WorldWideScience

Sample records for particulate matter exposure

  1. Determinants of exposure to fine particulate matter (PM 2.5) for waiting passengers at bus stops

    Science.gov (United States)

    Hess, Daniel Baldwin; Ray, Paul David; Stinson, Anne E.; Park, JiYoung

    2010-12-01

    This research evaluates commuter exposure to particulate matter during pre-journey commute segments for passengers waiting at bus stops by investigating 840 min of simultaneous exposure levels, both inside and outside seven bus shelters in Buffalo, New York. A multivariate regression model is used to estimate the relation between exposure to particulate matter (PM 2.5 measured in μg m -3) and three vectors of determinants: time and location, physical setting and placement, and environmental factors. Four determinants have a statistically significant effect on particulate matter: time of day, passengers' waiting location, land use near the bus shelter, and the presence of cigarette smoking at the bus shelter. Model results suggest that exposure to PM 2.5 inside a bus shelter is 2.63 μg m -3 (or 18 percent) higher than exposure outside a bus shelter, perhaps due in part to the presence of cigarette smoking. Morning exposure levels are 6.51 μg m -3 (or 52 percent) higher than afternoon levels. Placement of bus stops can affect exposure to particulate matter for those waiting inside and outside of shelters: air samples at bus shelters located in building canyons have higher particulate matter than bus shelters located near open space.

  2. Integrated indoor and outdoor exposure assessment framework for fine particulate matter pollution

    DEFF Research Database (Denmark)

    McKone, Thomas E; Hodas, Natasha; Apte, Joshua S.

    2016-01-01

    The 2010 Global Burden of Disease report demonstrates that fine particulate matter (PM2.5) pollution is the major environmental contributor to mortality. Exposures outdoors (ambient) and indoors (household) contribute almost qually to this burden. Unfortunately, the health impacts from exposure t...

  3. Long-term exposure to elemental constituents of particulate matter and cardiovascular mortality in 19 European cohorts

    DEFF Research Database (Denmark)

    Wang, Meng; Beelen, Rob; Stafoggia, Massimo

    2014-01-01

    Associations between long-term exposure to ambient particulate matter (PM) and cardiovascular (CVD) mortality have been widely recognized. However, health effects of long-term exposure to constituents of PM on total CVD mortality have been explored in a single study only.......Associations between long-term exposure to ambient particulate matter (PM) and cardiovascular (CVD) mortality have been widely recognized. However, health effects of long-term exposure to constituents of PM on total CVD mortality have been explored in a single study only....

  4. Effects of long-term exposure to particulate matter and metal components on mortality in the Rome longitudinal study

    NARCIS (Netherlands)

    Badaloni, Chiara; Cesaroni, Giulia; Cerza, Francesco; Davoli, Marina; Brunekreef, Bert; Forastiere, Francesco

    2017-01-01

    BACKGROUND: The effect of long-term exposure to metal components in particulate matter on mortality are still controversial. OBJECTIVES: To study the association between long-term exposure to PM10, PM2.5, PM2.5 absorbance, particulate matter components (copper, iron, zinc, sulfur, silicon,

  5. Association between exposure to particulate matter and hospital admissions for respiratory disease in children

    Science.gov (United States)

    Cesar, Ana Cristina Gobbo; Nascimento, Luiz Fernando C; de Carvalho, João Andrade

    2013-01-01

    The aim of this study was to estimate the association between exposure to particulate matter less than 2.5 microns in diameter and hospitalization for respiratory disease. It was an ecological time series study with daily indicators of hospitalization for respiratory diseases in children up to 10 years old, living in Piracicaba, SP, Southeastern Brazil, between August 1, 2011 and July 31, 2012. A generalized additive Poisson regression model was used. The relative risks were RR = 1.008; 95%CI 1.001;1.016 for lag 1 and RR = 1.009; 95%CI 1.001;1.017 for lag 3. The increment of 10 μg/m3in particulate matter less than 2.5 microns in diameter implies increase in relative risk of between 7.9 and 8.6 percentage points. In conclusion, exposure to particulate matter less than 2.5 microns in diameter was associated with hospitalization for respiratory disease in children. PMID:24626559

  6. ACUTE EXPOSURE TO PARTICULATE MATTER IN A RAT MODEL OF HEART FAILURE

    Science.gov (United States)

    Human exposure to ambient particulate matter (PM) has been linked to cardiovascular morbidity and mortality. This association strengthens in people with preexisting cardiopulmonary diseases—especially heart failure (HF). To better characterize the cardiovascular effects of PM, we...

  7. Relationship between Particulate matter less than 10 microns exposures and health effects on humans in Ahvaz, Iran

    Directory of Open Access Journals (Sweden)

    Sahar Geravandi

    2015-06-01

    Full Text Available Background & Aims of the Study: Particulate matters less than 10 microns can absorb into your lungs and reacting with the moisture and enter the circulatory system directly through the airways. The aim of this study is to assess Behavior PM 10 data in different seasons and Determination effects on human health in Ahvaz city during 2013. Materials & Methods: Data Particulate matters less than 10 microns were taken from Ahvaz Department of Environment and Meteorological Organization. Sampling was performed for 24 hours in 4 stations. Method of sampling and analysis were performed according to EPA guideline. Processing data include the instruction set correction of averaging, coding and filtering. Finally, health-effects of Particulate matters less than 10 exposures were calculated with impact of meteorological parameters and converted as input file to the Air Q model. Results: PM 10 concentration in winter season was maximum amount in the year 2013. According to the research findings, highest and the lowest Particulate matters less than 10 microns concentrations during 2013 had the Bureau of Meteorology “Havashenasi” and Head office of ADoE “Mohitzist”. Sum of total numbers of cardiovascular death and hospitals admission to respiratory diseases attributed to Particulate matters less than 10 microns were 923 and 2342 cases in 2013. Conclusions: Particulate matter emissions are highly regulated in most industrialized countries. Due to environmental concerns, most industries and dust storm phenomena are required to decrease in source produce particle mater and kind of dust collection system to control particulate emissions. Pollution prevention and control measures that reduce Particulate matters less than 10 microns can very useful for expected to reduce people’s exposures to Sulfur dioxide.

  8. Adverse effect of diesel engine produced particulate matter on various stone types and concrete: a laboratory exposure experiment

    Science.gov (United States)

    Farkas, Orsolya; Szabados, György; Antal, Ákos; Török, Ákos

    2015-04-01

    The effect of particulate matter on construction materials have been studied under laboratory conditions. For testing the adverse effects of diesel soot and particulate matter on stone and concrete a small scale laboratory exposure chamber was constructed. Blocks of 9 different stone types and concrete was placed in the chamber and an exhaust pipe of diesel engine was diverted into the system. Tested stones included: porous limestone, cemented non-porous limestone, travertine, marble, rhyolite tuff, andesite and granite. The engine was operated for 10 hours and the produced particulate matter was diverted directly to the surface of the material specimens of 3 cm in diameter each. Working parameters of the engine were controlled; the composition of the exhaust gas, smoke value and temperature were continuously measured during the test. Test specimens were documented and analysed prior to exposure and after the exposure test. Parameters such colorimetric values, weight, surface properties, mineralogical compositions of the test specimens were recorded. The working temperature was in the order of 300°C-320°C. The gas concentration was in ppm as follows: 157 CO; 5.98 CO2, 34.3 THC; 463 NOx; 408 NO; 12.88 O2. Our tests have demonstrated that significant amount of particulate matter was deposited on construction materials even at a short period of time; however the exposure was very intense. It also indicates that that the interaction of particulate matter and aerosol compounds with construction materials in urban areas causes rapid decay and has an adverse effect not only on human health but also on built structures.

  9. [Reduction of exposure to particulate matter in classrooms by improved cleaning: extent of exposure and results of a pilot study in Bavaria].

    Science.gov (United States)

    Twardella, D; Fromme, H; Dietrich, S; Dietrich, W C

    2009-02-01

    The aims of the research project were (I) to describe the exposure to particulate matter in Bavarian schools and identify predictors of increased exposure and (II) to evaluate whether exposure can be reduced by improving the ventilation and/or cleaning routine. Air quality was measured in 46 schools, two classrooms each, in the City of Munich and Dachau county. Each classroom was measured on one school day in both winter 2004/2005 and summer 2005. The continuously generated data on particulate matter during the teaching hours were summarised to daily medians and the possible association of the median concentration with classroom characteristics was tested using non-parametric methods. In winter, the median PM (2.5) concentration was 18.8 microg/m (3), in summer 12.7 microg/m (3). The median PM (10) concentration was 91.5 microg/m (3) in winter and 64.9 microg/m (3) in summer. Determinants of a high particulate matter concentration were the winter period, an increased number of pupils or decreased room size, a high CO(2) concentration, and a low class level. Following this survey, a pilot study on the effects of improved cleaning and ventilation routines was conducted in autumn 2005. Three conditions were tested in two classrooms of one school: (a) standard, (b) improved airing (3 min during short and 20 min during long breaks), and (c) improved airing and improved cleaning (thorough cleaning once and vacuuming before wet wiping). Each condition was implemented for 2 weeks and particulate matter concentrations measured concurrently. In both rooms a reduction of both PM (2.5) and PM (10) concentration was found following improved airing and a further reduction occurred when improved cleaning was introduced in addition. However, in a linear regression accounting for other factors (room, physical activity of the pupils, outdoor concentration of particulate matter) the effect of improved airing was no longer significant, while the effect of improved cleaning remained at

  10. Occupational Exposure to Diesel Particulate Matter in Municipal Household Waste Workers.

    Science.gov (United States)

    Lee, Kyong-Hui; Jung, Hye-Jung; Park, Dong-Uk; Ryu, Seung-Hun; Kim, Boowook; Ha, Kwon-Chul; Kim, Seungwon; Yi, Gwangyong; Yoon, Chungsik

    2015-01-01

    The purposes of this study were to determine the following: 1) the exposure levels of municipal household waste (MHW) workers to diesel particulate matter (DPM) using elemental carbon (EC), organic carbon (OC), total carbon (TC), black carbon (BC), and fine particulate matter (PM 2.5) as indicators; 2) the correlations among the indicators; 3) the optimal indicator for DPM; and 4) factors that influence personal exposure to DPM. A total of 72 workers in five MHW collection companies were assessed over a period of 7 days from June to September 2014. Respirable EC/OC samples were quantified using the thermal optical transmittance method. BC and PM 2.5 were measured using real-time monitors, an aethalometer and a laser photometer. All results were statistically analyzed for occupational and environmental variables to identify the exposure determinants of DPM. The geometric mean of EC, OC, TC, BC and PM 2.5 concentrations were 4.8, 39.6, 44.8, 9.1 and 62.0 μg/m3, respectively. EC concentrations were significantly correlated with the concentrations of OC, TC and BC, but not with those of PM 2.5. The exposures of the MHW collectors to EC, OC, and TC were higher than those of the drivers (pemission standard had higher exposures to EC, OC, TC and PM 2.5 than those working on Euro 4 trucks (pemission standard, and average driving speed were the most influential factors in determining worker exposure. We assessed MHW workers' exposure to DPM using parallel sampling of five possible indicators. Of these five indicators, EC was shown to be the most useful indicator of DPM exposure for MHW workers, and the job task, European emission standard, and average driving speed were the main determinants of EC exposure.

  11. Exposure to airborne metals and particulate matter and risk for youth adjudicated for criminal activity

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, Erin N., E-mail: Erin.Haynes@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Chen, Aimin, E-mail: Aimin.Chen@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Ryan, Patrick, E-mail: Patrick.Ryan@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Succop, Paul, E-mail: Paul.Succop@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Wright, John, E-mail: John.Wright@uc.edu [College of Education, Criminal Justice, and Human Services, University of Cincinnati, Cincinnati, OH 45221 (United States); Dietrich, Kim N., E-mail: Kim.Dietrich@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States)

    2011-11-15

    Antisocial behavior is a product of multiple interacting sociohereditary variables, yet there is increasing evidence that metal exposure, particularly, manganese and lead, play a role in its epigenesis. Other metals, such as arsenic, cadmium, chromium, and mercury, and exposure to traffic-related air pollution, such as fine particulate matter ({<=}2.5 {mu}m) have been associated with neurological deficits, yet largely unexplored with respect to their relationship with delinquent behavior. The purpose of this study is to evaluate the ecological relationship between county-wide reported airborne emissions of air metals, particulate matter, and youth adjudicated for criminal activity. Metal exposure data were collected from the Environmental Protection Agency AirData. Population statistics were obtained from the United States Census 2000 and adjudication data was obtained from the Courts of Common Pleases from each Ohio County. Simple correlations were calculated with the percentage of adjudications, all covariates, and estimated metal air emissions. Separate negative binomial regression models for each pollutant were used to provide an estimated risk ratio of pollutant emissions on the risk of adjudication for all Ohio counties adjusting for urban-rural residence, percentage of African Americans, median family income, percentage of family below poverty, percentage of high school graduation in 25 years and older populations, and population density. Metal emissions and PM in 1999 were all correlated with adjudication rate (2003-2005 average). Metal emissions were associated with slightly higher risk of adjudication, with about 3-4% increased risk per natural log unit of metal emission except chromium. The associations achieved statistical significance for manganese and mercury. The particulate matter {<=}2.5 and {<=}10 {mu}m emissions had a higher risk estimate, with 12% and 19% increase per natural log unit emission, respectively, and also achieved statistical

  12. Exposure to airborne metals and particulate matter and risk for youth adjudicated for criminal activity

    International Nuclear Information System (INIS)

    Haynes, Erin N.; Chen, Aimin; Ryan, Patrick; Succop, Paul; Wright, John; Dietrich, Kim N.

    2011-01-01

    Antisocial behavior is a product of multiple interacting sociohereditary variables, yet there is increasing evidence that metal exposure, particularly, manganese and lead, play a role in its epigenesis. Other metals, such as arsenic, cadmium, chromium, and mercury, and exposure to traffic-related air pollution, such as fine particulate matter (≤2.5 μm) have been associated with neurological deficits, yet largely unexplored with respect to their relationship with delinquent behavior. The purpose of this study is to evaluate the ecological relationship between county-wide reported airborne emissions of air metals, particulate matter, and youth adjudicated for criminal activity. Metal exposure data were collected from the Environmental Protection Agency AirData. Population statistics were obtained from the United States Census 2000 and adjudication data was obtained from the Courts of Common Pleases from each Ohio County. Simple correlations were calculated with the percentage of adjudications, all covariates, and estimated metal air emissions. Separate negative binomial regression models for each pollutant were used to provide an estimated risk ratio of pollutant emissions on the risk of adjudication for all Ohio counties adjusting for urban–rural residence, percentage of African Americans, median family income, percentage of family below poverty, percentage of high school graduation in 25 years and older populations, and population density. Metal emissions and PM in 1999 were all correlated with adjudication rate (2003–2005 average). Metal emissions were associated with slightly higher risk of adjudication, with about 3–4% increased risk per natural log unit of metal emission except chromium. The associations achieved statistical significance for manganese and mercury. The particulate matter ≤2.5 and ≤10 μm emissions had a higher risk estimate, with 12% and 19% increase per natural log unit emission, respectively, and also achieved statistical

  13. Characterizing Aggregated Exposure to Primary Particulate Matter: Recommended Intake Fractions for Indoor and Outdoor Sources

    DEFF Research Database (Denmark)

    Fantke, Peter; Jolliet, Olivier; Apte, Joshua Schulz

    2017-01-01

    Exposure to fine particulate matter (PM_(2.5)) from indoor and outdoor sources is a leading environmental contributor to global disease burden. In response, we established under the auspices of the UNEP/SETAC Life Cycle Initiative a coupled indoor-outdoor emission-to-exposure framework to provide...

  14. Approximation of personal exposure to fine particulate matters (PM2.5) during cooking using solid biomass fuels in the kitchens of rural West Bengal, India.

    Science.gov (United States)

    Nayek, Sukanta; Padhy, Pratap Kumar

    2018-03-27

    More than 85% of the rural Indian households use traditional solid biofuels (SBFs) for daily cooking. Burning of the easily available unprocessed solid fuels in inefficient earthen cooking stoves produce large quantities of particulate matters. Smaller particulates, especially with aerodynamic diameter of 2.5 μm or less (PM 2.5 ), largely generated during cooking, are considered to be health damaging in nature. In the present study, kitchen level exposure of women cooks to fine particulate matters during lunch preparation was assessed considering kitchen openness as surrogate to the ventilation condition. Two-way ANCOVA analysis considering meal quantity as a covariate revealed no significant interaction between the openness and the seasons explaining the variability of the personal exposure to the fine particulate matters in rural kitchen during cooking. Multiple linear regression analysis revealed the openness as the only significant predictor for personal exposure to the fine particulate matters. In the present study, the annual average fine particulate matter exposure concentration was found to be 974 μg m -3 .

  15. PARTICULATE MATTER EXPOSURE IN CARS IS ASSOCIATED WITH CARDIOVASCULAR EFFECTS IN HEALTHY YOUNG MEN

    Science.gov (United States)

    Exposure to fine airborne particulate matter (PM(2.5)) is associated with cardiovascular events and mortality in older and cardiac patients. Potential physiologic effects of in-vehicle, roadside, and ambient PM(2.5) were investigated in young, healthy, nonsmoking, male North Caro...

  16. Occupational Exposure to Diesel Particulate Matter in Municipal Household Waste Workers.

    Directory of Open Access Journals (Sweden)

    Kyong-Hui Lee

    Full Text Available The purposes of this study were to determine the following: 1 the exposure levels of municipal household waste (MHW workers to diesel particulate matter (DPM using elemental carbon (EC, organic carbon (OC, total carbon (TC, black carbon (BC, and fine particulate matter (PM 2.5 as indicators; 2 the correlations among the indicators; 3 the optimal indicator for DPM; and 4 factors that influence personal exposure to DPM.A total of 72 workers in five MHW collection companies were assessed over a period of 7 days from June to September 2014. Respirable EC/OC samples were quantified using the thermal optical transmittance method. BC and PM 2.5 were measured using real-time monitors, an aethalometer and a laser photometer. All results were statistically analyzed for occupational and environmental variables to identify the exposure determinants of DPM.The geometric mean of EC, OC, TC, BC and PM 2.5 concentrations were 4.8, 39.6, 44.8, 9.1 and 62.0 μg/m3, respectively. EC concentrations were significantly correlated with the concentrations of OC, TC and BC, but not with those of PM 2.5. The exposures of the MHW collectors to EC, OC, and TC were higher than those of the drivers (p<0.05. Workers of trucks meeting Euro 3 emission standard had higher exposures to EC, OC, TC and PM 2.5 than those working on Euro 4 trucks (p<0.05. Multiple regression analysis revealed that the job task, European engine emission standard, and average driving speed were the most influential factors in determining worker exposure.We assessed MHW workers' exposure to DPM using parallel sampling of five possible indicators. Of these five indicators, EC was shown to be the most useful indicator of DPM exposure for MHW workers, and the job task, European emission standard, and average driving speed were the main determinants of EC exposure.

  17. Assessment of occupational exposure and contamination by means of airborne particulate matter and biomonitors using k0 instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Menezes, M.A. de B.C.; Pereira Maia, E.C.; Filho, S.S.; Albinati, C.

    2002-01-01

    In order to assess the elemental concentration level in a galvanizing industry and alert for the need to assess the outcome of a long-term exposure, scalp hair and toenail samples were used as bioindicators and the industry environment was evaluated through airborne particulate matter. The elemental concentration results have pointed out a high exposure to pollutant at workplaces and a high elemental concentration in biomonitors suggesting endogenous contamination. The majority of the elements determined in airborne particulate matter were also determined in hair and toenail samples. The results evidence the efficiency of these matrixes as biomonitors and the importance to carry out the airborne particulate matter sampling in parallel to these biomonitors mainly in occupational epidemiological studies. (author)

  18. Ozone co-exposure modifies cardiac function responses to fine and ultrafine particulate matter in mice

    Science.gov (United States)

    There is growing evidence from epidemiological studies that show acute exposure to particulate matter (PM) increases the risk of cardiovascular morbidity and mortality. Although the data supporting these findings are increasingly more convincing, the immediate impact of PM inhala...

  19. Ambient particulate matter as a risk factor for suicide.

    Science.gov (United States)

    Kim, Changsoo; Jung, Sang Hyuk; Kang, Dae Ryong; Kim, Hyeon Chang; Moon, Ki Tae; Hur, Nam Wook; Shin, Dong Chun; Suh, Il

    2010-09-01

    The authors assessed the relationship between exposure to ambient particulate matter and suicide in urban settings during a 1-year period. The association between particulate matter and suicide was determined using a time-stratified case-crossover approach in which subjects served as their own controls. All suicide cases (4,341) in 2004 that occurred in seven cities in the Republic of Korea were included. Hourly mean concentrations of particulate matter suicide risk associated with an interquartile range increase in particulate matter was determined by conditional logistic regression analysis after adjusting for national holidays and meteorological factors. Subgroup analysis was performed after stratification by underlying disease (cardiovascular disease, diabetes mellitus, chronic obstructive pulmonary disease, cancer, and psychiatric illness). The largest associations were a 9.0% increase (95% CI=2.4-16.1) and a 10.1% (95% CI=2.0-19.0) increase in suicide risk related to an interquartile range increase in particulate matter suicide) and particulate matter suicide), respectively. Among individuals with cardiovascular disease, a significant association between particulate matter suicide) and suicide was observed (18.9%; 95% CI=3.2-37.0). Conclusions: A transient increase in particulate matter was associated with increased suicide risk, especially for individuals with preexisting cardiovascular disease.

  20. Oxidative stress, inflammation, and DNA damage in rats after intratracheal instillation or oral exposure to ambient air and wood smoke particulate matter

    DEFF Research Database (Denmark)

    Danielsen, Pernille Høgh; Loft, Steffen; Jacobsen, Nicklas Raun

    2010-01-01

    Wood combustion is a significant source of ambient particulate matter (PM) in many regions of the world. Exposure occurs through inhalation or ingestion after deposition of wood smoke particulate matter (WSPM) on crops and food. We investigated effects of ambient PM and WSPM by intragastric...

  1. Assessment of Population Exposure to Coarse and Fine Particulate Matter in the Urban Areas of Chennai, India

    Directory of Open Access Journals (Sweden)

    Ramachandran Prasannavenkatesh

    2015-01-01

    Full Text Available Research outcomes from the epidemiological studies have found that the course (PM10 and the fine particulate matter (PM2.5 are mainly responsible for various respiratory health effects for humans. The population-weighted exposure assessment is used as a vital decision-making tool to analyze the vulnerable areas where the population is exposed to critical concentrations of pollutants. Systemic sampling was carried out at strategic locations of Chennai to estimate the various concentration levels of particulate pollution during November 2013–January 2014. The concentration of the pollutants was classified based on the World Health Organization interim target (IT guidelines. Using geospatial information systems the pollution and the high-resolution population data were interpolated to study the extent of the pollutants at the urban scale. The results show that approximately 28% of the population resides in vulnerable locations where the coarse particulate matter exceeds the prescribed standards. Alarmingly, the results of the analysis of fine particulates show that about 94% of the inhabitants live in critical areas where the concentration of the fine particulates exceeds the IT guidelines. Results based on human exposure analysis show the vulnerability is more towards the zones which are surrounded by prominent sources of pollution.

  2. Assessment of Population Exposure to Coarse and Fine Particulate Matter in the Urban Areas of Chennai, India.

    Science.gov (United States)

    Prasannavenkatesh, Ramachandran; Andimuthu, Ramachandran; Kandasamy, Palanivelu; Rajadurai, Geetha; Kumar, Divya Subash; Radhapriya, Parthasarathy; Ponnusamy, Malini

    2015-01-01

    Research outcomes from the epidemiological studies have found that the course (PM10) and the fine particulate matter (PM2.5) are mainly responsible for various respiratory health effects for humans. The population-weighted exposure assessment is used as a vital decision-making tool to analyze the vulnerable areas where the population is exposed to critical concentrations of pollutants. Systemic sampling was carried out at strategic locations of Chennai to estimate the various concentration levels of particulate pollution during November 2013-January 2014. The concentration of the pollutants was classified based on the World Health Organization interim target (IT) guidelines. Using geospatial information systems the pollution and the high-resolution population data were interpolated to study the extent of the pollutants at the urban scale. The results show that approximately 28% of the population resides in vulnerable locations where the coarse particulate matter exceeds the prescribed standards. Alarmingly, the results of the analysis of fine particulates show that about 94% of the inhabitants live in critical areas where the concentration of the fine particulates exceeds the IT guidelines. Results based on human exposure analysis show the vulnerability is more towards the zones which are surrounded by prominent sources of pollution.

  3. The relationships between short-term exposure to particulate matter and mortality in Korea: impact of particulate matter exposure metrics for sub-daily exposures

    International Nuclear Information System (INIS)

    Son, Ji-Young; Bell, Michelle L

    2013-01-01

    Most studies of short-term particulate matter (PM) exposure use 24 h averages. However, other pollutants have stronger effects in shorter timeframes, which has influenced policy (e.g., ozone 8 h maximum). The selection of appropriate exposure timeframes is important for effective regulation. The US EPA identified health effects for sub-daily PM exposures as a critical research need. Unlike most areas, Seoul, Korea has hourly measurements of PM 10 , although not PM 2.5 . We investigated PM 10 and mortality (total, cardiovascular, respiratory) in Seoul (1999–2009) considering sub-daily exposures: 24 h, daytime (7 am–8 pm), morning (7–10 am), nighttime (8 pm–7 am), and 1 h daily maximum. We applied Poisson generalized linear modeling adjusting for temporal trends and meteorology. All PM 10 metrics were significantly associated with total mortality. Compared to other exposure timeframes, morning exposure had the most certain effect on total mortality (based on statistical significance). Increases of 10 μg m −3 in 24 h, daytime, morning, nighttime, and 1 h maximum PM 10 were associated with 0.15% (95% confidence interval 0.02–0.28%), 0.14% (0.01–0.27%), 0.10% (0.03–0.18%), 0.12% (0.03–0.22%), and 0.10% (0.00–0.21%) increases in total mortality, respectively. PM 10 was significantly associated with cardiovascular mortality for 24 h, morning, and nighttime exposures. We did not identify significant associations with respiratory mortality. The results support use of a 24 h averaging time as an appropriate metric for health studies and regulation, particularly for PM 10 and mortality. (letter)

  4. Modeling Of In-Vehicle Human Exposure to Ambient Fine Particulate Matter

    Science.gov (United States)

    Liu, Xiaozhen; Frey, H. Christopher

    2012-01-01

    A method for estimating in-vehicle PM2.5 exposure as part of a scenario-based population simulation model is developed and assessed. In existing models, such as the Stochastic Exposure and Dose Simulation model for Particulate Matter (SHEDS-PM), in-vehicle exposure is estimated using linear regression based on area-wide ambient PM2.5 concentration. An alternative modeling approach is explored based on estimation of near-road PM2.5 concentration and an in-vehicle mass balance. Near-road PM2.5 concentration is estimated using a dispersion model and fixed site monitor (FSM) data. In-vehicle concentration is estimated based on air exchange rate and filter efficiency. In-vehicle concentration varies with road type, traffic flow, windspeed, stability class, and ventilation. Average in-vehicle exposure is estimated to contribute 10 to 20 percent of average daily exposure. The contribution of in-vehicle exposure to total daily exposure can be higher for some individuals. Recommendations are made for updating exposure models and implementation of the alternative approach. PMID:23101000

  5. Emissions from residential energy use dominate exposure to ambient fine particulate matter in India

    Science.gov (United States)

    Conibear, L.; Butt, E. W.; Knote, C. J.; Arnold, S.; Spracklen, D. V.

    2017-12-01

    Exposure to ambient particulate matter of less than 2.5 µm in diameter (PM2.5) is a leading cause of disease burden in India. Information on the source contributions to the burden of disease attributable to ambient PM2.5 exposure is critical to support the national and sub-national control of air pollution. Previous studies analysing the contributions of different emission sectors to disease burden in India have been limited by coarse model resolutions and a lack of extensive PM2.5 observations before 2016. We use a regional numerical weather prediction model online-coupled with chemistry, evaluated against extensive surface observations, to make the first high resolution study of the contributions of seven emission sectors to the disease burden associated with ambient PM2.5 exposure in India. We find that residential energy use is the dominant contributing emission sector. Removing air pollution emissions from residential energy use would reduce population-weighted annual mean ambient PM2.5 concentrations by 52%, reducing the number of premature mortalities caused by exposure to ambient PM2.5 by 26%, equivalent to 268,000 (95% uncertainty interval (95UI): 167,000-360,000) lives every year. The smaller fractional reduction in mortality burden is due to the non-linear exposure-response relationship at the high PM2.5 concentrations observed across India and consequently large reductions in emissions are required to reduce the health burden from ambient PM2.5 exposure in India. Keywords: ambient air quality, India, residential energy use, health impact, particulate matter, WRF-Chem

  6. Effect of Mitochondrial Oxidative Stress and Age on the Signaling Pathway of Ultrafine Particulate Matter Exposure in Murine Aorta

    Science.gov (United States)

    Epidemiological studies have linked ultrafine particulate matter (PM) exposure and adverse cardiovascular events. PM-induced oxidative stress is believed to be a key mechanism contributing to the adverse short-term vascular effects of air pollution exposure. Advanced age is one ...

  7. Health impact caused by exposure to particulate matter in the air of Tehran in the past decade

    Directory of Open Access Journals (Sweden)

    Majid Kermani

    2017-03-01

    Full Text Available Background: Air pollution, especially the phenomenon of dust and particulate matter can cause mortality of many civilians, and causes various diseases including cardiovascular and respiratory diseases. One of the major pollutants in the air is particulate matter that concentration has increased over recent years. So, present study with aim of Quantification Health Endpoints Attributed to particulate matter in Tehran, Capital of Iran during the past decade (2005-2014 by AirQ software, version 2.2.3 (WHO European Centre for Environment and Health was performed. Methods: This study is a descriptive-analytic investigation. The process of performance this study lasted 12 months. Subject of this the study and research was in Environmental Health Engineering Department of Iran University of Medical Sciences. Exact data of every hour pollutants were taken from Department of environmental (DOE Islamic Republic Iran and Air Quality Control Company of Tehran. Then validated according to the World Health Organization (WHO guidelines and Statistical parameters for quantifying health effects were calculated in excel software. Finally, assessment of cases total mortality, cardiovascular mortality, respiratory mortality and cardiovascular disease and respiratory disease, with AirQ software was performed. Results: The results of this study showed that the number of total mortality, cardiovascular mortality and respiratory mortality caused by exposure to Particulate matter smaller than 10 microns (PM10 in the past decade is 11776, 12121 and 33066 cases respectively. Also the total number of hospital admission due to cardiovascular disease and respiratory disease in the past decade is 20990 and 54352 cases in 2005-2014 years. Conclusion: According to the results of this study, during the last decade the level of air pollution and Concentration of pollutants in Tehran Increased. Effects and health consequences due to exposure to Particulate matter smaller than 10

  8. Olive Oil Supplements Ameliorate Endothelial Dysfunction Caused by Concentrated Ambient Particulate Matter Exposure in Healthy Human Volunteers

    Science.gov (United States)

    Context: Exposure to ambient particulate matter (PM) induces endothelial dysfunction, a risk factor for clinical cardiovascular events and progression of atherosclerosis. Dietary supplements such as olive oil and fish oil have beneficial effects on endothelial function, and ther...

  9. Long-term exposure to residential ambient fine and coarse particulate matter and incident hypertension in post-menopausal women.

    Science.gov (United States)

    Honda, Trenton; Eliot, Melissa N; Eaton, Charles B; Whitsel, Eric; Stewart, James D; Mu, Lina; Suh, Helen; Szpiro, Adam; Kaufman, Joel D; Vedal, Sverre; Wellenius, Gregory A

    2017-08-01

    Long-term exposure to ambient particulate matter (PM) has been previously linked with higher risk of cardiovascular events. This association may be mediated, at least partly, by increasing the risk of incident hypertension, a key determinant of cardiovascular risk. However, whether long-term exposure to PM is associated with incident hypertension remains unclear. Using national geostatistical models incorporating geographic covariates and spatial smoothing, we estimated annual average concentrations of residential fine (PM 2.5 ), respirable (PM 10 ), and course (PM 10-2.5 ) fractions of particulate matter among 44,255 post-menopausal women free of hypertension enrolled in the Women's Health Initiative (WHI) clinical trials. We used time-varying Cox proportional hazards models to evaluate the association between long-term average residential pollutant concentrations and incident hypertension, adjusting for potential confounding by sociodemographic factors, medical history, neighborhood socioeconomic measures, WHI study clinical site, clinical trial, and randomization arm. During 298,383 person-years of follow-up, 14,511 participants developed incident hypertension. The adjusted hazard ratios per interquartile range (IQR) increase in PM 2.5 , PM 10 , and PM 10-2.5 were 1.13 (95% CI: 1.08, 1.17), 1.06 (1.03, 1.10), and 1.01 (95% CI: 0.97, 1.04), respectively. Statistically significant concentration-response relationships were identified for PM 2.5 and PM 10 fractions. The association between PM 2.5 and hypertension was more pronounced among non-white participants and those residing in the Northeastern United States. In this cohort of post-menopausal women, ambient fine and respirable particulate matter exposures were associated with higher incidence rates of hypertension. These results suggest that particulate matter may be an important modifiable risk factor for hypertension. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Atherosclerosis and vasomotor dysfunction in arteries of animals after exposure to combustion-derived particulate matter or nanomaterials

    DEFF Research Database (Denmark)

    Møller, Peter; Christophersen, Daniel Vest; Raun Jacobsen, Nicklas

    2016-01-01

    Exposure to particulate matter (PM) from traffic vehicles is hazardous to the vascular system, leading to clinical manifestations and mortality due to ischemic heart disease. By analogy, nanomaterials may also be associated with the same outcomes. Here, the effects of exposure to PM from ambient......O2, carbon black and carbon nanotubes, have similar hazards to the vascular system as combustion-derived PM....

  11. Long-term particulate matter exposure and mortality: a review of European epidemiological studies

    Directory of Open Access Journals (Sweden)

    Boffetta Paolo

    2009-12-01

    Full Text Available Abstract Background Several studies considered the relation between long-term exposure to particulate matter (PM and total mortality, as well as mortality from cardiovascular and respiratory diseases. Our aim was to provide a comprehensive review of European epidemiological studies on the issue. Methods We searched the Medline database for epidemiological studies on air pollution and health outcomes published between January 2002 and December 2007. We also examined the reference lists of individual papers and reviews. Two independent reviewers classified the studies according to type of air pollutant, duration of exposure and health outcome considered. Among European investigations that examined long-term PM exposure we found 4 cohort studies (considering total and cardiopulmonary mortality, 1 case-control study (considering mortality from myocardial infarction, and 4 ecologic studies (2 studies considering total and cardiopulmonary mortality and 2 studies focused on cardiovascular mortality. Results Measurement indicators of PM exposure used in European studies, including PM10, PM2.5, total suspended particulate and black smoke, were heterogeneous. This notwithstanding, in all analytic studies total mortality was directly associated with long-term exposure to PM. The excesses in mortality were mainly due to cardiovascular and respiratory causes. Three out of 4 ecologic studies found significant direct associations between PM indexes and mortality. Conclusion European studies on long-term exposure to PM indicate a direct association with mortality, particularly from cardiovascular and respiratory diseases.

  12. Particulate matter air pollution exposure: role in the development and exacerbation of chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Sean H Ling

    2009-06-01

    Full Text Available Sean H Ling, Stephan F van EedenJames Hogg iCAPTURE Centre for Pulmonary and Cardiovascular Research and Heart and Lung Institute, University of British Columbia, Vancouver, British Columbia, CanadaAbstract: Due to the rapid urbanization of the world population, a better understanding of the detrimental effects of exposure to urban air pollution on chronic lung disease is necessary. Strong epidemiological evidence suggests that exposure to particulate matter (PM air pollution causes exacerbations of pre-existing lung conditions, such as, chronic obstructive pulmonary disease (COPD resulting in increased morbidity and mortality. However, little is known whether a chronic, low-grade exposure to ambient PM can cause the development and progression of COPD. The deposition of PM in the respiratory tract depends predominantly on the size of the particles, with larger particles deposited in the upper and larger airways and smaller particles penetrating deep into the alveolar spaces. Ineffective clearance of this PM from the airways could cause particle retention in lung tissues, resulting in a chronic, low-grade inflammatory response that may be pathogenetically important in both the exacerbation, as well as, the progression of lung disease. This review focuses on the adverse effects of exposure to ambient PM air pollution on the exacerbation, progression, and development of COPD.Keywords: chronic obstructive pulmonary disease, particulate matter, air pollution, alveolar macrophage

  13. Estimating particulate matter health impact related to the combustion of different fossil fuels

    OpenAIRE

    Kuenen , Jeroen; Gschwind , Benoît; Drebszok , Kamila M.; Stetter , Daniel; Kranenburg , Richard; Hendriks , Carlijn; Lefèvre , Mireille; Blanc , Isabelle; Wyrwa , Artur; Schaap , Martijn

    2013-01-01

    International audience; Exposure to particulate matter (PM) in ambient air leads to adverse health effects. To design cost effective mitigation strategies, a thorough understanding of the sources of particulate matter is crucial. We have successfully generated a web map service that allows to access information on fuel dependent health effects due to particulate matter. For this purpose, the LOTOS-EUROS air pollution model was equipped with a source apportionment module that tracks the origin...

  14. Hazard identification of particulate matter on vasomotor dysfunction and progression of atherosclerosis

    DEFF Research Database (Denmark)

    Møller, Peter; Mikkelsen, Lone; Vesterdal, Lise Kristine

    2011-01-01

    and inflammatory pathways. We have assessed the effect of exposure to particulate matter on progression of atherosclerosis and vasomotor function in humans, animals, and ex vivo experimental systems. The type of particles that have been tested in these systems encompass TiO(2), carbon black, fullerene C(60...... of particulate matter....

  15. Biomonitoring of toxic compounds of airborne particulate matter in urban and industriel areas

    DEFF Research Database (Denmark)

    Klumpp, Andreas; Ro-Poulsen, Helge

    2010-01-01

    The toxicity and ecotoxicity of airborne particulate matter is determined by its physical features, but also by its chemical composition. The standardised exposure of accumulative bioindicator plants is suggested as an efficient and reliable tool to assess and monitor effects of particulate matter...

  16. Respirator use and its impact on particulate matter exposure in aluminum manufacturing facilities.

    Science.gov (United States)

    Liu, Sa; Noth, Elizabeth; Eisen, Ellen; Cullen, Mark R; Hammond, Katharine

    2018-05-31

    Objectives As part of a large epidemiologic study of particulate health effect, this study aimed to report respirator use among total particulate matter (TPM) samples collected in a major aluminum manufacturing company from 1966‒2013 and evaluate the impact of respirator-use adjustment on exposure estimation. Methods Descriptive analyses were performed to evaluate respirator use across facilities and by facility type and job. Protection factors were applied to TPM measurements for recorded respirator use. Estimated TPM exposure for each job ‒ before and after respirator-use adjustment ‒ were compared to assess the impact of adjustment on exposure estimation. Results Respirator use was noted for 37% of 12 402 full-shift personal TPM samples. Measured TPM concentration ranged from less than detectable to 8220 mg/m3, with arithmetic mean, median and standard deviation being 10.6, 0.87 and 130 mg/m 3 , respectively. Respirators were used more often in smelting facilities (52% of TPM measurements) than in fabricating (17%) or refinery facilities (28%) (Pfacilities were subject to respirator-use adjustment, whereas it was 20% and 70% in fabricating and refinery facilities, respectively. Applying protection factors to TPM measurements significantly reduced estimated job mean TPM exposures and changed exposure categories in these facilities, with larger impact in smelting than fabricating facilities. Conclusions Respirator use varied by time, facility and job. Adjusting respirator use resulted in differential impact in smelting and fabricating facilities, which will need to be incorporated into ongoing epidemiologic studies accordingly.

  17. Advances in exposure and toxicity assessment of particulate matter: An overview of presentations at the 2009 Toxicology and Risk Assessment Conference

    International Nuclear Information System (INIS)

    Gunasekar, Palur G.; Stanek, Lindsay W.

    2011-01-01

    The 2009 Toxicology and Risk Assessment Conference (TRAC) session on 'Advances in Exposure and Toxicity Assessment of Particulate Matter' was held in April 2009 in West Chester, OH. The goal of this session was to bring together toxicology, geology and risk assessment experts from the Department of Defense and academia to examine issues in exposure assessment and report on recent epidemiological findings of health effects associated with particulate matter (PM) exposure. Important aspects of PM exposure research are to detect and monitor low levels of PM with various chemical compositions and to assess the health risks associated with these exposures. As part of the overall theme, some presenters discussed collection methods for sand and dust from Iraqi and Afghanistan regions, health issues among deployed personnel, and future directions for risk assessment research among these populations. The remaining speakers focused on the toxicity of ultrafine PM and the characterization of aerosols generated during ballistic impacts of tungsten heavy alloys.

  18. Global chemical composition of ambient fine particulate matter for exposure assessment.

    Science.gov (United States)

    Philip, Sajeev; Martin, Randall V; van Donkelaar, Aaron; Lo, Jason Wai-Ho; Wang, Yuxuan; Chen, Dan; Zhang, Lin; Kasibhatla, Prasad S; Wang, Siwen; Zhang, Qiang; Lu, Zifeng; Streets, David G; Bittman, Shabtai; Macdonald, Douglas J

    2014-11-18

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004-2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrations were dominated by particulate organic mass (11.9 ± 7.3 μg/m(3)), secondary inorganic aerosol (11.1 ± 5.0 μg/m(3)), and mineral dust (11.1 ± 7.9 μg/m(3)). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m(3) over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m(3)) could be almost as large as from fossil fuel combustion sources (17 μg/m(3)). These estimates offer information about global population exposure to the chemical components and sources of PM2.5.

  19. A meta-analysis of exposure to particulate matter and adverse birth outcomes

    Directory of Open Access Journals (Sweden)

    Dirga Kumar Lamichhane

    2015-11-01

    Full Text Available Objectives The objective of this study was to conduct a systematic review to provide summarized evidence on the association between maternal exposure to particulate air pollution and birth weight (BW and preterm birth (PTB after taking into consideration the potential confounding effect of maternal smoking. Methods We systematically searched all published cohort and case-control studies examining BW and PTB association with particulate matter (PM, less than or equal to 2.5μm and 10.0 μm in diameter, PM2.5 and PM10, respectively from PubMed and Web of Science, from January 1980 to April 2015. We extracted coefficients for continuous BW and odds ratio (OR for PTB from each individual study, and meta-analysis was used to combine the coefficient and OR of individual studies. The methodological quality of individual study was assessed using a standard protocol proposed by Downs and Black. Forty-four studies met the inclusion criteria. Results In random effects meta-analyses, BW as a continuous outcome was negativelyassociated with 10 μg/m3 increase in PM10 (-10.31 g; 95% confidence interval [CI], -13.57 to -3.13 g; I-squared=0%, p=0.947 and PM2.5 (-22.17 g; 95% CI, -37.93 to -6.41 g; I-squared=92.3%, p <0.001 exposure during entire pregnancy, adjusted for maternal smoking. A significantly increased risk of PTB per 10 μg/m3 increase in PM10 (OR, 1.23; 95% CI, 1.04 to 1.41; I-squared=0%, p =0.977 and PM2.5 (OR, 1.14; 95% CI, 1.06 to 1.22; I-squared=92.5%, p <0.001 exposure during entire pregnancy was observed. Effect size of change in BW per 10 μg/m3 increase in PM tended to report stronger associations after adjustment for maternal smoking. Conclusions While this systematic review supports an adverse impact of maternal exposure to particulate air pollution on birth outcomes, variation in effects by exposure period and sources of heterogeneity between studies should be further explored.

  20. Associations of acute exposure to fine and coarse particulate matter and mortality among older people in Tokyo, Japan.

    Science.gov (United States)

    Yorifuji, Takashi; Kashima, Saori; Doi, Hiroyuki

    2016-01-15

    Recent studies have reported adverse health effects of short-term exposure to coarse particles independent of particulate matter less than 2.5 μm in diameter (PM2.5), but evidence in Asian countries is limited. We therefore evaluated associations between short-term exposure to particulate matter (PM) and mortality among older people in Tokyo, Japan. We used a time-stratified, case-crossover design. Study participants included 664,509 older people (≥65 years old) in the 23 urbanized wards of the Tokyo Metropolitan Government, who died between January 2002 and December 2013. We obtained PM2.5 and suspended particulate matter (SPM; PMPM7-2.5 by subtracting PM2.5 from SPM to account for coarse particles. We then used conditional logistic regression to estimate odds ratios (ORs) and 95 confidence intervals (CIs). Same-day PM2.5 and PM7-2.5 were independently associated with all-cause and cause-specific mortality related to cardiovascular and respiratory diseases; for example, both pollutants were positively associated with increased risk of all-cause mortality even after simultaneous adjustment for each pollutant: OR of 1.006 (95% CI: 1.003, 1.009) for PM2.5 and 1.016 (95% CI: 1.011, 1.022) for PM7-2.5. Even below concentrations stipulated by the Japanese air quality guidelines for PM2.5 and SPM (PM7), we observed adverse health effects. This study provides further evidence that acute exposure to PM2.5 and coarse particles is associated with increased risk of mortality among older people. Rigorous evaluation of air quality guidelines for daily average PM2.5 and larger particles should be continued. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Elevated personal exposure to particulate matter from human activities in a residence.

    Science.gov (United States)

    Ferro, Andrea R; Kopperud, Royal J; Hildemann, Lynn M

    2004-01-01

    Continuous laser particle counters collocated with time-integrated filter samplers were used to measure personal, indoor, and outdoor particulate matter (PM) concentrations for a variety of prescribed human activities during a 5-day experimental period in a home in Redwood City, CA, USA. The mean daytime personal exposures to PM(2.5) and PM(5) during prescribed activities were 6 and 17 times, respectively, as high as the pre-activity indoor background concentration. Activities that resulted in the highest exposures of PM(2.5), PM(5), and PM(10) were those that disturbed dust reservoirs on furniture and textiles, such as dry dusting, folding clothes and blankets, and making a bed. The vigor of activity and type of flooring were also important factors for dust resuspension. Personal exposures to PM(2.5) and PM(5) were 1.4 and 1.6 times, respectively, as high as the indoor concentration as measured by a stationary monitor. The ratio of personal exposure to the indoor concentration was a function of both particle size and the distance of the human activity from the stationary indoor monitor. The results demonstrate that a wide variety of indoor human resuspension activities increase human exposure to PM and contribute to the "personal cloud" effect.

  2. Comparison of particulate matter exposure estimates in young children from personal sampling equipment and a robotic sampler.

    Science.gov (United States)

    Sagona, Jessica A; Shalat, Stuart L; Wang, Zuocheng; Ramagopal, Maya; Black, Kathleen; Hernandez, Marta; Mainelis, Gediminas

    2017-05-01

    Accurate characterization of particulate matter (PM) exposure in young children is difficult, because personal samplers are often too heavy, bulky or impractical to be used. The Pretoddler Inhalable Particulate Environmental Robotic (PIPER) sampler was developed to help address this problem. In this study, we measured inhalable PM exposures in 2-year-olds via a lightweight personal sampler worn in a small backpack and evaluated the use of a robotic sampler with an identical sampling train for estimating PM exposure in this age group. PM mass concentrations measured by the personal sampler ranged from 100 to almost 1,200 μg/m 3 , with a median value of 331 μg/m 3 . PM concentrations measured by PIPER were considerably lower, ranging from 14 to 513 μg/m 3 with a median value of 56 μg/m 3 . Floor cleaning habits and activity patterns of the 2-year-olds varied widely by home; vigorous play and recent floor cleaning were most associated with higher personal exposure. Our findings highlight the need for additional characterization of children's activity patterns and their effect on personal exposures.

  3. Ozone co-exposure modifies cardiac responses to fine and ultrafine ambient particulate matter in mice: concordance of electrocardiogram and mechanical responses

    Science.gov (United States)

    BackgroundStudies have shown a relationship between air pollution and increased risk of cardiovascular morbidity and mortality. Due to the complexity of ambient air pollution composition, recent studies have examined the effects of co-exposure, particularly particulate matter (PM...

  4. Estimating particulate matter health impact related to the combustion of different fossil fuels

    International Nuclear Information System (INIS)

    Kuenen, Jeroen; Kranenburg, Richard; Hendriks, Carlijn; Schaap, Martijn; Gschwind, Benoit; Lefevre, Mireille; Blanc, Isabelle; Drebszok, Kamila; Wyrwa, Artur; Stetter, Daniel

    2013-01-01

    Exposure to particulate matter (PM) in ambient air leads to adverse health effects. To design cost effective mitigation strategies, a thorough understanding of the sources of particulate matter is crucial. We have successfully generated a web map service that allows to access information on fuel dependent health effects due to particulate matter. For this purpose, the LOTOS-EUROS air pollution model was equipped with a source apportionment module that tracks the origin of the modelled particulate matter distributions thoughout a simulation. Combined with a dedicated emission inventory PM2.5 maps specified by fuel type were generated for 2007-2009. These maps were combined with a health impact calculation to estimate Lost of Life Expectancy for each fuel categories. An user friendly web client was generated to access the results and use the web mapping service in an easy manner. (orig.)

  5. Long-term exposure to fine particulate matter and incidence of diabetes in the Danish Nurse Cohort

    DEFF Research Database (Denmark)

    Hansen, Anne Busch; Ravnskjær, Line; Loft, Steffen

    2016-01-01

    AIMS/HYPOTHESIS: It has been suggested that air pollution may increase the risk of type 2 diabetes but data on particulate matter with diameter PM2.5) are inconsistent. We examined the association between long-term exposure to PM2.5 and diabetes incidence. METHODS: We used the Danish Nurse...... Cohort with 28,731 female nurses who at recruitment in 1993 or 1999 reported information on diabetes prevalence and risk factors, and obtained data on incidence of diabetes from National Diabetes Register until 2013. We estimated annual mean concentrations of PM2.5, particulate matter with diameter ... diabetes. We detected a significant positive association between PM2.5 and diabetes incidence (hazard ratio; 95% confidence interval: 1.11; 1.02-1.22 per interquartile range of 3.1μg/m(3)), and weaker associations for PM10 (1.06; 0.98-1.14 per 2.8μg/m(3)), NO2 (1.05; 0.99-1.12 per 7.5μg/m(3)), and NOx (1...

  6. Domestic smoke exposure is associated with alveolar macrophage particulate load.

    Science.gov (United States)

    Fullerton, Duncan G; Jere, Khuzwayo; Jambo, Kondwani; Kulkarni, Neeta S; Zijlstra, Eduard E; Grigg, Jonathan; French, Neil; Molyneux, Malcolm E; Gordon, Stephen B

    2009-03-01

    Indoor air pollution is associated with impaired respiratory health. The pre-dominant indoor air pollutant to which two billion of the world's population is exposed is biomass fuel smoke. We tested the hypothesis that reported smoke exposure in men and women is associated with increased alveolar macrophage uptake of biomass smoke particulates. Healthy volunteers attending for research bronchoscopy in Malawi completed a questionnaire assessment of smoke exposure. Particulate matter visible in alveolar macrophages (AM) was quantified using digital image analysis. The geometric mean of the percentage area of the cytoplasm occupied by particulates in 50 cover-slip adherent AM was calculated and termed particulate load. In 57 subjects (40 men and 17 women) there was a significant difference between the particulate load in groups divided according to pre-dominant lighting form used at home (ANOVA P = 0.0009) and type of cooking fuel (P = 0.0078). Particulate load observed in macrophages is associated with the reported type of biomass fuel exposure. Macrophage function in relation to respiratory health should now be investigated in biomass smoke exposed subjects.

  7. Commuters' exposure to particulate matter air pollution is affected by mode of transport, fuel type, and route.

    Science.gov (United States)

    Zuurbier, Moniek; Hoek, Gerard; Oldenwening, Marieke; Lenters, Virissa; Meliefste, Kees; van den Hazel, Peter; Brunekreef, Bert

    2010-06-01

    Commuters are exposed to high concentrations of air pollutants, but little quantitative information is currently available on differences in exposure between different modes of transport, routes, and fuel types. The aim of our study was to assess differences in commuters' exposure to traffic-related air pollution related to transport mode, route, and fuel type. We measured particle number counts (PNCs) and concentrations of PM2.5 (particulate matter bus passengers, we calculated that the inhaled air pollution doses were highest for cyclists. With the exception of PM10, we found that inhaled air pollution doses were lowest for electric bus passengers. Commuters' rush hour exposures were significantly influenced by mode of transport, route, and fuel type.

  8. CDC WONDER: Daily Fine Particulate Matter

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Daily Fine Particulate Matter data available on CDC WONDER are geographically aggregated daily measures of fine particulate matter in the outdoor air, spanning...

  9. Exposure to particulate matter in India: A synthesis of findings and future directions.

    Science.gov (United States)

    Pant, Pallavi; Guttikunda, Sarath K; Peltier, Richard E

    2016-05-01

    Air pollution poses a critical threat to human health with ambient and household air pollution identified as key health risks in India. While there are many studies investigating concentration, composition, and health effects of air pollution, investigators are only beginning to focus on estimating or measuring personal exposure. Further, the relevance of exposures studies from the developed countries in developing countries is uncertain. This review summarizes existing research on exposure to particulate matter (PM) in India, identifies gaps and offers recommendations for future research. There are a limited number of studies focused on exposure to PM and/or associated health effects in India, but it is evident that levels of exposure are much higher than those reported in developed countries. Most studies have focused on coarse aerosols, with a few studies on fine aerosols. Additionally, most studies have focused on a handful of cities, and there are many unknowns in terms of ambient levels of PM as well as personal exposure. Given the high mortality burden associated with air pollution exposure in India, a deeper understanding of ambient pollutant levels as well as source strengths is crucial, both in urban and rural areas. Further, the attention needs to expand beyond the handful large cities that have been studied in detail. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Diesel particulate matter exposure in South African platinum mines: an overview

    CSIR Research Space (South Africa)

    Pretorius, CJ

    2014-08-01

    Full Text Available Personal diesel particulate matter (DPM) sampling was conducted on nearly 300 mine workers in the diesel and non-diesel sections of three platinum mines in South Africa. Respiratory health questionnaires were administered to all of these workers...

  11. Long-Term Fine Particulate Matter Exposure and Major Depressive Disorder in a Community-Based Urban Cohort

    Science.gov (United States)

    Kim, Kyoung-Nam; Lim, Youn-Hee; Bae, Hyun Joo; Kim, Myounghee; Jung, Kweon; Hong, Yun-Chul

    2016-01-01

    Background: Previous studies have associated short-term air pollution exposure with depression. Although an animal study showed an association between long-term exposure to particulate matter ≤ 2.5 μm (PM2.5) and depression, epidemiological studies assessing the long-term association are scarce. Objective: We aimed to determine the association between long-term PM2.5 exposure and major depressive disorder (MDD). Methods: A total of 27,270 participants 15–79 years of age who maintained an address within the same districts in Seoul, Republic of Korea, throughout the entire study period (between 2002 and 2010) and without a previous MDD diagnosis were analyzed. We used three district-specific exposure indices as measures of long-term PM2.5 exposure. Cox proportional hazards models adjusted for potential confounding factors and measured at district and individual levels were constructed. We further conducted stratified analyses according to underlying chronic diseases such as diabetes mellitus, cardiovascular disease, and chronic obstructive pulmonary disease. Results: The risk of MDD during the follow-up period (2008–2010) increased with an increase of 10 μg/m3 in PM2.5 in 2007 [hazard ratio (HR) = 1.44; 95% CI: 1.17, 1.78], PM2.5 between 2007 and 2010 (HR = 1.59; 95% CI: 1.02, 2.49), and 12-month moving average of PM2.5 until an event or censor (HR = 1.47; 95% CI: 1.14, 1.90). The association between long-term PM2.5 exposure and MDD was greater in participants with underlying chronic diseases than in participants without these diseases. Conclusion: Long-term PM2.5 exposure increased the risk of MDD among the general population. Individuals with underlying chronic diseases are more vulnerable to long-term PM2.5 exposure. Citation: Kim KN, Lim YH, Bae HJ, Kim M, Jung K, Hong YC. 2016. Long-term fine particulate matter exposure and major depressive disorder in a community-based urban cohort. Environ Health Perspect 124:1547–1553; http://dx.doi.org/10

  12. Ambient Particulate Matter Air Pollution Exposure and Mortality in the NIH-AARP Diet and Health Cohort.

    Science.gov (United States)

    Thurston, George D; Ahn, Jiyoung; Cromar, Kevin R; Shao, Yongzhao; Reynolds, Harmony R; Jerrett, Michael; Lim, Chris C; Shanley, Ryan; Park, Yikyung; Hayes, Richard B

    2016-04-01

    Outdoor fine particulate matter (≤ 2.5 μm; PM2.5) has been identified as a global health threat, but the number of large U.S. prospective cohort studies with individual participant data remains limited, especially at lower recent exposures. We aimed to test the relationship between long-term exposure PM2.5 and death risk from all nonaccidental causes, cardiovascular (CVD), and respiratory diseases in 517,041 men and women enrolled in the National Institutes of Health-AARP cohort. Individual participant data were linked with residence PM2.5 exposure estimates across the continental United States for a 2000-2009 follow-up period when matching census tract-level PM2.5 exposure data were available. Participants enrolled ranged from 50 to 71 years of age, residing in six U.S. states and two cities. Cox proportional hazard models yielded hazard ratio (HR) estimates per 10 μg/m3 of PM2.5 exposure. PM2.5 exposure was significantly associated with total mortality (HR = 1.03; 95% CI: 1.00, 1.05) and CVD mortality (HR = 1.10; 95% CI: 1.05, 1.15), but the association with respiratory mortality was not statistically significant (HR = 1.05; 95% CI: 0.98, 1.13). A significant association was found with respiratory mortality only among never smokers (HR = 1.27; 95% CI: 1.03, 1.56). Associations with 10-μg/m3 PM2.5 exposures in yearly participant residential annual mean, or in metropolitan area-wide mean, were consistent with baseline exposure model results. Associations with PM2.5 were similar when adjusted for ozone exposures. Analyses of California residents alone also yielded statistically significant PM2.5 mortality HRs for total and CVD mortality. Long-term exposure to PM2.5 air pollution was associated with an increased risk of total and CVD mortality, providing an independent test of the PM2.5-mortality relationship in a new large U.S. prospective cohort experiencing lower post-2000 PM2.5 exposure levels. Thurston GD, Ahn J, Cromar KR, Shao Y, Reynolds HR, Jerrett M

  13. Health effects from indoor and outdoor exposure to fine particulate matter in life cycle impact assessment

    DEFF Research Database (Denmark)

    Fantke, Peter; McKone, T.E.; Jolliet, Olivier

    2016-01-01

    Exposure to fine particulate matter (PM2.5) pollution is a major contributor to human disease burden as continuously shown in the Global Burden of Disease study series. Exposures to PM2.5 concentration outdoors and indoors contribute almost equally to this burden. Despite the importance, health...... impacts from exposure to PM2.5 are often excluded from life cycle impact assessment (LCIA) characterization profiles. This is in large part because of the lack of well-vetted harmonized guidance about how to consistently assess the exposures and impacts of indoor and outdoor emissions of PM2.5 and its...... precursors. We present a framework for calculating characterization factors for indoor and outdoor emissions of primary PM2.5 and secondary PM2.5 precursors, and a roadmap for further refining this modelling framework for operational use in LCIA. The framework was developed over the last three years...

  14. Short-term exposure to ambient fine particulate matter (PM2,5 and PM10) and the risk of heart rhythm abnormalities and stroke.

    Science.gov (United States)

    Kowalska, Małgorzata; Kocot, Krzysztof

    2016-09-28

    Results of epidemiological studies suggest a significant impact of ambient particulate matter air pollution (PM10 and PM2,5) on the health of the population. Increased level of these pollutants is connected with increased rate of daily mortality and hospitalizations due to cardiovascular diseases. Among analyzed health effects, heart arrhythmias and stroke are mentioned most frequently. The aim of the study was to present the current knowledge of potential influence of the exposure to fine particulate matter on the presence of arrhythmias and strokes. Subject literature review suggests, that there is a link between short-term exposure to fine dust and the occurrence of arrhythmias. Results of previous studies indicates that this exposure may lead to significant electrophysiological changes in heart, resulting in higher susceptibility to cardiac rhythm abnormalities. In case of stroke, a stronger correlation between number of hospitalizations and death cases and exposure to fine dust was seen for ischaemic stroke than for haemorhhagic stroke. In addition, a significantly more harmful impact of the exposure to ultra particles (particles of aerodynamic diameter below 2,5 μm) has been confirmed. Among important mechanisms responsible for observed health impact of particulate matter there are: induction and intensification of inflammation, increased oxidative stress, increased autonomic nervous system activity, vasoconstriction, rheological changes and endothelial dysfunction. Among people of higher susceptibility to fine dust negative health impact are: elderly (over 65 years old), obese people, patients with respiratory and cardiovascular diseases, patients with diabetes and those with coagulation disorders. For further improvement of general health status, actions aimed at reducing the risk associated with fine dust and at the same time at continuing studies to clarify the biological mechanisms explaining the influence of fine dust on human health are necessary.

  15. Short-term exposure to ambient fine particulate matter (PM2,5 and PM10 and the risk of heart rhythm abnormalities and stroke

    Directory of Open Access Journals (Sweden)

    Małgorzata Kowalska

    2016-09-01

    Full Text Available Results of epidemiological studies suggest a significant impact of ambient particulate matter air pollution (PM10 and PM2,5 on the health of the population. Increased level of these pollutants is connected with increased rate of daily mortality and hospitalizations due to cardiovascular diseases. Among analyzed health effects, heart arrhythmias and stroke are mentioned most frequently. The aim of the study was to present the current knowledge of potential influence of the exposure to fine particulate matter on the presence of arrhythmias and strokes. Subject literature review suggests, that there is a link between short-term exposure to fine dust and the occurrence of arrhythmias. Results of previous studies indicates that this exposure may lead to significant electrophysiological changes in heart, resulting in higher susceptibility to cardiac rhythm abnormalities. In case of stroke, a stronger correlation between number of hospitalizations and death cases and exposure to fine dust was seen for ischaemic stroke than for haemorhhagic stroke. In addition, a significantly more harmful impact of the exposure to ultra particles (particles of aerodynamic diameter below 2,5 μm has been confirmed. Among important mechanisms responsible for observed health impact of particulate matter there are: induction and intensification of inflammation, increased oxidative stress, increased autonomic nervous system activity, vasoconstriction, rheological changes and endothelial dysfunction. Among people of higher susceptibility to fine dust negative health impact are: elderly (over 65 years old, obese people, patients with respiratory and cardiovascular diseases, patients with diabetes and those with coagulation disorders. For further improvement of general health status, actions aimed at reducing the risk associated with fine dust and at the same time at continuing studies to clarify the biological mechanisms explaining the influence of fine dust on human health

  16. The investigation of atmospheric particulate matter pollution in Suzhou

    International Nuclear Information System (INIS)

    Chen Yi'ou; Zhang Yuliang; Wang Ya; Wang Pei; Tian Hailin

    2012-01-01

    Objective: To investigate the pollution status, vertical distribution and concentration variation within 24 hours of total suspended particles (TSPs), particulate matter ≤10 μm (PM10), particulate matter ≤5 (PM5) and particulate matter ≤2.5 μm (PM2.5) in major functional areas of Suzhou and the protective effect of different type masks on particulate matter. Methods: (1) The concentration of atmospheric TSPs, PM10, PM5 and PM2.5 in seven functional areas in Suzhou was monitored for three consecutive days. (2) A residential building of 25 stories was chosen and the concentration of TSPs, PM10, PM5, PM2.5 was detected at the 1st, 5th, 10th, 15th, 20 th and the 25th floor respectively. (3) The concentrations of the four particulate matter were detected every two-hours for three consecutive days to investigate how concentration of particulate matter varies within 24 hours. (4) The concentration of the four kinds of particulate matter was analyzed with the sampling head of monitor wrapped with disposable non-woven medical mask, fashion-type mask, gauze mask or activated carbon anti-dust mask respectively, and the protective effect of the four masks on particulate matter was compared. Results: (1) The concentration of PM2.5 was higher than the national health limit in all seven functional areas in Suzhou. (2) No significant difference in vertical distribution of particulate matter was found among different floors in residential buildings (P>0.05). (3) Two small peaks of particulate matter appeared in the morning and evening respectively while the top appeared at dawn (P< 0.05). (4) Disposable non-woven medical mask showed the best protective effect on particulate matter among the four tested masks. Conclusion: PM2.5 is the main particulate matter in Suzhou area. In addition the 4 kinds of particulate matter: TSP, PM10, PM5 and PM2.5 are of higher concentration in the early morning. No significant difference was detected from an altitude of less than 75 meters

  17. Elemental constituents of particulate matter and newborn’s size in eight European cohorts

    NARCIS (Netherlands)

    Pedersen, M.; Gehring, U.; Beelen, R.; Wang, M.; Giorgis-Allemand, L.; Andersen, A.M.N.; Basagaña, X.; Bernard, C.; Cirach, M.; Forastiere, F.; Hoogh, K. de; Gražuleviĉvienė, R.; Gruzieva, O.; Hoek, G.; Jedynska, A.; Klümper, C.; Kooter, I.M.; Krämer, U.; Kukkonen, J.; Porta, D.; Postma, D.S.; Raaschou-Nielsen, O.; Rossem, L. van; Sunyer, J.; Sørensen, M.; Tsai, M.Y.; Vrijkotte, T.G.M.; Wilhelm, M.; Nieuwenhuijsen, M.J.; Pershagen, G.; Brunekreef, B.; Kogevinas, M.; Slama, R.

    2016-01-01

    Background: The health effects of suspended particulate matter (PM) may depend on its chemical composition. Associations between maternal exposure to chemical constituents of PM and newborn’s size have been little examined. Objective: We aimed to investigate the associations of exposure to elemental

  18. Acute exposure to fine and coarse particulate matter and infant mortality in Tokyo, Japan (2002-2013).

    Science.gov (United States)

    Yorifuji, Takashi; Kashima, Saori; Doi, Hiroyuki

    2016-05-01

    Few studies have evaluated the effect of short-term exposure to particulate matter (PM) less than 2.5μm in diameter (PM2.5) or to coarse particles on infant mortality. We evaluated the association between short-term exposure to PM and infant mortality in Japan and assessed whether adverse health effects were observable at PM concentrations below Japanese air quality guidelines. We used a time-stratified, case-crossover design. The participants included 2086 infants who died in the 23 urbanized wards of the Tokyo Metropolitan Government between January 2002 and December 2013. We obtained measures of PM2.5 and suspended particulate matter (SPM; PMPM7-2.5 by subtracting PM2.5 from SPM. We then used conditional logistic regression to analyze the data. Same-day PM2.5 was associated with increased risks of infant and postneonatal mortality, especially for mortality related to respiratory causes. For a 10μg/m(3) increase in PM2.5, the odds ratios were 1.06 (95% confidence interval: 1.01-1.12) for infant mortality and 1.10 (1.02-1.19) for postneonatal mortality. PM7-2.5 was also associated with an increased risk of postneonatal mortality, independent of PM2.5. Even when PM2.5 and SPM concentrations were below Japanese air quality guidelines, we observed adverse health effects. This study provides further evidence that acute exposure to PM2.5 and coarse particles (PM7-2.5) is associated with an increased risk of infant mortality. Further, rigorous evaluation of air quality guidelines for daily average PM2.5 and larger particles is needed. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Long-Term Exposure to Fine Particulate Matter: Association with Nonaccidental and Cardiovascular Mortality in the Agricultural Health Study Cohort

    OpenAIRE

    Weichenthal, Scott; Villeneuve, Paul J.; Burnett, Richard T.; van Donkelaar, Aaron; Martin, Randall V.; Jones, Rena R.; DellaValle, Curt T.; Sandler, Dale P.; Ward, Mary H.; Hoppin, Jane A.

    2014-01-01

    Background: Few studies have examined the relationship between long-term exposure to ambient fine particulate matter (PM2.5) and nonaccidental mortality in rural populations. Objective: We examined the relationship between PM2.5 and nonaccidental and cardiovascular mortality in the U.S. Agricultural Health Study cohort. Methods: The cohort (n = 83,378) included farmers, their spouses, and commercial pesticide applicators residing primarily in Iowa and North Carolina. Deaths occurring between ...

  20. Chemical characterization and sources of personal exposure to fine particulate matter in the general population of Guangzhou, China

    Science.gov (United States)

    Chen, Xiao-Cui; Jahn, Heiko J.; Engling, Guenter; Ward, Tony J.; Kraemer, Alexander; Ho, Kin-Fai; Hung-Lam Yim, Steve; Chan, Chuen-Yu

    2017-04-01

    Fine particulate matter pollution severely deteriorates the environmental conditions and negatively impacts human health in the Chinese megacity Guangzhou. Concurrent ambient and personal measurements of fine particulate matter (PM2.5) were conducted in Guangzhou, China. Personal-to-ambient (P-C) relationships of PM2.5 chemical components were determined and sources of personal PM2.5 exposure were evaluated using principal component analysis along with a mixed-effects model. Water-soluble inorganic ions (mainly secondary inorganic ions) and anhydrosugars exhibited median personal-to-ambient (P/C) ratios < 1 accompanied by strong P-C correlations, indicating that these constituents in personal PM2.5 were significantly affected by ambient sources. Conversely, elemental carbon (EC) and calcium (Ca2+) showed median P/C ratios greater than unity, which indicated that among subjects who spent a great amount of time indoors, aside from particles of ambient origin, individual's total exposure to PM2.5 includes contributions of non-ambient exposure while indoors and outdoors (e.g., local traffic, indoor sources, personal activities). SO42- displayed very low coefficient of divergence (COD) values coupled with strong P-C correlations, implying a uniform distribution of SO42- in the urban area of Guangzhou. EC, Ca2+, and levoglucosan were otherwise heterogeneously distributed across individuals in different districts. Regional air pollution (50.4 ± 0.9%), traffic-related particles (8.6 ± 0.7%), dust-related particles (5.8 ± 0.7%), and biomass burning emissions (2.0 ± 0.2%) were moderate to high positive sources of personal PM2.5 exposure in Guangzhou. The observed positive and significant contribution of Ca2+ to personal PM2.5 exposure, highlighting indoor sources and/or personal activities, were driving factors determining personal exposure to dust-related particles. Considerable discrepancies (COD values ranging from 0.42 to 0.50) were shown between ambient

  1. Quantification of Health Effects Related to SO{sub 2}, NO{sub 2}, O{sub 3} and Particulate Matter Exposure. Report from the Nordic Expert Meeting Oslo, 15-17 October, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Clench-Aas, J.; Krzyzanowski, M. [eds.

    1996-12-31

    The Nordic Council of Ministers founded a workshop of European and Nordic experts to assess the current literature and develop dose-response functions for the criteria air quality indicators of SO{sub 2}, NO{sub 2}, O{sub 3} and particulate matter. This is the report from the workshop held in Oslo on October 15-17, 1995. Estimates of exposure-response relationships are needed to assess the health impact of environmental factors. Based on available research evidence, the relationships for the common air pollutants - particulate matter, sulphur dioxide, ozone and nitrogen dioxide - were reviewed. The Meeting concluded by quantifying exposure-response relationships for particulate matter, SO{sub 2} and ozone; the relationship for NO{sub 2} was not quantified. The Meeting also identified other exposure-response relationships considered to be substantiated, but for which the available data did not provide sufficient background to quantify the risk. The reported concentration-response associations relate to short-term changes in risk due to changes in levels of pollutants. For chronic effects of prolonged exposures the data were judged to be insufficient for quantification. 211 refs., 3 figs., 7 tabs.

  2. PARTICULATE MATTER AND HUMAN HEALTH: USING HUMAN STUDIES TO UNDERSTAND SUSCEPTIBILITY

    Science.gov (United States)

    The potential for experiencing adverse health effects from air pollution particulate matter (PM) exposure is an important public health issue. The World Health Organization has estimated that PM contributes to the deaths of 500,000 people world-wide each year. Epidemiologic stu...

  3. Global Particulate Matter Source Apportionment

    Science.gov (United States)

    Lamancusa, C.; Wagstrom, K.

    2017-12-01

    As our global society develops and grows it is necessary to better understand the impacts and nuances of atmospheric chemistry, in particular those associated with atmospheric particulate matter. We have developed a source apportionment scheme for the GEOS-Chem global atmospheric chemical transport model. While these approaches have existed for several years in regional chemical transport models, the Global Particulate Matter Source Apportionment Technology (GPSAT) represents the first incorporation into a global chemical transport model. GPSAT runs in parallel to a standard GEOS-Chem run. GPSAT uses the fact that all molecules of a given species have the same probability of undergoing any given process as a core principle. This allows GPSAT to track many different species using only the flux information provided by GEOS-Chem's many processes. GPSAT accounts for the change in source specific concentrations as a result of aqueous and gas-phase chemistry, horizontal and vertical transport, condensation and evaporation on particulate matter, emissions, and wet and dry deposition. By using fluxes, GPSAT minimizes computational cost by circumventing the computationally costly chemistry and transport solvers. GPSAT will allow researchers to address many pertinent research questions about global particulate matter including the global impact of emissions from different source regions and the climate impacts from different source types and regions. For this first application of GPSAT, we investigate the contribution of the twenty largest urban areas worldwide to global particulate matter concentrations. The species investigated include: ammonium, nitrates, sulfates, and the secondary organic aerosols formed by the oxidation of benzene, isoprene, and terpenes. While GPSAT is not yet publically available, we will incorporate it into a future standard release of GEOS-Chem so that all GEOS-Chem users will have access to this new tool.

  4. Environmental Inequality in Exposures to Airborne Particulate Matter Components in the United States

    Science.gov (United States)

    Ebisu, Keita

    2012-01-01

    Background: Growing evidence indicates that toxicity of fine particulate matter ≤ 2.5 μm in diameter (PM2.5) differs by chemical component. Exposure to components may differ by population. Objectives: We investigated whether exposures to PM2.5 components differ by race/ethnicity, age, and socioeconomic status (SES). Methods: Long-term exposures (2000 through 2006) were estimated for 215 U.S. census tracts for PM2.5 and for 14 PM2.5 components. Population-weighted exposures were combined to generate overall estimated exposures by race/ethnicity, education, poverty status, employment, age, and earnings. We compared population characteristics for tracts with and without PM2.5 component monitors. Results: Larger disparities in estimated exposures were observed for components than for PM2.5 total mass. For race/ethnicity, whites generally had the lowest exposures. Non-Hispanic blacks had higher exposures than did whites for 13 of the 14 components. Hispanics generally had the highest exposures (e.g., 152% higher than whites for chlorine, 94% higher for aluminum). Young persons (0–19 years of age) had levels as high as or higher than other ages for all exposures except sulfate. Persons with lower SES had higher estimated exposures, with some exceptions. For example, a 10% increase in the proportion unemployed was associated with a 20.0% increase in vanadium and an 18.3% increase in elemental carbon. Census tracts with monitors had more non-Hispanic blacks, lower education and earnings, and higher unemployment and poverty than did tracts without monitors. Conclusions: Exposures to PM2.5 components differed by race/ethnicity, age, and SES. If some components are more toxic than others, certain populations are likely to suffer higher health burdens. Demographics differed between populations covered and not covered by monitors. PMID:22889745

  5. Elemental composition of particulate matter and the association with lung function

    NARCIS (Netherlands)

    Eeftens, Marloes; Hoek, Gerard; Gruzieva, Olena; Mölter, Anna; Agius, Raymond; Beelen, Rob; Brunekreef, Bert; Custovic, Adnan; Cyrys, Josef; Fuertes, Elaine; Heinrich, Joachim; Hoffmann, Barbara; de Hoogh, Kees; Jedynska, Aleksandra; Keuken, Menno; Klümper, Claudia; Kooter, Ingeborg; Krämer, Ursula; Korek, Michal; Koppelman, Gerard H; Kuhlbusch, Thomas A J; Simpson, Angela; Smit, Henriëtte A; Tsai, Ming-Yi; Wang, Meng; Wolf, Kathrin; Pershagen, Göran; Gehring, Ulrike

    BACKGROUND: Negative effects of long-term exposure to particulate matter (PM) on lung function have been shown repeatedly. Spatial differences in the composition and toxicity of PM may explain differences in observed effect sizes between studies. METHODS: We conducted a multicenter study in 5

  6. Elemental composition of particulate matter and the association with lung function

    NARCIS (Netherlands)

    Eeftens, M.; Hoek, G.; Gruzieva, O.; Mölter, A.; Agius, R.; Beelen, R.; Brunekreef, B.; Custovic, A.; Cyrys, J.; Fuertes, E.; Heinrich, J.; Hoffmann, B.; De Hoogh, K.; Jedynska, A.; Keuken, M.; Klümper, C.; Kooter, I.; Krämer, U.; Korek, M.; Koppelman, G.H.; Kuhlbusch, T.A.J.; Simpson, A.; Smit, H.A.; Tsai, M.Y.; Wang, M.; Wolf, K.; Pershagen, G.; Gehring, U.

    2014-01-01

    BACKGROUND: Negative effects of long-term exposure to particulate matter (PM) on lung function have been shown repeatedly. Spatial differences in the composition and toxicity of PM may explain differences in observed effect sizes between studies. METHODS: We conducted a multicenter study in 5

  7. Complexity analysis in particulate matter measurements

    Directory of Open Access Journals (Sweden)

    Luciano Telesca

    2011-09-01

    Full Text Available We investigated the complex temporal fluctuations of particulate matter data recorded in London area by using the Fisher-Shannon (FS information plane. In the FS plane the PM10 and PM2.5 data are aggregated in two different clusters, characterized by different degrees of order and organization. This results could be related to different sources of the particulate matter.

  8. Associations between particulate matter composition and childhood blood pressure - The PIAMA study

    NARCIS (Netherlands)

    Bilenko, Natalya; Brunekreef, Bert; Beelen, Rob; Eeftens, Marloes; de Hoogh, Kees; Hoek, Gerard; Koppelman, Gerard H.; Wang, Meng; van Rossem, Lenie; Gehring, Ulrike

    2015-01-01

    Background: Childhood blood pressure is an important predictor of hypertension and cardiovascular disease in adulthood. Evidence for an association between ambient particulate matter (PM) exposure and blood pressure is increasing, but little is known about the relevance of different PM constituents.

  9. Particulate matter and neutron activation analysis

    International Nuclear Information System (INIS)

    Otoshi, Tsunehiko

    2003-01-01

    In these years, economy of East Asian region is rapidly growing, and countries in this region are facing serious environmental problems. Neutron activation analysis is known as one of high-sensitive analytical method for multi elements. And it is a useful tool for environmental research, particularly for the study on atmospheric particulate matter that consists of various constituents. Elemental concentration represents status of air, such as emission of heavy metals from industries and municipal incinerators, transportation of soil derived elements more than thousands of kilometers, and so on. These monitoring data obtained by neutron activation analysis can be a cue to evaluate environment problems. Japanese government launched National Air Surveillance Network (NASN) employing neutron activation analysis in 1974, and the data has been accumulated at about twenty sampling sites. As a result of mitigation measure of air pollution sources, concentrations of elements that have anthropogenic sources decreased particularly at the beginning of the monitoring period. However, even now, concentrations of these anthropogenic elements reflect the characteristics of each sampling site, e.g. industrial/urban, rural, and remote. Soil derived elements have a seasonal variation because of the contribution of continental dust transported by strong westerly winds prevailing in winter and spring season. The health effects associated with trace elements in particulate matter have not been well characterized. However, there is increasing evidence that particulate air pollution, especially fine portion of particles in many different cities is associated with acute mortality. Neutron activation analysis is also expected to provide useful information to this new study field related to human exposures and health risk. (author)

  10. Effects of metal-rich particulate matter exposure on exogenous and endogenous viral sequence methylation in healthy steel-workers.

    Science.gov (United States)

    Mercorio, Roberta; Bonzini, Matteo; Angelici, Laura; Iodice, Simona; Delbue, Serena; Mariani, Jacopo; Apostoli, Pietro; Pesatori, Angela Cecilia; Bollati, Valentina

    2017-11-01

    Inhaled particles have been shown to produce systemic changes in DNA methylation. Global hypomethylation has been associated to viral sequence reactivation, possibly linked to the activation of pro-inflammatory pathways occurring after exposure. This observation provides a rationale to investigate viral sequence (both exogenous and endogenous) methylation in association to metal-rich particulate matter exposure. To verify this hypothesis, we chose the Wp promoter of the Epstein-Barr Virus (EBV-Wp) and the promoter of the human-endogenous-retrovirus w (HERV-w), respectively as a paradigm of an exogenous and an endogenous retroviral sequence, to be investigated by bisulfite PCR Pyrosequencing. We enrolled 63 male workers in an electric furnace steel plant, exposed to high level of metal-rich particulate matter. Comparing samples obtained in the first day of a work week (time 0-baseline, after 2 days off work) and the samples obtained after 3 days of work (time 1-post exposure), the mean methylation of EBV-Wp was significantly higher at baseline compared to post-exposure (mean baseline = 56.7%5mC; mean post-exposure = 47.9%5mC; p-value = 0.009), whereas the mean methylation of HERV-w did not significantly differ. Individual exposure to inhalable particles and metals was estimated based on measures in all working areas and time spent by the study subjects in each area. In a regression model adjusted for age, body mass index and smoking, PM and metal components had a positive association with EBV-Wp methylation (i.e. PM10: β = 5.99, p-value < 0.038; nickel: β = 17.82, p-value = 0.02; arsenic: β = 13.59, p-value < 0.015). The difference observed comparing baseline and post-exposure samples may be suggestive of a rapid change in EBV methylation induced by air particles, while correlation between EBV methylation and PM/metal exposure may represent a more stable adaptive mechanism. Future studies investigating a larger panel of viral sequences could better elucidate

  11. Exposure to particulate matter in traffic: A comparison of cyclists and car passengers

    Science.gov (United States)

    Int Panis, Luc; de Geus, Bas; Vandenbulcke, Grégory; Willems, Hanny; Degraeuwe, Bart; Bleux, Nico; Mishra, Vinit; Thomas, Isabelle; Meeusen, Romain

    2010-06-01

    Emerging evidence suggests that short episodes of high exposure to air pollution occur while commuting. These events can result in potentially adverse health effects. We present a quantification of the exposure of car passengers and cyclists to particulate matter (PM). We have simultaneously measured concentrations (PNC, PM2.5 and PM10) and ventilatory parameters (minute ventilation (VE), breathing frequency and tidal volume) in three Belgian locations (Brussels, Louvain-la-Neuve and Mol) for 55 persons (38 male and 17 female). Subjects were first driven by car and then cycled along identical routes in a pairwise design. Concentrations and lung deposition of PNC and PM mass were compared between biking trips and car trips. Mean bicycle/car ratios for PNC and PM are close to 1 and rarely significant. The size and magnitude of the differences in concentrations depend on the location which confirms similar inconsistencies reported in literature. On the other hand, the results from this study demonstrate that bicycle/car differences for inhaled quantities and lung deposited dose are large and consistent across locations. These differences are caused by increased VE in cyclists which significantly increases their exposure to traffic exhaust. The VE while riding a bicycle is 4.3 times higher compared to car passengers. This aspect has been ignored or severely underestimated in previous studies. Integrated health risk evaluations of transport modes or cycling policies should therefore use exposure estimates rather than concentrations.

  12. Sex-specific associations between particulate matter exposure and gene expression in independent discovery and validation cohorts of middle-aged men and women

    DEFF Research Database (Denmark)

    Vrijens, Karen; Winckelmans, Ellen; Tsamou, Maria

    2017-01-01

    Background: Particulate matter (PM) exposure leads to premature death, mainly due to respiratory and cardiovascular diseases. Objectives: Identification of transcriptomic biomarkers of air pollution exposure and effect in a healthy adult population. Methods: Microarray analyses were performed in 98...... healthy volunteers (48 men, 50 women). The expression of eight sex-specific candidate biomarker genes (significantly associated with PM10 in the discovery cohort and with a reported link to air pollution-related disease) was measured with qPCR in an independent validation cohort (75 men, 94 women...

  13. Particulate Matter Exposure and Preterm Birth: Estimates of U.S. Attributable Burden and Economic Costs.

    Science.gov (United States)

    Trasande, Leonardo; Malecha, Patrick; Attina, Teresa M

    2016-12-01

    Preterm birth (PTB) rates (11.4% in 2013) in the United States remain high and are a substantial cause of morbidity. Studies of prenatal exposure have associated particulate matter ≤ 2.5 μm in diameter (PM2.5) and other ambient air pollutants with adverse birth outcomes; yet, to our knowledge, burden and costs of PM2.5-attributable PTB have not been estimated in the United States. We aimed to estimate burden of PTB in the United States and economic costs attributable to PM2.5 exposure in 2010. Annual deciles of PM2.5 were obtained from the U.S. Environmental Protection Agency. We converted PTB odds ratio (OR), identified in a previous meta-analysis (1.15 per 10 μg/m3 for our base case, 1.07-1.16 for low- and high-end scenarios) to relative risk (RRs), to obtain an estimate that better represents the true relative risk. A reference level (RL) of 8.8 μg/m3 was applied. We then used the RR estimates and county-level PTB prevalence to quantify PM2.5-attributable PTB. Direct medical costs were obtained from the 2007 Institute of Medicine report, and lost economic productivity (LEP) was estimated using a meta-analysis of PTB-associated IQ loss, and well-established relationships of IQ loss with LEP. All costs were calculated using 2010 dollars. An estimated 3.32% of PTBs nationally (corresponding to 15,808 PTBs) in 2010 could be attributed to PM2.5 (PM2.5 > 8.8 μg/m3). Attributable PTBs cost were estimated at $5.09 billion [sensitivity analysis (SA): $2.43-9.66 B], of which $760 million were spent for medical care (SA: $362 M-1.44 B). The estimated PM2.5 attributable fraction (AF) of PTB was highest in urban counties, with highest AFs in the Ohio Valley and the southern United States. PM2.5 may contribute substantially to burden and costs of PTB in the United States, and considerable health and economic benefits could be achieved through environmental regulatory interventions that reduce PM2.5 exposure in pregnancy. Citation: Trasande L, Malecha P, Attina TM. 2016

  14. Particulate matter mass concentrations produced from pavement surface abrasion

    Directory of Open Access Journals (Sweden)

    Fullova Dasa

    2017-01-01

    Full Text Available According to the latest findings particulate matter belong to the most significant pollutants in Europe together with ground-level ozone O3 and nitrogen dioxide NO2. Road traffic is one of the main sources of particulate matter. Traffic volume has unpleasant impact on longevity of the pavements and also on the environment. Vehicle motions cause mechanical wearing of the asphalt pavement surface - wearing course by vehicle tyres. The paper deals with abrasion of bituminous wearing courses of pavements. The asphalt mixtures are compared in terms of mechanically separated particulate matter. The samples of asphalt mixtures were rutted in wheel tracking machine. The particulate matter measurements were performed in laboratory conditions. The experimental laboratory measurements make it possible to sample particulates without contamination from exhaust emissions, abraded particles from vehicles, resuspension of road dust and climate affects. The paper offers partial results of measurements on six trial samples of asphalt mixtures with different composition. It presents particulate matter morphology and the comparison of rutted asphalt samples in terms of PM mass concentrations and chemical composition.

  15. Estimating the acute health effects of coarse particulate matter accounting for exposure measurement error.

    Science.gov (United States)

    Chang, Howard H; Peng, Roger D; Dominici, Francesca

    2011-10-01

    In air pollution epidemiology, there is a growing interest in estimating the health effects of coarse particulate matter (PM) with aerodynamic diameter between 2.5 and 10 μm. Coarse PM concentrations can exhibit considerable spatial heterogeneity because the particles travel shorter distances and do not remain suspended in the atmosphere for an extended period of time. In this paper, we develop a modeling approach for estimating the short-term effects of air pollution in time series analysis when the ambient concentrations vary spatially within the study region. Specifically, our approach quantifies the error in the exposure variable by characterizing, on any given day, the disagreement in ambient concentrations measured across monitoring stations. This is accomplished by viewing monitor-level measurements as error-prone repeated measurements of the unobserved population average exposure. Inference is carried out in a Bayesian framework to fully account for uncertainty in the estimation of model parameters. Finally, by using different exposure indicators, we investigate the sensitivity of the association between coarse PM and daily hospital admissions based on a recent national multisite time series analysis. Among Medicare enrollees from 59 US counties between the period 1999 and 2005, we find a consistent positive association between coarse PM and same-day admission for cardiovascular diseases.

  16. PREFACE: SPECIAL SECTION OF THE JOURNAL OF AIR & WASTE MANAGEMENT ASSOCIATION FOR PARTICULATE MATTER: ATMOSPHERIC SCIENCES, EXPOSURE AND THE FOURTH COLLOQUIUM ON PM AND HUMAN HEALTH

    Science.gov (United States)

    This dedicated issue of the Journal of the Air & Waste Management Association contains 17 peer-reviewed scientific papers that were presented at the specialty conference, “Particulate Matter: Atmospheric Sciences, Exposure and the Fourth Colloquium on PM and Human Health,” that w...

  17. Combined effects of exposure to dim light at night and fine particulate matter on C3H/HeNHsd mice.

    Science.gov (United States)

    Hogan, Matthew K; Kovalycsik, Taylor; Sun, Qinghua; Rajagopalan, Sanjay; Nelson, Randy J

    2015-11-01

    Air and light pollution contribute to fetal abnormalities, increase prevalence of cancer, metabolic and cardiorespiratory diseases, and central nervous system (CNS) disorders. A component of air pollution, particulate matter, and the phenomenon of dim light at night (dLAN) both result in neuroinflammation, which has been implicated in several CNS disorders. The combinatorial role of these pollutants on health outcomes has not been assessed. Male C3H/HeNHsd mice, with intact melatonin production, were used to model humans exposed to circadian disruption by dLAN and contaminated environmental air. We hypothesized exposure to 2.5 μm of particulate matter (PM2.5) and dLAN (5lx) combines to upregulate neuroinflammatory cytokine expression and alter hippocampal morphology compared to mice exposed to filtered air (FA) and housed under dark nights (LD). We also hypothesized that exposure to PM2.5 and dLAN provokes anxiety-like and depressive-like responses. For four weeks, four groups of mice were simultaneously exposed to ambient concentrated PM2.5 or FA and/or dLAN or LD. Following exposure, mice underwent several behavioral assays and hippocampi were collected for qPCR and morphological analyses. Our results are generally comparable to previous PM2.5 and dLAN reports conducted on mice and implicate PM2.5 and dLAN as potential factors contributing to depression and anxiety. Short-term exposure to PM2.5 and dLAN upregulated neuroinflammatory cytokines and altered CA1 hippocampal structural changes, as well as provoked depressive-like responses (anhedonia). However, combined, PM2.5 and dLAN exposure did not have additive effects, as hypothesized, suggesting a ceiling effect of neuroinflammation may exist in response to multiple pollutants. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Urban tree effects on fine particulate matter and human health

    Science.gov (United States)

    David J. Nowak

    2014-01-01

    Overall, city trees reduce particulate matter and provide substantial health benefits; but under certain conditions, they can locally increase particulate matter concentrations. Urban foresters need to understand how trees affect particulate matter so they can select proper species and create appropriate designs to improve air quality. This article details trees'...

  19. Exposure to Fine Particulate Matter Leads to Rapid Heart Rate Variability Changes

    Directory of Open Access Journals (Sweden)

    Michael Riediker

    2018-01-01

    Full Text Available Introduction: Heart Rate Variability (HRV reflects the adaptability of the heart to internal and external stimuli. Reduced HRV is a predictor of post-infarction mortality. We previously found in road maintenance workers HRV-increases several hours after exposure to fine particulate matter (PM2.5. This seemed to conflict with studies where PM-exposure acutely reduced HRV. We therefore assessed whether time from exposure to HRV-assessment could explain the differences observed.Methods: On five non-consecutive days, workers carried nephelometers providing 1-min-interval PM2.5-exposure. Five-min HRV-intervals of SDNN (Standard Deviation of Normal to Normal beat intervals and pNN50 (Percentage of the interval differences exceeding 50 ms were extracted from 24-h electrocardiograms (ECGs. Following 60 min PM2.5-exposure, changes in HRV-parameters were assessed during 120-min visually and by regression analysis with control for time at work, at home, and during the night using autoregressive integrating moving average (ARIMA models to account for autocorrelation of the time-series. Additional controls included changing the time windows and including body mass index (BMI and age in the models.Result: Pattern analysis of 12,669 data points showed high modulation of mean, standard deviation (SD, and time trend of HRV (SDNN and pNN50 at low, and much reduced modulation at high PM2.5-exposures. The time trend following exposure was highly symmetrical, resembling a funnel plot. Regression analysis showed significant associations of decreasing SDNN and pNN50 (average, SD, and absolute value of time trend with increasing PM2.5-exposure, which remained significant when controlling for activity phases. Changing time windows did not change the pattern of response. Including BMI and age did not change the results.Conclusions: The reduced modulation of HRV following PM2.5-exposure is striking. It suggests strong interference with homeostatic controls. Such an

  20. On the Impact of Particulate Matter Distribution on Pressure Drop of Wall-Flow Particulate Filters

    Directory of Open Access Journals (Sweden)

    Vicente Bermúdez

    2017-03-01

    Full Text Available Wall-flow particulate filters are a required exhaust aftertreatment system to abate particulate matter emissions and meet current and incoming regulations applying worldwide to new generations of diesel and gasoline internal combustion engines. Despite the high filtration efficiency covering the whole range of emitted particle sizes, the porous substrate constitutes a flow restriction especially relevant as particulate matter, both soot and ash, is collected. The dependence of the resulting pressure drop, and hence the fuel consumption penalty, on the particulate matter distribution along the inlet channels is discussed in this paper taking as reference experimental data obtained in water injection tests before the particulate filter. This technique is demonstrated to reduce the particulate filter pressure drop without negative effects on filtration performance. In order to justify these experimental data, the characteristics of the particulate layer are diagnosed applying modeling techniques. Different soot mass distributions along the inlet channels are analyzed combined with porosity change to assess the new properties after water injection. Their influence on the subsequent soot loading process and regeneration is assessed. The results evidence the main mechanisms of the water injection at the filter inlet to reduce pressure drop and boost the interest for control strategies able to force the re-entrainment of most of the particulate matter towards the inlet channels’ end.

  1. Seasonal Variability of Concentration and Air Quality of Ambient Particulate Matter in Sosnowiec City

    Directory of Open Access Journals (Sweden)

    Jolanta Cembrzyńska

    2015-12-01

    Full Text Available Introduction: Exposing the population to more than standard concentration of particulate matter (PM is a crucial factor shaping the public health on urbanized areas both in Europe and Poland. In most cases, exceeded air quality standards relate to the winter period, in which there has been the greatest amount. Many studies have indicated, that exposure to PM can cause adverse health effects. Human exposure especially to fine particles (with an aerodynamic diameter less than 2.5 µm, causes risk of cardiovascular and respiratory diseases, due to daily mortality and hospital admissions. Various types of epidemiological studies have indicated, that ambient air pollution is responsible for increasing risk of lung cancer. For this reason, in 2013 The International Agency for Research on Cancer (IARC classified outdoor air pollution and particulate matter as carcinogenic to humans (Group 1.

  2. Particulate Matter Filtration Design Considerations for Crewed Spacecraft Life Support Systems

    Science.gov (United States)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.

    2016-01-01

    Particulate matter filtration is a key component of crewed spacecraft cabin ventilation and life support system (LSS) architectures. The basic particulate matter filtration functional requirements as they relate to an exploration vehicle LSS architecture are presented. Particulate matter filtration concepts are reviewed and design considerations are discussed. A concept for a particulate matter filtration architecture suitable for exploration missions is presented. The conceptual architecture considers the results from developmental work and incorporates best practice design considerations.

  3. Exposure assessment and modeling of particulate matter for asthmatic children using personal nephelometers

    Science.gov (United States)

    Wu, Chang-Fu; Delfino, Ralph J.; Floro, Joshua N.; Quintana, Penelope J. E.; Samimi, Behzad S.; Kleinman, Michael T.; Allen, Ryan W.; Sally Liu, L.-J.

    It has been shown that acute exposures to particulate matter (PM) may exacerbate asthma in children. However, most epidemiological studies have relied on time-integrated PM measurements taken at a centrally located stationary monitoring sites. In this article, we characterized children's short-term personal exposures to PM 2.5 (PM with aerodynamic diameters size-selective inlet was used to estimate real-time PM 2.5 concentrations on 20 asthmatic children, inside and outside of their residences, and at a central site. The personal and indoor pDRs were operated passively, while the home outdoor and central site instruments were operated actively. The subjects received 29.2% of their exposures at school, even though they only spent 16.4% of their time there. More precise personal clouds were estimated for the home-indoor and home-outdoor microenvironments where PM concentrations were measured. The personal cloud increased with increasing activity levels and was higher during outdoor activities than during indoor activities. We built models to predict personal PM exposures based on either microenvironmental or central-site PM 2.5 measurements, and evaluated the modeled exposures against the actual personal measurements. A multiple regression model with central site PM concentration as the main predictor had a better prediction power ( R2=0.41) than a three-microenvironmental model ( R2=0.11). We further constructed a source-specific exposure model utilizing the time-space-activity information and the particle infiltration efficiencies (mean=0.72±0.15) calculated from a recursive mass balance model. It was estimated that the mean hourly personal exposures resulting from ambient, indoor-generated, and personal activity PM 2.5 were 11.1, 5.5, and 10.0 μg/m 3, respectively, when the modeling error was minimized. The high PM 2.5 exposure to personal activities reported in our study is likely due to children's more active lifestyle as compared with older adult subjects in

  4. Effect of Particulate Matter Mineral Composition on Environmentally Persistent Free Radical (EPFR) Formation.

    Science.gov (United States)

    Feld-Cook, Elisabeth E; Bovenkamp-Langlois, Lisa; Lomnicki, Slawo M

    2017-09-19

    Environmentally Persistent Free Radicals (EPFRs) are newly discovered, long-lived surface bound radicals that form on particulate matter and combustion borne particulates, such as fly ash. Human exposure to such particulates lead to translocation into the lungs and heart resulting in cardio-vascular and respiratory disease through the production of reactive oxygen species. Analysis of some waste incinerator fly ashes revealed a significant difference between their EPFR contents. Although EPFR formation occurs on the metal domains, these differences were correlated with the altering concentration of calcium and sulfur. To analyze these phenomena, surrogate fly ashes were synthesized to mimic the presence of their major mineral components, including metal oxides, calcium, and sulfur. The results of this study led to the conclusion that the presence of sulfates limits formation of EPFRs due to inhibition or poisoning of the transition metal active sites necessary for their formation. These findings provide a pathway toward understanding differences in EPFR presence on particulate matter and uncover the possibility of remediating EPFRs from incineration and hazardous waste sites.

  5. Difference in Pro-Inflammatory Cytokine Responses Induced in THP1 Cells by Particulate Matter Collected on Days with and without ASIAN Dust Storms

    Directory of Open Access Journals (Sweden)

    Masanari Watanabe

    2015-07-01

    Full Text Available The associations between particulate matter from Asian dust storms (ADS and health disorders differ among studies, and the underlying mechanisms remain unclear. In this study, ADS and non-ADS particles were tested for their potential to induce pro-inflammatory cytokines associated with adverse respiratory effects. Particulate matter was collected in Japan during four periods in 2013 (2 × ADS periods; 2 × non-ADS. THP1 cells were exposed to this particulate matter, and the levels of various interleukins (ILs, and tumor necrosis factor (TNF-α were measured. Levels of IL-2 increased significantly following exposure to all particulate matter samples (compared to levels in a solvent control. Increased levels of IL-10 and TNF-α were also observed following exposure to particles collected during three (one ADS and two non-ADS and two (one ADS and one non-ADS collection periods, respectively. Thus, the effects of particulate matter on cytokine responses differed according to collection period, and the effects of ADS particles differed for each ADS event. Additionally, the levels of pro-inflammatory cytokines induced by ADS particles were not always higher than those induced by non-ADS particles.

  6. IDENTIFICATION OF POSSIBLE SOURCES OF PARTICULATE MATTER IN THE PERSONAL CLOUD USING SEM/EDX

    Science.gov (United States)

    The United States Environmental Protection Agency (U.S. EPA) conducted the Baltimore Particulate Matter (PM) Epidemiology-Exposure Study of the Elderly during the summer of 1998. The study design included PM2.5 samples obtained from elderly (65+ years of age) retirement facility ...

  7. Maternal exposure to airborne particulate matter causes postnatal immunological dysfunction in mice offspring

    International Nuclear Information System (INIS)

    Hong, Xinru; Liu, Chaobin; Chen, Xiaoqiu; Song, Yanfeng; Wang, Qin; Wang, Ping; Hu, Dian

    2013-01-01

    Evidence suggests that prenatal exposure to air pollution affects the ontogeny and development of the fetal immune system. The aim of this study was to investigate the effect of maternal exposure to airborne particulate matter (PM) on immune function in postnatal offspring. Pregnant female ICR mice were intralaryngopharyngeally administered with 30 μl of phosphate buffered solution (the control group) or resuspended PM of Standard Reference Material 1649a at 0.09 (low), 0.28 (medium), 1.85 (high) or 6.92 (overdose) μg/μl once every three days from day 0 to 18 of pregnancy (n = 8–10). Offspring were sacrificed on postnatal day 30. Interleukin-4 and interferon-γ levels in plasma and splenocytes, splenic lymphocyte proliferation, and expressions of GATA-3 and T-bet mRNA in the spleen were tested. The spleen and thymus were histopathologically examined. The offspring of the medium, high and overdose PM-exposed dams showed significantly suppressed splenocyte proliferation. Decreased interferon-γ and increased interleukin-4 levels in the blood and splenocytes, and lowered T-bet and elevated GATA-3 mRNA expressions were found in the spleen in the medium, high and overdose groups when compared with the control or low dose group (P < 0.05). Histopathology revealed prominent tissue damage in the spleen and thymus in the overdose group. These results suggest that exposure of pregnant mice to PM modulates the fetal immune system, resulting in postnatal immune dysfunction by exacerbation of Thl/Th2 deviation. This deviation is associated with altered T-bet and GATA-3 gene expressions

  8. Controlling particulate matter under the Clean Air Act: a menu of options

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This document was prepared by STAPPA and ALAPCO to help US state and local air pollution control officials understand the effects of particulate matter (PM) on human health and air quality, the relative contribution of various sources to particulate emissions, and the effectiveness and costs of various approaches - including innovative ones - to minimizing these emissions. The document covers particulate matter with a nominal diameter of 10 microns ({mu}m) or less (PM{sub 10}), including `fine` PM of 2.5 microns or less in diameter (PM{sub 2.5}). Sections cover: the effects of particulate matter on human health; regulatory issues; characterization of particulate matter; emission control strategies for mobile sources (diesel engines, small nonroad engines, alternative fuels etc.), particulates from stationary sources (electric utilities, industry and commercial fuel combustion; mineral products industry, metallurgical industry etc.); particulates from area sources; and market-based strategies for controlling particulate matter. 2 apps.

  9. The particulate matter dispersion studies from a local palm oil mill

    International Nuclear Information System (INIS)

    Abdullah, L.C.; Wong, L. L.; Amnorzahira, A.; Sa'ari, M.; Abdul Rashid, M. S.; Salmiaton Ali

    2006-01-01

    The appearance of industrial emissions and the degradation of scenic vistas are two characteristics of air pollution that humans object. Reduction in visibility suggests worsening pollution levels. The emissions from mobile source and stationary source are the major source of air pollutions contribution in Malaysia. Suspended particulate matter (SPM). The consequence of increasing the particulate concentrations, the particulate matter dissolves with vapour and grows into droplets when the humidity exceeds approximately 70% and causing opaque situation know as haze. This work focuses on the dispersion particulate matter from palm oil mill. The data obtained serves the purpose of modeling the transport of particulate matter for obtaining permits and prevention of significant deterioration (PSD) to the environment. Gaussian Plume Model from a point source, subject to various atmospheric conditions is used to calculate particulate matter concentration then display the distribution of plume dispersion using geographic information system (GIS). The calculated particulate matter concentration is evaluated using Transilient Matrice function. Atmospheric Stability, mixing height, wind direction, wind speed, natural and artificial features play an important role in dispersion process. High concentration area exhibits immediately under prevailing wind direction. (Author)

  10. Particulate matter sensor with a heater

    Science.gov (United States)

    Hall, Matthew [Austin, TX

    2011-08-16

    An apparatus to detect particulate matter. The apparatus includes a sensor electrode, a shroud, and a heater. The electrode measures a chemical composition within an exhaust stream. The shroud surrounds at least a portion of the sensor electrode, exclusive of a distal end of the sensor electrode exposed to the exhaust stream. The shroud defines an air gap between the sensor electrode and the shroud and an opening toward the distal end of the sensor electrode. The heater is mounted relative to the sensor electrode. The heater burns off particulate matter in the air gap between the sensor electrode and the shroud.

  11. Hydrophilic Interaction Liquid Chromatography-Tandem Mass Spectrometry Analysis of Fosetyl-Aluminum in Airborne Particulate Matter

    Directory of Open Access Journals (Sweden)

    Francesca Buiarelli

    2018-01-01

    Full Text Available Fosetyl-aluminum is a synthetic fungicide administered to plants especially to prevent diseases caused by the members of the Peronosporales and several Phytophthora species. Herein, we present a selective liquid chromatography-tandem mass spectrometry (LC-MS/MS method to analyze residues of fosetyl-A1 in air particulate matter. This study was performed in perspective of an exposure assessment of this substance of health concern in environments where high levels of fosetly-Al, relatively to airborne particulate matter, can be found after spraying it. The cleanup procedure of the analyte, from sampled filters of atmospheric particulate matter, was optimized using a Strata X solid-phase extraction cartridge, after accelerated extraction by using water. The chromatographic separation was achieved using a polymeric column based on hydrophilic interaction in step elution with water/acetonitrile, whereas the mass spectrometric detection was performed in negative electrospray ionization. The proposed method resulted to be a simple, fast, and suitable method for confirmation purposes.

  12. Zebrafish Locomotor Responses Predict Irritant Potential of Smoke Particulate Matter from Five Biomass Fuels

    Science.gov (United States)

    Over the past few decades, the drying and warming trends of global climate change have increased wildland fire (WF) season length, as well as geographic area impacted. Consequently, exposures to WF fine particulate matter (PM2.5; aerodynamic diameter <2.5 µm) are likely ...

  13. Statins attenuate the development of atherosclerosis and endothelial dysfunction induced by exposure to urban particulate matter (PM10)

    International Nuclear Information System (INIS)

    Miyata, Ryohei; Hiraiwa, Kunihiko; Cheng, Jui Chih; Bai, Ni; Vincent, Renaud; Francis, Gordon A.; Sin, Don D.; Van Eeden, Stephan F.

    2013-01-01

    Exposure to ambient air particulate matter (particles less than 10 μm or PM 10 ) has been shown to be an independent risk factor for the development and progression of atherosclerosis. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have well-established anti-inflammatory properties. The aim of this study was to determine the impact of statins on the adverse functional and morphological changes in blood vessels induced by PM 10 . New Zealand White rabbits fed with a high fat diet were subjected to balloon injury to their abdominal aorta followed by PM 10 /saline exposure for 4 weeks ± lovastatin (5 mg/kg/day) treatment. PM 10 exposure accelerated balloon catheter induced plaque formation and increased intimal macrophages and lipid accumulation while lovastatin attenuated these changes and promoted smooth muscle cell recruitment into plaques. PM 10 impaired vascular acetylcholine (Ach) responses and increased vasoconstriction induced by phenylephrine as assessed by wire myograph. Supplementation of nitric oxide improved the impaired Ach responses. PM 10 increased the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in blood vessels and increased the plasma levels of endothelin-1 (ET-1). Incubation with specific inhibitors for iNOS, COX-2 or ET-1 in the myograph chambers significantly improved the impaired vascular function. Lovastatin decreased the expression of these mediators in atherosclerotic lesions and improved endothelial dysfunction. However, lovastatin was unable to reduce blood lipid levels to the baseline level in rabbits exposed to PM 10 . Taken together, statins protect against PM 10 -induced cardiovascular disease by reducing atherosclerosis and improving endothelial function via their anti-inflammatory properties. - Highlights: • Coarse particulate matter (PM 10 ) accelerated balloon injury-induced plaque formation. • Lovastatin decreased intimal macrophages, lipid accumulation, and

  14. Pregnancy and Lifetime Exposure to Fine Particulate Matter and Infant Mortality in Massachusetts, 2001-2007.

    Science.gov (United States)

    Son, Ji-Young; Lee, Hyung Joo; Koutrakis, Petros; Bell, Michelle L

    2017-12-01

    Many studies have found associations between particulate matter having an aerodynamic diameter of ≤2.5 μm (PM2.5) and adult mortality. Comparatively few studies evaluated particles and infant mortality, although infants and children are particularly vulnerable to pollution. Moreover, existing studies mostly focused on short-term exposure to larger particles. We investigated PM2.5 exposure during pregnancy and lifetime and postneonatal infant mortality. The study included 465,682 births with 385 deaths in Massachusetts (2001-2007). Exposures were estimated from PM2.5-prediction models based on satellite imagery. We applied extended Cox proportional hazards modeling with time-dependent covariates to total, respiratory, and sudden infant death syndrome mortality. Exposure was calculated from birth to death (or end of eligibility for outcome, at age 1 year) and pregnancy (gestation and each trimester). Models adjusted for sex, birth weight, gestational length, season of birth, temperature, relative humidity, and maternal characteristics. Hazard ratios for total, respiratory, and sudden infant death syndrome mortality per-interquartile-range increase (1.3 μg/m3) in lifetime PM2.5 exposure were 2.66 (95% confidence interval (CI): 2.11, 3.36), 3.14 (95% CI: 2.39, 4.13), and 2.50 (95% CI: 1.56, 4.00), respectively. We did not observe a statistically significant relationship between gestational exposure and mortality. Our findings provide supportive evidence that lifetime exposure to PM2.5 increases risk of infant mortality. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Assessment of diesel particulate matter exposure in the workplace: freight terminals†

    Science.gov (United States)

    Sheesley, Rebecca J.; Schauer, James J.; Smith, Thomas J.; Garshick, Eric; Laden, Francine; Marr, Linsey C.; Molina, Luisa T.

    2008-01-01

    A large study has been undertaken to assess the exposure to diesel exhaust within diesel trucking terminals. A critical component of this assessment is an analysis of the variation in carbonaceous particulate matter (PM) across trucking terminal locations; consistency in the primary sources can be effectively tracked by analyzing trends in elemental carbon (EC) and organic molecular marker concentrations. Ambient samples were collected at yard, dock and repair shop work stations in 7 terminals in the USA and 1 in Mexico. Concentrations of EC ranged from 0.2 to 12 μg m−3 among the terminals, which corresponds to the range seen in the concentration of summed hopanes (0.5 to 20.5 ng m−3). However, when chemical mass balance (CMB) source apportionment results were presented as percent contribution to organic carbon (OC) concentrations, the contribution of mobile sources to OC are similar among the terminals in different cities. The average mobile source percent contribution to OC was 75.3 ± 17.1% for truck repair shops, 65.4 ± 20.4% for the docks and 38.4 ± 9.5% for the terminal yard samples. A relatively consistent mobile source impact was present at all the terminals only when considering percentage of total OC concentrations, not in terms of absolute concentrations. PMID:18392272

  16. Assessment of population exposure to particulate matter pollution in Chongqing, China.

    Science.gov (United States)

    Wang, Shuxiao; Zhao, Yu; Chen, Gangcai; Wang, Fei; Aunan, Kristin; Hao, Jiming

    2008-05-01

    To determine the population exposure to PM(10) in Chongqing, China, we developed an indirect model by combining information on the time activity patterns of various demographic subgroups with estimates of the PM(10) concentrations in different microenvironments (MEs). The spatial and temporal variations of the exposure to PM(10) were illustrated in a geographical information system (GIS). The population weighted exposure (PWE) for the entire population was 229, 155 and 211 microg/m(3), respectively, in winter, summer and as the annual average. Indoor PM(10) level at home was the largest contributor to the PWE, especially for the rural areas where high pollution levels were found due to solid fuels burning. Elder people had higher PM(10) exposure than adults and youth, due to more time spent in indoor MEs. The highest health risk due to particulate was found in the city zone and northeast regions, suggesting that pollution abatement should be prioritized in these areas.

  17. Assessment of population exposure to particulate matter pollution in Chongqing, China

    Energy Technology Data Exchange (ETDEWEB)

    Shuxiao Wang; Yu Zhao; Gangcai Chen; Fei Wang; Aunan Kristin; Jiming Hao [Tsinghua University, Beijing (China). Department of Environmental Science and Engineering

    2008-05-15

    To determine the population exposure to PM10 in Chongqing, China, we developed an indirect model by combining information on the time activity patterns of various demographic subgroups with estimates of the PM10 concentrations in different microenvironments (MEs). The spatial and temporal variations of the exposure to PM10 were illustrated in a geographical information system (GIS). The population weighted exposure (PWE) for the entire population was 229, 155 and 211 {mu}g/m{sup 3}, respectively, in winter, summer and as the annual average. Indoor PM10 level at home was the largest contributor to the PWE, especially for the rural areas where high pollution levels were found due to solid fuels burning. Elder people had higher PM10 exposure than adults and youth, due to more time spent in indoor MEs. The highest health risk due to particulate was found in the city zone and northeast regions, suggesting that pollution abatement should be prioritized in these areas.

  18. Particulate matter urban air pollution from traffic car

    Science.gov (United States)

    Filip, G. M.; Brezoczki, V. M.

    2017-05-01

    The particulate matters (PM) are very important compounds of urban air pollution. There are a lot of air pollution sources who can generate PM and one of the most important of them it is urban traffic car. Air particulate matters have a major influence on human health so everywhere are looking for PM reducing solutions. It is knows that one of the solution for reduce the PM content from car traffic on ambient urban air is the fluidity of urban traffic car by introduction the roundabout intersections. This paper want to present some particulate matter determinations for PM10 and PM2.5 conducted on the two types of urban intersection respectively traffic light and roundabout intersections in Baia Mare town in the approximate the same work conditions. The determinations were carried out using a portable particulate matter monitor Haz - Dust model EPAM - 5000, who can provide a real time data for PM10, PM 2.5.Determinations put out that there are differences between the two locations regarding the PM content on ambient air. On roundabout intersection the PM content is less than traffic light intersection for both PM10 and PM 2.5 with more than 30%.

  19. Risk of human health by particulate matter as a source of air pollution--comparison with tobacco smoking.

    Science.gov (United States)

    Enomoto, Makoto; Tierney, William J; Nozaki, Kohsuke

    2008-08-01

    Increased air pollution, containing carcinogenic particulate matter smaller than 2.5 microm (PM(2.5)), has gained particular attention in recent years as a causative factor in the increased incidence of respiratory diseases, including lung cancer. Extensive carcinogenicity studies conducted recently under Good Laboratory Practice conditions by National Toxicology Program in the USA, Ramazzini Foundation in Italy or Contract Research Organizations on numerous chemical compounds have demonstrated the importance of considering dose levels, times and duration of exposure in the safety evaluation of carcinogenic as well as classical toxic agents. Data on exposure levels to chemical carcinogens that produce tumor development have contributed to the evaluation of human carcinogens from extrapolation of animal data. A popular held misconception is that the risk from smoking is the result of inhaling assorted particulate matter and by products from burning tobacco rather than the very low ng levels of carcinogens present in smoke. Consider the fact that a piece of toasted bread contains ng levels of the carcinogen urethane (ethyl carbamate). Yet, no one has considered toast to be a human carcinogen. Future human carcinogenic risk assessment should emphasize consideration of inhalation exposure to higher levels of benzo (a) pyrene and other possible carcinogens and particulate matter present in polluted air derived from automobile exhaust, pitch and coal tar on paved roads and asbestos, in addition to other environmental contaminant exposure via the food and drinking water.

  20. Characterization of coarse particulate matter in school gyms.

    Science.gov (United States)

    Braniš, Martin; Šafránek, Jiří

    2011-05-01

    concentrations of coarse particulate matter, which can contribute to increased short-term inhalation exposure of exercising children. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. From concentration to dose: factors influencing airborne particulate matter deposition in humans and rats

    NARCIS (Netherlands)

    Winter-sorkina R de; Cassee FR; LBV; LBO

    2003-01-01

    Particulate matter (PM) consisting of solid particles and droplets is present in the ambient air. Particles with an aerodynamic diameter less than 10 micro m can be inhaled by humans. Knowledge of the tissue-specific internal dose of PM is a critical link between individual external exposure and

  2. Status of Suspended Particulate Matters Pollution at Traditional Markets in Makassar City

    Science.gov (United States)

    Suryani, Sri; Fahrunnisa

    2018-03-01

    Research on the status of suspended particulate matters pollution in four traditional markets located in Makassar city has been done. The purpose of this research is to know the air quality in the traditional market areas, especially caused by suspended particulate matters. The background of this research is because traders who trade in traditional markets generally peddle their goods along dusty roads and suspended particulate matters in dust can be inhaled when the vehicle passes. These suspended particulate matters pollutant can cause lung diseases. The results showed that the level of suspended particulate matters pollution fluctuates every year depending on the local wind speed, humidity, and temperature. Research results also showed the values were over the standard value according to the governor of South Sulawesi regulation.

  3. Racial isolation and exposure to airborne particulate matter and ozone in understudied US populations: Environmental justice applications of downscaled numerical model output.

    Science.gov (United States)

    Bravo, Mercedes A; Anthopolos, Rebecca; Bell, Michelle L; Miranda, Marie Lynn

    2016-01-01

    Researchers and policymakers are increasingly focused on combined exposures to social and environmental stressors, especially given how often these stressors tend to co-locate. Such exposures are equally relevant in urban and rural areas and may accrue disproportionately to particular communities or specific subpopulations. To estimate relationships between racial isolation (RI), a measure of the extent to which minority racial/ethnic group members are exposed to only one another, and long-term particulate matter with an aerodynamic diameter of poverty. RI is associated with higher 5year estimated PM2.5 concentrations in urban, suburban, and rural census tracts, adding to evidence that segregation is broadly associated with disparate air pollution exposures. Disproportionate burdens to adverse exposures such as air pollution may be a pathway to racial/ethnic disparities in health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Characterization and speciation of fine particulate matter inside the public transport buses running on bio-diesel.

    Science.gov (United States)

    2009-09-01

    Air pollution with respect to particulate matter was investigated in Toledo, Ohio, USA, a : city of approximately 300,000, in 2009. Two study buses were selected to reflect typical : exposure conditions of passengers while traveling in the bus. Monit...

  5. Exposure levels of farmers and veterinarians to particulate matter and gases uring operational tasks in pig-fattening houses

    Directory of Open Access Journals (Sweden)

    Nele Van Ransbeeck

    2014-09-01

    Full Text Available The main objective of the study was to assess particulate matter (PM exposure levels for both the farmer and the veterinarian during different operational tasks in pig-fattening houses, and to estimate their exposure levels on a daily working basis (time-weighted average (TWA. The measured PM fractions were: inhalable and respirable PM, PM10, PM2.5 and PM1. The effects of pig age, pen floor type (conventional or low emission surface and cleaning of the pens on the personal PM exposure were also investigated. Indoor concentrations of NH[sub]3[/sub], CH[sub]4[/sub], and CO[sub]2[/sub] were additionally measured during some operational tasks. The results showed that personal exposure levels can become extremely high during some operational tasks performed by the farmer or veterinarian. The highest concentration levels were observed during feed shovelling and blood sampling, the lowest during the weighing of the pigs. For the farmer, the estimated TWA exposure levels of inhalable and respirable PM were 6.0 and 0.29 mg m[sup] -3[/sup] , respectively. These exposure levels for the veterinarian were, respectively, 10.6 and 0.74 mg m[sup] -3[/sup] . The PM concentration levels were mainly determined by the performed operational tasks. There was no significant effect of pig age, pen floor type, nor cleaning of the pens on the personal exposure levels.

  6. Laboratory Measurements of Particulate Matter Concentrations from Asphalt Pavement Abrasion

    Directory of Open Access Journals (Sweden)

    Fullová Daša

    2016-12-01

    Full Text Available The issue of emissions from road traffic is compounded by the fact that the number of vehicles and driven kilometres increase each year. Road traffic is one of the main sources of particulate matter and traffic volume is still increasing and has unpleasant impact on longevity of the pavements and the environment. Vehicle motions cause mechanical wearing of the asphalt pavement surface - wearing course by vehicle tyres. The contribution deals with abrasion of bituminous wearing courses of pavements. The asphalt mixtures of wearing courses are compared in terms of mechanically separated particulate matter. The samples of asphalt mixtures were rutted in wheel tracking machine. The particulate matter measurements were performed in laboratory conditions. The experimental laboratory measurements make it possible to sample particulates without contamination from exhaust emissions, abraded particles from vehicles, resuspension of road dust and climate affects. The contribution offers partial results of measurements on six trial samples of asphalt mixtures with different composition. It presents particulate matter morphology and the comparison of rutted asphalt samples in terms of PM mass concentrations and chemical composition.

  7. Air immunogenicity in quito: activation of immune responses by particulate matter

    OpenAIRE

    Cevallos Bonilla, Victoria Maritza

    2016-01-01

    Urban development experienced around the world in recent years has resulted in the degradation of air quality caused by air pollutants, which are emitted mainly as a product of burning fossil fuels for transportation, in the generation of electricity, and in industrial processes. Exposure to air particulate matter (PM) affects human health, and has been linked to respiratory, cardiovascular and neurological diseases. The mechanisms underlying inflammation in these diverse diseases and to what...

  8. Thorium-particulate matter interaction. Thorium complexing capacity of oceanic particulate matter: Theory

    International Nuclear Information System (INIS)

    Hirose, Katsumi; Tanque, Eiichiro

    1994-01-01

    The interaction between thorium and oceanic particulate matter was examined experimentally by using chemical equilibrium techniques. Thorium reacts quantitatively with the organic binding site of Particulate Matter (PM) in 0.1 mol/L HCl solution by complexation, which is equilibrated within 34 h. According to mass balance analysis, thorium forms a 1:1 complex with the organic binding site in PM, whose conditional stability constant is 10 6.6 L/mol. The Th adsorption ability is present even in 6.9 mol/L HCl solution although the amount of Th adsorption decreases with increasing acidity in the solution. Interferences to Th adsorption by Fe(III) suggests that other metals cannot react with PM in more than 0.1 mol/L HCl solutions when concentrations of other metals are the same level of Th. The competitive reaction between Th and Fe(III) occurs in higher Fe concentrations, which means that the organic binding site is nonspecific for Th. A vertical profile of Th complexing capacity of PM in the western North Pacific is characterized; that is, the Th complexing capacity shows a surface maximum and decreases rapidly with depth

  9. Statins attenuate the development of atherosclerosis and endothelial dysfunction induced by exposure to urban particulate matter (PM{sub 10})

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Ryohei; Hiraiwa, Kunihiko; Cheng, Jui Chih [UBC James Hogg Research Centre, St. Paul' s Hospital, University of British Columbia, Vancouver (Canada); Bai, Ni [UBC James Hogg Research Centre, St. Paul' s Hospital, University of British Columbia, Vancouver (Canada); Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver (Canada); Vincent, Renaud [Environmental Health Sciences and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa (Canada); Francis, Gordon A.; Sin, Don D. [UBC James Hogg Research Centre, St. Paul' s Hospital, University of British Columbia, Vancouver (Canada); Van Eeden, Stephan F., E-mail: Stephan.vanEeden@hli.ubc.ca [UBC James Hogg Research Centre, St. Paul' s Hospital, University of British Columbia, Vancouver (Canada)

    2013-10-01

    Exposure to ambient air particulate matter (particles less than 10 μm or PM{sub 10}) has been shown to be an independent risk factor for the development and progression of atherosclerosis. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have well-established anti-inflammatory properties. The aim of this study was to determine the impact of statins on the adverse functional and morphological changes in blood vessels induced by PM{sub 10}. New Zealand White rabbits fed with a high fat diet were subjected to balloon injury to their abdominal aorta followed by PM{sub 10}/saline exposure for 4 weeks ± lovastatin (5 mg/kg/day) treatment. PM{sub 10} exposure accelerated balloon catheter induced plaque formation and increased intimal macrophages and lipid accumulation while lovastatin attenuated these changes and promoted smooth muscle cell recruitment into plaques. PM{sub 10} impaired vascular acetylcholine (Ach) responses and increased vasoconstriction induced by phenylephrine as assessed by wire myograph. Supplementation of nitric oxide improved the impaired Ach responses. PM{sub 10} increased the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in blood vessels and increased the plasma levels of endothelin-1 (ET-1). Incubation with specific inhibitors for iNOS, COX-2 or ET-1 in the myograph chambers significantly improved the impaired vascular function. Lovastatin decreased the expression of these mediators in atherosclerotic lesions and improved endothelial dysfunction. However, lovastatin was unable to reduce blood lipid levels to the baseline level in rabbits exposed to PM{sub 10}. Taken together, statins protect against PM{sub 10}-induced cardiovascular disease by reducing atherosclerosis and improving endothelial function via their anti-inflammatory properties. - Highlights: • Coarse particulate matter (PM{sub 10}) accelerated balloon injury-induced plaque formation. • Lovastatin decreased intimal

  10. Assessment of population exposure to particulate matter pollution in Chongqing, China

    International Nuclear Information System (INIS)

    Wang Shuxiao; Zhao Yu; Chen Gangcai; Wang Fei; Aunan, Kristin; Hao Jiming

    2008-01-01

    To determine the population exposure to PM 10 in Chongqing, China, we developed an indirect model by combining information on the time activity patterns of various demographic subgroups with estimates of the PM 10 concentrations in different microenvironments (MEs). The spatial and temporal variations of the exposure to PM 10 were illustrated in a geographical information system (GIS). The population weighted exposure (PWE) for the entire population was 229, 155 and 211 μg/m 3 , respectively, in winter, summer and as the annual average. Indoor PM 10 level at home was the largest contributor to the PWE, especially for the rural areas where high pollution levels were found due to solid fuels burning. Elder people had higher PM 10 exposure than adults and youth, due to more time spent in indoor MEs. The highest health risk due to particulate was found in the city zone and northeast regions, suggesting that pollution abatement should be prioritized in these areas. - Using an indirect microenvironment model, the population weighted exposure (PWE) to PM 10 in Chongqing was estimated to be 211 μg/m 3 with significant contribution from indoor pollution

  11. Assessment of population exposure to particulate matter pollution in Chongqing, China

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shuxiao [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China)], E-mail: shxwang@tsinghua.edu.cn; Zhao Yu [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Chen Gangcai; Wang Fei [Institute of Environmental Science and Technology of Chongqing, Chongqing 630020 (China); Aunan, Kristin [Center for International Climate and Environmental Research, P.O. Box 1129, Blindern, 0318 Oslo (Norway); Hao Jiming [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2008-05-15

    To determine the population exposure to PM{sub 10} in Chongqing, China, we developed an indirect model by combining information on the time activity patterns of various demographic subgroups with estimates of the PM{sub 10} concentrations in different microenvironments (MEs). The spatial and temporal variations of the exposure to PM{sub 10} were illustrated in a geographical information system (GIS). The population weighted exposure (PWE) for the entire population was 229, 155 and 211 {mu}g/m{sup 3}, respectively, in winter, summer and as the annual average. Indoor PM{sub 10} level at home was the largest contributor to the PWE, especially for the rural areas where high pollution levels were found due to solid fuels burning. Elder people had higher PM{sub 10} exposure than adults and youth, due to more time spent in indoor MEs. The highest health risk due to particulate was found in the city zone and northeast regions, suggesting that pollution abatement should be prioritized in these areas. - Using an indirect microenvironment model, the population weighted exposure (PWE) to PM{sub 10} in Chongqing was estimated to be 211 {mu}g/m{sup 3} with significant contribution from indoor pollution.

  12. Exposure to Ambient Fine Particulate Air Pollution in Utero as a Risk Factor for Child Stunting in Bangladesh.

    Science.gov (United States)

    Goyal, Nihit; Canning, David

    2017-12-23

    Pregnant mothers in Bangladesh are exposed to very high and worsening levels of ambient air pollution. Maternal exposure to fine particulate matter has been associated with low birth weight at much lower levels of exposure, leading us to suspect the potentially large effects of air pollution on stunting in children in Bangladesh. We estimate the relationship between exposure to air pollution in utero and child stunting by pooling outcome data from four waves of the nationally representative Bangladesh Demographic and Health Survey conducted between 2004 and 2014, and calculating children's exposure to ambient fine particulate matter in utero using high resolution satellite data. We find significant increases in the relative risk of child stunting, wasting, and underweight with higher levels of in utero exposure to air pollution, after controlling for other factors that have been found to contribute to child anthropometric failure. We estimate the relative risk of stunting in the second, third, and fourth quartiles of exposure as 1.074 (95% confidence interval: 1.014-1.138), 1.150 (95% confidence interval: 1.069-1.237, and 1.132 (95% confidence interval: 1.031-1.243), respectively. Over half of all children in Bangladesh in our sample were exposed to an annual ambient fine particulate matter level in excess of 46 µg/m³; these children had a relative risk of stunting over 1.13 times that of children in the lowest quartile of exposure. Reducing air pollution in Bangladesh could significantly contribute to the Sustainable Development Goal of reducing child stunting.

  13. MicroRNAs are associated with blood-pressure effects of exposure to particulate matter: Results from a mediated moderation analysis.

    Science.gov (United States)

    Motta, Valeria; Favero, Chiara; Dioni, Laura; Iodice, Simona; Battaglia, Cristina; Angelici, Laura; Vigna, Luisella; Pesatori, Angela Cecilia; Bollati, Valentina

    2016-04-01

    Exposure to particulate air pollution is associated with increased blood pressure (BP), a well-established risk factor for cardiovascular disease. To elucidate the mechanisms underlying this relationship, we investigated whether the effects of particulate matter of less than 10μm in aerodynamic diameter (PM10) on BP are mediated by microRNAs. We recruited 90 obese individuals and we assessed their PM10 exposure 24 and 48h before the recruitment day. We performed multivariate linear regression models to investigate the effects of PM10 on BP. Using the TaqMan® Low-Density Array, we experimentally evaluated and technically validated the expression levels of 377 human miRNAs in peripheral blood. We developed a mediated moderation analysis to estimate the proportion of PM10 effects on BP that was mediated by miRNA expression. PM10 exposure 24 and 48h before the recruitment day was associated with increased systolic BP (β=1.22mmHg, P=0.019; β=1.24mmHg, P=0.019, respectively) and diastolic BP (β=0.67mmHg, P=0.044; β=0.91mmHg, P=0.007, respectively). We identified nine miRNAs associated with PM10 levels 48h after exposure. A conditional indirect effect (CIE=-0.1431) of PM10 on diastolic BP, which was mediated by microRNA-101, was found in individuals with lower values of mean body mass index. Our data provide evidence that miRNAs are a molecular mechanism underlying the BP-related effects of air pollution exposure, and indicate miR-101 as epigenetic mechanism to be further investigated. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Factors influencing mobile source particulate matter emissions-to-exposure relationships in the Boston urban area.

    Science.gov (United States)

    Greco, Susan L; Wilson, Andrew M; Hanna, Steven R; Levy, Jonathan I

    2007-11-15

    Benefit-cost and regulatory impact analyses often use atmospheric dispersion models with coarse resolution to estimate the benefits of proposed mobile source emission control regulations. This approach may bias health estimates or miss important intra-urban variability for primary air pollutants. In this study, we estimate primary fine particulate matter (PM2.5) intake fractions (iF; the fraction of a pollutant emitted from a source that is inhaled by the population) for each of 23 398 road segments in the Boston Metro Core area to evaluate the potential for intra-urban variability in the emissions-to-exposure relationship. We estimate iFs using the CAL3QHCR line source model combined with residential populations within 5000 m of each road segment. The annual average values for the road segments range from 0.8 to 53 per million, with a mean of 12 per million. On average, 46% of the total exposure is realized within 200 m of the road segment, though this varies from 0 to 93% largely due to variable population patterns. Our findings indicate the likelihood of substantial intra-urban variability in mobile source primary PM2.5 iF that accounting for population movement with time, localized meteorological conditions, and street-canyon configurations would likely increase.

  15. Air pollution and genomic instability: The role of particulate matter in lung carcinogenesis

    International Nuclear Information System (INIS)

    Santibáñez-Andrade, Miguel; Quezada-Maldonado, Ericka Marel; Osornio-Vargas, Álvaro; Sánchez-Pérez, Yesennia; García-Cuellar, Claudia M.

    2017-01-01

    In this review, we summarize and discuss the evidence regarding the interaction between air pollution, especially particulate matter (PM), and genomic instability. PM has been widely studied in the context of several diseases, and its role in lung carcinogenesis gained relevance due to an increase in cancer cases for which smoking does not seem to represent the main risk factor. According to epidemiological and toxicological evidence, PM acts as a carcinogenic factor in humans, inducing high rates of genomic alterations. Here, we discuss not only how PM is capable of inducing genomic instability during the carcinogenic process but also how our genetic background influences the response to the sources of damage. - Highlights: • Air pollution represents a worldwide problem with impact on human health. • Particulate matter (PM) has a recognized carcinogenic potential in humans. • Lung cancer susceptibility depends on gene-environment interactions. • Epidemiological and experimental evidence links PM exposure to genomic instability. • PM and genomic instability are co-dependent factors during cancer continuum. - We summarize the association between particulate matter (a component of air pollution) and genomic instability as well as discuss how new strategies to study the impact of air pollution on genomic instability and lung-cancer development could improve our understanding of the lung-cancer genome.

  16. Association of Exposure to Fine Particulate Matter and Risk Factors of Non-Communicable Diseases in Children and Adolescents

    Directory of Open Access Journals (Sweden)

    Parinaz Poursafa

    2017-10-01

    Full Text Available Background: Risk factors of non-communicable disease (NCD origin from early life, and exposure to environmental pollutant may be a predisposing factor. This study aimed to investigate the association of air quality index (AQI and fine particulate matter (PM2.5 with some NCD risk factors in a sample of Iranian children and adolescents. Materials and Methods: This cross-sectional study was conducted in 2014 to 2016 among children and adolescents, aged 6-18 years, in Isfahan, Iran. Physical examination, including weight, height, and blood pressure, was conducted by standard methods. Fasting blood sample was obtained for fasting blood glucose, total cholesterol, high density lipoprotein-cholesterol, low-density lipoprotein- cholesterol, and triglycerides. The mean AQI and PM2.5 values from the study time till one year prior to the survey were used. Multiple linear regression analysis was conducted for the association of AQI and PM2.5 with other variables. Results: Participants consisted of 186 children and adolescents with mean (SD age of 10.52(2.38 years. Exposure to higher level of PM2.5 had significant associations with higher levels of systolic blood pressure, low-density lipoprotein cholesterol, and triglycerides. It also had positive relationship with other risk factors and inverse association with low-density lipoprotein cholesterol (LDL-C, but these associations were not statistically significant. The corresponding figures were not significant for AQI. Conclusion: At current study results showed that exposure to higher levels of fine particulates was associated with some NCD risk factors in children and adolescents. Early life prevention of NCDs can lead to large reductions in disease risk; adverse effects of ambient pollutants should be considered in this regard.

  17. Johns Hopkins Particulate Matter Research Center

    Data.gov (United States)

    Federal Laboratory Consortium — The Johns Hopkins Particulate Matter Research Center will map health risks of PM across the US based on analyses of national databases on air pollution, mortality,...

  18. Contrasts in oxidative potential and other particulate matter characteristics collected near major streets and background locations

    NARCIS (Netherlands)

    Boogaard, H.; Janssen, N.A.H.; Fischer, P.H.; Kos, G.P.A.; Weijers, E.P.; Cassee, F.R.; van der Zee, S.C.; Hartog, J. de; Brunekreef, B.; Hoek, G.

    2012-01-01

    BACKGROUND: Measuring the oxidative potential of airborne particulate matter (PM) may provide a more health-based exposure measure by integrating various biologically relevant properties of PM into a single predictor of biological activity. OBJECTIVES: We aimed to assess the contrast in oxidative

  19. Contrasts in oxidative potential and other particulate matter characteristics collected near major streets and background locations.

    NARCIS (Netherlands)

    Boogaard, H.; Janssen, N.A.; Fischer, P.H.; Kos, G.P.; Weijers, E.P.; Cassee, F.R.; Zee, S.C. van der; Hartog, J.J. de; Brunekreef, B.; Hoek, G.

    2012-01-01

    BACKGROUND: Measuring the oxidative potential of airborne particulate matter (PM) may provide a more health-based exposure measure by integrating various biologically relevant properties of PM into a single predictor of biological activity. OBJECTIVES: We aimed to assess the contrast in oxidative

  20. Particulate Matter: a closer look

    NARCIS (Netherlands)

    Buijsman E; Beck JP; Bree L van; Cassee FR; Koelemeijer RBA; Matthijsen J; Thomas R; Wieringa K; LED; MGO

    2005-01-01

    The summary in booklet form 'Fijn stof nader bekeken' (Particulate Matter: a closer look) , published in Dutch by the Netherlands Environmental Assessment Agency (MNP) and the Environment and Safety Division of the National Institute for Public Health and the Environment (RIVM), has been designed to

  1. Repeated exposures to roadside particulate matter extracts suppresses pulmonary defense mechanisms, resulting in lipid and protein oxidative damage.

    Science.gov (United States)

    Pardo, Michal; Porat, Ziv; Rudich, Assaf; Schauer, James J; Rudich, Yinon

    2016-03-01

    Exposure to particulate matter (PM) pollution in cities and urban canyons can be harmful to the exposed population. However, the underlying mechanisms that lead to health effects are not yet elucidated. It is postulated that exposure to repeated, small, environmentally relevant concentrations can affect lung homeostasis. This study examines the impact of repeated exposures to urban PM on mouse lungs with focus on inflammatory and oxidative stress parameters. Aqueous extracts from collected urban PM were administered to mice by 5 repeated intra-tracheal instillations (IT). Multiple exposures, led to an increase in cytokine levels in both bronchoalveolar lavage fluid and in the blood serum, indicating a systemic reaction. Lung mRNA levels of antioxidant/phase II detoxifying enzymes decreased by exposure to the PM extract, but not when metals were removed by chelation. Finally, disruption of lung tissue oxidant-inflammatory/defense balance was evidenced by increased levels of lipid and protein oxidation. Unlike response to a single IT exposure to the same dose and source of extract, multiple exposures result in lung oxidative damage and a systemic inflammatory reaction. These could be attributed to compromised capacity to activate the protective Nrf2 tissue defense system. It is suggested that water-soluble metals present in urban PM, potentially from break and tire wear, may constitute major drivers of the pulmonary and systemic responses to multiple exposure to urban PM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Individual and population intake fractions of diesel particulate matter (DPM) in bus stop microenvironments.

    Science.gov (United States)

    Xu, Jia; Jin, Taosheng; Miao, Yaning; Han, Bin; Gao, Jiajia; Bai, Zhipeng; Xu, Xiaohong

    2015-12-01

    Diesel particulate matter (DPM) is associated with adverse human health effects. This study aims to investigate the relationship between DPM exposure and emissions by estimating the individual intake fraction (iFi) and population intake fraction (iFp) of DPM. Daily average concentrations of particulate matter at two bus stops during rush hours were measured, and then they were apportioned to DPM due to heavy-duty diesel bus emissions using Chemical Mass Balance Model. The DPM emissions of diesel buses for different driving conditions (idling, creeping and traveling) were estimated on the basis of field observations and published emission factors. The median iFi of DPM was 0.67 and 1.39 per million for commuters standing at the bus stop and pedestrians/cyclists passing through the bus stop during rush hours, respectively. The median iFp of DPM was 94 per million. Estimations of iFi and iFp of DPM are potentially significant for exposure assessment and risk management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Exposure of children to airborne particulate matter of different size fractions during indoor physical education at school

    Energy Technology Data Exchange (ETDEWEB)

    Branis, Martin; Hytychova, Adela [Charles University in Prague, Faculty of Science, Institute for Environmental Studies, Albertov 6, 128 43 Prague 2 (Czech Republic); Safranek, Jiri [Charles University in Prague, Faculty of Physical Education, Department of outdoor sports, Jose Martiho 31, 162 52 Prague 6 (Czech Republic)

    2009-06-15

    Although moderate regular aerobic exercise is recommended for good health, adverse health consequences may be incurred by people who exercise in areas with high ambient pollution, such as in the centres of large cities with dense traffic. The exposure of children during exercise is of special concern because of their higher sensitivity to air pollutants. The size-segregated mass concentration of particulate matter was measured in a naturally ventilated elementary school gym during eight campaigns, seven to ten days long, from November 2005 through August 2006 in a central part of Prague (Czech Republic). The air was sampled using a five-stage cascade impactor. The indoor concentrations of PM{sub 2.5} recorded in the gym exceeded the WHO recommended 24-hour limit of 25 {mu}g m{sup -3} in 50% of the days measured. The average 24-h concentrations of PM{sub 2.5} (24.03 {mu}g m{sup -3}) in the studied school room did not differ much from those obtained from the nearest fixed site monitor (25.47 {mu}g m{sup -3}) and the indoor and ambient concentrations were closely correlated (correlation coefficient 0.91), suggesting a high outdoor-to-indoor penetration rate. The coarse indoor fraction concentration (PM{sub 2.5-10}) was associated with the number of exercising pupils (correlation coefficient 0.77), indicating that human activity is its main source. Considering the high pulmonary ventilation rate of exercising children and high outdoor particulate matter concentrations, the levels of both coarse and fine aerosols may represent a potential health risk for sensitive individuals during their physical education performed in naturally ventilated gyms in urban areas with high traffic intensity. (author)

  4. Differential pulmonary and cardiac effects of pulmonary exposure to a panel of particulate matter-associated metals

    International Nuclear Information System (INIS)

    Wallenborn, J. Grace; Schladweiler, Mette J.; Richards, Judy H.; Kodavanti, Urmila P.

    2009-01-01

    Biological mechanisms underlying the association between particulate matter (PM) exposure and increased cardiovascular health effects are under investigation. Water-soluble metals reaching systemic circulation following pulmonary exposure are likely exerting a direct effect. However, it is unclear whether specific PM-associated metals may be driving this. We hypothesized that exposure to equimolar amounts of five individual PM-associated metals would cause differential pulmonary and cardiac effects. We exposed male WKY rats (14 weeks old) via a single intratracheal instillation (IT) to saline or 1 μmol/kg body weight of zinc, nickel, vanadium, copper, or iron in sulfate form. Responses were analyzed 4, 24, 48, or 96 h after exposure. Pulmonary effects were assessed by bronchoalveolar lavage fluid levels of total cells, macrophages, neutrophils, protein, albumin, and activities of lactate dehydrogenase, γ-glutamyl transferase, and n-acetyl glucosaminidase. Copper induced earlier pulmonary injury/inflammation, while zinc and nickel produced later effects. Vanadium or iron exposure induced minimal pulmonary injury/inflammation. Zinc, nickel, or copper increased serum cholesterol, red blood cells, and white blood cells at different time points. IT of nickel and copper increased expression of metallothionein-1 (MT-1) in the lung. Zinc, nickel, vanadium, and iron increased hepatic MT-1 expression. No significant changes in zinc transporter-1 (ZnT-1) expression were noted in the lung or liver; however, zinc increased cardiac ZnT-1 at 24 h, indicating a possible zinc-specific cardiac effect. Nickel exposure induced an increase in cardiac ferritin 96 h after IT. This data set demonstrating metal-specific cardiotoxicity is important in linking metal-enriched anthropogenic PM sources with adverse health effects.

  5. Characterization of coarse particulate matter in school gyms

    International Nuclear Information System (INIS)

    Branis, Martin; Safranek, Jiri

    2011-01-01

    coarse particulate matter, which can contribute to increased short-term inhalation exposure of exercising children. - Highlights: → We studied concentration, composition and morphology of coarse particles in gyms. → Indoor concentration of coarse particles was high during days with pupils activity. → Effect of outdoor coarse dust on indoor levels was weak and inconsistent. → Six main groups of minerals contributing to indoor resuspended dust were determined. → The most abundant coarse particles were human skin scales.

  6. Allegheny County Particulate Matter 2.5

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The U.S. Environmental Protection Agency provides information on the particulate matter concentration for Allegheny County that have a diameter greater or equal to...

  7. Particulate Matter (Environmental Health Student Portal)

    Science.gov (United States)

    ... that includes curriculum standards, assessments, and lesson rubrics. Sources of Particulate Matter (U.S. Environmental Protection Agency) - Information and activity on interpreting ... U.S. National Library of Medicine National Institutes of Health U.S. Department ...

  8. Respiratory morbidity associated with exposure to particulate matter in the environment

    Directory of Open Access Journals (Sweden)

    Elkin Martínez. L

    2011-11-01

    Full Text Available Introduction: it is assumed that prolonged exposure to airborne pollutants in the areas where people live or work can affect their respiratory systems. In order to demand for control measures aimed at protecting the community’s health, it is necessary to provide evidence for this claim. Methods: the respiratory morbidity of people living or working in urban areas of Medellín was analyzed (high particulate matter pollution. The average of PM10 is 60 µg/m3 and then compared with the respiratory morbidity of a matched sample of inhabitants living in the municipalities located in eastern Antioquia (low pollution. The average of PM10 is 30 µg/m3. Results: the groups that were compared were similar with respect to sociodemographic and other potential confounding variables. Upon comparing the two groups, a higher risk of respiratory signs and symptoms can be observed for subjects from the urban areas of Medellín. Nasal congestion, respiratory distress, and cough are the symptoms that occur in sharper contrast with relative risk of 2.60 95% CI (1.93, 3.62; 2.22 95% CI (1.56, 3.15 and 2.14 95% CI (1.63, 2.81 respectively. Conclusion: high pm10 levels as an indicator of air pollution in urban environments where people live and work contribute to a higher risk of respiratory disease. This implies adverse consequences both in economic and social terms. The control of such a situation hence becomes a social and professional priority.

  9. Cause-specific stillbirth and exposure to chemical constituents and sources of fine particulate matter.

    Science.gov (United States)

    Ebisu, Keita; Malig, Brian; Hasheminassab, Sina; Sioutas, Constantinos; Basu, Rupa

    2018-01-01

    The stillbirth rate in the United States is relatively high, but limited evidence is available linking stillbirth with fine particulate matter (PM 2.5 ), its chemical constituents and sources. In this study, we explored associations between cause-specific stillbirth and prenatal exposures to those pollutants with using live birth and stillbirth records from eight California locations during 2002-2009. ICD-10 codes were used to identify cause of stillbirth from stillbirth records. PM 2.5 total mass and chemical constituents were collected from ambient monitors and PM 2.5 sources were quantified using Positive Matrix Factorization. Conditional logistic regression was applied using a nested case-control study design (N = 32,262). We found that different causes of stillbirth were associated with different PM 2.5 sources and/or chemical constituents. For stillbirths due to fetal growth, the odds ratio (OR) per interquartile range increase in gestational age-adjusted exposure to PM 2.5 total mass was 1.23 (95% confidence interval (CI): 1.06, 1.44). Similar associations were found with resuspended soil (OR=1.25, 95% CI: 1.10, 1.42), and secondary ammonium sulfate (OR=1.45, 95% CI: 1.18, 1.78). No associations were found between any pollutants and stillbirths caused by maternal complications. This study highlighted the importance of investigating cause-specific stillbirth and the differential toxicity levels of specific PM 2.5 sources and chemical constituents. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Bioaccessibility and Speciation of Potential Toxicants in Some Geogenic Sources of Atmospheric Particulate Matter

    Science.gov (United States)

    Morman, S. A.; Wolf, R. E.; Plumlee, G.; Reynolds, R. L.

    2008-12-01

    The correlation of exposure to particulate matter (PM) and increased morbidity and mortality was established in the 1970's. Research focused on elucidating mechanisms of action (i.e. particle size, composition, and biodurability), has generally examined anthropogenic sources such as solid or liquid combustion byproducts of fossil fuels, byproducts from the smelting of metal ores, and commercial/industrial mineral dusts (asbestos, crystalline silica. metal dusts). While many studies exist on agricultural exposures to inorganic dust, far fewer have examined health issues related to particulate matter contributions from rural, non-agricultural dusts or other geogenic sources. Geogenic PM (produced by natural processes such as volcanic ash, volcanic fog (vog), dusts from dry lakes or glacial deposits, smoke and windborne ash from wildfires, and dusts containing various soil pathogens) and geoanthropogenic PM (produced from natural sources by processes that are modified or enhanced by human activities such as dusts from lakebeds dried by human removal of water, dusts produced from areas that have undergone desertification as a result of human practices etc.) are increasingly recognized as potential agents of toxicity and disease, via both environmental and occupational exposures. Surface sediment on some dry lake beds may contribute significant amounts of mineral dusts to the atmospheric load. For example, Owens Lake (a dry lake in southern California) has been a major source of PM10 (particulate matter less than 10 micrometers) dust in the United States. Dusts from dry and drying saline lakes may contain high concentrations of metals, such as arsenic, with known human health toxicity. Wildfires, consuming over nine million acres in 2007, also contribute significant amounts of particulate matter in addition to their other hazards. Designed to estimate the bioaccessibility of metals in soils, dusts and other environmental materials by measuring the reactivity of the

  11. Particulate Matter Emission Factors for Biomass Combustion

    Directory of Open Access Journals (Sweden)

    Simone Simões Amaral

    2016-10-01

    Full Text Available Emission factor is a relative measure and can be used to estimate emissions from multiple sources of air pollution. For this reason, data from literature on particulate matter emission factors from different types of biomass were evaluated in this paper. Initially, the main sources of particles were described, as well as relevant concepts associated with particle measurements. In addition, articles about particle emissions were classified and described in relation to the sampling environment (open or closed and type of burned biomass (agricultural, garden, forest, and dung. Based on this analysis, a set of emission factors was presented and discussed. Important observations were made about the main emission sources of particulate matter. Combustion of compacted biomass resulted in lower particulate emission factors. PM2.5 emissions were predominant in the burning of forest biomass. Emission factors were more elevated in laboratory burning, followed by burns in the field, residences and combustors.

  12. Health Outcomes of Exposure to Biological and Chemical Components of Inhalable and Respirable Particulate Matter.

    Science.gov (United States)

    Morakinyo, Oyewale Mayowa; Mokgobu, Matlou Ingrid; Mukhola, Murembiwa Stanley; Hunter, Raymond Paul

    2016-06-14

    Particulate matter (PM) is a key indicator of air pollution and a significant risk factor for adverse health outcomes in humans. PM is not a self-contained pollutant but a mixture of different compounds including chemical and biological fractions. While several reviews have focused on the chemical components of PM and associated health effects, there is a dearth of review studies that holistically examine the role of biological and chemical components of inhalable and respirable PM in disease causation. A literature search using various search engines and (or) keywords was done. Articles selected for review were chosen following predefined criteria, to extract and analyze data. The results show that the biological and chemical components of inhalable and respirable PM play a significant role in the burden of health effects attributed to PM. These health outcomes include low birth weight, emergency room visit, hospital admission, respiratory and pulmonary diseases, cardiovascular disease, cancer, non-communicable diseases, and premature death, among others. This review justifies the importance of each or synergistic effects of the biological and chemical constituents of PM on health. It also provides information that informs policy on the establishment of exposure limits for PM composition metrics rather than the existing exposure limits of the total mass of PM. This will allow for more effective management strategies for improving outdoor air quality.

  13. Health Outcomes of Exposure to Biological and Chemical Components of Inhalable and Respirable Particulate Matter

    Directory of Open Access Journals (Sweden)

    Oyewale Mayowa Morakinyo

    2016-06-01

    Full Text Available Particulate matter (PM is a key indicator of air pollution and a significant risk factor for adverse health outcomes in humans. PM is not a self-contained pollutant but a mixture of different compounds including chemical and biological fractions. While several reviews have focused on the chemical components of PM and associated health effects, there is a dearth of review studies that holistically examine the role of biological and chemical components of inhalable and respirable PM in disease causation. A literature search using various search engines and (or keywords was done. Articles selected for review were chosen following predefined criteria, to extract and analyze data. The results show that the biological and chemical components of inhalable and respirable PM play a significant role in the burden of health effects attributed to PM. These health outcomes include low birth weight, emergency room visit, hospital admission, respiratory and pulmonary diseases, cardiovascular disease, cancer, non-communicable diseases, and premature death, among others. This review justifies the importance of each or synergistic effects of the biological and chemical constituents of PM on health. It also provides information that informs policy on the establishment of exposure limits for PM composition metrics rather than the existing exposure limits of the total mass of PM. This will allow for more effective management strategies for improving outdoor air quality.

  14. Black carbon concentrations in California vehicles and estimation of in-vehicle diesel exhaust particulate matter exposures

    Science.gov (United States)

    Fruin, Scott A.; Winer, Arthur M.; Rodes, Charles E.

    This research assessed in-vehicle exposures to black carbon (BC) as an indicator of diesel particulate matter (DPM) exposures. Approximately 50 h of real-time Aethalometer BC measurements were made inside vehicles driven on freeway and arterial loops in Los Angeles and Sacramento. Video tapes of the driver's view were transcribed to record the traffic conditions, vehicles followed, and vehicle occupant observations, and these results were tested for their associations with BC concentration. In-vehicle BC concentrations were highest when directly following diesel-powered vehicles, particularly those with low exhaust pipe locations. The lowest BC concentrations were observed while following gasoline-powered passenger cars, on average no different than not following any vehicle. Because diesel vehicles were over-sampled in the field study, results were not representative of real-world driving. To calculate representative exposures, in-vehicle BC concentrations were grouped by the type of vehicle followed, for each road type and congestion level. These groupings were then re-sampled stochastically, in proportion to the fraction of statewide vehicle miles traveled (VMT) under each of those conditions. The approximately 6% of time spent following diesel vehicles led to 23% of the in-vehicle BC exposure, while the remaining exposure was due to elevated roadway BC concentrations. In-vehicle BC exposures averaged 6 μg m -3 in Los Angeles and the Bay Area, the regions with the highest congestion and the majority of the state's VMT. The statewide average in-vehicle BC exposure was 4 μg m -3, corresponding to DPM concentrations of 7-23 μg m -3, depending on the Aethalometer response to elemental carbon (EC) and the EC fraction of the DPM. In-vehicle contributions to overall DPM exposures ranged from approximately 30% to 55% of total DPM exposure on a statewide population basis. Thus, although time spent in vehicles was only 1.5 h day -1 on average, vehicles may be the most

  15. NICKEL SPECIATION OF URBAN PARTICULATE MATTER

    Energy Technology Data Exchange (ETDEWEB)

    Kevin C. Galbreath; Charlene R. Crocker; Carolyn M. Nyberg; Frank E. Huggins; Gerald P. Huffman

    2003-10-01

    A four-step sequential Ni extraction method, summarized in Table AB-1, was evaluated for identifying and quantifying the Ni species occurring in urban total suspended particulate (TSP) matter and fine particulate matter (<10 {micro}m [PM{sub 10}] and <2.5 {micro}m [PM{sub 2.5}] in aerodynamic diameter). The extraction method was originally developed for quantifying soluble, sulfidic, elemental, and oxidic forms of Ni that may occur in industrial atmospheres. X-ray diffraction (XRD) and x-ray absorption fine structure (XAFS) spectroscopy were used to evaluate the Ni species selectivity of the extraction method. Uncertainties in the chemical speciation of Ni in urban PM{sub 10} and PM{sub 2.5} greatly affect inhalation health risk estimates, primarily because of the large variability in acute, chronic, and cancer-causing effects for different Ni compounds.

  16. Measurement and analysis of ambient atmospheric particulate matter in urban and remote environments

    Science.gov (United States)

    Hagler, Gayle S. W.

    Atmospheric particulate matter pollution is a challenging environmental concern in both urban and remote locations worldwide. It is intrinsically difficult to control, given numerous anthropogenic and natural sources (e.g. fossil fuel combustion, biomass burning, dust, and seaspray) and atmospheric transport up to thousands of kilometers after production. In urban regions, fine particulate matter (particles with diameters under 2.5 mum) is of special concern for its ability to penetrate the human respiratory system and threaten cardiopulmonary health. A second major impact area is climate, with particulate matter altering Earth's radiative balance through scattering and absorbing solar radiation, modifying cloud properties, and reducing surface reflectivity after deposition in snow-covered regions. While atmospheric particulate matter has been generally well-characterized in populated areas of developed countries, particulate pollution in developing nations and remote regions is relatively unexplored. This thesis characterizes atmospheric particulate matter in locations that represent the extreme ends of the spectrum in terms of air pollution-the rapidly-developing and heavily populated Pearl River Delta Region of China, the pristine and climate-sensitive Greenland Ice Sheet, and a remote site in the Colorado Rocky Mountains. In China, fine particles were studied through a year-long field campaign at seven sites surrounding the Pearl River Delta. Fine particulate matter was analyzed for chemical composition, regional variation, and meteorological impacts. On the Greenland Ice Sheet and in the Colorado Rocky Mountains, the carbonaceous fraction (organic and elemental carbon) of particulate matter was studied in the atmosphere and snow pack. Analyses included quantifying particulate chemical and optical properties, assessing atmospheric transport, and evaluating post-depositional processing of carbonaceous species in snow.

  17. Differential electrocardiogram efffects in normal and hypertensive rats after inhalation exposure to transition metal rich particulate matter

    Science.gov (United States)

    Inhalation of particulate matter (PM) associated with air pollution causes adverse effects on cardiac function including heightened associations with ischemic heart disease, dysrhythmias, heart failure, and cardiac arrest. Some of these effects have been attributable to transitio...

  18. Indoor exposure to environmental cigarette smoke, but not other inhaled particulates associates with respiratory symptoms and diminished lung function in adults

    DEFF Research Database (Denmark)

    Hersoug, Lars-Georg; Husemoen, Lise L N; Sigsgaard, Torben

    2010-01-01

    Exposure to particulate matter (PM) can induce airway inflammation and exacerbation of asthma. However, there is limited knowledge about the effects of exposure to indoor sources of PM. We investigated the associations between self-reported exposure to indoor sources of PM and lower airway sympto...

  19. Metal/nonmetal diesel particulate matter rule

    Energy Technology Data Exchange (ETDEWEB)

    Tomko, D.M. [United States Dept. of Labor, Mine Safety and Health Administration, Pittsburgh, PA (United States). Safety and Health Technology Center; Stackpole, R.P. [United States Dept. of Labor, Mine Safety and Health Administration, Triadelphia, WV (United States). Approval and Certification Center; Findlay, C.D. [United States Dept. of Labor, Mine Safety and Health Administration, Arlington, VA (United States). Metal/Nonmetal Safety and Health; Pomroy, W.H. [United States Dept. of Labor, Mine Safety and Health Administration, Duluth, MN (United States). Metal/Nonmetal North Central District

    2010-07-01

    The American Mine Safety and Health Administration (MSHA) issued a health standard in January 2001 designed to reduce exposure to diesel particulate matter (DPM) in underground metal and nonmetal mines. The rule established an interim concentration limit for DPM of 400 {mu}g/m{sup 3} of total carbon, to be followed in 2004 by a final limit of 160 {mu}g/m{sup 3} of total carbon. The 2001 rule was challenged in federal court by various mining trade associations and mining companies. The rule was subsequently amended. This paper highlighted the major provisions of the 2006 final rule and summarized MSHAs current compliance sampling procedures. The concentration limit was changed to a permissible exposure limit and the sampling surrogate was changed from total carbon to elemental carbon. The MSHA published a new rule in 2006 which based the final limit on a miner's personal exposure rather than a concentration limit. The final limit was phased in using 3 steps over 2 years. This paper also discussed engineering controls and a recent MSHA report on organic carbon, elemental carbon and total carbon emissions from a diesel engine fueled with various blends of standard diesel and biodiesel. In May 2008, about two-thirds of all underground metal/nonmetal mines achieved and maintained compliance with the rule. 20 refs.

  20. Fine Particulate Matter Air Pollution and Cognitive Function Among Older US Adults

    OpenAIRE

    Ailshire, Jennifer A.; Crimmins, Eileen M.

    2014-01-01

    Existing research on the adverse health effects of exposure to pollution has devoted relatively little attention to the potential impact of ambient air pollution on cognitive function in older adults. We examined the cross-sectional association between residential concentrations of particulate matter with aerodynamic diameter of 2.5 μm or less (PM2.5) and cognitive function in older adults. Using hierarchical linear modeling, we analyzed data from the 2004 Health and Retirement Study, a large...

  1. A new technology for the reduction of particulate matter from diesel engines in ships

    NARCIS (Netherlands)

    Van Rens, G.L.M.A.

    2008-01-01

    In this thesis the focus is on the particulate matter reduction of ships, as ships contribute significantly to the particulate matter concentration in ambient air. Because the fuel of sea ships contains a lot of ash, the emitted particulate matter will also contain a lot of ash. In car and truck

  2. Controlling exposure to DPM : diesel particulate filters vs. biodiesel

    International Nuclear Information System (INIS)

    Bugarski, A.D.; Shi, X.C.

    2009-01-01

    In order to comply with Mine Safety and Health Administration regulations, mining companies are required to reduce miners exposures to diesel particulate matter (DPM) to 160 μg/m 3 of total carbon. Diesel particulate filter (DPF) systems, disposable filter elements (DFEs), and diesel oxidation catalysts (DOCs) are among the most effective strategies and technologies for curtailing DPM at its source. Substituting diesel fuel with biodiesel blends is also considered to be a plausible solution by many underground mine operators. Studies were conducted at the National Institute for Occupational Safety and Health Diesel Laboratory at Lake Lynn Experimental Mine to evaluate various control technologies and strategies available to the underground mining industry to reduce exposure to DPM. The physical, chemical and toxicological properties of diesel aerosols (DPM) emitted by engines in an underground mine were also evaluated. The DPF and DFE systems were found to be highly effective in reducing total particulate and elemental carbon mass concentrations, total aerosol surface concentrations and, in most cases, concentrations of diesel aerosols in occupational settings such as underground mines. Soy methyl ester (SME) biodiesel fuels had the potential to reduce the mine air concentrations of total DPM, although the rate of reduction varied depending on engine operating conditions. The disadvantage of using biodiesel fuels was an increase in the fraction of particle-bound volatile organics and concentration of aerosols for light-load engine operating conditions.

  3. Estimating source-attributable health impacts of ambient fine particulate matter exposure: global premature mortality from surface transportation emissions in 2005

    International Nuclear Information System (INIS)

    Chambliss, S E; Zeinali, M; Minjares, R; Silva, R; West, J J

    2014-01-01

    Exposure to ambient fine particular matter (PM 2.5 ) was responsible for 3.2 million premature deaths in 2010 and is among the top ten leading risk factors for early death. Surface transportation is a significant global source of PM 2.5 emissions and a target for new actions. The objective of this study is to estimate the global and national health burden of ambient PM 2.5 exposure attributable to surface transportation emissions. This share of health burden is called the transportation attributable fraction (TAF), and is assumed equal to the proportional decrease in modeled ambient particulate matter concentrations when surface transportation emissions are removed. National population-weighted TAFs for 190 countries are modeled for 2005 using the MOZART-4 global chemical transport model. Changes in annual average concentration of PM 2.5 at 0.5 × 0.67 degree horizontal resolution are based on a global emissions inventory and removal of all surface transportation emissions. Global population-weighted average TAF was 8.5 percent or 1.75 μg m −3 in 2005. Approximately 242 000 annual premature deaths were attributable to surface transportation emissions, dominated by China, the United States, the European Union and India. This application of TAF allows future Global Burden of Disease studies to estimate the sector-specific burden of ambient PM 2.5 exposure. Additional research is needed to capture intraurban variations in emissions and exposure, and to broaden the range of health effects considered, including the effects of other pollutants. (letter)

  4. The Particulate Nature of Matter in Science Education and in Science.

    Science.gov (United States)

    Vos, Wobbe de; Verdonk, Adri H.

    1996-01-01

    Discusses ideas about the particulate nature of matter and assesses the extent to which these represent a compromise between scientific and educational considerations. Analyzes relations between the particulate nature of matter in science and science education in an attempt to understand children's inclination to attribute all kinds of macroscopic…

  5. Particulates and noise exposure during bicycle, bus and car commuting: A study in three European cities

    NARCIS (Netherlands)

    Okokon, E.O.; Yli-Tuomi, T.; Turunen, A.W.; Taimisto, P.; Pennanen, A.; Vouitsis, I.; Samaras, Z.; Voogt, M.; Keuken, M.; Lanki, T.

    2017-01-01

    Background: In order to curb traffic-related air pollution and its impact on the physical environment, contemporary city commuters are encouraged to shift from private car use to active or public transport modes. However, personal exposures to particulate matter (PM), black carbon and noise during

  6. Predicting exposure-response associations of ambient particulate matter with mortality in 73 Chinese cities.

    Science.gov (United States)

    Madaniyazi, Lina; Guo, Yuming; Chen, Renjie; Kan, Haidong; Tong, Shilu

    2016-01-01

    Estimating the burden of mortality associated with particulates requires knowledge of exposure-response associations. However, the evidence on exposure-response associations is limited in many cities, especially in developing countries. In this study, we predicted associations of particulates smaller than 10 μm in aerodynamic diameter (PM10) with mortality in 73 Chinese cities. The meta-regression model was used to test and quantify which city-specific characteristics contributed significantly to the heterogeneity of PM10-mortality associations for 16 Chinese cities. Then, those city-specific characteristics with statistically significant regression coefficients were treated as independent variables to build multivariate meta-regression models. The model with the best fitness was used to predict PM10-mortality associations in 73 Chinese cities in 2010. Mean temperature, PM10 concentration and green space per capita could best explain the heterogeneity in PM10-mortality associations. Based on city-specific characteristics, we were able to develop multivariate meta-regression models to predict associations between air pollutants and health outcomes reasonably well. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Particulate Matter Resuspension in Mississippi Bight Evaluated with CONCORDE's Synthesis Model

    Science.gov (United States)

    O'Brien, S. J.; Quas, L. M.; Miles, T. N.; Pan, C.; Cambazoglu, M. K.; Soto Ramos, I. M.; Greer, A. T.; Church, I.; Wiggert, J. D.

    2017-12-01

    The CONsortium for oil spill exposure pathways in COastal River-Dominated Ecosystems (CONCORDE) was established to investigate the complex fine-scale biological, chemical and physical interactions in a marine system controlled by pulsed-river plume dynamics. During CONCORDE's spring 2016 field campaign, the In Situ Ichthyoplankton Imaging System (ISIIS) on the R/V Point Sur and the Scanfish on the R/V Pelican comprehensively characterized the physical and biological structure in the region. Increased suspended particulate matter was observed by the ISIIS, with concentrations at depth sufficient to completely occlude the in situ images of planktonic organisms. Data was also collected on the continental shelf during the spring cruise by the RU31 glider in the proximity of the Mississippi River Delta, east of the ISIIS / Scanfish transects. Backscatter and salinity observed by the Scanfish and glider showed elevated suspended particulate matter and increased salinity, suggesting a linkage to shoreward advection from the continental shelf of oceanic waters that are sufficiently energetic to drive sediment resuspension. As part of the CONCORDE research effort, a four-dimensional biogeochemical/lower trophic level synthesis model for Mississippi Sound and Bight has been developed, based on the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System. This study utilizes CONCORDE's synthesis model to investigate the physical forcing mechanisms affecting the increased suspended particulate matter concentration observed in the Mississippi Bight during spring 2016, and advection pathways between estuarine and shelf waters in the northern Gulf of Mexico. The results show that episodic, advection-driven resuspension is a critical aspect controlling suspended sediment distributions in Mississippi Bight, which has implications for observed spatio-temporal patterns of planktonic species.

  8. Characterization of coarse particulate matter in school gyms

    Energy Technology Data Exchange (ETDEWEB)

    Branis, Martin, E-mail: branis@natur.cuni.cz [Charles University in Prague, Faculty of Science, Institute for Environmental Studies, Prague (Czech Republic); Safranek, Jiri [Charles University in Prague, Faculty of Physical Education, Department of Outdoor Sports, Prague (Czech Republic)

    2011-05-15

    gyms were found to be indoor microenvironments with high concentrations of coarse particulate matter, which can contribute to increased short-term inhalation exposure of exercising children. - Highlights: {yields} We studied concentration, composition and morphology of coarse particles in gyms. {yields} Indoor concentration of coarse particles was high during days with pupils activity. {yields} Effect of outdoor coarse dust on indoor levels was weak and inconsistent. {yields} Six main groups of minerals contributing to indoor resuspended dust were determined. {yields} The most abundant coarse particles were human skin scales.

  9. EDITORIAL: Global impacts of particulate matter air pollution

    Science.gov (United States)

    Bell, Michelle L.; Holloway, Tracey

    2007-10-01

    Even in well-studied, data-rich regions of the United States and Europe, understanding ambient particulate matter (PM, aka aerosols) remains a challenge. Atmospheric aerosols exhibit chemical heterogeneity, spatial and seasonal variability, and result in a wide range of health impacts (mortality, respiratory disease, cardiovascular disease, eye irritation, and others). In addition, aerosols play an important role in climate, exerting warming effects (black carbon), cooling effects (sulfate and organic carbon), and affecting precipitation and cloud cover. Characterizing the emission sources, concentrations, transport patterns, and impacts is particularly difficult in developing countries, where data are scarce, emissions are high, and health impacts are often severe. We are pleased to present this focus issue of Environmental Research Letters (ERL) devoted to the study of PM on an international scale. Our authors are leading researchers who each bring cross-cutting analysis to this critical health and environmental issue. Collectively, the research presented here contributes to our understanding of PM sources, processes, and impacts, while highlighting key steps forward. In this issue, Zhang et al examine the size distribution and composition of emitted anthropogenic PM in China, finding that the characteristics of primary aerosol emissions differ significantly between industrialized and developing regions in China. Concentration measurements of PM, like detailed emissions inventories, are rare in the developing world. van Vliet and Kinney analyze fine particles in Nairobi based on monitoring data for PM2.5 and black carbon. Using measurements from multiple locations of differing proximity to roadways, the authors evaluate traffic-source contributions to PM exposure. The impact of emission location and exposed population are also evaluated by Liu and Mauzerall, but on a continent-to-continent scale. The authors quantify the connection between SO2 emissions and

  10. Cardiomyopathy confers susceptibility to particulate matter-induced oxidative stress, vagal dominance, arrhythmia, pulmonary inflammation in heart failure-prone rats

    Science.gov (United States)

    Acute exposure to ambient fine particulate matter (PM2.5) is tied to cardiovascular morbidity and mortality, especially among those with prior cardiac injury. The mechanisms and pathophysiologic events precipitating these outcomes remain poorly understood but may involve inflamm...

  11. An Automated Heart Rate Detection Platform in Wild-Type Zebrafish for Cardiotoxicity Screening of Fine Particulate Matter Air Pollution

    Science.gov (United States)

    Exposure to air pollution-derived particulate matter (PM) causes adverse cardiovascular health outcomes, with increasing evidence implicating soluble components of PM; however, the enormous number of unique PM samples from different air sheds far exceeds the capacity of conventio...

  12. Diesel Particulate Matter Polygons, California, 2005, NATA

    Data.gov (United States)

    U.S. Environmental Protection Agency — The national-scale assessment includes 177 air pollutants (a subset of the air toxics on the Clean Air Act's list of 187 air toxics plus diesel particulate matter...

  13. Diesel Particulate Matter Polygons, Hawaii, 2005, NATA

    Data.gov (United States)

    U.S. Environmental Protection Agency — The national-scale assessment includes 177 air pollutants (a subset of the air toxics on the Clean Air Act's list of 187 air toxics plus diesel particulate matter...

  14. Diesel Particulate Matter Polygons, Arizona, 2005, NATA

    Data.gov (United States)

    U.S. Environmental Protection Agency — The national-scale assessment includes 177 air pollutants (a subset of the air toxics on the Clean Air Act's list of 187 air toxics plus diesel particulate matter...

  15. Diesel Particulate Matter Polygons, Nevada, 2005, NATA

    Data.gov (United States)

    U.S. Environmental Protection Agency — The national-scale assessment includes 177 air pollutants (a subset of the air toxics on the Clean Air Act's list of 187 air toxics plus diesel particulate matter...

  16. Ambient particulate matter induces IL-8 expression through an alternative NF-kB mechanism in human airway epithelial cells

    Science.gov (United States)

    BACKGROUND: Exposure to ambient air particulate matter (PM) has been shown to increase rates of cardio-pulmonary morbidity and mortality, but the underlying mechanisms are still not well understood. OBJECTIVE: To examine signaling events involved in the expression of the inflamma...

  17. Particulate matter exposure exacerbates high glucose-induced cardiomyocyte dysfunction through ROS generation.

    Directory of Open Access Journals (Sweden)

    Li Zuo

    Full Text Available Diabetes mellitus and fine particulate matter from diesel exhaust (DEP are both important contributors to the development of cardiovascular disease (CVD. Diabetes mellitus is a progressive disease with a high mortality rate in patients suffering from CVD, resulting in diabetic cardiomyopathy. Elevated DEP levels in the air are attributed to the development of various CVDs, presumably since fine DEP (<2.5 µm in diameter can be inhaled and gain access to the circulatory system. However, mechanisms defining how DEP affects diabetic or control cardiomyocyte function remain poorly understood. The purpose of the present study was to evaluate cardiomyocyte function and reactive oxygen species (ROS generation in isolated rat ventricular myocytes exposed overnight to fine DEP (0.1 µg/ml, and/or high glucose (HG, 25.5 mM. Our hypothesis was that DEP exposure exacerbates contractile dysfunction via ROS generation in cardiomyocytes exposed to HG. Ventricular myocytes were isolated from male adult Sprague-Dawley rats cultured overnight and sarcomeric contractile properties were evaluated, including: peak shortening normalized to baseline (PS, time-to-90% shortening (TPS(90, time-to-90% relengthening (TR(90 and maximal velocities of shortening/relengthening (±dL/dt, using an IonOptix field-stimulator system. ROS generation was determined using hydroethidine/ethidium confocal microscopy. We found that DEP exposure significantly increased TR(90, decreased PS and ±dL/dt, and enhanced intracellular ROS generation in myocytes exposed to HG. Further studies indicated that co-culture with antioxidants (0.25 mM Tiron and 0.5 mM N-Acetyl-L-cysteine completely restored contractile function in DEP, HG and HG+DEP-treated myocytes. ROS generation was blocked in HG-treated cells with mitochondrial inhibition, while ROS generation was blocked in DEP-treated cells with NADPH oxidase inhibition. Our results suggest that DEP exacerbates myocardial dysfunction in isolated

  18. Particulate Matter Concentrations in East Oakland's High Street Corridor

    Science.gov (United States)

    Lei, P.; Jackson, J.; Lewis, R.; Marigny, A.; Mitchell, J. D.; Nguyen, R.; Philips, B.; Randle, D.; Romero, D.; Spears, D.; Telles, C.; Weissman, D.

    2012-12-01

    Particulate matter (PM) is a complex mixture of small solid pieces and/or liquid droplets in the air. High concentrations of PM can pose a serious health hazard because inhalation can result in breathing problems and/or aggravate asthma. Long term exposure can increase the likelihood of respiratory problems like asthma and emphysema as well as cancer. The smaller the particles, the deeper they can get into the respiratory system. For this reason, the smallest particles, those smaller than 2.5 micrometers in diameter (PM2.5), are the most dangerous. PM2.5 is largely emitted from motor vehicles burning fuels that don't break down fully. Our research team investigated the levels of PM2.5 as well as particles smaller than 10 micrometers (PM10) and total suspended particulate (TSP) along the northeast-southwest trending High Street Corridor, near Fremont High School in East Oakland, California. Using the Aerocet 531 mass particle counter, team members walked through neighborhoods and along major roads within a 1 mile radius of Fremont High School. The Aerocet 531 recorded two minute average measurements of all the relevant PM sizes, which are reported in mg/m3. Measurements were consistently taken in the morning, between 8:30 and 11:30 am. Preliminary results indicate maximum readings of all PM sizes at sites that are in close proximity to a major freeway (Interstate-880). These results support our initial hypothesis that proximity to major roads and freeways, especially those with high diesel-fuel burning truck traffic, would be the primary factor affecting PM concentration levels. Preliminary median and maximum readings all suggest particulate matter levels below what the EPA would consider unhealthy or risky.

  19. The impact of airborne particulate matter on pediatric hospital admissions for pneumonia among children in Jinan, China: A case-crossover study.

    Science.gov (United States)

    Lv, Chenguang; Wang, Xianfeng; Pang, Na; Wang, Lanzhong; Wang, Yuping; Xu, Tengfei; Zhang, Yu; Zhou, Tianran; Li, Wei

    2017-06-01

    This study aims to examine the effect of short-term changes in the concentration of particulate matter of diameter ≤2.5 µm (PM 2.5 ) and ≤10 µm (PM 10 ) on pediatric hospital admissions for pneumonia in Jinan, China. It explores confoundings factors of weather, season, and chemical pollutants. Information on pediatric hospital admissions for pneumonia in 2014 was extracted from the database of Jinan Qilu Hospital. The relative risk of pediatric hospital admissions for pneumonia was assessed using a case-crossover approach, controlling weather variables, day of the week, and seasonality. The single-pollutant model demonstrated that increased risk of pediatric hospital admissions for pneumonia was significantly associated with elevated PM 2.5 concentrations the day before hospital admission and elevated PM 10 concentrations 2 days before hospital admission. An increment of 10 μg/m 3 in PM 2.5 and PM 10 was correlated with a 6% (95% CI 1.02--1.10) and 4% (95% CI 1.00-1.08) rise in number of admissions for pneumonia, respectively. In two pollutant models, PM 2.5 and PM 10 remained significant after inclusion of sulfur dioxide or nitrogen dioxide but not carbon monoxide. This study demonstrated that short-term exposure to atmospheric particulate matter (PM 2.5 /PM 10 ) may be an important determinant of pediatric hospital admissions for pneumonia in Jinan, China. This study demonstrated that short-term exposure to atmospheric particulate matter (PM 2.5 /PM 10 ) may be an important determinant of pediatric hospital admissions for pneumonia in Jinan, China, and suggested the relevance of pollutant exposure levels and their effects. As a specific group, children are sensitive to airborne particulate matter. This study estimated the short-term effects attribute to other air pollutants to provide references for relevant studies.

  20. Changes to the structure of blood clots formed in the presence of fine particulate matter

    International Nuclear Information System (INIS)

    Metassan, Sofian; Routledge, Michael N; Ariens, Robert A S; Scott, D Julian

    2009-01-01

    Both long-term and short-term exposure (one to two hours) to particulate matter are associated with morbidity and mortality caused by cardiovascular diseases. The underlying mechanisms leading to cardiovascular events are unclear, however, changes to blood coagulability upon exposure to ultrafine particulate matter (UFPM, the smallest of which can enter the circulation) is a plausible mechanism. Objectives: This study aims to investigate the direct effects of particulate matter on fibrin polymerization, lateral aggregation and the formation of fibrin network structure. Methods: Standard Urban Particulate Matter (PM) was suspended in Tris buffer centrifuged and filtered with <200nm filter to obtain ultrafine PM or their water-soluble components. Purified normal fibrinogen was made to clot by adding thrombin and calcium chloride in the presence of varying concentrations of PM. Permeation properties (Darcy constant [Ks]) and turbidity of clots were measured to investigate the effects on flow-rate, pore size, and fibrin polymerization. In addition, confocal microscopy was performed to study detailed clot structure. Results: Total PM increased the Ks of clots in a dose dependant manner (Ks = 4.4, 6.9 and 13.2 x 10-9 cm2 for 0, 50 and 100 |ag/ml total PM concentrations, respectively). Filtered PM also produced a significant increase in Ks at PM concentration of 17 |ag/ml. Final turbidity measurements at 20min were obtained for varying concentrations of PM. Maximum optical density (OD) for 1 mg/ml fibrinogen at 0, 50, 100 and 200 |ag/ml total PM concentrations were 0.39, 0.42, 0.45 and 0.46, respectively. The maximum OD for 0, 17, 34 and 68 |ag/ml filtered PM concentrations were 0.39, 0.42 0.47 and 0.51, respectively, suggesting an increase in fibre diameter with increasing particulate concentration. The lag phase was significantly shorter and the rate of polymerisation was significantly faster in the presence of 68 |ag/ml filtered PM. Confocal microscopy results showed

  1. Exposure information in environmental health research: Current opportunities and future directions for particulate matter, ozone, and toxic air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    McKone, Thomas E.; Ryan, P. Barry; Ozkaynak, Haluk

    2007-02-01

    Understanding and quantifying outdoor and indoor sources of human exposure are essential but often not adequately addressed in health-effects studies for air pollution. Air pollution epidemiology, risk assessment, health tracking and accountability assessments are examples of health-effects studies that require but often lack adequate exposure information. Recent advances in exposure modeling along with better information on time-activity and exposure factors data provide us with unique opportunities to improve the assignment of exposures for both future and ongoing studies linking air pollution to health impacts. In September 2006, scientists from the US Environmental Protection Agency (EPA) and the Centers for Disease Control and Prevention (CDC) along with scientists from the academic community and state health departments convened a symposium on air pollution exposure and health in order to identify, evaluate, and improve current approaches for linking air pollution exposures to disease. This manuscript presents the key issues, challenges and recommendations identified by the exposure working group, who used cases studies of particulate matter, ozone, and toxic air pollutant exposure to evaluate health-effects for air pollution. One of the over-arching lessons of this workshop is that obtaining better exposure information for these different health-effects studies requires both goal-setting for what is needed and mapping out the transition pathway from current capabilities to meeting these goals. Meeting our long-term goals requires definition of incremental steps that provide useful information for the interim and move us toward our long-term goals. Another over-arching theme among the three different pollutants and the different health study approaches is the need for integration among alternate exposure assessment approaches. For example, different groups may advocate exposure indicators, biomonitoring, mapping methods (GIS), modeling, environmental media

  2. Temporal and spatial variations in particulate matter, particulate organic carbon and attenuation coefficient in Cochin Backwaters

    Digital Repository Service at National Institute of Oceanography (India)

    Devi, K.S.

    Nine stations over a stretch of 21 km of Periyar river estuary were sampled during January to December 1981. Particulate matter varied from 3-253 mg.1 super(1) at the surface and 24.8-257mg.1 super(1) at the bottom. Particulate organic carbon ranged...

  3. Omega-3 Fatty Acid Attenuates Cardiovascular Effects in Healthy Older Volunteers Exposed to Concentrated Ambient Fine and UltrafineParticulate Matter

    Science.gov (United States)

    Rationale: Ambient particulate matter (PM) exposure has been associated with adverse cardiovascular effects. A recent epidemiology study reported that omega-3 polyunsaturated fatty acid (fish oil) supplementation blunted the response of study participants to PM. Our study was des...

  4. Validation of NAA Method for Urban Particulate Matter

    International Nuclear Information System (INIS)

    Woro Yatu Niken Syahfitri; Muhayatun; Diah Dwiana Lestiani; Natalia Adventini

    2009-01-01

    Nuclear analytical techniques have been applied in many countries for determination of environmental pollutant. Method of NAA (neutron activation analysis) representing one of nuclear analytical technique of that has low detection limits, high specificity, high precision, and accuracy for large majority of naturally occurring elements, and ability of non-destructive and simultaneous determination of multi-elemental, and can handle small sample size (< 1 mg). To ensure quality and reliability of the method, validation are needed to be done. A standard reference material, SRM NIST 1648 Urban Particulate Matter, has been used to validate NAA method. Accuracy and precision test were used as validation parameters. Particulate matter were validated for 18 elements: Ti, I, V, Br, Mn, Na, K, Cl, Cu, Al, As, Fe, Co, Zn, Ag, La, Cr, and Sm,. The result showed that the percent relative standard deviation of the measured elemental concentrations are found to be within ranged from 2 to 14,8% for most of the elements analyzed whereas Hor rat value in range 0,3-1,3. Accuracy test results showed that relative bias ranged from -11,1 to 3,6%. Based on validation results, it can be stated that NAA method is reliable for characterization particulate matter and other similar matrix samples to support air quality monitoring. (author)

  5. Air Quality Standards for Particulate Matter (PM) at high altitude cities

    International Nuclear Information System (INIS)

    Bravo Alvarez, H.; Sosa Echeverria, R.; Sanchez Alvarez, P.; Krupa, S.

    2013-01-01

    The Air Quality Standards for Particulate Matter (PM) at high altitude urban areas in different countries, must consider the pressure and temperature due to the effect that these parameters have on the breath volume. This paper shows the importance to correct Air Quality Standards for PM considering pressure and temperature at different altitudes. Specific factors were suggested to convert the information concerning PM, from local to standard conditions, and adjust the Air Quality Standards for different high altitudes cities. The correction factors ranged from: 1.03 for Santiago de Chile to 1.47 for El Alto Bolivia. Other cities in this study include: Mexico City, México; La Paz, Bolivia; Bogota, Cali and Medellin, Colombia; Quito, Ecuador and Cuzco, Peru. If these corrections are not considered, the atmospheric concentrations will be underestimated. - Highlights: ► AQS for particulate matter concentrations adjusted by pressure and temperature. ► Particulate matter concentrations can be underestimated in high altitude Cities. ► Particulate matter concentrations must be compared under the same conditions. - In order to compare high altitude atmospheric PM concentrations with AQS, one must consider T and P of the sampling site.

  6. Testing the near field/far field model performance for prediction of particulate matter emissions in a paint factory

    DEFF Research Database (Denmark)

    Koivisto, A.J.; Jensen, A.C.Ø.; Levin, Marcus

    2015-01-01

    A Near Field/Far Field (NF/FF) model is a well-accepted tool for precautionary exposure assessment but its capability to estimate particulate matter (PM) concentrations is not well studied. The main concern is related to emission source characterization which is not as well defined for PM emitters...

  7. Effects of ambient particulate matter on aerobic exercise performance

    Directory of Open Access Journals (Sweden)

    Dale R. Wagner

    2018-04-01

    Full Text Available Background/Objective: Wintertime thermal inversions in narrow mountain valleys create a ceiling effect, increasing concentration of small particulate matter (PM2.5. Despite potential health risks, many people continue to exercise outdoors in thermal inversions. This study measured the effects of ambient PM2.5 exposure associated with a typical thermal inversion on exercise performance, pulmonary function, and biological markers of inflammation. Methods: Healthy, active adults (5 males, 11 females performed two cycle ergometer time trials outdoors in a counterbalanced design: 1 low ambient PM2.5 concentrations ( .05 for PM2.5 concentration and the measured variables. Conclusion: An acute bout of vigorous exercise during an AQI of “yellow” did not diminish exercise performance in healthy adults, nor did it have a negative effect on pulmonary function or biological health markers. These variables might not be sensitive to small changes from acute, mild PM2.5 exposure. Keywords: Air pollution, Cycle ergometry, Pulmonary function, Time trial, Vigorous exercise

  8. Repeated exposures to roadside particulate matter extracts suppresses pulmonary defense mechanisms, resulting in lipid and protein oxidative damage

    International Nuclear Information System (INIS)

    Pardo, Michal; Porat, Ziv; Rudich, Assaf; Schauer, James J.; Rudich, Yinon

    2016-01-01

    Exposure to particulate matter (PM) pollution in cities and urban canyons can be harmful to the exposed population. However, the underlying mechanisms that lead to health effects are not yet elucidated. It is postulated that exposure to repeated, small, environmentally relevant concentrations can affect lung homeostasis. This study examines the impact of repeated exposures to urban PM on mouse lungs with focus on inflammatory and oxidative stress parameters. Aqueous extracts from collected urban PM were administered to mice by 5 repeated intra-tracheal instillations (IT). Multiple exposures, led to an increase in cytokine levels in both bronchoalveolar lavage fluid and in the blood serum, indicating a systemic reaction. Lung mRNA levels of antioxidant/phase II detoxifying enzymes decreased by exposure to the PM extract, but not when metals were removed by chelation. Finally, disruption of lung tissue oxidant-inflammatory/defense balance was evidenced by increased levels of lipid and protein oxidation. Unlike response to a single IT exposure to the same dose and source of extract, multiple exposures result in lung oxidative damage and a systemic inflammatory reaction. These could be attributed to compromised capacity to activate the protective Nrf2 tissue defense system. It is suggested that water-soluble metals present in urban PM, potentially from break and tire wear, may constitute major drivers of the pulmonary and systemic responses to multiple exposure to urban PM. - Highlights: • Repeated exposure to urban PM cause systemic inflammation and oxidative damage to lung tissue lipids and proteins. • Repeated exposure to these PM extracts decreased transcription of Nrf2 protective genes. • Single as opposed to repeated exposure, induced confined lung response accompanied by activated defense mechanisms. • Metals, potentially from break and tire wear, drive the pulmonary response with exposure to urban PM. - Repeated exposures to urban PM water extracts

  9. Predicting exposure-response associations of ambient particulate matter with mortality in 73 Chinese cities

    International Nuclear Information System (INIS)

    Madaniyazi, Lina; Guo, Yuming; Chen, Renjie; Kan, Haidong; Tong, Shilu

    2016-01-01

    Estimating the burden of mortality associated with particulates requires knowledge of exposure-response associations. However, the evidence on exposure-response associations is limited in many cities, especially in developing countries. In this study, we predicted associations of particulates smaller than 10 μm in aerodynamic diameter (PM_1_0) with mortality in 73 Chinese cities. The meta-regression model was used to test and quantify which city-specific characteristics contributed significantly to the heterogeneity of PM_1_0-mortality associations for 16 Chinese cities. Then, those city-specific characteristics with statistically significant regression coefficients were treated as independent variables to build multivariate meta-regression models. The model with the best fitness was used to predict PM_1_0-mortality associations in 73 Chinese cities in 2010. Mean temperature, PM_1_0 concentration and green space per capita could best explain the heterogeneity in PM_1_0-mortality associations. Based on city-specific characteristics, we were able to develop multivariate meta-regression models to predict associations between air pollutants and health outcomes reasonably well. - Highlights: • The heterogeneity was examined in PM_1_0-mortality associations among Chinese cities. • Temperature, PM_1_0 and green space could best explain the heterogeneity. • PM_1_0-mortality associations were predicted for 73 Chinese cities. - This study provides a practical way to assess exposure-response associations and evaluate the burden of mortality in areas with insufficient data.

  10. Assessing the impact of fine particulate matter (PM2.5) on respiratory-cardiovascular chronic diseases in the New York City Metropolitan area using Hierarchical Bayesian Model estimates

    Science.gov (United States)

    An enhanced research paradigm is presented to address the spatial and temporal gaps in fine particulate matter (PM2.5) measurements and generate realistic and representative concentration fields for use in epidemiological studies of human exposure to ambient air particulate conce...

  11. Catalytic combustion of particulate matter Catalysts of alkaline nitrates supported on hydrous zirconium

    International Nuclear Information System (INIS)

    Galdeano, N.F.; Carrascull, A.L.; Ponzi, M.I.; Lick, I.D.; Ponzi, E.N.

    2004-01-01

    In order to explore a method to remove particulate matter, catalysts of different alkaline nitrates (Li, K and Cs) supported on hydrous zirconium were prepared by the method of incipient humidity and tested as catalysts for particulate matter combustion. The catalytic activity was determined by using the temperature programmed oxidation technique (TPO), utilizing two equipments, a thermogravimetric reactor and other of fixed bed. In the first case the particulate matter/catalyst mixture was milled carefully in a mortar (tight contact) while in the second case more realistic operative conditions were used, particulate matter/catalyst mixture was made with a spatula (loose contact). All prepared catalysts showed good activity for the particulate matter combustion. The cesium catalyst was the one that presented higher activity, decreasing the combustion temperature between 200 and 250 deg. C with respect to the combustion without catalyst. The catalyst with lithium nitrate became active at higher temperature than its melting point and the same occurred with the potassium catalyst. This did not occur for the catalyst containing cesium nitrate that melts at 407 deg. C and became active from 350 deg. C

  12. Analysis of atmospheric particulate matter; application of optical and selected geochemical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mastalerz, M.; Glikson, M.; Simpson, R.W. [Indiana University, Bloomington, IN (United States). Indiana Geological Survey

    1998-09-01

    An increase in particulate matter in the atmosphere has been shown to be linked to increased mortality but this relationship is poorly understood. Light microscopy, electron microscopy, electron microprobe, and micro-FTIR techniques have been applied to study atmospheric particulates in Brisbane, Australia as a part of a study on asthma. The particulate matter samples were collected daily from April to August 1992, and the sampling covered the autumn period which is typically a time of high asthma incidence in Brisbane. Volumetrically, most atmospheric particulate matter is less than 2{mu}m in size. The microscopic analysis reveals that this material is composed mainly of combusted and incompletely burned hydrocarbons from motor vehicle exhaust emissions, quiescent spores of Mucorales, soil bacteria, and inorganic matter in the form of quartz and other silicates. Elemental and functional group analyses confirm microscope identification, documenting carbon-rich, aromatic exhaust material, more aliphatic pollen and spore material and inorganic matter. Fungal spores dominate bioaerosol and are very abundant from the end of April through May to mid-June. The cytoplasmic content of pollens or fungaonly regarded as allergenic. Particulates from the exhaust emissions and crustal material in a sub-micrometer size range may act as carriers or dispersive mechanisms for cytoplasmic material from fungal spores and pollens, perhaps causing periods of the highest exhaust emission to be the most allergenic. 25 refs., 4 figs., 1 tab.

  13. Indoor inhalation intake fractions of fine particulate matter: Review of influencing factors

    DEFF Research Database (Denmark)

    Hodas, Natasha; Loh, Miranda; Shin, Hyeong-Moo

    2016-01-01

    Exposure to fine particulate matter (PM2.5) is a major contributor to the global human disease burden. The indoor environment is of particular importance when considering the health effects associated with PM2.5 exposures because people spend the majority of their time indoors and PM2.5 exposures...... per unit mass emitted indoors are two to three orders of magnitude larger than exposures to outdoor emissions. Variability in indoor PM2.5 intake fraction (iFin,total), which is defined as the integrated cumulative intake of PM2.5 per unit of emission, is driven by a combination of building......-specific, human-specific, and pollutant-specific factors. Due to a limited availability of data characterizing these factors, however, indoor emissions and intake of PM2.5 are not commonly considered when evaluating the environmental performance of product life cycles. With the aim of addressing this barrier...

  14. Evaluation of diesel particulate matter sampling techniques

    CSIR Research Space (South Africa)

    Pretorius, CJ

    2011-09-01

    Full Text Available The study evaluated diesel particulate matter (DPM) sampling methods used in the South African mining industry. The three-piece cassette respirable, open face and stopper sampling methods were compared with the SKC DPM cassette method to find a...

  15. Nature’s Particulate Matter with and without Charge and Travelling

    NARCIS (Netherlands)

    Ursem, W.N.J.

    2016-01-01

    Natures and anthropogenic particulates can travel long distances on wind flows, but negative electrical charge due to friction can increase dispersion. Models for calculations of distance travelling of biological particulate matter with and without charge are never been calculated in a theoretical

  16. Characterizing health impacts from indoor and outdoor exposure to fine particulates

    DEFF Research Database (Denmark)

    Vigon, Bruce; Fantke, Peter; McKone, Thomas E

    2016-01-01

    Exposure to fine particulate matter (PM2.5) pollution is a major contributor to human disease burden as continuously shown in the Global Burden of Disease study series. Exposures to PM2.5 concentration outdoors and indoors contribute almost equally to this burden. Despite the importance, health...... impacts from exposure to PM2.5 are often excluded from life cycle impact assessment (LCIA) characterization profiles. This is in large part because of the lack of well-vetted harmonized guidance about how to consistently assess the exposures and impacts of indoor and outdoor emissions of PM2.5 and its...... precursors. We present a framework for calculating characterization factors for indoor and outdoor emissions of primary PM2.5 and secondary PM2.5 precursors, and a roadmap for further refining this modelling framework for operational use in LCIA. The framework was developed over the last three years...

  17. Effect of co-exposure to nickel and particulate matter on insulin resistance and mitochondrial dysfunction in a mouse model.

    Science.gov (United States)

    Xu, Xiaohua; Rao, Xiaoquan; Wang, Tse-Yao; Jiang, Silis Y; Ying, Zhekang; Liu, Cuiqing; Wang, Aixia; Zhong, Mianhua; Deiuliis, Jeffrey A; Maiseyeu, Andrei; Rajagopalan, Sanjay; Lippmann, Morton; Chen, Lung-Chi; Sun, Qinghua

    2012-11-05

    It has been well recognized that toxicity of fine ambient air particulate matter (PM(2.5)) may depend on its chemical constituents, including components such as soluble metals that may theoretically exert distinctive effects. We have recently demonstrated an important effect of PM(2.5) on metabolic function. Since transition metals, such as nickel (Ni), represent an important component of exposure in certain environments, and may significantly influence the toxicity of inhalational exposure, we investigated the effects of Ni as a variable component of ambient PM(2.5) exposure. Male ApoE knockout mice were exposed to filtered air (FA), fine-sized nickel sulfate particles alone (Ni) at 0.44 μg/m(3), concentrated ambient air PM(2.5) (CAPs) at a mean of 70 μg/m(3), or CAPs+Ni in Tuxedo, NY, 6 hours/day, 5 days/week, for 3 months. Exposure to Ni, irrespective of co-exposure to CAPs, resulted in body weight gain, while exposure to CAPs+Ni significantly enhanced fasting glucose and worsened insulin resistance measures (HOMA-IR), when compared with exposure to CAPs alone. CAPs+Ni exposure induced a significant decrease in phosphorylation of AMP-activated protein kinase (AMPK) α. Exposure to Ni or CAPs+Ni significantly induced microcirculatory dysfunction and increased monocytic cell infiltration into lung and adipose, and decreased uncoupling protein 1 expression at gene and protein levels and several brown adipocyte-specific genes in adipose tissue. Ni exposure has effects on metabolic and inflammatory parameters that are comparable to that of CAPs. Additionally, Ni synergistically exacerbates CAPs-induced adverse effects on some of, but not all of, these parameters, that may be mediated via the AMPK signaling pathway. These findings have important implications for inhaled transition metal toxicity that may exert synergistic effects with other PM(2.5) components.

  18. Canada-United States Transboundary Particulate Matter Science Assessment

    Science.gov (United States)

    This 2004 document summarizes the findings of the Canada-U.S. subcommittee on Scientific Cooperation concerning the transboundary transport of particulate matter (PM) and PM precursors between the two countries.

  19. High diversity of fungi in air particulate matter.

    Science.gov (United States)

    Fröhlich-Nowoisky, Janine; Pickersgill, Daniel A; Després, Viviane R; Pöschl, Ulrich

    2009-08-04

    Fungal spores can account for large proportions of air particulate matter, and they may potentially influence the hydrological cycle and climate as nuclei for water droplets and ice crystals in clouds, fog, and precipitation. Moreover, some fungi are major pathogens and allergens. The diversity of airborne fungi is, however, not well-known. By DNA analysis we found pronounced differences in the relative abundance and seasonal cycles of various groups of fungi in coarse and fine particulate matter, with more plant pathogens in the coarse fraction and more human pathogens and allergens in the respirable fine particle fraction (<3 microm). Moreover, the ratio of Basidiomycota to Ascomycota was found to be much higher than previously assumed, which might also apply to the biosphere.

  20. World Trade Center fine particulate matter causes respiratory tract hyperresponsiveness in mice.

    Science.gov (United States)

    Gavett, Stephen H; Haykal-Coates, Najwa; Highfill, Jerry W; Ledbetter, Allen D; Chen, Lung Chi; Cohen, Mitchell D; Harkema, Jack R; Wagner, James G; Costa, Daniel L

    2003-06-01

    Pollutants originating from the destruction of the World Trade Center (WTC) in New York City on 11 September 2001 have been reported to cause adverse respiratory responses in rescue workers and nearby residents. We examined whether WTC-derived fine particulate matter [particulate matter with a mass median aerodynamic diameter mice to contribute to the risk assessment of WTC-derived pollutants. Samples of WTC PM2.5 were derived from settled dust collected at several locations around Ground Zero on 12 and 13 September 2001. Aspirated samples of WTC PM2.5 induced mild to moderate degrees of pulmonary inflammation 1 day after exposure but only at a relatively high dose (100 microg). This response was not as great as that caused by 100 microg PM2.5 derived from residual oil fly ash (ROFA) or Washington, DC, ambient air PM [National Institute of Standards and Technology, Standard Reference Material (SRM) 1649a]. However, this same dose of WTC PM2.5 caused airway hyperresponsiveness to methacholine aerosol comparable to that from SRM 1649a and to a greater degree than that from ROFA. Mice exposed to lower doses by aspiration or inhalation exposure did not develop significant inflammation or hyperresponsiveness. These results show that exposure to high levels of WTC PM2.5 can promote mechanisms of airflow obstruction in mice. Airborne concentrations of WTC PM2.5 that would cause comparable doses in people are high (approximately 425 microg/m3 for 8 hr) but conceivable in the aftermath of the collapse of the towers when rescue and salvage efforts were in effect. We conclude that a high-level exposure to WTC PM2.5 could cause pulmonary inflammation and airway hyperresponsiveness in people. The effects of chronic exposures to lower levels of WTC PM2.5, the persistence of any respiratory effects, and the effects of coarser WTC PM are unknown and were not examined in these studies. Degree of exposure and respiratory protection, individual differences in sensitivity to WTC PM2

  1. Exposure and risk analysis to particulate matter, metals, and polycyclic aromatic hydrocarbon at different workplaces in Argentina.

    Science.gov (United States)

    Colman Lerner, Jorge Esteban; Elordi, Maria Lucila; Orte, Marcos Agustin; Giuliani, Daniela; de Los Angeles Gutierrez, Maria; Sanchez, EricaYanina; Sambeth, Jorge Enrique; Porta, Atilio Andres

    2018-03-01

    In order to estimate air quality at work environments from small and medium-sized enterprises (SMEs), we determined both the concentration of particulate matter (PM 10 and PM 2.5 ) and the presence of polycyclic aromatic hydrocarbons (PAHs), as the heavy metals in the composition of the particulate matter. Three SMEs located in the city of La Plata, Argentina, were selected: an electromechanical repair and car painting center (ERCP), a sewing work room (SWR), and a chemical analysis laboratory (CAL). The results evidenced high levels of PM exceeding the limits allowed by the USEPA and the presence of benzo(k)fluoranthene in all the analyzed sites and benzo(a)pyrene in the most contaminated site (ERCP). Regarding metals, the presence of Cd, Ni, Cu, Pb, and Mn, mainly in the fraction of PM 2.5 , in the same workplace was found. As far as risk assessment at all the workplaces surveyed is concerned, risk values for contracting cancer throughout life for exposed workers (LCR) did not comply with the parameters either of USEPA or of WHO (World Health Organization).

  2. Exposure to fine particulate matter in the air alters placental structure and the renin-angiotensin system.

    Directory of Open Access Journals (Sweden)

    Sônia de Fátima Soto

    Full Text Available Female Wistar rats were exposed to filtered air (F or to concentrated fine particulate matter (P for 15 days. After mating, the rats were divided into four groups and again exposed to F or P (FF, FP, PF, PP beginning on day 6 of pregnancy. At embryonic day 19, the placenta was collected. The placental structure, the protein and gene expression of TGFβ1, VEGF-A, and its receptor Flk-1 and RAS were evaluated by indirect ELISA and quantitative real-time PCR.Exposure to P decreased the placental mass, size, and surface area as well as the TGFβ1, VEGF-A and Flk-1 content. In the maternal portion of the placenta, angiotensin II (AngII and its receptors AT1 (AT1R and AT2 (AT2R were decreased in the PF and PP groups. In the fetal portion of the placenta, AngII in the FP, PF and PP groups and AT2R in the PF and PP groups were decreased, but AT1R was increased in the FP group. VEGF-A gene expression was lower in the PP group than in the FF group.Exposure to pollutants before and/or during pregnancy alters some characteristics of the placenta, indicating a possible impairment of trophoblast invasion and placental angiogenesis with possible consequences for the maternal-fetal interaction, such as a limitation of fetal nutrition and growth.

  3. Association between ambient fine particulate matter and preterm birth or term low birth weight: An updated systematic review and meta-analysis

    International Nuclear Information System (INIS)

    Li, Xiangyu; Huang, Shuqiong; Jiao, Anqi; Yang, Xuhao; Yun, Junfeng; Wang, Yuxin; Xue, Xiaowei; Chu, Yuanyuan; Liu, Feifei; Liu, Yisi; Ren, Meng

    2017-01-01

    An increasing number of studies have been conducted to determine a possible linkage between maternal exposure to ambient fine particulate matter and effects on the developing human fetus that can lead to adverse birth outcomes, but, the present results are not consistent. A total of 23 studies published before July 2016 were collected and analyzed and the mean value of reported exposure to fine particulate matter (PM 2.5 ) ranged from 1.82 to 22.11 We found a significantly increased risk of preterm birth with interquartile range increase in PM 2.5 exposure throughout pregnancy (odds ratio (OR) = 1.03; 95% conditional independence (CI): 1.01–1.05). The pooled OR for the association between PM 2.5 exposure, per interquartile range increment, and term low birth weight throughout pregnancy was 1.03 (95% CI: 1.02–1.03). The pooled ORs for the association between PM 2.5 exposure per 10 increment, and term low birth weight and preterm birth were 1.05 (95% CI: 0.98–1.12) and 1.02 (95% CI: 0.93–1.12), respectively throughout pregnancy. There is a significant heterogeneity in most meta-analyses, except for pooled OR per interquartile range increase for term low birth weight throughout pregnancy. We here show that maternal exposure to fine particulate air pollution increases the risk of preterm birth and term low birth weight. However, the effect of exposure time needs to be further explored. In the future, prospective cohort studies and personal exposure measurements needs to be more widely utilized to better characterize the relationship between ambient fine particulate exposure and adverse birth outcomes. - Highlights: • The results had shorter intervals indicate and smaller heterogeneity by using IQR increment increase as selected standard. • The manuscript included the latest research results and updated the previous systematic review and meta-analysis. - Meta-analysis of preterm birth and term low birth weight of PM 2.5

  4. Carbonaceous Aerosols in Fine Particulate Matter of Santiago Metropolitan Area, Chile

    Science.gov (United States)

    Toro Araya, Richard; Flocchini, Robert; Morales Segura, Rául G. E.; Leiva Guzmán, Manuel A.

    2014-01-01

    Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002–2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m3) and the United States Environmental Protection Agency standard (15 µg/m3) for fine particulate matter. PMID:24587753

  5. Carbonaceous Aerosols in Fine Particulate Matter of Santiago Metropolitan Area, Chile

    Directory of Open Access Journals (Sweden)

    Richard Toro Araya

    2014-01-01

    Full Text Available Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002–2007, concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August and warm (September to February seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41% than in the warm season (44 ± 18%. On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m3 and the United States Environmental Protection Agency standard (15 µg/m3 for fine particulate matter.

  6. Carbonaceous aerosols in fine particulate matter of Santiago Metropolitan Area, Chile.

    Science.gov (United States)

    Toro Araya, Richard; Flocchini, Robert; Morales Segura, Rául G E; Leiva Guzmán, Manuel A

    2014-01-01

    Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002-2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m(3)) and the United States Environmental Protection Agency standard (15 µg/m(3)) for fine particulate matter.

  7. Exposures to thoracic particulate matter, endotoxin, and glucan during post-Hurricane Katrina restoration work, New Orleans 2005-2012.

    Science.gov (United States)

    Rando, Roy J; Kwon, Cheol-Woong; Lefante, John J

    2014-01-01

    In the aftermath of Hurricane Katrina, which devastated the city of New Orleans in August 2005, restoration workers were at risk for respiratory illness from exposure to airborne particles and microbial agents. In support of an epidemiologic investigation of this risk, an exposure assessment for restoration work activities (demolition, trash & debris management, landscape restoration, sewer/waterline repair, and mold remediation) was performed from 2005 to 2012. For 2005 and 2006, Occupational Safety and Health Administration (OSHA) data (n = 730) for personal and area monitoring of total and respirable dust exposures of restoration workers were accessed and analyzed. The most significant exposures were for demolition work, with average respirable dust exposures in 2005 above the action level of 2.5 mg/m(3) and 17.6% of exposures exceeding the permissible exposure limit (PEL) (5 mg/m(3)). Additional personal and area monitoring for thoracic particulate matter was performed from 2007 to 2012 (n = 774) and samples were assayed for endotoxin and (1→3, 1→6)-β-D-glucan (n = 202). In order to integrate the OSHA data with the later monitoring data, three independent predictive models were developed to convert total and respirable dust measures into the equivalent thoracic dust. The three models were not statistically different and the modeling results were in good agreement with an overall coefficient of variation of 16% for the thoracic dust means across work activities estimated by each of the three models. Overall, thoracic dust exposure levels decreased by about an order of magnitude within the first year after Katrina and then more gradually declined and stabilized through 2012. Estimated average exposures to endotoxin and microbial glucan in 2005 were as high as 256 EU/m(3) and 118 μg/m(3), respectively, and likewise were seen to decrease dramatically and stabilize after 2005. The results of this exposure assessment support previously published reports of

  8. Ultrafine Particulate Matter Combined With Ozone Exacerbates Lung Injury in Mature Adult Rats With Cardiovascular Disease.

    Science.gov (United States)

    Wong, Emily M; Walby, William F; Wilson, Dennis W; Tablin, Fern; Schelegle, Edward S

    2018-05-01

    Particulate matter (PM) and ozone (O3) are dominant air pollutants that contribute to development and exacerbation of multiple cardiopulmonary diseases. Mature adults with cardiovascular disease (CVD) are particularly susceptible to air pollution-related cardiopulmonary morbidities and mortalities. The aim was to investigate the biologic potency of ultrafine particulate matter (UFPM) combined with O3 in the lungs of mature adult normotensive and spontaneously hypertensive (SH) Wistar-Kyoto rats. Conscious, mature adult male normal Wistar-Kyoto (NW) and SH rats were exposed to one of the following atmospheres: filtered air (FA); UFPM (∼ 250 μg/m3); O3 (1.0 ppm); or UFPM + O3 (∼ 250 μg/m3 + 1.0 ppm) combined for 6 h, followed by an 8 h FA recovery period. Lung sections were evaluated for lesions in the large airways, terminal bronchiolar/alveolar duct regions, alveolar parenchyma, and vasculature. NW and SH rats were similarly affected by the combined-pollutant exposure, displaying severe injury in both large and small airways. SH rats were particularly susceptible to O3 exposure, exhibiting increased injury scores in terminal bronchioles and epithelial degeneration in large airways. UFPM-exposure groups had minimal histologic changes. The chemical composition of UFPM was altered by the addition of O3, indicating that ozonolysis promoted compound degradation. O3 increased the biologic potency of UFPM, resulting in greater lung injury following exposure. Pathologic manifestations of CVD may confer susceptibility to air pollution by impairing normal lung defenses and responses to exposure.

  9. THE INFLUENCE OF PARTICULATE MATTER OF AMBIENT ORIGIN UPON INDOOR RESIDENTIAL MASS CONCENTRATIONS INVOLVING SENSITIVE SUBPOPULATIONS-RESULTS FROM LONGITUDINAL PANEL STUDIES

    Science.gov (United States)

    The US EPA has completed field data collections from a series of longitudinal particulate matter (PM) exposure panel field studies. These studies were conducted in Baltimore, Maryland (1998), Fresno, California (1999), and Research Triangle Park (RTP), North Carolina (2000-2001) ...

  10. Impact of Particulate Matter Exposure and Surrounding “Greenness” on Chronic Absenteeism in Massachusetts Public Schools

    OpenAIRE

    MacNaughton, Piers; Eitland, Erika; Kloog, Itai; Schwartz, Joel; Allen, Joseph

    2017-01-01

    Chronic absenteeism is associated with poorer academic performance and higher attrition in kindergarten to 12th grade (K-12) schools. In prior research, students who were chronically absent generally had fewer employment opportunities and worse health after graduation. We examined the impact that environmental factors surrounding schools have on chronic absenteeism. We estimated the greenness (Normalized Difference Vegetation Index (NDVI)) and fine particulate matter air pollution (PM2.5) wit...

  11. Assessment of occupational exposure and contamination by Means of airborne particulate matter and bio monitors using Nuclear technique

    International Nuclear Information System (INIS)

    Menezes, Maria Angela de B. C.; Maia, Elene C. P.; Albinati, Claudia; Filho, Serafim S.

    2001-01-01

    To make an occupational diagnosis is complex because of the difficulty to identify and characterise the expositions. Physicians do not usually have access to the quantity of raw material managed by the worker, dates, period of exposure to the substance. Besides this the onset of occupational diseases is similar to other chronic diseases. Then, this project aimed at assessing metal levels in a galvanising industry by means of biomonitors, scalp hair and toenails donated by workers, and particulate matter collected on air filter. The analysis of the samples was carried out by k0 instrumental neutron activation analysis, k0-INAA. The project was conducted together with the physicians of the Secretariat Municipal de Saude (Municipal Department of Health) and it was inserted in a Worker's Health Awareness Program. Belo Horizonte and surrounding areas are an important industrial centre, concentrating many industries in several areas. Only in Belo Horizonte there are more than 20 galvanising industries ranging from home factories to well equipped ones. This industry was chosen as Object of this project because it is responsible for the majority of patients who look for medical assistance because of metal contamination. Stationary air sampling was carried out in order to evaluate the level of elemental concentration in the indoor environment of the plant. Comparative Group sampling was carried out the same way as the Work Group for scalp hair and toenails. The irradiations were performed in the reactor TRIGA MARK I IPR-R1 in the CDTN. Elemental concentration results determined in the samples from non-exposed people were compared to values in the literature and there were no significant differences between the values. The airborne particulate matter results showed the high level of pollutants which the workers are exposed to inside the galvanising factory. The results obtained confirmed the medical suspicions of workers' contamination and the medical recommendations aimed

  12. Evaluation of airborne particulate matter pollution in Kenitra City, Morocco

    Directory of Open Access Journals (Sweden)

    Abdelfettah Benchrif

    2013-04-01

    Full Text Available Two size fractions of atmospheric particulate matter < 2.5 µm and 2.5-10 µm were collected in Kenitra City from February 2007 to February 2008. The sampling was done using a Gent Stacked sampler on nuclepore polycarbonate filters and the collected filters were analyzed using Total Reflection X-Ray Fluorescence (TXRF and Atomic Absorption Spectroscopy (AAS. The particulate matter trends show higher concentrations during the summer as compared to other seasons. The highest concentrations were obtained for Ca in coarse particles and Fe for fine particles. However, the lowest concentrations were observed for Cd in both particulate sizes. The principal component analysis (PCA based on multivariate study enabled the identification of soil, road dust and traffic emissions as common sources for coarse and fine particles.

  13. Mobile Monitoring of Diesel Particulate Matter Exposure within Five Urban Microenvironments, Portland, OR

    Science.gov (United States)

    Orlando, P. J.; Bennett, B. A.; George, L. A.

    2016-12-01

    Diesel particulate matter (DPM) is a hazardous air pollutant linked to mortality and morbidity outcomes including cancer, cardiovascular disease, and adverse respiratory effects. The EPA's Air Toxics Assessment indicated that more than 50% of Oregonians are exposed to 10 times the ambient benchmark concentration (ABC) of 0.1 μgm-3 for DPM. These model estimates have not been verified with measurements, potentially limiting policy action. We developed a mobile monitoring platform to ground-truth model predictions and characterize DPM spatial variation. Using black carbon (BC) as a marker, concentrations within five urban microenvironments (a construction site, an arterial, a bus mall, a city park, and an indoor workspace) were sampled within Portland, OR. The mobile monitoring platform consisted of a bicycle and trailer equipped with an aethalometer measuring BC mass, a Data Ram 4 measuring total PM2.5 mass, and a Q-Starz GPS recording location; each instrument was monitoring in 1 second intervals. Concentrations of BC were used as an indicator of DPM. The construction site had the highest DPM concentration (7 μg m-3). The indoor workspace and the park had the lowest DPM (0.3 μg m-3). Near the construction site, DPM constituted approximately 50% of the total PM2.5. However, at the park, DPM was attributed to only 6% of the total PM2.5, while the indoor space constituted 15%. Concentrations of BC near construction sites were observed to exceed 67 times the state ABC of 0.1 μg m-3 (Figure). These results signify the need to better characterize the urban exposure to DPM, as even the cleanest microenvironments may be 3 times above the ABC. Our mobile monitoring platform will help further elucidate how local-scale sources contribute to the broader distribution of DPM within Portland, while providing a tool for both residents and DEQ to effectively mitigate the health impacts from DPM exposure.

  14. Recent Advances in Particulate Matter and Nanoparticle Toxicology: A Review of the In Vivo and In Vitro Studies

    Directory of Open Access Journals (Sweden)

    Abderrahim Nemmar

    2013-01-01

    Full Text Available Epidemiological and clinical studies have linked exposure to particulate matter (PM to adverse health effects, which may be registered as increased mortality and morbidity from various cardiopulmonary diseases. Despite the evidence relating PM to health effects, the physiological, cellular, and molecular mechanisms causing such effects are still not fully characterized. Two main approaches are used to elucidate the mechanisms of toxicity. One is the use of in vivo experimental models, where various effects of PM on respiratory, cardiovascular, and nervous systems can be evaluated. To more closely examine the molecular and cellular mechanisms behind the different physiological effects, the use of various in vitro models has proven to be valuable. In the present review, we discuss the current advances on the toxicology of particulate matter and nanoparticles based on these techniques.

  15. Individual and population intake fractions of diesel particulate matter (DPM) in bus stop microenvironments

    International Nuclear Information System (INIS)

    Xu, Jia; Jin, Taosheng; Miao, Yaning; Han, Bin; Gao, Jiajia; Bai, Zhipeng; Xu, Xiaohong

    2015-01-01

    Diesel particulate matter (DPM) is associated with adverse human health effects. This study aims to investigate the relationship between DPM exposure and emissions by estimating the individual intake fraction (iF_i) and population intake fraction (iF_p) of DPM. Daily average concentrations of particulate matter at two bus stops during rush hours were measured, and then they were apportioned to DPM due to heavy-duty diesel bus emissions using Chemical Mass Balance Model. The DPM emissions of diesel buses for different driving conditions (idling, creeping and traveling) were estimated on the basis of field observations and published emission factors. The median iF_i of DPM was 0.67 and 1.39 per million for commuters standing at the bus stop and pedestrians/cyclists passing through the bus stop during rush hours, respectively. The median iF_p of DPM was 94 per million. Estimations of iF_i and iF_p of DPM are potentially significant for exposure assessment and risk management. - Highlights: • Methods to estimate the individual and population intake fraction in bus stop microenvironments were established. • Source apportionment was performed to estimate the DPM due to diesel bus emissions in bus stop microenvironments. • The DPM emission in bus stop microenvironments rather than in the entire urban area was considered. • The movement of people and their exposure duration were introduced in the estimation of population intake fraction. - This work established a method to estimate the individual and population intake fraction in transportation microenvironments on the basis of PM source apportionment.

  16. Chemical Composition of Fine Particulate Matter and Life Expectancy

    Science.gov (United States)

    Dominici, Francesca; Wang, Yun; Correia, Andrew W.; Ezzati, Majid; Pope, C. Arden; Dockery, Douglas W.

    2016-01-01

    Background In a previous study, we provided evidence that a decline in fine particulate matter (PM2.5) air pollution during the period between 2000 and 2007 was associated with increased life expectancy in 545 counties in the United States. In this article, we investigated which chemical constituents of PM2.5 were the main drivers of the observed association. Methods We estimated associations between temporal changes in seven major components of PM2.5 (ammonium, sulfate, nitrate, elemental carbon matter, organic carbon matter, sodium, and silicon) and temporal changes in life expectancy in 95 counties between 2002 and 2007. We included US counties that had adequate chemical components of PM2.5 mass data across all seasons. We fitted single pollutant and multiple pollutant linear models, controlling for available socioeconomic, demographic, and smoking variables and stratifying by urban and nonurban counties. Results In multiple pollutant models, we found that: (1) a reduction in sulfate was associated with an increase in life expectancy; and (2) reductions in ammonium and sodium ion were associated with increases in life expectancy in nonurban counties only. Conclusions Our findings suggest that recent reductions in long-term exposure to sulfate, ammonium, and sodium ion between 2002 and 2007 are associated with improved public health. PMID:25906366

  17. Commuters’ Exposure to Particulate Matter Air Pollution Is Affected by Mode of Transport, Fuel Type, and Route

    Science.gov (United States)

    Zuurbier, Moniek; Hoek, Gerard; Oldenwening, Marieke; Lenters, Virissa; Meliefste, Kees; van den Hazel, Peter; Brunekreef, Bert

    2010-01-01

    Background Commuters are exposed to high concentrations of air pollutants, but little quantitative information is currently available on differences in exposure between different modes of transport, routes, and fuel types. Objectives The aim of our study was to assess differences in commuters’ exposure to traffic-related air pollution related to transport mode, route, and fuel type. Methods We measured particle number counts (PNCs) and concentrations of PM2.5 (particulate matter ≤ 2.5 μm in aerodynamic diameter), PM10, and soot between June 2007 and June 2008 on 47 weekdays, from 0800 to 1000 hours, in diesel and electric buses, gasoline- and diesel-fueled cars, and along two bicycle routes with different traffic intensities in Arnhem, the Netherlands. In addition, each-day measurements were taken at an urban background location. Results We found that median PNC exposures were highest in diesel buses (38,500 particles/cm3) and for cyclists along the high-traffic intensity route (46,600 particles/cm3) and lowest in electric buses (29,200 particles/cm3). Median PM10 exposure was highest from diesel buses (47 μg/m3) and lowest along the high- and low-traffic bicycle routes (39 and 37 μg/m3). The median soot exposure was highest in gasoline-fueled cars (9.0 × 10−5/m), diesel cars (7.9 × 10−5/m), and diesel buses (7.4 × 10−5/m) and lowest along the low-traffic bicycle route (4.9 × 10−5/m). Because the minute ventilation (volume of air per minute) of cyclists, which we estimated from measured heart rates, was twice the minute ventilation of car and bus passengers, we calculated that the inhaled air pollution doses were highest for cyclists. With the exception of PM10, we found that inhaled air pollution doses were lowest for electric bus passengers. Conclusions Commuters’ rush hour exposures were significantly influenced by mode of transport, route, and fuel type. PMID:20185385

  18. Chemical and biological characterization of urban particulate matter

    International Nuclear Information System (INIS)

    Agurell, E.; Alsberg, T.; Assefaz-Redda, Y.

    1990-11-01

    Airborne particulate matter has been collected on glass fiber filter by high volume sampling in the Goeteborg urban area. The samples were, after extraction with respect to organic components, tested for biological effect in the Salmonella mutagenicity assay, affinity to the cytosol TCDD receptor and toxicity towards a mammalian cell system and analysed chemically for selected polycyclic aromatic compounds. A series of samples collected simultaneously at a street level location and a rooftop site showed that most parameters associated with the organic compounds adsorbed to airborne particulate matter has similar concentrations at the two levels. The differences observed for the mutagenic effect in different strains and conditions showed that the rooftop samples had a different composition compared to the street samples indicating that atmospheric transformations have occurred. Chemical fractionation of representative samples showed that the distribution of mutagenic activity among different fractions is dissimilar to the distribution obtained in the fractionation of both gasoline and diesel engine exhaust particles. Partial least squares regression analysis showed qualitatively that diesel exhaust is a major source of airborne particulate mutagenic activity and source apportionment with chemical mass balance and multilinear regression corroborated this quantitatively. The multilinear regression analysis gave the result that the airborne activity in Salmonella TA90-S9 originated to 54±4% from diesel exhaust and to 26±3% from gasoline exhaust. The contribution is more equal for the activity measured with TA98+S9. The usefulness of short-term bioassays as an addition to chemical analysis of airborne particulate matter depends on whether only polycylic aromatic hydrocarbons (PAH) are major carcinogens, as has been suggested in the literature, or whether also other polycyclic aromatic compound (PAC) are of importance. (au)

  19. Metro Commuter Exposures to Particulate Air Pollution and PM2.5-Associated Elements in Three Canadian Cities: The Urban Transportation Exposure Study.

    Science.gov (United States)

    Van Ryswyk, Keith; Anastasopolos, Angelos T; Evans, Greg; Sun, Liu; Sabaliauskas, Kelly; Kulka, Ryan; Wallace, Lance; Weichenthal, Scott

    2017-05-16

    System-representative commuter air pollution exposure data were collected for the metro systems of Toronto, Montreal, and Vancouver, Canada. Pollutants measured included PM 2.5 (PM = particulate matter), PM 10 , ultrafine particles, black carbon, and the elemental composition of PM 2.5 . Sampling over three weeks was conducted in summer and winter for each city and covered each system on a daily basis. Mixed-effect linear regression models were used to identify system features related to particulate exposures. Ambient levels of PM 2.5 and its elemental components were compared to those of the metro in each city. A microenvironmental exposure model was used to estimate the contribution of a 70 min metro commute to daily mean exposure to PM 2.5 elemental and mass concentrations. Time spent in the metro was estimated to contribute the majority of daily exposure to several metallic elements of PM 2.5 and 21.2%, 11.3% and 11.5% of daily PM 2.5 exposure in Toronto, Montreal, and Vancouver, respectively. Findings suggest that particle air pollutant levels in Canadian metros are substantially impacted by the systems themselves, are highly enriched in steel-based elements, and can contribute a large portion of PM 2.5 and its elemental components to a metro commuter's daily exposure.

  20. Impact of short-term preconceptional exposure to particulate air pollution on treatment outcome in couples undergoing in vitro fertilization and embryo transfer (IVF/ET)

    Science.gov (United States)

    Maluf, Mariangela; Czeresnia, Carlos Eduardo; Januário, Daniela Aparecida Nicolosi Foltran; Saldiva, Paulo Hilário Nascimento

    2010-01-01

    Purpose To assess the potential effects of short-term exposure to particulate air pollution during follicular phase on clinical, laboratory, and pregnancy outcomes of women undergoing IVF/ET. Methods Retrospective cohort study of 400 first IVF/ET cycles of women exposed to ambient particulate matter during follicular phase. Particulate matter (PM) was categorized into quartiles (Q1: ≤30.48 µg/m3, Q2: 30.49–42.00 µg/m3, Q3: 42.01–56.72 µg/m3, and Q4: >56.72 µg/m3). Results Clinical, laboratory, or treatment variables were not affected by follicular phase PM exposure periods. Women exposed to Q4 period during the follicular phase of conception cycles had a higher risk of miscarriage (odds ratio, 5.05; 95% confidence interval: 1.04–25.51) when compared to women exposed to Q1–3 periods. Conclusion Our results show an association between brief exposure to high levels of ambient PM during the preconceptional period and early pregnancy loss, although no effect of this exposure on clinical, laboratory, and treatment outcomes was observed. PMID:20405197

  1. Identification and Characterization of Particulate Matter Concentrations at Construction Jobsites

    Directory of Open Access Journals (Sweden)

    Ingrid P. S. Araújo

    2014-11-01

    Full Text Available The identification and characterization of particulate matter (PM concentrations from construction site activities pose major challenges due to the diverse characteristics related to different aspects, such as concentration, particle size and particle composition. Moreover, the characterization of particulate matter is influenced by meteorological conditions, including temperature, humidity, rainfall and wind speed. This paper is part of a broader investigation that aims to develop a methodology for assessing the environmental impacts caused by the PM emissions that arise from construction activities. The objective of this paper is to identify and characterize the PM emissions on a construction site with different aerodynamic diameters (PM2.5, PM10, total suspended particulates (TSP, based on an exploratory study. Initially, a protocol was developed to standardize the construction site selection criteria, laboratory procedures, field sample collection and laboratory analysis. This protocol was applied on a multifamily residential building construction site during three different construction phases (earthworks, superstructure and finishings aimed at measuring and monitoring PM concentrations arising from construction activities. The particulate matter was characterized in different particle sizes. Results showed that the higher TSP emissions arising from construction activities provoked environmental impacts. Some limitations to the results were identified, especially with regards the need for a detailed investigation about the influence of different construction phases on PM emissions. The findings provided significant knowledge about various situations, serving as a basis for improving the existing methodology for particulate material collection on construction sites and the development of future studies on the specific construction site phases.

  2. Personal exposure measurements of school-children to fine particulate matter (PM2.5) in winter of 2013, Shanghai, China.

    Science.gov (United States)

    Zhang, Lijun; Guo, Changyi; Jia, Xiaodong; Xu, Huihui; Pan, Meizhu; Xu, Dong; Shen, Xianbiao; Zhang, Jianghua; Tan, Jianguo; Qian, Hailei; Dong, Chunyang; Shi, Yewen; Zhou, Xiaodan; Wu, Chen

    2018-01-01

    The aim of this study was to perform an exposure assessment of PM2.5 (particulate matter less than 2.5μm in aerodynamic diameter) among children and to explore the potential sources of exposure from both indoor and outdoor environments. In terms of real-time exposure measurements of PM2.5, we collected data from 57 children aged 8-12 years (9.64 ± 0.93 years) in two schools in Shanghai, China. Simultaneously, questionnaire surveys and time-activity diaries were used to estimate the environment at home and daily time-activity patterns in order to estimate the exposure dose of PM2.5 in these children. Principle component regression analysis was used to explore the influence of potential sources of PM2.5 exposure. All the median personal exposure and microenvironment PM2.5 concentrations greatly exceeded the daily 24-h PM2.5 Ambient Air Quality Standards of China, the USA, and the World Health Organization (WHO). The median Etotal (the sum of the PM2.5 exposure levels in different microenvironment and fractional time) of all students was 3014.13 (μg.h)/m3. The concentration of time-weighted average (TWA) exposure of all students was 137.01 μg/m3. The median TWA exposure level during the on-campus period (135.81 μg/m3) was significantly higher than the off-campus period (115.50 μg/m3, P = 0.013 < 0.05). Besides ambient air pollution and meteorological conditions, storey height of the classroom and mode of transportation to school were significantly correlated with children's daily PM2.5 exposure. Children in the two selected schools were exposed to high concentrations of PM2.5 in winter of 2013 in Shanghai. Their personal PM2.5 exposure was mainly associated with ambient air conditions, storey height of the classroom, and children's transportation mode to school.

  3. AHR2 morpholino knockdown reduces the toxicity of total particulate matter to zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Massarsky, Andrey, E-mail: andrey.massarsky@duke.edu [Nicholas School of the Environment, Duke University, Durham, NC 27708 (United States); Bone, Audrey J. [Nicholas School of the Environment, Duke University, Durham, NC 27708 (United States); Dong, Wu [Nicholas School of the Environment, Duke University, Durham, NC 27708 (United States); School of Animal Science and Technology, Inner Mongolia Provincial Key Laboratory for Toxicants and Animal Disease, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia 028000 (China); Hinton, David E. [Nicholas School of the Environment, Duke University, Durham, NC 27708 (United States); Prasad, G.L. [RAI Services Company, Winston-Salem, NC 27101 (United States); Di Giulio, Richard T. [Nicholas School of the Environment, Duke University, Durham, NC 27708 (United States)

    2016-10-15

    The zebrafish embryo has been proposed as a ‘bridge model’ to study the effects of cigarette smoke on early development. Previous studies showed that exposure to total particulate matter (TPM) led to adverse effects in developing zebrafish, and suggested that the antioxidant and aryl hydrocarbon receptor (AHR) pathways play important roles. This study investigated the roles of these two pathways in mediating TPM toxicity. The study consisted of four experiments. In experiment I, zebrafish embryos were exposed from 6 h post fertilization (hpf) until 96 hpf to TPM{sub 0.5} and TPM{sub 1.0} (corresponding to 0.5 and 1.0 μg/mL equi-nicotine units) in the presence or absence of an antioxidant (N-acetyl cysteine/NAC) or a pro-oxidant (buthionine sulfoximine/BSO). In experiment II, TPM exposures were performed in embryos that were microinjected with nuclear factor erythroid 2-related factor 2 (Nrf2), AHR2, cytochrome P450 1A (CYP1A), or CYP1B1 morpholinos, and deformities were assessed. In experiment III, embryos were exposed to TPM, and embryos/larvae were collected at 24, 48, 72, and 96 hpf to assess several genes associated with the antioxidant and AHR pathways. Lastly, experiment IV assessed the activity and protein levels of CYP1A and CYP1B1 after exposure to TPM. We demonstrate that the incidence of TPM-induced deformities was generally not affected by NAC/BSO treatments or Nrf2 knockdown. In contrast, AHR2 knockdown reduced, while CYP1A or CYP1B1 knockdowns elevated the incidence of some deformities. Moreover, as shown by gene expression the AHR pathway, but not the antioxidant pathway, was induced in response to TPM exposure, providing further evidence for its importance in mediating TPM toxicity. - Highlights: • Total particulate matter (TPM) is the particulate phase of cigarette smoke. • Zebrafish is proposed as a ‘bridge model’ to study the effects of TPM. • We investigate the roles of antioxidant and aryl hydrocarbon receptor (AHR) pathways.

  4. [Real-time measurement of indoor particulate matter originating from environmental tobacco smoke: a pilot study].

    Science.gov (United States)

    Invernizzi, Giovanni; Ruprecht, Ario; Mazza, Roberto; Majno, Edoardo; Rossetti, Edoardo; Paredi, Paolo; Boffi, Roberto

    2002-01-01

    Short-term measurement of suspended particulate matter has been recently made possible since the release of laser-operating portable instruments. Data of a pilot study of field evaluation of environmental tobacco smoke (ETS) with a portable instrument are reported. We analysed the concentrations of total suspended particle (TSP) and of the fine particles PM10, PM7, PM2.5 and PM1 released indoor from a single cigarette, and their levels inside smoking- and non-smoking-areas of a restaurant. The results indicate that ETS creates high level indoor particulate pollution, with concentrations of PM10 exceeding air quality standards. This kind of field evaluation could allow a more careful assessing of short-term exposure to ETS and its relevance to public health.

  5. Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change

    OpenAIRE

    A. Mahmud; M. Hixson; M. J. Kleeman

    2012-01-01

    The effect of climate change on population-weighted concentrations of particulate matter (PM) during extreme events was studied using the Parallel Climate Model (PCM), the Weather Research and Forecasting (WRF) model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44) global emissions scenario was dynamically downscaled for the entire state of California between the years 2000–2006 and 2047–2053. Air quality simulations were carried out for ...

  6. Canada-United States Transboundary Particulate Matter Science Assessment 2013

    Science.gov (United States)

    This 2013 document summarizes the findings of the Canada-U.S. subcommittee on Scientific Cooperation concerning the transboundary transport of particulate matter (PM) and PM precursors between the two countries.

  7. Radio Frequency Sensing of Particulate Matter Accumulation on a Gasoline Particulate Filter

    Energy Technology Data Exchange (ETDEWEB)

    Parks, II, James E [ORNL; Prikhodko, Vitaly Y [ORNL; Sappok, Alex [Filter Sensing Technologies; Ragaller, Paul [Filter Sensing Technologies; Bromberg, L. [Massachusetts Institute of Technology (MIT)

    2016-10-30

    Filter Sensing Technology’s radio frequency (RF) sensor for particulate filter on-board diagnostics (OBD) was studied on a lean gasoline engine at the National Transportation Research Center (NTRC) at Oak Ridge National Laboratory (ORNL). The response of the RF sensor to particulate matter (PM) or “soot” accumulation on the gasoline particulate filter (GPF) installed in the engine exhaust was evaluated. In addition, end plugs of the GPF were purposely removed, and subsequent changes to the RF sensor measured soot loading on the GPF were characterized. Results from the study showed that the RF sensor can accurately measure soot accumulation on a GPF; furthermore, the predicted decreased soot accumulation due to plug removal was detected by the RF sensor. Overall, the studies were short and preliminary in nature; however, clearly, the RF sensor demonstrated the capability of measuring GPF soot loading at a level suitable for use in lean gasoline engine emission control OBD and control.

  8. Highly Viscous States Affect the Browning of Atmospheric Organic Particulate Matter.

    Science.gov (United States)

    Liu, Pengfei; Li, Yong Jie; Wang, Yan; Bateman, Adam P; Zhang, Yue; Gong, Zhaoheng; Bertram, Allan K; Martin, Scot T

    2018-02-28

    Initially transparent organic particulate matter (PM) can become shades of light-absorbing brown via atmospheric particle-phase chemical reactions. The production of nitrogen-containing compounds is one important pathway for browning. Semisolid or solid physical states of organic PM might, however, have sufficiently slow diffusion of reactant molecules to inhibit browning reactions. Herein, organic PM of secondary organic material (SOM) derived from toluene, a common SOM precursor in anthropogenically affected environments, was exposed to ammonia at different values of relative humidity (RH). The production of light-absorbing organonitrogen imines from ammonia exposure, detected by mass spectrometry and ultraviolet-visible spectrophotometry, was kinetically inhibited for RH atmospheric brown carbon production and associated influences on energy balance.

  9. Exposure to fine particulate matter and hospital admissions due to pneumonia: Effects on the number of hospital admissions and its costs.

    Science.gov (United States)

    Patto, Nicole Vargas; Nascimento, Luiz Fernando Costa; Mantovani, Katia Cristina C; Vieira, Luciana C P F S; Moreira, Demerval S

    2016-07-01

    Given that respiratory diseases are a major cause of hospitalization in children, the objectives of this study are to estimate the role of exposure to fine particulate matter in hospitalizations due to pneumonia and a possible reduction in the number of these hospitalizations and costs. An ecological time-series study was developed with data on hospitalization for pneumonia among children under 10 years of age living in São José do Rio Preto, state of São Paulo, using PM2.5 concentrations estimated using a mathematical model. We used Poisson regression with a dependent variable (hospitalization) associated with PM2.5 concentrations and adjusted for effective temperature, seasonality and day of the week, with estimates of reductions in the number of hospitalizations and costs. 1,161 children were admitted to hospital between October 1st, 2011, and September 30th, 2013; the average concentration of PM2.5 was 18.7 µg/m3 (≈32 µg/m3 of PM10) and exposure to this pollutant was associated with hospitalization four and five days after exposure. A 10 µg/m3 decrease in concentration would imply 256 less hospital admissions and savings of approximately R$ 220,000 in a medium-sized city.

  10. Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change

    Science.gov (United States)

    Mahmud, A.; Hixson, M.; Kleeman, M. J.

    2012-08-01

    The effect of climate change on population-weighted concentrations of particulate matter (PM) during extreme pollution events was studied using the Parallel Climate Model (PCM), the Weather Research and Forecasting (WRF) model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44) global emissions scenario was dynamically downscaled for the entire state of California between the years 2000-2006 and 2047-2053. Air quality simulations were carried out for 1008 days in each of the present-day and future climate conditions using year-2000 emissions. Population-weighted concentrations of PM0.1, PM2.5, and PM10 total mass, components species, and primary source contributions were calculated for California and three air basins: the Sacramento Valley air basin (SV), the San Joaquin Valley air basin (SJV) and the South Coast Air Basin (SoCAB). Results over annual-average periods were contrasted with extreme events. The current study found that the change in annual-average population-weighted PM2.5 mass concentrations due to climate change between 2000 vs. 2050 within any major sub-region in California was not statistically significant. However, climate change did alter the annual-average composition of the airborne particles in the SoCAB, with notable reductions of elemental carbon (EC; -3%) and organic carbon (OC; -3%) due to increased annual-average wind speeds that diluted primary concentrations from gasoline combustion (-3%) and food cooking (-4%). In contrast, climate change caused significant increases in population-weighted PM2.5 mass concentrations in central California during extreme events. The maximum 24-h average PM2.5 concentration experienced by an average person during a ten-yr period in the SJV increased by 21% due to enhanced production of secondary particulate matter (manifested as NH4NO3). In general, climate change caused increased stagnation during future extreme pollution events, leading to higher exposure to diesel engines

  11. Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change

    Directory of Open Access Journals (Sweden)

    A. Mahmud

    2012-08-01

    Full Text Available The effect of climate change on population-weighted concentrations of particulate matter (PM during extreme pollution events was studied using the Parallel Climate Model (PCM, the Weather Research and Forecasting (WRF model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44 global emissions scenario was dynamically downscaled for the entire state of California between the years 2000–2006 and 2047–2053. Air quality simulations were carried out for 1008 days in each of the present-day and future climate conditions using year-2000 emissions. Population-weighted concentrations of PM0.1, PM2.5, and PM10 total mass, components species, and primary source contributions were calculated for California and three air basins: the Sacramento Valley air basin (SV, the San Joaquin Valley air basin (SJV and the South Coast Air Basin (SoCAB. Results over annual-average periods were contrasted with extreme events.

    The current study found that the change in annual-average population-weighted PM2.5 mass concentrations due to climate change between 2000 vs. 2050 within any major sub-region in California was not statistically significant. However, climate change did alter the annual-average composition of the airborne particles in the SoCAB, with notable reductions of elemental carbon (EC; −3% and organic carbon (OC; −3% due to increased annual-average wind speeds that diluted primary concentrations from gasoline combustion (−3% and food cooking (−4%. In contrast, climate change caused significant increases in population-weighted PM2.5 mass concentrations in central California during extreme events. The maximum 24-h average PM2.5 concentration experienced by an average person during a ten-yr period in the SJV increased by 21% due to enhanced production of secondary particulate matter (manifested as NH4NO3. In general, climate

  12. Simultaneously reducing CO2 and particulate exposures via fractional recirculation of vehicle cabin air.

    Science.gov (United States)

    Jung, Heejung S; Grady, Michael L; Victoroff, Tristan; Miller, Arthur L

    2017-07-01

    Prior studies demonstrate that air recirculation can reduce exposure to nanoparticles in vehicle cabins. However when people occupy confined spaces, air recirculation can lead to carbon dioxide (CO 2 ) accumulation which can potentially lead to deleterious effects on cognitive function. This study proposes a fractional air recirculation system for reducing nanoparticle concentration while simultaneously suppressing CO 2 levels in the cabin. Several recirculation scenarios were tested using a custom-programmed HVAC (heat, ventilation, air conditioning) unit that varied the recirculation door angle in the test vehicle. Operating the recirculation system with a standard cabin filter reduced particle concentrations to 1000 particles/cm 3 , although CO 2 levels rose to 3000 ppm. When as little as 25% fresh air was introduced (75% recirculation), CO 2 levels dropped to 1000 ppm, while particle concentrations remained below 5000 particles/cm 3 . We found that nanoparticles were removed selectively during recirculation and demonstrated the trade-off between cabin CO 2 concentration and cabin particle concentration using fractional air recirculation. Data showed significant increases in CO 2 levels during 100% recirculation. For various fan speeds, recirculation fractions of 50-75% maintained lower CO 2 levels in the cabin, while still reducing particulate levels. We recommend fractional recirculation as a simple method to reduce occupants' exposures to particulate matter and CO 2 in vehicles. A design with several fractional recirculation settings could allow air exchange adequate for reducing both particulate and CO 2 exposures. Developing this technology could lead to reductions in airborne nanoparticle exposure, while also mitigating safety risks from CO 2 accumulation.

  13. Air pollution and inhalation exposure to particulate matter of different sizes in rural households using improved stoves in central China.

    Science.gov (United States)

    Liu, Weijian; Shen, Guofeng; Chen, Yuanchen; Shen, Huizhong; Huang, Ye; Li, Tongchao; Wang, Yilong; Fu, Xiaofang; Tao, Shu; Liu, Wenxin; Huang-Fu, Yibo; Zhang, Weihao; Xue, Chunyu; Liu, Guangqing; Wu, Fuyong; Wong, Minghung

    2018-01-01

    Household air pollution is considered to be among the top environmental risks in China. To examine the performance of improved stoves for reduction of indoor particulate matter (PM) emission and exposure in rural households, individual inhalation exposure to size-resolved PM was investigated using personal portable samplers carried by residents using wood gasifier stoves or improved coal stoves in a rural county in Central China. Concentrations of PM with different sizes in stationary indoor and outdoor air were also monitored at paired sites. The stationary concentrations of size-resolved PM in indoor air were greater than those in outdoor air, especially finer particles PM 0.25 . The daily averaged exposure concentrations of PM 0.25 , PM 1.0 , PM 2.5 and total suspended particle for all the surveyed residents were 74.4±41.1, 159.3±74.3, 176.7±78.1 and 217.9±78.1μg/m 3 , respectively. Even using the improved stoves, the individual exposure to indoor PM far exceeded the air quality guideline by WHO at 25μg/m 3 . Submicron particles PM 1.0 were the dominant PM fraction for personal exposure and indoor and outdoor air. Personal exposure exhibited a closer correlation with indoor PM concentrations than that for outdoor concentrations. Both inhalation exposure and indoor air PM concentrations in the rural households with gasifier firewood stoves were evidently lower than the reported results using traditional firewood stoves. However, local governments in the studied rural areas should exercise caution when widely and hastily promoting gasifier firewood stoves in place of improved coal stoves, due to the higher PM levels in indoor and outdoor air and personal inhaled exposure. Copyright © 2017. Published by Elsevier B.V.

  14. Health effects of ambient levels of respirable particulate matter (PM) on healthy, young-adult population

    Science.gov (United States)

    Shaughnessy, William J.; Venigalla, Mohan M.; Trump, David

    2015-12-01

    There is an absence of studies that define the relationship between ambient particulate matter (PM) levels and adverse health outcomes among the young and healthy adult sub-group. In this research, the relationship between exposures to ambient levels of PM in the 10 micron (PM10) and 2.5 micron (PM2.5) size fractions and health outcomes in members of the healthy, young-adult subgroup who are 18-39 years of age was examined. Active duty military personnel populations at three strategically selected military bases in the United States were used as a surrogate to the control group. Health outcome data, which consists of the number of diagnoses for each of nine International Classification of Diseases, 9th Revision (ICD-9) categories related to respiratory illness, were derived from outpatient visits at each of the three military bases. Data on ambient concentrations of particulate matter, specifically PM10 and PM2.5, were obtained for these sites. The health outcome data were correlated and regressed with the PM10 and PM2.5 data, and other air quality and weather-related data on a daily and weekly basis for the period 1998 to 2004. Results indicate that at Fort Bliss, which is a US Environmental Protection Agency designated non-attainment area for PM10, a statistically significant association exists between the weekly-averaged number of adverse health effects in the young and healthy adult population and the corresponding weekly-average ambient PM10 concentration. A least squares regression analysis was performed on the Fort Bliss data sets indicated that the health outcome data is related to several environmental parameters in addition to PM10. Overall, the analysis estimates a .6% increase in the weekly rate of emergency room visits for upper respiratory infections for every 10 μg/m3 increase in the weekly-averaged PM10 concentration above the mean. The findings support the development of policy and guidance opportunities that can be developed to mitigate exposures

  15. Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change

    OpenAIRE

    A. Mahmud; M. Hixson; M. J. Kleeman

    2012-01-01

    The effect of climate change on population-weighted concentrations of particulate matter (PM) during extreme pollution events was studied using the Parallel Climate Model (PCM), the Weather Research and Forecasting (WRF) model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44) global emissions scenario was dynamically downscaled for the entire state of California between the years 2000–2006 and 2047–2053. Air quality simulations were carried out for 1008 days ...

  16. Interim Particulate Matter Test Method for the Determination of Particulate Matter from Gas Turbine Engines, SERDP Project WP-1538 Final Report

    Science.gov (United States)

    Under Project No. WP-1538 of the Strategic Environmental Research and Development Program, the U. S. Air Force's Arnold Engineering Development Center (AEDC) is developing an interim test method for non-volatile particulate matter (PM) specifically for the Joint Strike Fighter (J...

  17. GENETIC INFLUENCES ON IN VTIRO PARTICULATE MATTER-INDUCED AIRWAY EPITHELIAL INJURY AND INFLAMMATORY MEDIATOR RELEASE

    Science.gov (United States)

    GENETIC INFLUENCES ON IN VITRO PARTICULATE MATTER-INDUCED AIRWAY EPITHELIAL INJURY AND INFLAMMATORY MEDIATOR RELEASE. JA Dye, JH Richards, DA Andrews, UP Kodavanti. US EPA, RTP, NC, USA.Particulate matter (PM) air pollution is capable of damaging the airway epitheli...

  18. Impact of fugitive sources and meteorological parameters on vertical distribution of particulate matter over the industrial agglomeration.

    Science.gov (United States)

    Štrbová, Kristína; Raclavská, Helena; Bílek, Jiří

    2017-12-01

    The aim of the study was to characterize vertical distribution of particulate matter, in an area well known by highest air pollution levels in Europe. A balloon filled with helium with measuring instrumentation was used for vertical observation of air pollution over the fugitive sources in Moravian-Silesian metropolitan area during spring and summer. Synchronously, selected meteorological parameters were recorded together with particulate matter for exploration its relationship with particulate matter. Concentrations of particulate matter in the vertical profile were significantly higher in the spring than in the summer. Significant effect of fugitive sources was observed up to the altitude ∼255 m (∼45 m above ground) in both seasons. The presence of inversion layer was observed at the altitude ∼350 m (120-135 m above ground) at locations with major source traffic load. Both particulate matter concentrations and number of particles for the selected particle sizes decreased with increasing height. Strong correlation of particulate matter with meteorological parameters was not observed. The study represents the first attempt to assess the vertical profile over the fugitive emission sources - old environmental burdens in industrial region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Ambient particulate matter air pollution and cardiopulmonary diseases.

    Science.gov (United States)

    Thurston, George; Lippmann, Morton

    2015-06-01

    Population exposures to ambient outdoor particulate matter (PM) air pollution have been assessed to represent a major burden on global health. Ambient PM is a diverse class of air pollution, with characteristics and health implications that can vary depending on a host of factors, including a particle's original source of emission or formation. The penetration of inhaled particles into the thorax is dependent on their deposition in the upper respiratory tract during inspiration, which varies with particle size, flow rate and tidal volume, and in vivo airway dimensions. All of these factors can be quite variable from person to person, depending on age, transient illness, cigarette smoke and other short-term toxicant exposures that cause transient bronchoconstriction, and occupational history associated with loss of lung function or cumulative injury. The adverse effects of inhaled PM can result from both short-term (acute) and long-term (chronic) exposures to PM, and can range from relatively minor, such as increased symptoms, to very severe effects, including increased risk of premature mortality and decreased life expectancy from long-term exposure. Control of the most toxic PM components can therefore provide major health benefits, and can help guide the selection of the most human health optimal air quality control and climate change mitigation policy measures. As such, a continued improvement in our understanding of the nature and types of PM that are most dangerous to health, and the mechanism(s) of their respective health effects, is an important public health goal. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  20. Chemical characterization and sources of personal exposure to fine particulate matter (PM2.5) in the megacity of Guangzhou, China.

    Science.gov (United States)

    Chen, Xiao-Cui; Jahn, Heiko J; Engling, Guenter; Ward, Tony J; Kraemer, Alexander; Ho, Kin-Fai; Yim, S H L; Chan, Chuen-Yu

    2017-12-01

    Concurrent ambient and personal measurements of fine particulate matter (PM 2.5 ) were conducted in eight districts of Guangzhou during the winter of 2011. Personal-to-ambient (P-C) relationships of PM 2.5 chemical components were determined and sources of personal PM 2.5 exposures were evaluated using principal component analysis and a mixed-effects model. Water-soluble inorganic ions (e.g., SO 4 2- , NO 3 - , NH 4 + , C 2 O 4 2- ) and anhydrosugars (e.g., levoglucosan, mannosan) exhibited median personal-to-ambient (P/C) ratios personal PM 2.5 were significantly affected by ambient sources. Conversely, elemental carbon (EC) and calcium (Ca 2+ ) showed median P/C ratios greater than unity, illustrating significant impact of local traffic, indoor sources, and/or personal activities on individual's exposure. SO 4 2- displayed very low coefficient of divergence (COD) values coupled with strong P-C correlations, implying a uniform distribution of SO 4 2- in the urban area of Guangzhou. EC, Ca 2+ , and levoglucosan were otherwise heterogeneously distributed across individuals in different districts. Regional air pollution (50.4 ± 0.9%), traffic-related particles (8.6 ± 0.7%), dust-related particles (5.8 ± 0.7%), and biomass burning emissions (2.0 ± 0.2%) were moderate to high positive sources of personal PM 2.5 exposure in Guangzhou. The observed positive and significant contribution of Ca 2+ to personal PM 2.5 exposure, highlighting indoor sources and/or personal activities, were driving factors determining personal exposure to dust-related particles. Considerable discrepancies (COD values ranging from 0.42 to 0.50) were shown between ambient concentrations and personal exposures, indicating caution should be taken when using ambient concentrations as proxies for personal exposures in epidemiological studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Transportation conformity particulate matter hot-spot air quality modeling.

    Science.gov (United States)

    2013-07-01

    In light of the new development in particulate matter (PM) hot-spot regulations and Illinois Department : of Transportation (IDOT)s National Environmental Policy Act (NEPA) documentation requirements, : this project is intended to (1) perform and ...

  2. Prolonged continuous exposure to high fine particulate matter associated with cardiovascular and respiratory disease mortality in Beijing, China

    Science.gov (United States)

    Wang, Jinfeng; Yin, Qian; Tong, Shilu; Ren, Zhoupeng; Hu, Maogui; Zhang, Hongrui

    2017-11-01

    Although many studies examined the effects of fine particulate matter (PM2.5) on the deaths of cardiovascular disease (CVD) and respiratory disease (RD), few research has paid attention to the effects of prolonged continuous exposure to high PM2.5 pollution. This study estimated the excess risks (ER) of CVD and RD mortalities associated with prolonged continuous exposure to high PM2.5 pollution for the whole population and specific subsociodemographic groups in Beijing, which is the capital city of China with over 20 million residents and having severe PM2.5 pollution problems. Our results suggested that when high PM2.5 pollution occurred continuously, at various thresholds and durations, the adverse effects on CVD and RD mortalities varied significantly. The CVD mortality risks in association with prolonged continuous high PM2.5 pollution exposure were more serious for single individuals (including unmarried, divorced, and widowed), illiterate and outdoor workers than for other specific subsociodemographic groups. When the daily PM2.5 concentration higher than 105 μg/m3 consecutively occurs, at the ninth day, the ERs of CVD death for single individuals, illiterate and outdoor workers groups reached to 45% (95% CI: 22, 71), 51% (95% CI: 28, 79) and 53% (95% CI: 29, 82) respectively. On the other hand, prolonged continuous high PM2.5 pollution level appeared to contribute a higher proportion of RD deaths among illiterate and outdoor workers, but less significant for the other specific subsociodemographic groups. When the duration with daily PM2.5 pollution higher than 115 μg/m3 reached to six days, the ERs for outdoor workers and illiterate attributed to prolonged continuous PM2.5 pollution exposure increased 36% (95% CI: 5, 76) and 49% (95% CI: 16, 91) respectively.

  3. High efficiency cabin air filter in vehicles reduces drivers' roadway particulate matter exposures and associated lipid peroxidation

    OpenAIRE

    Yu, Nu; Shu, Shi; Lin, Yan; She, Jianwen; Ip, Ho Sai Simon; Qiu, Xinghua; Zhu, Yifang

    2017-01-01

    Commuters who spend long hours on roads are exposed to high levels of traffic related air pollutants (TRAPs). Despite some well-known multiple adverse effects of TRAPs on human health, limited studies have focused on mitigation strategies to reduce these effects. In this study, we measured fine particulate matter (PM2.5) and ultrafine particle (UFP) concentrations inside and outside 17 taxis simultaneously while they were driven on roadways. The drivers' urinary monohydroxylated polycyclic ar...

  4. Chemical characterization of urban air particulate matter of Kuala Lumpur 2002-2004

    International Nuclear Information System (INIS)

    Wee Boon Siong; Ab. Khalik Bin Haji Wood

    2006-01-01

    Urban air particulate samples of Kuala Lumpur ambient air have been collected characterize according to fine and coarse airborne particulates. The air filters containing particulate matter were collected using GENT stack filter unit fitted with appropriate polycarbonate filters. The sampling location site (Lat: 03deg 10'30''; Long: 101deg 43'24.2'') is approximately 1 km from the Kuala Lumpur city center. All the sampling conducted from January 2002 until October 2004 was included in the analysis and results were reported. The mass loading for finest air particulate matter (PM 2.5) in Kuala Lumpur are 199±55 μg (2002), 171±53 μg (2003), and 171±61 μg (2004), respectively. The mass loading for coarse air particulate matter (PM 10) in Kuala Lumpur were 125±29 μg (2002), 134±48 μg (2003), and 137 ± 57 μg (2004), respectively. The elemental concentration of the air filters were determined using INAA technique utilizing both short and long irradiation facilities at MINT's TRIGA MKII reactor. Upon irradiation the air filters were counted at suitable counting time using HPGe gamma-ray detectors. The elements reported for this monitoring are Al, As, Br, Co, Cr, K, Lu, Mn, Na, Sb, Sc, Ti, V, and Zn. Certified reference materials were also included in the sample analysis function as quality control materials. (author)

  5. Concentration and movement of neonicotinoids as particulate matter downwind during agricultural practices using air samplers in southwestern Ontario, Canada.

    Science.gov (United States)

    Forero, Luis Gabriel; Limay-Rios, Victor; Xue, Yingen; Schaafsma, Arthur

    2017-12-01

    Atmospheric emissions of neonicotinoid seed treatment insecticides as particulate matter in field crops occur mainly for two reasons: 1) due to abraded dust of treated seed generated during planting using vacuum planters, and 2) as a result of disturbances (tillage or wind events) in the surface of parental soils which release wind erodible soil-bound residues. In the present study, concentration and movement of neonicotinoids as particulate matter were quantified under real conditions using passive and active air samplers. Average neonicotinoid concentrations in Total Suspended Particulate (TSP) using passive samplers were 0.48 ng/cm 2 , trace, trace (LOD 0.80 and 0.04 ng/cm 2 for clothianidin and thiamethoxam, respectively), and using active samplers 16.22, 1.91 and 0.61 ng/m 3 during planting, tillage and wind events, respectively. There was a difference between events on total neonicotinoid concentration collected in particulate matter using either passive or active sampling. Distance of sampling from the source field during planting of treated seed had an effect on total neonicotinoid air concentration. However, during tillage distance did not present an effect on measured concentrations. Using hypothetical scenarios, values of contact exposure for a honey bee were estimated to be in the range from 1.1% to 36.4% of the reference contact LD 50 value of clothianidin of 44 ng/bee. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Particulate matter regulation for two-stroke two wheelers: necessity or haphazard legislation?

    NARCIS (Netherlands)

    Rijkeboer, R.C.; Bremmers, D.A.C.M.; Samaras, Z.; Ntziachristos, L.

    2005-01-01

    Although interest in particulate emissions has increased considerably during recent years, the subject of particulate matter (PM) emissions from small two-stroke engines used in road vehicles is still largely unexplored. This paper presents the results of an investigation, which examined the typical

  7. Evidence of molybdenum association with particulate organic matter under sulfidic conditions

    DEFF Research Database (Denmark)

    Dahl, Tais Wittchen; Chappaz, A.; Hoek, Joost

    2017-01-01

    , consisting of mainly Mo(IV)-sulfide compounds with molecular structures similar to Mo enzymes and to those found in natural euxinic sediments. Therefore, we propose that Mo removal in natural sulfidic waters can proceed via a non-Fe-assisted pathway that requires particulate organic matter (dead or living......The geochemical behavior of molybdenum (Mo) in the oceans is closely linked to the presence of sulfide species in anoxic environments, where Fe availability may play a key role in the Mo scavenging. Here, we show that Mo(VI) is reduced in the presence of particulate organic matter (represented...

  8. Source apportionment studies on particulate matter in Beijing/China

    Science.gov (United States)

    Suppan, P.; Shen, R.; Shao, L.; Schrader, S.; Schäfer, K.; Norra, S.; Vogel, B.; Cen, K.; Wang, Y.

    2013-05-01

    More than 15 million people in the greater area of Beijing are still suffering from severe air pollution levels caused by sources within the city itself but also from external impacts like severe dust storms and long range advection from the southern and central part of China. Within this context particulate matter (PM) is the major air pollutant in the greater area of Beijing (Garland et al., 2009). PM did not serve only as lead substance for air quality levels and therefore for adverse health impact effects but also for a strong influence on the climate system by changing e.g. the radiative balance. Investigations on emission reductions during the Olympic Summer Games in 2008 have caused a strong reduction on coarser particles (PM10) but not on smaller particles (PM2.5). In order to discriminate the composition of the particulate matter levels, the different behavior of coarser and smaller particles investigations on source attribution, particle characteristics and external impacts on the PM levels of the city of Beijing by measurements and modeling are performed: a) Examples of long term measurements of PM2.5 filter sampling in 2010/2011 with the objectives of detailed chemical (source attribution, carbon fraction, organic speciation and inorganic composition) and isotopic analyses as well as toxicological assessment in cooperation with several institutions (Karlsruhe Institute of Technology (IfGG/IMG), Helmholtz Zentrum München (HMGU), University Rostock (UR), Chinese University of Mining and Technology Beijing, CUMTB) will be discussed. b) The impact of dust storm events on the overall pollution level of particulate matter in the greater area of Beijing is being assessed by the online coupled comprehensive model system COSMO-ART. First results of the dust storm modeling in northern China (2011, April 30th) demonstrates very well the general behavior of the meteorological parameters temperature and humidity as well as a good agreement between modeled and

  9. Particulate matter 2.5 (PM2.5) personal exposure evaluation on mechanics and administrative officers at the motor vehicle testing center at Pulo Gadung, DKI Jakarta.

    Science.gov (United States)

    Rizky, Zuly Prima; Yolla, Patricia Bebby; Ramdhan, Doni Hikmat

    2016-03-01

    Exposure to fine particulate matter (PM2.5) in both the short and long term has been known to cause deaths and health effects, especially related to the heart, blood vessels, and lungs. Based on this information, researchers conducted this study at a motor vehicle testing center unit at Pulo Gadung, in Jarkarta, to determine the concentration of PM2.5 that workers were exposed to. The major source of PM2.5 in this area is from the exhaust of gas emissions from motor vehicles, which is one of the largest contributors to the levels of PM in urban areas. Ten mechanics were picked from 16 mechanics that work in this station. Four administration workers from different posts were also picked to participate. The researcher conducted the PM2.5 personal exposure measurement during weekdays from 6 to 14 April 2015 (2 workers/day). This research was conducted to measure the particle number concentration with size Organization Air Quality Guidelines, the PM2.5 exposure of the mechanics and administrative officers exceeded the recommended exposure (25 μm/m3).

  10. Regions of pollution with particulate matter in Poland

    Directory of Open Access Journals (Sweden)

    Rawicki Kacper

    2018-01-01

    Full Text Available The study presents the temporal and spatial variability of particulate matter concentration in Poland in the calendar winter season (December-February. The basis for the study were the hourly and daily values of particulate matter PM10 concentration from the period 2005/06 – 2014/15, obtained from 33 air pollution monitoring stations. In Poland, the obligation to monitor the concentration of the finer fraction of particles smaller than 2.5µm in aerodynamic diameter was introduced only in 2010. Consequently, data on PM2.5 concentration refer to a shorter period, i.e. 2009/10 – 2014/15, and were obtained from 23 stations. Using the cluster analysis (k-means method, three regions of comparable variability of particulate matter concentration were delineated. The largest region, i.e. Region I, comprises the northern and eastern central area of Poland, and its southern boundary is along the line Gorzów Wlkp-Bydgoszcz-Konin-Łódź-Kielce-Lublin. Markedly smaller Region II is located to the south of Region I. By far the smallest area was designated to Region III which covers the south west area of Poland. The delineated regions show a marked variability in terms of mean concentration of both PM fractions in winter (PM10: region I - 33 µg·m-3, region II - 55 µg·m-3, region III - 83 µg·m-3; PM2,5: region I - 35 µg·m-3, region II - 50 µg·m-3, region III - 60 µg·m-3 and, in the case of PM10, the frequency of excessive daily limit value.

  11. Regions of pollution with particulate matter in Poland

    Science.gov (United States)

    Rawicki, Kacper; Czarnecka, Małgorzata; Nidzgorska-Lencewicz, Jadwiga

    2018-01-01

    The study presents the temporal and spatial variability of particulate matter concentration in Poland in the calendar winter season (December-February). The basis for the study were the hourly and daily values of particulate matter PM10 concentration from the period 2005/06 - 2014/15, obtained from 33 air pollution monitoring stations. In Poland, the obligation to monitor the concentration of the finer fraction of particles smaller than 2.5µm in aerodynamic diameter was introduced only in 2010. Consequently, data on PM2.5 concentration refer to a shorter period, i.e. 2009/10 - 2014/15, and were obtained from 23 stations. Using the cluster analysis (k-means method), three regions of comparable variability of particulate matter concentration were delineated. The largest region, i.e. Region I, comprises the northern and eastern central area of Poland, and its southern boundary is along the line Gorzów Wlkp-Bydgoszcz-Konin-Łódź-Kielce-Lublin. Markedly smaller Region II is located to the south of Region I. By far the smallest area was designated to Region III which covers the south west area of Poland. The delineated regions show a marked variability in terms of mean concentration of both PM fractions in winter (PM10: region I - 33 µg·m-3, region II - 55 µg·m-3, region III - 83 µg·m-3; PM2,5: region I - 35 µg·m-3, region II - 50 µg·m-3, region III - 60 µg·m-3) and, in the case of PM10, the frequency of excessive daily limit value.

  12. Differences in Blood Pressure and Vascular Responses Associated with Ambient Fine Particulate Matter Exposures Measured at the Personal Versus Community Level

    Science.gov (United States)

    Background Higher ambient fine particulate matter (PM2.5) levels can be associated with increased blood pressure and vascular dysfunction. Objectives To determine the differential effects on blood pressure and vascular function of daily changes in community ambient-...

  13. Power plant emissions: particulate matter-related health damages and the benefits of alternative emission reduction scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, C.

    2004-06-15

    This report estimates the avoidable health effects of each of a series of alternative regulatory scenarios for power plants, focusing on the adverse human health effects due to exposure to fine particulate matter (PM2.5) This report uses the same analytical methods that the U.S. Environmental Protection Agency used in 2003 to prepare an analysis of the potential health effects of the proposed Clear Skies Act (EPA 2003). This report conducts an analysis of the impacts in 2010 and 2020 of three policy alternatives to the proposed Clear Skies Act, The Jeffords/Lieberman/Collins 'The Clean Power Act', S. 366, and the EPA August 2001 Straw Proposal (one of several alternatives EPA analyzed prior to the announcement of the Clear Skies Initiative in 2002). The report also examines the health impacts associated with the total emissions from coal fired electricity generating units in 2010. Chapter 2 describes the emissions inventory estimates, and the changes in the emissions associated with each scenario analyzed. Chapter 3 describes the methods used to estimate changes in particulate matter concentrations. Chapter 4 describes general issues arising in estimating and valuing changes in adverse health effects associated with changes in particulate matter. Chapter 5 describes in some detail the methods used for estimating and valuing adverse health effects, and Chapter 6 presents the results of these analyses. Chapter 7 presents estimates of the impact of these alternative policy options on the PM non-attainment status. 117 refs., 21 figs., 32 tabs., 3 apps.

  14. Efficiency of Respirator Filter Media against Diesel Particulate Matter: A Comparison Study Using Two Diesel Particulate Sources.

    Science.gov (United States)

    Burton, Kerrie A; Whitelaw, Jane L; Jones, Alison L; Davies, Brian

    2016-07-01

    Diesel engines have been a mainstay within many industries since the early 1900s. Exposure to diesel particulate matter (DPM) is a major issue in many industrial workplaces given the potential for serious health impacts to exposed workers; including the potential for lung cancer and adverse irritant and cardiovascular effects. Personal respiratory protective devices are an accepted safety measure to mitigate worker exposure against the potentially damaging health impacts of DPM. To be protective, they need to act as effective filters against carbon and other particulates. In Australia, the filtering efficiency of respiratory protective devices is determined by challenging test filter media with aerosolised sodium chloride to determine penetration at designated flow rates. The methodology outlined in AS/NZS1716 (Standards Australia International Ltd and Standards New Zealand 2012. Respiratory protective devices. Sydney/Wellington: SAI Global Limited/Standards New Zealand) does not account for the differences between characteristics of workplace contaminants like DPM and sodium chloride such as structure, composition, and particle size. This study examined filtering efficiency for three commonly used AS/NZS certified respirator filter models, challenging them with two types of diesel emissions; those from a diesel generator and a diesel engine. Penetration through the filter media of elemental carbon (EC), total carbon (TC), and total suspended particulate (TSP) was calculated. Results indicate that filtering efficiency assumed by P2 certification in Australia was achieved for two of the three respirator models for DPM generated using the small diesel generator, whilst when the larger diesel engine was used, filtering efficiency requirements were met for all three filter models. These results suggest that the testing methodology specified for certification of personal respiratory protective devices by Standards Australia may not ensure adequate protection for

  15. Deposition of Suspended Fine Particulate Matter in a Library

    Czech Academy of Sciences Publication Activity Database

    Smolík, Jiří; Mašková, Ludmila; Zíková, Naděžda; Ondráčková, Lucie; Ondráček, Jakub

    2013-01-01

    Roč. 1, 3 April (2013) ISSN 2050-7445 R&D Projects: GA MK DF11P01OVV020 Keywords : fine particulate matter * deposition * brownian diffusion Subject RIV: CF - Physical ; Theoretical Chemistry http://www.heritagesciencejournal.com/content/1/1/7

  16. Spatial and temporal variation of sources contributing to quasi-ultrafine particulate matter PM0.36 in Augsburg, Germany.

    Science.gov (United States)

    Li, Fengxia; Schnelle-Kreis, Jürgen; Cyrys, Josef; Wolf, Kathrin; Karg, Erwin; Gu, Jianwei; Orasche, Jürgen; Abbaszade, Gülcin; Peters, Annette; Zimmermann, Ralf

    2018-08-01

    to study the sources contributing to quasi-ultrafine particle (UFP) organic carbon and the spatial temporal variability of the sources. 24h quasi-UFP (particulate matter quasi-UFP vary among sites and source types and show source-specific characteristics. Therefore, caution should be taken when using one monitor site measurement to assess human exposure in health effect studies of quasi-UFP. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Exposure to particulate hexavalent chromium exacerbates allergic asthma pathology

    International Nuclear Information System (INIS)

    Schneider, Brent C.; Constant, Stephanie L.; Patierno, Steven R.; Jurjus, Rosalyn A.; Ceryak, Susan M.

    2012-01-01

    Airborne hexavalent chromate, Cr(VI), has been identified by the Environmental Protection Agency as a possible health threat in urban areas, due to the carcinogenic potential of some of its forms. Particulate chromates are produced in many different industrial settings, with high levels of aerosolized forms historically documented. Along with an increased risk of lung cancer, a high incidence of allergic asthma has been reported in workers exposed to certain inhaled particulate Cr(VI) compounds. However, a direct causal association between Cr(VI) and allergic asthma has not been established. We recently showed that inhaled particulate Cr(VI) induces an innate neutrophilic inflammatory response in BALB/c mice. In the current studies we investigated how the inflammation induced by inhaled particulate Cr(VI) might alter the pathology of an allergic asthmatic response. We used a well-established mouse model of allergic asthma. Groups of ovalbumin protein (OVA)-primed mice were challenged either with OVA alone, or with a combination of OVA and particulate zinc chromate, and various parameters associated with asthmatic responses were measured. Co-exposure to particulate Cr(VI) and OVA mediated a mixed form of asthma in which both eosinophils and neutrophils are present in airways, tissue pathology is markedly exacerbated, and airway hyperresponsiveness is significantly increased. Taken together these findings suggest that inhalation of particulate forms of Cr(VI) may augment the severity of ongoing allergic asthma, as well as alter its phenotype. Such findings may have implications for asthmatics in settings in which airborne particulate Cr(VI) compounds are present at high levels. -- Highlights: ► Allergic asthma correlated with exposure to certain inhaled particulate chromates. ► Direct causal association between Cr(VI) and allergic asthma not established. ► Cr exacerbated pathology and airway hyperresponsiveness in an OVA-challenged mouse. ► Particulate Cr

  18. Exposure to particulate hexavalent chromium exacerbates allergic asthma pathology

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Brent C. [Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC 20037 (United States); Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037 (United States); Constant, Stephanie L. [Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC 20037 (United States); Patierno, Steven R. [Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037 (United States); GW Cancer Institute, The George Washington University, Washington, DC 20037 (United States); Jurjus, Rosalyn A. [Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037 (United States); Ceryak, Susan M., E-mail: phmsmc@gwumc.edu [Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037 (United States)

    2012-02-15

    Airborne hexavalent chromate, Cr(VI), has been identified by the Environmental Protection Agency as a possible health threat in urban areas, due to the carcinogenic potential of some of its forms. Particulate chromates are produced in many different industrial settings, with high levels of aerosolized forms historically documented. Along with an increased risk of lung cancer, a high incidence of allergic asthma has been reported in workers exposed to certain inhaled particulate Cr(VI) compounds. However, a direct causal association between Cr(VI) and allergic asthma has not been established. We recently showed that inhaled particulate Cr(VI) induces an innate neutrophilic inflammatory response in BALB/c mice. In the current studies we investigated how the inflammation induced by inhaled particulate Cr(VI) might alter the pathology of an allergic asthmatic response. We used a well-established mouse model of allergic asthma. Groups of ovalbumin protein (OVA)-primed mice were challenged either with OVA alone, or with a combination of OVA and particulate zinc chromate, and various parameters associated with asthmatic responses were measured. Co-exposure to particulate Cr(VI) and OVA mediated a mixed form of asthma in which both eosinophils and neutrophils are present in airways, tissue pathology is markedly exacerbated, and airway hyperresponsiveness is significantly increased. Taken together these findings suggest that inhalation of particulate forms of Cr(VI) may augment the severity of ongoing allergic asthma, as well as alter its phenotype. Such findings may have implications for asthmatics in settings in which airborne particulate Cr(VI) compounds are present at high levels. -- Highlights: ► Allergic asthma correlated with exposure to certain inhaled particulate chromates. ► Direct causal association between Cr(VI) and allergic asthma not established. ► Cr exacerbated pathology and airway hyperresponsiveness in an OVA-challenged mouse. ► Particulate Cr

  19. Source contributions and regional transport of primary particulate matter in China

    International Nuclear Information System (INIS)

    Hu, Jianlin; Wu, Li; Zheng, Bo; Zhang, Qiang; He, Kebin; Chang, Qing; Li, Xinghua; Yang, Fumo; Ying, Qi; Zhang, Hongliang

    2015-01-01

    A source-oriented CMAQ was applied to determine source sector/region contributions to primary particulate matter (PPM) in China. Four months were simulated with emissions grouped to eight regions and six sectors. Predicted elemental carbon (EC), primary organic carbon (POC), and PPM concentrations and source contributions agree with measurements and have significant spatiotemporal variations. Residential is a major contributor to spring/winter EC (50–80%), POC (60%–90%), and PPM (30–70%). For summer/fall, industrial contributes 30–50% for EC/POC and 40–60% for PPM. Transportation is more important for EC (20–30%) than POC/PPM ( 90% in Beijing. - Highlights: • A source-oriented CMAQ was established for primary particulate matter (PPM). • Source and region contributions to EC, POC and PPM in China were quantified. • Residential is major in spring/winter and industrial dominates in summer/fall. • Open burning is more important for southern while dust is in contrast. • Both local and Heibei emissions contribute to PPM in Beijing. - Source and region contributions to primary particulate matter in China were quantified for four months during 2012-2013. Residential and industrial are the major contributors.

  20. Characteristics of particulate matter emissions from toy cars with electric motors.

    Science.gov (United States)

    Wang, Xiaofei; Williams, Brent J; Biswas, Pratim

    2015-04-01

    Aerosol emissions from toy cars with electric motors were characterized. Particle emission rates from the toy cars, as high as 7.47×10(7) particles/s, were measured. This emission rate is lower than other indoor sources such as smoking and cooking. The particles emitted from toy cars are generated from spark discharges inside the electric motors that power the toy cars. Size distribution measurements indicated that most particles were below 100 nm in diameter. Copper was the dominant inorganic species in these particles. By deploying aerosol mass spectrometers, high concentrations of particulate organic matter were also detected and characterized in detail. Several organic compounds were identified using a thermal desorption aerosol gas chromatography. The mass size distribution of particulate organic matter was bimodal. The formation mechanism of particulate organic matter from toy cars was elucidated. A possible new source of indoor air pollution, particles from electric motors in toy cars, was identified. This study characterized aerosol emissions from toy cars in detail. Most of these particles have a diameter less than 100 nm. Copper and some organics are the major components of these particles. Conditions that minimize these emissions were determined.

  1. Trace metals concentration assessment in urban particulate matter ...

    African Journals Online (AJOL)

    This study was conducted to investigate the distribution and correlation of selected trace elements (Ca, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in Yenagoa, Bayelsa State and its environs. Air particulate matter was collected gravimetrically at five stations (using a high volume portable SKC air check MTXSidekickair sampler ...

  2. An assessment of common atmospheric particulate matter sampling ...

    African Journals Online (AJOL)

    The method detection limit was also low (0.2 to 1 μg/L) for most metals, and 50% and less standard deviation to mean ratios were obtained for Ni and Pb. Key words: Toxic metals, inductively coupled plasma mass spectroscopy, scanning electron microscopy coupled with energy dispersive spectrometry, particulate matter, ...

  3. Exposure assessment of particulates originating from diesel and CNG fuelled engines

    Energy Technology Data Exchange (ETDEWEB)

    Oravisjaervi, K.; Pietikaeinen, M.; Keiski, R. L. (Univ. of Oulu, Dept. of Process and Environmental Engineering (Finland)). email: kati.oravisjarvi@oulu.fi; Voutilainen, A. (Univ. of Kuopio, Dept. of Physics (Finland)); Haataja, M. (Oulu Univ. of Applied Sciences (Finland); Univ. of Oulu, Dept. of Mechanical Engineering (Finland)); Ruuskanen, J. (Univ. of Kuopio, Dept. of Environmental Sciences (Finland)); Rautio, A. (Univ. of Oulu, Thule Inst. (Finland))

    2009-07-01

    Particulates emitted from combustion engines have been a great concern in past years due to their adverse health effects, such as pulmonary and cardiovascular diseases, morbidity and mortality. The source of particulates can be stationary and transient, such as gas and oil fuelled engines, turbines and boilers. Particulate matter (PM) dispersed into ambient air can be classified in many ways: the mechanism of the formation, the size and the composition. Fine particles (PM2.5) are particles with an aerodynamic diameter less than 2.5 mum and particles, greater than 2.5 mum in diameter are generally referred to as coarse particles (PM10). PM2.5 is also called the respirable fraction, because they can penetrate to the unciliated regions of the lung. Fine particles consist of so called ultrafine particles (an aerodynamic diameter less than 0.1 mum). The sizes of particulates emitted from combustion processes range between 10 nm and 100 mum, and are usually a mixture of unburned and partially burned hydrocarbons. Diesel exhaust particles have a mass median diameter of 0.05-1.0 mum. They are a complex mixture of elemental carbon, a variety of hydrocarbons, sulphur compounds, and other species. They consist of a numerous spherical primary particles, which are agglomerated into aggregates. Particles from natural gas engine emissions range from 0.01-0.7 mum. Increase in PM10 pollution has been found to be associated with a range of adverse health effects, such as increased use of medication for asthma, attacks of asthma in patients with pre-existing asthma, attacks of chronic obstructive pulmonary disease (COPD), deaths from respiratory causes, admission to hospital for cardiovascular causes, deaths from heart attacks and deaths from strokes. While it is unknown, which particulate matter component is the most hazardous for humans, a number of factors suggest that ultrafine particles may be more toxic than larger particles. Ultrafine particles have a large surface area per

  4. Particulate organic matter predicts bacterial productivity in a river dominated estuary

    Science.gov (United States)

    Crump, B. C.

    2015-12-01

    Estuaries act as coastal filters for organic and inorganic fluvial materials in which microbial, biogeochemical, and ecological processes combine to transform organic matter and nutrients prior to export to the coastal ocean. The function of this estuarine 'bioreactor' is linked to the residence times of those materials and to rates of microbial heterotrophic activity. Our ability to forecast the impact of global change on estuarine bioreactor function requires an understanding of the basic controls on microbial community activity and diversity. In the Columbia River estuary, the microbial community undergoes a dramatic seasonal shift in species composition during which a spring bacterioplankton community, dominated by Flavobacteriaceae and Oceanospirillales, is replaced by a summer community, dominated by Rhodobacteraceae and several common marine taxa. This annual shift occurs in July, following the spring freshet, when river flow and river chlorophyll concentration decrease and when estuarine water residence time increases. Analysis of a large dataset from 17 research cruises (1990-2014) showed that the composition of particulate organic matter in the estuary changes after the freshet with decreasing organic carbon and nitrogen content, and increasing contribution of marine and autochthonous estuarine organic matter (based on PO13C and pigment ratios). Bacterial production rates (measured as leucine or thymidine incorporation rates) in the estuary respond to this change, and correlate strongly with labile particulate nitrogen concentration and temperature during individual sampling campaigns, and with the concentration of chlorophyll in the Columbia River across all seasons. Regression models suggest that the concentration of labile particulate nitrogen and the rate of bacterial production can be predicted from sensor measurements of turbidity, salinity, and temperature in the estuary and chlorophyll in the river. These results suggest that the quality of

  5. Long-Term Exposure to Fine Particulate Matter and Breast Cancer Incidence in the Danish Nurse Cohort Study

    DEFF Research Database (Denmark)

    Andersen, Zorana J; Ravnskjaer, Line; Andersen, Klaus Kaae

    BACKGROUND: An association between air pollution and breast cancer risk has been suggested but evidence is sparse and inconclusive. METHODS: We included 22,877 female nurses from the Danish Nurse cohort who were recruited in 1993 or 1999, and followed them for incidence of breast cancer (N=1......,145) until 2013 in the Danish Cancer Register. We estimated annual mean concentrations of particulate matter with diameter nurses' residences since 1990 using an atmospheric chemistry transport model. We examined the association between...

  6. Traffic-related particulate air pollution exposure in urban areas

    Science.gov (United States)

    Borrego, C.; Tchepel, O.; Costa, A. M.; Martins, H.; Ferreira, J.; Miranda, A. I.

    In the last years, there has been an increase of scientific studies confirming that long- and short-term exposure to particulate matter (PM) pollution leads to adverse health effects. The development of a methodology for the determination of accumulated human exposure in urban areas is the main objective of the current work, combining information on concentrations at different microenvironments and population time-activity pattern data. A link between a mesoscale meteorological and dispersion model and a local scale air quality model was developed to define the boundary conditions for the local scale application. The time-activity pattern of the population was derived from statistical information for different sub-population groups and linked to digital city maps. Finally, the hourly PM 10 concentrations for indoor and outdoor microenvironments were estimated for the Lisbon city centre, which was chosen as the case-study, based on the local scale air quality model application for a selected period. This methodology is a first approach to estimate population exposure, calculated as the total daily values above the thresholds recommended for long- and short-term health effects. Obtained results reveal that in Lisbon city centre a large number of persons are exposed to PM levels exceeding the legislated limit value.

  7. Determination of lead associated with airborne particulate matter by flame atomic absorption and wave-length dispersive x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Talebi, S.M.

    1997-01-01

    The lead content of airborne particulate matter was determined by flame atomic absorption spectrometry (FAAS) following digestion with a mixture of nitric acid and hydrogen peroxide and also by wave-length dispersive x-ray fluorescence (WDXRF). The extraction procedure was checked by analyzing a standard reference material of airborne particulate matter (NIST, SRM -1648). It was concluded that lead can quantitatively (98%) be extracted from airborne particulate matter by the leaching process. A five-stage sequential extraction was performed to assess the potential mobility of lead associated with airborne particulate matter. Comparison of the airborne particulate lead measured by WDXRF to that measured by FAAS showed good agreement. The WDXRF method requires no time-consuming sample preparation or use of environmentally unfriendly solvents. The technique is suggested for direct determination of lead in airborne particulate matter in air pollution studies. (author)

  8. PIXE analysis of airborne particulate matter from Xalostoc, Mexico: winter to summer comparison

    International Nuclear Information System (INIS)

    Flores M, J.; Aldape, F.; Diaz, R.V.; Hernandez-Mendez, B.; Garcia G, R.

    1999-01-01

    A study of elemental contents in airborne particulate matter from the industrial city of Xalostoc, Estado de Mexico, was performed using PIXE. The place has a great variety of industries, it is a heavily populated, and it is a part of Mexico City's conurbation, thus contributing significantly to its atmospheric pollution. At present, there is few information available about elemental contents in airborne particulate matter from that region. In this study, two sets of samples of airborne particulate matter were collected daily during periods of four weeks in summer 1996 and winter 1997; two samples a day, 12 h each, night-time and day-time. Results revealed important information about elemental contents in airborne particulate matter from that area, especially in the respirable fraction PM 2.5 . Comparison of night and day figures showed the presence of some elements such as Cu, Zn, and Pb, attributed, as it was expected, to uninterrupted industrial processes. Appearance of some other elements was more consistent only in either day-time or night-time due to diurnal or nocturnal industrial activities, or produced by human activities such as fuel combustion of automotive vehicles. Comparison of winter to summer results showed some other important features such as higher concentrations of pollutants in winter, because of the dry and cold weather, while summer samples exhibited lower concentrations mainly due to the presence of rain showers

  9. Association between particulate matter 2.5 and diabetes mellitus: A meta-analysis of cohort studies.

    Science.gov (United States)

    He, Dian; Wu, Shaowen; Zhao, Haiping; Qiu, Hongyan; Fu, Yang; Li, Xingming; He, Yan

    2017-09-01

    The present meta-analysis was carried out to assess the association between exposure to the level of atmospheric particulate matter 2.5 (PM2.5; fine particulate matter with aerodynamic diameter less than 2.5 μm) and type 2 diabetes mellitus or gestational diabetes mellitus (GDM). We searched the Medline, EMBASE, Cochrane and Web of Science databases to obtain articles according to the responding literature search strategies. Among a total of 279 identified articles, 55 were reviewed in depth, of which 10 articles (11 cohort studies) satisfied the inclusion criteria. Only cohort studies that disclosed the association between PM2.5 and type 2 diabetes mellitus or GDM were included in this article. A fixed-effects model was selected if P > 0.1 and I 2 diabetes mellitus (type 2 diabetes mellitus and GDM). The relative risk was used to estimate the association between PM2.5 and diabetes mellitus. The positive associations between PM2.5 and the incidence of type 2 diabetes mellitus were found in the long-term exposure period (relative risk 1.25, 95% confidence interval 1.10-1.43), which showed that with every 10-μg/m 3 increase in PM2.5, the risk of type 2 diabetes mellitus would increase by 25% in the long-term exposure. Although the significant associations were not identified between maternal exposure to PM2.5 and GDM in the first trimester, the second trimester and the entire pregnancy periods, we could conclude that maternal exposure to PM2.5 in the entire pregnancy period would be more likely to lead to developing GDM (relative risk 1.162, 95% confidence interval 0.806-1.675) than the other two periods. Long-term exposure to PM2.5 would be more likely to lead to developing type 2 diabetes mellitus, but more studies would be required to confirm the association between PM2.5 and GDM. It might be a wise to take effective measures to reduce PM2.5 exposure in vulnerable populations, especially for pregnant women. © 2017 The Authors. Journal of Diabetes Investigation

  10. Personal exposure to particulate matter in commuters using different transport modes (bus, bicycle, car and subway) in an assigned route in downtown Santiago, Chile.

    Science.gov (United States)

    Suárez, Liliana; Mesías, Stephanie; Iglesias, Verónica; Silva, Claudio; Cáceres, Dante D; Ruiz-Rudolph, Pablo

    2014-05-01

    The objective of this study was to compare personal exposure to particulate matter (fine and ultrafine particles) in commuters using different transport modes (bicycle, bus, car and subway) in a busy, assigned route in downtown Santiago, Chile. Volunteers carrying personal samplers completed scheduled commutes during the morning rush hours, while central site measurements were conducted in parallel. A total of 137 valid commutes were assessed. The impact of central site, traffic and other variables was explored with regression models. PM2.5 personal concentrations were equal to or slightly above central site measurements, while UFP personal concentrations were above them. Regression models showed impacts of both background levels and traffic emissions on personal PM2.5 and UFP exposure. Traffic impacts varied with transport modes. Estimates of traffic impacts on personal PM2.5 exposure were 2.0, 13.0, 16.9 and 17.5 μg m(-3), for car, bicycle, subway and bus, respectively; while for UFP exposure were 8400, 16 200, 25 600 and 30 100 counts per cm(3), for subway, car, bicycle and bus, respectively. After controlling the central site and transport mode, higher temperatures increased PM2.5 exposure and decreased UFP ones, while the wind direction affected UFP personal exposure. In conclusion, we found significant impacts of both central site background measurements and traffic emissions on personal exposure of volunteer commuters in an assigned route in Santiago, with impacts varying with transport modes.

  11. Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments

    Science.gov (United States)

    Morales Betancourt, R.; Galvis, B.; Balachandran, S.; Ramos-Bonilla, J. P.; Sarmiento, O. L.; Gallo-Murcia, S. M.; Contreras, Y.

    2017-05-01

    This research determined intake dose of fine particulate matter (PM2.5), equivalent black carbon (eBC), and number of sub-micron particles (Np) for commuters in Bogotá, Colombia. Doses were estimated through measurements of exposure concentration, a surrogate of physical activity, as well as travel times and speeds. Impacts of travel mode, traffic load, and street configuration on dose and exposure were explored. Three road segments were selected because of their different traffic loads and composition, and dissimilar street configuration. The transport modes considered include active modes (walking and cycling) and motorized modes (bus, car, taxi, and motorcycle). Measurements were performed simultaneously in the available modes at each road segment. High average eBC concentrations were observed throughout the campaign, ranging from 20 to 120 μgm-3 . Commuters in motorized modes experienced significantly higher exposure concentrations than pedestrians and bicyclists. The highest average concentrations of PM2.5, eBC , and Np were measured inside the city's Bus Rapid Transit (BRT) system vehicles. Pedestrians and bicycle users in an open street configuration were exposed to the lowest average concentrations of PM2.5 and eBC , six times lower than those experienced by commuters using the BRT in the same street segment. Pedestrians experienced the highest particulate matter intake dose in the road segments studied, despite being exposed to lower concentrations than commuters in motorized modes. Average potential dose of PM2.5 and eBC per unit length traveled were nearly three times higher for pedestrians in a street canyon configuration compared to commuters in public transport. Slower travel speed and elevated inhalation rates dominate PM dose for pedestrians. The presence of dedicated bike lanes on sidewalks has a significant impact on reducing the exposure concentration for bicyclists compared to those riding in mixed traffic lanes. This study proposes a simple

  12. SOURCE SAMPLING FINE PARTICULATE MATTER: WOOD-FIRED INDUSTRIAL BOILER

    Science.gov (United States)

    The report provides a profile for a wood-fired industrial boiler equipped with a multistage electrostatic precipitator control device. Along with the profile of emissions of fine particulate matter of aerodynamic diameter of 2.5 micrometers or less (PM-2.5), data are also provide...

  13. Respiratory dose analysis for components of ambient particulate matter#

    Science.gov (United States)

    Particulate matter (PM) in the atmosphere is a complex mixture of particles with different sizes and chemical compositions. Although PM is known to cause health hazard, specific attributes of PM that may cause health effects are somewhat ambiguous. The dose of each specific compo...

  14. Characterization of urban particulate matter by diffusive gradients in thin film technique

    Czech Academy of Sciences Publication Activity Database

    Dufka, Michaela; Dočekal, Bohumil

    (2018), s. 1-8, č. článku 9698710. ISSN 2090-8865 R&D Projects: GA ČR GAP503/10/2002 Institutional support: RVO:68081715 Keywords : thin film technique * urban particulate matter * particulate air pollution Subject RIV: CB - Analytical Chemistry , Separation OBOR OECD: Analytical chemistry Impact factor: 1.801, year: 2016

  15. Characterization of urban particulate matter by diffusive gradients in thin film technique

    Czech Academy of Sciences Publication Activity Database

    Dufka, Michaela; Dočekal, Bohumil

    (2018), s. 1-8, č. článku 9698710. ISSN 2090-8865 R&D Projects: GA ČR GAP503/10/2002 Institutional support: RVO:68081715 Keywords : thin film technique * urban particulate matter * particulate air pollution Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 1.801, year: 2016

  16. Diesel Particulate Matter Polygons, US EPA Region 9, 2005, NATA

    Data.gov (United States)

    U.S. Environmental Protection Agency — The national-scale assessment includes 177 air pollutants (a subset of the air toxics on the Clean Air Act's list of 187 air toxics plus diesel particulate matter...

  17. Samplings of urban particulate matter for mutagenicity assays

    International Nuclear Information System (INIS)

    De Zaiacono, T.

    1996-07-01

    In the frame of a specific program relating to the evaluation of mutagenic activity of urban particulate matter, an experimental arrangement has been developed to sample aerosuspended particles from the external environment carried indoor by means of a fan. Instrumentation was placed directly in the air flow to minimize particle losses, and consisted of total filter, collecting particles without any size separation; cascade impactor, fractioning urban particulate to obtain separate samples for analyses; an optical device, for real time monitoring of aerosol concentration, temperature and relative humidity sensors. Some of the samples obtained were analysed to investigate: particle morphology, aerosol granulometric distributions, effect of relative humidity on collected particulate, amount of ponderal mass compared with real time optical determinations. The results obtained are reported here, together with some considerations about carbonaceous particles, in urban areas mainly originated from diesel exhausts, their degree of agglomeration and role to vehiculate substances into the human respiratory

  18. Ferruginous compounds in the airborne particulate matter of the metropolitan area of Belo Horizonte, Minas Gerais, Brazil.

    Science.gov (United States)

    Tavares, Fernanda Vasconcelos Fonseca; Ardisson, José Domingos; Rodrigues, Paulo César Horta; Fabris, José Domingos; Fernandez-Outon, Luis Eugenio; Feliciano, Vanusa Maria Delage

    2017-08-01

    Samples of soil, iron ore, and airborne particulate matter (size airborne particulate matter in the metropolitan area of Belo Horizonte, Minas Gerais, Brazil, are either from natural origin, as, for instance, re-suspension of particles from soil, or due to anthropogenic activities, meaning that it would be originated from the many iron ore minings surrounding the metropolitan area. Numerical simulations were used to model the atmospheric dispersion of the airborne particulate matter emitted by iron mining located at the Iron Quadrangle geodomain, Minas Gerais. Results from these numerical simulations supported identifying the sites with the highest concentrations of airborne particulate matter in the metropolitan area. Samples of these suspended materials were collected at the selected sites by using high-volume air samplers. The physicochemical features of the solid materials were assessed by X-ray fluorescence, X-ray diffraction, magnetometry, and 57 Fe Mössbauer spectroscopy. The soil materials were found to be rich in quartz, aluminum, organic matter, and low contents of iron, mainly as low crystalline iron oxides. The samples of the iron ores, on the other hand, contain high concentration of iron, dominantly as relatively pure and crystalline hematite (α-Fe 2 O 3 ). The samples of the airborne particulate matter are rich in iron, mainly as hematite, but contained also quartz, aluminum, and calcium. Mössbauer spectroscopy was used to evaluate the hyperfine structure of 57 Fe of the hematite both from the iron ore and the soil samples. The structural characteristics of the hematite of these particulate materials were further explored. The direct influence of the iron ore mining on the composition of the airborne particulate matter was clearly evidenced based on the trace ability of hematite to its source of emission. Even the atmospheric air on regions relatively far away from the mining activities is also significantly influenced.

  19. Particulate matter characterization of Cauca River water in Colombia

    NARCIS (Netherlands)

    Gutierrez Marin, Juan Pablo; van Halem, D.; Rietveld, L.C.

    2016-01-01

    The particulate matter composition in the Upper Cauca River section was studied, considering the importance of this river for the water supply of Cali, Colombia, and the implications that the turbidity of this water source has had for the city's water treatment. Additionally, the upstream Palo River

  20. Activation analysis of air particulate matter

    International Nuclear Information System (INIS)

    Alian, A.; Sansoni, B.

    1988-11-01

    This review on activation analysis of air particulate matter is an extended and updated version of a review given by the same authors in 1985. The main part is aimed at the analytical scheme and refers to rules and techniques for sampling, sample and standard preparation, irradiation and counting procedures, as well as data processing, - evaluation, and - presentation. Additional chapters deal with relative and monostandard methods, the use of activation analysis for atmosphere samples in various localities, and level of toxic and other elements in the atmosphere. The review contains 190 references. (RB)

  1. Field evaluation of diesel particulate matter using portable elemental carbon monitors

    Energy Technology Data Exchange (ETDEWEB)

    Janisko, S.; Noll, J.D. [National Inst. for Occupational Safety and Health, Pittsburgh, PA (United States)

    2010-07-01

    The permissible exposure limits of underground mine workers to diesel particulate matter (DPM) was lowered in 2008 by the United States Mine Safety and Health Administration. In order to comply with the new regulation, most mines must use one or several combined control strategies to lower DPM concentrations. Since DPMs are complex and unpredictable, there is a need for new tools to help mines develop an effective strategy to reduce their concentrations. This paper reported on newly developed portable elemental carbon (EC) monitoring device for use in underground mines. This compact instrument was developed by the National Institute for Occupational Safety and Health to monitor EC concentrations in real time. The device has proven to be useful in planning new DPM curtailment strategies and in measuring the effectiveness of existing DPM controls. The information is provided in charts of concentration changes over time. The data offers a new way of understanding the factors that influence DPM exposure and drive concentration transients in an underground environment. 14 refs., 6 figs.

  2. Particulate Matter and Black Carbon Concentration Levels in Ashaiman, a Semi-Urban Area of Ghana, 2008

    OpenAIRE

    Sam-Quarcoo Dotse; Joshua Kwame Asane; F.G. Ofosu

    2012-01-01

    Particulate matter and black carbon concentration levels in Ashaiman, a semi-urban area of Ghana was assessed. Using IVL PM2.5 and PM10 particle samplers, airborne particulate matter was sampled on Teflon filters for a period of three months. In addition to determination of particulate mass in the two fractions by gravimetrical method, aerosol filters were analyzed to determine Black Carbon (BC) concentration levels using the black smoke method. BC fractions in fine and coarse, together with ...

  3. Fine particulate matter estimated by mathematical model and hospitalizations for pneumonia and asthma in children

    Directory of Open Access Journals (Sweden)

    Ana Cristina Gobbo César

    2016-03-01

    Full Text Available Abstract Objective: To estimate the association between exposure to fine particulate matter with an aerodynamic diameter <2.5 microns (PM2.5 and hospitalizations for pneumonia and asthma in children. Methods: An ecological study of time series was performed, with daily indicators of hospitalization for pneumonia and asthma in children up to 10 years of age, living in Taubaté (SP and estimated concentrations of PM2.5, between August 2011 and July 2012. A generalized additive model of Poisson regression was used to estimate the relative risk, with lag zero up to five days after exposure; the single pollutant model was adjusted by the apparent temperature, as defined from the temperature and relative air humidity, seasonality and weekday. Results: The values of the relative risks for hospitalization for pneumonia and asthma were significant for lag 0 (RR=1.051, 95%CI; 1.016 to 1.088; lag 2 (RR=1.066, 95%CI: 1.023 to 1.113; lag 3 (RR=1.053, 95%CI: 1.015 to 1.092; lag 4 (RR=1.043, 95%CI: 1.004 to 1.088 and lag 5 (RR=1.061, 95%CI: 1.018 to 1.106. The increase of 5mcg/m3 in PM2.5 contributes to increase the relative risk for hospitalization from 20.3 to 38.4 percentage points; however, the reduction of 5µg/m3 in PM2.5 concentration results in 38 fewer hospital admissions. Conclusions: Exposure to PM2.5 was associated with hospitalizations for pneumonia and asthma in children younger than 10 years of age, showing the role of fine particulate matter in child health and providing subsidies for the implementation of preventive measures to decrease these outcomes.

  4. Toward Distinguishing Woodsmoke and Diesel Exhaust in Ambient Particulate Matter

    International Nuclear Information System (INIS)

    Braun, A.; Huggins, F.; Kubatova, A.; Wirick, S.; Maricq, M.; Mun, B.; McDonald, J.; Kelly, K.; Shah, N.; Huffman, G.

    2008-01-01

    Particulate matter (PM) from biomass burning and diesel exhaust has distinct X-ray spectroscopic, carbon specific signatures, which can be employed for source apportionment. Characterization of the functional groups of a wide selection of PM samples (woodsmoke, diesel soot, urban air PM) was carried out using the soft X-ray spectroscopy capabilities at the synchrotron radiation sources in Berkeley (ALS) and Brookhaven (NSLS). The spectra reveal that diesel exhaust particulate (DEP) matter is made up from a semigraphitic solid core and soluble organic matter, predominantly with carboxylic functional groups. Woodsmoke PM has no or a less prevalent, graphitic signature, instead it contains carbon-hydroxyl groups. Using these features to apportion the carbonaceous PM in ambient samples we estimate that the relative contribution of DEP to ambient PM in an urban area such as Lexington, KY and St. Louis, MO is 7% and 13.5%, respectively. These values are comparable to dispersion modeling data from nonurban and urban areas in California, and with elemental carbon measurements in urban locations such as Boston, MA, Rochester, NY, and Washington, DC.

  5. Short term variations in particulate matter in Mahi river estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Rokade, M.A.; Zingde, M.D.

    The particulate matter (PM) collected from Mahi River Estuary was analysed for organic carbon (POC), nitrogen (PON), and chlorophyll a (Chl a). The concentration of PM, POC, PON and Chl a showed short term variations. Average surface concentration...

  6. Airborne Particulate Matter Induces Nonallergic Eosinophilic Sinonasal Inflammation in Mice.

    Science.gov (United States)

    Ramanathan, Murugappan; London, Nyall R; Tharakan, Anuj; Surya, Nitya; Sussan, Thomas E; Rao, Xiaoquan; Lin, Sandra Y; Toskala, Elina; Rajagopalan, Sanjay; Biswal, Shyam

    2017-07-01

    Exposure to airborne particulate matter (PM) has been linked to aggravation of respiratory symptoms, increased risk of cardiovascular disease, and all-cause mortality. Although the health effects of PM on the lower pulmonary airway have been extensively studied, little is known regarding the impact of chronic PM exposure on the upper sinonasal airway. We sought to test the impact of chronic airborne PM exposure on the upper respiratory system in vivo. Mice were subjected, by inhalation, to concentrated fine (2.5 μm) PM 6 h/d, 5 d/wk, for 16 weeks. Mean airborne fine PM concentration was 60.92 μm/m 3 , a concentration of fine PM lower than that reported in some major global cities. Mice were then killed and analyzed for evidence of inflammation and barrier breakdown compared with control mice. Evidence of the destructive effects of chronic airborne PM on sinonasal health in vivo, including proinflammatory cytokine release, and macrophage and neutrophil inflammatory cell accumulation was observed. A significant increase in epithelial barrier dysfunction was observed, as assessed by serum albumin accumulation in nasal airway lavage fluid, as well as decreased expression of adhesion molecules, including claudin-1 and epithelial cadherin. A significant increase in eosinophilic inflammation, including increased IL-13, eotaxin-1, and eosinophil accumulation, was also observed. Collectively, although largely observational, these studies demonstrate the destructive effects of chronic airborne PM exposure on the sinonasal airway barrier disruption and nonallergic eosinophilic inflammation in mice.

  7. The use of nuclear and related techniques for the studies of possible health impact of airborne particulate matter in a metal industry

    International Nuclear Information System (INIS)

    Djojosubroto, Harjoto; Supriatna, Dadang; Kumolowati, Endang; Widjajakusuma, Benjamin

    2000-01-01

    Various processes in an industry may produce gases and fine airborne particulate matters. Elements and hazardous chemicals in the fine particulate matters may enter the human body through inhalation and direct contact with the skin. Excessive inhalation and contact with the fine airborne particulate matter may lead to intoxication due to excessive intake of the hazardous chemicals and toxic elements. The elements will be accumulated in human organs, such as liver, kidneys and brain, manifest in clinical syndromes such as hypertension, renal failure and neurological symptoms and signs. The absorbed elements are excreted through the urinary tract as urine. They also can be excreted through hair and nails. Elevated blood and urinary aluminum levels have been observed after occupational exposure to various aluminum compounds. This phenomenon indicates the absorption through inhalation, as there are no data indicating significant dermal absorption for aluminum. Absorption of chromium compounds in the workplace occurs mainly through inhalation. The absorption is dependent on the valence and solubility of the particular chromium species. Some elements such as trivalent chromium ions are readily cleared from the blood, but hexavalent chromium ions are retained much longer in the blood. The aluminum compounds vary greatly in their toxic and carcinogenic effects. Although the trivalent chromium is readily excreted, continuous intake may cause the blood chromium level to be higher than normal. These elements may either have an deleterious effect on, or be considered essential for human health. In this study, the levels and health effects of airborne particulate matter in the workplace are assessed by elemental quantification of blood, hair and nail of workers in a metal industry and in airborne particulate samples that are collected at the workplace. The present report represents progress of activities following the first Research Co-ordination Meeting 1997 in Vienna

  8. Nature of suspended particulate matter and concentrations of heavy ...

    African Journals Online (AJOL)

    The concentrations of metals in bottom sediment in the Tanzanian waters of Lake Victoria and the nature of suspended particulate matter (SPM) were analysed. The objective of the study was to compare levels of metals in sediment from different locations and to establish their sources. Metal concentrations were higher in ...

  9. Biomarkers of World Trade Center Particulate Matter Exposure: Physiology of distal airway and blood biomarkers that predict FEV1 decline

    Science.gov (United States)

    Weiden, Michael D.; Kwon, Sophia; Caraher, Erin; Berger, Kenneth I.; Reibman, Joan; Rom, William N.; Prezant, David J.; Nolan, Anna

    2016-01-01

    Biomarkers can be important predictors of disease severity and progression. The intense exposure to particulates and other toxins from the destruction of the World Trade Center (WTC) overwhelmed the lung’s normal protective barriers. The Fire Department of New York (FDNY) cohort not only had baseline pre-exposure lung function measures but also had serum samples banked soon after their WTC exposure. This well phenotyped group of highly exposed first responders is an ideal cohort for biomarker discovery and eventual validation. Disease progression was heterogeneous in this group in that some individuals subsequently developed abnormal lung function while others recovered. Airflow obstruction predominated in WTC exposed patients who were symptomatic. Multiple independent disease pathways may cause this abnormal FEV1 after irritant exposure. WTC exposure activates one or more of these pathways causing abnormal FEV1 in an individual. Our hypothesis was that serum biomarkers expressed within 6 months after World Trade Center (WTC) exposure reflect active disease pathways and predict subsequent development or protection from abnormal FEV1exposure that were predictive of their FEV1 up to 7 years after their WTC exposure. Predicting future risk of airway injury after particulate exposures can focus monitoring and early treatment on a subset of patients in greatest need of these services. PMID:26024341

  10. A Review of Particulate Matter and Health: Focus on Developing Countries.

    OpenAIRE

    L. Panyacosit

    2000-01-01

    The burden of ill human health attributable to particulate air pollution is a critical problem of growing concern. In developing countries it is not uncommon to experience today the same particulate matter levels that characterized the devastating "London fog episodes" of the 1950s which resulted in over 4000 cases of premature mortality and countless cases of exacerbated morbidity related health endpoints. This literature review gives an overview of the situation in developing countries...

  11. A Prototype Sensor for In Situ Sensing of Fine Particulate Matter and Volatile Organic Compounds.

    Science.gov (United States)

    Ng, Chee-Loon; Kai, Fuu-Ming; Tee, Ming-Hui; Tan, Nicholas; Hemond, Harold F

    2018-01-18

    Air pollution exposure causes seven million deaths per year, according to the World Health Organization. Possessing knowledge of air quality and sources of air pollution is crucial for managing air pollution and providing early warning so that a swift counteractive response can be carried out. An optical prototype sensor (AtmOptic) capable of scattering and absorbance measurements has been developed to target in situ sensing of fine particulate matter (PM2.5) and volatile organic compounds (VOCs). For particulate matter testing, a test chamber was constructed and the emission of PM2.5 from incense burning inside the chamber was measured using the AtmOptic. The weight of PM2.5 particles was collected and measured with a filter to determine their concentration and the sensor signal-to-concentration correlation. The results of the AtmOptic were also compared and found to trend well with the Dylos DC 1100 Pro air quality monitor. The absorbance spectrum of VOCs emitted from various laboratory chemicals and household products as well as a two chemical mixtures were recorded. The quantification was demonstrated, using toluene as an example, by calibrating the AtmOptic with compressed gas standards containing VOCs at different concentrations. The results demonstrated the sensor capabilities in measuring PM2.5 and volatile organic compounds.

  12. Particulate matter emissions of different brands of mentholated cigarettes.

    Science.gov (United States)

    Gerharz, Julia; Bendels, Michael H K; Braun, Markus; Klingelhöfer, Doris; Groneberg, David A; Mueller, Ruth

    2018-01-09

    Inhaling particulate matter (PM) in environmental tobacco smoke (ETS) endangers the health of nonsmokers. Menthol, an additive in cigarettes, attenuates respiratory irritation of tobacco smoke. It reduces perceptibility of smoke and therefore passive smokers may inhale ETS unnoticed. To investigate a possible effect of menthol on PM concentrations (PM 10 , PM 2.5 , and PM 1 ), ETS of four mentholated cigarette brands (Elixyr Menthol, Winston Menthol, Reyno Classic, and Pall Mall Menthol Blast) with varying menthol content was analyzed. ETS was generated in a standardized way using an automatic environmental tobacco smoke emitter (AETSE), followed by laser aerosol spectrometry. This analysis shows that the tested cigarette brands, despite having different menthol concentrations, do not show differences with regard to PM emissions, with the exception of Reyno Classic, which shows an increased emission, although the menthol level ranged in the midfield. More than 90% of the emitted particles had a size smaller than or equal to 1 µm. Regardless of the menthol level, the count median diameter (CMD) and the mass median diameter (MMD) were found to be 0.3 µm and 0.5 µm, respectively. These results point out that there is no effect of menthol on PM emission and that other additives might influence the increased PM emission of Reyno Classic. Particulate matter (PM) in ETS endangers the health of nonsmokers and smokers. This study considers the effect of menthol, an additive in cigarettes, on PM emissions. Does menthol increase the amount of PM? Due to the exposure to secondhand smoke nearly 900,000 people die each year worldwide. The aim of the study is to measure the particle concentration (L -1 ), mass concentration (µg m -3 ), and dust mass fractions shown as PM 10 , PM 2.5 , and PM 1 of five different cigarette brands, including four with different menthol concentrations and one menthol-free reference cigarette, in a well-established standardized system.

  13. Organic speciation of size-segregated atmospheric particulate matter

    Science.gov (United States)

    Tremblay, Raphael

    Particle size and composition are key factors controlling the impacts of particulate matter (PM) on human health and the environment. A comprehensive method to characterize size-segregated PM organic content was developed, and evaluated during two field campaigns. Size-segregated particles were collected using a cascade impactor (Micro-Orifice Uniform Deposit Impactor) and a PM2.5 large volume sampler. A series of alkanes and polycyclic aromatic hydrocarbons (PAHs) were solvent extracted and quantified using a gas chromatograph coupled with a mass spectrometer (GC/MS). Large volume injections were performed using a programmable temperature vaporization (PTV) inlet to lower detection limits. The developed analysis method was evaluated during the 2001 and 2002 Intercomparison Exercise Program on Organic Contaminants in PM2.5 Air Particulate Matter led by the US National Institute of Standards and Technology (NIST). Ambient samples were collected in May 2002 as part of the Tampa Bay Regional Atmospheric Chemistry Experiment (BRACE) in Florida, USA and in July and August 2004 as part of the New England Air Quality Study - Intercontinental Transport and Chemical Transformation (NEAQS - ITCT) in New Hampshire, USA. Morphology of the collected particles was studied using scanning electron microscopy (SEM). Smaller particles (one micrometer or less) appeared to consist of solid cores surrounded by a liquid layer which is consistent with combustion particles and also possibly with particles formed and/or coated by secondary material like sulfate, nitrate and secondary organic aerosols. Source apportionment studies demonstrated the importance of stationary sources on the organic particulate matter observed at these two rural sites. Coal burning and biomass burning were found to be responsible for a large part of the observed PAHs during the field campaigns. Most of the measured PAHs were concentrated in particles smaller than one micrometer and linked to combustion sources

  14. Intracerebral haemorrhage associated with hourly concentration of ambient particulate matter: case-crossover analysis.

    Science.gov (United States)

    Yamazaki, S; Nitta, H; Ono, M; Green, J; Fukuhara, S

    2007-01-01

    To examine the association of hourly time lagged concentration of ambient particulate matter and death due to stroke. Mortality data for five years (January 1990 to December 1994) were obtained from the Ministry of Health, Labour, and Welfare of Japan. Data were used only if the deceased was 65 years old or older at the time of death, if death was attributed to intracerebral haemorrhage or ischaemic stroke, and if the deceased lived in one of 13 major urban areas. Hourly mean concentrations of PM7, NO2, and photochemical oxidants were measured at monitoring stations in the 13 areas. Time stratified case-crossover analysis was used to examine the data for evidence of triggering stroke mortality. The 1-hour mean concentration of PM7 measured about 2 hours before death was associated with the risk of death due to intracerebral haemorrhage from April to September (odds ratio = 2.40, 95% CI 1.48 to 3.89, for exposure to PM7 of more than 200 microg/m3 (threshold)). The higher risk was independent of the 24-hour mean concentration of PM7. PM7 was not associated with death due to ischaemic stroke. Transiently high concentrations of PM7 are associated with death due to intracerebral haemorrhage. Air quality standards or guidelines for particulate matter should be based not only on 24-hour mean concentrations, but also on hourly data.

  15. Intracerebral haemorrhage associated with hourly concentration of ambient particulate matter: case‐crossover analysis

    Science.gov (United States)

    Yamazaki, S; Nitta, H; Ono, M; Green, J; Fukuhara, S

    2007-01-01

    Aims To examine the association of hourly time lagged concentration of ambient particulate matter and death due to stroke. Methods Mortality data for five years (January 1990 to December 1994) were obtained from the Ministry of Health, Labour, and Welfare of Japan. Data were used only if the deceased was 65 years old or older at the time of death, if death was attributed to intracerebral haemorrhage or ischaemic stroke, and if the deceased lived in one of 13 major urban areas. Hourly mean concentrations of PM7, NO2, and photochemical oxidants were measured at monitoring stations in the 13 areas. Time stratified case‐crossover analysis was used to examine the data for evidence of triggering stroke mortality. Results The 1‐hour mean concentration of PM7 measured about 2 hours before death was associated with the risk of death due to intracerebral haemorrhage from April to September (odds ratio = 2.40, 95% CI 1.48 to 3.89, for exposure to PM7 of more than 200 μg/m3 (threshold)). The higher risk was independent of the 24‐hour mean concentration of PM7. PM7 was not associated with death due to ischaemic stroke. Conclusions Transiently high concentrations of PM7 are associated with death due to intracerebral haemorrhage. Air quality standards or guidelines for particulate matter should be based not only on 24‐hour mean concentrations, but also on hourly data. PMID:16847037

  16. Health impact and monetary cost of exposure to particulate matter emitted from biomass burning in large cities.

    Science.gov (United States)

    Sarigiannis, Dimosthenis Α; Karakitsios, Spyros P; Kermenidou, Marianthi V

    2015-08-15

    The study deals with the assessment of health impact and the respective economic cost attributed to particulate matter (PM) emitted into the atmosphere from biomass burning for space heating, focusing on the differences between the warm and cold seasons in 2011-2012 and 2012-2013 in Thessaloniki (Greece). Health impact was assessed based on estimated exposure levels and the use of established WHO concentration-response functions (CRFs) for all-cause mortality, infant mortality, new chronic bronchitis cases, respiratory and cardiac hospital admissions. Monetary cost was based on the valuation of the willingness-to-pay/accept (WTP/WTA), to avoid or compensate for the loss of welfare associated with illness. Results showed that long term mortality during the 2012-2013 winter increased by 200 excess deaths in a city of almost 900,000 inhabitants or 3540 years of life lost, corresponding to an economic cost of almost 200-250m€. New chronic bronchitis cases dominate morbidity estimates (490 additional new cases corresponding to a monetary cost of 30m€). Estimated health and monetary impacts are more severe during the cold season, despite its smaller duration (4 months). Considering that the increased ambient air concentrations (and the integral of outdoor/indoor exposure) are explained by shifting from oil to biomass for domestic heating purposes, several alternative scenarios were evaluated. Policy scenario analysis revealed that significant public health and monetary benefits (up to 2b€ in avoided mortality and 130m€ in avoided illness) might be obtained by limiting the biomass share in the domestic heat energy mix. Fiscal policy affecting fuels/technologies used for domestic heating needs to be reconsidered urgently, since the net tax loss from avoided oil taxation due to reduced consumption was further compounded by the public health cost of increased mid-term morbidity and mortality. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Population-Level Exposure to Particulate Air Pollution during Active Travel: Planning for Low-Exposure, Health-Promoting Cities.

    Science.gov (United States)

    Hankey, Steve; Lindsey, Greg; Marshall, Julian D

    2017-04-01

    Providing infrastructure and land uses to encourage active travel (i.e., bicycling and walking) are promising strategies for designing health-promoting cities. Population-level exposure to air pollution during active travel is understudied. Our goals were a ) to investigate population-level patterns in exposure during active travel, based on spatial estimates of bicycle traffic, pedestrian traffic, and particulate concentrations; and b ) to assess how those exposure patterns are associated with the built environment. We employed facility-demand models (active travel) and land use regression models (particulate concentrations) to estimate block-level ( n = 13,604) exposure during rush-hour (1600-1800 hours) in Minneapolis, Minnesota. We used the model-derived estimates to identify land use patterns and characteristics of the street network that are health promoting. We also assessed how exposure is correlated with indicators of health disparities (e.g., household income, proportion of nonwhite residents). Our work uses population-level rates of active travel (i.e., traffic flows) rather than the probability of walking or biking (i.e., "walkability" or "bikeability") to assess exposure. Active travel often occurs on high-traffic streets or near activity centers where particulate concentrations are highest (i.e., 20-42% of active travel occurs on blocks with high population-level exposure). Only 2-3% of blocks (3-8% of total active travel) are "sweet spots" (i.e., high active travel, low particulate concentrations); sweet spots are located a ) near but slightly removed from the city-center or b ) on off-street trails. We identified 1,721 blocks (~ 20% of local roads) where shifting active travel from high-traffic roads to adjacent low-traffic roads would reduce exposure by ~ 15%. Active travel is correlated with population density, land use mix, open space, and retail area; particulate concentrations were mostly unchanged with land use. Public health officials and

  18. Polycyclic aromatic hydrocarbons and organic matter associated to particulate matter emitted from atmospheric fluidized bed coal combustion

    International Nuclear Information System (INIS)

    Mastral, A.M.; Callen, M.S.; Garcia, T.

    1999-01-01

    The polycyclic aromatic hydrocarbons (PAH) and the organic matter (OM) content associated with particulate matter (PM) emissions from atmospheric fluidized bed coal combustion have been studied. The two main aims of the work have been (a) to study OM and PAH emissions as a function of the coal fluidized bed combustion (FBC) variables in solid phase and (b) to check if there is any correlation between OM and PAH contained in the PM. The combustion was carried out in a laboratory scale plant at different combustion conditions: temperature, percentage of oxygen excess, and total air flow. PAH associated on the particulate matter have been analyzed by fluorescence spectroscopy in the synchronous mode (FS) after PM extraction by sonication with dimethylformamide (DMF). It can be concluded that there is not a direct relationship between the OM content and the PAH supported in the PM emitted. In addition, neither PM or OM show dependence between themselves

  19. Characterization of particulate and gas exposures of sensitive subpopulations living in Baltimore and Boston.

    Science.gov (United States)

    Koutrakis, Petros; Suh, Helen H; Sarnat, Jeremy A; Brown, Kathleen Ward; Coull, Brent A; Schwartz, Joel

    2005-12-01

    Personal exposures to particulate and gaseous pollutants and corresponding ambient concentrations were measured for 56 subjects living in Baltimore, Maryland, and 43 subjects living in Boston, Massachusetts. The 3 Baltimore cohorts consisted of 20 healthy older adults (seniors), 21 children, and 15 individuals with physician-diagnosed chronic obstructive pulmonary disease (COPD*). The 2 Boston cohorts were 20 healthy seniors and 23 children. All children were 9 to 13 years of age; seniors were 65 years of age or older; and the COPD participants had moderate to severe physician-diagnosed COPD. Personal exposures to particulate matter with aerodynamic diameters less than 2.5 microm (PM2.5), sulfate (SO(4)2-), elemental carbon (EC), ozone (03), nitrogen dioxide (NO2), and sulfur dioxide (SO2) were measured simultaneously for 24 hours/day. All subjects were monitored for 8 to 12 consecutive days. The primary objectives of this study were (1) to characterize the personal particulate and gaseous exposures for individuals sensitive to PM health effects and (2) to assess the appropriateness of exposure assessment strategies for use in PM epidemiologic studies. Personal exposures to multiple pollutants and ambient concentrations were measured for subjects from each cohort from each location. Pollutant data were analyzed using correlation and mixed-model regression analyses. In Baltimore, personal PM2.5 exposures tended to be comparable to (and frequently lower than) corresponding ambient concentrations; in Boston, the personal exposures were frequently higher. Overall, personal exposures to the gaseous pollutants, especially O3 and SO2, were considerably lower than corresponding ambient concentrations because of the lack of indoor sources for these gases and their high removal rate on indoor surfaces. Further, the impact of ambient particles on personal exposure (the infiltration factor) and differences in infiltration factor by city, season, and cohort were investigated

  20. Fine Particulate Matter Pollution and Risk of Community-Acquired Sepsis.

    Science.gov (United States)

    Sarmiento, Elisa J; Moore, Justin Xavier; McClure, Leslie A; Griffin, Russell; Al-Hamdan, Mohammad Z; Wang, Henry E

    2018-04-21

    While air pollution has been associated with health complications, its effect on sepsis risk is unknown. We examined the association between fine particulate matter (PM 2.5 ) air pollution and risk of sepsis hospitalization. We analyzed data from the 30,239 community-dwelling adults in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) cohort linked with satellite-derived measures of PM 2.5 data. We defined sepsis as a hospital admission for a serious infection with ≥2 systemic inflammatory response (SIRS) criteria. We performed incidence density sampling to match sepsis cases with 4 controls by age (±5 years), sex, and race. For each matched group we calculated mean daily PM 2.5 exposures for short-term (30-day) and long-term (one-year) periods preceding the sepsis event. We used conditional logistic regression to evaluate the association between PM 2.5 exposure and sepsis, adjusting for education, income, region, temperature, urbanicity, tobacco and alcohol use, and medical conditions. We matched 1386 sepsis cases with 5544 non-sepsis controls. Mean 30-day PM 2.5 exposure levels (Cases 12.44 vs. Controls 12.34 µg/m³; p = 0.28) and mean one-year PM 2.5 exposure levels (Cases 12.53 vs. Controls 12.50 µg/m³; p = 0.66) were similar between cases and controls. In adjusted models, there were no associations between 30-day PM 2.5 exposure levels and sepsis (4th vs. 1st quartiles OR: 1.06, 95% CI: 0.85⁻1.32). Similarly, there were no associations between one-year PM 2.5 exposure levels and sepsis risk (4th vs. 1st quartiles OR: 0.96, 95% CI: 0.78⁻1.18). In the REGARDS cohort, PM 2.5 air pollution exposure was not associated with risk of sepsis.

  1. Airborne particulate matter from livestock production systems: A review of an air pollution problem

    International Nuclear Information System (INIS)

    Cambra-Lopez, Maria; Aarnink, Andre J.A.; Zhao Yang; Calvet, Salvador; Torres, Antonio G.

    2010-01-01

    Livestock housing is an important source of emissions of particulate matter (PM). High concentrations of PM can threaten the environment, as well as the health and welfare of humans and animals. Particulate matter in livestock houses is mainly coarse, primary in origin, and organic; it can adsorb and contain gases, odorous compounds, and micro-organisms, which can enhance its biological effect. Levels of PM in livestock houses are high, influenced by kind of housing and feeding, animal type, and environmental factors. Improved knowledge on particle morphology, primarily size, composition, levels, and the factors influencing these can be useful to identify and quantify sources of PM more accurately, to evaluate their effects, and to propose adequate abatement strategies in livestock houses. This paper reviews the state-of-the-art of PM in and from livestock production systems. Future research to characterize and control PM in livestock houses is discussed. - Control of particulate matter emissions, a major challenge to modern livestock production.

  2. Spatial and temporal variability in urban fine particulate matter concentrations

    International Nuclear Information System (INIS)

    Levy, Jonathan I.; Hanna, Steven R.

    2011-01-01

    Identification of hot spots for urban fine particulate matter (PM 2.5 ) concentrations is complicated by the significant contributions from regional atmospheric transport and the dependence of spatial and temporal variability on averaging time. We focus on PM 2.5 patterns in New York City, which includes significant local sources, street canyons, and upwind contributions to concentrations. A literature synthesis demonstrates that long-term (e.g., one-year) average PM 2.5 concentrations at a small number of widely-distributed monitoring sites would not show substantial variability, whereas short-term (e.g., 1-h) average measurements with high spatial density would show significant variability. Statistical analyses of ambient monitoring data as a function of wind speed and direction reinforce the significance of regional transport but show evidence of local contributions. We conclude that current monitor siting may not adequately capture PM 2.5 variability in an urban area, especially in a mega-city, reinforcing the necessity of dispersion modeling and methods for analyzing high-resolution monitoring observations. - Highlights: →Fine particulate matter (PM 2.5 ) hot spots are hard to identify in urban areas. → Literature conclusions about PM 2.5 hot spots depend on study design and methods. → Hot spots are more likely for short-term concentrations at high spatial density. → Statistical methods illustrate local source impacts beyond regional transport. → Dispersion models and high-resolution monitors are both needed to find hot spots. - Fine particulate matter can vary spatially within large urban areas, in spite of the significant contribution from regional atmospheric transport.

  3. Effects of airborne particulate matter on alternative pre-mRNA splicing in colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Buggiano, Valeria; Petrillo, Ezequiel; Alló, Mariano; Lafaille, Celina [Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires (Argentina); Redal, María Ana [Instituto de Ciencias Básicas y Medicina Experimental, Hospital Italiano de Buenos Aires (Argentina); Alghamdi, Mansour A. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Khoder, Mamdouh I. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah (Saudi Arabia); Shamy, Magdy [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Muñoz, Manuel J., E-mail: mmunoz@fbmc.fcen.uba.ar [Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires (Argentina); and others

    2015-07-15

    Alternative pre-mRNA splicing plays key roles in determining tissue- and species-specific cell differentiation as well as in the onset of hereditary disease and cancer, being controlled by multiple post- and co-transcriptional regulatory mechanisms. We report here that airborne particulate matter, resulting from industrial pollution, inhibits expression and specifically affects alternative splicing at the 5′ untranslated region of the mRNA encoding the bone morphogenetic protein BMP4 in human colon cells in culture. These effects are consistent with a previously reported role for BMP4 in preventing colon cancer development, suggesting that ingestion of particulate matter could contribute to the onset of colon cell proliferation. We also show that the underlying mechanism might involve changes in transcriptional elongation. This is the first study to demonstrate that particulate matter causes non-pleiotropic changes in alternative splicing. - Highlights: • Airborne particulate matter (PM10) affects alternative splicing in colon cells. • PM10 upregulates one of the two mRNA variants of the growth factor BMP-4. • This variant has a longer 5′ unstranslated region and introduces an upstream AUG. • By regulating BMP-4 mRNA splicing PM10 inhibits total expression of BMP-4 protein. • BMP-4 downregulation was previously reported to be associated to colon cancer.

  4. Particulate matter and heart disease: Evidence from epidemiological studies

    International Nuclear Information System (INIS)

    Peters, Annette

    2005-01-01

    The association between particulate matter and heart disease was noted in the mid-nineties of last century when the epidemiological evidence for an association between air pollution and hospital admissions due to cardiovascular disease accumulated and first hypotheses regarding the pathomechanism were formulated. Nowadays, epidemiological studies have demonstrated coherent associations between daily changes in concentrations of ambient particles and cardiovascular disease mortality, hospital admission, disease exacerbation in patients with cardiovascular disease and early physiological responses in healthy individuals consistent with a risk factor profile deterioration. In addition, evidence was found that annual average PM 2.5 exposures are associated with increased risks for mortality caused by ischemic heart disease and dysrhythmia. Thereby, evidence is suggesting not only a short-term exacerbation of cardiovascular disease by ambient particle concentrations but also a potential role of particles in defining patients' vulnerability to acute coronary events. While this concept is consistent with the current understanding of the factors defining patients' vulnerability, the mechanisms and the time-scales on which the particle-induced vulnerability might operate are unknown

  5. Understanding Particulate Matter Dynamics in the San Joaquin Valley during DISCOVER-AQ, 2013

    Science.gov (United States)

    Prabhakar, G.; Zhang, X.; Kim, H.; Parworth, C.; Pusede, S. E.; Wooldridge, P. J.; Cohen, R. C.; Zhang, Q.; Cappa, C. D.

    2015-12-01

    Air quality in the California San Joaquin Valley (SJV) during winter continues to be the worst in the state, failing EPA's 24-hour standard for particulate matter. Despite our improved understanding of the sources of particulate matter (PM) in the valley, air-quality models are unable to predict PM concentrations accurately. We aim to characterize periods of high particulate matter concentrations in the San Joaquin Valley based on ground and airborne measurements of aerosols and gaseous pollutants, during the DISCOVER-AQ campaign, 2013. A highly instrumented aircraft flew across the SJV making three transects in a repeatable pattern, with vertical spirals over select locations. The aircraft measurements were complemented by ground measurements at these locations, with extensive chemically-speciated measurements at a ground "supersite" at Fresno. Hence, the campaign provided a comprehensive three-dimensional view of the particulate and gaseous pollutants around the valley. The vertical profiles over the different sites indicate significant variability in the concentrations and vertical distribution of PM around the valley, which are most likely driven by differences in the combined effects of emissions, chemistry and boundary layer dynamics at each site. The observations suggest that nighttime PM is dominated by surface emissions of PM from residential fuel combustion, while early morning PM is strongly influenced by mixing of low-level, above-surface, nitrate-rich layers formed from dark chemistry overnight to the surface.

  6. Policy research programme on particulate matter. Main results and policy consequences; Beleidsgericht onderzoeksprogramma fijn stof. Resultaten op hoofdlijnen en beleidsconsequenties

    Energy Technology Data Exchange (ETDEWEB)

    Matthijsen, J.; Koelemeijer, R.B.A.

    2010-06-15

    The Policy-Oriented Research on Particulate Matter (BOP) programme aimed at increasing knowledge on particulate matter so that future policy can be supported adequately. The main research objectives of BOP were to improve knowledge of the PM10 and PM2,5 concentrations, composition and sources of particulate matter; Increasing the understanding of the behavior of particulate matter in the urban area; Determining the trends in concentrations of particulate matter and its components; and Clarify the impact of policies in the past and the future of PM10 and PM2,5 concentrations. The first part of this study presents the main findings of the study, discussing the (chemical) composition of particulate matter, concentration trends, expected developments, health impacts, policy implications, and how to proceed with the particulate matter dossier. In the second part of the study the underlying analysis are elaborated. [Dutch] Het Beleidsgericht Onderzoeksprogramma Particulate Matter (BOP) had als doel om de kennis over fijn stof te vergroten, zodat beleidsvorming in de toekomst adequater ondersteund kan worden. De belangrijkste onderzoeksdoelstellingen van BOP waren: Verbeteren van de kennis over de PM10- en PM2,5-concentraties, de samenstelling en de bronnen van fijn stof; Vergroten van het inzicht in het gedrag van fijn stof in het stedelijke gebied; Bepalen van de trends in fijnstofconcentraties en de bestanddelen ervan; Verduidelijken van de invloed van beleidsmaatregelen in het verleden en de toekomst op de PM10- en PM2,5-concentraties. Het eerste deel van deze studie, de Bevindingen, presenteert de belangrijkste uitkomsten van het onderzoek. Hierbij komen achtereenvolgens aan de orde: de (chemische) samenstelling van fijn stof, trends in concentraties, verwachte ontwikkelingen, gezondheidseffecten, beleidsconsequenties en hoe nu verder te gaan met het dossier fijn stof. In het tweede deel van de studie, de Verdieping, staat de verantwoording en worden de

  7. Spatial and temporal variation of particulate matter characteristics within office buildings - The OFFICAIR study.

    Science.gov (United States)

    Szigeti, Tamás; Dunster, Christina; Cattaneo, Andrea; Spinazzè, Andrea; Mandin, Corinne; Le Ponner, Eline; de Oliveira Fernandes, Eduardo; Ventura, Gabriela; Saraga, Dikaia E; Sakellaris, Ioannis A; de Kluizenaar, Yvonne; Cornelissen, Eric; Bartzis, John G; Kelly, Frank J

    2017-06-01

    In the frame of the OFFICAIR project, office buildings were investigated across Europe to assess how the office workers are exposed to different particulate matter (PM) characteristics (i.e. PM 2.5 mass concentration, particulate oxidative potential (OP) based on ascorbate and reduced glutathione depletion, trace element concentration and total particle number concentration (PNC)) within the buildings. Two offices per building were investigated during the working hours (5 consecutive days; 8h per day) in two campaigns. Differences were observed for all parameters across the office buildings. Our results indicate that the monitoring of the PM 2.5 mass concentration in different offices within a building might not reflect the spatial variation of the health relevant PM characteristics such as particulate OP or the concentration of certain trace elements (e.g., Cu, Fe), since larger differences were apparent within a building for these parameters compared to that obtained for the PM 2.5 mass concentration in many cases. The temporal variation was larger for almost all PM characteristics (except for the concentration of Mn) than the spatial differences within the office buildings. These findings indicate that repeated or long-term monitoring campaigns are necessary to have information about the temporal variation of the PM characteristics. However, spatial variation in exposure levels within an office building may cause substantial differences in total exposure in the long term. We did not find strong associations between the investigated indoor activities such as printing or windows opening and the PNC values. This might be caused by the large number of factors affecting PNC indoors and outdoors. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Exposure to airborne particulate matter in the subway system.

    Science.gov (United States)

    Martins, Vânia; Moreno, Teresa; Minguillón, María Cruz; Amato, Fulvio; de Miguel, Eladio; Capdevila, Marta; Querol, Xavier

    2015-04-01

    The Barcelona subway system comprises eight subway lines, at different depths, with different tunnel dimensions, station designs and train frequencies. An extensive measurement campaign was performed in this subway system in order to characterise the airborne particulate matter (PM) measuring its concentration and investigating its variability, both inside trains and on platforms, in two different seasonal periods (warmer and colder), to better understand the main factors controlling it, and therefore the way to improve air quality. The majority of PM in the underground stations is generated within the subway system, due to abrasion and wear of rail tracks, wheels and braking pads caused during the motion of the trains. Substantial variation in average PM concentrations between underground stations was observed, which might be associated to different ventilation and air conditioning systems, characteristics/design of each station and variations in the train frequency. Average PM2.5 concentrations on the platforms in the subway operating hours ranged from 20 to 51 and from 41 to 91 μg m(-3) in the warmer and colder period, respectively, mainly related to the seasonal changes in the subway ventilation systems. The new subway lines with platform screen doors showed PM2.5 concentrations lower than those in the conventional system, which is probably attributable not only to the more advanced ventilation setup, but also to the lower train frequency and the design of the stations. PM concentrations inside the trains were generally lower than those on the platforms, which is attributable to the air conditioning systems operating inside the trains, which are equipped with air filters. This study allows the analysis and quantification of the impact of different ventilation settings on air quality, which provides an improvement on the knowledge for the general understanding and good management of air quality in the subway system. Copyright © 2014 The Authors. Published by

  9. INAA for the characterization of airborne particulate matter from the industrial area of Islamabad city

    International Nuclear Information System (INIS)

    Wasim, M.; Rahman, A.; Waheed, S.; Daud, M.; Ahmad, S.

    2003-01-01

    Air particulate matter (PM) was collected in two size fractions using stacked filter units (SFUs) provided by the International Atomic Energy Agency (IAEA) from the industrial area of Islamabad. Nucleopore polycarbonate filters were used for collecting from Oct 98 to Jun 99 the particulate matter in coarse and fine size fractions. The samples were characterized by the instrumental neutron activation analysis (INAA). About 33 elements were quantified using different irradiation and counting protocols. (author)

  10. Behavior of secondary particles in particulate matter collected at eastern Kanagawa

    International Nuclear Information System (INIS)

    Nishida, Tomohiro; Kikawada, Yoshikazu; Oi, Takao; Honda, Teruyuki

    2008-01-01

    The suspended particulate matters collected in 100 periods from 2002/10/28 to 2004/10/29 were separated into the water soluble and insoluble components and their main components were analyzed. The characteristics of atmosphere in the east part of Kagawa prefecture and of the secondary particulates were presumed. Therefore, it was considered that in the samples other than Mn the origins of water soluble and insoluble components are different each other from their behavior. The water-soluble part may be mostly ammonium salt (secondary particulate) from the measurement of NH 4 + . Furthermore, it became clear that the evolution of secondary particulate varies largely with season. Then, the variation with season was presumed by the main component analysis using the statistical software, SPSS adding to the correlation coefficient. This method has proved to be effective. (M.H.)

  11. A comparison of particulate matter from biomass-burning rural and non-biomass-burning urban households in northeastern China.

    Science.gov (United States)

    Jiang, Ruoting; Bell, Michelle L

    2008-07-01

    Biomass fuel is the primary source of domestic fuel in much of rural China. Previous studies have not characterized particle exposure through time-activity diaries or personal monitoring in mainland China. In this study we characterized indoor and personal particle exposure in six households in northeastern China (three urban, three rural) and explored differences by location, cooking status, activity, and fuel type. Rural homes used biomass. Urban homes used a combination of electricity and natural gas. Stationary monitors measured hourly indoor particulate matter (PM) with an aerodynamic diameter urban kitchens, urban sitting rooms, and outdoors. Personal monitors for PM with an aerodynamic diameter urban kitchens during cooking. PM10 was 6.1 times higher during cooking periods than during noncooking periods for rural kitchens. Personal PM2.5 levels for rural cooks were 2.8-3.6 times higher than for all other participant categories. The highest PM2.5 exposures occurred during cooking periods for urban and rural cooks. However, rural cooks had 5.4 times higher PM2.5 levels during cooking than did urban cooks. Rural cooks spent 2.5 times more hours per day cooking than did their urban counterparts. These findings indicate that biomass burning for cooking contributes substantially to indoor particulate levels and that this exposure is particularly elevated for cooks. Second-by-second personal PM2.5 exposures revealed differences in exposures by population group and strong temporal heterogeneity that would be obscured by aggregate metrics.

  12. Indoor and outdoor sources of size-resolved mass concentration of particulate matter in a school gym-implications for exposure of exercising children.

    Science.gov (United States)

    Braniš, Martin; Safránek, Jiří; Hytychová, Adéla

    2011-05-01

    It has been noticed many times that schools are buildings with high levels of particulate matter concentrations. Several authors documented that concentrations of particulate matter in indoor school microenvironments exceed limits recommended by WHO namely when school buildings are situated near major roads with high traffic densities. In addition, exercise under conditions of high particulate concentrations may increase the adverse health effects, as the total particle deposition increases in proportion to minute ventilation, and the deposition fraction nearly doubles from rest to intense exercise. Mass concentrations of size-segregated aerosol were measured simultaneously in an elementary school gym and an adjacent outdoor site in the central part of Prague by two pairs of collocated aerosol monitors-a fast responding photometer DusTrak and a five stage cascade impactor. To encompass seasonal and annual differences, 89 days of measurements were performed during ten campaigns between 2005 and 2009. The average (all campaigns) outdoor concentration of PM(2.5) (28.3 μg m(-3)) measured by the cascade impactors was higher than the indoor value (22.3 μg m(-3)) and the corresponding average from the nearest fixed site monitor (23.6 μg m(-3)). Indoor and outdoor PM(2.5) concentrations exceeded the WHO recommended 24-h limit in 42% and 49% of the days measured, respectively. The correlation coefficient (r) between corresponding outdoor and indoor aerosol sizes increased with decreasing aerodynamic diameter of the collected particles (r = 0.32-0.87), suggesting a higher infiltration rate of fine and quasi-ultrafine particles. Principal component analysis revealed five factors explaining more than 82% of the data variability. The first two factors reflected a close association between outdoor and indoor fine and quasi-ultrafine particles confirming the hypothesis of high infiltration rate of particles from outdoors. The third factor indicated that human

  13. Characterization of Fine Particulate Matter and Associated Health Burden in Nanjing

    Science.gov (United States)

    Nie, Dongyang; Chen, Mindong; Ge, Xinlei; Zhang, Kai; Ge, Pengxiang

    2018-01-01

    Particulate matter (PM) air pollution has become a serious environmental problem in Nanjing and poses great health risks to local residents. In this study, characteristics of particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5) over Nanjing were analyzed using hourly and daily averaged PM2.5 concentrations and meteorological parameters collected from nine national monitoring sites during the period of March 2014 to February 2017. Then, the integrated exposure-response (IER) model was applied to assess premature mortality, years of life lost (YLL) attributable to PM2.5, and mortality benefits due to PM2.5 reductions. The concentrations of PM2.5 varied among hours, seasons and years, which can be explained by differences in emission sources, secondary formations and meteorological conditions. The decreased ratio of PM2.5 to CO suggested that secondary contributions decreased while the relative contributions of vehicle exhaust increased from increased CO data. According to the values of attributable fractions (AF), stroke was the major cause of death, followed by ischemic heart disease (IHD), lung cancer (LC) and chronic obstructive pulmonary disease (COPD). The estimated total deaths in Nanjing due to PM2.5 were 12,055 and 10,771, leading to 98,802 and 87,647 years of life lost in 2014 and 2015, respectively. The elderly and males had higher health risks than youngsters and females. When the PM2.5 concentrations meet the World Health Organization (WHO) Air Quality Guidelines (AQG) of 10 μg/m3, 84% of the premature deaths would be avoided, indicating that the Nanjing government needs to adopt more stringent measure to reduce PM pollution and enhance the health benefits. PMID:29584626

  14. Characterization of Fine Particulate Matter and Associated Health Burden in Nanjing

    Directory of Open Access Journals (Sweden)

    Dongyang Nie

    2018-03-01

    Full Text Available Particulate matter (PM air pollution has become a serious environmental problem in Nanjing and poses great health risks to local residents. In this study, characteristics of particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5 over Nanjing were analyzed using hourly and daily averaged PM2.5 concentrations and meteorological parameters collected from nine national monitoring sites during the period of March 2014 to February 2017. Then, the integrated exposure-response (IER model was applied to assess premature mortality, years of life lost (YLL attributable to PM2.5, and mortality benefits due to PM2.5 reductions. The concentrations of PM2.5 varied among hours, seasons and years, which can be explained by differences in emission sources, secondary formations and meteorological conditions. The decreased ratio of PM2.5 to CO suggested that secondary contributions decreased while the relative contributions of vehicle exhaust increased from increased CO data. According to the values of attributable fractions (AF, stroke was the major cause of death, followed by ischemic heart disease (IHD, lung cancer (LC and chronic obstructive pulmonary disease (COPD. The estimated total deaths in Nanjing due to PM2.5 were 12,055 and 10,771, leading to 98,802 and 87,647 years of life lost in 2014 and 2015, respectively. The elderly and males had higher health risks than youngsters and females. When the PM2.5 concentrations meet the World Health Organization (WHO Air Quality Guidelines (AQG of 10 μg/m3, 84% of the premature deaths would be avoided, indicating that the Nanjing government needs to adopt more stringent measure to reduce PM pollution and enhance the health benefits.

  15. Characterization of Fine Particulate Matter and Associated Health Burden in Nanjing.

    Science.gov (United States)

    Nie, Dongyang; Chen, Mindong; Wu, Yun; Ge, Xinlei; Hu, Jianlin; Zhang, Kai; Ge, Pengxiang

    2018-03-27

    Particulate matter (PM) air pollution has become a serious environmental problem in Nanjing and poses great health risks to local residents. In this study, characteristics of particulate matter with an aerodynamic diameter less than 2.5 μm (PM 2.5 ) over Nanjing were analyzed using hourly and daily averaged PM 2.5 concentrations and meteorological parameters collected from nine national monitoring sites during the period of March 2014 to February 2017. Then, the integrated exposure-response (IER) model was applied to assess premature mortality, years of life lost (YLL) attributable to PM 2.5 , and mortality benefits due to PM 2.5 reductions. The concentrations of PM 2.5 varied among hours, seasons and years, which can be explained by differences in emission sources, secondary formations and meteorological conditions. The decreased ratio of PM 2.5 to CO suggested that secondary contributions decreased while the relative contributions of vehicle exhaust increased from increased CO data. According to the values of attributable fractions (AF), stroke was the major cause of death, followed by ischemic heart disease (IHD), lung cancer (LC) and chronic obstructive pulmonary disease (COPD). The estimated total deaths in Nanjing due to PM 2.5 were 12,055 and 10,771, leading to 98,802 and 87,647 years of life lost in 2014 and 2015, respectively. The elderly and males had higher health risks than youngsters and females. When the PM 2.5 concentrations meet the World Health Organization (WHO) Air Quality Guidelines (AQG) of 10 μg/m³, 84% of the premature deaths would be avoided, indicating that the Nanjing government needs to adopt more stringent measure to reduce PM pollution and enhance the health benefits.

  16. Determination of trace elements by INAA in urban air particulate matter and transplanted lichens

    International Nuclear Information System (INIS)

    Bergamaschi, L.; Rizzio, E.; Profumo, A.; Gallorini, M.

    2005-01-01

    Lichens as biomonitors and neutron activation analysis as analytical technique have been employed to evaluate the trace element atmospheric pollution in the metropolitan area of the city of Pavia (Northern Italy). Transplanted lichens (Parmelia sulcata and Usnea gr. hirta) and air particulate matter have been monthly collected and analyzed during the winter 2001-2002. INAA and ET-AAS have been used for the determination of 28 elements in air particulate matter and 25 elements in lichens. Trace metals concentrations as well as the corresponding enrichment factors were evaluated and compared. (author)

  17. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    International Nuclear Information System (INIS)

    Ebadian, M.A.; Dua, S.K.; Hillol Guha

    2001-01-01

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 microm) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 micro

  18. Comparison and trend study on acidity and acidic buffering capacity of particulate matter in China

    Science.gov (United States)

    Ren, Lihong; Wang, Wei; Wang, Qingyue; Yang, XiaoYang; Tang, Dagang

    2011-12-01

    The acidity of about 2000 particulate matter samples from aircraft and ground-based monitoring is analyzed by the method similar to soil acidity determination. The ground-based samples were collected at about 50 urban or background sites in northern and southern China. Moreover, the acidic buffering capacity of those samples is also analyzed by the method of micro acid-base titration. Results indicate that the acidity level is lower in most northern areas than those in the south, and the acidic buffering capacity showed inverse tendency, correspondingly. This is the most important reason why the pollution of acidic-precipitation is much more serious in Southern China than that in Northern China. The acidity increases and the acidic buffering capacity drops with the decreasing of the particle sizes, indicating that fine particle is the main influencing factor of the acidification. The ionic results show that Ca salt is the main alkaline substance in particulate matter, whereas the acidification of particulate matter is due to the SO 2 and NO x emitted from the fossil fuel burning. And among of them, coal burning is the main contributor of SO 2, however the contribution of NO x that emitted from fuel burning of motor vehicles has increased in recent years. By comparison of the experimental results during the past 20 years, it can be concluded that the acid precipitation of particulate matter has not been well controlled, and it even shows an increasing tendency in China lately. The acid precipitation of particulate matter has begun to frequently attack in part of the northern areas. Multiple regression analysis indicates that coefficient value of the ions is the lowest at the urban sites and the highest at the regional sites, whereas the aircraft measurement results are intermediate between those two kinds of sites.

  19. Elemental quantification of airborne particulate matter in Bandung and Lembang area

    International Nuclear Information System (INIS)

    Sutisna; Achmad Hidayat; Dadang Supriatna

    2004-01-01

    ELEMENTAL QUANTIFICATION OF AIRBORNE PARTICULATE MATTER IN BANDUNG AND LEMBANG REGION: The contaminated airborne particulates by toxic gases and elements have a potential affect to the human health. Some toxic elements related to air pollution have carcinogenic affect. The quantification of those elements is important to monitor a level of pollutant contained in the airborne particulate. The aim of this work is to analyze the air particulate sample using instrumental neutron activation analysis and other related technique. Two sampling points of Bandung and Lembang that represent and urban and rural area respectively have been chosen to collect the air particulate sample. The samplings were carried out using Gent Stacked Filter Unit Sampler for 24 hours, and two cellulose filters of 8 μm and 0.45 μm pore size were used. Trace elements in the sample collected were determined using NAA based on a comparative method. Elemental distribution on PM 2.5 and PM 10 fraction of airborne particulate was analyzed, the enrichment factor was calculated using Al as reference elements, and the black carbons contents were determined using FEL Smoke Stain Reflectometer analyzed. The results are presented and discussed. (author)

  20. Notes on the Particulate Matter Standards in the European Union and the Netherlands

    Directory of Open Access Journals (Sweden)

    Hugo Priemus

    2009-03-01

    Full Text Available The distribution of Particulate Matter in the atmosphere, resulting from emissions produced by cars, trucks, ships, industrial estates and agricultural complexes, is a topical public health problem that has increased in recent decades due to environmental factors in advanced economies in particular. This contribution relates the health impact caused by concentrations of Particulate Matter (PM in ambient air to the PM standards, the size of the particles and spatial planning. Diverging impacts of PM standards in legal regulation are discussed. The authors present a review of the development of legal PM standards in the European Union, with a specific reference to The Netherlands.

  1. Screening of various diesel particulate matter samples from various commodity mines

    CSIR Research Space (South Africa)

    Mahlangu, Vusi J

    2016-09-01

    Full Text Available This paper presents qualitative analysis results of diesel particulate matter (DPM) from various mining commodities in South Africa. The objective of this work was to determine the concentrations of elements in DPM samples. For this screening...

  2. A Prototype Sensor for In Situ Sensing of Fine Particulate Matter and Volatile Organic Compounds

    Directory of Open Access Journals (Sweden)

    Chee-Loon Ng

    2018-01-01

    Full Text Available Air pollution exposure causes seven million deaths per year, according to the World Health Organization. Possessing knowledge of air quality and sources of air pollution is crucial for managing air pollution and providing early warning so that a swift counteractive response can be carried out. An optical prototype sensor (AtmOptic capable of scattering and absorbance measurements has been developed to target in situ sensing of fine particulate matter (PM2.5 and volatile organic compounds (VOCs. For particulate matter testing, a test chamber was constructed and the emission of PM2.5 from incense burning inside the chamber was measured using the AtmOptic. The weight of PM2.5 particles was collected and measured with a filter to determine their concentration and the sensor signal-to-concentration correlation. The results of the AtmOptic were also compared and found to trend well with the Dylos DC 1100 Pro air quality monitor. The absorbance spectrum of VOCs emitted from various laboratory chemicals and household products as well as a two chemical mixtures were recorded. The quantification was demonstrated, using toluene as an example, by calibrating the AtmOptic with compressed gas standards containing VOCs at different concentrations. The results demonstrated the sensor capabilities in measuring PM2.5 and volatile organic compounds.

  3. Estimation of disease burdens on preterm births and low birth weights attributable to maternal fine particulate matter exposure in Shanghai, China.

    Science.gov (United States)

    Liu, Anni; Qian, Naisi; Yu, Huiting; Chen, Renjie; Kan, Haidong

    2017-12-31

    Studies have shown that maternal exposure to particulate matter ≤2.5μm in aerodynamic diameter (PM 2.5 ) was associated with adverse birth outcomes such as preterm birth (PTB) and low birth weight (LBW). However, the burdens of PTB and LBW attributable to PM 2.5 were rarely evaluated, especially in developing countries. To estimate the burdens of PTBs and LBWs attributable to outdoor PM 2.5 in Shanghai, China. We collected annual-average PM 2.5 concentrations, concentration-response relationships between PM 2.5 exposure during pregnancy and PTBs and LBWs, rates of PTB and LBW, number of live births, and population sizes in grids of 10km×10km in Shanghai in 2013. Then, they were combined to estimate the odds ratios (ORs), relative risks (RRs), attributable fractions (AFs), and numbers of PTBs and LBWs associated with PM 2.5 exposure. The population-weighted annual-average concentration of PM 2.5 in Shanghai was 56.19μg/m 3 in 2013. According to the first-class limit of PM 2.5 (15μg/m 3 ) in the Ambient Air Quality Standards of China, the weighted RRs of PTBs or LBWs associated with PM 2.5 in Shanghai were 1.49 [95% confidence interval (CI): 1.16-1.80] and 1.31 (95% CI: 1.04-1.67), respectively. There might be 32.61% (95% CI: 13.93%-44.42%) or 4160 (95% CI: 1778-5667) PTBs and 23.36% (95% CI: 3.86%-40.02%) or 1882 (95% CI: 311-3224) LBWs attributable to PM 2.5 exposure. The estimates varied appreciably among different districts of Shanghai. Our analysis suggested that outdoor PM 2.5 air pollution might have led to considerable burdens of PTBs and LBWs in Shanghai, China. Copyright © 2017. Published by Elsevier B.V.

  4. Indoor/outdoor Particulate Matter Number and Mass Concentration in Modern Offices

    Czech Academy of Sciences Publication Activity Database

    Chatoutsidou, S.E.; Ondráček, Jakub; Tesař, Ondřej; Tørseth, K.; Ždímal, Vladimír; Lazaridis, M.

    2015-01-01

    Roč. 92, OCT 2015 (2015), s. 462-474 ISSN 0360-1323 EU Projects: European Commission(XE) 315760 Institutional support: RVO:67985858 Keywords : modern offices * particulate matter * mechanical ventilation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.394, year: 2015

  5. A five-year study of particulate matter (PM2.5) and cerebrovascular diseases

    International Nuclear Information System (INIS)

    Leiva G, Manuel A.; Santibañez, Daniela A.; Ibarra E, Sergio; Matus C, Patricia; Seguel, Rodrigo

    2013-01-01

    Cerebrovascular accidents, or strokes, are the second leading cause of mortality and the leading cause of morbidity in both Chile and the rest of the world. However, the relationship between particulate matter pollution and strokes is not well characterized. The association between fine particle concentration and stroke admissions was studied. Data on hospital admissions due to cerebrovascular accidents were collected from the Ministry of Health. Air quality and meteorological data were taken from the Air Quality database of the Santiago Metropolitan Area. Santiago reported 33,624 stroke admissions between January 1, 2002 and December 30, 2006. PM2.5 concentration was markedly seasonal, increasing during the winter. This study found an association between PM2.5 exposure and hospital admissions for stroke; for every PM2.5 concentration increase of 10 μg m −3 , the risk of emergency hospital admissions for cerebrovascular causes increased by 1.29% (95% CI 0.552%–2.03%). Highlights: •Particulate matter pollution – cerebrovascular diseases relationship is not well known. •Cerebrovascular diseases are the second leading cause of mortality and the leading cause of morbidity. •PM2.5 increase 10 μg/m 3 the risk of hospital admissions for stroke causes increases by 1.29%. •The results are similar to that of other cities worldwide. -- Relationship between PM pollution and strokes is not well characterized. In Santiago the risk of the stroke increased by 1.29%; for every increase of 10 μg m −3 in PM2.5

  6. Spatial interpolation of fine particulate matter concentrations using the shortest wind-field path distance.

    Directory of Open Access Journals (Sweden)

    Longxiang Li

    Full Text Available Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health.

  7. Contributions to cities' ambient particulate matter (PM): A systematic review of local source contributions at global level

    Science.gov (United States)

    Karagulian, Federico; Belis, Claudio A.; Dora, Carlos Francisco C.; Prüss-Ustün, Annette M.; Bonjour, Sophie; Adair-Rohani, Heather; Amann, Markus

    2015-11-01

    For reducing health impacts from air pollution, it is important to know the sources contributing to human exposure. This study systematically reviewed and analysed available source apportionment studies on particulate matter (of diameter of 10 and 2.5 microns, PM10 and PM2.5) performed in cities to estimate typical shares of the sources of pollution by country and by region. A database with city source apportionment records, estimated with the use of receptor models, was also developed and available at the website of the World Health Organization. Systematic Scopus and Google searches were performed to retrieve city studies of source apportionment for particulate matter. Six source categories were defined. Country and regional averages of source apportionment were estimated based on city population weighting. A total of 419 source apportionment records from studies conducted in cities of 51 countries were used to calculate regional averages of sources of ambient particulate matter. Based on the available information, globally 25% of urban ambient air pollution from PM2.5 is contributed by traffic, 15% by industrial activities, 20% by domestic fuel burning, 22% from unspecified sources of human origin, and 18% from natural dust and salt. The available source apportionment records exhibit, however, important heterogeneities in assessed source categories and incompleteness in certain countries/regions. Traffic is one important contributor to ambient PM in cities. To reduce air pollution in cities and the substantial disease burden it causes, solutions to sustainably reduce ambient PM from traffic, industrial activities and biomass burning should urgently be sought. However, further efforts are required to improve data availability and evaluation, and possibly to combine with other types of information in view of increasing usefulness for policy making.

  8. Airborne particulate matter in vitro exposure induces cytoskeleton remodeling through activation of the ROCK-MYPT1-MLC pathway in A549 epithelial lung cells.

    Science.gov (United States)

    Chirino, Yolanda I; García-Cuellar, Claudia María; García-García, Carlos; Soto-Reyes, Ernesto; Osornio-Vargas, Álvaro Román; Herrera, Luis A; López-Saavedra, Alejandro; Miranda, Javier; Quintana-Belmares, Raúl; Pérez, Irma Rosas; Sánchez-Pérez, Yesennia

    2017-04-15

    Airborne particulate matter with an aerodynamic diameter ≤10μm (PM 10 ) is considered a risk factor for the development of lung cancer. Little is known about the cellular mechanisms by which PM 10 is associated with cancer, but there is evidence that its exposure can lead to an acquired invasive phenotype, apoptosis evasion, inflammasome activation, and cytoskeleton remodeling in lung epithelial cells. Cytoskeleton remodeling occurs through actin stress fiber formation, which is partially regulated through ROCK kinase activation, we aimed to investigate if this protein was activated in response to PM 10 exposure in A549 lung epithelial cells. Results showed that 10μg/cm 2 of PM 10 had no influence on cell viability but increased actin stress fibers, cytoplasmic ROCK expression, and phosphorylation of myosin phosphatase-targeting 1 (MYPT1) and myosin light chain (MLC) proteins, which are targeted by ROCK. The inhibition of ROCK prevented actin stress fiber formation and the phosphorylation of MYPT1 and MLC, suggesting that PM 10 activated the ROCK-MYPT1-MLC pathway in lung epithelial cells. The activation of ROCK1 has been involved in the acquisition of malignant phenotypes, and its induction by PM 10 exposure could contribute to the understanding of PM 10 as a risk factor for cancer development through the mechanisms associated with invasive phenotype. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Urban particulate matter pollution: a tale of five cities.

    Science.gov (United States)

    Pandis, Spyros N; Skyllakou, Ksakousti; Florou, Kalliopi; Kostenidou, Evangelia; Kaltsonoudis, Christos; Hasa, Erion; Presto, Albert A

    2016-07-18

    Five case studies (Athens and Paris in Europe, Pittsburgh and Los Angeles in the United States, and Mexico City in Central America) are used to gain insights into the changing levels, sources, and role of atmospheric chemical processes in air quality in large urban areas as they develop technologically. Fine particulate matter is the focus of our analysis. In all cases reductions of emissions by industrial and transportation sources have resulted in significant improvements in air quality during the last few decades. However, these changes have resulted in the increasing importance of secondary particulate matter (PM) which dominates over primary in most cases. At the same time, long range transport of secondary PM from sources located hundreds of kilometres from the cities is becoming a bigger contributor to the urban PM levels in all seasons. "Non-traditional" sources including cooking, and residential and agricultural biomass burning contribute an increasing fraction of the now reduced fine PM levels. Atmospheric chemistry is found to change the chemical signatures of a number of these sources relatively fast both during the day and night, complicating the corresponding source apportionment.

  10. Method for determination of stable carbon isotope ratio of methylnitrophenols in atmospheric particulate matter

    Directory of Open Access Journals (Sweden)

    S. Moukhtar

    2011-11-01

    Full Text Available A technique for the measurement of the stable isotope ratio of methylnitrophenols in atmospheric particulate matter is presented. Atmospheric samples from rural and suburban areas were collected for evaluation of the procedure. Particulate matter was collected on quartz fibre filters using dichotomous high volume air samplers. Methylnitrophenols were extracted from the filters using acetonitrile. The sample was then purified using a combination of high-performance liquid chromatography and solid phase extraction. The final solution was then divided into two aliquots. To one aliquot, a derivatising agent, Bis(trimethylsilyltrifluoroacetamide, was added for Gas Chromatography-Mass Spectrometry analysis. The second half of the sample was stored in a refrigerator. For samples with concentrations exceeding 1 ng μl−1, the second half of the sample was used for measurement of stable carbon isotope ratios by Gas Chromatography-Isotope Ratio Mass Spectrometry.

    The procedure described in this paper provides a method for the analysis of methylnitrophenols in atmospheric particulate matter at concentrations as low as 0.3 pg m−3 and for stable isotope ratios with an accuracy of better than ±0.5‰ for concentrations exceeding 100 pg m−3.

    In all atmospheric particulate matter samples analysed, 2-methyl-4-nitrophenol was found to be the most abundant methylnitrophenol, with concentrations ranging from the low pg m−3 range in rural areas to more than 200 pg m−3 in some samples from a suburban location.

  11. Mortality, hospital days and expenditures attributable to ambient air pollution from particulate matter in Israel.

    Science.gov (United States)

    Ginsberg, Gary M; Kaliner, Ehud; Grotto, Itamar

    2016-01-01

    Worldwide, ambient air pollution accounts for around 3.7 million deaths annually. Measuring the burden of disease is important not just for advocacy but also is a first step towards carrying out a full cost-utility analysis in order to prioritise technological interventions that are available to reduce air pollution (and subsequent morbidity and mortality) from industrial, power generating and vehicular sources. We calculated the average national exposure to particulate matter particles less than 2.5 μm (PM2.5) in diameter by weighting readings from 52 (non-roadside) monitoring stations by the population of the catchment area around the station. The PM2.5 exposure level was then multiplied by the gender and cause specific (Acute Lower Respiratory Infections, Asthma, Circulatory Diseases, Coronary Heart Failure, Chronic Obstructive Pulmonary Disease, Diabetes, Ischemic Heart Disease, Lung Cancer, Low Birth Weight, Respiratory Diseases and Stroke) relative risks and the national age, cause and gender specific mortality (and hospital utilisation which included neuro-degenerative disorders) rates to arrive at the estimated mortality and hospital days attributable to ambient PM2.5 pollution in Israel in 2015. We utilised a WHO spread-sheet model, which was expanded to include relative risks (based on more recent meta-analyses) of sub-sets of other diagnoses in two additional models. Mortality estimates from the three models were 1609, 1908 and 2253 respectively in addition to 184,000, 348,000 and 542,000 days hospitalisation in general hospitals. Total costs from PM2.5 pollution (including premature burial costs) amounted to $544 million, $1030 million and $1749 million respectively (or 0.18 %, 0.35 % and 0.59 % of GNP). Subject to the caveat that our estimates were based on a limited number of non-randomly sited stations exposure data. The mortality, morbidity and monetary burden of disease attributable to air pollution from particulate matter in Israel is of

  12. The impact of total suspended particulate concentration on workers’ health at ceramic industry

    Science.gov (United States)

    Sintorini, M. M.

    2018-01-01

    Ceramic production process pollutes the air with particulate matter at high concentration and has negative impact on the workers. The objective of this research was to determine the particulate concentration in the air and to analyse its impact on the workers. This research used cross sectional method to correlate the particulate concentration, temperature, humidity, smoke level and level of workers’ compliance with safety regulations. Sampling was conducted from April to May 2012 in three locations, i.e. exposure area (Mass Preparation I, II) and non-exposure area (Forming area). In the exposure area (Mass Preparation I and II) where the particulate concentrations were 22.3673 mg/m3 and 14.8277 mg/m3, and 58.33%, the workers had bad health status. In the non-exposure area, where the particulate concentration was 3.2185 mg/m3 and 25% the workers had bad health status. The Odds Ratio among the workers in exposure area was 4.2 times higher than the workers in the non-exposure area.

  13. Spatial and temporal variations in traffic-related particulate matter at New York City high schools

    Science.gov (United States)

    Patel, Molini M.; Chillrud, Steven N.; Correa, Juan C.; Feinberg, Marian; Hazi, Yair; Deepti, K. C.; Prakash, Swati; Ross, James M.; Levy, Diane; Kinney, Patrick L.

    Relatively little is known about exposures to traffic-related particulate matter at schools located in dense urban areas. The purpose of this study was to examine the influences of diesel traffic proximity and intensity on ambient concentrations of fine particulate matter (PM 2.5) and black carbon (BC), an indicator of diesel exhaust particles, at New York City (NYC) high schools. Outdoor PM 2.5 and BC were monitored continuously for 4-6 weeks at each of 3 NYC schools and 1 suburban school located 40 km upwind of the city. Traffic count data were obtained using an automated traffic counter or video camera. BC concentrations were 2-3 fold higher at urban schools compared with the suburban school, and among the 3 urban schools, BC concentrations were higher at schools located adjacent to highways. PM 2.5 concentrations were significantly higher at urban schools than at the suburban school, but concentrations did not vary significantly among urban schools. Both hourly average counts of trucks and buses and meteorological factors such as wind direction, wind speed, and humidity were significantly associated with hourly average ambient BC and PM 2.5 concentrations in multivariate regression models. An increase of 443 trucks/buses per hour was associated with a 0.62 μg/m 3 increase in hourly average BC at an NYC school located adjacent to a major interstate highway. Car traffic counts were not associated with BC. The results suggest that local diesel vehicle traffic may be important sources of airborne fine particles in dense urban areas and consequently may contribute to local variations in PM 2.5 concentrations. In urban areas with higher levels of diesel traffic, local, neighborhood-scale monitoring of pollutants such as BC, which compared to PM 2.5, is a more specific indicator of diesel exhaust particles, may more accurately represent population exposures.

  14. Resuspension of particulate matter from grass and soil

    International Nuclear Information System (INIS)

    Garland, J.A.

    1979-05-01

    Measurements of resuspension of particulate matter from grassland and bare soil in Britain at controlled wind speeds are described in this report. The measurements were performed in an outdoor wind tunnel. Resuspension factors for a sub-micron powder deposited from the air on to 10m 2 of grass and soil and for a suspension of silt, sprayed on to a similar grass area, were similar. The resuspension factor declined as the reciprocal of time of wind exposure and increased as the square or cube of wind speed. An appreciable fraction of the resuspended tracer was in the respirable size range. A large fraction of the total material suspended from a small contaminated area deposited again within three metres. The strong dependence of deposition rates on particle size and the rapid deposition close to the source questions the extrapolation of small scale resuspension measurements to practical situations, suggesting that analysis of the concentrations of widely distributed tracers may usefully supplement resuspension measurements. Atmospheric concentrations of trace elements and the distribution of weapons fallout were used to deduce an upper limit for the resuspension factor for a fifteen year old deposit of 7 x 10 -11 m -1 . The fraction of deposited fallout resuspended during such a period cannot much exceed 10 per cent. (author)

  15. Influence of particulate matter on microfouling biomass in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Nandakumar, K.; Wagh, A.B.

    ~ E :; :; 00 " " 200 '\\00 6001&. I&. Olslonc. from rne St>cre tn. miles! Leg , 0----4L~2 L~3 Leo .; Log $ Fig.3 Suspended matter (A), and particulate organic carbon (B) of surface seawater. and microfouling biomass as dry weight (C) and organic carbon...

  16. Species of fine particulate matter and the risk of preterm birth

    Science.gov (United States)

    Particulate matter (PM) has been variably associated with preterm birth (PTB), but the roles of PM species have been less studied. We estimated risk of birth in 4 preterm categories (risks reported as PTBs per 106 pregnancies; PTB categories = gestational age of 20-27; 28-31; 32-...

  17. Generation of hydroxyl radicals by urban suspended particulate air matter. The role of iron ions

    Science.gov (United States)

    Valavanidis, Athanasios; Salika, Anastasia; Theodoropoulou, Anna

    Recent epidemiologic studies showed statistical associations between particulate air pollution in urban areas and increased morbidity and mortality, even at levels well within current national air quality standards. Inhalable particulate matter (PM 10) can penetrate into the lower airways where they can cause acute and chronic lung injury by generating toxic oxygen free radicals. We tested inhalable total suspended particulates (TSP) from the Athens area, diesel and gasoline exhaust particles (DEP and GED), and urban street dusts, by Electron Paramagnetic Resonance (EPR). All particulates can generate hydroxyl radicals (HO ṡ), in aqueous buffered solutions, in the presence of hydrogen peroxide. Results showed that oxidant generating activity is related with soluble iron ions. Leaching studies showed that urban particulate matter can release large amounts of Fe 3+ and lesser amounts of Fe 2+, as it was shown from other studies. Direct evidence of HO ṡ was confirmed by spin trapping with DMPO and measurement of DMPO-OH adduct by EPR. Evidence was supported with the use of chelator (EDTA), which increases the EPR signal, and the inhibition of the radical generating activity by desferrioxamine or/and antioxidants ( D-mannitol, sodium benzoate).

  18. Exercise Training under Exposure to Low Levels of Fine Particulate Matter: Effects on Heart Oxidative Stress and Extra-to-Intracellular HSP70 Ratio

    Directory of Open Access Journals (Sweden)

    Aline Sfalcin Mai

    2017-01-01

    Full Text Available Fine particulate matter (PM2.5 promotes heart oxidative stress (OS and evokes anti-inflammatory responses observed by increased intracellular 70 kDa heat shock proteins (iHSP70. Furthermore, PM2.5 increases the levels of these proteins in extracellular fluids (eHSP70, which have proinflammatory roles. We investigated whether moderate and high intensity training under exposure to low levels of PM2.5 modifies heart OS and the eHSP70 to iHSP70 ratio (H-index, a biomarker of inflammatory status. Male mice (n=32, 30 days old, were divided into six groups for 12 weeks: control (CON, moderate (MIT and high intensity training (HIT, exposure to 5 μg of PM2.5 daily (PM2.5, and moderate and high intensity training exposed to PM2.5 (MIT + PM2.5 and HIT + PM2.5 groups. The CON and PM2.5 groups remained sedentary. The MIT + PM2.5 group showed higher heart lipid peroxidation levels than the MIT and PM2.5 groups. HIT and HIT + PM2.5 showed higher heart lipid peroxidation levels and lower eHSP70 and H-index levels compared to sedentary animals. No alterations were found in heart antioxidant enzyme activity or iHSP70 levels. Moderate exercise training under exposure to low levels of PM2.5 induces heart OS but does not modify eHSP70 to iHSP70 ratio (H-index. High intensity exercise training promotes anti-inflammatory profile despite exposure to low levels of PM2.5.

  19. Variability of intra-urban exposure to particulate matter and CO from Asian-type community pollution sources

    Science.gov (United States)

    Lung, Shih-Chun Candice; Hsiao, Pao-Kuei; Wen, Tzu-Yao; Liu, Chun-Hu; Fu, Chi Betsy; Cheng, Yu-Ting

    2014-02-01

    Asian residential communities are usually dotted with various spot pollution sources (SPS), such as restaurants, temples, and home factories, with traffic arteries passing through, resulting in higher intra-urban pollution variability compared with their western counterparts. Thus, it is important to characterize spatial variability of pollutant levels in order to assess accurately residents' exposures in their communities. The objectives of this study are to assess the actual pollutant levels and variability within an Asian urban area and to evaluate the influence of vehicle emission and various SPS on the exposure levels within communities. Real-time monitoring was conducted for a total of 123 locations for particulate matter (PM) and CO in Taipei metropolitan, Taiwan. The mean concentrations for PM1, PM2.5, PM10, and CO are 29.8 ± 22.7, 36.0 ± 25.5, 61.9 ± 35.0 μg m-3 and 4.0 ± 2.5 ppm, respectively. The mean values of PM1/PM2.5 and PM2.5/PM10 are 0.80 ± 0.10 and 0.57 ± 0.15, respectively. PM and CO levels at locations near SPS could be increased by 3.5-4.9 times compared with those at background locations. Regression results show that restaurants contribute significantly 6.18, 6.33, 7.27 μg m-3, and 1.64 ppm to community PM1, PM2.5, PM10, and CO levels, respectively; while the contribution from temples are 13.2, 15.1, and 17.2 μg m-3 for PM1, PM2.5 and PM10, respectively. Additionally, construction sites elevate nearby PM10 levels by 14.2 μg m-3. At bus stops and intersections, vehicle emissions increased PM1 and PM2.5 levels by 5 μg m-3. These results demonstrate significant contribution of community sources to air pollution, and thus the importance of assessing intra-community variability in Asian cities for air pollution and health studies. The methodology used is applicable to other Asian countries with similar features.

  20. 40 CFR 49.126 - Rule for limiting fugitive particulate matter emissions.

    Science.gov (United States)

    2010-07-01

    ... amount of fugitive particulate matter that may be emitted from certain air pollution sources operating... minimize the accumulation of dusty materials that have the potential to become airborne, and the prompt... materials likely to become airborne. (viii) The prompt removal from paved streets of earth or other material...

  1. A possible link between particulate matter air pollution and type 2 diabetes

    NARCIS (Netherlands)

    Volders, Evelien

    2008-01-01

    Particulate matter (PM) air pollution is most commonly referred to as PM10 and can be subdivided into coarse particles, fine particles and ultrafine particles. Sources of PM air pollution include combustion from car engines and industrial processes. Expos

  2. Exposure to Particulate Hexavalent Chromium Exacerbates Allergic Asthma Pathology

    Science.gov (United States)

    Schneider, Brent C.; Constant, Stephanie L.; Patierno, Steven R.; Jurjus, Rosalyn A.; Ceryak, Susan M.

    2011-01-01

    Airborne hexavalent chromate, Cr(VI), has been identified by the Environmental Protection Agency as a possible health threat in urban areas, due to the carcinogenic potential of some of its forms. Particulate chromates are produced in many different industrial settings, with high levels of aerosolized forms historically documented. Along with an increased risk of lung cancer, a high incidence of allergic asthma has been reported in workers exposed to certain inhaled particulate Cr(VI) compounds. However, a direct causal association between Cr(VI) and allergic asthma has not been established. We recently showed that inhaled particulate Cr(VI) induces an innate neutrophilic inflammatory response in BALB/c mice. In the current studies we investigated how the inflammation induced by inhaled particulate Cr(VI) might alter the pathology of an allergic asthmatic response. We used a well-established mouse model of allergic asthma. Groups of ovalbumin protein (OVA)-primed mice were challenged either with OVA alone, or with a combination of OVA and particulate zinc chromate, and various parameters associated with asthmatic responses were measured. Co-exposure to particulate Cr(VI) and OVA mediated a mixed form of asthma in which both eosinophils and neutrophils are present in airways, tissue pathology is markedly exacerbated, and airway hyperresponsiveness is significantly increased. Taken together these findings suggest that inhalation of particulate forms of Cr(VI) may augment the severity of ongoing allergic asthma, as well as alter its phenotype. Such findings may have implications for asthmatics in settings in which airborne particulate Cr(VI) compounds are present at high levels. PMID:22178736

  3. Oxidative Potential of ambient particulate matter in Athens, Greece.

    Science.gov (United States)

    Paraskevopoulou, Despina; Bougiatioti, Aikaterini; Fang, Ting; Liakakou, Eleni; Weber, Rodney; Nenes, Athanasios; Mihalopoulos, Nikolaos

    2017-04-01

    Exposure of populations to airborne particulate matter (PM) is a leading cause of premature death worldwide. Oxidative stress resulting from exposure of chemical species present in PM is a mechanism thought to cause adverse health effects. Apart from radicals present in aerosol, species that can catalytically deplete the antioxidant buffering capacity of cells, called Oxidative Potential (OP), are thought to be particularly toxic. The variability of OP over location, particle age, source and environmental conditions is virtually unknown for most populated regions of the world. Motivated by this, we have built and deployed one of the first operational measurements of OP in Europe at the National Observatory of Athens site in downtown Athens, Greece. OP for fine and coarse mode is measured using a semi-automated dithiothreitol (DTT) assay developed at the Georgia Institute of Technology; the assay measures the oxidation rate of DTT by water-soluble aerosol constituents, and simulates the rate at which the same compounds would deplete antioxidants in-vivo. The DTT oxidation rate per unit volume of air (water-soluble "DTT activity") and aerosol size class (fine, coarse) are used as a measure of aerosol toxicity. We present continuous (24hr average) OP measurements in downtown Athens from July 2016 to January 2017, conducted through quartz fiber filter analysis. The dataset covers a broad range of aerosol sources (pollution from Europe, regional and local biomass burning, dust, marine aerosol, biogenic aerosol) and meteorological conditions. The daily water-soluble DTT activity ranges between 0.02-0.81 nmolmin-1 m-3 (averaging at 0.24 nmolmin-1 m-3) for fine aerosol and between 0.01-0.52 nmolmin-1 m-3 (averaging at 0.08 nmolmin-1 m-3) for coarse particulate matter, indicating that water-soluble fine mode aerosol components possess a significant fraction of the OP. The seasonal variability demonstrates a higher DTT activity during the coldest period of the year for both

  4. Mass spectroscopic analysis of atmospheric particulate matter

    International Nuclear Information System (INIS)

    Wippel, R.

    1997-02-01

    Particulate matter (PM) in the atmosphere vary greatly in origin, in their physical and chemical properties and their effects on climate, atmospheric chemistry and health. Aerosol particles with an aerodynamic diameter less than two μm can enter the respiratory tract of humans when inhaled. Bulk analysis of ambient dust particles was performed using an inductively coupled plasma mass spectrometer (ICP-MS). The size-fractionated collected samples were analyzed after a leaching procedure that simulates the solution reactions occurring in the lungs. A disadvantage of bulk analysis is that it gives no information about the distribution of a certain element within the particles under investigation. A Laser-Microprobe-Mass-Analyzer (LAMMA-500) was used to obtain this information. At sampling sites in Austria and in Zimbabwe, Africa, single particles were sampled using a self-made impactor. One of the final aims in environmental analysis is to successfully apply receptor models that relate the chemical and physical properties of a receptor site to a source. The knowledge of the sources of atmospheric particulate matter is essential for environmental policy makers as well as for epidemiological studies. Artificial neural networks (ANN) have a remarkable ability to handle LAMMA-data. Three ANNs were used as a pattern recognition tool for LAMMA mass spectral data: a back-propagation net, a Kohonen network,and a counter-propagation net. Standard source profiles from the United States Environmental Protection Agency were used as training and test data of the different nets. The elemental patterns of the sum of 100 mass spectra of fine dust particles were presented to the trained nets and satisfactory recognition (> 80 %) was obtained. (author)

  5. Seasonal Variability of Airborne Particulate Matter and Bacterial Concentrations in Colorado Homes

    Directory of Open Access Journals (Sweden)

    Nicholas Clements

    2018-04-01

    Full Text Available Aerosol measurements were collected at fifteen homes over the course of one year in Colorado (USA to understand the temporal variability of indoor air particulate matter and bacterial concentrations and their relationship with home characteristics, inhabitant activities, and outdoor air particulate matter (PM. Indoor and outdoor PM2.5 concentrations averaged (±st. dev. 8.1 ± 8.1 μg/m3 and 6.8 ± 4.5 μg/m3, respectively. Indoor PM2.5 was statistically significantly higher during summer compared to spring and winter; outdoor PM2.5 was significantly higher for summer compared to spring and fall. The PM2.5 I/O ratio was 1.6 ± 2.4 averaged across all homes and seasons and was not statistically significantly different across the seasons. Average indoor PM10 was 15.4 ± 18.3 μg/m3 and was significantly higher during summer compared to all other seasons. Total suspended particulate bacterial biomass, as determined by qPCR, revealed very little seasonal differences across and within the homes. The qPCR I/O ratio was statistically different across seasons, with the highest I/O ratio in the spring and lowest in the summer. Using one-minute indoor PM10 data and activity logs, it was observed that elevated particulate concentrations commonly occurred when inhabitants were cooking and during periods with elevated outdoor concentrations.

  6. Characterization of particulate matter deposited on urban tree foliage: A landscape analysis approach

    Science.gov (United States)

    Lin, Lin; Yan, Jingli; Ma, Keming; Zhou, Weiqi; Chen, Guojian; Tang, Rongli; Zhang, Yuxin

    2017-12-01

    Plants can mitigate ambient particulate matter by cleaning the air, which is crucial to urban environments. A novel approach was presented to quantitatively characterize particulate matter deposited on urban tree foliage. This approach could accurately quantify the number, size, shape, and spatial distribution of particles with different diameters on leaves. Spatial distribution is represented by proximity, which measures the closeness of particles. We sampled three common broadleaf species and obtained images through field emission scanning electron microscopy. We conducted the object-based method to extract particles from images. We then used Fragstats to analyze the landscape characteristics of these particles in term of selected metrics. Results reveal that Salix matsudana is more efficient than Ailanthus altissima and Fraxinus chinensis in terms of the number and area of particles per unit area and the proportion of fine particulate matter. The shape complexity of the particles increases with their size. Among the three species, S. matsudana and A. altissima particles respectively yield the highest and lowest proximity. PM1 in A. altissima and PM10 in F. chinensis and S. matsudana show the highest proximity, which may influence subsequent particle retention. S. matsudana should be generally considered to collect additional small particles. Different species and particle sizes exhibit various proximities, which should be further examined to elucidate the underlying mechanism.

  7. Commuter exposure to particulate matter and particle-bound PAHs in three transportation modes in Beijing, China

    International Nuclear Information System (INIS)

    Yan, Caiqing; Zheng, Mei; Yang, Qiaoyun; Zhang, Qunfang; Qiu, Xinghua; Zhang, Yanjun; Fu, Huaiyu; Li, Xiaoying; Zhu, Tong; Zhu, Yifang

    2015-01-01

    Exposure to fine and ultrafine particles as well as particulate polycyclic aromatic hydrocarbons (PAHs) by commuters in three transportation modes (walking, subway and bus) were examined in December 2011 in Beijing, China. During the study period, real-time measured median PM 2.5 mass concentration (PMC) for walking, riding buses and taking the subway were 26.7, 32.9 and 56.9 μg m −3 , respectively, and particle number concentrations (PNC) were 1.1 × 10 4 , 1.0 × 10 4 and 2.2 × 10 4  cm −3 . Commuters were exposed to higher PNC in air-conditioned buses and aboveground-railway, but higher PMC in underground-subway compared to aboveground-railway. PNC in roadway modes (bus and walking) peaked at noon, but was lower during traffic rush hours, negatively correlated with PMC. Toxic potential of particulate-PAHs estimated based on benzo(a)pyrene toxic equivalents (BaP TEQs) showed that walking pedestrians were subjected to higher BaP TEQs than bus (2.7-fold) and subway (3.6-fold) commuters, though the highest PMC and PNC were observed in subway. - Highlights: • The highest PNC and PM 2.5 occurred around noon and late rush hours, respectively. • Higher PM 2.5 and PNC, but lower PAHs and BaP TEQ were found in Beijing subway. • Traffic congestion, roadside cooking, and construction evidently enhanced roadway PM. • Ventilation and air-conditioning system impact PM level in bus and subway cabins. - Higher PMC and PNC, but lower particulate PAHs and BaP TEQ were found in Beijing subway. PNC and PMC in on-roadway modes were peaked around noon and late rush hours, respectively

  8. Study of Hydrothermal Particulate Matter from a Shallow Venting System, offshore Nayarit, Mexico

    Science.gov (United States)

    Ortega-Osorio, A.; Prol-Ledesma, R. M.; Reyes, A. G.; Rubio-Ramos, M. A.; Torres-Vera, M. A.

    2001-12-01

    A shallow (30 ft) hydrothermal site named ``Cora'' (after the indigenous people thereby) was surveyed and sampled throughout direct observation with SCUBA diving during November 25 to December 4, 2000. A total of 10 dives were conducted in order to obtain representative samples from an 85oC fluid source of approximately 10 cm in diameter. Inherent difficulties to the sampling, such as poor visibility and strong bottom currents were overcome and samples of hydrothermal fluid, gas, rocks, and particulate matter were collected directly from the vent. Water samples and hydrothermal fluid were taken with a homemade 1 l cylindrical bottles of two lines by flushing in from the bottom for about ten minutes until total displacement of the seawater; similar procedure was carried out for gas samples. Particulate matter was collected with 0.4mm polycarbonate membrane filters and preserved in a desiccators at a fridge temperature until analysis onshore. Preliminary description of the rock samples suggest that pyritization is the main mineralisation process. Filters containing hydrothermal particulate matter were surveyed under the scanning electron microscope in order to identify the nature (inorganic and organic), as well as the chemistry of the particles. SEM examination revealed the presence of particles of different kind that suggests high degree of mixing and re-suspension: Planctonic organisms and organic matter appeared to be abundant; 25 micron particles of different carbonate faces and inorganic particles of silicates were also recognized. Distinctive euhedral colloidal grains were identified as the resulting process of precipitation from the solution. Microanalysis of iron and sulfur content of 10 micron particles indicate a very likely sulphide mineral face (greigite); 8 micron cinnabar particles are consistent with the mineralization conditions, observed as well in the inner walls of the vent. Analyses of dissolved and particulate trace metals are still ongoing at

  9. Microscopic and submicron components of atmospheric particulate matter during high asthma periods in Brisbane, Queensland, Australia

    Science.gov (United States)

    Glikson, M.; Rutherford, S.; Simpson, R. W.; Mitchell, C. A.; Yago, A.

    The study identifies the various components contributing to atmospheric particulate matter in Brisbane, Queensland, Australia, during the period from the end of April and the months of July-August in 1992, covering the autumn period which is typically the period of high asthma incidence in Brisbane. Most particulate matter is Mucorales, and soil bacteria. The contribution from pollen and fungal spores has been evaluated and quantified. Fungal spores counts dominate the bioaerosol counts in the 2-10 μm range and are very high in Brisbane from the end of April through May to mid-June. However even at peak periods the total bioaerosol count only contributes of the order of 5-10% of the total particulate mass. The results show that Pm 10 (particulate matter less than 10 μm in diameter) and nephelometer readings do not indicate peak periods of allergenic bioaerosol readings (in fact there is a negative correlation) due to the low contribution of the bioaerosol count to the total and the different influences of wind speed. However the electron microscopy results show that this does not mean there are no synergies between aerosols from anthropogenic sources and bioaerosols. The cytoplasmic content of spores and pollen was often found to be adhered to motor vehicle emission material and crustal matter. The latter may therefore act as carriers for dispersed cytoplasmic allergenic material released from pollen and fungal spores.

  10. Composition and oxidation state of sulfur in atmospheric particulate matter

    Directory of Open Access Journals (Sweden)

    A. F. Longo

    2016-10-01

    Full Text Available The chemical and physical speciation of atmospheric sulfur was investigated in ambient aerosol samples using a combination of sulfur near-edge x-ray fluorescence spectroscopy (S-NEXFS and X-ray fluorescence (XRF microscopy. These techniques were used to determine the composition and oxidation state of sulfur in common primary emission sources and ambient particulate matter collected from the greater Atlanta area. Ambient particulate matter samples contained two oxidation states: S0 and S+VI. Ninety-five percent of the individual aerosol particles (> 1 µm analyzed contain S0. Linear combination fitting revealed that S+VI in ambient aerosol was dominated by ammonium sulfate as well as metal sulfates. The finding of metal sulfates provides further evidence for acidic reactions that solubilize metals, such as iron, during atmospheric transport. Emission sources, including biomass burning, coal fly ash, gasoline, diesel, volcanic ash, and aerosolized Atlanta soil, and the commercially available bacterium Bacillus subtilis, contained only S+VI. A commercially available Azotobacter vinelandii sample contained approximately equal proportions of S0 and S+VI. S0 in individual aerosol particles most likely originates from primary emission sources, such as aerosolized bacteria or incomplete combustion.

  11. Trace elements present in airborne particulate matter-Stressors of plant metabolism

    Czech Academy of Sciences Publication Activity Database

    Pavlík, Milan; Pavlíková, D.; Zemanová, V.; Hnilička, F.; Urbanová, V.; Száková, J.

    2012-01-01

    Roč. 79, May 2012 (2012), s. 101-107 ISSN 0147-6513 Grant - others:GA ČR(CZ) GA521/09/1150 Program:GA Institutional research plan: CEZ:AV0Z50380511 Keywords : Airborne particulate matter * Amino acids * Gas-exchange parameters Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.203, year: 2012

  12. Particulate Matter Emission from Dual Fuel Diesel Engine Fuelled with Natural Gas

    Directory of Open Access Journals (Sweden)

    Stelmasiak Zdzisław

    2017-06-01

    Full Text Available The paper presents the results of examination of particulate matter emission from the Diesel engine FPT 1.3 MJT simultaneously fuelled with diesel oil and natural gas CNG. The basic premise for engine adaptation was the addition of a small amount of CNG to reduce exhaust gas opacity and particulate matter emission. At this assumption, diesel oil remained the basic fuel, with contribution amounting to 0,70-0,85 of total energy delivered to the engine. The dual fuel engine was examined using an original controller installed in the Diesel engine FPT 1.3 MJT which controlled the diesel fuel dose. The dose of the injected natural gas was controlled by changing the opening time of gas injectors at constant pressure in the gas collector. The examined issues included the exhaust gas opacity, and the total number and fractional distribution of the emitted particles. The measurements were performed at twenty selected measuring points corresponding to the New European Driving Cycle (NEDC test. The performed tests have demonstrated a positive effect of gas addition on exhaust gas opacity and particulate matter emission. Depending on test conditions, the exhaust gas opacity was reduced by 10÷92%, and the total number of particles by 30÷40%. The performed tests have revealed that a small addition of gas can reduce the load of the DPF filter, extend its lifetime, and increase engine reliability. Longer time intervals between successive DPF filter regenerations improve ecological properties of the engine.

  13. Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions

    Science.gov (United States)

    2017-03-06

    WP-201317) Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-volatile Particulate Matter (PM... Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions 6. AUTHOR(S) E. Corporan, M. DeWitt, C. Klingshirn, M.D. Cheng, R. Miake-Lye, J. Peck...the performance and viability of two devices to condition aircraft turbine engine exhaust to allow the accurate measurement of total (volatile and non

  14. Occurrence of benzothiazole, benzotriazole and benzenesulfonamide derivates in outdoor air particulate matter samples and human exposure assessment.

    Science.gov (United States)

    Maceira, Alba; Marcé, Rosa Maria; Borrull, Francesc

    2018-02-01

    Benzothiazole (BTHs), benzotriazole (BTRs) and benzenesulfonamide (BSAs) derivates are high production volume chemicals and they are used in several industrial and household applications, therefore it is expected their occurrence in various environments, especially water and air. In this study we developed a method based on gas chromatography-mass spectrometry (GC-MS) combined with pressurised liquid extraction (PLE) to simultaneously determine four BTR, five BTH and six BSA derivates in the particulate matter (PM 10 ) of outdoor air samples collected in quartz fibre filters (QFFs). To the best of our knowledge, this is the first time these compounds have been determined in open ambient environments. Under optimised conditions, method recoveries at the lower and upper concentration levels (0.8 and 4.2 ng m -3 ) ranged from 70 to 120%, except for 1-H-benzothiazole and 2-chlorobenzothiazole, which were about 50%. The repeatability of the method was usually below 20% (n = 3, %RSD) for both concentration levels. This method enables the contaminants to be detected at pg m -3 concentration levels. Several samples from two different sites influenced by local industries showed that BTRs, followed by BTHs, were the most detected compounds, whereas BSAs were hardly found. The most frequently determined compounds were 1-H-benzothiazole, 2-chlorobenzothiazole, 1-H-benzotriazole, 2-hydroxibenzothiazole, 5,6-dimethyl-1-H-benzotriazole and the isomers 4- and 5-methyl-1-H-benzotriazole. With the concentrations found, the human exposure assessment and health risk characterization via ambient inhalation were also evaluated taking into account different subpopulation groups classified by age for the two sampling points. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Personal exposure to total suspended particulates of adolescents living in Vanderbijlpark, South Africa

    CSIR Research Space (South Africa)

    Terblanche, APS

    1995-06-01

    Full Text Available Personal monitoring of exposure to air pollution is becoming increasingly important in health studies as a method of characterizing total exposure. We monitored the exposure of 31 teenagers to total suspended particulates (TSP) over a 12-hour period...

  16. Satellite-based estimates of long-term exposure to fine particulate matter are associated with C-reactive protein in 30 034 Taiwanese adults.

    Science.gov (United States)

    Zhang, Zilong; Chang, Ly-Yun; Lau, Alexis K H; Chan, Ta-Chien; Chieh Chuang, Yuan; Chan, Jimmy; Lin, Changqing; Kai Jiang, Wun; Dear, Keith; Zee, Benny C Y; Yeoh, Eng-Kiong; Hoek, Gerard; Tam, Tony; Qian Lao, Xiang

    2017-08-01

    Particulate matter (PM) air pollution is associated with the risk of cardiovascular morbidity and mortality. However, the biological mechanism underlying the associations remains unclear. Atherosclerosis, the underlying pathology of cardiovascular disease, is a chronic inflammatory process. We therefore investigated the association of long-term exposure to fine PM (PM2.5) with C-reactive protein (CRP), a sensitive marker of systemic inflammation, in a large Taiwanese population. Participants were from a large cohort who participated in a standard medical examination programme with measurements of high-sensitivity CRP between 2007 and 2014. We used a spatiotemporal model to estimate 2-year average PM2.5 exposure at each participant's address, based on satellite-derived aerosol optical depth data. General regression models were used for baseline data analysis and mixed-effects linear regression models were used for repeated data analysis to investigate the associations between PM2.5 exposure and CRP, adjusting for a wide range of potential confounders. In this population of 30 034 participants with 39 096 measurements, every 5 μg/m3 PM2.5 increment was associated with a 1.31% increase in CRP [95% confidence interval (CI): 1.00%, 1.63%) after adjusting for confounders. For those participants with repeated CRP measurements, no significant changes were observed between the first and last measurements (0.88 mg/l vs 0.89 mg/l, P = 0.337). The PM2.5 concentrations remained stable over time between 2007 and 2014. Long-term exposure to PM2.5 is associated with increased level of systemic inflammation, supporting the biological link between PM2.5 air pollution and deteriorating cardiovascular health. Air pollution reduction should be an important strategy to prevent cardiovascular disease. © The Author 2017. Published by Oxford University Press on behalf of the International Epidemiological Association

  17. Particulate matter analysis at elementary schools in Curitiba, Brazil.

    Science.gov (United States)

    Avigo, Devanir; Godoi, Ana F L; Janissek, Paulo R; Makarovska, Yaroslava; Krata, Agnieszka; Potgieter-Vermaak, Sanja; Alfoldy, Balint; Van Grieken, René; Godoi, Ricardo H M

    2008-06-01

    The particulate matter indoors and outdoors of the classrooms at two schools in Curitiba, Brazil, was characterised in order to assess the indoor air quality. Information concerning the bulk composition was provided by energy-dispersive x-ray fluorescence (EDXRF). From the calculated indoor/outdoor ratios and the enrichment factors it was observed that S-, Cl- and Zn-rich particles are of concern in the indoor environment. In the present research, the chemical compositions of individual particles were quantitatively elucidated, including low-Z components like C, N and O, as well as higher-Z elements, using automated electron probe microanalysis low Z EPMA. Samples were further analysed for chemical and morphological aspects, determining the particle size distribution and classifying them according to elemental composition associations. Five classes were identified based on major elemental concentrations: aluminosilicate, soot, organic, calcium carbonate and iron-rich particles. The majority of the respirable particulate matter found inside of the classroom was composed of soot, biogenic and aluminosilicate particles. In view of the chemical composition and size distribution of the aerosol particles, local deposition efficiencies in the human respiratory system were calculated revealing the deposition of soot at alveolar level. The results showed that on average 42% of coarse particles are deposited at the extrathoracic level, whereas 24% are deposited at the pulmonary region. The fine fraction showed a deposition rate of approximately 18% for both deposition levels.

  18. Sampling and analytical methodologies for instrumental neutron activation analysis of airborne particulate matter

    International Nuclear Information System (INIS)

    1992-01-01

    The IAEA supports a number of projects having to do with the analysis of airborne particulate matter by nuclear techniques. Most of this work involves the use of activation analysis in its various forms, particularly instrumental neutron activation analysis (INAA). This technique has been widely used in many different countries for the analysis of airborne particulate matter, and there are already many publications in scientific journals, books and reports describing such work. The present document represents an attempt to summarize the most important features of INAA as applied to the analysis of airborne particulate matter. It is intended to serve as a set of guidelines for use by participants in the IAEA's own programmes, and other scientists, who are not yet fully experienced in the application of INAA to airborne particulate samples, and who wish either to make a start on using this technique or to improve their existing procedures. The methodologies for sampling described in this document are of rather general applicability, although they are presented here in a way that takes account of the particular requirements arising from the use of INAA as the analytical technique. The analytical part of the document, however, is presented in a form that is applicable only to INAA. (Subsequent publications in this series are expected to deal specifically with other nuclear related techniques such as energy dispersive X ray fluorescence (ED-XRF) and particle induced X ray emission (PIXE) analysis). Although the methods and procedures described here have been found through experience to yield acceptable results, they should not be considered mandatory. Any other procedure used should, however, be chosen to be capable of yielding results at least of equal quality to those described

  19. Sampling and analytical methodologies for instrumental neutron activation analysis of airborne particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-01

    The IAEA supports a number of projects having to do with the analysis of airborne particulate matter by nuclear techniques. Most of this work involves the use of activation analysis in its various forms, particularly instrumental neutron activation analysis (INAA). This technique has been widely used in many different countries for the analysis of airborne particulate matter, and there are already many publications in scientific journals, books and reports describing such work. The present document represents an attempt to summarize the most important features of INAA as applied to the analysis of airborne particulate matter. It is intended to serve as a set of guidelines for use by participants in the IAEA's own programmes, and other scientists, who are not yet fully experienced in the application of INAA to airborne particulate samples, and who wish either to make a start on using this technique or to improve their existing procedures. The methodologies for sampling described in this document are of rather general applicability, although they are presented here in a way that takes account of the particular requirements arising from the use of INAA as the analytical technique. The analytical part of the document, however, is presented in a form that is applicable only to INAA. (Subsequent publications in this series are expected to deal specifically with other nuclear related techniques such as energy dispersive X ray fluorescence (ED-XRF) and particle induced X ray emission (PIXE) analysis). Although the methods and procedures described here have been found through experience to yield acceptable results, they should not be considered mandatory. Any other procedure used should, however, be chosen to be capable of yielding results at least of equal quality to those described.

  20. Sampling for diesel particulate matter in mines : Diesel Emissions Evaluation Program (DEEP), technology transfer initiative, October 2001

    International Nuclear Information System (INIS)

    Grenier, M.; Gangal, M.; Goyer, N.; McGinn, S.; Penney, J.; Vergunst, J.

    2001-10-01

    The physical and chemical characteristics of diesel particulate matter (DPM) from exhaust gases from diesel powered mining equipment were presented along with guidelines and regulation for exposure monitoring in the workplace. The report addresses issues related to personal and direct exhaust sampling in mines and presents evidence about potential carcinogenicity of the solid fraction of diesel exhaust. The incomplete combustion of diesel fuel results in the formation of solid and liquid particles in the exhaust. DPM is defined as being the portion of diesel exhaust which is made up of solid carbon particles and the attached chemicals such as polycyclic aromatic hydrocarbons and inorganics such as sulphate compounds. DPM is a submicron aerosol and as such, it is a respirable dust which penetrates deep into the lungs. In addition, DPMs are not easily removed from the air stream because of their small size. Control of DPM is crucial because once they are airborne, they are likely to remain that way and will affect the workplace where they are produced as well as workplaces downwind. In January 2001, the Mine Safety and Health Administration issued a ruling for U.S. metal and non-metal mines requiring that mines meet a limit of exposure of 0.40 mg/m 3 . Mines are expected to reduce exposure to meet a 0.16 mg/m 3 limit of exposure by January 2006. European mines and tunnel construction projects must also meet DPM exposure limits. DPM sampling in Canada has been regulated for nearly one decade. Sampling protocols in Canada and the United States were described with reference to equipment and procedures testing DPM filtration efficiency of after-treatment modules and to evaluate the impact of diesel equipment maintenance on gaseous particulate emissions. 23 refs., 1 tab., 7 figs

  1. Evaluation of mobile micro-sensing devices for GPS-based personal exposure monitoring of heat and particulate matter - a matter of context

    Science.gov (United States)

    Ueberham, Maximilian; Schlink, Uwe; Weiland, Ulrike

    2017-04-01

    The application of mobile micro-sensing devices (MSDs) for human health and personal exposure monitoring (PEM) is an emerging topic of interest in urban air quality research. In the context of climate change, urban population growth and related anthropogenic activities, an increase is expected for the intensity of citizens' exposure to heat and particulate matter (PM). Therefore more focus on the small-scale perspective of spatio-temporal distribution of air quality parameters is important to complement fixed-monitoring site data. Mobile sensors for PEM are useful for both, the investigation of the local distribution of air quality and the personal exposure profiles of individuals moving within their activity spaces. An evaluation of MSDs' accuracy is crucial, before their sophisticated application in measurement campaigns. To detect variations of exposure at small scales, it is even more important to consider the accuracy of Global Positioning System (GPS) devices within different urban structure types (USTs). We present an assessment of the performance of GPS-based MSDs under indoor laboratory conditions and outdoor testing within different USTs. The aim was to evaluate the accuracy of several GPS devices and MSDs for heat and PM 2.5 in relation to reliable standard sensing devices as part of a PhD-project. The performance parameters are summary measures (mean value, standard deviation), correlation (Pearson r), difference measures (mean bias error, mean absolute error, index of agreement) and Bland-Altman plots. The MSDs have been tested in a climate chamber under constant temperature and relative humidity. For temperature MSDs reaction time was tested because of its relevance to detect temperature variations during mobile measurements. For interpretation of the results we considered the MSDs design and technology (e.g. passive vs. active ventilation). GPS-devices have been tested within low/high dense urban residential areas and low/high dense urban green areas

  2. Characterization of airborne particulate matter in Santiago, Chile. Part 1: design, sampling and analysis for an experimental campaign

    International Nuclear Information System (INIS)

    Toro E, P.

    1995-01-01

    This work describes the siting and sampling procedures of collecting airborne particulate matter in Santiago, Chile, determining its chemical composition and daily behaviour. The airborne particulate matter was collected onto polycarbonate membranes, one of fine pore and other of coarse pore, using Pm 10 samplers. The material was analyzed using neutron activation analysis., proton induced X ray emission, X ray fluorescence, voltametry, atomic absorption spectrometry, ion chromatography and isotope dilution. (author). 1 tab

  3. Characterization of airborne particulate matter in the metropolitan region of Belo Horizonte

    International Nuclear Information System (INIS)

    Tavares, Fernanda V.F.; Ardisson, Jose Domingos; Rodrigues, Paulo Cesar H.; Brito, Walter de; Macedo, Waldemar Augusto A.; Jacomino, Vanusa Maria F.

    2013-01-01

    In this work soil samples, iron ore and airborne atmospheric particulate matter (PM) in the Metropolitan Region of Belo Horizonte (MRBH), State of Minas Gerais, Brazil, are investigated with the aim of identifying if the sources of the particulate matter are of natural origin, such as, resuspension of particles from soil, or due to anthropogenic origins from mining and processing of iron ore. Samples were characterized by powder X-ray diffraction, X-ray fluorescence and 57 Fe-Moessbauer spectroscopy. The results showed that soil samples studied are rich in quartz and have low contents of iron mainly iron oxide with low crystallinity. The samples of iron ore and PM have high concentration of iron, predominantly well crystallized hematite. 57 Fe-Moessbauer spectroscopy confirmed the presence of similar iron oxides in samples of PM and in the samples of iron ore, indicating the anthropogenic origin in the material present in atmosphere of the study area. (author)

  4. Fine Particulate Matter Pollution and Hospital Admissions for Respiratory Diseases in Beijing, China.

    Science.gov (United States)

    Xiong, Qiulin; Zhao, Wenji; Gong, Zhaoning; Zhao, Wenhui; Tang, Tao

    2015-09-22

    Fine particulate matter has become the premier air pollutant of Beijing in recent years, enormously impacting the environmental quality of the city and the health of the residents. Fine particles with aerodynamic diameters of 0~0.3 μm, 0.3~0.5 μm, and 0.5~1.0 μm, from the yeasr 2007 to 2012, were monitored, and the hospital data about respiratory diseases during the same period was gathered and calculated. Then the correlation between respiratory health and fine particles was studied by spatial analysis and grey correlation analysis. The results showed that the aerial fine particulate matter pollution was mainly distributed in the Zizhuyuan sub-district office. There was a certain association between respiratory health and fine particles. Outpatients with respiratory system disease in this study area were mostly located in the southeastern regions (Balizhuang sub-district office, Ganjiakou sub-district office, Wanshoulu sub-district office, and Yongdinglu sub-district office) and east-central regions (Zizhuyuan sub-district office and Shuangyushu sub-district office) of the study area. Correspondingly, PM₁ (particulate matter with aerodynamic diameter smaller than 1.0 um) concentrations in these regions were higher than those in any other regions. Grey correlation analysis results showed that the correlation degree of the fine particle concentration with the number of outpatients is high, and the smaller fine particles had more obvious effects on respiratory system disease than larger particles.

  5. Fine Particulate Matter Pollution and Hospital Admissions for Respiratory Diseases in Beijing, China

    Directory of Open Access Journals (Sweden)

    Qiulin Xiong

    2015-09-01

    Full Text Available Fine particulate matter has become the premier air pollutant of Beijing in recent years, enormously impacting the environmental quality of the city and the health of the residents. Fine particles with aerodynamic diameters of 0~0.3 μm, 0.3~0.5 μm, and 0.5~1.0 μm, from the yeasr 2007 to 2012, were monitored, and the hospital data about respiratory diseases during the same period was gathered and calculated. Then the correlation between respiratory health and fine particles was studied by spatial analysis and grey correlation analysis. The results showed that the aerial fine particulate matter pollution was mainly distributed in the Zizhuyuan sub-district office. There was a certain association between respiratory health and fine particles. Outpatients with respiratory system disease in this study area were mostly located in the southeastern regions (Balizhuang sub-district office, Ganjiakou sub-district office, Wanshoulu sub-district office, and Yongdinglu sub-district office and east-central regions (Zizhuyuan sub-district office and Shuangyushu sub-district office of the study area. Correspondingly, PM1 (particulate matter with aerodynamic diameter smaller than 1.0 um concentrations in these regions were higher than those in any other regions. Grey correlation analysis results showed that the correlation degree of the fine particle concentration with the number of outpatients is high, and the smaller fine particles had more obvious effects on respiratory system disease than larger particles.

  6. Hospital Admission for Respiratory and Cardiovascular Diseases Due to Particulate Matter in Ilam, Iran

    Directory of Open Access Journals (Sweden)

    Daryanoosh

    2016-09-01

    Full Text Available Background Particulate matter with an aerodynamic diameter lower than 10 µm (PM10 has the most undesired adverse effects on human health. Several studies reported a strong correlation between PM levels and hospital admissions owing to chronic and acute respiratory and cardiovascular diseases. Objectives The current study aimed to estimate the effect of PM10 as a primary pollutant on respiratory and cardiovascular hospitalizations in Ilam, Iran, in 2013. Methods PM10 data was taken from the Ilam environmental protection agency. The annual morbidity including hospital admission for respiratory and cardiovascular diseases due to PM10 exposure were estimated using relative risk (RR and baseline incidence (BI based on world health organization (WHO databases for AirQ2.2.3 model. Results The results showed that the maximum level of PM10 was obtained in summer with a concentration of 491 μg/m3. The cumulative number of excess cases admitted to the hospital for respiratory and cardiovascular diseases were 216 and 84, respectively. Approximately 3.95% of the cases hospitalized due to PM10 occurred during days with concentration levels lower than 20 μg/m3. The highest rate of person-days related to PM10 that led to heath effect among Ahvaz inhabitants was in concentration levels of 40 - 49 µg/m3. Conclusions To reduce the impacts of particulate matter on health status of people in Ilam, necessary training by health systems should be conducted for people, especially those with chronic lung and heart diseases, the elderly and children to reduce their activities on the dusty days.

  7. Environmental studies in two communes of Santiago de Chile by the analysis of magnetic properties of particulate matter deposited on leaves of roadside trees

    Science.gov (United States)

    Muñoz, David; Aguilar, Bertha; Fuentealba, Raúl; Préndez, Margarita

    2017-03-01

    Emissions from motor vehicles are considered to be one of the main sources of airborne particulate matter in Santiago. International researchers have shown that particulate matter contains metal oxides and magnetic particles, both of which are emitted mainly from vehicles exhaust pipes. On the other hand, trees are effective in reducing such contamination, so that they act as passive collectors of particulate matter. This work presents the results obtained from the first magnetic study of the particulate matter collected in two areas of the city of Santiago de Chile. Magnetic susceptibility and Saturation Isothermic Remanent Magnetization (SIRM) were determined in leaves from abundant urban trees and from urban dust samples. Results indicate that most of the samples contain ferromagnetic minerals with magnetite (Fe3O4) as the main carrier. Values of magnetic susceptibility (SI ×10-6 m3/kg) in the range 0.04-0.24 for leaves and in the range 10-45 for urban dust were determinated. In one of the city areas studied, significant correlation between the particulate matter deposited on leaves of Platanus orientalis and measured traffic flows was obtained. In addition, it was possible to estimate that the species Platanus orientalis and Acer negundo have a better ability to capture particulate matter than the species Robinia pseudoacacia.

  8. LACK OF EFFECT OF AGE AND ANTIOXIDANT DEPLETION ON RESPIRATORY RESPONSES TO CONCENTRATED AMBIENT PARTICULATES (CAPS) IN RATS

    Science.gov (United States)

    2003 AAR PM MeetingParticulate Matter: Atmospheric Sciences,Exposure and the Fourth Colloquium on PM and Human HealthLACK OF EFFECT OF AGE AND ANTIOXIDANT DEPLETION ON RESPIRATORY RESPONSES TO CONCENTRATED AMBIENT PARTICULATES (CAPs) IN RATS. JA Dye, LC Walsh, C...

  9. Effect of Feeding Schedule on Fractionated Particulate Matter Distribution in Rooster House

    Science.gov (United States)

    The persistence and long life expectancy of ammonia, odors and toxic pollutants from poultry houses may be due to the ability of suspended particulate matters (SPM) to serve as carriers for odorous compounds such as ammonium ions and volatile organic compounds. SPM is generated from the feed, anima...

  10. Sampling and analytical methodologies for energy dispersive X-ray fluorescence analysis of airborne particulate matter

    International Nuclear Information System (INIS)

    1993-01-01

    The present document represents an attempt to summarize the most important features of the different forms of ED-XFR as applied to the analysis of airborne particulate matter. It is intended to serve as a set of guidelines for use by participants in the IAEA's own programmes, and other scientists, who are not yet fully experienced in the application of ED-XRF to airborne particulate samples, and who wish either to make a start on using this technique or to improve their existing procedures. The methodologies for sampling described in this document are of rather general applicability. Emphasis is also placed on the sources of errors affecting the sampling of airborne particulate matter. The analytical part of the document describes the different forms of ED-XRF and their potential applications. Spectrum evaluation, a key step in X-ray spectrometry, is covered in depth, including discussion on several calibration and peak fitting techniques and computer programs especially designed for this purpose. 148 refs, 25 figs, 13 tabs

  11. SEASONAL ABUNDANCE OF ORGANIC MOLECULAR MARKERS IN URBAN PARTICULATE MATTER FROM PHILADELPHIA, PA

    Science.gov (United States)

    Organic molecular markers were measured in airborne particulate matter (PM10) from the City of Philadelphia North Broad Street air quality monitoring site to identify the seasonal abundances of key tracer compounds together with their dominant sources. Daily PM10...

  12. Effects of Source-Apportioned Coarse Particulate Matter (PM) on Allergic Responses in Mice

    Science.gov (United States)

    The Cleveland Multiple Air Pollutant Study (CMAPS) is one of the first comprehensive studies conducted to evaluate particulate matter (PM) over local and regional scales. Cleveland and the nearby Ohio River Valley impart significant regional sources of air pollution including coa...

  13. Regulation of suspended particulate matter (SPM) in Indian coal-based thermal power plants

    Science.gov (United States)

    Sengupta, Ishita

    Air borne particulate matter, in major Indian cities is at least three times the standard prescribed by the WHO. Coal-based thermal power plants are the major emitters of particulate matter in India. The lack of severe penalty for non-compliance with the standards has worsened the situation and thus calls for an immediate need for investment in technologies to regulate particulate emissions. My dissertation studies the optimal investment decisions in a dynamic framework, for a random sample of forty Indian coal-based power plants to abate particulate emissions. I used Linear Programming to solve the double cost minimization problem for the optimal choices of coal, boiler and pollution-control equipment. A policy analysis is done to choose over various tax policies, which would induce the firms to adopt the energy efficient as well as cost efficient technology. The aim here is to reach the WHO standards. Using the optimal switching point model I show that in a dynamic set up, switching the boiler immediately is always the cost effective option for all the power plants even if there is no policy restriction. The switch to a baghouse depends upon the policy in place. Theoretically, even though an emission tax is considered the most efficient tax, an ash tax or a coal tax can also be considered to be a good substitute especially in countries like India where monitoring costs are very high. As SPM is a local pollutant the analysis here is mainly firm specific.

  14. Source contributions of fine particulate matter during one winter haze episodes in Xi'an, China

    Science.gov (United States)

    Yang, X.; Wu, Q.

    2017-12-01

    Long-term exposure to high levels of fine particulate matter (PM2.5) is found to be associated with adverse effects on human health, ecological environment and climate change. Identification the major source regions of fine particulate matter are essential to proposing proper joint prevention and control strategies for heavy haze mitigation. In this work, the Comprehensive Air Quality Model with extensions (CAMx) together with the Particulate Source Apportionment Technology (PSAT) and the Weather Research and Forecast Model (WRF), have been applied to analyze the major source regions of PM2.5 in Xi'an during the heavy haze episodes in winter (29, December, 2016 - 5 January 2017), and the framework of the model system is shown in Fig. 1. Firstly, according to the model evaluation of the daily PM2.5 concentrations for the two months, the model has well performance, and the fraction of predictions within a factor of 2 of the observations (FAC2) is 84%, while the correlation coefficient (R) is 0.80 in Xi'an. By using the PSAT in CAMx model, a detailed source region contribution matrix is derived for all points within the Xi'an region and its six surrounding areas, and long-range regional transport. The results show that the local emission in Xi'an is the mainly sources at downtown area, which contributing 72.9% as shown in Fig.2, and the contribution rate of transportations between adjacent areas depends on wind direction. Meanwhile, three different suburban areas selected for detailed analysis in fine particles sources. Comparing to downtown area, the sources of suburban areas are more multiply, and the transportations make the contribution 40%-82%. In the suburban areas, regional inflows play an important role in the fine particles concentrations, indicating a strong need for regional joint emission control efforts. The results enhance the quantitative understanding of the PM2.5 source regions and provide a basis for policymaking to advance the control of pollution

  15. Particulate matter and health - from air to human lungs

    International Nuclear Information System (INIS)

    Piniero, T.; Cerqueira Alves, L.; Reis, M.

    1998-01-01

    The aim of this project is to search for respiratory system particular aggressors to which workers are submitted in their labouring activity. The work plan under the current IAEA contract comprise a prospective study to identify particulate matter deposited in the human respiratory ducts and lung tissue and workers respiratory health status survey at a steel plant, Siderurgia Nacional (SN). So far, the selection of areas of interest at SN, workers exposed, airborne particulate monitoring sites according to the periodicity of labouring cycles, and the beginning of workers medical survey have been achieved and/or initiated. The SN selected area, where steel is processed and steel casting is achieved, involve approximately 80 workers, most of them working at that location for more than 15 years. Blood elemental content data determined by PIXE and INAA and a preliminary health status evaluation from 32 of the 80 workers included in this survey are presented and discussed. (author)

  16. In Utero Exposure to Fine Particulate Matter Causes Hypertension Due to Impaired Renal Dopamine D1 Receptor in Offspring

    Directory of Open Access Journals (Sweden)

    Zhengmeng Ye

    2018-03-01

    Full Text Available Background/Aims: Adverse environment in utero can modulate adult phenotypes including blood pressure. Fine particulate matter (PM2.5 exposure in utero causes hypertension in the offspring, but the exact mechanisms are not clear. Renal dopamine D1 receptor (D1R, regulated by G protein-coupled receptor kinase type 4 (GRK4, plays an important role in the regulation of renal sodium transport and blood pressure. In this present study, we determined if renal D1R dysfunction is involved in PM2.5–induced hypertension in the offspring. Methods: Pregnant Sprague–Dawley rats were given an oropharyngeal drip of PM2.5 (1.0 mg/kg at gestation day 8, 10, and 12. The blood pressure, 24-hour sodium excretion, and urine volume were measured in the offspring. The expression levels of GRK4 and D1R were determined by immunoblotting. The phosphorylation of D1R was investigated using immunoprecipitation. Plasma malondialdehyde and superoxide dismutase levels were also measured in the offspring. Results: As compared with saline-treated dams, offspring of PM2.5-treated dams had increased blood pressure, impaired sodium excretion, and reduced D1R-mediated natriuresis and diuresis, accompanied by decreased renal D1R expression and GRK4 expression. The impaired renal D1R function and increased GRK4 expression could be caused by increased reactive oxidative stress (ROS induced by PM2.5 exposure. Administration of tempol, a redox-cycling nitroxide, for 4 weeks in the offspring of PM2.5-treated dam normalized the decreased renal D1R expression and increased renal D1R phosphorylation and GRK4 expression. Furthermore, tempol normalized the increased renal expression of c-Myc, a transcription factor that regulates GRK4 expression. Conclusions: In utero exposure to PM2.5 increases ROS and GRK4 expression, impairs D1R-mediated sodium excretion, and increases blood pressure in the offspring. These studies suggest that normalization of D1R function may be a target for the

  17. Influence of Channel Geomorphology on Retention of Dissolved and Particulate Matter in a Cascade Mountain Stream

    Science.gov (United States)

    Gary A. Lamberti; Stan V. Gregory; Linda R. Ashkenas; Randall C. Wildman; Alan G. Steinman

    1989-01-01

    Retention of particulate and dissolved nutrients in streams is a major determinant of food avail-ability to stream biota. Retention of particulate matter (leaves) and dissolved nutrients (nitrogen) was studied experimentally during summer 1987 in four 300-500 m reaches of Lookout Creek, a fifth-order stream in the Cascade Mountains of Oregon. Constrained (narrow valley...

  18. Polycyclic aromatic hydrocarbons in the urban atmospheric particulate matter in the city of Naples (Italy)

    Science.gov (United States)

    Caricchia, Anna Maria; Chiavarini, Salvatore; Pezza, Massimo

    An investigation on PAH in the atmospheric particulate matter of the city of Naples has been carried out. Urban atmospheric particulate matter was sampled in three sampling sites (West, East and central areas of the city), whose characteristics were representative of the prevailing conditions. In each site, 24 h samplings for 7 consecutive days were performed during three sampling campaigns, in 1996-1997. The results were comparable with those reported in literature for similar investigations. Total PAH were in the range 2-130 ng m -3, with a seasonal variation (autumn/winter vs. summer) in the range 1.5-4.5. The relative contribution of diesel engines vs. gasoline fuelled engines was evidenced.

  19. Carbonaceous material in fine particulate matter (PM10) of urban areas

    International Nuclear Information System (INIS)

    Brocco, Domenico; Leonardi, Vittorio; Maso; Marco; Prignani, Patrizia

    2006-01-01

    Total carbon (TC), elemental carbon (EC) and organic carbon (OC) in the fine particulate matter (PM10) were measured in the urban areas of Rome and Marino (Castelli Romani) by means a thermal method with a non-dispersive infrared detector (NDIR). The results showed that carbonaceous material constitutes 30-40% of the total aerosols in Rome and about 20% in Marino [it

  20. Sensitive emission spectrometric method for the analysis of airborne particulate matter

    International Nuclear Information System (INIS)

    Sugimae, A.

    1975-01-01

    A rapid and sensitive emission spectrometric method for the routine analysis of airborne particulate matter collected on the glass fiber filter is reported. The method is a powder--dc arc technique involving no chemical pre-enrichment procedures. The elements--Ag, BA: Be, Bi, Cd, Co, Cr, Cu, Fe, Ga, La, Mn, Ni, Pb, Sn, V, Y, Yb, and Zn--were determined. (U.S.)

  1. Particulate matter and atherosclerosis: a bibliometric analysis of original research articles published in 1973–2014

    Directory of Open Access Journals (Sweden)

    Feifei Wang

    2016-04-01

    Full Text Available Abstract Background Epidemiological and experimental studies have suggested that exposure to particulate air pollution may promote progression of atherosclerosis. Methods In the present study, the characteristics and trends of the research field of particulate matter (PM and atherosclerosis were analyzed using bibliometric indicators. Bibliometric analysis was based on original papers obtained from PubMed/MEDLINE search results (from 1973 to 2014 using Medical Subject Headings (MeSH terms. A fully-detailed search strategy was employed, and articles were imported into the Thomson Data Analyzer (TDA software. Results The visualizing network of the collaborative researchers was analyzed by Ucinet 6 software. Main research topics and future focuses were explored by co-word and cluster analysis. The characteristics of these research articles were summarized. The number of published articles has increased from five for the period 1973–1978 to 89 for the period 2009–2014. Tobacco smoke pollution, smoke and air PM were the most studied targets in this research field. Coronary disease was the top health outcome posed by PM exposure. The aorta and endothelium vascular were the principal locations of atherosclerotic lesions, which were enhanced by PM exposure. Oxidative stress and inflammation were of special concern in the current mechanistic research system. The top high-frequency MeSH terms were clustered, and four popular topics were further presented. Conclusion Based on the quantitative analysis of bibliographic information and MeSH terms, we were able to define the study characteristics and popular topics in the field of PM and atherosclerosis. Our analysis would provide a comprehensive background reference for researchers in this field of study.

  2. [Comparison of atmospheric particulate matter and aerosol optical depth in Beijing City].

    Science.gov (United States)

    Lin, Hai-Feng; Xin, Jin-Yuan; Zhang, Wen-Yu; Wang, Yue-Si; Liu, Zi-Rui; Chen, Chuan-Lei

    2013-03-01

    The pollution of particulate matter was serious in Beijing City from the synchronous observation of particulate matter mass concentration and aerosol optical characteristics in 2009. The annual mean concentrations of PM2.5 and PM10 were (65 +/- 14) microg x m(-3) and (117 +/- 31) microg x m(-3), respectively, which exceeded the national ambient air quality annual standards to be implemented in 2016. There were 35% and 26% days of 2009 that the daily standards were exceeded. There was a significant correlation between fine particulate (PM2.5) and inhalable particle (PM10), with a correlation coefficient (R) of approximately 0.90 (P 500 nm) and Angstrom exponent were (0.55 +/- 0.1) and (1.12 +/- 0.08), respectively. There were significant correlations between PM2.5, PM10 and AOD in the four seasons and the whole year, and the correlation coefficients were greater than or equal to 0.50. Furthermore, the correlation functions and coefficients had seasonal variations. The correlations were more significant in summer and autumn than in spring and winter. The annual correlation could cover up the seasonal systematic differences. The correlations between AOD revised by Mixed Layer Height and PM2.5 PM10 revised by Relative Humidity became stronger, and the exponential correlations were superior to the linear correlations.

  3. Influence of Acidification on the Partitioning of Steroid Hormones among Filtrate, Filter Media, and Retained Particulate Matter.

    Science.gov (United States)

    Havens, Sonya M; Hedman, Curtis J; Hemming, Jocelyn D C; Mieritz, Mark G; Shafer, Martin M; Schauer, James J

    2016-09-01

    Hormone contamination of aquatic systems has been shown to have deleterious effects on aquatic biota. However, the assessment of hormone contamination of aquatic environments requires a quantitative evaluation of the potential effects of sample preservation on hormone concentrations. This study investigated the influence of acidification (pH 2) of surface water samples on the partitioning of hormones among filtrate, filter media, and filter-retained particulate matter. Hormones were spiked into unpreserved and sulfuric acid-preserved ultrapure water and surface water runoff samples. The samples were filtered, and hormones were extracted from the filter and filtrate and analyzed by high-performance liquid chromatography. Acidification did not influence the partitioning of hormones onto the filter media. For the majority of the hormones investigated in this study, the partitioning of hormones to the filter-retained particulate matter was not influenced by acidification. Acidification increased the partitioning of progesterone and melengestrol acetate onto the retained particulate matter (about 25% for both analytes). Incorporation of an isotopically labeled internal standard (ISTD) for progesterone accounted for the loss of progesterone to the filter-retained particulates and resulted in accurate concentrations of progesterone in the filtrate. The incorporation of an ISTD for melengestrol acetate, however, was unable to account for the loss of melengestrol acetate to the retained particulates and resulted in underestimations of melengestrol acetate in the filtrate. Our results indicate that the analysis of melengestrol acetate in acid preserved surface runoff samples should be conducted on the filter-retained particulates as well as the filtrate. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Global Guidance On LCIA Indicators: Impacts Of Particulate Matter And Of Land Use

    DEFF Research Database (Denmark)

    Jolliet, Olivier; Fantke, Peter; McKone, Thomas E.

    2017-01-01

    Improving life cycle impact assessment models is crucial. The flagship project of the UNEP-SETAC Life Cycle Initiative provides global guidance and consensus on environmental LCIA indicators for climate change, particulate matter impacts, land use impact on biodiversity, water scarcity and water ...

  5. Chronic Exposure to Particulate Nickel Induces Neoplastic Transformation in Human Lung Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Amie L. Holmes

    2013-11-01

    Full Text Available Nickel is a well-known human lung carcinogen with the particulate form being the most potent; however, the carcinogenic mechanism remains largely unknown. Few studies have investigated the genotoxicity and carcinogenicity of nickel in its target cell, human bronchial epithelial cells. Thus, the goal of this study was to investigate the effects of particulate nickel in human lung epithelial cells. We found that nickel subsulfide induced concentration- and time-dependent increases in both cytotoxicity and genotoxicity in human lung epithelial cells (BEP2D. Chronic exposure to nickel subsulfide readily induced cellular transformation, inducing 2.55, 2.9 and 2.35 foci per dish after exposure to 1, 2.5 and 5 μg/cm2 nickel subsulfide, respectively. Sixty-one, 100 and 70 percent of the foci isolated from 1, 2.5, and 5 μg/cm2 nickel subsulfide treatments formed colonies in soft agar and the degree of soft agar colony growth increased in a concentration-dependent manner. Thus, chronic exposure to particulate nickel induces genotoxicity and cellular transformation in human lung epithelial cells.

  6. Gene-particulate matter-health interactions

    International Nuclear Information System (INIS)

    Kleeberger, Steven R.; Ohtsuka, Yoshinori

    2005-01-01

    Inter-individual variation in human responses to air pollutants suggests that some subpopulations are at increased risk to the detrimental effects of pollutant exposure. Extrinsic factors such as previous exposure and nutritional status may influence individual susceptibility. Intrinsic (host) factors that determine susceptibility include age, gender, and pre-existing disease (e.g., asthma), and it is becoming clear that genetic background also contributes to individual susceptibility. Environmental exposures to particulates and genetic factors associated with disease risk likely interact in a complex fashion that varies from one population and one individual to another. The relationships between genetic background and disease risk and severity are often evaluated through traditional family-based linkage studies and positional cloning techniques. However, case-control studies based on association of disease or disease subphenotypes with candidate genes have advantages over family pedigree studies for complex disease phenotypes. This is based in part on continued development of quantitative analysis and the discovery and availability of simple sequence repeats and single nucleotide polymorphisms. Linkage analyses with genetically standardized animal models also provide a useful tool to identify genetic determinants of responses to environmental pollutants. These approaches have identified significant susceptibility quantitative trait loci on mouse chromosomes 1, 6, 11, and 17. Physical mapping and comparative mapping between human and mouse genomes will yield candidate susceptibility genes that may be tested by association studies in human subjects. Human studies and mouse modeling will provide important insight to understanding genetic factors that contribute to differential susceptibility to air pollutants

  7. High-Latitude Wintertime Urban Pollution: Particulate Matter Composition and Temporal Trends in Fairbanks, Alaska

    Science.gov (United States)

    Simpson, W. R.; Nattinger, K.; Hooper, M.

    2017-12-01

    High latitude cities often experience severe pollution episodes during wintertime exacerbated by thermal inversion trapping of pollutant emissions. Fairbanks, Alaska is an extreme example of this problem, currently being classified by the US Environmental Protection Agency (EPA) as a "serious" non-attainment area for fine particulate matter (PM2.5). For this reason, we have studied the chemical composition of PM2.5 at multiple EPA monitoring sites in the non-attainment area from 2006 to the present. The chemical composition is dominated by organic carbon with lesser amounts of black carbon and inorganic ionic species such as ammonium, sulfate, and nitrate. We find large spatial differences in composition and amount of PM2.5 that indicate a different mix of sources in residential areas as compared to the city center. Specifically, the difference in composition is consistent with increased wood smoke source in the residential areas. The extent to which organic matter could be secondary (formed through conversion of emitted gases) is also an area needing study. Ammonium sulfate is responsible for about a fifth to a quarter of the particles mass during the darkest months, possibly indicating a non-photochemical source of sulfate, but the chemical mechanism for this possible transformation is unclear. Therefore, we quantified the relationship between particulate sulfate concentrations and gas-phase sulfur dioxide concentrations along with particulate metals and inferred particulate acidity with the hopes that these data can assist in elucidation of the mechanism of particulate sulfate formation. We also analyze temporal trends in PM2.5 composition in an attempt to understand how the problem is changing over time and find most trends are small despite regulatory changes. Improving mechanistic understanding of particulate formation under cold and dark conditions could assist in reducing air-quality-related health effects.

  8. An update on mortality in Denmark caused by fine particulate matter air pollution

    DEFF Research Database (Denmark)

    Bønløkke, Jakob Hjort; Andersen, Mikael Skou; Brandt, Jørgen

    Introduction In terms of effects on mortality fine particulate matter (PM2.5) is considered the most important component of air polllution. Several international studies have investigated the effect size. It is estimated that overall mortality increases 6% per 10µg/m3 increase in annual PM2.......5 and that PM2.5 affects global mortality signficantly (Hoek, 2013). The first attempt to describe the size of the effects of PM2.5 in Denmark were published in 2002 (Raaschou-Nielsen, 2002). At that time only PM10 data were available and only with a great deal of uncertainty. Since then the knowledge of PM2...... to what extent the changes in estimates of mortality from PM2.5 exposure over the years is due to changes in population and in pollution and to what extent they are due to improved models. Methods Several methods of calculation were compared for the year 2012. First the method used in 2002 in which...

  9. Temperature modifies the health effects of particulate matter in Brisbane, Australia

    Science.gov (United States)

    Ren, Cizao; Tong, Shilu

    2006-11-01

    A few epidemiological studies have examined whether there was an interactive effect between temperature and ambient particulate matter on cardiorespiratory morbidity and mortality, but the results were inconsistent. The present study used three time-series approaches to explore whether maximum temperature modified the impact of ambient particulate matter less than 10 μm in diameter (PM10) on daily respiratory hospital admissions, cardiovascular hospital admissions, respiratory emergency visits, cardiovascular emergency visits, non-external cause mortality and cardiovascular mortality in Brisbane between 1996 and 2001. The analytical approaches included a bivariate response surface model, a non-stratification parametric model and a stratification parametric model. Results show that there existed a statistically significant interaction between PM10 and temperature on most health outcomes at various lags. PM10 exhibited more adverse health effects on warm days than cold days. The choice of the degree of freedom for smoothers to adjust for confounders and the selection of arbitrary cut-offs for temperature affected the interaction estimates to a certain extent, but did not change the overall conclusion. The results imply that it is important to control and reduce the emission of air particles in Brisbane, particularly when temperature increases.

  10. Theoretical research of probability of wedging of particulate matters at polishing

    Directory of Open Access Journals (Sweden)

    V.F. Molchanov

    2017-12-01

    Full Text Available The mechanism of formation of mikroprofile of the polished surface is expounded taking into account influence of particulate matters, contained in lubricating-coolings liquids. Probability of wedging of abrasive particles is investigational in the area of contact of diamond-impregnated with the surface of detail. It is set that for determination of probability of event, when a particle, getting together with a liquid in the area of contact, abandons track-scratch on a superficial layer, it is necessary to take into account, that three mutual locations of hard particle are possible in the area of contact of diamond-impregnated with the surface of detail. It is set researches, that a hard particle, getting together with a liquid in the area of contact, abandons track-scratch on-the-spot in that case, when the sizes of particle are equal or a few exceed distance from the surface of detail to the ledges on-the-spot diamond-impregnated. Researches allow mathematically to define probability of wedging of particulate matters in the area of contact of diamond-impregnated with the surface of the polished detail.

  11. [Exploration of a quantitative methodology to characterize the retention of PM2.5 and other atmospheric particulate matter by plant leaves: taking Populus tomentosa as an example].

    Science.gov (United States)

    Zhang, Zhi-Dan; Xi, Ben-Ye; Cao, Zhi-Guo; Jia, Li-Ming

    2014-08-01

    Taking Populus tomentosa as an example, a methodology called elution-weighing-particle size-analysis (EWPA) was proposed to evaluate quantitatively the ability of retaining fine particulate matter (PM2.5, diameter d ≤ 2.5 μm) and atmospheric particulate matter by plant leaves using laser particle size analyzer and balance. This method achieved a direct, accurate measurement with superior operability about the quality and particle size distribution of atmospheric particulate matter retained by plant leaves. First, a pre-experiment was taken to test the stability of the method. After cleaning, centrifugation and drying, the particulate matter was collected and weighed, and then its particle size distribution was analyzed by laser particle size analyzer. Finally, the mass of particulate matter retained by unit area of leaf and stand was translated from the leaf area and leaf area index. This method was applied to a P. tomentosa stand which had not experienced rain for 27 days in Beijing Olympic Forest Park. The results showed that the average particle size of the atmospheric particulate matter retained by P. tomentosa was 17.8 μm, and the volume percentages of the retained PM2.5, inhalable particulate matter (PM10, d ≤ 10 μm) and total suspended particle (TSP, d ≤ 100 μm) were 13.7%, 47.2%, and 99.9%, respectively. The masses of PM2.5, PM10, TSP and total particulate matter were 8.88 x 10(-6), 30.6 x 10(-6), 64.7 x 10(-6) and 64.8 x 10(-6) g x cm(-2) respectively. The retention quantities of PM2.5, PM10, TSP and total particulate matter by the P. tomentosa stand were 0.963, 3.32, 7.01 and 7.02 kg x hm(-2), respectively.

  12. Potential impact of particulate matter less than 10 micron (PM10) to ambient air quality of Jakarta and Palembang

    Science.gov (United States)

    Agustine, I.; Yulinawati, H.; Gunawan, D.; Suswantoro, E.

    2018-01-01

    Particulate is a main urban air pollutant affects the environment and human wellbeing. The purpose of this study is to analyze the impact of particulate matter less than 10 micron (PM10) to ambient air quality of Jakarta and Palembang. The analysis is done with calendarPlot Function of openair model, which is based on the calculation of Pollutant Standards Index (PSI) or better known as Air Quality Index (AQI). The AQI category of “moderate” dominates Jakarta’s calendar from 2015 to 2016, which indicates the impact of PM10 is the visibility reduction. There was one day with category “unhealthy” that indicates the impact of dust exposure everywhere in Jakarta during 2015. Similar to Jakarta, the AQI category “moderate” also dominates Palembang’s calendar during 2015. However, the AQI category “hazardous” happened for few days in September and October 2015 during forest fires, which indicates the more harmful impacts of PM10, such as reduced visibility, dust exposure everywhere, increased sensitivity in patients with asthma and bronchitis to respiratory illness in all exposed populations. During 2016, AQI category of Jakarta mostly “moderate”, while in Palembang was “good”. Dominant AQI category from 2015 to 2016 shows higher PM10 concentration occurred in Jakarta compared to Palembang.

  13. Elevated exhaust temperature, zoned, electrically-heated particulate matter filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Bhatia, Garima [Bangalore, IN

    2012-04-17

    A system includes an electrical heater and a particulate matter (PM) filter that is arranged one of adjacent to and in contact with the electrical heater. A control module selectively increases an exhaust gas temperature of an engine to a first temperature and that initiates regeneration of the PM filter using the electrical heater while the exhaust gas temperature is above the first temperature. The first temperature is greater than a maximum exhaust gas temperature at the PM filter during non-regeneration operation and is less than an oxidation temperature of the PM.

  14. Ash reduction system using electrically heated particulate matter filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

    2011-08-16

    A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

  15. The filtering effect of buildings on airborne particulate matter

    International Nuclear Information System (INIS)

    Christensen, G.C.; Mustonen, R.

    1987-06-01

    Within the radioecological programme of the Nordic Liaison Committee for Atomic Energy (NKA), the possible consequences of a major reactor accident are one of its main research branches. This study of the filtering effect of buildings on airborne particulate matter has been one part of this branch. The absorbed dose to a person from a passing radioactive cloud will be lower if he has been indoors and not ourdoors during the cloud passage. The aim of this study has been to find filtering factors for typical Finnish and Norwegian houses to use in model work

  16. Fine particulate matter in the indoor air of barbeque restaurants: Elemental compositions, sources and health risks

    International Nuclear Information System (INIS)

    Taner, Simge; Pekey, Beyhan; Pekey, Hakan

    2013-01-01

    Cooking is a significant source of indoor particulate matter that can cause adverse health effects. In this study, a 5-stage cascade impactor was used to collect particulate matter from 14 restaurants that cooked with charcoal in Kocaeli, the second largest city in Turkey. A total of 24 elements were quantified using ICP-MS. All of the element contents except for Mn were higher for fine particles (PM 2.5 ) than coarse particles (PM >2.5 ), and the major trace elements identified in the PM 2.5 included V, Se, Zn, Cr, As, Cu, Ni, and Pb. Principle component analysis (PCA) and enrichment factor (EF) calculations were used to determine the sources of PM 2.5 . Four factors that explained over 77% of the total variance were identified by the PCA. These factors included charcoal combustion, indoor activities, crustal components, and road dust. The Se, As, Cd, and V contents in the PM 2.5 were highly enriched (EF > 100). The health risks posed by the individual metals were calculated to assess the potential health risks associated with inhaling the fine particles released during charcoal cooking. The total hazard quotient (total HQ) for a PM 2.5 of 4.09 was four times greater than the acceptable limit (i.e., 1.0). In addition, the excess lifetime cancer risk (total ELCR) for PM 2.5 was 1.57 × 10 −4 , which is higher than the acceptable limit of 1.0 × 10 −6 . Among all of the carcinogenic elements present in the PM 2.5 , the cancer risks resulting from Cr(VI) and As exposure were the highest (i.e., 1.16 × 10 −4 and 3.89 × 10 −5 , respectively). Overall, these results indicate that the lifetime cancer risk associated with As and Cr(VI) exposure is significant at selected restaurants, which is of concern for restaurant workers. - Highlights: • Particulate emissions from charcoal combustion in the BBQ restaurants were studied. • Vanadium, Se, Zn, Cr and As were found as high concentrations in PM 2.5 . • Charcoal combustion and indoor activities were the

  17. Fine particulate matter in the indoor air of barbeque restaurants: Elemental compositions, sources and health risks

    Energy Technology Data Exchange (ETDEWEB)

    Taner, Simge; Pekey, Beyhan, E-mail: bpekey@kocaeli.edu.tr; Pekey, Hakan

    2013-06-01

    Cooking is a significant source of indoor particulate matter that can cause adverse health effects. In this study, a 5-stage cascade impactor was used to collect particulate matter from 14 restaurants that cooked with charcoal in Kocaeli, the second largest city in Turkey. A total of 24 elements were quantified using ICP-MS. All of the element contents except for Mn were higher for fine particles (PM{sub 2.5}) than coarse particles (PM{sub >2.5}), and the major trace elements identified in the PM{sub 2.5} included V, Se, Zn, Cr, As, Cu, Ni, and Pb. Principle component analysis (PCA) and enrichment factor (EF) calculations were used to determine the sources of PM{sub 2.5}. Four factors that explained over 77% of the total variance were identified by the PCA. These factors included charcoal combustion, indoor activities, crustal components, and road dust. The Se, As, Cd, and V contents in the PM{sub 2.5} were highly enriched (EF > 100). The health risks posed by the individual metals were calculated to assess the potential health risks associated with inhaling the fine particles released during charcoal cooking. The total hazard quotient (total HQ) for a PM{sub 2.5} of 4.09 was four times greater than the acceptable limit (i.e., 1.0). In addition, the excess lifetime cancer risk (total ELCR) for PM{sub 2.5} was 1.57 × 10{sup −4}, which is higher than the acceptable limit of 1.0 × 10{sup −6}. Among all of the carcinogenic elements present in the PM{sub 2.5}, the cancer risks resulting from Cr(VI) and As exposure were the highest (i.e., 1.16 × 10{sup −4} and 3.89 × 10{sup −5}, respectively). Overall, these results indicate that the lifetime cancer risk associated with As and Cr(VI) exposure is significant at selected restaurants, which is of concern for restaurant workers. - Highlights: • Particulate emissions from charcoal combustion in the BBQ restaurants were studied. • Vanadium, Se, Zn, Cr and As were found as high concentrations in PM{sub 2.5}.

  18. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Pope III, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. [Brigham Young University, Provo, UT (United States)

    2003-03-06

    A study was conducted to the relationship between long-term exposure to fine particulate air pollution and all-cause, lung cancer, and cardiopulmonary mortality. Vital status and cause of death data were collected by the American Cancer Society as part of the Cancer Prevention II study, an ongoing prospective mortality study, which enrolled approximately 1.2 million adults in 1982. Participants completed a questionnaire detailing individual risk factor data (age, sex, race, weight, height, smoking history, education, marital status, diet, alcohol consumption, and occupational exposures). The risk factor data for approximately 500 000 adults were linked with air pollution data for metropolitan areas throughout the United States and combined with vital status and cause of death data through December 31, 1998. Fine particulate and sulfur oxide-related pollution were found to be associated with all-cause, lung cancer, and cardiopulmonary mortality. Each 10-{mu}g/m{sup 3} elevation in fine particulate air pollution was associated with approximately a 4%, 6%, and 8% increased risk of all-cause, cardiopulmonary, and lung cancer mortality, respectively. Measures of coarse particle fraction and total suspended particles were not consistently associated with mortality. It was concluded that long-term exposure to combustion-related fine particulate air pollution is an important environmental risk factor for cardiopulmonary and lung cancer mortality. 31 refs., 5 figs., 2 tabs.

  19. Airborne particulate matter and mitochondrial damage: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Hou Lifang

    2010-08-01

    Full Text Available Abstract Background Oxidative stress generation is a primary mechanism mediating the effects of Particulate Matter (PM on human health. Although mitochondria are both the major intracellular source and target of oxidative stress, the effect of PM on mitochondria has never been evaluated in exposed individuals. Methods In 63 male healthy steel workers from Brescia, Italy, studied between April and May 2006, we evaluated whether exposure to PM was associated with increased mitochondrial DNA copy number (MtDNAcn, an established marker of mitochondria damage and malfunctioning. Relative MtDNAcn (RMtDNAcn was determined by real-time PCR in blood DNA obtained on the 1st (time 1 and 4th day (time 2 of the same work week. Individual exposures to PM10, PM1, coarse particles (PM10-PM1 and airborne metal components of PM10 (chromium, lead, arsenic, nickel, manganese were estimated based on measurements in the 11 work areas and time spent by the study subjects in each area. Results RMtDNAcn was higher on the 4th day (mean = 1.31; 95%CI = 1.22 to 1.40 than on the 1st day of the work week (mean = 1.09; 95%CI = 1.00 to 1.17. PM exposure was positively associated with RMtDNAcn on either the 4th (PM10: β = 0.06, 95%CI = -0.06 to 0.17; PM1: β = 0.08, 95%CI = -0.08 to 0.23; coarse: β = 0.06, 95%CI = -0.06 to 0.17 or the 1st day (PM10: β = 0.18, 95%CI = 0.09 to 0.26; PM1: β = 0.23, 95%CI = 0.11 to 0.35; coarse: β = 0.17, 95%CI = 0.09 to 0.26. Metal concentrations were not associated with RMtDNAcn. Conclusions PM exposure is associated with damaged mitochondria, as reflected in increased MtDNAcn. Damaged mitochondria may intensify oxidative-stress production and effects.

  20. Cytotoxicity and genotoxicity properties of particulate matter fraction 2.5 μm

    Science.gov (United States)

    Bełcik, Maciej K.; Trusz-Zdybek, Agnieszka; Zaczyńska, Ewa; Czarny, Anna; Piekarska, Katarzyna

    2017-11-01

    In the ambient is more than 2,000 chemical substances, some of them are absorbed on the surface of the particulate matter and may causes many health problems. Air pollution is responsible for more than 3.2 million premature deaths which classifies it as a second place environmental risk factor. Especially dangerous for health are polycyclic aromatic hydrocarbons and their nitro- and amino derivatives which shows mutagenic and carcinogenic properties. Air pollutions were also classified by International Agency for Research on Cancer to group which carcinogenic properties on human were proved by available knowledge. Air pollutions, including particulate matter are one of the biggest problem in Polish cities. World Health Organization in report published in May 2016 set many of Polish cities on the top of the list most polluted in European Union. The article presents results of mutagenicity, genotoxicity and cytotoxicity researches conducted on a particulate matter fraction 2.5 μm collected during all year long in Wroclaw agglomeration. The material were collected on filters using high-flow air aspirator and extracted using dichloromethane. Additionally it was fractionated into 2 parts containing: all pollutants and only polycyclic aromatic hydrocarbons. Dry residue of this fractions were dissolving in DMSO and tested using biological methods. Biological methods include mutagenicity properties which are investigated by Salmonella assay (Ames assay). Other biological method was comet assay and 4 parameter cytotoxicity test PAN-I assay. Results of the conducted experiments shows differences in mutagenic, genotoxic and cytotoxic properties between seasons of collection and between volume of dust pollutions fractions. The worst properties shows particles collected in autumn and winter season and this containing only polycyclic aromatics hydrocarbons. Results showed also some correlations in results obtained during different methods and properties.

  1. Indoor exposures to particulate matter emissions in various types of households using different cooking fuels in rural areas of south India

    Science.gov (United States)

    Deepthi, Y.; Nagendra, S. S.; Gummadi, S. N.

    2017-12-01

    Exposure to Particulate Matter (PM) that are typically generated from heavy biomass usage in cooking and from unpaved roads is a major health risk in the rural areas of developing countries. To understand the exposure levels in such areas, PM (PM10, PM2.5 and PM1) characterizations was carried out through indoor monitoring in a rural site of south India with varied cooking fuels such as only biomass, biomass plus LPG and only LPG in different types of housing namely indoor kitchen without partition (IKWO), indoor kitchen with partition (IKWP), separate enclosed kitchen outside house (SEKO) and open kitchen (OK). Results indicated that use of biomass resulted in the highest PM10 concentrations of 179.51±21µg/m3 followed by combination of biomass and LPG (101.99±21 µg/m3) and LPG (77.48±9µg/m3). Similar patterns were observed in PM2.5 and PM1 with highest emissions from biomass burning. The PM concentrations of biomass households and combination of biomass and LPG households were 233.7 % and 80.2 % respectively higher than those using cleaner fuels (LPG). The monitoring also revealed that kitchen configuration is an important determinant for indoor exposures especially for biomass households. Among biomass users, average PM10, PM2.5 and PM1 concentrations in all type of houses were above the human permissible limit with IKWP having highest concentrations followed by IKWO>SEKO>OK. Thus, biomass household have high concentrations compared to LPG because of nature of combustion of solid biomass. Also, PM concentrations were higher in enclosed indoor kitchens (IKWO and IKWP) compared to SEKO and OK type kitchen configurations. It is evident from above discussions that type of fuel and kitchen setups are major attributes impacting Indoor air pollution (IAP) in rural areas and any policy intervention to minimize IAP must give due consideration to these two factors.

  2. Association of Short-Term Exposure to Ambient Fine Particulate Matter with Skin Symptoms in Schoolchildren: A Panel Study in a Rural Area of Western Japan

    Directory of Open Access Journals (Sweden)

    Masanari Watanabe

    2017-03-01

    Full Text Available Numerous studies have unmasked the deleterious effects of particulate matter less than 2.5 μm (PM2.5 on health. However, epidemiologic evidence focusing on the effects of PM2.5 on skin health remains limited. An important aspect of Asian dust (AD in relationship to health is the amount of PM2.5 contained therein. Several studies have demonstrated that AD can aggravate skin symptoms. The current study aimed to investigate the effects of short-term exposure to PM2.5 and AD particles on skin symptoms in schoolchildren. A total of 339 children recorded daily skin symptom scores during February 2015. Light detection and ranging were used to calculate AD particle size. Generalized estimating equation logistic regression analyses were used to estimate the associations among skin symptoms and the daily levels of PM2.5 and AD particles. Increases in the levels of PM2.5 and AD particles were not related to an increased risk of skin symptom events, with increases of 10.1 μg/m3 in PM2.5 and 0.01 km−1 in AD particles changing odds ratios by 1.03 and 0.99, respectively. These results suggest that short-term exposure to PM2.5 and AD does not impact skin symptoms in schoolchildren.

  3. PIXE analysis of airborne particulate matter from Monterrey, Mexico. A first survey

    International Nuclear Information System (INIS)

    Aldape, F.; Flores M, J.; Diaz, R.V.; Hernandez-Mendez, B.; Montoya Z, J.M.; Blanco, E.E.; Fuentes, A.F.; Torres-Martinez, L.M.

    1999-01-01

    A first survey of elemental contents in airborne particulate matter from Monterrey, Nuevo Leon, Mexico, was performed using PIXE. This second largest industrial city is located 715 km north of Mexico City, and counts with a population of nearly three million inhabitants in its conurbation. Air pollution in the place comes from a great variety of industries ranging from iron smelters to furniture manufacturing, as well as from fuel combustion in vehicles and industries. This study presents results of elemental contents in airborne particulate matter in two particle size fractions: PM 2.5 and PM 15 . The samples were collected during five weeks on working days, Monday-Friday, from 9 December 1996 to 14 January 1997. Two samples a day were collected, 12 h each, night-time and day-time. These first results show local pollution as typical from a large urban area in conjunction with an active industry. Thirteen elements were consistently detected in most of the samples and some episodes due to both industrial and human activities were identified. A general discussion about the results obtained is presented

  4. Results of measurements of particulate matter concentrations inside a pig fattening facility

    Directory of Open Access Journals (Sweden)

    Ulens, T.

    2016-01-01

    Full Text Available Description of the subject. This research note discusses the results of measurements of particulate matter concentrations inside a pig fattening facility. Objectives. The objectives of the present study were to investigate the correlations between the different size fractions of indoor particulate matter (PM inside a pig fattening facility and to investigate the evolution of particle size distribution (PSD through a fattening period and between two housing systems and two cleaning protocols. Method. Data from two consecutive fattening periods in a commercial pig barn were used. Results. Very high correlations were found between PM10 and PM2.5 indoor concentrations. Depending on the measuring instrument, high or low correlations were found between PM1 and PM10 or PM2.5 indoor concentrations. No differences in PSD could be found between the two housing systems or the two cleaning protocols. Conclusions. The results from the present study showed high correlations between the indoor concentrations of PM10 and PM2.5. In the present study, no differences in PSD were found.

  5. A study of bacteria, fungi and biomass in particulate matter in ambient air of Khorramabad during summer and autumn 2012

    Directory of Open Access Journals (Sweden)

    hatam Godini

    2015-05-01

    Full Text Available Introduction: Particulate matter refers to the combination of atmospheric pollutants that a portion of this particulate is bioaerosol. The aim of this study was the evaluation of bacteria, fungi and biomass in particulate matter in ambient air of Khorramabad during summer and autumn 2012. Materials and Methods: This study was a cross sectional study that conducted in Khorramabad city during summer and fall 2012. Sampling has been done via high-volume sampler. The special cultures were used for cultivation and determination of fungal and Heterotrophic Plate Count (HPC (and Bradford method were used to determine bacteria and protein as biomass indicator, respectively. Relationship between these variables with metrological parameters was evaluated too. Results: The highest PM10 in July (257.18 µg/m3 and lowest in September (92.45 µg/m3 had been recorded. The highest amount of bacteria and fungi were measured as monthly in November (605 No/m3 and December (120 No/m3, respectively. The highest of protein concentration was measured in August, September and December (27-30 µg/m3. With the increase in PM10, biomass concentration in the air showed a meaningful increase. Conclusion: Biomass concentration in the air increased with increasing PM10 but it had no significant effect on the concentration of bacteria and fungi in the air. Meteorological factors such as temperature, humidity, wind speed, solar radiation and the amount of exposure time had a significant impact on bioaerosol concentrations in the air.

  6. Particulate matter emission from livestock houses: measurement methods, emission levels and abatement systems

    NARCIS (Netherlands)

    Winkel, Albert

    2016-01-01

    Animal houses are extremely dusty environments. Airborne particulate matter (PM) poses a health threat not only to the farmer and the animals, but, as a result of emissions from ventilation systems, also to residents living in livestock farming areas. In relation to this problem, the objectives

  7. Comparative cardiopulmonary effects of particulate matter- and ozone-enhanced smog atmospheres in mice

    Science.gov (United States)

    This study was conducted to compare the cardiac effects of particulate matter (PM)-enhanced and ozone(O3)-enhanced smog atmospheres in mice. We hypothesized that O3-enhanced smog would cause greater cardiac dysfunction than PM-enhanced smog due to the higher concentrations of irr...

  8. Advances in the simulation of personal protective equipment for the mitigation of exposure to radioactive particulates

    International Nuclear Information System (INIS)

    Roeterink, M.J.; Kelly, D.G.; Dickson, E.F.G; Corcoran, E.C.

    2014-01-01

    Airborne radioactive particulates represent a significant potential hazard to first responders in nuclear related incidents. Personal protective equipment (PPE), in particular radio-opaque fabrics, can be used to reduce wearer exposure to the emitted radiation, but do not offer complete protection. The objective of this project is to create a realistic dosimetric model of the human arm, protected by a sleeve, which can eventually be developed into a tool to assess the full-body dose imparted to the wearer in the event of radiological particulate exposure. A two-fold approach will be employed whereby: (1) a particulate transport model will be used to determine the regional radioactive particulate concentrations; and (2) these concentration data will then be incorporated into a dosimetric model that will use the Monte Carlo N-Particle (MCNP) transport code to determine the dose imparted to the tissue. Benchmarking experiments will be carried out to validate the results generated by the computer models. Such experimentation will be conducted for both the particulate transport and dosimetric models. Model advancement aims to consider whole body dose and will be invaluable in the development of future radiation exposure policies and procedures. (author)

  9. Atmospheric particulate matter within the Sudbury footprint

    Energy Technology Data Exchange (ETDEWEB)

    Koski, P. [Laurentian Univ., Sudbury, ON (Canada); Spiers, G.A. [Laurentian Univ., Sudbury, ON (Canada). Centre for Environmental Monitoring

    2007-07-01

    In order to assess health and risks to ecosystems, measuring exposure to coarse, fine and ultrafine dust and their association with metals in the air is necessary. This paper presented the results of a study that investigated the concentration, particle size distribution and spatial dispersion of metals in total and fractioned airborne dust. The study involved collection of airborne dust samples at five different sites over a one year period in the Sudbury area, including one control site located downwind of the south-westerly most industrial emission source. The paper discussed the goals and objectives of the project which included analysis of total concentration of particulate matter (PM) within various size fractions; analysis of concentration of selected metals such as arsenic, zinc, copper, nickel, cobalt, iron, manganese, chromium and lead as well as the species of sulphur within those size fractions; delineation between particle chemistry of both short and long range transport origin; determining the effects of the different seasons on PM concentrations, and establish any seasonal/temperature trends that may occur. The paper also discussed the methodology for the study with reference to sampling sites, sampling equipment, sampling schedule, mass determination, and chemical analysis. X-ray Fluorescence (XRF) was used to determine the total metals concentration in airborne dust. The results of the study were also presented. It was concluded that PM analysis within the Sudbury footprint indicated that the finer fractions primarily contained the highest weight and metal concentration. In addition, sulphate seemed to be the only species of sulphur present in the different size fractions at each site. 22 refs., 4 tabs., 5 figs.

  10. Atmospheric particulate matter within the Sudbury footprint

    International Nuclear Information System (INIS)

    Koski, P.; Spiers, G.A.

    2007-01-01

    In order to assess health and risks to ecosystems, measuring exposure to coarse, fine and ultrafine dust and their association with metals in the air is necessary. This paper presented the results of a study that investigated the concentration, particle size distribution and spatial dispersion of metals in total and fractioned airborne dust. The study involved collection of airborne dust samples at five different sites over a one year period in the Sudbury area, including one control site located downwind of the south-westerly most industrial emission source. The paper discussed the goals and objectives of the project which included analysis of total concentration of particulate matter (PM) within various size fractions; analysis of concentration of selected metals such as arsenic, zinc, copper, nickel, cobalt, iron, manganese, chromium and lead as well as the species of sulphur within those size fractions; delineation between particle chemistry of both short and long range transport origin; determining the effects of the different seasons on PM concentrations, and establish any seasonal/temperature trends that may occur. The paper also discussed the methodology for the study with reference to sampling sites, sampling equipment, sampling schedule, mass determination, and chemical analysis. X-ray Fluorescence (XRF) was used to determine the total metals concentration in airborne dust. The results of the study were also presented. It was concluded that PM analysis within the Sudbury footprint indicated that the finer fractions primarily contained the highest weight and metal concentration. In addition, sulphate seemed to be the only species of sulphur present in the different size fractions at each site. 22 refs., 4 tabs., 5 figs

  11. Investigation of the suspended particulate matter in the Asian region for seven years

    International Nuclear Information System (INIS)

    Harasawa, Susumu

    1999-01-01

    Activities of the workshops for the investigation of environmental materials by NAA (Neutron Activation Analysis) methods during 1992 to 1997 held in Jakarta are briefly reported. Detail of selection of the theme (investigation of the suspended particulate matter in the Asian region by NAA), the results of the inter-comparison for the analysis using NIES No. 8 reference standard samples (vehicle exhaust particulate) are presented. In conclusion, systematically accumulated data on the environmental substances and their time variations measured and analyzed by INAA (Instrumental Neutron Activation Analysis) method give useful information on pollution problems and air movement in the Asia region. (S. Ohno)

  12. Investigation of the suspended particulate matter in the Asian region for seven years

    Energy Technology Data Exchange (ETDEWEB)

    Harasawa, Susumu [Institute for Atomic Energy, Rikkyo Univ., Yokosuka, Kanagawa (Japan)

    1999-10-01

    Activities of the workshops for the investigation of environmental materials by NAA (Neutron Activation Analysis) methods during 1992 to 1997 held in Jakarta are briefly reported. Detail of selection of the theme (investigation of the suspended particulate matter in the Asian region by NAA), the results of the inter-comparison for the analysis using NIES No. 8 reference standard samples (vehicle exhaust particulate) are presented. In conclusion, systematically accumulated data on the environmental substances and their time variations measured and analyzed by INAA (Instrumental Neutron Activation Analysis) method give useful information on pollution problems and air movement in the Asia region. (S. Ohno)

  13. High efficiency cabin air filter in vehicles reduces drivers' roadway particulate matter exposures and associated lipid peroxidation.

    Science.gov (United States)

    Yu, Nu; Shu, Shi; Lin, Yan; She, Jianwen; Ip, Ho Sai Simon; Qiu, Xinghua; Zhu, Yifang

    2017-01-01

    Commuters who spend long hours on roads are exposed to high levels of traffic related air pollutants (TRAPs). Despite some well-known multiple adverse effects of TRAPs on human health, limited studies have focused on mitigation strategies to reduce these effects. In this study, we measured fine particulate matter (PM2.5) and ultrafine particle (UFP) concentrations inside and outside 17 taxis simultaneously while they were driven on roadways. The drivers' urinary monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and malondialdehyde (MDA) concentrations just before and right after the driving tests were also determined. Data were collected under three driving conditions (i.e. no mitigation (NM), window closed (WC), and window closed plus using high efficiency cabin air filters (WC+HECA)) for each taxi and driver. The results show that, compared to NM, the WC+HECA reduced in-cabin PM2.5 and UFP concentrations, by 37% and 47% respectively (p health.

  14. Air emission in France. Metropolitan area particulate matter; Emissions dans l'air en France. Metropole poussieres

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    Substances and index currently in survey are: Particulate matter: Total suspended particulates (TSP), Fine particulates with an equivalent aerodynamic diameter less than 10 {mu}m (PM{sub 10}), 2.5 {mu}m (PM{sub 2.5}) and 1.0 {mu}m (PM{sub 1.0}). Density ratios relating to population, area, gross product, primary energy consumption, etc. Annual emissions are provided for each substance since 1990. Dates corresponding to the maximum and minimum values are also included. Results are provisional for 2001. (author)

  15. Particulates and noise exposure during bicycle, bus and car commuting: A study in three European cities.

    Science.gov (United States)

    Okokon, Enembe O; Yli-Tuomi, Tarja; Turunen, Anu W; Taimisto, Pekka; Pennanen, Arto; Vouitsis, Ilias; Samaras, Zissis; Voogt, Marita; Keuken, Menno; Lanki, Timo

    2017-04-01

    In order to curb traffic-related air pollution and its impact on the physical environment, contemporary city commuters are encouraged to shift from private car use to active or public transport modes. However, personal exposures to particulate matter (PM), black carbon and noise during commuting may be substantial. Therefore, studies comparing exposures during recommended modes of transport versus car trips are needed. We measured personal exposure to various-sized particulates, soot, and noise during commuting by bicycle, bus and car in three European cities: Helsinki in Finland, Rotterdam in the Netherlands and Thessaloniki in Greece using portable monitoring devices. We monitored commonly travelled routes in these cities. The total number of one-way trips yielding data on any of the measured parameters were 84, 72, 94 and 69 for bicycle, bus, closed-window car and open-window car modes, respectively. The highest mean PM 2.5 (85µg/m 3 ), PM 10 (131µg/m 3 ), black carbon (10.9µg/m 3 ) and noise (75dBA) levels were recorded on the bus, bus (again), open-window car and bicycle modes, respectively, all in Thessaloniki, PM and soot concentrations were generally higher during biking and taking a bus than during a drive in a a car with closed windows. Ratios of bike:car PM 10 ranged from 1.1 in Thessaloniki to 2.6 in Helsinki, while bus:car ratios ranged from in 1.0 in Rotterdam to 5.6 in Thessaloniki. Higher noise levels were mostly recorded during bicycle rides. Based on our study, active- and public-transport commuters are often at risk of higher air pollution and noise exposure than private car users. This should be taken into account in urban transportation planning. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Study of particulate matter in Limeira (Brazil) using SR-TXRF

    International Nuclear Information System (INIS)

    Canteras, Felippe B.; Moreira, Silvana

    2011-01-01

    Air pollution is a growing problem mainly in metropolitan areas in the world. The atmospheric pollutants are responsible for various environmental problems including the human health. Among the pollutants, the particulate matter is important, since it has a heterogeneous composition. The goal of this work was to analyze quantitatively the particulate matter in Limeira city, Sao Paulo State, Brazil. The sampling was made using a sequential filtering system, containing two filters putted in series, to collect fine and coarse fractions. After a removal in an acid medium, with ultrasound bath, the samples were analyzed by Synchrotron Radiation Total Reflection X-Ray Fluorescence (SR-TXRF). The results obtained for PM10 were in agreement with the standards defined by the Brazilian legislation and also with the standards established by USEPA. In all analyzed samples S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Ba and Pb were quantified. Employing multivariate statistical analysis (principal component and cluster analysis) was possible to identify the emission sources. For coarse fraction the main emission source was soil dusty responsible for 57% of the total in the coarse fraction, followed by vehicular emission with 30% and industrial 13%. In the fine fraction soil dusty was the mainly emission source contributing with 79% of the total, followed by vehicular emission with 13% and finally the industrial emission responsible just for 8%. (author)

  17. Study of particulate matter in Limeira (Brazil) using SR-TXRF

    Energy Technology Data Exchange (ETDEWEB)

    Canteras, Felippe B.; Moreira, Silvana, E-mail: silvana@fec.unicamp.b [Universidade Estadual de Campinas (FEC/UNICAMP), SP (Brazil) Faculdade de Engenharia Civil, Arquitetura e Urbanismo

    2011-07-01

    Air pollution is a growing problem mainly in metropolitan areas in the world. The atmospheric pollutants are responsible for various environmental problems including the human health. Among the pollutants, the particulate matter is important, since it has a heterogeneous composition. The goal of this work was to analyze quantitatively the particulate matter in Limeira city, Sao Paulo State, Brazil. The sampling was made using a sequential filtering system, containing two filters putted in series, to collect fine and coarse fractions. After a removal in an acid medium, with ultrasound bath, the samples were analyzed by Synchrotron Radiation Total Reflection X-Ray Fluorescence (SR-TXRF). The results obtained for PM10 were in agreement with the standards defined by the Brazilian legislation and also with the standards established by USEPA. In all analyzed samples S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Ba and Pb were quantified. Employing multivariate statistical analysis (principal component and cluster analysis) was possible to identify the emission sources. For coarse fraction the main emission source was soil dusty responsible for 57% of the total in the coarse fraction, followed by vehicular emission with 30% and industrial 13%. In the fine fraction soil dusty was the mainly emission source contributing with 79% of the total, followed by vehicular emission with 13% and finally the industrial emission responsible just for 8%. (author)

  18. Measurement and modeling of diameter distributions of particulate matter in terrestrial solutions

    Science.gov (United States)

    Levia, Delphis F.; Michalzik, Beate; Bischoff, Sebastian; NäThe, Kerstin; Legates, David R.; Gruselle, Marie-Cecile; Richter, Susanne

    2013-04-01

    Particulate matter (PM) plays an important role in biogeosciences, affecting biosphere-atmosphere interactions and ecosystem health. This is the first known study to quantify and model PM diameter distributions of bulk precipitation, throughfall, stemflow, and organic layer (Oa) solution. Solutions were collected from a European beech (Fagus sylvatica L.) forest during leafed and leafless periods. Following scanning electron microscopy and image analysis, PM distributions were quantified and then modeled with the Box-Cox transformation. Based on an analysis of 43,278 individual particulates, median PM diameter of all solutions was around 3.0 µm. All PM diameter frequency distributions were skewed significantly to the right. Optimal power transformations of PM diameter distributions were between -1.00 and -1.56. The utility of this model reconstruction would be that large samples having a similar probability density function can be developed for similar forests. Further work on the shape and chemical composition of particulates is warranted.

  19. Particulate matter and health - from air to human lungs

    International Nuclear Information System (INIS)

    Pinheiro, T.; Freitas, M.C.; Alves, L.C.; Reis, M.; Bugalho de Almeida, A.; Moniz, D.; Monteiro, P.; Alvarez, E.

    2000-01-01

    Biological and environmental monitoring was carried out at a steel processing sector of a steel plant in Portugal. Approximately 70 workers were surveyed for their respiratory function and blood elemental contents as indicators for a long-term exposure. The characterisation of chemical elements in air at the workplace was also evaluated taking in account the separation of particles by their aerodynamic diameter. Two fractions were collected, a coarse fraction for particles below 10 μm and above 2 μm, and a fine fraction for particles below 2 μm. PIXE and INAA analytical techniques were used for the determination of blood and aerosol elemental concentrations. Up to 12 elements (Na, Cl, K, Ca, Fe, Cu, Zn, As, Se, Sb, Hg, and Pb) were determined in blood and so far, up to 18 elements for aerosols (e.g., Na, Al Si, S, Cl, K, Ca, Cr, Mn, Fe, Cu, Zn, As, Se, Cd, Sb, Hg, and Pb). The concentrations of the essential elements in blood (e.g., Fe, Zn and Se) were found to be altered relative to a reference Portuguese group constituted by non-exposed persons. Relative to the blood average elemental contents for As, Sb, Hg and Pb, the levels determined were below maximum permissible concentrations or reference values, except for Pb. Nevertheless, concentrations above maximum limit values were determined for some of the surveyed subjects. There are evidences that the levels of Se, Cu, and Sb in blood are influenced by exposure. Also, living habits (smoking and other activities) and pulmonary affections may modulate As, Pb and Zn concentrations in blood. For all the chemical elements identified in the particulate matter of the working atmosphere the limit values indicated in the Portuguese regulation were not exceeded, except for Fe. (author)

  20. Diesel-Enriched Particulate Matter Functionally Activates Human Dendritic Cells

    Science.gov (United States)

    Porter, Michael; Karp, Matthew; Killedar, Smruti; Bauer, Stephen M.; Guo, Jia; Williams, D'Ann; Breysse, Patrick; Georas, Steve N.; Williams, Marc A.

    2007-01-01

    Epidemiologic studies have associated exposure to airborne particulate matter (PM) with exacerbations of asthma. It is unknown how different sources of PM affect innate immunity. We sought to determine how car- and diesel exhaust–derived PM affects dendritic cell (DC) activation. DC development was modeled using CD34+ hematopoietic progenitors. Airborne PM was collected from exhaust plenums of Fort McHenry Tunnel providing car-enriched particles (CEP) and diesel-enriched particles (DEP). DC were stimulated for 48 hours with CEP, DEP, CD40-ligand, or lipopolysaccharide. DC activation was assessed by flow cytometry, enzyme-linked immunosorbent assay, and standard culture techniques. DEP increased uptake of fluorescein isothiocyanate–dextran (a model antigen) by DC. Diesel particles enhanced cell-surface expression of co-stimulatory molecules (e.g., CD40 [P < 0.01] and MHC class II [P < 0.01]). By contrast, CEP poorly affected antigen uptake and expression of cell surface molecules, and did not greatly affect cytokine secretion by DC. However, DEP increased production of TNF, IL-6, and IFN-γ (P < 0.01), IL-12 (P < 0.05), and vascular endothelial growth factor (P < 0.001). In co-stimulation assays of PM-exposed DC and alloreactive CD4+ T cells, both CEP and DEP directed a Th2-like pattern of cytokine production (e.g., enhanced IL-13 and IL-18 and suppressed IFN-γ production). CD4+ T cells were not functionally activated on exposure to either DEP or CEP. Car- and diesel-enriched particles exert a differential effect on DC activation. Our data support the hypothesis that DEP (and to a lesser extent CEP) regulate important functional aspects of human DC, supporting an adjuvant role for this material. PMID:17630318

  1. PARTICULATE MATTER CONCENTRATION AND EMISSION FACTOR IN THREE DIFFERENT LAYING HEN HOUSING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Annamaria Costa

    2009-09-01

    Full Text Available The aim of this study was to evaluate PM10 concentration in three different laying hens houses (traditional battery cages with aerated open manure storage, aviary system and vertical tiered cages with manure belts with forced air drying and to evaluate particulate matter emission into atmosphere during one year of observation. Internal and external temperature and relative humidity, ventilation rate, PM10 concentration have been continuously monitored in order to evaluate particulate matter concentration changes during the day and the season and to define PM10 emission factors. PM10 concentration was corrected by gravimetric technique to lower measurements error. In the aviary system house, TSP and fine particulate matter (particles smaller than 2.5 micron concentration was measured. Average yearly PM10 concentration was remarkably higher in the aviary system house with 0.215 mg m-3 vs 108 mg m-3 for the ventilated belt house and vs 0.094 mg m-3 for the traditional battery cages house. In the Aviary system housing, TSP concentration was 0.444 mg m-3 and PM2.5 was 0.032 mg m-3, highlighting the existence of a severe working environment for men and animals. Recorded values for PM10 emission were 0.433 mg h-1 hen-1 for battery cages housing type, 0.081 mg h-1 hen-1 for ventilated belt cages house, values lower than those available in literature, while the aviary system housing type showed the highest PM10 emission (1.230 mg h-1 hen-1 with appreciable peaks during the morning, together with the increased animal activity and daily farmer operations, as feed administration, cleaning and droppings removal.

  2. Lability of Secondary Organic Particulate Matter

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pengfei; Li, Yong Jie; Wang, Yan; Giles, Mary K.; Zaveri, Rahul A.; Bertram, Allan K.; Martin, Scot T.

    2016-10-24

    Accurate simulations of the consenctrations of atmospheric organic particulate matter (PM) are needed for predicting energy flow in the Earth’s climate system. In the past, simulations of organic PM widely assume equilibrium partitioning of semivolatile organic compounds (SVOCs) between the PM and surrounding vapor. Herein, we test this assumption by measuring evaporation rates and associated vapor mass concentration of organic films representative of atmospheric PM. For films representing anthropogenic PM, evaporation rates and vapor mass concentrations increased above a threshold relative humidity (RH), indicating equilibrium partitioning above a transition RH but not below. In contrast for films representing biogenic PM, no threshold was observed, indicating equilibrium partitioning at all RHs. The results suggest that the mass lability of atmospheric organic PM can differ in consequential ways among Earth’s natural biomes, polluted regions, and regions of land-use change, and these differences need to be considered when simulating atmospheric organic PM.

  3. Kuwaiti oil fires—Particulate monitoring

    Science.gov (United States)

    Husain, Tahir; Amin, Mohamed B.

    The total suspended particulate (TSP) matters using a high-volume sampler and inhalable particulate matters using PM-10 samplers were collected at various locations in the Eastern Province of Saudi Arabia during and after the Kuwaiti oil fires. The collected samples were analysed for toxic metals and oil hydrocarbon concentrations including some carcinogenic organic compounds in addition to gravimetric analysis. The concentration values of particulate matters were determined on a daily basis at Dhahran. Abqaiq, Rahima, Tanajib and Jubail locations. The analyses of the filters show a high concentration of the inhalable particulate at various locations, especially when north or northwest winds were blowing. It was found that the inhalable particulate concentration exceeded the Meteorology and Environmental Protection Administration (MEPA) permissible limit of 340 μg m- 3 at most of these locations during May-October 1991. A trend between the total suspended particulate and inhalable particulate measured concurrently at the same locations was observed and a regression equation was developed to correlate PM-10 data with the total suspended particulate data.

  4. A Comparison of the Health Effects of Ambient Particulate Matter Air Pollution from Five Emission Sources

    Directory of Open Access Journals (Sweden)

    Neil J. Hime

    2018-06-01

    Full Text Available This article briefly reviews evidence of health effects associated with exposure to particulate matter (PM air pollution from five common outdoor emission sources: traffic, coal-fired power stations, diesel exhaust, domestic wood combustion heaters, and crustal dust. The principal purpose of this review is to compare the evidence of health effects associated with these different sources with a view to answering the question: Is exposure to PM from some emission sources associated with worse health outcomes than exposure to PM from other sources? Answering this question will help inform development of air pollution regulations and environmental policy that maximises health benefits. Understanding the health effects of exposure to components of PM and source-specific PM are active fields of investigation. However, the different methods that have been used in epidemiological studies, along with the differences in populations, emission sources, and ambient air pollution mixtures between studies, make the comparison of results between studies problematic. While there is some evidence that PM from traffic and coal-fired power station emissions may elicit greater health effects compared to PM from other sources, overall the evidence to date does not indicate a clear ‘hierarchy’ of harmfulness for PM from different emission sources. Further investigations of the health effects of source-specific PM with more advanced approaches to exposure modeling, measurement, and statistics, are required before changing the current public health protection approach of minimising exposure to total PM mass.

  5. Air pollution exposure modeling of individuals

    Science.gov (United States)

    Air pollution epidemiology studies of ambient fine particulate matter (PM2.5) often use outdoor concentrations as exposure surrogates. These surrogates can induce exposure error since they do not account for (1) time spent indoors with ambient PM2.5 levels attenuated from outdoor...

  6. Coarse Particulate Organic Matter: Storage, Transport, and Retention

    Energy Technology Data Exchange (ETDEWEB)

    Tiegs, Scott [Oakland University, Rochester, MI; Lamberti, Gary A. [University of Notre Dame, IN; Entrekin, Sally A. [University of Central Arkansas; Griffiths, Natalie A. [ORNL

    2017-08-01

    Coarse particulate organic matter, or CPOM, is a basal energy and nutrient resource in many stream ecosystems and is provided by inputs from the riparian zone, incoming tributaries, and to a lesser extent from in-stream production. The ability of a stream to retain CPOM or slow its transport is critical to its consumption and assimilation by stream biota. In this chapter, we describe basic exercises to measure (1) the amount of CPOM in the streambed and (2) the retention of CPOM from standardized particle releases. We further describe advanced exercises that (1) experimentally enhance the retentiveness of a stream reach and (2) measure organic carbon transport and turnover (i.e., spiraling) in the channel.

  7. Coarse Particulate Organic Matter: Storage, Transport, and Retention

    Energy Technology Data Exchange (ETDEWEB)

    Tiegs, Scott [Oakland University, Rochester, MI; Lamberti, Gary A. [University of Notre Dame, IN; Entrekin, Sally A. [University of Central Arkansas; Griffiths, Natalie A. [ORNL

    2017-06-01

    Coarse particulate organic matter, or CPOM, is a basal energy and nutrient resource in many stream ecosystems and is provided by inputs from the riparian zone, incoming tributaries, and to a lesser extent from in-stream production. The ability of a stream to retain CPOM or slow its transport is critical to its consumption and assimilation by stream biota. In this chapter, we describe basic exercises to measure (1) the amount of CPOM in the streambed and (2) the retention of CPOM from standardized particle releases. We further describe advanced exercises that (1) experimentally enhance the retentiveness of a stream reach and (2) measure organic carbon transport and turnover (i.e., spiraling) in the channel.

  8. Surface water, particulate matter, and sediments of inland waters

    International Nuclear Information System (INIS)

    Mundschenk, H.

    1985-01-01

    The Bundesanstalt fuer Gewaesserkunde (BfG) since 1958 runs a system for monitoring the surface water and sediments of Federal German waterways in its capacity as a directing water monitoring centre. The data recorded over the years show that the radioactivity released by the various emission sources leads to radionuclide concentrations in water, particulate matter, or sediments that generally are below the detection limits defined in the relevant legal provisions governing monitoring and surveillance of nuclear facilities effluents. Representative examples of measuring methods and results (as for e.g. for H-3) are given. (DG) [de

  9. RELATIONSHIP BETWEEN HVAC SYSTEM OPERATION, AIR EXCHANGE RATE, AND INDOOR-OUTDOOR PARTICULATE MATTER RATIOS

    Science.gov (United States)

    Measurements of duty cycle , the fraction of time the heating and cooling (HVAC) system was operating, were made in each participant's home during the spring season of the RTP Particulate Matter Panel Study. A miniature temperature sensor/data logger combination placed on the ...

  10. The effect of diesel properties on the emissions of particulate matter

    International Nuclear Information System (INIS)

    Bello, A; Torres, J; Herrera, J; Sarmiento, J

    2000-01-01

    An evaluation was carried out on the effect that modifying some properties of Colombian diesel fuel, such as final boiling point (FBP), density and sulfur content, has on the emissions of particulate matter (PM). Four diesel engines with different technologies and work capacity were used for the evaluation. Different alternatives to modify the properties of commercial diesel fuel, from the fuel treatment viewpoint, as well as that of the incorporation or segregation of some of the streams from the pool at the Barrancabermeja refinery were studied. The particulate matter was measured using a partial flow (AVL-SPC472) Constant volume sampler (CVS) with following the 13-step steady state European cycle and the ECE-R49 European guideline. The tests were performed at the Instituto Colombiano del Petroleo. (ICP) test cell in the city of Bucaramanga, Colombia. General tendencies show reductions of up to 25% in PM emissions when final boiling point and sulfur content are reduced. But levels of reduction vary from one engine to another depending on technology and working time. As a baseline, the emission levels of the commercial diesel fuel for each engine are used, and as a reference the results obtained are compared with the EURO I and II European standards defined for the emission levels of heavy duty engines

  11. Spatiotemporal distribution and short-term trends of particulate matter concentration over China, 2006-2010.

    Science.gov (United States)

    Yao, Ling; Lu, Ning

    2014-01-01

    Air quality problems caused by atmospheric particulate have drawn broad public concern in the global scope. In the paper, the spatiotemporal distributions of fine particle (PM2.5) and inhalable particle (PM10) concentrations estimated with the artificial neural network (ANN) over China during 2006 to 2010 have been discussed. Most high PM10 concentration appears in Xinjiang, Qinghai, Gansu, Ningxia, Hubei, and parts of Inner Mongolia. The distribution of PM2.5 concentration is consistent with China's three gradient terrains. The seasonal variations of PM2.5 and PM10 concentrations both indicate that they are higher in north China in spring and winter, lowest in summer. In autumn, most provinces in south China appear high value. In particular, high PM2.5 concentration appears in the southeast coastal cities while high PM10 concentration prefers the central regions in south China. On this basis, seasonal Mann-Kendall test method is utilized to analyze the short-term trends. The results also show significant changes of PM2.5 and PM10 concentrations of China in the past 5 years, and most provinces present the tendency of reduction (3-5 μg/m(3) for PM2.5 and 10-20 μg/m(3) for PM10 per year) while a fraction of provinces appear the increasing trend of 8-16 μg/m(3) (PM2.5) and 16-30 μg/m(3) (PM10). Simultaneously, PM2.5 population exposure is discussed with the combination of population density-gridded data. Municipalities get much higher exposure level than other provinces. Shanghai suffers the highest population exposure to PM2.5, followed by Beijing and then Tianjin, Jiangsu province. Most provincial capitals, such as Guangzhou, Nanjing, Chengdu, and Wuhan, face much higher exposure level than other regions of their province. Moreover, the PM2.5 exposure situation is more serious in southeast than northwest regions for Beijing-Tianjin-Hebei region. Also, per capita PM2.5 concentration and population-weighted PM2.5 concentration are calculated. The former shows that

  12. Applicability and limitations of instruments for particle sizing and real time evaluation of airbone particulate matter; Applicabilita` e limiti di strumenti per la separazione granulometrica e per la valutazione in tempo reale del particolato in sospensione

    Energy Technology Data Exchange (ETDEWEB)

    De Zaiacomo, T. [ENEA, Centro Ricerche `Ezio Clementel`, Bologna (Italy). Dip. Ambiente

    1998-12-31

    After a brief of difficulties in characterizing airbone particulates by means of particle sizing instruments, the accumulation mode of the atmospheric aerosol is highlighted as carrier of many noxious substances. Two different types of impactors are described in detail, and examples of particle size distributions obtainable by means of these instruments are shown; a miniaturized real-time aerosol monitor is briefly described too. Results of some tests are shown, carried on by sampling both a laboratory produced aerosol and ambient airbone particulate, by means of two identical impactors, with the aim of verifying their responses in term of collected ponderal mass; examples of the aerosol size distributions obtained are reported, together with some comments about problems arising when sampling morphologically complex (agglomerates) and hygroscopic urban particulate matter in different meteorological conditions. Then aerosol size distribution data are presented, obtained by simultaneously sampling airbone particulate matter both in an urban and extra-urban area, by means of the two cited impactors. Some proposals are finally made, in order to use a portable system, equipped with two optical monitors and a miniaturized personal-type impactor, to evaluate both fine and coarse mode of urban particulate matter, with the aim of better estimate the contribution of these two aerosol fractions both in personal exposures and in environmental monitoring data.

  13. PIXE analysis of atmospheric particulate matter in glas fibre filters

    International Nuclear Information System (INIS)

    Tabacniks, M.H.; Orsini, C.Q.; Maenhaut, W.

    1993-01-01

    A 3-step extraction procedure was developed to allow particle-induced X-ray emission (PIXE) analysis of particulate matter in normal glass fibre filter samples. The detection limits, expressed in ng/m 3 of air, for the filter extracts were 5 to 30 times lower than those achieved by PIXE analysis or ordinary Nuclepore polycarbonate filter samples. The concentration results were compared with those obtained from routine atomic absorption spectrometry measurements and with the PIXE data from Nuclepore stacked filter unit samples taken in parallel. (orig.)

  14. Airborne Particulate Matter in Two Multi-Family Green Buildings: Concentrations and Effect of Ventilation and Occupant Behavior.

    Science.gov (United States)

    Patton, Allison P; Calderon, Leonardo; Xiong, Youyou; Wang, Zuocheng; Senick, Jennifer; Sorensen Allacci, MaryAnn; Plotnik, Deborah; Wener, Richard; Andrews, Clinton J; Krogmann, Uta; Mainelis, Gediminas

    2016-01-20

    There are limited data on air quality parameters, including airborne particulate matter (PM) in residential green buildings, which are increasing in prevalence. Exposure to PM is associated with cardiovascular and pulmonary diseases, and since Americans spend almost 90% of their time indoors, residential exposures may substantially contribute to overall airborne PM exposure. Our objectives were to: (1) measure various PM fractions longitudinally in apartments in multi-family green buildings with natural (Building E) and mechanical (Building L) ventilation; (2) compare indoor and outdoor PM mass concentrations and their ratios (I/O) in these buildings, taking into account the effects of occupant behavior; and (3) evaluate the effect of green building designs and operations on indoor PM. We evaluated effects of ventilation, occupant behaviors, and overall building design on PM mass concentrations and I/O. Median PMTOTAL was higher in Building E (56 µg/m³) than in Building L (37 µg/m³); I/O was higher in Building E (1.3-2.0) than in Building L (0.5-0.8) for all particle size fractions. Our data show that the building design and occupant behaviors that either produce or dilute indoor PM (e.g., ventilation systems, combustion sources, and window operation) are important factors affecting residents' exposure to PM in residential green buildings.

  15. Characterisation of particulate matter on airborne pollen grains

    International Nuclear Information System (INIS)

    Ribeiro, Helena; Guimarães, Fernanda; Duque, Laura; Noronha, Fernando; Abreu, Ilda

    2015-01-01

    A characterization of the physical–chemical composition of the atmospheric PM adsorbed to airborne pollen was performed. Airborne pollen was sampled using a Hirst-type volumetric spore sampler and observed using a Field Emission Electron Probe Microanalyser for PM analysis. A secondary electron image was taken of each pollen grain and EDS spectra were obtained for individually adsorbed particles. All images were analysed and the size parameters of the particles adsorbed to pollen was determined. The measured particles’ equivalent diameter varied between 0.1 and 25.8 μm, mostly in the fine fraction. The dominant particulates identified were Si-rich, Organic-rich, SO-rich, Metals & Oxides and Cl-rich. Significant daily differences were observed in the physical–chemical characteristics of particles adsorbed to the airborne pollen wall. These differences were correlated with weather parameters and atmospheric PM concentration. Airborne pollen has the ability to adsorb fine particles that may enhance its allergenicity. - Highlights: • Airborne pollen sorbs other PM found in suspension. • 84% of the particles sorbed belonged to the fine aerosol fraction. • Adsorbed PM presented daily physical–chemical variations. • Particles sorbed dominated by Si-rich, Organic-rich, SO-rich, Fe-rich and Cl-rich. - Airborne pollen is able to transport finer particulate matter, which presents daily physical–chemical variations.

  16. Qualitative and quantitative determination of water in airborne particulate matter

    Directory of Open Access Journals (Sweden)

    S. Canepari

    2013-02-01

    Full Text Available This paper describes the optimization and validation of a new simple method for the quantitative determination of water in atmospheric particulate matter (PM. The analyses are performed by using a coulometric Karl-Fisher system equipped with a controlled heating device; different water contributions are separated by the application of an optimized thermal ramp (three heating steps: 50–120 °C, 120–180 °C, 180–250 °C.

    The analytical performance of the method was verified by using standard materials containing 5.55% and 1% by weight of water. The recovery was greater than 95%; the detection limit was about 20 μg. The method was then applied to NIST Reference Materials (NIST1649a, urban particulate matter and to real PM10 samples collected in different geographical areas. In all cases the repeatability was satisfactory (10–15%.

    When analyzing the Reference Material, the separation of four different types of water was obtained. In real PM10 samples the amount of water and its thermal profile differed as a function of the chemical composition of the dust. Mass percentages of 3–4% of water were obtained in most samples, but values up to about 15% were reached in areas where the chemical composition of PM is dominated by secondary inorganic ions and organic matter. High percentages of water were also observed in areas where PM is characterized by the presence of desert dust.

    A possible identification of the quality of water released from the samples was tried by applying the method to some hygroscopic compounds that are likely contained in PM (pure SiO2, Al2O3, ammonium salts, carbohydrates and dicarboxylic acids and by comparing the results with those obtained from field samples.

  17. Anti-Inflammatory Effects of Pomegranate Peel Extract in THP-1 Cells Exposed to Particulate Matter PM10

    Directory of Open Access Journals (Sweden)

    Soojin Park

    2016-01-01

    Full Text Available Epidemiological and experimental evidence support health risks associated with the exposure to airborne particulate matter with a diameter of <10 μM (PM10. PM10 stimulates the production of reactive oxygen species (ROS and inflammatory mediators. Thus, we assumed that natural antioxidants might provide health benefits attenuating hazardous effects of PM10. In the present study, we examined the effects of pomegranate peel extract (PPE on THP-1 monocytic cells exposed to PM10. PM10 induced cytotoxicity and the production of ROS. It also increased the expression and secretion of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, and monocyte chemoattractant protein-1 (MCP-1, and cell adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1. PPE at 10–100 μg mL−1 attenuated the production of ROS and the expression of TNF-α, IL-1β, MCP-1, and ICAM-1, but not VCAM-1, in THP-1 cells stimulated by PM10 (100 μg mL−1. PPE also attenuated the adhesion of PM10-stimulated THP-1 cells to EA.hy926 endothelial cells. PPE constituents, punicalagin and ellagic acid, attenuated PM10-induced monocyte adhesion to endothelial cells, and punicalagin was less cytotoxic compared to ellagic acid. The present study suggests that PPE and punicalagin may be useful in alleviating inflammatory reactions due to particulate matter.

  18. Smoking and Cerebral Oxidative Stress and Air Pollution: A Dreadful Equation with Particulate Matter Involved and One More Powerful Reason Not to Smoke Anything!

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian

    2016-07-22

    Smoking has serious health effects. Cigarettes, including tobacco, marijuana, and electronic nicotine delivery systems are very effective ways to inhale harmful amounts of fine and ultrafine particulate matter. Does size matter? Yes, indeed! The smaller the particle you inhale, the higher the ability to produce reactive oxygen species and to readily access the brain. In this issue of the Journal of Alzheimer's Disease, Durazzo provides evidence of an association between active cigarette tobacco smoking in cognitively-normal elders and increased cerebral oxidative stress, while in actively smoking Alzheimer's disease (AD) patients, the association was also seen with smaller left and total hippocampal volumes. This paper has highly relevant results of interest across the US and the world because millions of people are active smokers and they have other genetic and environmental risk factors that could play a key role in the development/worsening of brain oxidative stress and neurodegeneration. Smoking basically anything producing aerosols with particulate matter in the fine and ultrafine size range is detrimental to your brain. Marijuana and e-cigarette use has grown steadily among adolescents and young adults. Smoking-related cerebral oxidative stress is a potential mechanism promoting AD pathology and increased risk for AD. Current knowledge also relates fine and ultrafine particles exposures influencing neurodevelopmental processes in utero. The results from Durazzo et al. should be put in a broader context, a context that includes evaluating the oxidative stress of nano-aerosols associated with cigarette emissions and their synergistic effects with air pollution exposures. AD is expected to increase in the US threefold by the year 2050, and some of these future AD patients are smoking and vaping right now. Understanding the impact of everyday exposures to long-term harmful consequences for brain health is imperative.

  19. Sorption of polycyclic aromatic hydrocarbons on particulate organic matters

    International Nuclear Information System (INIS)

    Guo Xueyan; Luo Lei; Ma Yibing; Zhang Shuzhen

    2010-01-01

    Particulate organic matter (POM) is a key organic matter fraction which can influence soil fertility. Its interactions with hydrophobic organic pollutants (HOCs) have not been characterized and the mechanisms of retention of HOCs by POM remain unclear. In the present study, sorption behaviors of polycyclic aromatic hydrocarbons (PAHs) naphthalene (NAP), phenanthrene (PHE), and pyrene (PYR) by POMs separated from different soils were examined and the POMs were characterized by elemental analysis, solid state 13 C NMR, and Fourier transform infrared spectroscopy (FT-IR). The results indicated that POMs were mainly composed of aliphatic components with high polarity. The different original POMs showed similar chemical composition and configuration. Sorption behaviors of PAHs indicated that there was no significant difference in sorption capacity among the POMs. Sorption of NAP and PHE by POMs displayed a nonlinear isotherm, while sorption of PYR yielded a linear isotherm. No significant hysteresis and ionic strength effect were observed for PAH desorption from the POMs.

  20. Exposure to the elemental carbon, organic carbon, nitrate and sulfate fractions of fine particulate matter and risk of preterm birth in New Jersey, Ohio, and Pennsylvania (2000-2005).

    Science.gov (United States)

    BACKGROUND: Particulate matter ≤2.5 µm in aerodynamic diameter (PM2.5) has been consistently associated with preterm birth (PTB) to varying degrees, but roles of PM2.5 species have been less studied.OBJECTIVE:We estimated risk differences (RD) of PTB (reported per 106 pregnancies...

  1. Characterisation of air particulate matter in Klang Valley by neutron activation analysis technique

    International Nuclear Information System (INIS)

    Mohd Suhaimi Hamzah; Shamsiah Abd Rahman; Mohd Khalid Matori; Abd Khalik Wood

    2000-01-01

    Air particulate matter is known to affect human health, impairs visibility and can cause climate change. Study on air particulate matter in term of particle size and chemical contents is very important to indicate the quality of air in a sampling area. Information on concentration of important constituents in air particles can be used to identify some of emission sources which contribute to the pollution problem. The data collected may also be, used as a basis to design a strategy in order to overcome the air pollution problem in the area. The study involved sampling of air dust at two stations, one in Bangi and the other in Kuala Lumpur using Gent Stack Sampler units. Each sampler capable of collecting air particle sizes smaller than 2.5 micron (PM 2.5) and between 2.5 - O micron on two different filters simultaneously. The filters were measured for their mass, elemental carbon and elemental concentrations using analytical equipment or techniques including reflectometer and Neutron Activation Analysis. The results of analysis on samples collected in 1997-1998 are discussed. (author)

  2. 77 FR 31262 - Approval and Promulgation of Implementation Plans; Kentucky; Louisville; Fine Particulate Matter...

    Science.gov (United States)

    2012-05-25

    ... otherwise protected. The www.regulations.gov Web site is an ``anonymous access'' system, which means EPA... Inventory AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve the fine particulate matter (PM 2.5 ) 2002 base year emissions inventory, portion of the State...

  3. Journey-time exposure to particulate air pollution

    Science.gov (United States)

    Gulliver, John; Briggs, David J.

    Journey-time exposures to particulate air pollution were investigated in Leicester, UK, between January and March 2005. Samples of TSP, PM 10, PM 2.5, and PM 1 were simultaneously collected using light scattering devices whilst journeys were made by walking an in-car. Over a period of two months, 33 pairs of walking and in-car measurements were collected along two circular routes. Average exposures while walking were seen to be higher than those found in-car for each of the particle fractions: average walking to in-car ratios were 1.2 (± 0.6), 1.5 (± 0.6), 1.3 (± 0.6), and 1.4 (± 0.6) μg m -3 for coarse (TSP-PM 10), intermediate (PM 10-PM 2.5), fine (PM 2.5-PM 1), and very fine particles (PM 1), respectively. Correlations between walking and in-car exposures were seen to be weak for coarse particles ( r=0.10, p=0.58), moderate for the intermediate particles ( r=0.49, pcar exposures were 25% higher than the same fixed-site monitor. Particles with an aerodynamic diameter of less than 2.5 μm were seen to be highly correlated between walking and in-car particle exposures and a rural fixed-site monitor about 30 km south of Leicester.

  4. Long-term trend of haze pollution and impact of particulate matter in the Yangtze River Delta, China

    International Nuclear Information System (INIS)

    Cheng, Zhen; Wang, Shuxiao; Jiang, Jingkun; Fu, Qingyan; Chen, Changhong; Xu, Bingye; Yu, Jianqiao; Fu, Xiao; Hao, Jiming

    2013-01-01

    Haze pollution caused by heavy particulate matter (PM) loading brings significant damage in eastern China. Long-term monitoring from 1980 to 2011 and 1-year field measurement in 2011–2012 are used for investigating visibility variation and the impact of PM pollution for the Yangtze River Delta (YRD). It was found that visual range in the YRD endured a sharp reduction from 13.2 km to 10.5 km during 1980–2000. Average mass extinction efficiency (MEE) for inhalable PM (PM 10 ) is 2.25 m 2 /g in 2001–2011, and extinction coefficient due to PM 10 is 207 Mm −1 , accounting for 36.2% of total extinction coefficient. MEE of PM 2.5 and PM 2.5–10 are 4.08 m 2 /g and 0.58 m 2 /g, respectively. Extinction coefficient due to PM 2.5 and PM 2.5–10 is 198 Mm −1 (39.6%) and 20 Mm −1 (4.0%) in 2011–2012. Maximum daily concentration of PM 10 and PM 2.5 is estimated to be 63 μg/m 3 (RH: 73%) and 38 μg/m 3 (RH: 70%) to keep visual range above 10 km. Fine particulate matter is the key factor for haze pollution improvement in the YRD area. -- Highlights: •Long-term visual range variation and its causes in the Yangtze River Delta are analyzed. •Quantitative contribution of particulate matter to haze pollution is estimated. •Mass extinction efficiency of PM 10 , PM 2.5 , and PM 2.5–10 is estimated. -- The long-term variation of haze pollution in the YRD and its cause is investigated and the quantitative contribution of particulate matter to haze pollution is estimated

  5. Identification and chemical characterization of industrial particulate matter sources in southwest Spain.

    Science.gov (United States)

    Alastuey, Andrés; Querol, Xavier; Plana, Feliciano; Viana, Mar; Ruiz, Carmen R; Sánchez de la Campa, Ana; de la Rosa, Jesús; Mantilla, Enrique; García dos Santos, Saul

    2006-07-01

    A detailed physical and chemical characterization of coarse particulate matter (PM10) and fine particulate matter (PM2.5) in the city of Huelva (in Southwestern Spain) was carried out during 2001 and 2002. To identify the major emission sources with a significant influence on PM10 and PM2.5, a methodology was developed based on the combination of: (1) real-time measurements of levels of PM10, PM2.5, and very fine particulate matter (PM1); (2) chemical characterization and source apportionment analysis of PM10 and PM2.5; and (3) intensive measurements in field campaigns to characterize the emission plumes of several point sources. Annual means of 37, 19, and 16 microg/m3 were obtained for the study period for PM10, PM2.5, and PM1, respectively. High PM episodes, characterized by a very fine grain size distribution, are frequently detected in Huelva mainly in the winter as the result of the impact of the industrial emission plumes on the city. Chemical analysis showed that PM at Huelva is characterized by high PO4(3-) and As levels, as expected from the industrial activities. Source apportionment analyses identified a crustal source (36% of PM10 and 31% of PM2.5); a traffic-related source (33% of PM10 and 29% of PM2.5), and a marine aerosol contribution (only in PM10, 4%). In addition, two industrial emission sources were identified in PM10 and PM2.5: (1) a petrochemical source, 13% in PM10 and 8% in PM2.5; and (2) a mixed metallurgical-phosphate source, which accounts for 11-12% of PM10 and PM2.5. In PM2.5 a secondary source has been also identified, which contributed to 17% of the mass. A complete characterization of industrial emission plumes during their impact on the ground allowed for the identification of tracer species for specific point sources, such as petrochemical, metallurgic, and fertilizer and phosphate production industries.

  6. Dynamics of coarse particulate matter in the turbidity maximum zone of the Gironde Estuary

    Science.gov (United States)

    Fuentes-Cid, Ana; Etcheber, Henri; Schmidt, Sabine; Abril, Gwenaël; De-Oliveira, Eric; Lepage, Mario; Sottolichio, Aldo

    2014-01-01

    There is a lack of studies devoted to coarse particulate matter (CPM) in estuaries, although this fraction can disturb activities that filter large volumes of water, such as industrial or fishery activities. In the macrotidal and highly-turbid Gironde Estuary, a monthly sampling of CPM was performed in 2011 and 2013 at two stations in the Turbidity Maximum Zone (TMZ) to understand its seasonal, tidal and hydrological dynamics. Regardless of the season and station, low quantities of CPM (few g m-3) were observed in comparison with suspended particulate matter (several 103 g m-3). The highest concentrations were consistently recorded in bottom waters and at the upstream station. Whereas there is no clear link between the CPM present in the column water and spring or neap tides, an increase in the CPM size has been identified at the two stations after a flood event, fact potentially critical regarding filtering functioning of estuarine activities.

  7. Health impact of exposure to suspended particulate matter. Epidemiology of long-term effects

    International Nuclear Information System (INIS)

    Heinrich, Joachim; Peters, Annette; Wichmann, H.-Erich; Univ. Muenchen; Grote, Veit

    2002-01-01

    Chronic effects of ambient air pollutants are studied by cross-sectional and cohort designs including adjustment for confounder on an individual basis. This review summarizes the state of the art about chronic effects of ambient particulate air pollutants. A majority of regional cross-sectional studies show a higher risk for non-allergic, infectious respiratory diseases such as bronchitis in children who grew up in highly polluted areas. Impaired lung function was only shown in few of these studies, whereas in adults impairments were homogeneously seen in cross-sectional studies. A 10 μg/m 3 TSP or PM 10 increase in annual means increases the prevalence of bronchitis in children by 20-40%. According to North-American cohort studies total mortality can be estimated to increase by 24-50% for PM 10 (per 50 μg/m 3 increase), 17-25% for PM 2.5 (per 25 μg/m 3 increase), and 10-50% for sulfates (per 15 μg/m 3 increase). Prevalence of bronchitis and infectious respiratory health in East German children decreased along with the improvement of air quality. Further studies on chronic effects including an improved exposure assessment are needed to quantify health effects more precisely. These future studies should include a higher number of areas with different air pollution levels. They should help to set up more evidence-based regulations for the control of air pollutants and to improve the evaluation of clean air acts. (orig.) [de

  8. Fine particulate matter air pollution and cognitive function among U.S. older adults.

    Science.gov (United States)

    Ailshire, Jennifer A; Clarke, Philippa

    2015-03-01

    There is growing interest in understanding how exposures in the residential environment relate to cognitive function in older adults. The goal of this study is to determine if neighborhood-level exposure to fine particulate matter air pollution (PM2.5) is associated with cognitive function in a diverse, national sample of older U.S. adults. We use cross-sectional data on non-Hispanic black and white men and women aged 55 and older from the 2001/2002 Americans' Changing Lives Study (N = 780). EPA air monitoring data were linked to respondents using census tract identifiers. Cognitive function was assessed with tests of working memory and orientation. Negative binomial regression models were used to examine the association between PM2.5 and the number of errors on the cognitive assessment. Older adults living in areas with high concentrations of PM2.5 had an error rate 1.5 times greater than those exposed to lower concentrations, net of individual and neighborhood-level demographic and socioeconomic characteristics. This study adds to a growing body of research demonstrating the importance of air pollution to cognitive function in older adults. Improvements to air quality may be an important mechanism for reducing age-related cognitive decline. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Pulmonary effects of ultrafine and fine ammonium salts aerosols in healthy and monocrotaline-treated rats following short-term exposure

    NARCIS (Netherlands)

    Cassee, F.R.; Arts, J.H.E.; Fokkens, P.H.B.; Spoor, S.M.; Boere, A.J.F.; Bree, L. van; Dormans, J.A.M.A.

    2002-01-01

    In the present study the effects of a 3-day inhalation exposure to model compounds for ambient particulate matter were investigated: ammonium bisulfate, ammonium ferrosulfate, and ammonium nitrate, all components of the secondary aerosol fraction of ambient particulate matter (PM), and carbon black

  10. A study to reduce DPM(Diesel Particulate Matter) emission

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bok Youn; Kang, Chang Hee; Jo, Young Do; Lim, Sang Taek [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    This research commenced in 1994 for the purpose of providing safety and environmental measures of underground mines where the mobile diesel equipment are operating. In this last research year, research on filtering of DPM(diesel particulate matter) has been carried out. Through the research, it was known that water scrubber is only one practical way to reduce DPM emission as of now. There are several kinds of the sophisticated DPM filters, but it is not practical yet to be used in underground equipment due to the many adverse effects of the devices such as tremendous increase of SOx, NOx and back pressure etc. (author). 1 tab., 3 figs.

  11. Ambient Air Pollution and Increases in Blood Pressure: Role for biological constituents of particulate matter

    Science.gov (United States)

    Particulate matter (PM) is a complex mixture of extremely small particles and liquid droplets made up of a number of components including elemental carbon, organic chemicals, metals, acids (such as nitrates and sulfates), and soil and dust particles. Epidemiological studies con...

  12. The effect of composition, size, and solubility on acute pulmonary injury in rats following exposure to Mexico city ambient particulate matter samples.

    Science.gov (United States)

    Snow, Samantha J; De Vizcaya-Ruiz, Andrea; Osornio-Vargas, Alvaro; Thomas, Ronald F; Schladweiler, Mette C; McGee, John; Kodavanti, Urmila P

    2014-01-01

    Particulate matter (PM)-associated metals can contribute to adverse cardiopulmonary effects following exposure to air pollution. The aim of this study was to investigate how variation in the composition and size of ambient PM collected from two distinct regions in Mexico City relates to toxicity differences. Male Wistar Kyoto rats (14 wk) were intratracheally instilled with chemically characterized PM10 and PM2.5 from the north and PM10 from the south of Mexico City (3 mg/kg). Both water-soluble and acid-leachable fractions contained several metals, with levels generally higher in PM10 South. The insoluble and total, but not soluble, fractions of all PM induced pulmonary damage that was indicated by significant increases in neutrophilic inflammation, and several lung injury biomarkers including total protein, albumin, lactate dehydrogenase activity, and γ-glutamyl transferase activity 24 and 72 h postexposure. PM10 North and PM2.5 North also significantly decreased levels of the antioxidant ascorbic acid. Elevation in lung mRNA biomarkers of inflammation (tumor necrosis factor [TNF]-α and macrophage inflammatory protein [MIP]-2), oxidative stress (heme oxygenase [HO]-1, lectin-like oxidized low-density lipoprotein receptor [LOX]-1, and inducibile nitric oxide synthase [iNOS]), and thrombosis (tissue factor [TF] and plasminogen activator inhibitor [PAI]-1), as well as reduced levels of fibrinolytic protein tissue plasminogen activator (tPA), further indicated pulmonary injury following PM exposure. These responses were more pronounced with PM10 South (PM10 South > PM10 North > PM2.5 North), which contained higher levels of redox-active transition metals that may have contributed to specific differences in selected lung gene markers. These findings provide evidence that surface chemistry of the PM core and not the water-soluble fraction played an important role in regulating in vivo pulmonary toxicity responses to Mexico City PM.

  13. Particulate matter is associated with sputum culture conversion in patients with culture-positive tuberculosis

    Directory of Open Access Journals (Sweden)

    Chen KY

    2016-01-01

    Full Text Available Kuan-Yuan Chen,1,* Kai-Jen Chuang,2,3,* Hui-Chiao Liu,4,5 Kang-Yun Lee,1,6 Po-Hao Feng,1,6 Chien-Ling Su,1,4 Chii-Lan Lin,1,4 Chun-Nin Lee,1,4 Hsiao-Chi Chuang1,4 1Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, 2Department of Public Health, School of Medicine, College of Medicine, 3School of Public Health, College of Public Health and Nutrition, 4School of Respiratory Therapy, College of Medicine, Taipei Medical University, 5Division of Pulmonary Medicine, Department of Internal Medicine, Sijhih Cathay General Hospital, 6Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan *These authors contributed equally to the study Abstract: Emerging risk factors for tuberculosis (TB infection, such as air pollution, play a significant role at both the individual and population levels. However, the association between air pollution and TB remains unclear. The objective of this study was to examine the association between outdoor air pollution and sputum culture conversion in TB patients. In the present study, 389 subjects were recruited from a hospital in Taiwan from 2010 to 2012: 144 controls with non-TB-related pulmonary diseases with negative sputum cultures and 245 culture-positive TB subjects. We observed that a 1 µg/m3 increase in particulate matter of ≤10 µm in aerodynamic diameter (PM10 resulted in 4% higher odds of TB (odds ratio =1.04, 95% confidence interval =1.01–1.08, P<0.05. The chest X-ray grading of TB subjects was correlated to 1 year levels of PM10 (R2=0.94, P<0.05. However, there were no associations of pulmonary cavitation or treatment success rate with PM10. In subjects with TB-positive cultures, annual exposure to ≥50 µg/m3 PM10 was associated with an increase in the time required for sputum culture conversion (hazard ratio =1.28, 95% confidence interval: 1.07–1.84, P<0.05. In conclusion, chronic exposure to ≥50 µg/m3 PM

  14. Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter in Venice air.

    Science.gov (United States)

    Gregoris, Elena; Barbaro, Elena; Morabito, Elisa; Toscano, Giuseppa; Donateo, Antonio; Cesari, Daniela; Contini, Daniele; Gambaro, Andrea

    2016-04-01

    Harbours are important hubs for economic growth in both tourism and commercial activities. They are also an environmental burden being a source of atmospheric pollution often localized near cities and industrial complexes. The aim of this study is to quantify the relative contribution of maritime traffic and harbour activities to atmospheric pollutant concentration in the Venice lagoon. The impact of ship traffic was quantified on various pollutants that are not directly included in the current European legislation for shipping emission reduction: (i) gaseous and particulate PAHs; (ii) metals in PM10; and (iii) PM10 and PM2.5. All contributions were correlated with the tonnage of ships during the sampling periods and results were used to evaluate the impact of the European Directive 2005/33/EC on air quality in Venice comparing measurements taken before and after the application of the Directive (year 2010). The outcomes suggest that legislation on ship traffic, which focused on the issue of the emissions of sulphur oxides, could be an efficient method also to reduce the impact of shipping on primary particulate matter concentration; on the other hand, we did not observe a significant reduction in the contribution of ship traffic and harbour activities to particulate PAHs and metals. Graphical abstract Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter and evaluation of the effect of an European Directive on air quality in Venice.

  15. Chemical characterization of organic particulate matter from on-road traffic in Sao Paulo, Brazil

    NARCIS (Netherlands)

    Oyama, Beatriz Sayuri; Andrade, Maria de Fatima; Herckes, Pierre; Dusek, Ulrike; Rockmann, Thomas; Holzinger, Rupert

    2016-01-01

    This study reports emission of organic particulate matter by light-duty vehicles (LDVs) and heavy-duty vehicles (HDVs) in the city of Sao Paulo, Brazil, where vehicles run on three different fuel types: gasoline with 25% ethanol (called gasohol, E25), hydrated ethanol (E100), and diesel (with 5%

  16. [Burden of disease attributable to ambient particulate matter pollution in 1990 and 2010 in China].

    Science.gov (United States)

    Liu, Shiwei; Zhou, Maigeng; Wang, Lijun; Li, Yichong; Liu, Yunning; Liu, Jiangmei; You, Jinling; Yin, Peng

    2015-04-01

    To assess the burden of disease attributable to ambient particulate matter pollution in 1990 and 2010 in China. On the basis of the results of the Global Burden of Diseases Study 2010 (GBD 2010) for China's estimates, we used population attributable fractions (PAF) to examine the burden of disease (mortality and disability-adjusted life years (DALY)) attributable to ambient particulate matter pollution in 1990 and 2010 in China, with 95% uncertainty interval (95% UI) estimate, and increasing rate to explore the trends of attributed burden of disease across the study period of 20 years. In 2010, 38.9% (95% UI: 27.0%-49.4%) of lower respiratory infections for disease, 35.0% (95% UI: 27.4%-41.1%) of stroke, and 21.0% (95% UI: 10.7%-30.3%) of chronic obstructive pulmonary disease (COPD) for ≥ 25 years adults were attributable to ambient particulate matter pollution, which accounted for 1.235 (95% UI: 1.038-1.410) million deaths and 25.230 (95% UI: 21.770-28.600) million person years DALY in total, and increased by 33.4% and 4.0%, respectively by comparison with that in 1990 (0.926 million and 24.260 million person years). Lung cancer accounted for the largest increasing rate of 154.5% (from 0.055 million to 0.140 million) and 130.1% (from 1.330 million person years to 3.060 million person years), followed by ischemic heart disease (118.5%, from 0.130 million to 0.284 million, and 86.6%, from 3.280 million person years to 6.120 million person years) and stroke (41.0%, from 0.429 million to 0.605 million, and 33.8%, from 8.970 million person years to 12.000 million person years). The attributed mortality for both gender mostly occurred in age group of 60-79 years (male: 0.260 million and 0.404 million accounting for 53.7% and 54.8%; female: 0.214 million and 0.236 million accounting for 48.5% and 47.5%) both in 1990 and 2010. The age group of 40-79 years accounted for the most portion of attributed DALY for both gender (male: 8.458 million person years and 13

  17. Prolonged Particulate Hexavalent Chromium Exposure Suppresses Homologous Recombination Repair in Human Lung Cells.

    Science.gov (United States)

    Browning, Cynthia L; Qin, Qin; Kelly, Deborah F; Prakash, Rohit; Vanoli, Fabio; Jasin, Maria; Wise, John Pierce

    2016-09-01

    Genomic instability is one of the primary models of carcinogenesis and a feature of almost all cancers. Homologous recombination (HR) repair protects against genomic instability by maintaining high genomic fidelity during the repair of DNA double strand breaks. The defining step of HR repair is the formation of the Rad51 nucleofilament, which facilitates the search for a homologous sequence and invasion of the template DNA strand. Particulate hexavalent chromium (Cr(VI)), a human lung carcinogen, induces DNA double strand breaks and chromosome instability. Since the loss of HR repair increases Cr(VI)-induced chromosome instability, we investigated the effect of extended Cr(VI) exposure on HR repair. We show acute (24 h) Cr(VI) exposure induces a normal HR repair response. In contrast, prolonged (120 h) exposure to particulate Cr(VI) inhibited HR repair and Rad51 nucleofilament formation. Prolonged Cr(VI) exposure had a profound effect on Rad51, evidenced by reduced protein levels and Rad51 mislocalization to the cytoplasm. The response of proteins involved in Rad51 nuclear import and nucleofilament formation displayed varying responses to prolonged Cr(VI) exposure. BRCA2 formed nuclear foci after prolonged Cr(VI) exposure, while Rad51C foci formation was suppressed. These results suggest that particulate Cr(VI), a major chemical carcinogen, inhibits HR repair by targeting Rad51, causing DNA double strand breaks to be repaired by a low fidelity, Rad51-independent repair pathway. These results further enhance our understanding of the underlying mechanism of Cr(VI)-induced chromosome instability and thus, carcinogenesis. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. [Distribution and origin of polycyclic aromatic hydrocarbons in suspended particulate matters from the Yangtze estuarine and nearby coastal areas].

    Science.gov (United States)

    Ou, Dong-ni; Liu, Min; Xu, Shi-yuan; Cheng, Shu-bo; Hou, Li-jun; Gao, Lei

    2008-09-01

    Parent PAHs have been quantified in suspended particulate matters from the Yangtze Estuarine and Coastal Areas. The results show that the concentrations of total PAHs ranged from 2278.79-14293.98 ng/g, and were characterized by greatest content near sewage discharge point with trend to decrease by increasing distance. As for PAHs composition, 4-6 rings PAHs were dominant while 2-3 rings PAHs were relative low. Cluster analysis found that except urban sewage discharge, the hydrodynamic force was influencing PAHs distribution patterns. Moreover, the content of suspended particulate matters, organic carbon and soot carbon of suspended particulate matters also play the important roles in PAHs distribution from the Yangtze estuarine and nearby coastal areas. Principal component analysis and PAH ratios demonstrated that uncompleted combustion of fossil fuels was the main source of PAHs in coastal areas, as well as a few anthropogenic releases of oil and oil products. Ecological risk assessment indicated that most of PAH compounds exceeded the effects range ER-L values and ISQV-L values, which might certain potential damage to the Yangtze Estuary ecosystem.

  19. Exposure to carbon monoxide, respirable suspended particulates, and volatile organic compounds while commuting by bicycle

    International Nuclear Information System (INIS)

    Bevan, M.A.J.; Proctor, C.J.; Baker-Rogers, J.; Warren, N.D.

    1991-01-01

    A portable air sampling system has been used to assess exposures to various substances while commuting by bicycle in an urban area. The major source of pollutants in this situation is motor vehicle exhaust emissions. Carbon monoxide, measured by electrochemical detection, was found at peak concentrations in excess of 62 ppm, with mean values over 16 individual 35-mm journeys being 10.5 ppm. Respirable suspended particulates, averaged over each journey period, were found at higher concentrations (mean 130 μg m -3 ) than would be expected in indoor situations. Mean exposure to benzene (at 56 μg m -3 ) and other aromatic volatile organic compounds was also relatively high. The influence of wind conditions on exposure was found to be significant. Commuting exposures to carbon monoxide, respirable suspended particulates, and aromatic VOCs were found to be higher than exposures in a busy high street and on common parkland

  20. Exposure to in-vehicle respirable particulate matter in passenger vehicles under different ventilation conditions and seasons

    Directory of Open Access Journals (Sweden)

    Suresh Jain

    2017-03-01

    Full Text Available This study presents the in-vehicle particulate matter (PM concentration in a number of passenger vehicles under various ventilation modes, land use land cover (LULC in different seasons in megacity Delhi, India. In-vehicle monitoring was conducted in buses, cars and autos (three-wheeler using air-conditioned (AC and Non-AC during peak and off-peak hours. The site selected is a ∼15 km long stretch from Punjabi Bagh to Safdarjung Hospital, based on diversity in LULC, availability of vehicles and heavy traffic flow along the direction of travelling. In-vehicle PM was measured using GRIMM aerosol spectrometer and categorised in three classes (PM1, PM2.5 and PM10. The study found that concentration of PM1, PM2.5 and PM10 were significantly (p ≤ 0.05 higher in winters as compared to summers. It was observed that PM concentration was significantly (p ≤ 0.05 higher in Non-AC travel modes compared to AC modes. PM concentrations were high near industrial and commercial areas and during traffic congestion showing the influence of LULC. It is also important to highlight that PM1, PM2.5 and PM10 concentrations were significantly (p ≤ 0.05 higher in case of taxis (cars compared to personal cars which varied from 2.5 to 3.5 times higher in case of AC mode and ∼1.5 times in case of Non-AC mode. Exposures to PM concentration were highest in case of Non-AC bus compared AC-Bus, Non-AC cars, autos and AC-cars. PM concentrations in case of autos and Non-AC cars were almost comparable without any significant (p > 0.05 difference. Regression analysis showed significant correlation between ambient and in-vehicle concentration for PM2.5. Regional deposition fractions were calculated using International Commission on Radiological Protection model to show the deposition in head air-pass, trachea-bronchial and alveolar regions. It was found that deposition of PM1 was highest in the alveolar region.

  1. Spatiotemporal variability and meteorological control of particulate matter pollution in a large open-pit coal mining region in Colombia

    Science.gov (United States)

    Morales Rincon, L. A.; Jimenez-Pizarro, R.; Porras-Diaz, H.

    2012-12-01

    Luis Morales-Rincon (1), Hernan Porras-Diaz (1), Rodrigo Jiménez (2,*) (1) Geomatic Research Group, Department of Civil Engineering, Universidad Industrial de Santander, Bucaramanga, Santander 680002, Colombia; (2) Air Quality Research Group, Department of Chemical and Environmental Engineering, Universidad Nacional de Colombia, Bogota, DC 111321, Colombia *Corresponding author: phone +57-1-316-5000 ext. 14099, fax +57-1-316-5334, e-mail rjimenezp@unal.edu.co The semi-desertic area of Central Cesar, Colombia, produced approximately 44 million tons of coal in 2011. This mining activity has been intensively developed since 2005. There are currently 7 large-scale mining projects in that area. The coal industry has strongly impacted not only the ecosystems, but also the neighboring communities around the coal mines. The main goal of the research work was to characterize spatial and temporal variations of particulate matter (total suspended particulates - TSP - and particulate matter below 10 μm - PM10) as measured at various air quality monitoring stations in Cesar's coal industry region as well as to study the relationship between these variability and meteorological factors. The analysis of the meteorological time series of revealed a complex atmospheric circulation in the region. No clear repetitive diurnal circulation patterns were observed, i.e. statistical mean patterns do not physically represent the actual atmospheric circulation. We attribute this complexity to the interdependence between local and synoptic phenomena over a low altitude, relatively flat area. On the other hand, a comparison of air quality in the mining area with a perimeter station indicates that coal industry in central Cesar has a mayor effect on the levels of particulate matter in the region. Particulate matter concentration is highly variable throughout the year. The strong correlation between TSP and PM10 indicates that secondary aerosols are of minor importance. Furthermore, particle

  2. Processes and modeling of hydrolysis of particulate organic matter in aerobic wastewater tratment - A review

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; Kommedal, Roald; Harremoës, Poul

    2002-01-01

    Carbon cycling and the availability of organic carbon for nutrient removal processes are in most wastewater treatment systems restricted by the rate of hydrolysis of slowly biodegradable (particulate) organic matter. To date, the mechanisms of hydrolysis are not well understood for complex...

  3. Study of indoor and ambient air fungual bioaerosols and its relation with particulate matters in a hospital of khorramabad

    Directory of Open Access Journals (Sweden)

    Hasan Basiri

    2016-02-01

    Full Text Available Background: The climate change and particulate matter emission contented of bioaerosols is known as an important reason of increasing the allergic interactions especially in patients with defect in immunity system. The aim of this study was to investigate fungal bioaerosol concentrations in relation to particulate matter (PM10, PM2.5 and PM1 in indoor parts and ambient air of the generd educational hospital of Khorramabad city. Materials and Methods: In this descriptive-analytical study, 192 samples (168 for indoor and 24 for outdoor were gathered during 6 months at the seven indoor wards and one outdoor unit using Quick Take-30 method  at an airflow rate of 28.3 L/min and sampling time of 2.5 min on to Sabouraud dextrose agar medium containing chloramphenicol. The sampling of particulate matter was carried out by Monitor Dust-Trak 8520. Also, the relative humidity and temperature were surveyed by TES-1360 digital. Results: The results showed that infectious ward with 101.7 CFU/m3 was as the most contaminated part and operating room with 46.4 CFU/m3 was the cleanest part. Cladosporium with 36.75% and Rodotorolla with 1.3% had higher and lower of fungi rates, respectively. The rate of  I/O<1  illustrate that this contamination had an outdoor source. Conclusion: The surveys demonstrated that the increase of temperature and relative humidity have an effective influence on the pollutant accumulation. In addition, between fungi bioaerosols frequency and particulate matter ther was a significant correlation.

  4. METHODOLOGICAL ISSUES IN THE USE OF GENERALIZED ADDITIVE MODELS FOR THE ANALYSIS OF PARTICULATE MATTER; CONFERENCE PROCEEDINGS FOR 9TH INT'L. INHALATION SYMPOSIUM ON EFFECTS OF AIR CONTAMINANTS ON THE RESPIRATORY TRACT - INTERPRETATIONS FROM MOLECULES TO META ANALYSIS

    Science.gov (United States)

    Open cohort ("time-series") studies of the adverse health effects of short-term exposures to ambient particulate matter and gaseous co-pollutants have been essential in the standard setting process. Last year, a number of serious issues were raised concerning the fitting of Gener...

  5. Honey Bees (Apis mellifera, L.) as Active Samplers of Airborne Particulate Matter.

    Science.gov (United States)

    Negri, Ilaria; Mavris, Christian; Di Prisco, Gennaro; Caprio, Emilio; Pellecchia, Marco

    2015-01-01

    Honey bees (Apis mellifera L.) are bioindicators of environmental pollution levels. During their wide-ranging foraging activity, these hymenopterans are exposed to pollutants, thus becoming a useful tool to trace the environmental contaminants as heavy metals, pesticides, radionuclides and volatile organic compounds. In the present work we demonstrate that bees can also be used as active samplers of airborne particulate matter. Worker bees were collected from hives located in a polluted postmining area in South West Sardinia (Italy) that is also exposed to dust emissions from industrial plants. The area is included in an official list of sites of national interest for environmental remediation, and has been characterized for the effects of pollutants on the health of the resident population. The head, wings, hind legs and alimentary canal of the bees were investigated with Scanning Electron Microscopy coupled with X-ray spectroscopy (SEM-EDX). The analyses pointed to specific morphological and chemical features of the particulate, and resulted into the identification of three categories of particles: industry-, postmining-, and soil-derived. With the exception of the gut, all the analyzed body districts displayed inorganic particles, mostly concentrated in specific areas of the body (i.e. along the costal margin of the fore wings, the medial plane of the head, and the inner surface of the hind legs). The role of both past mining activities and the industrial activity close to the study area as sources of the particulate matter is also discussed. We conclude that honey bees are able to collect samples of the main airborne particles emitted from different sources, therefore could be an ideal tool for monitoring such a kind of pollutants.

  6. Role of heavy metals in structuring the microbial community associated with particulate matter in a tropical estuary

    International Nuclear Information System (INIS)

    Sheeba, V.A.; Abdulaziz, Anas; Gireeshkumar, T.R.; Ram, Anirudh; Rakesh, P.S.; Jasmin, C.; Parameswaran, P.S.

    2017-01-01

    Particulate matter (PM), which are chemically and biochemically complicated particles, accommodate a plethora of microorganisms. In the present study, we report the influence of heavy metal pollution on the abundance and community structure of archaea and bacteria associated with PM samples collected from polluted and non-polluted regions of Cochin Estuary (CE), Southwest coast of India. We observed an accumulation of heavy metals in PM collected from CE, and their concentrations were in the order Fe > Zn > Mn > Cr > Pb > Cu > Cd > Co > Ni. Zinc was a major pollutant in the water (4.36–130.50 μgL −1 ) and in the particulate matter (765.5–8451.28 μgg −1 ). Heavy metals, Cd, Co, and Pb were recorded in the particulate matter, although they were below detectable limits in the water column. Statistical analysis showed a positive influence of particulate organic carbon, nitrogen, PM-Pb, PM-Zn and PM-Fe on the abundance of PM-archaea and PM-bacteria. The abundance of archaea and bacteria were ten times less in PM compared with planktonic ones. The abundance of PM-archaea ranged between 4.27 and 9.50 × 10 7 and 2.73 to 3.85 × 10 7 cellsL −1 respectively for the wet and dry season, while that of PM-bacteria was between 1.14 and 6.72 × 10 8 cellsL −1 for both seasons. Community structure of PM-bacteria varied between polluted and non-polluted stations, while their abundance does not show a drastic difference. This could be attributed to the selective enrichment of bacteria by heavy metals in PM. Such enrichment may only promote the growth of metal resistant archaea and bacteria, which may not participate in the processing of PM. In such cases, the PM may remain without remineralization in the system arresting the food web dynamics and biogeochemical cycles. - Highlights: • Heavy metal pollution proliferated substantially in Cochin estuary. • Heavy metal pollutants are accumulated in the particulate matter. • Pollution affected

  7. PAHs concentration and toxicity in organic solvent extracts of atmospheric particulate matter and sea sediments.

    Science.gov (United States)

    Ozaki, Noriatsu; Takeuchi, Shin-ya; Kojima, Keisuke; Kindaichi, Tomonori; Komatsu, Toshiko; Fukushima, Takehiko

    2012-01-01

    The concentration of polycyclic aromatic hydrocarbons (PAHs) and the toxicity to marine bacteria (Vibrio fischeri) were measured for the organic solvent extracts of sea sediments collected from an urban watershed area (Hiroshima Bay) of Japan and compared with the concentrations and toxicity of atmospheric particulate matter (PM). In atmospheric PM, the PAHs concentration was highest in fine particulate matter (FPM) collected during cold seasons. The concentrations of sea sediments were 0.01-0.001 times those of atmospheric PM. 1/EC50 was 1-10 L g(-1) PM for atmospheric PM and 0.1-1 L g(-1) dry solids for sea sediments. These results imply that toxic substances from atmospheric PM are diluted several tens or hundreds of times in sea sediments. The ratio of the 1/EC50 to PAHs concentration ((1/EC50)/16PAHs) was stable for all sea sediments (0.1-1 L μg(-1) 16PAHs) and was the same order of magnitude as that of FPM and coarse particulate matter (CPM). The ratio of sediments collected from the west was more similar to that of CPM while that from the east was more similar to FPM, possibly because of hydraulic differences among water bodies. The PAHs concentration pattern analyses (principal component analysis and isomer ratio analysis) were conducted and the results showed that the PAHs pattern in sea sediments was quite different to that of FPM and CPM. Comparison with previously conducted PAHs analyses suggested that biomass burning residues comprised a major portion of these other sources.

  8. Lantana camara invasion in urban forests of an Indo–Burma hotspot region and its ecosustainable management implication through biomonitoring of particulate matter

    Directory of Open Access Journals (Sweden)

    Prabhat Kumar Rai

    2015-12-01

    Full Text Available The present study was performed in urban forests of Aizawl, Mizoram, north east India falling under an Indo–Burma hot spot region of existing ecological relevance and pristine environment. The phytosociolology of invasive weeds has been studied, showing that Lantana camara was the most dominant invasive weed. Further, the air quality studies revealed high suspended particulate matter as well as respirable suspended particulate matter in the ambient air of Aizawl. Biomonitoring through plant leaves has been recognized as a recent thrust area in the field of particulate matter science. We aimed to investigate whether L. camara leaves may act as a biomonitoring tool hence allowing its sustainable management. The quantity of respirable suspended particulate matter and suspended particulate matter at four different sites were much higher than the prescribed limits of Central Pollution Control Board of India during the summer and winter seasons. The dust deposition of L. camara leaves was 1.01 mg/cm2 and, pertaining to the biochemical parameters: pH was 7.49; relative water content 73.74%; total chlorophyll 1.91 mg/g; ascorbic acid 7.06 mg/g; sugar 0.16 mg/g; protein 0.67 mg/g; catalase 30.76 U/mg protein; peroxidase 0.16 U/mg protein; and air pollution tolerance index was 12.91. L. camara was observed in the good category in anticipated performance index, which shows the tolerant and conditioning capacity of air pollution. Therefore, the present study recommends the use of L. camara as biomonitor that may further have sustainable management implications for an invasive plant.

  9. The relationship between fine particulate matter (PM2.5) and schizophrenia severity.

    Science.gov (United States)

    Eguchi, Rika; Onozuka, Daisuke; Ikeda, Kouji; Kuroda, Kenji; Ieiri, Ichiro; Hagihara, Akihito

    2018-04-23

    Although particulate matter (PM) is reported to affect the rate of emergency admissions for schizophrenia, no study has examined the relationship between particulate matter less than 2.5 μm in diameter (PM 2.5 ) and the severity of schizophrenia. We obtained data on patients with schizophrenia at a psychiatric hospital, and on air pollution in Sakai, Japan between Feb 1, 2013 and April 30, 2016. Multivariate logistic regression analyses were used to estimate the relationship between PM 2.5 concentrations and scores on the Brief Psychiatric Rating Scale (BPRS) of schizophrenia patients at admission, with a lag of up to 7 days. During the study period, there were 1193 schizophrenia cases. The odds ratio (OR) for a BPRS score ≥ 50 at admission was 1.05 [95% confidence interval 1.00-1.10] and the effect of PM 2.5 concentration was significant for lag period of 2 days. The ORs associated with PM 2.5 concentration increased substantially for patients over 65 years of age. Ambient PM 2.5 concentration was associated with exacerbation of schizophrenia. Our results suggest that protection for several days should be considered for controlling PM 2.5 -related schizophrenia, especially among elderly patients.

  10. Chemical characterization of organic particulate matter from on-road traffic in Sao Paulo, Brazil

    NARCIS (Netherlands)

    Oyama, Beatriz Sayuri; Andrade, Maria de Fatima; Herckes, Pierre; Dusek, Ulrike; Rockmann, Thomas; Holzinger, Rupert

    2016-01-01

    This study reports emission of organic particulate matter by light-duty vehicles (LDVs) and heavy-duty vehicles (HDVs) in the city of São Paulo, Brazil, where vehicles run on three different fuel types: gasoline with 25 % ethanol (called gasohol, E25), hydrated ethanol (E100), and diesel (with 5 %

  11. Airborne Particulate Matter in Two Multi-Family Green Buildings: Concentrations and Effect of Ventilation and Occupant Behavior

    Directory of Open Access Journals (Sweden)

    Allison P. Patton

    2016-01-01

    Full Text Available There are limited data on air quality parameters, including airborne particulate matter (PM in residential green buildings, which are increasing in prevalence. Exposure to PM is associated with cardiovascular and pulmonary diseases, and since Americans spend almost 90% of their time indoors, residential exposures may substantially contribute to overall airborne PM exposure. Our objectives were to: (1 measure various PM fractions longitudinally in apartments in multi-family green buildings with natural (Building E and mechanical (Building L ventilation; (2 compare indoor and outdoor PM mass concentrations and their ratios (I/O in these buildings, taking into account the effects of occupant behavior; and (3 evaluate the effect of green building designs and operations on indoor PM. We evaluated effects of ventilation, occupant behaviors, and overall building design on PM mass concentrations and I/O. Median PMTOTAL was higher in Building E (56 µg/m3 than in Building L (37 µg/m3; I/O was higher in Building E (1.3–2.0 than in Building L (0.5–0.8 for all particle size fractions. Our data show that the building design and occupant behaviors that either produce or dilute indoor PM (e.g., ventilation systems, combustion sources, and window operation are important factors affecting residents’ exposure to PM in residential green buildings.

  12. Biogeochemical consequences of vertical and lateral transport of particulate organic matter in the southern North Sea: A multiproxy approach

    NARCIS (Netherlands)

    Le Guitton, M.; Soetaert, K.; Sinninghe Damsté, J.S.; Middelburg, J.J.

    2015-01-01

    Vertical and lateral transports are of importance in continental shelf systems such as the North Sea andplay a major role in the processing of organic matter. We investigated the biogeochemical consequencesof these transports on particulate organic matter at the molecular level in the southern North

  13. Impact of Particulate Matter Exposure and Surrounding "Greenness" on Chronic Absenteeism in Massachusetts Public Schools.

    Science.gov (United States)

    MacNaughton, Piers; Eitland, Erika; Kloog, Itai; Schwartz, Joel; Allen, Joseph

    2017-02-20

    Chronic absenteeism is associated with poorer academic performance and higher attrition in kindergarten to 12th grade (K-12) schools. In prior research, students who were chronically absent generally had fewer employment opportunities and worse health after graduation. We examined the impact that environmental factors surrounding schools have on chronic absenteeism. We estimated the greenness (Normalized Difference Vegetation Index (NDVI)) and fine particulate matter air pollution (PM 2.5 ) within 250 m and 1000 m respectively of each public school in Massachusetts during the 2012-2013 academic year using satellite-based data. We modeled chronic absenteeism rates in the same year as a function of PM 2.5 and NDVI, controlling for race and household income. Among the 1772 public schools in Massachusetts, a 0.15 increase in NDVI during the academic year was associated with a 2.6% ( p value absenteeism rates, and a 1 μg/m³ increase in PM 2.5 during the academic year was associated with a 1.58% ( p value absenteeism rates. Based on these percentage changes in chronic absenteeism, a 0.15 increase in NDVI and 1 μg/m³ increase in PM 2.5 correspond to 25,837 fewer students and 15,852 more students chronically absent each year in Massachusetts respectively. These environmental impacts on absenteeism reinforce the need to protect green spaces and reduce air pollution around schools.

  14. Bulky PAH-DNA induced by exposure of a co-culture model of human alveolar macrophages and embryonic epithelial cells to atmospheric particulate pollution

    International Nuclear Information System (INIS)

    Abbas, Imane; Garcon, Guillaume; Billet, Sylvain; Shirali, Pirouz; Andre, Veronique; Le Goff, Jeremie; Sichel, Francois; Roy Saint-Georges, Francoise; Mulliez, Philippe

    2012-01-01

    Because of their deep penetration in human lungs, fine airborne particulate matter were described as mainly responsible for the deleterious effects of exposure to air pollution on health. Organic constituents are adsorbed on particles surface and, after inhalation, some (polycyclic aromatic hydrocarbons, PAHs) can be activated into reactive metabolites and can bind to DNA. The formation of bulky DNA adducts has been researched after exposure of mono-and co-cultures of alveolar macrophages (AM) and human embryonic human lung epithelial (L132), to fine air pollution particulate matter Air samples have been collected with cascade impactor and characterized: size distribution (92.15% 2 /g), inorganic (Fe, AI, Ca, Na, K, Mg, Pb, etc.) and organic compounds (PAHs, etc.). 32 P post-labeling method was applied to detect bulky DNA adducts in AM and L132, in mono-and co-cultures, 72 h after their exposure to atmospheric particles at their Lethals and Effects concentrations or (LC or CE) to 50% (i.e. MA: EC 50 = 74.63 μg/mL and L132: LC-5-0 = 75.36 μg/mL). Exposure to desorbed particles (MA: C1= 61.11 μg/mL and L132 : C2 = 61.71 μg/mL) and B[a]P (1 μM) were included. Bulky PAH-DNA adducts were detected in AM in mono-culture after exposure to total particles (Pt), to B[a]P and desorbed particles (Pd). Whatever the exposure, no DNA adduct was detected in L132 in mono-culture. These results are coherent with the enzymatic activities of cytochrome P450 l Al in AM and L132. Exposure of co-culture to Pt, or Pd induced bulky adducts to DNA in AM but not in L132. Exposure to B[a]P alone has altered the DNA of AM and L132, in co-culture. Exposure to Pt is closer to the environmental conditions, but conferred an exposure to amounts of genotoxic agents compared to studies using organic extracts. The formation of bulky DNA adducts was nevertheless observed in AM exposed to Pt, in mono- or co-culture, indicating that they were competent in terms of metabolic activation of PAHs. The

  15. Ozone, Fine Particulate Matter, and Chronic Lower Respiratory Disease Mortality in the United States.

    Science.gov (United States)

    Hao, Yongping; Balluz, Lina; Strosnider, Heather; Wen, Xiao Jun; Li, Chaoyang; Qualters, Judith R

    2015-08-01

    Short-term effects of air pollution exposure on respiratory disease mortality are well established. However, few studies have examined the effects of long-term exposure, and among those that have, results are inconsistent. To evaluate long-term association between ambient ozone, fine particulate matter (PM2.5, particles with an aerodynamic diameter of 2.5 μm or less), and chronic lower respiratory disease (CLRD) mortality in the contiguous United States. We fit Bayesian hierarchical spatial Poisson models, adjusting for five county-level covariates (percentage of adults aged ≥65 years, poverty, lifetime smoking, obesity, and temperature), with random effects at state and county levels to account for spatial heterogeneity and spatial dependence. We derived county-level average daily concentration levels for ambient ozone and PM2.5 for 2001-2008 from the U.S. Environmental Protection Agency's down-scaled estimates and obtained 2007-2008 CLRD deaths from the National Center for Health Statistics. Exposure to ambient ozone was associated with an increased rate of CLRD deaths, with a rate ratio of 1.05 (95% credible interval, 1.01-1.09) per 5-ppb increase in ozone; the association between ambient PM2.5 and CLRD mortality was positive but statistically insignificant (rate ratio, 1.07; 95% credible interval, 0.99-1.14). This study links air pollution exposure data with CLRD mortality for all 3,109 contiguous U.S. counties. Ambient ozone may be associated with an increased rate of death from CLRD in the contiguous United States. Although we adjusted for selected county-level covariates and unobserved influences through Bayesian hierarchical spatial modeling, the possibility of ecologic bias remains.

  16. Particulate matter in cigarette smoke increases ciliary axoneme beating through mechanical stimulation.

    Science.gov (United States)

    Navarrette, Chelsea R; Sisson, Joseph H; Nance, Elizabeth; Allen-Gipson, Diane; Hanes, Justin; Wyatt, Todd A

    2012-06-01

    The lung's ability to trap and clear foreign particles via the mucociliary elevator is an important mechanism for protecting the lung against respirable irritants and microorganisms. Although cigarette smoke (CS) exposure and particulate inhalation are known to alter mucociliary clearance, little is known about how CS and nanoparticles (NPs) modify cilia beating at the cytoskeletal infrastructure, or axonemal, level. We used a cell-free model to introduce cigarette smoke extract (CSE) and NPs with variant size and surface chemistry to isolated axonemes and measured changes in ciliary motility. We hypothesized that CSE would alter cilia beating and that alterations in ciliary beat frequency (CBF) due to particulate matter would be size- and surface chemistry-dependent. Demembranated axonemes were isolated from ciliated bovine tracheas and exposed to adenosine triphosphate (ATP) to initiate motility. CBF was measured in response to 5% CSE, CSE filtrate, and carboxyl-modified (COOH), sulphate (SO(4))-modified (sulfonated), or PEG-coated polystyrene (PS) latex NPs ranging in size from 40 nm to 500 nm. CSE concentrations as low as 5% resulted in rapid, significant stimulation of CBF (pIntroduction of sulphate-modified PS beads ~300 nm in diameter resulted in a similar increase in CBF above baseline ATP levels. Uncharged, PEG-coated beads had no effect on CBF regardless of size. Similarly, COOH-coated particles less than 200 nm in diameter did not alter ciliary motility. However, COOH-coated PS particles larger than 300 nm increased CBF significantly and increased the number of motile points. These data show that NPs, including those found in CSE, mechanically stimulate axonemes in a size- and surface chemistry-dependent manner. Alterations in ciliary motility due to physicochemical properties of NPs may be important for inhalational lung injury and efficient drug delivery of respirable particles.

  17. Ultrafine and Fine Particulate Matter Inside and Outside of Mechanically Ventilated Buildings.

    Science.gov (United States)

    Miller, Shelly L; Facciola, Nick A; Toohey, Darin; Zhai, John

    2017-01-28

    The objectives of this study were to measure levels of particulate matter (PM) in mechanically ventilated buildings and to improve understanding of filtration requirements to reduce exposure. With the use of an Ultra High Sensitivity Aerosol Spectrometer and an Aerodyne Mass Spectrometer, ultrafine (0.055-0.1 μm) and fine (0.1-0.7 μm) indoor and outdoor PM was measured as a function of time in an office, a university building, and two elementary schools. Indoor particle levels were highly correlated with outdoor levels. Indoor and outdoor number concentrations in Denver were higher than those in Boulder, with the highest number concentrations occurring during summer and fall. The ratio of indoor-to-outdoor (I/O) PM was weakly but positively correlated with the amount of ventilation provided to the indoor environment, did not vary much with particle size (ranged between 0.48 and 0.63 for the entire size range), and was similar for each period of the week (weekend vs. weekday, night vs. day). Regression analyses showed that ultrafine indoor PM baseline concentrations were higher at night from nighttime infiltration. A lag time was observed between outdoor and indoor measurements. Weekday days had the shortest lag time of 11 min, and weekend nighttime lags when the HVAC was not in use were 50 to 148 min. Indoor-outdoor PM concentration plots showed ultrafine PM was more correlated compared to fine, and especially when the HVAC system was on. Finally, AMS data showed that most of the PM was organic, with occasional nitrate events occurring outdoors. During nitrate events, there were less indoor particles detected, indicating a loss of particulate phase nitrate. The results from this study show that improved filtration is warranted in mechanically ventilated buildings, particularly for ultrafine particles, and that nighttime infiltration is significant depending on the building design.

  18. CONTROLLED EXPOSURES OF HUMAN VOLUNTEERS TO DIESEL ENGINE EXHAUST: BIOMARKERS OF EXPOSURE AND HEALTH OUTCOMES

    Science.gov (United States)

    Combustion of diesel fuel contributes to ambient air pollutant fine particulate matter (PM) and gases. Fine PM exposure has been associated with increased mortality due to adverse cardiac events, and morbidity, such as increased hospitalization for asthma symptoms and lung infect...

  19. EVALUATION OF A PERSONAL NEPHELOMETER FOR HUMAN EXPOSURE MONITORING

    Science.gov (United States)

    Current particulate matter (PM) exposure studies are using continuous personal nephelometers (pDR-1000, MIE, Inc.) to measure human exposure to PM. The personal nephelometer is a passive sampler which uses light scattering technology to measure particles ranging in size from 0....

  20. A microfluidic paper-based analytical device for rapid quantification of particulate chromium

    International Nuclear Information System (INIS)

    Rattanarat, Poomrat; Dungchai, Wijitar; Cate, David M.; Siangproh, Weena; Volckens, John; Chailapakul, Orawon; Henry, Charles S.

    2013-01-01

    Graphical abstract: -- Highlights: •Cr detection using a paper-based analytical device. •Analysis of total Cr levels in particulate matter was achieved. •Method for on-paper oxidation of Cr to Cr(VI) using Ce(IV) was established. -- Abstract: Occupational exposure to Cr is concerning because of its myriad of health effects. Assessing chromium exposure is also cost and resource intensive because the analysis typically uses sophisticated instrumental techniques like inductively coupled plasma-mass spectrometry (ICP-MS). Here, we report a novel, simple, inexpensive microfluidic paper-based analytical device (μPAD) for measuring total Cr in airborne particulate matter. In the μPAD, tetravalent cerium (Ce(IV)) was used in a pretreatment zone to oxidize all soluble Cr to Cr(VI). After elution to the detection zone, Cr(VI) reacts with 1,5-diphenylcarbazide (1,5-DPC) forming 1,5-diphenylcarbazone (DPCO) and Cr(III). The resulting Cr(III) forms a distinct purple colored complex with the DPCO. As proof-of-principle, particulate matter (PM) collected on a sample filter was analyzed with the μPAD to quantify the mass of total Cr. A log-linear working range (0.23–3.75 μg; r 2 = 0.998) between Cr and color intensity was obtained with a detection limit of 0.12 μg. For validation, a certified reference containing multiple competing metals was analyzed. Quantitative agreement was obtained between known Cr levels in the sample and the Cr measured using the μPAD

  1. Short term variation in particulate matter in the shelf waters of the Princess Astrid Coast, Antarctica

    Digital Repository Service at National Institute of Oceanography (India)

    Dhargalkar, V.K.; Bhosle, N.B.

    Particulate matter collected at a single station in the shelf waters of Princess Astrid coast (70 degrees S, 11 degrees E) Antarctica, during the austral summer (Jan.-Feb. 1986) was analysed for phytoplankton biomass (Chl @ia@@), living carbon (ATP...

  2. Placental promoter methylation of DNA repair genes and prenatal exposure to particulate air pollution: an ENVIRONAGE cohort study

    Directory of Open Access Journals (Sweden)

    Kristof Y Neven, MSc

    2018-04-01

    Full Text Available Summary: Background: Exposure to particulate air pollution has been linked with risk of carcinogenesis. Damage to repair pathways might have long-term adverse health effects. We aimed to investigate the association of prenatal exposure to air pollution with placental mutation rate and the DNA methylation of key placental DNA repair genes. Methods: This cohort study used data from the ongoing ENVironmental Influence ON early AGEing (ENVIRONAGE birth cohort, which enrols pairs of mothers and neonates (singleton births only at the East-Limburg Hospital (Genk, Belgium. Placental DNA samples were collected after birth. We used bisulfite-PCR-pyrosequencing to investigate the mutation rate of Alu (a marker for overall DNA mutation and DNA methylation in the promoter genes of key DNA repair and tumour suppressor genes (APEX1, OGG1, PARP1, ERCC1, ERCC4, p53, and DAPK1. We used a high-resolution air pollution model to estimate exposure to particulate matter with a diameter less than 2·5 μm (PM2·5, black carbon, and NO2 over the entire pregnancy on the basis of maternal address. Alu mutation was analysed with a linear regression model, and methylation values of the selected genes were analysed in mixed-effects models. Effect estimates are presented as the relative percentage change in methylation for an ambient air pollution increment of one IQR (ie, the difference between the first and third quartiles of exposure in the entire cohort. Findings: 500 biobanked placental DNA samples were randomly selected from 814 pairs of mothers and neonates who were recruited to the cohort between Feb 1, 2010, and Dec 31, 2014, of which 463 samples met the pyrosequencing quality control criteria. IQR exposure increments were 3·84 μg/m3 for PM2·5, 0·36 μg/m3 for black carbon, and 5·34 μg/m3 for NO2. Among these samples, increased Alu mutation rate was associated with greater exposure to PM2·5 (r=0·26, p<0·0001 and black carbon (r=0·33, p<0·0001, but not NO2

  3. Inhaled Pollutants: The Molecular Scene behind Respiratory and Systemic Diseases Associated with Ultrafine Particulate Matter

    Directory of Open Access Journals (Sweden)

    Hussein Traboulsi

    2017-01-01

    Full Text Available Air pollution of anthropogenic origin is largely from the combustion of biomass (e.g., wood, fossil fuels (e.g., cars and trucks, incinerators, landfills, agricultural activities and tobacco smoke. Air pollution is a complex mixture that varies in space and time, and contains hundreds of compounds including volatile organic compounds (e.g., benzene, metals, sulphur and nitrogen oxides, ozone and particulate matter (PM. PM0.1 (ultrafine particles (UFP, those particles with a diameter less than 100 nm (includes nanoparticles (NP are considered especially dangerous to human health and may contribute significantly to the development of numerous respiratory and cardiovascular diseases such as chronic obstructive pulmonary disease (COPD and atherosclerosis. Some of the pathogenic mechanisms through which PM0.1 may contribute to chronic disease is their ability to induce inflammation, oxidative stress and cell death by molecular mechanisms that include transcription factors such as nuclear factor κB (NF-κB and nuclear factor (erythroid-derived 2-like 2 (Nrf2. Epigenetic mechanisms including non-coding RNA (ncRNA may also contribute towards the development of chronic disease associated with exposure to PM0.1. This paper highlights emerging molecular concepts associated with inhalational exposure to PM0.1 and their ability to contribute to chronic respiratory and systemic disease.

  4. Formation of Particulate Matter from the Oxidation of Evaporated Wastewater from Hydraulic Fracturing Activity

    Science.gov (United States)

    Hildebrandt Ruiz, L.; Bean, J. K.; Bilotto, A.

    2017-12-01

    The use of hydraulic fracturing for production of petroleum and natural gas has increased dramatically in the last decade, but the environmental impacts of this technology remain unclear. Experiments were conducted to quantify airborne emissions from twelve samples of hydraulic fracturing flowback wastewater collected in the Permian Basin, as well as the photochemical processing of these emissions leading to the formation of particulate matter. The concentration of total volatile carbon (TVC, hydrocarbons evaporating at room temperature) averaged 29 milligrams of carbon per liter (mgC/L) and the TVC evaporation rate averaged 1357 mgC/L-m2-min. After photochemical oxidation under high NOx conditions the amount of organic particulate matter formed per milliliter of wastewater evaporated averaged 24 micrograms (µg); the amount of ammonium nitrate formed averaged 262 µg. In the state of Texas, the potential formation of PM from evaporated flowback wastewater is similar to the estimated PM emissions from diesel engines used in oil rigs, emphasizing the need to quantify wastewater evaporation and atmospheric processing of these emissions.

  5. Source areas and chemical composition of fine particulate matter in the Pearl River Delta region of China

    Science.gov (United States)

    Hagler, G. S. W.; Bergin, M. H.; Salmon, L. G.; Yu, J. Z.; Wan, E. C. H.; Zheng, M.; Zeng, L. M.; Kiang, C. S.; Zhang, Y. H.; Lau, A. K. H.; Schauer, J. J.

    Fine particulate matter (PM 2.5) was measured for 4 months during 2002-2003 at seven sites located in the rapidly developing Pearl River Delta region of China, an area encompassing the major cities of Hong Kong, Shenzhen and Guangzhou. The 4-month average fine particulate matter concentration ranged from 37 to 71 μg m -3 in Guangdong province and from 29 to 34 μg m -3 in Hong Kong. Main constituents of fine particulate mass were organic compounds (24-35% by mass) and sulfate (21-32%). With sampling sites strategically located to monitor the regional air shed patterns and urban areas, specific source-related fine particulate species (sulfate, organic mass, elemental carbon, potassium and lead) and daily surface winds were analyzed to estimate influential source locations. The impact of transport was investigated by categorizing 13 (of 20 total) sampling days by prevailing wind direction (southerly, northerly or low wind-speed mixed flow). The vicinity of Guangzhou is determined to be a major source area influencing regional concentrations of PM 2.5, with levels observed to increase by 18-34 μg m -3 (accounting for 46-56% of resulting particulate levels) at sites immediately downwind of Guangzhou. The area near Guangzhou is also observed to heavily impact downwind concentrations of lead. Potassium levels, related to biomass burning, appear to be controlled by sources in the northern part of the Pearl River Delta, near rural Conghua and urban Guangzhou. Guangzhou appears to contribute 5-6 μg m -3 of sulfate to downwind locations. Guangzhou also stands out as a significant regional source of organic mass (OM), adding 8.5-14.5 μg m -3 to downwind concentrations. Elemental carbon is observed to be strongly influenced by local sources, with highest levels found in urban regions. In addition, it appears that sources outside of the Pearl River Delta contribute a significant fraction of overall fine particulate matter in Hong Kong and Guangdong province. This is evident

  6. Biogeochemical consequences of vertical and lateral transport of particulate organic matter in the southern North Sea: A multiproxy approach

    NARCIS (Netherlands)

    le Guitton, M.; Soetaert, K.; Sinninghe Damsté, J.S.; Middelburg, J.J.

    2015-01-01

    Vertical and lateral transports are of importance in continental shelf systems such as the North Sea and play a major role in the processing of organic matter. We investigated the biogeochemical consequences of these transports on particulate organic matter at the molecular level in the southern

  7. Measured and modelled concentrations and vertical profiles of airborne particulate matter within the boundary layer of a street canyon

    International Nuclear Information System (INIS)

    Colls, J.J.; Micallef, A.

    1999-01-01

    Concentrations and vertical profiles of various fractions of airborne particulate matter (suspended particulate matter (SPM), PM 10 and PM 2.5 ) have been measured over the first three metres from ground in a street canyon. Measurements were carried out using automated near real-time apparatus called the Kinetic Sequential Sampling (KSS) system. KSS system is essentially an electronically-controlled lift carrying a real-time particle monitor for sampling air sequentially, at different heights within the breathing zone, which includes all heights within the surface layer of a street canyon at which people may breathe. Data is automatically logged at the different receptor levels, for the determination of the average vertical concentration profile of airborne particulate matter. For measuring the airborne particle concentration, a Grimm Dust Monitor 1.104/5 was used. The recorded data also allows for time series analysis of airborne particulate matter concentration at different heights. Time series data and hourly-average vertical concentration profiles in the boundary layer of the confines of a street are thought to be mainly determined by traffic emissions and traffic associated processes. Hence the measured data were compared with results of a street canyon emission-dispersion model in time and space. This Street Level Air Quality (SLAQ) model employs the plume-box technique and includes modules for simulating vehicle-generated effects such as thermally- and mechanically-generated turbulence and resuspension of road dust. Environmental processes, such as turbulence resulting from surface sensible heat and the formation of sulphate aerosol from sulphur dioxide exhaust emissions, are taken into account. The paper presents an outline description of the measuring technique and model used, and a comparison of the measured and modelled data

  8. Air Quality Criteria for Particulate Matter.

    Science.gov (United States)

    National Air Pollution Control Administration (DHEW), Washington, DC.

    To assist states in developing air quality standards, this book offers a review of literature related to atmospheric particulates and the development of criteria for air quality. It not only summarizes the current scientific knowledge of particulate air pollution, but points up the major deficiencies in that knowledge and the need for further…

  9. Microfabricated Air-Microfluidic Sensor for Personal Monitoring of Airborne Particulate Matter: Design, Fabrication, and Experimental Results

    Science.gov (United States)

    We present the design and fabrication of a micro electro mechanical systems (MEMS) air-microfluidic particulate matter (PM) sensor, and show experimental results obtained from exposing the sensor to concentrations of tobacco smoke and diesel exhaust, two commonly occurring P...

  10. Traffic Related Aerosol Exposure And Their Risk Assessment Of Associated Metals In Delhi, India

    Directory of Open Access Journals (Sweden)

    Rajesh Kushwaha

    2013-12-01

    Full Text Available A pilot study was carried out in New Delhi, India, to assess the level of traffic related aerosol exposure, individually and associated metals. These investigations also try to formulate their risk assessment using different modes of transport on a typical journey to work route and compared Bus, Auto-rickshaws and Bike (Two Wheelers during the journey. The inhalable particulate matter monitored in winter period and also evaluated the potential health risk due to inhalation in the study. The exposure of Particulate matter was observed maximum in the Bike (502 ± 176.38 μgm-3 and minimum in the Auto-rickshaw (208.15 ± 61.38 μgm-3. In case of human exposure to metals (viz. Cu, Cd, Mn, Pb, Ni, Co, Cr, Fe, Zn, it was mostly exposed by Fe, Zn and Co and least exposed by Cd, Cr and Pb. Human health risk was estimated based on exposure and dosage response. The assessment of particulate-bound elements was calculated by assuming exposure of 6 h. The findings indicated that the exposure to particulate bound elements have relatively more adverse health effects. International Journal of Environment, Volume-2, Issue-1, Sep-Nov 2013, Pages 26-36 DOI: http://dx.doi.org/10.3126/ije.v2i1.9205

  11. Preliminary analysis of variability in concentration of fine particulate matter - PM1.0, PM2.5 and PM10 in area of Poznań city

    Directory of Open Access Journals (Sweden)

    Sówka Izabela

    2018-01-01

    Full Text Available It is commonly known, that suspended particulate matter pose a threat to human life and health, negatively influence the flora, climate and also materials. Especially dangerous is the presence of high concentration of particulate matter in the area of cities, where density of population is high. The research aimed at determining the variability of suspended particulate matter concentration (PM1.0, PM2.5 and PM10 in two different thermal seasons, in the area of Poznań city. As a part of carried out work we analyzed the variability of concentrations and also performed a preliminary analysis of their correlation. Measured concentrations of particulate matter were contained within following ranges: PM10 – 8.7-69.6 μg/m3, PM2.5 – 2.2-88.5 μg/m3, PM1.0 – 2.5-22.9 μg/m3 in the winter season and 1.0-42.8 μg/m3 (PM10, 1.2-40.3 μg/m3 (PM2.5 and 2.7-10.4 (PM1.0 in the summer season. Preliminary correlative analysis indicated interdependence between the temperature of air, the speed of wind and concentration of particulate matter in selected measurement points. The values of correlation coefficients between the air temperature, speed of wind and concentrations of particulate matter were respectively equal to: for PM10: -0.59 and -0.55 (Jana Pawła II Street, -0.53 and -0.53 (Szymanowskiego Street, for PM2.5: -0.60 and -0.53 (Jana Pawła II Street and for PM1.0 -0.40 and -0.59 (Jana Pawła II Street.

  12. Epigenetic Regulation in Particulate Matter-Mediated Cardiopulmonary Toxicities: A Systems Biology Perspective.

    Science.gov (United States)

    Wang, Ting; Garcia, Joe Gn; Zhang, Wei

    2012-12-01

    Particulate matter (PM) air pollution exerts significant adverse health effects in global populations, particularly in developing countries with extensive air pollution. Understanding of the mechanisms of PM-induced health effects including the risk for cardiovascular diseases remains limited. In addition to the direct cellular physiological responses such as mitochondrial dysfunction and oxidative stress, PM mediates remarkable dysregulation of gene expression, especially in cardiovascular tissues. The PM-mediated gene dysregulation is likely to be a complex mechanism affected by various genetic and non-genetic factors. Notably, PM is known to alter epigenetic markers (e.g., DNA methylation and histone modifications), which may contribute to air pollution-mediated health consequences including the risk for cardiovascular diseases. Notably, epigenetic changes induced by ambient PM exposure have emerged to play a critical role in gene regulation. Though the underlying mechanism(s) are not completely clear, the available evidence suggests that the modulated activities of DNA methyltransferase (DNMT), histone acetylase (HAT) and histone deacetylase (HDAC) may contribute to the epigenetic changes induced by PM or PM-related chemicals. By employing genome-wide epigenomic and systems biology approaches, PM toxicogenomics could conceivably progress greatly with the potential identification of individual epigenetic loci associated with dysregulated gene expression after PM exposure, as well the interactions between epigenetic pathways and PM. Furthermore, novel therapeutic targets based on epigenetic markers could be identified through future epigenomic studies on PM-mediated cardiopulmonary toxicities. These considerations collectively inform the future population health applications of genomics in developing countries while benefiting global personalized medicine at the same time.

  13. Emission factors of particulate matter, polycyclic aromatic hydrocarbons, and levoglucosan from wood combustion in south-central Chile.

    Science.gov (United States)

    Jimenez, Jorge; Farias, Oscar; Quiroz, Roberto; Yañez, Jorge

    2017-07-01

    In south-central Chile, wood stoves have been identified as an important source of air pollution in populated areas. Eucalyptus (Eucalyptus globulus), Chilean oak (Nothofagus oblique), and mimosa (Acacia dealbata) were burned in a single-chamber slow-combustion wood stove at a controlled testing facility located at the University of Concepción, Chile. In each experiment, 2.7-3.1 kg of firewood were combusted while continuously monitoring temperature, exhaust gases, burn rate, and collecting particulate matter samples in Teflon filters under isokinetic conditions for polycyclic aromatic hydrocarbon and levoglucosan analyses. Mean particulate matter emission factors were 2.03, 4.06, and 3.84 g/kg dry wood for eucalyptus, oak, and mimosa, respectively. The emission factors were inversely correlated with combustion efficiency. The mean emission factors of the sums of 12 polycyclic aromatic hydrocarbons in particle phases were 1472.5, 2134.0, and 747.5 μg/kg for eucalyptus, oak, and mimosa, respectively. Fluoranthene, pyrene, benzo[a]anthracene, and chrysene were present in the particle phase in higher proportions compared with other polycyclic aromatic hydrocarbons that were analyzed. Mean levoglucosan emission factors were 854.9, 202.3, and 328.0 mg/kg for eucalyptus, oak, and mimosa, respectively. Since the emissions of particulate matter and other pollutants were inversely correlated with combustion efficiency, implementing more efficient technologies would help to reduce air pollutant emissions from wood combustion. Residential wood burning has been identified as a significant source of air pollution in populated areas. Local wood species are combusted for home cooking and heating, which releases several toxic air pollutants, including particulate matter, carbon monoxide, and polycyclic aromatic hydrocarbons. Air pollutant emissions depend on the type of wood and the technology and operational conditions of the wood stove. A better understanding of emissions from

  14. Seasonal and diurnal variations of particulate nitrate and organic matter at the IfT research station Melpitz

    Directory of Open Access Journals (Sweden)

    L. Poulain

    2011-12-01

    Full Text Available Ammonium nitrate and several organic compounds such as dicarboxylic acids (e.g. succinic acid, glutaric acid, some Polycyclic Aromatic Hydrocarbon (PAHs or some n-alkanes are semi-volatile. The transition of these compounds between the gas and particulate phase may significantly change the aerosol particles radiative properties, the heterogeneous chemical properties, and, naturally, the total particulate mass concentration. To better assess these time-dependent effects, three intensive field experiments were conducted in 2008–2009 at the Central European EMEP research station Melpitz (Germany using an Aerodyne Aerosol Mass Spectrometer (AMS. Data from all seasons highlight organic matter as being the most important particulate fraction of PM1 in summer (59% while in winter, the nitrate fraction was more prevalent (34.4%. The diurnal variation of nitrate always showed the lowest concentration during the day while its concentration increased during the night. This night increase of nitrate concentration was higher in winter (ΔNO3 = 3.6 μg m−3 than in summer (ΔNO3 = 0.7 μg m−3. The variation in particulate nitrate was inherently linked to the gas-to-particle-phase equilibrium of ammonium nitrate and the dynamics of the atmosphere during day. The results of this study suggest that during summer nights, the condensation of HNO3 and NH3 on pre-existing particles represents the most prevalent source of nitrate, whereas during winter, nighttime chemistry is the predominant source of nitrate. During the summer 2008's campaign, a clear diurnal evolution in the oxidation state of the organic matter became evident (Organic Mass to Organic Carbon ratio (OM/OC ranging from 1.65 during night to 1.80 during day and carbon oxidation state (OSc from −0.66 to −0.4, which could be correlated to hydroxyl radical (OH and ozone

  15. Seasonal variations in the concentration and solubility of elements in atmospheric particulate matter: a case study in Northern Italy

    Directory of Open Access Journals (Sweden)

    Canepari S.

    2013-04-01

    Full Text Available Atmospheric particulate matter is characterized by a variety of chemical components, generally produced by different sources. Chemical fractionation of elements, namely the determination of their extractable and residual fractions, may reliably increase the selectivity of some elements as tracers of specific PM sources. Seasonal variations of atmospheric particulate matter concentration in PM10 and PM2.5, of elemental concentration in PM10 and PM2.5, of the extractable and residual fraction of elements in different size fractions in the range 0.18 – 18 μm are reported in this paper. The effect of the ageing of the air masses is discussed.

  16. Association of uranium with colloidal and suspended particulate matter in Arabian sea near the west coast of Maharashtra (India)

    International Nuclear Information System (INIS)

    Singhal, R.K.; Joshi, S.N.; Hegde, A.G.

    2004-01-01

    Association of natural uranium in seawater with colloidal and suspended-particulate matter was determined. The separation of suspended particulate material (>0.45 ) and colloidal fraction (as dissolved fractions) in seawater were done by suction and ultra filtration techniques. Seawater samples were collected at 1 km away from the shore and subjected to sequential fractionation in nine stages ranging from 2.7 μm to 1.1 nm. Suspended particulate matter were separated in three different size groups namely >2.7 μm, 0.45 μm and 0.22 μm by suction filtration using cellulose acetate and nitrate membranes filters. To concentrate the solution with colloidal particles <0.22 μm-1.1 nm (0.5 k Nominal Molecular Weight cut-off Limit (NMWL), the solution obtained from filtration through <0.22 μm was passed through stirred ultra-filtration cell. The pH and conductivity at different stages of fractionation (dissolved) showed minor variations. The concentration of uranium was measured in suspended and dissolved fractions by using a pulsed nitrogen laser at 337.1 nm. In order to evaluate the role of mineral colloids in various stages of filtration, concentration of calcium, magnesium, potassium were measured by using ion chromatography and atomic absorption spectrometry. The clay mineral at seawater pH (approximately 8) behave as negative ions and provides binding site for the positively charge species of uranium. Among the dissolved fraction, the maximum concentrations of colloidal uranium was observed about 4 times higher than that compared to average concentration of 6.93 ± 3.10 ppb in other fractions. In the case of suspended particulate matter, the concentration of uranium was below detection limits (<1 ppb). The maximum concentration of Ca, Mg and K in the dissolved fraction were in the <1.1 nm fraction, while for suspended particulate matter, the concentration of Ca, Mg and K decreased with the decrease in size and it is highest in the fraction of 0.22 -0.45 μm.(author)

  17. Trends and the effect of management on macronutrients in fractionated particulate matter in rooster house

    Science.gov (United States)

    The persistence and long life expectancy of ammonia, odors and toxic pollutants from poultry houses may be due to the ability of suspended particulate matters (SPM) to serve as carriers for odorous compounds such as ammonium ions and volatile organic compounds. SPM is generated from the feed, anima...

  18. Small-angle light scattering by airborne particulates: Environnement S.A. continuous particulate monitor

    International Nuclear Information System (INIS)

    Renard, Jean-Baptiste; Gaubicher, Bertrand; Thaury, Claire; Mineau, Jean-Luc

    2010-01-01

    Airborne particulate matter may have an effect on human health. It is therefore necessary to determine and control in real time the evolution of the concentration and mass of particulates in the ambient air. These parameters can be obtained using optical methods. We propose here a new instrument, 'CPM' (continuous particulate monitor), for the measurement of light scattered by ambient particulates at small angles. This geometry allows simultaneous and separate detections of PM10, PM2.5 and PM1 fractions of airborne particulate matter, with no influence of their chemical nature and without using theoretical calculations. The ambient air is collected through a standard sampling head (PM10 inlet according to EN 12341, PM2.5 inlet according to EN 14907; or PM1, TSP inlets, standard US EPA inlets). The analysis of the first measurements demonstrates that this new instrument can detect, for each of the seven defined size ranges, real-time variations of particulate content in the ambient air. The measured concentrations (expressed in number per liter) can be converted into total mass concentrations (expressed in micrograms per cubic meter) of all fractions of airborne particulate matters sampled by the system. Periodic comparison with a beta-attenuation mass monitor (MP101M Beta Gauge Analyzer from Environnement S.A. company) allows the calculation of a calibration factor as a function of the mean particulate density that is used for this conversion. It is then possible to provide real-time relative variations of aerosol mass concentration

  19. 77 FR 33002 - Proposed Extension of Existing Information Collection; Health Standards for Diesel Particulate...

    Science.gov (United States)

    2012-06-04

    ... information in accordance with the Paperwork Reduction Act of 1995. This program helps to assure that requested data can be provided in the desired format, reporting burden (time and financial resources) is... Extension of Existing Information Collection; Health Standards for Diesel Particulate Matter Exposure...

  20. Spatial Temporal Modelling of Particulate Matter for Health Effects Studies

    Science.gov (United States)

    Hamm, N. A. S.

    2016-10-01

    Epidemiological studies of the health effects of air pollution require estimation of individual exposure. It is not possible to obtain measurements at all relevant locations so it is necessary to predict at these space-time locations, either on the basis of dispersion from emission sources or by interpolating observations. This study used data obtained from a low-cost sensor network of 32 air quality monitoring stations in the Dutch city of Eindhoven, which make up the ILM (innovative air (quality) measurement system). These stations currently provide PM10 and PM2.5 (particulate matter less than 10 and 2.5 m in diameter), aggregated to hourly means. The data provide an unprecedented level of spatial and temporal detail for a city of this size. Despite these benefits the time series of measurements is characterized by missing values and noisy values. In this paper a space-time analysis is presented that is based on a dynamic model for the temporal component and a Gaussian process geostatistical for the spatial component. Spatial-temporal variability was dominated by the temporal component, although the spatial variability was also substantial. The model delivered accurate predictions for both isolated missing values and 24-hour periods of missing values (RMSE = 1.4 μg m-3 and 1.8 μg m-3 respectively). Outliers could be detected by comparison to the 95% prediction interval. The model shows promise for predicting missing values, outlier detection and for mapping to support health impact studies.

  1. Particulate matter in rural and urban nursery schools in Portugal

    International Nuclear Information System (INIS)

    Nunes, R.A.O.; Branco, P.T.B.S.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Sousa, S.I.V.

    2015-01-01

    Studies have been showing strong associations between exposures to indoor particulate matter (PM) and health effects on children. Urban and rural nursery schools have different known environmental and social differences which make their study relevant. Thus, this study aimed to evaluate indoor PM concentrations on different microenvironments of three rural nursery schools and one urban nursery school, being the only study comparing urban and rural nursery schools considering the PM 1 , PM 2.5 and PM 10 fractions (measured continuously and in terms of mass). Outdoor PM 2.5 and PM 10 were also obtained and I/O ratios have been determined. Indoor PM mean concentrations were higher in the urban nursery than in rural ones, which might have been related to traffic emissions. However, I/O ratios allowed concluding that the recorded concentrations depended more significantly of indoor sources. WHO guidelines and Portuguese legislation exceedances for PM 2.5 and PM 10 were observed mainly in the urban nursery school. - Highlights: • This is the only study comparing urban and rural nurseries considering PM fractions. • A low number of children in classrooms is enough to increase PM concentrations. • Children in urban nurseries are exposed to higher PM concentrations than in rural. • Children were mainly exposed to the finer fractions, which are worse to health. - PM levels were higher in the urban nursery than in the rural ones, which might have been related to traffic emissions. Still concentrations depended more significantly of indoor sources

  2. Particulate Matter and Gaseous Pollutions in Three Metropolises along the Chinese Yangtze River: Situation and Implications.

    Science.gov (United States)

    Mao, Mao; Zhang, Xiaolin; Yin, Yan

    2018-05-28

    The situation of criteria atmospheric pollutants, including particulate matter and trace gases (SO₂, NO₂, CO and O₃), over three metropolises (Chongqing, Wuhan, and Nanjing), representing the upstream, midstream and downstream portions of the Yangtze River Basin from September 2015 to August 2016 were analyzed. The maximum annual mean PM 2.5 and PM 10 concentrations were 61.3 and 102.7 μg/m³ in Wuhan, while highest annual average gaseous pollutions occurred in Nanjing, with 49.6 and 22.9 ppb for 8 h O₃ and NO₂, respectively. Compared to a few years ago, SO₂ and CO mass concentrations have dropped to well below the qualification standards, and the O₃ and NO₂ concentrations basically meet the requirements though occasionally is still high. In contrary, about 13%, 25%, 22% for PM 2.5 , and 4%, 17%, 15% for PM 10 exceed the Chinese Ambient Air Quality Standard (CAAQS) Grade II. Particulate matter, especially PM 2.5 , is the most frequent major pollutant to poor air quality with 73%, 64% and 88% accounting for substandard days. Mean PM 2.5 concentrations on PM 2.5 episode days are 2⁻3 times greater than non-episode days. On the basis of calculation of PM 2.5 /PM 10 and PM 2.5 /CO ratios, the enhanced particulate matter pollution on episode days is closely related to secondary aerosol production. Except for O₃, the remaining five pollutants exhibit analogous seasonal patterns, with the highest magnitude in winter and lowest in summer. The results of back trajectories show that air pollution displays synergistic effects on local emissions and long range transport. O₃ commonly demonstrated negative correlations with other pollutants, especially during winter, while moderate to strong positive correlation between particulate matter and NO₂, SO₂, CO were seen. Compared to pollutant substandard ratios over three megacities in eastern China (Beijing, Shanghai, and Guangzhou), the situation in our studied second-tier cities are also severe. The

  3. Analysis of airborne particulate matter

    International Nuclear Information System (INIS)

    Iwatsuki, Masaaki

    2002-01-01

    An airborne particulate matter (APM) consists of many kinds of solid and liquid particles in air. APM analysis methods and the application examples are explained on the basis of paper published after 1998. Books and general remarks, sampling and the measurement of concentration and particle distribution, elemental analysis methods and the present state of analysis of species are introduced. Tapered Element Oscillating Microbalance (TEOM) method can collect continuously the integrating mass, but indicates lower concentration. Cu, Ni, Zn, Co, Fe(2), Mn, Cd, Fe(3) and Pb, the water-soluble elements, are determined by ion-chromatography after ultrasonic extraction of the aqueous solution. The detection limit of them is from 10 to 15 ppb (30 ppb Cd and 60 ppb Pb). The elemental carbon (EC) and organic carbon (OC) are separated by the thermal mass measurement-differential scanning calorimeter by means of keeping at 430degC for 60 min. 11 research organizations compared the results of TC (Total Carbon) and EC by NIOSH method 5040 and the thermal method and obtained agreement of TC. ICP-MS has been developed in order to determine correctly and quickly the trace elements. The determination methods for distinction of chemical forms in the environment were developed. GC/MS, LC/MS and related technologies for determination of organic substances are advanced. Online real-time analysis of APN, an ideal method, is examined. (S.Y.)

  4. Experimental study on kinetics oil oil-suspended particulate matter aggregation

    International Nuclear Information System (INIS)

    Sun, J.; Environment Canada, Ottawa, ON; Khelifa, A.; Wang, Z.; Brown, C.; Fieldhouse, B.; Yang, C.; Zheng, X.; Wong, S.; So, L.C.

    2009-01-01

    Past studies of oil spills have shown that oil suspended particulate matter aggregates (OSAs) play a role in enhancing the natural cleansing of oiled shorelines. OSAs result from aggregation between suspended oil droplets and suspended particulate matter (SPM) in aquatic environments. During this process, oil dispersion into the water column is significantly increased since the surface of the oil droplet is surrounded by sediment particles. In addition, the accelerated biodegradation of the oil can be attributed to the greater oil-water contact area. This study focused on the kinetic aspects of OSA formation, with particular reference to the time scale of this process and its significance to oil dispersion following oil spills in water. A laboratory study was conducted to measure the time scale of OSA formation and its variations with mixing conditions. A reciprocating shaker and various oil/sediment mixtures were used to prepare the OSAs. Standard reference material 1941b was used as the natural sediment mixed with Arabian medium crude and artificial seawater under various mixing energies. The sediment-to-oil ratio remained constant for all experiments. Gas chromatography-flame ionization detection (GC-FID) analysis was used to measure the total petroleum hydrocarbons (TPH) trapped in negatively buoyant OSAs. Results showed that the TPH in OSAs increased exponentially with shaking time and reached an equilibrium value within 3 hours. The equilibrium decreased from 3 hours to 1.3 hours when the shaking rate increased from 2.0 to 2.3 Hz. It was concluded that high mixing energy enhances OSA formation and shortens the time for OSA formation. 42 refs., 6 tabs., 5 figs

  5. Experimental study on kinetics oil oil-suspended particulate matter aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, J. [Ocean Univ. of China, Qingdoa (China). Environmental Science and Engineering Inst.; Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Section, Emergencies, Operational Analytical Laboratories and Research Support Division; Khelifa, A.; Wang, Z.; Brown, C.; Fieldhouse, B.; Yang, C. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Section, Emergencies, Operational Analytical Laboratories and Research Support Division; Zheng, X. [Ocean Univ. of China, Qingdoa (China). Environmental Science and Engineering Inst.; Wong, S. [Ottawa Univ., ON (Canada). Dept. of Chemistry; So, L.C. [Waterloo Univ., ON (Canada). Faculty of Engineering

    2009-07-01

    Past studies of oil spills have shown that oil suspended particulate matter aggregates (OSAs) play a role in enhancing the natural cleansing of oiled shorelines. OSAs result from aggregation between suspended oil droplets and suspended particulate matter (SPM) in aquatic environments. During this process, oil dispersion into the water column is significantly increased since the surface of the oil droplet is surrounded by sediment particles. In addition, the accelerated biodegradation of the oil can be attributed to the greater oil-water contact area. This study focused on the kinetic aspects of OSA formation, with particular reference to the time scale of this process and its significance to oil dispersion following oil spills in water. A laboratory study was conducted to measure the time scale of OSA formation and its variations with mixing conditions. A reciprocating shaker and various oil/sediment mixtures were used to prepare the OSAs. Standard reference material 1941b was used as the natural sediment mixed with Arabian medium crude and artificial seawater under various mixing energies. The sediment-to-oil ratio remained constant for all experiments. Gas chromatography-flame ionization detection (GC-FID) analysis was used to measure the total petroleum hydrocarbons (TPH) trapped in negatively buoyant OSAs. Results showed that the TPH in OSAs increased exponentially with shaking time and reached an equilibrium value within 3 hours. The equilibrium decreased from 3 hours to 1.3 hours when the shaking rate increased from 2.0 to 2.3 Hz. It was concluded that high mixing energy enhances OSA formation and shortens the time for OSA formation. 42 refs., 6 tabs., 5 figs.

  6. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Science.gov (United States)

    2010-07-01

    ....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured using... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Oxides of nitrogen, carbon monoxide...

  7. INAA of airborne particulate matter collected in Bangkok 2002-2004

    International Nuclear Information System (INIS)

    Chueinta, W.; Bunprapob, S.; Tedthong, S.

    2006-01-01

    This paper presents the summary report of the monitoring study on ambient air quality in Bangkok metropolis and its boundary covering the period from 2002 to 2004. The work performed included sampling of fine and coarse fractions of particulate matter at the sites representing urban and suburban areas; measurement of particle mass concentration and elemental concentration; and data interpretation. Instrumental neutron activation by use of research reactor facilities at Office of Atoms for Peace was carried out for multielemental analysis of all filter samples collected. Twenty elements were determined. The database of the three consecutive years are summarized and reviewed in this paper. (author)

  8. An approach to assess the Particulate Matter exposure for the population living around a cement plant: modelling indoor air and particle deposition in the respiratory tract

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Soberón, Francisco; Mari, Montse; Kumar, Vikas [Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia (Spain); Rovira, Joaquim [Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia (Spain); Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia (Spain); Nadal, Martí [Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia (Spain); Schuhmacher, Marta, E-mail: marta.schuhmacher@urv.cat [Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia (Spain); Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia (Spain)

    2015-11-15

    In this paper we studied the exposure to three size fractions of outdoor particulate matter (PM{sub 10}, PM{sub 2.5}, and PM{sub 1}) collected in an area influenced by a cement plant. For that purpose, three groups of population were evaluated (children, adults and retired) in two seasons (summer and winter). Outdoor measured PM concentrations, as well as physiological parameters and activity patterns of the three groups of population were used as input data in two different models. The first one was an indoor air quality model, used to elucidate indoor PM concentrations in different microenvironments. The second one was a dosimetry model, used to evaluate the internal exposure and the distribution of the different PM fractions in the respiratory tract. Results from the indoor air quality model showed that special attention must be paid to the finest particles, since they penetrate indoors in a greater degree. Highest pulmonary doses for the three PM sizes were reported for retired people, being this a result of the high amount of time in outdoor environments exercising lightly. For children, the exposure was mainly influenced by the time they also spend outdoors, but in this case due to heavy intensity activities. It was noticed that deposition of fine particles was more significant in the pulmonary regions of children and retired people in comparison with adults, which has implications in the expected adverse health effects for those vulnerable groups of population. - Highlights: • PM deposition in the respiratory tract was evaluated for three population groups. • Activity patterns and different microenvironments were used in our calculation. • Outdoor activities are the main contributors to PM deposited mass. • Children experienced the highest deposition dose in the pulmonary region. • Retired registered the highest deposited mass in the respiratory tract as a whole.

  9. An approach to assess the Particulate Matter exposure for the population living around a cement plant: modelling indoor air and particle deposition in the respiratory tract

    International Nuclear Information System (INIS)

    Sánchez-Soberón, Francisco; Mari, Montse; Kumar, Vikas; Rovira, Joaquim; Nadal, Martí; Schuhmacher, Marta

    2015-01-01

    In this paper we studied the exposure to three size fractions of outdoor particulate matter (PM 10 , PM 2.5 , and PM 1 ) collected in an area influenced by a cement plant. For that purpose, three groups of population were evaluated (children, adults and retired) in two seasons (summer and winter). Outdoor measured PM concentrations, as well as physiological parameters and activity patterns of the three groups of population were used as input data in two different models. The first one was an indoor air quality model, used to elucidate indoor PM concentrations in different microenvironments. The second one was a dosimetry model, used to evaluate the internal exposure and the distribution of the different PM fractions in the respiratory tract. Results from the indoor air quality model showed that special attention must be paid to the finest particles, since they penetrate indoors in a greater degree. Highest pulmonary doses for the three PM sizes were reported for retired people, being this a result of the high amount of time in outdoor environments exercising lightly. For children, the exposure was mainly influenced by the time they also spend outdoors, but in this case due to heavy intensity activities. It was noticed that deposition of fine particles was more significant in the pulmonary regions of children and retired people in comparison with adults, which has implications in the expected adverse health effects for those vulnerable groups of population. - Highlights: • PM deposition in the respiratory tract was evaluated for three population groups. • Activity patterns and different microenvironments were used in our calculation. • Outdoor activities are the main contributors to PM deposited mass. • Children experienced the highest deposition dose in the pulmonary region. • Retired registered the highest deposited mass in the respiratory tract as a whole.

  10. Dose-dependent relationship between prenatal exposure to fine particulates and exhaled carbon monoxide in non-asthmatic children. A population-based birth cohort study

    Directory of Open Access Journals (Sweden)

    Wiesław A. Jędrychowski

    2013-02-01

    Full Text Available Objectives: The main goal of the study was to assess possible association between fetal exposure to fi ne particulate matter (PM2.5 and exhaled carbon monoxide (eCO measured in non-asthmatic children. Material and Methods: The subjects include 118 children taking part in an ongoing population-based birth cohort study in Kraków. Personal samplers of PM2.5 were used to measure fi ne particle mass in the fetal period and carbon monoxide (CO in exhaled breath from a single exhalation effort at the age of 7. In the statistical analysis of the effect of prenatal PM2.5 exposure on eCO, a set of potential confounders, such as environmental tobacco smoke (ETS, city residence area, sensitization to house dust allergens and the occurrence of respiratory symptoms monitored over the seven-year follow-up was considered. Results: The level of eCO did not correlate with the self-reported ETS exposure recorded over the follow-up, however, there was a positive signifi cant relationship with the prenatal PM2.5 exposure (non-parametric trend p = 0.042. The eCO mean level was higher in atopic children (geometric mean = 2.06 ppm, 95% CI: 1.58–2.66 ppm than in non-atopic ones (geometric mean = 1.57 ppm, 95% CI: 1.47–1.73 ppm and the difference was statistically signifi cant (p = 0.036. As for the respiratory symptoms, eCO values were associated positively only with the cough severity score recorded in the follow-up (nonparametric trend p = 0.057. In the nested multivariable linear regression model, only the effects of prenatal PM2.5 and cough severity recorded in the follow-up were related to eCO level. The prenatal PM2.5 exposure represented 5.1%, while children’s cough represented only 2.6% of the eCO variability. Conclusion: Our study suggests that elevated eCO in non-asthmatic children may result from oxidative stress experienced in the fetal period and that heme oxygenase (HO activity in body tissues may be programmed in the fetal period by the exposure to

  11. Optical properties of size fractions of suspended particulate matter in littoral waters of Québec

    Science.gov (United States)

    Mohammadpour, Gholamreza; Gagné, Jean-Pierre; Larouche, Pierre; Montes-Hugo, Martin A.

    2017-11-01

    Mass-specific absorption (ai∗(λ)) and scattering (bi∗(λ)) coefficients were derived for four size fractions (i = 0.2-0.4, 0.4-0.7, 0.7-10, and > 10 µm, λ = wavelength in nm) of suspended particulate matter (SPM) and with samples obtained from surface waters (i.e., 0-2 m depth) of the Saint Lawrence Estuary and Saguenay Fjord (SLE-SF) during June of 2013. For the visible-near-infrared spectral range (i.e., λ = 400-710 nm), mass-specific absorption coefficients of total SPM (i.e., particulates > 0.2 µm) (hereafter aSPM∗) had low values (e.g., 0.05 m2 g-1 at λ = 440 nm) corresponded with locations of the upper estuary and SF where particulates were mineral-rich and/or their mean diameter was relatively small. The variability of two optical proxies (the spectral slope of particulate beam attenuation coefficient and the mass-specific particulate absorption coefficient, hereafter γ and Svis, respectively) with respect to changes in particle size distribution (PSD) and chemical composition was also examined. The slope of the PSD was correlated with bi∗(550) (Spearman rank correlation coefficient ρs up to 0.37) and ai∗(440) estimates (ρs up to 0.32) in a comparable way. Conversely, the contribution of particulate inorganic matter to total mass of SPM (FSPMPIM) had a stronger correlation with ai∗ coefficients at a wavelength of 440 nm (ρs up to 0.50). The magnitude of γ was positively related to FSPMi or the contribution of size fraction i to the total mass of SPM (ρs up to 0.53 for i = 0.2-0.4 µm). Also, the relation between γ and FSPMPIM variability was secondary (ρs = -0.34, P > 0.05). Lastly, the magnitude of Svis was inversely correlated with aSPM∗(440) (ρs = -0.55, P = 0.04) and FSPMPIM (ρs = -0.62, P = 0.018) in sampling locations with a larger marine influence (i.e., lower estuary).

  12. Assessing the spatial and temporal variability of fine particulate matter components in Israeli, Jordanian, and Palestinian cities

    Science.gov (United States)

    Sarnat, Jeremy A.; Moise, Tamar; Shpund, Jacob; Liu, Yang; Pachon, Jorge E.; Qasrawi, Radwan; Abdeen, Ziad; Brenner, Shmuel; Nassar, Khaled; Saleh, Rami; Schauer, James J.

    2010-07-01

    This manuscript presents results from an extensive, multi-country comparative monitoring study of fine particulate matter (PM 2.5) and its primary chemical components in Israeli, Jordanian and Palestinian cities. This study represented the first time that researchers from these countries have worked together to examine spatial and temporal relationships for PM 2.5 and its major components among the study sites. The findings indicated that total PM 2.5 mass was relatively homogenous among many of the 11 sites as shown from strong between-site correlations. Mean annual concentrations ranged from 19.9 to 34.9 μg m -3 in Haifa and Amman, respectively, and exceeded accepted international air quality standards for annual PM 2.5 mass. Similarity of total mass was largely driven by SO 42- and crustal PM 2.5 components. Despite the close proximity of the seven, well correlated sites with respect to PM 2.5, there were pronounced differences among the cities for EC and, to a lesser degree, OC. EC, in particular, exhibited spatiotemporal trends that were indicative of strong local source contributions. Interestingly, there were moderate to strong EC correlations ( r > 0.65) among the large metropolitan cities, West Jerusalem, Tel Aviv and Amman. For these relatively large cities, (i.e., West Jerusalem, Tel Aviv and Amman), EC sources from the fleet of buses and cars typical for many urban areas predominate and likely drive spatiotemporal EC distributions. As new airshed management strategies and public health interventions are implemented throughout the Middle East, our findings support regulatory strategies that target integrated regional and local control strategies to reduce PM 2.5 mass and specific components suspected to drive adverse health effects of particulate matter exposure.

  13. Modelling the transport of suspended particulate matter by the Rhone River plume (France). Implications for pollutant dispersion

    International Nuclear Information System (INIS)

    Perianez, R.

    2005-01-01

    A model to simulate the transport of suspended particulate matter by the Rhone River plume has been developed. The model solves the 3D hydrodynamic equations, including baroclinic terms and a 1-equation turbulence model, and the suspended matter equations including advection/diffusion of particles, settling and deposition. Four particle classes are considered simultaneously according to observations in the Rhone. Computed currents, salinity and particle distributions are, in general, in good agreement with observations or previous calculations. The model also provides sedimentation rates and the distribution of different particle classes over the sea bed. It has been found that high sedimentation rates close to the river mouth are due to coarse particles that sink rapidly. Computed sedimentation rates are also similar to those derived from observations. The model has been applied to simulate the transport of radionuclides by the plume, since suspended matter is the main vector for them. The radionuclide transport model, previously described and validated, includes exchanges of radionuclides between water, suspended matter and bottom sediment described in terms of kinetic rates. A new feature is the explicit inclusion of the dependence of kinetic rates upon salinity. The model has been applied to 137 Cs and 239,240 Pu. Results are, in general, in good agreement with observations. - A model has been developed to simulate transport of suspended particulate matter in the Rhone River plume

  14. Environmental Public Health Survelliance for Exposure to Respiratory Health Hazards: A Joint NASA/CDC Project to Use Remote Sensing Data for Estimating Airborne Particulate Matter Over the Atlanta, Georgia Metropolitan Area

    Science.gov (United States)

    Quattrochi, Dale A.; Rickman, Douglas; Mohammad, Al-Hamdan; Crosson, William; Estes, Maurice, Jr.; Limaye, Ashutosh; Qualters, Judith

    2008-01-01

    Describes the public health surveillance efforts of NASA, in a joint effort with the Center for Disease Control (CDC). NASA/MSFC and the CDC are partners in linking nvironmental and health data to enhance public health surveillance. The use of NASA technology creates value - added geospatial products from existing environmental data sources to facilitate public health linkages. The venture sought to provide remote sensing data for the 5-country Metro-Atlanta area and to integrate this environmental data with public health data into a local network, in an effort to prevent and control environmentally related health effects. Remote sensing data used environmental data (Environmental Protection Agency [EPA] Air Quality System [AQS] ground measurements and MODIS Aerosol Optical Depth [AOD]) to estimate airborne particulate matter over Atlanta, and linked this data with health data related to asthma. The study proved the feasibility of linking environmental data (MODIS particular matter estimates and AQS) with health data (asthma). Algorithms were developed for QC, bias removal, merging MODIS and AQS particulate matter data, as well as for other applications. Additionally, a Business Associate Agreement was negotiated for a health care provider to enable sharing of Protected Health Information.

  15. Effectiveness of dust control methods for crystalline silica and respirable suspended particulate matter exposure during manual concrete surface grinding.

    Science.gov (United States)

    Akbar-Khanzadeh, Farhang; Milz, Sheryl A; Wagner, Cynthia D; Bisesi, Michael S; Ames, April L; Khuder, Sadik; Susi, Pam; Akbar-Khanzadeh, Mahboubeh

    2010-12-01

    Concrete grinding exposes workers to unacceptable levels of crystalline silica dust, known to cause diseases such as silicosis and possibly lung cancer. This study examined the influence of major factors of exposure and effectiveness of existing dust control methods by simulating field concrete grinding in an enclosed workplace laboratory. Air was monitored during 201 concrete grinding sessions while using a variety of grinders, accessories, and existing dust control methods, including general ventilation (GV), local exhaust ventilation (LEV), and wet grinding. Task-specific geometric mean (GM) of respirable crystalline silica dust concentrations (mg/m³ for LEV:HEPA-, LEV:Shop-vac-, wet-, and uncontrolled-grinding, while GV was off/on, were 0.17/0.09, 0.57/0.13, 1.11/0.44, and 23.1/6.80, respectively. Silica dust concentrations (mg/m³ using 100-125 mm (4-5 inch) and 180 mm (7 inch) grinding cups were 0.53/0.22 and 2.43/0.56, respectively. GM concentrations of silica dust were significantly lower for (1) GV on (66.0%) vs. off, and (2) LEV:HEPA- (99.0%), LEV:Shop-vac- (98.1%) or wet- (94.4%) vs. uncontrolled-grinding. Task-specific GM of respirable suspended particulate matter (RSP) concentrations (mg/m³ for LEV:HEPA-, LEV:Shop-vac-, wet-, and uncontrolled grinding, while GV was off/on, were 1.58/0.63, 7.20/1.15, 9.52/4.13, and 152/47.8, respectively. GM concentrations of RSP using 100-125 mm and 180 mm grinding cups were 4.78/1.62 and 22.2/5.06, respectively. GM concentrations of RSP were significantly lower for (1) GV on (70.2%) vs. off, and (2) LEV:HEPA- (98.9%), LEV:Shop-vac- (96.9%) or wet- (92.6%) vs. uncontrolled grinding. Silica dust and RSP were not significantly affected by (1) orientation of grinding surfaces (vertical vs. inclined); (2) water flow rates for wet grinding; (3) length of task-specific sampling time; or, (4) among cup sizes of 100, 115 or 125 mm. No combination of factors or control methods reduced an 8-hr exposure level to below the

  16. Transcriptome-wide analyses indicate mitochondrial responses to particulate air pollution exposure

    DEFF Research Database (Denmark)

    Winckelmans, Ellen; Nawrot, Tim S.; Tsamou, Maria

    2017-01-01

    validation cohort (n = 169, 55.6% women). Results: Overrepresentation analyses revealed significant pathways (p-value transport chain (ETC) for medium-term exposure in women. For men, medium-term PM10....... Conclusions: In this exploratory study, we identified mitochondrial genes and pathways associated with particulate air pollution indicating upregulation of energy producing pathways as a potential mechanism to compensate for PM-induced mitochondrial damage....

  17. Microbiota and Particulate Matter Assessment in Portuguese Optical Shops Providing Contact Lens Services

    Directory of Open Access Journals (Sweden)

    Carla Viegas

    2017-05-01

    Full Text Available The aim of this work was to assess the microbiota (fungi and bacteria and particulate matter in optical shops, contributing to a specific protocol to ensure a proper assessment. Air samples were collected through an impaction method. Surface and equipment swab samples were also collected side-by-side. Measurements of particulate matter were performed using portable direct-reading equipment. A walkthrough survey and checklist was also applied in each shop. Regarding air sampling, eight of the 13 shops analysed were above the legal requirement and 10 from the 26 surfaces samples were overloaded. In three out of the 13 shops fungal contamination in the analysed equipment was not detected. The bacteria air load was above the threshold in one of the 13 analysed shops. However, bacterial counts were detected in all sampled equipment. Fungi and bacteria air load suggested to be influencing all of the other surface and equipment samples. These results reinforce the need to improve air quality, not only to comply with the legal requirements, but also to ensure proper hygienic conditions. Public health intervention is needed to assure the quality and safety of the rooms and equipment in optical shops that perform health interventions in patients.

  18. Artificial neural network forecast application for fine particulate matter concentration using meteorological data

    Directory of Open Access Journals (Sweden)

    M. Memarianfard

    2017-09-01

    Full Text Available Most parts of the urban areas are faced with the problem of floating fine particulate matter. Therefore, it is crucial to estimate the amounts of fine particulate matter concentrations through the urban atmosphere. In this research, an artificial neural network technique was utilized to model the PM2.5 dispersion in Tehran City. Factors which are influencing the predicted value consist of weather-related and air pollution-related data, i.e. wind speed, humidity, temperature, SO2, CO, NO2, and PM2.5 as target values. These factors have been considered in 19 measuring stations (zones over urban area across Tehran City during four years, from March 2011 to March 2015. The results indicate that the network with hidden layer including six neurons at training epoch 113, has the best performance with the lowest error value (MSE=0.049438 on considering PM2.5 concentrations across metropolitan areas in Tehran. Furthermore, the “R” value for regression analysis of training, validation, test, and all data are 0.65898, 0.6419, 0.54027, and 0.62331, respectively. This study also represents the artificial neural networks have satisfactory implemented for resolving complex patterns in the field of air pollution.

  19. Activation of Proinflammatory Responses in Cells of the Airway Mucosa by Particulate Matter: Oxidant- and Non-Oxidant-Mediated Triggering Mechanisms

    Directory of Open Access Journals (Sweden)

    Johan Øvrevik

    2015-07-01

    Full Text Available Inflammation is considered to play a central role in a diverse range of disease outcomes associated with exposure to various types of inhalable particulates. The initial mechanisms through which particles trigger cellular responses leading to activation of inflammatory responses are crucial to clarify in order to understand what physico-chemical characteristics govern the inflammogenic activity of particulate matter and why some particles are more harmful than others. Recent research suggests that molecular triggering mechanisms involved in activation of proinflammatory genes and onset of inflammatory reactions by particles or soluble particle components can be categorized into direct formation of reactive oxygen species (ROS with subsequent oxidative stress, interaction with the lipid layer of cellular membranes, activation of cell surface receptors, and direct interactions with intracellular molecular targets. The present review focuses on the immediate effects and responses in cells exposed to particles and central down-stream signaling mechanisms involved in regulation of proinflammatory genes, with special emphasis on the role of oxidant and non-oxidant triggering mechanisms. Importantly, ROS act as a central second-messenger in a variety of signaling pathways. Even non-oxidant mediated triggering mechanisms are therefore also likely to activate downstream redox-regulated events.

  20. Air Pollution Exposure Modeling for Epidemiology Studies and Public Health

    Science.gov (United States)

    Air pollution epidemiology studies of ambient fine particulate matter (PM2.5) often use outdoor concentrations as exposure surrogates. These surrogates can induce exposure error since they do not account for (1) time spent indoors with ambient PM2.5 levels attenuated from outdoor...