfacial shear and condensation etc. The wall heat flux partitioning model is one of the important sub-models that is a constituent of any subcooled boiling model. The function of this model is to apportion the wall heat flux to the different components (as the single/two phase fluid or bubble), as the case may be, in a two-phase flow-boiling scenario adjacent to a heated wall. The ''pumping factor'' approach is generally followed by most of the wall heat flux partitioning models, for partitioning the wall heat flux. In this work, the wall heat flux partitioning model of RELAP5/MOD3.2 computer code is studied; in particular, the ''pumping factor'' formulation in the present code version is assessed for its performance under low-pressure conditions. In addition, three different ''pumping factor'' formulations available in the literature have been introduced into the RELAP5/MOD3.2 code. Simulations of two low-pressure subcooled flow boiling experiments were performed with the refined code versions to determine the appropriate pumping factor to be used under these conditions. (author)

  14. Managing Network Partitions in Structured P2P Networks

    Science.gov (United States)

    Shafaat, Tallat M.; Ghodsi, Ali; Haridi, Seif

    Structured overlay networks form a major class of peer-to-peer systems, which are touted for their abilities to scale, tolerate failures, and self-manage. Any long-lived Internet-scale distributed system is destined to face network partitions. Consequently, the problem of network partitions and mergers is highly related to fault-tolerance and self-management in large-scale systems. This makes it a crucial requirement for building any structured peer-to-peer systems to be resilient to network partitions. Although the problem of network partitions and mergers is highly related to fault-tolerance and self-management in large-scale systems, it has hardly been studied in the context of structured peer-to-peer systems. Structured overlays have mainly been studied under churn (frequent joins/failures), which as a side effect solves the problem of network partitions, as it is similar to massive node failures. Yet, the crucial aspect of network mergers has been ignored. In fact, it has been claimed that ring-based structured overlay networks, which constitute the majority of the structured overlays, are intrinsically ill-suited for merging rings. In this chapter, we motivate the problem of network partitions and mergers in structured overlays. We discuss how a structured overlay can automatically detect a network partition and merger. We present an algorithm for merging multiple similar ring-based overlays when the underlying network merges. We examine the solution in dynamic conditions, showing how our solution is resilient to churn during the merger, something widely believed to be difficult or impossible. We evaluate the algorithm for various scenarios and show that even when falsely detecting a merger, the algorithm quickly terminates and does not clutter the network with many messages. The algorithm is flexible as the tradeoff between message complexity and time complexity can be adjusted by a parameter.

  15. A Timing-Driven Partitioning System for Multiple FPGAs

    Directory of Open Access Journals (Sweden)

    Kalapi Roy

    1996-01-01

    Full Text Available Field-programmable systems with multiple FPGAs on a PCB or an MCM are being used by system designers when a single FPGA is not sufficient. We address the problem of partitioning a large technology mapped FPGA circuit onto multiple FPGA devices of a specific target technology. The physical characteristics of the multiple FPGA system (MFS pose additional constraints to the circuit partitioning algorithms: the capacity of each FPGA, the timing constraints, the number of I/Os per FPGA, and the pre-designed interconnection patterns of each FPGA and the package. Existing partitioning techniques which minimize just the cut sizes of partitions fail to satisfy the above challenges. We therefore present a timing driven N-way partitioning algorithm based on simulated annealing for technology-mapped FPGA circuits. The signal path delays are estimated during partitioning using a timing model specific to a multiple FPGA architecture. The model combines all possible delay factors in a system with multiple FPGA chips of a target technology. Furthermore, we have incorporated a new dynamic net-weighting scheme to minimize the number of pin-outs for each chip. Finally, we have developed a graph-based global router for pin assignment which can handle the pre-routed connections of our MFS structure. In order to reduce the time spent in the simulated annealing phase of the partitioner, clusters of circuit components are identified by a new linear-time bottom-up clustering algorithm. The annealing-based N-way partitioner executes four times faster using the clusters as opposed to a flat netlist with improved partitioning results. For several industrial circuits, our approach outperforms the recursive min-cut bi-partitioning algorithm by 35% in terms of nets cut. Our approach also outperforms an industrial FPGA partitioner by 73% on average in terms of unroutable nets. Using the performance optimization capabilities in our approach we have successfully partitioned the

  16. Radio Wave Propagation Scene Partitioning for High-Speed Rails

    Directory of Open Access Journals (Sweden)

    Bo Ai

    2012-01-01

    Full Text Available Radio wave propagation scene partitioning is necessary for wireless channel modeling. As far as we know, there are no standards of scene partitioning for high-speed rail (HSR scenarios, and therefore we propose the radio wave propagation scene partitioning scheme for HSR scenarios in this paper. Based on our measurements along the Wuhan-Guangzhou HSR, Zhengzhou-Xian passenger-dedicated line, Shijiazhuang-Taiyuan passenger-dedicated line, and Beijing-Tianjin intercity line in China, whose operation speeds are above 300 km/h, and based on the investigations on Beijing South Railway Station, Zhengzhou Railway Station, Wuhan Railway Station, Changsha Railway Station, Xian North Railway Station, Shijiazhuang North Railway Station, Taiyuan Railway Station, and Tianjin Railway Station, we obtain an overview of HSR propagation channels and record many valuable measurement data for HSR scenarios. On the basis of these measurements and investigations, we partitioned the HSR scene into twelve scenarios. Further work on theoretical analysis based on radio wave propagation mechanisms, such as reflection and diffraction, may lead us to develop the standard of radio wave propagation scene partitioning for HSR. Our work can also be used as a basis for the wireless channel modeling and the selection of some key techniques for HSR systems.

  17. Photosynthate partitioning in alfalfa before harvest and during regrowth

    International Nuclear Information System (INIS)

    Cralle, H.T.; Heichel, G.H.

    1988-01-01

    During the harvest regrowth cycle of alfalfa (Medicago sativa L.) plants, factors such as source to sink distance, sink size, and inter-organ competition continually change. However, consequent changes in the pattern of photosynthate partitioning from leaves to other organs are poorly understood. The authors objective was to examine photosynthate partitioning from upper and lower alfalfa leaves at intervals before herbage harvest and during regrowth after harvest. The uppermost or lowest fully expanded leaf on the longest or dominant stem was labeled with 14 CO 2 . After a 24-h translocation period, the plants were divided into various organs to determine distribution of the radiocarbon. At that time, the upper leaf preferentially partitioned photosynthate to the shoot apex, unexpanded leaves and auxillary shoots of the dominant shoot, whereas the lower leaf preferentially distributed photosynthate to the crown shoots, crown, root, and nodules. Expressions of 14 C partitioning were affected differently by organ mass. While the smallest organs such as nodules and unexpanded leaves always ranked higher for 14 C based on relative specific activity, the largest organs such as roots and crown shoots accumulated the largest percentage of total plant recovered radioactivity. The results illustrate the importance of growth stage and leaf position in photosynthate partitioning in alfalfa and the dominance of herbage meristems for current photosynthate during regrowth

  18. SVOC partitioning between the gas phase and settled dust indoors

    Science.gov (United States)

    Weschler, Charles J.; Nazaroff, William W.

    2010-09-01

    Semivolatile organic compounds (SVOCs) are a major class of indoor pollutants. Understanding SVOC partitioning between the gas phase and settled dust is important for characterizing the fate of these species indoors and the pathways by which humans are exposed to them. Such knowledge also helps in crafting measurement programs for epidemiological studies designed to probe potential associations between exposure to these compounds and adverse health effects. In this paper, we analyze published data from nineteen studies that cumulatively report measurements of dustborne and airborne SVOCs in more than a thousand buildings, mostly residences, in seven countries. In aggregate, measured median data are reported in these studies for 66 different SVOCs whose octanol-air partition coefficients ( Koa) span more than five orders of magnitude. We use these data to test a simple equilibrium model for estimating the partitioning of an SVOC between the gas phase and settled dust indoors. The results demonstrate, in central tendency, that a compound's octanol-air partition coefficient is a strong predictor of its abundance in settled dust relative to its gas phase concentration. Using median measured results for each SVOC in each study, dustborne mass fractions predicted using Koa and gas-phase concentrations correlate reasonably well with measured dustborne mass fractions ( R2 = 0.76). Combined with theoretical understanding of SVOC partitioning kinetics, the empirical evidence also suggests that for SVOCs with high Koa values, the mass fraction in settled dust may not have sufficient time to equilibrate with the gas phase concentration.

  19. Modeling water and hydrogen networks with partitioning regeneration units

    Directory of Open Access Journals (Sweden)

    W.M. Shehata

    2015-03-01

    Full Text Available Strict environment regulations in chemical and refinery industries lead to minimize resource consumption by designing utility networks within industrial process plants. The present study proposed a superstructure based optimization model for the synthesis of water and hydrogen networks with partitioning regenerators without mixing the regenerated sources. This method determines the number of partitioning regenerators needed for the regeneration of the sources. The number of the regenerators is based on the number of sources required to be treated for recovery. Each source is regenerated in an individual partitioning regenerator. Multiple regeneration systems can be employed to achieve minimum flowrate and costs. The formulation is linear in the regenerator balance equations. The optimized model is applied for two systems, partitioning regeneration systems of the fixed outlet impurity concentration and partitioning regeneration systems of the fixed impurity load removal ratio (RR for water and hydrogen networks. Several case studies from the literature are solved to illustrate the ease and applicability of the proposed method.

  20. A layer model of ethanol partitioning into lipid membranes.

    Science.gov (United States)

    Nizza, David T; Gawrisch, Klaus

    2009-06-01

    The effect of membrane composition on ethanol partitioning into lipid bilayers was assessed by headspace gas chromatography. A series of model membranes with different compositions have been investigated. Membranes were exposed to a physiological ethanol concentration of 20 mmol/l. The concentration of membranes was 20 wt% which roughly corresponds to values found in tissue. Partitioning depended on the chemical nature of polar groups at the lipid/water interface. Compared to phosphatidylcholine, lipids with headgroups containing phosphatidylglycerol, phosphatidylserine, and sphingomyelin showed enhanced partitioning while headgroups containing phosphatidylethanolamine resulted in a lower partition coefficient. The molar partition coefficient was independent of a membrane's hydrophobic volume. This observation is in agreement with our previously published NMR results which showed that ethanol resides almost exclusively within the membrane/water interface. At an ethanol concentration of 20 mmol/l in water, ethanol concentrations at the lipid/water interface are in the range from 30-15 mmol/l, corresponding to one ethanol molecule per 100-200 lipids.

  1. The influence of hydrogen bonding on partition coefficients

    Science.gov (United States)

    Borges, Nádia Melo; Kenny, Peter W.; Montanari, Carlos A.; Prokopczyk, Igor M.; Ribeiro, Jean F. R.; Rocha, Josmar R.; Sartori, Geraldo Rodrigues

    2017-02-01

    This Perspective explores how consideration of hydrogen bonding can be used to both predict and better understand partition coefficients. It is shown how polarity of both compounds and substructures can be estimated from measured alkane/water partition coefficients. When polarity is defined in this manner, hydrogen bond donors are typically less polar than hydrogen bond acceptors. Analysis of alkane/water partition coefficients in conjunction with molecular electrostatic potential calculations suggests that aromatic chloro substituents may be less lipophilic than is generally believed and that some of the effect of chloro-substitution stems from making the aromatic π-cloud less available to hydrogen bond donors. Relationships between polarity and calculated hydrogen bond basicity are derived for aromatic nitrogen and carbonyl oxygen. Aligned hydrogen bond acceptors appear to present special challenges for prediction of alkane/water partition coefficients and this may reflect `frustration' of solvation resulting from overlapping hydration spheres. It is also shown how calculated hydrogen bond basicity can be used to model the effect of aromatic aza-substitution on octanol/water partition coefficients.

  2. Experiments and Recommendations for Partitioning Systems of Equations

    Directory of Open Access Journals (Sweden)

    Mafteiu-Scai Liviu Octavian

    2014-06-01

    Full Text Available Partitioning the systems of equations is a very important process when solving it on a parallel computer. This paper presents some criteria which leads to more efficient parallelization, that must be taken into consideration. New criteria added to preconditioning process by reducing average bandwidth are pro- posed in this paper. These new criteria lead to a combination between preconditioning and partitioning of systems equations, so no need two distinct algorithms/processes. In our proposed methods - where the preconditioning is done by reducing the average bandwidth- two directions were followed in terms of partitioning: for a given preconditioned system determining the best partitioning (or one as close and the second consist in achieving an adequate preconditioning, depending on a given/desired partitioning. A mixed method it is also proposed. Experimental results, conclusions and recommendations, obtained after parallel implementation of conjugate gradient on IBM BlueGene /P supercomputer- based on a synchronous model of parallelization- are also presented in this paper.

  3. Quality Control Procedure Based on Partitioning of NMR Time Series

    Directory of Open Access Journals (Sweden)

    Michał Staniszewski

    2018-03-01

    Full Text Available The quality of the magnetic resonance spectroscopy (MRS depends on the stability of magnetic resonance (MR system performance and optimal hardware functioning, which ensure adequate levels of signal-to-noise ratios (SNR as well as good spectral resolution and minimal artifacts in the spectral data. MRS quality control (QC protocols and methodologies are based on phantom measurements that are repeated regularly. In this work, a signal partitioning algorithm based on a dynamic programming (DP method for QC assessment of the spectral data is described. The proposed algorithm allows detection of the change points—the abrupt variations in the time series data. The proposed QC method was tested using the simulated and real phantom data. Simulated data were randomly generated time series distorted by white noise. The real data were taken from the phantom quality control studies of the MRS scanner collected for four and a half years and analyzed by LCModel software. Along with the proposed algorithm, performance of various literature methods was evaluated for the predefined number of change points based on the error values calculated by subtracting the mean values calculated for the periods between the change-points from the original data points. The time series were checked using external software, a set of external methods and the proposed tool, and the obtained results were comparable. The application of dynamic programming in the analysis of the phantom MRS data is a novel approach to QC. The obtained results confirm that the presented change-point-detection tool can be used either for independent analysis of MRS time series (or any other or as a part of quality control.

  4. Secondary partitioning isotope effects on solvolytic ion pair intermediates

    International Nuclear Information System (INIS)

    Abbey, K.J.

    1976-01-01

    The thermal decomposition of N-benzhydryl N-nitrosobenzamide (BNB) has been shown to produce an ion pair which either forms ester or reacts with the solvent. In ethanol, the fraction of ester produced, R, was much smaller than R values obtained from solvolysis or from the diphenyldiazomethane (DDM)-benzoic acid reaction, which was suggested to yield the same ion pair as solvolysis. This difference led to the conclusion that the ionic species for the nitrosamide decomposition is a nitrogen-separated ion pair. This study was initiated on the assumption that BNB led to solvolytic ion pairs, but that both the intimate and solvent-separated ion pairs were produced directly from the nitrosamide. The use of α-tritiated BNB for the study of partitioning isotope effects (PIE's) in this system led to activity ratios much lower than expected from other reported work. Results of studies of ''special'' salt effect were not consistent for all situations, but the results do suggest that the assumption that BNB leads to solvolytic ion pairs is probably valid. The investigation of the more stable p-methoxybenzhydryl benzoate system proved to be highly productive. The ester fraction produced, R, responded dramatically to the addition of common-ion as well as ''special'' salts. The functional relationship of R on salt concentration could be explained in terms of Winstein's solvolytic scheme where the intimate ion pair, the solvent-separated ion pair, and the dissociated ion were important. Tritium-labelled compounds were used for PIE studies on 3 different compounds, and three different methods of reaction are proposed

  5. Water Partitioning in Planetary Embryos and Protoplanets with Magma Oceans

    Science.gov (United States)

    Ikoma, M.; Elkins-Tanton, L.; Hamano, K.; Suckale, J.

    2018-06-01

    The water content of magma oceans is widely accepted as a key factor that determines whether a terrestrial planet is habitable. Water ocean mass is determined as a result not only of water delivery and loss, but also of water partitioning among several reservoirs. Here we review our current understanding of water partitioning among the atmosphere, magma ocean, and solid mantle of accreting planetary embryos and protoplanets just after giant collisions. Magma oceans are readily formed in planetary embryos and protoplanets in their accretion phase. Significant amounts of water are partitioned into magma oceans, provided the planetary building blocks are water-rich enough. Particularly important but still quite uncertain issues are how much water the planetary building blocks contain initially and how water goes out of the solidifying mantle and is finally degassed to the atmosphere. Constraints from both solar-system explorations and exoplanet observations and also from laboratory experiments are needed to resolve these issues.

  6. Time Domain Partitioning of Electricity Production Cost Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Barrows, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hummon, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jones, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hale, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-01-01

    Production cost models are often used for planning by simulating power system operations over long time horizons. The simulation of a day-ahead energy market can take several weeks to compute. Tractability improvements are often made through model simplifications, such as: reductions in transmission modeling detail, relaxation of commitment variable integrality, reductions in cost modeling detail, etc. One common simplification is to partition the simulation horizon so that weekly or monthly horizons can be simulated in parallel. However, horizon partitions are often executed with overlap periods of arbitrary and sometimes zero length. We calculate the time domain persistence of historical unit commitment decisions to inform time domain partitioning of production cost models. The results are implemented using PLEXOS production cost modeling software in an HPC environment to improve the computation time of simulations while maintaining solution integrity.

  7. R and D activities for partitioning and transmutation in Korea

    International Nuclear Information System (INIS)

    Jae-Hyung, Yoo; Won-Seok, Park

    2003-01-01

    According to the long-term plan of nuclear technology development, KAERI is conducting a research and development project of transmutation with the objective of key technology development in the areas of partitioning and transmutation system. The research and development activities for partitioning and transmutation of long-lived radionuclides are introduced in this work. The studies of partitioning are focused on the electrorefining and electrowinning, which are aimed at investigating the thermodynamic properties of electrodeposition behaviours as well as the separation efficiency. As for the transmutation system, the HYPER (HYbrid Power Extraction Reactor) combined by a proton accelerator and a sub-critical reactor is being studied in KAERI as a prominent candidate facility in the future. Some conceptual studies are being conducted to develop key elemental systems of the sub-critical reactor such as the core, TRU fuel, proton target, and the cooling system. The conceptual design of the HYPER system will be completed by 2006. (author)

  8. Selective condensation drives partitioning and sequential secretion of cyst wall proteins in differentiating Giardia lamblia.

    Directory of Open Access Journals (Sweden)

    Christian Konrad

    2010-04-01

    Full Text Available Controlled secretion of a protective extracellular matrix is required for transmission of the infective stage of a large number of protozoan and metazoan parasites. Differentiating trophozoites of the highly minimized protozoan parasite Giardia lamblia secrete the proteinaceous portion of the cyst wall material (CWM consisting of three paralogous cyst wall proteins (CWP1-3 via organelles termed encystation-specific vesicles (ESVs. Phylogenetic and molecular data indicate that Diplomonads have lost a classical Golgi during reductive evolution. However, neogenesis of ESVs in encysting Giardia trophozoites transiently provides basic Golgi functions by accumulating presorted CWM exported from the ER for maturation. Based on this "minimal Golgi" hypothesis we predicted maturation of ESVs to a trans Golgi-like stage, which would manifest as a sorting event before regulated secretion of the CWM. Here we show that proteolytic processing of pro-CWP2 in maturing ESVs coincides with partitioning of CWM into two fractions, which are sorted and secreted sequentially with different kinetics. This novel sorting function leads to rapid assembly of a structurally defined outer cyst wall, followed by slow secretion of the remaining components. Using live cell microscopy we find direct evidence for condensed core formation in maturing ESVs. Core formation suggests that a mechanism controlled by phase transitions of the CWM from fluid to condensed and back likely drives CWM partitioning and makes sorting and sequential secretion possible. Blocking of CWP2 processing by a protease inhibitor leads to mis-sorting of a CWP2 reporter. Nevertheless, partitioning and sequential secretion of two portions of the CWM are unaffected in these cells. Although these cysts have a normal appearance they are not water resistant and therefore not infective. Our findings suggest that sequential assembly is a basic architectural principle of protective wall formation and requires

  9. Resource partitioning by evergreen and deciduous species in a tropical dry forest.

    Science.gov (United States)

    Álvarez-Yépiz, Juan C; Búrquez, Alberto; Martínez-Yrízar, Angelina; Teece, Mark; Yépez, Enrico A; Dovciak, Martin

    2017-02-01

    Niche differentiation can lead to coexistence of plant species by partitioning limiting resources. Light partitioning promotes niche differentiation in tropical humid forests, but it is unclear how niche partitioning occurs in tropical dry forests where both light and soil resources can be limiting. We studied the adult niche of four dominant evergreen (cycad, palm) and drought-deciduous (legume, oak) species co-occurring along environmental gradients. We analyzed light intensity and soil fertility effects on key functional traits related to plant carbon and water economy, how these traits determine species' functional strategies, and how these strategies relate to relative species abundance and spatial patterns. Light intensity was negatively associated with a key trait linked to plant water economy (leaf δ 13 C, a proxy for long-term water-use efficiency-WUE), while soil fertility was negatively associated with a key trait for plant carbon economy (LNC, leaf nitrogen content). Evergreens were highly sclerophyllous and displayed an efficient water economy but poor carbon economy, in agreement with a conservative resource-use strategy (i.e., high WUE but low LNC, photosynthetic rates and stature). Conversely, deciduous species, with an efficient carbon economy but poor water economy, exhibited an exploitative resource-use strategy (i.e., high LNC, photosynthetic rates and stature, but low WUE). Evergreen and deciduous species segregated spatially, particularly at fine-scales, as expected for species with different resource-use strategies. The efficient water economy of evergreens was related to their higher relative abundance, suggesting a functional advantage against drought-deciduous species in water-limited environments within seasonally dry tropical forests.

  10. Metals partitioning resulting from rotary kiln incineration of hazardous waste

    International Nuclear Information System (INIS)

    Richards, M.K.; Fournier, D.J. Jr.

    1992-01-01

    In response to the need for date on the partitioning of trace metals from hazardous waste incinerators, an extensive series of test was conducted in the summer of 1991 at the USEPA Incineration Research Facility (IRF) in Jefferson, Arkansas. These tests were conducted in the IRF's rotary kiln incinerator system (RKS) equipped with a pilot-scale Calvert Flux-Force/Condensation scrubber as the primary air pollution control system (APCS). The purpose of this test series was to extend the data base on trace metal partitioning and to investigate the effects of variations in incinerator operation on metal partitioning. Another objective was to evaluate the effectiveness of the scrubber for collecting flue gas metals. This series is a continuation of an ongoing IRF research program investigating trace metal partitioning and APCS collection efficiencies. Two previous test series were conducted using the RKS equipped with a venturi/packed-column scrubber and a single-state ionizing wet scrubber. The primary objective of this test series was to determine the fate of six hazardous and four nonhazardous trace metals fed to the RKS in a synthetic, organic-contaminated solid waste matrix. The six hazardous trace metals used were arsenic, barium, cadmium, chromium, mercury, and lead. The four nonhazardous trace metals--bismuth, copper, magnesium, and strontium--were included primarily to supply data to evaluate their potential for use as surrogates. The temperature, waste feed chlorine content, and scrubber pressure drop. The test program objectives were to identify. The partitioning of metals among kiln ash, scrubber liquor, and flue gas. Changes in metal partitioning related to variations in kiln exit gas temperature and waste feed chlorine content. The efficiency of the Calvert scrubber for collecting flue gas metals. The effects of scrubber pressure drop on metal collection efficiencies. 2 figs., 2 tabs

  11. Variable length adjacent partitioning for PTS based PAPR reduction of OFDM signal

    International Nuclear Information System (INIS)

    Ibraheem, Zeyid T.; Rahman, Md. Mijanur; Yaakob, S. N.; Razalli, Mohammad Shahrazel; Kadhim, Rasim A.

    2015-01-01

    Peak-to-Average power ratio (PAPR) is a major drawback in OFDM communication. It leads the power amplifier into nonlinear region operation resulting into loss of data integrity. As such, there is a strong motivation to find techniques to reduce PAPR. Partial Transmit Sequence (PTS) is an attractive scheme for this purpose. Judicious partitioning the OFDM data frame into disjoint subsets is a pivotal component of any PTS scheme. Out of the existing partitioning techniques, adjacent partitioning is characterized by an attractive trade-off between cost and performance. With an aim of determining effects of length variability of adjacent partitions, we performed an investigation into the performances of a variable length adjacent partitioning (VL-AP) and fixed length adjacent partitioning in comparison with other partitioning schemes such as pseudorandom partitioning. Simulation results with different modulation and partitioning scenarios showed that fixed length adjacent partition had better performance compared to variable length adjacent partitioning. As expected, simulation results showed a slightly better performance of pseudorandom partitioning technique compared to fixed and variable adjacent partitioning schemes. However, as the pseudorandom technique incurs high computational complexities, adjacent partitioning schemes were still seen as favorable candidates for PAPR reduction

  12. Variable length adjacent partitioning for PTS based PAPR reduction of OFDM signal

    Energy Technology Data Exchange (ETDEWEB)

    Ibraheem, Zeyid T.; Rahman, Md. Mijanur; Yaakob, S. N.; Razalli, Mohammad Shahrazel; Kadhim, Rasim A. [School of Computer and Communication Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis (Malaysia)

    2015-05-15

    Peak-to-Average power ratio (PAPR) is a major drawback in OFDM communication. It leads the power amplifier into nonlinear region operation resulting into loss of data integrity. As such, there is a strong motivation to find techniques to reduce PAPR. Partial Transmit Sequence (PTS) is an attractive scheme for this purpose. Judicious partitioning the OFDM data frame into disjoint subsets is a pivotal component of any PTS scheme. Out of the existing partitioning techniques, adjacent partitioning is characterized by an attractive trade-off between cost and performance. With an aim of determining effects of length variability of adjacent partitions, we performed an investigation into the performances of a variable length adjacent partitioning (VL-AP) and fixed length adjacent partitioning in comparison with other partitioning schemes such as pseudorandom partitioning. Simulation results with different modulation and partitioning scenarios showed that fixed length adjacent partition had better performance compared to variable length adjacent partitioning. As expected, simulation results showed a slightly better performance of pseudorandom partitioning technique compared to fixed and variable adjacent partitioning schemes. However, as the pseudorandom technique incurs high computational complexities, adjacent partitioning schemes were still seen as favorable candidates for PAPR reduction.

  13. Complexity of inheritance of $\\mathcal{F}$-convexity for restricted games induced by minimum partitions

    OpenAIRE

    Skoda, Alexandre

    2016-01-01

    Let $G = (N,E,w)$ be a weighted communication graph (with weight function $w$ on $E$). For every subset $A \\subseteq N$, we delete in the subset $E(A)$ of edges with ends in $A$, all edges of minimum weight in $E(A)$. Then the connected components of the corresponding induced subgraph constitute a partition of $A$ that we call $P_{\\min}(A)$. For every game $(N, v)$, we define the $P_{\\min}$-restricted game $(N, \\bar{v})$ by $\\bar{v}(A) = \\sum_{F \\in P_{\\min}(A)} v(F)$ for all $A \\subseteq N$....

  14. On the time evolution of holographic n-partite information

    International Nuclear Information System (INIS)

    Alishahiha, Mohsen; Mozaffar, M. Reza Mohammadi; Tanhayi, Mohammad Reza

    2015-01-01

    We study various scaling behaviors of n-partite information during a process of thermalization for n disjoint system consisting of n parallel strips whose widths are much larger than the separation between them. By making use of the holographic description for entanglement entropy we explore holographic description of the n-partite information by which we show that it has a definite sign: it is positive for even n and negative for odd n. This might thought of as an intrinsic property of a field theory which has gravity dual.

  15. Differential Evolution and Particle Swarm Optimization for Partitional Clustering

    DEFF Research Database (Denmark)

    Krink, Thiemo; Paterlini, Sandra

    2006-01-01

    for numerical optimisation, which are hardly known outside the search heuristics field, are particle swarm optimisation (PSO) and differential evolution (DE). The performance of GAs for a representative point evolution approach to clustering is compared with PSO and DE. The empirical results show that DE......Many partitional clustering algorithms based on genetic algorithms (GA) have been proposed to tackle the problem of finding the optimal partition of a data set. Very few studies considered alternative stochastic search heuristics other than GAs or simulated annealing. Two promising algorithms...

  16. The French partitioning-transmutation programme, assets and prospects

    International Nuclear Information System (INIS)

    Viala, M.; Salvatores, M.; Mouney, H.

    1997-01-01

    Partitioning-transmutation studies are covered by the 1991 French law concerning radioactive waste management. The programme is progressing with a dual approach: - What can be done in partitioning-transmutation? At what cost? In what timescale? - How can long-term gains and short-term disadvantages be qualified and quantified? The first approach concerns technical know-how. The studies based on today's technologies are continuing (reactors, fuels and targets, separation of radionuclides by solvents). The second approach involves an assessment activity, based firstly on studies of scenarios. Pertinent assessment criteria must be brought out. (authors)

  17. Exact Cover Problem in Milton Babbitt's All-partition Array

    OpenAIRE

    Bemman, Brian; Meredith, David

    2015-01-01

    One aspect of analyzing Milton Babbitt’s (1916–2011) all- partition arrays requires finding a sequence of distinct, non-overlapping aggregate regions that completely and exactly covers an irregular matrix of pitch class integers. This is an example of the so-called exact cover problem. Given a set, A, and a collection of distinct subsets of this set, S, then a subset of S is an exact cover of A if it exhaustively and exclu- sively partitions A. We provide a backtracking algorithm for solving ...

  18. Estimation of octanol/water partition coefficients using LSER parameters

    Science.gov (United States)

    Luehrs, Dean C.; Hickey, James P.; Godbole, Kalpana A.; Rogers, Tony N.

    1998-01-01

    The logarithms of octanol/water partition coefficients, logKow, were regressed against the linear solvation energy relationship (LSER) parameters for a training set of 981 diverse organic chemicals. The standard deviation for logKow was 0.49. The regression equation was then used to estimate logKow for a test of 146 chemicals which included pesticides and other diverse polyfunctional compounds. Thus the octanol/water partition coefficient may be estimated by LSER parameters without elaborate software but only moderate accuracy should be expected.

  19. Partitioning of biocides between water and inorganic phases of render

    DEFF Research Database (Denmark)

    Urbanczyk, Michal; Bollmann, Ulla E.; Bester, Kai

    The use of biocides as additives for building materials has gained importance in recent years. These biocides are, e.g., applied to renders and paints to prevent them from microbial spoilage. However, these biocides can leach out into the environment. In order to better understand this leaching...... compared. The partitioning constants for calcium carbonate varied between 0.1 (isoproturon) and 1.1 (iodocarb) and 84.6 (dichlorooctylisothiazolinone), respectively. The results for barite, kaolinite and mica were in a similar range and usually the compounds with high partitioning constants for one mineral...

  20. Effects of sulfur on lead partitioning during sludge incineration based on experiments and thermodynamic calculations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing-yong, E-mail: www053991@126.com [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Huang, Shu-jie; Sun, Shui-yu; Ning, Xun-an; He, Rui-zhe [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Li, Xiao-ming [Guangdong Testing Institute of Product Quality Supervision, Guangzhou 510330 (China); Chen, Tao [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Luo, Guang-qian [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China); Xie, Wu-ming; Wang, Yu-jie; Zhuo, Zhong-xu; Fu, Jie-wen [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2015-04-15

    Highlights: • A thermodynamic equilibrium calculation was carried out. • Effects of three types of sulfurs on Pb distribution were investigated. • The mechanism for three types of sulfurs acting on Pb partitioning were proposed. • Lead partitioning and species in bottom ash and fly ash were identified. - Abstract: Experiments in a tubular furnace reactor and thermodynamic equilibrium calculations were conducted to investigate the impact of sulfur compounds on the migration of lead (Pb) during sludge incineration. Representative samples of typical sludge with and without the addition of sulfur compounds were combusted at 850 °C, and the partitioning of Pb in the solid phase (bottom ash) and gas phase (fly ash and flue gas) was quantified. The results indicate that three types of sulfur compounds (S, Na{sub 2}S and Na{sub 2}SO{sub 4}) added to the sludge could facilitate the volatilization of Pb in the gas phase (fly ash and flue gas) into metal sulfates displacing its sulfides and some of its oxides. The effect of promoting Pb volatilization by adding Na{sub 2}SO{sub 4} and Na{sub 2}S was superior to that of the addition of S. In bottom ash, different metallic sulfides were found in the forms of lead sulfide, aluminosilicate minerals, and polymetallic-sulfides, which were minimally volatilized. The chemical equilibrium calculations indicated that sulfur stabilizes Pb in the form of PbSO{sub 4}(s) at low temperatures (<1000 K). The equilibrium calculation prediction also suggested that SiO{sub 2}, CaO, TiO{sub 2}, and Al{sub 2}O{sub 3} containing materials function as condensed phase solids in the temperature range of 800–1100 K as sorbents to stabilize Pb. However, in the presence of sulfur or chlorine or the co-existence of sulfur and chlorine, these sorbents were inactive. The effect of sulfur on Pb partitioning in the sludge incineration process mainly depended on the gas phase reaction, the surface reaction, the volatilization of products, and the

  1. Technology readiness of partitioning and transmutation toward closed fuel cycle in Japan

    International Nuclear Information System (INIS)

    Ikeda, Kazumi; Kurata, Masaki; Morita, Yasuji; Tsujimoto, Kazufumi; Minato, Kazuo; Koyama, Shin-ichi

    2011-01-01

    This paper treats technology readiness level (TRL) assessment of Partitioning and Transmutation (P-T) toward closed fuel cycle in JAPAN. The purpose is providing clarified information related to the current maturity of the partitioning and transmutation technologies by applying the methodology of TRL, parallel to attempting to establish common indications among relating technology area. The methodology should be one of useful communication tools between specialists and management level, and also among countries interested in the P-T technologies. The generic TRL in this study is based on the GNEP (Global Nuclear Energy Partnership)'s definition: TRL 3 shows the status that critical function is proved and elemental technologies are identified, TRL 4 represents that relating technologies are validated at bench scale in laboratory environment, and TRL 5 achieves the completion of development related to the subsystem and elemental technologies. Detailed indications are established through discussion of the relating specialists. Reviewed technological area includes P-T and minor actinide (MA) cycle: Fast Breeder Reactor (FBR) and Accelerator driven system (ADS) for MA transmutation, partitioning processes, and MA-bearing fuels. The assessments reveal that TRL spreads around TRL 3 to TRL 4 because each system requires more the development of elemental technologies. Transmutation core of FBR is assessed to be TRL 4 in that MA bearing integral test is required additionally, and ADS becomes TRL 3 because the elemental technologies were identified and the requirements were specified. Consequently, the common key issue is how the nuclear calculation methodology will be validated for MA-bearing-fuelled core, since several percentages of MA changes the void reactivity and the Doppler Effect significantly, which are inherently important in reactor safety. It should be that critical experiments with several kg of americium or more are difficult in the existing experimental

  2. Prediction of Partition Coefficients of Organic Compounds for SPME/PDMS

    Directory of Open Access Journals (Sweden)

    Liao Hsuan-Yu

    2016-01-01

    Full Text Available The partition coefficients of 51 organic compounds between SPME/PDMS and gas were compiled from the literature sources in this study. The effect of physicochemical properties and descriptors on the partitioning process of partition coefficients was explicated by the correlation analysis. The PDMS-gas partition coefficients were well correlated to the molecular weight of organic compounds (r = 0.832, p < 0.05. An empirical model, consisting of the molecular weight and the polarizability, was developed to appropriately predict the partition coefficients of organic compounds. The empirical model for estimating the PDMS-gas partition coefficient will contribute to the practical applications of the SPME technique.

  3. Prediction of gas/particle partitioning of polybrominated diphenyl ethers (PBDEs) in global air: A theoretical study

    Science.gov (United States)

    Li, Y.-F.; Ma, W.-L.; Yang, M.

    2015-02-01

    Gas/particle (G/P) partitioning of semi-volatile organic compounds (SVOCs) is an important process that primarily governs their atmospheric fate, long-range atmospheric transport, and their routes of entering the human body. All previous studies on this issue are hypothetically based on equilibrium conditions, the results of which do not predict results from monitoring studies well in most cases. In this study, a steady-state model instead of an equilibrium-state model for the investigation of the G/P partitioning behavior of polybrominated diphenyl ethers (PBDEs) was established, and an equation for calculating the partition coefficients under steady state (KPS) of PBDEs (log KPS = log KPE + logα) was developed in which an equilibrium term (log KPE = log KOA + logfOM -11.91 where fOM is organic matter content of the particles) and a non-equilibrium term (log α, caused by dry and wet depositions of particles), both being functions of log KOA (octanol-air partition coefficient), are included. It was found that the equilibrium is a special case of steady state when the non-equilibrium term equals zero. A criterion to classify the equilibrium and non-equilibrium status of PBDEs was also established using two threshold values of log KOA, log KOA1, and log KOA2, which divide the range of log KOA into three domains: equilibrium, non-equilibrium, and maximum partition domain. Accordingly, two threshold values of temperature t, tTH1 when log KOA = log KOA1 and tTH2 when log KOA = log KOA2, were identified, which divide the range of temperature also into the same three domains for each PBDE congener. We predicted the existence of the maximum partition domain (the values of log KPS reach a maximum constant of -1.53) that every PBDE congener can reach when log KOA ≥ log KOA2, or t ≤ tTH2. The novel equation developed in this study was applied to predict the G/P partition coefficients of PBDEs for our Chinese persistent organic pollutants (POPs) Soil and Air Monitoring

  4. Inequalities involving the generating function for the number of ...

    African Journals Online (AJOL)

    Fibonacci numbers can be expressed in terms of multinomial coefficients as sums over integer partitions into odd parts. We use this fact to introduce a family of double inequalities involving the generating function for the number of partitions into odd parts and the generating function for the number of odd divisors. Keywords: ...

  5. Domain-Specific Partitioning of Uterine Artery Endothelial Connexin43 and Caveolin-1.

    Science.gov (United States)

    Ampey, Bryan C; Morschauser, Timothy J; Ramadoss, Jayanth; Magness, Ronald R

    2016-10-01

    Uterine vascular adaptations facilitate rises in uterine blood flow during pregnancy, which are associated with gap junction connexin (Cx) proteins and endothelial nitric oxide synthase. In uterine artery endothelial cells (UAECs), ATP activates endothelial nitric oxide synthase in a pregnancy (P)-specific manner that is dependent on Cx43 function. Caveolar subcellular domain partitioning plays key roles in ATP-induced endothelial nitric oxide synthase activation and nitric oxide production. Little is known regarding the partitioning of Cx proteins to caveolar domains or their dynamics with ATP treatment. We observed that Cx43-mediated gap junction function with ATP stimulation is associated with Cx43 repartitioning between the noncaveolar and caveolar domains. Compared with UAECs from nonpregnant (NP) ewes, levels of ATP, PGI2, cAMP, NOx, and cGMP were 2-fold higher (PLucifer yellow dye transfer, a response abrogated by Gap27, but not Gap 26, indicating involvement of Cx43, but not Cx37. Confocal microscopy revealed domain partitioning of Cx43 and caveolin-1. In pregnant UAECs, LC/MS/MS analysis revealed only Cx43 in the caveolar domain. In contrast, Cx37 was located only in the noncaveolar pool. Western analysis revealed that ATP increased Cx43 distribution (1.7-fold; P=0.013) to the caveolar domain, but had no effect on Cx37. These data demonstrate rapid ATP-stimulated repartitioning of Cx43 to the caveolae, where endothelial nitric oxide synthase resides and plays an important role in nitric oxide-mediated increasing uterine blood flow during pregnancy. © 2016 American Heart Association, Inc.

  6. Efficient Partitioning of Large Databases without Query Statistics

    Directory of Open Access Journals (Sweden)

    Shahidul Islam KHAN

    2016-11-01

    Full Text Available An efficient way of improving the performance of a database management system is distributed processing. Distribution of data involves fragmentation or partitioning, replication, and allocation process. Previous research works provided partitioning based on empirical data about the type and frequency of the queries. These solutions are not suitable at the initial stage of a distributed database as query statistics are not available then. In this paper, I have presented a fragmentation technique, Matrix based Fragmentation (MMF, which can be applied at the initial stage as well as at later stages of distributed databases. Instead of using empirical data, I have developed a matrix, Modified Create, Read, Update and Delete (MCRUD, to partition a large database properly. Allocation of fragments is done simultaneously in my proposed technique. So using MMF, no additional complexity is added for allocating the fragments to the sites of a distributed database as fragmentation is synchronized with allocation. The performance of a DDBMS can be improved significantly by avoiding frequent remote access and high data transfer among the sites. Results show that proposed technique can solve the initial partitioning problem of large distributed databases.

  7. A geometric toolbox for tetrahedral finite element partitions

    NARCIS (Netherlands)

    Brandts, J.; Korotov, S.; Křížek, M.; Axelsson, O.; Karátson, J.

    2011-01-01

    In this work we present a survey of some geometric results on tetrahedral partitions and their refinements in a unified manner. They can be used for mesh generation and adaptivity in practical calculations by the finite element method (FEM), and also in theoretical finite element (FE) analysis.

  8. Image coding based on maximum entropy partitioning for identifying ...

    Indian Academy of Sciences (India)

    A new coding scheme based on maximum entropy partitioning is proposed in our work, particularly to identify the improbable intensities related to different emotions. The improbable intensities when used as a mask decode the facial expression correctly, providing an effectiveplatform for future emotion categorization ...

  9. Random skew plane partitions and the Pearcey process

    DEFF Research Database (Denmark)

    Reshetikhin, Nicolai; Okounkov, Andrei

    2007-01-01

    We study random skew 3D partitions weighted by q vol and, specifically, the q → 1 asymptotics of local correlations near various points of the limit shape. We obtain sine-kernel asymptotics for correlations in the bulk of the disordered region, Airy kernel asymptotics near a general point of the ...

  10. On the partitions with Sturmian-like refinements

    Czech Academy of Sciences Publication Activity Database

    Kupsa, Michal; Starosta, Š.

    2015-01-01

    Roč. 35, č. 8 (2015), s. 3483-3501 ISSN 1078-0947 Institutional support: RVO:67985556 Keywords : Coding of rotation * Sturmian subshift * Toeplitz subshift * factor mapping * low-complexity system * sliding block-code * Sturmian partition * local rule Subject RIV: BA - General Mathematics Impact factor: 1.127, year: 2015

  11. Splittings of free groups, normal forms and partitions of ends

    Indian Academy of Sciences (India)

    geodesic laminations and show that this space is compact. Many of the ... determined by the partition of ends of ˜M associated to the spheres. In §4, we recall ... As is well-known we can associate to a graph a topological space. Geometrically ...

  12. Experimental partition determination of octanol-water coefficients of ...

    African Journals Online (AJOL)

    An electrochemical method based on square wave voltammetry was developed for the measurement of octanol-water partition coefficient, LogP, for ten ferrocene derivatives. Measured LogP values ranged over two orders of magnitude, between 2.18 for 1- ferrocenylethanol and 4.38 for ferrocenyl-2-nitrophenyl.

  13. PHOTOSYNTHATE PARTITIONING IN TOMATO LEAVES AS AFFECTED BY TEMPERATURE

    NARCIS (Netherlands)

    VANDERKOOIJ, TAW; BRUGGEMANN, W; VANHASSELT, PR

    1992-01-01

    Temperature dependence of photosynthate partitioning in intact leaf tissue of tomato (Lycopersicon esculentum Mill. cv. Abunda) was studied by using a temperature gradient cuvette system. At the low photon flux density (PFD, 85 mumol m-2 s-1) and saturated CO2 concentration, the total saccharides

  14. SVOC partitioning between the gas phase and settled dust indoors

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Nazaroff, W. W.

    2010-01-01

    Semivolatile organic compounds (SVOCs) are a major class of indoor pollutants. Understanding SVOC partitioning between the gas phase and settled dust is important for characterizing the fate of these species indoors and the pathways by which humans are exposed to them. Such knowledge also helps...

  15. Partitioning of copy-number genotypes in pedigrees

    Directory of Open Access Journals (Sweden)

    Andelfinger Gregor U

    2010-05-01

    Full Text Available Abstract Background Copy number variations (CNVs and polymorphisms (CNPs have only recently gained the genetic community's attention. Conservative estimates have shown that CNVs and CNPs might affect more than 10% of the genome and that they may be at least as important as single nucleotide polymorphisms in assessing human variability. Widely used tools for CNP analysis have been implemented in Birdsuite and PLINK for the purpose of conducting genetic association studies based on the unpartitioned total number of CNP copies provided by the intensities from Affymetrix's Genome-Wide Human SNP Array. Here, we are interested in partitioning copy number variations and polymorphisms in extended pedigrees for the purpose of linkage analysis on familial data. Results We have developed CNGen, a new software for the partitioning of copy number polymorphism using the integrated genotypes from Birdsuite with the Affymetrix platform. The algorithm applied to familial trios or extended pedigrees can produce partitioned copy number genotypes with distinct parental alleles. We have validated the algorithm using simulations on a complex pedigree structure using frequencies calculated from a real dataset of 300 genotyped samples from 42 pedigrees segregating a congenital heart defect phenotype. Conclusions CNGen is the first published software for the partitioning of copy number genotypes in pedigrees, making possible the use CNPs and CNVs for linkage analysis. It was implemented with the Python interpreter version 2.5.2. It was successfully tested on current Linux, Windows and Mac OS workstations.

  16. Chains, antichains, and complements in infinite partition lattices

    DEFF Research Database (Denmark)

    Avery, James Emil; Moyen, Jean-Yves; Ruzicka, Pavel

    2018-01-01

    We consider the partition lattice $\\Pi_\\kappa$ on any set of transfinite cardinality $\\kappa$, and properties of $\\Pi_\\kappa$ whose analogues do not hold for finite cardinalities. Assuming the Axiom of Choice we prove: (I) the cardinality of any maximal well-ordered chain is between the cofinalit...

  17. Partitioning of monomethylmercury between freshwater algae and water.

    Science.gov (United States)

    Miles, C J; Moye, H A; Phlips, E J; Sargent, B

    2001-11-01

    Phytoplankton-water monomethylmercury (MeHg) partition constants (KpI) have been determined in the laboratory for two green algae Selenastrum capricornutum and Cosmarium botrytis, the blue-green algae Schizothrix calcicola, and the diatom Thallasiosira spp., algal species that are commonly found in natural surface waters. Two methods were used to determine KpI, the Freundlich isotherm method and the flow-through/dialysis bag method. Both methods yielded KpI values of about 10(6.6) for S. capricornutum and were not significantly different. The KpI for the four algae studied were similar except for Schizothrix, which was significantly lower than S. capricornutum. The KpI for MeHg and S. capricornutum (exponential growth) was not significantly different in systems with predominantly MeHgOH or MeHgCl species. This is consistent with other studies that show metal speciation controls uptake kinetics, but the reactivity with intracellular components controls steady-state concentrations. Partitioning constants determined with exponential and stationary phase S. capricornutum cells at the same conditions were not significantly different, while the partitioning constant for exponential phase, phosphorus-limited cells was significantly lower, suggesting that P-limitation alters the ecophysiology of S. capricornutum sufficiently to impact partitioning, which may then ultimately affect mercury levels in higher trophic species.

  18. Phosphorus Uptake and Partitioning in Maize as Affected by Tillage ...

    African Journals Online (AJOL)

    Higher phosphorus concentrations were found in the ears than in the shoots and leaves at physiological maturity. Tillage x phospho-rus interactions influenced phosphorus partitioning in the ears and the leaves on the Dystric Cam-bisol but not on the Ferric Acrisol. PUE in the plant parts were significantly higher under ...

  19. Nest-site partitioning in a strandveld shrubland bird community ...

    African Journals Online (AJOL)

    Nest-site selection may vary adaptively among co-existing species as a result of competitive interactions among the species or in response to density-dependent nest predation. We examined nest-site characteristics and degree of partitioning among 14 co-existing bird species breeding in dwarf strandveld shrubland at ...

  20. Performance of partitioned procedures in fluid-structure interaction

    NARCIS (Netherlands)

    Degroote, J.; Haelterman, R.; Annerel, S.; Bruggeman, P.J.; Vierendeels, J.

    2010-01-01

    Partitioned simulations of fluid–structure interaction can be solved for the interface’s position with Newton–Raphson iterations but obtaining the exact Jacobian is impossible if the solvers are "black boxes". It is demonstrated that only an approximate Jacobian is needed, as long as it describes

  1. Xenon tissue/blood partition coefficient for pig urinary bladder

    DEFF Research Database (Denmark)

    Nielsen, K K; Bülow, J; Nielsen, S L

    1990-01-01

    In four landrace pigs the tissue/blood partition coefficient (lambda) for xenon (Xe) for the urinary bladder was calculated after chemical analysis for lipid, water and protein content and determination of the haematocrit. The coefficients varied from bladder to bladder owing to small differences...

  2. Exact Cover Problem in Milton Babbitt's All-partition Array

    DEFF Research Database (Denmark)

    Bemman, Brian; Meredith, David

    2015-01-01

    One aspect of analyzing Milton Babbitt’s (1916–2011) all- partition arrays requires finding a sequence of distinct, non-overlapping aggregate regions that completely and exactly covers an irregular matrix of pitch class integers. This is an example of the so-called exact cover problem. Given a set...

  3. n-Alcohol/Water Partition Coefficients for Decachlorobiphenyl (PCB 209)

    Science.gov (United States)

    Measurements of n-octanol/water partition coefficients (Kow) for highly hydrophobic chemicals are extremely difficult and are rarely made, in part due to the large volumes of water typically needed to quantify these compounds in the aqueous phase. An extrapolation approach using ...

  4. Growth, assimilate partitioning and grain yield response of soybean ...

    African Journals Online (AJOL)

    This investigation tested variation in the growth components, assimilate partitioning and grain yield of soybean (Glycine max L. Merrrill) varieties established in CO2 enriched atmosphere when inoculated with mixtures of Arbuscular mycorrhizal fungi (AMF) species in the humid rainforest of Nigeria. A pot and a field ...

  5. The Endogenous-Exogenous Partition in Attribution Theory

    Science.gov (United States)

    Kruglanski, Arie W.

    1975-01-01

    Within lay explanation of actions, several significant inferences are assumed to follow from the partition between endogenous and exogenous attributions. An endogenous action is judged to constitute an end in itself; an exogenous action is judged to serve as a means to some further end. (Editor/RK)

  6. A Partitioning and Bounded Variable Algorithm for Linear Programming

    Science.gov (United States)

    Sheskin, Theodore J.

    2006-01-01

    An interesting new partitioning and bounded variable algorithm (PBVA) is proposed for solving linear programming problems. The PBVA is a variant of the simplex algorithm which uses a modified form of the simplex method followed by the dual simplex method for bounded variables. In contrast to the two-phase method and the big M method, the PBVA does…

  7. A partitioning-free transmutation concept of nuclear waste reduction

    International Nuclear Information System (INIS)

    Taczanowski, S.

    1996-01-01

    The idea of a symbiotic nuclear energy system, consisted of an Accelerator-driven Fuel Regenerator and a number of LWRs serviced by it, is the subject of this study, in view of supposed safety and partitioning avoidance advantages. The design premises leading to this concept are widely discussed. 7 refs, 7 figs

  8. Entanglement between particle partitions in itinerant many-particle states

    NARCIS (Netherlands)

    Haque, M.; Zozulya, O.S.; Schoutens, K.

    2009-01-01

    We review 'particle-partitioning entanglement' for itinerant many-particle systems. This is defined as the entanglement between two subsets of particles making up the system. We identify generic features and mechanisms of particle entanglement that are valid over whole classes of itinerant quantum

  9. Spectral partitioning and swells in the black sea

    NARCIS (Netherlands)

    van Vledder, G.P.; Akpınar, Adem; Lynett, P.

    2016-01-01

    The swell climate of the Black Sea has been determined using a long-term 31-year wave hindcast with the thirdgeneration spectral wave model SWAN in combination with spectral partitioning. This technique enables decomposing wave spectra into individual wave systems representing wind seas or swells

  10. The logic of organizational markets : thinking through resource partitioning theory

    NARCIS (Netherlands)

    Vermeulen, I.; Bruggeman, J.

    2000-01-01

    Resource partitioning theory claims that Increasing concentration enhances the life chances of specialist organizations. We systemati- cally think through this theory,specify implicit background assump- tions,sharpen concepts,and rigorously check the theory s logic.As a result,we increase the theory

  11. The logic of organizational markets: thinking through resource partitioning

    NARCIS (Netherlands)

    Bruggeman, J.P.; Vermeulen, Ivar

    2001-01-01

    Resource partitioning theory claims that “Increasing concentration enhances the life chances of specialist organizations.” We systematically think through this theory, specify implicit background assumptions, sharpen concepts, and rigorously check the theory’s logic. As a result, we increase the

  12. Cost efficient CFD simulations: Proper selection of domain partitioning strategies

    Science.gov (United States)

    Haddadi, Bahram; Jordan, Christian; Harasek, Michael

    2017-10-01

    Computational Fluid Dynamics (CFD) is one of the most powerful simulation methods, which is used for temporally and spatially resolved solutions of fluid flow, heat transfer, mass transfer, etc. One of the challenges of Computational Fluid Dynamics is the extreme hardware demand. Nowadays super-computers (e.g. High Performance Computing, HPC) featuring multiple CPU cores are applied for solving-the simulation domain is split into partitions for each core. Some of the different methods for partitioning are investigated in this paper. As a practical example, a new open source based solver was utilized for simulating packed bed adsorption, a common separation method within the field of thermal process engineering. Adsorption can for example be applied for removal of trace gases from a gas stream or pure gases production like Hydrogen. For comparing the performance of the partitioning methods, a 60 million cell mesh for a packed bed of spherical adsorbents was created; one second of the adsorption process was simulated. Different partitioning methods available in OpenFOAM® (Scotch, Simple, and Hierarchical) have been used with different numbers of sub-domains. The effect of the different methods and number of processor cores on the simulation speedup and also energy consumption were investigated for two different hardware infrastructures (Vienna Scientific Clusters VSC 2 and VSC 3). As a general recommendation an optimum number of cells per processor core was calculated. Optimized simulation speed, lower energy consumption and consequently the cost effects are reported here.

  13. Reproductive Interference and Niche Partitioning in Aphidophagous Insects

    Directory of Open Access Journals (Sweden)

    Suzuki Noriyuki

    2016-01-01

    Full Text Available The range and quality of prey species differ greatly among closely related species of predators. However, the factors responsible for this diversified niche utilization are unclear. This is because the predation and resource competition do not always prevent species coexistence. In this paper, we present evidence in support of reproductive interference as a driver of niche partitioning, focusing on aphidophagous insect. Firstly, we present closely related generalist and specialist species pairs in aphidophagous lacewings to compare the reproductive interference hypothesis with two other hypotheses that have been proposed to explain niche partitioning in lacewings and sympatric speciation through host race formation and sexual selection. Secondly, we present a case study that shows how reproductive interference can drive niche partitioning in sibling ladybird species. Thirdly, we show that many ladybird genera include species inhabiting the same region but having different food and habitat preferences, raising the possibility that reproductive interference might occur in these groups. Finally, we show that intraguild predation cannot always explain the niche partitioning in aphidophagous insects including hoverflies and parasitoids. On the basis of the evidence presented, we urge that future studies investigating predator communities should take account of the role of reproductive interference.

  14. Influence of biochar on isoproturon partitioning and bioaccessibility in soil.

    Science.gov (United States)

    Reid, B J; Pickering, F L; Freddo, A; Whelan, M J; Coulon, F

    2013-10-01

    The influence of biochar (5%) on the loss, partitioning and bioaccessibility of (14)C-isoproturon ((14)C-IPU) was evaluated. Results indicated that biochar had a dramatic effect upon (14)C-IPU partitioning: (14)C-IPU extractability (0.01 M CaCl2) in biochar-amended treatments was reduced to <2% while, (14)C-IPU extractability in biochar free treatments decreased with ageing from 90% to 40%. A partitioning model was constructed to derive an effective partition coefficient for biochar:water (KBW of 7.82 × 10(4) L kg(-1)). This was two orders of magnitude greater than the apparent Kfoc value of the soil organic carbon:water (631 L kg(-1)). (14)C-radiorespirometry assays indicated high competence of microorganisms to mineralise (14)C-IPU in the absence of biochar (40.3 ± 0.9%). Where biochar was present (14)C-IPU mineralisation never exceeded 2%. These results indicate reduced herbicide bioaccessibility. Increasing IPU application to ×10 its recommended dose was ineffective at redressing IPU sequestration and its low bioaccessibility. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Energy partitioning for growth by rabbits fed groundnut and stylo ...

    African Journals Online (AJOL)

    Forty eight crossbred (California X New Zealand White) rabbits were used to evaluate energy partitioning of rabbits fed forages supplemented with concentrate. The rabbits were randomly allocated to three treatments consisting of sole Stylosanthes hamata (stylo),sole Arachis hypogea (groundnut) haulms and 50:50 mixture ...

  16. Exponential B-splines and the partition of unity property

    DEFF Research Database (Denmark)

    Christensen, Ole; Massopust, Peter

    2012-01-01

    We provide an explicit formula for a large class of exponential B-splines. Also, we characterize the cases where the integer-translates of an exponential B-spline form a partition of unity up to a multiplicative constant. As an application of this result we construct explicitly given pairs of dual...

  17. Discovery of functional and approximate functional dependencies in relational databases

    Directory of Open Access Journals (Sweden)

    Ronald S. King

    2003-01-01

    Full Text Available This study develops the foundation for a simple, yet efficient method for uncovering functional and approximate functional dependencies in relational databases. The technique is based upon the mathematical theory of partitions defined over a relation's row identifiers. Using a levelwise algorithm the minimal non-trivial functional dependencies can be found using computations conducted on integers. Therefore, the required operations on partitions are both simple and fast. Additionally, the row identifiers provide the added advantage of nominally identifying the exceptions to approximate functional dependencies, which can be used effectively in practical data mining applications.

  18. Metal partitioning and uptake in central Ontario forests

    International Nuclear Information System (INIS)

    Watmough, Shaun A.; Dillon, Peter J.; Epova, Ekaterina N.

    2005-01-01

    Evaluation of the potential environmental risk posed by metals depends to a great extent on modeling the fate and mobility of metals with soil-solution partitioning coefficients (K d ). However, the effect of biological cycling on metal partitioning is rarely considered in standard risk assessments. We determined soil-solution partitioning coefficients for 5 metals (Cd, Zn, Pb, Co and Ni) at 46 forested sites that border the Precambrian Shield in central Ontario, where soil pH aq varied from 3.9 to 8.1. Foliage from the dominant tree species and forest floor samples were also collected from each site to compare their metal levels with K d predictions. Analogous to other studies, log K d values for all metals were predicted by empirical linear regression with soil pH (r 2 = 0.66-0.72), demonstrating that metal partitioning between soil and soil solution can be reliably predicted for relatively unpolluted forest mineral soils by soil pH. In contrast, whereas the so-called bioavailable water-soluble metal fraction could be predicted from soil pH, metal concentrations in foliage and the forest floor at each site were not consistently related to pH. Risk assessment of metals should take into account the role of biota in metal cycling and partitioning in forests, particularly if metal bio-accumulation and chronic toxicity in the food chain, rather than metal mobility in soils, are of primary concern. - Metal cycling by plants should be considered in risk assessment studies

  19. Basic plan of partitioning and transmutation technology development

    International Nuclear Information System (INIS)

    Ikegami, Tetsuo; Ozawa, Masaki

    2003-04-01

    Basic plan of partitioning and transmutation technology development has been made in more detail and concrete manner in terms of development goal, nuclides to be portioned and to be transmuted, and development schedule, based on the pre-evaluation results of the Research Evaluation Committee on Research and development of partitioning and transmutation technology for long life nuclides' held in August 2000. A step by step approach, consists of three steps, to reach the goal of partitioning and transmutation technology has been adopted under the recognition that the partitioning and transmutation technology development should be progressed steadily as a long term them. The first step is supposed to be able to attain within about 5 years by the present technology and on the extension of it. Such researches as collective separation of TRU, MA/Ln effective separation, and irradiation experiment of iodine and technetium. The second step is such a goal that is expected to be able to realize the engineering feasibility, within about 15 years, through the progress of science technology in future, although the engineering feasibility is not sufficiently foreseen at present. It will need revolutionary technology or breakthrough. Nuclides to be partitioned and to be transmuted have been selected in view points of 'radioactivity and radio-toxicity', 'geological repository', and 'effective utilization', corresponding to the each step of the development goal. Collaboration with other research organizations and with universities in the world should be pursued. Especially, such collaborations with France, with which information exchange on JOYO/PHENIX irradiation experiments is progressing, and with USA, which has recently developed positive activities in this field, are strongly expected. (author)

  20. Influence of biochar on isoproturon partitioning and bioaccessibility in soil

    International Nuclear Information System (INIS)

    Reid, B.J.; Pickering, F.L.; Freddo, A.; Whelan, M.J.; Coulon, F.

    2013-01-01

    The influence of biochar (5%) on the loss, partitioning and bioaccessibility of 14 C-isoproturon ( 14 C-IPU) was evaluated. Results indicated that biochar had a dramatic effect upon 14 C-IPU partitioning: 14 C-IPU extractability (0.01 M CaCl 2 ) in biochar-amended treatments was reduced to 14 C-IPU extractability in biochar free treatments decreased with ageing from 90% to 40%. A partitioning model was constructed to derive an effective partition coefficient for biochar:water (K BW of 7.82 × 10 4 L kg −1 ). This was two orders of magnitude greater than the apparent K foc value of the soil organic carbon:water (631 L kg −1 ). 14 C-radiorespirometry assays indicated high competence of microorganisms to mineralise 14 C-IPU in the absence of biochar (40.3 ± 0.9%). Where biochar was present 14 C-IPU mineralisation never exceeded 2%. These results indicate reduced herbicide bioaccessibility. Increasing IPU application to ×10 its recommended dose was ineffective at redressing IPU sequestration and its low bioaccessibility. Highlights: •Biochar had a dramatic effect on IPU partitioning. •IPU extractability was reduced to BW ) was 7.82 × 10 4 L kg −1 . •K BW was 124 times greater than the apparent K foc value of the control. •Biochar precluded microbial bioaccessibility – no catabolic response was observed. -- Biochar dramatically reduced 14 C-IPU extractability ( BW being ×123 greater than the apparent K foc . Correspondingly, microbial bioaccessibility of IPU was negligible

  1. Determination of partition coefficients using 1 H NMR spectroscopy and time domain complete reduction to amplitude-frequency table (CRAFT) analysis.

    Science.gov (United States)

    Soulsby, David; Chica, Jeryl A M

    2017-08-01

    We have developed a simple, direct and novel method for the determination of partition coefficients and partitioning behavior using 1 H NMR spectroscopy combined with time domain complete reduction to amplitude-frequency tables (CRAFT). After partitioning into water and 1-octanol using standard methods, aliquots from each layer are directly analyzed using either proton or selective excitation NMR experiments. Signal amplitudes for each compound from each layer are then extracted directly from the time domain data in an automated fashion and analyzed using the CRAFT software. From these amplitudes, log P and log D 7.4 values can be calculated directly. Phase, baseline and internal standard issues, which can be problematic when Fourier transformed data are used, are unimportant when using time domain data. Furthermore, analytes can contain impurities because only a single resonance is examined and need not be UV active. Using this approach, we examined a variety of pharmaceutically relevant compounds and determined partition coefficients that are in excellent agreement with literature values. To demonstrate the utility of this approach, we also examined salicylic acid in more detail demonstrating an aggregation effect as a function of sample loading and partition coefficient behavior as a function of pH value. This method provides a valuable addition to the medicinal chemist toolbox for determining these important constants. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Active sound transmission control of an experimental double-panel partition using decoupled, dual-channel, analog feedback control

    OpenAIRE

    Sagers, Jason; Blotter, Jonathan

    2008-01-01

    This paper addresses the construction, measurement, and analysis of a double panel active partition (DPAP) and its accompanying analog feedback controllers. The DPAP was constructed by attaching an aluminum cone loudspeaker at each end of a short segment of a circular duct. Two analog feedback controllers were designed and built using the measured frequency response function of each panel. Two independent (decoupled) feedback controllers were then used to minimize the vibration amplitude of e...

  3. Accelerating SPARQL queries by exploiting hash-based locality and adaptive partitioning

    KAUST Repository

    Al-Harbi, Razen; Abdelaziz, Ibrahim; Kalnis, Panos; Mamoulis, Nikos; Ebrahim, Yasser; Sahli, Majed

    2016-01-01

    State-of-the-art distributed RDF systems partition data across multiple computer nodes (workers). Some systems perform cheap hash partitioning, which may result in expensive query evaluation. Others try to minimize inter-node communication, which

  4. Monotonicity Conditions for Multirate and Partitioned Explicit Runge-Kutta Schemes

    KAUST Repository

    Hundsdorfer, Willem; Mozartova, Anna; Savcenco, Valeriu

    2013-01-01

    of partitioned Runge-Kutta methods. It will also be seen that the incompatibility of consistency and mass-conservation holds for ‘genuine’ multirate schemes, but not for general partitioned methods.

  5. Task Mapping and Partition Allocation for Mixed-Criticality Real-Time Systems

    DEFF Research Database (Denmark)

    Tamas-Selicean, Domitian; Pop, Paul

    2012-01-01

    In this paper we address the mapping of mixedcriticality hard real-time applications on distributed embedded architectures. We assume that the architecture provides both spatial and temporal partitioning, thus enforcing enough separation between applications. With temporal partitioning, each...

  6. Optimization of Time-Partitions for Mixed-Criticality Real-Time Distributed Embedded Systems

    DEFF Research Database (Denmark)

    Tamas-Selicean, Domitian; Pop, Paul

    2011-01-01

    In this paper we are interested in mixed-criticality embedded real-time applications mapped on distributed heterogeneous architectures. The architecture provides both spatial and temporal partitioning, thus enforcing enough separation for the critical applications. With temporal partitioning, each...

  7. Analytical results for a stochastic model of gene expression with arbitrary partitioning of proteins

    Science.gov (United States)

    Tschirhart, Hugo; Platini, Thierry

    2018-05-01

    In biophysics, the search for analytical solutions of stochastic models of cellular processes is often a challenging task. In recent work on models of gene expression, it was shown that a mapping based on partitioning of Poisson arrivals (PPA-mapping) can lead to exact solutions for previously unsolved problems. While the approach can be used in general when the model involves Poisson processes corresponding to creation or degradation, current applications of the method and new results derived using it have been limited to date. In this paper, we present the exact solution of a variation of the two-stage model of gene expression (with time dependent transition rates) describing the arbitrary partitioning of proteins. The methodology proposed makes full use of the PPA-mapping by transforming the original problem into a new process describing the evolution of three biological switches. Based on a succession of transformations, the method leads to a hierarchy of reduced models. We give an integral expression of the time dependent generating function as well as explicit results for the mean, variance, and correlation function. Finally, we discuss how results for time dependent parameters can be extended to the three-stage model and used to make inferences about models with parameter fluctuations induced by hidden stochastic variables.

  8. Partitioning of genomic variance using biological pathways

    DEFF Research Database (Denmark)

    Edwards, Stefan McKinnon; Janss, Luc; Madsen, Per

    and that these variants are enriched for genes that are connected in biological pathways or for likely functional effects on genes. These biological findings provide valuable insight for developing better genomic models. These are statistical models for predicting complex trait phenotypes on the basis of SNP......-data and trait phenotypes and can account for a much larger fraction of the heritable component. A disadvantage is that this “black-box” modelling approach conceals the biological mechanisms underlying the trait. We propose to open the “black-box” by building SNP-set genomic models that evaluate the collective...... action of multiple SNPs in genes, biological pathways or other external findings on the trait phenotype. As proof of concept we have tested the modelling framework on several traits in dairy cattle....

  9. Prediction of Partition Coefficients of Organic Compounds for SPME/PDMS

    OpenAIRE

    Liao Hsuan-Yu; Huang Miao-Ling; Lu Yu-Ting; Chao Keh-Ping

    2016-01-01

    The partition coefficients of 51 organic compounds between SPME/PDMS and gas were compiled from the literature sources in this study. The effect of physicochemical properties and descriptors on the partitioning process of partition coefficients was explicated by the correlation analysis. The PDMS-gas partition coefficients were well correlated to the molecular weight of organic compounds (r = 0.832, p < 0.05). An empirical model, consisting of the molecular weight and the polarizability, was ...

  10. RNA graph partitioning for the discovery of RNA modularity: a novel application of graph partition algorithm to biology.

    Directory of Open Access Journals (Sweden)

    Namhee Kim

    Full Text Available Graph representations have been widely used to analyze and design various economic, social, military, political, and biological networks. In systems biology, networks of cells and organs are useful for understanding disease and medical treatments and, in structural biology, structures of molecules can be described, including RNA structures. In our RNA-As-Graphs (RAG framework, we represent RNA structures as tree graphs by translating unpaired regions into vertices and helices into edges. Here we explore the modularity of RNA structures by applying graph partitioning known in graph theory to divide an RNA graph into subgraphs. To our knowledge, this is the first application of graph partitioning to biology, and the results suggest a systematic approach for modular design in general. The graph partitioning algorithms utilize mathematical properties of the Laplacian eigenvector (µ2 corresponding to the second eigenvalues (λ2 associated with the topology matrix defining the graph: λ2 describes the overall topology, and the sum of µ2's components is zero. The three types of algorithms, termed median, sign, and gap cuts, divide a graph by determining nodes of cut by median, zero, and largest gap of µ2's components, respectively. We apply these algorithms to 45 graphs corresponding to all solved RNA structures up through 11 vertices (∼ 220 nucleotides. While we observe that the median cut divides a graph into two similar-sized subgraphs, the sign and gap cuts partition a graph into two topologically-distinct subgraphs. We find that the gap cut produces the best biologically-relevant partitioning for RNA because it divides RNAs at less stable connections while maintaining junctions intact. The iterative gap cuts suggest basic modules and assembly protocols to design large RNA structures. Our graph substructuring thus suggests a systematic approach to explore the modularity of biological networks. In our applications to RNA structures, subgraphs

  11. Radionuclide Partitioning in an Underground Nuclear Test Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Rose, T P; Hu, Q; Zhao, P; Conrado, C L; Dickerson, R; Eaton, G F; Kersting, A B; Moran, J E; Nimz, G; Powell, B A; Ramon, E C; Ryerson, F J; Williams, R W; Wooddy, P T; Zavarin, M

    2009-01-09

    In 2004, a borehole was drilled into the 1983 Chancellor underground nuclear test cavity to investigate the distribution of radionuclides within the cavity. Sidewall core samples were collected from a range of depths within the re-entry hole and two sidetrack holes. Upon completion of drilling, casing was installed and a submersible pump was used to collect groundwater samples. Test debris and groundwater samples were analyzed for a variety of radionuclides including the fission products {sup 99}Tc, {sup 125}Sb, {sup 129}I, {sup 137}Cs, and {sup 155}Eu, the activation products {sup 60}Co, {sup 152}Eu, and {sup 154}Eu, and the actinides U, Pu, and Am. In addition, the physical and bulk chemical properties of the test debris were characterized using Scanning Electron Microscopy (SEM) and Electron Microprobe measurements. Analytical results were used to evaluate the partitioning of radionuclides between the melt glass, rubble, and groundwater phases in the Chancellor test cavity. Three comparative approaches were used to calculate partitioning values, though each method could not be applied to every nuclide. These approaches are based on: (1) the average Area 19 inventory from Bowen et al. (2001); (2) melt glass, rubble, and groundwater mass estimates from Zhao et al. (2008); and (3) fission product mass yield data from England and Rider (1994). The U and Pu analyses of the test debris are classified and partitioning estimates for these elements were calculated directly from the classified Miller et al. (2002) inventory for the Chancellor test. The partitioning results from this study were compared to partitioning data that were previously published by the IAEA (1998). Predictions of radionuclide distributions from the two studies are in agreement for a majority of the nuclides under consideration. Substantial differences were noted in the partitioning values for {sup 99}Tc, {sup 125}Sb, {sup 129}I, and uranium. These differences are attributable to two factors

  12. Sound Diffraction Around Movable Partitions in Teaching Spaces. Education Building Report 1.

    Science.gov (United States)

    Choudhury, N. K. D.

    This study concerns the diffraction of sound around flexible partitions used in teaching spaces. It includes a comprehensive study of the acoustical conditions in several school buildings in India, Malaysia, Singapore, and Sri Lanka. The noise reduction properties of some typical partitions the minimum height of the partition between two teaching…

  13. Linking nitrogen partitioning and species abundance to invasion resistance in the Great Basin

    Science.gov (United States)

    J. J. James; K. W. Davies; R. L. Sheley; Z. T. Aanderud

    2008-01-01

    Resource partitioning has been suggested as an important mechanism of invasion resistance. The relative importance of resource partitioning for invasion resistance, however, may depend on how species abundance is distributed in the plant community. This study had two objectives. First, we quantified the degree to which one resource, nitrogen (N), is partitioned by time...

  14. Integer Programming Formulation of the Problem of Generating Milton Babbitt's All-partition Arrays

    DEFF Research Database (Denmark)

    Tanaka, Tsubasa; Bemman, Brian; Meredith, David

    2016-01-01

    Milton Babbitt (1916–2011) was a composer of twelve-tone serial music noted for creating the all-partition array. The problem of generating an all-partition array involves finding a rectangular array of pitch-class integers that can be partitioned into regions, each of which represents a distinct...

  15. PuLP/XtraPuLP : Partitioning Tools for Extreme-Scale Graphs

    Energy Technology Data Exchange (ETDEWEB)

    2017-09-21

    PuLP/XtraPulp is software for partitioning graphs from several real-world problems. Graphs occur in several places in real world from road networks, social networks and scientific simulations. For efficient parallel processing these graphs have to be partitioned (split) with respect to metrics such as computation and communication costs. Our software allows such partitioning for massive graphs.

  16. Active control of sound transmission through partitions composed of discretely controlled modules

    Science.gov (United States)

    Leishman, Timothy W.

    This thesis provides a detailed theoretical and experimental investigation of active segmented partitions (ASPs) for the control of sound transmission. ASPs are physically segmented arrays of interconnected acoustically and structurally small modules that are discretely controlled using electronic controllers. Theoretical analyses of the thesis first address physical principles fundamental to ASP modeling and experimental measurement techniques. Next, they explore specific module configurations, primarily using equivalent circuits. Measured normal-incidence transmission losses and related properties of experimental ASPs are determined using plane wave tubes and the two-microphone transfer function technique. A scanning laser vibrometer is also used to evaluate distributed transmitting surface vibrations. ASPs have the inherent potential to provide excellent active sound transmission control (ASTC) through lightweight structures, using very practical control strategies. The thesis analyzes several unique ASP configurations and evaluates their abilities to produce high transmission losses via global minimization of normal transmitting surface vibrations. A novel dual diaphragm configuration is shown to employ this strategy particularly well. It uses an important combination of acoustical actuation and mechano-acoustical segmentation to produce exceptionally high transmission loss (e.g., 50 to 80 dB) over a broad frequency range-including lower audible frequencies. Such performance is shown to be comparable to that produced by much more massive partitions composed of thick layers of steel or concrete and sand. The configuration uses only simple localized error sensors and actuators, permitting effective use of independent single-channel controllers in a decentralized format. This work counteracts the commonly accepted notion that active vibration control of partitions is an ineffective means of controlling sound transmission. With appropriate construction, actuation

  17. Comparison of modeling approaches for carbon partitioning: Impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP

    Science.gov (United States)

    Ise, Takeshi; Litton, Creighton M.; Giardina, Christian P.; Ito, Akihiko

    2010-12-01

    Partitioning of gross primary production (GPP) to aboveground versus belowground, to growth versus respiration, and to short versus long-lived tissues exerts a strong influence on ecosystem structure and function, with potentially large implications for the global carbon budget. A recent meta-analysis of forest ecosystems suggests that carbon partitioning to leaves, stems, and roots varies consistently with GPP and that the ratio of net primary production (NPP) to GPP is conservative across environmental gradients. To examine influences of carbon partitioning schemes employed by global ecosystem models, we used this meta-analysis-based model and a satellite-based (MODIS) terrestrial GPP data set to estimate global woody NPP and equilibrium biomass, and then compared it to two process-based ecosystem models (Biome-BGC and VISIT) using the same GPP data set. We hypothesized that different carbon partitioning schemes would result in large differences in global estimates of woody NPP and equilibrium biomass. Woody NPP estimated by Biome-BGC and VISIT was 25% and 29% higher than the meta-analysis-based model for boreal forests, with smaller differences in temperate and tropics. Global equilibrium woody biomass, calculated from model-specific NPP estimates and a single set of tissue turnover rates, was 48 and 226 Pg C higher for Biome-BGC and VISIT compared to the meta-analysis-based model, reflecting differences in carbon partitioning to structural versus metabolically active tissues. In summary, we found that different carbon partitioning schemes resulted in large variations in estimates of global woody carbon flux and storage, indicating that stand-level controls on carbon partitioning are not yet accurately represented in ecosystem models.

  18. PAH partitioning in a toxicity exposure chamber

    International Nuclear Information System (INIS)

    Sterling, M.C. Jr.; Autenrieth, R.L.; Bonner, J.S.; Page, C.A.; Fuller, C.B.; Ernest, A.N.S.

    2003-01-01

    The hypothesis that observed petroleum aromatic hydrocarbon (PAH) concentrations in an aqueous system are equal to the sum of the organic phase and the soluble phase molar concentrations was examined. Raoult's law was used to estimate the soluble phase molar concentrations. The organic phase concentrations were proportional to the PAH mole fraction in the oil. The experiment involved initially loading a batch laboratory mixing vessel with a scalable mixing energy at various oil layer thicknesses corresponding to oil surface loadings. The vessel was then agitated at a constant mean shear rate. Periodical total petroleum hydrocarbon (TPH) samples were taken in order to estimate the entrainment rate as a function of initial oil layer thickness. In-situ measurements of TPH concentrations were performed with the use of a laser scattering instrument while ex-situ measurements were effected using gravimetric analysis. Additional samples were analyzed for PAH concentration at a steady state TPH concentration using gas chromatograph/mass spectrometer (GC/MS) analysis. The results obtained were in agreement with a first order kinetic model (TPH concentrations increased over time). It was noted that in general, the first order rate constant and steady state concentration increased with increased oil loading and increased mean shear rates. There was good correlation between the measurements and the concentrations predicted using the hypothesized model. 8 refs., 3 tabs., 2 figs

  19. Controlling bi-partite entanglement in multi-qubit systems

    International Nuclear Information System (INIS)

    Plesch, Martin; Novotny, Jaroslav; Dzurakova, Zuzana; Buzek, VladimIr

    2004-01-01

    Bi-partite entanglement in multi-qubit systems cannot be shared freely. The rules of quantum mechanics impose bounds on how multi-qubit systems can be correlated. In this paper, we utilize a concept of entangled graphs with weighted edges in order to analyse pure quantum states of multi-qubit systems. Here qubits are represented by vertexes of the graph, while the presence of bi-partite entanglement is represented by an edge between corresponding vertexes. The weight of each edge is defined to be the entanglement between the two qubits connected by the edge, as measured by the concurrence. We prove that each entangled graph with entanglement bounded by a specific value of the concurrence can be represented by a pure multi-qubit state. In addition, we present a logic network with O(N 2 ) elementary gates that can be used for preparation of the weighted entangled graphs of N qubits

  20. Controlling bi-partite entanglement in multi-qubit systems

    Science.gov (United States)

    Plesch, Martin; Novotný, Jaroslav; Dzuráková, Zuzana; Buzek, Vladimír

    2004-02-01

    Bi-partite entanglement in multi-qubit systems cannot be shared freely. The rules of quantum mechanics impose bounds on how multi-qubit systems can be correlated. In this paper, we utilize a concept of entangled graphs with weighted edges in order to analyse pure quantum states of multi-qubit systems. Here qubits are represented by vertexes of the graph, while the presence of bi-partite entanglement is represented by an edge between corresponding vertexes. The weight of each edge is defined to be the entanglement between the two qubits connected by the edge, as measured by the concurrence. We prove that each entangled graph with entanglement bounded by a specific value of the concurrence can be represented by a pure multi-qubit state. In addition, we present a logic network with O(N2) elementary gates that can be used for preparation of the weighted entangled graphs of N qubits.

  1. A New Power System Restoration Technique based on WAMS Partitioning

    Directory of Open Access Journals (Sweden)

    N. V. Phanendra Babu

    2017-08-01

    Full Text Available An important feature of a Wide-Area Measurement System (WAMS is the ability to recover data during a communication failure. This paper presents a novel scheme of partitioning a PMU installed power network into a number of WAMS regions in order to make the power system restoration process simpler. This algorithm also proposes the optimal placement of Phasor Data Concentrators (PDCs in each region to record the data from PMUs. This paper considers the restoration constraints like transformer equivalent bus, generation-load balance and the observability of region for the partitioning of power system. The proposed scheme is demonstrated with an IEEE-30 bus system. It is then applied on IEEE-39, IEEE-118 bus systems and on a Northern Regional Grid of the Indian Power Grid.

  2. R and D on HLW Partitioning in Russia

    International Nuclear Information System (INIS)

    Khaperskaya, A.; Babain, V.; Alyapyshev, M.

    2015-01-01

    Results of more than thirty years investigations on high level radioactive waste (HLW) partitioning in Russia are described. The objectives of research and development is to assess HLW partitioning technical feasibility and its advantages compared to direct vitrification of long-lived radionuclides. Many technological flowsheets for long-lived nuclides (cesium, strontium and minor actinides) separation were developed and tested with simulated and actual HLW. Different classes of extractants, including carbamoyl-phosphine oxides, dialkyl-phosphoric acids, crown ethers and diamides of heterocyclic acids were studied. Some of these processes were tested at PA 'Mayak' and MCC. Many extraction systems based on chlorinated cobalt dicarbollide (CCD), including UNEX-extractant and its modifications, were also observed. Diamides of diglycolic acid and diamides of heterocyclic acids in polar diluents have shown promising properties for minor actinide-lanthanide extraction and separation. Comparison of different solvents and possible ways of implementing new flowsheets in radiochemical technology are also discussed. (authors)

  3. Regulation of assimilate partitioning by daylength and spectral quality

    Energy Technology Data Exchange (ETDEWEB)

    Britz, S.J. [USDA-Climate Stress Lab., Beltsville, MD (United States)

    1994-12-31

    Photosynthesis is the process by which plants utilize light energy to assimilate and transform carbon dioxide into products that support growth and development. The preceding review provides an excellent summary of photosynthetic mechanisms and diurnal patterns of carbon metabolism with emphasis on the importance of gradual changes in photosynthetically-active radiation at dawn and dusk. In addition to these direct effects of irradiance, there are indirect effects of light period duration and spectral quality on carbohydrate metabolism and assimilate partitioning. Both daylength and spectral quality trigger developmental phenomena such as flowering (e.g., photoperiodism) and shade avoidance responses, but their effects on partitioning of photoassimilates in leaves are less well known. Moreover, the adaptive significance to the plants of such effects is sometimes not clear.

  4. Partition-based discrete-time quantum walks

    Science.gov (United States)

    Konno, Norio; Portugal, Renato; Sato, Iwao; Segawa, Etsuo

    2018-04-01

    We introduce a family of discrete-time quantum walks, called two-partition model, based on two equivalence-class partitions of the computational basis, which establish the notion of local dynamics. This family encompasses most versions of unitary discrete-time quantum walks driven by two local operators studied in literature, such as the coined model, Szegedy's model, and the 2-tessellable staggered model. We also analyze the connection of those models with the two-step coined model, which is driven by the square of the evolution operator of the standard discrete-time coined walk. We prove formally that the two-step coined model, an extension of Szegedy model for multigraphs, and the two-tessellable staggered model are unitarily equivalent. Then, selecting one specific model among those families is a matter of taste not generality.

  5. Optimisation-Based Solution Methods for Set Partitioning Models

    DEFF Research Database (Denmark)

    Rasmussen, Matias Sevel

    The scheduling of crew, i.e. the construction of work schedules for crew members, is often not a trivial task, but a complex puzzle. The task is complicated by rules, restrictions, and preferences. Therefore, manual solutions as well as solutions from standard software packages are not always su......_cient with respect to solution quality and solution time. Enhancement of the overall solution quality as well as the solution time can be of vital importance to many organisations. The _elds of operations research and mathematical optimisation deal with mathematical modelling of di_cult scheduling problems (among...... other topics). The _elds also deal with the development of sophisticated solution methods for these mathematical models. This thesis describes the set partitioning model which has been widely used for modelling crew scheduling problems. Integer properties for the set partitioning model are shown...

  6. Development of long-lived radionuclide partitioning technology

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Hyung; Lee, Eil Hee; Kim, Kwang Wook; Yang, Han Beom; Chung, Dong Yong; Lim, Jae Kwan; Shin, Young Jun; Kim, Heung Ho; Kown, Sun Gil; Kim, Young Hwan; Hwang, Doo Seung

    1996-07-01

    This study has been focused on the development of unit processes for partitioning in the 1st stage, and experimentally carried out to examine the separation characteristics and operation conditions on the following unit processes. (1) Removal of a small amount of uranium by extraction with TBP, (2) Removal of Zr and Mo and destruction of nitric acid by uranium by denitration with formic acid, (3) Co-precipitation of Am, Np and RE oxalic acid, (4) Dissolution and destruction of oxalate by hydrogen peroxide, (5) Co-extraction of Am, Np and RE by nitric acid, (8) Back-extraction of Np by oxalic acid, (9) Adsorption and elution of Cs and Sr by zeolite, and (10) Advanced separation of radionuclide by electrochemical REDOX method. The results obtained from each unit process will be use as the basic materials for the establishment of optimal partitioning and design of process equipment. (author). 46 refs., 54 tabs., 222 figs.

  7. The partitioning of sulfur between multicomponent aqueous fluids and felsic melts

    Science.gov (United States)

    Binder, Bernd; Wenzel, Thomas; Keppler, Hans

    2018-02-01

    Sulfur partitioning between melt and fluid phase largely controls the environmental impact of volcanic eruptions. Fluid/melt partitioning data also provide the physical basis for interpreting changes in volcanic gas compositions that are used in eruption forecasts. To better constrain some variables that control the behavior of sulfur in felsic systems, in particular the interaction between different volatiles, we studied the partitioning of sulfur between aqueous fluids and haplogranitic melts at 200 MPa and 750-850 °C as a function of oxygen fugacity (Ni-NiO or Re-ReO2 buffer), melt composition (Al/(Na + K) ratio), and fluid composition (NaCl and CO2 content). The data confirm a first-order influence of oxygen fugacity on the partitioning of sulfur. Under "reducing conditions" (Ni-NiO buffer), D fluid/melt is nearly one order of magnitude larger (323 ± 14 for a metaluminous melt) than under "oxidizing conditions" (Re-ReO2 buffer; 74 ± 5 for a metaluminous melt). This effect is likely related to a major change in sulfur speciation in both melt and fluid. Raman spectra of the quenched fluids show the presence of H2S and HS- under reducing conditions and of SO4 2- and HSO4 - under oxidizing conditions, while SO2 is undetectable. The latter observation suggests that already at the Re-ReO2 buffer, sulfur in the fluid is almost completely in the S6+ state and, therefore, more oxidized than expected according to current models. CO2 in the fluid (up to x CO2 = 0.3) has no effect on the fluid/melt partitioning of sulfur, neither under oxidizing nor under reducing conditions. However, the effect of NaCl depends on redox state. While at oxidizing conditions, D fluid/melt is independent of x NaCl, the fluid/melt partition coefficient strongly decreases with NaCl content under reducing conditions, probably due to a change from H2S to NaSH as dominant sulfur species in the fluid. A decrease of D fluid/melt with alkali content in the melt is observed over the entire

  8. Impact of water use efficiency on eddy covariance flux partitioning using correlation structure analysis

    Science.gov (United States)

    Anderson, Ray; Skaggs, Todd; Alfieri, Joseph; Kustas, William; Wang, Dong; Ayars, James

    2016-04-01

    Partitioned land surfaces fluxes (e.g. evaporation, transpiration, photosynthesis, and ecosystem respiration) are needed as input, calibration, and validation data for numerous hydrological and land surface models. However, one of the most commonly used techniques for measuring land surface fluxes, Eddy Covariance (EC), can directly measure net, combined water and carbon fluxes (evapotranspiration and net ecosystem exchange/productivity). Analysis of the correlation structure of high frequency EC time series (hereafter flux partitioning or FP) has been proposed to directly partition net EC fluxes into their constituent components using leaf-level water use efficiency (WUE) data to separate stomatal and non-stomatal transport processes. FP has significant logistical and spatial representativeness advantages over other partitioning approaches (e.g. isotopic fluxes, sap flow, microlysimeters), but the performance of the FP algorithm is reliant on the accuracy of the intercellular CO2 (ci) concentration used to parameterize WUE for each flux averaging interval. In this study, we tested several parameterizations for ci as a function of atmospheric CO2 (ca), including (1) a constant ci/ca ratio for C3 and C4 photosynthetic pathway plants, (2) species-specific ci/ca-Vapor Pressure Deficit (VPD) relationships (quadratic and linear), and (3) generalized C3 and C4 photosynthetic pathway ci/ca-VPD relationships. We tested these ci parameterizations at three agricultural EC towers from 2011-present in C4 and C3 crops (sugarcane - Saccharum officinarum L. and peach - Prunus persica), and validated again sap-flow sensors installed at the peach site. The peach results show that the species-specific parameterizations driven FP algorithm came to convergence significantly more frequently (~20% more frequently) than the constant ci/ca ratio or generic C3-VPD relationship. The FP algorithm parameterizations with a generic VPD relationship also had slightly higher transpiration (5 Wm-2

  9. Understanding thermodynamics of drug partitioning in micelles and delivery to proteins: Studies with naproxen, diclofenac sodium, tetradecyltrimethylammonium bromide, and bovine serum albumin

    International Nuclear Information System (INIS)

    Talele, Paurnima; Choudhary, Sinjan; Kishore, Nand

    2016-01-01

    Highlights: • Interactions of non-steroidal anti-inflammatory drugs studied with TTAB micelles, monomers. • Thermodynamics of drug-surfactant interactions and partitioning in micelles addressed. • Mechanism of drug partitioning addressed based on energetics of interactions. • Partitioning in micelles depends on functional groups on drugs. • Such studies are needed for target oriented synthesis and efficient drug delivery. - Abstract: The use of surfactants in drug delivery has offered several advantages. Quantitative knowledge of the interactions of drugs with micellar systems is essential for deriving guidelines to design efficient drug delivery systems. In this work we have quantitatively addressed the mechanism of interaction of naproxen and diclofenac sodium with the micelles and monomers of tetradecyltrimethylammonium bromide (TTAB) based on thermodynamic studies by using isothermal titration calorimetry. The mechanism of interaction of the drugs with TTAB is based on identification of the nature of interactions of the former with the surfactant micelles and monomers. The values of partitioning constant (which is same as equilibrium constant for the reaction of drugs with the surfactant micelles), enthalpy, entropy and stoichiometry of partitioning have been determined and discussed in terms of possible intermolecular interactions. Further, the interaction of the drug naproxen with bovine serum albumin, when delivered from the micellar media has also been addressed in terms of binding constant, enthalpy and entropy of binding. The results are important in developing improved strategies for effective drug delivery systems.

  10. Enantioseparations in counter-current chromatography and centrifugal partition chromatography.

    Science.gov (United States)

    Foucault, A P

    2001-01-12

    Examples of chiral separations in counter-current chromatography (CCC) and centrifugal partition chromatography (CPC) are not numerous, due to the difficulty of finding chiral selectors highly selective in the liquid phase as well as a combination of solvents that does not destroy the selectivity and retains the capacity to elute chiral isomers of interest. New ideas and new chiral selectors generally come from other separation techniques, as will be highlighted in this review.

  11. Exactly soluble models for surface partition of large clusters

    International Nuclear Information System (INIS)

    Bugaev, K.A.; Bugaev, K.A.; Elliott, J.B.

    2007-01-01

    The surface partition of large clusters is studied analytically within a framework of the 'Hills and Dales Model'. Three formulations are solved exactly by using the Laplace-Fourier transformation method. In the limit of small amplitude deformations, the 'Hills and Dales Model' gives the upper and lower bounds for the surface entropy coefficient of large clusters. The found surface entropy coefficients are compared with those of large clusters within the 2- and 3-dimensional Ising models

  12. Rare Earth Element Partitioning in Lunar Minerals: An Experimental Study

    Science.gov (United States)

    McIntosh, E. C.; Rapp, J. F.; Draper, D. S.

    2016-01-01

    The partitioning behavior of rare earth elements (REE) between minerals and melts is widely used to interpret the petrogenesis and geologic context of terrestrial and extra-terrestrial samples. REE are important tools for modelling the evolution of the lunar interior. The ubiquitous negative Eu anomaly in lunar basalts is one of the main lines of evidence to support the lunar magma ocean (LMO) hypothesis, by which the plagioclase-rich lunar highlands were formed as a flotation crust during differentiation of a global-scale magma ocean. The separation of plagioclase from the mafic cumulates is thought to be the source of the Eu depletion, as Eu is very compatible in plagioclase. Lunar basalts and volcanic glasses are commonly depleted in light REEs (LREE), and more enriched in heavy REEs (HREE). However, there is very little experimental data available on REE partitioning between lunar minerals and melts. In order to interpret the source of these distinctive REE patterns, and to model lunar petrogenetic processes, REE partition coefficients (D) between lunar minerals and melts are needed at conditions relevant to lunar processes. New data on D(sub REE) for plagioclase, and pyroxenes are now available, but there is limited available data for olivine/melt D(sub REE), particularly at pressures higher than 1 bar, and in Fe-rich and reduced compositions - all conditions relevant to the lunar mantle. Based on terrestrial data, REE are highly incompatible in olivine (i.e. D much less than 1), however olivine is the predominant mineral in the lunar interior, so it is important to understand whether it is capable of storing even small amounts of REE, and how the REEs might be fractionatied, in order to understand the trace element budget of the lunar interior. This abstract presents results from high-pressure and temperature experiments investigating REE partitioning between olivine and melt in a composition relevant to lunar magmatism.

  13. Partial Key Grouping: Load-Balanced Partitioning of Distributed Streams

    OpenAIRE

    Nasir, Muhammad Anis Uddin; Morales, Gianmarco De Francisci; Garcia-Soriano, David; Kourtellis, Nicolas; Serafini, Marco

    2015-01-01

    We study the problem of load balancing in distributed stream processing engines, which is exacerbated in the presence of skew. We introduce PARTIAL KEY GROUPING (PKG), a new stream partitioning scheme that adapts the classical “power of two choices” to a distributed streaming setting by leveraging two novel techniques: key splitting and local load estimation. In so doing, it achieves better load balancing than key grouping while being more scalable than shuffle grouping. We test PKG on severa...

  14. An Evaluation of the Partitioning of Sudan and US Contribution

    OpenAIRE

    Adeleke, Oniya Olusegun

    2015-01-01

    A country is partitioned when a region within her existing boundary breaks its legitimate bonds with such a country or state in order to become an independent state in its own right. This does not include, independence after colonization, unilateral declaration of independence or de facto control of a region/territory by militias. This thesis evaluates the impact of US diplomatic engagement in Sudan. Why did the US spend her resources, time and energy to bring about the division of Sudan? Was...

  15. Paths and partitions: Combinatorial descriptions of the parafermionic states

    Science.gov (United States)

    Mathieu, Pierre

    2009-09-01

    The Zk parafermionic conformal field theories, despite the relative complexity of their modes algebra, offer the simplest context for the study of the bases of states and their different combinatorial representations. Three bases are known. The classic one is given by strings of the fundamental parafermionic operators whose sequences of modes are in correspondence with restricted partitions with parts at distance k -1 differing at least by 2. Another basis is expressed in terms of the ordered modes of the k -1 different parafermionic fields, which are in correspondence with the so-called multiple partitions. Both types of partitions have a natural (Bressoud) path representation. Finally, a third basis, formulated in terms of different paths, is inherited from the solution of the restricted solid-on-solid model of Andrews-Baxter-Forrester. The aim of this work is to review, in a unified and pedagogical exposition, these four different combinatorial representations of the states of the Zk parafermionic models. The first part of this article presents the different paths and partitions and their bijective relations; it is purely combinatorial, self-contained, and elementary; it can be read independently of the conformal-field-theory applications. The second part links this combinatorial analysis with the bases of states of the Zk parafermionic theories. With the prototypical example of the parafermionic models worked out in detail, this analysis contributes to fix some foundations for the combinatorial study of more complicated theories. Indeed, as we briefly indicate in ending, generalized versions of both the Bressoud and the Andrews-Baxter-Forrester paths emerge naturally in the description of the minimal models.

  16. Speeding Up FPGA Placement via Partitioning and Multithreading

    Directory of Open Access Journals (Sweden)

    Cristinel Ababei

    2009-01-01

    placement subproblems are created by partitioning and then processed concurrently by multiple worker threads that are run on multiple cores of the same processor. Our main goal is to investigate the speedup that can be achieved with this simple approach compared to previous approaches that were based on distributed computing. The new hybrid parallel placement algorithm achieves an average speedup of 2.5× using four worker threads, while the total wire length and circuit delay after routing are minimally degraded.

  17. Development of long-lived radionuclide partitioning technology

    International Nuclear Information System (INIS)

    Lee, Eil Hee; Kwon, S. G.; Yang, H. B.

    2001-04-01

    This project was aimed at the development of an optimal process that could get recovery yields of 99% for Am and Np and 90% for Tc from a simulated radioactive waste and the improvements of unit processes. The performed works are summarized, as follows. 1) The design and the establishment of a laboratory-scale partitioning process were accomplished, and the interfacial conditions between each unit process were determined. An optimal flow diagram for long-lived radionuclide partitioning process was suggested. 2) In improvements of unit processes, a) Behaviors of the co-extraction and sequential separation for residual U, Np and Tc(/Re) by chemical and electrochemical methods were examined. b) Conditions for co-extraction of Am/RE, and selective stripping of Am with metal containing extractant and a mixed extractant were decided. c) Characteristics of adsorption and elution by ion exchange chromatography and extraction chromatography methods were analysed. d) The simulation codes for long-lived radionuclide partitioning were gathered. and reaction equations were numerically formulated. 3) An existing γ-lead cell was modified the α-γ cells for treatment of long-lived radioactive materials. 4) As the applications of new separation technologies, a) Behaviors of photo reductive precipitation for Am/RE were investigated, b) Conditions for selective extraction and stripping of Am with pyridine series extractants were established. All results will be used as the fundamental data for establishment of partitioning process and radiochemical test of long-lived radionuclides recovery technology to be performed in the next stage

  18. Model-based Recursive Partitioning for Subgroup Analyses

    OpenAIRE

    Seibold, Heidi; Zeileis, Achim; Hothorn, Torsten

    2016-01-01

    The identification of patient subgroups with differential treatment effects is the first step towards individualised treatments. A current draft guideline by the EMA discusses potentials and problems in subgroup analyses and formulated challenges to the development of appropriate statistical procedures for the data-driven identification of patient subgroups. We introduce model-based recursive partitioning as a procedure for the automated detection of patient subgroups that are identifiable by...

  19. Plutonium--uranium partitioning; alternate flowsheet Plutonium Reclamation Facility. [SEPHIS

    Energy Technology Data Exchange (ETDEWEB)

    Fort, L.A.

    1975-12-01

    The SEPHIS computer program was used to predict the transient and steady-state concentrations in a stage-wise scheme for the Pu reclamation solvent extraction system. With the aid of the computer an alternative flowsheet for Pu--U partitioning was constructed. The goal of the alternative program is to reduce Pu losses from the initial stripping column and reduce the quantity of Pu-bearing wastes from the solvent extraction system. (JSR)

  20. Multiplicity of summands in the random partitions of an integer

    Indian Academy of Sciences (India)

    We prove that the probability that there is a summand of multiplicity j in any randomly chosen partition or composition of an integer n goes to zero asymptotically with n provided j is larger than a critical value. As a corollary, we strengthen a result due to Erdös and Lehner (Duke. Math. J. 8 (1941) 335–345) that concerns the ...