WorldWideScience

Sample records for particulate elemental carbon

  1. Scavenging of particulate elemental carbon into stratus cloud

    Energy Technology Data Exchange (ETDEWEB)

    Kaneyasu, Naoki; Maeda, Takahisa [National Inst. for Resources and Environment, Tsukuba (Japan)

    1995-12-31

    The role of atmospheric aerosols on the alternation of cloud radiative properties has widely been recognized since 1977 when Tomey and his coworkers have numerically demonstrated the effect of increased cloud condensation nuclei (CCN). At the same time, cloud processes are one of the most important factor in controlling the residence time of atmospheric aerosols through the wet removal process. The redistribution of the size and the composition of pre-cloud aerosols is also the important role of cloud process on the nature of atmospheric aerosols. In order to study these cloud-aerosol interaction phenomena, the incorporation of aerosols into cloud droplets is the first mechanism to be investigated. Among the several mechanisms for the incorporation of aerosols into cloud droplets, nucleation scavenging, is the potentially important process in the view of cloud-aerosol interactions. This critical supersaturation for a given radius of a particle can be theoretically calculated only for pure species, e.g., NaCl. However, a significant portion of the atmospheric aerosols is in the form of internal mixture of multiple components, such as SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, NH{sub 4}{sup +} and particulate elemental carbon. The knowledge acquired by field measurements is therefore essential on this subject. The present study focuses on the scavenging of major components of urban atmospheric aerosols, in particular the incorporation of particulate elemental carbon into stratus cloud. Particulate elemental carbon is the strongest light absorbing species in visible region, and has potential to change the optical property of cloud. On the basis of the measurements conducted at a mountain located in the suburb of Tokyo Metropolitan area, Japan, some insights on the scavenging of particulate elemental carbon into cloud droplet will be presented

  2. Scavenging of particulate elemental carbon into stratus cloud

    Energy Technology Data Exchange (ETDEWEB)

    Kaneyasu, Naoki; Maeda, Takahisa [National Inst. for Resources and Environment, Tsukuba (Japan)

    1996-12-31

    The role of atmospheric aerosols on the alternation of cloud radiative properties has widely been recognized since 1977 when Tomey and his coworkers have numerically demonstrated the effect of increased cloud condensation nuclei (CCN). At the same time, cloud processes are one of the most important factor in controlling the residence time of atmospheric aerosols through the wet removal process. The redistribution of the size and the composition of pre-cloud aerosols is also the important role of cloud process on the nature of atmospheric aerosols. In order to study these cloud-aerosol interaction phenomena, the incorporation of aerosols into cloud droplets is the first mechanism to be investigated. Among the several mechanisms for the incorporation of aerosols into cloud droplets, nucleation scavenging, is the potentially important process in the view of cloud-aerosol interactions. This critical supersaturation for a given radius of a particle can be theoretically calculated only for pure species, e.g., NaCl. However, a significant portion of the atmospheric aerosols is in the form of internal mixture of multiple components, such as SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, NH{sub 4}{sup +} and particulate elemental carbon. The knowledge acquired by field measurements is therefore essential on this subject. The present study focuses on the scavenging of major components of urban atmospheric aerosols, in particular the incorporation of particulate elemental carbon into stratus cloud. Particulate elemental carbon is the strongest light absorbing species in visible region, and has potential to change the optical property of cloud. On the basis of the measurements conducted at a mountain located in the suburb of Tokyo Metropolitan area, Japan, some insights on the scavenging of particulate elemental carbon into cloud droplet will be presented

  3. Simply scan--optical methods for elemental carbon measurement in diesel exhaust particulate.

    Science.gov (United States)

    Forder, James A

    2014-08-01

    This article describes a performance assessment of three optical methods, a Magee Scientific OT21 Transmissometer, a Hach-Lange Microcolor II difference gloss meter, and a combination of an office scanner with Adobe Photoshop software. The optical methods measure filter staining as a proxy for elemental carbon in diesel exhaust particulate (DEP) exposure assessment and the suitability of each as a replacement for the existing Bosch meter optical method. Filters loaded with DEP were produced from air in a non-coal mine and the exhaust gases from a mobile crane. These were measured with each apparatus and then by combustion to obtain a reference elemental carbon value. The results from each apparatus were then plotted against both the Bosch number and reference elemental carbon values. The equations of the best fit lines for these plots were derived, and these gave functions for elemental carbon and Bosch number from the output of each new optical method. For each optical method, the range of DEP loadings which can be measured has been determined, and conversion equations for elemental carbon and Bosch number have been obtained. All three optical methods studied will effectively quantify blackness as a measure of elemental carbon. Of these the Magee Scientific OT21 transmissometer has the best performance. The Microcolor II and scanner/photoshop methods will in addition allow conversion to Bosch number which may be useful if historical Bosch data are available and functions for this are described. The scanner/photoshop method demonstrates a technique to obtain measurements of DEP exposure without the need to purchase specialized instrumentation. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  4. Elemental quantification of airborne particulate matter in Bandung and Lembang area

    International Nuclear Information System (INIS)

    Sutisna; Achmad Hidayat; Dadang Supriatna

    2004-01-01

    ELEMENTAL QUANTIFICATION OF AIRBORNE PARTICULATE MATTER IN BANDUNG AND LEMBANG REGION: The contaminated airborne particulates by toxic gases and elements have a potential affect to the human health. Some toxic elements related to air pollution have carcinogenic affect. The quantification of those elements is important to monitor a level of pollutant contained in the airborne particulate. The aim of this work is to analyze the air particulate sample using instrumental neutron activation analysis and other related technique. Two sampling points of Bandung and Lembang that represent and urban and rural area respectively have been chosen to collect the air particulate sample. The samplings were carried out using Gent Stacked Filter Unit Sampler for 24 hours, and two cellulose filters of 8 μm and 0.45 μm pore size were used. Trace elements in the sample collected were determined using NAA based on a comparative method. Elemental distribution on PM 2.5 and PM 10 fraction of airborne particulate was analyzed, the enrichment factor was calculated using Al as reference elements, and the black carbons contents were determined using FEL Smoke Stain Reflectometer analyzed. The results are presented and discussed. (author)

  5. Comparing the NIOSH Method 5040 to a Diesel Particulate Matter Meter for Elemental Carbon

    Science.gov (United States)

    Ayers, David Matthew

    Introduction: The sampling of elemental carbon has been associated with monitoring exposures in the trucking and mining industries. Recently, in the field of engineered nanomaterials, single wall and muti-wall carbon nanotubes (MWCNTs) are being produced in ever increasing quantities. The only approved atmospheric sampling for multi-wall carbon nanotubes in NIOSH Method 5040. These results are accurate but can take up to 30 days for sample results to be received. Objectives: Compare the results of elemental carbon sampling from the NIOSH Method 5040 to a Diesel Particulate Matter (DPM) Meter. Methods: MWCNTs were transferred and weighed between several trays placed on a scale. The NIOSH Method 5040 and DPM sampling train was hung 6 inches above the receiving tray. The transferring and weighing of the MWCNTs created an aerosol containing elemental carbon. Twenty-one total samples using both meters type were collected. Results: The assumptions for a Two-Way ANOVA were violated therefore, Mann-Whitney U Tests and a Kruskal-Wallis Test were performed. The hypotheses for both research questions were rejected. There was a significant difference in the EC concentrations obtained by the NIOSH Method 5040 and the DPM meter. There were also significant differences in elemental carbon level concentrations when sampled using a DPM meter versus a sampling pump based upon the three concentration levels (low, medium and high). Conclusions: The differences in the EC concentrations were statistically significant therefore, the two methods (NIOSH Method 5040 and DPM) are not the same. The NIOSH Method 5040 should continue to be the only authorized method of establishing an EC concentration for MWCNTs until a MWCNT specific method or an instantaneous meter is invented.

  6. Organic and Elemental Carbon Aerosol Particulates at the Southern Great Plains Site Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Cary, Robert

    2016-04-01

    The purpose of this study was to measure the organic carbon (OC) and elemental carbon (EC) fractions of PM2.5 particulate matter at the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) sampling site for a 6-month period during the summer of 2013. The site is in a rural location remote from any populated areas, so it would be expected to reflect carbon concentration over long-distance transport patterns. During the same period in 2012, a number of prairie fires in Oklahoma and Texas had produced large plumes of smoke particles, but OC and EC particles had not been quantified. In addition, during the summer months, other wild fires, such as forest fires in the Rocky Mountain states and other areas, can produce carbon aerosols that are transported over long distances. Both of these source types would be expected to contain mixtures of both OC and EC.

  7. Air pollution studies in terms of particulate matters, elements and black carbon in the aerosols collected at Andravoahangy-Antananarivo

    International Nuclear Information System (INIS)

    HARINOELY, M.

    2012-01-01

    This work was performed at the Institut National des Sciences et Techniques Nucleaires (Madagascar-INSTN) in the framework of RAF/4/019 project organized by the International Atomic Energy Agency. The main objective of this work is to study the level of air pollution in terms of particulate matters, elements and black carbon in the site of Andravoahangy-Antananarivo and to transmit the results obtained to the competent authorities so that they can make decisions to reduce the impacts of air pollution on the population. The total reflection X-ray fluorescence spectrometer is used for qualitative and quantitative analyses of the elements contained in the aerosols and the reflectometer M43D for the determination of the black carbon concentrations. The results showed that the average concentrations of the particulate matters PM 2,5-10 are higher than those of PM 2,5 . The average concentrations of PM 10 in the aerosols are exceeding the World Health Organisation (WHO) and European Union guidelines, set at 50 μg.m -3 and those of PM 2,5 are higher than the 2005 WHO (25 μg.m -3 ) and the United States Environmental Protection Agency (35 μg.m -3 ) guidelines. The identified elements in the aerosols are Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Sr and Pb. The average concentrations of these elements are also higher in the coarse particles than in the fine particles. The concentrations of black carbon are higher in the fine particles, with a maximum value of 9.12 μg.m -3 . [fr

  8. Particulate carbon in the atmosphere

    International Nuclear Information System (INIS)

    Surakka, J.

    1992-01-01

    Carbonaceous aerosols are emitted to the atmosphere in combustion processes. Carbon particles are very small and have a long residence time in the air. Black Carbon, a type of carbon aerosol, is a good label when transport of combustion emissions in the atmosphere is studied. It is also useful tool in air quality studies. Carbon particles absorb light 6.5 to 8 times stronger than any other particulate matter in the air. Their effect on decreasing visibility is about 50 %. Weather disturbances are also caused by carbon emissions e.g. in Kuwait. Carbon particles have big absorption surface and capacity to catalyze different heterogenous reactions in air. Due to their special chemical and physical properties particulate carbon is a significant air pollution specie, especially in urban air. Average particulate carbon concentration of 5.7 μg/m 2 have been measured in winter months in Helsinki

  9. Source apportionment of PM10 mass and particulate carbon in the Kathmandu Valley, Nepal

    Science.gov (United States)

    Kim, Bong Mann; Park, Jin-Soo; Kim, Sang-Woo; Kim, Hyunjae; Jeon, Haeun; Cho, Chaeyoon; Kim, Ji-Hyoung; Hong, Seungkyu; Rupakheti, Maheswar; Panday, Arnico K.; Park, Rokjin J.; Hong, Jihyung; Yoon, Soon-Chang

    2015-12-01

    The Kathmandu Valley in Nepal is a bowl-shaped urban basin in the Himalayan foothills with a serious problem of fine particulate air pollution that impacts local health and impairs visibility. Particulate carbon concentrations have reached severe levels that threaten the health of 3.5 million local residents. Moreover, snow and ice on the Himalayan mountains are melting as a result of additional warming due to particulate carbon, especially high black carbon concentrations. To date, the sources of the Valley's particulate carbon and the impacts of different sources on particulate carbon concentrations are not well understood. Thus, before an effective control strategy can be developed, these particulate carbon sources must be identified and quantified. Our study has found that the four primary sources of particulate carbon in the Kathmandu Valley during winter are brick kilns, motor vehicles, fugitive soil dust, and biomass/garbage burning. Their source contributions are quantified using a recently developed new multivariate receptor model SMP. In contrast to other highly polluted areas such as China, secondary contribution is almost negligible in Kathmandu Valley. Brick kilns (40%), motor vehicles (37%) and biomass/garbage burning (22%) have been identified as the major sources of elemental carbon (black carbon) in the Kathmandu Valley during winter, while motor vehicles (47%), biomass/garbage burning (32%), and soil dust (13%) have been identified as the most important sources of organic carbon. Our research indicates that controlling emissions from motor vehicles, brick kilns, biomass/garbage burning, and soil dust is essential for the mitigation of the particulate carbon that threatens public health, impairs visibility, and influences climate warming within and downwind from the Kathmandu Valley. In addition, this paper suggests several useful particulate carbon mitigation methods that can be applied to Kathmandu Valley and other areas in South Asia with

  10. Field evaluation of diesel particulate matter using portable elemental carbon monitors

    Energy Technology Data Exchange (ETDEWEB)

    Janisko, S.; Noll, J.D. [National Inst. for Occupational Safety and Health, Pittsburgh, PA (United States)

    2010-07-01

    The permissible exposure limits of underground mine workers to diesel particulate matter (DPM) was lowered in 2008 by the United States Mine Safety and Health Administration. In order to comply with the new regulation, most mines must use one or several combined control strategies to lower DPM concentrations. Since DPMs are complex and unpredictable, there is a need for new tools to help mines develop an effective strategy to reduce their concentrations. This paper reported on newly developed portable elemental carbon (EC) monitoring device for use in underground mines. This compact instrument was developed by the National Institute for Occupational Safety and Health to monitor EC concentrations in real time. The device has proven to be useful in planning new DPM curtailment strategies and in measuring the effectiveness of existing DPM controls. The information is provided in charts of concentration changes over time. The data offers a new way of understanding the factors that influence DPM exposure and drive concentration transients in an underground environment. 14 refs., 6 figs.

  11. Shielded regeneration heating element for a particulate filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2011-01-04

    An exhaust system includes a particulate filter (PF) that is disposed downstream from an engine. The PF filters particulates within an exhaust from the engine. A heating element heats particulate matter in the PF. A catalyst substrate or a flow converter is disposed upstream from said heating element. The catalyst substrate oxidizes the exhaust prior to reception by the heating element. The flow converter converts turbulent exhaust flow to laminar exhaust flow prior to reception by the heating element.

  12. Microparticles and human health: particulate materials, trace metals elements and black carbon in aerosols collected at Andravoahangy-Antananarivo, Madagascar

    International Nuclear Information System (INIS)

    Rasoazanany, E. O.; Andriamahenina, N. N.; Harinoely, M.; Ravoson, H. N.; Randriamanivo, L. V.; Raoelina Andriambololona; Ramaherison, H.

    2013-01-01

    The present work is to determine the concentrations of microparticles having diameter inferior to 10 μm (PM 10 ), the metal trace elements and the black carbon in the aerosols sampled in Andravoahangy-Antananarivo, Madagascar in 2008. The air sampler GENT is used to collect aerosol samples. The total reflection X-ray fluorescence spectrometer is used for qualitative and quantitative analysis of simultaneous way all metallic trace elements contained in the aerosols. The M43D reflectometer permits to measure the reflectances in order to determine the black carbon concentrations. The results show that the average concentrations of the particulate matters PM 2,5-10 are higher than those of PM 2,5 . The average concentrations of PM 10 in the aerosols are exceeding the World Health Organisation (WHO) and European Union guidelines, set at 50 μg.m -3 and those of PM 2,5 are higher than the 2005 WHO (25 μg.m-3) and the United States Environment Protection Agency (35 μg.m -3 ) guidelines. Consequently, air quality in Andravoahangy does not respect these daily guidelines. The identified metallic trace elements in the aerosols are Ti, Cr, Mn, Fe, Ni, Cu, Zn and Pb. The average concentrations of these elements are also higher in the coarse particles than in the fine particles. The concentrations of black carbon are higher in the fine particles. The maximum value is 9.12 μg.m -3 . [fr

  13. Elemental carbon exposure at residence and survival after acute myocardial infarction.

    Science.gov (United States)

    von Klot, Stephanie; Gryparis, Alexandros; Tonne, Cathryn; Yanosky, Jeffrey; Coull, Brent A; Goldberg, Robert J; Lessard, Darleen; Melly, Steven J; Suh, Helen H; Schwartz, Joel

    2009-07-01

    Particulate air pollution has been consistently related to cardiovascular mortality. Some evidence suggests that particulate matter may accelerate the atherosclerotic process. Effects of within-city variations of particulate air pollution on survival after an acute cardiovascular event have been little explored. We conducted a cohort study of hospital survivors of acute myocardial infarction (MI) from the Worcester, MA, metropolitan area to investigate the long-term effects of within-city variation in traffic-related air pollution on mortality. The study builds on an ongoing community-wide investigation examining changes over time in MI incidence and case-fatality rates. We included confirmed cases of MI in 1995, 1997, 1999, 2001, and 2003. Long-term survival status was ascertained through 2005. A validated spatiotemporal land use regression model for traffic-related air pollution was developed and annual averages of elemental carbon at residence estimated. The effect of estimated elemental carbon on the long-term mortality of patients discharged after MI was analyzed using a Cox proportional hazards model, controlling for a variety of demographic, medical history, and clinical variables. Of the 3895 patients with validated MI, 44% died during follow-up. Exposure to estimated elemental carbon in the year of entry into the study was 0.44 microg/m on average. All-cause mortality increased by 15% (95% confidence interval = 0.03%-29%) per interquartile range increase in estimated yearly elemental carbon (0.24 microg/m) after the second year of survival. No association between traffic-related pollution and all-cause mortality was observed during the first 2 years of follow-up. Chronic traffic-related particulate air pollution is associated with increased mortality in hospital survivors of acute MI after the second year of survival.

  14. Organic, elemental and inorganic carbon in particulate matter of six urban environments in Europe

    Directory of Open Access Journals (Sweden)

    M. Sillanpää

    2005-01-01

    Full Text Available A series of 7-week sampling campaigns were conducted in urban background sites of six European cities as follows: Duisburg (autumn, Prague (winter, Amsterdam (winter, Helsinki (spring, Barcelona (spring and Athens (summer. The campaigns were scheduled to include seasons of local public health concern due to high particulate concentrations or findings in previously conducted epidemiological studies. Aerosol samples were collected in parallel with two identical virtual impactors that divide air particles into fine (PM2.5 and coarse (PM2.5-10 size ranges. From the collected filter samples, elemental (EC and organic (OC carbon contents were analysed with a thermal-optical carbon analyser (TOA; total Ca, Ti, Fe, Si, Al and K by energy dispersive X-ray fluorescence (ED-XRF; As, Cu, Ni, V, and Zn by inductively coupled plasma mass spectrometry (ICP/MS; Ca2+, succinate, malonate and oxalate by ion chromatography (IC; and the sum of levoglucosan+galactosan+mannosan (∑MA by liquid chromatography mass spectrometry (LC/MS. The campaign means of PM2.5 and PM2.5-10 were 8.3-29.6 µg m-3 and 5.4-28.7 µg m-3, respectively. The contribution of particulate organic matter (POM to PM2.5 ranged from 21% in Barcelona to 54% in Prague, while that to PM2.5-10 ranged from 10% in Barcelona to 27% in Prague. The contribution of EC was higher to PM2.5 (5-9% than to PM2.5-10 (1-6% in all the six campaigns. Carbonate (C(CO3, that interferes with the TOA analysis, was detected in PM2.5-10 of Athens and Barcelona but not elsewhere. It was subtracted from the OC by a simple integration method that was validated. The CaCO3 accounted for 55% and 11% of PM2.5-10 in Athens and Barcelona, respectively. It was anticipated that combustion emissions from vehicle engines affected the POM content in PM2.5 of all the six sampling campaigns, but a comparison of mass concentration ratios of the selected inorganic and organic tracers of common sources of organic material to POM suggested

  15. Trace elemental analysis of the aerosol particulates in northern Punjab

    International Nuclear Information System (INIS)

    Iqbal, M.Z.

    2002-01-01

    Trace elemental analysis of the aerosol particulates was studied in the atmosphere of Lahore, Faisalabad, Islamabad, Sheikhupura, Wah Cantt. And Khanispur. The amount of the aerosol particulates in the above mentioned areas was compared to the U.S. EPA maximum permissible limits. Scavenging mechanism of the aerosol particulates through precipitation was studied in the atmosphere of Lahore and Sheikhupura by using HPLC and ICP-AES techniques. The site distribution and morphological structure of the aerosol particulates was studied by using Scanning Electron Microscope model JSM-35CF. Trace elemental composition of the aerosol particulates in the atmosphere of the selected areas of Pakistan was carried out by using NAA. The elements thus studied were Ce, Yb, Se, Cr, Hf, Cs, Sc, Fe, Co, Eu, Sb, Mo, Ba, Zn, Hg, Br, Na, Gd, Sm, Nd and In while Pb and Cd were estimated by using ASS technique. (author)

  16. The role of riverine particulate material on the global cycles of the elements

    International Nuclear Information System (INIS)

    Oelkers, Eric H.; Gislason, Sigurdur R.; Eiriksdottir, Eydis Salome; Jones, Morgan; Pearce, Christopher R.; Jeandel, Catherine

    2011-01-01

    Highlights: → Particulate transport dominates dissolved transport of the elements to the ocean. → Particulate material readily dissolves in sea water releasing its elements. → Particulate element release can rapidly affect the isotopic composition of seawater. → Ocean Nd, Fe, Si, and Sr isotopic ratios are likely affected strongly by this process. - Abstract: A review of the relative masses of continental weathering products transported to the oceans indicates that particulate fluxes dominate dissolved fluxes for most elements. The degree to which this particulate material plays a role in the compositional evolution of seawater depends on its dissolution rate, which appears to be rapid due to its high surface area. Consideration of the results of batch experiments and mineral saturation state calculations suggest that much of the mass dissolved into seawater from particulate material dissolution is rapidly removed by the precipitation of secondary minerals. Although this process limits the degree to which the overall concentration of elements in seawater are affected by the addition of particulate material, the dissolution of isotopically distinct particulate phases may affect the isotopic composition of seawater over remarkably short timescales.

  17. Elemental characterization of inhalable particulate emissions on New Year's day in Metro Manila

    Energy Technology Data Exchange (ETDEWEB)

    Santos Flora, L; Pabroa, Corazon B; Morco, Ryan P; Racho, Joseph Michael D [Analytical Measurement Research Section, Atomic Research Division, Philippine Nuclear Research Institute, Commonwealth Ave., Diliman, Quezon City (Philippines)

    2010-07-01

    In the Philippines, it has been a yearly tradition to welcome the coming of the New Year with the loudest noise as can be achieved. Firecrackers and fireworks have been a necessity for Filipinos during this time despite bans on the use of most of these and despite the Department of Health's campaign to use alternative safe practices to welcome the New Year. Data for PM{sub 1}0 samples (fractionated as PM{sub 1}0-2.5 and PM{sub 2}.5) collected from four PNRI sampling sites in Metro Manila show the air pollution impacts of fireworks on New Year's Eve. Samples were collected from 1998 to 2006 using a Gent dichotomous sampler. Particulate mass was determined by gravimetry. Elemental analysis was done using two multi-elemental non-destructive nuclear analytical techniques: X-ray Fluorescence Spectrometry (XRF) and Particle Induced X-ray Emission (PIXE). Black carbon was analyzed using reflectometry. PM{sub 1}0 values increased by two to four times the usual averages (36.4 to 55.4 {mu} m-{sup 3}) and in 2002 even exceeded the PNAAQ short-term guideline value of 150 {mu}g m-{sup 3}), even many times exceeding US EPA short-term guideline value of 35 {mu}g m-{sup 3}. The increase in the particulate mass of New Year's Day samples can be attributed more to an increase in the elemental pollutants rather than the black carbon, with higher contribution from the fine fraction. Increase in the elemental concentrations of A1, S, CI, K, Ba, Sr, Ti, V, Mn, Cu and Pb were observed with the highest contribution from K. Results show that the usual practices of burning firecrackers and fireworks during New Year's Day celebration is a very strong source of air pollution which contributes significantly high amount of elemental pollutants in the air. (author)

  18. Elemental characterization of inhalable particulate emissions on New Year's day in Metro Manila

    International Nuclear Information System (INIS)

    Santos Flora, L.; Pabroa, Corazon B.; Morco, Ryan P.; Racho, Joseph Michael D.

    2010-01-01

    In the Philippines, it has been a yearly tradition to welcome the coming of the New Year with the loudest noise as can be achieved. Firecrackers and fireworks have been a necessity for Filipinos during this time despite bans on the use of most of these and despite the Department of Health's campaign to use alternative safe practices to welcome the New Year. Data for PM 1 0 samples (fractionated as PM 1 0-2.5 and PM 2 .5) collected from four PNRI sampling sites in Metro Manila show the air pollution impacts of fireworks on New Year's Eve. Samples were collected from 1998 to 2006 using a Gent dichotomous sampler. Particulate mass was determined by gravimetry. Elemental analysis was done using two multi-elemental non-destructive nuclear analytical techniques: X-ray Fluorescence Spectrometry (XRF) and Particle Induced X-ray Emission (PIXE). Black carbon was analyzed using reflectometry. PM 1 0 values increased by two to four times the usual averages (36.4 to 55.4 μ m- 3 ) and in 2002 even exceeded the PNAAQ short-term guideline value of 150 μg m- 3 ), even many times exceeding US EPA short-term guideline value of 35 μg m- 3 . The increase in the particulate mass of New Year's Day samples can be attributed more to an increase in the elemental pollutants rather than the black carbon, with higher contribution from the fine fraction. Increase in the elemental concentrations of A1, S, CI, K, Ba, Sr, Ti, V, Mn, Cu and Pb were observed with the highest contribution from K. Results show that the usual practices of burning firecrackers and fireworks during New Year's Day celebration is a very strong source of air pollution which contributes significantly high amount of elemental pollutants in the air. (author)

  19. Cycles of selected trace elements in the South Atlantic: Vertical transport and interactions between particulates and solution; Zum Kreislauf ausgewaehlter Spurenmetalle im Suedatlantik: Vertikaltransport und Wechselwirkung zwischen Partikeln und Loesung

    Energy Technology Data Exchange (ETDEWEB)

    Dierssen, H

    1999-07-01

    Subjects: Concentrations, vertical and regional distributions of dissolved and suspended particulate trace elements; Trace element fluxes - vertical, regional, seasonal; The role of particulate organic carbon and atmospheric dust in vertical transport; Fractionation of trace elements in particulate material during transport. [German] Themen dieser Arbeit sind: Konzentrationen, vertikale und regionale Verteilungen von geloesten und suspendierten partikulaeren Spurenelementem (SE); SE-Fluesse vertikal, regional und saisonal; die Rolle des partikulaeren organischen Kohlenstoffs und des atmosphaerischen Staubeintrags beim Vertikaltransport; Fraktionierung von SE im partikulaeren Material beim Transport. (orig./SR)

  20. Temporal and spatial variations in particulate matter, particulate organic carbon and attenuation coefficient in Cochin Backwaters

    Digital Repository Service at National Institute of Oceanography (India)

    Devi, K.S.

    Nine stations over a stretch of 21 km of Periyar river estuary were sampled during January to December 1981. Particulate matter varied from 3-253 mg.1 super(1) at the surface and 24.8-257mg.1 super(1) at the bottom. Particulate organic carbon ranged...

  1. The Diesel Exhaust in Miners Study: III. Interrelations between respirable elemental carbon and gaseous and particulate components of diesel exhaust derived from area sampling in underground non-metal mining facilities.

    Science.gov (United States)

    Vermeulen, Roel; Coble, Joseph B; Yereb, Daniel; Lubin, Jay H; Blair, Aaron; Portengen, Lützen; Stewart, Patricia A; Attfield, Michael; Silverman, Debra T

    2010-10-01

    Diesel exhaust (DE) has been implicated as a potential lung carcinogen. However, the exact components of DE that might be involved have not been clearly identified. In the past, nitrogen oxides (NO(x)) and carbon oxides (CO(x)) were measured most frequently to estimate DE, but since the 1990s, the most commonly accepted surrogate for DE has been elemental carbon (EC). We developed quantitative estimates of historical exposure levels of respirable elemental carbon (REC) for an epidemiologic study of mortality, particularly lung cancer, among diesel-exposed miners by back-extrapolating 1998-2001 REC exposure levels using historical measurements of carbon monoxide (CO). The choice of CO was based on the availability of historical measurement data. Here, we evaluated the relationship of REC with CO and other current and historical components of DE from side-by-side area measurements taken in underground operations of seven non-metal mining facilities. The Pearson correlation coefficient of the natural log-transformed (Ln)REC measurements with the Ln(CO) measurements was 0.4. The correlation of REC with the other gaseous, organic carbon (OC), and particulate measurements ranged from 0.3 to 0.8. Factor analyses indicated that the gaseous components, including CO, together with REC, loaded most strongly on a presumed 'Diesel exhaust' factor, while the OC and particulate agents loaded predominantly on other factors. In addition, the relationship between Ln(REC) and Ln(CO) was approximately linear over a wide range of REC concentrations. The fact that CO correlated with REC, loaded on the same factor, and increased linearly in log-log space supported the use of CO in estimating historical exposure levels to DE.

  2. Elemental Composition In Airborne Particulate Sample Of Bandung and Lembang Region In 1999

    International Nuclear Information System (INIS)

    Hidayat, Achmad

    2003-01-01

    Concentration of airborne particulate of Bandung higher than that of Lembang. The PM2.5 fraction was in the range of 4,3 μg/m 3 to 21,1 μg/m 3 for Bandung area, and 2,9 μg/m 3 to 19,2 μg/m 3 for Lembang area for 24 hours sampling time. The PM10 fraction of Bandung area was in the range of 12,1 μg/m 3 to 44, 1 μg/m 3 , where a s the PM10 fraction of Lembang area was in the range of 5,2 μg/m 3 to 30,6 μg/m 3 . The data much lower than that of National ambient air quality standard for 24 hours, 65 μg/m 3 and 150 μg/m 3 for PM2.5 fraction and PM10 fraction respectively. No clear correlation either concentration of fine or coarse particulate to rainfall. For teen elements, which were Al, Br, Ca, Ce, CI, Cr, Fe, I, Mn, Na, Sb, Sc, V and Zn, were detected. The elements of Br, Ce, CI, Cr, I, Sb and Zn were enriched in fine and coarse of Bandung and Lembang samples, where as AI, Ca, Mn, Na and V were not enriched. The special element of Fe was enriched in fine particulate of Lembang, where as in particulate of Bandung was not enriched. Analysis of coarse particulate samples indicated the similar results to fine particulate except for Ce. The results of analysis explained that pollutant source of Bandung and Lembang were the same. Some elements such as Br, CI and I possibly come from organic material burning; Br and CI could be from motor vehicle; Cr, and Zn could be from paint factory; Zn and Sb could be from refuse incineration; while Ce could be from electronic factory. The calculation results indicated that enrichment factor of elements in fine particulate higher than that of coarse particulate. Furthermore the enrichment factor of element in airborne particulate of Bandung area was higher than that of airborne particulate of Lembang

  3. Particulate Trace Element Cycling in a Diatom Bloom at Station ALOHA

    Science.gov (United States)

    Weisend, R.; Morton, P. L.; Landing, W. M.; Fitzsimmons, J. N.; Hayes, C. T.; Boyle, E. A.

    2014-12-01

    Phytoplankton in oligotrophic marine deserts depend on remote sources to supply trace nutrients. To examine these sources, marine particulate matter samples from the central North Pacific (Station ALOHA) were collected during the July-August 2012 HOE-DYLAN cruises and analyzed for a suite of trace (e.g., Fe, Mn) and major (e.g. Al, P) elements. Daily surface SPM samples were examined for evidence of atmospheric deposition and biological uptake, while five vertical profiles were examined for evidence of surface vertical export and subsurface horizontal transport from nearby sources (e.g., margin sediments, hydrothermal plumes). Maxima in surface particulate P (a biological tracer) corresponded with a diatom bloom, and surprisingly also coincided with maxima in particulate Al (typically a tracer for lithogenic inputs). The surface particulate Al distributions likely result from the adsorption of dissolved Al onto diatom silica frustules, not from atmospheric dust deposition. In addition, a subsurface maximum in particulate Al and P was observed four days later at 75m, possibly resulting from vertical export of the surface diatom bloom. The distributions of other bioactive trace elements (e.g. Cd, Co, Cu) will be presented in the context of the diatom bloom and other biological, chemical and physical features. A second, complementary poster is also being presented which examines the cycling of trace elements in lithogenic particles (Morton et al., "Trace Element Cycling in Lithogenic Particles at Station ALOHA").

  4. Simulating the effects of light intensity and carbonate system composition on particulate organic and inorganic carbon production in Emiliania huxleyi.

    Science.gov (United States)

    Holtz, Lena-Maria; Wolf-Gladrow, Dieter; Thoms, Silke

    2015-05-07

    Coccolithophores play an important role in the marine carbon cycle. Variations in light intensity and external carbonate system composition alter intracellular carbon fluxes and therewith the production rates of particulate organic and inorganic carbon. Aiming to find a mechanistic explanation for the interrelation between dissolved inorganic carbon fluxes and particulate carbon production rates, we develop a numerical cell model for Emiliania huxleyi, one of the most abundant coccolithophore species. The model consists of four cellular compartments, for each of which the carbonate system is resolved dynamically. The compartments are connected to each other and to the external medium via substrate fluxes across the compartment-confining membranes. By means of the model we are able to explain several pattern observed in particulate organic and inorganic carbon production rates for different strains and under different acclimation conditions. Particulate organic and inorganic carbon production rates for instance decrease at very low external CO2 concentrations. Our model suggests that this effect is caused mainly by reduced HCO3(-) uptake rates, not by CO2 limitation. The often observed decrease in particulate inorganic carbon production rates under Ocean Acidification is explained by a downregulation of cellular HCO3(-) uptake. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Filtration of Carbon Particulate Emissions from a Plasma Pyrolysis Assembly

    Science.gov (United States)

    Agui, Juan H.; Green, Robert; Vijayakumar, R.; Berger, Gordon; Greenwood, Zach; Abney, Morgan; Peterson, Elspeth

    2016-01-01

    NASA is investigating plasma pyrolysis as a candidate technology that will enable the recovery of hydrogen from the methane produced by the ISS Sabatier Reactor. The Plasma Pyrolysis Assembly (PPA) is the current prototype of this technology which converts the methane product from the Carbon Dioxide Reduction Assembly (CRA) to acetylene and hydrogen with 90% or greater conversion efficiency. A small amount of solid carbon particulates are generated as a side product and must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on several options for filtering out the carbon particulate emissions from the PPA exit gas stream. The filtration technologies and concepts investigated range from fibrous media to monolithic ceramic and sintered metal media. This paper describes the different developed filter prototypes and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC. In addition, characterization data on the generated carbon particulates, that help to define filter requirements, are also presented.

  6. Concentrations of trace elements and compounds in the airborne suspended particulate matter in Cleveland, Ohio, from August 1971 to August 1972 and their dependence on wind direction: Complete data listing and concentration roses

    Science.gov (United States)

    King, R. B.; Neustadter, H. E.

    1976-01-01

    Concentrations of 75 chemical constituents in the airborne particulate matter were measured in Cleveland, Ohio during 1971 and 1972. Daily values, maxima, geometric means and their standard deviations covering a 1-year period (45 to 50 sampling days) at each of 16 sites are presented on microfiche for 60 elements, and for a lesser number of days for 10 polycyclic aromatic hydrocarbon compounds (PAH), the aliphatic hydrocarbon compounds (AH) as a group and carbon. In addition, concentration roses showing directional properties are presented for 39 elements, 10 PAH and the AH as a group. The elements (except carbon) are shown both in terms of concentration and percentage of the suspended particulate matter.

  7. Particulate carbon and nitrogen determinations in tracer studies: The neglected variables

    International Nuclear Information System (INIS)

    Collos, Yves; Jauzein, Cécile; Hatey, Elise

    2014-01-01

    We address two issues in the determination of particulate carbon and nitrogen in suspended matter of aquatic environments. One is the adsorption of dissolved organic matter on filters, leading to overestimate particulate matter. The second is the material loss during filtration due to fragile algal cells breaking up. Examples from both laboratory cultures and natural samples are presented. We recommend using stacked filters in order to estimate the first and filtering different volumes of water in order to evaluate the second. - Highlights: • Adsorption of dissolved organic matter on GF/F filters saturates below 1 ml. • Such adsorption can overestimate (up to 5 fold at low volumes) particulate matter. • Plankton breakage during filtration underestimates (up to 3 fold) particulate matter. • Different volumes should be filtered to detect biases in PC and PN concentrations. • Adsorbed organic carbon is higher in surface ocean than in mid-waters

  8. Aged riverine particulate organic carbon in four UK catchments

    International Nuclear Information System (INIS)

    Adams, Jessica L.; Tipping, Edward; Bryant, Charlotte L.; Helliwell, Rachel C.; Toberman, Hannah; Quinton, John

    2015-01-01

    The riverine transport of particulate organic matter (POM) is a significant flux in the carbon cycle, and affects macronutrients and contaminants. We used radiocarbon to characterise POM at 9 riverine sites of four UK catchments (Avon, Conwy, Dee, Ribble) over a one-year period. High-discharge samples were collected on three or four occasions at each site. Suspended particulate matter (SPM) was obtained by centrifugation, and the samples were analysed for carbon isotopes. Concentrations of SPM and SPM organic carbon (OC) contents were also determined, and were found to have a significant negative correlation. For the 7 rivers draining predominantly rural catchments, PO 14 C values, expressed as percent modern carbon absolute (pMC), varied little among samplings at each site, and there was no significant difference in the average values among the sites. The overall average PO 14 C value for the 7 sites of 91.2 pMC corresponded to an average age of 680 14 C years, but this value arises from the mixing of differently-aged components, and therefore significant amounts of organic matter older than the average value are present in the samples. Although topsoil erosion is probably the major source of the riverine POM, the average PO 14 C value is appreciably lower than topsoil values (which are typically 100 pMC). This is most likely explained by inputs of older subsoil OC from bank erosion, or the preferential loss of high- 14 C topsoil organic matter by mineralisation during riverine transport. The significantly lower average PO 14 C of samples from the River Calder (76.6 pMC), can be ascribed to components containing little or no radiocarbon, derived either from industrial sources or historical coal mining, and this effect is also seen in the River Ribble, downstream of its confluence with the Calder. At the global scale, the results significantly expand available information for PO 14 C in rivers draining catchments with low erosion rates. - Highlights:

  9. Quantitative assessment of elemental carbon in the lungs of never smokers, cigarette smokers and coal miners

    Science.gov (United States)

    Inhalation exposure to particulates such as cigarette smoke and coal dust is known to contribute to the development of chronic lung disease. The purpose of this study was to estimate the amount of elemental carbon (EC) deposits from autopsied lung samples from cigarette smokers, ...

  10. Determining Inorganic and Organic Carbon.

    Science.gov (United States)

    Koistinen, Jaana; Sjöblom, Mervi; Spilling, Kristian

    2017-11-21

    Carbon is the element which makes up the major fraction of lipids and carbohydrates, which could be used for making biofuel. It is therefore important to provide enough carbon and also follow the flow into particulate organic carbon and potential loss to dissolved organic forms of carbon. Here we present methods for determining dissolved inorganic carbon, dissolved organic carbon, and particulate organic carbon.

  11. Aged riverine particulate organic carbon in four UK catchments

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Jessica L., E-mail: jesams@ceh.ac.uk [Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP (United Kingdom); Tipping, Edward, E-mail: et@ceh.ac.uk [Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP (United Kingdom); Bryant, Charlotte L., E-mail: charlotte.bryant@glasgow.ac.uk [NERC Radiocarbon Facility, East Kilbride G75 0QF, Scotland (United Kingdom); Helliwell, Rachel C., E-mail: rachel.helliwell@hutton.ac.uk [The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH Scotland (United Kingdom); Toberman, Hannah, E-mail: hannahtoberman@hotmail.com [Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP (United Kingdom); School of Environmental Sciences, University of Liverpool, Liverpool L69 3GP (United Kingdom); Quinton, John, E-mail: j.quinton@lancaster.ac.uk [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2015-12-01

    The riverine transport of particulate organic matter (POM) is a significant flux in the carbon cycle, and affects macronutrients and contaminants. We used radiocarbon to characterise POM at 9 riverine sites of four UK catchments (Avon, Conwy, Dee, Ribble) over a one-year period. High-discharge samples were collected on three or four occasions at each site. Suspended particulate matter (SPM) was obtained by centrifugation, and the samples were analysed for carbon isotopes. Concentrations of SPM and SPM organic carbon (OC) contents were also determined, and were found to have a significant negative correlation. For the 7 rivers draining predominantly rural catchments, PO{sup 14}C values, expressed as percent modern carbon absolute (pMC), varied little among samplings at each site, and there was no significant difference in the average values among the sites. The overall average PO{sup 14}C value for the 7 sites of 91.2 pMC corresponded to an average age of 680 {sup 14}C years, but this value arises from the mixing of differently-aged components, and therefore significant amounts of organic matter older than the average value are present in the samples. Although topsoil erosion is probably the major source of the riverine POM, the average PO{sup 14}C value is appreciably lower than topsoil values (which are typically 100 pMC). This is most likely explained by inputs of older subsoil OC from bank erosion, or the preferential loss of high-{sup 14}C topsoil organic matter by mineralisation during riverine transport. The significantly lower average PO{sup 14}C of samples from the River Calder (76.6 pMC), can be ascribed to components containing little or no radiocarbon, derived either from industrial sources or historical coal mining, and this effect is also seen in the River Ribble, downstream of its confluence with the Calder. At the global scale, the results significantly expand available information for PO{sup 14}C in rivers draining catchments with low erosion rates

  12. Elemental Quantification and Source Identification of Airborne Particulate Matter in Pathumwan District

    International Nuclear Information System (INIS)

    Chueinta, Wanna; Bunprapob, Suphamattree

    2003-10-01

    Airborne particulate matter (APM) is apparently the biggest air pollution problem found in capital and other big cities. APM has the adverse impact on human health and also on the environment. PM 10 (particle with aerodynamic diameter le ss than 10 μm), in particularly, can cause the respiratory diseases since it can penetrate the respiratory system. Furthermore, PM 25 (particle with aerodynamic diameter less than 2.5 μm) is the major cause of visibility impairment. This paper reports the study of urban air pollution at Pathumwan District, a business area in Bangkok City center. Coarse and fine fractions of PM 10 (P M-2 .2 - 10 and PM 2.2 , respectively) were collected by a Gent stacked filter unit air sampler during January-December 2002. The filter samples were measured for mass and black carbon. Elemental concentrations were analyzed by instrumental neutron activation analysis. The results indicate the rather high level of PM 10 at the sampling site. The annual average of PM 10 is 56.6 μg/m 3 compared to the ambient air quality standard of 50 μg/m 3 . The obtained data of black carbon and elemental concentrations were used for investigation of pollution sources by applying a receptor model called Positive Matrix Factorization. It could identify that the main sources were most likely city dust, emissions from vehicle combustion, incineration and sea-salt

  13. A real-time, wearable elemental carbon monitor for use in underground mines

    International Nuclear Information System (INIS)

    Takiff, L.; Aiken, G.

    2010-01-01

    A real-time, wearable elemental carbon monitor has been developed to determines the exposure of workers in underground mines to diesel particulate material (DPM). ICx Technologies designed the device in an effort to address the health hazards associated with DPM exposure. Occupational exposure to DPM in underground metal and nonmetal mines is regulated by the Mine Safety and Health Administration. The most common method of measuring exposure to elemental or total carbon nanoparticles involves capturing the particles on a filter followed by a thermo-optical laboratory analysis, which integrates the exposure spatially and in time. The ICx monitor is based on a design developed and tested by the National Institute of Occupational Safety and Health (NIOSH). The ICx monitor uses a real-time particle capture and light transmission method to yield elemental carbon values that are displayed for the wearer and are stored internally in a compact device. The ICx monitoring results were found to be in good agreement with the established laboratory method (NIOSH Method 5040) for elemental carbon emissions from a diesel engine. The monitors are compact and powered by a rechargeable lithium-ion battery. Examples of DPM monitoring in mines demonstrated how the real-time data can be more useful that time-averaged results. The information can be used to determine ventilation rates needed at any given location to lower the DPM concentrations.15 refs., 6 figs.

  14. A real-time, wearable elemental carbon monitor for use in underground mines

    Energy Technology Data Exchange (ETDEWEB)

    Takiff, L. [ICx Technologies, Cambridge, MA (United States); Aiken, G. [ICx Technologies, Albuquerque, NM (United States)

    2010-07-01

    A real-time, wearable elemental carbon monitor has been developed to determines the exposure of workers in underground mines to diesel particulate material (DPM). ICx Technologies designed the device in an effort to address the health hazards associated with DPM exposure. Occupational exposure to DPM in underground metal and nonmetal mines is regulated by the Mine Safety and Health Administration. The most common method of measuring exposure to elemental or total carbon nanoparticles involves capturing the particles on a filter followed by a thermo-optical laboratory analysis, which integrates the exposure spatially and in time. The ICx monitor is based on a design developed and tested by the National Institute of Occupational Safety and Health (NIOSH). The ICx monitor uses a real-time particle capture and light transmission method to yield elemental carbon values that are displayed for the wearer and are stored internally in a compact device. The ICx monitoring results were found to be in good agreement with the established laboratory method (NIOSH Method 5040) for elemental carbon emissions from a diesel engine. The monitors are compact and powered by a rechargeable lithium-ion battery. Examples of DPM monitoring in mines demonstrated how the real-time data can be more useful that time-averaged results. The information can be used to determine ventilation rates needed at any given location to lower the DPM concentrations.15 refs., 6 figs.

  15. Determination of trace elements by INAA in urban air particulate matter and transplanted lichens

    International Nuclear Information System (INIS)

    Bergamaschi, L.; Rizzio, E.; Profumo, A.; Gallorini, M.

    2005-01-01

    Lichens as biomonitors and neutron activation analysis as analytical technique have been employed to evaluate the trace element atmospheric pollution in the metropolitan area of the city of Pavia (Northern Italy). Transplanted lichens (Parmelia sulcata and Usnea gr. hirta) and air particulate matter have been monthly collected and analyzed during the winter 2001-2002. INAA and ET-AAS have been used for the determination of 28 elements in air particulate matter and 25 elements in lichens. Trace metals concentrations as well as the corresponding enrichment factors were evaluated and compared. (author)

  16. Effect of particulate matrix inhibitors on microstructure and properties of 2-D carbon-carbon composites

    International Nuclear Information System (INIS)

    Tlomak, P.; Takano, Shigeru; Wright, M.A.; Ju, Chien-Ping.

    1991-01-01

    Extended-life applications of structural carbon-carbon (C-C) composites involve multiple periods of operation in high-temperature oxidizing environments and as such require a reliable oxidation protection system (OPS). Advanced OPS's generally consist of an external ceramic coating combined with an in-depth matrix inhibitor. This work investigated the effects produced by particulate inhibitors doped on the matrix on the microstructure of 2D, PAN fiber-pitch matrix C-C's. Boron and zirconium-based particulate inhibitors were added to the matrix material prior to heat treatment. A process was developed to assure a uniform distribution of the inhibitors. Oxidation behavior of such matrix-inhibited composites was evaluated using isothermal oxidation tests. 5 refs

  17. Determination of trace elements in urban airborne particulates (PM ...

    African Journals Online (AJOL)

    Assessment of the air quality in Newcastle upon Tyne, UK was performed by determining the trace element content in airborne particulates (PM10). Samples were collected over a 12 month period (March 2011 to April 2012) using two high volume air sampler provided with a PM10 size selective inlet. The concentrations of ...

  18. Elemental and organic carbon in aerosols over urbanized coastal region (southern Baltic Sea, Gdynia).

    Science.gov (United States)

    Lewandowska, Anita; Falkowska, Lucyna; Murawiec, Dominika; Pryputniewicz, Dorota; Burska, Dorota; Bełdowska, Magdalena

    2010-09-15

    Studies on PM 10, total particulate matter (TSP), elemental carbon (EC) and organic carbon (OC) concentrations were carried out in the Polish coastal zone of the Baltic Sea, in urbanized Gdynia. The interaction between the land, the air and the sea was clearly observed. The highest concentrations of PM 10, TSP and both carbon fractions were noted in the air masses moving from southern and western Poland and Europe. The EC was generally of primary origin and its contribution to TSP and PM 10 mass was on average 2.3% and 3.7% respectively. Under low wind speed conditions local sources (traffic and industry) influenced increases in elemental carbon and PM 10 concentrations in Gdynia. Elemental carbon demonstrated a pronounced weekly cycle, yielding minimum values at the weekend and maximum values on Thursdays. The role of harbors and ship yards in creating high EC concentrations was clearly observed. Concentration of organic carbon was ten times higher than that of elemental carbon, and the average OC contribution to PM 10 mass was very high (31.6%). An inverse situation was observed when air masses were transported from over the Atlantic Ocean, the North Sea and the Baltic Sea. These clean air masses were characterized by the lowest concentrations of all analysed compounds. Obtained results for organic and elemental carbon fluxes showed that atmospheric aerosols can be treated, along with water run-off, as a carbon source for the coastal waters of the Baltic Sea. The enrichment of surface water was more effective in the case of organic carbon (0.27+/-0.19 mmol m(-2) d(-1)). Elemental carbon fluxes were one order of magnitude smaller, on average 0.03+/-0.04 mmol m(-2) d(-1). We suggest that in some situations atmospheric carbon input can explain up to 18% of total carbon fluxes into the Baltic coastal waters. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Metro Commuter Exposures to Particulate Air Pollution and PM2.5-Associated Elements in Three Canadian Cities: The Urban Transportation Exposure Study.

    Science.gov (United States)

    Van Ryswyk, Keith; Anastasopolos, Angelos T; Evans, Greg; Sun, Liu; Sabaliauskas, Kelly; Kulka, Ryan; Wallace, Lance; Weichenthal, Scott

    2017-05-16

    System-representative commuter air pollution exposure data were collected for the metro systems of Toronto, Montreal, and Vancouver, Canada. Pollutants measured included PM 2.5 (PM = particulate matter), PM 10 , ultrafine particles, black carbon, and the elemental composition of PM 2.5 . Sampling over three weeks was conducted in summer and winter for each city and covered each system on a daily basis. Mixed-effect linear regression models were used to identify system features related to particulate exposures. Ambient levels of PM 2.5 and its elemental components were compared to those of the metro in each city. A microenvironmental exposure model was used to estimate the contribution of a 70 min metro commute to daily mean exposure to PM 2.5 elemental and mass concentrations. Time spent in the metro was estimated to contribute the majority of daily exposure to several metallic elements of PM 2.5 and 21.2%, 11.3% and 11.5% of daily PM 2.5 exposure in Toronto, Montreal, and Vancouver, respectively. Findings suggest that particle air pollutant levels in Canadian metros are substantially impacted by the systems themselves, are highly enriched in steel-based elements, and can contribute a large portion of PM 2.5 and its elemental components to a metro commuter's daily exposure.

  20. Multispectral remote-sensing algorithms for particulate organic carbon (POC): The Gulf of Mexico

    OpenAIRE

    Son, Young Baek; Gardner, Wilford D.; Mishonov, Alexey V.; Richardson, Mary Jo

    2009-01-01

    To greatly increase the spatial and temporal resolution for studying carbon dynamics in the marine environment, we have developed remote-sensing algorithms for particulate organic carbon (POC) by matching in situ POC measurements in the Gulf of Mexico with matching SeaWiFS remote-sensing reflectance. Data on total particulate matter (PM) as well as POC collected during nine cruises in spring, summer and early winter from 1997-2000 as part of the Northeastern Gulf of Mexico (NEGOM) study were ...

  1. Particulate Matter and Black Carbon Concentration Levels in Ashaiman, a Semi-Urban Area of Ghana, 2008

    OpenAIRE

    Sam-Quarcoo Dotse; Joshua Kwame Asane; F.G. Ofosu

    2012-01-01

    Particulate matter and black carbon concentration levels in Ashaiman, a semi-urban area of Ghana was assessed. Using IVL PM2.5 and PM10 particle samplers, airborne particulate matter was sampled on Teflon filters for a period of three months. In addition to determination of particulate mass in the two fractions by gravimetrical method, aerosol filters were analyzed to determine Black Carbon (BC) concentration levels using the black smoke method. BC fractions in fine and coarse, together with ...

  2. Elemental analysis of air particulate samples in Jakarta area by x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Yumiarti; Yusuf, M.; Mellawati, June; Menry, Yulizon; Surtipanti S

    1998-01-01

    Determination of elements in air particulate samples collected from Jakarta, especially from industrial area Pulo Gadung, also from residence, office, and recreation sites had been carried out. The samples collected periodically from August through December 1996. The elements were analyzed by X-ray fluorescence spectrometry method. Quantitative and qualitative analyses were done using QXAS AXIL (Quantitative X-ray Analysis System of x-ray Spectra by Iterative Least squares fitting) and QAES (Quantitative Analyses of Environmental Samples) package program. Results of the analyses showed that the content of heavy metal elements in air particulate samples from all areas studied were still below the maximum permissible concentration. (authors)

  3. Assessment of Contribution of Contemporary Carbon Sources to Size-Fractionated Particulate Matter and Time-Resolved Bulk Particulate Matter Using the Measurement of Radiocarbon

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, H M; Young, T M; Buchholz, B A

    2009-04-16

    This study was motivated by a desire to improve understanding of the sources contributing to the carbon that is an important component of airborne particulate matter (PM). The ultimate goal of this project was to lay a ground work for future tools that might be easily implemented with archived or routinely collected samples. A key feature of this study was application of radiocarbon measurement that can be interpreted to indicate the relative contributions from fossil and non-fossil carbon sources of atmospheric PM. Size-resolved PM and time-resolved PM{sub 10} collected from a site in Sacramento, CA in November 2007 (Phase I) and March 2008 (Phase II) were analyzed for radiocarbon and source markers such as levoglucosan, cholesterol, and elemental carbon. Radiocarbon data indicates that the contributions of non-fossil carbon sources were much greater than that from fossil carbon sources in all samples. Radiocarbon and source marker measurements confirm that a greater contribution of non-fossil carbon sources in Phase I samples was highly likely due to residential wood combustion. The present study proves that measurement of radiocarbon and source markers can be readily applied to archived or routinely collected samples for better characterization of PM sources. More accurate source apportionment will support ARB in developing more efficient control strategies.

  4. Lagrangian analysis of multiscale particulate flows with the particle finite element method

    Science.gov (United States)

    Oñate, Eugenio; Celigueta, Miguel Angel; Latorre, Salvador; Casas, Guillermo; Rossi, Riccardo; Rojek, Jerzy

    2014-05-01

    We present a Lagrangian numerical technique for the analysis of flows incorporating physical particles of different sizes. The numerical approach is based on the particle finite element method (PFEM) which blends concepts from particle-based techniques and the FEM. The basis of the Lagrangian formulation for particulate flows and the procedure for modelling the motion of small and large particles that are submerged in the fluid are described in detail. The numerical technique for analysis of this type of multiscale particulate flows using a stabilized mixed velocity-pressure formulation and the PFEM is also presented. Examples of application of the PFEM to several particulate flows problems are given.

  5. Recycling and Resistance of Petrogenic Particulate Organic Carbon: Implications from A Chemical Oxidation Method

    Science.gov (United States)

    Zhang, T.; Li, G.; Ji, J.

    2013-12-01

    Petrogenic particulate organic carbon (OCpetro) represents a small fraction of photosynthetic carbon which escapes pedogenic-petrogenic degradation and gets trapped in the lithosphere. Exhumation and recycling of OCpetro are of significant importance in the global carbon cycle because OCpetro oxidation represents a substantial carbon source to the atmosphere while the re-burial of OCpetro in sediment deposits has no net effect. Though studies have investigated various behaviors of OCpetro in the surface environments (e.g., riverine mobilization, marine deposition, and microbial remineralization), less attention has been paid to the reaction kinetics and structural transformations during OCpetro oxidation. Here we assess the OCpetro-oxidation process based on a chemical oxidation method adopted from soil studies. The employed chemical oxidation method is considered an effective simulation of natural oxidation in highly oxidative environments, and has been widely used in soil studies to isolate the inert soil carbon pool. We applied this chemical method to the OCpetro-enriched black shale samples from the middle-lower Yangtze (Changjiang) basin, China, and performed comprehensive instrumental analyses (element analysis, Fourier transform infrared (FTIR) spectrum, and Raman spectrum). We also conducted step-oxidizing experiments following fixed time series and monitored the reaction process in rigorously controlled lab conditions. In this work, we present our experiment results and discuss the implications for the recycling and properties of OCpetro. Particulate organic carbon concentration of black shale samples before and after oxidation helps to quantify the oxidability of OCpetro and constrain the preservation efficiency of OCpetro during fluvial erosion over large river basin scales. FTIR and Raman analyses reveal clear structural variations on atomic and molecular levels. Results from the step-oxidizing experiments provide detailed information about the reaction

  6. Satellite observation of particulate organic carbon dynamics on the Louisiana continental shelf

    Science.gov (United States)

    Particulate organic carbon (POC) plays an important role in coastal carbon cycling and the formation of hypoxia. Yet, coastal POC dynamics are often poorly understood due to a lack of long-term POC observations and the complexity of coastal hydrodynamic and biogeochemical process...

  7. Temperature dependence of photodegradation of dissolved organic matter to dissolved inorganic carbon and particulate organic carbon

    Czech Academy of Sciences Publication Activity Database

    Porcal, Petr; Dillon, P. J.; Molot, L. A.

    2015-01-01

    Roč. 10, č. 6 (2015), e0128884 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GAP503/12/0781; GA ČR(CZ) GA15-09721S Institutional support: RVO:60077344 Keywords : dissolved organic carbon * particulate organic carbon * photodegradation * temperature Subject RIV: DA - Hydrology ; Limnology Impact factor: 3.057, year: 2015

  8. A Three End-Member Mixing Model Based on Isotopic Composition and Elemental Ratio

    Directory of Open Access Journals (Sweden)

    Kon-Kee Liu Shuh-Ji Kao

    2007-01-01

    Full Text Available A three end-member mixing model based on nitrogen isotopic composition and organic carbon to nitrogen ratio of suspended particulate matter in an aquatic environment has been developed. Mathematical expressions have been derived for the calculation of the fractions of nitrogen or organic carbon originating from three different sources of distinct isotopic and elemental compositions. The model was successfully applied to determine the contributions from anthropogenic wastes, soils and bedrock-derived sediments to particulate nitrogen and particulate organic carbon in the Danshuei River during the flood caused by Typhoon Bilis in August 2000. The model solutions have been expressed in a general form that allows applications to mixtures with other types of isotopic compositions and elemental ratios or in forms other than suspended particulate matter.

  9. Carbonaceous material in fine particulate matter (PM10) of urban areas

    International Nuclear Information System (INIS)

    Brocco, Domenico; Leonardi, Vittorio; Maso; Marco; Prignani, Patrizia

    2006-01-01

    Total carbon (TC), elemental carbon (EC) and organic carbon (OC) in the fine particulate matter (PM10) were measured in the urban areas of Rome and Marino (Castelli Romani) by means a thermal method with a non-dispersive infrared detector (NDIR). The results showed that carbonaceous material constitutes 30-40% of the total aerosols in Rome and about 20% in Marino [it

  10. Emissions of particulate-bound elements from stationary diesel engine: Characterization and risk assessment

    Science.gov (United States)

    Betha, Raghu; Balasubramanian, Rajasekhar

    2011-09-01

    There has been an increasing concern about the emissions of airborne particulate matter (PM) from diesel engines because of their close association with adverse health and environmental impacts. Among the alternative fuels being considered, biodiesel made by the transesterification of waste cooking oil has received wide attention in recent years because of its low cost and the added advantage of reducing waste oil disposal. This study was conducted to make a comparative evaluation of the particulate-bound elements emitted from ultra low sulphur diesel (ULSD) and waste cooking oil-derived biodiesel (B100) and a blend of both the fuels (B50). It was observed that the PM mass concentrations were reduced by about 36% when B100 was used. Crustal elements such as Mg, K and Al were found to be in higher concentrations compared to other elements emitted from both B100 and ULSD. Zn, Cr, Cu, Fe, Ni, Mg, Ba, K were found to be higher in the biodiesel exhaust while Co, Pb, Mn, Cd, Sr, and As were found to be higher in the ULSD exhaust. To evaluate the potential health risk due to inhalation of PM emitted from diesel engines running on ULSD and B100, health risk estimates based on exposure and dose-response assessments of particulate-bound elements were calculated assuming exposure for 24 h. The findings indicate that the exposure to PM of the B100 exhaust is relatively more hazardous and may pose adverse health effects compared to ULSD.

  11. Emission factors of fine particulate matter, organic and elemental carbon, carbon monoxide, and carbon dioxide for four solid fuels commonly used in residential heating by the U.S. Navajo Nation.

    Science.gov (United States)

    Champion, Wyatt M; Connors, Lea; Montoya, Lupita D

    2017-09-01

    Most homes in the Navajo Nation use wood as their primary heating fuel, often in combination with locally mined coal. Previous studies observed health effects linked to this solid-fuel use in several Navajo communities. Emission factors (EFs) for common fuels used by the Navajo have not been reported using a relevant stove type. In this study, two softwoods (ponderosa pine and Utah juniper) and two high-volatile bituminous coals (Black Mesa and Fruitland) were tested with an in-use residential conventional wood stove (homestove) using a modified American Society for Testing and Materials/U.S. Environmental Protection Agency (ASTM/EPA) protocol. Filter sampling quantified PM 2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) and organic (OC) and elemental (EC) carbon in the emissions. Real-time monitoring quantified carbon monoxide (CO), carbon dioxide (CO 2 ), and total suspended particles (TSP). EFs for these air pollutants were developed and normalized to both fuel mass and energy consumed. In general, coal had significantly higher mass EFs than wood for all pollutants studied. In particular, coal emitted, on average, 10 times more PM 2.5 than wood on a mass basis, and 2.4 times more on an energy basis. The EFs developed here were based on fuel types, stove design, and operating protocols relevant to the Navajo Nation, but they could be useful to other Native Nations with similar practices, such as the nearby Hopi Nation. Indoor wood and coal combustion is an important contributor to public health burdens in the Navajo Nation. Currently, there exist no emission factors representative of Navajo homestoves, fuels, and practices. This study developed emission factors for PM 2.5 , OC, EC, CO, and CO 2 using a representative Navajo homestove. These emission factors may be utilized in regional-, national-, and global-scale health and environmental models. Additionally, the protocols developed and results presented here may inform on-going stove design of

  12. Determination of trace elements in airborne particulates by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Jung, Yong Sam; Jung, Yung Joo; Jung, Eui Sik; Cho, Seung Yun

    1995-01-01

    Trace elements in airborne particulates were analyzed by instrumental neutron activation analysis(INAA) under the optimum analytical condition. Neutron irradiation for sample was done at the irradiation hole(neutron flux, 1 x 10 13 n/cm 2 s) of TRIGA MARK-III research reactor in the Korea Atomic Energy Research Institute. For the verification of the analytical method, NIST SRM-1648 and NIES CRM No.8 were chosen and analyzed. The accuracy and precision of the analysis of 40 and 24 trace elements in the samples were compared with the certified and reported values, respectively. The analytical method was found to be reliable enough when the analytical data of NIES sample were compared with those of different countries. In the analytical result of two or both of standard reference materials, relative standard deviation was within the 15% except a few elements and the relative error was within the 10%. We used this method to analyze 30 trace elements in airborne particulates collected with the high volume air sampler(PM-10) at two different locations and also confirmed the possibility to use this method as a routine monitoring tool to find out environmental pollution sources. 3 figs., 8 tabs., 19 refs. (Author)

  13. Implications of elevated CO2 on pelagic carbon fluxes in an Arctic mesocosm study – an elemental mass balance approach

    Directory of Open Access Journals (Sweden)

    J. Czerny

    2013-05-01

    Full Text Available Recent studies on the impacts of ocean acidification on pelagic communities have identified changes in carbon to nutrient dynamics with related shifts in elemental stoichiometry. In principle, mesocosm experiments provide the opportunity of determining temporal dynamics of all relevant carbon and nutrient pools and, thus, calculating elemental budgets. In practice, attempts to budget mesocosm enclosures are often hampered by uncertainties in some of the measured pools and fluxes, in particular due to uncertainties in constraining air–sea gas exchange, particle sinking, and wall growth. In an Arctic mesocosm study on ocean acidification applying KOSMOS (Kiel Off-Shore Mesocosms for future Ocean Simulation, all relevant element pools and fluxes of carbon, nitrogen and phosphorus were measured, using an improved experimental design intended to narrow down the mentioned uncertainties. Water-column concentrations of particulate and dissolved organic and inorganic matter were determined daily. New approaches for quantitative estimates of material sinking to the bottom of the mesocosms and gas exchange in 48 h temporal resolution as well as estimates of wall growth were developed to close the gaps in element budgets. However, losses elements from the budgets into a sum of insufficiently determined pools were detected, and are principally unavoidable in mesocosm investigation. The comparison of variability patterns of all single measured datasets revealed analytic precision to be the main issue in determination of budgets. Uncertainties in dissolved organic carbon (DOC, nitrogen (DON and particulate organic phosphorus (POP were much higher than the summed error in determination of the same elements in all other pools. With estimates provided for all other major elemental pools, mass balance calculations could be used to infer the temporal development of DOC, DON and POP pools. Future elevated pCO2 was found to enhance net autotrophic community carbon

  14. Neutron activation analysis determination of trace elements in suspended particulate material and in central Thyrrenian sea sediments

    International Nuclear Information System (INIS)

    Madaro, M.; Moauro, R.; Boniforti, R.

    1985-01-01

    Neutron activation analysis and gamma-spectrometry have been applied to the instrumental determination of 26 elements (As, Au, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, Hg, La, Lu, Mn, Rb, Sb, Sc, Se, Sm, Ta, Tb, Th, W, Yb, Zn, Zr) in samples of suspended particulate matter and sediments collected in the stretch of Tyrrhenian Sea between the Volturno River mouth and the Cape of Circeo. Some of these elements have particular importance because they can be toxic to the organisms or can be used as tracers in the aquatic environment of radioisotopes generated in activation or fission processes. Results show that some elements, not constituting particular crystal lattices, are more concentrated in particulate matter than in sediments. Such results agree with the hypothesis, supported also by others, that particulate matter acts as a scavenger with respect to most microelements, because of both biological and physico-chemical phenomena

  15. Comparison Between Elemental Carbon Measured Using Thermal-Optical Analysis and Black Carbon Measurements Using A Novel Cellphone-Based System

    Science.gov (United States)

    Ramanathan, N.; Khan, B.; Leong, I.; Lukac, M.

    2011-12-01

    provides an affordable real-time method for gathering BC data on a mass scale. The CBMS' scalability should enable dense deployments near emissions sources and reduce uncertainty in emissions inventories due to undersampling. Bond, T. C., E. Bhardwaj, R. Dong, R. Jogani, S. Jung, C. Roden, D. G. Streets, and N. M. Trautmann (2007), Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850-2000, Global Biogeochem. Cycles, 21, GB2018, doi:10.1029/2006GB002840. Birch, M. E. and R.A. Cary (1996), Elemental Carbon-Based Method for Monitoring Occupational Exposures to Particulate Diesel Exhaust. Aerosol Sci. Technol., 25, 221-241. NIOSH (1996). Elemental carbon (diesel particulate) method 5040. NIOSH Manual of Analytical Methods, 4th ed. National Institute for Occupational Safety and Health, Cincinnati, Ohio (1st Suppl.). Ramanathan, N., M. Lukac, T. Ahmed, A. Kar, P.S. Praveen, T. Honles, I. Leong, I.H. Rehman, J.J. Schauer, V. Ramanathan (2011), A cellphone based system for large-scale monitoring of black carbon, Atmos. Environ., 45 (26), 4481-4487.

  16. Organic and elemental carbon bound to particulate matter in the air of printing office and beauty salon

    Science.gov (United States)

    Rogula-Kopiec, Patrycja; Pastuszka, Józef S.; Rogula-Kozłowska, Wioletta; Mucha, Walter

    2017-11-01

    The aim of this study was to determine the role of internal sources of emissions on the concentrations of total suspended particulate matter (TSP) and its sub-fraction, so-called respirable PM (PM4; fraction of particles with particle size ≤ 4 µm) and to estimate to which extent those emissions participate in the formation of PM-bound elemental (EC) and organic (OC) carbon in two facilities - one beauty salon and one printing office located in Bytom (Upper Silesia, Poland). The average concentration of PM in the printing office and beauty salon during the 10-day measurement period was 10 and 4 (PM4) and 8 and 3 (TSP) times greater than the average concentration of PM fractions recorded in the same period in the atmospheric air; it was on average: 204 µg/m3 (PM4) and 319 µg/m3 (TSP) and 93 µg/m3 (PM4) and 136 µg/m3 (TSP), respectively. OC concentrations determined in the printing office were 38 µg/m3 (PM4) and 56 µg/m3 (TSP), and those referring to EC: 1.8 µg/m3 (PM4) and 3.5 µg/m3 (TSP). In the beauty salon the average concentration of OC for PM4 and TSP were 58 and 75 µg/m3, respectively and in case of EC - 3.1 and 4.7 µg/m3, respectively. The concentrations of OC and EC within the those facilities were approximately 1.7 (TSP-bound EC, beauty salon) to 4.7 (TSP-bound OC, printing office) times higher than the average atmospheric concentrations of those compounds measured in both PM fractions at the same time. In both facilities the main source of TSP-and PM4-bound OC in the indoor air were the chemicals - solvents, varnishes, paints, etc.

  17. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Science.gov (United States)

    2010-07-01

    ....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured using... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Oxides of nitrogen, carbon monoxide...

  18. PIXE and neutron activation analysis: intercomparison in the elemental concentration of airborne particulate matter

    International Nuclear Information System (INIS)

    Cassorla, V.; Rojas, X.; Gras, N.; Chuaqui, L.; Dinator, M.I.; Morales, J.R.; Llona, F.; Romo-Kroeger, C.

    1993-01-01

    Two nuclear analytical techniques, neutron activation analysis (NAA) and proton induced X-ray emission (PIXE), were used to determine major and trace elements in airborne particulate matter collected during the first fortnight of June 1991 at the La Reina Nuclear Center. NAA detected the presence of 15 elements in the samples. PIXE, for the same samples, allowed the detection of 12 elements. The elements determined by both techniques were Al, Ca, Mn, Fe, Cu, and Zn. A good correlation between results for these elements for each of the two techniques was demonstrated. (author)

  19. Particulate inverse opal carbon electrodes for lithium-ion batteries.

    Science.gov (United States)

    Kang, Da-Young; Kim, Sang-Ok; Chae, Yu Jin; Lee, Joong Kee; Moon, Jun Hyuk

    2013-01-29

    Inverse opal carbon materials were used as anodes for lithium ion batteries. We applied particulate inverse opal structures and their dispersion in the formation of anode electrodes via solution casting. We prepared aminophenyl-grafted inverse opal carbons (a-IOC), inverse opal carbons with mesopores (mIOC), and bare inverse opal carbons (IOC) and investigated the electrochemical behavior of these samples as anode materials. Surface modification by aminophenyl groups was confirmed by XPS measurements. TEM images showed mesopores, and the specific area of mIOC was compared with that of IOC using BET analysis. A half-cell test was performed to compare a-IOC with IOC and mIOC with IOC. In the case of the a-IOC structure, the cell test revealed no improvement in the reversible specific capacity or the cycle performance. The mIOC cell showed a reversible specific capacity of 432 mAh/g, and the capacity was maintained at 88%-approximately 380 mAh/g-over 20 cycles.

  20. Carbon Composition of Particulate Organic Carbon in the Gulf of Mexico

    Science.gov (United States)

    Rogers, K.; Montoya, J. P.; Weber, S.; Bosman, S.; Chanton, J.

    2016-02-01

    The Deepwater Horizon blowout released 5.0x1011 g C from gaseous hydrocarbons and up to 6.0x1011g C from oil into the water column. Another carbon source, adding daily to the water column, leaks from the natural hydrocarbon seeps that pepper the seafloor of the Gulf of Mexico. How much of this carbon from the DWH and natural seeps is assimilated into particulate organic carbon (POC) in the water column? We filtered seawater collected in 2010, 2012, and 2013 from seep and non-seep sites, collecting POC on 0.7µm glass microfiber filters and analyzing the POC for stable and radiocarbon isotopes. Mixing models based on carbon isotopic endmembers of methane, oil, and modern production were used to estimate the percentage of hydrocarbon incorporated into POC. Significant differences were seen between POC from shallow and deep waters and between POC collected from seep, non-seep, and blowout sites; however yearly differences were not as evident suggesting the GOM has a consistent supply of depleted carbon. Stable carbon isotopes signatures of POC in the Gulf averaged -23.7±2.5‰ for shallow samples and -26.65±2.9‰ for deep POC samples, while radiocarbon signatures averaged -100.4±146.1‰ for shallow and -394.6±197‰ for deep samples. POC in the northern Gulf are composed of 23-91% modern carbon, 2-21% methane, and 0-71% oil. Oil plays a major role in the POC composition of the GOM, especially at the natural seep GC600.

  1. Relationship between indoor and outdoor carbonaceous particulates in roadside households

    Energy Technology Data Exchange (ETDEWEB)

    Funasaka, K.; Miyazaki, T.; Tsuruho, K. [Osaka City Institute of Public Health and Environmental Sciences (Japan); Tamura, K. [The National Institute for Minamata Disease, Kumamoto (Japan); Mizuno, T. [Mie University (Japan). Dept. of Chemistry for Materials; Kuroda, K. [Osaka City University Medical School (Japan). Dept. of Preventive Medicine and Environmental Health

    2000-07-01

    Concentrations of particulate matter (PM) and carbonaceous particulates in indoor and outdoor air at roadside private households were measured in Osaka, Japan. The particulate samples were collected on filters using a portable AND sampler capable of separating particles into three different size ranges: over 10 {mu}m, 2-10 {mu}m (coarse) and below 2 {mu}m (fine) in aerodynamic diameter. The filters were weighed and then analyzed for elemental carbon (EC) and organic carbon (OC) by thermal oxidation using a CHN CORDER. The results showed that indoor fine PM concentration is considerably affected by fine EC and the fine EC in indoor air is significantly correlated to that in outdoor air, r = 0.86 (n = 30, p < 0.001). A simple estimation from EC content ratio in diesel exhaust particles indicated that about 30% of indoor particulates of less than 10 {mu}m (PM10) were contributed from diesel exhaust. Additionally, the size characteristics of outdoor PM at roadside and background sites were examined using Andersen Cascade Impactors. (author)

  2. Elemental constituents of particulate matter and newborn’s size in eight European cohorts

    NARCIS (Netherlands)

    Pedersen, M.; Gehring, U.; Beelen, R.; Wang, M.; Giorgis-Allemand, L.; Andersen, A.M.N.; Basagaña, X.; Bernard, C.; Cirach, M.; Forastiere, F.; Hoogh, K. de; Gražuleviĉvienė, R.; Gruzieva, O.; Hoek, G.; Jedynska, A.; Klümper, C.; Kooter, I.M.; Krämer, U.; Kukkonen, J.; Porta, D.; Postma, D.S.; Raaschou-Nielsen, O.; Rossem, L. van; Sunyer, J.; Sørensen, M.; Tsai, M.Y.; Vrijkotte, T.G.M.; Wilhelm, M.; Nieuwenhuijsen, M.J.; Pershagen, G.; Brunekreef, B.; Kogevinas, M.; Slama, R.

    2016-01-01

    Background: The health effects of suspended particulate matter (PM) may depend on its chemical composition. Associations between maternal exposure to chemical constituents of PM and newborn’s size have been little examined. Objective: We aimed to investigate the associations of exposure to elemental

  3. Levels of particulate air pollution, its elemental composition, determinants and health effects in metro systems

    Science.gov (United States)

    Nieuwenhuijsen, M. J.; Gómez-Perales, J. E.; Colvile, R. N.

    The aim of this study was to review and summarise the levels of particulate air pollution, its elemental composition, its determinants, and its potential health effects in metro systems. A number of studies have been conducted to assess the levels of particulate matter and its chemical composition in metro systems. The monitoring equipment used varied and may have led to different reporting and makes it more difficult to compare results between metro systems. Some of the highest average levels of particulate matter were measured in the London metro system. Whereas some studies have reported higher levels of particulate matter in the metro system (e.g. London, Helsinki, Stockholm) compared to other modes of transport (London) and street canyons (Stockholm and Helsinki), other studies reported lower levels in the metro system (e.g. Hong Kong, Guangzhou, and Mexico City). The differences may be due to different material of the wheel, ventilation levels and breaking systems but there is no good evidence to what extent the differences may be explained by this, except perhaps for some elements (e.g. Fe, Mn). The dust in the metro system was shown to be more toxic than ambient airborne particulates, and its toxicity was compared with welding dust. The higher toxicity may be due to the higher iron content. Although the current levels of particulate matter and toxic matter are unlikely to lead to any significant excess health effects in commuters, they should be reduced where possible. It will be difficult to introduce measures to reduce the levels in older metro systems, e.g. by introducing air conditioning in London, but certainly they should be part of any new designs of metro systems.

  4. Analysis of airborne particulate matter

    International Nuclear Information System (INIS)

    Iwatsuki, Masaaki

    2002-01-01

    An airborne particulate matter (APM) consists of many kinds of solid and liquid particles in air. APM analysis methods and the application examples are explained on the basis of paper published after 1998. Books and general remarks, sampling and the measurement of concentration and particle distribution, elemental analysis methods and the present state of analysis of species are introduced. Tapered Element Oscillating Microbalance (TEOM) method can collect continuously the integrating mass, but indicates lower concentration. Cu, Ni, Zn, Co, Fe(2), Mn, Cd, Fe(3) and Pb, the water-soluble elements, are determined by ion-chromatography after ultrasonic extraction of the aqueous solution. The detection limit of them is from 10 to 15 ppb (30 ppb Cd and 60 ppb Pb). The elemental carbon (EC) and organic carbon (OC) are separated by the thermal mass measurement-differential scanning calorimeter by means of keeping at 430degC for 60 min. 11 research organizations compared the results of TC (Total Carbon) and EC by NIOSH method 5040 and the thermal method and obtained agreement of TC. ICP-MS has been developed in order to determine correctly and quickly the trace elements. The determination methods for distinction of chemical forms in the environment were developed. GC/MS, LC/MS and related technologies for determination of organic substances are advanced. Online real-time analysis of APN, an ideal method, is examined. (S.Y.)

  5. Origin of particulate organic carbon in the marine atmosphere as indicated by it stable carbon isotopic composition

    International Nuclear Information System (INIS)

    Chesselet, R.; Fontugne, M.; Buat-Menard, P.; Ezat, U.; Lambert, C.E.

    1981-01-01

    Organic carbon concentration and isotopic composition were determined in samples of atmospheric particulate matter collected in 1979 at remote marine locations (Enewetak atoll, Sargasso Sea) during the SEAREX (Sea-Air Exchange) program field experiments. Atmospheric Particulate Organic Carbon (POC) concentrations were found to be in the range of 0.3 to 1.2 mg. m -3 , in agreement with previous literature data. The major mass of POC was found on the smallest particles (r 13 C/ 12 C of the small particles is close to the one expected (d 13 C = 26 +- 2 0 //sub infinity/) for atmospheric POC of continental origin. For all the samples analysed so far, it appears that more than 80% of atmospheric POC over remote marine areas is of continental origin. This can be explained either by long-range transport of small sized continental organic aserosols or by the production of POC in the marine atmosphere from a vapor phase organic carbon pool of continental origin. The POC in the large size fraction of marine aerosols ( 13 C = -21 +- 2 0 / 00 ) for POC associated with sea-salt droplets transported to the marine atmosphere

  6. Analysis of trace elements in airborne particulate matters collected in Ankara, Turkey by TXRF

    Directory of Open Access Journals (Sweden)

    Durukan I.

    2013-04-01

    Full Text Available The main focus point of the presented study was the assessment of atmospheric burden of particulate matter and toxic trace metals in the atmosphere of Ankara, Turkey. For this purpose, outdoor samplings were accomplished in the capital city, Ankara. The types of filters, sample collection and sample preparation methods were investigated and optimized. Analyses were provided by the total reflection X-ray fluorescence (TXRF spectroscopic technique in Germany. Spatial and temporal variations of air particulate matter (APM levels in the city were examined. In some stations, APM sampled in according to their size distribution such as PM10 and PM2.5. Elemental characterization of size distributed PM were achieved and evaluated. It was detected that the elements mainly originated from soil in Beytepe station, from soil and solid fuel usage in Kayas station and from traffic and a variety of human activities in Sıhhiye station in air samplings. While the elements of natural origin observed in PM10 fraction, the elements from traffic and human activities were in PM2.5. Eventually, enrichment calculations were performed in order to identify the pollution sources.

  7. Seasonal variations in the concentration and solubility of elements in atmospheric particulate matter: a case study in Northern Italy

    Directory of Open Access Journals (Sweden)

    Canepari S.

    2013-04-01

    Full Text Available Atmospheric particulate matter is characterized by a variety of chemical components, generally produced by different sources. Chemical fractionation of elements, namely the determination of their extractable and residual fractions, may reliably increase the selectivity of some elements as tracers of specific PM sources. Seasonal variations of atmospheric particulate matter concentration in PM10 and PM2.5, of elemental concentration in PM10 and PM2.5, of the extractable and residual fraction of elements in different size fractions in the range 0.18 – 18 μm are reported in this paper. The effect of the ageing of the air masses is discussed.

  8. Application of Fast Neutron Activity for Analysing Element Content on the Air Particulate

    International Nuclear Information System (INIS)

    Elin Nuraini; Ngasifudin; Sunardi; Elisabeth

    2003-01-01

    The research on application of fast neutron activation analysis for analysing element content on the air particulate has been done. The research about analysis of the particulate matters contained in non industrial traffic territory of Surakarta and full industrial traffic territory of Karanganyar, had been done using Fast Neutron Activation Analysis Method. Fast Neutron Activation Analysis method is one of the element analysis method which it's basic principle causes radioactivity appearance from the samples after being irradiated by neutron. The qualitative analysis method is based on the measuring of specific energy which was radiated by radioactive's nucleus and quantitative analysis method is based on the measuring of the intensity of each peak gamma energy. The qualitative analysis results showed, some element were identified i.e : 51 V ; 200 Pb, 27 Al and 52 Cr. The result showed that Pb level is 2.21 ± 0.09x10 -1 mg/m 3 in non industrial traffic territory of Surakarta and 2.78 ± 0.11x10 -1 mg/m 3 full industrial traffic territory of Karanganyar, this value greater than threshold value according 6.0x10 -2 mg/m 3 . (author)

  9. Emissions factors for gaseous and particulate pollutants from offshore diesel engine vessels in China

    Science.gov (United States)

    Zhang, F.; Chen, Y.; Tian, C.; Li, J.; Zhang, G.; Matthias, V.

    2015-09-01

    Shipping emissions have significant influence on atmospheric environment as well as human health, especially in coastal areas and the harbor districts. However, the contribution of shipping emissions on the environment in China still need to be clarified especially based on measurement data, with the large number ownership of vessels and the rapid developments of ports, international trade and shipbuilding industry. Pollutants in the gaseous phase (carbon monoxide, sulfur dioxide, nitrogen oxides, total volatile organic compounds) and particle phase (particulate matter, organic carbon, elemental carbon, sulfates, nitrate, ammonia, metals) in the exhaust from three different diesel engine power offshore vessels in China were measured in this study. Concentrations, fuel-based and power-based emissions factors for various operating modes as well as the impact of engine speed on emissions were determined. Observed concentrations and emissions factors for carbon monoxide, nitrogen oxides, total volatile organic compounds, and particulate matter were higher for the low engine power vessel than for the two higher engine power vessels. Fuel-based average emissions factors for all pollutants except sulfur dioxide in the low engine power engineering vessel were significantly higher than that of the previous studies, while for the two higher engine power vessels, the fuel-based average emissions factors for all pollutants were comparable to the results of the previous studies. The fuel-based average emissions factor for nitrogen oxides for the small engine power vessel was more than twice the International Maritime Organization standard, while those for the other two vessels were below the standard. Emissions factors for all three vessels were significantly different during different operating modes. Organic carbon and elemental carbon were the main components of particulate matter, while water-soluble ions and elements were present in trace amounts. Best-fit engine speeds

  10. Carbonaceous Aerosols in Fine Particulate Matter of Santiago Metropolitan Area, Chile

    Science.gov (United States)

    Toro Araya, Richard; Flocchini, Robert; Morales Segura, Rául G. E.; Leiva Guzmán, Manuel A.

    2014-01-01

    Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002–2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m3) and the United States Environmental Protection Agency standard (15 µg/m3) for fine particulate matter. PMID:24587753

  11. Carbonaceous Aerosols in Fine Particulate Matter of Santiago Metropolitan Area, Chile

    Directory of Open Access Journals (Sweden)

    Richard Toro Araya

    2014-01-01

    Full Text Available Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002–2007, concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August and warm (September to February seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41% than in the warm season (44 ± 18%. On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m3 and the United States Environmental Protection Agency standard (15 µg/m3 for fine particulate matter.

  12. Carbonaceous aerosols in fine particulate matter of Santiago Metropolitan Area, Chile.

    Science.gov (United States)

    Toro Araya, Richard; Flocchini, Robert; Morales Segura, Rául G E; Leiva Guzmán, Manuel A

    2014-01-01

    Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002-2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m(3)) and the United States Environmental Protection Agency standard (15 µg/m(3)) for fine particulate matter.

  13. Black carbon and particulate matter (PM2.5) concentrations in New York City's subway stations.

    Science.gov (United States)

    Vilcassim, M J Ruzmyn; Thurston, George D; Peltier, Richard E; Gordon, Terry

    2014-12-16

    The New York City (NYC) subway is the main mode of transport for over 5 million passengers on an average weekday. Therefore, airborne pollutants in the subway stations could have a significant impact on commuters and subway workers. This study looked at black carbon (BC) and particulate matter (PM2.5) concentrations in selected subway stations in Manhattan. BC and PM2.5 levels were measured in real time using a Micro-Aethalometer and a PDR-1500 DataRAM, respectively. Simultaneous samples were also collected on quartz filters for organic and elemental carbon (OC/EC) analysis and on Teflon filters for gravimetric and trace element analysis. In the underground subway stations, mean real time BC concentrations ranged from 5 to 23 μg/m(3), with 1 min average peaks >100 μg/m(3), while real time PM2.5 levels ranged from 35 to 200 μg/m(3). Mean EC levels ranged from 9 to 12.5 μg/m(3). At street level on the same days, the mean BC and PM2.5 concentrations were below 3 and 10 μg/m(3), respectively. This study shows that both BC soot and PM levels in NYC's subways are considerably higher than ambient urban street levels and that further monitoring and investigation of BC and PM subway exposures are warranted.

  14. Vertical transport of suspended particulate trace elements in the North Atlantic Ocean

    International Nuclear Information System (INIS)

    Kuss, J.; Kremling, K.; Scholten, J.

    1999-01-01

    Suspended marine particles play a key role in the exchange processes between rapidly sinking particles and seawater because of their large surface area and long residence times. They are involved in the transport processes of rapidly sinking particles (∼ 100 m/day) through aggregation and disaggregation. This mechanism results in a net downward transport of suspended particulate trace elements (TE). To provide more information to these processes TE in suspended particulate material (SPM) have been measured on three cruises from 1995 to 1997 along 20 deg. W using a large volume in situ filtration between 25 m and 4150 m depth in addition to particle flux measurements with sediment traps. These studies were performed under the framework of German JGOFS

  15. Advanced Fine Particulate Characterization Methods

    Energy Technology Data Exchange (ETDEWEB)

    Steven Benson; Lingbu Kong; Alexander Azenkeng; Jason Laumb; Robert Jensen; Edwin Olson; Jill MacKenzie; A.M. Rokanuzzaman

    2007-01-31

    The characterization and control of emissions from combustion sources are of significant importance in improving local and regional air quality. Such emissions include fine particulate matter, organic carbon compounds, and NO{sub x} and SO{sub 2} gases, along with mercury and other toxic metals. This project involved four activities including Further Development of Analytical Techniques for PM{sub 10} and PM{sub 2.5} Characterization and Source Apportionment and Management, Organic Carbonaceous Particulate and Metal Speciation for Source Apportionment Studies, Quantum Modeling, and High-Potassium Carbon Production with Biomass-Coal Blending. The key accomplishments included the development of improved automated methods to characterize the inorganic and organic components particulate matter. The methods involved the use of scanning electron microscopy and x-ray microanalysis for the inorganic fraction and a combination of extractive methods combined with near-edge x-ray absorption fine structure to characterize the organic fraction. These methods have direction application for source apportionment studies of PM because they provide detailed inorganic analysis along with total organic and elemental carbon (OC/EC) quantification. Quantum modeling using density functional theory (DFT) calculations was used to further elucidate a recently developed mechanistic model for mercury speciation in coal combustion systems and interactions on activated carbon. Reaction energies, enthalpies, free energies and binding energies of Hg species to the prototype molecules were derived from the data obtained in these calculations. Bimolecular rate constants for the various elementary steps in the mechanism have been estimated using the hard-sphere collision theory approximation, and the results seem to indicate that extremely fast kinetics could be involved in these surface reactions. Activated carbon was produced from a blend of lignite coal from the Center Mine in North Dakota and

  16. Elemental characterization of New Year's Day PM10 and PM2.2 particulates matter at several sites in Metro Manila

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Flora L; Pabroa, Preciosa Corazon B; Morco, Ryan P; Racho, Joseph Michael D [Analytical Measurements Research Group, Philippine Nuclear Research Institute, Commonwealth Ave., Diliman, Quezon City (Philippines)

    2007-07-01

    In the Philippines, it has been a yearly tradition to welcome the coming of the New Year with the loudest noise as can be achieved. Firecrackers and fireworks have been a necessity for Filipinos during this time despite bans on the use of most of these and despite the Department of Health (DOH) campaign to use alternative safe practices to welcome the New Year. Data for PM 10 samples (fractionated as PM 10-2.2 or the course fraction and PM2.2 or the fine fraction) collected in four PNRI sampling sites in Metro Manila show the air pollution impacts of fireworks on New Year's Eve. Samples were collected from 1998 to 2006 using a Gent dichotomous sampler in connection with the PNRI project {sup P}articulate Matter Source Apportionment Using Nuclear and Related Analytical Techniques{sup .} Particulate mass was determined by gravimetry. Elemental analysis of the air filters was done using X-ray Fluorescence Spectrometry (X RF) or Particle induced X-ray Emission (PIXE), multielemental non-destructive nuclear analytical techniques. Black carbon was analyzed using reflectometry. PM 10 values increased by two to four times the usual averages (36.4 to 55.4 ug/cum) and in 2002 even exceeded the PNAAQ short-term guideline value of 150 ug/cum at the ADMU sampling station. PM2.2 values increased by two to six times the usual averages (15 to 28 ug/cum), even many times exceeding US EPA short-term guideline value of 65 ug/cum. The increase in the particulate mass of New Year's Day samples can be attributed more to an increase in the metal pollutants rather than the black carbon, with higher contribution to the fine fraction. Increase in the elemental concentrations of Al, S, Cl, K, Ba, Sr, Ti, V, Mn, Cu and Pb were observed with the highest contribution from K. Results show that the usual practices of burning firecrackers and fireworks during New Year's day celebration is a very strong source of air pollution which contributes significantly high amount of metal pollutants in the

  17. Quality and Quantity of Particulate Organic Carbon in a Coral Reef at Tioman Island, Malaysia

    International Nuclear Information System (INIS)

    Nakajima, R.; Toda, T.; Shibata, A.

    2011-01-01

    The quality and quantity of particulate organic carbon (POC) were investigated in a fringing coral reef of Tioman Island, Malaysia to better understand the food sources for reef meso-zooplankton. Phytoplankton biomass in the water column was on average 0.22 (± 0.07) mg Chl-a m-3, of which pico phytoplankton was the most important (size <3 μm, 50-70 % of the total Chl-a). The proportion of C biomass by phytoplankton and other plankton to particulate organic carbon (POC) was low (6 % and 5 %, respectively) and the major portion of POC was occupied by detritus (89 %), suggesting that the diet of particle-feeding or suspension feeding meso-zooplankton would chiefly consist of detritus. (author)

  18. Input of particulate organic and dissolved inorganic carbon from the Amazon to the Atlantic Ocean

    OpenAIRE

    Druffel, E. R. M; Bauer, J. E; Griffin, S.

    2005-01-01

    We report concentrations and isotope measurements (radiocarbon and stable carbon) of dissolved inorganic carbon (DIC) and suspended particulate organic carbon (POC) in waters collected from the mouth of the Amazon River and the North Brazil Current. Samples were collected in November 1991, when the Amazon hydrograph was at its annual minimum and the North Brazil Current had retroflected into the equatorial North Atlantic. The DIC Δ14C results revealed postbomb carbon in river and ocean waters...

  19. Study of particulates and heavy elements in air of some Syrian cities

    International Nuclear Information System (INIS)

    Othman, I.; Al-Oudat, M.; Al-Rayes, A. H.; Al- Kharfan, K.

    1999-11-01

    A study of air pollution in different sites of five Syrian cities (Damascus, Aleppo, Tartous, Homs, and Sweda) was carried out. The concentration of total suspended particulate (TSP), particulate less than 10 microns (PM 10) and less than 3 microns (PM 3) were measured using high volume air sampler (HVAS). Heavy element concentration, Pb, Cd, Zn, and Cu were also determined using anodic stripping voltametry. The result showed that TSP, PM 10 and PM 3 were higher than WHO standards in several times. Mean lead concentrations ranged between 0.58 and 2.96 μg/m 3 and 0.56 and 1.53 μg/m 3 in Damascus and Aleppo respectively, while in the other cities these concentrations were less than WHO standards (0.5 - 1 μg/m 3 ). (author)

  20. Satellite observation of particulate organic carbon dynamics in ...

    Science.gov (United States)

    Particulate organic carbon (POC) plays an important role in coastal carbon cycling and the formation of hypoxia. Yet, coastal POC dynamics are often poorly understood due to a lack of long-term POC observations and the complexity of coastal hydrodynamic and biogeochemical processes that influence POC sources and sinks. Using field observations and satellite ocean color products, we developed a nw multiple regression algorithm to estimate POC on the Louisiana Continental Shelf (LCS) from satellite observations. The algorithm had reliable performance with mean relative error (MRE) of ?40% and root mean square error (RMSE) of ?50% for MODIS and SeaWiFS images for POC ranging between ?80 and ?1200 mg m23, and showed similar performance for a large estuary (Mobile Bay). Substantial spatiotemporal variability in the satellite-derived POC was observed on the LCS, with high POC found on the inner shelf (satellite data with carefully developed algorithms can greatly increase

  1. Black Carbon and Particulate Matter (PM2.5) Concentrations in New York City’s Subway Stations

    Science.gov (United States)

    2015-01-01

    The New York City (NYC) subway is the main mode of transport for over 5 million passengers on an average weekday. Therefore, airborne pollutants in the subway stations could have a significant impact on commuters and subway workers. This study looked at black carbon (BC) and particulate matter (PM2.5) concentrations in selected subway stations in Manhattan. BC and PM2.5 levels were measured in real time using a Micro-Aethalometer and a PDR-1500 DataRAM, respectively. Simultaneous samples were also collected on quartz filters for organic and elemental carbon (OC/EC) analysis and on Teflon filters for gravimetric and trace element analysis. In the underground subway stations, mean real time BC concentrations ranged from 5 to 23 μg/m3, with 1 min average peaks >100 μg/m3, while real time PM2.5 levels ranged from 35 to 200 μg/m3. Mean EC levels ranged from 9 to 12.5 μg/m3. At street level on the same days, the mean BC and PM2.5 concentrations were below 3 and 10 μg/m3, respectively. This study shows that both BC soot and PM levels in NYC’s subways are considerably higher than ambient urban street levels and that further monitoring and investigation of BC and PM subway exposures are warranted. PMID:25409007

  2. Evaluation of the impact of general phosphate fertilizers factories company on the surrounding environment by determining natural radionuclides and some trace elements in air particulates

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Al-Kharfan, K.; Al-Hamwi, A.; Al-Shamali, K.

    2004-01-01

    Natural radionuclides and some trace element levels in air particulates of the areas surrounding the phosphate fertilizers factory in Homs have been determined Mean total air particulates concentration ranged from 31 μg/m3 in Kerba Al-Teen in Autumn period. While trace element concentrations in air particulates were relatively high in air particulates collected from AECS center and other sites situated north east of the factory; about 1.7 ng/m3 in AECS site and 1.7 ng/m3 in Abel for uranium and cadmium, respectively. In addition, radioactivity analysis of air particulates has shown low levels of polonium 210 and lead 210; a value of 2 mBq/m3 in Kerba Al-Teen has not been exceeded. However, air particulate, natural radionuclides and the studied trace elements concentrations in the surrounding areas were within the natural levels. Therefore, air emissions from the factory containing radioactive materials and trace elements are relatively low. This is due to strict control procedures on transport and loading processes of phosphate in addition to the high efficiency of filters used for air emissions from the phosphate fertilizers factory during the study period (2002). (author)

  3. Evaluation of the impact of general phosphate fertilizers factories company on the surrounding environment by determining natural radionuclides and some trace elements in air particulates

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Al-Kharfan, K.; Al-Hamwi, A.; Al-Shmali, K.; Abdul Haleem, M.

    2003-12-01

    Natural radionuclides and some trace element levels in air particulates of the areas surrounding the phosphate fertilizers factory in Homs have been determined mean total air particulates concentration ranged from 31μg/m 3 in Kerba Al-Teen in autumn period. While trace element concentrations in air particulates were relatively high in air particulates collected from AECS center and other sites situated north east of the factory: about 1.7 ng/m 3 in AECS site and 1.7 ng/m 3 in Abel for uranium and cadmium, respectively. In addition, radioactivity analysis of air particulates have shown low levels of polonium 210 and lead 210, a value of 2 mBg/m 3 in Kerba Al-Teen has not been exceeded. However, air particulate, natural radionuclides and the studied trace elements concentrations in the surrounding areas were within the natural levels. Therefore, air emissions from the factory containing radioactive materials and trace elements are relatively low. This is due to strict control procedures on transport and loading processes of phosphate in addition to the high efficiency of filters used for air emissions from the phosphate fertilizers factory during the study period (2002).(author)

  4. Metal/nonmetal diesel particulate matter rule

    Energy Technology Data Exchange (ETDEWEB)

    Tomko, D.M. [United States Dept. of Labor, Mine Safety and Health Administration, Pittsburgh, PA (United States). Safety and Health Technology Center; Stackpole, R.P. [United States Dept. of Labor, Mine Safety and Health Administration, Triadelphia, WV (United States). Approval and Certification Center; Findlay, C.D. [United States Dept. of Labor, Mine Safety and Health Administration, Arlington, VA (United States). Metal/Nonmetal Safety and Health; Pomroy, W.H. [United States Dept. of Labor, Mine Safety and Health Administration, Duluth, MN (United States). Metal/Nonmetal North Central District

    2010-07-01

    The American Mine Safety and Health Administration (MSHA) issued a health standard in January 2001 designed to reduce exposure to diesel particulate matter (DPM) in underground metal and nonmetal mines. The rule established an interim concentration limit for DPM of 400 {mu}g/m{sup 3} of total carbon, to be followed in 2004 by a final limit of 160 {mu}g/m{sup 3} of total carbon. The 2001 rule was challenged in federal court by various mining trade associations and mining companies. The rule was subsequently amended. This paper highlighted the major provisions of the 2006 final rule and summarized MSHAs current compliance sampling procedures. The concentration limit was changed to a permissible exposure limit and the sampling surrogate was changed from total carbon to elemental carbon. The MSHA published a new rule in 2006 which based the final limit on a miner's personal exposure rather than a concentration limit. The final limit was phased in using 3 steps over 2 years. This paper also discussed engineering controls and a recent MSHA report on organic carbon, elemental carbon and total carbon emissions from a diesel engine fueled with various blends of standard diesel and biodiesel. In May 2008, about two-thirds of all underground metal/nonmetal mines achieved and maintained compliance with the rule. 20 refs.

  5. Controlling exposure to DPM : diesel particulate filters vs. biodiesel

    International Nuclear Information System (INIS)

    Bugarski, A.D.; Shi, X.C.

    2009-01-01

    In order to comply with Mine Safety and Health Administration regulations, mining companies are required to reduce miners exposures to diesel particulate matter (DPM) to 160 μg/m 3 of total carbon. Diesel particulate filter (DPF) systems, disposable filter elements (DFEs), and diesel oxidation catalysts (DOCs) are among the most effective strategies and technologies for curtailing DPM at its source. Substituting diesel fuel with biodiesel blends is also considered to be a plausible solution by many underground mine operators. Studies were conducted at the National Institute for Occupational Safety and Health Diesel Laboratory at Lake Lynn Experimental Mine to evaluate various control technologies and strategies available to the underground mining industry to reduce exposure to DPM. The physical, chemical and toxicological properties of diesel aerosols (DPM) emitted by engines in an underground mine were also evaluated. The DPF and DFE systems were found to be highly effective in reducing total particulate and elemental carbon mass concentrations, total aerosol surface concentrations and, in most cases, concentrations of diesel aerosols in occupational settings such as underground mines. Soy methyl ester (SME) biodiesel fuels had the potential to reduce the mine air concentrations of total DPM, although the rate of reduction varied depending on engine operating conditions. The disadvantage of using biodiesel fuels was an increase in the fraction of particle-bound volatile organics and concentration of aerosols for light-load engine operating conditions.

  6. Ambient Air Pollution and Increases in Blood Pressure: Role for biological constituents of particulate matter

    Science.gov (United States)

    Particulate matter (PM) is a complex mixture of extremely small particles and liquid droplets made up of a number of components including elemental carbon, organic chemicals, metals, acids (such as nitrates and sulfates), and soil and dust particles. Epidemiological studies con...

  7. Monitoring diesel particulate matter and calculating diesel particulate densities using Grimm model 1.109 real-time aerosol monitors in underground mines.

    Science.gov (United States)

    Kimbal, Kyle C; Pahler, Leon; Larson, Rodney; VanDerslice, Jim

    2012-01-01

    Currently, there is no Mine Safety and Health Administration (MSHA)-approved sampling method that provides real-time results for ambient concentrations of diesel particulates. This study investigated whether a commercially available aerosol spectrometer, the Grimm Portable Aerosol Spectrometer Model 1.109, could be used during underground mine operations to provide accurate real-time diesel particulate data relative to MSHA-approved cassette-based sampling methods. A subset was to estimate size-specific diesel particle densities to potentially improve the diesel particulate concentration estimates using the aerosol monitor. Concurrent sampling was conducted during underground metal mine operations using six duplicate diesel particulate cassettes, according to the MSHA-approved method, and two identical Grimm Model 1.109 instruments. Linear regression was used to develop adjustment factors relating the Grimm results to the average of the cassette results. Statistical models using the Grimm data produced predicted diesel particulate concentrations that highly correlated with the time-weighted average cassette results (R(2) = 0.86, 0.88). Size-specific diesel particulate densities were not constant over the range of particle diameters observed. The variance of the calculated diesel particulate densities by particle diameter size supports the current understanding that diesel emissions are a mixture of particulate aerosols and a complex host of gases and vapors not limited to elemental and organic carbon. Finally, diesel particulate concentrations measured by the Grimm Model 1.109 can be adjusted to provide sufficiently accurate real-time air monitoring data for an underground mining environment.

  8. Carbon dioxide, climate and the deep ocean circulation: Carbon chemistry model

    International Nuclear Information System (INIS)

    Menawat, A.S.

    1992-01-01

    The objective of this study was to investigate the role of oceanic carbon chemistry in modulating the atmospheric levels of CO 2 . It is well known that the oceans are the primary sink of the excess carbon pumped into the atmosphere since the beginning of the industrial period. The suspended particulate and the dissolved organic matters in the deep ocean play important roles as carriers of carbon and other elements critical to the fate of CO 2 . In addition, the suspended particulate matter provides sites for oxidation-reduction reactions and microbial activities. The problem is of an intricate system with complex chemical, physical and biological processes. This report describes a methodology to describe the interconversions of different forms of the organic and inorganic nutrients, that may be incorporated in the ocean circulation models. Our approach includes the driving force behind the transfers in addition to balancing the elements. Such thermodynamic considerations of describing the imbalance in the chemical potentials is a new and unique feature of our approach

  9. PERSONAL, INDOOR, AND OUTDOOR CONCENTRATIONS OF PM2.5, PARTICULATE NITRATE, AND ELEMENTAL CARBON FOR INDIVIDUALS WITH COPD IN LOS ANGELES, CA

    Science.gov (United States)

    This study characterizes the personal, indoor, and outdoor concentrations of PM2.5 and the major components of PM2.5, including nitrate (NO3-), elemental carbon (EC), and the elements for individuals with chronic obstructive pulmonary disease (COPD) living in Los Angeles, CA. ...

  10. Determination of trace elements in total particulate matter of cigarette smoke by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Mishra, U.C.; Shaikh, G.N.

    1985-01-01

    Cigarette smoke contains many trace elements hazardous for human body. Tobacco samples were analyzed for their trace element contents and the results were reported earlier. This paper presents results on the trace element content analyzed in cigarette smoke using an automatic smoking machine developed in laboratory to simulate actual smoking pattern. The trace element levels in the total particulate matter samples of the cigarette smoke collected on filter papers were measured and compared with those of cigarette smoke condensate reported in the literature. Both methods of collection give comparable results. (author)

  11. Radiocarbon in particulate matter from the eastern sub-arctic Pacific Ocean: evidence of source of terrestrial carbon to the deep sea

    International Nuclear Information System (INIS)

    Druffel, E.R.M.; Honjo, S.; Griffin, S.; Wong, C.S.

    1986-01-01

    Carbon isotope ratios were measured in organic and inorganic carbon of settling particulate matter collected with a sediment trap at Ocean Station P in the Gulf of Alaska from March to October, 1983. Dissolved inorganic carbon (DIC) in surface sea water collected during two different seasons in 1984 were analyzed using large gas proportional counters and revealed a minimum seasonal Δ 14 C variation of 14 per thousand. Results show that the Δ 14 C of calcium carbonate sedimenting to the deep sea is the same as that measured in surface water DIC. In contrast, particulate organic carbon (POC) had significantly higher Δ 14 C values (by 25-70 per thousand) than that in surface water DIC. Also, the Δ 13 C of the POC was markedly lower than previously reported values from other trap stations and marine particulate matter in general. Results from this study suggest that a significant amount of the POC settling to the deep sea at this pelagic station is of terrestrial origin, not strictly of marine origin as had previously been believed

  12. Hyphenation of a carbon analyzer to photo-ionization mass spectrometry to unravel the organic composition of particulate matter on a molecular level.

    Science.gov (United States)

    Grabowsky, Jana; Streibel, Thorsten; Sklorz, Martin; Chow, Judith C; Watson, John G; Mamakos, Athanasios; Zimmermann, Ralf

    2011-12-01

    The carbonaceous fraction of airborne particulate matter (PM) is of increasing interest due to the adverse health effects they are linked to. Its analytical ascertainment on a molecular level is still challenging. Hence, analysis of carbonaceous fractions is often carried out by determining bulk parameters such as the overall content of organic compounds (OC) and elemental carbon (EC) as well as the total carbon content, TC (sum of OC and EC), however, no information about the individual substances or substance classes, of which the single fractions consist can be obtained. In this work, a carbon analyzer and a photo-ionization time-of-flight mass spectrometer (PI-TOF-MS) were hyphenated to investigate individual compounds especially from the OC fractions. The carbon analyzer enables the stepwise heating of particle samples and provides the bulk parameters. With the PI-TOF-MS, it is possible to detect the organic compounds released during the single-temperature steps due to soft ionization and fast detection of the molecular ions. The hyphenation was designed, built up, characterized by standard substances, and applied to several kinds of samples, such as ambient aerosol, gasoline, and diesel emission as well as wood combustion emission samples. The ambient filter sample showed a strong impact of wood combustion markers. This was revealed by comparison to the product pattern of the similar analysis of pure cellulose and lignin and the wood combustion PM. At higher temperatures (450 °C), a shift to smaller molecules occurred due to the thermal decomposition of larger structures of oligomeric or polymeric nature comparable to lignocelluloses and similar oxygenated humic-like substances. Finally, particulate matter from gasoline and diesel containing 10% biodiesel vehicle exhaust has been analyzed. Gasoline-derived PM exhibited large polycyclic aromatic hydrocarbons, whereas diesel PM showed a much higher total organic content. The detected pattern revealed a strong

  13. CHARACTERISTIC OF AIRBORNE PARTICULATE MATTER SAMPLES COLLECTED FROM TWO SEMI INDUSTRIAL SITES IN BANDUNG, INDONESIA

    Directory of Open Access Journals (Sweden)

    Diah Dwiana Lestiani

    2013-12-01

    Full Text Available Air particulate matter concentrations, black carbon as well as elemental concentrations in two semi industrial sites were investigated as a preliminary study for evaluation of air quality in these areas. Sampling of airborne particulate matter was conducted in July 2009 using a Gent stacked filter unit sampler and a total of 18 pairs of samples were collected. Black carbon was determined by reflectance measurement and elemental analysis was performed using particle induced X-ray emission (PIXE. Elements Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Cu, Zn and As were detected. Twenty four hour PM2.5 concentration at semi industrial sites Kiaracondong and Holis ranged from 4.0 to 22.2 µg m-3, while the PM10 concentration ranged from 24.5 to 77.1 µg m-3. High concentration of crustal elements, sulphur and zinc were identified in fine and coarse fractions for both sites. The fine fraction data from both sites were analyzed using a multivariate principal component analysis and for Kiaracondong site, identified factors are attributed to sea-salt with soil dust, vehicular emissions and biomass burning, non ferrous smelter, and iron/steel work industry, while for Holis site identified factors are attributed to soil dust, industrial emissions, vehicular emissions with biomass burning, and sea-salt. Although particulate samples were collected from semi industrial sites, vehicular emissions constituted with S, Zn and BC were identified in both sites.

  14. Chlorophyll 'a' particulate organic carbon and suspended load from the mangrove areas of Cochin backwaters

    Digital Repository Service at National Institute of Oceanography (India)

    Sheeba, P.; Devi, K.S.; Balasubramanian, T.; Sankaranarayanan, V.N.

    Chlorophyll 'a' Particulate Organic Carbon and suspended load were estimated for one year from two distinct mangrove areas of Cochin backwaters, viz. Puthuvypeen and Nettoor. Environmental parameters like tau degrees C, S ppt and pH were also...

  15. Marine Biogeochemistry of Particulate Trace Elements in the Exclusive Economic Zone (eez) of the State of Qatar

    Science.gov (United States)

    Yigiterhan, O.; Al-Ansari, I. S.; Abdel-Moati, M.; Murray, J. W.; Al-Ansi, M.

    2016-02-01

    We focus on the trace element geochemistry of particulate matter in the Exclusive Economic Zone (EEZ) of Qatar. A main goal of this research was to analyze a complete suite of trace elements on particulate matter samples from the water column from different oceanographic biogeochemical zones of the EEZ around Qatar. The sample set also includes plankton samples which are the main source of biogenic particles, dust samples which are a source of abiological particles to surface seawater and surface sediments which can be a source of resuspended particles and a sink for settling particles. The 15 metals and 2 non-metals analyzed in this study will be Al, Ti, V, Cd, Co, Cu, Fe, Mn, Ni, Pb, Zn, Mo, Ag, Ba, U and P, N. Many factors control the composition of trace elements in marine particles. Most of these are important in the EEZ of Qatar, including:1. Natural sources: These are rivers, atmospheric dust, sediment resuspension and leaks from oil beds. However, due to very limited rainfall rivers play no major role in Qatar but resuspension of shallow carbonate rich sediments and input of atmospheric dust are important due to strong currents and surrounding deserts.2. Adsorption/desorption: These chemical processes occur everywhere in the ocean and transfer metals between particles and the solution phase.3. Biological uptake: This process is likewise a universal ocean process and results in transport of metals from the solution phase to biological particles.4. Redox conditions: These are important chemical reactions in the oxic, suboxic and anoxic zones. This can be the dominant controlling mechanism in the northeastern hypoxic deeper waters of the Qatar EEZ.5. Anthropogenic sources: The eastern part of the Qatar contains numerous industrial sites, petroleum/gas platforms and refineries. There are numerous industrial sources but the main hot spots are the port of Doha and the industrial cities of Mesaieed, Khor Al-Odaid, and Ras Laffan. We aimed to determine the

  16. Method of making a graphite fuel element having carbonaceous fuel bodies

    International Nuclear Information System (INIS)

    Miertschin, G.N.; Leary, D.F.

    1977-01-01

    Particulate nuclear fuel material, particulate carbon and pitch are combined with an additive which is effective to reduce the coke yield upon carbonization to mold a green fuel body. The additive may be polystyrene, a styrene-butadiene copolymer, an aromatic hydrocarbon having a molecular weight between about 75 and 300 or a saturated hydrocarbon polymer. The green fuel body is inserted in a complementary cavity within a porous nuclear fuel element body and heated in situ to decompose the pitch and additive, leaving a relatively close-fitting fuel body in the cavity

  17. Toward Distinguishing Woodsmoke and Diesel Exhaust in Ambient Particulate Matter

    International Nuclear Information System (INIS)

    Braun, A.; Huggins, F.; Kubatova, A.; Wirick, S.; Maricq, M.; Mun, B.; McDonald, J.; Kelly, K.; Shah, N.; Huffman, G.

    2008-01-01

    Particulate matter (PM) from biomass burning and diesel exhaust has distinct X-ray spectroscopic, carbon specific signatures, which can be employed for source apportionment. Characterization of the functional groups of a wide selection of PM samples (woodsmoke, diesel soot, urban air PM) was carried out using the soft X-ray spectroscopy capabilities at the synchrotron radiation sources in Berkeley (ALS) and Brookhaven (NSLS). The spectra reveal that diesel exhaust particulate (DEP) matter is made up from a semigraphitic solid core and soluble organic matter, predominantly with carboxylic functional groups. Woodsmoke PM has no or a less prevalent, graphitic signature, instead it contains carbon-hydroxyl groups. Using these features to apportion the carbonaceous PM in ambient samples we estimate that the relative contribution of DEP to ambient PM in an urban area such as Lexington, KY and St. Louis, MO is 7% and 13.5%, respectively. These values are comparable to dispersion modeling data from nonurban and urban areas in California, and with elemental carbon measurements in urban locations such as Boston, MA, Rochester, NY, and Washington, DC.

  18. Elemental characterization of New Year's Day PM10 and PM2.2 particulates matter at several sites in Metro Manila

    International Nuclear Information System (INIS)

    Santos, Flora L.; Pabroa, Preciosa Corazon B.; Morco, Ryan P.; Racho, Joseph Michael D.

    2007-01-01

    In the Philippines, it has been a yearly tradition to welcome the coming of the New Year with the loudest noise as can be achieved. Firecrackers and fireworks have been a necessity for Filipinos during this time despite bans on the use of most of these and despite the Department of Health (DOH) campaign to use alternative safe practices to welcome the New Year. Data for PM 10 samples (fractionated as PM 10-2.2 or the course fraction and PM2.2 or the fine fraction) collected in four PNRI sampling sites in Metro Manila show the air pollution impacts of fireworks on New Year's Eve. Samples were collected from 1998 to 2006 using a Gent dichotomous sampler in connection with the PNRI project P articulate Matter Source Apportionment Using Nuclear and Related Analytical Techniques . Particulate mass was determined by gravimetry. Elemental analysis of the air filters was done using X-ray Fluorescence Spectrometry (X RF) or Particle induced X-ray Emission (PIXE), multielemental non-destructive nuclear analytical techniques. Black carbon was analyzed using reflectometry. PM 10 values increased by two to four times the usual averages (36.4 to 55.4 ug/cum) and in 2002 even exceeded the PNAAQ short-term guideline value of 150 ug/cum at the ADMU sampling station. PM2.2 values increased by two to six times the usual averages (15 to 28 ug/cum), even many times exceeding US EPA short-term guideline value of 65 ug/cum. The increase in the particulate mass of New Year's Day samples can be attributed more to an increase in the metal pollutants rather than the black carbon, with higher contribution to the fine fraction. Increase in the elemental concentrations of Al, S, Cl, K, Ba, Sr, Ti, V, Mn, Cu and Pb were observed with the highest contribution from K. Results show that the usual practices of burning firecrackers and fireworks during New Year's day celebration is a very strong source of air pollution which contributes significantly high amount of metal pollutants in the air

  19. Exposure to carbon monoxide, respirable suspended particulates, and volatile organic compounds while commuting by bicycle

    International Nuclear Information System (INIS)

    Bevan, M.A.J.; Proctor, C.J.; Baker-Rogers, J.; Warren, N.D.

    1991-01-01

    A portable air sampling system has been used to assess exposures to various substances while commuting by bicycle in an urban area. The major source of pollutants in this situation is motor vehicle exhaust emissions. Carbon monoxide, measured by electrochemical detection, was found at peak concentrations in excess of 62 ppm, with mean values over 16 individual 35-mm journeys being 10.5 ppm. Respirable suspended particulates, averaged over each journey period, were found at higher concentrations (mean 130 μg m -3 ) than would be expected in indoor situations. Mean exposure to benzene (at 56 μg m -3 ) and other aromatic volatile organic compounds was also relatively high. The influence of wind conditions on exposure was found to be significant. Commuting exposures to carbon monoxide, respirable suspended particulates, and aromatic VOCs were found to be higher than exposures in a busy high street and on common parkland

  20. Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions

    International Nuclear Information System (INIS)

    Long, Christopher M.; Nascarella, Marc A.; Valberg, Peter A.

    2013-01-01

    Airborne particles containing elemental carbon (EC) are currently at the forefront of scientific and regulatory scrutiny, including black carbon, carbon black, and engineered carbon-based nanomaterials, e.g., carbon nanotubes, fullerenes, and graphene. Scientists and regulators sometimes group these EC-containing particles together, for example, interchangeably using the terms carbon black and black carbon despite one being a manufactured product with well-controlled properties and the other being an undesired, incomplete-combustion byproduct with diverse properties. In this critical review, we synthesize information on the contrasting properties of EC-containing particles in order to highlight significant differences that can affect hazard potential. We demonstrate why carbon black should not be considered a model particle representative of either combustion soots or engineered carbon-based nanomaterials. Overall, scientific studies need to distinguish these highly different EC-containing particles with care and precision so as to forestall unwarranted extrapolation of properties, hazard potential, and study conclusions from one material to another. -- Highlights: •Major classes of elemental carbon-containing particles have distinct properties. •Despite similar names, carbon black should not be confused with black carbon. •Carbon black is distinguished by a high EC content and well-controlled properties. •Black carbon particles are characterized by their heterogenous properties. •Carbon black is not a model particle representative of engineered nanomaterials. -- This review demonstrates the significant physical and chemical distinctions between elemental carbon-containing particles e.g., carbon black, black carbon, and engineered nanomaterials

  1. Global anthropogenic emissions of particulate matter including black carbon

    Science.gov (United States)

    Klimont, Zbigniew; Kupiainen, Kaarle; Heyes, Chris; Purohit, Pallav; Cofala, Janusz; Rafaj, Peter; Borken-Kleefeld, Jens; Schöpp, Wolfgang

    2017-07-01

    This paper presents a comprehensive assessment of historical (1990-2010) global anthropogenic particulate matter (PM) emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10), as well as primary carbonaceous aerosols including black carbon (BC) and organic carbon (OC). The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping), presented for 25 global regions, and allocated to 0.5° × 0.5° longitude-latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global anthropogenic total, and residential combustion

  2. Global anthropogenic emissions of particulate matter including black carbon

    Directory of Open Access Journals (Sweden)

    Z. Klimont

    2017-07-01

    Full Text Available This paper presents a comprehensive assessment of historical (1990–2010 global anthropogenic particulate matter (PM emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10, as well as primary carbonaceous aerosols including black carbon (BC and organic carbon (OC. The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping, presented for 25 global regions, and allocated to 0.5°  ×  0.5° longitude–latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global

  3. Particulate barium tracing of significant mesopelagic carbon remineralisation in the North Atlantic

    Science.gov (United States)

    Lemaitre, Nolwenn; Planquette, Hélène; Planchon, Frédéric; Sarthou, Géraldine; Jacquet, Stéphanie; García-Ibáñez, Maribel I.; Gourain, Arthur; Cheize, Marie; Monin, Laurence; André, Luc; Laha, Priya; Terryn, Herman; Dehairs, Frank

    2018-04-01

    The remineralisation of sinking particles by prokaryotic heterotrophic activity is important for controlling oceanic carbon sequestration. Here, we report mesopelagic particulate organic carbon (POC) remineralisation fluxes in the North Atlantic along the GEOTRACES-GA01 section (GEOVIDE cruise; May-June 2014) using the particulate biogenic barium (excess barium; Baxs) proxy. Important mesopelagic (100-1000 m) Baxs differences were observed along the transect depending on the intensity of past blooms, the phytoplankton community structure, and the physical forcing, including downwelling. The subpolar province was characterized by the highest mesopelagic Baxs content (up to 727 pmol L-1), which was attributed to an intense bloom averaging 6 mg chl a m-3 between January and June 2014 and by an intense 1500 m deep convection in the central Labrador Sea during the winter preceding the sampling. This downwelling could have promoted a deepening of the prokaryotic heterotrophic activity, increasing the Baxs content. In comparison, the temperate province, characterized by the lowest Baxs content (391 pmol L-1), was sampled during the bloom period and phytoplankton appear to be dominated by small and calcifying species, such as coccolithophorids. The Baxs content, related to oxygen consumption, was converted into a remineralisation flux using an updated relationship, proposed for the first time in the North Atlantic. The estimated fluxes were of the same order of magnitude as other fluxes obtained using independent methods (moored sediment traps, incubations) in the North Atlantic. Interestingly, in the subpolar and subtropical provinces, mesopelagic POC remineralisation fluxes (up to 13 and 4.6 mmol C m-2 d-1, respectively) were equalling and occasionally even exceeding upper-ocean POC export fluxes, deduced using the 234Th method. These results highlight the important impact of the mesopelagic remineralisation on the biological carbon pump of the studied area with a near

  4. Elemental concentration of zooplankton and their particulate products

    International Nuclear Information System (INIS)

    Fowler, S.W.; Oregioni, B.

    1974-01-01

    Since zooplankton fecal pellets and molts are major vectors in the vertical transport of zinc in the sea, analyses have been made also for other trace metals in these particulate products. Euphausiids and pelagic shrimp were collected live off the Monaco coast by taking several short oblique tows with an Issacs-Kidd midwater trawl. Animals were placed in clean sea water, sorted according to species and immediately transported to the laboratory in plastic containers filled with filtered sea water taken at the collection site. Samples of microplankton, which serve as food for the macroplankton were also taken. Elemental concentrations in whole euphausiids and shrimp were measured. It was observed that molt analyses strongly support the contention that crustacean molts play an important role in the transport of metals and radionuclides in marine ecosystems. Molts can release metals to the water column or sediments upon decomposition or serve as a rich source of metals for organisms of other trophic levels which ingest them

  5. Environmental controls on the elemental composition of a Southern Hemisphere strain of the coccolithophore Emiliania huxleyi

    Science.gov (United States)

    Feng, Yuanyuan; Roleda, Michael Y.; Armstrong, Evelyn; Law, Cliff S.; Boyd, Philip W.; Hurd, Catriona L.

    2018-01-01

    A series of semi-continuous incubation experiments were conducted with the coccolithophore Emiliania huxleyi strain NIWA1108 (Southern Ocean isolate) to examine the effects of five environmental drivers (nitrate and phosphate concentrations, irradiance, temperature, and partial pressure of CO2 (pCO2)) on both the physiological rates and elemental composition of the coccolithophore. Here, we report the alteration of the elemental composition of E. huxleyi in response to the changes in these environmental drivers. A series of dose-response curves for the cellular elemental composition of E. huxleyi were fitted for each of the five drivers across an environmentally representative gradient. The importance of each driver in regulating the elemental composition of E. huxleyi was ranked using a semi-quantitative approach. The percentage variations in elemental composition arising from the change in each driver between present-day and model-projected conditions for the year 2100 were calculated. Temperature was the most important driver controlling both cellular particulate organic and inorganic carbon content, whereas nutrient concentrations were the most important regulator of cellular particulate nitrogen and phosphorus of E. huxleyi. In contrast, elevated pCO2 had the greatest influence on cellular particulate inorganic carbon to organic carbon ratio, resulting in a decrease in the ratio. Our results indicate that the different environmental drivers play specific roles in regulating the elemental composition of E. huxleyi with wide-reaching implications for coccolithophore-related marine biogeochemical cycles, as a consequence of the regulation of E. huxleyi physiological processes.

  6. Environmental pollution studies. Quantitative determination of elements in the air particulate matter by NAA

    International Nuclear Information System (INIS)

    Sutisna; Hidayat, Achmad; Muhayatun; Supriatna, Dadang

    2006-01-01

    Regarding to the 2002 PNCA Program for the Utilization of INAA in the Environmental Study, the elemental determination of air particulate matter have been done. Two sampling site were chosen to collect a PMs samples, i.e. Lembang and Bandung that represent the rural and the urban region respectively. The period of sampling was January 2002 to November 2002. Air sample was collect by GANT Stacked air sampler using 47 mm diameter cellulose filter which have a pore size of 0.45 μm and 8 μm for fine and coarse particle respectively. Quantitative elemental determination has been done using Instrumental Neutron Activation Analysis based on a comparative method. The elemental distributions on fine and coarse fraction of air particulate matter have been analyzed for both sampling sites as well as the enrichment factor (EF) for all elements interest. The result shows that the average annual concentrations of fine and coarse PMs in the Lembang sampling site were 7.8 μg.m -3 and 1.6 μg.m -3 respectively. Meanwhile at Bandung sampling site, the PMs are higher than that a Lembang sampling site, i.e. 14.4 μg.m -3 and 22.5 μg.m -3 for fine and coarse PMs respectively. The fine fraction was higher than the coarse fraction at Lembang sampling site, but at Bandung sampling site the fine fraction was lower than the coarse fraction. Fifteen elements of Na, Al, V, Mn, Br, I, Cl, Sc, Co, Fe, Cr, Zn, La, Sb and Sm were analyzed for both sampling site. Among those elements concerned, Na, Al, Br, Cl and Fe were major constituent elements in all fractions that have a concentration more than 40 ng.cm -3 . Generally, the concentration of elements determined in the urban sampling site was higher than that in the rural site. Al, V, Mn, Sc, Co and Fe are relatively higher in concentration in coarse fraction of urban site. Br element concentration was not significantly different for both sampling site. The EF values of most elements concerned are generally also higher for the fine fraction

  7. Source contributions and regional transport of primary particulate matter in China

    International Nuclear Information System (INIS)

    Hu, Jianlin; Wu, Li; Zheng, Bo; Zhang, Qiang; He, Kebin; Chang, Qing; Li, Xinghua; Yang, Fumo; Ying, Qi; Zhang, Hongliang

    2015-01-01

    A source-oriented CMAQ was applied to determine source sector/region contributions to primary particulate matter (PPM) in China. Four months were simulated with emissions grouped to eight regions and six sectors. Predicted elemental carbon (EC), primary organic carbon (POC), and PPM concentrations and source contributions agree with measurements and have significant spatiotemporal variations. Residential is a major contributor to spring/winter EC (50–80%), POC (60%–90%), and PPM (30–70%). For summer/fall, industrial contributes 30–50% for EC/POC and 40–60% for PPM. Transportation is more important for EC (20–30%) than POC/PPM ( 90% in Beijing. - Highlights: • A source-oriented CMAQ was established for primary particulate matter (PPM). • Source and region contributions to EC, POC and PPM in China were quantified. • Residential is major in spring/winter and industrial dominates in summer/fall. • Open burning is more important for southern while dust is in contrast. • Both local and Heibei emissions contribute to PPM in Beijing. - Source and region contributions to primary particulate matter in China were quantified for four months during 2012-2013. Residential and industrial are the major contributors.

  8. Comparative study for toxic elements determination in air particulate reference material by INAA, CCT-ICP-MS, and ICP-MS

    International Nuclear Information System (INIS)

    Lim, J.M.; Lee, J.H.; Kim, K.H.; Moon, J.H.; Chung, Y.S.

    2005-01-01

    Although toxic elements are minor components in the atmospheric environment, they play a significant role as important marker for atmospheric science such as risk assessment, long-range transfer study, and source apportionment. Therefore, the techniques, which allow accurate and fast elemental analysis with a minimum pre-treatment, are very important. INAA has a main advantage of non-destruction of air particulate samples, while inductively Coupled plasma with mass spectrometry (ICP-MS) encounters the most significant difficulties in pre-treatment (digestion, fusion, and dilution) and polyatomic spectral interferences for interest toxic elements, Although INAA is still reference method, a number of factors (disadvantages of cost, complexity of the instruments, and scarcity of nuclear reactor) limit its applications. To date, the use of collision cell technology ICP-MS (CCT-ICP-MS) is recommended instead of typical ICP-MS for the analysis of the toxic elements; this is because CCT-ICP-MS technique prevents polyatomic spectral interferences despite of contamination and volatile effects. In this study, a number of toxic elements in reference material, NIST SRM 2783 (air particulate on filter media) were determined by INAA, CCT-ICP-MS, and ICP-MS. For both ICP methods, the filters were decomposed by microwave digestion with 5mL nitric acid. The analytical results by three methods were compared with certificated data; the INAA results showed the most accurate and precise data sets for all target elements among three methods. In detail, the deviation between analytical results and SRM's by INAA fell below 10% for all elements excluding As (14%), while those by CCT-ICP-MS were about 20%. For ICP-MS, the result does not agree with certificated data for several elements, because polyatomic spectral interference (due to 40 Ar 35 Cl, 40 Ar 23 Na, and 35 Cl 16 O) generate positive error of analytical result for As, Cu, and V. Based on our result, INAA is still one of the most

  9. Quantification of trace elements and speciation of iron in atmospheric particulate matter

    Science.gov (United States)

    Upadhyay, Nabin

    Trace metal species play important roles in atmospheric redox processes and in the generation of oxidants in cloud systems. The chemical impact of these elements on atmospheric and cloud chemistry is dependent on their occurrence, solubility and speciation. First, analytical protocols have been developed to determine trace elements in particulate matter samples collected for carbonaceous analysis. The validated novel protocols were applied to the determination of trace elements in particulate samples collected in the remote marine atmosphere and urban areas in Arizona to study air pollution issues. The second part of this work investigates on solubility and speciation in environmental samples. A detailed study on the impact of the nature and strength of buffer solutions on solubility and speciation of iron lead to a robust protocol, allowing for comparative measurements in matrices representative of cloud water conditions. Application of this protocol to samples from different environments showed low iron solubility (less than 1%) in dust-impacted events and higher solubility (5%) in anthropogenically impacted urban samples. In most cases, Fe(II) was the dominant oxidation state in the soluble fraction of iron. The analytical protocol was then applied to investigate iron processing by fogs. Field observations showed that only a small fraction (1%) of iron was scavenged by fog droplets for which each of the soluble and insoluble fraction were similar. A coarse time resolution limited detailed insights into redox cycling within fog system. Overall results suggested that the major iron species in the droplets was Fe(1I) (80% of soluble iron). Finally, the occurrence and sources of emerging organic pollutants in the urban atmosphere were investigated. Synthetic musk species are ubiquitous in the urban environment (less than 5 ng m-3) and investigations at wastewater treatment plants showed that wastewater aeration basins emit a substantial amount of these species to

  10. Development of a Cl-impregnated activated carbon for entrained-flow capture of elemental mercury.

    Science.gov (United States)

    Ghorishi, S Behrooz; Keeney, Robert M; Serre, Shannon D; Gullett, Brian K; Jozewicz, Wojciech S

    2002-10-15

    Efforts to discern the role of an activated carbon's surface functional groups on the adsorption of elemental mercury (Hg0) and mercuric chloride demonstrated that chlorine (Cl) impregnation of a virgin activated carbon using dilute solutions of hydrogen chloride leads to increases (by a factor of 2-3) in fixed-bed capture of these mercury species. A commercially available activated carbon (DARCO FGD, NORITAmericas Inc. [FGD])was Cl-impregnated (Cl-FGD) [5 lb (2.3 kg) per batch] and tested for entrained-flow, short-time-scale capture of Hg0. In an entrained flow reactor, the Cl-FGD was introduced in Hg0-laden flue gases (86 ppb of Hg0) of varied compositions with gas/solid contact times of about 3-4 s, resulting in significant Hg0 removal (80-90%), compared to virgin FGD (10-15%). These levels of Hg0 removal were observed across a wide range of very low carbon-to-mercury weight ratios (1000-5000). Variation of the natural gas combustion flue gas composition, by doping with nitrogen oxides and sulfur dioxide, and the flow reactor temperature (100-200 degrees C) had minimal effects on Hg0 removal bythe Cl-FGD in these carbon-to-mercury weight ratios. These results demonstrate significant enhancement of activated carbon reactivity with minimal treatment and are applicable to combustion facilities equipped with downstream particulate matter removal such as an electrostatic precipitator.

  11. ICP-AES determination of trace elements in carbon steel

    International Nuclear Information System (INIS)

    Sengupta, Arijit; Rajeswari, B.; Kadam, R.M.; Babu, Y.; Godbole, S.V.

    2010-01-01

    Full text: Carbon steel, a combination of the elements iron and carbon, can be classified into four types as mild, medium, high and very high depending on the carbon content which varies from 0.05% to 2.1%. Carbon steel of different types finds application in medical devices, razor blades, cutlery and spring. In the nuclear industry, it is used in feeder pipes in the reactor. A strict quality control measure is required to monitor the trace elements, which have deleterious effects on the mechanical properties of the carbon steel. Thus, it becomes imperative to check the purity of carbon steel as a quality control measure before it is used in feeder pipes in the reactor. Several methods have been reported in literature for trace elemental determination in high purity iron. Some of these include neutron activation analysis, atomic absorption spectrometry and atomic emission spectrometry. Inductively coupled plasma atomic emission spectrometry (ICP-AES) is widely recognized as a sensitive technique for the determination of trace elements in various matrices, its major advantages being good accuracy and precision, high sensitivity, multi-element capability, large linear dynamic range and relative freedom from matrix effects. The present study mainly deals with the direct determination of trace elements in carbon steel using ICP-AES. An axially viewing ICP spectrometer having a polychromator with 35 fixed analytical channels and limited sequential facility to select any analytical line within 2.2 nm of a polychromator line was used in these studies. Iron, which forms one of the main constituents of carbon steel, has a multi electronic configuration with line rich emission spectrum and, therefore, tends to interfere in the determination of trace impurities in carbon steel matrix. Spectral interference in ICP-AES can be seriously detrimental to the accuracy and reliability of trace element determinations, particularly when they are performed in the presence of high

  12. Environmental controls on the elemental composition of a Southern Hemisphere strain of the coccolithophore Emiliania huxleyi

    Directory of Open Access Journals (Sweden)

    Y. Feng

    2018-01-01

    Full Text Available A series of semi-continuous incubation experiments were conducted with the coccolithophore Emiliania huxleyi strain NIWA1108 (Southern Ocean isolate to examine the effects of five environmental drivers (nitrate and phosphate concentrations, irradiance, temperature, and partial pressure of CO2 (pCO2 on both the physiological rates and elemental composition of the coccolithophore. Here, we report the alteration of the elemental composition of E. huxleyi in response to the changes in these environmental drivers. A series of dose–response curves for the cellular elemental composition of E. huxleyi were fitted for each of the five drivers across an environmentally representative gradient. The importance of each driver in regulating the elemental composition of E. huxleyi was ranked using a semi-quantitative approach. The percentage variations in elemental composition arising from the change in each driver between present-day and model-projected conditions for the year 2100 were calculated. Temperature was the most important driver controlling both cellular particulate organic and inorganic carbon content, whereas nutrient concentrations were the most important regulator of cellular particulate nitrogen and phosphorus of E. huxleyi. In contrast, elevated pCO2 had the greatest influence on cellular particulate inorganic carbon to organic carbon ratio, resulting in a decrease in the ratio. Our results indicate that the different environmental drivers play specific roles in regulating the elemental composition of E. huxleyi with wide-reaching implications for coccolithophore-related marine biogeochemical cycles, as a consequence of the regulation of E. huxleyi physiological processes.

  13. Trace elements in suspended particulate matter and liquid fraction of the Arno River waters

    International Nuclear Information System (INIS)

    Capannesi, G.; Cecchi, A.; Mando, P.A.

    1984-01-01

    The concentrations of 46 elements along the course of the Arno River (Tuscany, Italy) have been determined by means of Instrumental Neutron Activation Analysis. Both suspended particulate matter and liquid fraction have been investigated. No chemical treatment has been performed on the samples, either before or after irradiation. Anticoincidence techniques have been employed in the γ spectroscopy. Results are briefly discussed also from a methodological point of view. 4 references, 16 figures, 2 tables

  14. Dynamics regulating major trends in Barents Sea temperatures and subsequent effect on remotely sensed particulate inorganic carbon

    DEFF Research Database (Denmark)

    Hovland, Erlend Kjeldsberg; Dierssen, Heidi M.; Ferreira, Ana Sofia

    2013-01-01

    A more comprehensive understanding of how ocean temperatures influence coccolithophorid production of particulate inorganic carbon (PIC) will make it easier to constrain the effect of ocean acidification in the future. We studied the effect of temperature on Emiliania huxleyi PIC production...

  15. Elemental and organic carbon in flue gas particles of various wood combustion systems

    Energy Technology Data Exchange (ETDEWEB)

    Gaegauf, C.; Schmid, M.; Guentert, P.

    2005-12-15

    The airborne particulate matter (PM) in the environment is of ever increasing concern to authorities and the public. The major fractions of particles in wood combustion processes are in the size less than 1 micron, typically in the range of 30 to 300 nm. Of specific interest is the content of the elemental carbon (EC) and organic carbon (OC) in the particles since these substances are known for its particular potential as carcinogens. Various wood combustion systems have been analysed (wood chip boiler, pellet boiler, wood log boiler, wood stove and open fire). The sampling of the particles was done by mean of a multi-stage particle sizing sampler cascade impactor. The impactor classifies the particles collected according to their size. The 7 stages classify the particles between 0.4 and 9 microns aerodynamic diameter. The analytical method for determining the content of EC and OC in the particles is based on coulometry. The coulometer measures the conductivity of CO{sub 2} released by oxidation of EC in the samples at 650 {sup o}C. The OC content is determined by pyrolysis of the particle samples in helium atmosphere.

  16. A critical review of nuclear activation techniques for the determination of trace elements in atmospheric aerosols, particulates and sludge samples

    International Nuclear Information System (INIS)

    Dams, R.

    1992-01-01

    Activation analysis is one of the major techniques for the determination of many minor and trace elements in a large variety of solid environmental and pollution samples, such as atmospheric aerosols, particulate emissions, fly ash, coal, incineration ash and sewage sludge, etc. Neutron activation analysis of total, inhalable or respirable airborne particulate matter collected on a filter or in a cascade impactor on some substrate, is very popular. By Instrumental Neutron Activation Analysis (INAA) up to 45 elements can be determined. The irradiation and counting procedures can be adapted to optimize the sensitivity for particular elements. The precision is largely governed by counting statistics and a high accuracy can be obtained after calibration with multi-elemental standards. Radiochemical Neutron Activation Analysis (RNAA) is applied only when extremely low limits of determination are required. Instrumental Photon Activation Analysis (IPAA) is complementary to INAA, since some elements of environmental interest can be determined which do not produce appropriate radionuclides by neutron irradiation. Charged Particle Activation Analysis (CPAA) is used in particular circumstances such as for certification purposes or coupled to radiochemical separations for extremely low concentrations. (author)

  17. A discrete element based simulation framework to investigate particulate spray deposition processes

    KAUST Repository

    Mukherjee, Debanjan

    2015-06-01

    © 2015 Elsevier Inc. This work presents a computer simulation framework based on discrete element method to analyze manufacturing processes that comprise a loosely flowing stream of particles in a carrier fluid being deposited on a target surface. The individual particulate dynamics under the combined action of particle collisions, fluid-particle interactions, particle-surface contact and adhesive interactions is simulated, and aggregated to obtain global system behavior. A model for deposition which incorporates the effect of surface energy, impact velocity and particle size, is developed. The fluid-particle interaction is modeled using appropriate spray nozzle gas velocity distributions and a one-way coupling between the phases. It is found that the particle response times and the release velocity distribution of particles have a combined effect on inter-particle collisions during the flow along the spray. It is also found that resolution of the particulate collisions close to the target surface plays an important role in characterizing the trends in the deposit pattern. Analysis of the deposit pattern using metrics defined from the particle distribution on the target surface is provided to characterize the deposition efficiency, deposit size, and scatter due to collisions.

  18. Particulate emissions from biodiesel fuelled CI engines

    International Nuclear Information System (INIS)

    Agarwal, Avinash Kumar; Gupta, Tarun; Shukla, Pravesh C.; Dhar, Atul

    2015-01-01

    Highlights: • Physical and chemical characterization of biodiesel particulates. • Toxicity of biodiesel particulate due to EC/OC, PAHs and BTEX. • Trace metals and unregulated emissions from biodiesel fuelled diesel engines. • Influence of aftertreatment devices and injection strategy on biodiesel particulates. • Characterization of biodiesel particulate size-number distribution. - Abstract: Compression ignition (CI) engines are the most popular prime-movers for transportation sector as well as for stationary applications. Petroleum reserves are rapidly and continuously depleting at an alarming pace and there is an urgent need to find alternative energy resources to control both, the global warming and the air pollution, which is primarily attributed to combustion of fossil fuels. In last couple of decades, biodiesel has emerged as the most important alternative fuel candidate to mineral diesel. Numerous experimental investigations have confirmed that biodiesel results in improved engine performance, lower emissions, particularly lower particulate mass emissions vis-à-vis mineral diesel and is therefore relatively more environment friendly fuel, being renewable in nature. Environmental and health effects of particulates are not simply dependent on the particulate mass emissions but these change depending upon varying physical and chemical characteristics of particulates. Particulate characteristics are dependent on largely unpredictable interactions between engine technology, after-treatment technology, engine operating conditions as well as fuel and lubricating oil properties. This review paper presents an exhaustive summary of literature on the effect of biodiesel and its blends on exhaust particulate’s physical characteristics (such as particulate mass, particle number-size distribution, particle surface area-size distribution, surface morphology) and chemical characteristics (such as elemental and organic carbon content, speciation of polyaromatic

  19. Trace elements in airborne particulates in South Africa

    International Nuclear Information System (INIS)

    Vleggaar, C.M.; Van As, D.; Watkins, J.L.; Mingay, D.W.; Wells, R.B.; Briggs, A.B.; Louw, C.W.

    1980-10-01

    Airborne particulate materials were monitored continously with calendar month sampling periods at 5 rural/background, 4 rural/developing/peri-urban, 6 urban and 7 industrial sites in South Africa. Concentrations of Al, Br, Ca, Cs, Cd, Cl, Co, Cr, Cu, Eu, Fe, K, Mg, Mn, Na, Ni, Pb, Rb, S, Sb, Sc, Se, Ti, V and Zn were determined with neutron activation analysis (NAA), atomic absorption spectroscopy (AAS) and particle-induced X-ray emission spectroscopy (PIXE) employed on a complementary basis. A review of sources of airborne trace elements is given. The monitoring program, sampling, sample-handling procedures, as well as the analytical methods used, are discussed in detail. The results of related studies, i.e. effects of filter materials; sampling rates and geometry; determinations of collection efficiencies; particle size ranges; effects of internal flux monitors on the precision and accuracy of NAA; trace impurities in blank materials; quality control by routine analysis of reference materials; comparison of results obtained by NAA, AAS, and PIXE analysis; are given, as is a review of air-pollution control and research policy in South Africa and of ambient air quality standards. Results are discussed in terms of general patterns in trace-element concentrations and enrichments, the general pattern in population centres, the variability of monthly concentrations, and in terms of long-term trends at background, rural, developing, peri-urban, urban and industrial sites. Cases of concern in respect of increasing concentrations are pointed out, as are the constantly high Pb levels at urban sites [af

  20. Methodological Aspects of In Vitro Assessment of Bio-accessible Risk Element Pool in Urban Particulate Matter

    Czech Academy of Sciences Publication Activity Database

    Sysalová, J.; Száková, J.; Tremlová, J.; Kašparovská, Kateřina; Kotlík, B.; Tlustoš, P.; Svoboda, Petr

    2014-01-01

    Roč. 161, č. 2 (2014), s. 216-222 ISSN 0163-4984 Grant - others:GA ČR(CZ) GA521/09/1150; GA ČR(CZ) GAP503/12/0682 Program:GA; GA Institutional support: RVO:67985823 Keywords : risk elements * urban particulate matter * in vitro tests * bio-accessibility Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.748, year: 2014

  1. Elemental analysis of size-fractionated particulate matter sampled in Goeteborg, Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Annemarie [Department of Chemistry, Atmospheric Science, Goeteborg University, SE-412 96 Goeteborg (Sweden)], E-mail: wagnera@chalmers.se; Boman, Johan [Department of Chemistry, Atmospheric Science, Goeteborg University, SE-412 96 Goeteborg (Sweden); Gatari, Michael J. [Institute of Nuclear Science and Technology, University of Nairobi, P.O. Box 30197-00100, Nairobi (Kenya)

    2008-12-15

    The aim of the study was to investigate the mass distribution of trace elements in aerosol samples collected in the urban area of Goeteborg, Sweden, with special focus on the impact of different air masses and anthropogenic activities. Three measurement campaigns were conducted during December 2006 and January 2007. A PIXE cascade impactor was used to collect particulate matter in 9 size fractions ranging from 16 to 0.06 {mu}m aerodynamic diameter. Polished quartz carriers were chosen as collection substrates for the subsequent direct analysis by TXRF. To investigate the sources of the analyzed air masses, backward trajectories were calculated. Our results showed that diurnal sampling was sufficient to investigate the mass distribution for Br, Ca, Cl, Cu, Fe, K, Sr and Zn, whereas a 5-day sampling period resulted in additional information on mass distribution for Cr and S. Unimodal mass distributions were found in the study area for the elements Ca, Cl, Fe and Zn, whereas the distributions for Br, Cu, Cr, K, Ni and S were bimodal, indicating high temperature processes as source of the submicron particle components. The measurement period including the New Year firework activities showed both an extensive increase in concentrations as well as a shift to the submicron range for K and Sr, elements that are typically found in fireworks. Further research is required to validate the quantification of trace elements directly collected on sample carriers.

  2. Elemental analysis of size-fractionated particulate matter sampled in Goeteborg, Sweden

    International Nuclear Information System (INIS)

    Wagner, Annemarie; Boman, Johan; Gatari, Michael J.

    2008-01-01

    The aim of the study was to investigate the mass distribution of trace elements in aerosol samples collected in the urban area of Goeteborg, Sweden, with special focus on the impact of different air masses and anthropogenic activities. Three measurement campaigns were conducted during December 2006 and January 2007. A PIXE cascade impactor was used to collect particulate matter in 9 size fractions ranging from 16 to 0.06 μm aerodynamic diameter. Polished quartz carriers were chosen as collection substrates for the subsequent direct analysis by TXRF. To investigate the sources of the analyzed air masses, backward trajectories were calculated. Our results showed that diurnal sampling was sufficient to investigate the mass distribution for Br, Ca, Cl, Cu, Fe, K, Sr and Zn, whereas a 5-day sampling period resulted in additional information on mass distribution for Cr and S. Unimodal mass distributions were found in the study area for the elements Ca, Cl, Fe and Zn, whereas the distributions for Br, Cu, Cr, K, Ni and S were bimodal, indicating high temperature processes as source of the submicron particle components. The measurement period including the New Year firework activities showed both an extensive increase in concentrations as well as a shift to the submicron range for K and Sr, elements that are typically found in fireworks. Further research is required to validate the quantification of trace elements directly collected on sample carriers

  3. Efficiency of Respirator Filter Media against Diesel Particulate Matter: A Comparison Study Using Two Diesel Particulate Sources.

    Science.gov (United States)

    Burton, Kerrie A; Whitelaw, Jane L; Jones, Alison L; Davies, Brian

    2016-07-01

    Diesel engines have been a mainstay within many industries since the early 1900s. Exposure to diesel particulate matter (DPM) is a major issue in many industrial workplaces given the potential for serious health impacts to exposed workers; including the potential for lung cancer and adverse irritant and cardiovascular effects. Personal respiratory protective devices are an accepted safety measure to mitigate worker exposure against the potentially damaging health impacts of DPM. To be protective, they need to act as effective filters against carbon and other particulates. In Australia, the filtering efficiency of respiratory protective devices is determined by challenging test filter media with aerosolised sodium chloride to determine penetration at designated flow rates. The methodology outlined in AS/NZS1716 (Standards Australia International Ltd and Standards New Zealand 2012. Respiratory protective devices. Sydney/Wellington: SAI Global Limited/Standards New Zealand) does not account for the differences between characteristics of workplace contaminants like DPM and sodium chloride such as structure, composition, and particle size. This study examined filtering efficiency for three commonly used AS/NZS certified respirator filter models, challenging them with two types of diesel emissions; those from a diesel generator and a diesel engine. Penetration through the filter media of elemental carbon (EC), total carbon (TC), and total suspended particulate (TSP) was calculated. Results indicate that filtering efficiency assumed by P2 certification in Australia was achieved for two of the three respirator models for DPM generated using the small diesel generator, whilst when the larger diesel engine was used, filtering efficiency requirements were met for all three filter models. These results suggest that the testing methodology specified for certification of personal respiratory protective devices by Standards Australia may not ensure adequate protection for

  4. Alignment of policies to maximize the climate benefits of diesel vehicles through control of particulate matter and black carbon emissions

    International Nuclear Information System (INIS)

    Minjares, Ray; Blumberg, Kate; Posada Sanchez, Francisco

    2013-01-01

    Diesel vehicles offer greater fuel-efficiency and lower greenhouse gas emissions at a time when national governments seek to reduce the energy and climate impacts of the vehicle fleet. Policies that promote diesels like preferential fuel taxes, fuel economy standards and greenhouse gas emission standards can produce higher emissions of diesel particulate matter if diesel particulate filters or equivalent emission control technology is not in place. This can undermine the expected climate benefits of dieselization and increase impacts on public health. This paper takes a historical look at Europe to illustrate the degree to which dieselization and lax controls on particulate matter can undermine the potential benefits sought from diesel vehicles. We show that countries on the dieselization pathway can fully capture the value of diesels with the adoption of tailpipe emission standards equivalent to Euro 6 or Tier 2 for passenger cars, and fuel quality standards that limit the sulfur content of diesel fuel to no greater than 15 ppm. Adoption of these policies before or in parallel with adoption of fuel consumption and greenhouse gas standards can avert the negative impacts of dieselization. - Highlights: ► Preferential tax policies have increased the dieselization of some light-duty vehicle fleets. ► Dieselization paired with lax emission standards produces large black carbon emissions. ► Diesel black carbon undermines the perceived climate benefits of diesel vehicles. ► Stringent controls on diesel particulate emissions will also reduce black carbon. ► Euro 6/VI equivalent emission standards can preserve the climate benefits of diesel vehicles

  5. Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon monoxide

    Directory of Open Access Journals (Sweden)

    J.-P. Jalkanen

    2012-03-01

    Full Text Available A method is presented for the evaluation of the exhaust emissions of marine traffic, based on the messages provided by the Automatic Identification System (AIS, which enable the positioning of ship emissions with a high spatial resolution (typically a few tens of metres. The model also takes into account the detailed technical data of each individual vessel. The previously developed model was applicable for evaluating the emissions of NOx, SOx and CO2. This paper addresses a substantial extension of the modelling system, to allow also for the mass-based emissions of particulate matter (PM and carbon monoxide (CO. The presented Ship Traffic Emissions Assessment Model (STEAM2 allows for the influences of accurate travel routes and ship speed, engine load, fuel sulphur content, multiengine setups, abatement methods and waves. We address in particular the modeling of the influence on the emissions of both engine load and the sulphur content of the fuel. The presented methodology can be used to evaluate the total PM emissions, and those of organic carbon, elemental carbon, ash and hydrated sulphate. We have evaluated the performance of the extended model against available experimental data on engine power, fuel consumption and the composition-resolved emissions of PM. We have also compared the annually averaged emission values with those of the corresponding EMEP inventory, As example results, the geographical distributions of the emissions of PM and CO are presented for the marine regions of the Baltic Sea surrounding the Danish Straits.

  6. Exposure of miners to diesel exhaust particulates in underground nonmetal mines.

    Science.gov (United States)

    Cohen, H J; Borak, J; Hall, T; Sirianni, G; Chemerynski, S

    2002-01-01

    A study was initiated to examine worker exposures in seven underground nonmetal mines and to examine the precision of the National Institute for Occupational Safety and Health (NIOSH) 5040 sampling and analytical method for diesel exhaust that has recently been adopted for compliance monitoring by the Mine Safety and Health Administration (MSHA). Approximately 1000 air samples using cyclones were taken on workers and in areas throughout the mines. Results indicated that worker exposures were consistently above the MSHA final limit of 160 micrograms/m3 (time-weighted average; TWA) for total carbon as determined by the NIOSH 5040 method and greater than the proposed American Conference of Governmental Industrial Hygienists TLV limit of 20 micrograms/m3 (TWA) for elemental carbon. A number of difficulties were documented when sampling for diesel exhaust using organic carbon: high and variable blank values from filters, a high variability (+/- 20%) from duplicate punches from the same sampling filter, a consistent positive interference (+26%) when open-faced monitors were sampled side-by-side with cyclones, poor correlation (r 2 = 0.38) to elemental carbon levels, and an interference from limestone that could not be adequately corrected by acid-washing of filters. The sampling and analytical precision (relative standard deviation) was approximately 11% for elemental carbon, 17% for organic carbon, and 11% for total carbon. An hypothesis is presented and supported with data that gaseous organic carbon constituents of diesel exhaust adsorb onto not only the submicron elemental carbon particles found in diesel exhaust, but also mining ore dusts. Such mining dusts are mostly nonrespirable and should not be considered equivalent to submicron diesel particulates in their potential for adverse pulmonary effects. It is recommended that size-selective sampling be employed, rather than open-faced monitoring, when using the NIOSH 5040 method.

  7. Vertical distribution of particulate trace elements in a street canyon determined by PIXE analysis

    International Nuclear Information System (INIS)

    Raunemaa, T.; Hautojaervi, A.; Kaisla, K.; Gerlander, M.

    1981-01-01

    Suspended particles in a street canyon were investigated by collecting air particulate matter on thin filters at heigths 2.3 to 20.5 m. The weather parameters and traffic characteristics were registered during the collection. Quantitative analysis of 15 trace elements from AI to Pb was carried out by the PIXE method using 1.8-2.0 MeV protons. The concentration of lead was found to decrease exponentially when going from street level to roof level. Almost all the trace elements analyzed were found to fall into two groups with different vertical distributions. The collected matter above 10 m height was found to be due mainly to combustion originated motor vehicle exhaust, the matter below 10 m to soil originated dust. (orig.)

  8. Trace element composition of airborne particulate matter in urban and rural areas of Bangladesh

    International Nuclear Information System (INIS)

    Khaliquzzaman, M.; Biswas, S. K.; Tarafdar, S.A.; Isalam, A.; Khan, A.H.

    1995-11-01

    Size fractionated aerosol samples were collected at an urban site (Dhaka) in Bangladesh for a period of 17 months and at a rural site for six months. The samples were collected using a 'Gent' stacked filter unit in two fractions of 0-2 μm and 2-10 μm sizes. Proton induced x-ray emission (PIXE) spectroscopy has been used to determine the concentrations of 18 elements in the range of ng/m 3 . The elements range from Si to Sr and include Pb. The results of analysis of 292 air particulate samples of course and fine types from the urban site are presented. The results are discussed in the context of air pollution specially that of Pb. 6 refs., 7 tables., 2 figs

  9. The use of cation exchange matrix separation coupled with ICP-MS to directly determine platinum group element (PGE) and other trace element emissions from passenger cars equipped with diesel particulate filters (DPF)

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, Warren R.L.; Cozzi, Giulio [Institute for the Dynamics of Environmental Processes-CNR, Venice (Italy); De Boni, Antonella; Gabrieli, Jacopo [University of Venice, Department of Environmental Science, Venice (Italy); Asti, Massimo; Merlone Borla, Edoardo; Parussa, Flavio [Centro Ricerche Fiat, Orbassano (Italy); Moretto, Ezio [FIAT Powertrain Technologies S.p.A, Turin (Italy); Cescon, Paolo; Barbante, Carlo [University of Venice, Department of Environmental Science, Venice (Italy); Institute for the Dynamics of Environmental Processes-CNR, Venice (Italy); Boutron, Claude [Laboratoire de Glaciologie et Geophysique de l' Environnement, UMR CNRS 5183, B.P. 96, Saint Martin d' Heres Cedex (France)

    2011-03-15

    Inductively coupled plasma-mass spectrometry coupled with cation exchange matrix separation has been optimised for the direct determination of platinum group element (PGE) and trace element emissions from a diesel engine car. After matrix separation method detection limits of 1.6 ng g{sup -1} for Pd, 0.4 ng g{sup -1} for Rh and 4.3 ng g{sup -1} for Pt were achieved, the method was validated against the certified reference material BCR 723, urban road dust. The test vehicle was fitted with new and aged catalytic converters with and without diesel particulate filters (DPF). Samples were collected after three consecutive New European Driving Cycle (NEDC) of the particulate and ''soluble'' phases using a home-made sampler optimised for trace element analysis. Emission factors for the PGEs ranged from 0.021 ng km{sup -1} for Rh to 70.5 ng km{sup -1} for Pt; when a DPF was fitted, the emission factors for the PGEs actually used in the catalysts dropped by up to 97% (for Pt). Trace element emission factors were found to drop by a maximum of 92% for Ni to a minimum of 18% for Y when a DPF was fitted; a new DPF was also found to cause a reduction of up to 86% in the emission of particulate matter. (orig.)

  10. Predicting residential indoor concentrations of nitrogen dioxide, fine particulate matter, and elemental carbon using questionnaire and geographic information system based data

    Science.gov (United States)

    Baxter, Lisa K.; Clougherty, Jane E.; Paciorek, Christopher J.; Wright, Rosalind J.; Levy, Jonathan I.

    Previous studies have identified associations between traffic-related air pollution and adverse health effects. Most have used measurements from a few central ambient monitors and/or some measure of traffic as indicators of exposure, disregarding spatial variability and factors influencing personal exposure-ambient concentration relationships. This study seeks to utilize publicly available data (i.e., central site monitors, geographic information system, and property assessment data) and questionnaire responses to predict residential indoor concentrations of traffic-related air pollutants for lower socioeconomic status (SES) urban households. As part of a prospective birth cohort study in urban Boston, we collected indoor and outdoor 3-4 day samples of nitrogen dioxide (NO 2) and fine particulate matter (PM 2.5) in 43 low SES residences across multiple seasons from 2003 to 2005. Elemental carbon (EC) concentrations were determined via reflectance analysis. Multiple traffic indicators were derived using Massachusetts Highway Department data and traffic counts collected outside sampling homes. Home characteristics and occupant behaviors were collected via a standardized questionnaire. Additional housing information was collected through property tax records, and ambient concentrations were collected from a centrally located ambient monitor. The contributions of ambient concentrations, local traffic and indoor sources to indoor concentrations were quantified with regression analyses. PM 2.5 was influenced less by local traffic but had significant indoor sources, while EC was associated with traffic and NO 2 with both traffic and indoor sources. Comparing models based on covariate selection using p-values or a Bayesian approach yielded similar results, with traffic density within a 50 m buffer of a home and distance from a truck route as important contributors to indoor levels of NO 2 and EC, respectively. The Bayesian approach also highlighted the uncertanity in the

  11. The role of neutron activation analysis for trace elements characterization, analysis and certification in atmospheric particulates

    International Nuclear Information System (INIS)

    Rizzio, Enrico; Gallorini, Mario

    2002-01-01

    The Neutron Activation Analysis (NAA) owns these requirements and is universally accepted as one of the most reliable analytical tools for trace and ultratrace elements determination. Its use in trace elements atmospheric pollution related studies has been and is still extensive as can be demonstrate by several specific works and detailed reviews. In this work, the application of this nuclear technique, in solving a series of different analytical problems related to trace elements in air pollution processes is reported. Examples and results are given on the following topics: characterization of urban and rural airborne particulate samples; particles size distribution in the different inhalable and respirable fractions (PM10 and PM 2.5); certification of related Standard Reference Materials for data quality assurance. (author)

  12. Characterization of airborne particulate matter in Santiago, Chile. Part 6: elemental determination by neutron activation analysis

    International Nuclear Information System (INIS)

    Cassorla, V.; Rojas, X.; Andonie, O.; Gras, N.

    1995-01-01

    Instrumental neutron activation analysis was used for the chemical characterization of airborne particulate matter from some locations in the city of Santiago, Chile. The following elements were determined: Al, As, Br, Ca, Cl, Co, Cu, Cr, Fe, Mn, Na, Sb, Sc, V y Zn. The accuracy of the experimental procedure was evaluated using a standard reference material. (author). 3 refs, 3 figs, 4 tabs

  13. Particulate matter and black carbon optical properties and emission factors from prescribed fires in the southeastern United States

    Science.gov (United States)

    The aerosol emissions from prescribed fires in the Southeastern United States were measured and compared to emissions from laboratory burns with fuels collected from the site. Fine particulate matter (PM2.5), black carbon, and aerosol light scattering and absorption were characte...

  14. Elemental composition of the particulate matter present in the atmospheric aerosols of Sete Lagoas, MG

    International Nuclear Information System (INIS)

    Queiroz, Paula Guimaraes Moura; Jacomino, Vanusa Maria Feliciano; Menezes, Maria Angela de Barros Correia

    2007-01-01

    The main objective of this study was the identification of sources generating particulate matter in the atmospheric aerosols of Sete Lagoas, Minas Gerais. The measurement of the mineral composition was accomplished by X-ray diffractometry and the elemental concentration by neutron activation analysis. The results showed that Al, Cl, Cu, Fe, K, Mg and Na are the predominant chemical elements in the total suspended particles (TPS). The presence of Na, Ba, Cl, Cu, Eu, Fe and Sm in those particles with aerodynamic diameter smaller than 10 μm (PM 10 ), indicates that soil dust and ceramic and pig iron industries are the main sources of air quality degradation in the region. (author)

  15. Comparison of Elemental Mercury Oxidation Across Vanadium and Cerium Based Catalysts in Coal Combustion Flue Gas: Catalytic Performances and Particulate Matter Effects.

    Science.gov (United States)

    Wan, Qi; Yao, Qiang; Duan, Lei; Li, Xinghua; Zhang, Lei; Hao, Jiming

    2018-03-06

    This paper discussed the field test results of mercury oxidation activities over vanadium and cerium based catalysts in both coal-fired circulating fluidized bed boiler (CFBB) and chain grate boiler (CGB) flue gases. The characterizations of the catalysts and effects of flue gas components, specifically the particulate matter (PM) species, were also discussed. The catalytic performance results indicated that both catalysts exhibited mercury oxidation preference in CGB flue gas rather than in CFBB flue gas. Flue gas component studies before and after dust removal equipment implied that the mercury oxidation was well related to PM, together with gaseous components such as NO, SO 2 , and NH 3 . Further investigations demonstrated a negative PM concentration-induced effect on the mercury oxidation activity in the flue gases before the dust removal, which was attributed to the surface coverage by the large amount of PM. In addition, the PM concentrations in the flue gases after the dust removal failed in determining the mercury oxidation efficiency, wherein the presence of different chemical species in PM, such as elemental carbon (EC), organic carbon (OC) and alkali (earth) metals (Na, Mg, K, and Ca) in the flue gases dominated the catalytic oxidation of mercury.

  16. Laboratory Validation of Four Black Carbon Measurement Methods for Determination of the Nonvolatile Particulate Matter (nvPM) Mass Emissions from Commercial Aircraft Engines

    Science.gov (United States)

    Four candidate black carbon (BC) measurement techniques have been identified by the SAE International E-31 Committee for possible use in determining nonvolatile particulate matter (nvPM) mass emissions during commercial aircraft engine certification. These techniques are carbon b...

  17. Fractionation of airborne particulate-bound elements in haze-fog episode and associated health risks in a megacity of southeast China

    International Nuclear Information System (INIS)

    Li, Huiming; Wang, Qin'geng; Shao, Min; Wang, Jinhua; Wang, Cheng; Sun, Yixuan; Qian, Xin; Wu, Hongfei; Yang, Meng; Li, Fengying

    2016-01-01

    Haze caused by high particulate matter loadings is an important environmental issue. PM_2_._5 was collected in Nanjing, China, during a severe haze–fog event and clear periods. The particulate-bound elements were chemically fractionated using sequential extractions. The average PM_2_._5 concentration was 3.4 times higher during haze–fog (96–518 μg/m"3) than non-haze fog periods (49–142 μg/m"3). Nearly all elements showed significantly higher concentrations during haze–fog than non-haze fog periods. Zn, As, Pb, Cd, Mo and Cu were considered to have higher bioavailability and enrichment degree in the atmosphere. Highly bioavailable fractions of elements were associated with high temperatures. The integrated carcinogenic risk for two possible scenarios to individuals exposed to metals was higher than the accepted criterion of 10"−"6, whereas noncarcinogenic risk was lower than the safe level of 1. Residents of a city burdened with haze will incur health risks caused by exposure to airborne metals. - Highlights: • PM_2_._5 concentration was 3.4 times higher during haze-fog than non-haze fog days. • Nearly all metals had higher contents during haze-fog than non-haze fog days. • Zn, As, Pb, Cd, Mo and Cu had high bioavailability and enrichment level in PM_2_._5. • Highly bioavailable fractions of elements were associated with high temperatures. • Health risk was assessed combined with metal forms in haze-fog and non-haze fog days. - Fractionation of airborne particulate-bound metals and its contribution to health risks during haze-fog and non-haze fog periods were studied from a typical megacity of Southeast China.

  18. Trace element emissions from coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-15

    Trace elements are emitted during coal combustion. The quantity, in general, depends on the physical and chemical properties of the element itself, the concentration of the element in the coal, the combustion conditions and the type of particulate control device used, and its collection efficiency as a function of particle size. Some trace elements become concentrated in certain particle streams following combustion such as bottom ash, fly ash, and flue gas particulate matter, while others do not. Various classification schemes have been developed to describe this partitioning behaviour. These classification schemes generally distinguish between: Class 1: elements that are approximately equally concentrated in the fly ash and bottom ash, or show little or no fine particle enrichment, examples include Mn, Be, Co and Cr; Class 2: elements that are enriched in the fly ash relative to bottom ash, or show increasing enrichment with decreasing particle size, examples include As, Cd, Pb and Sb; Class 3: elements which are emitted in the gas phase (primarily Hg (not discussed in this review), and in some cases, Se). Control of class 1 trace elements is directly related to control of total particulate matter emissions, while control of the class 2 elements depends on collection of fine particulates. Due to the variability in particulate control device efficiencies, emission rates of these elements can vary substantially. The volatility of class 3 elements means that particulate controls have only a limited impact on the emissions of these elements.

  19. Particulate matter analysis at elementary schools in Curitiba, Brazil.

    Science.gov (United States)

    Avigo, Devanir; Godoi, Ana F L; Janissek, Paulo R; Makarovska, Yaroslava; Krata, Agnieszka; Potgieter-Vermaak, Sanja; Alfoldy, Balint; Van Grieken, René; Godoi, Ricardo H M

    2008-06-01

    The particulate matter indoors and outdoors of the classrooms at two schools in Curitiba, Brazil, was characterised in order to assess the indoor air quality. Information concerning the bulk composition was provided by energy-dispersive x-ray fluorescence (EDXRF). From the calculated indoor/outdoor ratios and the enrichment factors it was observed that S-, Cl- and Zn-rich particles are of concern in the indoor environment. In the present research, the chemical compositions of individual particles were quantitatively elucidated, including low-Z components like C, N and O, as well as higher-Z elements, using automated electron probe microanalysis low Z EPMA. Samples were further analysed for chemical and morphological aspects, determining the particle size distribution and classifying them according to elemental composition associations. Five classes were identified based on major elemental concentrations: aluminosilicate, soot, organic, calcium carbonate and iron-rich particles. The majority of the respirable particulate matter found inside of the classroom was composed of soot, biogenic and aluminosilicate particles. In view of the chemical composition and size distribution of the aerosol particles, local deposition efficiencies in the human respiratory system were calculated revealing the deposition of soot at alveolar level. The results showed that on average 42% of coarse particles are deposited at the extrathoracic level, whereas 24% are deposited at the pulmonary region. The fine fraction showed a deposition rate of approximately 18% for both deposition levels.

  20. Fractionation of airborne particulate-bound elements in haze-fog episode and associated health risks in a megacity of southeast China.

    Science.gov (United States)

    Li, Huiming; Wang, Qin'geng; Shao, Min; Wang, Jinhua; Wang, Cheng; Sun, Yixuan; Qian, Xin; Wu, Hongfei; Yang, Meng; Li, Fengying

    2016-01-01

    Haze caused by high particulate matter loadings is an important environmental issue. PM2.5 was collected in Nanjing, China, during a severe haze-fog event and clear periods. The particulate-bound elements were chemically fractionated using sequential extractions. The average PM2.5 concentration was 3.4 times higher during haze-fog (96-518 μg/m(3)) than non-haze fog periods (49-142 μg/m(3)). Nearly all elements showed significantly higher concentrations during haze-fog than non-haze fog periods. Zn, As, Pb, Cd, Mo and Cu were considered to have higher bioavailability and enrichment degree in the atmosphere. Highly bioavailable fractions of elements were associated with high temperatures. The integrated carcinogenic risk for two possible scenarios to individuals exposed to metals was higher than the accepted criterion of 10(-6), whereas noncarcinogenic risk was lower than the safe level of 1. Residents of a city burdened with haze will incur health risks caused by exposure to airborne metals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Simultaneous shifts in elemental stoichiometry and fatty acids of Emiliania huxleyi in response to environmental changes

    Science.gov (United States)

    Bi, Rong; Ismar, Stefanie M. H.; Sommer, Ulrich; Zhao, Meixun

    2018-02-01

    Climate-driven changes in environmental conditions have significant and complex effects on marine ecosystems. Variability in phytoplankton elements and biochemicals can be important for global ocean biogeochemistry and ecological functions, while there is currently limited understanding on how elements and biochemicals respond to the changing environments in key coccolithophore species such as Emiliania huxleyi. We investigated responses of elemental stoichiometry and fatty acids (FAs) in a strain of E. huxleyi under three temperatures (12, 18 and 24 °C), three N : P supply ratios (molar ratios 10:1, 24:1 and 63:1) and two pCO2 levels (560 and 2400 µatm). Overall, C : N : P stoichiometry showed the most pronounced response to N : P supply ratios, with high ratios of particulate organic carbon vs. particulate organic nitrogen (POC : PON) and low ratios of PON vs. particulate organic phosphorus (PON : POP) in low-N media, and high POC : POP and PON : POP in low-P media. The ratio of particulate inorganic carbon vs. POC (PIC : POC) and polyunsaturated fatty acid proportions strongly responded to temperature and pCO2, both being lower under high pCO2 and higher with warming. We observed synergistic interactions between warming and nutrient deficiency (and high pCO2) on elemental cellular contents and docosahexaenoic acid (DHA) proportion in most cases, indicating the enhanced effect of warming under nutrient deficiency (and high pCO2). Our results suggest differential sensitivity of elements and FAs to the changes in temperature, nutrient availability and pCO2 in E. huxleyi, which is to some extent unique compared to non-calcifying algal classes. Thus, simultaneous changes of elements and FAs should be considered when predicting future roles of E. huxleyi in the biotic-mediated connection between biogeochemical cycles, ecological functions and climate change.

  2. PIXE analysis of vehicle exhaust particulate

    International Nuclear Information System (INIS)

    Shi Xianfeng; Yao Huiying; Liu Bo; Sun Minde; Xu Huawei; Mi Yong; Shen Hao

    2001-01-01

    PIXE technique on the analysis of vehicle exhaust particulate is introduced. The clement composition and concentration of particulate are obtained. Some elements which are related to environmental pollution such as sulfur lead, silicon and manganese, were analyzed and discussed in detail by PIXE technique Nowadays although unleaded gasoline is widely used, the lead concentration is still very high in exhaust particulate. The concentrations of silicon and manganese in exhaust particulate from different model vehicles are also quite high from measurements. It shows that an evidence for exhaust pollution control could be provided from this work

  3. Method for determination of stable carbon isotope ratio of methylnitrophenols in atmospheric particulate matter

    Directory of Open Access Journals (Sweden)

    S. Moukhtar

    2011-11-01

    Full Text Available A technique for the measurement of the stable isotope ratio of methylnitrophenols in atmospheric particulate matter is presented. Atmospheric samples from rural and suburban areas were collected for evaluation of the procedure. Particulate matter was collected on quartz fibre filters using dichotomous high volume air samplers. Methylnitrophenols were extracted from the filters using acetonitrile. The sample was then purified using a combination of high-performance liquid chromatography and solid phase extraction. The final solution was then divided into two aliquots. To one aliquot, a derivatising agent, Bis(trimethylsilyltrifluoroacetamide, was added for Gas Chromatography-Mass Spectrometry analysis. The second half of the sample was stored in a refrigerator. For samples with concentrations exceeding 1 ng μl−1, the second half of the sample was used for measurement of stable carbon isotope ratios by Gas Chromatography-Isotope Ratio Mass Spectrometry.

    The procedure described in this paper provides a method for the analysis of methylnitrophenols in atmospheric particulate matter at concentrations as low as 0.3 pg m−3 and for stable isotope ratios with an accuracy of better than ±0.5‰ for concentrations exceeding 100 pg m−3.

    In all atmospheric particulate matter samples analysed, 2-methyl-4-nitrophenol was found to be the most abundant methylnitrophenol, with concentrations ranging from the low pg m−3 range in rural areas to more than 200 pg m−3 in some samples from a suburban location.

  4. Fine particulate matter in the indoor air of barbeque restaurants: Elemental compositions, sources and health risks

    International Nuclear Information System (INIS)

    Taner, Simge; Pekey, Beyhan; Pekey, Hakan

    2013-01-01

    Cooking is a significant source of indoor particulate matter that can cause adverse health effects. In this study, a 5-stage cascade impactor was used to collect particulate matter from 14 restaurants that cooked with charcoal in Kocaeli, the second largest city in Turkey. A total of 24 elements were quantified using ICP-MS. All of the element contents except for Mn were higher for fine particles (PM 2.5 ) than coarse particles (PM >2.5 ), and the major trace elements identified in the PM 2.5 included V, Se, Zn, Cr, As, Cu, Ni, and Pb. Principle component analysis (PCA) and enrichment factor (EF) calculations were used to determine the sources of PM 2.5 . Four factors that explained over 77% of the total variance were identified by the PCA. These factors included charcoal combustion, indoor activities, crustal components, and road dust. The Se, As, Cd, and V contents in the PM 2.5 were highly enriched (EF > 100). The health risks posed by the individual metals were calculated to assess the potential health risks associated with inhaling the fine particles released during charcoal cooking. The total hazard quotient (total HQ) for a PM 2.5 of 4.09 was four times greater than the acceptable limit (i.e., 1.0). In addition, the excess lifetime cancer risk (total ELCR) for PM 2.5 was 1.57 × 10 −4 , which is higher than the acceptable limit of 1.0 × 10 −6 . Among all of the carcinogenic elements present in the PM 2.5 , the cancer risks resulting from Cr(VI) and As exposure were the highest (i.e., 1.16 × 10 −4 and 3.89 × 10 −5 , respectively). Overall, these results indicate that the lifetime cancer risk associated with As and Cr(VI) exposure is significant at selected restaurants, which is of concern for restaurant workers. - Highlights: • Particulate emissions from charcoal combustion in the BBQ restaurants were studied. • Vanadium, Se, Zn, Cr and As were found as high concentrations in PM 2.5 . • Charcoal combustion and indoor activities were the

  5. Fine particulate matter in the indoor air of barbeque restaurants: Elemental compositions, sources and health risks

    Energy Technology Data Exchange (ETDEWEB)

    Taner, Simge; Pekey, Beyhan, E-mail: bpekey@kocaeli.edu.tr; Pekey, Hakan

    2013-06-01

    Cooking is a significant source of indoor particulate matter that can cause adverse health effects. In this study, a 5-stage cascade impactor was used to collect particulate matter from 14 restaurants that cooked with charcoal in Kocaeli, the second largest city in Turkey. A total of 24 elements were quantified using ICP-MS. All of the element contents except for Mn were higher for fine particles (PM{sub 2.5}) than coarse particles (PM{sub >2.5}), and the major trace elements identified in the PM{sub 2.5} included V, Se, Zn, Cr, As, Cu, Ni, and Pb. Principle component analysis (PCA) and enrichment factor (EF) calculations were used to determine the sources of PM{sub 2.5}. Four factors that explained over 77% of the total variance were identified by the PCA. These factors included charcoal combustion, indoor activities, crustal components, and road dust. The Se, As, Cd, and V contents in the PM{sub 2.5} were highly enriched (EF > 100). The health risks posed by the individual metals were calculated to assess the potential health risks associated with inhaling the fine particles released during charcoal cooking. The total hazard quotient (total HQ) for a PM{sub 2.5} of 4.09 was four times greater than the acceptable limit (i.e., 1.0). In addition, the excess lifetime cancer risk (total ELCR) for PM{sub 2.5} was 1.57 × 10{sup −4}, which is higher than the acceptable limit of 1.0 × 10{sup −6}. Among all of the carcinogenic elements present in the PM{sub 2.5}, the cancer risks resulting from Cr(VI) and As exposure were the highest (i.e., 1.16 × 10{sup −4} and 3.89 × 10{sup −5}, respectively). Overall, these results indicate that the lifetime cancer risk associated with As and Cr(VI) exposure is significant at selected restaurants, which is of concern for restaurant workers. - Highlights: • Particulate emissions from charcoal combustion in the BBQ restaurants were studied. • Vanadium, Se, Zn, Cr and As were found as high concentrations in PM{sub 2.5}.

  6. Multitechnique determination of elemental concentrations in NBS Urban Air Particulate SRM 1648 and evaluation of its use for quality assurance

    International Nuclear Information System (INIS)

    Gladney, E.S.; Perrin, D.R.; Robinson, R.D.; Trujillo, P.E.

    1984-01-01

    Concentrations of forty-one elements were determined in NBS Urban Air Particulate materials using neutron activation, atomic absorption, and instrumental combustion methods. The usefulness of this reference material is evaluated as a function of composition, certified value availability, matrix format, and cost. (author)

  7. Comparative analysis of elemental components in airborne particulate matter by k0-NAA methods

    International Nuclear Information System (INIS)

    Chung, Yong-Sam; Moon, Jong-Hwa; Cho, Hyun-Je; Kim, Young-Jin

    2005-01-01

    A comparison of the analytical data obtained by three k 0 -NAA software programs was carried out using both the airborne particulate matter collected from an urban site and the certified reference materials of the air filter and urban dust to evaluate the performance of the analysis. The individual k 0 -NAA standardization methods of three countries, Korea, China and Vietnam which had been modified from the well established k 0 -program were used for the comparative analysis. The measured concentrations of 30 elements from the two kinds of air samples based on this software were in agreement with each other within about 20% analytical error except for a few elements. By contrast, the results of China and Vietnam were moderately higher than that of Korea due to a systematic error associated with the detection efficiency, gamma peak analysis and geometric effect

  8. Radiocarbon determination of particulate organic carbon in glacier ice from the Grenzgletscher (Monte Rosa)

    International Nuclear Information System (INIS)

    Steier, P.; Drosg, R.; Kutschera, W.; Wild, E.M.; Fedi, M.; Schock, M.; Wagenbach, D.

    2005-01-01

    Full text: Dating ice cores from cold glaciers via radiocarbon is still an unsolved problem. This work describes our approach towards extraction and AMS radiocarbon dating of the particulate organic carbon (POC) fraction in ice samples at VERA (Vienna Environmental Research Accelerator). First measurements were performed on 1 snow and 11 ice samples from Gorner Glacier and Colle Gnifetti in the Monte Rosa Mountain region (Swiss Alps). The sample masses used were between 0.3 kg and 1.4 kg ice yielding between 18 μg and 307 μg carbon as POC. The carbon contamination introduced during the sample processing varied between 9 μg and 33 μg C and originates mainly from the quartz filters and the rinsing liquids used. Minimum sample sizes for successful graphitization of carbon dioxide in our laboratory have been reduced to less than 10 μg carbon. The background in the graphitization process is approximately 0.5 μg carbon of 40 pMC. Scatter and outliers in the radiocarbon data suggest that presently a single radiocarbon date of glacial POC has limited significance. For the set of 11 ice samples, a calibrated age of 2100 BC to 900 AD (95% confidence level) is obtained. (author)

  9. Retention of elemental 131I by activated carbons under accident conditions

    International Nuclear Information System (INIS)

    Deuber, H.

    1984-09-01

    Under simulated accident conditions (maximum temperature: 130 0 C) no significant difference was found in the retention of I-131 loaded as elemental iodine, by various fresh and aged commercial activated carbons. In all the cases, the I-131 passing through deep beds of activated carbon was in a non-elemental form. It is concluded that a minimum retention of 99.99% for elemental radioiodine, as required by the RSK guidelines for PWR accident filters, can be equally well achieved with various commercial activated carbons. (orig.) [de

  10. Contributions of biomass/biofuel burning to organic aerosols and particulate matter in Tanzania, East Africa, based on analyses of ionic species, organic and elemental carbon, levoglucosan and mannosan

    Directory of Open Access Journals (Sweden)

    S. L. Mkoma

    2013-10-01

    Full Text Available Atmospheric aerosol samples of PM2.5 and PM10 were collected at a rural site in Tanzania, East Africa, in 2011 during wet and dry seasons and were analysed for carbonaceous components, levoglucosan, mannosan and water-soluble inorganic ions. The contributions of biomass/biofuel burning to the organic carbon (OC and particulate matter (PM mass were estimated to be 46–52% and 87–13%, respectively. The mean mass concentrations of PM2.5 and PM10 were 28 ± 6 μg m−3 and 47 ± 8 μg m−3 in wet season, and 39 ± 10 μg m−3 and 61 ± 19 μg m−3 in dry season, respectively. Total carbon (TC accounted for 16–19% of the PM2.5 mass and 13–15% of the PM10 mass. On average, 86 to 89% of TC in PM2.5 and 87 to 90% of TC in PM10 was OC, of which 67–72% and 63% was found to be water-soluble organic carbon (WSOC in PM2.5 and PM10, respectively. We found that concentrations of levoglucosan and mannosan (specific organic tracers of pyrolysis of cellulose well correlated with non-sea-salt potassium (nss-K+ (r2 = 0.56–0.75, OC (r2 = 0.75–0.96 and WSOC (r2 = 0.52–0.78. The K+ / OC ratios varied from 0.06 to 0.36 in PM2.5 and from 0.03 to 0.36 in PM10 with slightly higher ratios in dry season. Mean percent ratios of levoglucosan and mannosan to OC were found to be 3–4% for PM2.5 and PM10 in both seasons. We found lower levoglucosan / K+ ratios and higher K+ / EC (elemental carbon ratios in the biomass-burning aerosols from Tanzania than those reported from other regions. This feature is consistent with the high levels of potassium reported in the soils of Morogoro, Tanzania, suggesting an importance of direct emission of potassium by soil resuspension although K+ is present mostly in fine particles. It is also likely that biomass burning of vegetation of Tanzania emits high levels of potassium that may be enriched in plant tissues. The present study demonstrates that emissions from mixed biomass- and biofuel-burning activities largely

  11. Contributions of biomass/biofuel burning to organic aerosols and particulate matter in Tanzania, East Africa, based on analyses of ionic species, organic and elemental carbon, levoglucosan and mannosan

    Science.gov (United States)

    Mkoma, S. L.; Kawamura, K.; Fu, P. Q.

    2013-10-01

    Atmospheric aerosol samples of PM2.5 and PM10 were collected at a rural site in Tanzania, East Africa, in 2011 during wet and dry seasons and were analysed for carbonaceous components, levoglucosan, mannosan and water-soluble inorganic ions. The contributions of biomass/biofuel burning to the organic carbon (OC) and particulate matter (PM) mass were estimated to be 46-52% and 87-13%, respectively. The mean mass concentrations of PM2.5 and PM10 were 28 ± 6 μg m-3 and 47 ± 8 μg m-3 in wet season, and 39 ± 10 μg m-3 and 61 ± 19 μg m-3 in dry season, respectively. Total carbon (TC) accounted for 16-19% of the PM2.5 mass and 13-15% of the PM10 mass. On average, 86 to 89% of TC in PM2.5 and 87 to 90% of TC in PM10 was OC, of which 67-72% and 63% was found to be water-soluble organic carbon (WSOC) in PM2.5 and PM10, respectively. We found that concentrations of levoglucosan and mannosan (specific organic tracers of pyrolysis of cellulose) well correlated with non-sea-salt potassium (nss-K+) (r2 = 0.56-0.75), OC (r2 = 0.75-0.96) and WSOC (r2 = 0.52-0.78). The K+ / OC ratios varied from 0.06 to 0.36 in PM2.5 and from 0.03 to 0.36 in PM10 with slightly higher ratios in dry season. Mean percent ratios of levoglucosan and mannosan to OC were found to be 3-4% for PM2.5 and PM10 in both seasons. We found lower levoglucosan / K+ ratios and higher K+ / EC (elemental carbon) ratios in the biomass-burning aerosols from Tanzania than those reported from other regions. This feature is consistent with the high levels of potassium reported in the soils of Morogoro, Tanzania, suggesting an importance of direct emission of potassium by soil resuspension although K+ is present mostly in fine particles. It is also likely that biomass burning of vegetation of Tanzania emits high levels of potassium that may be enriched in plant tissues. The present study demonstrates that emissions from mixed biomass- and biofuel-burning activities largely influence the air quality in Tanzania.

  12. Correlation of trace element content in air particulates with solar meteorological data in the atmosphere of Athens

    International Nuclear Information System (INIS)

    Kanias, G.D.; Grimanis, A.P.; Viras, L.G.

    2003-01-01

    Relation between the trace element content in air particulates and solar meteorological data in the atmospheric environment of Athens, Greece, was studied. For this purpose, Sm, Br, As, Na, K, La, Ce, Cr, Ag, Sc, Fe, Zn, Co, Sb, Th were determined by INAA in respirable aerosols collected during winter 1993-1994. The results showed that the average cloudiness, sunshine, and the total solar radiation (sun and sky) on a horizontal surface, (3 variables) have no relation with trace element variation. However, diffuse solar radiation (sun and sky) on a horizontal surface seems to have statistically significant relationship with some of the trace element variation. It forms a single component with some trace elements after the application of the factor analysis. The increase of the same solar variable in the Athens City center, is one of the factors which cannot permit the emission of trace elements in the atmospheric environment from dust soil and car tires. (author)

  13. Source apportionment of carbonaceous particulate matter during haze days in Shanghai based on the radiocarbon

    International Nuclear Information System (INIS)

    Nannan Wei; Jialiang Feng; Detao Xiao

    2017-01-01

    To estimate the sources of carbonaceous particulate matter, "1"4C and biomass-burning marker (levoglucosan) were measured in the form of organic carbon (OC) and elemental carbon (EC) in PM_2_._5 that was collected in five different functional districts of Shanghai during winter 2013. Spatial variations of the contemporary proportion among different districts were evident. The results of levoglucosan in Xujiahui (XH) and Chongming (CM) agreed well with those of "1"4C. The results indicate that environmental protection policies should vary for functional districts within the same city to account for their different sources of emissions. (author)

  14. Emission factors for CH{sub 4}, NO{sub x}, particulates and black carbon for domestic shipping in Norway, revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Joergen Bremnes; Stenersen, Dag

    2010-11-15

    In this report new and updated emission factors for diesel, HFO and gas fuelled ships are presented and discussed as follows; NO{sub x} reduction factors from ships with NO{sub x} reduction measures; NO{sub x} emission factor from gas operated vessels; Methane emission factors for gas operated vessels; Updated emission factors for particulate emissions (PM) with a specific factor for the black carbon (BC) fraction of particulate emissions; A discussion on how low sulfur fuel will affect emissions of PM emissions and the BC fraction of PM is also included. (Author)

  15. Particulate sulfur-containing lipids: Production and cycling from the epipelagic to the abyssopelagic zone

    Science.gov (United States)

    Gašparović, Blaženka; Penezić, Abra; Frka, Sanja; Kazazić, Saša; Lampitt, Richard S.; Holguin, F. Omar; Sudasinghe, Nilusha; Schaub, Tanner

    2018-04-01

    There are major gaps in our understanding of the distribution and role of lipids in the open ocean especially with regard to sulfur-containing lipids (S-lipids). Here, we employ a powerful analytical approach based on high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to elucidate depth-related S-lipid production and molecular transformations in suspended particulate matter from the Northeast Atlantic Ocean in this depth range. We show that within the open-ocean environment S-lipids contribute up to 4.2% of the particulate organic carbon, and that up to 95% of these compounds have elemental compositions that do not match those found in the Nature Lipidomics Gateway database (termed "novel"). Among the remaining 5% of lipids that match the database, we find that sulphoquinovosyldiacylglycerol (SQDG) are efficiently removed while sinking through the mesopelagic zone. The relative abundance of other assigned lipids (sulphoquinovosylmonoacylglycerol (SQMG), sulfite and sulfate lipids, Vitamin D2 and D3 derivatives, and sphingolipids) did not change substantially with depth. The novel S-lipids, represented by hundreds of distinct elemental compositions (160-300 molecules at any one depth), contribute increasingly to the lipid and particulate organic matter pools with increased depth. Depth-related transformations cause (i) incomplete degradation/transformation of unsaturated S-lipids which leads to the depth-related accumulation of the refractory saturated compounds with reduced molecular weight (average 455 Da) and (ii) formation of highly unsaturated S-lipids (average abyssopelagic molecular double bond equivalents, DBE=7.8) with lower molecular weight (average 567 Da) than surface S-lipids (average 592 Da). A depth-related increase in molecular oxygen content is observed for all novel S-lipids and indicates that oxidation has a significant role in their transformation while (bio)hydrogenation possibly impacts the formation of

  16. Elemental quantification of airborne particulate matter by instrumental neutron activation analysis and induced coupled plasma mass spectrometry analysis

    International Nuclear Information System (INIS)

    Hidayat, Achmad; Djojosubroto, Harjoto; Rukihati; Sutisna

    1999-01-01

    Airborne particulate were collected using Gent sampler for PM 10 and using high volume sampler for total suspended particulate (TSP). PM 10 sampling was carried out in Bandung during period of January to December 1997. Whereas TSP samples were collected at Serpong (rural area) and Jakarta (urban area) during period of May and July 1995. The concentration of the PM 10 in the air is independent to the level of the rainfall. The levels of the PM 10 and the PM 2.5 are lower than the maximum permissible levels set by the US Environmental Protection Agency in July 1997. The element detected using short lived radioactivity measurement in PM 10 and PM 2.5 were Al, Na, V, Mn, Br and Cl. Bromine concentration in both coarse and fine fractions was high, and the enrichment factor for bromine in these fraction was found between 2,000 - 10,000. The elemental concentrations of particulate matter obtained by ICP-MS was found that the Ag, Al, As, Ba, Cd, Co, Cr, Cs, Cu, Fe, In, K, Mg, Mn, Na, Ni, Pb, Rb, V and Zn in samples from Serpong area, were lower than those in samples taken from Jakarta area. The level of Pb concentrations in TSP samples from Serpong and Jakarta area were lower than Pb concentration proposed Indonesian standard of 2 μg/m 3 . The data obtained by INAA no significant different to those obtained by ICP-MS. Therefore comparative data can be obtained by these techniques. (author)

  17. Analysis of atmospheric particulate matter; application of optical and selected geochemical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mastalerz, M.; Glikson, M.; Simpson, R.W. [Indiana University, Bloomington, IN (United States). Indiana Geological Survey

    1998-09-01

    An increase in particulate matter in the atmosphere has been shown to be linked to increased mortality but this relationship is poorly understood. Light microscopy, electron microscopy, electron microprobe, and micro-FTIR techniques have been applied to study atmospheric particulates in Brisbane, Australia as a part of a study on asthma. The particulate matter samples were collected daily from April to August 1992, and the sampling covered the autumn period which is typically a time of high asthma incidence in Brisbane. Volumetrically, most atmospheric particulate matter is less than 2{mu}m in size. The microscopic analysis reveals that this material is composed mainly of combusted and incompletely burned hydrocarbons from motor vehicle exhaust emissions, quiescent spores of Mucorales, soil bacteria, and inorganic matter in the form of quartz and other silicates. Elemental and functional group analyses confirm microscope identification, documenting carbon-rich, aromatic exhaust material, more aliphatic pollen and spore material and inorganic matter. Fungal spores dominate bioaerosol and are very abundant from the end of April through May to mid-June. The cytoplasmic content of pollens or fungaonly regarded as allergenic. Particulates from the exhaust emissions and crustal material in a sub-micrometer size range may act as carriers or dispersive mechanisms for cytoplasmic material from fungal spores and pollens, perhaps causing periods of the highest exhaust emission to be the most allergenic. 25 refs., 4 figs., 1 tab.

  18. Ambient organic carbon to elemental carbon ratios: Influence of the thermal–optical temperature protocol and implications

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yuan, E-mail: ycheng@mail.tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing (China); He, Ke-bin, E-mail: hekb@tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing (China); State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing (China); Duan, Feng-kui; Du, Zhen-yu [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing (China); Zheng, Mei [College of Environmental Sciences and Engineering, Peking University, Beijing (China); Ma, Yong-liang [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing (China)

    2014-01-01

    Ambient organic carbon (OC) to elemental carbon (EC) ratios are strongly associated with not only the radiative forcing due to aerosols but also the extent of secondary organic aerosol (SOA) formation. An inter-comparison study was conducted based on fine particulate matter samples collected during summer in Beijing to investigate the influence of the thermal–optical temperature protocol on the OC to EC ratio. Five temperature protocols were used such that the NIOSH (National Institute for Occupational Safety and Health) and EUSAAR (European Supersites for Atmospheric Aerosol Research) protocols were run by the Sunset carbon analyzer while the IMPROVE (the Interagency Monitoring of Protected Visual Environments network)-A protocol and two alternative protocols designed based on NIOSH and EUSAAR were run by the DRI analyzer. The optical attenuation measured by the Sunset carbon analyzer was more easily biased by the shadowing effect, whereas total carbon agreed well between the Sunset and DRI analyzers. The EC{sub IMPROVE-A} (EC measured by the IMPROVE-A protocol; similar hereinafter) to EC{sub NIOSH} ratio and the EC{sub IMPROVE-A} to EC{sub EUSAAR} ratio averaged 1.36 ± 0.21 and 0.91 ± 0.10, respectively, both of which exhibited little dependence on the biomass burning contribution. Though the temperature protocol had substantial influence on the OC to EC ratio, the contributions of secondary organic carbon (SOC) to OC, which were predicted by the EC-tracer method, did not differ significantly among the five protocols. Moreover, the SOC contributions obtained in this study were comparable with previous results based on field observation (typically between 45 and 65%), but were substantially higher than the estimation provided by an air quality model (only 18%). The comparison of SOC and WSOC suggests that when using the transmittance charring correction, all of the three common protocols (i.e., IMPROVE-A, NIOSH and EUSAAR) could be reliable for the estimation

  19. Ambient organic carbon to elemental carbon ratios: Influence of the thermal–optical temperature protocol and implications

    International Nuclear Information System (INIS)

    Cheng, Yuan; He, Ke-bin; Duan, Feng-kui; Du, Zhen-yu; Zheng, Mei; Ma, Yong-liang

    2014-01-01

    Ambient organic carbon (OC) to elemental carbon (EC) ratios are strongly associated with not only the radiative forcing due to aerosols but also the extent of secondary organic aerosol (SOA) formation. An inter-comparison study was conducted based on fine particulate matter samples collected during summer in Beijing to investigate the influence of the thermal–optical temperature protocol on the OC to EC ratio. Five temperature protocols were used such that the NIOSH (National Institute for Occupational Safety and Health) and EUSAAR (European Supersites for Atmospheric Aerosol Research) protocols were run by the Sunset carbon analyzer while the IMPROVE (the Interagency Monitoring of Protected Visual Environments network)-A protocol and two alternative protocols designed based on NIOSH and EUSAAR were run by the DRI analyzer. The optical attenuation measured by the Sunset carbon analyzer was more easily biased by the shadowing effect, whereas total carbon agreed well between the Sunset and DRI analyzers. The EC IMPROVE-A (EC measured by the IMPROVE-A protocol; similar hereinafter) to EC NIOSH ratio and the EC IMPROVE-A to EC EUSAAR ratio averaged 1.36 ± 0.21 and 0.91 ± 0.10, respectively, both of which exhibited little dependence on the biomass burning contribution. Though the temperature protocol had substantial influence on the OC to EC ratio, the contributions of secondary organic carbon (SOC) to OC, which were predicted by the EC-tracer method, did not differ significantly among the five protocols. Moreover, the SOC contributions obtained in this study were comparable with previous results based on field observation (typically between 45 and 65%), but were substantially higher than the estimation provided by an air quality model (only 18%). The comparison of SOC and WSOC suggests that when using the transmittance charring correction, all of the three common protocols (i.e., IMPROVE-A, NIOSH and EUSAAR) could be reliable for the estimation of SOC by the EC

  20. Measurement and analysis of ambient atmospheric particulate matter in urban and remote environments

    Science.gov (United States)

    Hagler, Gayle S. W.

    Atmospheric particulate matter pollution is a challenging environmental concern in both urban and remote locations worldwide. It is intrinsically difficult to control, given numerous anthropogenic and natural sources (e.g. fossil fuel combustion, biomass burning, dust, and seaspray) and atmospheric transport up to thousands of kilometers after production. In urban regions, fine particulate matter (particles with diameters under 2.5 mum) is of special concern for its ability to penetrate the human respiratory system and threaten cardiopulmonary health. A second major impact area is climate, with particulate matter altering Earth's radiative balance through scattering and absorbing solar radiation, modifying cloud properties, and reducing surface reflectivity after deposition in snow-covered regions. While atmospheric particulate matter has been generally well-characterized in populated areas of developed countries, particulate pollution in developing nations and remote regions is relatively unexplored. This thesis characterizes atmospheric particulate matter in locations that represent the extreme ends of the spectrum in terms of air pollution-the rapidly-developing and heavily populated Pearl River Delta Region of China, the pristine and climate-sensitive Greenland Ice Sheet, and a remote site in the Colorado Rocky Mountains. In China, fine particles were studied through a year-long field campaign at seven sites surrounding the Pearl River Delta. Fine particulate matter was analyzed for chemical composition, regional variation, and meteorological impacts. On the Greenland Ice Sheet and in the Colorado Rocky Mountains, the carbonaceous fraction (organic and elemental carbon) of particulate matter was studied in the atmosphere and snow pack. Analyses included quantifying particulate chemical and optical properties, assessing atmospheric transport, and evaluating post-depositional processing of carbonaceous species in snow.

  1. Characterisation of air particulate matter in Klang Valley by neutron activation analysis technique

    International Nuclear Information System (INIS)

    Mohd Suhaimi Hamzah; Shamsiah Abd Rahman; Mohd Khalid Matori; Abd Khalik Wood

    2000-01-01

    Air particulate matter is known to affect human health, impairs visibility and can cause climate change. Study on air particulate matter in term of particle size and chemical contents is very important to indicate the quality of air in a sampling area. Information on concentration of important constituents in air particles can be used to identify some of emission sources which contribute to the pollution problem. The data collected may also be, used as a basis to design a strategy in order to overcome the air pollution problem in the area. The study involved sampling of air dust at two stations, one in Bangi and the other in Kuala Lumpur using Gent Stack Sampler units. Each sampler capable of collecting air particle sizes smaller than 2.5 micron (PM 2.5) and between 2.5 - O micron on two different filters simultaneously. The filters were measured for their mass, elemental carbon and elemental concentrations using analytical equipment or techniques including reflectometer and Neutron Activation Analysis. The results of analysis on samples collected in 1997-1998 are discussed. (author)

  2. Feasibility of plasma aftertreatment for simultaneous control of NOx and particulates

    International Nuclear Information System (INIS)

    Brusasco, R M; Merritt, B T; Penetrante, B; Pitz, W J; Vogtlin, G E

    1999-01-01

    Plasma reactors can be operated as a particulate trap or as a NOx converter. Particulate trapping in a plasma reactor can be accomplished by electrostatic precipitation. The soluble organic fraction of the trapped particulates can be utilized for the hydrocarbon-enhanced oxidation of NO to NO2 . The NO2 can then be used to non-thermally oxidize the carbon fraction of the particulates. The oxidation of the carbon fraction by NO2 can lead to reduction of NOx or backconversion of NO2 to NO. This paper examines the hydrocarbon and electrical energy density requirements in a plasma for maximum NOx conversion in both heavy-duty and light-duty diesel engine exhaust. The energy density required for complete oxidation of hydrocarbons is also examined and shown to be much greater than that required for maximum NOx conversion. The reaction of NO2 with carbon is shown to lead mainly to backconversion of NO2 to NO. These results suggest that the combination of the plasma with a catalyst will be required to reduce the NOx and oxidize the hydrocarbons. The plasma reactor can be operated occasionally in the arc mode to thermally oxidize the carbon fraction of the particulates

  3. Mercury, trace elements and organic constituents in atmospheric fine particulate matter, Shenandoah National Park, Virginia, USA: A combined approach to sampling and analysis

    Science.gov (United States)

    Kolker, A.; Engle, M.A.; Orem, W.H.; Bunnell, J.E.; Lerch, H.E.; Krabbenhoft, D.P.; Olson, M.L.; McCord, J.D.

    2008-01-01

    Compliance with U.S. air quality regulatory standards for atmospheric fine particulate matter (PM2.5) is based on meeting average 24 hour (35 ?? m-3) and yearly (15 ??g m-3) mass-per-unit-volume limits, regardless of PM2.5 composition. Whereas this presents a workable regulatory framework, information on particle composition is needed to assess the fate and transport of PM2.5 and determine potential environmental/human health impacts. To address these important non-regulatory issues an integrated approach is generally used that includes (1) field sampling of atmospheric particulate matter on filter media, using a size-limiting cyclone, or with no particle-size limitation; and (2) chemical extraction of exposed filters and analysis of separate particulate-bound fractions for total mercury, trace elements and organic constituents, utilising different USGS laboratories optimised for quantitative analysis of these substances. This combination of sampling and analysis allowed for a more detailed interpretation of PM2.5 sources and potential effects, compared to measurements of PM2.5 abundance alone. Results obtained using this combined approach are presented for a 2006 air sampling campaign in Shenandoah National Park (Virginia, USA) to assess sources of atmospheric contaminants and their potential impact on air quality in the Park. PM2.5 was collected at two sampling sites (Big Meadows and Pinnacles) separated by 13.6 km. At both sites, element concentrations in PM2.5 were low, consistent with remote or rural locations. However, element/Zr crustal abundance enrichment factors greater than 10, indicating anthropogenic input, were found for Hg, Se, S, Sb, Cd, Pb, Mo, Zn and Cu, listed in decreasing order of enrichment. Principal component analysis showed that four element associations accounted for 84% of the PM 2.5 trace element variation; these associations are interpreted to represent: (1) crustal sources (Al, REE); (2) coal combustion (Se, Sb), (3) metal production

  4. Analysis of atmospheric particulate samples via instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Greenberg, R.R.

    1990-01-01

    Instrumental neutron activation analysis (INAA) is a powerful analytical technique for the elemental characterization of atmospheric particulate samples. It is a true multielement technique with adequate sensitivity to determine 30 to 40 elements in a sample of atmospheric particulate material. Its nondestructive nature allows sample reanalysis by the same or a different analytical technique. In this paper as an example of the applicability of INAA to the study of atmospheric particulate material, a study of the emissions from municipal incinerators is described

  5. Particulate matter and neutron activation analysis

    International Nuclear Information System (INIS)

    Otoshi, Tsunehiko

    2003-01-01

    In these years, economy of East Asian region is rapidly growing, and countries in this region are facing serious environmental problems. Neutron activation analysis is known as one of high-sensitive analytical method for multi elements. And it is a useful tool for environmental research, particularly for the study on atmospheric particulate matter that consists of various constituents. Elemental concentration represents status of air, such as emission of heavy metals from industries and municipal incinerators, transportation of soil derived elements more than thousands of kilometers, and so on. These monitoring data obtained by neutron activation analysis can be a cue to evaluate environment problems. Japanese government launched National Air Surveillance Network (NASN) employing neutron activation analysis in 1974, and the data has been accumulated at about twenty sampling sites. As a result of mitigation measure of air pollution sources, concentrations of elements that have anthropogenic sources decreased particularly at the beginning of the monitoring period. However, even now, concentrations of these anthropogenic elements reflect the characteristics of each sampling site, e.g. industrial/urban, rural, and remote. Soil derived elements have a seasonal variation because of the contribution of continental dust transported by strong westerly winds prevailing in winter and spring season. The health effects associated with trace elements in particulate matter have not been well characterized. However, there is increasing evidence that particulate air pollution, especially fine portion of particles in many different cities is associated with acute mortality. Neutron activation analysis is also expected to provide useful information to this new study field related to human exposures and health risk. (author)

  6. Stable carbon isotope signals in particulate organic and inorganic carbon of coccolithophores - A numerical model study for Emiliania huxleyi.

    Science.gov (United States)

    Holtz, Lena-Maria; Wolf-Gladrow, Dieter; Thoms, Silke

    2017-05-07

    A recent numerical cell model, which explains observed light and carbonate system effects on particulate organic and inorganic carbon (POC and PIC) production rates under the assumption of internal pH homeostasis, is extended for stable carbon isotopes ( 12 C, 13 C). Aim of the present study is to mechanistically understand the stable carbon isotopic fractionation signal (ε) in POC and PIC and furthermore the vital effect(s) included in measured ε PIC values. The virtual cell is divided into four compartments, for each of which the 12 C as well as the 13 C carbonate system kinetics are implemented. The compartments are connected to each other via trans-membrane fluxes. In contrast to existing carbon fractionation models, the presented model calculates the disequilibrium state for both carbonate systems and for each compartment. It furthermore calculates POC and PIC production rates as well as ε POC and ε PIC as a function of given light conditions and the compositions of the external carbonate system. Measured POC and PIC production rates as well as ε PIC values are reproduced well by the model (comparison with literature data). The observed light effect on ε POC (increase of ε POC with increasing light intensities), however, is not reproduced by the basic model set-up, which is solely based on RubisCO fractionation. When extending the latter set-up by assuming that biological fractionation includes further carbon fractionation steps besides the one of RubisCO, the observed light effect on ε POC is also reproduced. By means of the extended model version, four different vital effects that superimpose each other in a real cell can be detected. Finally, we discuss potential limitations of the ε PIC proxy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Elemental analysis of the suspended particulate matter in the air of Tehran using INAA and AAS techniques. Appendix 11

    International Nuclear Information System (INIS)

    Sohrabpour, M.; Rostami, S.; Athari, M.

    1995-01-01

    A network of ten sampling stations for monitoring the elemental concentration of the suspended particulate matter (SPM) in the air of Tehran has been established. Instrumental neutron activation analysis (INAA) and atomic absorption spectrometry (AAS) techniques have been used for analysis of the Whatman-41 filters collected during the year 1994. Assessment of the preliminary results using the two techniques has produced the following twenty-one elements: Al, Br, Ca, Cd, Ce, Cl, Co, Cr, Cs, Fe, K, Mg, Mn, Na, Ni, Pb, Sb, Sc, Ti, V, Zn. Various standard solutions with known concentrations of elements, together with standard reference materials, have been used for quality assurance of the measured concentrations. (author)

  8. Simultaneous shifts in elemental stoichiometry and fatty acids of Emiliania huxleyi in response to environmental changes

    Directory of Open Access Journals (Sweden)

    R. Bi

    2018-02-01

    Full Text Available Climate-driven changes in environmental conditions have significant and complex effects on marine ecosystems. Variability in phytoplankton elements and biochemicals can be important for global ocean biogeochemistry and ecological functions, while there is currently limited understanding on how elements and biochemicals respond to the changing environments in key coccolithophore species such as Emiliania huxleyi. We investigated responses of elemental stoichiometry and fatty acids (FAs in a strain of E. huxleyi under three temperatures (12, 18 and 24 °C, three N : P supply ratios (molar ratios 10:1, 24:1 and 63:1 and two pCO2 levels (560 and 2400 µatm. Overall, C : N : P stoichiometry showed the most pronounced response to N : P supply ratios, with high ratios of particulate organic carbon vs. particulate organic nitrogen (POC : PON and low ratios of PON vs. particulate organic phosphorus (PON : POP in low-N media, and high POC : POP and PON : POP in low-P media. The ratio of particulate inorganic carbon vs. POC (PIC : POC and polyunsaturated fatty acid proportions strongly responded to temperature and pCO2, both being lower under high pCO2 and higher with warming. We observed synergistic interactions between warming and nutrient deficiency (and high pCO2 on elemental cellular contents and docosahexaenoic acid (DHA proportion in most cases, indicating the enhanced effect of warming under nutrient deficiency (and high pCO2. Our results suggest differential sensitivity of elements and FAs to the changes in temperature, nutrient availability and pCO2 in E. huxleyi, which is to some extent unique compared to non-calcifying algal classes. Thus, simultaneous changes of elements and FAs should be considered when predicting future roles of E. huxleyi in the biotic-mediated connection between biogeochemical cycles, ecological functions and climate change.

  9. Source areas and chemical composition of fine particulate matter in the Pearl River Delta region of China

    Science.gov (United States)

    Hagler, G. S. W.; Bergin, M. H.; Salmon, L. G.; Yu, J. Z.; Wan, E. C. H.; Zheng, M.; Zeng, L. M.; Kiang, C. S.; Zhang, Y. H.; Lau, A. K. H.; Schauer, J. J.

    Fine particulate matter (PM 2.5) was measured for 4 months during 2002-2003 at seven sites located in the rapidly developing Pearl River Delta region of China, an area encompassing the major cities of Hong Kong, Shenzhen and Guangzhou. The 4-month average fine particulate matter concentration ranged from 37 to 71 μg m -3 in Guangdong province and from 29 to 34 μg m -3 in Hong Kong. Main constituents of fine particulate mass were organic compounds (24-35% by mass) and sulfate (21-32%). With sampling sites strategically located to monitor the regional air shed patterns and urban areas, specific source-related fine particulate species (sulfate, organic mass, elemental carbon, potassium and lead) and daily surface winds were analyzed to estimate influential source locations. The impact of transport was investigated by categorizing 13 (of 20 total) sampling days by prevailing wind direction (southerly, northerly or low wind-speed mixed flow). The vicinity of Guangzhou is determined to be a major source area influencing regional concentrations of PM 2.5, with levels observed to increase by 18-34 μg m -3 (accounting for 46-56% of resulting particulate levels) at sites immediately downwind of Guangzhou. The area near Guangzhou is also observed to heavily impact downwind concentrations of lead. Potassium levels, related to biomass burning, appear to be controlled by sources in the northern part of the Pearl River Delta, near rural Conghua and urban Guangzhou. Guangzhou appears to contribute 5-6 μg m -3 of sulfate to downwind locations. Guangzhou also stands out as a significant regional source of organic mass (OM), adding 8.5-14.5 μg m -3 to downwind concentrations. Elemental carbon is observed to be strongly influenced by local sources, with highest levels found in urban regions. In addition, it appears that sources outside of the Pearl River Delta contribute a significant fraction of overall fine particulate matter in Hong Kong and Guangdong province. This is evident

  10. Long-term Trends in Particulate Organic Carbon from a Low-Gradient Autotrophic Watershed

    Science.gov (United States)

    Fox, J.; Ford, W. I., III

    2014-12-01

    Recent insights from low-gradient streams dominated by fine surficial sediments have shown fluvial organic matter dynamics are governed by coupled hydrologic and biotic controls at event to seasonal timescales. Notwithstanding the importance of shorter timescales, quantity and quality of carbon in stream ecosystems at annual and decadal scales is of increased interest in order to understand if stream ecosystems are net stores or sinks of carbon and how stream carbon behaves under dynamic climate conditions. As part of an ongoing study in a low-gradient, agricultural watershed in the Bluegrass Region of Central Kentucky, an eight year dataset of transported particulate organic carbon (POC) was analyzed for the present study. The objective was to investigate if POC dynamics at multi-year timescales are governed by biotic or hydrologic processes. A statistical analysis using Empirical Mode Decomposition was performed on an 8 year dataset of transported sediment carbon, temperature, and log-transformed flowrates at the watershed outlet. Simulations from a previously validated, process-based, organic carbon model were utilized as further verification of drivers. Results from the analysis suggest that a 4 degree Celsius mean annual temperature shift corresponds to a 63% increase in organic carbon content at the main-stem, third order outlet and a 33% increase in organic carbon content at the main-stem inlet. Model and stable isotope results for the 8 year study support that long-term increases in organic carbon concentration are governed by biotic growth and humification of algal biomass in which increasing annual temperatures promote increased organic carbon production, relative to ecosystem respiration. This result contradicts conventional wisdom, suggesting projected warming trends will shift autotrophic freshwater systems to net heterotrophic, which has significant implications for the role of benthic stream ecosystems under changing climate conditions. Future work

  11. A discrete element and ray framework for rapid simulation of acoustical dispersion of microscale particulate agglomerations

    Science.gov (United States)

    Zohdi, T. I.

    2016-03-01

    In industry, particle-laden fluids, such as particle-functionalized inks, are constructed by adding fine-scale particles to a liquid solution, in order to achieve desired overall properties in both liquid and (cured) solid states. However, oftentimes undesirable particulate agglomerations arise due to some form of mutual-attraction stemming from near-field forces, stray electrostatic charges, process ionization and mechanical adhesion. For proper operation of industrial processes involving particle-laden fluids, it is important to carefully breakup and disperse these agglomerations. One approach is to target high-frequency acoustical pressure-pulses to breakup such agglomerations. The objective of this paper is to develop a computational model and corresponding solution algorithm to enable rapid simulation of the effect of acoustical pulses on an agglomeration composed of a collection of discrete particles. Because of the complex agglomeration microstructure, containing gaps and interfaces, this type of system is extremely difficult to mesh and simulate using continuum-based methods, such as the finite difference time domain or the finite element method. Accordingly, a computationally-amenable discrete element/discrete ray model is developed which captures the primary physical events in this process, such as the reflection and absorption of acoustical energy, and the induced forces on the particulate microstructure. The approach utilizes a staggered, iterative solution scheme to calculate the power transfer from the acoustical pulse to the particles and the subsequent changes (breakup) of the pulse due to the particles. Three-dimensional examples are provided to illustrate the approach.

  12. Carbon fuel particles used in direct carbon conversion fuel cells

    Science.gov (United States)

    Cooper, John F.; Cherepy, Nerine

    2012-10-09

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  13. Carbon Fuel Particles Used in Direct Carbon Conversion Fuel Cells

    Science.gov (United States)

    Cooper, John F.; Cherepy, Nerine

    2008-10-21

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  14. Fossil and nonfossil carbon in fine particulate matter: A study of five European cities

    Science.gov (United States)

    Glasius, Marianne; La Cour, Agnete; Lohse, Christian

    2011-06-01

    Fossil carbon in particulate matter comes from anthropogenic use and combustion of fossil fuels, while nonfossil carbon may originate from both biogenic (e.g., pollen, plant debris, fungal spores, and biogenic secondary organic aerosol (SOA)) and anthropogenic sources (e.g., cooking and residential wood combustion). We investigated the relative contributions of fossil and nonfossil sources to fine carbonaceous aerosols in five European cities by radiocarbon analysis of aerosol samples collected at four types of sites in 2002-2004. The average fraction of nonfossil carbon was 43 ± 11%, with the lowest fraction, 36 ± 7%, at urban curbside sites and the highest fraction, 54 ± 11%, at rural background sites, farthest away from the impact of man-made emissions. Generally, fossil carbon concentrations at urban curbside sites are elevated in comparison to background sites, which is expected because of their proximity to vehicular emissions. Contrary to what might be expected, the concentration of nonfossil carbon is also higher at curbside than at background sites. This may be attributable to differences between site categories in levels of primary biological aerosols, brake and tire wear in resuspended road dust, biofuels, emissions from cooking and residential wood combustion, or processes such as anthropogenic enhancement of biogenic SOA and increased partitioning of semivolatile compounds into the aerosol phase at urban sites. The exact causes should be investigated by future detailed source analyses.

  15. Chemical characterization of freshly emitted particulate matter from aircraft exhaust using single particle mass spectrometry

    Science.gov (United States)

    Abegglen, Manuel; Brem, B. T.; Ellenrieder, M.; Durdina, L.; Rindlisbacher, T.; Wang, J.; Lohmann, U.; Sierau, B.

    2016-06-01

    Non-volatile aircraft engine emissions are an important anthropogenic source of soot particles in the upper troposphere and in the vicinity of airports. They influence climate and contribute to global warming. In addition, they impact air quality and thus human health and the environment. The chemical composition of non-volatile particulate matter emission from aircraft engines was investigated using single particle time-of-flight mass spectrometry. The exhaust from three different aircraft engines was sampled and analyzed. The soot particulate matter was sampled directly behind the turbine in a test cell at Zurich Airport. Single particle analyses will focus on metallic compounds. The particles analyzed herein represent a subset of the emissions composed of the largest particles with a mobility diameter >100 nm due to instrumental restrictions. A vast majority of the analyzed particles was shown to contain elemental carbon, and depending on the engine and the applied thrust the elemental carbon to total carbon ratio ranged from 83% to 99%. The detected metallic compounds were all internally mixed with the soot particles. The most abundant metals in the exhaust were Cr, Fe, Mo, Na, Ca and Al; V, Ba, Co, Cu, Ni, Pb, Mg, Mn, Si, Ti and Zr were also detected. We further investigated potential sources of the ATOFMS-detected metallic compounds using Inductively Coupled Plasma Mass Spectrometry. The potential sources considered were kerosene, engine lubrication oil and abrasion from engine wearing components. An unambiguous source apportionment was not possible because most metallic compounds were detected in several of the analyzed sources.

  16. Inter-annual Variability in Global Suspended Particulate Inorganic Carbon Inventory Using Space-based Measurements

    Science.gov (United States)

    Hopkins, J.; Balch, W. M.; Henson, S.; Poulton, A. J.; Drapeau, D.; Bowler, B.; Lubelczyk, L.

    2016-02-01

    Coccolithophores, the single celled phytoplankton that produce an outer covering of calcium carbonate coccoliths, are considered to be the greatest contributors to the global oceanic particulate inorganic carbon (PIC) pool. The reflective coccoliths scatter light back out from the ocean surface, enabling PIC concentration to be quantitatively estimated from ocean color satellites. Here we use datasets of AQUA MODIS PIC concentration from 2003-2014 (using the recently-revised PIC algorithm), as well as statistics on coccolithophore vertical distribution derived from cruises throughout the world ocean, to estimate the average global (surface and integrated) PIC standing stock and its associated inter-annual variability. In addition, we divide the global ocean into Longhurst biogeochemical provinces, update the PIC biomass statistics and identify those regions that have the greatest inter-annual variability and thus may exert the greatest influence on global PIC standing stock and the alkalinity pump.

  17. Variation pattern of particulate organic carbon and nitrogen in oceans and inland waters

    Science.gov (United States)

    Huang, Changchun; Jiang, Quanliang; Yao, Ling; Yang, Hao; Lin, Chen; Huang, Tao; Zhu, A.-Xing; Zhang, Yimin

    2018-03-01

    We examined the relationship between, and variations in, particulate organic carbon (POC) and particulate organic nitrogen (PON) based on previously acquired ocean and inland water data. The latitudinal dependency of POC / PON is significant between 20 and 90° N but weak in low-latitude areas and in the Southern Hemisphere. The mean values of POC / PON in the Southern Hemisphere and Northern Hemisphere were 7.40 ± 3.83 and 7.80 ± 3.92, respectively. High values of POC / PON appeared between 80-90 (12.2 ± 7.5) and 70-80° N (9.4 ± 6.4), while relatively low POC / PON was found from 20 (6.6 ± 2.8) to 40° N (6.7 ± 2.7). The latitudinal variation of POC / PON in the Northern Hemisphere is much stronger than in the Southern Hemisphere due to the influence of more terrestrial organic matter. Higher POC and PON could be expected in coastal waters. POC / PON growth ranged from 6.89 ± 2.38 to 7.59 ± 4.22 in the Northern Hemisphere, with an increasing rate of 0.0024 km from the coastal to open ocean. Variations of POC / PON in lake water also showed a similar latitude-variation tendency of POC / PON with ocean water but were significantly regulated by the lakes' morphology, trophic state and climate. Small lakes and high-latitude lakes prefer relatively high POC / PON, and large lakes and low-latitude lakes tend to prefer low POC / PON. The coupling relationship between POC and PON in oceans is much stronger than in inland waters. Variations in POC, PON and POC / PON in inland waters should receive more attention due to the implications of these values for the global carbon and nitrogen cycles and the indeterminacy of the relationship between POC and PON.

  18. Quantitative real-time monitoring of multi-elements in airborne particulates by direct introduction into an inductively coupled plasma mass spectrometer

    International Nuclear Information System (INIS)

    Suzuki, Yoshinari; Sato, Hikaru; Hiyoshi, Katsuhiro; Furuta, Naoki

    2012-01-01

    A new calibration system for real-time determination of trace elements in airborne particulates was developed. Airborne particulates were directly introduced into an inductively coupled plasma mass spectrometer, and the concentrations of 15 trace elements were determined by means of an external calibration method. External standard solutions were nebulized by an ultrasonic nebulizer (USN) coupled with a desolvation system, and the resulting aerosol was introduced into the plasma. The efficiency of sample introduction via the USN was calculated by two methods: (1) the introduction of a Cr standard solution via the USN was compared with introduction of a Cr(CO) 6 standard gas via a standard gas generator and (2) the aerosol generated by the USN was trapped on filters and then analyzed. The Cr introduction efficiencies obtained by the two methods were the same, and the introduction efficiencies of the other elements were equal to the introduction efficiency of Cr. Our results indicated that our calibration method for introduction efficiency worked well for the 15 elements (Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Mo, Sn, Sb, Ba, Tl and Pb). The real-time data and the filter-collection data agreed well for elements with low-melting oxides (V, Co, As, Mo, Sb, Tl, and Pb). In contrast, the real-time data were smaller than the filter-collection data for elements with high-melting oxides (Ti, Cr, Mn, Ni, Cu, Zn, Sn, and Ba). This result implies that the oxides of these 8 elements were not completely fused, vaporized, atomized, and ionized in the initial radiation zone of the inductively coupled plasma. However, quantitative real-time monitoring can be realized after correction for the element recoveries which can be calculated from the ratio of real-time data/filter-collection data. - Highlights: ► APs were directly introduced into ICP-MS and real-time analysis was performed. ► The real-time data were calibrated by a multi-element standard solution from USN. ► During real

  19. [Impacts of Land Use Changes on Soil Light Fraction and Particulate Organic Carbon and Nitrogen in Jinyun Mountain].

    Science.gov (United States)

    Lei, Li-guo; Jiang, Chang-sheng; Hao, Qing-ju

    2015-07-01

    Four land types including the subtropical evergreen broad-leaved forest, sloping farmland, orchard and abandoned land were selected to collect soil samples from 0 to 60 cm depth at the same altitude of sunny slope in the Jinyun Mountain in this study. Soil light fraction organic carbon and nitrogen ( LFOC and LFON), and particulate organic carbon and nitrogen (POC and PON) were determined and the distribution ratios and C/N ratios were calculated. The results showed that the contents of LFOC and LFON decreased significantly by 71. 42% and 38. 46% after the forest was changed into sloping farmland (P 0. 05), while the contents of LFOC and LFON increased significantly by 3. 77 and 1. 38 times after the sloping farmland was changed into abandoned land (P organic carbon and nitrogen accumulation; on the contrary, sloping farmland was easy to lose soil labile carbon and nitrogen. The LFOC and LFON distribution ratios were significantly reduced by 31. 20% and 30. 08%, respectively after the forest was changed into the sloping farmland, and increased by 18. 74% and 20. 33% respectively after the forest was changed into the orchard. Nevertheless, the distribution ratios of LFOC and LFON were changed little by converting the forest into the sloping farmland and orchard. The distribution ratios of LFOC, LFON, POC and PON all increased significantly after the farmland was abandoned (P organic carbon and nitrogen was enhanced after forest reclamation, while reduced after the sloping farmland was abandoned. The ratios of carbon to nitrogen in soil organic matter, light fraction organic matter and particulate organic matter were in the order of abandoned land (12. 93) > forest (8. 53) > orchard (7. 52) > sloping farmland (4. 40), abandoned land (16. 32) > forest (14. 29) > orchard (11. 32) > sloping farmland (7. 60), abandoned land (23. 41) > sloping farmland (13. 85 ) > forest (10. 30) > orchard (9. 64), which indicated that the degree of organic nitrogen mineralization was

  20. Fossil and non-fossil sources of organic carbon (OC and elemental carbon (EC in Göteborg, Sweden

    Directory of Open Access Journals (Sweden)

    S. Szidat

    2009-03-01

    Full Text Available Particulate matter was collected at an urban site in Göteborg (Sweden in February/March 2005 and in June/July 2006. Additional samples were collected at a rural site for the winter period. Total carbon (TC concentrations were 2.1–3.6 μg m−3, 1.8–1.9 μg m−3, and 2.2–3.0 μg m−3 for urban/winter, rural/winter, and urban/summer conditions, respectively. Elemental carbon (EC, organic carbon (OC, water-insoluble OC (WINSOC, and water-soluble OC (WSOC were analyzed for 14C in order to distinguish fossil from non-fossil emissions. As wood burning is the single major source of non-fossil EC, its contribution can be quantified directly. For non-fossil OC, the wood-burning fraction was determined independently by levoglucosan and 14C analysis and combined using Latin-hypercube sampling (LHS. For the winter period, the relative contribution of EC from wood burning to the total EC was >3 times higher at the rural site compared to the urban site, whereas the absolute concentrations of EC from wood burning were elevated only moderately at the rural compared to the urban site. Thus, the urban site is substantially more influenced by fossil EC emissions. For summer, biogenic emissions dominated OC concentrations most likely due to secondary organic aerosol (SOA formation. During both seasons, a more pronounced fossil signal was observed for Göteborg than has previously been reported for Zurich, Switzerland. Analysis of air mass origin using back trajectories suggests that the fossil impact was larger when local sources dominated, whereas long-range transport caused an enhanced non-fossil signal. In comparison to other European locations, concentrations of levoglucosan and other monosaccharide anhydrides were low for the urban and the rural site in the area of Göteborg during winter.

  1. Validation of NAA Method for Urban Particulate Matter

    International Nuclear Information System (INIS)

    Woro Yatu Niken Syahfitri; Muhayatun; Diah Dwiana Lestiani; Natalia Adventini

    2009-01-01

    Nuclear analytical techniques have been applied in many countries for determination of environmental pollutant. Method of NAA (neutron activation analysis) representing one of nuclear analytical technique of that has low detection limits, high specificity, high precision, and accuracy for large majority of naturally occurring elements, and ability of non-destructive and simultaneous determination of multi-elemental, and can handle small sample size (< 1 mg). To ensure quality and reliability of the method, validation are needed to be done. A standard reference material, SRM NIST 1648 Urban Particulate Matter, has been used to validate NAA method. Accuracy and precision test were used as validation parameters. Particulate matter were validated for 18 elements: Ti, I, V, Br, Mn, Na, K, Cl, Cu, Al, As, Fe, Co, Zn, Ag, La, Cr, and Sm,. The result showed that the percent relative standard deviation of the measured elemental concentrations are found to be within ranged from 2 to 14,8% for most of the elements analyzed whereas Hor rat value in range 0,3-1,3. Accuracy test results showed that relative bias ranged from -11,1 to 3,6%. Based on validation results, it can be stated that NAA method is reliable for characterization particulate matter and other similar matrix samples to support air quality monitoring. (author)

  2. Emission factors for gaseous and particulate pollutants from offshore diesel engine vessels in China

    Science.gov (United States)

    Zhang, Fan; Chen, Yingjun; Tian, Chongguo; Lou, Diming; Li, Jun; Zhang, Gan; Matthias, Volker

    2016-05-01

    Shipping emissions have significant influence on atmospheric environment as well as human health, especially in coastal areas and the harbour districts. However, the contribution of shipping emissions on the environment in China still need to be clarified especially based on measurement data, with the large number ownership of vessels and the rapid developments of ports, international trade and shipbuilding industry. Pollutants in the gaseous phase (carbon monoxide, sulfur dioxide, nitrogen oxides, total volatile organic compounds) and particle phase (particulate matter, organic carbon, elemental carbon, sulfates, nitrate, ammonia, metals) in the exhaust from three different diesel-engine-powered offshore vessels in China (350, 600 and 1600 kW) were measured in this study. Concentrations, fuel-based and power-based emission factors for various operating modes as well as the impact of engine speed on emissions were determined. Observed concentrations and emission factors for carbon monoxide, nitrogen oxides, total volatile organic compounds, and particulate matter were higher for the low-engine-power vessel (HH) than for the two higher-engine-power vessels (XYH and DFH); for instance, HH had NOx EF (emission factor) of 25.8 g kWh-1 compared to 7.14 and 6.97 g kWh-1 of DFH, and XYH, and PM EF of 2.09 g kWh-1 compared to 0.14 and 0.04 g kWh-1 of DFH, and XYH. Average emission factors for all pollutants except sulfur dioxide in the low-engine-power engineering vessel (HH) were significantly higher than that of the previous studies (such as 30.2 g kg-1 fuel of CO EF compared to 2.17 to 19.5 g kg-1 fuel in previous studies, 115 g kg-1 fuel of NOx EF compared to 22.3 to 87 g kg-1 fuel in previous studies and 9.40 g kg-1 fuel of PM EF compared to 1.2 to 7.6 g kg-1 fuel in previous studies), while for the two higher-engine-power vessels (DFH and XYH), most of the average emission factors for pollutants were comparable to the results of the previous studies, engine type was

  3. Fine scale distributions of porosity and particulate excess 210Pb, organic carbon and CaCO3 in surface sediments of the deep equatorial Pacific

    International Nuclear Information System (INIS)

    Jahnke, R.A.; Emerson, S.R.; Cochran, J.K.; Hirschberg, D.J.

    1986-01-01

    Sediment samples were recovered from the central equatorial Pacific Ocean, sectioned at 1-mm intervals, and analyzed for porosity, organic carbon, excess 210 Pb and CaCO 3 . Steep porosity gradients were measured in the upper 1 cm of the sediment column with extremely high values observed near the sediment surface. Similarly, particulate organic carbon contents are highest at the sediment surface, decrease sharply in the upper 1 cm, and are relatively constant between 1 and 5 cm. CaCO 3 values, on the other hand, are lowest at the sediment surface and increase to a constant value below 5-10 mm depth. At the carbonate ooze sites, excess 210 Pb is present throughout the upper 5 cm of the sediments suggesting relatively rapid particle mixing rates. However, extremely high excess 210 Pb activities (> 100 dpm/g) are observed at the sediment surface with sharp gradients present in the upper 1 cm which would suggest slow rates of mixing. This apparent contradiction along with the major features of the CaCO 3 and particulate organic carbon profiles can be explained by a particle-selective feeding mechanism in which organic carbon, excess 210 Pb-enriched particles are preferentially maintained at the sediment surface via ingestion and defecation by benthic organisms. (orig.)

  4. Water-soluble elements in atmospheric particulate matter over tropical and equatorial Atlantic

    International Nuclear Information System (INIS)

    Buat-Menard, Patrick; Morelli, Jacques; Chesselet, Roger

    1974-01-01

    Samples of water-soluble atmospheric particulate matter collected from R/V ''Jean Charcot'' (May to October 1971) and R/V ''James Gilliss'' (October 1972) over Tropical and Equatorial Atlantic were analyzed for Na, Mg, K and Ca by atomic absorption and for Cl and S as SO 4 by colorimetry. Data shows a strong geographical dependence of K and Ca enrichment relative to their elemental ratio to Na in sea-water. Ca enrichment is related to presence of identified soluble calcium minerals in continental dust originating from African deserts (Sahara-Kalahari). This dust does not influence amounts of K in the water-soluble phase. When observed, strong K enrichment appears tightly associated with high concentrations of surface-active organic material in the microlayer derived from high biological activity (Gulf of Guinea). Observed in same samples, SO 4 enrichment could also be controlled by the same source. This SO 4 enrichment balances the observed Cl loss in aerosols accordingly with gaseous HCl formation processes in marine atmosphere [fr

  5. Development of electrically heated rods with resistive element of graphite or carbon/carbon composites for simulating transients in nuclear reactors

    International Nuclear Information System (INIS)

    Polidoro, H.A.

    1987-01-01

    Thermo-hydraulic problems, in nuclear plants are normally analysed by the use of electrically heated rods. The direct or indirect heater rods are limited in their use because, for high temperatures and high heat flux, the heating element temperature approach its melting point. The use of platinum or tantalum is not economically viable. Graphite and carbon/carbon composites are alternative materials because they are good electrical conductors and have good mechanical properties at high temperatures. Graphite and carbon/carbon composites were used to make heating elements for testing by indirect heating. The swaging process used to reduce the cladding diameter prevented the fabrication of graphite heater rods. Carbon/carbon composite used to make heating elements gave good results up to a heat flux of 100 W/cm 2 . It is easy to verify that this value can be exceeded if the choice of the complementary materials for insulator and cladding improved. (author) [pt

  6. Trends in the elemental composition of fine particulate matter in Santiago, Chile, from 1998 to 2003.

    Science.gov (United States)

    Sax, Sonja N; Koutrakis, Petros; Rudolph, Pablo A Ruiz; Cereceda-Balic, Francisco; Gramsch, Ernesto; Oyola, Pedro

    2007-07-01

    Santiago, Chile, is one of the most polluted cities in South America. As a response, over the past 15 yr, numerous pollution reduction programs have been implemented by the environmental authority, Comisión Nacional del Medio Ambiente. This paper assesses the effectiveness of these interventions by examining the trends of fine particulate matter (PM(2.5)) and its associated elements. Daily fine particle filter samples were collected in Santiago at a downtown location from April 1998 through March 2003. Additionally, meteorological variables were measured continuously. Annual average concentrations of PM(2.5) decreased only marginally, from 41.8 microg/m3 for the 1998-1999 period to 35.4 microg/m3 for the 2002-2003 period. PM(2.5) concentrations exceeded the annual U.S. Environmental Protection Agency standard of 15 microg/m3. Also, approximately 20% of the daily samples exceeded the old standard of 65 microg/m3, whereas approximately half of the samples exceeded the new standard of 35 microg/m3 (effective in 2006). Mean PM(2.5) levels measured during the cold season (April through September) were three times higher than those measured in the warm season (October through March). Particulate mass and elemental concentration trends were investigated using regression models, controlling for year, month, weekday, wind speed, temperature, and relative humidity. The results showed significant decreases for Pb, Br, and S concentrations and minor but still significant decreases for Ni, Al, Si, Ca, and Fe. The larger decreases were associated with specific remediation policies implemented, including the removal of lead from gasoline, the reduction of sulfur levels in diesel fuel, and the introduction of natural gas. These results suggest that the pollution reduction programs, especially the ones related to transport, have been effective in reducing various important components of PM(2.5). However, particle mass and other associated element levels remain high, and it is thus

  7. Particulate emissions from a mid-latitude prescribed chaparral fire

    Science.gov (United States)

    Cofer, Wesley R., III; Levine, Joel S.; Sebacher, Daniel I.; Winstead, Edward L.; Riggin, Philip J.; Brass, James A.; Ambrosia, Vincent G.

    1988-01-01

    Particulate emission from a 400-acre prescribed chaparral fire in the San Dimas Experimental Forest was investigated by collecting smoke aerosol on Teflon and glass-fiber filters from a helicopter, and using SEM and EDAX to study the features of the particles. Aerosol particles ranged in size from about 0.1 to 100 microns, with carbon, oxygen, magnesium, aluminum, silicon, calcium, and iron as the primary elements. The results of ion chromatographic analysis of aerosol-particle extracts (in water-methanol) revealed the presence of significant levels of NO2(-), NO3(-), SO4(2-), Cl(-), PO4(3-), C2O4(2-), Na(+), NH4(+), and K(+). The soluble ionic portion of the aerosol was estimated to be about 2 percent by weight.

  8. Origin and biochemical cycling of particulate nitrogen in the Mandovi estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, L

    for particulate organic carbon (POC) and particulate organic nitrogen (PON), delta sup(13) C sub(POC), total hydrolysable amino acid enantiomers (L- and D- amino acids) concentration and composition. Delta sup(13)C sub(POC) values were depleted (-32 to -25 ppt...

  9. Carbon amendment stimulates benthic nitrogen cycling during the bioremediation of particulate aquaculture waste

    Science.gov (United States)

    Robinson, Georgina; MacTavish, Thomas; Savage, Candida; Caldwell, Gary S.; Jones, Clifford L. W.; Probyn, Trevor; Eyre, Bradley D.; Stead, Selina M.

    2018-03-01

    The treatment of organic wastes remains one of the key sustainability challenges facing the growing global aquaculture industry. Bioremediation systems based on coupled bioturbation-microbial processing offer a promising route for waste management. We present, for the first time, a combined biogeochemical-molecular analysis of the short-term performance of one such system that is designed to receive nitrogen-rich particulate aquaculture wastes. Using sea cucumbers (Holothuria scabra) as a model bioturbator we provide evidence that adjusting the waste C : N from 5 : 1 to 20 : 1 promoted a shift in nitrogen cycling pathways towards the dissimilatory nitrate reduction to ammonium (DNRA), resulting in net NH4+ efflux from the sediment. The carbon amended treatment exhibited an overall net N2 uptake, whereas the control receiving only aquaculture waste exhibited net N2 production, suggesting that carbon supplementation enhanced nitrogen fixation. The higher NH4+ efflux and N2 uptake was further supported by meta-genome predictions that indicate that organic-carbon addition stimulated DNRA over denitrification. These findings indicate that carbon addition may potentially result in greater retention of nitrogen within the system; however, longer-term trials are necessary to determine whether this nitrogen retention is translated into improved sea cucumber biomass yields. Whether this truly constitutes a remediation process is open for debate as there remains the risk that any increased nitrogen retention may be temporary, with any subsequent release potentially raising the eutrophication risk. Longer and larger-scale trials are required before this approach may be validated with the complexities of the in-system nitrogen cycle being fully understood.

  10. Concentration levels and temporal variations of heavy elements in the urban particulate matter of Navi Mumbai, India

    International Nuclear Information System (INIS)

    Kothai, P.; Saradhi, I.V.; Prathibha, P.; Pandit, G.G.; Puranik, V.D.

    2012-01-01

    Coarse and fine fractions of particulate matter (PM) were collected and analysed for trace elements using Instrumental Neutron Activation Analysis and Energy Dispersive X-ray Fluorescence techniques. The result showed high concentrations of Fe, S, Zn and Pb in both the size fractions. The elemental data obtained is used to analyze the temporal and seasonal variations. The trend showed maximum concentrations of PM and metals during winter and minimum during the monsoon season. Enrichment Factor (EF) and source analysis was performed for the same data set to identify the strength of contribution of anthropogenic sources and the possible contributing sources in the study area. EF studies showed high enrichments of Zn, Pb and As in the fine fraction particles. Crustal, vehicular and industrial emissions are identified as the major contributing sources of PM in the study area. (author)

  11. Predicting ambient aerosol thermal-optical reflectance measurements from infrared spectra: elemental carbon

    Science.gov (United States)

    Dillner, A. M.; Takahama, S.

    2015-10-01

    Elemental carbon (EC) is an important constituent of atmospheric particulate matter because it absorbs solar radiation influencing climate and visibility and it adversely affects human health. The EC measured by thermal methods such as thermal-optical reflectance (TOR) is operationally defined as the carbon that volatilizes from quartz filter samples at elevated temperatures in the presence of oxygen. Here, methods are presented to accurately predict TOR EC using Fourier transform infrared (FT-IR) absorbance spectra from atmospheric particulate matter collected on polytetrafluoroethylene (PTFE or Teflon) filters. This method is similar to the procedure developed for OC in prior work (Dillner and Takahama, 2015). Transmittance FT-IR analysis is rapid, inexpensive and nondestructive to the PTFE filter samples which are routinely collected for mass and elemental analysis in monitoring networks. FT-IR absorbance spectra are obtained from 794 filter samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to collocated TOR EC measurements. The FT-IR spectra are divided into calibration and test sets. Two calibrations are developed: one developed from uniform distribution of samples across the EC mass range (Uniform EC) and one developed from a uniform distribution of Low EC mass samples (EC < 2.4 μg, Low Uniform EC). A hybrid approach which applies the Low EC calibration to Low EC samples and the Uniform EC calibration to all other samples is used to produce predictions for Low EC samples that have mean error on par with parallel TOR EC samples in the same mass range and an estimate of the minimum detection limit (MDL) that is on par with TOR EC MDL. For all samples, this hybrid approach leads to precise and accurate TOR EC predictions by FT-IR as indicated by high coefficient of determination (R2; 0.96), no bias (0.00 μg m-3, a

  12. Effect of sample digestion, air filter contamination, and post-adsorption on the analysis of trace elements in air particulate matter

    International Nuclear Information System (INIS)

    Yang, Xiao Jin; Wan, Pingyu; Foley, Roy

    2012-01-01

    Inductively coupled plasma atomic emission spectrometry and inductively coupled plasma MS are the major analytical tools for trace elements in environmental matrices, however, the underestimate of certain trace elements in analysis of air particulate matter by these two techniques has long been observed. This has been attributed to incomplete sample digestion. Here, we demonstrate that the combined effects of sample digestion, air filter impurities, and post-adsorption of the analytes contribute to the interference of the analysis. Particular attention should be paid to post-adsorption of analytes onto air filters after acid digestion. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Effect of sample digestion, air filter contamination, and post-adsorption on the analysis of trace elements in air particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiao Jin [Department of Environment and Climate Change, Environmental Forensic and Analytical Science Section, New South Wales (Australia); Department of Applied Chemistry, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing (China); Wan, Pingyu [Department of Applied Chemistry, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing (China); Foley, Roy [Department of Environment and Climate Change, Environmental Forensic and Analytical Science Section, New South Wales (Australia)

    2012-11-15

    Inductively coupled plasma atomic emission spectrometry and inductively coupled plasma MS are the major analytical tools for trace elements in environmental matrices, however, the underestimate of certain trace elements in analysis of air particulate matter by these two techniques has long been observed. This has been attributed to incomplete sample digestion. Here, we demonstrate that the combined effects of sample digestion, air filter impurities, and post-adsorption of the analytes contribute to the interference of the analysis. Particular attention should be paid to post-adsorption of analytes onto air filters after acid digestion. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Bioavailable dissolved and particulate organic carbon flux from coastal temperate rainforest watersheds

    Science.gov (United States)

    Fellman, J.; Hood, E. W.; D'Amore, D. V.; Moll, A.

    2017-12-01

    Coastal temperate rainforest (CTR) watersheds of southeast Alaska have dense soil carbon stocks ( 300 Mg C ha-1) and high specific discharge (1.5-7 m yr-1) driven by frontal storms from the Gulf of Alaska. As a result, dissolved organic carbon (DOC) fluxes from Alaskan CTR watersheds are estimated to exceed 2 Tg yr-1; however, little is known about the export of particulate organic carbon (POC). The magnitude and bioavailability of this land-to-ocean flux of terrigenous organic matter ultimately determines how much metabolic energy is translocated to downstream and coastal marine ecosystems in this region. We sampled streamwater weekly from May through October from four watersheds of varying landcover (gradient of wetland to glacial coverage) to investigate changes in the concentration and flux of DOC and POC exported to the coastal ocean. We also used headspace analysis of CO2 following 14 day laboratory incubations to determine the flux of bioavailable DOC and POC exported from CTR watersheds. Across all sites, bioavailable DOC concentrations ranged from 0.2 to 1.9 mg L-1 but were on average 0.6 mg L-1. For POC, bioavailable concentrations ranged from below detection to 0.3 mg L-1 but were on average 0.1 mg L-1. The concentration, flux and bioavailability of DOC was higher than for POC highlighting the potential importance of DOC as a metabolic subsidy to downstream and coastal environments. Ratios of DOC to POC decreased during high flow events because the increase in POC concentrations with discharge exceeds that for DOC. Overall, our findings suggest that projected increases in precipitation and storm intensity will drive changes in the speciation, magnitude and bioavailability of the organic carbon flux from CTR watersheds.

  15. Carbon transport by the Lena River from its headwaters to the Arctic Ocean, with emphasis on fluvial input of terrestrial particulate organic carbon vs. carbon transport by coastal erosion

    Directory of Open Access Journals (Sweden)

    I. P. Semiletov

    2011-09-01

    Full Text Available The Lena River integrates biogeochemical signals from its vast drainage basin, and the integrated signal reaches far out over the Arctic Ocean. Transformation of riverine organic carbon (OC into mineral carbon, and mineral carbon into the organic form in the Lena River watershed, can be considered to be quasi-steady-state processes. An increase in Lena discharge exerts opposite effects on total organic (TOC and total inorganic (TCO2 carbon: TOC concentration increases, while TCO2 concentration decreases. Significant inter-annual variability in mean values of TCO2, TOC, and their sum (total carbon, TC has been found. This variability is determined by changes in land hydrology which cause differences in the Lena River discharge. There is a negative correlation in the Lena River between TC in September and its mean discharge in August; a time shift of about one month is required for water to travel from Yakutsk to the Laptev Sea. Total carbon entering the sea with the Lena discharge is estimated to be almost 10 Tg C yr−1. The annual Lena River discharge of particulate organic carbon (POC can be as high as 0.38 Tg (moderate to high estimate. If we instead accept Lisytsin's (1994 statement that 85–95 % of total particulate matter (PM (and POC precipitates on the marginal "filter", then only about 0.03–0.04 Tg of Lena River POC reaches the Laptev Sea. The Lena's POC export would then be two orders of magnitude less than the annual input of eroded terrestrial carbon onto the shelf of the Laptev and East Siberian seas, which is estimated to be about 4 Tg. Observations support the hypothesis of a dominant role for coastal erosion (Semiletov, 1999a, b in East Siberian Arctic Shelf (ESAS sedimentation and the dynamics of the carbon/carbonate system. The Lena River is characterized by relatively high concentrations of the primary greenhouse gases, dissolved carbon dioxide (CO2 and methane (CH

  16. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of particulate matter from wood and dung cooking fires, brick kilns, generators, trash and crop residue burning

    Science.gov (United States)

    Stone, Elizabeth; Jayarathne, Thilina; Stockwell, Chelsea; Christian, Ted; Bhave, Prakash; Siva Praveen, Puppala; Panday, Arnico; Adhikari, Sagar; Maharjan, Rashmi; Goetz, Doug; DeCarlo, Peter; Saikawa, Eri; Yokelson, Robert

    2016-04-01

    The Nepal Ambient Monitoring and Source Testing Experiment (NAMASTE) field campaign targeted the in situ characterization of widespread and under-sampled combustion sources. In Kathmandu and the Terai, southern Nepal's flat plains, samples of fine particulate matter (PM2.5) were collected from wood and dung cooking fires (n = 22), generators (n = 2), groundwater pumps (n = 2), clamp kilns (n = 3), zig-zag kilns (n = 3), trash burning (n = 4), one heating fire, and one crop residue fire. Co-located measurements of carbon dioxide, carbon monoxide, and volatile organic compounds allowed for the application of the carbon mass balance approach to estimate emission factors for PM2.5, elemental carbon, organic carbon, and water-soluble inorganic ions. Organic matter was chemically speciated using gas chromatography - mass spectrometry for polycyclic aromatic hydrocarbons, sterols, n-alkanes, hopanes, steranes, and levoglucosan, which accounted for 2-8% of the measured organic carbon. These data were used to develop molecular-marker based profiles for use in source apportionment modeling. This study provides quantitative emission factors for particulate matter and its constituents for many important combustion sources in Nepal and South Asia.

  17. Occupational Exposure to Diesel Particulate Matter in Municipal Household Waste Workers.

    Science.gov (United States)

    Lee, Kyong-Hui; Jung, Hye-Jung; Park, Dong-Uk; Ryu, Seung-Hun; Kim, Boowook; Ha, Kwon-Chul; Kim, Seungwon; Yi, Gwangyong; Yoon, Chungsik

    2015-01-01

    The purposes of this study were to determine the following: 1) the exposure levels of municipal household waste (MHW) workers to diesel particulate matter (DPM) using elemental carbon (EC), organic carbon (OC), total carbon (TC), black carbon (BC), and fine particulate matter (PM 2.5) as indicators; 2) the correlations among the indicators; 3) the optimal indicator for DPM; and 4) factors that influence personal exposure to DPM. A total of 72 workers in five MHW collection companies were assessed over a period of 7 days from June to September 2014. Respirable EC/OC samples were quantified using the thermal optical transmittance method. BC and PM 2.5 were measured using real-time monitors, an aethalometer and a laser photometer. All results were statistically analyzed for occupational and environmental variables to identify the exposure determinants of DPM. The geometric mean of EC, OC, TC, BC and PM 2.5 concentrations were 4.8, 39.6, 44.8, 9.1 and 62.0 μg/m3, respectively. EC concentrations were significantly correlated with the concentrations of OC, TC and BC, but not with those of PM 2.5. The exposures of the MHW collectors to EC, OC, and TC were higher than those of the drivers (pemission standard had higher exposures to EC, OC, TC and PM 2.5 than those working on Euro 4 trucks (pemission standard, and average driving speed were the most influential factors in determining worker exposure. We assessed MHW workers' exposure to DPM using parallel sampling of five possible indicators. Of these five indicators, EC was shown to be the most useful indicator of DPM exposure for MHW workers, and the job task, European emission standard, and average driving speed were the main determinants of EC exposure.

  18. Elemental characterization of air particulate matter in Buenos Aires, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Jasan, Raquel C.; Pla, Rita R.; Invernizzi, Rodrigo [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Centro Atomico Ezeiza. Grupo Tecnicas Analiticas Nucleares], E-mail: jasan@cae.cnea.gov.ar, E-mail: rpla@cae.cnea.gov.ar; Santos, Marina dos [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Centro Atomico Constituyentes. Lab. de Contaminacion del Aire], E-mail: mdossant@cnea.gov.ar

    2007-07-01

    Buenos Aires, the capital city of Argentina, is surrounded by 24 neighboring districts forming the so-called Buenos Aires metropolitan area (AMBA) that holds a population of 14 million people. In this work, the atmospheric aerosol of this metropolitan area was characterized through the determination of mass concentration, black carbon and elemental concentrations, on PM10 and PM2.5 samples taken using a 'Gent' sampler. The sampling site was located at an urban area characterized by fast and heavy traffic and samples were collected each third day, along 24 hours, between October 2005 and February 2006. A number of elements (As, Ba, Br, Ce, Co, Cr, Cs, Eu, Fe, Hf, La, Na, Rb, Sb, Sc, Se, Sm, Th, Yb and Zn) were determined by Neutron Activation Analysis and their results, as well as those of gravimetric mass concentrations, were compared with historical data. Enrichment factors were calculated for both fractions, using Sc as reference element and Mason's crustal concentration values, showing enrichment for As, Br, Sb, Se and Zn. Although the number of analyzed filters is still small, a preliminary factor analysis was run on both fraction results and different source profiles were found. The attribution of the sources to soil, high temperature processes including refuse incineration, fuel combustion and others, metal processes, traffic and other anthropogenic ones is discussed. (author)

  19. Elemental characterization of air particulate matter in Buenos Aires, Argentina

    International Nuclear Information System (INIS)

    Jasan, Raquel C.; Pla, Rita R.; Invernizzi, Rodrigo; Santos, Marina dos

    2007-01-01

    Buenos Aires, the capital city of Argentina, is surrounded by 24 neighboring districts forming the so-called Buenos Aires metropolitan area (AMBA) that holds a population of 14 million people. In this work, the atmospheric aerosol of this metropolitan area was characterized through the determination of mass concentration, black carbon and elemental concentrations, on PM10 and PM2.5 samples taken using a 'Gent' sampler. The sampling site was located at an urban area characterized by fast and heavy traffic and samples were collected each third day, along 24 hours, between October 2005 and February 2006. A number of elements (As, Ba, Br, Ce, Co, Cr, Cs, Eu, Fe, Hf, La, Na, Rb, Sb, Sc, Se, Sm, Th, Yb and Zn) were determined by Neutron Activation Analysis and their results, as well as those of gravimetric mass concentrations, were compared with historical data. Enrichment factors were calculated for both fractions, using Sc as reference element and Mason's crustal concentration values, showing enrichment for As, Br, Sb, Se and Zn. Although the number of analyzed filters is still small, a preliminary factor analysis was run on both fraction results and different source profiles were found. The attribution of the sources to soil, high temperature processes including refuse incineration, fuel combustion and others, metal processes, traffic and other anthropogenic ones is discussed. (author)

  20. Variation of particulate organic carbon and its relationship with bio-optical properties during a phytoplankton bloom in the Pearl River estuary

    International Nuclear Information System (INIS)

    Wang Guifen; Zhou Wen; Cao Wenxi; Yin Jianping; Yang Yuezhong; Sun Zhaohua; Zhang Yuanzhi; Zhao Jun

    2011-01-01

    Highlights: → A study about relationship between POC and optical properties during a phytoplankton bloom. → Empirical algorithms for retrieving POC concentration from optical data were developed. → Phytoplankton carbon and it's ratio to Chl-a are estimated and discussed. → Demonstrates that marine optical buoy can be a new platform for monitoring biogeochemical cycle. - Abstract: In this study, variations in the particulate organic carbon (POC) were monitored during a phytoplankton bloom event, and the corresponding changes in bio-optical properties were tracked at one station (114.29 o E, 22.06 o N) located in the Pearl River estuary. A greater than 10-fold increase in POC (112.29-1173.36 mg m -3 ) was observed during the bloom, with the chlorophyll a concentration (Chl-a) varying from 0.984 to 25.941 mg m -3 . A power law function is used to describe the relationship between POC and Chl-a, and the POC:Chl-a ratio tends to change inversely with Chl-a. Phytoplankton carbon concentration is indirectly estimated using the conceptual model proposed by , and this carbon is found to contribute 47.21% (±10.65%) to total POC. The estimated carbon-to-chlorophyll ratio of phytoplankton in diatom-dominated waters is found to be comparable with results reported in the literature. Empirical algorithms for determining the concentrations of Chl-a and POC were developed based on the relationships of these variables with the blue-to-green reflectance ratio. With these bio-optical models, the levels of particulate organic carbon and Chl-a could be predicted from the radiometric data measured by a marine optical buoy, which showed much more detailed information about the variability in biogeochemical parameters during this bloom event.

  1. Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments

    Science.gov (United States)

    Morales Betancourt, R.; Galvis, B.; Balachandran, S.; Ramos-Bonilla, J. P.; Sarmiento, O. L.; Gallo-Murcia, S. M.; Contreras, Y.

    2017-05-01

    This research determined intake dose of fine particulate matter (PM2.5), equivalent black carbon (eBC), and number of sub-micron particles (Np) for commuters in Bogotá, Colombia. Doses were estimated through measurements of exposure concentration, a surrogate of physical activity, as well as travel times and speeds. Impacts of travel mode, traffic load, and street configuration on dose and exposure were explored. Three road segments were selected because of their different traffic loads and composition, and dissimilar street configuration. The transport modes considered include active modes (walking and cycling) and motorized modes (bus, car, taxi, and motorcycle). Measurements were performed simultaneously in the available modes at each road segment. High average eBC concentrations were observed throughout the campaign, ranging from 20 to 120 μgm-3 . Commuters in motorized modes experienced significantly higher exposure concentrations than pedestrians and bicyclists. The highest average concentrations of PM2.5, eBC , and Np were measured inside the city's Bus Rapid Transit (BRT) system vehicles. Pedestrians and bicycle users in an open street configuration were exposed to the lowest average concentrations of PM2.5 and eBC , six times lower than those experienced by commuters using the BRT in the same street segment. Pedestrians experienced the highest particulate matter intake dose in the road segments studied, despite being exposed to lower concentrations than commuters in motorized modes. Average potential dose of PM2.5 and eBC per unit length traveled were nearly three times higher for pedestrians in a street canyon configuration compared to commuters in public transport. Slower travel speed and elevated inhalation rates dominate PM dose for pedestrians. The presence of dedicated bike lanes on sidewalks has a significant impact on reducing the exposure concentration for bicyclists compared to those riding in mixed traffic lanes. This study proposes a simple

  2. Carbon isotopic ratio of suspended organic matter of the Gironde estuary. Application to particulate Zn and Pb distribution

    International Nuclear Information System (INIS)

    Fontugne, Michel; Jouanneau, J.M.

    1981-01-01

    In the Gironde estuary, the isotopic ratio of particulate organic carbon (P.O.C.), and the ratio metal/P.O.C. indicate the occurrence of two zones. Up-river, the concentration decreases due to the consumption of the organo-metallic phase and by mixing in the ''mud plug'' with terrestrial particles impoverished in metal and P.O.C. Down-stream, the mixing of metal rich terrestrial P.O.C. with poorer marine particles determines the metal concentrations [fr

  3. Work place air particulate monitoring of automobile workshops for public health and safety

    International Nuclear Information System (INIS)

    Siddique, N.; Waheed, S.

    2013-01-01

    Twenty-eight pairs of coarse and fine air particulate samples were collected in front of an automotive workshop located at Tasmasipabad on Chaklala Road in Rawalpindi using a Gent sampler and polycarbonate filters. These samples were collected during the period; 7th to 27th of April 2009. The gravimetric data (PM 2.5 and PM 10 ) were obtained for these samples and were found to exceed the Pakistani standards. Black carbon (BC) was also determined using reflectance measurements and it was found that BC contributed significantly more to the fine mass than to the coarse fraction; i.e. ∼10 to ∼3 %, respectively. This is not surprising as soot is emitted by combustion processes and is usually found in the fine particulate mass. Using instrumental neutron activation analysis technique all 28 pairs of filters were analyzed for >30 elements. Major elements, in the coarse mass fraction, include Al, K, Fe, Sr, Na, and Zn implying soil as the major source while BC was found to be a higher contributor of PM 2.5 . An episode of high PM 2.5 was observed on the 18th of April 2009. Back trajectory analysis showed that the air mass originated from the Middle East where a dust storm was in progress over Iraq. (author)

  4. INAA at the top of the world: Elemental characterization and analysis of airborne particulate matter collected in the Himalayas at 5,100 m high

    International Nuclear Information System (INIS)

    Giaveri, G.; Bergamaschi, L.; Rizzio, E.; Brandone, A.; Profumo, A.; Gallorini, M.; Zambelli, G.; Baudo, R.; Tartari, G.

    2005-01-01

    In 1990, following an agreement with the Royal Nepal Academy of Science, the Italian National Research Council (CNR) installed a scientific laboratory (Pyramid) at 5,050 m (s.l.) in the Himalayan region. Among the environmental related researches, the task project RATEAP (Remote Areas Trace Elements Atmospheric Pollution), started in 2001, aims at obtaining information about the chemical composition of the high altitude airborne particulate matter. During the period of March-April 2002 series of samplings have been carried out by pump aspiration. Samples of total suspended particles (TSP) as well as of the particles size fraction PM10 and PM 2.5 have been collected and submitted to INAA for the determination of more than 30 elements present, at nanogram levels, in few micrograms of air dust. Data quality assurance has been performed by the analysis of different NIST SRMs and, in particular, the SRM 2783 Air particulate on Filter Media. (author)

  5. Methods of analysis for complex organic aerosol mixtures from urban emission sources of particulate carbon

    International Nuclear Information System (INIS)

    Mazurek, M.A.; Hildemann, L.M.; Simoneit, B.R.T.

    1990-10-01

    Organic aerosols comprise approximately 30% by mass of the total fine particulate matter present in urban atmospheres. The chemical composition of such aerosols is complex and reflects input from multiple sources of primary emissions to the atmosphere, as well as from secondary production of carbonaceous aerosol species via photochemical reactions. To identify discrete sources of fine carbonaceous particles in urban atmospheres, analytical methods must reconcile both bulk chemical and molecular properties of the total carbonaceous aerosol fraction. This paper presents an overview of the analytical protocol developed and used in a study of the major sources of fine carbon particles emitted to an urban atmosphere. 23 refs., 1 fig., 2 tabs

  6. Development of a thermal method for the measurement of elemental carbon

    Energy Technology Data Exchange (ETDEWEB)

    Lavanchy, V.M.H. [Bern Univ. (Switzerland); Baltensperger, U.; Gaeggeler, H.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    A thermal method was developed to measure the organic carbon (OC) and elemental carbon (EC) content of atmospheric aerosols. OC is first oxidized under an O{sub 2} flow during a precombustion step and measured with an Non-Dispersive Infrared Analyzer (NDIR). The remaining carbon, defined as EC, is then oxidized at 650{sup o}C. (author) 1 fig., 1 tab., 3 refs.

  7. Input of particulate organic and dissolved inorganic carbon from the Amazon to the Atlantic Ocean

    Science.gov (United States)

    Druffel, E. R. M.; Bauer, J. E.; Griffin, S.

    2005-03-01

    We report concentrations and isotope measurements (radiocarbon and stable carbon) of dissolved inorganic carbon (DIC) and suspended particulate organic carbon (POC) in waters collected from the mouth of the Amazon River and the North Brazil Current. Samples were collected in November 1991, when the Amazon hydrograph was at its annual minimum and the North Brazil Current had retroflected into the equatorial North Atlantic. The DIC Δ14C results revealed postbomb carbon in river and ocean waters, with slightly higher values at the river mouth. The low DIC δ13C signature of the river end-member (-11‰) demonstrates that about half of the DIC originated from the remineralization of terrestrially derived organic matter. A linear relationship between DIC and salinity indicates that DIC was mixed nearly conservatively in the transition zone from the river mouth to the open ocean, though there was a small amount (≤10%) of organic matter remineralization in the mesohaline region. The POC Δ14C values in the river mouth were markedly lower than those values from the western Amazon region (Hedges et al., 1986). We conclude that the dominant source of POC near the river mouth and in the inner Amazon plume during November 1991 was aged, resuspended material of significant terrestrial character derived from shelf sediments, while the outer plume contained mainly marine-derived POC.

  8. A study of uniformity of elements deposition on glass fiber filters after collection of airborne particulate matter (PM-10), using a high-volume sampler.

    Science.gov (United States)

    Marrero, Julieta; Rebagliati, Raúl Jiménez; Gómez, Darío; Smichowski, Patricia

    2005-12-15

    A study was conducted to evaluate the homogeneity of the distribution of metals and metalloids deposited on glass fiber filters collected using a high-volume sampler equipped with a PM-10 sampling head. The airborne particulate matter (APM)-loaded glass fiber filters (with an active surface of about 500cm(2)) were weighed and then each filter was cut in five small discs of 6.5cm of diameter. Each disk was mineralized by acid-assisted microwave (MW) digestion using a mixture of nitric, perchloric and hydrofluoric acids. Analysis was performed by axial view inductively coupled plasma optical emission spectrometry (ICP OES) and the elements considered were: Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Sb, Ti and V. The validation of the procedure was performed by the analysis of the standard reference material NIST 1648, urban particulate matter. As a way of comparing the possible variability in trace elements distribution in a particular filter, the mean concentration for each element over the five positions (discs) was calculated and each element concentration was normalized to this mean value. Scatter plots of the normalized concentrations were examined for all elements and all sub-samples. We considered that an element was homogeneously distributed if its normalized concentrations in the 45 sub-samples were within +/-15% of the mean value ranging between 0.85 and 1.15. The study demonstrated that the 12 elements tested showed different distribution pattern. Aluminium, Cu and V showed the most homogeneous pattern while Cd and Ni exhibited the largest departures from the mean value in 13 out of the 45 discs analyzed. No preferential deposition was noticed in any sub-sample.

  9. Multi-proxy approach (Thorium-234, excess Barium) of export and remineralisation fluxes of carbon and biogenic elements associated with the oceanic biological pump

    International Nuclear Information System (INIS)

    Lemaitre, Nolwenn

    2017-01-01

    The main objective of this thesis is to improve our understanding of the different controls that affect the oceanic biological carbon pump. Particulate export and remineralisation fluxes were investigated using the thorium-234 ( 234 Th) and biogenic barium (Baxs) proxies. In the North Atlantic, the highest particulate organic carbon (POC) export fluxes were associated to biogenic (biogenic silica or calcium carbonate) and lithogenic minerals, ballasting the particles. Export efficiency was generally low (≤ 10%) and inversely related to primary production, highlighting a phase lag between production and export. The highest transfer efficiencies, i.e. the fraction of POC that reached 400 m, were driven by sinking particles ballasted by calcite or lithogenic minerals. The regional variation of meso-pelagic remineralisation was attributed to changes in bloom intensity, phytoplankton cell size, community structure and physical forcing (down-welling). Carbon remineralisation balanced, or even exceeded, POC export, highlighting the impact of meso-pelagic remineralisation on the biological pump with a near-zero, deep carbon sequestration for spring 2014. Export of trace metals appeared strongly influenced by lithogenic material advected from the margins. However, at open ocean stations not influenced by lithogenic matter, trace metal export rather depended on phytoplankton activity and biomass. A last part of this work focused on export of biogenic silica, particulate nitrogen and iron near the Kerguelen Island. This area is characterized by a natural iron-fertilization that increases export fluxes. Inside the fertilized area, flux variability is related to phytoplankton community composition. (author)

  10. Emission factors of carbonaceous particulate matter and polycyclic aromatic hydrocarbons from residential solid fuel combustions

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Guofeng [Jiangsu Academy of Environmental Science, Nanjing (China). Inst. of Atmospheric Sciences

    2014-07-01

    Emission inventory is basic for the understanding of environmental behaviors and potential effects of compounds, however, current inventories are often associated with relatively high uncertainties. One important reason is the lack of emission factors, especially for the residential solid fuel combustion in developing countries. In the present study, emission factors of a group of pollutants including particulate matter, organic carbon, elemental carbon (sometimes known as black carbon) and polycyclic aromatic hydrocarbons were measured for a variety of residential solid fuels including coal, crop straw, wood, and biomass pellets in rural China. The study provided a large number of emission factors that can be further used in emission estimation. Composition profiles and isomer ratios were investigated and compared so as to be used in source apportionment. In addition, the present study identified and quantified the influence of factors like fuel moisture, volatile matter on emission performance.

  11. Source contributions and regional transport of primary particulate matter in China.

    Science.gov (United States)

    Hu, Jianlin; Wu, Li; Zheng, Bo; Zhang, Qiang; He, Kebin; Chang, Qing; Li, Xinghua; Yang, Fumo; Ying, Qi; Zhang, Hongliang

    2015-12-01

    A source-oriented CMAQ was applied to determine source sector/region contributions to primary particulate matter (PPM) in China. Four months were simulated with emissions grouped to eight regions and six sectors. Predicted elemental carbon (EC), primary organic carbon (POC), and PPM concentrations and source contributions agree with measurements and have significant spatiotemporal variations. Residential is a major contributor to spring/winter EC (50-80%), POC (60%-90%), and PPM (30-70%). For summer/fall, industrial contributes 30-50% for EC/POC and 40-60% for PPM. Transportation is more important for EC (20-30%) than POC/PPM (Guangzhou and Chongqing. Dust contributes to 1/3-1/2 in spring/fall of Beijing, Xi'an and Chongqing. Based on sector-region combination, local residential/transportation and residential/industrial from Heibei are major contributors to spring PPM in Beijing. In summer/fall, local industrial is the largest. In winter, residential/industrial from local and Hebei account for >90% in Beijing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Biogeochemical interactions control a temporal succession in the elemental composition of marine communities

    KAUST Repository

    Martiny, Adam C.; Talarmin, Agathe Anne Gaelle; Mouginot, Cé line; Lee, Jeanette A.; Huang, Jeremy S.; Gellene, Alyssa G.; Caron, David A.

    2015-01-01

    Recent studies have revealed clear regional differences in the particulate organic matter composition and stoichiometry of plankton communities. In contrast, less is known about potential mechanisms and patterns of temporal changes in the elemental composition of marine systems. Here, we monitored weekly changes in environmental conditions, phytoplankton abundances, and particulate organic carbon, nitrogen, and phosphorus concentrations over a 3-yr period. We found that variation in the particulate organic matter (POM) concentrations and ratios were related to seasonal oscillations of environmental conditions and phytoplankton abundances. Periods with low temperature, high nutrient concentrations and a dominance of large phytoplankton corresponded to low C : N : P and vice-versa for warmer periods during the summer and fall. In addition to seasonal changes, we observed a multiyear increase in POM C : P and N : P that might be associated with the Pacific Decadal Oscillation. Finally, there was substantial short-term variability in all factors but similar linkages between environmental variability and elemental composition as observed on seasonal and interannual time-scales. Using a feed-forward neural network, we could explain a large part of the variation in POM concentrations and ratios based on changes in environmental conditions and phytoplankton abundances. The apparent links across all time-scales between changes in physics, chemistry, phytoplankton, and POM concentrations and ratios suggest we have identified key controls of the elemental composition of marine communities in this region.

  13. Biogeochemical interactions control a temporal succession in the elemental composition of marine communities

    KAUST Repository

    Martiny, Adam C.

    2015-11-23

    Recent studies have revealed clear regional differences in the particulate organic matter composition and stoichiometry of plankton communities. In contrast, less is known about potential mechanisms and patterns of temporal changes in the elemental composition of marine systems. Here, we monitored weekly changes in environmental conditions, phytoplankton abundances, and particulate organic carbon, nitrogen, and phosphorus concentrations over a 3-yr period. We found that variation in the particulate organic matter (POM) concentrations and ratios were related to seasonal oscillations of environmental conditions and phytoplankton abundances. Periods with low temperature, high nutrient concentrations and a dominance of large phytoplankton corresponded to low C : N : P and vice-versa for warmer periods during the summer and fall. In addition to seasonal changes, we observed a multiyear increase in POM C : P and N : P that might be associated with the Pacific Decadal Oscillation. Finally, there was substantial short-term variability in all factors but similar linkages between environmental variability and elemental composition as observed on seasonal and interannual time-scales. Using a feed-forward neural network, we could explain a large part of the variation in POM concentrations and ratios based on changes in environmental conditions and phytoplankton abundances. The apparent links across all time-scales between changes in physics, chemistry, phytoplankton, and POM concentrations and ratios suggest we have identified key controls of the elemental composition of marine communities in this region.

  14. Ammonia, hydrogen sulfide, carbon dioxide and particulate matter emissions from California high-rise layer houses

    Science.gov (United States)

    Lin, X.-J.; Cortus, E. L.; Zhang, R.; Jiang, S.; Heber, A. J.

    2012-01-01

    Ammonia and hydrogen sulfide are hazardous substances that are regulated by the U.S. Environmental Protection Agency through community right-to-know legislation (EPCRA, EPA, 2011). The emissions of ammonia and hydrogen sulfide from large commercial layer facilities are of concern to legislators and nearby neighbors. Particulate matter (PM 10 and PM 2.5) released from layer houses are two of seven criteria pollutants for which EPA has set National Ambient Air Quality Standards as required by the Clean Air Act. Therefore, it is important to quantify the baseline emissions of these pollutants. The emissions of ammonia, hydrogen sulfide, carbon dioxide and PM from two California high-rise layer houses were monitored for two years from October 2007 to October 2009. Each house had 32,500 caged laying hens. The monitoring site was setup in compliance with a U.S. EPA-approved quality assurance project plan. The results showed the average daily mean emission rates of ammonia, hydrogen sulfide and carbon dioxide were 0.95 ± 0.67 (standard deviation) g d -1 bird -1, 1.27 ± 0.78 mg d -1 bird -1 and 91.4 ± 16.5 g d -1 bird -1, respectively. The average daily mean emission rates of PM 2.5, PM 10 and total suspended particulate (TSP) were 5.9 ± 12.6, 33.4 ± 27.4, and 78.0 ± 42.7 mg d -1 bird -1, respectively. It was observed that ammonia emission rates in summer were lower than in winter because the high airflow stabilized the manure by drying it. The reductions due to lower moisture content were greater than the increases due to higher temperature. However, PM 10 emission rates in summer were higher than in winter because the drier conditions coupled with higher internal air velocities increased PM 10 release from feathers, feed and manure.

  15. Predicting ambient aerosol Thermal Optical Reflectance (TOR) measurements from infrared spectra: elemental carbon

    Science.gov (United States)

    Dillner, A. M.; Takahama, S.

    2015-06-01

    Elemental carbon (EC) is an important constituent of atmospheric particulate matter because it absorbs solar radiation influencing climate and visibility and it adversely affects human health. The EC measured by thermal methods such as Thermal-Optical Reflectance (TOR) is operationally defined as the carbon that volatilizes from quartz filter samples at elevated temperatures in the presence of oxygen. Here, methods are presented to accurately predict TOR EC using Fourier Transform Infrared (FT-IR) absorbance spectra from atmospheric particulate matter collected on polytetrafluoroethylene (PTFE or Teflon) filters. This method is similar to the procedure tested and developed for OC in prior work (Dillner and Takahama, 2015). Transmittance FT-IR analysis is rapid, inexpensive, and non-destructive to the PTFE filter samples which are routinely collected for mass and elemental analysis in monitoring networks. FT-IR absorbance spectra are obtained from 794 filter samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to collocated TOR EC measurements. The FTIR spectra are divided into calibration and test sets. Two calibrations are developed, one which is developed from uniform distribution of samples across the EC mass range (Uniform EC) and one developed from a~uniform distribution of low EC mass samples (EC < 2.4 μg, Low Uniform EC). A hybrid approach which applies the low EC calibration to low EC samples and the Uniform EC calibration to all other samples is used to produces predictions for low EC samples that have mean error on par with parallel TOR EC samples in the same mass range and an estimate of the minimum detection limit (MDL) that is on par with TOR EC MDL. For all samples, this hybrid approach leads to precise and accurate TOR EC predictions by FT-IR as indicated by high coefficient of variation (R2; 0.96), no

  16. [Ultra-Fine Pressed Powder Pellet Sample Preparation XRF Determination of Multi-Elements and Carbon Dioxide in Carbonate].

    Science.gov (United States)

    Li, Xiao-li; An, Shu-qing; Xu, Tie-min; Liu, Yi-bo; Zhang, Li-juan; Zeng, Jiang-ping; Wang, Na

    2015-06-01

    The main analysis error of pressed powder pellet of carbonate comes from particle-size effect and mineral effect. So in the article in order to eliminate the particle-size effect, the ultrafine pressed powder pellet sample preparation is used to the determination of multi-elements and carbon-dioxide in carbonate. To prepare the ultrafine powder the FRITSCH planetary Micro Mill machine and tungsten carbide media is utilized. To conquer the conglomeration during the process of grinding, the wet grinding is preferred. The surface morphology of the pellet is more smooth and neat, the Compton scatter effect is reduced with the decrease in particle size. The intensity of the spectral line is varied with the change of the particle size, generally the intensity of the spectral line is increased with the decrease in the particle size. But when the particle size of more than one component of the material is decreased, the intensity of the spectral line may increase for S, Si, Mg, or decrease for Ca, Al, Ti, K, which depend on the respective mass absorption coefficient . The change of the composition of the phase with milling is also researched. The incident depth of respective element is given from theoretical calculation. When the sample is grounded to the particle size of less than the penetration depth of all the analyte, the effect of the particle size on the intensity of the spectral line is much reduced. In the experiment, when grounded the sample to less than 8 μm(d95), the particle-size effect is much eliminated, with the correction method of theoretical α coefficient and the empirical coefficient, 14 major, minor and trace element in the carbonate can be determined accurately. And the precision of the method is much improved with RSD element, the fluorescence yield is low and the interference is serious. With the manual multi-layer crystal PX4, coarse collimator, empirical correction, X-ray spectrometer can be used to determine the carbon dioxide in the carbonate

  17. PM2.5 particulates and metallic elements (Ni, Cu, Zn, Cd and Pb) study in a mixed area of summer season in Shalu, Taiwan.

    Science.gov (United States)

    Fang, Guor-Cheng; Xiao, You-Fu; Zhuang, Yuan-Jie; Cho, Meng-Hsien; Huang, Chao-Yang; Tsai, Kai-Hsiang

    2017-08-01

    PM 2.5 has become an important environmental issue in Taiwan during the past few years. Moreover, electricity increased significantly during the summertime and TTPP generated by coal burning base is the main electricity provider in central Taiwan. Therefore, summer season has become the main research target in this study. The ambient air concentrations of particulate matter PM 2.5 and PM 10 collected by using VAPS at a mixed characteristic sampling site were studied in central Taiwan. The results indicated that the average daytime PM 2.5 and PM 10 particulate concentrations were occurred in May and they were 44.75 and 57.77 µg/m 3 in this study. The results also indicated that the average nighttime PM 2.5 and PM 10 particulate concentrations were occurred in June and they were 38.19 and 45.79 µg/m 3 in this study. The average PM 2.5 /PM 10 ratios were 0.7 for daytime, nighttime and 24-h sampling periods in the summer for this study. This value was ranked as the lowest ratios when compared to the other seasons in previous study. Noteworthy, the results further indicated that the metallic element Pb has the mean highest concentrations for 24-h, daytime and nighttime sampling periods when compared to those of the other metallic elements (Ni, Cu, Zn and Cd). The average mean highest metallic Pb concentrations in PM10 were 110.7, 203.0 and 207.2 ng/m 3 for 24-h, daytime and nighttime sampling periods in this study. And there were 59.53, 105.2 and 106.6 ng/m 3 for Pb in PM2.5 for 24-h, daytime and nighttime sampling periods, respectively. Moreover, the results further indicated that mean metallic element Pb concentrations on PM 2.5 and PM 10 were all higher than those of the other elements for 24 h, day and nighttime.

  18. Quantifying the impact of riverine particulate dissolution in seawater on ocean chemistry

    Science.gov (United States)

    Jones, Morgan T.; Gislason, Sigurður R.; Burton, Kevin W.; Pearce, Christopher R.; Mavromatis, Vasileios; Pogge von Strandmann, Philip A. E.; Oelkers, Eric H.

    2014-06-01

    The quantification of the sources and sinks of elements to the oceans forms the basis of our understanding of global geochemical cycles and the chemical evolution of the Earth's surface. There is, however, a large imbalance in the current best estimates of the global fluxes to the oceans for many elements. In the case of strontium (Sr), balancing the input from rivers would require a much greater mantle-derived component than is possible from hydrothermal water flux estimates at mid-ocean ridges. Current estimates of riverine fluxes are based entirely on measurements of dissolved metal concentrations, and neglect the impact of riverine particulate dissolution in seawater. Here we present 87Sr/86Sr isotope data from an Icelandic estuary, which demonstrate rapid Sr release from the riverine particulates. We calculate that this Sr release is 1.1-7.5 times greater than the corresponding dissolved riverine flux. If such behaviour is typical of volcanic particulates worldwide, this release could account for 6-45% of the perceived marine Sr budget imbalance, with continued element release over longer timescales further reducing the deficit. Similar release from particulate material will greatly affect the marine budgets of many other elements, changing our understanding of coastal productivity, and anthropogenic effects such as soil erosion and the damming of rivers.

  19. Particulate and carbon monoxide emissions from small scale firewood combustion

    International Nuclear Information System (INIS)

    Todd, J.J.

    1990-01-01

    One of the serious adverse effects of residential firewood use is the deterioration in air quality caused by wood-smoke. Low combustion zone temperatures, flame quenching, poor gas mixing, and lack of oxygen all contribute to relatively high emissions of particulates and CO. Average emission rates for particulates of 11 g/h for modern woodheaters can certainly be improved upon. More research effort is needed to reduce emissions from cooking stoves used in developing countries and more public information on correct heater use is needed in the developed countries. (author)

  20. Characterization and sources of air particulate matter at Kwabenya, near Accra, Ghana

    International Nuclear Information System (INIS)

    Aboh, I. J. K.

    2009-01-01

    Gravimetric, reflectometric and elemental analyses have been carried out on airborne particulate matter sampled in a semi-rural area of Kwabenya, near Accra-Ghana. The PM 10 aerosols were sampled using a Gent sampler, size segregating the aerosol into coarse (PM 10-2.5 ) and fine (PM 1.5 ) fractions. The data and derived information were generated from 216 days of sampling spanning a period of about 14 months, 28 th December 2005 to 12 th February 2007. The particulate matter (PM) at Kwabenya was dominated by the coarse particulates and showed low levels during the Rainy season and high levels during the Harmattan period. The levels measured during the 2006/07 Harmattan were very high. The mass concentration for the measuring period were in the following ranges; coarse (PM 10-2.5 ) fraction (0.16 - 1794.01 µg/m 3 ); PM 2.5 (fine) fraction (0.50 - 430.23 µg/m 3 ) and PM 10 (0.87 µg/m 3 to 2064.89 µg/m 3 ). Additional information about the ambient air was obtained through the subsequent determination of elemental concentration using energy dispersive x-ray fluorescence (EDXRF) analysis and black carbon (BC) concentration through the b lack smoke method . The elements identified and quantified with the Quantitative X-ray Analysis System (QXAS) package software were: AI, Si, S, CI, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr and Pb in the coarse fraction. The following elements were identified and quantified in the fine fraction: AI, Si, S, K, Ca, Ti, Mn, Fe, Cu, Zn, Br, Rb, Sr and Pb. Validation of the quantitative methods with the standard reference filter SRM2783 gave very good agreement (within ± 15%) for most elements analysed except for Ni (±43%)which was very close to the detection limit. The elemental concentrations in the two fractions vary from season to season. Using simple correlation analysis some elements correlate, the elemental correlations also vary from season to season, for example during the Harmattan S, CI, V, Br and Sr correlated very

  1. Contribution to the analysis of light elements using x fluorescence excited by radio-elements; Contribution a l'analyse des elements legers par fluorescence x excitee au moyen de radioelements

    Energy Technology Data Exchange (ETDEWEB)

    Robert, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    In order to study the possibilities of using radioactive sources for the X-fluorescence analysis of light elements, the principle is given, after a brief description of X-fluorescence, of the excitation of this phenomenon by X, {beta} and {alpha} emission from radio-elements. The operation and use of the proportional gas counter for X-ray detection is described. A device has been studied for analysing the elements of the 2. and 3. periods of the Mendeleev table. It makes it possible to excite the fluorescence with a radioactive source emitting X-rays or a particles; the X-ray fluorescence penetrates into a window-less proportional counter, this being made possible by the use of an auxiliary electric field in the neighbourhood of the sample. The gas detection pressure leading to the maximum detection yield is given. The spectra are given for the K{sub {alpha}} lines of 3. period elements excited by {sup 55}Fe, {sup 3}H/Zr and {sup 210}Po sources; for the 2. period the K{sub {alpha}} spectra of carbon and of fluorine excited by the {alpha} particles of {sup 210}Po. (author) [French] Afin d'etudier les possibilites d'emploi de sources radioactives a l'analyse par fluorescence X des elements legers, on presente apres rappel de notions generales sur la fluorescence X, le principe de l'excitation de ce phenomene par emission X, {beta}, {alpha} de radioelements. Le fonctionnement et l'utilisation du compteur proportionnel a gaz a la detection du rayonnement X est developpe. Un dispositif permettant l'analyse des elements des 2eme et 3eme periodes de la classification de Mendeleev est etudie. Il permet l'excitation de la fluorescence par source radioactive emettrice de rayons X ou de particules {alpha}; le rayonnement X de fluorescence penetre dans un compteur proportionnel depourvu de fenetre, ceci est rendu possible en creant un champ electrique auxiliaire au voisinage de l'echantillon. On definit une pression du gaz de detection pour un rendement de detection maximal

  2. Estimates of increased black carbon emissions from electrostatic precipitators during powdered activated carbon injection for mercury emissions control.

    Science.gov (United States)

    Clack, Herek L

    2012-07-03

    The behavior of mercury sorbents within electrostatic precipitators (ESPs) is not well-understood, despite a decade or more of full-scale testing. Recent laboratory results suggest that powdered activated carbon exhibits somewhat different collection behavior than fly ash in an ESP and particulate filters located at the outlet of ESPs have shown evidence of powdered activated carbon penetration during full-scale tests of sorbent injection for mercury emissions control. The present analysis considers a range of assumed differential ESP collection efficiencies for powdered activated carbon as compared to fly ash. Estimated emission rates of submicrometer powdered activated carbon are compared to estimated emission rates of particulate carbon on submicrometer fly ash, each corresponding to its respective collection efficiency. To the extent that any emitted powdered activated carbon exhibits size and optical characteristics similar to black carbon, such emissions could effectively constitute an increase in black carbon emissions from coal-based stationary power generation. The results reveal that even for the low injection rates associated with chemically impregnated carbons, submicrometer particulate carbon emissions can easily double if the submicrometer fraction of the native fly ash has a low carbon content. Increasing sorbent injection rates, larger collection efficiency differentials as compared to fly ash, and decreasing sorbent particle size all lead to increases in the estimated submicrometer particulate carbon emissions.

  3. Validation and Intercomparison of Ocean Color Algorithms for Estimating Particulate Organic Carbon in the Oceans

    Directory of Open Access Journals (Sweden)

    Hayley Evers-King

    2017-08-01

    Full Text Available Particulate Organic Carbon (POC plays a vital role in the ocean carbon cycle. Though relatively small compared with other carbon pools, the POC pool is responsible for large fluxes and is linked to many important ocean biogeochemical processes. The satellite ocean-color signal is influenced by particle composition, size, and concentration and provides a way to observe variability in the POC pool at a range of temporal and spatial scales. To provide accurate estimates of POC concentration from satellite ocean color data requires algorithms that are well validated, with uncertainties characterized. Here, a number of algorithms to derive POC using different optical variables are applied to merged satellite ocean color data provided by the Ocean Color Climate Change Initiative (OC-CCI and validated against the largest database of in situ POC measurements currently available. The results of this validation exercise indicate satisfactory levels of performance from several algorithms (highest performance was observed from the algorithms of Loisel et al., 2002; Stramski et al., 2008 and uncertainties that are within the requirements of the user community. Estimates of the standing stock of the POC can be made by applying these algorithms, and yield an estimated mixed-layer integrated global stock of POC between 0.77 and 1.3 Pg C of carbon. Performance of the algorithms vary regionally, suggesting that blending of region-specific algorithms may provide the best way forward for generating global POC products.

  4. Size distribution, chemical composition and oxidation reactivity of particulate matter from gasoline direct injection (GDI) engine fueled with ethanol-gasoline fuel

    International Nuclear Information System (INIS)

    Luo, Yueqi; Zhu, Lei; Fang, Junhua; Zhuang, Zhuyue; Guan, Chun; Xia, Chen; Xie, Xiaomin; Huang, Zhen

    2015-01-01

    Ethanol-gasoline blended fuels have been widely applied in markets recently, as ethanol reduces life-cycle greenhouse gas emissions and improves anti-knock performance. However, its effects on particulate matter (PM) emissions from gasoline direct injection (GDI) engine still need further investigation. In this study, the effects of ethanol-gasoline blended fuels on particle size distributions, number concentrations, chemical composition and soot oxidation activity of GDI engine were investigated. It was found that ethanol-gasoline blended fuels increased the particle number concentration in low-load operating conditions. In higher load conditions, the ethanol-gasoline was effective for reducing the particle number concentration, indicating that the chemical benefits of ethanol become dominant, which could reduce soot precursors such as large n-alkanes and aromatics in gasoline. The volatile organic mass fraction in ethanol-gasoline particulates matter was higher than that in gasoline particulate matter because ethanol reduced the amount of soot precursors during combustion and thereby reduced the elemental carbon proportions in PM. Ethanol addition also increased the proportion of small particles, which confirmed the effects of ethanol on organic composition. Ethanol-gasoline reduced the concentrations of most PAH species, except those with small aromatic rings, e.g., naphthalene. Soot from ethanol-gasoline has lower activation energy of oxidation than that from gasoline. The results in this study indicate that ethanol-gasoline has positive effects on PM emissions control, as the soot oxidation activity is improved and the particle number concentrations are reduced at moderate and high engine loads. - Highlights: • Ethanol-gasoline reduces elemental carbon in PM. • Ethanol-gasoline increases volatile organic fraction in PM. • Soot generated from ethanol-gasoline has higher oxidation activity.

  5. Particulate organic matter in shelf waters of Prinsesse Asrid Kyst, Antarctica

    Digital Repository Service at National Institute of Oceanography (India)

    Dhargalkar, V.K.; Bhosle, N.B.

    In the coastal and estuarine waters of Goa, particulate organic carbon (POC) varied from 0.52 to 2.51 mg l-1 and from 0.28 to 5.24 mg l-1 and particulate phosphorus (PP) varied from 0.71 to 5.18 mu g l-1 and from 0.78 to 20.34 mu g l-1, respectively...

  6. Key sources and distribution patterns of particulate material in the South Atlantic: data from the UK GEOTRACES A10 cruise

    Science.gov (United States)

    Milne, A.; Palmer, M.; Lohan, M. C.

    2016-02-01

    Particles play a fundamental role in the biogeochemical cycling of both major- and micro-nutrients in marine systems, including trace elements and isotopes. However, knowledge of particulate distributions, and their potential to regulate dissolved elemental concentrations, remains limited and poorly understood. The paradox is, that the oceanic inventory of trace metals is dominated by particulate inputs (e.g. aerosol deposition, shelf sediment resuspension). Moreover the labile fraction of particulate trace elements could be an important regulator of dissolved concentrations. Here we present particulate data from the UK GEOTRACES South Atlantic transect (GA10) from South Africa to Uruguay. Data from a range of elements (e.g. Fe, Al, Mn) revealed a greater input of particulate metals from the Argentine shelf (up to 290 nM of pFe) in comparison to the South African shelf (basin and penetrated deeper up the water column (up to 1300 m), a result of intense benthic storms. The imprint of leakage from the Agulhas Current, identified through temperature and salinity, was observed in the upper water column profile of numerous particulate data (e.g. Pb, Ni, Cd). Measured elemental gradients, combined with measurements from a vertical mixing-profiler, will allow estimates of particulate fluxes to be calculated.

  7. Hazard identification of particulate matter on vasomotor dysfunction and progression of atherosclerosis

    DEFF Research Database (Denmark)

    Møller, Peter; Mikkelsen, Lone; Vesterdal, Lise Kristine

    2011-01-01

    and inflammatory pathways. We have assessed the effect of exposure to particulate matter on progression of atherosclerosis and vasomotor function in humans, animals, and ex vivo experimental systems. The type of particles that have been tested in these systems encompass TiO(2), carbon black, fullerene C(60...... of particulate matter....

  8. Contribution to the analysis of light elements using x fluorescence excited by radio-elements; Contribution a l'analyse des elements legers par fluorescence x excitee au moyen de radioelements

    Energy Technology Data Exchange (ETDEWEB)

    Robert, A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    In order to study the possibilities of using radioactive sources for the X-fluorescence analysis of light elements, the principle is given, after a brief description of X-fluorescence, of the excitation of this phenomenon by X, {beta} and {alpha} emission from radio-elements. The operation and use of the proportional gas counter for X-ray detection is described. A device has been studied for analysing the elements of the 2. and 3. periods of the Mendeleev table. It makes it possible to excite the fluorescence with a radioactive source emitting X-rays or a particles; the X-ray fluorescence penetrates into a window-less proportional counter, this being made possible by the use of an auxiliary electric field in the neighbourhood of the sample. The gas detection pressure leading to the maximum detection yield is given. The spectra are given for the K{sub {alpha}} lines of 3. period elements excited by {sup 55}Fe, {sup 3}H/Zr and {sup 210}Po sources; for the 2. period the K{sub {alpha}} spectra of carbon and of fluorine excited by the {alpha} particles of {sup 210}Po. (author) [French] Afin d'etudier les possibilites d'emploi de sources radioactives a l'analyse par fluorescence X des elements legers, on presente apres rappel de notions generales sur la fluorescence X, le principe de l'excitation de ce phenomene par emission X, {beta}, {alpha} de radioelements. Le fonctionnement et l'utilisation du compteur proportionnel a gaz a la detection du rayonnement X est developpe. Un dispositif permettant l'analyse des elements des 2eme et 3eme periodes de la classification de Mendeleev est etudie. Il permet l'excitation de la fluorescence par source radioactive emettrice de rayons X ou de particules {alpha}; le rayonnement X de fluorescence penetre dans un compteur proportionnel depourvu de fenetre, ceci est rendu possible en creant un champ electrique auxiliaire au voisinage de l'echantillon. On definit une pression du gaz de detection

  9. The use of neutron activation analysis for particle size fractionation and chemical characterization of trace elements in urban air particulate matter

    International Nuclear Information System (INIS)

    Rizzio, E.; Bergamaschi, G.; Profumo, A.; Gallorini, M.

    2001-01-01

    The concentration of more than 25 trace elements have been determined in total air particulate matter and in the size segregated fractions from the urban area of Pavia (North Italy). The PM10 fraction was also collected and analyzed. A study of the solubility in water and in physiological solution of the trace elements contained in the PM10 was also carried out. The resulting solutions were further submitted to column chromatography using Chelex 100 to perform a preliminary chemical characterization. INAA was used as the main analytical technique. ET-AAS was used for all Pb and Cd measurements and, in some cases, for the analysis of V, Mn, Cu and Ni. (author)

  10. Activated, coal-based carbon foam

    Science.gov (United States)

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  11. PIXE analysis of airborne particulate matter from Xalostoc, Mexico: winter to summer comparison

    International Nuclear Information System (INIS)

    Flores M, J.; Aldape, F.; Diaz, R.V.; Hernandez-Mendez, B.; Garcia G, R.

    1999-01-01

    A study of elemental contents in airborne particulate matter from the industrial city of Xalostoc, Estado de Mexico, was performed using PIXE. The place has a great variety of industries, it is a heavily populated, and it is a part of Mexico City's conurbation, thus contributing significantly to its atmospheric pollution. At present, there is few information available about elemental contents in airborne particulate matter from that region. In this study, two sets of samples of airborne particulate matter were collected daily during periods of four weeks in summer 1996 and winter 1997; two samples a day, 12 h each, night-time and day-time. Results revealed important information about elemental contents in airborne particulate matter from that area, especially in the respirable fraction PM 2.5 . Comparison of night and day figures showed the presence of some elements such as Cu, Zn, and Pb, attributed, as it was expected, to uninterrupted industrial processes. Appearance of some other elements was more consistent only in either day-time or night-time due to diurnal or nocturnal industrial activities, or produced by human activities such as fuel combustion of automotive vehicles. Comparison of winter to summer results showed some other important features such as higher concentrations of pollutants in winter, because of the dry and cold weather, while summer samples exhibited lower concentrations mainly due to the presence of rain showers

  12. [Geochemical characteristics and sources of atmospheric particulates in Shanghai during dust storm event].

    Science.gov (United States)

    Qian, Peng; Zheng, Xiang-min; Zhou, Li-min

    2013-05-01

    Atmospheric particulates were sampled from three sampling sites of Putuo, Minhang and Qingpu Districts in Shanghai between Oct. , 2009 and Oct. , 2010. In addition, particulate samples were also collected from Nantong, Zhengzhou, Xi'an, and Beijing city where dust storm dust transported along during spring. Element compositions of atmospheric particulates were determined by XRF and ICP-MS. The concentrations of major and trace elements in atmospheric particulates from Putuo, Minhang and Qingpu Districts were similar, indicating their common source. The UCC standardization distribution map showed that the major element composition of dust storm samples was similar to that of loess in northwestern China, indicating that the dust storm dust was mainly derived from Western desert and partly from local area. The REE partition patterns of dust storm dusts among different cities along dust transport route were similar to each other, as well as to those of northern loess, which indicates that the dust storm samples may have the same material source as loess, which mainly comes from crust material. However, the REE partition patterns of non-dust storm particulates were different among the studied cities, and different from those of loess, which suggests that the non-dust storm samples may be mixed with non-crust source material, which is different from dust storm dust and loess. The major element composition and REE partition pattern are effective indicators for source tracing of dust storm dust.

  13. Role of oxidative damage in toxicity of particulates

    DEFF Research Database (Denmark)

    Møller, Peter; Jacobsen, Nicklas R; Folkmann, Janne K

    2010-01-01

    composition play important roles in the oxidative potential of particulates. Studies in animal models indicate that particles from combustion processes (generated by combustion of wood or diesel oil), silicate, titanium dioxide and nanoparticles (C60 fullerenes and carbon nanotubes) produce elevated levels......Particulates are small particles of solid or liquid suspended in liquid or air. In vitro studies show that particles generate reactive oxygen species, deplete endogenous antioxidants, alter mitochondrial function and produce oxidative damage to lipids and DNA. Surface area, reactivity and chemical...

  14. Black carbon concentrations in California vehicles and estimation of in-vehicle diesel exhaust particulate matter exposures

    Science.gov (United States)

    Fruin, Scott A.; Winer, Arthur M.; Rodes, Charles E.

    This research assessed in-vehicle exposures to black carbon (BC) as an indicator of diesel particulate matter (DPM) exposures. Approximately 50 h of real-time Aethalometer BC measurements were made inside vehicles driven on freeway and arterial loops in Los Angeles and Sacramento. Video tapes of the driver's view were transcribed to record the traffic conditions, vehicles followed, and vehicle occupant observations, and these results were tested for their associations with BC concentration. In-vehicle BC concentrations were highest when directly following diesel-powered vehicles, particularly those with low exhaust pipe locations. The lowest BC concentrations were observed while following gasoline-powered passenger cars, on average no different than not following any vehicle. Because diesel vehicles were over-sampled in the field study, results were not representative of real-world driving. To calculate representative exposures, in-vehicle BC concentrations were grouped by the type of vehicle followed, for each road type and congestion level. These groupings were then re-sampled stochastically, in proportion to the fraction of statewide vehicle miles traveled (VMT) under each of those conditions. The approximately 6% of time spent following diesel vehicles led to 23% of the in-vehicle BC exposure, while the remaining exposure was due to elevated roadway BC concentrations. In-vehicle BC exposures averaged 6 μg m -3 in Los Angeles and the Bay Area, the regions with the highest congestion and the majority of the state's VMT. The statewide average in-vehicle BC exposure was 4 μg m -3, corresponding to DPM concentrations of 7-23 μg m -3, depending on the Aethalometer response to elemental carbon (EC) and the EC fraction of the DPM. In-vehicle contributions to overall DPM exposures ranged from approximately 30% to 55% of total DPM exposure on a statewide population basis. Thus, although time spent in vehicles was only 1.5 h day -1 on average, vehicles may be the most

  15. Validation of a field filtration technique for characterization of suspended particulate matter from freshwater. Part II. Minor, trace and ultra trace elements

    International Nuclear Information System (INIS)

    Odman, Fredrik; Ruth, Thomas; Rodushkin, Ilia; Ponter, Christer

    2006-01-01

    A field filtration method for the concentration and separation of suspended particulate matter (SPM) from freshwater systems and the subsequent determination of minor, trace and ultra trace elements (As, Ba, Be, Cd, Co, Cr, Cs, Cu, Ga, Hf, Mo, Nb, Ni, Pb, Rb, Sb, Sc, Sn, Sr, Ta, Th, Tl, U, V, W, Zn and Zr) is validated with respect to detection limits, precision and bias. The validation comprises the whole procedure including filtration, sample digestion and instrumental analysis. The method includes two digestion procedures (microwave acid digestion and alkali fusion) in combination with inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma quadrupole mass spectrometry (ICP-QMS). Total concentrations of these 27 trace and minor elements have been determined in suspended particulate matter (SPM) from lake and river water with low levels of suspended solids ( -1 DW), and a wide range of element concentrations. The precision of the method including filtration, digestion and instrumental determination ranges between 8% and 18% RSD for most elements on a dry weight basis. Higher recovery after acid digestion is found for some elements, probably because of volatilization or retention losses in the fusion procedure. Other elements show higher recovery after fusion, which is explained by more efficient decomposition of refractory mineral phases relative to the non-total acid digestion. Non-detectable concentrations of some elements are reported due to small differences between blank filter levels and the amounts of elements present on the filters after sampling. The method limits of detection range between 0.7 ng and 2.65 μg, as estimated from the blank filter samples. These detection limits are 10-550 times higher compared to the corresponding instrumental limits of detection. The accuracy and bias of the overall analytical procedure was assessed from replicate analysis of certified reference materials. A critical evaluation of

  16. Iatroscan-measured particulate and dissolved lipids in the Almeria-Oran frontal system (Almofront-1, May 1991)

    Science.gov (United States)

    Gérin, C.; Goutx, M.

    1994-08-01

    The Chromarod-Iatroscan system was used to measure dissolved and particulate lipids at six sites representative of the main hydrological zones of the Almeria-Oran frontal system in May 1991. Concentrations ranged from 9 to 113 μg 1 -1 and from 3 to 84 μg 1 -1 respectively. Particulate carbon was estimated on a CHN Leco analyzer. Dissolved lipid concentrations were highly variable with depth and exhibited clear signatures of phytoplankton degradation throughout the profiles. In the 300-400 m layer, particulate wax esters denoted the presence of deep zooplankton which may be benefit from the downward fluxes of organic matter from the frontal zone. In surface water, high concentrations of dissolved lipids and particulate carbon marked the presence of the jet front. Particulate lipid classes in samples were related to the presence of zooplankton and to the physiological state of cells rather than to phytoplankton biomass. Particulate triglyceride concentrations (storage lipids in phytoplankton) increased from the left to the right border of the jet core and further southwards, culminating in the Atlantic anticyclonic gyre. The distribution of particulate lipids to carbon and chlorophyllatios and the increasing level of triglycerides from the jet and southwards suggested a rapid removal of the frontal production by physical transports. The ability of anticyclonic structures to enhance accumulations of energetically rich compounds and thus to play a role as fertilizers of the oligotrophic waters of the Mediterranean Sea is discussed.

  17. Influence of particulate matter on microfouling biomass in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Nandakumar, K.; Wagh, A.B.

    ~ E :; :; 00 " " 200 '\\00 6001&. I&. Olslonc. from rne St>cre tn. miles! Leg , 0----4L~2 L~3 Leo .; Log $ Fig.3 Suspended matter (A), and particulate organic carbon (B) of surface seawater. and microfouling biomass as dry weight (C) and organic carbon...

  18. Size, Composition, and Sources of Health Relevant Particulate Matter in the San Joaquin Valley

    Science.gov (United States)

    Ham, Walter Allan

    Particulate Matter (PM) is an environment contaminant that has been associated with adverse health effects in epidemiological and toxicological studies. Atmospheric PM is made up of a diverse array of chemical species that are emitted from multiple sources across a range of aerodynamic diameters spanning several orders of magnitude. The focus of the present work was the characterization of ambient PM with aerodynamic diameters below 1.8 mum (PM1.8) in 6 size sub-fractions including PM0.1. Chemical species measured included organic carbon, elemental carbon, water soluble ions, trace metals, and organic molecular markers in urban and rural environments in the San Joaquin Valley. These measurements were used to determine differences in relative diurnal size distributions during a severe winter stagnation event, seasonal changes in PM size and composition, and the source origin of carbonaceous PM. This size-resolved information was used to calculate lung deposition patterns of health relevant PM species to evaluate seasonal differences in PM dose. By accurately calculating PM dose, researchers are able to more directly link ambient PM characterization data with biological endpoints. All of these results are used to support ongoing toxicological health effects studies. These types of analyses are important as this type of information may assist regulators with developing control strategies to reduce health effects caused by particulate air pollution.

  19. Exposure to the elemental carbon, organic carbon, nitrate and sulfate fractions of fine particulate matter and risk of preterm birth in New Jersey, Ohio, and Pennsylvania (2000-2005).

    Science.gov (United States)

    BACKGROUND: Particulate matter ≤2.5 µm in aerodynamic diameter (PM2.5) has been consistently associated with preterm birth (PTB) to varying degrees, but roles of PM2.5 species have been less studied.OBJECTIVE:We estimated risk differences (RD) of PTB (reported per 106 pregnancies...

  20. Toxicologically important trace elements and organic compounds investigated in size-fractionated urban particulate matter collected near the Prague highway

    International Nuclear Information System (INIS)

    Sysalová, Jiřina; Sýkorová, Ivana; Havelcová, Martina; Száková, Jiřina; Trejtnarová, Hana; Kotlík, Bohumil

    2012-01-01

    Urban particulate matter was collected in the most exposed area of Prague, near a busy highway, in order to provide petrographic and chemical characterization useful for health impact assessment in that locality or other applications. Samples were collected from filters of the air conditioning system in two years, 2009 and 2010, and sieved into four grain-size fractions: 0.507–0.119 mm, 0.119–0.063 mm, 3 extracted solutions. A composition of inorganic and carbonaceous particles of natural and anthropogenic origin and their morphology were studied by optical and electron microscopy. Organic solvent extracts of the samples were analyzed using gas chromatography to compare the organic compound distribution in fractions. Only slight differences between 2009 and 2010 years are visible. The relatively high extractable part of most investigated elements confirms mobility and potential availability to organisms. The changes can be recognized in the petrographic and organic composition in samples from both years, which were likely the result of various inputs of source materials. Specific organic marker compounds indicate contribution from fossil fuels, plant materials and bacteria. -- Highlights: ► Uncommon urban particulate matter collected near the highway in years 2009 and 2010 was deeply characterized. ► Harmful organic compounds and toxic analytes were tested in grain-size fractions and completed with electron microscopy studies. ► Very similar concentration levels were found in elemental composition in samples from two years. ► Petrographic and organic compositions were different in both samples. ► Relatively high mobility of selected analytes was found in 2M HNO 3 extracted solutions.

  1. Occupational Exposure to Diesel Particulate Matter in Municipal Household Waste Workers.

    Directory of Open Access Journals (Sweden)

    Kyong-Hui Lee

    Full Text Available The purposes of this study were to determine the following: 1 the exposure levels of municipal household waste (MHW workers to diesel particulate matter (DPM using elemental carbon (EC, organic carbon (OC, total carbon (TC, black carbon (BC, and fine particulate matter (PM 2.5 as indicators; 2 the correlations among the indicators; 3 the optimal indicator for DPM; and 4 factors that influence personal exposure to DPM.A total of 72 workers in five MHW collection companies were assessed over a period of 7 days from June to September 2014. Respirable EC/OC samples were quantified using the thermal optical transmittance method. BC and PM 2.5 were measured using real-time monitors, an aethalometer and a laser photometer. All results were statistically analyzed for occupational and environmental variables to identify the exposure determinants of DPM.The geometric mean of EC, OC, TC, BC and PM 2.5 concentrations were 4.8, 39.6, 44.8, 9.1 and 62.0 μg/m3, respectively. EC concentrations were significantly correlated with the concentrations of OC, TC and BC, but not with those of PM 2.5. The exposures of the MHW collectors to EC, OC, and TC were higher than those of the drivers (p<0.05. Workers of trucks meeting Euro 3 emission standard had higher exposures to EC, OC, TC and PM 2.5 than those working on Euro 4 trucks (p<0.05. Multiple regression analysis revealed that the job task, European engine emission standard, and average driving speed were the most influential factors in determining worker exposure.We assessed MHW workers' exposure to DPM using parallel sampling of five possible indicators. Of these five indicators, EC was shown to be the most useful indicator of DPM exposure for MHW workers, and the job task, European emission standard, and average driving speed were the main determinants of EC exposure.

  2. Finite element modeling of single-walled carbon nanotubes with introducing a new wall thickness

    International Nuclear Information System (INIS)

    Jalalahmadi, B; Naghdabadi, R

    2007-01-01

    A three-dimensional finite element (FE) model for armchair, zigzag and chiral single-walled carbon nanotubes (SWCNTs) is proposed. By considering the covalent bonds as connecting elements between carbon atoms, a nanotube is simulated as a space frame-like structure. Here, the carbon atoms act as joints of the connecting elements. To create the FE models, nodes are placed at the locations of carbon atoms and the bonds between them are modeled using three-dimensional elastic beam elements. Using Morse atomic potential, the elastic moduli of beam elements are obtained via considering a linkage between molecular and continuum mechanics. Also, a new wall thickness ( bond diameter) equal to 0.1296 nm is introduced. In order to demonstrate the applicability of FE model and new wall thickness, the influence of tube wall thickness, diameter and chirality on the Young's modulus of SWCNTs is investigated. It is found that the choice of wall thickness significantly affects the calculation of Young's modulus. For the values of wall thickness used in the literature, the Young's moduli are estimated which agree very well with the corresponding theoretical results and experimental measurements. We also investigate the dependence of elastic moduli on diameter and chirality of the nanotube. The larger tube diameter, the higher Young's modulus of SWCNT. The Young's modulus of chiral SWCNTs is found to be generally larger than that of armchair and zigzag SWCNTs. The presented results demonstrate that the proposed FE model and wall thickness may provide a valuable tool for studying the mechanical behavior of carbon nanotubes and their application in nano-composites

  3. Diagenetic fractionation of carbon isotopes in particulate and dissolved organic matter in sediments from Skan Bay, Alaska

    International Nuclear Information System (INIS)

    Alperin, M.J.; Reeburgh, W.S.

    1991-01-01

    Isotope fractionation during organic matter diagenesis was investigated by measuring detailed depth distributions of stable carbon isotope ratios in sediment particulate organic carbon (POC) and dissolved organic carbon (DOC) reservoirs. The δ 13 C value of the POC shifted systematically from -19 per-thousand at the surface to -21 per-thousand at 10 cm. Significant trends were also apparent in the δ 13 C-DOC profile. Proceeding down-core, DOC became isotopically heavier between 0 and 5 cm and isotopically lighter at greater depths. Two mechanisms could account for the observed down-core shift in δ 13 C-POC: (a) temporal changes in the isotope ratios of deposited organic matter and (b) isotope fractionation associated with diagenesis. The δ 15 C-DOC depth distribution is sensitive to which mechanism controls the isotopic composition of the POC reservoir. A diagenetic model that couples POC and DOC reservoirs was used to discriminate between temporal changes and diagenetic alteration of the POC isotopic composition. The model indicated that observed trends in δ 13 C-POC and δ 13 C-DOC depth distributions are consistent with isotopic fractionation of POC during diagenesis

  4. Chemical characteristics and source apportionment of fine particulate organic carbon in Hong Kong during high particulate matter episodes in winter 2003

    Science.gov (United States)

    Li, Yun-Chun; Yu, Jian Zhen; Ho, Steven Sai Hang; Schauer, James J.; Yuan, Zibing; Lau, Alexis K. H.; Louie, Peter K. K.

    2013-02-01

    PM2.5 samples were collected at six general stations and one roadside station in Hong Kong in two periods of high particulate matter (PM) in 2003 (27 October-4 November and 30 November-13 December). The highest PM2.5 reached 216 μg m- 3 during the first high PM period and 113 μg m- 3 during the second high PM period. Analysis of synoptic weather conditions identified individual sampling days under dominant influence of one of three types of air masses, that is, local, regional and long-range transported (LRT) air masses. Roadside samples were discussed separately due to heavy influences from vehicular emissions. This research examines source apportionment of fine organic carbon (OC) and contribution of secondary organic aerosol on high PM days under different synoptic conditions. Six primary OC (POC) sources (vehicle exhaust, biomass burning, cooking, cigarette smoke, vegetative detritus, and coal combustion) were identified on the basis of characteristic organic tracers. Individual POC source contributions were estimated using chemical mass balance model. In the roadside and the local samples, OC was dominated by the primary sources, accounting for more than 74% of OC. In the samples influenced by regional and LRT air masses, secondary OC (SOC), which was approximated to be the difference between the total measured OC and the apportioned POC, contributed more than 54% of fine OC. SOC was highly correlated with water-soluble organic carbon and sulfate, consistent with its secondary nature.

  5. Chemistry Characterization of Jet Aircraft Engine Particulate by XPS: Results from APEX III

    Science.gov (United States)

    Vander Wal, Randy L.; Bryg, Victoria M.

    2014-01-01

    This paper reports XPS analysis of jet exhaust particulate from a B737, Lear, ERJ, and A300 aircraft during the APEX III NASA led field campaign. Carbon hybridization and bonding chemistry are identified by high-resolution scans about the C1s core-shell region. Significant organic content as gauged by the sp3/sp2 ratio is found across engines and platforms. Polar oxygen functional groups include carboxylic, carbonyl and phenol with combined content of 20 percent or more. By lower resolution survey scans various elements including transition metals are identified along with lighter elements such as S, N, and O in the form of oxides. Burning additives within lubricants are probable sources of Na, Ba, Ca, Zn, P and possibly Sn. Elements present and their percentages varied significantly across all engines, not revealing any trend or identifiable cause for the differences, though the origin is likely the same for the same element when observed. This finding suggests that their presence can be used as a tracer for identifying soots from aircraft engines as well as diagnostic for monitoring engine performance and wear.

  6. Moisture effects on carbon and nitrogen emission from burning of wildland biomass

    Directory of Open Access Journals (Sweden)

    L.-W. A. Chen

    2010-07-01

    Full Text Available Carbon (C and nitrogen (N released from biomass burning have multiple effects on the Earth's biogeochemical cycle, climate change, and ecosystem. These effects depend on the relative abundances of C and N species emitted, which vary with fuel type and combustion conditions. This study systematically investigates the emission characteristics of biomass burning under different fuel moisture contents, through controlled burning experiments with biomass and soil samples collected from a typical alpine forest in North America. Fuel moisture in general lowers combustion efficiency, shortens flaming phase, and introduces prolonged smoldering before ignition. It increases emission factors of incompletely oxidized C and N species, such as carbon monoxide (CO and ammonia (NH3. Substantial particulate carbon and nitrogen (up to 4 times C in CO and 75% of N in NH3 were also generated from high-moisture fuels, maily associated with the pre-flame smoldering. This smoldering process emits particles that are larger and contain lower elemental carbon fractions than soot agglomerates commonly observed in flaming smoke. Hydrogen (H/C ratio and optical properties of particulate matter from the high-moisture fuels show their resemblance to plant cellulous and brown carbon, respectively. These findings have implications for modeling biomass burning emissions and impacts.

  7. [Distribution and source of particulate organic carbon and particulate nitrogen in the Yangtze River Estuary in summer 2012].

    Science.gov (United States)

    Xing, Jian-Wei; Xian, Wei-Wei; Sheng, Xiu-Zhen

    2014-07-01

    Based on the data from the cruise carried out in August 2012 in the Yangtze River Estuary and its adjacent waters, spatial distributions of particulate organic carbon (POC), particulate nitrogen (PN) and their relationships with environmental factors were studied, and the source of POC and the contribution of phytoplankton to POC were analyzed combined with n (C)/n (N) ratio and chlorophyll a (Chl a) in the Yangtze River Estuary in summer 2012. The results showed that the concentrations of POC in the Yangtze River Estuary ranged from 0.68 mg x L(-1) to 34.80 mg x L(-1) in summer and the average content was 3.74 mg x L(-1), and PN contents varied between 0.03 mg x L(-1) and 9.13 mg x L(-1) with an average value of 0.57 mg x L(-1). Both of them presented that the concentrations in bottom layers were higher than those in the surface. POC and PN as well as total suspended matter (TSM) showed a extremel similar horizontal distribution trend that the highest values appeared in the near of the mouth and southwest of the survey waters, and decreased rapidly as toward the open seas, both of them showed higher contents in coastal zones and lower in outer sea. There was a fairly good positive linear relationship between POC and PN, which indicated that they had the same source. POC and PN expressed significantly positive correlations with TSM and chemical oxygen demand (COD), but showed relatively weak correlations with salinit and chlorophyll a, which demonstrated that terrestrial inputs had a strong influence on the distribution of POC and PN, and phytoplankton production was not the major source of organic matters in the Yangtze River Estuary. Both the n (C)/n (N) ratio and POC/Chl a analysis showed that the main source of POC was terrestrial inputs, and organic debris was the main existence form of POC. Quantitative analysis showed the biomass of phytoplankton only made an average of 2.54% contribution to POC in the Yangtze Rive Estuary in summer and non-living POC

  8. The effect of typhoon on particulate organic carbon flux in the southern East China Sea

    Directory of Open Access Journals (Sweden)

    C.-C. Hung

    2010-10-01

    Full Text Available Severe tropical storms play an important role in triggering phytoplankton blooms, but the extent to which such storms influence biogenic carbon flux from the euphotic zone is unclear. In 2008, typhoon Fengwong provided a unique opportunity to study the in situ biological responses including phytoplankton blooms and particulate organic carbon fluxes associated with a severe storm in the southern East China Sea (SECS. After passage of the typhoon, the sea surface temperature (SST in the SECS was markedly cooler (∼25 to 26 °C than before typhoon passage (∼28 to 29 °C. The POC flux 5 days after passage of the typhoon was 265 ± 14 mg C m−2 d−1, which was ∼1.7-fold that (140–180 mg C m−2 d−1 recorded during a period (June–August, 2007 when no typhoons occurred. A somewhat smaller but nevertheless significant increase in POC flux (224–225 mg C m−2 d−1 was detected following typhoon Sinlaku which occurred approximately 1 month after typhoon Fengwong, indicating that typhoon events can increase biogenic carbon flux efficiency in the SECS. Remarkably, phytoplankton uptake accounted for only about 5% of the nitrate injected into the euphotic zone by typhoon Fengwong. It is likely that phytoplankton population growth was constrained by a combination of light limitation and grazing pressure. Modeled estimates of new/export production were remarkably consistent with the average of new and export production following typhoon Fengwong. The same model suggested that during non-typhoon conditions approximately half of the export of organic carbon occurs via convective mixing of dissolved organic carbon, a conclusion consistent with earlier work at comparable latitudes in the open ocean.

  9. Use of particles other than neutrons in activation analysis; Emploi de particules autres que les neutrons en analyse par actuation

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann, Ch [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-15

    Nuclear reactions obtained by irradiation in {gamma} Bremsstrahlung, {alpha} particles and protons are particularly suitable for dosing very small traces of light elements. We consider the possibilities presented by activation in {gamma} radiation of 28 MeV maximum energy, mainly for the measurement of C, F, N, O, P and S. Non-destructive methods of analysis for beryllium are described. Under certain conditions they may also be used for other elements such as B, Ca, Li and Na. We give also the results of our first experiments carried out in an attempt to find a method for dosing carbon and oxygen by irradiation in {alpha} particles and protons. For each type of activation the possible types of interference with other nuclear refections are considered. (author) [French] Des reactions nucleaires obtenues par irradiation dans des rayons {gamma} de freinage, des particules {alpha} et des protons, sont particulierement indiquees pour les dosages de traces ultimes de certains elements legers. Nous etudions les possibilites offertes par les activations en rayons {alpha} d'energie maximum 28 MeV, principalement pour les dosages de C, F, N, O, P et S. Des methodes d'analyse non destructives appliquees au beryllium sont decrites. Sous certaines conditions, elles peuvent egalement etre utilisees pour d'autres materiaux comme B, Ca, Li et Na. Nous donnons d'autre part les resultats de nos premieres experiences effectuees pour la mise au point des methodes de dosage du carbone et de l'oxygene par irradiation dans les particules {alpha} et les protons. Pour chaque type d'activation, les possibilites d'interferences avec d'autres reactions nucleaires sont examinees. (auteur)

  10. Changing fluxes of carbon and other solutes from the Mekong River.

    Science.gov (United States)

    Li, Siyue; Bush, Richard T

    2015-11-02

    Rivers are an important aquatic conduit that connects terrestrial sources of dissolved inorganic carbon (DIC) and other elements with oceanic reservoirs. The Mekong River, one of the world's largest rivers, is firstly examined to explore inter-annual fluxes of dissolved and particulate constituents during 1923-2011 and their associated natural or anthropogenic controls. Over this period, inter-annual fluxes of dissolved and particulate constituents decrease, while anthropogenic activities have doubled the relative abundance of SO4(2-), Cl(-) and Na(+). The estimated fluxes of solutes from the Mekong decrease as follows (Mt/y): TDS (40.4) > HCO3(-) (23.4) > Ca(2+) (6.4) > SO4(2-) (3.8) > Cl(-) (1.74)~Na(+) (1.7) ~ Si (1.67) > Mg(2+) (1.2) > K(+ 0.5). The runoff, land cover and lithological composition significantly contribute to dissolved and particulate yields globally. HCO3(-) and TDS yields are readily predicted by runoff and percent of carbonate, while TSS yield by runoff and population density. The Himalayan Rivers, including the Mekong, are a disproportionally high contributor to global riverine carbon and other solute budgets, and are of course underlined. The estimated global riverine HCO3(-) flux (Himalayan Rivers included) is 34,014 × 10(9) mol/y (0.41 Pg C/y), 3915 Mt/y for solute load, including HCO3(-), and 13,553 Mt/y for TSS. Thereby this study illustrates the importance of riverine solute delivery in global carbon cycling.

  11. In situ synthesis of TiB2-TiC particulates locally reinforced medium carbon steel-matrix composites via the SHS reaction of Ni-Ti-B4C system during casting

    International Nuclear Information System (INIS)

    Wang, H.Y.; Huang, L.; Jiang, Q.C.

    2005-01-01

    The fabrication of medium carbon steel-matrix composites locally reinforced with in situ TiB 2 -TiC particulates using self-propagating high-temperature synthesis (SHS) reaction of Ni-Ti-B 4 C system during casting was investigated. X-ray diffraction (XRD) results reveal that the exotherm of 1042 deg. C initiated by heat release of the solid state reaction in the differential thermal analysis (DTA) curve is an incomplete reaction in Ni-Ti-B 4 C system. As-cast microstructures of the in situ processed composites reveal a relatively uniform distribution of TiB 2 -TiC particulates in the locally reinforced regions. Furthermore, the particulate size and micro-porosity in the locally reinforced regions are significantly decreased with the increasing of the Ni content in the preforms. For a Ni content of 30 and 40 wt.%, near fully dense composites locally reinforced with in situ TiB 2 and TiC particulates can be fabricated. Although most of fine TiB 2 and TiC particulates which form by the reaction-precipitation mechanism during SHS reaction are present in the locally reinforced region, some large particulates which form by the nucleation-growth mechanism during solidification are entrapped inside the Fe-rich region located in the reinforcing region or inside the matrix region nearby the interface between matrix and reinforcing region. The hardness of the reinforcing region in the composite is significantly higher than that of the unreinforced medium carbon steel. Furthermore, the hardness values of the composites synthesized from 30 to 40 wt.% Ni-Ti-B 4 C systems are higher than those of the composites synthesized from 10 to 20 wt.% Ni-Ti-B 4 C systems

  12. River Export of Dissolved and Particulate Organic Carbon from Permafrost and Peat Deposits across the Siberian Arctic

    Science.gov (United States)

    Wild, B.; Andersson, A.; Bröder, L.; Vonk, J.; Hugelius, G.; McClelland, J. W.; Raymond, P. A.; Gustafsson, O.

    2017-12-01

    Permafrost and peat deposits of northern high latitudes store more than 1300 Pg of organic carbon. This carbon has been preserved for thousands of years by cold and moist conditions, but is now increasingly mobilized as temperatures rise. While part will be degraded to CO2 and CH4 and amplify global warming, part will be exported by rivers to the Arctic Ocean where it can be degraded or re-buried by sedimentation. We here use the four large Siberian rivers Ob, Yenisey, Lena, and Kolyma as natural integrators of carbon mobilization in their catchments. We apply isotope based source apportionments and Markov Chain Monte Carlo Simulations to quantify contributions of organic carbon from permafrost and peat deposits to organic carbon exported by these rivers. More specifically, we compare the 14C signatures of dissolved and particulate organic carbon (DOC, POC) sampled close to the river mouths with those of five potential carbon sources; (1) recent aquatic and (2) terrestrial primary production, (3) the active layer of permafrost soils, (4) deep Holocene deposits (including thermokarst and peat deposits) and (5) Ice Complex Deposits. 14C signatures of these endmembers were constrained based on extensive literature review. We estimate that the four rivers together exported 2.4-4.5 Tg organic carbon from permafrost and peat deposits per year. While total organic carbon export was dominated by DOC (90%), the export of organic carbon from permafrost and peat deposits was more equally distributed between DOC (56%) and POC (44%). Recent models predict that ca. 200 Pg carbon will be lost as CO2 or CH4 by 2100 (RCP8.5) from the circumarctic permafrost area, of which roughly a quarter is drained by the Ob, Yenisey, Lena, and Kolyma rivers. Our comparatively low estimates of river carbon export thus suggest limited transfer of organic carbon from permafrost and peat deposits to high latitude rivers, or its rapid degradation within rivers. Our findings highlight the importance

  13. Storm-induced transfer of particulate trace metals to the deep-sea in the Gulf of Lion (NW Mediterranean Sea).

    Science.gov (United States)

    Dumas, C; Aubert, D; Durrieu de Madron, X; Ludwig, W; Heussner, S; Delsaut, N; Menniti, C; Sotin, C; Buscail, R

    2014-10-01

    In order to calculate budgets of particulate matter and sediment-bound contaminants leaving the continental shelf of the Gulf of Lion (GoL), settling particles were collected in March 2011 during a major storm, using sediment traps. The collecting devices were deployed in the Cap de Creus submarine canyon, which represents the main export route. Particulate matter samples were analyzed to obtain mass fluxes and contents in organic carbon, Al, Cr, Co, Ni, Cu, Zn, Cd, Pb and La, Nd and Sm. The natural or anthropogenic origin of trace metals was assessed using enrichment factors (EFs). Results are that Zn, Cu and Pb appeared to be of anthropogenic origin, whereas Ni, Co and Cr appeared to be strictly natural. The anthropogenic contribution of all elements (except Cd) was refined by acid-leaching (HCl 1 N) techniques, confirming that Zn, Cu and Pb are the elements that are the most enriched. However, although those elements are highly labile (59-77%), they do not reflect severe enrichment (EFs rare earth elements ratios and concentrations of acid-leaching residual trace metals. Our results hence indicate that even in this western extremity of the GoL, storm events mainly export Rhone-derived particles via the Cap de Creus submarine canyons to the deep-sea environments. This export of material is significant as it represents about a third of the annual PTM input from the Rhone River.

  14. The distribution characteristics of trace elements in airborne particulates from an urban industrial complex area of Korea using instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Lim, Jong Myoung; Lee, Jin Hong; Chung, Yong Sam

    2005-01-01

    An instrumental neutron activation analysis was used to measure the concentrations of about 24 elements associated with airborne particulates (PM10) that were collected in the most polluted urban region of Daejeon city, Korea from 2000 to 2002. Using the measurement data for various elements, both the extent of elemental pollution in the study area and the seasonality in their distribution characteristics were examined. Examinations of their distribution patterns indicated that most elements with crustal origin tend to exhibit seasonal peaks during spring, while most elements with anthropogenic origin tend to exhibit seasonal peaks during fall or winter. In order to explain the factors regulating their mobilization properties, the data were processed by a factor analysis. Results of the factor analysis suggested competing roles of both industrial and natural source processes, despite that the study site is located at a downwind position of the industrial complex. Based on the overall results of this study, it is concluded that the site may be strongly impacted by man-made sources but the general patterns of elemental distributions in the study area inspected over a seasonal scale are quite consistent with those typically observed from natural environment

  15. Elemental composition of particulate matter and the association with lung function

    NARCIS (Netherlands)

    Eeftens, Marloes; Hoek, Gerard; Gruzieva, Olena; Mölter, Anna; Agius, Raymond; Beelen, Rob; Brunekreef, Bert; Custovic, Adnan; Cyrys, Josef; Fuertes, Elaine; Heinrich, Joachim; Hoffmann, Barbara; de Hoogh, Kees; Jedynska, Aleksandra; Keuken, Menno; Klümper, Claudia; Kooter, Ingeborg; Krämer, Ursula; Korek, Michal; Koppelman, Gerard H; Kuhlbusch, Thomas A J; Simpson, Angela; Smit, Henriëtte A; Tsai, Ming-Yi; Wang, Meng; Wolf, Kathrin; Pershagen, Göran; Gehring, Ulrike

    BACKGROUND: Negative effects of long-term exposure to particulate matter (PM) on lung function have been shown repeatedly. Spatial differences in the composition and toxicity of PM may explain differences in observed effect sizes between studies. METHODS: We conducted a multicenter study in 5

  16. Elemental composition of particulate matter and the association with lung function

    NARCIS (Netherlands)

    Eeftens, M.; Hoek, G.; Gruzieva, O.; Mölter, A.; Agius, R.; Beelen, R.; Brunekreef, B.; Custovic, A.; Cyrys, J.; Fuertes, E.; Heinrich, J.; Hoffmann, B.; De Hoogh, K.; Jedynska, A.; Keuken, M.; Klümper, C.; Kooter, I.; Krämer, U.; Korek, M.; Koppelman, G.H.; Kuhlbusch, T.A.J.; Simpson, A.; Smit, H.A.; Tsai, M.Y.; Wang, M.; Wolf, K.; Pershagen, G.; Gehring, U.

    2014-01-01

    BACKGROUND: Negative effects of long-term exposure to particulate matter (PM) on lung function have been shown repeatedly. Spatial differences in the composition and toxicity of PM may explain differences in observed effect sizes between studies. METHODS: We conducted a multicenter study in 5

  17. Persistent free radicals, heavy metals and PAHs generated in particulate soot emissions and residue ash from controlled combustion of common types of plastic

    International Nuclear Information System (INIS)

    Valavanidis, Athanasios; Iliopoulos, Nikiforos; Gotsis, George; Fiotakis, Konstantinos

    2008-01-01

    The production and use of polymeric materials worldwide has reached levels of 150 million tonnes per year, and the majority of plastic materials are discarded in waste landfills where are burned generating toxic emissions. In the present study we conducted laboratory experiments for batch combustion/burning of commercial polymeric materials, simulating conditions of open fire combustion, with the purpose to analyze their emissions for chemical characteristics of toxicological importance. We used common types of plastic materials: poly(vinyl chloride) (PVC), low and high density poly(ethylene) (LDPE, HDPE), poly(styrene) (PS), poly(propylene) (PP) and poly(ethylene terephthalate) (PET). Samples of particulate smoke (soot) collected on filters and residue solid ash produced by controlled burning conditions at 600-750 deg. C are used for analysis. Emissions of particulate matter, persistent free radicals embedded in the carbonaceous polymeric matrix, heavy metals, other elements and PAHs were determined in both types of samples. Results showed that all plastics burned easily generating charred residue solid ash and black airborne particulate smoke. Persistent carbon- and oxygen-centered radicals, known for their toxic effects in inhalable airborne particles, were detected in both particulate smoke emissions and residue solid ash. Concentrations of heavy metals and other elements (determined by Inductively Coupled Plasma Emission Spectrometry, ICP, method) were measured in the airborne soot and residue ash. Toxic heavy metals, such as Pb, Zn, Cr, Ni, and Cd were relatively at were found at low concentrations. High concentrations were found for some lithophilic elements, such as Na, Ca, Mg, Si and Al in particulate soot and residue solid ash. Measurements of PAHs showed that low molecular weight PAHs were at higher concentrations in the airborne particulate soot than in the residue solid ash for all types of plastic. Higher-ringed PAHs were detected at higher

  18. Persistent free radicals, heavy metals and PAHs generated in particulate soot emissions and residue ash from controlled combustion of common types of plastic.

    Science.gov (United States)

    Valavanidis, Athanasios; Iliopoulos, Nikiforos; Gotsis, George; Fiotakis, Konstantinos

    2008-08-15

    The production and use of polymeric materials worldwide has reached levels of 150 million tonnes per year, and the majority of plastic materials are discarded in waste landfills where are burned generating toxic emissions. In the present study we conducted laboratory experiments for batch combustion/burning of commercial polymeric materials, simulating conditions of open fire combustion, with the purpose to analyze their emissions for chemical characteristics of toxicological importance. We used common types of plastic materials: poly(vinyl chloride) (PVC), low and high density poly(ethylene) (LDPE, HDPE), poly(styrene) (PS), poly(propylene) (PP) and poly(ethylene terephthalate) (PET). Samples of particulate smoke (soot) collected on filters and residue solid ash produced by controlled burning conditions at 600-750 degrees C are used for analysis. Emissions of particulate matter, persistent free radicals embedded in the carbonaceous polymeric matrix, heavy metals, other elements and PAHs were determined in both types of samples. Results showed that all plastics burned easily generating charred residue solid ash and black airborne particulate smoke. Persistent carbon- and oxygen-centered radicals, known for their toxic effects in inhalable airborne particles, were detected in both particulate smoke emissions and residue solid ash. Concentrations of heavy metals and other elements (determined by Inductively Coupled Plasma Emission Spectrometry, ICP, method) were measured in the airborne soot and residue ash. Toxic heavy metals, such as Pb, Zn, Cr, Ni, and Cd were relatively at were found at low concentrations. High concentrations were found for some lithophilic elements, such as Na, Ca, Mg, Si and Al in particulate soot and residue solid ash. Measurements of PAHs showed that low molecular weight PAHs were at higher concentrations in the airborne particulate soot than in the residue solid ash for all types of plastic. Higher-ringed PAHs were detected at higher

  19. Mercury partition in the interface between a contaminated lagoon and the ocean: The role of particulate load and composition

    International Nuclear Information System (INIS)

    Pato, P.; Otero, M.; Valega, M.; Lopes, C.B.; Pereira, M.E.; Duarte, A.C.

    2010-01-01

    After having estimated the patterns of flow to the ocean and found some seasonal and tidal differences, mainly with regard to the relative importance of dissolved and particulate fractions, mercury partitioning at the interface between a contaminated lagoon and the Atlantic Ocean was investigated during four tidal cycles in contrasting season and tidal regimes. Mercury was found to be located predominantely in the particulate fraction throughout the year, contributing to its retention within the system. Seasonal conditions, variations in marine and fluvial signals and processes affecting bed sediment resuspension influenced the character and concentration of suspended particulate matter in the water column. Variation in the nature, levels and partitioning of organic carbon in the particulate fraction affected levels of particulate mercury as well as mercury partitioning. These results highlight the dominant role of suspended particulate matter in the distribution of anthropogenic mercury and reinforce the importance of competitive behavior related to organic carbon in mercury scavenging.

  20. 23 Elemental Composition of Suspended Particulate Matter ...

    African Journals Online (AJOL)

    `123456789jkl''''#

    The samples were analysed by energy dispersive x-ray fluorescence. (EDXRF) and atomic absorption spectroscopy (AAS) for up to 10 elements. It was found that 66% of the ..... coefficients between the various crustal elements Ca, Ti, Mn, ...

  1. Distribution and sources of particulate organic matter in the Indian monsoonal estuaries during monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; Krishna, M.S.; Prasad, V.R.; Kumar, B.S.K.; Naidu, S.A.; Rao, G.D.; Viswanadham, R.; Sridevi, T.; Kumar, P.P.; Reddy, N.P.C.

    The distribution and sources of particulate organic carbon (POC) and nitrogen (PN) in 27 Indian estuaries were examined during the monsoon using the content and isotopic composition of carbon and nitrogen. Higher phytoplankton biomass was noticed...

  2. JV Task 94 - Air Quality V: Mercury, Trace Elements, SO3, and Particulate Matter Conference

    Energy Technology Data Exchange (ETDEWEB)

    Thomas A. Erickson

    2007-01-31

    This final report summarizes the planning, preparation, facilitation and production, and summary of the conference entitled 'Air Quality V: Mercury, Trace Elements, SO{sub 3}, and Particulate Matter,' held September 18-21, 2005, in Arlington, Virginia. The goal of the conference was to build on the discussions of the first four Air Quality Conferences, providing further opportunity for leading representatives of industry, government, research institutions, academia, and environmental organizations to discuss the key interrelationships between policy and science shaping near-term regulations and controls and to assist in moving forward on emerging issues that will lead to acceptable programs and policies to protect human health, the environment, and economic growth. The conference was extremely timely, as it was the last large conference prior to publication of the U.S. Environmental Protection Agency's final regulations for mercury control from coal-fired utilities, and provided a forum to realistically assess the status of mercury controls in relation to the new regulations.

  3. Particulate Photocatalyst Sheets Based on Carbon Conductor Layer for Efficient Z-Scheme Pure-Water Splitting at Ambient Pressure.

    Science.gov (United States)

    Wang, Qian; Hisatomi, Takashi; Suzuki, Yohichi; Pan, Zhenhua; Seo, Jeongsuk; Katayama, Masao; Minegishi, Tsutomu; Nishiyama, Hiroshi; Takata, Tsuyoshi; Seki, Kazuhiko; Kudo, Akihiko; Yamada, Taro; Domen, Kazunari

    2017-02-01

    Development of sunlight-driven water splitting systems with high efficiency, scalability, and cost-competitiveness is a central issue for mass production of solar hydrogen as a renewable and storable energy carrier. Photocatalyst sheets comprising a particulate hydrogen evolution photocatalyst (HEP) and an oxygen evolution photocatalyst (OEP) embedded in a conductive thin film can realize efficient and scalable solar hydrogen production using Z-scheme water splitting. However, the use of expensive precious metal thin films that also promote reverse reactions is a major obstacle to developing a cost-effective process at ambient pressure. In this study, we present a standalone particulate photocatalyst sheet based on an earth-abundant, relatively inert, and conductive carbon film for efficient Z-scheme water splitting at ambient pressure. A SrTiO 3 :La,Rh/C/BiVO 4 :Mo sheet is shown to achieve unassisted pure-water (pH 6.8) splitting with a solar-to-hydrogen energy conversion efficiency (STH) of 1.2% at 331 K and 10 kPa, while retaining 80% of this efficiency at 91 kPa. The STH value of 1.0% is the highest among Z-scheme pure water splitting operating at ambient pressure. The working mechanism of the photocatalyst sheet is discussed on the basis of band diagram simulation. In addition, the photocatalyst sheet split pure water more efficiently than conventional powder suspension systems and photoelectrochemical parallel cells because H + and OH - concentration overpotentials and an IR drop between the HEP and OEP were effectively suppressed. The proposed carbon-based photocatalyst sheet, which can be used at ambient pressure, is an important alternative to (photo)electrochemical systems for practical solar hydrogen production.

  4. Fluxes of particulate organic carbon in the East China Sea in summer

    Directory of Open Access Journals (Sweden)

    C.-C. Hung

    2013-10-01

    Full Text Available To understand carbon cycling in marginal seas better, particulate organic carbon (POC concentrations, POC fluxes and primary production (PP were measured in the East China Sea (ECS in summer 2007. Higher concentrations of POC were observed in the inner shelf, and lower POC values were found in the outer shelf. Similar to POC concentrations, elevated uncorrected POC fluxes (720–7300 mg C m−2 d−1 were found in the inner shelf, and lower POC fluxes (80–150 mg C m−2 d−1 were in the outer shelf, respectively. PP values (~ 340–3380 mg C m−2 d−1 had analogous distribution patterns to POC fluxes, while some of PP values were significantly lower than POC fluxes, suggesting that contributions of resuspended particles to POC fluxes need to be appropriately corrected. A vertical mixing model was used to correct effects of bottom sediment resuspension, and the lowest and highest corrected POC fluxes were in the outer shelf (58 ± 33 mg C m−2 d−1 and the inner shelf (785 ± 438 mg C m−2 d−1, respectively. The corrected POC fluxes (486 to 785 mg C m−2 d−1 in the inner shelf could be the minimum value because we could not exactly distinguish the effect of POC flux from Changjiang influence with turbid waters. The results suggest that 27–93% of the POC flux in the ECS might be from the contribution of resuspension of bottom sediments rather than from the actual biogenic carbon sinking flux. While the vertical mixing model is not a perfect model to solve sediment resuspension because it ignores biological degradation of sinking particles, Changjiang plume (or terrestrial inputs and lateral transport, it makes significant progress in both correcting the resuspension problem and in assessing a reasonable quantitative estimate of POC flux in a marginal sea.

  5. Summertime Spatial Variations in Atmospheric Particulate Matter and Its Chemical Components in Different Functional Areas of Xiamen, China

    Directory of Open Access Journals (Sweden)

    Shuhui Zhao

    2015-02-01

    Full Text Available Due to the highly heterogeneous and dynamic nature of urban areas in Chinese cities, air pollution exhibits well-defined spatial variations. Rapid urbanization in China has heightened the importance of understanding and characterizing atmospheric particulate matter (PM concentrations and their spatiotemporal variations. To investigate the small-scale spatial variations in PM in Xiamen, total suspended particulate (TSP, PM10, PM5 and PM2.5 measurements were collected between August and September in 2012. Their average mass concentrations were 102.50 μg∙m−3, 82.79 μg∙m−3, 55.67 μg∙m−3 and 43.70 μg∙m−3, respectively. Organic carbon (OC and elemental carbon (EC in PM2.5 were measured using thermal optical transmission. Based on the PM concentrations for all size categories, the following order for the different functional areas studied was identified: hospital > park > commercial area > residential area > industrial area. OC contributed approximately 5%–23% to the PM2.5 mass, whereas EC accounted for 0.8%–6.95%. Secondary organic carbon constituted most of the carbonaceous particles found in the park, commercial, industrial and residential areas, with the exception of hospitals. The high PM and EC concentrations in hospitals were primarily caused by vehicle emissions. Thus, the results suggest that long-term plans should be to limit the number of vehicles entering hospital campuses, construct large-capacity underground parking structures, and choose hospital locations far from major roads.

  6. Ultra fine particulates. Small particulates with large consequences?; Ultrafijn stof. Kleine deeltjes met grote gevolgen?

    Energy Technology Data Exchange (ETDEWEB)

    Hensema, A.; Keuken, M.; Kooter, I.; Verbeek, R.; Van Vugt, M. [TNO Science and Industry, Delft (Netherlands)

    2009-02-15

    The concentrations of ultra fine particles (and elementary carbon) have increased significantly near traffic routes. The amount of ultra fine particles (and the chemical composition of particulate matter) are related to traffic emissions and are therefore relevant to the established health effects. Better insight in the effectiveness of particulate matter policy requires more attention for ultra fine particles than just maintaining the standards for PM2,5 and PM10. [mk]. [Dutch] De concentraties van ultrafijne deeltjes (en elementair koolstof) zijn fors verhoogd in de buurt van verkeerswegen. Het aantal ultrafijne deeltjes (en de chemische samenstelling van fijnstof) gerelateerd aan verkeersemissies lijkt daarom relevant voor de vastgestelde gezondheidseffecten. Voor een beter inzicht in de effectiviteit van het fijnstofbeleid is meer aandacht nodig voor ultrafijne deeltjes dan alleen handhaving van de normen voor PM2,5 en PM10.

  7. Proton-induced X-ray emission analysis of marine particulates

    International Nuclear Information System (INIS)

    Burnett, W.C.; Mitchum, G.T.

    1981-01-01

    We report a methodology used to analyze suspended marine particulates by particle induced X-ray emission (PIXE). Water samples from an estuary in Brazil were filtered soon after collection onto pre-weighed Nuclepore filters, washed with deionized water, dried to constant weight and analyzed as thin targets. Because of the relatively high mass loadings (0.1-1.0 mg/cm 2 ) on the filters, proton bombardment times of a few minutes were adequate for maintaining good counting statistics. Precision and accuary were determined by replicate analysis and intercomparison to geochemical standards. Suspensions of standards in deionized water were filtered dried, weighed and analyzed in a similar fashion as our samples of marine particulates. Net X-ray intensities were related to mass by calibration against pure elemental standards. Initial experiments showed systematically low concentrations for all elements determined by PIXE relative to known values. Further experiments verified that this systematic errors was due to an uneven distribution of mass on the surface of the filters. Improvements in the filtration technique have eliminated the topographic effect on our samples and the PIXE resultes were substantially improved. Variations in matrix and particle size of the samples analyzed did not cause any measureable analytical effect. PIXE thus seems well suited for providing rapid, multi-element data on samples of marine particulates if suitable precautions are made during the sample preparation process. (orig.)

  8. Biogeochemical characteristics of suspended particulate matter in deep chlorophyll maximum layers in the southern East China Sea

    Science.gov (United States)

    Liu, Qianqian; Kandasamy, Selvaraj; Lin, Baozhi; Wang, Huawei; Chen, Chen-Tung Arthur

    2018-04-01

    Continental shelves and marginal seas are key sites of particulate organic matter (POM) production, remineralization and sequestration, playing an important role in the global carbon cycle. Elemental and stable isotopic compositions of organic carbon and nitrogen are thus frequently used to characterize and distinguish POM and its sources in suspended particles and surface sediments in the marginal seas. Here we investigated suspended particulate matter (SPM) collected around deep chlorophyll maximum (DCM) layers in the southern East China Sea for particulate organic carbon and nitrogen (POC and PN) contents and their isotopic compositions (δ13CPOC and δ15NPN) to understand provenance and dynamics of POM. Hydrographic parameters (temperature, salinity and turbidity) indicated that the study area was weakly influenced by freshwater derived from the Yangtze River during summer 2013. Elemental and isotopic results showed a large variation in δ13CPOC (-25.8 to -18.2 ‰) and δ15NPN (3.8 to 8.0 ‰), but a narrow molar C / N ratio (4.1-6.3) and low POC / Chl a ratio ( < 200 g g-1) in POM, and indicated that the POM in DCM layers was newly produced by phytoplankton. In addition to temperature effects, the range and distribution of δ13CPOC were controlled by variations in primary productivity and phytoplankton species composition; the former explained ˜ 70 % of the variability in δ13CPOC. However, the variation in δ15NPN was controlled by the nutrient status and δ15NNO3- in seawater, as indicated by similar spatial distribution between δ15NPN and the current pattern and water masses in the East China Sea; although interpretations of δ15NPN data should be verified with the nutrient data in future studies. Furthermore, the POM investigated was weakly influenced by the terrestrial OM supplied by the Yangtze River during summer 2013 due to the reduced sediment supply by the Yangtze River and north-eastward transport of riverine particles to the northern East China

  9. Comparison of neutron activation analysis with other instrumental methods for elemental analysis of airborne particulate matter

    International Nuclear Information System (INIS)

    Regge, P. de; Lievens, F.; Delespaul, I.; Monsecour, M.

    1976-01-01

    A comparison of instrumental methods, including neutron activation analysis, X-ray fluorescence spectrometry, atomic absorption spectrometry and emission spectrometry, for the analysis of heavy metals in airborne particulate matter is described. The merits and drawbacks of each method for the routine analysis of a large number of samples are discussed. The sample preparation technique, calibration and statistical data relevant to each method are given. Concordant results are obtained by the different methods for Co, Cu, Ni, Pb and Zn. Less good agreement is obtained for Fe, Mn and V. The results are not in agreement for the elements Cd and Cr. Using data obtained on the dust sample distributed by Euratom-ISPRA within the framework of an interlaboratory comparison, the accuracy of each method for the various elements is estimated. Neutron activation analysis was found to be the most sensitive and accurate of the non-destructive analysis methods. Only atomic absorption spectrometry has a comparable sensitivity, but requires considerable preparation work. X-ray fluorescence spectrometry is less sensitive and shows biases for Cr and V. Automatic emission spectrometry with simultaneous measurement of the beam intensities by photomultipliers is the fastest and most economical technique, though at the expense of some precision and sensitivity. (author)

  10. Extraction of transplutonium elements from carbonate solutions by alkylpyrocatechol

    International Nuclear Information System (INIS)

    Karalova, Z.K.; Myasoedov, B.F.; Rodionova, L.M.; Kuznetsova, V.S.

    1983-01-01

    Extraction of americium, berkelium as well as Ce, Eu, Th, U, Zr, Cs, Fe with solution of 4(α, α-dioctylethyl)pyrocatechol (DOP) in toluene from carbonate solutions to determine conditions of their separation has been studied. It is established that americium extraction is quite sensitive to the changes of potassium carbonate concentration. The maximum extraction of americium (R >90%) is observed in the case of 0.1-0.5 mol/l of K 2 CO 3 solutions and the minimum one (R=2.5%) - in the case of 8 mol/l K 2 CO 3 . Americium extraction increases sharply when sodium hydroxide is introduced in carbonate solutions. It is shown that varying sodium hydroxide concentration it is possible to achieve qualitative extraction of americium even from saturated solution of potassium carbonate. Reextraction of TPE is easily realized with 3 mol/l HCl solution. The system K 2 CO 3 (KOH)-DOP proved to be perspective for Am separation from Bk, Ce, Cs, actinoid elements as well as from Fe

  11. Ocean subsurface particulate backscatter estimation from CALIPSO spaceborne lidar measurements

    Science.gov (United States)

    Chen, Peng; Pan, Delu; Wang, Tianyu; Mao, Zhihua

    2017-10-01

    A method for ocean subsurface particulate backscatter estimation from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite was demonstrated. The effects of the CALIOP receiver's transient response on the attenuated backscatter profile were first removed. The two-way transmittance of the overlying atmosphere was then estimated as the ratio of the measured ocean surface attenuated backscatter to the theoretical value computed from wind driven wave slope variance. Finally, particulate backscatter was estimated from the depolarization ratio as the ratio of the column-integrated cross-polarized and co-polarized channels. Statistical results show that the derived particulate backscatter by the method based on CALIOP data agree reasonably well with chlorophyll-a concentration using MODIS data. It indicates a potential use of space-borne lidar to estimate global primary productivity and particulate carbon stock.

  12. Monitoring of organic and elemental carbon (OC/EC) in the atmospheric aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, A.; Fuchs, J.; Jaeschke, W.; Weingartner, E.; Baltensperger, U.

    2003-03-01

    A new instrument for the measurement of ambient carbonaceous aerosol concentrations is described, which enables discrimination between organic and elemental carbon on a semi-continuous basis. (author)

  13. Fractionation of trace elements and human health risk of submicron particulate matter (PM1) collected in the surroundings of coking plants.

    Science.gov (United States)

    Zajusz-Zubek, Elwira; Radko, Tomasz; Mainka, Anna

    2017-08-01

    Samples of PM1 were collected in the surroundings of coking plants located in southern Poland. Chemical fractionation provided information on the contents of trace elements As, Cd, Co, Cr, Hg, Mn, Ni, Pb, Sb and Se in all mobile (F1-F3) and not mobile (F4) fractions of PM1 in the vicinity of large sources of emissions related to energochemical processing of coal during the summer. The determined enrichment factors indicate the influence of anthropogenic sources on the concentration of the examined elements contained in PM1 in the areas subjected to investigation. The analysis of health risk for the assumed scenario of inhabitant exposure to the toxic effect of elements, based on the values of the hazard index, revealed that the absorption of the examined elements contained in the most mobile fractions of particulate matter via inhalation by children and adults can be considered potentially harmless to the health of people inhabiting the surroundings of coking plants during the summer (HI PM1, approximately four adults and one child out of one million people living in the vicinity of the coking plants may develop cancer.

  14. Characterization of traffic-related ambient fine particulate matter (PM2.5) in an Asian city: Environmental and health implications

    Science.gov (United States)

    Zhang, Zhi-Hui; Khlystov, Andrey; Norford, Leslie K.; Tan, Zhen-Kang; Balasubramanian, Rajasekhar

    2017-07-01

    Vehicular traffic emission is an important source of particulate pollution in most urban areas. The detailed chemical speciation of traffic-related PM2.5 (fine particles) is relatively sparse in the literature, especially in Asian cities. To fill this knowledge gap, we carried out an intensive field study in Singapore from November 2015 to February 2016. PM2.5 samples were collected concurrently at a typical roadside microenvironment and at an urban background site. A detailed chemical speciation of PM2.5 samples was conducted to gain insights into the emission characteristics of traffic-related fine aerosols. Analyses of diagnostic ratios and molecular markers of selected chemical species were explored for source attribution of different classes of chemical constituents in traffic-related PM2.5. The human health risk due to inhalation of the particulate-bound PAHs (polycyclic aromatic hydrocarbons) and toxic trace elements was estimated for both adults and children. The overall results of the study indicate that gasoline-powered vehicles make a higher contribution to traffic-related fine aerosol components such as organic carbon (OC), particle-bound PAHs and particulate ammonium than that of diesel-powered vehicles. However, both types of vehicles contribute to traffic-related EC emissions significantly. The combustion of petroleum fuels and lubricating oil make significant contributions to the emission of n-alkanes and hopanes into the urban atmosphere, respectively. The study further reveals that some toxic trace elements are emitted from non-exhaust sources and that aromatic acids represent an important component of secondary organic aerosols. The emission of toxic trace elements from non-exhaust sources is of particular concern as they could pose a higher carcinogenic risk to both adults and children than other chemical species.

  15. Secondary organic carbon quantification and source apportionment of PM10 in Kaifeng, China

    Institute of Scientific and Technical Information of China (English)

    WU Lin; FENG Yinchang; WU Jianhui; ZHU Tan; BI Xiaohui; HAN Bo; YANG Weihong; YANG Zhiqiang

    2009-01-01

    During 2005, the filter samples of ambient PM10 from five sites and the source samples of particulate matter were collected in Kaifeng, Henan province of China. Nineteen elements, water-soluble ions, total carbon (TC) and organic carbon (OC) contained in samples were analyzed. Seven contributive source types were identified and their contributions to ambient PM10 were estimated by chemical mass balance (CMB) receptor model. Weak associations between the concentrations of organic carbon and element carbon (EC) were observed during the sampling periods, indicating that there was secondary organic aerosol pollution in the urban atmosphere. An indirect method of "OC/EC minimum ratio" was applied to estimate the concentration of secondary organic carbon (SOC). The results showed that SOC contributed 26.2%, 32.4% and 18.0% of TC in spring, summer-fall and winter respectively, and the annual average SOC concentration was 7.07 μg/m3, accounting for 5.73% of the total mass in ambient PM10. The carbon species concentrations in ambient PM10 were recalculated by subtracting the SOC concentrations from measured concentrations of TC and OC to increase the compatibility of source and receptor measurements for CMB model.

  16. Carbon and nitrogen isotopic compositions of particulate organic matter and biogeochemical processes in the eutrophic Danshuei Estuary in northern Taiwan

    International Nuclear Information System (INIS)

    Liu, K.-K.; Kao, S.-J.; Wen, L.-S.; Chen, K.-L.

    2007-01-01

    The Danshuei Estuary is distinctive for the relatively short residence time (1-2 d) of its estuarine water and the very high concentration of ammonia, which is the dominant species of dissolved inorganic nitrogen in the estuary, except near the river mouth. These characteristics make the dynamics of nitrogen cycling distinctively different from previously studied estuaries and result in unusual isotopic compositions of particulate nitrogen (PN). The δ 15 N PN values ranging from - 16.4 per mille to 3.8 per mille lie in the lower end of nitrogen isotopic compositions (- 16.4 to + 18.7 per mille ) of suspended particulate matter observed in estuaries, while the δ 13 C values of particulate organic carbon (POC) and the C/N (organic carbon to nitrogen) ratios showed rather normal ranges from - 25.5 per mille to - 19.0 per mille and from 6.0 to 11.3, respectively. There were three major types of particulate organic matter (POM) in the estuary: natural terrigenous materials consisting mainly of soils and bedrock-derived sediments, anthropogenic wastes and autochthonous materials from the aquatic system. During the typhoon induced flood period in August 2000, the flux-weighted mean of δ 13 C POC values was - 24.4 per mille , that of δ 15 N PN values was + 2.3 per mille and that of C/N ratio was 9.3. During non-typhoon periods, the concentration-weighted mean was - 23.6 per mille for δ 13 C POC , - 2.6 per mille for δ 15 N PN and 8.0 for C/N ratio. From the distribution of δ 15 N PN values of highly polluted estuarine waters, we identified the waste-dominated samples and calculated their mean properties: δ 13 C POC value of - 23.6 ± 0.7 per mille , δ 15 N PN value of - 3.0 ± 0.1 per mille and C/N ratio of 8.0 ± 1.4. Using a three end-member mixing model based on δ 15 N PN values and C/N ratios, we calculated contributions of the three major allochthonous sources of POC, namely, wastes, soils and bedrock-derived sediments, to the estuary. Their contributions

  17. Trace elements present in airborne particulate matter-Stressors of plant metabolism

    Czech Academy of Sciences Publication Activity Database

    Pavlík, Milan; Pavlíková, D.; Zemanová, V.; Hnilička, F.; Urbanová, V.; Száková, J.

    2012-01-01

    Roč. 79, May 2012 (2012), s. 101-107 ISSN 0147-6513 Grant - others:GA ČR(CZ) GA521/09/1150 Program:GA Institutional research plan: CEZ:AV0Z50380511 Keywords : Airborne particulate matter * Amino acids * Gas-exchange parameters Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.203, year: 2012

  18. Determination of trace amounts of rare earth elements in various environmental samples by spark source mass spectrography

    International Nuclear Information System (INIS)

    Sugimae, Akiyoshi

    1978-01-01

    A chemical concentration-mass spectrographic procedure was described for the determination of trace amounts of rare earth elements in various environmental samples: airborne particulate matter, dustfall, soil and so forth. A 0.5 to 1 gram of sample material was decomposed by fusion with sodium carbonate. The silica dehydrated in the usual way was filtered off and the filtrate from the silica was then treated with ammonium hydroxide to precipitate the rare earth elements. After ignition of the precipitate, two ml of internal standard solution containing 20 μg/ml of silver were added and the mixture was then evaporated to dryness. The residue was mixed with an equal amount of graphite powder and then pressed into electrodes. Relative sensitivity coefficients (Ag=1.0) were determined by using Spex Mix and U. S. Geological Survey rock standard G-2. U. S. Geological Survey rock standard GSP-1 and N.B.S. coal fly ash SRM 1633 were analysed to evaluate the accuracy of the proposed method. Comparison of the mass spectral values with literature ones indicated a good agreement. The coefficient of variation obtained by replicate analysis of SRM 1633 was better than 25%. The proposed method was applied to the determination of rare earth elements in airborne particulate matter and dustfall collected on polystyrene filter and in dustjars, respectively. Results for the rare earth elements in the blank of glass fiber filter which was widely used for the collection of airborne particulate matter were also presented. (auth.)

  19. Chemical Composition of Fine Particulate Matter and Life Expectancy

    Science.gov (United States)

    Dominici, Francesca; Wang, Yun; Correia, Andrew W.; Ezzati, Majid; Pope, C. Arden; Dockery, Douglas W.

    2016-01-01

    Background In a previous study, we provided evidence that a decline in fine particulate matter (PM2.5) air pollution during the period between 2000 and 2007 was associated with increased life expectancy in 545 counties in the United States. In this article, we investigated which chemical constituents of PM2.5 were the main drivers of the observed association. Methods We estimated associations between temporal changes in seven major components of PM2.5 (ammonium, sulfate, nitrate, elemental carbon matter, organic carbon matter, sodium, and silicon) and temporal changes in life expectancy in 95 counties between 2002 and 2007. We included US counties that had adequate chemical components of PM2.5 mass data across all seasons. We fitted single pollutant and multiple pollutant linear models, controlling for available socioeconomic, demographic, and smoking variables and stratifying by urban and nonurban counties. Results In multiple pollutant models, we found that: (1) a reduction in sulfate was associated with an increase in life expectancy; and (2) reductions in ammonium and sodium ion were associated with increases in life expectancy in nonurban counties only. Conclusions Our findings suggest that recent reductions in long-term exposure to sulfate, ammonium, and sodium ion between 2002 and 2007 are associated with improved public health. PMID:25906366

  20. Removal of residual particulate matter from filter media

    Science.gov (United States)

    Almlie, Jay C; Miller, Stanley J

    2014-11-11

    A method for removing residual filter cakes that remain adhered to a filter after typical particulate removal methodologies have been employed, such as pulse-jet filter element cleaning, for all cleanable filters used for air pollution control, dust control, or powder control.

  1. Removal of residual particulate matter from filter media

    Energy Technology Data Exchange (ETDEWEB)

    Almlie, Jay C.; Miller, Stanley J.

    2018-01-09

    A method for removing residual filter cakes that remain adhered to a filter after typical particulate removal methodologies have been employed, such as pulse-jet filter element cleaning, for all cleanable filters used for air pollution control, dust control, or powder control.

  2. The investigation of atmospheric particulate matter pollution in Suzhou

    International Nuclear Information System (INIS)

    Chen Yi'ou; Zhang Yuliang; Wang Ya; Wang Pei; Tian Hailin

    2012-01-01

    Objective: To investigate the pollution status, vertical distribution and concentration variation within 24 hours of total suspended particles (TSPs), particulate matter ≤10 μm (PM10), particulate matter ≤5 (PM5) and particulate matter ≤2.5 μm (PM2.5) in major functional areas of Suzhou and the protective effect of different type masks on particulate matter. Methods: (1) The concentration of atmospheric TSPs, PM10, PM5 and PM2.5 in seven functional areas in Suzhou was monitored for three consecutive days. (2) A residential building of 25 stories was chosen and the concentration of TSPs, PM10, PM5, PM2.5 was detected at the 1st, 5th, 10th, 15th, 20 th and the 25th floor respectively. (3) The concentrations of the four particulate matter were detected every two-hours for three consecutive days to investigate how concentration of particulate matter varies within 24 hours. (4) The concentration of the four kinds of particulate matter was analyzed with the sampling head of monitor wrapped with disposable non-woven medical mask, fashion-type mask, gauze mask or activated carbon anti-dust mask respectively, and the protective effect of the four masks on particulate matter was compared. Results: (1) The concentration of PM2.5 was higher than the national health limit in all seven functional areas in Suzhou. (2) No significant difference in vertical distribution of particulate matter was found among different floors in residential buildings (P>0.05). (3) Two small peaks of particulate matter appeared in the morning and evening respectively while the top appeared at dawn (P< 0.05). (4) Disposable non-woven medical mask showed the best protective effect on particulate matter among the four tested masks. Conclusion: PM2.5 is the main particulate matter in Suzhou area. In addition the 4 kinds of particulate matter: TSP, PM10, PM5 and PM2.5 are of higher concentration in the early morning. No significant difference was detected from an altitude of less than 75 meters

  3. Short term variations in particulate matter in Mahi river estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Rokade, M.A.; Zingde, M.D.

    The particulate matter (PM) collected from Mahi River Estuary was analysed for organic carbon (POC), nitrogen (PON), and chlorophyll a (Chl a). The concentration of PM, POC, PON and Chl a showed short term variations. Average surface concentration...

  4. Wet scavenging of organic and elemental carbon during summer monsoon and winter monsoon seasons

    Science.gov (United States)

    Sonwani, S.; Kulshrestha, U. C.

    2017-12-01

    In the era of rapid industrialization and urbanization, atmospheric abundance of carbonaceous aerosols is increasing due to more and more fossil fuel consumption. Increasing levels of carbonaceous content have significant adverse effects on air quality, human health and climate. The present study was carried out at Delhi covering summer monsoon (July -Sept) and winter monsoon (Dec-Jan) seasons as wind and other meteorological factors affect chemical composition of precipitation in different manner. During the study, the rainwater and PM10 aerosols were collected in order to understand the scavenging process of elemental and organic carbon. The Rain water samples were collected on event basis. PM10 samples were collected before rain (PR), during rain (DR) and after rain (AR) during 2016-2017. The collected samples were analysed by the thermal-optical reflectance method using IMPROVE-A protocol. In PM10, the levels of organic carbon (OC) and its fractions (OC1, OC2, OC3 and OC4) were found significantly lower in the AR samples as compared to PR and DR samples. A significant positive correlation was noticed between scavenging ratios of organic carbon and rain intensity indicating an efficient wet removal of OC. In contrast to OCs, the levels of elemental carbon and its fractions (EC1, EC2, and EC3) in AR were not distinct during PR and DR. The elemental carbon showed very week correlation with rain intensity in Delhi region which could be explained on the basis of hydrophobic nature of freshly emitted carbon soot. The detailed results will be discussed during the conference.

  5. Source profiles of particulate matter emissions from a pilot-scale boiler burning North American coal blends.

    Science.gov (United States)

    Lee, S W

    2001-11-01

    Recent awareness of suspected adverse health effects from ambient particulate matter (PM) emission has prompted publication of new standards for fine PM with aerodynamic diameter less than 2.5 microm (PM2.5). However, scientific data on fine PM emissions from various point sources and their characteristics are very limited. Source apportionment methods are applied to identify contributions of individual regional sources to tropospheric particulate concentrations. The existing industrial database developed using traditional source measurement techniques provides total emission rates only, with no details on chemical nature or size characteristics of particulates. This database is inadequate, in current form, to address source-receptor relationships. A source dilution system was developed for sampling and characterization of total PM, PM2.5, and PM10 (i.e., PM with aerodynamic diameter less than 10 pm) from residual oil and coal combustion. This new system has automatic control capabilities for key parameters, such as relative humidity (RH), temperature, and sample dilution. During optimization of the prototype equipment, three North American coal blends were burned using a 0.7-megawatt thermal (MWt) pulverized coal-fired, pilot-scale boiler. Characteristic emission profiles, including PM2.5 and total PM soluble acids, and elemental and carbon concentrations for three coal blends are presented. Preliminary results indicate that volatile trace elements such as Pb, Zn, Ti, and Se are preferentially enriched in PM2.5. PM2.5 is also more concentrated in soluble sulfates relative to total PM. Coal fly ash collected at the outlet of the electrostatic precipitator (ESP) contains about 85-90% PM10 and 30-50% PM2.5. Particles contain the highest elemental concentrations of Si and Al while Ca, Fe, Na, Ba, and K also exist as major elements. Approximately 4-12% of the materials exists as soluble sulfates in fly ash generated by coal blends containing 0.2-0.8% sulfur by mass

  6. Modelling of single walled carbon nanotube cylindrical structures with finite element method simulations

    Science.gov (United States)

    Günay, E.

    2016-04-01

    In this study, the modulus of elasticity and shear modulus values of single-walled carbon nanotubes SWCNTs were modelled by using both finite element method and the Matlab code. Initially, cylindrical armchair and zigzag single walled 3D space frames were demonstrated as carbon nanostructures. Thereafter, macro programs were written by the Matlab code producing the space truss for zigzag and armchair models. 3D space frames were introduced to the ANSYS software and then tension, compression and additionally torsion tests were performed on zigzag and armchair carbon nanotubes with BEAM4 element in obtaining the exact values of elastic and shear modulus values. In this study, two different boundary conditions were tested and especially used in torsion loading. The equivalent shear modulus data was found by averaging the corresponding values obtained from ten different nodal points on the nanotube path. Finally, in this study it was determined that the elastic constant values showed proportional changes by increasing the carbon nanotube diameters up to a certain level but beyond this level these values remained stable.

  7. Modelling of single walled carbon nanotube cylindrical structures with finite element method simulations

    International Nuclear Information System (INIS)

    Günay, E.

    2016-01-01

    In this study, the modulus of elasticity and shear modulus values of single-walled carbon nanotubes SWCNTs were modelled by using both finite element method and the Matlab code. Initially, cylindrical armchair and zigzag single walled 3D space frames were demonstrated as carbon nanostructures. Thereafter, macro programs were written by the Matlab code producing the space truss for zigzag and armchair models. 3D space frames were introduced to the ANSYS software and then tension, compression and additionally torsion tests were performed on zigzag and armchair carbon nanotubes with BEAM4 element in obtaining the exact values of elastic and shear modulus values. In this study, two different boundary conditions were tested and especially used in torsion loading. The equivalent shear modulus data was found by averaging the corresponding values obtained from ten different nodal points on the nanotube path. Finally, in this study it was determined that the elastic constant values showed proportional changes by increasing the carbon nanotube diameters up to a certain level but beyond this level these values remained stable.

  8. Modelling of single walled carbon nanotube cylindrical structures with finite element method simulations

    Energy Technology Data Exchange (ETDEWEB)

    Günay, E. [Gazi University, Mechanical Engineering Department, 06570, Ankara (Turkey)

    2016-04-21

    In this study, the modulus of elasticity and shear modulus values of single-walled carbon nanotubes SWCNTs were modelled by using both finite element method and the Matlab code. Initially, cylindrical armchair and zigzag single walled 3D space frames were demonstrated as carbon nanostructures. Thereafter, macro programs were written by the Matlab code producing the space truss for zigzag and armchair models. 3D space frames were introduced to the ANSYS software and then tension, compression and additionally torsion tests were performed on zigzag and armchair carbon nanotubes with BEAM4 element in obtaining the exact values of elastic and shear modulus values. In this study, two different boundary conditions were tested and especially used in torsion loading. The equivalent shear modulus data was found by averaging the corresponding values obtained from ten different nodal points on the nanotube path. Finally, in this study it was determined that the elastic constant values showed proportional changes by increasing the carbon nanotube diameters up to a certain level but beyond this level these values remained stable.

  9. Assessment of occupational exposure and contamination by means of airborne particulate matter and biomonitors using k0 instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Menezes, M.A. de B.C.; Pereira Maia, E.C.; Filho, S.S.; Albinati, C.

    2002-01-01

    In order to assess the elemental concentration level in a galvanizing industry and alert for the need to assess the outcome of a long-term exposure, scalp hair and toenail samples were used as bioindicators and the industry environment was evaluated through airborne particulate matter. The elemental concentration results have pointed out a high exposure to pollutant at workplaces and a high elemental concentration in biomonitors suggesting endogenous contamination. The majority of the elements determined in airborne particulate matter were also determined in hair and toenail samples. The results evidence the efficiency of these matrixes as biomonitors and the importance to carry out the airborne particulate matter sampling in parallel to these biomonitors mainly in occupational epidemiological studies. (author)

  10. Composition and comparative toxicity of particulate matter emitted from a diesel and biodiesel fuelled CRDI engine

    Science.gov (United States)

    Gangwar, Jitendra N.; Gupta, Tarun; Agarwal, Avinash K.

    2012-01-01

    There is a global concern about adverse health effects of particulate matter (PM) originating from diesel engine exhaust. In the current study, parametric investigations were carried out using a CRDI (Common Rail Direct Injection) diesel engine operated at different loads at two different engine speeds (1800 and 2400 rpm), employing diesel and 20% biodiesel blends (B20) produced from Karanja oil. A partial flow dilution tunnel was employed to collect and measure the mass of the primary particulates from diesel and biodiesel blend collected on a 47 mm quartz substrate. The collected PM (particulate matter) was subjected to chemical analyses in order to assess the amount of Benzene Soluble Organic Fraction (BSOF) and trace metals using Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES). For both diesel and biodiesel, BSOF results showed decreasing levels with increasing engine load. B20 showed higher BSOF as compared to those measured with diesel. The concentration of different trace metals analyzed also showed decreasing trends with increasing engine loads. In addition, real-time measurements for Organic Carbon (OC), Elemental Carbon (EC) and total particle-bound Polycyclic Aromatic Hydrocarbons (PAHs) were carried out on the primary engine exhaust coming out of the partial flow dilution tunnel. Analysis of OC/EC data suggested that the ratio of OC to EC decreases with corresponding increase in engine load for both fuels. A peak in PAH concentration was observed at 60% engine load at 1800 rpm and 20% engine load at 2400 rpm engine speeds almost identical for both kinds of fuels. Comparison of chemical components of PM emitted from this CRDI engine provides new insight in terms of PM toxicity for B20 vis-a-vis diesel.

  11. Continuous and semicontinuous monitoring techniques for particulate matter mass and chemical components: a synthesis of findings from EPA's Particulate Matter Supersites Program and related studies.

    Science.gov (United States)

    Solomon, Paul A; Sioutas, Constantinos

    2008-02-01

    The U.S. Environmental Protection Agency (EPA) established the Particulate Matter (PM) Supersites Program to provide key stakeholders (government and private sector) with significantly improved information needed to develop effective and efficient strategies for reducing PM on urban and regional scales. All Supersites projects developed and evaluated methods and instruments, and significant advances have been made and applied within these programs to yield new insights to our understanding of PM accumulation in air as well as improved source-receptor relationships. The tested methods include a variety of continuous and semicontinuous instruments typically with a time resolution of an hour or less. These methods often overcome many of the limitations associated with measuring atmospheric PM mass concentrations by daily filter-based methods (e.g., potential positive or negative sampling artifacts). Semicontinuous coarse and ultrafine mass measurement methods also were developed and evaluated. Other semicontinuous monitors tested measured the major components of PM such as nitrate, sulfate, ammonium, organic and elemental carbon, trace elements, and water content of the aerosol as well as methods for other physical properties of PM, such as number concentration, size distribution, and particle density. Particle mass spectrometers, although unlikely to be used in national routine monitoring networks in the foreseeable future because of their complex technical requirements and cost, are mentioned here because of the wealth of new information they provide on the size-resolved chemical composition of atmospheric particles on a near continuous basis. Particle mass spectrometers likely represent the greatest advancement in PM measurement technology during the last decade. The improvements in time resolution achieved by the reported semicontinuous methods have proven to be especially useful in characterizing ambient PM, and are becoming essential in allowing scientists to

  12. Chemical characterization of urban air particulate matter of Kuala Lumpur 2002-2004

    International Nuclear Information System (INIS)

    Wee Boon Siong; Ab. Khalik Bin Haji Wood

    2006-01-01

    Urban air particulate samples of Kuala Lumpur ambient air have been collected characterize according to fine and coarse airborne particulates. The air filters containing particulate matter were collected using GENT stack filter unit fitted with appropriate polycarbonate filters. The sampling location site (Lat: 03deg 10'30''; Long: 101deg 43'24.2'') is approximately 1 km from the Kuala Lumpur city center. All the sampling conducted from January 2002 until October 2004 was included in the analysis and results were reported. The mass loading for finest air particulate matter (PM 2.5) in Kuala Lumpur are 199±55 μg (2002), 171±53 μg (2003), and 171±61 μg (2004), respectively. The mass loading for coarse air particulate matter (PM 10) in Kuala Lumpur were 125±29 μg (2002), 134±48 μg (2003), and 137 ± 57 μg (2004), respectively. The elemental concentration of the air filters were determined using INAA technique utilizing both short and long irradiation facilities at MINT's TRIGA MKII reactor. Upon irradiation the air filters were counted at suitable counting time using HPGe gamma-ray detectors. The elements reported for this monitoring are Al, As, Br, Co, Cr, K, Lu, Mn, Na, Sb, Sc, Ti, V, and Zn. Certified reference materials were also included in the sample analysis function as quality control materials. (author)

  13. Organic carbon, and major and trace element dynamic and fate in a large river subjected to poorly-regulated urban and industrial pressures (Sebou River, Morocco)

    Energy Technology Data Exchange (ETDEWEB)

    Hayzoun, H. [Université de Toulon, PROTEE, EA 3819, 83957 La Garde (France); LIMOM, Faculté des Sciences Dhar El Mehraz, Université Sidi Mohamed Ben Abdellah, Dhar El Mehraz B.P. 1796 Atlas, Fès 30000 (Morocco); Garnier, C., E-mail: cgarnier@univ-tln.fr [Université de Toulon, PROTEE, EA 3819, 83957 La Garde (France); Durrieu, G.; Lenoble, V.; Le Poupon, C. [Université de Toulon, PROTEE, EA 3819, 83957 La Garde (France); Angeletti, B. [Centre Européen de Recherche et d' Enseignement de Géosciences de l' Environnement UMR 6635 CNRS — Aix-Marseille Université, FR ECCOREV, Europôle Méditerranéen de l' Arbois, 13545 Aix-en-Provence (France); Ouammou, A. [LIMOM, Faculté des Sciences Dhar El Mehraz, Université Sidi Mohamed Ben Abdellah, Dhar El Mehraz B.P. 1796 Atlas, Fès 30000 (Morocco); Mounier, S. [Université de Toulon, PROTEE, EA 3819, 83957 La Garde (France)

    2015-01-01

    An annual-basis study of the impacts of the anthropogenic inputs from Fez urban area on the water geochemistry of the Sebou and Fez Rivers was conducted mostly focusing on base flow conditions, in addition to the sampling of industrial wastewater characteristic of the various pressures in the studied environment. The measured trace metals dissolved/particulate partitioning was compared to the ones predicted using the WHAM-VII chemical speciation code. The Sebou River, upstream from Fez city, showed a weakly polluted status. Contrarily, high levels of major ions, organic carbon and trace metals were encountered in the Fez River and the Sebou River downstream the Fez inputs, due to the discharge of urban and industrial untreated and hugely polluted wastewaters. Trace metals were especially enriched in particles with levels even exceeding those recorded in surface sediments. The first group of elements (Al, Fe, Mn, Ti, U and V) showed strong inter-relationships, impoverishment in Fez particles/sediments and stable partition coefficient (Kd), linked to their lithogenic origin from Sebou watershed erosion. Conversely, most of the studied trace metals/metalloids, originated from anthropogenic sources, underwent significant changes of Kd and behaved non-conservatively in the Sebou/Fez water mixing. Dissolved/particulate partitioning was correctly assessed by WHAM-VII modeling for Cu, Pb and Zn, depicting significant differences in chemical speciation in the Fez River when compared to that in the Sebou River. The results of this study demonstrated that a lack of compliance in environmental regulations certainly explained this poor status. - Highlights: • Pristine status of the Sebou River, Morrocco's main river, upstream Fez (1 M inhabitants) • The Fez River collecting Fez's urban/industrial wastewaters is heavily polluted. • The Fez discharge into the Sebou induces an increase of contaminant levels. • Change in partitioning and chemical speciation of

  14. Organic carbon, and major and trace element dynamic and fate in a large river subjected to poorly-regulated urban and industrial pressures (Sebou River, Morocco)

    International Nuclear Information System (INIS)

    Hayzoun, H.; Garnier, C.; Durrieu, G.; Lenoble, V.; Le Poupon, C.; Angeletti, B.; Ouammou, A.; Mounier, S.

    2015-01-01

    An annual-basis study of the impacts of the anthropogenic inputs from Fez urban area on the water geochemistry of the Sebou and Fez Rivers was conducted mostly focusing on base flow conditions, in addition to the sampling of industrial wastewater characteristic of the various pressures in the studied environment. The measured trace metals dissolved/particulate partitioning was compared to the ones predicted using the WHAM-VII chemical speciation code. The Sebou River, upstream from Fez city, showed a weakly polluted status. Contrarily, high levels of major ions, organic carbon and trace metals were encountered in the Fez River and the Sebou River downstream the Fez inputs, due to the discharge of urban and industrial untreated and hugely polluted wastewaters. Trace metals were especially enriched in particles with levels even exceeding those recorded in surface sediments. The first group of elements (Al, Fe, Mn, Ti, U and V) showed strong inter-relationships, impoverishment in Fez particles/sediments and stable partition coefficient (Kd), linked to their lithogenic origin from Sebou watershed erosion. Conversely, most of the studied trace metals/metalloids, originated from anthropogenic sources, underwent significant changes of Kd and behaved non-conservatively in the Sebou/Fez water mixing. Dissolved/particulate partitioning was correctly assessed by WHAM-VII modeling for Cu, Pb and Zn, depicting significant differences in chemical speciation in the Fez River when compared to that in the Sebou River. The results of this study demonstrated that a lack of compliance in environmental regulations certainly explained this poor status. - Highlights: • Pristine status of the Sebou River, Morrocco's main river, upstream Fez (1 M inhabitants) • The Fez River collecting Fez's urban/industrial wastewaters is heavily polluted. • The Fez discharge into the Sebou induces an increase of contaminant levels. • Change in partitioning and chemical speciation of

  15. Physicochemical and toxicological characteristics of particulate matter emitted from a non-road diesel engine: comparative evaluation of biodiesel-diesel and butanol-diesel blends.

    Science.gov (United States)

    Zhang, Zhi-Hui; Balasubramanian, Rajasekhar

    2014-01-15

    Combustion experiments were conducted to evaluate the effects of using blends of ultralow sulfur diesel (ULSD) with biodiesel or n-butanol on physicochemical and toxicological characteristics of particulate emissions from a non-road diesel engine. The results indicated that compared to ULSD, both the blended fuels could effectively reduce the particulate mass and elemental carbon emissions, with butanol being more effective than biodiesel. The proportion of organic carbon and volatile organic compounds in particles increased for both blended fuels. However, biodiesel blended fuels showed lower total particle-phase polycyclic aromatic hydrocarbons (PAHs) emissions. The total number emissions of particles ≤560nm in diameter decreased gradually for the butanol blended fuels, but increased significantly for the biodiesel blended fuels. Both the blended fuels indicated lower soot ignition temperature and activation energy. All the particle extracts showed a decline in cell viability with the increased dose. However, the change in cell viability among test fuels is not statistically significant different with the exception of DB-4 (biodiesel-diesel blend containing 4% oxygen) used at 75% engine load. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Advanced Hybrid Particulate Collector Project Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.J.

    1995-11-01

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the best method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting

  17. Nickel and vanadium in air particulates at Dhahran (Saudi Arabia) during and after the Kuwait oil fires

    Science.gov (United States)

    Sadiq, M.; Mian, A. A.

    Air particulates, both the total suspended (TSP) and inhalable (PM 10, smaller than 10 microns in size), were collected during and after the Kuwait oil fires (from March 1991 to July 1992) using Hi-Vol samplers. These samples were wet-digested at 120°C in an aqua regia and perchloric acids mixture for 3 h. Air particulate samples collected in 1982 at the same location were prepared similarly. Concentrations of nickel and vanadium were determined in the aliquot samples using an inductively coupled argon plasma analyser (ICAP). The monthly mean concentrations of nickel and vanadium, on volume basis, increased rapidly from March to June and decreased sharply during July-August in 1991. The minimum mean concentrations of these elements were found in the particulate samples collected in December 1991 which gradually increased through May 1992. Like 1991, nickel and vanadium concentrations in the air particulates spiked in June and decreased again in July 1992. This distribution pattern of nickel and vanadium concentrations was similar to that of the predominant wind from the north (Kuwait). In general, concentrations of these elements were higher in the air particulates collected during April-July 1991 as compared with those collected in 1992 during the same period. The TSPs contained higher concentrations of nickel and vanadium than those found in the PM 10 samples. However, this trend was reversed when concentrations of nickel and vanadium, on were expressed on particulate weight basis. The monthly mean concentrations of nickel and vanadium, on weight basis, decreased gradually through 1991 and increased slightly from March to July 1992. Concentrations of these elements were significantly higher in the air particulate samples collected in 1991 than those samples collected during 1982 at the same location. The data of this study suggest a contribution of the Kuwait oil fires in elevating nickel and vanadium concentrations in the air particulates at Dhahran during

  18. The identification of metallic elements in airborne particulate matter derived from fossil fuels at Puertollano, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Teresa; Alastuey, Andres; Querol, Xavier; Font, Oriol [Institute of Earth Sciences ' ' Jaume Almera' ' , CSIC, C/Lluis Sole i Sabaris s/n, Barcelona 08028 (Spain); Gibbons, Wes [AP 23075, Barcelona 08080 (Spain)

    2007-07-02

    Puertollano is the largest industrial centre in central Spain, and includes fossil fuel burning power plants as well as petrochemical and fertilizer complexes. The coal-fired power plants use locally mined coal from extensive coal deposits which continue to be exploited and used locally. The coal deposits have a distinctive geochemistry, being particularly enriched in Sb and Pb, as well as several other metals/metalloids that include Zn and As. ICP-AES and ICP-MS chemical analysis of particulate matter samples (both PM{sub 10} and PM{sub 2.5}) collected at Puertollano over a 57-week period in 2004-2005 reveals enhanced levels of several metallic trace elements, especially in the finer (PM{sub 2.5}) aerosol fraction. Factor analysis applied to the data indicates that at least some of these metallic elements are likely to originate from hydrocarbon combustion: Sb and Pb are markers linked to the local coals, whereas V and Ni are, at least in the finer (PM{sub 2.5}) fraction, likely associated with other anthropogenic sources. Other factors measured are related to natural sources such as crustal/mineral and sea spray particles. Our study provides an example of how chemical analysis of large numbers of ambient PM samples, combined with statistical factor analysis and coal geochemistry, can reveal airborne emissions from the combustion of specifically identifiable fuels. (author)

  19. Mass, black carbon and elemental composition of PM{sub 2.5} at an industrial site in Kingston, Jamaica

    Energy Technology Data Exchange (ETDEWEB)

    Boman, Johan, E-mail: johan.boman@chem.gu.se; Gaita, Samuel M.

    2015-11-15

    An estimated three million premature deaths yearly can be attributed to ambient particulate pollution, a majority of them in low and middle income countries. The rapid increase in the vehicle fleet in urban areas of the Caribbean countries have experienced contributes to the bad urban air quality. In this study aerosol particles with an aerodynamic diameter smaller than, or equal to, 2.5 μm (PM{sub 2.5}) were collected over 24 h at a site along Spanish Town Road, one of the main commuter roads in Kingston, Jamaica. The study was aimed at determining the mass, black carbon and elemental composition of PM{sub 2.5} in Kingston. Although lead in the gasoline was phased out in the year 2000, up to 5000 ppm of sulfur is still allowed in the diesel, leading to an extensive secondary particle formation. PM{sub 2.5} samples were collected using a Mini-vol sampler between 12 December 2013 and 21 March 2014 and analyzed for trace elements using the Particle-Induced X-ray Emission (PIXE) facility at Lund University, Sweden. Concentrations of Si, S, Cl, K, Ca, Ti, V, Cr, Fe, Ni, Cu, Zn, Br and Pb were determined. Elemental concentrations showed a high temporal variation and the average PM{sub 2.5} concentration (44 μg m{sup −3}) is higher than the air quality standards that apply in the European Union (25 μg m{sup −3}) and in the USA (12 μg m{sup −3}). From this we can conclude that the air quality in the area is severely influenced by PM{sub 2.5} pollution and that there is a need to develop plans for improving the air quality in Kingston city.

  20. Elemental composition of airborne particles in a Montevideo zone of Uruguay

    International Nuclear Information System (INIS)

    Odino, R.; Gabrielli, A.; Piuma, L.; Reina, E.; Suarez, R.

    2010-01-01

    Due to the impact on the population with air quality, it is important to identify and quantify the chemical elements present in the fractions of air particulate matter P M 10 and Pm 2.5. In the present study considers the effect of interference caused by ash from the volcano Puyehue in monitoring air particulate matter started in Nairobi in February 2011. We used a dichotomous Andersen sampler and polycarbonate filters exposed for 24 hours. We analyzed the elemental composition of the fractions P M 2.5 and P M 10 in approximately 100 nucleo pore membranes using fluorescence X-ray energy dispersive (EDXRF). Membranes were measured fraction P M 2.5 by reflectometry to estimate the concentration of Carbon Black. We analyzed the following elements: Al, Si, S, K, Ca, Ti, V, Mn, Fe, Ni, Cu, Zn, As, Sr, Ba, Pb. On the results obtained are applied principal component analysis (Pca) using SPSS statistical tool. It was observed that the V and S are associated mainly to the P M 2.5 and the average values ??of Pb and particulate matter P M 2.5 and P M 10 are below the levels recommended by EPA prior to the event associated with the eruption of volcano. Emission sources were identified that correspond to land, traffic, power plant and oil refinery. An increase of Si, Ca, Al, Fe and Sr in the P M 10 in the days when it was reported in Montevideo presence of ash caused by the volcano. Also sedimented dust collected was analyzed by EDXRF. The results of elemental chemical analysis carried out in the dust settled show a good correlation with the results of analysis performed on the filters in the days when we observed the incident. Sedimented dust was analyzed by High Resolution Gamma Spectrometry. They detected the presence of 7Be caused by the interaction of dust with cosmic ray protons. [es

  1. Ion beam analyses of particulate matter in exhaust gas of a ship diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Furuyama, Yuichi, E-mail: furuyama@maritime.kobe-u.ac.jp [Graduate School of Maritime Sciences, Kobe University, Fukae-Minami-Machi, Higashinada-Ku, Kobe 658-0022 (Japan); Fujita, Hirotsugu; Taniike, Akira; Kitamura, Akira [Graduate School of Maritime Sciences, Kobe University, Fukae-Minami-Machi, Higashinada-Ku, Kobe 658-0022 (Japan)

    2011-12-15

    There is an urgent need to reduce emission of the particulate matter (PM) in the exhaust gas from ship diesel engines causing various health hazards and serious environmental pollution. Usually the heavy fuel oil (HFO) for ships is of low quality, and contains various kinds of impurities. Therefore, the emission of PM along with exhaust gas from ship diesel engines is one of the most serious environmental issues. However, the PM fundamental properties are not well known. Therefore, it is important to perform elemental analysis of the PM. The HFO contains sulfur with a relatively high concentration of a few percent. It is important to make quantitative measurements of sulfur in the PM, because this element is poisonous for the human body. In the present work, PM samples were collected from exhaust gas of a test engine, and RBS and PIXE analyses were applied successfully to quantitative analysis of the PM samples. The RBS analysis enabled quantitative analysis of sulfur and carbon in the collected PM, while heavier elements such as vanadium and iron were analyzed quantitatively with the PIXE analysis. It has been found that the concentration ratio of sulfur to carbon was between 0.007 and 0.012, and did not strongly depend on the output power of the engine. The S/C ratio is approximately equal to the original composition of the HFO used in the present work, 0.01. From the known conversion ratio 0.015 of sulfur in the HFO to sulfates, the conversion ratio of carbon in the HFO to the PM is found to be 0.01-0.02 by the RBS measurements. On the other hand, the PIXE analysis revealed a vanadium enrichment of one order of magnitude in the PM.

  2. Peculiarities of extraction of carbonate complexes of trivalent transplutonium elements by alkylpyrocatechins

    International Nuclear Information System (INIS)

    Karalova, Z.K.; Bukina, T.I.; Myasoedov, B.F.; Fedorov, L.A.; Sokolovskij, S.A.

    1987-01-01

    Extraction of trivalent americium, curium, californium and europium by technical mixture of mono- and didecylpyrocatechin (TAP) in various diluents from carbonate solutions is investigated. Effect of many factors (pH, K 2 CO 3 concentration, TAP, metal; the time of phase contact) on the completeness of element isolation and separation is clarified. It is ascertained that the elements listed are quantitatively extracted by TAP solution in toluene and cyclohexane in the range of K 2 CO 3 concentrations from 0.25 to 1.5 mol/l. The difference in americium and curium distribution coefficient during their extraction by TAP from 0.25 mol/l of K 2 CO 3 solution is detected. Separation coefficients of the pair increase with the increase of carbonate solution pH. The separation can be improved at the stage of element reextraction by the mixture of K 2 CO 3 and DTPA or EDTA from alkylpyrocatechin, sunce rate constants of americium and curium reextraction differ greatly. Using 13 C NMR the composition of compounds in organic phase on the basis of 4-(α, α-dioctylethyl)pyrocatechin is investigated

  3. Spatial and temporal distribution of metals in suspended particulate matter of the Kali estuary, India

    Science.gov (United States)

    Suja, S.; Kessarkar, Pratima M.; Fernandes, Lina L.; Kurian, Siby; Tomer, Arti

    2017-09-01

    Major (Al, Fe, Mn, Ti, Mg) and trace (Cu, Zn, Pb, Cr, Ni, Co, Zr, Rb, Sr, Ba, Li, Be, Sc, V, Ga, Nb, Mo, Sn, Sb, Cs, Hf, Ta, Bi, Th, U) elements and particulate organic carbon (POC) concentrations in surface suspended particulate matter (SPM) of the Kali estuary, (central west coast of India) were studied during the pre-monsoon, monsoon and post monsoon seasons to infer estuarine processes, source of SPM and Geoaccumulation Index (Igeo) assigned pollutionIgeo levels. Distribution of SPM indicates the presence of the estuarine turbidity maximum (ETM) during all three seasons near the river mouth and a second ETM during the post monsoon time in the upstream associated with salinities gradient. The SPM during the monsoon is finer grained (avg. 53 μm), characterized by uniformly low normalized elemental concentration, whereas the post and pre monsoon are characterized by high normalized elemental concentration with coarser grain size (avg. 202 μm and 173 μm respectively) with highest ratios in the upstream estuary. The elemental composition and principal component analysis for the upstream estuary SPM support more contribution from the upstream catchment area rocks during the monsoon season; there is additional contribution from the downstream catchment area during the pre and post monsoon period due to the tidal effect. The Kali estuarine SPM has higher Al, Fe, Mn, Ti, Mg, Ni, Co, Ba, Li and V with respect to Average World River SPM (WRSPM). Igeo values for the SPM indicate Kali Estuary to be severely enriched with Mn and moderately enriched with Cu, Zn, Ni, Co, U and Mo in the upstream estuary during pre and post monsoon seasons. Seasonal changes in salinity gradient (reduced freshwater flow due to closing of the dam gates), reduced velocity at meandering region of the estuary and POC of 1.6-2.3% resulted in co-precipitation of trace elements that were further fortified by flocculation and coagulation throughout the water column resulting in metal trapping in the

  4. Residual β activity of particulate 234Th as a novel proxy for tracking sediment resuspension in the ocean

    Science.gov (United States)

    Lin, Wuhui; Chen, Liqi; Zeng, Shi; Li, Tao; Wang, Yinghui; Yu, Kefu

    2016-01-01

    Sediment resuspension occurs in the global ocean, which greatly affects material exchange between the sediment and the overlying seawater. The behaviours of carbon, nutrients, heavy metals, and other pollutants at the sediment-seawater boundary will further link to climate change, eutrophication, and marine pollution. Residual β activity of particulate 234Th (RAP234) is used as a novel proxy to track sediment resuspension in different marine environments, including the western Arctic Ocean, the South China Sea, and the Southern Ocean. Sediment resuspension identified by high activity of RAP234 is supported by different lines of evidence including seawater turbidity, residence time of total 234Th, Goldschmidt’s classification, and ratio of RAP234 to particulate organic carbon. A conceptual model is proposed to elucidate the mechanism for RAP234 with dominant contributions from 234Th-238U and 212Bi-228Th. The ‘slope assumption’ for RAP234 indicated increasing intensity of sediment resuspension from spring to autumn under the influence of the East Asian monsoon system. RAP234 can shed new light on 234Th-based particle dynamics and should benefit the interpretation of historical 234Th-238U database. RAP234 resembles lithophile elements and has broad implications for investigating particle dynamics in the estuary-shelf-slope-ocean continuum and linkage of the atmosphere-ocean-sediment system. PMID:27252085

  5. Residual β activity of particulate (234)Th as a novel proxy for tracking sediment resuspension in the ocean.

    Science.gov (United States)

    Lin, Wuhui; Chen, Liqi; Zeng, Shi; Li, Tao; Wang, Yinghui; Yu, Kefu

    2016-06-02

    Sediment resuspension occurs in the global ocean, which greatly affects material exchange between the sediment and the overlying seawater. The behaviours of carbon, nutrients, heavy metals, and other pollutants at the sediment-seawater boundary will further link to climate change, eutrophication, and marine pollution. Residual β activity of particulate (234)Th (RAP234) is used as a novel proxy to track sediment resuspension in different marine environments, including the western Arctic Ocean, the South China Sea, and the Southern Ocean. Sediment resuspension identified by high activity of RAP234 is supported by different lines of evidence including seawater turbidity, residence time of total (234)Th, Goldschmidt's classification, and ratio of RAP234 to particulate organic carbon. A conceptual model is proposed to elucidate the mechanism for RAP234 with dominant contributions from (234)Th-(238)U and (212)Bi-(228)Th. The 'slope assumption' for RAP234 indicated increasing intensity of sediment resuspension from spring to autumn under the influence of the East Asian monsoon system. RAP234 can shed new light on (234)Th-based particle dynamics and should benefit the interpretation of historical (234)Th-(238)U database. RAP234 resembles lithophile elements and has broad implications for investigating particle dynamics in the estuary-shelf-slope-ocean continuum and linkage of the atmosphere-ocean-sediment system.

  6. Characterization of Fine Particulate Matter in Sharjah, United Arab Emirates Using Complementary Experimental Techniques

    Directory of Open Access Journals (Sweden)

    Nasser M. Hamdan

    2018-04-01

    Full Text Available Airborne particulate matter (PM pollutants were sampled from an urban background site in Sharjah, United Arab Emirates. The fine fraction (PM2.5 (particulates with aerodynamic diameters of less than 2.5 μm was collected on 47-mm Teflon filters and analyzed using a combined set of non-destructive techniques in order to provide better understanding of the sources of pollutants and their interaction during transport in the atmosphere. These techniques included gravimetric analysis, equivalent black carbon (EBC, X-ray fluorescence, scanning electron microscopy, and X-ray diffraction. Generally, the PM2.5 concentrations are within the limits set by the World Health Organization (WHO and the United States (US Environmental Protection Agency. The EBC content is in the range of 10–12% of the total PM concentration (2–4 µg m−3, while S (as ammonium sulfate, Ca (as calcite, gypsum, and calcium carbonate, Si (as quartz, Fe, and Al were the major sources of PM pollution. EBC, ammonium sulfate, Zn, V, and Mn originate from anthropogenic sources such as fossil fuel burning, traffic, and industrial emissions. Natural elements such as Ca, Fe, Al, Si, and Ti are due to natural sources such as crustal materials (enhanced during dust episodes and sea salts. The average contribution of natural sources in the total PM2.5 mass concentration over the sampling period is about 40%, and the contribution of the secondary inorganic compounds is about 27% (mainly ammonium sulfate in our case. The remaining 22% is assumed to be secondary organic compounds.

  7. Nonvolatile Memory Elements Based on the Intercalation of Organic Molecules Inside Carbon Nanotubes

    Science.gov (United States)

    Meunier, Vincent; Kalinin, Sergei V.; Sumpter, Bobby G.

    2007-02-01

    We propose a novel class of nonvolatile memory elements based on the modification of the transport properties of a conducting carbon nanotube by the presence of an encapsulated molecule. The guest molecule has two stable orientational positions relative to the nanotube that correspond to conducting and nonconducting states. The mechanism, governed by a local gating effect of the molecule on the electronic properties of the nanotube host, is studied using density functional theory. The mechanisms of reversible reading and writing of information are illustrated with a F4TCNQ molecule encapsulated inside a metallic carbon nanotube. Our results suggest that this new type of nonvolatile memory element is robust, fatigue-free, and can operate at room temperature.

  8. Kinetic Model Development for the Combustion of Particulate Matter from Conventional and Soy Methyl Ester Diesel Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Strzelec, Andrea [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2009-12-01

    The primary objective of this research has been to investigate how the oxidation characteristics of diesel particulate matter (PM) are affected by blending soy-based biodiesel fuel with conventional ultra low sulfur diesel (ULSD) fuel. PM produced in a light duty engine from different biodiesel-conventional fuel blends was subjected to a range of physical and chemical measurements in order to better understand the mechanisms by which fuel-related changes to oxidation reactivity are brought about. These observations were then incorporated into a kinetic model to predict PM oxidation. Nanostructure of the fixed carbon was investigated by HR-TEM and showed that particulates from biodiesel had a more open structure than particulates generated from conventional diesel fuel, which was confirmed by BET surface area measurements. Surface area evolution with extent of oxidation reaction was measured for PM from ULSD and biodiesel. Biodiesel particulate has a significantly larger surface area for the first 40% of conversion, at which point the samples become quite similar. Oxidation characteristics of nascent PM and the fixed carbon portion were measured by temperature programmed oxidation (TPO) and it was noted that increased biodiesel blending lowered the light-off temperature as well as the temperature where the peak rate of oxidation occurred. A shift in the oxidation profiles of all fuels was seen when the mobile carbon fraction was removed, leaving only the fixed carbon, however the trend in temperature advantage of the biofuel blending remained. The mobile carbon fraction was measured by temperature programmed desorption found to generally increase with increasing biodiesel blend level. The relative change in the light-off temperatures for the nascent and fixed carbon samples was found to be related to the fraction of mobile carbon. Effective Arrhenius parameters for fixed carbon oxidation were directly measured with isothermal, differential oxidation experiments

  9. Element fractionation by sequential extraction in a soil with high carbonate content

    International Nuclear Information System (INIS)

    Sulkowski, Margareta; Hirner, Alfred V.

    2006-01-01

    The influence of carbonate and other buffering substances in soils on the results of a 3-step sequential extraction procedure (BCR) used for metal fractionation was investigated. Deviating from the original extraction scheme, where the extracts are analysed only for a limited number of metals, almost all elements in the soils were quantified by X-ray fluorescence spectroscopy, in the initial samples as well as in the residues of all extraction steps. Additionally, the mineral contents were determined by X-ray diffractometry. Using this methodology, it was possible to correlate changes in soil composition caused by the extraction procedure with the release of elements. Furthermore, the pH values of all extracts were monitored, and certain extraction steps were repeated until no significant pH-rise occurred. A soil with high dolomite content (27%) and a carbonate free soil were extracted. Applying the original BCR-sequence to the calcareous soil, carbonate was found in the residues of the first two steps and extract pH-values rose by around two units in the first and second step, caused mainly by carbonate dissolution. This led to wrong assignment of the carbonate elements Ca, Mg, Sr, Ba, and also to decreased desorption and increased re-adsorption of ions in those steps. After repetition of the acetic acid step until extract pH remained low, the carbonate was completely destroyed and the distributions of the elements Ca, Mg, Sr, Ba as well as those of Co, Ni, Cu, Zn and Pb were found to be quite different to those determined in the original extraction. Furthermore, it could be shown that the effectiveness of the reduction process in step two was reduced by increasing pH: Fe oxides were not significantly attacked by the repeated acetic acid treatments, but a 10-fold amount of Fe was mobilized by hydroxylamine hydrochloride after complete carbonate destruction. On the other hand, only small amounts of Fe were released anyway. Even repeated reduction steps did not

  10. Barium in Twilight Zone suspended matter as a potential proxy for particulate organic carbon remineralization: Results for the North Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Dehairs, F.; Jacquet, S.; Savoye, N.; Van Mooy, B.A.S.; Buesseler, K.; Bishop, J.K.B.; Lamborg, C.H.; Elskens, M.; Baeyens, W.; Boyd, P.W.; Casciotti, K.L.; Monnin, C.

    2008-04-10

    This study focuses on the fate of exported organic carbon in the twilight zone at two contrasting environments in the North Pacific: the oligotrophic ALOHA site (22 degrees 45 minutes N 158 degrees W; Hawaii; studied during June-July 2004) and the mesotrophic Subarctic Pacific K2 site (47 degrees N, 161 degrees W; studied during July-August 2005). Earlier work has shown that non-lithogenic, excess particulate Ba (Ba{sub xs}) in the mesopelagic water column is a potential proxy of organic carbon remineralization. In general Ba{sub xs} contents were significantly larger at K2 than at ALOHA. At ALOHA the Ba{sub xs} profiles from repeated sampling (5 casts) showed remarkable consistency over a period of three weeks, suggesting that the system was close to being at steady state. In contrast, more variability was observed at K2 (6 casts sampled) reflecting the more dynamic physical and biological conditions prevailing in this environment. While for both sites Ba{sub xs} concentrations increased with depth, at K2 a clear maximum was present between the base of the mixed layer at around 50m and 500m, reflecting production and release of Ba{sub xs}. Larger mesopelagic Ba{sub xs} contents and larger bacterial production in the twilight zone at the K2 site indicate that more material was exported from the upper mixed layer for bacterial degradation deeper, compared to the ALOHA site. Furthermore, application of a published transfer function (Dehairs et al., 1997) relating oxygen consumption to the observed Ba{sub xs} data indicated that the latter were in good agreement with bacterial respiration, calculated from bacterial production. These results corroborate earlier findings highlighting the potential of Ba{sub xs} as a proxy for organic carbon remineralization. The range of POC remineralization rates calculated from twilight zone excess particulate Ba contents did also compare well with the depth dependent POC flux decrease as recorded by neutrally buoyant sediment traps

  11. Processes and modeling of hydrolysis of particulate organic matter in aerobic wastewater tratment - A review

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; Kommedal, Roald; Harremoës, Poul

    2002-01-01

    Carbon cycling and the availability of organic carbon for nutrient removal processes are in most wastewater treatment systems restricted by the rate of hydrolysis of slowly biodegradable (particulate) organic matter. To date, the mechanisms of hydrolysis are not well understood for complex...

  12. Characteristic of ambient airborne and respirable particulate around a non formal industrial area

    International Nuclear Information System (INIS)

    Muhayatun Santoso; Diah Dwiana Lestiani; Mariana Marselina; Rita Mukhtar

    2016-01-01

    Characterization of airborne particulate matter and respirable particulate in Parung Panjang district especially on surrounding non formal used batteries industrial area has been carried out to follow up the previous results with respect to high concentrations of lead detected in Serpong area. Sampling of airborne particulate matter in Parung Panjang was conducted using Gent stacked filter unit sampler, while the respirable particulate matter samples collected using personal dust sampler in Parung Panjang as a non formal Industrial area and Sukarasa village as a control, during 2011-2012. The concentration of masses were determined gravimetrically, while for elemental concentrations by X-Ray based methods. The average of mass concentration of air ambient PM 2.5 and PM 10 in Parung Panjang were 27.3 ± 13.7 and 77.5 ± 17.1 μg.m -3 , respectively. While the average concentration of respirable particulate in non formal industrial and control areas were 260 ± 233 and 82 ± 38 μg.m -3 , respectively. The percentage of average Pb concentration in PM 2.5 and PM 2.5-10 were contribute up to 45 and 10 % of the mass concentration, respectively. The maximum percentage concentration of Pb in respirable particulate in industrial and control area were 12.11 and 0.27 %, respectively. These results showed that the Pb concentrations in respirable particulate in industrial area were significantly tens times higher than in the control area. The high concentration of Pb in Parung Panjang was the main key element came from the used lead battery industry and one of pollutant source that contributed to the Pb pollution in Serpong area. (author)

  13. Distribution of particulate trace metals in the western Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Satyanarayana, D.; Murty, P.V.S.P.; Sarma, V.V.

    continuous increase from surface to bottom in the case ofFe, Ni, which appeared to be related to a combination offactors suchas authigenicprecipita tion/scavenging, rcsuspension of bottom rich sediments, and diffusion followed by precipitation at sedimcnt... ), most of these studies do not provide information onthe interaction of trace elements with particulate matter. The present study deals with the distribution of particulate trace metals (Fe, Mn, Co, Ni, Cu, Pb, Zn and Cd) and their possible interactions...

  14. Spatially explicit modeling of particulate nutrient flux in Large global rivers

    Science.gov (United States)

    Cohen, S.; Kettner, A.; Mayorga, E.; Harrison, J. A.

    2017-12-01

    Water, sediment, nutrient and carbon fluxes along river networks have undergone considerable alterations in response to anthropogenic and climatic changes, with significant consequences to infrastructure, agriculture, water security, ecology and geomorphology worldwide. However, in a global setting, these changes in fluvial fluxes and their spatial and temporal characteristics are poorly constrained, due to the limited availability of continuous and long-term observations. We present results from a new global-scale particulate modeling framework (WBMsedNEWS) that combines the Global NEWS watershed nutrient export model with the spatially distributed WBMsed water and sediment model. We compare the model predictions against multiple observational datasets. The results indicate that the model is able to accurately predict particulate nutrient (Nitrogen, Phosphorus and Organic Carbon) fluxes on an annual time scale. Analysis of intra-basin nutrient dynamics and fluxes to global oceans is presented.

  15. Variability of particulate organic carbon in inland waters observed from MODIS Aqua imagery

    International Nuclear Information System (INIS)

    Duan, Hongtao; Ma, Ronghua; Zhang, Yuchao; Feng, Lian; Arthur Loiselle, Steven

    2014-01-01

    Surface concentrations of particulate organic carbon (POC) in shallow inland lakes were estimated using MODIS Aqua data. A power regression model of the direct empirical relationship between POC and the atmospherically Rayleigh-corrected MODIS product (R rc,645 -R rc,1240 )/(R rc,859 -R rc,1240 ) was developed (R 2  = 0.72, RMSE = 35.86 μgL −1 , p < 0.0001, N = 47) and validated (RMSE = 44.46 μgL −1 , N = 16) with field data from 56 lakes in the Middle and Lower reaches of the Yangtze River, China. This algorithm was applied to an 11 year series of MODIS data to determine the spatial and temporal distribution of POC in a wide range of lakes with different trophic and optical properties. The results indicate that there is a general increase in minimum POC concentrations in lakes from middle to lower reaches of the Yangtze River. The temporal dynamics of springtime POC in smaller lakes were found to be influenced by local meteorological conditions, in particular precipitation and wind speed, while larger lakes were found to be more sensitive to air temperature. (letter)

  16. Particulate and un burned carbon emissions reduction from oil fired boilers using combustion promoters

    Energy Technology Data Exchange (ETDEWEB)

    Balsiger, Andreas; Carvalho, Jose Guilherme de [ACOTEQ, Rio de Janeiro, RJ (Brazil)

    1993-12-31

    This paper describes the results obtained in the tests carried out with a combustion promoter on a 530 MW utility boiler, in order to reduce solid particle emissions in steady state and transient operations. Tests have been performed at Unit II of Bahia de Algeciras Power Station, owned by Sevillana de Electricidad. Sevillana de Electricidad activities include the production, transmission and distribution of electric power. The distribution area is 40000 square miles (aprox. 20% of peninsular Spains territory).Companys total capacity is 4400 MW, of which 1476 are fuel-oil fired. The demand for electricity in the market served by Sevillana has been 18345 GWh in 1989. Fuel-oil plants output was only 1,6% of total demand in accordance with Spanish energy policy guidelines. Along tests described in this paper, steady state emission, are expected to be reduced due to depletion of the un burned carbon content in particulates. Transient operation emissions should also be reduced if the boiler is kept clean to eliminating soot blowing requirements. (author) 9 refs., 6 figs., 5 tabs.

  17. Determination of stable isotope ratio of lead in airborne particulate matter by ICP-MS

    International Nuclear Information System (INIS)

    Mukai, Hitoshi; Ambe, Yoshinari

    1990-01-01

    ICP-MS was applied to the measurement of stable isotope ratios of lead, which are used as an indicator of the source of lead in airborne particulate matter. For the measurement of lead isotopes ratios, the influences of machine conditions, lead concentration and matrix elements to the precision and accuracy of the measurements were studied. At a scanning mode, dwell time of 40∼160 μs gave the best precision to the isotope ratio measurements; about 0.3 % of R.S.D. for 206 Pb/ 207 Pb and 206 Pb/ 208 Pb, 0.6 % for 206 Pb/ 204 Pb. Precision of the measurement was better at a high concentration of lead in sample solution. The observed value of 206 Pb/ 207 Pb ratio was not affected by the lead concentration, but in the cases of 206 Pb/ 204 Pb and 206 Pb/ 208 Pb, about 1 % of the value changed in the observed ratios with the lead concentration of 100∼500 μg/l. Six matrix elements (Na, K, Ca, Mg, Al, Fe) did not affect the observed isotope ratios up to 200 mg/l. The lead isotope ratios of reference materials {Urban Particulates (NIST) and Vehicle Exhausted Particulates (NIES)} were measured by using two kinds of sample; crude sample and lead-isolated sample from matrix elements by anodic deposition. Both cases gave the same isotope ratio values, therefore, lead isotope ratios in airborne particulate samples can be measured by ICP-MS without any separation of lead from matrix elements. (author)

  18. A Global Data Analysis for Representing Sediment and Particulate Organic Carbon Yield in Earth System Models

    Science.gov (United States)

    Tan, Zeli; Leung, L. Ruby; Li, Hongyi; Tesfa, Teklu; Vanmaercke, Matthias; Poesen, Jean; Zhang, Xuesong; Lu, Hui; Hartmann, Jens

    2017-12-01

    Although sediment yield (SY) from water erosion is ubiquitous and its environmental consequences are well recognized, its impacts on the global carbon cycle remain largely uncertain. This knowledge gap is partly due to the lack of soil erosion modeling in Earth System Models (ESMs), which are important tools used to understand the global carbon cycle and explore its changes. This study analyzed sediment and particulate organic carbon yield (CY) data from 1,081 and 38 small catchments (0.1-200 km2), respectively, in different environments across the globe. Using multiple statistical analysis techniques, we explored environmental factors and hydrological processes important for SY and CY modeling in ESMs. Our results show clear correlations of high SY with traditional agriculture, seismicity and heavy storms, as well as strong correlations between SY and annual peak runoff. These highlight the potential limitation of SY models that represent only interrill and rill erosion because shallow overland flow and rill flow have limited transport capacity due to their hydraulic geometry to produce high SY. Further, our results suggest that SY modeling in ESMs should be implemented at the event scale to produce the catastrophic mass transport during episodic events. Several environmental factors such as seismicity and land management that are often not considered in current catchment-scale SY models can be important in controlling global SY. Our analyses show that SY is likely the primary control on CY in small catchments and a statistically significant empirical relationship is established to calculate SY and CY jointly in ESMs.

  19. A Global Data Analysis for Representing Sediment and Particulate Organic Carbon Yield in Earth System Models

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Zeli [Pacific Northwest National Laboratory, Richland WA USA; Leung, L. Ruby [Pacific Northwest National Laboratory, Richland WA USA; Li, Hongyi [Montana State University, Bozeman MT USA; Tesfa, Teklu [Pacific Northwest National Laboratory, Richland WA USA; Vanmaercke, Matthias [Département de Géographie, Université de Liège, Liege Belgium; Poesen, Jean [Department of Earth and Environmental Sciences, Division of Geography, KU Leuven, Leuven Belgium; Zhang, Xuesong [Pacific Northwest National Laboratory, Richland WA USA; Lu, Hui [Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing China; Hartmann, Jens [Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, Hamburg Germany

    2017-12-01

    Although sediment yield (SY) from water erosion is ubiquitous and its environmental consequences are well recognized, its impacts on the global carbon cycle remain largely uncertain. This knowledge gap is partly due to the lack of soil erosion modeling in Earth System Models (ESMs), which are important tools used to understand the global carbon cycle and explore its changes. This study analyzed sediment and particulate organic carbon yield (CY) data from 1081 and 38 small catchments (0.1-200 km27 ), respectively, in different environments across the globe. Using multiple statistical analysis techniques, we explored environmental factors and hydrological processes important for SY and CY modeling in ESMs. Our results show clear correlations of high SY with traditional agriculture, seismicity and heavy storms, as well as strong correlations between SY and annual peak runoff. These highlight the potential limitation of SY models that represent only interrill and rill erosion because shallow overland flow and rill flow have limited transport capacity due to their hydraulic geometry to produce high SY. Further, our results suggest that SY modeling in ESMs should be implemented at the event scale to produce the catastrophic mass transport during episodic events. Several environmental factors such as seismicity and land management that are often not considered in current catchment-scale SY models can be important in controlling global SY. Our analyses show that SY is likely the primary control on CY in small catchments and a statistically significant empirical relationship is established to calculate SY and CY jointly in ESMs.

  20. Nitrogen and Carbon Leaching in Repacked Sandy Soil with Added Fine Particulate Biochar

    DEFF Research Database (Denmark)

    Bruun, Esben W.; Petersen, Carsten; Strobel, Bjarne W.

    2012-01-01

    Biochar amendment to soil may affect N turnover and retention, and may cause translocation of dissolved and particulate C. We investigated effects of three fine particulate biochars made of wheat (Triticum aestivum L.) straw (one by slow pyrolysis and two by fast pyrolysis) on N and C leaching from...... repacked sandy soil columns (length: 51 cm). Biochar (2 wt%), ammonium fertilizer (NH4+, amount corresponding to 300 kg N ha-1) and an inert tracer (bromide) were added to a 3-cm top layer of sandy loam, and the columns were then irrigated with constant rate (36 mm d-1) for 15 d. The total amount...... of leachate came to about 3.0 water filled pore volumes (WFPVs). Our study revealed a high mobility of labile C components originating from the fine particulate fast pyrolysis biochar. This finding highlights a potential risk of C leaching coupled with the use of fast pyrolysis biochars for soil amendment...

  1. Development of carbon/carbon composite control rod for HTTR. 1. Preparation of elements and their fracture tests

    International Nuclear Information System (INIS)

    Eto, Motokuni; Ishiyama, Shintaro; Ugachi, Hirokazu

    1996-08-01

    For the High Temperature Engineering Test Reactor(HTTR) the control rod sleeve is made of Alloy 800H for which a particular process is imposed when the reactor needs to be scrammed. The less restricted operation of the reactor would be attained if there would be the control rod more resistant to high temperature and neutron irradiation. This report summarizes the results which have been obtained as of March 1996 in the course of the development of the C/C composite control rod. Materials used were pitch- or PAN-based fiber-reinforced 2-dimensional carbon composites, from which preforms of the elements of a control rod were fabricated. The preforms were carbonized at 1000degC after being impregnated with pitch. Then they were graphitized at 3000degC, followed by a purification treatment with halogen. The elements included the pellet holder, lace truck and pin. The pin was fabricated by the fiber laminating technique. A control rod is to consist of pellet holders which are connected by the lace trucks with pins. Various strength tests were carried out on these elements. An irradiation of the elements made of PAN-based material was performed in JRR-3 at 900±50degC to a neutron fluence of 1x10 25 n/m 2 (E>29fJ). As for the strength tests on the elements, there were some differences between PAN- and pitch-based composites: In general, elements made of PAN-based composite showed the more plastic behavior before they fractured, whereas those of pitch-based material behaved in the more brittle manner. Fracture tests of the irradiated elements showed that fracture load and fracture displacement enough for assuring the integrity of the control rod structure were maintained even after the irradiation. It was also found that if the applied load was parallel to the fiber felt plane both fracture load and strain increased, whereas the load increase and strain decrease were observed for the applied load against the plane. (J.P.N.)

  2. Development of carbon/carbon composite control rod for HTTR. 1. Preparation of elements and their fracture tests

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Motokuni; Ishiyama, Shintaro; Ugachi, Hirokazu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-08-01

    For the High Temperature Engineering Test Reactor(HTTR) the control rod sleeve is made of Alloy 800H for which a particular process is imposed when the reactor needs to be scrammed. The less restricted operation of the reactor would be attained if there would be the control rod more resistant to high temperature and neutron irradiation. This report summarizes the results which have been obtained as of March 1996 in the course of the development of the C/C composite control rod. Materials used were pitch- or PAN-based fiber-reinforced 2-dimensional carbon composites, from which preforms of the elements of a control rod were fabricated. The preforms were carbonized at 1000degC after being impregnated with pitch. Then they were graphitized at 3000degC, followed by a purification treatment with halogen. The elements included the pellet holder, lace truck and pin. The pin was fabricated by the fiber laminating technique. A control rod is to consist of pellet holders which are connected by the lace trucks with pins. Various strength tests were carried out on these elements. An irradiation of the elements made of PAN-based material was performed in JRR-3 at 900{+-}50degC to a neutron fluence of 1x10{sup 25} n/m{sup 2} (E>29fJ). As for the strength tests on the elements, there were some differences between PAN- and pitch-based composites: In general, elements made of PAN-based composite showed the more plastic behavior before they fractured, whereas those of pitch-based material behaved in the more brittle manner. Fracture tests of the irradiated elements showed that fracture load and fracture displacement enough for assuring the integrity of the control rod structure were maintained even after the irradiation. It was also found that if the applied load was parallel to the fiber felt plane both fracture load and strain increased, whereas the load increase and strain decrease were observed for the applied load against the plane. (J.P.N.)

  3. Segregation of Elements in Continuous Cast Carbon Steel Billets Designated for Long Products

    Directory of Open Access Journals (Sweden)

    Hutny A. M.

    2016-12-01

    Full Text Available This article presents research results concerning designation of the scope of segregation of elements by analysing the ingot, designated for hot rolling of long products. The research tests were performed under industrial conditions, during continuous casting production cycle of high carbon steels. From cc ingots with square cross-section of 160 mm samples having the length of 400 mm were collected, out of which two samples were cut up, the so-called templates with the thickness of 20 mm. Segregation of elements was determined based on the quantitative analysis of results performed by using spark spectrometry pursuant to PN-H-04045. Changes in concentrations of elements were analysed along the line, which join the opposite sides of the sample in their half length and pass through the geometric centre of the square cross-section. In the further course of the research study, there was also determined the segregation along perpendicular line up to the surface connecting the core of the cross-section with lateral plane. Designations of element contents were performed at points distanced from each other by approx. 10 mm and situated on the lines. There was found segregation of carbon, sulphur and phosphorus.

  4. Biogeochemical characteristics of suspended particulate matter in deep chlorophyll maximum layers in the southern East China Sea

    Directory of Open Access Journals (Sweden)

    Q. Liu

    2018-04-01

    Full Text Available Continental shelves and marginal seas are key sites of particulate organic matter (POM production, remineralization and sequestration, playing an important role in the global carbon cycle. Elemental and stable isotopic compositions of organic carbon and nitrogen are thus frequently used to characterize and distinguish POM and its sources in suspended particles and surface sediments in the marginal seas. Here we investigated suspended particulate matter (SPM collected around deep chlorophyll maximum (DCM layers in the southern East China Sea for particulate organic carbon and nitrogen (POC and PN contents and their isotopic compositions (δ13CPOC and δ15NPN to understand provenance and dynamics of POM. Hydrographic parameters (temperature, salinity and turbidity indicated that the study area was weakly influenced by freshwater derived from the Yangtze River during summer 2013. Elemental and isotopic results showed a large variation in δ13CPOC (−25.8 to −18.2 ‰ and δ15NPN (3.8 to 8.0 ‰, but a narrow molar C ∕ N ratio (4.1–6.3 and low POC ∕ Chl a ratio ( <  200 g g−1 in POM, and indicated that the POM in DCM layers was newly produced by phytoplankton. In addition to temperature effects, the range and distribution of δ13CPOC were controlled by variations in primary productivity and phytoplankton species composition; the former explained  ∼  70 % of the variability in δ13CPOC. However, the variation in δ15NPN was controlled by the nutrient status and δ15NNO3− in seawater, as indicated by similar spatial distribution between δ15NPN and the current pattern and water masses in the East China Sea; although interpretations of δ15NPN data should be verified with the nutrient data in future studies. Furthermore, the POM investigated was weakly influenced by the terrestrial OM supplied by the Yangtze River during summer 2013 due to the reduced sediment supply by the Yangtze River and north

  5. Addition of granular activated carbon and trace elements to favor volatile fatty acid consumption during anaerobic digestion of food waste.

    Science.gov (United States)

    Capson-Tojo, Gabriel; Moscoviz, Roman; Ruiz, Diane; Santa-Catalina, Gaëlle; Trably, Eric; Rouez, Maxime; Crest, Marion; Steyer, Jean-Philippe; Bernet, Nicolas; Delgenès, Jean-Philippe; Escudié, Renaud

    2018-07-01

    The effect of supplementing granular activated carbon and trace elements on the anaerobic digestion performance of consecutive batch reactors treating food waste was investigated. The results from the first batch suggest that addition of activated carbon favored biomass acclimation, improving acetic acid consumption and enhancing methane production. Adding trace elements allowed a faster consumption of propionic acid. A second batch proved that a synergy existed when activated carbon and trace elements were supplemented simultaneously. The degradation kinetics of propionate oxidation were particularly improved, reducing significantly the batch duration and improving the average methane productivities. Addition of activated carbon favored the growth of archaea and syntrophic bacteria, suggesting that interactions between these microorganisms were enhanced. Interestingly, microbial analyses showed that hydrogenotrophic methanogens were predominant. This study shows for the first time that addition of granular activated carbon and trace elements may be a feasible solution to stabilize food waste anaerobic digestion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Effect of Particulates Generated from Asphalt Production on the ...

    African Journals Online (AJOL)

    PROF HORSFALL

    in air, including dust, soot, dirt, smoke and liquid droplets. Particulate matter is of localized importance near roads, cement works, and other industrial areas. Apart from screening out sunlight, dust on leaf blocks stomata and lowers their conductants to Carbon iv oxide (Jitin and Manish, 2014). Asphalt, which is also referred ...

  7. Trace metals concentration assessment in urban particulate matter ...

    African Journals Online (AJOL)

    This study was conducted to investigate the distribution and correlation of selected trace elements (Ca, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in Yenagoa, Bayelsa State and its environs. Air particulate matter was collected gravimetrically at five stations (using a high volume portable SKC air check MTXSidekickair sampler ...

  8. NICKEL SPECIATION OF URBAN PARTICULATE MATTER

    Energy Technology Data Exchange (ETDEWEB)

    Kevin C. Galbreath; Charlene R. Crocker; Carolyn M. Nyberg; Frank E. Huggins; Gerald P. Huffman

    2003-10-01

    A four-step sequential Ni extraction method, summarized in Table AB-1, was evaluated for identifying and quantifying the Ni species occurring in urban total suspended particulate (TSP) matter and fine particulate matter (<10 {micro}m [PM{sub 10}] and <2.5 {micro}m [PM{sub 2.5}] in aerodynamic diameter). The extraction method was originally developed for quantifying soluble, sulfidic, elemental, and oxidic forms of Ni that may occur in industrial atmospheres. X-ray diffraction (XRD) and x-ray absorption fine structure (XAFS) spectroscopy were used to evaluate the Ni species selectivity of the extraction method. Uncertainties in the chemical speciation of Ni in urban PM{sub 10} and PM{sub 2.5} greatly affect inhalation health risk estimates, primarily because of the large variability in acute, chronic, and cancer-causing effects for different Ni compounds.

  9. Laser assisted decontamination of nuclear fuel elements

    International Nuclear Information System (INIS)

    Padma Nilaya, J.; Biswas, Dhruba J.; Kumar, Aniruddha

    2010-04-01

    Laser assisted removal of loosely bound fuel particulates from the clad surface following the process of pellet loading has decided advantages over conventional methods. It is a dry and noncontact process that generates very little secondary waste and can occur inside a glove box without any manual interference minimizing the possibility of exposure to personnel. The rapid rise of the substrate/ particulate temperature owing to the absorption of energy from the incident laser pulse results in a variety of processes that may lead to the expulsion of the particulates. As a precursor to the cleaning of the fuel elements, initial experiments were carried out on contamination simulated on commonly used clad surfaces to gain a first hand experience on the various laser parameters for which as efficient cleaning can be obtained without altering the properties of the clad surface. The cleaning of a dummy fuel element was subsequently achieved in the laboratory by integrating the laser with a work station that imparted simultaneous rotational and linear motion to the fuel element. (author)

  10. Detachment of particulate iron sulfide during shale-water interaction

    Science.gov (United States)

    Emmanuel, S.; Kreisserman, Y.

    2017-12-01

    Hydraulic fracturing, a commonly used technique to extract oil and gas from shales, is controversial in part because of the threat it poses to water resources. The technique involves the injection into the subsurface of large amounts of fluid, which can become contaminated by fluid-rock interaction. The dissolution of pyrite is thought to be a primary pathway for the contamination of fracturing fluids with toxic elements, such as arsenic and lead. In this study, we use direct observations with atomic force microscopy to show that the dissolution of carbonate minerals in Eagle Ford shale leads to the physical detachment of embedded pyrite grains. To simulate the way fluid interacts with a fractured shale surface, we also reacted rock samples in a flow-through cell, and used environmental scanning electron microscopy to compare the surfaces before and after interaction with water. Crucially, our results show that the flux of particulate iron sulfide into the fluid may be orders of magnitude higher than the flux of pyrite from chemical dissolution. This result suggests that mechanical detachment of pyrite grains could be the dominant mode by which arsenic and other inorganic elements are mobilized in the subsurface. Thus, during hydraulic fracturing operations and in groundwater systems containing pyrite, the transport of many toxic species may be controlled by the transport of colloidal iron sulfide particles.

  11. Autonomous observations of the ocean biological carbon pump

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, James K.B.

    2009-03-01

    Prediction of the substantial biologically mediated carbon flows in a rapidly changing and acidifying ocean requires model simulations informed by observations of key carbon cycle processes on the appropriate space and time scales. From 2000 to 2004, the National Oceanographic Partnership Program (NOPP) supported the development of the first low-cost fully-autonomous ocean profiling Carbon Explorers that demonstrated that year-round real-time observations of particulate organic carbon (POC) concentration and sedimentation could be achieved in the world's ocean. NOPP also initiated the development of a sensor for particulate inorganic carbon (PIC) suitable for operational deployment across all oceanographic platforms. As a result, PIC profile characterization that once required shipboard sample collection and shipboard or shore based laboratory analysis, is now possible to full ocean depth in real time using a 0.2W sensor operating at 24 Hz. NOPP developments further spawned US DOE support to develop the Carbon Flux Explorer, a free-vehicle capable of following hourly variations of particulate inorganic and organic carbon sedimentation from near surface to kilometer depths for seasons to years and capable of relaying contemporaneous observations via satellite. We have demonstrated the feasibility of real time - low cost carbon observations which are of fundamental value to carbon prediction and when further developed, will lead to a fully enhanced global carbon observatory capable of real time assessment of the ocean carbon sink, a needed constraint for assessment of carbon management policies on a global scale.

  12. Temporal variability in terrestrially-derived sources of particulate organic carbon in the lower Mississippi River and its upper tributaries

    Science.gov (United States)

    Bianchi, Thomas S.; Wysocki, Laura A.; Stewart, Mike; Filley, Timothy R.; McKee, Brent A.

    2007-09-01

    In this study, we examined the temporal changes of terrestrially-derived particulate organic carbon (POC) in the lower Mississippi River (MR) and in a very limited account, the upper tributaries (Upper MR, Ohio River, and Missouri River). We used for the first time a combination of lignin-phenols, bulk stable carbon isotopes, and compound-specific isotope analyses (CSIA) to examine POC in the lower MR and upper tributaries. A lack of correlation between POC and lignin phenol abundances ( Λ8) was likely due to dilution effects from autochthonous production in the river, which has been shown to be considerably higher than previously expected. The range of δ 13C values for p-hydroxycinnamic and ferulic acids in POC in the lower river do support that POM in the lower river does have a significant component of C 4 in addition to C 3 source materials. A strong correlation between δ 13C values of p-hydroxycinnamic, ferulic, and vanillyl phenols suggests a consistent input of C 3 and C 4 carbon to POC lignin while a lack of correlation between these same phenols and POC bulk δ 13C further indicates the considerable role of autochthonous carbon in the lower MR POC budget. Our estimates indicate an annual flux of POC of 9.3 × 10 8 kg y -1 to the Gulf of Mexico. Total lignin fluxes, based on Λ8 values of POC, were estimated to be 1.2 × 10 5 kg y -1. If we include the total dissolved organic carbon (DOC) flux (3.1 × 10 9 kg y -1) reported by [Bianchi T. S., Filley T., Dria K. and Hatcher, P. (2004) Temporal variability in sources of dissolved organic carbon in the lower Mississippi River. Geochim. Cosmochim. Acta68, 959-967.], we get a total organic carbon flux of 4.0 × 10 9 kg y -1. This represents 0.82% of the annual total organic carbon supplied to the oceans by rivers (4.9 × 10 11 kg).

  13. Next Generation Non-particulate Dry Nonwoven Pad for Chemical Warfare Agent Decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Ramkumar, S S; Love, A; Sata, U R; Koester, C J; Smith, W J; Keating, G A; Hobbs, L; Cox, S B; Lagna, W M; Kendall, R J

    2008-05-01

    New, non-particulate decontamination materials promise to reduce both military and civilian casualties by enabling individuals to decontaminate themselves and their equipment within minutes of exposure to chemical warfare agents or other toxic materials. One of the most promising new materials has been developed using a needlepunching nonwoven process to construct a novel and non-particulate composite fabric of multiple layers, including an inner layer of activated carbon fabric, which is well-suited for the decontamination of both personnel and equipment. This paper describes the development of a composite nonwoven pad and compares efficacy test results for this pad with results from testing other decontamination systems. The efficacy of the dry nonwoven fabric pad was demonstrated specifically for decontamination of the chemical warfare blister agent bis(2-chloroethyl)sulfide (H or sulfur mustard). GC/MS results indicate that the composite fabric was capable of significantly reducing the vapor hazard from mustard liquid absorbed into the nonwoven dry fabric pad. The mustard adsorption efficiency of the nonwoven pad was significantly higher than particulate activated carbon (p=0.041) and was similar to the currently fielded US military M291 kit (p=0.952). The nonwoven pad has several advantages over other materials, especially its non-particulate, yet flexible, construction. This composite fabric was also shown to be chemically compatible with potential toxic and hazardous liquids, which span a range of hydrophilic and hydrophobic chemicals, including a concentrated acid, an organic solvent and a mild oxidant, bleach.

  14. Particulate organic matter in the coastal and estuarine waters of Goa and its relationship with phytoplankton production

    Digital Repository Service at National Institute of Oceanography (India)

    Verlecar, X.N.; Qasim, S.Z.

    In the coastal and estuarine waters of Goa, particulate organic carbon (POC) varied from 0.52 to 2.51 mg l-1 and from 0.28 to 5.24 mg l-1 and particulate phosphorus (PP) varied from 0.71 to 5.18 mu g l-1 and from 0.78 to 20.34 mu g l-1, respectively...

  15. Tackling the problem of fine particulate (HAP) collection

    Energy Technology Data Exchange (ETDEWEB)

    Parker, K.; Sanyal, A.

    2000-07-01

    With increasing concern over the emission of hazardous air pollutants (HAPs), measures are being considered to limit their discharge from many industrial sources. The main thrust o the proposed legislation is towards the power generators, because of their potentially large mass emissions, but also at specific targets, such as incinerators. Legislation already exists governing the emission of heavy metals, etc., from various types of incineration process and regulations controlling the emission of pM 2.5 material are proposed for the US. Provided the HAPs are in a solid particulate phase then their collection can be accomplished by correctly designed and operated control systems, such as electrostatic precipitators and bag filters. There are, however, other HAP species which are usually in a gaseous phase at normal back end temperatures, such as elemental mercury, dioxins, furans, etc. These need special consideration and equipment in order to satisfy the proposed regulations. one of the difficulties facing the designers and operators of processes giving rise to these species is the accurate measurement of these trace elements and predicting the uncontrolled emission level in order to size the collection system such as to remain in compliance. The options for the effective collection of these normally gaseous phase pollutants will be examined; these methods will include combined wet and dry collection, absorption and carbon injection systems. Finally, whichever system is finally considered and adopted, in order to satisfy and proposed regulations, will add significant capital and operating cost to the overall installation.

  16. Erosion of organic carbon in the Arctic as a geological carbon dioxide sink.

    Science.gov (United States)

    Hilton, Robert G; Galy, Valier; Gaillardet, Jérôme; Dellinger, Mathieu; Bryant, Charlotte; O'Regan, Matt; Gröcke, Darren R; Coxall, Helen; Bouchez, Julien; Calmels, Damien

    2015-08-06

    Soils of the northern high latitudes store carbon over millennial timescales (thousands of years) and contain approximately double the carbon stock of the atmosphere. Warming and associated permafrost thaw can expose soil organic carbon and result in mineralization and carbon dioxide (CO2) release. However, some of this soil organic carbon may be eroded and transferred to rivers. If it escapes degradation during river transport and is buried in marine sediments, then it can contribute to a longer-term (more than ten thousand years), geological CO2 sink. Despite this recognition, the erosional flux and fate of particulate organic carbon (POC) in large rivers at high latitudes remains poorly constrained. Here, we quantify the source of POC in the Mackenzie River, the main sediment supplier to the Arctic Ocean, and assess its flux and fate. We combine measurements of radiocarbon, stable carbon isotopes and element ratios to correct for rock-derived POC. Our samples reveal that the eroded biospheric POC has resided in the basin for millennia, with a mean radiocarbon age of 5,800 ± 800 years, much older than the POC in large tropical rivers. From the measured biospheric POC content and variability in annual sediment yield, we calculate a biospheric POC flux of 2.2(+1.3)(-0.9) teragrams of carbon per year from the Mackenzie River, which is three times the CO2 drawdown by silicate weathering in this basin. Offshore, we find evidence for efficient terrestrial organic carbon burial over the Holocene period, suggesting that erosion of organic carbon-rich, high-latitude soils may result in an important geological CO2 sink.

  17. The separation of particulate within PFC decontamination wastewater generated by PFC decontamination

    International Nuclear Information System (INIS)

    Kim, Gye Nam; Lee, Sung Yeol; Won, Hui Jun; Jung, Chong Hun; Oh, Won Zin; Park, Jin Ho; Narayan, M.

    2005-01-01

    When PFC(Perfluoro carbonate) decontamination technology is applied to removal of radioactive contaminated particulate adhered at surface during the operation of nuclear research facilities, it is necessary to develop a filtration equipment to reuse of PFC solution due to high price, also to minimize the volume of second wastewater. Contaminated characteristics of hot particulate was investigated and a filtration process was presented to remove suspended radioactive particulate from PFC decontamination wastewater generated on PFC decontamination. The range of size of hot particulate adhered at the surface of research facilities measured by SEM was 0.1∼10μm. Hot particulate of more than 2μm in PFC contamination wastewater was removed by first filter and then hot particulate of more than 0.2μm was removed by second filter. Results of filter experiments showed that filtration efficiency of PVDF(Poly vinylidene fluoride), PP(Polypropylene), Ceramic filter was 95∼97%. A ceramic filter showed a higher filtration efficiency with a little low permeate volume. Also, a ceramic of inorganic compound could be broken easily on experiment and has a high price but was highly stable at radioactivity in comparison of PVDF and PP of a macromolecule which generate H 2 gas in alpha radioactivity environment

  18. Large scale air monitoring: Biological indicators versus air particulate matter

    International Nuclear Information System (INIS)

    Rossbach, M.; Jayasekera, R.; Kniewald, G.

    2000-01-01

    Biological indicator organisms are widely used for monitoring and banking purposes since many years. Although the complexity of the interactions between bioorganisms and their environment is generally not easily comprehensible, environmental quality assessment using the bioindicator approach offers some convincing advantages compared to direct analysis of soil, water, or air. Direct measurement of air particulates is restricted to experienced laboratories with access to expensive sampling equipment. Additionally, the amount of material collected generally is just enough for one determination per sampling and no multidimensional characterization might be possible. Further, fluctuations in air masses have a pronounced effect on the results from air filter sampling. Combining the integrating property of bioindicators with the world wide availability and uniform matrix characteristics of air particulates as a prerequisite for global monitoring of air pollution will be discussed. A new approach for sampling urban dust using large volume filtering devices installed in air conditioners of large hotel buildings is assessed. A first experiment was initiated to collect air particulates (300 to 500 g each) from a number of hotels during a period of three to four months by successive vacuum cleaning of used inlet filters from high volume air conditioning installations reflecting average concentrations per three months in different large cities. This approach is expected to be upgraded and applied for global monitoring. Highly positive correlated elements were found in lichen such as K/S, Zn/P, the rare earth elements (REE) and a significant negative correlation between Fig and Cu was observed in these samples. The ratio of concentrations of elements in dust and Usnea spp. is highest for Cr, Zn, and Fe (400-200) and lowest for elements such as Ca, Rb, and Sr (20-10). (author)

  19. Long-term exposure to elemental constituents of particulate matter and cardiovascular mortality in 19 European cohorts

    DEFF Research Database (Denmark)

    Wang, Meng; Beelen, Rob; Stafoggia, Massimo

    2014-01-01

    Associations between long-term exposure to ambient particulate matter (PM) and cardiovascular (CVD) mortality have been widely recognized. However, health effects of long-term exposure to constituents of PM on total CVD mortality have been explored in a single study only.......Associations between long-term exposure to ambient particulate matter (PM) and cardiovascular (CVD) mortality have been widely recognized. However, health effects of long-term exposure to constituents of PM on total CVD mortality have been explored in a single study only....

  20. A methodology for elemental and organic carbon emission inventory and results for Lombardy region, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Caserini, Stefano [Politecnico di Milano, DICA Environmental Engineering Section, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Galante, Silvia, E-mail: silvia1.galante@polimi.it [Politecnico di Milano, DICA Environmental Engineering Section, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Ozgen, Senem; Cucco, Sara; Gregorio, Katia de [Politecnico di Milano, DICA Environmental Engineering Section, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Moretti, Marco [Environmental Protection Agency of Lombardia Region, ARPA, 20124 Milano (Italy)

    2013-04-15

    This paper presents a methodology and its application for the compilation of elemental carbon (EC) and organic carbon (OC) emission inventories. The methodology consists of the estimation of EC and OC emissions from available total suspended particulate matter (TSP) emission inventory data using EC and OC abundances in TSP derived from an extensive literature review, by taking into account the local technological context. In particular, the method is applied to the 2008 emissions of Lombardy region, Italy, considering 148 different activities and 30 types of fuels, typical of Western Europe. The abundances estimated in this study may provide a useful basis to assess the emissions also in other emission contexts with similar prevailing sources and technologies. The dominant sources of EC and OC in Lombardy are diesel vehicles for EC and the residential wood combustion (RWC) for OC which together account for about 83% of the total emissions of both pollutants. The EC and OC emissions from industrial processes and other fuel (e.g., gasoline, kerosene and LPG) combustion are significantly lower, while non-combustion sources give an almost negligible contribution. Total EC + OC contribution to regional greenhouse gas emissions is positive for every sector assuming whichever GWP100 value within the range proposed in literature. An uncertainty assessment is performed through a Monte Carlo simulation for RWC, showing a large uncertainty range (280% of the mean value for EC and 70% for OC), whereas for road transport a qualitative analysis identified a narrower range of uncertainty. - Highlights: ► Diesel and wood combustion contribute to more than 80% of total EC and OC. ► More than 50% of EC emissions come from road transport. ► Monte Carlo method is used to assess the uncertainty of wood combustion emissions. ► Residential wood combustion is the main source of uncertainty of EC OC inventory. ► In terms of CO{sub 2}eq, EC and OC correspond to 3% of CO{sub 2

  1. Fluido-Dynamic and Electromagnetic Characterization of 3D Carbon Dielectrophoresis with Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Rodrigo Martinez-Duarte

    2008-12-01

    Full Text Available The following work presents the fluido-dynamic and electromagnetic characterization of an array of 3D electrodes to be used in high throughput and high efficiency Carbon Dielectrophoresis (CarbonDEP applications such as filters, continuous particle enrichment and positioning of particle populations for analysis. CarbonDEP refers to the induction of Dielectrophoresis (DEP by carbon surfaces. The final goal is, through an initial stage of modeling and analysis, to reduce idea-to-prototype time and cost of CarbonDEP devices to be applied in the health care field. Finite Element Analysis (FEA is successfully conducted to model flow velocity and electric fields established by polarized high aspect ratio carbon cylinders, and its planar carbon connecting leads, immersed in a water-based medium. Results demonstrate correlation between a decreasing flow velocity gradient and an increasing electric field gradient toward electrodes’ surfaces which is optimal for selected CarbonDEP applications. Simulation results are experimentally validated in the proposed applications.

  2. Screening of various diesel particulate matter samples from various commodity mines

    CSIR Research Space (South Africa)

    Mahlangu, Vusi J

    2016-09-01

    Full Text Available This paper presents qualitative analysis results of diesel particulate matter (DPM) from various mining commodities in South Africa. The objective of this work was to determine the concentrations of elements in DPM samples. For this screening...

  3. Spatial and temporal variability of particulate polycyclic aromatic hydrocarbons in Mexico City

    Directory of Open Access Journals (Sweden)

    D. A. Thornhill

    2008-06-01

    Full Text Available As part of the Megacities Initiative: Local and Global Research Observations (MILAGRO study in the Mexico City Metropolitan Area in March 2006, we measured particulate polycyclic aromatic hydrocarbons (PAHs and other gaseous species and particulate properties, including light absorbing carbon or effective black carbon (BC, at six locations throughout the city. The measurements were intended to support the following objectives: to describe spatial and temporal patterns in PAH concentrations, to gain insight into sources and transformations of PAHs and BC, and to quantify the relationships between PAHs and other pollutants. Total particulate PAHs at the Instituto Mexicano del Petróleo (T0 supersite located near downtown averaged 50 ng m−3, and aerosol active surface area averaged 80 mm2 m−3. PAHs were also measured on board the Aerodyne Mobile Laboratory, which visited six sites encompassing a mixture of different land uses and a range of ages of air parcels transported from the city core. A combination of analyses of time series, back trajectories, concentration fields, pollutant ratios, and correlation coefficients supports the concept of T0 as an urban source site, T1 as a receptor site with strong local sources, Pedregal and PEMEX as intermediate sites, Pico Tres Padres as a vertical receptor site, and Santa Ana as a downwind receptor site. Weak intersite correlations suggest that local sources are important and variable and that exposure to PAHs and BC cannot be represented by a single regional-scale value. The relationships between PAHs and other pollutants suggest that a variety of sources and ages of particles are present. Among carbon monoxide, nitrogen oxides (NOx, and carbon dioxide, particulate PAHs are most strongly correlated with NOx. Mexico City's PAH/BC mass ratio of 0.01 is similar to that found on a freeway loop in the Los Angeles area and approximately 8–30

  4. Spatial and temporal variability of particulate polycyclic aromatic hydrocarbons in Mexico City

    Science.gov (United States)

    Thornhill, D. A.; de Foy, B.; Herndon, S. C.; Onasch, T. B.; Wood, E. C.; Zavala, M.; Molina, L. T.; Gaffney, J. S.; Marley, N. A.; Marr, L. C.

    2008-06-01

    As part of the Megacities Initiative: Local and Global Research Observations (MILAGRO) study in the Mexico City Metropolitan Area in March 2006, we measured particulate polycyclic aromatic hydrocarbons (PAHs) and other gaseous species and particulate properties, including light absorbing carbon or effective black carbon (BC), at six locations throughout the city. The measurements were intended to support the following objectives: to describe spatial and temporal patterns in PAH concentrations, to gain insight into sources and transformations of PAHs and BC, and to quantify the relationships between PAHs and other pollutants. Total particulate PAHs at the Instituto Mexicano del Petróleo (T0 supersite) located near downtown averaged 50 ng m-3, and aerosol active surface area averaged 80 mm2 m-3. PAHs were also measured on board the Aerodyne Mobile Laboratory, which visited six sites encompassing a mixture of different land uses and a range of ages of air parcels transported from the city core. A combination of analyses of time series, back trajectories, concentration fields, pollutant ratios, and correlation coefficients supports the concept of T0 as an urban source site, T1 as a receptor site with strong local sources, Pedregal and PEMEX as intermediate sites, Pico Tres Padres as a vertical receptor site, and Santa Ana as a downwind receptor site. Weak intersite correlations suggest that local sources are important and variable and that exposure to PAHs and BC cannot be represented by a single regional-scale value. The relationships between PAHs and other pollutants suggest that a variety of sources and ages of particles are present. Among carbon monoxide, nitrogen oxides (NOx), and carbon dioxide, particulate PAHs are most strongly correlated with NOx. Mexico City's PAH/BC mass ratio of 0.01 is similar to that found on a freeway loop in the Los Angeles area and approximately 8 30 times higher than that found in other cities. Evidence also suggests that primary

  5. The Advanced Petroleum-Based Fuels Program Evaluation of EC-Diesel and Diesel Particulate Filters in Southern California Vehicle Fleets

    International Nuclear Information System (INIS)

    None

    2000-01-01

    The EC-Diesel and particulate filter combination greatly reduced the particulate matter, hydrocarbon, and carbon monoxide emissions of all vehicles tested in the program to date. Particulate matter reductions greater than 98% were achieved. For several vehicles tested, the PM and HC emissions were less than background levels. Based on preliminary statistical analysis, there is 95%+ confidence that EC-D and particulate filters reduced emissions from three different types of vehicles. A fuel consumption penalty was not detectable using the current test procedures and chassis dynamometer laboratory. Test vehicles equipped with the CRT and DPX particulate filters and fueled with EC-Diesel fuel have operated reliably during the program start-up period

  6. Ambient concentrations of total suspended particulate matter and its elemental constituents at the wider area of the mining facilities of TVX Hellas in Chalkidiki, Greece.

    Science.gov (United States)

    Gaidajis, George

    2003-01-01

    To assess ambient air quality at the wider area of TVX Hellas mining facilities, the Total Suspended Particulate matter (TSP) and its content in characteristic elements, i.e., As, Cd, Cu, Fe, Mn, Pb, Zn are being monitored for more than thirty months as part of the established Environmental Monitoring Program. High Volume air samplers equipped with Tissue Quartz filters were employed for the collection of TSP. Analyses were effected after digestion of the suspended particulate with an HNO3-HCl solution and determination of elemental concentrations with an Atomic Absorption Spectroscopy equipped with graphite furnace. The sampling stations were selected to record representatively the existing ambient air quality in the vicinity of the facilities and at remote sites not affected from industrial activities. Monitoring data indicated that the background TSP concentrations ranged from 5-60 microg/m3. Recorded TSP concentrations at the residential sites close to the facilities ranged between 20-100 microg/m3, indicating only a minimal influence from the mining and milling activities. Similar spatial variation was observed for the TSP constituents and specifically for Pb and Zn. To validate the monitoring procedures, a parallel sampling campaign took place with different High Volume samplers at days where low TSP concentrations were expected. The satisfactory agreement (+/- 11%) at low concentrations (50-100 microg/m3) clearly supported the reproducibility of the techniques employed specifically at the critical range of lower concentrations.

  7. High-Latitude Wintertime Urban Pollution: Particulate Matter Composition and Temporal Trends in Fairbanks, Alaska

    Science.gov (United States)

    Simpson, W. R.; Nattinger, K.; Hooper, M.

    2017-12-01

    High latitude cities often experience severe pollution episodes during wintertime exacerbated by thermal inversion trapping of pollutant emissions. Fairbanks, Alaska is an extreme example of this problem, currently being classified by the US Environmental Protection Agency (EPA) as a "serious" non-attainment area for fine particulate matter (PM2.5). For this reason, we have studied the chemical composition of PM2.5 at multiple EPA monitoring sites in the non-attainment area from 2006 to the present. The chemical composition is dominated by organic carbon with lesser amounts of black carbon and inorganic ionic species such as ammonium, sulfate, and nitrate. We find large spatial differences in composition and amount of PM2.5 that indicate a different mix of sources in residential areas as compared to the city center. Specifically, the difference in composition is consistent with increased wood smoke source in the residential areas. The extent to which organic matter could be secondary (formed through conversion of emitted gases) is also an area needing study. Ammonium sulfate is responsible for about a fifth to a quarter of the particles mass during the darkest months, possibly indicating a non-photochemical source of sulfate, but the chemical mechanism for this possible transformation is unclear. Therefore, we quantified the relationship between particulate sulfate concentrations and gas-phase sulfur dioxide concentrations along with particulate metals and inferred particulate acidity with the hopes that these data can assist in elucidation of the mechanism of particulate sulfate formation. We also analyze temporal trends in PM2.5 composition in an attempt to understand how the problem is changing over time and find most trends are small despite regulatory changes. Improving mechanistic understanding of particulate formation under cold and dark conditions could assist in reducing air-quality-related health effects.

  8. Evaluation of a two-step thermal method for separating organic and elemental carbon for radiocarbon analysis

    NARCIS (Netherlands)

    Dusek, U.; Monaco, M.; Prokopiou, M.; Gongriep, F.; Hitzenberger, R.; Meijer, H. A. J.; Rockmann, T.

    2014-01-01

    We thoroughly characterized a system for thermal separation of organic carbon (OC) and elemental carbon (EC) for subsequent radiocarbon analysis. Different organic compounds as well as ambient aerosol filter samples were introduced into an oven system and combusted to CO2 in pure O-2. The main

  9. Characteristics and source appointment of atmospheric particulate mercury over East China Sea: Implication on the deposition of atmospheric particulate mercury in marine environment.

    Science.gov (United States)

    Duan, Lian; Cheng, Na; Xiu, Guangli; Wang, Fujiang; Chen, Ying

    2017-05-01

    Total Suspended Particulate (TSP) samples were collected at Huaniao Island in northern East China Sea (ECS) from March 2012 to January 2013. Chemical analysis were conducted to measure the concentration of total particulate mercury (TPM) and speciated particulate mercury including HCl-soluble particulate mercury (HPM), elemental particulate mercury (EPM) and residual particulate mercury (RPM). The bromine (Br) and iodine (I) on particles were also detected. The mean concentration of TPM during the study period was 0.23 ± 0.15 ng m -3 , while the obviously seasonal variation was found that the concentrations of TPM in spring, summer, fall and winter were 0.34 ± 0.20 ng m -3 , 0.15 ± 0.03 ng m -3 , 0.15 ± 0.05 ng m -3 and 0.27 ± 0.26 ng m -3 , respectively. The statistically strong correlation of bromine and iodine to HPM was only found in spring with r = 0.81 and 0.77 (p mercury due to the deposition of mercury over the sea. The cluster of air mass across the sea had low concentration of HPM in winter, which suggested that the oxidation of mercury in winter might be related to other oxidants. During the whole sampling period, the air mass from the north of China contributed to the higher concentration of TPM in Huaniao Island. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Experimental study of particulate fouling onto heat exchanger elements

    International Nuclear Information System (INIS)

    Chandrasa

    1994-01-01

    An experimental study of particulate fouling onto tubular heat exchanger surfaces was carried out using sodium sulfate particles. An experimental apparatus equipped with an aerosol generator has been used to examine the deposition of small particles under controlled conditions. Two sets of experiments were performed. Firstly, the deposition against time of solid particles onto single heat exchanger tube in cross-flow was studied. The effects of a number variables such as particle size, gas velocity and temperature on the deposition was analysed. Secondly, the deposition for the aerosol particles as they passed through a bank of finned tubes was examined. The deposition patterns on various tubes depended on local conditions (velocity and temperature) within the bank. It was found that the fouling resistance increases as aerosol flow rate decreases. The smaller particles showed higher fouling resistance. (author) [fr

  11. Dispersion toughened silicon carbon ceramics

    Science.gov (United States)

    Wei, G.C.

    1984-01-01

    Fracture resistant silicon carbide ceramics are provided by incorporating therein a particulate dispersoid selected from the group consisting of (a) a mixture of boron, carbon and tungsten, (b) a mixture of boron, carbon and molybdenum, (c) a mixture of boron, carbon and titanium carbide, (d) a mixture of aluminum oxide and zirconium oxide, and (e) boron nitride. 4 figures.

  12. Air quality in terms of particulate matter (PM10) and element components in Antananarivo city

    International Nuclear Information System (INIS)

    Raoelina Andriambololona; Rakotondramanana, H.T.; Rasoazanany, E.O.; Randriamanivo, L.V.; Rasolofonirina, M.; Razafy Andrianarivo, R.

    2001-01-01

    The main objective of this research was to study the size distribution of toxic elements, undesirables ones and PM10 in the aerosols of Antananarivo urban areas using Total reflection X-ray Fluorescence. This work was carried out in the framework of Co-ordinated Research Program organised by the IAEA in 1998. The air sampler DICHOTOMOUS was used for sampling, with which two types of aerosols could be obtained: respirable aerosols or fine particles (aerodynamic diameter below 2.5 μm PM-2 ,5 ) and inhalable or coarse particles (aerodynamic diameter from 2.5 μm to 10μm PM 10 ). Samples were taken from six sampling sites, namely Ambohidahy tunnel, Ambanidia tunnel, Andravoahangy, Soarano, Mahamasina and Ankorondrano. Then, they were digested with acid digestion bomb. The results showed the presence of elements such as sulfur (S), chlorine (Cl), kalium (K), calcium (Ca), titanium (Ti), lead (Pb) in the aerosols. Their concentrations are higher in respirable particles. For classical air pollutant components, particularly lead and PM10, the 1.8 μg.m -3 mean concentration value of lead is largely higher than 0.5μg. m -3 , which is the WHO (World Health organization) adopted value, and above the USEPA (United States Environmental Protection Agency) maximum admissible one (1.5 μg.m -3 ) as well. Regarding the size distribution of lead, the results showed that the small particles were mainly enriched in lead. The same observation can also be stated for PM10 with a 240 μg.m -3 mean concentration value , higher than 150 μg.m - 3 , adopted by the two above-mentioned organizations. Therefore, the Antananarivo urban area is classified as saturated zone for both parameters (lead and particulate matter). In addition, the results of Mason enrichment factors showed that the elements such as sulfur (S), chromium (Cr), copper (Cu), zinc (Zn), bromine (Br), and lead (Pb) are from both natural and anthropogenic sources. The elements such as kalium (K), chlorine (Cl), calcium (Ca

  13. The use of nuclear and related techniques for the studies of possible health impact of airborne particulate matter in a metal industry

    International Nuclear Information System (INIS)

    Djojosubroto, Harjoto; Supriatna, Dadang; Kumolowati, Endang; Widjajakusuma, Benjamin

    2000-01-01

    Various processes in an industry may produce gases and fine airborne particulate matters. Elements and hazardous chemicals in the fine particulate matters may enter the human body through inhalation and direct contact with the skin. Excessive inhalation and contact with the fine airborne particulate matter may lead to intoxication due to excessive intake of the hazardous chemicals and toxic elements. The elements will be accumulated in human organs, such as liver, kidneys and brain, manifest in clinical syndromes such as hypertension, renal failure and neurological symptoms and signs. The absorbed elements are excreted through the urinary tract as urine. They also can be excreted through hair and nails. Elevated blood and urinary aluminum levels have been observed after occupational exposure to various aluminum compounds. This phenomenon indicates the absorption through inhalation, as there are no data indicating significant dermal absorption for aluminum. Absorption of chromium compounds in the workplace occurs mainly through inhalation. The absorption is dependent on the valence and solubility of the particular chromium species. Some elements such as trivalent chromium ions are readily cleared from the blood, but hexavalent chromium ions are retained much longer in the blood. The aluminum compounds vary greatly in their toxic and carcinogenic effects. Although the trivalent chromium is readily excreted, continuous intake may cause the blood chromium level to be higher than normal. These elements may either have an deleterious effect on, or be considered essential for human health. In this study, the levels and health effects of airborne particulate matter in the workplace are assessed by elemental quantification of blood, hair and nail of workers in a metal industry and in airborne particulate samples that are collected at the workplace. The present report represents progress of activities following the first Research Co-ordination Meeting 1997 in Vienna

  14. Multiscale Modeling of Dewetting Damage in Highly Filled Particulate Composites

    Science.gov (United States)

    Geubelle, P. H.; Inglis, H. M.; Kramer, J. D.; Patel, J. J.; Kumar, N. C.; Tan, H.

    2008-02-01

    Particle debonding or dewetting constitutes one of the key damage processes in highly filled particulate composites such as solid propellant and other energetic materials. To analyze this failure process, we have developed a multiscale finite element framework that combines, at the microscale, a nonlinear description of the binder response with a cohesive model of the damage process taking place in a representative periodic unit cell (PUC). To relate micro-scale damage to the macroscopic constitutive response of the material, we employ the mathematical theory of homogenization (MTH). After a description of the numerical scheme, we present the results of the damage response of a highly filled particulate composite subjected to a uniaxial macroscopic strain, and show the direct correlation between the complex damage processes taking place in the PUC and the nonlinear macroscopic constitutive response. We also present a detailed study of the PUC size and a comparison between the finite element MTH-based study and a micromechanics model of the dewetting process.

  15. Contrast in air pollution components between major streets and background locations: Particulate matter mass, black carbon, elemental composition, nitrogen oxide and ultrafine particle number

    Science.gov (United States)

    Boogaard, Hanna; Kos, Gerard P. A.; Weijers, Ernie P.; Janssen, Nicole A. H.; Fischer, Paul H.; van der Zee, Saskia C.; de Hartog, Jeroen J.; Hoek, Gerard

    2011-01-01

    Policies to reduce outdoor air pollution concentrations are often assessed on the basis of the regulated pollutants. Whether these are the most appropriate components to assess the potential health benefits is questionable, as other health-relevant pollutants may be more strongly related to traffic. The aim of this study is to compare the contrast in concentration between major roads and (sub)urban background for a large range of pollutants and to analyze the magnitude of the measured difference in the street - background for major streets with different street configurations. Measurements of PM 10, PM 2.5, particle number concentrations (PNC), black carbon (BC), elemental composition of PM 10 and PM 2.5 and NO x were conducted simultaneously in eight major streets and nine (sub)urban background locations in the Netherlands. Measurements were done six times for a week during a six month period in 2008. High contrasts between busy streets and background locations in the same city were found for chromium, copper and iron (factor 2-3). These elements were especially present in the coarse fraction of PM. In addition, high contrasts were found for BC and NO x (factor 1.8), typically indicators of direct combustion emissions. The contrast for PNC was similar to BC. NO 2 contrast was lower (factor 1.5). The largest contrast was found for two street canyons and two streets with buildings at one side of the street only. The contrast between busy streets and urban background in NO 2 was less than the contrast found for BC, PNC and elements indicative of non-exhaust emissions, adding evidence that NO 2 is not representing (current) traffic well. The study supports a substantial role for non-exhaust emissions including brake- and tyre wear and road dust in addition to direct combustion emissions. Significant underestimation of disease burden may occur when relying too much on the regulated components.

  16. Concentrations of volatile organic compounds, carbon monoxide, carbon dioxide and particulate matter in buses on highways in Taiwan

    Science.gov (United States)

    Hsu, Der-Jen; Huang, Hsiao-Lin

    2009-12-01

    Although airborne pollutants in urban buses have been studied in many cities globally, long-distance buses running mainly on highways have not been addressed in this regard. This study investigates the levels of volatile organic compounds (VOCs), carbon monoxide (CO), carbon dioxide (CO 2) and particulate matter (PM) in the long-distance buses in Taiwan. Analytical results indicate that pollutants levels in long-distance buses are generally lower than those in urban buses. This finding is attributable to the driving speed and patterns of long-distance buses, as well as the meteorological and geographical features of the highway surroundings. The levels of benzene, toluene, ethylbenzene and xylene (BTEX) found in bus cabins exceed the proposed indoor VOC guidelines for aromatic compounds, and are likely attributable to the interior trim in the cabins. The overall average CO level is 2.3 ppm, with higher average level on local streets (2.9 ppm) than on highways (2.2 ppm). The average CO 2 level is 1493 ppm, which is higher than the guideline for non-industrial occupied settings. The average PM level in this study is lower than those in urban buses and IAQ guidelines set by Taiwan EPA. However, the average PM 10 and PM 2.5 is higher than the level set by WHO. Besides the probable causes mentioned above, fewer passenger movements and less particle re-suspension from bus floor might also cause the lower PM levels. Measurements of particle size distribution reveal that more than 75% of particles are in submicron and smaller sizes. These particles may come from the infiltration from the outdoor air. This study concludes that air exchange rates in long-distance buses should be increased in order to reduce CO 2 levels. Future research on long-distance buses should focus on the emission of VOCs from brand new buses, and the sources of submicron particles in bus cabins.

  17. Trace element studies at University of Pittsburgh

    International Nuclear Information System (INIS)

    Cohen, B.L.; Chan, K.C.; Shabason, L.; Wedberg, G.; Rudolph, H.

    1974-01-01

    Seven areas of research are discussed. A method was developed for analyzing samples for their major constituent elements by irradiating with protons and detecting prompt gamma rays, mostly produced in (p,p'γ) reactions. Among other applications, the method was used to analyze air particulates for C, N, O, Al, Si, S, Co, and Fe. Trace element analysis by proton or alpha particle induced x-ray fluorescence was used on thin samples in a study of the variations of Pb, Br, Fe, and Zn in air particulates as a function of time. Among other applications this method was also used in studying trace elements in rainwater. An x-ray fluorescence method that is effective in the analysis of thick samples was developed. A method based on measuring energies of elastically scattered protons was developed for the analysis of light elements. The use of proton and neutron activation analyses, as well as methods for studying depth profiles for hydrogen and helium in materials are discussed

  18. Sanitary impact of the particulate atmospheric urban pollution; Impact sanitaire de la pollution atmospherique urbaine particulaire

    Energy Technology Data Exchange (ETDEWEB)

    Sentissi, M.

    1999-03-22

    The pollution of particulates origin is one of the principle actual problem relative to air quality. In France, the fine particulates come from industry and automobile traffic, especially, the diesel vehicles. The most worrying characteristic is their fineness, that allow them to stay in suspension during a long time and penetrate into pulmonary alveoli, with toxic elements at their surface such metals, acids, polycyclic aromatic hydrocarbons. The objective of this work is to take stock of epidemiology and toxicology studies evaluating the sanitary impact of particulates in suspension. (N.C.)

  19. Investigations on Mechanical Behaviour of Micro Graphite Particulates Reinforced Al-7Si Alloy Composites

    Science.gov (United States)

    Nagaraj, N.; Mahendra, K. V.; Nagaral, Madeva

    2018-02-01

    Micro particulates reinforced metal matrix composites are finding wide range of applications in automotive and sports equipment manufacturing industries. In the present study, an attempt has been made to develop Al-7Si-micro graphite particulates reinforced composites by using liquid melt method. 3 and 6 wt. % of micro graphite particulates were added to the Al-7Si base matrix. Microstructural characterization was done by using scanning electron microscope and energy dispersive spectroscope. Mechanical behaviour of Al-7Si-3 and 6 wt. % composites were evaluated as per ASTM standards. Scanning electron micrographs revealed the uniform distribution of micro graphite particulates in the Al-7Si alloy matrix. EDS analysis confirmed the presence of B and C elements in graphite reinforced composites. Further, it was noted that ultimate tensile and yield strength of Al-7Si alloy increased with the addition of 3 and 6wt. % of graphite particulates. Hardness of graphite reinforced composites was lesser than the base matrix.

  20. Vale nails down reduction of diesel particulate

    Energy Technology Data Exchange (ETDEWEB)

    Larmour, A.

    2010-09-01

    This article discussed innovations for reducing emissions of diesel particulate matter (DPM) from light-duty underground vehicles. DPM is a byproduct of diesel-powered equipment. Controlling these emissions at the source of generation is necessary for a healthy work environment and more cost effective than fresh air ventilation to reduce contaminant concentrations. Previous diesel particulate filter (DPF) systems required extensive human intervention, but this was deemed too inefficient. A DPF system that does not require human intervention was developed and proved successful in filter regeneration, longevity, and reliability. This DPF system uses a sintered metal filter element, a base metal, fuel-borne catalyst with an on-board dosing system, an electric heater that uses on-board power, and a sensor-based control unit. Software in the control unit adjusts fuel dosing rates and heater timing to ensure filter regeneration for different engines and operating scenarios. The new filter system is robust, and it has a compact design and long service-intervals. The product is still being tested to determine the costs and service life of the filter. More testing on fuel additives was deemed to be warranted, as was designing filter elements for larger engines used in heavy-duty vehicles.

  1. Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources

    Science.gov (United States)

    Querol, Xavier; Alastuey, Andrés; Rodriguez, Sergio; Plana, Felicià; Mantilla, Enrique; Ruiz, Carmen R.

    Investigations on the monitoring of ambient air levels of atmospheric particulates were developed around a large source of primary anthropogenic particulate emissions: the industrial ceramic area in the province of Castelló (Eastern Spain). Although these primary particulate emissions have a coarse grain-size distribution, the atmospheric transport dominated by the breeze circulation accounts for a grain-size segregation, which results in ambient air particles occurring mainly in the 2.5-10 μm range. The chemical composition of the ceramic particulate emissions is very similar to the crustal end-member but the use of high Al, Ti and Fe as tracer elements as well as a peculiar grain-size distribution in the insoluble major phases allow us to identify the ceramic input in the bulk particulate matter. PM2.5 instead of PM10 monitoring may avoid the interference of crustal particles without a major reduction in the secondary anthropogenic load, with the exception of nitrate. However, a methodology based in PM2.5 measurement alone is not adequate for monitoring the impact of primary particulate emissions (such as ceramic emissions) on air quality, since the major ambient air particles derived from these emissions are mainly in the range of 2.5-10 μm. Consequently, in areas characterised by major secondary particulate emissions, PM2.5 monitoring should detect anthropogenic particulate pollutants without crustal particulate interference, whereas PM10 measurements should be used in areas with major primary anthropogenic particulate emissions.

  2. Concentrations of Platinum Group Elements (Pt, Pd, Rh) in Airborne Particulate Matter (PM2.5 and PM10-2.5) Collected at Selected Canadian Urban Sites: a Case Study

    OpenAIRE

    Celo V.; Zhao J. J.; Dabek-Zlotorzynska E.

    2013-01-01

    Increasing environmental concentrations of platinum group elements (PGEs), in particular platinum (Pt), palladium (Pd) and rhodium (Rh), from catalytic converters has been reported worldwide. Initially it was believed that the emitted PGEs remain in the roadside environment, but recent studies have shown that fine PGE-containing particles can be transported and distributed at regional and long-range levels. Therefore, the monitoring of PGEs in airborne particulate matter (PM) is important for...

  3. The Distribution between the Dissolved and the Particulate Forms of 49 Metals across the Tigris River, Baghdad, Iraq

    Directory of Open Access Journals (Sweden)

    Samera Hussein Hamad

    2012-01-01

    Full Text Available The distribution of dissolved and particulate forms of 49 elements was investigated along transect of the Tigris River (one of the major rivers of the world within Baghdad city and in its major tributary (Diyala River from 11 to 28 July 2011. SF-ICP-MS was used to measure total and filterable elements at 17 locations along the Tigris River transect, two samples from the Diyala River, and in one sample from the confluence of the two rivers. The calculated particulate forms were used to determine the particle-partition coefficients of the metals. No major changes in the elements concentrations down the river transect. Dissolved phases dominated the physical speciation of many metals (e.g., As, Mo, and Pt in the Tigris River, while Al, Fe, Pb, Th, and Ti were exhibiting high particulate fractions, with a trend of particle partition coefficients of [Ti(40 > Th(35 > Fe(15 > Al(13 > Pb(4.5] * 106 L/kg. Particulate forms of all metals exhibited high concentrations in the Diyala River, though the partition coefficients were low due to high TSS (~270 mg/L. A comparison of Tigris with the major rivers of the world showed that Tigris quality in Baghdad is comparable to Seine River quality in Paris.

  4. Evaluation of particulate filtration efficiency of retrofit particulate filters for light duty vehicles

    International Nuclear Information System (INIS)

    Van Asch, R.; Verbeek, R.

    2009-10-01

    In the light of the currently running subsidy programme for particulate filters in the Netherlands, the Dutch ministry of spatial planning and environment (VROM) asked TNO to execute a desk study to evaluate the particulates filtration efficiency of retrofit particulate filters for light duty vehicles (passenger cars and vans). The typical retrofit particulate filters for light duty vehicles are also called 'open' or 'half-open' filters, because a part of the exhaust gas can pass through the particulate filter unfiltered. From design point they are very different from the majority of the factory installed particulate filters, which are also called wall-flow or 'closed' particulate filters. Due to these differences there is a large difference in filtration efficiency. Whereas the 'dosed' particulate filters show a filtration efficiency of larger than 90%, the filtration efficiency of 'open' particulate filters is generally lower (type approval minimum 30%), and strongly dependent on the conditions of use. The objective of the current project was to assess the average filtration efficiency of retrofit (open) particulate fillters on light duty vehicles in real world day to day driving, based on available literature data. Also, the reasons of a possible deviation with the type approval test results (minimum filtration efficiency of 30%) was investigated.

  5. Elementos traço em material particulado atmosférico de uma região agroindustrial do sudeste do Brasil Trace elements in atmospheric particulate matter from an agro-industrial region in southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Patrícia Lopes de Oliveira

    2013-01-01

    Full Text Available Trace element concentrations were measured in atmospheric particulate matter collected in 2009 and 2010, in a Brazilian region influenced by pre-harvest burning of sugar cane crops. For coarse particles, high concentrations of Al, Fe, K and Ca suggested that re-suspended soil dust was the main source of aerosol trace elements, subsequently confirmed by XRD analysis. High levels of K, Zn, As, Cd and Pb were found in fine particles, confirming the contribution of biomass burning and vehicle emissions, whereas Na, Al, K, Fe and Zn were the representative elements in ultrafine particles, influenced by a diversity of sources.

  6. Particulate Filtration from Emissions of a Plasma Pyrolysis Assembly Reactor Using Regenerable Porous Metal Filters

    Science.gov (United States)

    Agui, Juan H.; Abney, Morgan; Greenwood, Zachary; West, Philip; Mitchell, Karen; Vijayakumar, R.; Berger, Gordon M.

    2017-01-01

    Microwave-based plasma pyrolysis technology is being studied as a means of supporting oxygen recovery in future spacecraft life support systems. The process involves the conversion of methane produced from a Sabatier reactor to acetylene and hydrogen, with a small amount of solid carbon particulates generated as a side product. The particles must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on porous metal media filters for removing the carbon particulate emissions from the PPA exit gas stream and to provide in situ media regeneration capability. Because of the high temperatures involved in oxidizing the deposited carbon during regeneration, there was particular focus in this development on the materials that could be used, the housing design, and heating methods. This paper describes the design and operation of the filter and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC.

  7. Air pollution in Damascus city, radiation, gases, air particulates and heavy elements

    International Nuclear Information System (INIS)

    Othman, Ibrahim; Sabra, Shawki

    1991-02-01

    The purposes of the study were to have a general survey for pollutants in Damascus City, to define the polluted areas and to determine the relationship between the pollutants and its sources, in addition of determining the regretion coefficient for the following elements: K, Ca, Mn, Fe, Cu, Zn, Rb, Sr, Pb and Br. Samples of leaves from different regions of Damascus city were analysed by using x-ray flourescence (XRF) for the mentioned elements. Stat graphics computerized and Surfur programmes were used in order to plot the map of Pb pollutant for Damascus city. Chemical detector tubes produced by Drager Company were used in the absorbtion of air samples for Co, NO 2 and ozon where its colours were changed according to the concentration of the interested gases. While, for the measurement of suspended particles, 1400 3 m of air samples were taken through fiber gass filter (Wahtman 8x10 in) to measure the concentration of suspended particles. leaves samples were a good indicator for the level of pollution. Results of analysing, a samples by using XRF to determine the concentration of the following elements: Ca, K, Cu, Mn, Fe, Zn, Pb, Rb, Br, and Sr, by using gamma spectroscopy system to difine the isotopes included in it, and to define the activity of 212 Pb show that dust and lead are the main pollutants in Damascus city, where the concentration of the suspended particles increased in the crowded transportation areas and reach to more than 700 mg/ 3 m in which it decreases in holidays and at hight, as well as the decrease of the concentration of carbon monoxide at night, which increase in the morning due to the high trafic motion. Rains make a good cleaning factor for the suspended particles in about 80% of it, where the ratio of particles having a diameter less than 10μ to the whole particles range from 30% - 80%. (author)., 25 figs., 35 tabs

  8. Polycyclic aromatic hydrocarbons, elemental and organic carbon emissions from tire-wear.

    Science.gov (United States)

    Aatmeeyata; Sharma, Mukesh

    2010-09-15

    Tire-wear is an important source of PAHs, elemental carbon (EC) and organic carbon (OC). The emissions of these pollutants have been studied in an experimental set-up, simulating a realistic road-tire interaction (summer tire-concrete road). The large particle non-exhaust emissions (LPNE; diameter greater than 10 microm) have been evaluated over 14,500 km run of the tire. An increasing linear trend with cumulative km run was observed for emissions of PAHs and carbon. Amongst PAHs in LPNE, pyrene has been observed to be the highest (30+/-4 mg kg(-1)) followed by benzo[ghi]perylene (17+/-2 mg kg(-1)). Different fractions of EC-OC for tire-wear have been analyzed, and unlike exhaust emissions, EC1 was observed to be 99% of EC whereas more than 70% of the OC was the high temperature carbon (OC3 and OC4). The overall emission factors (mass tire(-1) km(-1)) for PAHs, EC and OC from tire-wear are 378 ng tire(-1) km(-1), 1.46 mg tire(-1) km(-1) and 2.37 mg tire(-1) km(-1) for small cars. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Parallel measurements of organic and elemental carbon dry (PM1, PM2.5) and wet (rain, snow, mixed) deposition into the Baltic Sea.

    Science.gov (United States)

    Witkowska, Agnieszka; Lewandowska, Anita; Falkowska, Lucyna M

    2016-03-15

    Parallel studies on organic and elemental carbon in PM1 and PM2.5 aerosols and in wet deposition in various forms of its occurrence were conducted in the urbanised coastal zone of the Baltic Sea. The carbon load introduced into the sea water was mainly affected by the form of precipitation. Dry deposition load of carbon was on average a few orders of magnitude smaller than wet deposition. The suspended organic carbon was more effectively removed from the air with rain than snow, while an inverse relationship was found for elemental carbon. However the highest flux of water insoluble organic carbon was recorded in precipitation of a mixed nature. The atmospheric cleaning of highly dissolved organic carbon was observed to be the most effective on the first day of precipitation, while the hydrophobic elemental carbon was removed more efficiently when the precipitation lasted longer than a day. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Thermal design and analysis of the HTGR fuel element vertical carbonizing and annealing furnace

    International Nuclear Information System (INIS)

    Llewellyn, G.H.

    1977-06-01

    Computer analyses of the thermal design for the proposed HTGR fuel element vertical carbonizing and annealing furnace were performed to verify its capability and to determine the required power input and distribution. Although the furnace is designed for continuous operation, steady-state temperature distributions were obtained by assuming internal heat generation in the fuel elements to simulate their mass movement. The furnace thermal design, the analysis methods, and the results are discussed herein

  11. Production of particulates from transducer erosion: implications on food safety.

    Science.gov (United States)

    Mawson, Raymond; Rout, Manoj; Ripoll, Gabriela; Swiergon, Piotr; Singh, Tanoj; Knoerzer, Kai; Juliano, Pablo

    2014-11-01

    The formation of metallic particulates from erosion was investigated by running a series of transducers at various frequencies in water. Two low frequency transducer sonotrodes were run for 7.5h at 18kHz and 20kHz. Three high frequency plates operating at megasonic frequencies of 0.4MHz, 1MHz, and 2MHz were run over a 7days period. Electrical conductivity and pH of the solution were measured before and after each run. A portion of the non-sonicated and treated water was partially evaporated to achieve an 80-fold concentration of particles and then sieved through nano-filters of 0.1μm, 0.05μm, and 0.01μm. An aliquot of the evaporated liquid was also completely dried on strips of carbon tape to determine the presence of finer particles post sieving. An aliquot was analyzed for detection of 11 trace elements by Inductively Coupled Plasma Mass Spectroscopy (ICPMS). The filters and carbon tapes were analyzed by FE-SEM imaging to track the presence of metals by EDS (Energy Dispersive Spectroscopy) and measure the particle size and approximate composition of individual particles detected. Light microscopy visualization was used to calculate the area occupied by the particles present in each filter and high resolution photography was used for visualization of sonotrode surfaces. The roughness of all transducers before and after sonication was tested through profilometry. No evidence of formation of nano-particles was found at any tested frequency. High amounts of metallic micron-sized particles at 18kHz and 20kHz formed within a day, while after 7day runs only a few metallic micro particles were detected above 0.4MHz. Erosion was corroborated by an increase in roughness in the 20kHz tip after ultrasound. The elemental analysis showed that metal leach occurred but values remained below accepted drinking water limits, even after excessively long exposure to ultrasound. With the proviso that the particles measured here were only characterized in two dimensions and could be

  12. PIXE analysis of airborne particulate matter from Monterrey, Mexico. A first survey

    International Nuclear Information System (INIS)

    Aldape, F.; Flores M, J.; Diaz, R.V.; Hernandez-Mendez, B.; Montoya Z, J.M.; Blanco, E.E.; Fuentes, A.F.; Torres-Martinez, L.M.

    1999-01-01

    A first survey of elemental contents in airborne particulate matter from Monterrey, Nuevo Leon, Mexico, was performed using PIXE. This second largest industrial city is located 715 km north of Mexico City, and counts with a population of nearly three million inhabitants in its conurbation. Air pollution in the place comes from a great variety of industries ranging from iron smelters to furniture manufacturing, as well as from fuel combustion in vehicles and industries. This study presents results of elemental contents in airborne particulate matter in two particle size fractions: PM 2.5 and PM 15 . The samples were collected during five weeks on working days, Monday-Friday, from 9 December 1996 to 14 January 1997. Two samples a day were collected, 12 h each, night-time and day-time. These first results show local pollution as typical from a large urban area in conjunction with an active industry. Thirteen elements were consistently detected in most of the samples and some episodes due to both industrial and human activities were identified. A general discussion about the results obtained is presented

  13. Assessment of diesel particulate matter exposure in the workplace: freight terminals†

    Science.gov (United States)

    Sheesley, Rebecca J.; Schauer, James J.; Smith, Thomas J.; Garshick, Eric; Laden, Francine; Marr, Linsey C.; Molina, Luisa T.

    2008-01-01

    A large study has been undertaken to assess the exposure to diesel exhaust within diesel trucking terminals. A critical component of this assessment is an analysis of the variation in carbonaceous particulate matter (PM) across trucking terminal locations; consistency in the primary sources can be effectively tracked by analyzing trends in elemental carbon (EC) and organic molecular marker concentrations. Ambient samples were collected at yard, dock and repair shop work stations in 7 terminals in the USA and 1 in Mexico. Concentrations of EC ranged from 0.2 to 12 μg m−3 among the terminals, which corresponds to the range seen in the concentration of summed hopanes (0.5 to 20.5 ng m−3). However, when chemical mass balance (CMB) source apportionment results were presented as percent contribution to organic carbon (OC) concentrations, the contribution of mobile sources to OC are similar among the terminals in different cities. The average mobile source percent contribution to OC was 75.3 ± 17.1% for truck repair shops, 65.4 ± 20.4% for the docks and 38.4 ± 9.5% for the terminal yard samples. A relatively consistent mobile source impact was present at all the terminals only when considering percentage of total OC concentrations, not in terms of absolute concentrations. PMID:18392272

  14. Particulate matter emissions from biochar-amended soils as a potential tradeoff to the negative emission potential

    Science.gov (United States)

    Ravi, Sujith; Sharratt, Brenton S.; Li, Junran; Olshevski, Stuart; Meng, Zhongju; Zhang, Jianguo

    2016-10-01

    Novel carbon sequestration strategies such as large-scale land application of biochar may provide sustainable pathways to increase the terrestrial storage of carbon. Biochar has a long residence time in the soil and hence comprehensive studies are urgently needed to quantify the environmental impacts of large-scale biochar application. In particular, black carbon emissions from soils amended with biochar may counteract the negative emission potential due to the impacts on air quality, climate, and biogeochemical cycles. We investigated, using wind tunnel experiments, the particulate matter emission potential of a sand and two agriculturally important soils amended with different concentrations of biochar, in comparison to control soils. Our results indicate that biochar application considerably increases particulate emissions possibly by two mechanisms-the accelerated emission of fine biochar particles and the generation and emission of fine biochar particles resulting from abrasion of large biochar particles by sand grains. Our study highlights the importance of considering the background soil properties (e.g., texture) and geomorphological processes (e.g., aeolian transport) for biochar-based carbon sequestration programs.

  15. Daily variability of suspended particulate concentrations and yields and their effect on river particulates chemistry

    Directory of Open Access Journals (Sweden)

    M. Meybeck

    2015-03-01

    Full Text Available Daily total suspended solids concentrations (TSS, mg L-1, yields (Y, kg day-1 km-2 and runoff (q, L s-1 km-2 in world rivers are described by the median (C50, the upper percentile (C99, the discharge-weighted average concentrations (C*, and by their corresponding yields (Y50, Y99, Y* and runoff (q*, q50, q99. These intra-station descriptors range over two to six orders of magnitude at a given station. Inter-station variability is considered through three sets of dimensionless metrics: (i q*/q50, C*/C50 and Y*/Y50, defining the general temporal variability indicators, and q99/q50, C99/C50 and Y99/Y50, defining the extreme variability indicators; (ii river flow duration (W2 and flux duration (M2 in 2% of time; and (iii the truncated rating curve exponent (b50sup of the C vs q relationship for the upper flows. The TSS and Y variability, measured on US, French and world rivers, are first explained by hydrological variability through the b50sup metric, the variability amplifier, then by basin size, erodibility, relief and lake occurrence. Yield variability is the product of runoff variability × TSS variability. All metrics are considerably modified after river damming. The control of river particulate matter (RPM composition by TSS or yields depends on the targeted component. For major elements (Al, Fe, Mn, Ti, Si, Ca, Mg, Na, K, the average RPM chemistry is not dependent on C* and Y* in most world hydroregions, except in the tropical hydrobelt where it is controlled by basin relief. By contrast, the particulate organic carbon content (POC, as a percentage of RPM is inversely correlated to TSS concentrations for (i intra-station measurements in any hydroregion, and (ii inter-station average POC and TSS figures in world rivers. TSS controls heavy metal content (ppm in highly contaminated basins (e.g. Cd in the Seine vs the Rhone, and total metal concentration (ng/L in all cases. Relations between RPM composition and TSS should be taken into account

  16. Mass and elemental concentrations of air bone particles at Kuala Lumpur site in 2000 to 2006

    International Nuclear Information System (INIS)

    Abdul Khalik Wood; Mohd Suhaimi Hamzah; Shamsiah Abdul Rahman

    2008-01-01

    Atmospheric Pollution due to air bone particle is a major concern to many cities in the Southeast Asian region, including Kuala Lumpur. Within the last six years air particulate samples have been collected from a site in Kuala Lumpur and measured for their PM10, PM2.5 and elemental concentrations. The results showed that the daily PM10 (<10μ diameter) concentrations were generally acceptable but the values occasionally very high, especially during the haze episodes. The PM10 annual average values were just below the national set standard and these values were mostly contributed by the fine particles (<2μ diameter) concentration. The annual average for PM2.5 (fine particle) concentrations over the past few years were considerably high where elemental carbon, sulfur and potassium were the main components. (Author)

  17. Experimental study of different carbon dust growth mechanisms

    International Nuclear Information System (INIS)

    Arnas, C.; Dominique, C.; Roubin, P.; Martin, C.; Laffon, C.; Parent, P.; Brosset, C.; Pegourie, B.

    2005-01-01

    Laboratory experiments are proposed to understand the growth mechanisms of spheroid carbon dust grains observed in Tokamaks with inside wall elements in graphite based materials. Different categories of solid grains in the nanometer size range are produced from graphite sputtering in rare gas plasmas. Dense primary particles are observed either individually or in the form of spherical agglomerates. The agglomeration process is likely to be stopped by Coulomb repulsion. Other particulates of higher size and cauliflower texture are formed by atomic-molecule accretion. Examples of these different cases are presented with specific characteristics provided by ex situ diagnostics. A comparison with dust samples collected in Tore Supra or observed in other Tokamaks is proposed

  18. Chemical Composition and Emission Sources of the Fine Particulate Matters in a Southeast Asian Mega City (Dhaka, Bangladesh)

    Science.gov (United States)

    Salam, Abdus

    2016-04-01

    Air pollution has significant impact on human health, climate change, agriculture, visibility reduction, and also on the atmospheric chemistry. There are many studies already reported about the direct relation of the human mortality and morbidity with the increase of the atmospheric particulate matters. Especially, fine particulate matters can easily enter into the human respiratory system and causes many diseases. Particulate matters have the properties to absorb the solar radiation and impact on the climate. Dhaka, Bangladesh is a densely populated mega-city in the world. About 16 million inhabitants are living within an area of 360 square kilometers. Air quality situation has been degrading due to unplanned growth, increasing vehicles, severe traffic jams, brick kilns, industries, construction, and also transboundary air pollution. A rapidly growing number of vehicles has worsen the air quality in spite of major policy interventions, e.g., ban of two-stroke and three-wheeled vehicles, phase out of 20 years old vehicles, conversion to compressed natural gas (CNGs), etc. Introduction of CNGs to reduce air pollution was not the solution for fine particles at all, as evidence shows that CNGs and diesel engines are the major sources of fine particles. High concentration of the air pollutants in Dhaka city such as PM, carbonaceous species (black and organic carbon), CO, etc. has already been reported. PM2.5 mass, chemical composition (e.g., BC, OC, SO42-, NO3-, trace elements, etc.), aerosol Optical Depth (AOD) and emission sources of our recent measurements at the highly polluted south East Asian Mega city (Dhaka) Bangladesh will be presented in the conference. PM2.5 samples were collected on filters with Digital PM2.5 sampler (Switzerland) and Air photon, USA. BC was measured from filters (with thermal and optical method) and also real time with an Aethalometer AE42 (Magee Scitific., USA). Water soluble ions were determined from filters with ion chromatogram. AOD

  19. Water column distribution and carbon isotopic signal of cholesterol, brassicasterol and particulate organic carbon in the Atlantic sector of the Southern Ocean

    Directory of Open Access Journals (Sweden)

    A.-J. Cavagna

    2013-04-01

    Full Text Available The combination of concentrations and δ13C signatures of Particulate Organic Carbon (POC and sterols provides a powerful approach to study ecological and environmental changes in both the modern and ancient ocean. We applied this tool to study the biogeochemical changes in the modern ocean water column during the BONUS-GoodHope survey (February–March 2008 from Cape Basin to the northern part of the Weddell Gyre. Cholesterol and brassicasterol were chosen as ideal biomarkers of the heterotrophic and autotrophic carbon pools, respectively, because of their ubiquitous and relatively refractory nature. We document depth distributions of concentrations (relative to bulk POC and δ13C signatures of cholesterol and brassicasterol combined with CO2 aq. surface concentration variation. While the relationship between CO2 aq. and δ13C of bulk POC and biomarkers have been reported by others for the surface water, our data show that this persists in mesopelagic and deep waters, suggesting that δ13C signatures of certain biomarkers in the water column could be applied as proxies for surface water CO2 aq. We observed a general increase in sterol δ13C signatures with depth, which is likely related to a combination of particle size effects, selective feeding on larger cells by zooplankton, and growth rate related effects. Our data suggest a key role of zooplankton fecal aggregates in carbon export for this part of the Southern Ocean (SO. Additionally, in the southern part of the transect south of the Polar Front (PF, the release of sea-ice algae during the ice demise in the Seasonal Ice Zone (SIZ is hypothesized to influence the isotopic signature of sterols in the open ocean. Overall, the combined use of δ13C values and concentrations measurements of both bulk organic C and specific sterols throughout the water column offers the promising potential to explore the recent history of plankton and the fate of organic matter in the SO.

  20. Bacterial uptake of photosynthetic carbon from freshwater phytoplankton

    International Nuclear Information System (INIS)

    Coveney, M.F.

    1982-01-01

    Microheterotrophic uptake of algal extracellular products was studied in two eutrophic lakes in southern Sweden. Size fractionation was used in H 14 CO 3 uptake experiments to measure 14 C fixation in total particulate, small particulate and dissolved organic fractions. Carbon fixed in algal photosynthesis was recovered as dissolved and small particulate 14 C, representing excretion and bacterial uptake of algal products. Estimated gross extracellular release was low in these eutrophic systems, 1 to 7% of total 14 C uptake per m 2 lake surface. From 28 to 80 % of 14 C released was recovered in the small particulate fraction after ca. 4h incubation.This percentage was uniform within each depth profile, but varied directly with in situ water temperature. Laboratory time-series incubations indicated steady state for the pool of algal extracellular products on one occasion, while increasing pool size was indicated in the remaining two experiments. Uptake of photosynthetic carbon to small particles in situ was 32 to 95% of estimted heterotrophic bacterial production (as dark 14 CO 2 uptake) on four occasions. While excretion apparently was not an important loss of cabon for phytoplankton, it may have represented an important carbon source for planktonic bacteria. (author)

  1. Elemental Concentration of Inhalable and Respirable Particulate ...

    African Journals Online (AJOL)

    20537 and respirable foam for I.O.M sampler. The elemental composition (Co, Ni, Zn, Cu, Fe, Pb, Cr, Mn and Cd) were analyzed by using Atomic Absorption Spectrophotometric (AAS). The data generated were subjected to descriptive analysis. In inhalable fraction,the enrichment factor ranged from 1-73.3 while in respirable ...

  2. Nondestructive multielement analyses of airborne particulates by combined uses of instrumental neutron activation analysis and energy dispersive X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Mamuro, Tetsuo; Matsuda, Yatsuka; Mizohata, Akira

    1974-01-01

    Combined uses of instrumental neutron activation analysis and energy dispersive X-ray fluorescence analysis make it possible to analyze nondestructively a considerably large number of elements in airborne particulates. We have confirmed that up to 45 elements can be analyzed without any chemical procedures for urban airborne particulate samples. As the radiation spectrometry by semiconductor detectors and the automatic data reduction by electronic computation are quite common to the two techniques, combined uses of them produce no special annoyance. Several elements can be analyzed by both of them and therefore the reliability of the analytical results can be comfirmed by comparing the data obtained by them with each other. It is noted that this confirmation can be made for the very same sample. In this article are described our experiences of multielement analyses of airborne particulates and some problems to be solved in further studies. (auth.)

  3. INAA for the characterization of airborne particulate matter from the industrial area of Islamabad city

    International Nuclear Information System (INIS)

    Wasim, M.; Rahman, A.; Waheed, S.; Daud, M.; Ahmad, S.

    2003-01-01

    Air particulate matter (PM) was collected in two size fractions using stacked filter units (SFUs) provided by the International Atomic Energy Agency (IAEA) from the industrial area of Islamabad. Nucleopore polycarbonate filters were used for collecting from Oct 98 to Jun 99 the particulate matter in coarse and fine size fractions. The samples were characterized by the instrumental neutron activation analysis (INAA). About 33 elements were quantified using different irradiation and counting protocols. (author)

  4. Particulate morphology of waste cooking oil biodiesel and diesel in a heavy duty diesel engine

    Science.gov (United States)

    Hwang, Joonsik; Jung, Yongjin; Bae, Choongsik

    2014-08-01

    The effect of biodiesel produced from waste cooking oil (WCO) on the particulate matters (PM) of a direct injection (DI) diesel engine was experimentally investigated and compared with commercial diesel fuel. Soot agglomerates were collected with a thermophoretic sampling device installed in the exhaust pipe of the engine. The morphology of soot particles was analyzed using high resolution transmission electron microscopy (TEM). The elemental and thermogravimetric analysis (TGA) were also conducted to study chemical composition of soot particles. Based on the TEM images, it was revealed that the soot derived from WCO biodiesel has a highly graphitic shell-core arrangement compared to diesel soot. The mean size was measured from averaging 400 primary particles for WCO biodiesel and diesel respectively. The values for WCO biodiesel indicated 19.9 nm which was smaller than diesel's 23.7 nm. From the TGA results, WCO biodiesel showed faster oxidation process. While the oxidation of soot particles from diesel continued until 660°C, WCO biodiesel soot oxidation terminated at 560°C. Elemental analysis results showed that the diesel soot was mainly composed of carbon and hydrogen. On the other hand, WCO biodiesel soot contained high amount of oxygen species.

  5. Size distribution of airbone particulates in monazite dust

    International Nuclear Information System (INIS)

    Cunha, K.M.A.D. da; Carvalho, S.M.M.; Leite, C.V.B.; Baptista, G.B.; Paschoa, A.S.

    1988-01-01

    A six-stage cascade impactor was used to collect airborne dust particulates in the grinding area of a Monazite sepation plant. The samples were analysis using particle-induced X-ray emission (PIXE) to determine the elemental concentrations, with special attention to thorium and uranium concentrations. The particle size distribution of the samples containing thorium and uranium were determined. The mass median aerodynamic diameter (MMAD) obtained was 1.15 μm for both elements. The activity median aerodynamic diameter (AMAD) was estimated based on the MMAD. The results are compared with ICRP recommendations for derived air concentrations (DAC) for thorium and uranium in restricted areas [pt

  6. Carbon nanotubes doped with trivalent elements by using back - scattering Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    S. A. Babanejad

    2008-12-01

    Full Text Available  In this paper by using DC arc discharge method and acetylene gas, as the carbon source, and nitrogen, as the carrier gas, canrbon nanotubes, CNTs, doped with trivalent element boron, B, have been produced. The deposited CNTs on the cathod electrod, which have structural doped properties to boron element, have been collected and after purification have been investigated by back-scattering Raman spectroscopy. The results reveal that the high frequency G mode component in CNTs doped with electron acceptor element, B, shift to higher wavenumbers. The low frequency G mode component which can appear at approximately 1540–1570 cm-1 wavenumber region, called BWF mode, is a sign of metallic CNT. In the synthesized doped CNTs due to the presence of boron dopant, D mode has sharp peaks and has relatively high intensity in the Raman spectra .

  7. Thermodynamic Properties of Aqueous Carbonate Species and Solid Carbonate Phases of Selected Trace Elements pertinent to Drinking Water Standards of the U.S. Environmental Protection Agency

    Energy Technology Data Exchange (ETDEWEB)

    Apps, John A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wilkin, Richard T. [US Environmental Protection Agency (EPA), Cincinnati, OH (United States)

    2015-09-30

    This report contains a series of tables summarizing the thermodynamic properties of aqueous carbonate complexes and solid carbonate phases of the following elements: arsenic (As), barium (Ba), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), manganese (Mn), mercury (Hg), nickel (Ni) thallium (Tl), uranium (U) and zinc (Zn). Most of these elements are potentially hazardous as defined by extant primary drinking water standards of the United States Environmental Protection Agency (EPA). The remainder are not considered hazardous, but are either listed by EPA under secondary standards, or because they can adversely affect drinking water quality. Additional tables are included giving the thermodynamic properties for carbonates of the alkali metal and alkali earth elements, sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), and strontium (Sr), because of their value in developing correlative models to estimate the thermodynamic properties of carbonate minerals for which no such data currently exist. The purpose in creating the tables in this report is to provide future investigators with a convenient source for selecting and tracing the sources of thermodynamic data of the above listed elements for use in modeling their geochemical behavior in “underground sources of drinking water” (USDW). The incentive for doing so lies with a heightened concern over the potential consequences of the proposed capture and storage of carbon dioxide (CO2) generated by fossil fuel fired power plants in deep subsurface reservoirs. If CO2 were to leak from such reservoirs, it could migrate upward and contaminate USDWs with undesirable, but undetermined, consequences to water quality. The EPA, Office of Research and Development, through an Interagency Agreement with the U.S. Department of Energy at the Lawrence Berkeley National Laboratory, funded the preparation of this report.

  8. Evolution of the Lunar Receiving Laboratory to the Astromaterial Sample Curation Facility: Technical Tensions Between Containment and Cleanliness, Between Particulate and Organic Cleanliness

    Science.gov (United States)

    Allton, J. H.; Zeigler, R. A.; Calaway, M. J.

    2016-01-01

    The Lunar Receiving Laboratory (LRL) was planned and constructed in the 1960s to support the Apollo program in the context of landing on the Moon and safely returning humans. The enduring science return from that effort is a result of careful curation of planetary materials. Technical decisions for the first facility included sample handling environment (vacuum vs inert gas), and instruments for making basic sample assessment, but the most difficult decision, and most visible, was stringent biosafety vs ultra-clean sample handling. Biosafety required handling of samples in negative pressure gloveboxes and rooms for containment and use of sterilizing protocols and animal/plant models for hazard assessment. Ultra-clean sample handling worked best in positive pressure nitrogen environment gloveboxes in positive pressure rooms, using cleanable tools of tightly controlled composition. The requirements for these two objectives were so different, that the solution was to design and build a new facility for specific purpose of preserving the scientific integrity of the samples. The resulting Lunar Curatorial Facility was designed and constructed, from 1972-1979, with advice and oversight by a very active committee comprised of lunar sample scientists. The high precision analyses required for planetary science are enabled by stringent contamination control of trace elements in the materials and protocols of construction (e.g., trace element screening for paint and flooring materials) and the equipment used in sample handling and storage. As other astromaterials, especially small particles and atoms, were added to the collections curated, the technical tension between particulate cleanliness and organic cleanliness was addressed in more detail. Techniques for minimizing particulate contamination in sample handling environments use high efficiency air filtering techniques typically requiring organic sealants which offgas. Protocols for reducing adventitious carbon on sample

  9. Real-time diesel particulate monitor for underground mines.

    Science.gov (United States)

    Noll, James; Janisko, Samuel; Mischler, Steven E

    The standard method for determining diesel particulate matter (DPM) exposures in underground metal/ nonmetal mines provides the average exposure concentration for an entire working shift, and several weeks might pass before results are obtained. The main problem with this approach is that it only indicates that an overexposure has occurred rather than providing the ability to prevent an overexposure or detect its cause. Conversely, real-time measurement would provide miners with timely information to allow engineering controls to be deployed immediately and to identify the major factors contributing to any overexposures. Toward this purpose, the National Institute for Occupational Safety and Health (NIOSH) developed a laser extinction method to measure real-time elemental carbon (EC) concentrations (EC is a DPM surrogate). To employ this method, NIOSH developed a person-wearable instrument that was commercialized in 2011. This paper evaluates this commercial instrument, including the calibration curve, limit of detection, accuracy, and potential interferences. The instrument was found to meet the NIOSH accuracy criteria and to be capable of measuring DPM concentrations at levels observed in underground mines. In addition, it was found that a submicron size selector was necessary to avoid interference from mine dust and that cigarette smoke can be an interference when sampling in enclosed cabs.

  10. Effect of rare earth oxide addition on microstructures of ultra-fine WC-Co particulate reinforced Cu matrix composites prepared by direct laser sintering

    International Nuclear Information System (INIS)

    Gu Dongdong; Shen Yifu; Zhao Long; Xiao Jun; Wu Peng; Zhu Yongbing

    2007-01-01

    This paper presents a detailed investigation into the influence of the rare earth (RE) oxide (La 2 O 3 ) addition upon the densification and the resultant microstructural characteristics of the submicron WC-Co particulate reinforced Cu matrix composites prepared by direct laser sintering. It is found that the relative density of the laser sintered sample with 1 wt.% La 2 O 3 addition increased by 11.5% as compared with the sample without RE addition. The addition of RE element favored the microstructural refinement and improved the particulate dispersion homogeneity and the particulate/matrix interfacial coherence. The metallurgical functions of the RE element in improving the sinterability were also addressed. It shows that due to the unique properties of RE element such as high surface activity and large atomic radius, the addition of trace RE element can decrease the surface tension of the melt, resist the grain growth coarsening and increase the heterogeneous nucleation rate during laser sintering

  11. Measurements of light absorbing particulates on the glaciers in the Cordillera Blanca, Peru

    Science.gov (United States)

    Schmitt, C. G.; All, J. D.; Schwarz, J. P.; Arnott, W. P.; Cole, R. J.; Lapham, E.; Celestian, A.

    2014-10-01

    Glaciers in the tropical Andes have been rapidly losing mass since the 1970s. In addition to the documented increase in air temperature, increases in light absorbing particulates deposited on glaciers could be contributing to the observed glacier loss. Here we report on measurements of light absorbing particulates sampled from glaciers during three surveys in the Cordillera Blanca in Peru. During three research expeditions in the dry seasons (May-August) of 2011, 2012 and 2013, two hundred and forty snow samples were collected from fifteen mountain peaks over altitudes ranging from 4800 to nearly 6800 m. Several mountains were sampled each of the three expeditions and some mountains were sampled multiple times during the same expedition. Collected snow samples were melted and filtered in the field then later analyzed using the Light Absorption Heating Method (LAHM), a new technique that measures the ability of particulates on filters to absorb visible light. LAHM results have been calibrated using filters with known amounts of fullerene soot, a common industrial surrogate for black carbon (BC). As sample filters often contain dust in addition to BC, results are presented in terms of effective Black Carbon (eBC). During the 2013 survey, snow samples were collected and kept frozen for analysis with a Single Particle Soot Photometer (SP2). Calculated eBC mass from the filter analysis and the SP2 refractory Black Carbon (rBC) results were well correlated (r2 = 0.92). These results indicate that a substantial portion of the light absorbing particulates in the more polluted areas were likely BC. The three years of data show that glaciers in the Cordillera Blanca Mountains close to human population centers have substantially higher levels of eBC (as high as 70 ng g-1) than remote glaciers (as low as 2.0 ng g-1 eBC), indicating that population centers can influence local glaciers by sourcing BC.

  12. Volatile elements - water, carbon, nitrogen, noble gases - on Earth

    Science.gov (United States)

    Marty, B.

    2017-12-01

    Understanding the origin and evolution of life-bearing volatile elements (water, carbon, nitrogen) on Earth is a fruitful and debated area of research. In his pioneering work, W.W. Rubey inferred that the terrestrial atmosphere and the oceans formed from degassing of the mantle through geological periods of time. Early works on noble gas isotopes were consistent with this view and proposed a catastrophic event of mantle degassing early in Earth's history. We now have evidence, mainly from noble gas isotopes, that several cosmochemical sources contributed water and other volatiles at different stages of Earth's accretion. Potential contributors include the protosolar nebula gas that equilibrated with magma oceans, inner solar system bodies now represented by chondrites, and comets. Stable isotope ratios suggest volatiles where primarily sourced by planetary bodies from the inner solar system. However, recent measurements by the European Space Agency Rosetta probe on the coma of Comet 67P/Churyumov-Gerasimenko permit to set quantitative constraints on the cometary contribution to the surface of our planet. The surface and mantle reservoirs volatile elements exchanged volatile elements through time, with rates that are still uncertain. Some mantle regions remained isolated from whole mantle convection within the first tens to hundreds million years after start of solar system formation. These regions, now sampled by some mantle plumes (e.g., Iceland, Eifel) preserved their volatile load, as indicated by extinct and extant radioactivity systems. The abundance of volatile elements in the mantle is still not well known. Different approaches, such as high pressure experimental petrology, noble gas geochemistry, modelling, resulted in somewhat contrasted estimates, varying over one order of magnitude for water. Comparative planetology, that is, the study of volatiles on the Moon, Venus, Mars, Vesta, will shed light on the sources and strengths of these elements in the

  13. Establishing aeolian particulate 'fingerprints' in an airport environment using magnetic measurements and SEM/EDAX

    Science.gov (United States)

    Jones, Sue; Hoon, Stephen R.; Richardson, Nigel; Bennett, Michael

    2016-04-01

    investigate source attribution. The results indicate that the dusts collected from the various aircraft sources (i.e. engines, brakes and tyres) are significantly different in terms of magnetic mineral type and grain size. Furthermore, particulates deposited at different locations on the runway surface show significant differentiation in magnetic grain size and mineralogy which when compared with the results from the different aircraft sources suggest that they may relate to emissions from different sources at various stages of the take/off landing cycle. Results of SEM/EDAX analysis show that aircraft engine, brake and tyre dust particulates vary significantly in terms of morphology and chemical composition. All sources include respirable (sub 10 micron) particulates. Engine dusts are carbon and silicon rich dominated by angular particulates. They have a distinctive chemical composition including Chromium, Cobalt and Nickel. Tyre dusts are predominantly carbon based dominated by spherical particulates and a unique presence of Zinc. Brake dusts, carbon and oxygen dominated and trace metals, include sub-angular particulates but an absence of the characteristic engine and tyre dusts metals. By combining SEM/EDAX measurements and magnetic measurements we are establishing potential fingerprints for particulates from ground based air transport activities to enable identification of potential health hazards. This will help inform management plans for reduction of associated risks to the environment and health. References Bucko, M., Magiera, T., Pesonen, L., Janus, B. (2010) 'Magnetic, geochemical and microstructural characteristics of road dust on roadsides with different traffic volumes - Case study from Finland' Water, Air and Soil Pollution 209, pp. 295-306. Hunt, A., Jones, J. and Oldfield, F. (1984) 'Magnetic measurements and heavy metals in atmospheric particulates of anthropogenic origin' The Science of the Total Environment 33, 129-139. Jones, S., Richardson, N., Bennett, M

  14. Air pollution studies in terms of PM2.5, PM2.5-10, PM10, lead and black carbon in urban areas of Antananarivo-Madagascar

    International Nuclear Information System (INIS)

    Rasoazanany, E. O.; Andriamahenina, N. N.; Ravoson, H. N.; Raoelina Andriambololona; Randriamanivo, L. V.; Ramaherison, H.; Ahmed, H.; Harinoely, M.

    2011-01-01

    Atmospheric aerosols or particulate matters are chemically complex and dynamic mixtures of solid and liquid particles. Sources of particulate matters include both natural and anthropogenic processes. The present work consists in determining the concentrations of existing elements in the aerosols collected in Andravoahangy and in Ambodin Isotry in Antananarivo city (Madagascar). The size distribution of these elements and their main sources are also studied.The Total Reflection X-Ray Fluorescence spectrometer is used for the qualitative and quantitative analyses. The results show that the concentrations of the airborne particulate matters PM 2.5-10 are higher than those of PM 2.5 .The identified elements in the aerosol samples are Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Sr and Pb. The average concentrations of these elements are also higher in the coarse particles than in the fine particles. The calculation of the enrichment factors by Mason's model shows that Cr, Ni, Cu, Zn, Br and Pb are of anthropogenic origins. The average concentrations of lead (2.8 ng.m -3 , 31.3 ng.m -3 and 19.6 ng.m -3 respectively in aerosols collected in Andravoahangy in 2007 and in 2008 and in Ambodin Isotry in 2008) are largely lower than the average concentration of 1.8 μg.m -3 obtained in 2000 in the Antananarivo urban areas. The concentration of black carbon is higher in the fine particles. The Air Quality Index category is variable in the two sites.

  15. Activation analysis of air particulate matter

    International Nuclear Information System (INIS)

    Alian, A.; Sansoni, B.

    1988-11-01

    This review on activation analysis of air particulate matter is an extended and updated version of a review given by the same authors in 1985. The main part is aimed at the analytical scheme and refers to rules and techniques for sampling, sample and standard preparation, irradiation and counting procedures, as well as data processing, - evaluation, and - presentation. Additional chapters deal with relative and monostandard methods, the use of activation analysis for atmosphere samples in various localities, and level of toxic and other elements in the atmosphere. The review contains 190 references. (RB)

  16. Carbon allocation and element composition in four Chlamydomonas mutants defective in genes related to the CO2 concentrating mechanism

    Czech Academy of Sciences Publication Activity Database

    Memmola, F.; Mukherjee, B.; Moroney, James V.; Giordano, Mario

    2014-01-01

    Roč. 121, 2-3 (2014), s. 201-211 ISSN 0166-8595 Institutional support: RVO:61388971 Keywords : Chlamydomonas mutants * carbon * carbon dioxide * elemental stoichiometry Subject RIV: EE - Microbiology, Virology Impact factor: 3.502, year: 2014

  17. Coaxial carbon plasma gun deposition of amorphous carbon films

    Science.gov (United States)

    Sater, D. M.; Gulino, D. A.; Rutledge, S. K.

    1984-01-01

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented.

  18. Coaxial carbon plasma gun deposition of amorphous carbon films

    International Nuclear Information System (INIS)

    Sater, D.M.; Gulino, D.A.

    1984-03-01

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented

  19. Regenerable Carbon Filter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A Regenerable Carbon Filter (RCF) is proposed for the removal of carbonaceous particulate matter produced in Environmental Control and Life Support (ECLS) processes....

  20. Human and Environmental Dangers Posed by Ongoing Global Tropospheric Aerosolized Particulates for Weather Modification.

    Science.gov (United States)

    Herndon, J Marvin

    2016-01-01

    U.S. military perception of nuclear warfare led to countless unethical nuclear experiments performed on unsuspecting individuals without their informed consent. As evidenced here, subsequent perception of weather warfare has led to exposing millions of unsuspecting individuals to toxic coal fly ash with no public disclosure, no informed consent, and no health warnings. Three methods were used: (1) comparison of eight elements analyzed in rainwater samples, thought to have leached from aerosolized coal fly ash, with corresponding coal fly ash laboratory leachate; (2) comparison of 14 elements analyzed in air filter dust with corresponding elements in coal fly ash; and (3) comparison of 23 elements analyzed in fibrous mesh found after snow melted with corresponding elements in coal fly ash. The rainwater element ratios show that the aerial particulate matter has essentially the same water-leach characteristics as coal fly ash. The air filter dust element ratios occur in the same range of compositions as coal fly ash, as do element ratios in fibrous mesh found on grass after snow melted. The fibrous mesh provides an inferred direct connection with the aerosolizing jet aircraft via coal fly ash association with the jet combustion environment. Strong evidence for the correctness of the hypothesis: coal fly ash is likely the aerosolized particulate emplaced in the troposphere for geoengineering, weather modification, and/or climate alteration purposes. The documented public health associations for ≤2.5 μm particulate pollution are also applicable to aerosolized coal fly ash. The ability of coal fly ash to release aluminum in a chemically mobile form upon exposure to water or body moisture has potentially grave human and environmental consequences over a broad spectrum, including implications for neurological diseases and biota debilitation. The ability of coal fly ash to release heavy metals and radioactive elements upon exposure to body moisture has potentially

  1. Genome-wide identification of regulatory elements and reconstruction of gene regulatory networks of the green alga Chlamydomonas reinhardtii under carbon deprivation.

    Directory of Open Access Journals (Sweden)

    Flavia Vischi Winck

    Full Text Available The unicellular green alga Chlamydomonas reinhardtii is a long-established model organism for studies on photosynthesis and carbon metabolism-related physiology. Under conditions of air-level carbon dioxide concentration [CO2], a carbon concentrating mechanism (CCM is induced to facilitate cellular carbon uptake. CCM increases the availability of carbon dioxide at the site of cellular carbon fixation. To improve our understanding of the transcriptional control of the CCM, we employed FAIRE-seq (formaldehyde-assisted Isolation of Regulatory Elements, followed by deep sequencing to determine nucleosome-depleted chromatin regions of algal cells subjected to carbon deprivation. Our FAIRE data recapitulated the positions of known regulatory elements in the promoter of the periplasmic carbonic anhydrase (Cah1 gene, which is upregulated during CCM induction, and revealed new candidate regulatory elements at a genome-wide scale. In addition, time series expression patterns of 130 transcription factor (TF and transcription regulator (TR genes were obtained for cells cultured under photoautotrophic condition and subjected to a shift from high to low [CO2]. Groups of co-expressed genes were identified and a putative directed gene-regulatory network underlying the CCM was reconstructed from the gene expression data using the recently developed IOTA (inner composition alignment method. Among the candidate regulatory genes, two members of the MYB-related TF family, Lcr1 (Low-CO 2 response regulator 1 and Lcr2 (Low-CO2 response regulator 2, may play an important role in down-regulating the expression of a particular set of TF and TR genes in response to low [CO2]. The results obtained provide new insights into the transcriptional control of the CCM and revealed more than 60 new candidate regulatory genes. Deep sequencing of nucleosome-depleted genomic regions indicated the presence of new, previously unknown regulatory elements in the C. reinhardtii genome

  2. Electrification of particulate entrained fluid flows-Mechanisms, applications, and numerical methodology

    Science.gov (United States)

    Wei, Wei; Gu, Zhaolin

    2015-10-01

    distribution and mechanical behaviors of liquid surface can be predicted by using this method. The methodology combining particle charging model with Computational Fluid Dynamics (CFD) and Discrete element method (DEM) is applicable to study the particle charging/charged processes in gas-solid two phase flows, the influence factors of particle charging, such as gas-particle interaction, contact force, contact area, and various velocities, are described systematically. This review would explore a clear understanding of the particulate charging and provide theoretical references to control and utilize the charging/charged particulate entrained fluid system.

  3. Electrification of particulate entrained fluid flows—Mechanisms, applications, and numerical methodology

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wei [School of Energy and Power Engineering, Wuhan University of Technology, Wuhan, Hubei, 430063 (China); School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049 (China); Gu, Zhaolin, E-mail: guzhaoln@mail.xjtu.edu.cn [School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049 (China)

    2015-10-28

    charge distribution and mechanical behaviors of liquid surface can be predicted by using this method. The methodology combining particle charging model with Computational Fluid Dynamics (CFD) and Discrete element method (DEM) is applicable to study the particle charging/charged processes in gas–solid two phase flows, the influence factors of particle charging, such as gas–particle interaction, contact force, contact area, and various velocities, are described systematically. This review would explore a clear understanding of the particulate charging and provide theoretical references to control and utilize the charging/charged particulate entrained fluid system.

  4. Electrification of particulate entrained fluid flows—Mechanisms, applications, and numerical methodology

    International Nuclear Information System (INIS)

    Wei, Wei; Gu, Zhaolin

    2015-01-01

    charge distribution and mechanical behaviors of liquid surface can be predicted by using this method. The methodology combining particle charging model with Computational Fluid Dynamics (CFD) and Discrete element method (DEM) is applicable to study the particle charging/charged processes in gas–solid two phase flows, the influence factors of particle charging, such as gas–particle interaction, contact force, contact area, and various velocities, are described systematically. This review would explore a clear understanding of the particulate charging and provide theoretical references to control and utilize the charging/charged particulate entrained fluid system.

  5. Cashew nut roasting: Chemical characterization of particulate matter and genotocixity analysis

    International Nuclear Information System (INIS)

    Oliveira Galvão, Marcos Felipe de; Melo Cabral, Thiago de; André, Paulo Afonso de; Fátima Andrade, Maria de; Miranda, Regina Maura de; Saldiva, Paulo Hilário Nascimento; Castro Vasconcellos, Pérola de; Batistuzzo de Medeiros, Silvia Regina

    2014-01-01

    Background: Particulate matter (PM) is potentially harmful to health and related to genotoxic events, an increase in the number of hospitalizations and mortality from respiratory and cardiovascular diseases. The present study conducted the first characterization of elemental composition and polycyclic aromatic hydrocarbon (PAH) analysis of PM, as well as the biomonitoring of genotoxic activity associated to artisanal cashew nut roasting, an important economic and social activity worldwide. Methods: The levels of PM 2.5 and black carbon were also measured by gravimetric analysis and light reflectance. The elemental composition was determined using X-ray fluorescence spectrometry and PAH analysis was carried out by gas chromatography–mass spectrometry. Genotoxic activity was measured by the Tradescantia pallida micronucleus bioassay (Trad-MCN). Other biomarkers of DNA damage, such as nucleoplasmic bridges and nuclear fragments, were also quantified. Results: The mean amount of PM 2.5 accumulated in the filters (January 2124.2 µg/m 3 ; May 1022.2 µg/m 3 ; September 1291.9 µg/m 3 ), black carbon (January 363.6 µg/m 3 ; May 70 µg/m 3 ; September 69.4 µg/m 3 ) and concentrations of Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br and Pb were significantly higher than the non-exposed area. Biomass burning tracers K, Cl, and S were the major inorganic compounds found. Benzo[k]fluoranthene, indene[1,2,3-c,d]pyrene, benzo[ghi]perylene, phenanthrene and benzo[b]fluoranthene were the most abundant PAHs. Mean benzo[a]pyrene-equivalent carcinogenic power values showed a significant cancer risk. The Trad-MCN bioassay revealed an increase in micronucleus frequency, 2–7 times higher than the negative control and significantly higher in all the months analyzed, possibly related to the mutagenic PAHs found. Conclusions: This study demonstrated that artisanal cashew nut roasting is a serious occupational problem, with harmful effects on workers' health. Those

  6. Springtime carbon emission episodes at the Gosan background site revealed by total carbon, stable carbon isotopic composition, and thermal characteristics of carbonaceous particles

    Directory of Open Access Journals (Sweden)

    J. Jung

    2011-11-01

    Full Text Available In order to investigate the emission of carbonaceous aerosols at the Gosan background super-site (33.17° N, 126.10° E in East Asia, total suspended particles (TSP were collected during spring of 2007 and 2008 and analyzed for particulate organic carbon, elemental carbon, total carbon (TC, total nitrogen (TN, and stable carbon isotopic composition (δ13C of TC. The stable carbon isotopic composition of TC (δ13CTC was found to be lowest during pollen emission episodes (range: −26.2‰ to −23.5‰, avg. −25.2 ± 0.9‰, approaching those of the airborne pollen (−28.0‰ collected at the Gosan site. Based on a carbon isotope mass balance equation, we found that ~42% of TC in the TSP samples during the pollen episodes was attributed to airborne pollen from Japanese cedar trees planted around tangerine farms in Jeju Island. A negative correlation between the citric acid-carbon/TC ratios and δ13CTC was obtained during the pollen episodes. These results suggest that citric acid emitted from tangerine fruit may be adsorbed on the airborne pollen and then transported to the Gosan site. Thermal evolution patterns of organic carbon during the pollen episodes were characterized by high OC evolution in the OC2 temperature step (450 °C. Since thermal evolution patterns of organic aerosols are highly influenced by their molecular weight, they can be used as additional information on the formation of secondary organic aerosols and the effect of aging of organic aerosols during the long-range atmospheric transport and sources of organic aerosols.

  7. Organic Compounds, Trace Elements, Suspended Sediment, and Field Characteristics at the Heads-of-Tide of the Raritan, Passaic, Hackensack, Rahway, and Elizabeth Rivers, New Jersey, 2000-03

    Science.gov (United States)

    Bonin, Jennifer L.; Wilson, Timothy P.

    2006-01-01

    Concentrations of suspended sediment, particulate and dissolved organic carbon, trace elements, and organic compounds were measured in samples from the heads-of-tide of the five tributaries to the Newark and Raritan Bays during June 2000 to June 2003. The samples were collected as part of the New Jersey Department of Environmental Protection Toxics Reduction Workplan/Contaminant Assessment Reduction Program. Samples of streamwater were collected at water-quality sampling stations constructed near U.S. Geological Survey gaging stations on the Raritan, Passaic, Hackensack, Rahway, and Elizabeth Rivers. Sampling was conducted during base-flow conditions and storms. Constituent concentrations were measured to determine the water quality and to calculate the load of sediment and contaminants contributed to the bays from upstream sources. Water samples were analyzed for suspended sediment, dissolved organic carbon, particulate organic carbon, and specific conductance. Samples of suspended sediment and water were analyzed for 98 distinct polychlorinated biphenyl congeners, 7 dioxins, 10 furans, 27 pesticides, 26 polycyclic aromatic hydrocarbons, and the trace elements cadmium, lead, mercury, and methyl-mercury. Measurements of ultra-low concentrations of organic compounds in sediment and water were obtained by collecting 1 to 3 grams of suspended sediment on glass fiber filters and by passing at least 20 liters of filtered water through XAD-2 resin. The extracted sediment and XAD-2 resin were analyzed for organic compounds by high- and low-resolution gas chromatography mass-spectrometry that uses isotope dilution procedures. Trace elements in filtered and unfiltered samples were analyzed for cadmium, lead, mercury, and methyl-mercury by inductively coupled charged plasma and mass-spectrometry. All constituent concentrations are raw data. Interpretation of the data will be completed in the second phase of the study.

  8. The application of x-ray fluorescence spectrometry for multielemental analysis of air particulate samples

    International Nuclear Information System (INIS)

    Mohamad Rashid Mohamad Yusoff

    1986-01-01

    The performance of XRF spectrometer as a tool for multielemental analysis of air pollution samples was discussed. The non-destructive couples with multielemental nature of the technique satisfactory sensitivity for most elements were the most important characteristics for its popularity as a method of analysis. Thus, the technique promises a significant reduction in cost and time of analysis. As a result, more extensive and revealing air particulates survey should be possible, with consequent improvements in the discovery and positive identification of particulate pollution sources. (author)

  9. Determination of trace elements in airborne particulate matter. Pt. 2

    International Nuclear Information System (INIS)

    Pamuk, F.; Kahraman, N.; Kut, D.

    1975-04-01

    Several trace elements are being introduced into the atmosphere from various sources. Since many of the trace elements are highly toxic, the concentrations of them should be measured and controlled continuously for public health. Concentrations of trace elements have been determined in air samples collected from seven different districts of Ankara by the use of instrumental neutron activation analysis and atomic absorption spectrophotometer. (Pamuk, F.; Kahraman, N.; Kut, D.)

  10. Organic Carbon and Trace Element Cycling in a River-Dominated Tidal Coastal Wetland System (Tampa Bay, FL, USA)

    Science.gov (United States)

    Moyer, R. P.; Smoak, J. M.; Engelhart, S. E.; Powell, C. E.; Chappel, A. R.; Gerlach, M. J.; Kemp, A.; Breithaupt, J. L.

    2016-02-01

    Tampa Bay is the largest open water, river-fed estuary in Florida (USA), and is characterized by the presence of both mangrove and salt marsh ecosystems. Both coastal wetland systems, and small rivers such as the ones draining into Tampa Bay have historically been underestimated in terms of their role in the global carbon and elemental cycles. Climate change and sea-level rise (SLR) are major threats in Tampa Bay and stand to disrupt hydrologic cycles, compromising sediment accumulation and the rate of organic carbon (OC) burial. This study evaluates organic carbon content, sediment accumulation, and carbon burial rates in salt marsh and mangrove ecosystems, along with measurements of fluxes of dissolved OC (DOC) and trace elements in the water column of the Little Manatee River (LMR) in Tampa Bay. The characterization of OC and trace elements in tidal rivers and estuaries is critical for quantitatively constraining these systems in local-to-regional scale biogeochemical budgets, and provide insight into biogeochemical processes occurring with the estuary and adjacent tidal wetlands. Material fluxes of DOC and trace elements were tied to discharge irrespective of season, and the estuarine habitats removed 15-65% of DOC prior to export to Tampa Bay and the Gulf of Mexico. Thus, material is available for cycling and burial within marsh and mangrove peats, however, LMR mangrove peats have higher OC content and burial rates than adjacent salt marsh peats. Sedimentary accretion rates in LMR marshes are not currently keeping pace with SLR, thus furthering the rapid marsh-to-mangrove conversions that have been seen in Tampa Bay over the past half-century. Additionally, wetlands in Tampa Bay tend to have a lower rate of carbon burial than other Florida tidal wetlands, demonstrating their high sensitivity to climate change and SLR.

  11. Evaluation of solid particle number and black carbon for very low particulate matter emissions standards in light-duty vehicles.

    Science.gov (United States)

    Chang, M-C Oliver; Shields, J Erin

    2017-06-01

    To reliably measure at the low particulate matter (PM) levels needed to meet California's Low Emission Vehicle (LEV III) 3- and 1-mg/mile particulate matter (PM) standards, various approaches other than gravimetric measurement have been suggested for testing purposes. In this work, a feasibility study of solid particle number (SPN, d50 = 23 nm) and black carbon (BC) as alternatives to gravimetric PM mass was conducted, based on the relationship of these two metrics to gravimetric PM mass, as well as the variability of each of these metrics. More than 150 Federal Test Procedure (FTP-75) or Supplemental Federal Test Procedure (US06) tests were conducted on 46 light-duty vehicles, including port-fuel-injected and direct-injected gasoline vehicles, as well as several light-duty diesel vehicles equipped with diesel particle filters (LDD/DPF). For FTP tests, emission variability of gravimetric PM mass was found to be slightly less than that of either SPN or BC, whereas the opposite was observed for US06 tests. Emission variability of PM mass for LDD/DPF was higher than that of both SPN and BC, primarily because of higher PM mass measurement uncertainties (background and precision) near or below 0.1 mg/mile. While strong correlations were observed from both SPN and BC to PM mass, the slopes are dependent on engine technologies and driving cycles, and the proportionality between the metrics can vary over the course of the test. Replacement of the LEV III PM mass emission standard with one other measurement metric may imperil the effectiveness of emission reduction, as a correlation-based relationship may evolve over future technologies for meeting stringent greenhouse standards. Solid particle number and black carbon were suggested in place of PM mass for the California LEV III 1-mg/mile FTP standard. Their equivalence, proportionality, and emission variability in comparison to PM mass, based on a large light-duty vehicle fleet examined, are dependent on engine

  12. Deposition and benthic mineralization of organic carbon

    DEFF Research Database (Denmark)

    Nordi, Gunnvor A.; Glud, Ronnie N.; Simonsen, Knud

    2018-01-01

    Seasonal variations in sedimentation and benthic mineralization of organic carbon (OC) were investigated in a Faroese fjord. Deposited particulate organic carbon (POC) was mainly of marine origin, with terrestrial material only accounting for b1%. On an annual basis the POC export fromthe euphotic...

  13. Elemental mercury vapor capture by powdered activated carbon in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Fabrizio Scala; Riccardo Chirone; Amedeo Lancia [Istituto di Ricerche sulla Combustione - CNR, Napoli (Italy)

    2011-06-15

    A bubbling fluidized bed of inert material was used to increase the activated carbon residence time in the reaction zone and to improve its performance for mercury vapor capture. Elemental mercury capture experiments were conducted at 100{sup o}C in a purposely designed 65 mm ID lab-scale pyrex reactor, that could be operated both in the fluidized bed and in the entrained bed configurations. Commercial powdered activated carbon was pneumatically injected in the reactor and mercury concentration at the outlet was monitored continuously. Experiments were carried out at different inert particle sizes, bed masses, fluidization velocities and carbon feed rates. Experimental results showed that the presence of a bubbling fluidized bed led to an increase of the mercury capture efficiency and, in turn, of the activated carbon utilization. This was explained by the enhanced activated carbon loading and gas-solid contact time that establishes in the reaction zone, because of the large surface area available for activated carbon adhesion/deposition in the fluidized bed. Transient mercury concentration profiles at the bed outlet during the runs were used to discriminate between the controlling phenomena in the process. Experimental data have been analyzed in the light of a phenomenological framework that takes into account the presence of both free and adhered carbon in the reactor as well as mercury saturation of the adsorbent. 14 refs., 7 figs.

  14. Organic aerosols and inorganic species from post-harvest agricultural-waste burning emissions over northern India: impact on mass absorption efficiency of elemental carbon.

    Science.gov (United States)

    Rajput, Prashant; Sarin, M M; Sharma, Deepti; Singh, Darshan

    2014-01-01

    Atmospheric PM2.5 (particulate matter with aerodynamic diameter of ≤ 2.5 μm), collected from a source region [Patiala: 30.2 °N; 76.3 °E; 250 m above mean sea level] of emissions from post-harvest agricultural-waste (paddy-residue) burning in the Indo-Gangetic Plain (IGP), North India, has been studied for its chemical composition and impact on regional atmospheric radiative forcing. On average, organic aerosol mass accounts for 63% of PM2.5, whereas the contribution of elemental carbon (EC) is ∼3.5%. Sulphate, nitrate and ammonium contribute up to ∼85% of the total water-soluble inorganic species (WSIS), which constitutes ∼23% of PM2.5. The potassium-to-organic carbon ratio from paddy-residue burning emissions (KBB(+)/OC: 0.05 ± 0.01) is quite similar to that reported from Amazonian and Savanna forest-fires; whereas non-sea-salt-sulphate-to-OC ratio (nss-SO4(2-)/OC: 0.21) and nss-SO4(2-)/EC ratio of 2.6 are significantly higher (by factor of 5 to 8). The mass absorption efficiency of EC (3.8 ± 1.3 m(2) g(-1)) shows significant decrease with a parallel increase in the concentrations of organic aerosols and scattering species (sulphate and nitrate). A cross plot of OC/EC and nss-SO4(2-)/EC ratios show distinct differences for post-harvest burning emissions from paddy-residue as compared to those from fossil-fuel combustion sources in south-east Asia.

  15. Dynamics of particulate phosphorus in a shallow eutrophic lake

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, Ryuichiro, E-mail: r-shino@nies.go.jp [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Imai, Akio; Kohzu, Ayato; Tomioka, Noriko [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Furusato, Eiichi [Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570 (Japan); Satou, Takayuki; Sano, Tomoharu; Komatsu, Kazuhiro; Miura, Shingo; Shimotori, Koichi [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan)

    2016-09-01

    We tested the hypothesis that in shallow, eutrophic Lake Kasumigaura, the concentration of particulate phosphorus (PP) is controlled by biogenic P (P in living or dead phytoplankton and bacterial cells), rather than by resuspension of inorganic P in sediment. Increases in wind velocity and turbidity were associated with bottom shear stress exceeding the critical value for the lake (τ{sub c} = 0.15 N m{sup −2}); this increased turbidity was due to sediment resuspension. However, concentrations of PP; HCl-extractable, reactive P in PP (P-rP); and HCl-extractable, non-reactive P in PP (P-nrP) were not correlated with wind velocity (PP vs. wind velocity: r = 0.40, p > 0.05). Rather, the P-nrP concentration accounted for approximately 79% of PP, and the concentrations of PP, P-rP, and P-nrP were correlated with the particulate organic carbon (POC) concentration (POC vs. PP: r = 0.90, p < 0.01; POC vs. P-rP: r = 0.82, p < 0.01; POC vs. P-nrP: r = 0.86, p < 0.01). In our {sup 31}P nuclear magnetic resonance spectroscopy results, mononucleotides accounted for the largest proportion among the detected P compound classes. In addition, concentrations of mononucleotides, orthophosphate, and pyrophosphate were significantly higher in samples with high POC concentrations, whereas the DNA-P concentration was not. These results suggest that biogenic P affects PP concentrations more strongly than does sediment resuspension, and the production of biogenic P creates a pool of mononucleotides, a class of easily degradable P, even in shallow, eutrophic Lake Kasumigaura. - Highlights: • Biogenic P affected the PP concentration more than did sediment resuspension. • PP correlated with particulate organic carbon concentration but not wind velocity. • Mononucleotides accounted for the largest P compound class of organic P in PP.

  16. The fate of particulate emissions from an isolated power plant in the oil sands area of western Canada

    International Nuclear Information System (INIS)

    Barrie, L.A.

    1980-01-01

    The nature and fate of particulate emissions from an isolated power plant in the Athabasca oil sands area of western Canada are investigated on the basis of measurements of particulate elemental concentrations in the air 80 km from the source late one winter, and close to the source early the next summer, of dry deposition patterns of particulate sulfur and heavy metals in the early summer, and of total (wet and dry) deposition patterns of major ions and metals during two winters. Results of plume chemistry studies to investigate SO 2 oxidation during summer and winter and of fly-ash analyses for heavy metals are also used. It is found that: (1) many elements in particulate matter deposited around the plant originate primarily from a different source in summer and in winter (2) deposition near the source is more alkaline than in outlying areas, (3) wet and dry deposition of acidic oxides of sulfur and nitrogen from the power-plant emissions appear to be the main source of snowpack acidification in downwind areas, and (4) acidic compounds can be transported over long distances before being removed

  17. Prediction of the thermal behavior of a particle spherical fuel element using GITT

    International Nuclear Information System (INIS)

    Pessoa, C.V.; Oliveira, Claudio L. de; Jian, Su

    2008-01-01

    In this work, the transient and steady state heat conduction in a spherical fuel element of a pebble-bed high temperature were studied. This pebble element is composed by a particulate region with spherical inclusions, the fuel UO 2 particles, dispersed in a graphite matrix. A convective heat transfer by helium occurs on the outer surface of the fuel element. The two-energy equation model for the case of pure conduction was applied to this particulate spherical element, generating two macroscopic temperatures, respectively, of the inclusions and of the matrix. The transient analysis was carried out by using the Generalized Integral Transform Technique (GITT) that requires low computational efforts and allows a fast evaluation of the two macroscopic transient temperatures of the particulate region. The solution by GITT leads to a system of ordinary differential equations with the unknown transformed potentials. The mechanical properties (thermal conductivity and specific heat) of the materials were supposed not to depend on the temperature and to be uniform in each region. (author)

  18. Reference Materials for Trace Element Microanalysis of Carbonates by SIMS and other Mass Spectrometric Techniques

    Science.gov (United States)

    Layne, G. D.

    2009-12-01

    Today, many areas of geochemical research utilize microanalytical determinations of trace elements in carbonate minerals. In particular, there has been an explosion in the application of Secondary Ion Mass Spectrometry (SIMS) to studies of marine biomineralization. SIMS provides highly precise determinations of Mg and Sr at the concentration levels normally encountered in corals, mollusks or fish otoliths. It is also a highly effective means for determining a wide range of other trace elements at ppm levels (e.g., Na, Fe, Mn, Ba, REE, Pb, Th, and U) in a variety of naturally occurring calcite and aragonite matrices - and so is potentially valuable in studies of diagenesis, hydrothermal fluids and carbonatitic magmas. For SIMS, modest time per spot (often sputtered ion yields of most elements with the major element composition of the sample matrix, accuracy of SIMS depends intimately on matrix-matched solid reference materials. Despite its rapidly increasing use for trace element analyses of carbonates, there remains a dearth of certified reference materials suitable for calibrating SIMS. The pressed powders used by some analysts to calibrate LA-ICP-MS do not perform well for SIMS - they are not perfectly dense or homogeneous to the desired level at the micron scale of sampling. Further, they often prove incompatible with the sample high vacuum compatibility requirement for stable SIMS analysis (10-8 to 10-9 torr). Some naturally occurring calcite has apparent utility as a reference material. For example, equigranular calcite from some zones of carbonatite intrusions (sovites) and recrystallized calcites from highly metamorphosed metallic ore deposits. Most calcite marbles, though possibly appropriate as Sr standards, show substantial inhomogeneity in Mg, Mn and Ba. Some hydrothermal “Iceland Spar” calcite may prove useful as a reference for extremely low concentrations of Mg, Sr and Ba. The best carbonatitic calcites currently in use appear homogeneous to

  19. Late summer particulate organic carbon export and twilight zone remineralisation in the Atlantic sector of the Southern Ocean

    Science.gov (United States)

    Planchon, F.; Cavagna, A.-J.; Cardinal, D.; André, L.; Dehairs, F.

    2013-02-01

    As part of the GEOTRACES Bonus-GoodHope (BGH) expedition (January-March 2008) in the Atlantic sector of the Southern Ocean, particulate organic carbon (POC) export was examined from the surface to the mesopelagic twilight zone using water column distributions of total 234Th and biogenic particulate Ba (Baxs). Surface POC export production was estimated from steady state and non steady state modelling of 234Th fluxes, which were converted into POC fluxes, using the POC/234Th ratio of large, potentially sinking particles (> 53 μm) collected via in situ pumps. Deficits in 234Th activities were observed at all stations from the surface to the bottom of the mixed layer, yielding 234Th export fluxes from the upper 100 m of 496 ± 214 dpm m-2 d-1 to 1195 ± 158 dpm m-2 d-1 for the steady state model and of 149 ±517 dpm m-2 d-1 to 1217 ± 231 dpm m-2 d-1 for the non steady state model. Using the POC/234Thp ratio of sinking particles (ratios varied from 1.7 ± 0.2 μmol dpm-1 to 4.8 ± 1.9 μmol dpm-1) POC export production at 100 m was calculated to range between 0.9 ± 0.4 and 5.1 ± 2.1 mmol C m-2 d-1,assuming steady state and between 0.3 ± 0.9 m-2 d-1 and 4.9 ± 3.3 mmol C m-2 d-1, assuming non steady state. From the comparison of both approaches, it appears that during late summer export decreased by 56 to 16% for the area between the sub-Antarctic zone and the southern Antarctic Circumpolar Current Front (SACCF), whereas it remained rather constant over time in the HNLC area south of the SACCF. POC export represented only 6 to 54% of new production, indicating that export efficiency was, in general, low, except in the vicinity of the SACCF, where export represented 56% of new production. Attenuation of the POC sinking flux in the upper mesopelagic waters (100-600 m depth interval) was evidenced both, from excess 234Th activities and from particulate biogenic Ba (Baxs) accumulation. Excess 234Th activities, reflected by 234Th/238U ratios as large as 1.21 ± 0

  20. Kuwaiti oil fires—Particulate monitoring

    Science.gov (United States)

    Husain, Tahir; Amin, Mohamed B.

    The total suspended particulate (TSP) matters using a high-volume sampler and inhalable particulate matters using PM-10 samplers were collected at various locations in the Eastern Province of Saudi Arabia during and after the Kuwaiti oil fires. The collected samples were analysed for toxic metals and oil hydrocarbon concentrations including some carcinogenic organic compounds in addition to gravimetric analysis. The concentration values of particulate matters were determined on a daily basis at Dhahran. Abqaiq, Rahima, Tanajib and Jubail locations. The analyses of the filters show a high concentration of the inhalable particulate at various locations, especially when north or northwest winds were blowing. It was found that the inhalable particulate concentration exceeded the Meteorology and Environmental Protection Administration (MEPA) permissible limit of 340 μg m- 3 at most of these locations during May-October 1991. A trend between the total suspended particulate and inhalable particulate measured concurrently at the same locations was observed and a regression equation was developed to correlate PM-10 data with the total suspended particulate data.

  1. Atherosclerosis and vasomotor dysfunction in arteries of animals after exposure to combustion-derived particulate matter or nanomaterials

    DEFF Research Database (Denmark)

    Møller, Peter; Christophersen, Daniel Vest; Raun Jacobsen, Nicklas

    2016-01-01

    Exposure to particulate matter (PM) from traffic vehicles is hazardous to the vascular system, leading to clinical manifestations and mortality due to ischemic heart disease. By analogy, nanomaterials may also be associated with the same outcomes. Here, the effects of exposure to PM from ambient......O2, carbon black and carbon nanotubes, have similar hazards to the vascular system as combustion-derived PM....

  2. Future export of particulate and dissolved organic carbon from land to coastal zones of the Baltic Sea

    Science.gov (United States)

    Strååt, Kim Dahlgren; Mörth, Carl-Magnus; Undeman, Emma

    2018-01-01

    The Baltic Sea is a semi-enclosed brackish sea in Northern Europe with a drainage basin four times larger than the sea itself. Riverine organic carbon (Particulate Organic Carbon, POC and Dissolved Organic Carbon, DOC) dominates carbon input to the Baltic Sea and influences both land-to-sea transport of nutrients and contaminants, and hence the functioning of the coastal ecosystem. The potential impact of future climate change on loads of POC and DOC in the Baltic Sea drainage basin (BSDB) was assessed using a hydrological-biogeochemical model (CSIM). The changes in annual and seasonal concentrations and loads of both POC and DOC by the end of this century were predicted using three climate change scenarios and compared to the current state. In all scenarios, overall increasing DOC loads, but unchanged POC loads, were projected in the north. In the southern part of the BSDB, predicted DOC loads were not significantly changing over time, although POC loads decreased in all scenarios. The magnitude and significance of the trends varied with scenario but the sign (+ or -) of the projected trends for the entire simulation period never conflicted. Results were discussed in detail for the "middle" CO2 emission scenario (business as usual, a1b). On an annual and entire drainage basin scale, the total POC load was projected to decrease by ca 7% under this scenario, mainly due to reduced riverine primary production in the southern parts of the BSDB. The average total DOC load was not predicted to change significantly between years 2010 and 2100 due to counteracting decreasing and increasing trends of DOC loads to the six major sub-basins in the Baltic Sea. However, predicted seasonal total loads of POC and DOC increased significantly by ca 46% and 30% in winter and decreased by 8% and 21% in summer over time, respectively. For POC the change in winter loads was a consequence of increasing soil erosion and a shift in duration of snowfall and onset of the spring flood

  3. Particulate uranium, plutonium and polonium in the biogeochemistries of the coastal zone

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, V F; Koide, M; Goldberg, E D [Scripps Institution of Oceanography, La Jolla, CA (USA)

    1979-01-18

    It is stated that although increasing attention has been paid to the role of inorganic solid phases in the chemistry of seawater, little quantitative data has been available to assess their involvement with living systems. Recent observations are here reported on the uptake of uranium, plutonium and polonium in coastal waters by organisms and submerged surfaces as traced by their isotopes. It is shown that the body burdens of these radioelements in some marine organisms are governed measurably by the uptake of their particulate forms. Furthermore, these elements are associated with different particulate phases, as deduced from the rates at which they deposit on submerged surfaces.

  4. Geospatial analysis of residential proximity to open-pit coal mining areas in relation to micronuclei frequency, particulate matter concentration, and elemental enrichment factors.

    Science.gov (United States)

    Espitia-Pérez, Lyda; Arteaga-Pertuz, Marcia; Soto, José Salvador; Espitia-Pérez, Pedro; Salcedo-Arteaga, Shirley; Pastor-Sierra, Karina; Galeano-Páez, Claudia; Brango, Hugo; da Silva, Juliana; Henriques, João A P

    2018-05-03

    During coal surface mining, several activities such as drilling, blasting, loading, and transport produce large quantities of particulate matter (PM) that is directly emitted into the atmosphere. Occupational exposure to this PM has been associated with an increase of DNA damage, but there is a scarcity of data examining the impact of these industrial operations in cytogenetic endpoints frequency and cancer risk of potentially exposed surrounding populations. In this study, we used a Geographic Information Systems (GIS) approach and Inverse Distance Weighting (IDW) methods to perform a spatial and statistical analysis to explore whether exposure to PM 2.5 and PM 10 pollution, and additional factors, including the enrichment of the PM with inorganic elements, contribute to cytogenetic damage in residents living in proximity to an open-pit coal mining area. Results showed a spatial relationship between exposure to elevated concentrations of PM 2.5, PM 10 and micronuclei frequency in binucleated (MNBN) and mononucleated (MNMONO) cells. Active pits, disposal, and storage areas could be identified as the possible emission sources of combustion elements. Mining activities were also correlated with increased concentrations of highly enriched elements like S, Cu and Cr in the atmosphere, corroborating its role in the inorganic elements pollution around coal mines. Elements enriched in the PM 2.5 fraction contributed to increasing of MNBN but seems to be more related to increased MNMONO frequencies and DNA damage accumulated in vivo. The combined use of GIS and IDW methods could represent an important tool for monitoring potential cancer risk associated to dynamically distributed variables like the PM. Copyright © 2018. Published by Elsevier Ltd.

  5. 0 Elemental Composition of Atmospheric Particulate Matter during ...

    African Journals Online (AJOL)

    Michael Horsfall

    ABSTRACT: The elemental composition of PM10 was studied during 2006 wet season in a rural background ... reference of crustal material, showed that for the coarse size fraction, most .... particular sector was made using criteria similar to.

  6. Carbon footprint assessment of recycling technologies for rare earth elements: A case study of recycling yttrium and europium from phosphor.

    Science.gov (United States)

    Hu, Allen H; Kuo, Chien-Hung; Huang, Lance H; Su, Chao-Chin

    2017-02-01

    Rare earth elements are key raw materials in high-technology industries. Mining activities and manufacturing processes of such industries have caused considerable environmental impacts, such as soil erosion, vegetation destruction, and various forms of pollution. Sustaining the long-term supply of rare earth elements is difficult because of the global shortage of rare earth resources. The diminishing supply of rare earth elements has attracted considerable concern because many industrialized countries regarded such elements as important strategic resources for economic growth. This study aims to explore the carbon footprints of yttrium and europium recovery techniques from phosphor. Two extraction recovery methods, namely, acid extraction and solvent extraction, were selected for the analysis and comparison of carbon footprints. The two following functional units were used: (1) the same phosphor amounts for specific Y and Eu recovery concentrations, and (2) the same phosphor amounts for extraction. For acid extraction method, two acidic solutions (H 2 SO 4 and HCl) were used at two different temperatures (60 and 90°C). For solvent extraction method, acid leaching was performed followed by ionic liquid extraction. Carbon footprints from acid and solvent extraction methods were estimated to be 10.1 and 10.6kgCO 2 eq, respectively. Comparison of the carbon emissions of the two extraction methods shows that the solvent extraction method has significantly higher extraction efficiency, even though acid extraction method has a lower carbon footprint. These results may be used to develop strategies for life cycle management of rare earth resources to realize sustainable usage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Short term variation in particulate matter in the shelf waters of the Princess Astrid Coast, Antarctica

    Digital Repository Service at National Institute of Oceanography (India)

    Dhargalkar, V.K.; Bhosle, N.B.

    Particulate matter collected at a single station in the shelf waters of Princess Astrid coast (70 degrees S, 11 degrees E) Antarctica, during the austral summer (Jan.-Feb. 1986) was analysed for phytoplankton biomass (Chl @ia@@), living carbon (ATP...

  8. Epiphytic lichens as quantitative biomonitors for atmospheric element deposition

    International Nuclear Information System (INIS)

    Jeran, Z.; Jacimovic, J.; Smodis, B.; Batic, F.

    2000-01-01

    Epiphytic lichens are being used as passive and active biomonitors of trace elements in Slovenia. The lichen Hypogymnia physodes (L.) Nyl. was exposed at three locations (two in the vicinity of a coal fired-power plant, and one at a reference location) for 8 months. At the same locations air particulate matter and total deposition were collected on a monthly basis. The k 0 -method of neutron activation analysis, using the TRIGA Mark II reactor at the 'Jozef Stefan' Institute, was employed for multielemental nondestructive analysis of all samples. The influence of the power plant on the concentration levels of some elements in the transplanted lichens, air particulates and total deposition is discussed and their correlation presented. (author)

  9. Small-angle light scattering by airborne particulates: Environnement S.A. continuous particulate monitor

    International Nuclear Information System (INIS)

    Renard, Jean-Baptiste; Gaubicher, Bertrand; Thaury, Claire; Mineau, Jean-Luc

    2010-01-01

    Airborne particulate matter may have an effect on human health. It is therefore necessary to determine and control in real time the evolution of the concentration and mass of particulates in the ambient air. These parameters can be obtained using optical methods. We propose here a new instrument, 'CPM' (continuous particulate monitor), for the measurement of light scattered by ambient particulates at small angles. This geometry allows simultaneous and separate detections of PM10, PM2.5 and PM1 fractions of airborne particulate matter, with no influence of their chemical nature and without using theoretical calculations. The ambient air is collected through a standard sampling head (PM10 inlet according to EN 12341, PM2.5 inlet according to EN 14907; or PM1, TSP inlets, standard US EPA inlets). The analysis of the first measurements demonstrates that this new instrument can detect, for each of the seven defined size ranges, real-time variations of particulate content in the ambient air. The measured concentrations (expressed in number per liter) can be converted into total mass concentrations (expressed in micrograms per cubic meter) of all fractions of airborne particulate matters sampled by the system. Periodic comparison with a beta-attenuation mass monitor (MP101M Beta Gauge Analyzer from Environnement S.A. company) allows the calculation of a calibration factor as a function of the mean particulate density that is used for this conversion. It is then possible to provide real-time relative variations of aerosol mass concentration

  10. Chemical and carbon isotope composition of Varzeas sediments and its interactions with some Amazon basin rivers

    International Nuclear Information System (INIS)

    Martinelli, L.A.

    1986-01-01

    Varzea sediment samples were collected on the banks of Amazon rivers and in the most important tributaires. The samples were taken in three different river stages. The major cations, pH, total nitrogen, total phosphorus, carbon and δ 13 C values were determined. The concentration of major basic cations - Ca,Mg,K e Na were greater in the main channel sediments than in the tributaires. Probably the differences in the substrats geology and erosion regimes of the basins account for this patterns, generally. The major basic cation, total phosphorus and carbon concentration were lower in the low Amazon Varzeas. Between the three differents sampling periods, pratically the elements concentration in Varzea sediment was constant. Finally, the datas showed that the most parts of Varzea carbon sediment had it's origin in the fine particulated organic matter transported by the Amazon river. (C.D.G.) [pt

  11. Toxicologically important trace elements and organic compounds investigated in size-fractionated urban particulate matter collected near the Prague highway.

    Science.gov (United States)

    Sysalová, Jiřina; Sýkorová, Ivana; Havelcová, Martina; Száková, Jiřina; Trejtnarová, Hana; Kotlík, Bohumil

    2012-10-15

    Urban particulate matter was collected in the most exposed area of Prague, near a busy highway, in order to provide petrographic and chemical characterization useful for health impact assessment in that locality or other applications. Samples were collected from filters of the air conditioning system in two years, 2009 and 2010, and sieved into four grain-size fractions: 0.507-0.119 mm, 0.119-0.063 mm, origin and their morphology were studied by optical and electron microscopy. Organic solvent extracts of the samples were analyzed using gas chromatography to compare the organic compound distribution in fractions. Only slight differences between 2009 and 2010 years are visible. The relatively high extractable part of most investigated elements confirms mobility and potential availability to organisms. The changes can be recognized in the petrographic and organic composition in samples from both years, which were likely the result of various inputs of source materials. Specific organic marker compounds indicate contribution from fossil fuels, plant materials and bacteria. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Comparison of high temperature gas particulate collectors for low level radwaste incinerator volume reduction systems

    International Nuclear Information System (INIS)

    Moscardini, R.L.; Johnston, J.R.; Waters, R.M.; Zievers, J.F.

    1983-01-01

    Incinerator system off-gases must be treated to prevent the release of particulates, noxious gases and radioactive elements to the environment. Fabric filters, venturi scrubbers, cyclone separators, an ceramic or metal filter candles have been used for particulate removal. Dry high temperature particulate collectors have the advantage of not creating additional liquid wastes. This paper presents a graphical comparison of different methods for filtering particles from high temperature incineration system off-gases. Eight methods of off-gas handling are compared. A much larger group may be present, but some judicious selection of different, but related systems was done for this paper based on experience with the Combustion Engineering Waste Incineration System (CE/WIS) Prototype. The eight types are: Inertial Devices, Electrostatic Precipitators (ESP), Standard Fabric Bags, Woven Ceramic Bags, Granular Beds, Sintered Metal Tubes, Felted Ceramic Bags and Ceramic Filter Candles. For high temperature LLRW particulate collection in incinerator off-gas systems, ceramic filter candles are the best overall choice

  13. Study of the combustion of aluminium and magnesium particulates: influence of the composition of the gaseous mixture and of pressure; Etude de la combustion de particules d'aluminium et de magnesium: influence de la composition du melange gazeux et de la pression

    Energy Technology Data Exchange (ETDEWEB)

    Legrand, B.

    2000-07-01

    The combustion of metal particulates has a major interest in the domain of space propulsion. Aluminium is today used as doping material in the solid propellant of Ariane 5 rocket engines. Magnesium represents a possible fuel for propellers allowing a come back from Mars. An electrostatic levitation device has been used to study the combustion in controlled environment of particulates having a size representative of those encountered in propellers. The particulates are ignited with a laser and observed by fast cinematography. The inhibitive property of hydrogen chloride, an important constituent of the propellant atmosphere, on the combustion of aluminium particulates has been evidenced. These results have been compared with those obtained with a kinetic model in gaseous phase. The combustion of magnesium particulates in carbon dioxide has been studied for 53-63 {mu}m and 1-2 mm particulates. It is shown that the ignition of small particulates is controlled by the chemical kinetics and that the limit ignition pressure is reversely proportional to the particulates size. A study on big samples, performed in normal gravity but also in reduced gravity to get rid of the natural convection phenomena, has permitted to show a pulsed combustion regime linked with the presence of heterogenous reactions. The measurement of the combustion durations for the different sizes of particulates has permitted to propose a correlation between these two parameters for the particulate diameters comprised between 50 {mu}m and 2 mm. (J.S.)

  14. Mangrove litter production and organic carbon pools in the ...

    African Journals Online (AJOL)

    Mngazana Estuary is an important source of mangrove litter and POC for the adjacent marine environment, possibly sustaining nearshore food webs. Keywords: Dissolved organic carbon, harvesting, litter production, mangroves, particulate organic carbon, Rhizophora mucronata, South Africa African Journal of Aquatic ...

  15. Application of a low energy x-ray spectrometer to analyses of suspended air particulate matter

    International Nuclear Information System (INIS)

    Giauque, R.D.; Garrett, R.B.; Goda, L.Y.; Jaklevic, J.M.; Malone, D.F.

    1975-01-01

    A semiconductor detector x-ray spectrometer has been constructed for the analysis of elements in air particulate specimens. The excitation radiation is provided, either directly or indirectly, using a low power (40 watts) Ag anode x-ray tube. Less than 100 ng for most of the elements in the range Mg → Zr, Pb are easily detected within two 1-minute counting intervals. A calibration technique for light element analysis and an experimental method which compensates for particle size effects are discussed. (auth)

  16. [Distribution and origin of polycyclic aromatic hydrocarbons in suspended particulate matters from the Yangtze estuarine and nearby coastal areas].

    Science.gov (United States)

    Ou, Dong-ni; Liu, Min; Xu, Shi-yuan; Cheng, Shu-bo; Hou, Li-jun; Gao, Lei

    2008-09-01

    Parent PAHs have been quantified in suspended particulate matters from the Yangtze Estuarine and Coastal Areas. The results show that the concentrations of total PAHs ranged from 2278.79-14293.98 ng/g, and were characterized by greatest content near sewage discharge point with trend to decrease by increasing distance. As for PAHs composition, 4-6 rings PAHs were dominant while 2-3 rings PAHs were relative low. Cluster analysis found that except urban sewage discharge, the hydrodynamic force was influencing PAHs distribution patterns. Moreover, the content of suspended particulate matters, organic carbon and soot carbon of suspended particulate matters also play the important roles in PAHs distribution from the Yangtze estuarine and nearby coastal areas. Principal component analysis and PAH ratios demonstrated that uncompleted combustion of fossil fuels was the main source of PAHs in coastal areas, as well as a few anthropogenic releases of oil and oil products. Ecological risk assessment indicated that most of PAH compounds exceeded the effects range ER-L values and ISQV-L values, which might certain potential damage to the Yangtze Estuary ecosystem.

  17. The analysis of air particulate deposits using 2 MeV protons

    International Nuclear Information System (INIS)

    Barfoot, K.M.; Mitchell, I.V.; Eschbach, H.L.; Mason, P.I.; Gilboy, W.B.

    1979-01-01

    Particle-induced X-ray emission (PIXE) analysis of the lighter elements in time-resolved air particulate deposits has been carried out. Minimum detection limits have been determined for 1.0, 2.0 and 3.5 MeV protons. Quantitative PIXE analysis results, obtained with 2 MeV protons, are given for temporal variations in the elemental concentrations of Na, Al, Si, S, Cl, K, Ca and Fe. Rutherford backscattering (RBS) spectra were taken simultaneously with the PIXE spectra to provide information on lead concentrations and deposit thicknesses. The experimental problems associated with the quantitative analysis of light elements on cellulose acetate filters are described. The relationship between these results and meteorological data is discussed. (author)

  18. Application for airborne particulate matter as a demonstration using k0-NAA method in Dalat nuclear research institute of Vietnam

    International Nuclear Information System (INIS)

    Ho Manh Dung; Cao Dong Vu; Nguyen Thi Sy; Truong Y; Nguyen Thanh Binh

    2004-01-01

    The airborne particulate samples have been collected using two types of polycarbonate membrane filter PM 2.5 and PM 2-5-10 in two typical sites of industrial (Ho Chi Minh City) and rural (Dateh) regions in south of Vietnam. The concentration of trace elements in the samples has been determined by the k 0 -NAA procedure developed in Dalat NRI. In order to check the developed k 0 -NAA procedure for the airborne particulate matter, two standard reference materials (SRMs) Urban Particulate NIST-1648 and Vehicle Exhaust Particulates NIES-8 were analyzed and the obtained results have been compared and interpreted in term of deviation between experimental results and the certified values. (author)

  19. Diagnostic Air Quality Model Evaluation of Source-Specific Primary and Secondary Fine Particulate Carbon

    Science.gov (United States)

    Ambient measurements of 78 source-specific tracers of primary and secondary carbonaceous fine particulate matter collected at four midwestern United States locations over a full year (March 2004–February 2005) provided an unprecedented opportunity to diagnostically evaluate...

  20. Electrical diesel particulate filter (DPF) regeneration

    Science.gov (United States)

    Gonze, Eugene V; Ament, Frank

    2013-12-31

    An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is disposed upstream of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.

  1. Stages of weathering mantle formation from carbonate rocks in the light of rare earth elements (REE) and Sr-Nd-Pb isotopes

    Science.gov (United States)

    Hissler, Christophe; Stille, Peter

    2015-04-01

    Weathering mantles are widespread and include lateritic, sandy and kaolinite-rich saprolites and residuals of partially dissolved rocks. These old regolith systems have a complex history of formation and may present a polycyclic evolution due to successive geological and pedogenetic processes that affected the profile. Until now, only few studies highlighted the unusual high content of associated trace elements in weathering mantles originating from carbonate rocks, which have been poorly studied, compared to those developing on magmatic bedrocks. For instance, these enrichments can be up to five times the content of the underlying carbonate rocks. However, these studies also showed that the carbonate bedrock content only partially explains the soil enrichment for all the considered major and trace elements. Up to now, neither soil, nor saprolite formation has to our knowledge been geochemically elucidated. Therefore, the aim of this study was to examine more closely the soil forming dynamics and the relationship of the chemical soil composition to potential sources. REE distribution patterns and Sr-Nd-Pb isotope ratios have been used because they are particularly well suited to identify trace element migration, to recognize origin and mixing processes and, in addition, to decipher possible anthropogenic and/or "natural" atmosphere-derived contributions to the soil. Moreover, leaching experiments have been applied to identify mobile phases in the soil system and to yield information on the stability of trace elements and especially on their behaviour in these Fe-enriched carbonate systems. All these geochemical informations indicate that the cambisol developing on such a typical weathering mantle ("terra fusca") has been formed through weathering of a condensed Bajocian limestone-marl facies. This facies shows compared to average world carbonates important trace element enrichments. Their trace element distribution patterns are similar to those of the soil

  2. Ambient concentrations and insights on organic and elemental carbon dynamics in São Paulo, Brazil

    Science.gov (United States)

    Monteiro dos Santos, Djacinto A.; Brito, Joel F.; Godoy, José Marcus; Artaxo, Paulo

    2016-11-01

    The São Paulo Metropolitan Area (SPMA) is a megacity with about 20 million people and about 8 million vehicles, most of which are fueled with a significant fraction of ethanol - making it a unique case worldwide. This study presents organic and elemental carbon measurements using thermal-optical analysis from quartz filters collected in four sampling sites within the SPMA. Overall Organic Carbon (OC) concentration was comparable at all sites, where Street Canyon had the highest concentration (3.37 μg m-3) and Park site the lowest (2.65 μg m-3). Elemental Carbon (EC), emitted as result of incomplete combustion, has been significantly higher at the Street Canyon site (6.11 μg m-3) in contrast to all other three sites, ranging from 2.25 μg m-3 (Downtown) to 1.50 μg m-3 (Park). For all sampling sites, the average OC:EC ratio are found on the lower bound (pollution dynamics in a megacity impacted by a unique vehicular fleet. It also shows the need of implementation of EURO VI technology and to improve mass transport systems such a metro and more bus corridors to allow better transport for 19 million people in the SPMA.

  3. Sources of particulate matter components in the Athabasca oil sands region: investigation through a comparison of trace element measurement methodologies

    Science.gov (United States)

    Phillips-Smith, Catherine; Jeong, Cheol-Heon; Healy, Robert M.; Dabek-Zlotorzynska, Ewa; Celo, Valbona; Brook, Jeffrey R.; Evans, Greg

    2017-08-01

    The province of Alberta, Canada, is home to three oil sands regions which, combined, contain the third largest deposit of oil in the world. Of these, the Athabasca oil sands region is the largest. As part of Environment and Climate Change Canada's program in support of the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring program, concentrations of trace elements in PM2. 5 (particulate matter smaller than 2.5 µm in diameter) were measured through two campaigns that involved different methodologies: a long-term filter campaign and a short-term intensive campaign. In the long-term campaign, 24 h filter samples were collected once every 6 days over a 2-year period (December 2010-November 2012) at three air monitoring stations in the regional municipality of Wood Buffalo. For the intensive campaign (August 2013), hourly measurements were made with an online instrument at one air monitoring station; daily filter samples were also collected. The hourly and 24 h filter data were analyzed individually using positive matrix factorization. Seven emission sources of PM2. 5 trace elements were thereby identified: two types of upgrader emissions, soil, haul road dust, biomass burning, and two sources of mixed origin. The upgrader emissions, soil, and haul road dust sources were identified through both the methodologies and both methodologies identified a mixed source, but these exhibited more differences than similarities. The second upgrader emissions and biomass burning sources were only resolved by the hourly and filter methodologies, respectively. The similarity of the receptor modeling results from the two methodologies provided reassurance as to the identity of the sources. Overall, much of the PM2. 5-related trace elements were found to be anthropogenic, or at least to be aerosolized through anthropogenic activities. These emissions may in part explain the previously reported higher levels of trace elements in snow, water, and biota samples collected

  4. Sources of particulate matter components in the Athabasca oil sands region: investigation through a comparison of trace element measurement methodologies

    Directory of Open Access Journals (Sweden)

    C. Phillips-Smith

    2017-08-01

    Full Text Available The province of Alberta, Canada, is home to three oil sands regions which, combined, contain the third largest deposit of oil in the world. Of these, the Athabasca oil sands region is the largest. As part of Environment and Climate Change Canada's program in support of the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring program, concentrations of trace elements in PM2. 5 (particulate matter smaller than 2.5 µm in diameter were measured through two campaigns that involved different methodologies: a long-term filter campaign and a short-term intensive campaign. In the long-term campaign, 24 h filter samples were collected once every 6 days over a 2-year period (December 2010–November 2012 at three air monitoring stations in the regional municipality of Wood Buffalo. For the intensive campaign (August 2013, hourly measurements were made with an online instrument at one air monitoring station; daily filter samples were also collected. The hourly and 24 h filter data were analyzed individually using positive matrix factorization. Seven emission sources of PM2. 5 trace elements were thereby identified: two types of upgrader emissions, soil, haul road dust, biomass burning, and two sources of mixed origin. The upgrader emissions, soil, and haul road dust sources were identified through both the methodologies and both methodologies identified a mixed source, but these exhibited more differences than similarities. The second upgrader emissions and biomass burning sources were only resolved by the hourly and filter methodologies, respectively. The similarity of the receptor modeling results from the two methodologies provided reassurance as to the identity of the sources. Overall, much of the PM2. 5-related trace elements were found to be anthropogenic, or at least to be aerosolized through anthropogenic activities. These emissions may in part explain the previously reported higher levels of trace elements in snow

  5. Exposure assessment of particulates originating from diesel and CNG fuelled engines

    Energy Technology Data Exchange (ETDEWEB)

    Oravisjaervi, K.; Pietikaeinen, M.; Keiski, R. L. (Univ. of Oulu, Dept. of Process and Environmental Engineering (Finland)). email: kati.oravisjarvi@oulu.fi; Voutilainen, A. (Univ. of Kuopio, Dept. of Physics (Finland)); Haataja, M. (Oulu Univ. of Applied Sciences (Finland); Univ. of Oulu, Dept. of Mechanical Engineering (Finland)); Ruuskanen, J. (Univ. of Kuopio, Dept. of Environmental Sciences (Finland)); Rautio, A. (Univ. of Oulu, Thule Inst. (Finland))

    2009-07-01

    Particulates emitted from combustion engines have been a great concern in past years due to their adverse health effects, such as pulmonary and cardiovascular diseases, morbidity and mortality. The source of particulates can be stationary and transient, such as gas and oil fuelled engines, turbines and boilers. Particulate matter (PM) dispersed into ambient air can be classified in many ways: the mechanism of the formation, the size and the composition. Fine particles (PM2.5) are particles with an aerodynamic diameter less than 2.5 mum and particles, greater than 2.5 mum in diameter are generally referred to as coarse particles (PM10). PM2.5 is also called the respirable fraction, because they can penetrate to the unciliated regions of the lung. Fine particles consist of so called ultrafine particles (an aerodynamic diameter less than 0.1 mum). The sizes of particulates emitted from combustion processes range between 10 nm and 100 mum, and are usually a mixture of unburned and partially burned hydrocarbons. Diesel exhaust particles have a mass median diameter of 0.05-1.0 mum. They are a complex mixture of elemental carbon, a variety of hydrocarbons, sulphur compounds, and other species. They consist of a numerous spherical primary particles, which are agglomerated into aggregates. Particles from natural gas engine emissions range from 0.01-0.7 mum. Increase in PM10 pollution has been found to be associated with a range of adverse health effects, such as increased use of medication for asthma, attacks of asthma in patients with pre-existing asthma, attacks of chronic obstructive pulmonary disease (COPD), deaths from respiratory causes, admission to hospital for cardiovascular causes, deaths from heart attacks and deaths from strokes. While it is unknown, which particulate matter component is the most hazardous for humans, a number of factors suggest that ultrafine particles may be more toxic than larger particles. Ultrafine particles have a large surface area per

  6. Sensitive emission spectrometric method for the analysis of airborne particulate matter

    International Nuclear Information System (INIS)

    Sugimae, A.

    1975-01-01

    A rapid and sensitive emission spectrometric method for the routine analysis of airborne particulate matter collected on the glass fiber filter is reported. The method is a powder--dc arc technique involving no chemical pre-enrichment procedures. The elements--Ag, BA: Be, Bi, Cd, Co, Cr, Cu, Fe, Ga, La, Mn, Ni, Pb, Sn, V, Y, Yb, and Zn--were determined. (U.S.)

  7. Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry

    Directory of Open Access Journals (Sweden)

    P. Ziveri

    2009-11-01

    Full Text Available Four strains of the coccolithophore E. huxleyi (RCC1212, RCC1216, RCC1238, RCC1256 were grown in dilute batch culture at four CO2 levels ranging from ~200 μatm to ~1200 μatm. Growth rate, particulate organic carbon content, and particulate inorganic carbon content were measured, and organic and inorganic carbon production calculated. The four strains did not show a uniform response to carbonate chemistry changes in any of the analysed parameters and none of the four strains displayed a response pattern previously described for this species. We conclude that the sensitivity of different strains of E. huxleyi to acidification differs substantially and that this likely has a genetic basis. We propose that this can explain apparently contradictory results reported in the literature.

  8. INAA of airborne particulate matter collected in Bangkok 2002-2004

    International Nuclear Information System (INIS)

    Chueinta, W.; Bunprapob, S.; Tedthong, S.

    2006-01-01

    This paper presents the summary report of the monitoring study on ambient air quality in Bangkok metropolis and its boundary covering the period from 2002 to 2004. The work performed included sampling of fine and coarse fractions of particulate matter at the sites representing urban and suburban areas; measurement of particle mass concentration and elemental concentration; and data interpretation. Instrumental neutron activation by use of research reactor facilities at Office of Atoms for Peace was carried out for multielemental analysis of all filter samples collected. Twenty elements were determined. The database of the three consecutive years are summarized and reviewed in this paper. (author)

  9. DEMONSTRATION OF A FULL-SCALE RETROFIT OF THE ADVANCED HYBRID PARTICULATE COLLECTOR TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Tom Hrdlicka; William Swanson

    2005-12-01

    The Advanced Hybrid Particulate Collector (AHPC), developed in cooperation between W.L. Gore & Associates and the Energy & Environmental Research Center (EERC), is an innovative approach to removing particulates from power plant flue gas. The AHPC combines the elements of a traditional baghouse and electrostatic precipitator (ESP) into one device to achieve increased particulate collection efficiency. As part of the Power Plant Improvement Initiative (PPII), this project was demonstrated under joint sponsorship from the U.S. Department of Energy and Otter Tail Power Company. The EERC is the patent holder for the technology, and W.L. Gore & Associates was the exclusive licensee for this project. The project objective was to demonstrate the improved particulate collection efficiency obtained by a full-scale retrofit of the AHPC to an existing electrostatic precipitator. The full-scale retrofit was installed on an electric power plant burning Powder River Basin (PRB) coal, Otter Tail Power Company's Big Stone Plant, in Big Stone City, South Dakota. The $13.4 million project was installed in October 2002. Project related testing concluded in December 2005. The following Final Technical Report has been prepared for the project entitled ''Demonstration of a Full-Scale Retrofit of the Advanced Hybrid Particulate Collector Technology'' as described in DOE Award No. DE-FC26-02NT41420. The report presents the operation and performance results of the system.

  10. Electrically heated particulate filter restart strategy

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2011-07-12

    A control system that controls regeneration of a particulate filter is provided. The system generally includes a propagation module that estimates a propagation status of combustion of particulate matter in the particulate filter. A regeneration module controls current to the particulate filter to re-initiate regeneration based on the propagation status.

  11. Cashew nut roasting: Chemical characterization of particulate matter and genotocixity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Galvão, Marcos Felipe de [Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN (Brazil); Melo Cabral, Thiago de; André, Paulo Afonso de [Departamento de Patologia, Universidade de São Paulo, São Paulo, SP (Brazil); Fátima Andrade, Maria de; Miranda, Regina Maura de [Departamento de Ciências Atmosféricas, Universidade de São Paulo, São Paulo, SP (Brazil); Saldiva, Paulo Hilário Nascimento [Departamento de Patologia, Universidade de São Paulo, São Paulo, SP (Brazil); Castro Vasconcellos, Pérola de [Instituto de Química, Universidade de São Paulo, São Paulo, SP (Brazil); Batistuzzo de Medeiros, Silvia Regina, E-mail: sbatistu@cb.ufrn.br [Departamento de Biologia Celular e Genética, CB – UFRN, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, 59072-970, Natal, RN (Brazil)

    2014-05-01

    Background: Particulate matter (PM) is potentially harmful to health and related to genotoxic events, an increase in the number of hospitalizations and mortality from respiratory and cardiovascular diseases. The present study conducted the first characterization of elemental composition and polycyclic aromatic hydrocarbon (PAH) analysis of PM, as well as the biomonitoring of genotoxic activity associated to artisanal cashew nut roasting, an important economic and social activity worldwide. Methods: The levels of PM{sub 2.5} and black carbon were also measured by gravimetric analysis and light reflectance. The elemental composition was determined using X-ray fluorescence spectrometry and PAH analysis was carried out by gas chromatography–mass spectrometry. Genotoxic activity was measured by the Tradescantia pallida micronucleus bioassay (Trad-MCN). Other biomarkers of DNA damage, such as nucleoplasmic bridges and nuclear fragments, were also quantified. Results: The mean amount of PM{sub 2.5} accumulated in the filters (January 2124.2 µg/m{sup 3}; May 1022.2 µg/m{sup 3}; September 1291.9 µg/m{sup 3}), black carbon (January 363.6 µg/m{sup 3}; May 70 µg/m{sup 3}; September 69.4 µg/m{sup 3}) and concentrations of Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br and Pb were significantly higher than the non-exposed area. Biomass burning tracers K, Cl, and S were the major inorganic compounds found. Benzo[k]fluoranthene, indene[1,2,3-c,d]pyrene, benzo[ghi]perylene, phenanthrene and benzo[b]fluoranthene were the most abundant PAHs. Mean benzo[a]pyrene-equivalent carcinogenic power values showed a significant cancer risk. The Trad-MCN bioassay revealed an increase in micronucleus frequency, 2–7 times higher than the negative control and significantly higher in all the months analyzed, possibly related to the mutagenic PAHs found. Conclusions: This study demonstrated that artisanal cashew nut roasting is a serious occupational problem, with harmful

  12. Particulates and noise exposure during bicycle, bus and car commuting: A study in three European cities

    NARCIS (Netherlands)

    Okokon, E.O.; Yli-Tuomi, T.; Turunen, A.W.; Taimisto, P.; Pennanen, A.; Vouitsis, I.; Samaras, Z.; Voogt, M.; Keuken, M.; Lanki, T.

    2017-01-01

    Background: In order to curb traffic-related air pollution and its impact on the physical environment, contemporary city commuters are encouraged to shift from private car use to active or public transport modes. However, personal exposures to particulate matter (PM), black carbon and noise during

  13. Evaluation of Pollution of Soils and Particulate Matter Around Metal Recycling Factories in Southwestern Nigeria

    OpenAIRE

    Akinade S. Olatunji; Tesleem O. Kolawole; Moroof Oloruntola; Christina Günter

    2018-01-01

    Background. Metal recycling factories (MRFs) have developed rapidly in Nigeria as recycling policies have been increasingly embraced. These MRFs are point sources for introducing potentially toxic elements (PTEs) into environmental media. Objectives. The aim of this study was to determine the constituents (elemental and mineralogy) of the wastes (slag and particulate matter, (PM)) and soils around the MRFs and to determine the level of pollution within the area. Methods. Sixty samples (...

  14. On the Impact of Particulate Matter Distribution on Pressure Drop of Wall-Flow Particulate Filters

    Directory of Open Access Journals (Sweden)

    Vicente Bermúdez

    2017-03-01

    Full Text Available Wall-flow particulate filters are a required exhaust aftertreatment system to abate particulate matter emissions and meet current and incoming regulations applying worldwide to new generations of diesel and gasoline internal combustion engines. Despite the high filtration efficiency covering the whole range of emitted particle sizes, the porous substrate constitutes a flow restriction especially relevant as particulate matter, both soot and ash, is collected. The dependence of the resulting pressure drop, and hence the fuel consumption penalty, on the particulate matter distribution along the inlet channels is discussed in this paper taking as reference experimental data obtained in water injection tests before the particulate filter. This technique is demonstrated to reduce the particulate filter pressure drop without negative effects on filtration performance. In order to justify these experimental data, the characteristics of the particulate layer are diagnosed applying modeling techniques. Different soot mass distributions along the inlet channels are analyzed combined with porosity change to assess the new properties after water injection. Their influence on the subsequent soot loading process and regeneration is assessed. The results evidence the main mechanisms of the water injection at the filter inlet to reduce pressure drop and boost the interest for control strategies able to force the re-entrainment of most of the particulate matter towards the inlet channels’ end.

  15. Fate of trace element haps when applying mercury control technologies

    Energy Technology Data Exchange (ETDEWEB)

    Nyberg, Carolyn M.; Thompson, Jeffrey S.; Zhuang, Ye; Pavlish, John H. [University of North Dakota Energy and Environmental Research Center 15 North 23rd Street, Stop 9018, Grand Forks, North Dakota 58202-9018 (United States); Brickett, Lynn; Pletcher, Sara [U.S. Department of Energy National Energy Technology Laboratory 626 Cochrans Mill Road, PO Box 10940, MS 922-273C, Pittsburgh, PA 15236-0940 (United States)

    2009-11-15

    During the past several years, and particularly since the Clean Air Mercury Rule (CAMR) was promulgated in June of 2005, the electric utility industry, product vendors, and the research community have been working diligently to develop and test Hg control strategies for a variety of coal types and plant configurations. Some of these strategies include sorbent injection and chemical additives designed to increase mercury capture efficiency in particulate control devices. These strategies have the potential to impact the fate of other inorganic hazardous air pollutants (HAPs), which typically include As, Be, Cd, Cr, Co, Mn, Ni, Pb, Se, and Sb. To evaluate this impact, flue gas samples using EPA Method 29, along with representative coal and ash samples, were collected during recent pilot-scale and field test projects that were evaluating Hg control technologies. These test programs included a range of fuel types with varying trace element concentrations, along with different combustion systems and particulate control devices. The results show that the majority of the trace element HAPs are associated with the particulate matter in the flue gas, except for Se. However, for five of the six projects, Se partitioning was shifted to the particulate phase and total emissions reduced when Hg control technologies were applied. (author)

  16. Extraction of semivolatile organic compounds from high-efficiency particulate air (HEPA) filters by supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Schilling, J.B.

    1997-09-01

    Supercritical fluid extraction (SFE) using unmodified carbon dioxide has been explored as an alternative method for the extraction of semivolatile organic compounds from high-efficiency particulate air (HEPA) filters. HEPA filters provide the final stage of containment on many exhaust systems in US Department of Energy (DOE) facilities by preventing the escape of chemical and radioactive materials entrained in the exhausted air. The efficiency of the filters is tested by the manufacturer and DOE using dioctylphthalate (DOP), a substance regulated by the US Environmental Protection Agency under the Resource Conservation and Recovery Act. Therefore, the filters must be analyzed for semivolatile organics before disposal. Ninety-eight acid, base, and neutral semivolatile organics were spiked onto blank HEPA material and extracted using SFE, Soxhlet, automated Soxhlet, and sonication techniques. The SFE conditions were optimized using a Dionex SFE-703 instrument. Average recoveries for the 98 semivolatile compounds are 82.7% for Soxhlet, 74.0% for sonication, 70.2% for SFE, and 62.9% for Soxtec. Supercritical fluid extraction reduces the extraction solvent volume to 10--15 mL, a factor of 20--30 less than Soxhlet and more than 5 times less than Soxtec and sonication. Extraction times of 30--45 min are used compared to 16--18 h for Soxhlet extraction

  17. Airborne particulate matter and spacecraft internal environments

    Science.gov (United States)

    Liu, Benjamin Y. H.; Rubow, Kenneth L.; Mcmurry, Peter H.; Kotz, Thomas J.; Russo, Dane

    1991-01-01

    Instrumentation, consisting of a Shuttle Particle Sampler (SPS) and a Shuttle Particle Monitor (SPM), has been developed to characterize the airborne particulate matter in the Space Shuttle cabin during orbital flight. The SPS size selectively collects particles in four size fractions (0-2.5, 2.5-10, 10-100, and greater than 100 microns) which are analyzed postflight for mass concentration and size distribution, elemental composition, and morphology. The SPM provides a continuous record of particle concentration through photometric light scattering. Measurements were performed onboard Columbia, OV-102, during the flight of STS-32 in January 1990. No significant changes were observed in the particle mass concentration, size distribution, or chemical composition in samples collected during flight-day 2 and flight-day 7. The total mass concentration was 56 microg/cu cm with approximately half of the particles larger than 100 microns. Elemental analysis showed that roughly 70 percent of the particles larger than 2.5 microns were carbonaceous with small amounts of other elements present. The SPM showed no temporal or spatial variation in particle mass concentration during the mission.

  18. A study of trace elements in the atmosphere of PINSTECH, Nilore

    International Nuclear Information System (INIS)

    Rusheed, A.; Ahmed, S.; Mannan, A.; Qureshi, I. H.

    1987-06-01

    Atmospheric aerosol particulates of inorganic elements are usually transported to long distances from their source of emmision. The measurement of these elements in air provides useful information for understanding aerosol effects. Therefore studies were undertaken to determine the atmospheric concentration of some inorganic elements, 23 air filter samples of 24 hour duration were collected at Nilore, Islamabad area and analysed for 16 elements by neutron activation analysis (NAA). The concentration of 9 elements were determined in more than 12 samples. Comparison of the average concentration of these elements with those observed at other sites in U.S.A and U.K., indicate a distribution pattern similar to a non-urban site with very little pollution from industerial sources. Binary collection coefficients were calculated using the data of 9 principal elements of identify particulate sources. Co, Cr, Cs, Eu, Fe, Sc and Rb were assigned a crustal source, whereas Sb could possible has an anthropogenic source. Zn was found to have a constant nearby source the exact nature of which could be ascertained after a complete analysis of local soil and other possible sources near the site. (orign./A.B.)

  19. Geochemistry, water dynamics and metals: Major, trace elements, Pb and Sr isotope constraints on their origins and movements in a small anthropized catchment over a flood

    International Nuclear Information System (INIS)

    Luck, J.M.; Othman, D.B.

    1997-01-01

    Major, trace elements and Sr-Pb isotope data on the dissolved and particulate phases are reported for water samples taken regularly over the September flood of a Mediterranean river (S France). This river drains runoff from a small, carbonate, karstified watershed with Miocene and Jurassic lithologies, and characterized by agricultural, urban and road network activities. The objective is to combine all the data into a dynamic model for constraining the origin(s) and movements of waters and of their loads. Furthermore, for metals, it becomes then feasible to know their fate and bioavailability downstream

  20. Barrow Black Carbon Source and Impact Study Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Tate [Baylor Univ., Waco, TX (United States)

    2014-07-01

    The goal of the Barrow Black Carbon Source and Impact (BBCSI) Study was to characterize the concentration and isotopic composition of carbonaceous atmospheric particulate matter (PM) at the Atmospheric Radiation Measurement site in Barrow, AK. The carbonaceous component was characterized via measurement of the organic and black carbon (OC and BC) components of the total PM. To facilitate complete characterization of the particulate matter, filter-based collections were used, including a medium volume PM2.5 sampler and a high volume PM10 sampler. Thirty-eight fine (PM2.5) and 49 coarse (PM10) particulate matter fractions were collected at weekly and bi-monthly intervals. The PM2.5 sampler operated with minimal maintenance during the 12 month campaign. The PM10 sampler used for the BBCSI used standard Tisch hi-vol motors which have a known lifetime of ~1 month under constant use; this necessitated monthly maintenance and it is suggested that the motors be upgraded to industrial blowers for future deployment in the Arctic. The BBCSI sampling campaign successfully collected and archived 87 ambient atmospheric particulate matter samples from Barrow, AK from July 2012 to June 2013. Preliminary analysis of the organic and black carbon concentrations has been completed. This campaign confirmed known trends of high BC lasting from the winter through to spring haze periods and low BC concentrations in the summer.

  1. Quantitative elemental determination of the particulate matter in the atmosphere of Pachuca city and the Real del Monte village, Hidalgo by means of PIXE technique

    International Nuclear Information System (INIS)

    Guasso G, C.L.

    2001-01-01

    All the pollutants that are generated so much of anthropogenic activities as natural cause effects to the health, and of course its increase the atmospheric pollution. Today in day for the great advance of the technology other pollutants are even generated but noxious to the human being's health, such it is the case of the particles, which are also called particulate matter airborne (MPA). This has motivated, to establish control measures leaning in collection strategies and certified analysis techniques, accurate and reliable. In the National Institute of Nuclear Research (ININ) they have been carried out studies on particulate matter airborne. In 1991 it was installed, calibrated and validated the nuclear technique of atomic origin based on proton beams known as PIXE. The characterization of the (MPA) it is carried out applying this technique and the collection by means of Dichotomous collectors (SFU). The thesis work that is presented next, includes the topic of the atmospheric pollution by particulate matter airborne (MPA) in a mining region, inside the Hidalgo State. The study was carried out during the 1998 winter season, only embracing the whole month of March in alternate days giving a total of 112 samples. Two sites that are highly active in the mining were studied, these are: the Real del Monte town and the Hidalgo state capital: Pachuca. Four samples per day were collected beginning to the 7:00 am--7:00 pm (daytime period) and concluding to the 7:00 pm -7:00 am (nocturne period). The characterization of its elementary content is carried out using the X-ray emission induced by particles technique (PIXE) that is a nuclear technique able to analyze 23 chemical elements beginning from the Al to the Pb, it requires of a very small sample quantity, it is very sensitive and it is not destructive. This characterization one carries out so much for fraction PM 2.5 (fine) like as PM 10 (thick) in both sites, also it was analyzed the temporary variation that the

  2. Elemental composition of urban aerosol collected in Florence, Italy

    International Nuclear Information System (INIS)

    Lucarelli, F.; Mando, P.A.; Nava, S.; Prati, P.; Zucchiatti, A.

    2000-01-01

    An extensive investigation is in progress aiming at the characterisation of the air particulate composition in Florence. The aim is to determine the aerosol elemental concentrations as well to identify pollution sources. For our investigation, we use the external PIXE-PIGE beam facility of the Van de Graaff accelerator of INFN at the Physics Department of the Florence University. We report here an overview of the results of the PIXE analysis of a long temporal series (about 1 yr) of PM 10 particulate collected on Millipore filters on a daily basis in three different sites (characterised by different urban settings). Daily concentrations of more than 20 elements have been obtained. From the observed elemental concentrations seasonal variation were found. A relevant decrease of S, Pb and Br levels has been found with respect to 10 yr ago. Four main sources (traffic, sulphates, soil-dust and wind-transported sea-salt) have been extracted with the help of factor analysis

  3. Development of a Criticality Evaluation Method Considering the Particulate Behavior of Nuclear Fuel

    International Nuclear Information System (INIS)

    Sakai, Mikio; Yamamoto, Toshihiro; Murazaki, Minoru; Miyoshi, Yoshinori

    2005-01-01

    In conventional criticality evaluations of nuclear powder systems, effects of particulate behavior were not considered. In other words, it is difficult to take into account the particle motion in the criticality evaluations. We have developed a novel criticality evaluation code to resolve this problem. The criticality evaluation code, coupling a discrete element method simulation code with a continuous-energy Monte Carlo transport code, makes it possible to study the effects of the particulate dynamics on criticality. This criticality evaluation code is applied to the mixed-oxide (MOX) fuel powder agitation process. The criticality evaluations are performed while mixing the MOX fuel powder and an additive powder in a stirred vessel to investigate the effects of the powder free surface deformation and the particulate mixture state on the effective multiplication factor. The evaluation results reveal that the effective multiplication factor decreases due to the powder boundary deformation while it increases as the mixture condition of MOX powder and Zn-St powder is close to homogeneous

  4. Formation of Particulate Matter from the Oxidation of Evaporated Wastewater from Hydraulic Fracturing Activity

    Science.gov (United States)

    Hildebrandt Ruiz, L.; Bean, J. K.; Bilotto, A.

    2017-12-01

    The use of hydraulic fracturing for production of petroleum and natural gas has increased dramatically in the last decade, but the environmental impacts of this technology remain unclear. Experiments were conducted to quantify airborne emissions from twelve samples of hydraulic fracturing flowback wastewater collected in the Permian Basin, as well as the photochemical processing of these emissions leading to the formation of particulate matter. The concentration of total volatile carbon (TVC, hydrocarbons evaporating at room temperature) averaged 29 milligrams of carbon per liter (mgC/L) and the TVC evaporation rate averaged 1357 mgC/L-m2-min. After photochemical oxidation under high NOx conditions the amount of organic particulate matter formed per milliliter of wastewater evaporated averaged 24 micrograms (µg); the amount of ammonium nitrate formed averaged 262 µg. In the state of Texas, the potential formation of PM from evaporated flowback wastewater is similar to the estimated PM emissions from diesel engines used in oil rigs, emphasizing the need to quantify wastewater evaporation and atmospheric processing of these emissions.

  5. Single electron detachment of carbon group and oxygen group elements incident on helium

    International Nuclear Information System (INIS)

    Huang Yongyi; Li Guangwu; Gao Yinghui; Yang Enbo; Gao Mei; Lu Fuquan; Zhang Xuemei

    2006-01-01

    The absolute single electron detachment (SED) cross sections of carbon group elements C - , Si - , Ge - in the energy range of 0.05-0.29 a.u. (5 keV-30 keV) and oxygen group elements O - and S - 0.08-0.27 a.u. (5 keV-30 keV), incident on helium are measured with growth rate method. In our energy region, the SED cross sections of C - , Si - , S - and Ge - increase with the projectiles velocity, at the same time, O - cross sections reach a conspicuous maximum at 0.18 a.u. Some abnormal behavior occurs in measurement of SED cross sections for the oxygen group collision with helium. Our results have been compared with a previous work

  6. Collaboration in air particulate analysis through sharing of regional resources

    International Nuclear Information System (INIS)

    Santos, Flora L.

    2003-01-01

    The air pollution research program of the Philippine Nuclear Research Institute is being pursued in support of the 1999 Clean Air Act. This is being undertaken as part of the RCA/IAEA subproject, 'Air Pollution and Its Trends'. Since the PNRI research reactor (PRR-I) has been on extended shut down for the past 18 years, the PNRI depends solely on X-ray Fluorescence (XRF) spectrometry for elemental characterization of air particulate samples. NAA is a powerful and efficient tool in air particulate characterization and is used in many national programs in the region. Collaboration in air pollution studies through exchange of samples between XRF and NAA groups will widen the range of elements that could be detected by one group. In the RCA/IAEA RAS/4/020, 'Improvement of Research Reactor Operation and Utilization' sharing of research reactor facilities is encouraged. Working out of mechanisms for such sharing will be advantageous to research groups without operational research reactors. This could take the form of exchange of samples or fellowship at a regional host institution. This will allow training of technical staff from countries without research reactors, thus ensuring continuing expertise in NAA even after long periods of reactor shutdown. (author)

  7. Collaboration in air particulate analysis through sharing of regional resources

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Flora L. [Philippine Nuclear Research Institute, Diliman, Quezon (Philippines)

    2003-03-01

    The air pollution research program of the Philippine Nuclear Research Institute is being pursued in support of the 1999 Clean Air Act. This is being undertaken as part of the RCA/IAEA subproject, 'Air Pollution and Its Trends'. Since the PNRI research reactor (PRR-I) has been on extended shut down for the past 18 years, the PNRI depends solely on X-ray Fluorescence (XRF) spectrometry for elemental characterization of air particulate samples. NAA is a powerful and efficient tool in air particulate characterization and is used in many national programs in the region. Collaboration in air pollution studies through exchange of samples between XRF and NAA groups will widen the range of elements that could be detected by one group. In the RCA/IAEA RAS/4/020, 'Improvement of Research Reactor Operation and Utilization' sharing of research reactor facilities is encouraged. Working out of mechanisms for such sharing will be advantageous to research groups without operational research reactors. This could take the form of exchange of samples or fellowship at a regional host institution. This will allow training of technical staff from countries without research reactors, thus ensuring continuing expertise in NAA even after long periods of reactor shutdown. (author)

  8. The effect of magnesium-based additives on particulate emissions from oil-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, L.S.; Galeano, V.C.; Pena, E.S.; Caballero, P.G.

    1986-02-01

    To improve present knowledge of characteristics of particulate emissions from large-size boilers, in particular the role played by magnesium-oxide slurries, research was carried out with the following main objectives in mind: To identify the elementary chemical composition of emissions from a large boiler burning heavy fuel-oil; To define the differences caused by the use of MgO slurries regarding both quantity and characteristics of emissions; To study the boiler's transient response to sudden changes in additive dosage. The use of different fuel-oil during the experiments has given cause to discuss the following aspects: The joint presence of carbon and sulfur in particulate matter; The influence of certain characteristics of fuel-oil in emissions.

  9. Phytoplankton Do Not Produce Carbon-Rich Organic Matter in High CO2 Oceans

    Science.gov (United States)

    Kim, Ja-Myung; Lee, Kitack; Suh, Young-Sang; Han, In-Seong

    2018-05-01

    The ocean is a substantial sink for atmospheric carbon dioxide (CO2) released as a result of human activities. Over the coming decades the dissolved inorganic C concentration in the surface ocean is predicted to increase, which is expected to have a direct influence on the efficiency of C utilization (consumption and production) by phytoplankton during photosynthesis. Here we evaluated the generality of C-rich organic matter production by examining the elemental C:N ratio of organic matter produced under conditions of varying pCO2. The data used in this analysis were obtained from a series of pelagic in situ pCO2 perturbation studies that were performed in the diverse ocean regions and involved natural phytoplankton assemblages. The C:N ratio of the resulting particulate and dissolved organic matter did not differ across the range of pCO2 conditions tested. In particular, the ratio for particulate organic C and N was found to be 6.58 ± 0.05, close to the theoretical value of 6.6.

  10. Is there a difference in treatment outcomes between epidural injections with particulate versus non-particulate steroids?

    Energy Technology Data Exchange (ETDEWEB)

    Bensler, Susanne; Sutter, Reto; Pfirrmann, Christian W.A.; Peterson, Cynthia K. [Orthopedic University Hospital Balgrist, Department of Radiology, Zurich (Switzerland); University of Zurich, Faculty of Medicine, Zurich (Switzerland)

    2017-04-15

    To compare the outcomes of patients after interlaminar computed tomography (CT)-guided epidural injections of the lumbar spine with particulate vs. non-particulate steroids. 531 consecutive patients were treated with CT-guided lumbar interlaminar epidural injections with steroids and local anaesthetics. 411 patients received a particulate steroid and 120 patients received a non-particulate steroid. Pain levels were assessed using the 11-point numerical rating scale (NRS) and overall reported 'improvement' was assessed using the Patients Global Impression of Change (PGIC) at 1 day, 1 week and 1 month post-injection. Descriptive and inferential statistics were applied. Patients receiving particulate steroids had statistically significantly higher NRS change scores (p = 0.0001 at 1 week; p = 0.0001 at 1 month). A significantly higher proportion of patients receiving particulate steroids reported relevant improvement (PGIC) at both 1 week and 1 month post injection (p = 0.0001) and they were significantly less likely to report worsening at 1 week (p = 0.0001) and 1 month (p = 0.017). Patients treated with particulate steroids had significantly greater pain relief and were much more likely to report clinically relevant overall 'improvement' at 1 week and 1 month compared to the patients treated with non-particulate steroids. (orig.)

  11. Is there a difference in treatment outcomes between epidural injections with particulate versus non-particulate steroids?

    International Nuclear Information System (INIS)

    Bensler, Susanne; Sutter, Reto; Pfirrmann, Christian W.A.; Peterson, Cynthia K.

    2017-01-01

    To compare the outcomes of patients after interlaminar computed tomography (CT)-guided epidural injections of the lumbar spine with particulate vs. non-particulate steroids. 531 consecutive patients were treated with CT-guided lumbar interlaminar epidural injections with steroids and local anaesthetics. 411 patients received a particulate steroid and 120 patients received a non-particulate steroid. Pain levels were assessed using the 11-point numerical rating scale (NRS) and overall reported 'improvement' was assessed using the Patients Global Impression of Change (PGIC) at 1 day, 1 week and 1 month post-injection. Descriptive and inferential statistics were applied. Patients receiving particulate steroids had statistically significantly higher NRS change scores (p = 0.0001 at 1 week; p = 0.0001 at 1 month). A significantly higher proportion of patients receiving particulate steroids reported relevant improvement (PGIC) at both 1 week and 1 month post injection (p = 0.0001) and they were significantly less likely to report worsening at 1 week (p = 0.0001) and 1 month (p = 0.017). Patients treated with particulate steroids had significantly greater pain relief and were much more likely to report clinically relevant overall 'improvement' at 1 week and 1 month compared to the patients treated with non-particulate steroids. (orig.)

  12. Particulate matter emissions, and metals and toxic elements in airborne particulates emitted from biomass combustion: The importance of biomass type and combustion conditions.

    Science.gov (United States)

    Zosima, Angela T; Tsakanika, Lamprini-Areti V; Ochsenkühn-Petropoulou, Maria Th

    2017-05-12

    The aim of this study was to investigate the impact of biomass combustion with respect to burning conditions and fuel types on particulate matter emissions (PM 10 ) and their metals as well as toxic elements content. For this purpose, different lab scale burning conditions were tested (20 and 13% O 2 in the exhaust gas which simulate an incomplete and complete combustion respectively). Furthermore, two pellet stoves (8.5 and 10 kW) and one open fireplace were also tested. In all cases, 8 fuel types of biomass produced in Greece were used. Average PM 10 emissions ranged at laboratory-scale combustions from about 65 to 170 mg/m 3 with flow oxygen at 13% in the exhaust gas and from 85 to 220 mg/m 3 at 20% O 2 . At pellet stoves the emissions were found lower (35 -85 mg/m 3 ) than the open fireplace (105-195 mg/m 3 ). The maximum permitted particle emission limit is 150 mg/m 3 . Metals on the PM 10 filters were determined by several spectrometric techniques after appropriate digestion or acid leaching of the filters, and the results obtained by these two methods were compared. The concentration of PM 10 as well as the total concentration of the metals on the filters after the digestion procedure appeared higher at laboratory-scale combustions with flow oxygen at 20% in the exhaust gas and even higher at fireplace in comparison to laboratory-scale combustions with 13% O 2 and pellet stoves. Modern combustion appliances and appropriate types of biomass emit lower PM 10 emissions and lower concentration of metals than the traditional devices where incomplete combustion conditions are observed. Finally, a comparison with other studies was conducted resulting in similar results.

  13. Particulate matter and health - from air to human lungs

    International Nuclear Information System (INIS)

    Piniero, T.; Cerqueira Alves, L.; Reis, M.

    1998-01-01

    The aim of this project is to search for respiratory system particular aggressors to which workers are submitted in their labouring activity. The work plan under the current IAEA contract comprise a prospective study to identify particulate matter deposited in the human respiratory ducts and lung tissue and workers respiratory health status survey at a steel plant, Siderurgia Nacional (SN). So far, the selection of areas of interest at SN, workers exposed, airborne particulate monitoring sites according to the periodicity of labouring cycles, and the beginning of workers medical survey have been achieved and/or initiated. The SN selected area, where steel is processed and steel casting is achieved, involve approximately 80 workers, most of them working at that location for more than 15 years. Blood elemental content data determined by PIXE and INAA and a preliminary health status evaluation from 32 of the 80 workers included in this survey are presented and discussed. (author)

  14. Impacts modeling using the SPH particulate method. Case study

    International Nuclear Information System (INIS)

    Debord, R.

    1999-01-01

    The aim of this study is the modeling of the impact of melted metal on the reactor vessel head in the case of a core-meltdown accident. Modeling using the classical finite-element method alone is not sufficient but requires a coupling with particulate methods in order to take into account the behaviour of the corium. After a general introduction about particulate methods, the Nabor and SPH (smoothed particle hydrodynamics) methods are described. Then, the theoretical and numerical reliability of the SPH method is determined using simple cases. In particular, the number of neighbours significantly influences the preciseness of calculations. Also, the mesh of the structure must be adapted to the mesh of the fluid in order to reduce the edge effects. Finally, this study has shown that the values of artificial velocity coefficients used in the simulation of the BERDA test performed by the FZK Karlsruhe (Germany) are not correct. The domain of use of these coefficients was precised during a low speed impact. (J.S.)

  15. Particulate hot gas stream cleanup technical issues

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This is the tenth in a series of quarterly reports describing the activities performed under Contract No. DE-AC21-94MC31160. Analyses of Hot Gas Stream Cleanup (HGCU) ashes and descriptions of filter performance address aspects of filter operation that are apparently linked to the characteristics of the collected ash or the performance of the ceramic bed filter elements. Task I is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters (APFS) and to relate these ash properties to the operation and performance of these filters. Task 2 concerns testing and failure analysis of ceramic filter elements. Under Task I during the past quarter, analyses were performed on a particulate sample from the Transport Reactor Demonstration Unit (TRDU) located at the University of North Dakota Energy and Environmental Research Center. Analyses are in progress on ash samples from the Advanced Particulate Filter (APF) at the Pressurized Fluidized-Bed Combustor (PFBC) that was in operation at Tidd and ash samples from the Pressurized Circulating Fluid Bed (PCFB) system located at Karhula, Finland. A site visit was made to the Power Systems Development Facility (PSDF) to collect ash samples from the filter vessel and to document the condition of the filter vessel with still photographs and videotape. Particulate samples obtained during this visit are currently being analyzed for entry into the Hot Gas Cleanup (HGCU) data base. Preparations are being made for a review meeting on ash bridging to be held at Department of Energy Federal Energy Technology Center - Morgantown (DOE/FETC-MGN) in the near future. Most work on Task 2 was on hold pending receipt of additional funds; however, creep testing of Schumacher FT20 continued. The creep tests on Schumacher FT20 specimens just recently ended and data analysis and comparisons to other data are ongoing. A summary and analysis of these creep results will be sent out shortly. Creep

  16. Externality costs by emission. E. Particulates

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Fossil-fuel-fired electricity generating systems, particularly coal and oil-fired facilities, are significant emitters of particulate matter. The major components of particulate emissions from a power plant include ash, which is made up of heavy metals, radioactive isotopes and hydrocarbons, and sulfates (SO 4 ) and nitrates (NO 3 ), which are formed by reaction of sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ) in the atmosphere. The smallest ash particulates (including sulfates and nitrates) cause human respiratory effects and impaired visibility. Other effects may include materials damage due to soiling and possibly corrosion, damage to domestic and wild flora through deposition of particulates on foliage, and possible health effects on domestic animals and wild fauna. Several studies focus on the direct effects of high ambient levels of small particulates. This chapter reviews the available literature on the effects of particulate emissions on humans and their environment, and attempts to assign a cost figure to the environmental effects and human health impairments associated with particulate matter emissions. Specifically, this report focuses on the effects of particulates related to human health, visibility, flora, fauna and materials

  17. Source apportionment of fine (PM1.8) and ultrafine (PM0.1) airborne particulate matter during a severe winter pollution episode.

    Science.gov (United States)

    Kleeman, Michael J; Riddle, Sarah G; Robert, Michael A; Jakober, Chris A; Fine, Phillip M; Hays, Michael D; Schauer, James J; Hannigan, Michael P

    2009-01-15

    Size-resolved samples of airborne particulate matter (PM) collected during a severe winter pollution episode at three sites in the San Joaquin Valley of California were extracted with organic solvents and analyzed for detailed organic compounds using GC-MS. Six particle size fractions were characterized with diameter (Dp) < 1.8 microm; the smallest size fraction was 0.056 < Dp < 0.1 microm which accounts for the majority of the mass in the ultrafine (PM0.1) size range. Source profiles for ultrafine particles developed during previous studies were applied to the measurements at each sampling site to calculate source contributions to organic carbon (OC) and elemental carbon (EC) concentrations. Ultrafine EC concentrations ranged from 0.03 microg m(-3) during the daytime to 0.18 microg m(-3) during the nighttime. Gasoline fuel, diesel fuel, and lubricating oil combustion products accounted for the majority of the ultrafine EC concentrations, with relatively minor contributions from biomass combustion and meat cooking. Ultrafine OC concentrations ranged from 0.2 microg m(-3) during the daytime to 0.8 microg m(-3) during the nighttime. Wood combustion was found to be the largest source of ultrafine OC. Meat cooking was also identified as a significant potential source of PM0.1 mass but further study is required to verify the contributions from this source. Gasoline fuel, diesel fuel, and lubricating oil combustion products made minor contributions to PM0.1 OC mass. Total ultrafine particulate matter concentrations were dominated by contributions from wood combustion and meat cooking during the current study. Future inhalation exposure studies may wish to target these sources as potential causes of adverse health effects.

  18. International Space Station Bacteria Filter Element Service Life Evaluation

    Science.gov (United States)

    Perry, J. L.

    2005-01-01

    The International Space Station (ISS) uses high-efficiency particulate air filters to remove particulate matter from the cabin atmosphere. Known as bacteria filter elements (BFEs), there are 13 elements deployed on board the ISS's U.S. segment in the flight 4R assembly level. The preflight service life prediction of 1 yr for the BFEs is based upon engineering analysis of data collected during developmental testing that used a synthetic dust challenge. While this challenge is considered reasonable and conservative from a design perspective, an understanding of the actual filter loading is required to best manage the critical ISS program resources. Testing was conducted on BFEs returned from the ISS to refine the service life prediction. Results from this testing and implications to ISS resource management are provided.

  19. Airborne particulate discriminator

    Science.gov (United States)

    Creek, Kathryn Louise [San Diego, CA; Castro, Alonso [Santa Fe, NM; Gray, Perry Clayton [Los Alamos, NM

    2009-08-11

    A method and apparatus for rapid and accurate detection and discrimination of biological, radiological, and chemical particles in air. A suspect aerosol of the target particulates is treated with a taggant aerosol of ultrafine particulates. Coagulation of the taggant and target particles causes a change in fluorescent properties of the cloud, providing an indication of the presence of the target.

  20. A cross-site comparison of factors controlling streamwater carbon flux in western North American catchments (Invited)

    Science.gov (United States)

    Brooks, P. D.; Biederman, J. A.; Condon, K.; Chorover, J.; McIntosh, J. C.; Meixner, T.; Perdrial, J. N.

    2013-12-01

    Increasing variability in climate is expected to alter the amount and form of terrestrial carbon in stream water both directly, through changes in the magnitude and timing of discharge, and indirectly through changes in land cover following disturbance (e.g. drought, fire, or insect driven mortality). Predicting how these changes will impact individual stream-catchment ecosystems however, is hampered by a lack of concurrent observations on both dissolved and particulate carbon flux across a range of spatial, temporal, and discharge scales. Because carbon is strongly coupled to most biogeochemical reactions within both aquatic and terrestrial ecosystems, this represents a critical unknown in predicting the response of catchment-ecosystems to concurrent changes in climate and land cover. This presentation will address this issue using a meta-analysis of dissolved organic, dissolved inorganic, and particulate organic carbon fluxes from multiple locations, including undisturbed sites along a climate gradient from desert rivers to seasonally snow-covered, forested mountain catchments, and sites disturbed by both fire and extensive, insect driven mortality. Initial analyses suggest that dissolved (organic and inorganic) and particulate fluxes respond differently to various types of disturbance and depend on interactions between changes in size of mobile carbon pools and changes in hydrologic routing of carbon to streamwater. Anomalously large fluxes of both dissolved and particulate organic matter are associated with episodic changes in hydrologic routing (e.g. storm floods; snowmelt) that connect normally hydrologically isolated carbon pools (e.g. surficial hillslope soils) with surface water. These events are often of short duration as the supply of mobile carbon is exhausted in short term flushing response. In contrast, disturbances that increase the size of the mobile carbon pool (e.g. widespread vegetation mortality) result smaller proportional increases in

  1. Evaluation of trace elemental composition of aerosols in the atmosphere of Rawalpindi and Islamabad using radio analytical methods

    International Nuclear Information System (INIS)

    Qadir, Muhammad Abdul; Zaidi, Jamshaid Hussain; Ahmad, Shaikh Asrar; Gulzar, Asad; Yaseen, Muhammad; Atta, Sadia; Tufail, Asma

    2012-01-01

    Geological and anthropogenic contributions to air pollution were monitored by analyzing aerosol particulates present in the atmosphere of Rawalpindi and Islamabad, Pakistan, using instrumental neutron activation for trace elemental analysis. A scanning electron microscope was used to study particulate size distribution and morphology. Twenty two elements were analyzed and their likely sources were identified. It was found that 69% of the suspended particulate matter in the atmosphere of Islamabad, and 52% in Rawalpindi, were of a diameter less than 3 μm. The presence of Yb, Cs, Sc, Rb, Co, Eu, La, Ba, Zn and Hf indicates that a major portion of the trace elements in the aerosol particulates was due to the geological nature of the land, while Sc was considered to be arising from coal burning. The presence of Cr, Fe, Ce, Pb and Cd was attributed to anthropogenic activities at Rawalpindi and Islamabad. Unusually high concentrations of Mo and Nb were found in the atmosphere of Islamabad, based on soil derived aerosols. - Highlights: ► Discussion is made on Total suspended Particulate (TSP) matter in the atmosphere. ► Measurement of Radio active elements in the TSP by using SSNTD which was found non significant. ► 23 Trace element analysis of the TSPs in the atmosphere of twin cities i.e. Rawalpindi and Islamabad and their relation to their sources by using Neutron activation analysis. ► The mountain of Islamabad has some unique and important deposits of Nb and Gd , this paper will help the Geological survey of Pakistan to explore their deposits. ► There is high level of TSPs>10 um, which is a great threat to the peoples of Islamabad.

  2. Source Apportionment of the Summer Time Carbonaceous Aerosol at Nordic Rural Background Sites

    Science.gov (United States)

    In the present study, natural and anthropogenic sources of particulate organic carbon (OCp) and elemental carbon (EC) have been quantified based on weekly filter samples of PM10 (particles with aerodynamic diameter Nordic rural backgro...

  3. Permanganate oxidizable carbon reflects a processed soil fraction that is sensitive to management

    Science.gov (United States)

    Permanganate oxidizable C (POXC; i.e., active C) is a relatively new method that can quantify labile soil C rapidly and inexpensively. Despite limited reports of positive correlations with particulate organic carbon (POC), microbial biomass carbon (MBC) and other soil carbon (C) fractions, little i...

  4. Joining elements of silicon carbide

    International Nuclear Information System (INIS)

    Olson, B.A.

    1979-01-01

    A method of joining together at least two silicon carbide elements (e.g.in forming a heat exchanger) is described, comprising subjecting to sufficiently non-oxidizing atmosphere and sufficiently high temperature, material placed in space between the elements. The material consists of silicon carbide particles, carbon and/or a precursor of carbon, and silicon, such that it forms a joint joining together at least two silicon carbide elements. At least one of the elements may contain silicon. (author)

  5. [Distribution characteristics of soil organic carbon and its composition in Suaeda salsa wetland in the Yellow River delta].

    Science.gov (United States)

    Dong, Hong-Fang; Yu, Jun-Bao; Guan, Bo

    2013-01-01

    Applying the method of physical fractionation, distribution characteristics of soil organic carbon and its composition in Suaeda salsa wetland in the Yellow River delta were studied. The results showed that the heavy fraction organic carbon was the dominant component of soil organic carbon in the studied region. There was a significantly positive relationship between the content of heavy fraction organic carbon, particulate organic carbon and total soil organic carbon. The ranges of soil light fraction organic carbon ratio and content were 0.008% - 0.15% and 0.10-0.40 g x kg(-1), respectively, and the range of particulate organic carbon ratio was 8.83% - 30.58%, indicating that the non-protection component of soil organic carbon was low and the carbon pool was relatively stable in Suaeda salsa wetland of the Yellow River delta.

  6. Investigating the hydrological significance of stalagmite geochemistry (Mg, Sr) using Sr isotope and particulate element records across the Late Glacial-to-Holocene transition

    Science.gov (United States)

    Belli, R.; Borsato, A.; Frisia, S.; Drysdale, R.; Maas, R.; Greig, A.

    2017-02-01

    The trace element and Sr isotope records in two coeval stalagmites characterized by different growth rates and flow regimes at Savi cave (Grotta Savi, NE Italy) reveal different sources and incorporation mechanisms for Mg and Sr. Mg is sourced primarily from dissolved cave host rock while particulate Mg derived from soil plays a subordinate role. The presence of particulate-borne Mg is inferred from the co-variation of Mg and particle-associated elements (Th, Al and Mn) which are preferentially concentrated in open columnar calcite layers. Variation in Mg concentrations corrected for particle-influenced components, the Mgc parameter, is controlled by water-rock interaction, with higher and lower Mgc during dry and wet phases, respectively. This is thought to reflect incongruent dissolution of Mg-rich phases. Correction of Sr concentrations for contributions from airborne exogenic Sr, based on 87Sr/86Sr ratios, yields the bedrock-only contribution (Src). Src variation in stalagmite calcite is influenced by speleothem growth rate and by variation of the calcite-water Sr partitioning in wet and dry phases, and only to a minor extent by incongruent dissolution of Mg-rich phases. Concentration profiles for Mgc and Srcg (corrected for growth rate effects) show inverse correlations and are inferred to show hydrological significance which is captured in a hydrological index, HI. We suggest HI provides robust information on water-rock interaction related to hydrological changes and can be utilized in both wet and semi-arid environments, provided the corrections for soil Mg and exogenic Sr can be applied with confidence. Application of the HI index allows correction of Grotta Savi oxygen isotope data, to yield a δ18Oc time series that shows when changes in moisture sources and atmospheric reorganization, or changes in moisture amount, were significant. This is especially evident during the Younger Dryas (YD). The Savi record supports the concept of a two-phase YD, marked by

  7. INAA of Airborne Particulate Matter Collected in Bangkok and Pathumthani 2002-2004

    International Nuclear Information System (INIS)

    Chueinta, W.; Bunprapob, S.

    2005-01-01

    This paper presents the summary report of the monitoring study on ambient air quality in Bangkok metropolis and its boundary covering the period from 2002 to 2004. The work performed included sampling of fine and coarse fractions of particulate matter at the sites representing urban and suburban areas; measurement of particle mass concentration and elemental concentration; and data interpretation. Instrumental neutron activation by use of research reactor facilities at Office of Atoms for Peace was carried out for multielemental analysis of all filter samples collected. Twenty elements were determined. The database of the three consecutive years are summarized and reviewed in this paper

  8. Bonded carbon or ceramic fiber composite filter vent for radioactive waste

    Science.gov (United States)

    Brassell, Gilbert W.; Brugger, Ronald P.

    1985-02-19

    Carbon bonded carbon fiber composites as well as ceramic or carbon bonded ceramic fiber composites are very useful as filters which can separate particulate matter from gas streams entraining the same. These filters have particular application to the filtering of radioactive particles, e.g., they can act as vents for containers of radioactive waste material.

  9. Amino sugars in suspended particulate matter from the Bay of Bengal during the summer monsoon of 2001

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, L.; De; Matondkar, S.G.P.; Bhosle, N.B.

    and pseudopeptidoglycan (Brock et al 1994). AS are also important con- stituents of many biopolymers such as polysac- charides, glycoproteins and glycolipids (Sharon 1965). Moreover, chitin, a polymer of amino sugar, N-acetyl glucosamine (Muzzarelli 1977; Benner.../F glass fibre filters (0.7?m pore size) for the analysis of particu- late organic carbon (POC), particulate nitrogen (PN) and amino sugars (AS) concentration and composition. 2.3 Analysis of samples The SPM samples were de-carbonated overnight using fuming...

  10. Mass spectroscopic analysis of atmospheric particulate matter

    International Nuclear Information System (INIS)

    Wippel, R.

    1997-02-01

    Particulate matter (PM) in the atmosphere vary greatly in origin, in their physical and chemical properties and their effects on climate, atmospheric chemistry and health. Aerosol particles with an aerodynamic diameter less than two μm can enter the respiratory tract of humans when inhaled. Bulk analysis of ambient dust particles was performed using an inductively coupled plasma mass spectrometer (ICP-MS). The size-fractionated collected samples were analyzed after a leaching procedure that simulates the solution reactions occurring in the lungs. A disadvantage of bulk analysis is that it gives no information about the distribution of a certain element within the particles under investigation. A Laser-Microprobe-Mass-Analyzer (LAMMA-500) was used to obtain this information. At sampling sites in Austria and in Zimbabwe, Africa, single particles were sampled using a self-made impactor. One of the final aims in environmental analysis is to successfully apply receptor models that relate the chemical and physical properties of a receptor site to a source. The knowledge of the sources of atmospheric particulate matter is essential for environmental policy makers as well as for epidemiological studies. Artificial neural networks (ANN) have a remarkable ability to handle LAMMA-data. Three ANNs were used as a pattern recognition tool for LAMMA mass spectral data: a back-propagation net, a Kohonen network,and a counter-propagation net. Standard source profiles from the United States Environmental Protection Agency were used as training and test data of the different nets. The elemental patterns of the sum of 100 mass spectra of fine dust particles were presented to the trained nets and satisfactory recognition (> 80 %) was obtained. (author)

  11. Particulate and gaseous emissions from residential biomass combustion

    International Nuclear Information System (INIS)

    Boman, Christoffer

    2005-04-01

    Biomass is considered to be a sustainable energy source with significant potentials for replacing electricity and fossil fuels, not at least in the residential sector. However, present wood combustion is a major source of ambient concentrations of hydrocarbons (e.g. VOC and PAH) and particulate matter (PM) and exposure to these pollutants have been associated with adverse health effects. Increased focus on combustion related particulate emissions has been seen concerning the formation, characteristics and implications to human health. Upgraded biomass fuels (e.g. pellets) provide possibilities of more controlled and optimized combustion with less emission of products of incomplete combustion (PICs). For air quality and health impact assessments, regulatory standards and evaluations concerning residential biomass combustion, there is still a need for detailed emission characterization and quantification when using different fuels and combustion techniques. This thesis summarizes the results from seven different papers. The overall objective was to carefully and systematically study the emissions from residential biomass combustion with respect to: i) experimental characterization and quantification, ii) influences of fuel, appliance and operational variables and iii) aspects of ash and trace element transformations and aerosol formation. Special concern in the work was on sampling, quantification and characterization of particulate emissions using different appliances, fuels and operating procedures. An initial review of health effects showed epidemiological evidence of potential adverse effect from wood smoke exposure. A robust whole flow dilution sampling set-up for residential biomass appliances was then designed, constructed and evaluated, and subsequently used in the following emission studies. Extensive quantifications and characterizations of particulate and gases emissions were performed for residential wood and pellet appliances. Emission factor ranges for

  12. Study on the fabrication of Al matrix composites strengthened by combined in-situ alumina particle and in-situ alloying elements

    International Nuclear Information System (INIS)

    Huang Zanjun; Yang Bin; Cui Hua; Zhang Jishan

    2003-01-01

    A new idea to fabricate aluminum matrix composites strengthened by combined in-situ particle strengthening and in-situ alloying has been proposed. Following the concept of in-situ alloying and in-situ particle strengthening, aluminum matrix composites reinforced by Cu and α-Al 2 O 3 particulate (material I) and the same matrix reinforced by Cu, Si alloying elements and α-Al 2 O 3 particulate (material II) have been obtained. SEM observation, EDS and XRD analysis show that the alloy elements Cu and Si exist in the two materials, respectively. In-situ Al 2 O 3 particulates are generally spherical and their mean size is less than 0.5 μm. TEM observation shows that the in-situ α-Al 2 O 3 particulates have a good cohesion with the matrix. The reaction mechanism of the Al 2 O 3 particulate obtained by this method was studied. Thermodynamic considerations are given to the in-situ reactions and the distribution characteristic of in-situ the α-Al 2 O 3 particulate in the process of solidification is also discussed

  13. Mixed-layer carbon cycling at the Kuroshio Extension Observatory

    Science.gov (United States)

    Fassbender, Andrea J.; Sabine, Christopher L.; Cronin, Meghan F.; Sutton, Adrienne J.

    2017-02-01

    Seven years of data from the NOAA Kuroshio Extension Observatory (KEO) surface mooring, located in the North Pacific Ocean carbon sink region, were used to evaluate drivers of mixed-layer carbon cycling. A time-dependent mass balance approach relying on two carbon tracers was used to diagnostically evaluate how surface ocean processes influence mixed-layer carbon concentrations over the annual cycle. Results indicate that the annual physical carbon input is predominantly balanced by biological carbon uptake during the intense spring bloom. Net annual gas exchange that adds carbon to the mixed layer and the opposing influence of net precipitation that dilutes carbon concentrations make up smaller contributions to the annual mixed-layer carbon budget. Decomposing the biological term into annual net community production (aNCP) and calcium carbonate production (aCaCO3) yields 7 ± 3 mol C m-2 yr-1 aNCP and 0.5 ± 0.3 mol C m-2 yr-1 aCaCO3, giving an annually integrated particulate inorganic carbon to particulate organic carbon production ratio of 0.07 ± 0.05, as a lower limit. Although we find that vertical physical processes dominate carbon input to the mixed layer at KEO, it remains unclear how horizontal features, such as eddies, influence carbon production and export by altering nutrient supply as well as the depth of winter ventilation. Further research evaluating linkages between Kuroshio Extension jet instabilities, eddy activity, and nutrient supply mechanisms is needed to adequately characterize the drivers and sensitivities of carbon cycling near KEO.

  14. The role of effective discharge in the ocean delivery of particulate organic carbon by small, mountainous river systems

    Science.gov (United States)

    Wheatcroft, R.A.; Goni, M.A.; Hatten, J.A.; Pasternack, G.B.; Warrick, J.A.

    2010-01-01

    Recent research has shown that small, mountainous river systems (SMRS) account for a significant fraction of the global flux of sediment and particulate organic carbon (POC) to the ocean. The enormous number of SMRS precludes intensive studies of the sort conducted on large systems, necessitating development of a conceptual framework that permits cross-system comparison and scaling up. Herein, we introduce the geomorphic concept of effective discharge to the problem of source-to-sink POC transport. This idea recognizes that transport effectiveness is the product of discharge frequency and magnitude, wherein the latter is quantified as a power-law relationship between discharge and load (the 'rating curve'). An analytical solution for effective discharge (Qe) identifies two key variables: the standard deviation of the natural logarithm of discharge (??q), and the rating exponent of constituent i (bi Data from selected SMRS are used to show that for a given river Qe-POC transport in SMRS should exploit the conceptual framework provided herein and seek to identify how constituent-specific effective discharges vary between rivers and respond to perturbations. ?? 2010, by the American Society of Limnology and Oceanography, Inc.

  15. Impact of the natural Fe-fertilization on the magnitude, stoichiometry and efficiency of particulate biogenic silica, nitrogen and iron export fluxes

    Science.gov (United States)

    Lemaitre, N.; Planquette, H.; Dehairs, F.; van der Merwe, P.; Bowie, A. R.; Trull, T. W.; Laurenceau-Cornec, E. C.; Davies, D.; Bollinger, C.; Le Goff, M.; Grossteffan, E.; Planchon, F.

    2016-11-01

    The Kerguelen Plateau is characterized by a naturally Fe-fertilized phytoplankton bloom that extends more than 1000 km downstream in the Antarctic Circumpolar Current. During the KEOPS2 study, in austral spring, we measured particulate nitrogen (PN), biogenic silica (BSi) and particulate iron (PFe) export fluxes in order to investigate how the natural fertilization impacts the stoichiometry and the magnitude of export fluxes and therefore the efficiency of the biological carbon pump. At 9 stations, we estimated elemental export fluxes based on element concentration to 234Th activity ratios for particulate material collected with in-situ pumps and 234Th export fluxes (Planchon et al., 2015). This study revealed that the natural Fe-fertilization increased export fluxes but to variable degrees. Export fluxes for the bloom impacted area were compared with those of a high-nutrient, low-chlorophyll (HNLC), low-productive reference site located to the south-west of Kerguelen and which had the lowest BSi and PFe export fluxes (2.55 mmol BSi m-2 d-1 and 1.92 μmol PFem-2 d-1) and amongst the lowest PN export flux (0.73 mmol PN m-2 d-1). The impact of the Fe fertilization was the greatest within a meander of the polar front (PF), to the east of Kerguelen, with fluxes reaching 1.26 mmol PN m-2 d-1; 20.4 mmol BSi m-2 d-1 and 22.4 μmol PFe m-2 d-1. A highly productive site above the Kerguelen Plateau, on the contrary, was less impacted by the fertilization with export fluxes reaching 0.72 mmol PN m-2 d-1; 4.50 mmol BSi m-2 d-1 and 21.4 μmol PFe m-2 d-1. Our results suggest that ecosystem features (i.e. type of diatom community) could play an important role in setting the magnitude of export fluxes of these elements. Indeed, for the PF meander, the moderate productivity was sustained by the presence of large and strongly silicified diatom species while at the higher productivity sites, smaller and slightly silicified diatoms dominated. Interestingly, our results suggest that

  16. Carbon photonics

    Energy Technology Data Exchange (ETDEWEB)

    Konov, V I [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-11-30

    The properties of new carbon materials (single-crystal and polycrystalline CVD diamond films and wafers, single-wall carbon nanotubes and graphene) and the prospects of their use as optical elements and devices are discussed. (optical elements of laser devices)

  17. Influence of carbon and lipid sources on variation of mercury and other trace elements in polar bears (Ursus maritimus).

    Science.gov (United States)

    Routti, Heli; Letcher, Robert J; Born, Erik W; Branigan, Marsha; Dietz, Rune; Evans, Thomas J; McKinney, Melissa A; Peacock, Elizabeth; Sonne, Christian

    2012-12-01

    In the present study, the authors investigated the influence of carbon and lipid sources on regional differences in liver trace element (As, Cd, Cu, total Hg, Mn, Pb, Rb, Se, and Zn) concentrations measured in polar bears (Ursus maritimus) (n = 121) from 10 Alaskan, Canadian Arctic, and East Greenland subpopulations. Carbon and lipid sources were assessed using δ(13) C in muscle tissue and fatty acid (FA) profiles in subcutaneous adipose tissue as chemical tracers. A negative relationship between total Hg and δ(13) C suggested that polar bears feeding in areas with higher riverine inputs of terrestrial carbon accumulate more Hg than bears feeding in areas with lower freshwater input. Mercury concentrations were also positively related to the FA 20:1n-9, which is biosynthesized in large amounts in Calanus copepods. This result raises the hypothesis that Calanus glacialis are an important link in the uptake of Hg in the marine food web and ultimately in polar bears. Unadjusted total Hg, Se, and As concentrations showed greater geographical variation among polar bear subpopulations compared with concentrations adjusted for carbon and lipid sources. The Hg concentrations adjusted for carbon and lipid sources in Bering-Chukchi Sea polar bear liver tissue remained the lowest among subpopulations. Based on these findings, the authors suggest that carbon and lipid sources for polar bears should be taken into account when one is assessing spatial and temporal trends of long-range transported trace elements. Copyright © 2012 SETAC.

  18. Black Carbon as an Additional Indicator of the Adverse Health Effects of Airborn Particles; Roet als additionele indicator voor de gezondheidseffecten van fijn stof

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, N.; Fischer, P.; Cassee, F. [Rijksinstituut voor Volksgezondheid en Milieu RIVM, Bilthoven (Netherlands); Van Bree, L. [Planbureau voor de Leefomgeving PBL, Den Haag (Netherlands); Keuken, M. [TNO Gebouwde Omgeving, Utrecht (Netherlands); Hoek, G.; Brunekreef, B. [Institute for Risk Assessment Sciences IRAS, Universiteit Utrecht, Utrecht (Netherlands)

    2011-12-15

    The current standards for particulate matter are based on the mass concentration of particulates. In the study 'Black Carbon as an Additional Indicator of the Adverse Health Effects of Airborn Particles Compared to PM{sub 10} and PM{sub 2.5}' the authors investigated the value of carbon as an indicator of the public health effects of particulates in comparison with the mass concentration of particulates. [Dutch] De huidige normen voor fijn stof zijn gebaseerd op de massaconcentratie van fijnstofdeeltjes. In de studie 'Black Carbon as an Additional Indicator of the Adverse Health Effects of Airborn Particles Compared to PM{sub 10} and PM{sub 2.5}' onderzoeken de auteurs de toegevoegde waarde van roet als indicator voor de gezondheidseffecten van fijn stof in vergelijking met de massaconcentratie van fijn stof.

  19. Distribution of some chemical elements between dissolved and particulate phases in the ocean. Research period: August 1, 1975--July 31, 1976

    International Nuclear Information System (INIS)

    1976-01-01

    Progress is reported on studies on the distributions of fallout 210 Pb and 210 Po in dissolved and particulate states in the Gulf of Maine and a transect of the equatorial North Atlantic Ocean. The ratio of 210 Pb/ 226 Ra and 210 Po/ 210 Pb in seawater and suspended particulate matter in samples collected from 10 stations in the tropical and eastern North Atlantic and two stations in the Pacific was also determined

  20. THE EFFECT OF WATER (VAPOR-PHASE) AND CARBON ON ELEMENTAL MERCURY REMOVAL IN A FLOW REACTOR

    Science.gov (United States)

    The paper gives results of studying the effect of vapor-phase moisture on elemental mercury (Hgo) removal by activated carbon (AC) in a flow reactor. tests involved injecting AC into both a dry and a 4% moisture nitrogen (N2) /Hgo gas stream. A bituminous-coal-based AC (Calgon WP...