WorldWideScience

Sample records for particles harvest concentrate

  1. Morphology of bone particles after harvesting with 4 different devices.

    Science.gov (United States)

    Papadimitriou, Dimitrios E V; Schmidt, Erich C; Caton, Jack G; Romanos, Georgios E

    2013-04-01

    Autogenous bone is routinely used for regeneration of osseous defects around teeth and implants, and different instruments are available for bone harvesting. The purpose of this study was to describe the morphology of bone particles after harvesting with 4 different instruments. Bone particles were harvested from fresh cow ribs with 2 different types of back action chisels, a safescraper and a sonic device. The samples were examined morphologically using light microscopy and scanning electron microscopy. The bone particles after the back action chisel I had an appearance similar to "pencil shavings." With the back action chisel II, they were like thin paper with an "accordion bellows" appearance. After removal with the safescraper, they had an irregular shape (with an irregular surface) resembling "crushed stone." Finally, the appearance of the bone particles obtained with the sonic device was homogenous, condensed and continuous, and had a "seaweed" appearance. Harvesting of bone particles with 4 different devices produce distinctly difference sizes and shapes, which may influence the results of grafting procedures.

  2. Magnetic flux concentration methods for magnetic energy harvesting module

    Directory of Open Access Journals (Sweden)

    Wakiwaka Hiroyuki

    2013-01-01

    Full Text Available This paper presents magnetic flux concentration methods for magnetic energy harvesting module. The purpose of this study is to harvest 1 mW energy with a Brooks coil 2 cm in diameter from environmental magnetic field at 60 Hz. Because the harvesting power is proportional to the square of the magnetic flux density, we consider the use of a magnetic flux concentration coil and a magnetic core. The magnetic flux concentration coil consists of an air­core Brooks coil and a resonant capacitor. When a uniform magnetic field crossed the coil, the magnetic flux distribution around the coil was changed. It is found that the magnetic field in an area is concentrated larger than 20 times compared with the uniform magnetic field. Compared with the air­core coil, our designed magnetic core makes the harvested energy ten­fold. According to ICNIRP2010 guideline, the acceptable level of magnetic field is 0.2 mT in the frequency range between 25 Hz and 400 Hz. Without the two magnetic flux concentration methods, the corresponding energy is limited to 1 µW. In contrast, our experimental results successfully demonstrate energy harvesting of 1 mW from a magnetic field of 0.03 mT at 60 Hz.

  3. Unique double concentric ring organization of light harvesting complexes in Gemmatimonas phototrophica.

    Directory of Open Access Journals (Sweden)

    Marko Dachev

    2017-12-01

    Full Text Available The majority of life on Earth depends directly or indirectly on the sun as a source of energy. The initial step of photosynthesis is facilitated by light-harvesting complexes, which capture and transfer light energy into the reaction centers (RCs. Here, we analyzed the organization of photosynthetic (PS complexes in the bacterium G. phototrophica, which so far is the only phototrophic representative of the bacterial phylum Gemmatimonadetes. The isolated complex has a molecular weight of about 800 ± 100 kDa, which is approximately 2 times larger than the core complex of Rhodospirillum rubrum. The complex contains 62.4 ± 4.7 bacteriochlorophyll (BChl a molecules absorbing in 2 distinct infrared absorption bands with maxima at 816 and 868 nm. Using femtosecond transient absorption spectroscopy, we determined the energy transfer time between these spectral bands as 2 ps. Single particle analyses of the purified complexes showed that they were circular structures with an outer diameter of approximately 18 nm and a thickness of 7 nm. Based on the obtained, we propose that the light-harvesting complexes in G. phototrophica form 2 concentric rings surrounding the type 2 RC. The inner ring (corresponding to the B868 absorption band is composed of 15 subunits and is analogous to the inner light-harvesting complex 1 (LH1 in purple bacteria. The outer ring is composed of 15 more distant BChl dimers with no or slow energy transfer between them, resulting in the B816 absorption band. This completely unique and elegant organization offers good structural stability, as well as high efficiency of light harvesting. Our results reveal that while the PS apparatus of Gemmatimonadetes was acquired via horizontal gene transfer from purple bacteria, it later evolved along its own pathway, devising a new arrangement of its light harvesting complexes.

  4. Two-dimensional concentrated-stress low-frequency piezoelectric vibration energy harvesters

    Energy Technology Data Exchange (ETDEWEB)

    Sharpes, Nathan [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Abdelkefi, Abdessattar [Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, New Mexico 88003 (United States); Priya, Shashank [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Bio-Inspired Materials and Devices Laboratory (BMDL), Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2015-08-31

    Vibration-based energy harvesters using piezoelectric materials have long made use of the cantilever beam structure. Surmounting the deficiencies in one-dimensional cantilever-based energy harvesters has been a major focus in the literature. In this work, we demonstrate a strategy of using two-dimensional beam shapes to harvest energy from low frequency excitations. A characteristic Zigzag-shaped beam is created to compare against the two proposed two-dimensional beam shapes, all of which occupy a 25.4 × 25.4 mm{sup 2} area. In addition to maintaining the low-resonance bending frequency, the proposed beam shapes are designed with the goal of realizing a concentrated stress structure, whereby stress in the beam is concentrated in a single area where a piezoelectric layer may be placed, rather than being distributed throughout the beam. It is shown analytically, numerically, and experimentally that one of the proposed harvesters is able to provide significant increase in power production, when the base acceleration is set equal to 0.1 g, with only a minimal change in the resonant frequency compared to the current state-of-the-art Zigzag shape. This is accomplished by eliminating torsional effects, producing a more pure bending motion that is necessary for high electromechanical coupling. In addition, the proposed harvesters have a large effective beam tip whereby large tip mass may be placed while retaining a low-profile, resulting in a low volume harvester and subsequently large power density.

  5. The correlation of the radiocaesium concentration of new shoots harvested in 2012 and old leaves, and new shoots harvested in 2011 grown in Kanagawa prefecture

    International Nuclear Information System (INIS)

    Shiraki, Yoshiya; Takeda, Hajime; Okamoto, Tamotsu; Kita, Nobuhiro

    2013-01-01

    We conducted this study to analyze the correlation between 137 Cs concentration of new shoots harvested in the first crop of tea in 2012, and new shoots harvested in the shuto-bancha in 2011 and old leaves harvested at the same time respectively. In the first crop of tea in 2012, the 137 Cs concentration of new shoots was related to that of old leaves, and the correlation of the coefficient was 0.663(p 137 Cs concentration(new shoots/old leaves) was related to the days until harvest of the first crop of tea in 2012, and the correlation coefficient was -0.771(p 137 Cs concentration was derived from the dilution effect due to growth and development of tea plants. Regression analysis was performed to forecast the 137 Cs concentration of the new shoots in the first crop of tea. The 137 Cs concentration of new shoots in the harvested first crop of tea(Y) was related to the 137 Cs concentration of old leaves harvested the previous winter(X). The correlation of the coefficient was 0.783(p 137 Cs concentration of new shoots of the first crop of tea in 2012 decreased about 1/6 to 1/25 compared with that of new shoots of the first crop of tea in 2011. (author)

  6. [Ultrafine particle number concentration and size distribution of vehicle exhaust ultrafine particles].

    Science.gov (United States)

    Lu, Ye-qiang; Chen, Qiu-fang; Sun, Zai; Cai, Zhi-liang; Yang, Wen-jun

    2014-09-01

    Ultrafine particle (UFP) number concentrations obtained from three different vehicles were measured using fast mobility particle sizer (FMPS) and automobile exhaust gas analyzer. UFP number concentration and size distribution were studied at different idle driving speeds. The results showed that at a low idle speed of 800 rmin-1 , the emission particle number concentration was the lowest and showed a increasing trend with the increase of idle speed. The majority of exhaust particles were in Nuclear mode and Aitken mode. The peak sizes were dominated by 10 nm and 50 nm. Particle number concentration showed a significantly sharp increase during the vehicle acceleration process, and was then kept stable when the speed was stable. In the range of 0. 4 m axial distance from the end of the exhaust pipe, the particle number concentration decayed rapidly after dilution, but it was not obvious in the range of 0. 4-1 m. The number concentration was larger than the background concentration. Concentration of exhaust emissions such as CO, HC and NO showed a reducing trend with the increase of idle speed,which was in contrast to the emission trend of particle number concentration.

  7. Simulation of concentration distribution of urban particles under wind

    Science.gov (United States)

    Chen, Yanghou; Yang, Hangsheng

    2018-02-01

    The concentration of particulate matter in the air is too high, which seriously affects people’s health. The concentration of particles in densely populated towns is also high. Understanding the distribution of particles in the air helps to remove them passively. The concentration distribution of particles in urban streets is simulated by using the FLUENT software. The simulation analysis based on Discrete Phase Modelling (DPM) of FLUENT. Simulation results show that the distribution of the particles is caused by different layout of buildings. And it is pointed out that in the windward area of the building and the leeward sides of the high-rise building are the areas with high concentration of particles. Understanding the concentration of particles in different areas is also helpful for people to avoid and reduce the concentration of particles in high concentration areas.

  8. Workplace aerosol mass concentration measurement using optical particle counters.

    Science.gov (United States)

    Görner, Peter; Simon, Xavier; Bémer, Denis; Lidén, Göran

    2012-02-01

    Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM® 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO®) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions

  9. Particle size- and concentration-dependent separation of magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Witte, Kerstin, E-mail: witte@micromod.de [University of Rostock, Institute of Physics, Albert-Einstein-Str. 23, 18059 Rostock (Germany); Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Str. 4, 18119 Rostock (Germany); Müller, Knut; Grüttner, Cordula; Westphal, Fritz [Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Str. 4, 18119 Rostock (Germany); Johansson, Christer [Acreo Swedish ICT AB, 40014 Göteborg (Sweden)

    2017-04-01

    Small magnetic nanoparticles with a narrow size distribution are of great interest for several biomedical applications. When the size of the particles decreases, the magnetic moment of the particles decreases. This leads to a significant increase in the separation time by several orders of magnitude. Therefore, in the present study the separation processes of bionized nanoferrites (BNF) with different sizes and concentrations were investigated with the commercial Sepmag Q system. It was found that an increasing initial particle concentration leads to a reduction of the separation time for large nanoparticles due to the higher probability of building chains. Small nanoparticles showed exactly the opposite behavior with rising particle concentration up to 0.1 mg(Fe)/ml. For higher iron concentrations the separation time remains constant and the measured Z-average decreases in the supernatant at same time intervals. At half separation time a high yield with decreasing hydrodynamic diameter of particles can be obtained using higher initial particle concentrations. - Highlights: • Size dependent separation processes of multicore nanoparticles. • Concentration dependent separation processes of multicore nanoparticles. • Increasing separation time with rising concentrations for small particles. • Large particles show typical cooperative magnetophoresis behavior.

  10. Source contributions to atmospheric fine carbon particle concentrations

    Science.gov (United States)

    Andrew Gray, H.; Cass, Glen R.

    A Lagrangian particle-in-cell air quality model has been developed that facilitates the study of source contributions to atmospheric fine elemental carbon and fine primary total carbon particle concentrations. Model performance was tested using spatially and temporally resolved emissions and air quality data gathered for this purpose in the Los Angeles area for the year 1982. It was shown that black elemental carbon (EC) particle concentrations in that city were dominated by emissions from diesel engines including both on-highway and off-highway applications. Fine primary total carbon particle concentrations (TC=EC+organic carbon) resulted from the accumulation of small increments from a great variety of emission source types including both gasoline and diesel powered highway vehicles, stationary source fuel oil and gas combustion, industrial processes, paved road dust, fireplaces, cigarettes and food cooking (e.g. charbroilers). Strategies for black elemental carbon particle concentration control will of necessity need to focus on diesel engines, while controls directed at total carbon particle concentrations will have to be diversified over a great many source types.

  11. Effect of harvest time and physical form of alfalfa silage on chewing time and particle size distribution in boli, rumen content and faeces

    DEFF Research Database (Denmark)

    Kornfelt, L. F.; Weisbjerg, Martin Riis; Norgaard, P.

    2013-01-01

    The study examined the effects of physical form and harvest time of alfalfa silage on eating and ruminating activity and particle size distribution in feed boli, rumen content and faeces in dry cows. The alfalfa crop was harvested at two stages of growth (early: NDF 37 late: NDF 44% in dry matter.......01), physical form (P time (P distribution function...... fractions. The length (PL) and width (PW) of particles within each fraction was measured by the use of image analysis. The eating activity (min/kg dry matter intake (P time. The mean ruminating time (min/kg DM) was affected by harvest time (P

  12. Concentration and size distribution of particles in abstracted groundwater.

    Science.gov (United States)

    van Beek, C G E M; de Zwart, A H; Balemans, M; Kooiman, J W; van Rosmalen, C; Timmer, H; Vandersluys, J; Stuyfzand, P J

    2010-02-01

    Particle number concentrations have been counted and particle size distributions calculated in groundwater derived by abstraction wells. Both concentration and size distribution are governed by the discharge rate: the higher this rate the higher the concentration and the higher the proportion of larger particles. However, the particle concentration in groundwater derived from abstraction wells, with high groundwater flow velocities, is much lower than in groundwater from monitor wells, with minimal flow velocities. This inconsistency points to exhaustion of the particle supply in the aquifer around wells due to groundwater abstraction for many years. The particle size distribution can be described with the help of a power law or Pareto distribution. Comparing the measured particle size distribution with the Pareto distribution shows that particles with a diameter >7 microm are under-represented. As the particle size distribution is dependent on the flow velocity, so is the value of the "Pareto" slope beta. (c) 2009 Elsevier Ltd. All rights reserved.

  13. Nanotip analysis for dielectrophoretic concentration of nanosized viral particles.

    Science.gov (United States)

    Yeo, Woon-Hong; Lee, Hyun-Boo; Kim, Jong-Hoon; Lee, Kyong-Hoon; Chung, Jae-Hyun

    2013-05-10

    Rapid and sensitive detection of low-abundance viral particles is strongly demanded in health care, environmental control, military defense, and homeland security. Current detection methods, however, lack either assay speed or sensitivity, mainly due to the nanosized viral particles. In this paper, we compare a dendritic, multi-terminal nanotip ('dendritic nanotip') with a single terminal nanotip ('single nanotip') for dielectrophoretic (DEP) concentration of viral particles. The numerical computation studies the concentration efficiency of viral particles ranging from 25 to 100 nm in radius for both nanotips. With DEP and Brownian motion considered, when the particle radius decreases by two times, the concentration time for both nanotips increases by 4-5 times. In the computational study, a dendritic nanotip shows about 1.5 times faster concentration than a single nanotip for the viral particles because the dendritic structure increases the DEP-effective area to overcome the Brownian motion. For the qualitative support of the numerical results, the comparison experiment of a dendritic nanotip and a single nanotip is conducted. Under 1 min of concentration time, a dendritic nanotip shows a higher sensitivity than a single nanotip. When the concentration time is 5 min, the sensitivity of a dendritic nanotip for T7 phage is 10(4) particles ml(-1). The dendritic nanotip-based concentrator has the potential for rapid identification of viral particles.

  14. Nanotip analysis for dielectrophoretic concentration of nanosized viral particles

    International Nuclear Information System (INIS)

    Yeo, Woon-Hong; Lee, Hyun-Boo; Kim, Jong-Hoon; Chung, Jae-Hyun; Lee, Kyong-Hoon

    2013-01-01

    Rapid and sensitive detection of low-abundance viral particles is strongly demanded in health care, environmental control, military defense, and homeland security. Current detection methods, however, lack either assay speed or sensitivity, mainly due to the nanosized viral particles. In this paper, we compare a dendritic, multi-terminal nanotip (‘dendritic nanotip’) with a single terminal nanotip (‘single nanotip’) for dielectrophoretic (DEP) concentration of viral particles. The numerical computation studies the concentration efficiency of viral particles ranging from 25 to 100 nm in radius for both nanotips. With DEP and Brownian motion considered, when the particle radius decreases by two times, the concentration time for both nanotips increases by 4–5 times. In the computational study, a dendritic nanotip shows about 1.5 times faster concentration than a single nanotip for the viral particles because the dendritic structure increases the DEP-effective area to overcome the Brownian motion. For the qualitative support of the numerical results, the comparison experiment of a dendritic nanotip and a single nanotip is conducted. Under 1 min of concentration time, a dendritic nanotip shows a higher sensitivity than a single nanotip. When the concentration time is 5 min, the sensitivity of a dendritic nanotip for T7 phage is 10 4 particles ml −1 . The dendritic nanotip-based concentrator has the potential for rapid identification of viral particles. (paper)

  15. Numerical investigation of the effect of particle concentration on particle measurement by digital holography

    Science.gov (United States)

    Zhao, Huafeng; Zhou, Binwu; Wu, Xuecheng; Wu, Yingchun; Gao, Xiang; Gréhan, Gérard; Cen, Kefa

    2014-04-01

    Digital holography plays a key role in particle field measurement, and appears to be a strong contender as the next-generation technology for diagnostics of 3D particle field. However, various recording parameters, such as the recording distance, the particle size, the wavelength, the size of the CCD chip, the pixel size and the particle concentration, will affect the results of the reconstruction, and may even determine the success or failure of a measurement. This paper presents a numerical investigation on the effect of particle concentration, the volume depth to evaluate the capability of digital holographic microscopy. Standard particles holograms with all known recording parameters are numerically generated by using a common procedure based on Lorenz-Mie scattering theory. Reconstruction of those holograms are then performed by a wavelet-transform based method. Results show that the reconstruction efficiency decreases quickly until particle concentration reaches 50×104 (mm-3), and decreases linearly with the increase of particle concentration from 50 × 104 (mm-3) to 860 × 104 (mm-3) in the same volume. The first half of the line waves larger than the second half. It also indicates that the increase of concentration leads the rise in average diameter error and z position error of particles. Besides, the volume depth also plays a key role in reconstruction.

  16. Concentration and size distribution of particles in abstracted groundwater

    NARCIS (Netherlands)

    Van Beek, C.G.E.M.; de Zwart, A.H.; Balemans, M.; Kooiman, J.W.; van Rosmalen, C.; Timmer, H.; Vandersluys, J.; Stuijfzand, P.J.

    2010-01-01

    Particle number concentrations have been counted and particle size distributions calculated in groundwater derived by abstraction wells. Both concentration and size distribution are governed by the discharge rate: the higher this rate the higher the concentration and the higher the proportion of

  17. Particle interactions in concentrated suspensions

    International Nuclear Information System (INIS)

    Mondy, L.A.; Graham, A.L.; Abbott, J.R.; Brenner, H.

    1993-01-01

    An overview is presented of research that focuses on slow flows of suspensions in which colloidal and inertial effects are negligibly small. The authors describe nuclear magnetic resonance imaging experiments to quantitatively measure particle migration occurring in concentrated suspensions undergoing a flow with a nonuniform shear rate. These experiments address the issue of how the flow field affects the microstructure of suspensions. In order to understand the local viscosity in a suspension with such a flow-induced, spatially varying concentration, one must know how the viscosity of a homogeneous suspension depends on such variables as solids concentration and particle orientation. The authors suggest the technique of falling ball viscometry, using small balls, as a method to determine the effective viscosity of a suspension without affecting the original microstructure significantly. They also describe data from experiments in which the detailed fluctuations of a falling ball's velocity indicate the noncontinuum nature of the suspension and may lead to more insights into the effects of suspension microstructure on macroscopic properties. Finally, they briefly describe other experiments that can be performed in quiescent suspensions (in contrast to the use of conventional shear rotational viscometers) in order to learn more about boundary effects in concentrated suspensions

  18. Multisite study of particle number concentrations in urban air.

    Science.gov (United States)

    Harrison, Roy M; Jones, Alan M

    2005-08-15

    Particle number concentration data are reported from a total of eight urban site locations in the United Kingdom. Of these, six are central urban background sites, while one is an urban street canyon (Marylebone Road) and another is influenced by both a motorway and a steelworks (Port Talbot). The concentrations are generally of a similar order to those reported in the literature, although higher than those in some of the other studies. Highest concentrations are at the Marylebone Road site and lowest are at the Port Talbot site. The central urban background locations lie somewhere between with concentrations typically around 20 000 cm(-3). A seasonal pattern affects all sites, with highest concentrations in the winter months and lowest concentrations in the summer. Data from all sites show a diurnal variation with a morning rush hour peak typical of an anthropogenic pollutant. When the dilution effects of windspeed are accounted for, the data show little directionality at the central urban background sites indicating the influence of sources from all directions as might be expected if the major source were road traffic. At the London Marylebone Road site there is high directionality driven by the air circulation in the street canyon, and at the Port Talbot site different diurnal patterns are seen for particle number count and PM10 influenced by emissions from road traffic (particle number count) and the steelworks (PM10) and local meteorological factors. Hourly particle number concentrations are generally only weakly correlated to NO(x) and PM10, with the former showing a slightly closer relationship. Correlations between daily average particle number count and PM10 were also weak. Episodes of high PM10 concentration in summer typically show low particle number concentrations consistent with transport of accumulation mode secondary aerosol, while winter episodes are frequently associated with high PM10 and particle number count arising from poor dispersion of

  19. Correlated particle dynamics in concentrated quasi-two-dimensional suspensions

    International Nuclear Information System (INIS)

    Diamant, H; Cui, B; Lin, B; Rice, S A

    2005-01-01

    We investigate theoretically and experimentally how the hydrodynamically correlated lateral motion of particles in a suspension confined between two surfaces is affected by the suspension concentration. Despite the long range of the correlations (decaying as 1/r 2 with the inter-particle distance r), the concentration effect is present only at short inter-particle distances for which the static pair correlation is nonuniform. This is in sharp contrast with the effect of hydrodynamic screening in unconfined suspensions, where increasing the concentration changes the prefactor of the large-distance correlation

  20. Investigating Forest Harvest Effects on DOC Concentration and Quality: An In Situ, High Resolution Approach to Quantifying DOC Export Dynamics

    Science.gov (United States)

    Jollymore, A. J.; Johnson, M. S.; Hawthorne, I.

    2013-12-01

    Justification: Forest harvest effects on water quality can signal alterations in hydrologic and ecologic processes incurred as a result of forest harvest activities. Organic matter (OM), specifically dissolved organic carbon (DOC), plays a number of important roles mediating UV-light penetration, redox reactivity and microbial activity within aquatic ecosystems. Quantification of DOC is typically pursued via grab sampling followed by chemical or spectrophotometric analysis, limiting the temporal resolution obtained as well as the accuracy of export calculations. The advent of field-deployable sensors capable of measuring DOC concentration and certain quality characteristics in situ provides the ability to observe dynamics at temporal scales necessary for accurate calculation of DOC flux, as well as the observation of dynamic changes in DOC quality on timescales impossible to observe through grab sampling. Methods: This study utilizes a field deployable UV-Vis spectrophotometer (spectro::lyzer, s::can, Austria) to investigate how forest harvest affects DOC export. The sensor was installed at an existing hydrologic monitoring site at the outlet of a headwater stream draining a small (91 hectare) second growth Douglasfir-dominated catchment near Campbell River on Vancouver Island, British Columbia. Measurement began late in 2009, prior to forest harvest and associated activities such as road building (which commenced in October 2010 and ended in early 2011), and continues to present. During this time - encompassing the pre, during and post-harvest conditions - the absorbance spectrum of stream water from 200 to 750 nm was measured. DOC concentration and spectroscopic indices related to DOC quality (including SUVA, which relates to the concentration of aromatic carbon, and spectral slope) were subsequently calculated for each spectra obtained at 30-minute intervals. Results and conclusions: High frequency measurements of DOC show that overall export of OM increased in

  1. Particle analysis on concentrated particle suspensions by transmission fluctuation spectrometry with band-pass filters: part 2. Experimental results

    International Nuclear Information System (INIS)

    Xu, Yamin; Shen, Jianqi; Cai, Xiaoshu; Riebel, Ulrich

    2010-01-01

    Transmission fluctuation spectrometry (TFS), as a new method of online and real-time particle analysis developed in recent years, can measure the particle size distribution and particle concentration simultaneously. In the preceding paper, high concentration effects on the TFS using band-pass filters were investigated by numerical simulation, and empirical expressions to correct the effects were obtained. This paper presents a study on the TFS measurements in which the particle concentration varies in a very wide dynamic range. Finally, reasonable results on both the particle size distribution and particle concentration are obtained by introducing empirical corrections into the inversion algorithm

  2. EXPOSURE TO CONCENTRATED AMBIENT PARTICLES (CAPS): REVIEW

    Science.gov (United States)

    Epidemiologic studies support a participation of fine particulate matter (PM) with a diameter of 0.1 to 2.5 microm in the effects of air pollution particles on human health. The ambient fine particle concentrator is a recently developed technology that can enrich the mass of ambi...

  3. Hybrid electrokinetics for separation, mixing, and concentration of colloidal particles

    International Nuclear Information System (INIS)

    Sin, Mandy L Y; Shimabukuro, Yusuke; Wong, Pak Kin

    2009-01-01

    The advent of nanotechnology has facilitated the preparation of colloidal particles with adjustable sizes and the control of their size-dependent properties. Physical manipulation, such as separation, mixing, and concentration, of these colloidal particles represents an essential step for fully utilizing their potential in a wide spectrum of nanotechnology applications. In this study, we investigate hybrid electrokinetics, the combination of dielectrophoresis and electrohydrodynamics, for active manipulation of colloidal particles ranging from nanometers to micrometers in size. A concentric electrode configuration, which is optimized for generating electrohydrodynamic flow, has been designed to elucidate the effectiveness of hybrid electrokinetics and define the operating regimes for different microfluidic operations. The results indicate that the relative importance of electrohydrodynamics increases with decreasing particle size as predicted by a scaling analysis and that electrohydrodynamics is pivotal for manipulating nanoscale particles. Using the concentric electrodes, we demonstrate separation, mixing, and concentration of colloidal particles by adjusting the relative strengths of different electrokinetic phenomena. The effectiveness of hybrid electrokinetics indicates its potential to serve as a generic technique for active manipulation of colloidal particles in various nanotechnology applications.

  4. Preferrential Concentration of Particles in Protoplanetary Nebula Turbulence

    Science.gov (United States)

    Hartlep, Thomas; Cuzzi, Jeffrey N.

    2015-01-01

    Preferential concentration in turbulence is a process that causes inertial particles to cluster in regions of high strain (in-between high vorticity regions), with specifics depending on their stopping time or Stokes number. This process is thought to be of importance in various problems including cloud droplet formation and aerosol transport in the atmosphere, sprays, and also in the formation of asteroids and comets in protoplanetary nebulae. In protoplanetary nebulae, the initial accretion of primitive bodies from freely-floating particles remains a problematic subject. Traditional growth-by-sticking models encounter a formidable "meter-size barrier" [1] in turbulent nebulae. One scenario that can lead directly from independent nebula particulates to large objects, avoiding the problematic m-km size range, involves formation of dense clumps of aerodynamically selected, typically mm-size particles in protoplanetary turbulence. There is evidence that at least the ordinary chondrite parent bodies were initially composed entirely of a homogeneous mix of such particles generally known as "chondrules" [2]. Thus, while it is arcane, turbulent preferential concentration acting directly on chondrule size particles are worthy of deeper study. Here, we present the statistical determination of particle multiplier distributions from numerical simulations of particle-laden isotopic turbulence, and a cascade model for modeling turbulent concentration at lengthscales and Reynolds numbers not accessible by numerical simulations. We find that the multiplier distributions are scale dependent at the very largest scales but have scale-invariant properties under a particular variable normalization at smaller scales.

  5. Noise, Worker Perception, and Worker Concentration in Timber Harvesting Activity

    Directory of Open Access Journals (Sweden)

    Efi Yuliati Yovi

    2012-01-01

    Full Text Available Timber harvesting activities are unquestionably related with high risk of work accidents and health disorders.Such activities were not only burdened the workers with heavy physical workloads due to uneasy workingenvironment, and massive work materials and tools, but also physiopsychologically burdened workers as theywere imposed with both mechanical and acoustic vibrations (noise produced by the chainsaw. However,  it is acommon practice that most of the workers still ignored the importance of the use of noise reduction devices suchas earmuff or ear plug.  This study was aimed to reveal the factual effects of noise on work concentration of theworkers to provide a scientific basis in supporting efforts in improving workers’ attitude.  The results confirmedthat chainsaw might produce noise during operation.  Noise intensities received by both right and left ears werenot significantly different, indicating that left-handed and normal workers received similar degree of noise inboth side of ears. Further, results also showed that there was a significant difference on the perception and workconcentration of chainsaw operators versus sedentary people to the noise.  These findings proved that hearingability of chainsaw operators had declined due to frequent noise exposure.Keywords: timber harvesting, physio-psychological disorder, noise, chainsaw

  6. Saharan Dust Particle Size And Concentration Distribution In Central Ghana

    Science.gov (United States)

    Sunnu, A. K.

    2010-12-01

    A.K. Sunnu*, G. M. Afeti* and F. Resch+ *Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology (KNUST) Kumasi, Ghana. E-mail: albertsunnu@yahoo.com +Laboratoire Lepi, ISITV-Université du Sud Toulon-Var, 83162 La Valette cedex, France E-mail: resch@univ-tln.fr Keywords: Atmospheric aerosol; Saharan dust; Particle size distributions; Particle concentrations. Abstract The Saharan dust that is transported and deposited over many countries in the West African atmospheric environment (5°N), every year, during the months of November to March, known locally as the Harmattan season, have been studied over a 13-year period, between 1996 and 2009, using a location at Kumasi in central Ghana (6° 40'N, 1° 34'W) as the reference geographical point. The suspended Saharan dust particles were sampled by an optical particle counter, and the particle size distributions and concentrations were analysed. The counter gives the total dust loads as number of particles per unit volume of air. The optical particle counter used did not discriminate the smoke fractions (due to spontaneous bush fires during the dry season) from the Saharan dust. Within the particle size range measured (0.5 μm-25 μm.), the average inter-annual mean particle diameter, number and mass concentrations during the northern winter months of January and February were determined. The average daily number concentrations ranged from 15 particles/cm3 to 63 particles/cm3 with an average of 31 particles/cm3. The average daily mass concentrations ranged from 122 μg/m3 to 1344 μg/m3 with an average of 532 μg/m3. The measured particle concentrations outside the winter period were consistently less than 10 cm-3. The overall dust mean particle diameter, analyzed from the peak representative Harmattan periods over the 13-year period, ranged from 0.89 μm to 2.43 μm with an average of 1.5 μm ± 0.5. The particle size distributions exhibited the typical distribution pattern for

  7. Gravitational settling of a highly concentrated system of solid spherical particles

    Science.gov (United States)

    Arkhipov, V. A.; Usanina, A. S.

    2017-09-01

    In the present paper, we report on the results of an experimental study of the process of gravity sedimentation of a cloud of monodispersed solid spherical particles with initial volume concentration C > 0.03, which was performed in a wide range of Reynolds numbers. An analytical estimate of the settling regimes of spherical particle clouds is presented. A new method for creating a spherical particle cloud with a high concentration of particles is proposed. A qualitative picture of the settling process of a highly concentrated particle cloud under gravity is revealed. A criterial dependence for the drag coefficient of a sedimenting spherical particle cloud as an entity is obtained.

  8. Factors affecting the concentration of outdoor particles indoors: Existing data and data needs

    International Nuclear Information System (INIS)

    McKone, T.E.; Thatcher, T.L.; Fisk, W.J.; Sextro, R.G.; Sohn, M.D.; Delp, W.W.; Riley, W.J.

    2002-01-01

    Accurate characterization of particle concentrations indoors is critical to exposure assessments. It is estimated that indoor particle concentrations depend strongly on outdoor concentrations. For health scientists, knowledge of the factors that control the relationship of indoor particle concentrations to outdoor levels is particularly important. In this paper, we identify and evaluate sources of data for those factors that affect the transport to and concentration of outdoor particles indoors. To achieve this goal, we (i) identify and assemble relevant information on how particle behavior during air leakage, HVAC operation, and particle filtration effects indoor particle concentration; (ii) review and evaluate the assembled information to distinguish data that are directly relevant to specific estimates of particle transport from those that are only indirectly useful; and (iii) provide a synthesis of the currently available information on building air-leakage parameters and their effect on indoor particle matter concentrations

  9. Development of a High-performance Fluorpolymer Electret Mixed with Nano-particles and Its Application to Vibration Energy Harvesting

    International Nuclear Information System (INIS)

    Suzuki, M; Takahashi, T; Aoyagi, S

    2014-01-01

    We have been developing small power generation device of capacitance-type to be converted to electrical energy vibration energy using an electret. In this Study, dielectric nanoparticles were mixed with an electret made of fluorocarbon polymer. As a result, implanted charge density of the electret was successfully enhanced thanks to the mixing of particles. A small sized vibration energy harvester (VEH) was fabricated using the fluorocarbon mixed with dielectric nano-particles. As a result of applying vibration (20 Hz, 0.65 G) to the fabricated VEH, The maximum generated power of approximately 50 μW was obtained

  10. Effect of harvest time of red and white clover silage on chewing activity and particle size distribution in boli, rumen content and faeces in cows.

    Science.gov (United States)

    Kornfelt, L F; Nørgaard, P; Weisbjerg, M R

    2013-06-01

    The study examined the effects of harvest time of red and white clover silage on eating and ruminating activity and particle size distribution in feed boli, rumen content and faeces in cows. The clover crops were harvested at two stages of growth and ensiled in bales. Red clover crops had 36% and 45% NDF in dry matter (DM) at early (ER) and late (LR) harvest, respectively, and the white clover crops had 19% and 29% NDF in DM at the early (EW) and late (LW) harvest, respectively. The silages were fed restrictively (80% of ad libitum intake) twice daily to four rumen cannulated non-lactating Jersey cows (588 ± 52 kg) in a 4 × 4 Latin square design. Jaw movements (JM) were recorded for 96 h continuously. Swallowed boli, rumen mat, rumen fluid and faeces samples were collected, washed in nylon bags (0.01 mm pore size) and freeze-dried before dry sieving through 4.750, 2.360, 1.000, 0.500, 0.212 and 0.106 mm into seven fractions. The length (PL) and width (PW) values of rumen and faeces particles within each fraction were measured by use of image analysis. The eating activity (min/kg DM intake; P rumen mat (P rumen fluid (P rumen mat and faeces, but only one peak (mode 1) for PL values. There was no difference in the mean and mode 1 PW and PL value in rumen mat between the four treatments. The mean PL, mode PL, mode 2 PW and mean PW in faeces were highest for LR (P rumen mat and faeces particles are most likely related to the leaves and the stems/petioles. In conclusion, the mean total chewing activity per kg DM was lowest for the white clover silage and increased for both silages due to later harvest time. The mean particle size in boli was smallest for LR, whereas the mean PL and PW in faeces were highest for the LR.

  11. Effect of harvest time and physical form of alfalfa silage on chewing time and particle size distribution in boli, rumen content and faeces.

    Science.gov (United States)

    Kornfelt, L F; Weisbjerg, M R; Nørgaard, P

    2013-02-01

    The study examined the effects of physical form and harvest time of alfalfa silage on eating and ruminating activity and particle size distribution in feed boli, rumen content and faeces in dry cows. The alfalfa crop was harvested at two stages of growth (early: NDF 37%, late: NDF 44% in dry matter (DM)), and from each harvest, a chopped (theoretical cutting length: 19 mm) and an unchopped crop was ensiled in bales. The silages were fed restrictively to four rumen cannulated non-lactating Jersey cows (391 ± 26 kg) in a 4 × 4 Latin square design. The cows were fed restrictively 80% of their ad libitum intake twice daily. Chewing activity was recorded for 96 h continuously. Swallowed boli, rumen content, rumen fluid and faeces samples were collected, washed in nylon bags (0.01 mm pore size) and freeze-dried before dry sieving through 4.750, 2.360, 1.000, 0.500 and 0.212 mm pore sizes into six fractions. The length (PL) and width (PW) of particles within each fraction was measured by the use of image analysis. The eating activity (min/kg dry matter intake (P rumen content, rumen fluid and faeces was affected by harvest time (P rumen content and faeces were identified. Chopping of the silage decreased the mean PL and PW, the most frequent PL (mode) and 95% percentile PL and PW values in boli. In the rumen content, chopping increased the mean PW (P rumen content and faeces than in boli (P rumen contents (P rumen content and faeces particles are most likely related to the leaf and the stem residues.

  12. Designs for thermal harvesting with nonlinear coordinate transformation

    Science.gov (United States)

    Ji, Qingxiang; Fang, Guodong; Liang, Jun

    2018-04-01

    In this paper a thermal concentrating design method was proposed based on the concept of generating function without knowing the needed coordinate transformation beforehand. The thermal harvesting performance was quantitatively characterized by heat concentrating efficiency and external temperature perturbation. Nonlinear transformations of different forms were employed to design high order thermal concentrators, and corresponding harvesting performances were investigated by numerical simulations. The numerical results shows that the form of coordinate transformation directly influences the distributions of heat flows inside the concentrator, consequently, influences the thermal harvesting behaviors significantly. The concentrating performance can be actively controlled and optimized by changing the form of coordinate transformations. The analysis in this paper offers a beneficial method to flexibly tune the harvesting performance of the thermal concentrator according to the requirements of practical applications.

  13. Air pollutant concentrations near three Texas roadways, Part I: Ultrafine particles

    Science.gov (United States)

    Zhu, Yifang; Pudota, Jayanth; Collins, Donald; Allen, David; Clements, Andrea; DenBleyker, Allison; Fraser, Matt; Jia, Yuling; McDonald-Buller, Elena; Michel, Edward

    Vehicular emitted air pollutant concentrations were studied near three types of roadways in Austin, Texas: (1) State Highway 71 (SH-71), a heavily traveled arterial highway dominated by passenger vehicles; (2) Interstate 35 (I-35), a limited access highway north of Austin in Georgetown; and (3) Farm to Market Road 973 (FM-973), a heavily traveled surface roadway dominated by truck traffic. Air pollutants examined include carbon monoxide (CO), oxides of nitrogen (NO x), and carbonyl species in the gas-phase. In the particle phase, ultrafine particle (UFP) concentrations (diameter road were found to be the most important factors determining UFP concentrations near the roadways. Since wind directions were not consistent during the sampling periods, distances along wind trajectories from the roadway to the sampling points were used to study the decay characteristics of UFPs. Under perpendicular wind conditions, for all studied roadway types, particle number concentrations increased dramatically moving from the upwind side to the downwind side. The elevated particle number concentrations decay exponentially with increasing distances from the roadway with sharp concentration gradients observed within 100-150 m, similar to previously reported studies. A single exponential decay curve was found to fit the data collected from all three roadways very well under perpendicular wind conditions. No consistent pattern was observed for UFPs under parallel wind conditions. However, regardless of wind conditions, particle concentrations returned to background levels within a few hundred meters of the roadway. Within measured UFP size ranges, smaller particles (6-25 nm) decayed faster than larger ones (100-300 nm). Similar decay rates were observed among UFP number, surface, and volume.

  14. Effects of physical form and stage of maturity at harvest of whole-crop barley silage on intake, chewing activity, diet selection and faecal particle size of dairy steers

    DEFF Research Database (Denmark)

    Rustas, B.-O.; Nørgaard, Peder; Jalali, Alireza

    2010-01-01

    This study examined the effects of physical form and stage of maturity at harvest of whole-crop barley silage (WCBS) on feed intake, eating and rumination activity, diet selection and faecal particle size in dairy steers. Whole-crop barley was harvested and ensiled in round bales. Eight dairy ste...

  15. Determination of particle concentrations in multitemperature plasmas

    International Nuclear Information System (INIS)

    Richley, E.; Tuma, D.T.

    1982-01-01

    The use of the multitemperature Saha equation (MSE) of Prigogine 1 and Patapov 2 for calculating particle concentrations in plasmas is shown to be an invalid procedure. Errors greater than one order of magnitude in the electron density in high-pressure argon and nitrogen electric arc plasmas can be easily incurred by using the multitemperature Saha equation. The alternative kinetic method for calculating concentrations is shown to be based on firm concepts. Simpliying procedures and computational techniques for calculating concentrations with the kinetic method are illustrated with examples

  16. Tire-tread and bitumen particle concentrations in aerosol and soil samples

    DEFF Research Database (Denmark)

    Fauser, Patrik; Tjell, Jens Christian; Mosbæk, Hans

    2002-01-01

    % of the mass of airborne particulate tire debris have aerodynamic diameters smaller than 1 mum. The mean aerodynamic diameter is about I gm for the bitumen particles. This size range enables the possibility for far range transport and inhalation by humans. Soil concentrations in the vicinity of a highway...... indicate an approximate exponential decrease with increasing distance from the road. Constant values are reached after about 5 m for the tire particles and 10 m for the bitumen particles. Concentrations in soil that has not been touched for at least 30 years show a decrease in tire concentration...

  17. The Effect of Nitrate Levels and Harvest Times on Fe, Zn, Cu, and K, Concentrations and Nitrate Reductase Activity in Lettuce and Spinach

    OpenAIRE

    Z. Gheshlaghi; R. Khorassani; G.H. Haghnia; M. Kafi

    2015-01-01

    Leafy vegetables are considered as the main sources of nitrate in the human diet. In order to investigate the effect of nitrate levels and harvest times on nitrate accumulation, nitrate reductase activity, concentrations of Fe, Zn, Cu and K in Lettuce and Spinach and their relation to nitrate accumulation in these leafy vegetables, two harvest times (29 and 46 days after transplanting), two vegetable species of lettuce and spinach and two concentrations of nitrate (10 and 20 mM) were used in ...

  18. Fine particle number and mass concentration measurements in urban Indian households.

    Science.gov (United States)

    Mönkkönen, P; Pai, P; Maynard, A; Lehtinen, K E J; Hämeri, K; Rechkemmer, P; Ramachandran, G; Prasad, B; Kulmala, M

    2005-07-15

    Fine particle number concentration (D(p)>10 nm, cm(-3)), mass concentrations (approximation of PM(2.5), microg m(-3)) and indoor/outdoor number concentration ratio (I/O) measurements have been conducted for the first time in 11 urban households in India, 2002. The results indicate remarkable high indoor number and mass concentrations and I/O number concentration ratios caused by cooking. Besides cooking stoves that used liquefied petroleum gas (LPG) or kerosene as the main fuel, high indoor concentrations can be explained by poor ventilation systems. Particle number concentrations of more than 300,000 cm(-3) and mass concentrations of more than 1000 microg m(-3) were detected in some cases. When the number and mass concentrations during cooking times were statistically compared, a correlation coefficient r>0.50 was observed in 63% of the households. Some households used other fuels like wood and dung cakes along with the main fuel, but also other living activities influenced the concentrations. In some areas, outdoor combustion processes had a negative impact on indoor air quality. The maximum concentrations observed in most cases were due to indoor combustion sources. Reduction of exposure risk and health effects caused by poor indoor air in urban Indian households is possible by improving indoor ventilation and reducing penetration of outdoor particles.

  19. Indoor particle dynamics in a school office: determination of particle concentrations, deposition rates and penetration factors under naturally ventilated conditions.

    Science.gov (United States)

    Cong, X C; Zhao, J J; Jing, Z; Wang, Q G; Ni, P F

    2018-05-09

    Recently, the problem of indoor particulate matter pollution has received much attention. An increasing number of epidemiological studies show that the concentration of atmospheric particulate matter has a significant effect on human health, even at very low concentrations. Most of these investigations have relied upon outdoor particle concentrations as surrogates of human exposures. However, considering that the concentration distribution of the indoor particulate matter is largely dependent on the extent to which these particles penetrate the building and on the degree of suspension in the indoor air, human exposures to particles of outdoor origin may not be equal to outdoor particle concentration levels. Therefore, it is critical to understand the relationship between the particle concentrations found outdoors and those found in indoor micro-environments. In this study, experiments were conducted using a naturally ventilated office located in Qingdao, China. The indoor and outdoor particle concentrations were measured at the same time using an optical counter with four size ranges. The particle size distribution ranged from 0.3 to 2.5 μm, and the experimental period was from April to September, 2016. Based on the experimental data, the dynamic and mass balance model based on time was used to estimate the penetration rate and deposition rate at air exchange rates of 0.03-0.25 h -1 . The values of the penetration rate and deposition velocity of indoor particles were determined to range from 0.45 to 0.82 h -1 and 1.71 to 2.82 m/h, respectively. In addition, the particulate pollution exposure in the indoor environment was analyzed to estimate the exposure hazard from indoor particulate matter pollution, which is important for human exposure to particles and associated health effects. The conclusions from this study can serve to provide a better understanding the dynamics and behaviors of airborne particle entering into buildings. And they will also highlight

  20. Contribution from indoor sources to particle number and mass concentrations in residential houses

    Science.gov (United States)

    He, Congrong; Morawska, Lidia; Hitchins, Jane; Gilbert, Dale

    As part of a large study investigating indoor air in residential houses in Brisbane, Australia, the purpose of this work was to quantify emission characteristics of indoor particle sources in 15 houses. Submicrometer particle number and approximation of PM 2.5 concentrations were measured simultaneously for more than 48 h in the kitchen of all the houses by using a condensation particle counter (CPC) and a photometer (DustTrak), respectively. In addition, characterizations of particles resulting from cooking conducted in an identical way in all the houses were measured by using a scanning mobility particle sizer (SMPS), an aerodynamic particle sizer (APS) and a DustTrak. All the events of elevated particle concentrations were linked to indoor activities using house occupants diary entries, and catalogued into 21 different types of indoor activities. This enabled quantification of the effect of indoor sources on indoor particle concentrations as well as quantification of emission rates from the sources. For example, the study found that frying, grilling, stove use, toasting, cooking pizza, cooking, candle vaporizing eucalyptus oil and fan heater use, could elevate the indoor submicrometer particle number concentration levels by more than five times, while PM 2.5 concentrations could be up to 3, 30 and 90 times higher than the background levels during smoking, frying and grilling, respectively.

  1. Influential parameters on particle concentration and size distribution in the mainstream of e-cigarettes

    International Nuclear Information System (INIS)

    Fuoco, F.C.; Buonanno, G.; Stabile, L.; Vigo, P.

    2014-01-01

    Electronic cigarette-generated mainstream aerosols were characterized in terms of particle number concentrations and size distributions through a Condensation Particle Counter and a Fast Mobility Particle Sizer spectrometer, respectively. A thermodilution system was also used to properly sample and dilute the mainstream aerosol. Different types of electronic cigarettes, liquid flavors, liquid nicotine contents, as well as different puffing times were tested. Conventional tobacco cigarettes were also investigated. The total particle number concentration peak (for 2-s puff), averaged across the different electronic cigarette types and liquids, was measured equal to 4.39 ± 0.42 × 10 9 part. cm −3 , then comparable to the conventional cigarette one (3.14 ± 0.61 × 10 9 part. cm −3 ). Puffing times and nicotine contents were found to influence the particle concentration, whereas no significant differences were recognized in terms of flavors and types of cigarettes used. Particle number distribution modes of the electronic cigarette-generated aerosol were in the 120–165 nm range, then similar to the conventional cigarette one. -- Highlights: • High particle number concentrations measured in e-cigarettes' mainstream aerosol. • Particle concentrations were higher than conventional tobacco cigarette ones. • Nicotine content and puffing times influenced particle concentrations. • Flavoring and type of cigarette did not affect the particle number concentration. • Particle number distribution mode of e-cigarette aerosol was equal to 120–165 nm. -- The mainstream aerosol generated by electronic cigarettes was characterized and the effect of each operating parameter was evaluated: results were similar to conventional cigarette ones

  2. Concentrating small particles in protoplanetary disks through the streaming instability

    Science.gov (United States)

    Yang, C.-C.; Johansen, A.; Carrera, D.

    2017-10-01

    Laboratory experiments indicate that direct growth of silicate grains via mutual collisions can only produce particles up to roughly millimeters in size. On the other hand, recent simulations of the streaming instability have shown that mm/cm-sized particles require an excessively high metallicity for dense filaments to emerge. Using a numerical algorithm for stiff mutual drag force, we perform simulations of small particles with significantly higher resolutions and longer simulation times than in previous investigations. We find that particles of dimensionless stopping time τs = 10-2 and 10-3 - representing cm- and mm-sized particles interior of the water ice line - concentrate themselves via the streaming instability at a solid abundance of a few percent. We thus revise a previously published critical solid abundance curve for the regime of τs ≪ 1. The solid density in the concentrated regions reaches values higher than the Roche density, indicating that direct collapse of particles down to mm sizes into planetesimals is possible. Our results hence bridge the gap in particle size between direct dust growth limited by bouncing and the streaming instability.

  3. Extinction of polarized light in ferrofluids with different magnetic particle concentrations

    International Nuclear Information System (INIS)

    Socoliuc, V.; Popescu, L.B.

    2012-01-01

    The magnetic field intensity and nanoparticle concentration dependence of the polarized light extinction in a ferrofluid made of magnetite particles stabilized with technical grade oleic acid dispersed in transformer oil was experimentally investigated. The magnetically induced optical anisotropy, i.e. the dichroism divided by concentration, was found to decrease with increasing sample concentration from 2% to 8%. The magnetically induced change in the optical extinction of light polarized at 54.74 o with respect to the magnetic field direction was found to be positive for the less concentrated sample (2%) and negative for the samples with 4% and 8% magnetic nanoparticle concentrations, the more negative the higher the concentration and field intensity. Based on the theoretically proven fact that the particle orientation mechanism has no effect on the extinction of light polarized at 54.74 o with respect to the field direction, we analyzed the experimental findings in the frames of the agglomeration and long-range pair correlations theories for the magnetically induced optical anisotropy in ferrofluids. We developed a theoretical model in the approximation of single scattering for the optical extinction coefficient of a ferrofluid with magnetically induced particle agglomeration. The model predicts the existence of a polarization independent component of the optical extinction coefficient that is experimentally measurable at 54.74 o polarization angle. The change in the optical extinction of light polarized at 54.74 o is positive if only the formation of straight n-particle chains is considered and may become negative in the hypothesis that the longer chains degenerate to more isotropic structures (polymer-like coils, globules or bundles of chains). The model for the influence on the light absorption of the long-range pair correlations, published elsewhere, predicts that the change in the optical extinction of light polarized at 54.74 o is always negative, the more

  4. Measurement of particle size distribution and mass concentration of nuclear fuel aerosols

    International Nuclear Information System (INIS)

    Pickering, S.

    1982-01-01

    The particle size distribution and particle mass concentration of a nuclear fuel aerosol is measured by admitting the aerosol into a vertically-extending container, positioning an alpha particle detector within the container so that its window is horizontal and directed vertically, stopping the admission of aerosol into the container, detecting the alpha-activity of the particles of the aerosol sedimenting onto the detector window (for example in a series of equal time intervals until a constant level is reached), and converting the alpha-activity measurements into particle size distribution and/or particle mass concentration measurements. The detector is attached to a pivotted arm and by raising a counterweight can be lowered from the container for cleaning. (author)

  5. Ice-nucleating particle concentrations unaffected by urban air pollution in Beijing, China

    Science.gov (United States)

    Chen, Jie; Wu, Zhijun; Augustin-Bauditz, Stefanie; Grawe, Sarah; Hartmann, Markus; Pei, Xiangyu; Liu, Zirui; Ji, Dongsheng; Wex, Heike

    2018-03-01

    Exceedingly high levels of PM2.5 with complex chemical composition occur frequently in China. It has been speculated whether anthropogenic PM2.5 may significantly contribute to ice-nucleating particles (INP). However, few studies have focused on the ice-nucleating properties of urban particles. In this work, two ice-nucleating droplet arrays have been used to determine the atmospheric number concentration of INP (NINP) in the range from -6 to -25 °C in Beijing. No correlations between NINP and either PM2.5 or black carbon mass concentrations were found, although both varied by more than a factor of 30 during the sampling period. Similarly, there were no correlations between NINP and either total particle number concentration or number concentrations for particles with diameters > 500 nm. Furthermore, there was no clear difference between day and night samples. All these results indicate that Beijing air pollution did not increase or decrease INP concentrations in the examined temperature range above values observed in nonurban areas; hence, the background INP concentrations might not be anthropogenically influenced as far as urban air pollution is concerned, at least in the examined temperature range.

  6. Chemical composition and methane yield of reed canary grass as influenced by harvesting time and harvest frequency.

    Science.gov (United States)

    Kandel, Tanka P; Sutaryo, Sutaryo; Møller, Henrik B; Jørgensen, Uffe; Lærke, Poul E

    2013-02-01

    This study examined the influence of harvest time on biomass yield, dry matter partitioning, biochemical composition and biological methane potential of reed canary grass harvested twice a month in one-cut (OC) management. The regrowth of biomass harvested in summer was also harvested in autumn as a two-cut management with (TC-F) or without (TC-U) fertilization after summer harvest. The specific methane yields decreased significantly with crop maturity that ranged from 384 to 315 and from 412 to 283 NL (normal litre) (kgVS)(-1) for leaf and stem, respectively. Approximately 45% more methane was produced by the TC-F management (5430Nm(3)ha(-1)) as by the OC management (3735Nm(3)ha(-1)). Specific methane yield was moderately correlated with the concentrations of fibre components in the biomass. Larger quantity of biogas produced at the beginning of the biogas assay from early harvested biomass was to some extent off-set by lower concentration of methane. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Influence of harvest managements on biomass nutrient concentrations and removal rates of festulolium and tall fescue from a poorly drained nutrient-rich fen peatland

    DEFF Research Database (Denmark)

    Kandel, Tanka; Elsgaard, Lars; Lærke, Poul Erik

    2017-01-01

    This study was designed to show the effects of harvest time and frequency on biomass nutrient concentrations (total ash, N, P, K, Ca, Mg, Fe, Mn, Cu and Zn) as well as total nutrient removal potential by festulolium and tall fescue cultivated on a nutrient-rich fen peatland. The harvest managemen...

  8. Effects of types of ventilation system on indoor particle concentrations in residential buildings.

    Science.gov (United States)

    Park, J S; Jee, N-Y; Jeong, J-W

    2014-12-01

    The objective of this study was to quantify the influence of ventilation systems on indoor particle concentrations in residential buildings. Fifteen occupied, single-family apartments were selected from three sites. The three sites have three different ventilation systems: unbalanced mechanical ventilation, balanced mechanical ventilation, and natural ventilation. Field measurements were conducted between April and June 2012, when outdoor air temperatures were comfortable. Number concentrations of particles, PM2.5 and CO2 , were continuously measured both outdoors and indoors. In the apartments with natural ventilation, I/O ratios of particle number concentrations ranged from 0.56 to 0.72 for submicron particles, and from 0.25 to 0.60 for particles larger than 1.0 μm. The daily average indoor particle concentration decreased to 50% below the outdoor level for submicron particles and 25% below the outdoor level for fine particles, when the apartments were mechanically ventilated. The two mechanical ventilation systems reduced the I/O ratios by 26% for submicron particles and 65% for fine particles compared with the natural ventilation. These results showed that mechanical ventilation can reduce exposure to outdoor particles in residential buildings. Results of this study confirm that mechanical ventilation with filtration can significantly reduce indoor particle levels compared with natural ventilation. The I/O ratios of particles substantially varied at the naturally ventilated apartments because of the influence of variable window opening conditions and unsteadiness of wind flow on the penetration of outdoor air particles. For better prediction of the exposure to outdoor particles in naturally ventilated residential buildings, it is important to understand the penetration of outdoor particles with variable window opening conditions. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. How comparable are size-resolved particle number concentrations from different instruments?

    Science.gov (United States)

    Hornsby, K. E.; Pryor, S. C.

    2012-12-01

    The need for comparability of particle size resolved measurements originates from multiple drivers including: (i) Recent suggestions that air quality standards for particulate matter should migrate from being mass-based to incorporating number concentrations. This move would necessarily be predicated on measurement comparability which is absolutely critical to compliance determination. (ii) The need to quantify and diagnose causes of variability in nucleation and growth rates in nano-particle experiments conducted in different locations. (iii) Epidemiological research designed to identify key parameters in human health responses to fine particle exposure. Here we present results from a detailed controlled laboratory instrument inter-comparison experiment designed to investigate data comparability in the size range of 2.01-523.3 nm across a range of particle composition, modal diameter and absolute concentration. Particle size distributions were generated using a TSI model 3940 Aerosol Generation System (AGS) diluted using zero air, and sampled using four TSI Scanning Mobility Particle Spectrometer (SMPS) configurations and a TSI model 3091 Fast Mobility Particle Sizer (FMPS). The SMPS configurations used two Electrostatic Classifiers (EC) (model 3080) attached to either a Long DMA (LDMA) (model 3081) or a Nano DMA (NDMA) (model 3085) plumbed to either a TSI model 3025A Butanol Condensed Particle Counting (CPC) or a TSI model 3788 Water CPC. All four systems were run using both high and low flow conditions, and were operated with both the internal diffusion loss and multiple charge corrections turned on. The particle compositions tested were sodium chloride, ammonium nitrate and olive oil diluted in ethanol. Particles of all three were generated at three peak concentration levels (spanning the range observed at our experimental site), and three modal particle diameters. Experimental conditions were maintained for a period of 20 minutes to ensure experimental

  10. Scattering by a plane-parallel layer with high concentration of optically soft particles

    International Nuclear Information System (INIS)

    Loiko, Valery A.; Berdnik, Vladimir V.

    2009-01-01

    A method describing light propagation in a plane-parallel light-scattering layer with large concentration of homogeneous particles is developed. It is based on the radiative transfer equation and the doubling method. The interference approximation is used to take into account collective scattering effects. Spectral dependence of transmitted light for a layer of nonabsorbing optically soft particles with subwavelength-sized particles is investigated. At small volume concentration of the particles the weak spectral dependences of wave exponents for coherently transmitted and diffuse light are observed. It is shown that in a layer with large volume concentration of the subwavelength-sized particles the wave exponent can exceed considerably the value of four, which takes place for the Rayleigh particles. The dependence of wave exponents for coherently transmitted and diffuse light on the refractive index and concentration of particles is investigated in detail. Multiple scattering of light results in the reduction of the exponent. The quantitative results are presented and discussed. It is shown that there is a range of wavelengths where the negative values of the wave exponent at the regime of multiple scattering are implemented.

  11. Predicted harvest time effects on switchgrass moisture content, nutrient concentration, yield, and profitability

    Science.gov (United States)

    Production costs change with harvest date of switchgrass (Panicum virgatum L.) as a result of nutrient recycling and changes in yield of this perennial crop. This study examines the range of cost of production from an early, yield-maximizing harvest date to a late winter harvest date at low moisture...

  12. Acoustic concentration of particles in fluid flow

    Science.gov (United States)

    Ward, Michael D.; Kaduchak, Gregory

    2010-11-23

    An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  13. Acoustic concentration of particles in fluid flow

    Science.gov (United States)

    Ward, Michael W.; Kaduchak, Gregory

    2017-08-15

    Disclosed herein is a acoustic concentration of particles in a fluid flow that includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  14. Tomographic particle image velocimetry of a water-jet for low volume harvesting of fat tissue for regenerative medicine

    Directory of Open Access Journals (Sweden)

    Drobek Christoph

    2015-09-01

    Full Text Available Particle Image Velocimetry (PIV measurements of a water-jet for water-assisted liposuction (WAL are carried out to investigate the distribution of velocity and therefore momentum and acting force on the human sub-cutaneous fat tissue. These results shall validate CFD simulations and force sensor measurements of the water-jet and support the development of a new WAL device that is able to harvest low volumes of fat tissue for regenerative medicine even gentler than regular WAL devices.

  15. Harvesting of microalgae by bio-flocculation

    NARCIS (Netherlands)

    Salim, S.; Bosma, R.; Vermuë, M.H.; Wijffels, R.H.

    2011-01-01

    The high-energy input for harvesting biomass makes current commercial microalgal biodiesel production economically unfeasible. A novel harvesting method is presented as a cost and energy efficient alternative: the bio-flocculation by using one flocculating microalga to concentrate the

  16. The Effect of Nitrate Levels and Harvest Times on Fe, Zn, Cu, and K, Concentrations and Nitrate Reductase Activity in Lettuce and Spinach

    Directory of Open Access Journals (Sweden)

    Z. Gheshlaghi

    2015-09-01

    Full Text Available Leafy vegetables are considered as the main sources of nitrate in the human diet. In order to investigate the effect of nitrate levels and harvest times on nitrate accumulation, nitrate reductase activity, concentrations of Fe, Zn, Cu and K in Lettuce and Spinach and their relation to nitrate accumulation in these leafy vegetables, two harvest times (29 and 46 days after transplanting, two vegetable species of lettuce and spinach and two concentrations of nitrate (10 and 20 mM were used in a hydroponics greenhouse experiment with a completely randomized design and 3 replications. Modified Hoagland and Arnon nutrient solutions were used for the experiment. The results indicated that by increasing nitrate concentration of solution, nitrate accumulation in roots and shoots of lettuce and spinach increased significantly (P ≤ 0.05, and the same trend was observed for the nitrate reductase activity in the shoots of the two species. Increasing the nitrate concentrations of solution, reduced the shoot dry weight and the concentration of Fe and Cu in both species, where as it increased the K and Zn concentrations in the shoots of the two species in each both harvest times, the nitrate accumulation increased, but the nitrate reductase activity decreased in the shoots of the two species over the course of the growth. The Concentration of Fe, Cu and K decreased in the shoots of lettuce and the spinach with the time, despite the increase in Zn concentration in the shoots. The results also indicated that increasing nitrate concentrations of solution to the levels greater than the plant capacity for reduction and net uptake of nitrate, leads to the nitrate accumulation in the plants. Nitrate accumulation in plant tissue led to decreases in fresh shoot yield and Fe and Cu concentrations and nitrate reductase activities in both lettuce and spinach.

  17. Harvest time and post-harvest quality of Fuyu persimmon treated before harvest with gibberellic acid and aminoetoxyvinilglycine

    Directory of Open Access Journals (Sweden)

    Ricardo Antonio Ayub

    2008-12-01

    Full Text Available The aim of this work was to evaluate the effects of gibberellic acid (GA3 and aminoetoxyvinilglycine (AVG applied in preharvest spraying, on the retardation of the harvest and on the quality of persimmon fruits cv. Fuyu. The experiment was carried in randomized complete block design. The treatments were: control, 136mgL-1 of AVG, 272 mgL-1 of AVG, 36mgL-1 of GA3, 72mgL-1 of GA3 and 136mgL-1 of AVG + 36mgL-1 of GA3, spraying 30 days before the first harvest. The fruits were harvested twice and stored at 4ºC. The chemical and physical evaluations of the fruits were carried out the date of the harvest and at intervals of 15 days followed by four days at 20ºC. In conclusion, the application of AVG (136mgL-1 or GA3 (72mgL-1 maintained the firmness of the fruits and delayed harvest by twenty days. However, fruits harvested in the initial state of ripening were more sensitive to chilling injury and were unable to support 15 days of storage at 4ºC. The plant growth regulators were not efficient in prolonged storage due to the fact that the concentration of sugars was lower in the treatments than in the control.

  18. Robust Weighted Sum Harvested Energy Maximization for SWIPT Cognitive Radio Networks Based on Particle Swarm Optimization.

    Science.gov (United States)

    Tuan, Pham Viet; Koo, Insoo

    2017-10-06

    In this paper, we consider multiuser simultaneous wireless information and power transfer (SWIPT) for cognitive radio systems where a secondary transmitter (ST) with an antenna array provides information and energy to multiple single-antenna secondary receivers (SRs) equipped with a power splitting (PS) receiving scheme when multiple primary users (PUs) exist. The main objective of the paper is to maximize weighted sum harvested energy for SRs while satisfying their minimum required signal-to-interference-plus-noise ratio (SINR), the limited transmission power at the ST, and the interference threshold of each PU. For the perfect channel state information (CSI), the optimal beamforming vectors and PS ratios are achieved by the proposed PSO-SDR in which semidefinite relaxation (SDR) and particle swarm optimization (PSO) methods are jointly combined. We prove that SDR always has a rank-1 solution, and is indeed tight. For the imperfect CSI with bounded channel vector errors, the upper bound of weighted sum harvested energy (WSHE) is also obtained through the S-Procedure. Finally, simulation results demonstrate that the proposed PSO-SDR has fast convergence and better performance as compared to the other baseline schemes.

  19. COOKING-RELATED PARTICLE CONCENTRATIONS MEASURED IN AN OCCUPIED TOWNHOME IN RESTON, VA

    Science.gov (United States)

    In non-smoking households, cooking is one of the most significant sources of indoor particles. To date, there are limited data available regarding indoor particle concentrations generated by different types of cooking. To increase the knowledge base associated with particles ...

  20. Differences in airborne particle and gaseous concentrations in urban air between weekdays and weekends

    Science.gov (United States)

    Morawska, L.; Jayaratne, E. R.; Mengersen, K.; Jamriska, M.; Thomas, S.

    Airborne particle number concentrations and size distributions as well as CO and NO x concentrations monitored at a site within the central business district of Brisbane, Australia were correlated with the traffic flow rate on a nearby freeway with the aim of investigating differences between weekday and weekend pollutant characteristics. Observations over a 5-year monitoring period showed that the mean number particle concentration on weekdays was (8.8±0.1)×10 3 cm -3 and on weekends (5.9±0.2)×10 3 cm -3—a difference of 47%. The corresponding mean particle number median diameters during weekdays and weekends were 44.2±0.3 and 50.2±0.2 nm, respectively. The differences in mean particle number concentration and size between weekdays and weekends were found to be statistically significant at confidence levels of over 99%. During a 1-year period of observation, the mean traffic flow rate on the freeway was 14.2×10 4 and 9.6×10 4 vehicles per weekday and weekend day, respectively—a difference of 48%. The mean diurnal variations of the particle number and the gaseous concentrations closely followed the traffic flow rate on both weekdays and weekends (correlation coefficient of 0.86 for particles). The overall conclusion, as to the effect of traffic on concentration levels of pollutant concentration in the vicinity of a major road (about 100 m) carrying traffic of the order of 10 5 vehicles per day, is that about a 50% increase in traffic flow rate results in similar increases of CO and NO x concentrations and a higher increase of about 70% in particle number concentration.

  1. Concentrations and Sources of Airborne Particles in a Neonatal Intensive Care Unit

    Science.gov (United States)

    Licina, Dusan; Bhangar, Seema; Brooks, Brandon; Baker, Robyn; Firek, Brian; Tang, Xiaochen; Morowitz, Michael J.; Banfield, Jillian F.; Nazaroff, William W.

    2016-01-01

    Premature infants in neonatal intensive care units (NICUs) have underdeveloped immune systems, making them susceptible to adverse health consequences from air pollutant exposure. Little is known about the sources of indoor airborne particles that contribute to the exposure of premature infants in the NICU environment. In this study, we monitored the spatial and temporal variations of airborne particulate matter concentrations along with other indoor environmental parameters and human occupancy. The experiments were conducted over one year in a private-style NICU. The NICU was served by a central heating, ventilation and air-conditioning (HVAC) system equipped with an economizer and a high-efficiency particle filtration system. The following parameters were measured continuously during weekdays with 1-min resolution: particles larger than 0.3 μm resolved into 6 size groups, CO2 level, dry-bulb temperature and relative humidity, and presence or absence of occupants. Altogether, over sixteen periods of a few weeks each, measurements were conducted in rooms occupied with premature infants. In parallel, a second monitoring station was operated in a nearby hallway or at the local nurses’ station. The monitoring data suggest a strong link between indoor particle concentrations and human occupancy. Detected particle peaks from occupancy were clearly discernible among larger particles and imperceptible for submicron (0.3–1 μm) particles. The mean indoor particle mass concentrations averaged across the size range 0.3–10 μm during occupied periods was 1.9 μg/m3, approximately 2.5 times the concentration during unoccupied periods (0.8 μg/m3). Contributions of within-room emissions to total PM10 mass in the baby rooms averaged 37–81%. Near-room indoor emissions and outdoor sources contributed 18–59% and 1–5%, respectively. Airborne particle levels in the size range 1–10 μm showed strong dependence on human activities, indicating the importance of indoor

  2. Concentrations and Sources of Airborne Particles in a Neonatal Intensive Care Unit.

    Directory of Open Access Journals (Sweden)

    Dusan Licina

    Full Text Available Premature infants in neonatal intensive care units (NICUs have underdeveloped immune systems, making them susceptible to adverse health consequences from air pollutant exposure. Little is known about the sources of indoor airborne particles that contribute to the exposure of premature infants in the NICU environment. In this study, we monitored the spatial and temporal variations of airborne particulate matter concentrations along with other indoor environmental parameters and human occupancy. The experiments were conducted over one year in a private-style NICU. The NICU was served by a central heating, ventilation and air-conditioning (HVAC system equipped with an economizer and a high-efficiency particle filtration system. The following parameters were measured continuously during weekdays with 1-min resolution: particles larger than 0.3 μm resolved into 6 size groups, CO2 level, dry-bulb temperature and relative humidity, and presence or absence of occupants. Altogether, over sixteen periods of a few weeks each, measurements were conducted in rooms occupied with premature infants. In parallel, a second monitoring station was operated in a nearby hallway or at the local nurses' station. The monitoring data suggest a strong link between indoor particle concentrations and human occupancy. Detected particle peaks from occupancy were clearly discernible among larger particles and imperceptible for submicron (0.3-1 μm particles. The mean indoor particle mass concentrations averaged across the size range 0.3-10 μm during occupied periods was 1.9 μg/m3, approximately 2.5 times the concentration during unoccupied periods (0.8 μg/m3. Contributions of within-room emissions to total PM10 mass in the baby rooms averaged 37-81%. Near-room indoor emissions and outdoor sources contributed 18-59% and 1-5%, respectively. Airborne particle levels in the size range 1-10 μm showed strong dependence on human activities, indicating the importance of indoor

  3. Mathematical modeling of atmospheric fine particle-associated primary organic compound concentrations

    Science.gov (United States)

    Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.; Cass, Glen R.; Simoneit, Bernd R. T.

    1996-08-01

    An atmospheric transport model has been used to explore the relationship between source emissions and ambient air quality for individual particle phase organic compounds present in primary aerosol source emissions. An inventory of fine particulate organic compound emissions was assembled for the Los Angeles area in the year 1982. Sources characterized included noncatalyst- and catalyst-equipped autos, diesel trucks, paved road dust, tire wear, brake lining dust, meat cooking operations, industrial oil-fired boilers, roofing tar pots, natural gas combustion in residential homes, cigarette smoke, fireplaces burning oak and pine wood, and plant leaf abrasion products. These primary fine particle source emissions were supplied to a computer-based model that simulates atmospheric transport, dispersion, and dry deposition based on the time series of hourly wind observations and mixing depths. Monthly average fine particle organic compound concentrations that would prevail if the primary organic aerosol were transported without chemical reaction were computed for more than 100 organic compounds within an 80 km × 80 km modeling area centered over Los Angeles. The monthly average compound concentrations predicted by the transport model were compared to atmospheric measurements made at monitoring sites within the study area during 1982. The predicted seasonal variation and absolute values of the concentrations of the more stable compounds are found to be in reasonable agreement with the ambient observations. While model predictions for the higher molecular weight polycyclic aromatic hydrocarbons (PAH) are in agreement with ambient observations, lower molecular weight PAH show much higher predicted than measured atmospheric concentrations in the particle phase, indicating atmospheric decay by chemical reactions or evaporation from the particle phase. The atmospheric concentrations of dicarboxylic acids and aromatic polycarboxylic acids greatly exceed the contributions that

  4. Experimental measurement of energy harvesting with backpack

    Science.gov (United States)

    Pavelkova, Radka; Vala, David; Suranek, Pavel; Mahdal, Miroslav

    2017-08-01

    This article deals with the energy harvesting systems, especially the energy harvesting backpack, which appears as a convenient means for energy harvesting for mobile sensors power. Before starting the experiment, it was necessary to verify whether this energy will be sufficient to get acquainted with the human kinematics and analyze problematics itself. For this purpose there was used motion capture technology from Xsens. Measured data on the position of a particle moving man and back when walking, these data were then used for experimental realization of energy harvesting backpack and as input data to the simulation in Simulink, which brought us a comparison between theoretical assumptions and practical implementation. When measuring characteristics of energy harvesting system we have a problem with measurements on backpack solved when redoing of the hydraulic cylinder as a source of a suitable movement corresponding to the amplitude and frequency of human walk.

  5. Spatial & temporal variations of PM10 and particle number concentrations in urban air.

    Science.gov (United States)

    Johansson, Christer; Norman, Michael; Gidhagen, Lars

    2007-04-01

    The size of particles in urban air varies over four orders of magnitude (from 0.001 microm to 10 microm in diameter). In many cities only particle mass concentrations (PM10, i.e. particles tires and traction sand on streets during winter; up to 90% of the locally emitted PM10 may be due to road abrasion. PM10 emissions and concentrations, but not PNC, at kerbside are controlled by road moisture. Annual mean urban background PM10 levels are relatively uniformly distributed over the city, due to the importance of long range transport. For PNC local sources often dominate the concentrations resulting in large temporal and spatial gradients in the concentrations. Despite these differences in the origin of PM10 and PNC, the spatial gradients of annual mean concentrations due to local sources are of equal magnitude due to the common source, namely traffic. Thus, people in different areas experiencing a factor of 2 different annual PM10 exposure due to local sources will also experience a factor of 2 different exposure in terms of PNC. This implies that health impact studies based solely on spatial differences in annual exposure to PM10 may not separate differences in health effects due to ultrafine and coarse particles. On the other hand, health effect assessments based on time series exposure analysis of PM10 and PNC, should be able to observe differences in health effects of ultrafine particles versus coarse particles.

  6. Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation

    Science.gov (United States)

    Spracklen, D. V.; Carslaw, K. S.; Merikanto, J.; Mann, G. W.; Reddington, C. L.; Pickering, S.; Ogren, J. A.; Andrews, E.; Baltensperger, U.; Weingartner, E.; Boy, M.; Kulmala, M.; Laakso, L.; Lihavainen, H.; Kivekäs, N.; Komppula, M.; Mihalopoulos, N.; Kouvarakis, G.; Jennings, S. G.; O'Dowd, C.; Birmili, W.; Wiedensohler, A.; Weller, R.; Gras, J.; Laj, P.; Sellegri, K.; Bonn, B.; Krejci, R.; Laaksonen, A.; Hamed, A.; Minikin, A.; Harrison, R. M.; Talbot, R.; Sun, J.

    2010-05-01

    We synthesised observations of total particle number (CN) concentration from 36 sites around the world. We found that annual mean CN concentrations are typically 300-2000 cm-3 in the marine boundary layer and free troposphere (FT) and 1000-10 000 cm-3 in the continental boundary layer (BL). Many sites exhibit pronounced seasonality with summer time concentrations a factor of 2-10 greater than wintertime concentrations. We used these CN observations to evaluate primary and secondary sources of particle number in a global aerosol microphysics model. We found that emissions of primary particles can reasonably reproduce the spatial pattern of observed CN concentration (R2=0.46) but fail to explain the observed seasonal cycle (R2=0.1). The modeled CN concentration in the FT was biased low (normalised mean bias, NMB=-88%) unless a secondary source of particles was included, for example from binary homogeneous nucleation of sulfuric acid and water (NMB=-25%). Simulated CN concentrations in the continental BL were also biased low (NMB=-74%) unless the number emission of anthropogenic primary particles was increased or a mechanism that results in particle formation in the BL was included. We ran a number of simulations where we included an empirical BL nucleation mechanism either using the activation-type mechanism (nucleation rate, J, proportional to gas-phase sulfuric acid concentration to the power one) or kinetic-type mechanism (J proportional to sulfuric acid to the power two) with a range of nucleation coefficients. We found that the seasonal CN cycle observed at continental BL sites was better simulated by BL particle formation (R2=0.3) than by increasing the number emission from primary anthropogenic sources (R2=0.18). The nucleation constants that resulted in best overall match between model and observed CN concentrations were consistent with values derived in previous studies from detailed case studies at individual sites. In our model, kinetic and activation

  7. Low power acoustic harvesting of aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Kaduchak, G. (Gregory); Sinha, D. N. (Dipen N)

    2001-01-01

    A new acoustic device for levitation and/or concentration of aerosols and sniall liquid/solid samples (up to several millimeters in diameter) in air has been developed. The device is inexpensive, low-power, and, in its simplest embodiment, does not require accurate alignmen1 of a resonant cavity. It is constructed from a cylindrical PZT tube of outside diameter D = 19.0 mm and thickness-to-radius ratio h/a - 0.03. The lowest-order breathing mode of the tube is tuned to match a resonant mode of the interior air-filled cylindrical cavity. A high Q cavity results that can be driven efficiently. An acoustic standing wave is created in the inteirior cavity of the cylindrical shell where particle concrmtration takes place at the nodal planes of the field. It is shown that drops of water in excess of 1 mm in diameter may be levitated against the force of gravity for approxirnately 100 mW of input electrical power. The main objective of the research is to implement this lowpower device to concentrate and harvest aerosols in a flowing system. Several different cavity geonietries iwe presented for efficient collection of 1 he conaartratetl aerosols. Concentraiion factors greater than 40 iue demonstrated for particles of size 0.7 1.1 in a flow volume of 50 L/minute.

  8. Biogeography of photosynthetic light-harvesting genes in marine phytoplankton.

    Directory of Open Access Journals (Sweden)

    Thomas S Bibby

    Full Text Available BACKGROUND: Photosynthetic light-harvesting proteins are the mechanism by which energy enters the marine ecosystem. The dominant prokaryotic photoautotrophs are the cyanobacterial genera Prochlorococcus and Synechococcus that are defined by two distinct light-harvesting systems, chlorophyll-bound protein complexes or phycobilin-bound protein complexes, respectively. Here, we use the Global Ocean Sampling (GOS Project as a unique and powerful tool to analyze the environmental diversity of photosynthetic light-harvesting genes in relation to available metadata including geographical location and physical and chemical environmental parameters. METHODS: All light-harvesting gene fragments and their metadata were obtained from the GOS database, aligned using ClustalX and classified phylogenetically. Each sequence has a name indicative of its geographic location; subsequent biogeographical analysis was performed by correlating light-harvesting gene budgets for each GOS station with surface chlorophyll concentration. CONCLUSION/SIGNIFICANCE: Using the GOS data, we have mapped the biogeography of light-harvesting genes in marine cyanobacteria on ocean-basin scales and show that an environmental gradient exists in which chlorophyll concentration is correlated to diversity of light-harvesting systems. Three functionally distinct types of light-harvesting genes are defined: (1 the phycobilisome (PBS genes of Synechococcus; (2 the pcb genes of Prochlorococcus; and (3 the iron-stress-induced (isiA genes present in some marine Synechococcus. At low chlorophyll concentrations, where nutrients are limited, the Pcb-type light-harvesting system shows greater genetic diversity; whereas at high chlorophyll concentrations, where nutrients are abundant, the PBS-type light-harvesting system shows higher genetic diversity. We interpret this as an environmental selection of specific photosynthetic strategy. Importantly, the unique light-harvesting system isiA is found

  9. Effect of stage of maturity of grass at harvest on intake, chewing activity and distribution of particle size in faeces from pregnant ewes

    DEFF Research Database (Denmark)

    Jalali, Alireza; Nørgaard, Peder; Weisbjerg, Martin Riis

    2012-01-01

    This study was conducted to investigate the effect of stage of maturity at harvest on the intake of grass silage, eating and ruminating activity and the distribution of faecal particle size in ewes during late pregnancy. A total of 18 Swedish Finull × Dorset 85 ± 8 kg (mean ± s.d.) ewes bearing t...

  10. Contribution of ship traffic to aerosol particle concentrations downwind of a major shipping lane

    DEFF Research Database (Denmark)

    Kivekäs, N.; Massling, Andreas; Grythe, H.

    2014-01-01

    at a remote location. We studied the particle number concentration (12 to 490 nm in diameter), the mass concentration (12 to 150 nm in diameter) and number and volume size distribution of aerosol particles in ship plumes for a period of 4.5 months at Hovsore, a coastal site on the western coast of Jutland...... in Denmark. During episodes of western winds, the site is about 50 km downwind of a major shipping lane and the plumes are approximately 1 hour old when they arrive at the site. We have used a sliding percentile-based method for separating the plumes from the measured background values and to calculate...... the ship plume contribution to the total particle number and PM0.15 mass concentration (mass of particles below 150 nm in diameter, converted from volume assuming sphericity) at the site. The method is not limited to particle number or volume concentration, but can also be used for different chemical...

  11. Insights into characteristics, sources, and evolution of submicron aerosols during harvest seasons in the Yangtze River delta region, China

    Science.gov (United States)

    Zhang, Y. J.; Tang, L. L.; Wang, Z.; Yu, H. X.; Sun, Y. L.; Liu, D.; Qin, W.; Canonaco, F.; Prévôt, A. S. H.; Zhang, H. L.; Zhou, H. C.

    2015-02-01

    Atmospheric submicron particulate matter (PM1) is one of the most significant pollution components in China. Despite its current popularity in the studies of aerosol chemistry, the characteristics, sources and evolution of atmospheric PM1 species are still poorly understood in China, particularly for the two harvest seasons, namely, the summer wheat harvest and autumn rice harvest. An Aerodyne Aerosol Chemical Speciation Monitor (ACSM) was deployed for online monitoring of PM1 components during summer and autumn harvest seasons in urban Nanjing, in the Yangtze River delta (YRD) region of China. PM1 components were shown to be dominated by organic aerosol (OA, 39 and 41%) and nitrate (23 and 20%) during the harvest seasons (the summer and autumn harvest). Positive matrix factorization (PMF) analysis of the ACSM OA mass spectra resolved four OA factors: hydrocarbon-like mixed with cooking-related OA (HOA + COA), fresh biomass-burning OA (BBOA), oxidized biomass-burning-influenced OA (OOA-BB), and highly oxidized OA (OOA); in particular the oxidized BBOA contributes ~80% of the total BBOA loadings. Both fresh and oxidized BBOA exhibited apparent diurnal cycles with peak concentration at night, when the high ambient relative humidity and low temperature facilitated the partitioning of semi-volatile organic species into the particle phase. The fresh BBOA concentrations for the harvests are estimated as BBOA = 15.1 × (m/z 60-0.26% × OA), where m/z (mass-to-charge ratio) 60 is a marker for levoglucosan-like species. The (BBOA + OOA-BB)/ΔCO, (ΔCO is the CO minus background CO), decreases as a function of f44 (fraction of m/z 44 in OA signal), which might indicate that BBOA was oxidized to less volatile OOA, e.g., more aged and low volatility OOA (LV-OOA) during the aging process. Analysis of air mass back trajectories indicates that the high BB pollutant concentrations are linked to the air masses from the western (summer harvest) and southern (autumn harvest) areas.

  12. Radon in indoor concentrations and indoor concentrations of metal dust particles in museums and other public buildings.

    Science.gov (United States)

    Carneiro, G L; Braz, D; de Jesus, E F; Santos, S M; Cardoso, K; Hecht, A A; Dias da Cunha, Moore K

    2013-06-01

    The aim of this study was to evaluate the public and occupational exposure to radon and metal-bearing particles in museums and public buildings located in the city of Rio de Janeiro, Brazil. For this study, four buildings were selected: two historic buildings, which currently house an art gallery and an art museum; and two modern buildings, a chapel and a club. Integrated radon concentration measurements were performed using passive radon detectors with solid state nuclear track detector-type Lexan used as nuclear track detector. Air samplers with a cyclone were used to collect the airborne particle samples that were analyzed by the particle-induced X-ray emission technique. The average unattached-radon concentrations in indoor air in the buildings were above 40 Bq/m(3), with the exception of Building D as measured in 2009. The average radon concentrations in indoor air in the four buildings in 2009 were below the recommended reference level by World Health Organization (100 Bq/m(3)); however, in 2011, the average concentrations of radon in Buildings A and C were above this level, though lower than 300 Bq/m(3). The average concentrations of unattached radon were lower than 148 Bq/m(3) (4pCi/L), the USEPA level recommended to take action to reduce the concentrations of radon in indoor air. The unattached-radon average concentrations were also lower than the value recommended by the European Union for new houses. As the unattached-radon concentrations were below the international level recommended to take action to reduce the radon concentration in air, it was concluded that during the period of sampling, there was low risk to human health due to the inhalation of unattached radon in these four buildings.

  13. The particle concentration effect on magnetic resonance linewidth for magnetic liquids with chain aggregates

    International Nuclear Information System (INIS)

    Marin, C.N.

    2002-01-01

    Based on the assumption of particle chains formation within a magnetic liquid, computer simulation of the magnetic resonance line is presented. The dependence on particle concentration within a magnetic liquid of magnetic resonance linewidth is analyzed. The computer simulation demonstrates that the particles chaining has an important effect on the enlargement of the magnetic resonance line. Increasing the particle concentration within magnetic liquid leads to an increase in the linewidth. The agreement with some experimental findings is discussed

  14. Activity and concentration of polyphenolic antioxidants in apple: effect of cultivar, harvest year, and storage conditions.

    Science.gov (United States)

    van der Sluis, A A; Dekker, M; de Jager, A; Jongen, W M

    2001-08-01

    Consumers' increasing interest in the relationship between diet and health is a sign for food producers to pay more attention to potential health-protecting compounds in new product development and food processing. From a production chain perspective the choice of the raw material that is used is important for the health-protecting potential of the end product. Four apple cultivars (Jonagold, Golden Delicious, Cox's Orange, and Elstar), which can be used as fresh apples or in processed apple products, were compared with regard to flavonol, catechins, phloridzin, and chlorogenic acid concentrations and antioxidant activity. Jonagold apples possessed the highest flavonoid concentration and the highest antioxidant activity. To study seasonal differences, apples from three different harvest years were analyzed, but in three cultivars no effect on flavonoid concentration and antioxidant activity was observed. Long-term storage, both at refrigerator temperature and under controlled atmosphere conditions, was found not to influence flavonoid concentration or antioxidant activity.

  15. Fluidized bed combustion of single coal char particles at high CO{sub 2} concentration

    Energy Technology Data Exchange (ETDEWEB)

    Scala, F.; Chirone, R. [CNR, Naples (Italy)

    2010-12-15

    Combustion of single coal char particles was studied at 850{sup o}C in a lab-scale fluidized bed at high CO{sub 2} concentration, typical of oxyfiring conditions. The burning rate of the particles was followed as a function of time by continuously measuring the outlet CO and O{sub 2} concentrations. Some preliminary evaluations on the significance of homogeneous CO oxidation in the reactor and of carbon gasification by CO{sub 2} in the char were also carried out. Results showed that the carbon burning rate increases with oxygen concentration and char particle size. The particle temperature is approximately equal to that of the bed up to an oxygen concentration of 2%, but it is considerably higher for larger oxygen concentrations. Both CO{sub 2} gasification of char and homogeneous CO oxidation are not negligible. The gasification reaction rate is slow and it is likely to be controlled by intrinsic kinetics. During purely gasification conditions the extent of carbon loss due to particle attrition by abrasion (estimated from the carbon mass balance) appears to be much more important than under combustion conditions.

  16. Estimation of inhaled airborne particle number concentration by subway users in Seoul, Korea

    International Nuclear Information System (INIS)

    Kim, Minhae; Park, Sechan; Namgung, Hyeong-Gyu; Kwon, Soon-Bark

    2017-01-01

    Exposure to airborne particulate matter (PM) causes several diseases in the human body. The smaller particles, which have relatively large surface areas, are actually more harmful to the human body since they can penetrate deeper parts of the lungs or become secondary pollutants by bonding with other atmospheric pollutants, such as nitrogen oxides. The purpose of this study is to present the number of PM inhaled by subway users as a possible reference material for any analysis of the hazards to the human body arising from the inhalation of such PM. Two transfer stations in Seoul, Korea, which have the greatest number of users, were selected for this study. For 0.3–0.422 μm PM, particle number concentration (PNC) was highest outdoors but decreased as the tester moved deeper underground. On the other hand, the PNC between 1 and 10 μm increased as the tester moved deeper underground and showed a high number concentration inside the subway train as well. An analysis of the particles to which subway users are actually exposed to (inhaled particle number), using particle concentration at each measurement location, the average inhalation rate of an adult, and the average stay time at each location, all showed that particles sized 0.01–0.422 μm are mostly inhaled from the outdoor air whereas particles sized 1–10 μm are inhaled as the passengers move deeper underground. Based on these findings, we expect that the inhaled particle number of subway users can be used as reference data for an evaluation of the hazards to health caused by PM inhalation. - Highlights: • Size-dependent aerosol number was measured along the path of subway user. • Particles less than 0.4 μm were inhaled in outdoor but less so as deeper underground. • Coarse particles were inhaled significantly as users moved deeper underground. - We estimated the inhaled aerosol number concentration depending on particle size along the path of subway users.

  17. Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation

    Directory of Open Access Journals (Sweden)

    D. V. Spracklen

    2010-05-01

    Full Text Available We synthesised observations of total particle number (CN concentration from 36 sites around the world. We found that annual mean CN concentrations are typically 300–2000 cm−3 in the marine boundary layer and free troposphere (FT and 1000–10 000 cm−3 in the continental boundary layer (BL. Many sites exhibit pronounced seasonality with summer time concentrations a factor of 2–10 greater than wintertime concentrations. We used these CN observations to evaluate primary and secondary sources of particle number in a global aerosol microphysics model. We found that emissions of primary particles can reasonably reproduce the spatial pattern of observed CN concentration (R2=0.46 but fail to explain the observed seasonal cycle (R2=0.1. The modeled CN concentration in the FT was biased low (normalised mean bias, NMB=−88% unless a secondary source of particles was included, for example from binary homogeneous nucleation of sulfuric acid and water (NMB=−25%. Simulated CN concentrations in the continental BL were also biased low (NMB=−74% unless the number emission of anthropogenic primary particles was increased or a mechanism that results in particle formation in the BL was included. We ran a number of simulations where we included an empirical BL nucleation mechanism either using the activation-type mechanism (nucleation rate, J, proportional to gas-phase sulfuric acid concentration to the power one or kinetic-type mechanism (J proportional to sulfuric acid to the power two with a range of nucleation coefficients. We found that the seasonal CN cycle observed at continental BL sites was better simulated by BL particle formation (R2=0.3 than by increasing the number emission from primary anthropogenic sources (R2=0.18. The nucleation constants that resulted in best overall match between model and observed CN concentrations were

  18. The variation of particle gas-borne concentration with time in a gas cooled reactor

    International Nuclear Information System (INIS)

    Reed, J.; Hall, D.; Reeks, M.W.

    1985-01-01

    If volatile fission products are released from fuel during a reactor fault, a significant fraction could become attached to small particles also present in the coolant. In such circumstances the retention of those particles by the reactor circuit will limit the level of gas-borne particle concentration and hence be important in reducing the potential release of fission product activity to the atmosphere. Clearly the retention of particles will be influenced by both the deposition and resuspension of particles from surfaces exposed to the coolant flow. In this paper we consider deposition and resuspension but pay particular attention to the role of resuspension, which in the past has been given little consideration. A recently developed model for the resuspension of small particles by a turbulent flow is outlined. Traditionally, resuspension has been interpreted as a force balance between the aerodynamic removal forces and the surface adhesive forces. In contrast, this new approach embodies an energy balance criterion for particle resuspension. Furthermore, the stochastic nature of this new model has shown that resuspension can be sub-divided into two regimes: (i) initial resuspension (resuspension occurring in times less than a second) which reduces the net deposition of particles to a surface; and (ii) longer term resuspension (resuspension after 1 second) which determines the asymptotic decay of particle gas-borne concentration. It is seen that the asymptotic decay varies almost inversely as the decay time. Force balance models are unsuccessful in accounting for the experimentally observed longer term resuspension. We show that a Volterra integro-differential equation best describes the variation of particle gas-borne concentration with time in a recirculating gas flow such as a gas cooled reactor. It is seen that the longer term resuspension has a major influence in the final decay of particle concentration. (author)

  19. The variation of particle gas-borne concentration with time in a gas cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Reed, J; Hall, D; Reeks, M W [Central Electricity Generating Board, Berkeley Nuclear Laboratories (United Kingdom)

    1985-07-01

    If volatile fission products are released from fuel during a reactor fault, a significant fraction could become attached to small particles also present in the coolant. In such circumstances the retention of those particles by the reactor circuit will limit the level of gas-borne particle concentration and hence be important in reducing the potential release of fission product activity to the atmosphere. Clearly the retention of particles will be influenced by both the deposition and resuspension of particles from surfaces exposed to the coolant flow. In this paper we consider deposition and resuspension but pay particular attention to the role of resuspension, which in the past has been given little consideration. A recently developed model for the resuspension of small particles by a turbulent flow is outlined. Traditionally, resuspension has been interpreted as a force balance between the aerodynamic removal forces and the surface adhesive forces. In contrast, this new approach embodies an energy balance criterion for particle resuspension. Furthermore, the stochastic nature of this new model has shown that resuspension can be sub-divided into two regimes: (i) initial resuspension (resuspension occurring in times less than a second) which reduces the net deposition of particles to a surface; and (ii) longer term resuspension (resuspension after 1 second) which determines the asymptotic decay of particle gas-borne concentration. It is seen that the asymptotic decay varies almost inversely as the decay time. Force balance models are unsuccessful in accounting for the experimentally observed longer term resuspension. We show that a Volterra integro-differential equation best describes the variation of particle gas-borne concentration with time in a recirculating gas flow such as a gas cooled reactor. It is seen that the longer term resuspension has a major influence in the final decay of particle concentration. (author)

  20. Microalgae harvesting techniques: A review.

    Science.gov (United States)

    Singh, Gulab; Patidar, S K

    2018-07-01

    Microalgae with wide range of commercial applications have attracted a lot of attention of the researchers in the last few decades. However, microalgae utilization is not economically sustainable due to high cost of harvesting. A wide range of solid - liquid separation techniques are available for microalgae harvesting. The techniques include coagulation and flocculation, flotation, centrifugation and filtration or a combination of various techniques. Despite the importance of harvesting to the economics and energy balance, there is no universal harvesting technique for microalgae. Therefore, this review focuses on assessing technical, economical and application potential of various harvesting techniques so as to allow selection of an appropriate technology for cost effectively harvesting of microalgae from their culture medium. Various harvesting and concentrating techniques of microalgae were reviewed to suggest order of suitability of the techniques for four main microalgae applications i.e biofuel, human and animal food, high valued products, and water quality restoration. For deciding the order of suitability, a comparative analysis of various harvesting techniques based on the six common criterions (i.e biomass quality, cost, biomass quantity, processing time, species specific and toxicity) has been done. Based on the order of various techniques vis-a-vis various criteria and preferred order of criteria for various applications, order of suitability of harvesting techniques for various applications has been decided. Among various harvesting techniques, coagulation and flocculation, centrifugation and filtration were found to be most suitable for considered applications. These techniques may be used alone or in combination for increasing the harvesting efficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. In situ formation and spatial variability of particle number concentration in a European megacity

    Science.gov (United States)

    Pikridas, M.; Sciare, J.; Freutel, F.; Crumeyrolle, S.; von der Weiden-Reinmüller, S.-L.; Borbon, A.; Schwarzenboeck, A.; Merkel, M.; Crippa, M.; Kostenidou, E.; Psichoudaki, M.; Hildebrandt, L.; Engelhart, G. J.; Petäjä, T.; Prévôt, A. S. H.; Drewnick, F.; Baltensperger, U.; Wiedensohler, A.; Kulmala, M.; Beekmann, M.; Pandis, S. N.

    2015-09-01

    Ambient particle number size distributions were measured in Paris, France, during summer (1-31 July 2009) and winter (15 January to 15 February 2010) at three fixed ground sites and using two mobile laboratories and one airplane. The campaigns were part of the Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation (MEGAPOLI) project. New particle formation (NPF) was observed only during summer on approximately 50 % of the campaign days, assisted by the low condensation sink (about 10.7 ± 5.9 × 10-3 s-1). NPF events inside the Paris plume were also observed at 600 m altitude onboard an aircraft simultaneously with regional events identified on the ground. Increased particle number concentrations were measured aloft also outside of the Paris plume at the same altitude, and were attributed to NPF. The Paris plume was identified, based on increased particle number and black carbon concentration, up to 200 km away from the Paris center during summer. The number concentration of particles with diameters exceeding 2.5 nm measured on the surface at the Paris center was on average 6.9 ± 8.7 × 104 and 12.1 ± 8.6 × 104 cm-3 during summer and winter, respectively, and was found to decrease exponentially with distance from Paris. However, further than 30 km from the city center, the particle number concentration at the surface was similar during both campaigns. During summer, one suburban site in the NE was not significantly affected by Paris emissions due to higher background number concentrations, while the particle number concentration at the second suburban site in the SW increased by a factor of 3 when it was downwind of Paris.

  2. Harvesting microalgae by bio-flocculation and autoflocculation

    NARCIS (Netherlands)

    Salim, S.

    2013-01-01

    Harvesting in commercial microalgae production plants is generally done by centrifugation, but this requires upto about 50% of the total energy gained from the microalgae. The energy needed for harvesting can be reduced considerably by pre-concentration of the microalgae prior to further dewatering.

  3. Magnetofluidic concentration and separation of non-magnetic particles using two magnet arrays

    Science.gov (United States)

    Hejazian, Majid

    2016-01-01

    The present paper reports the use of diluted ferrofluid and two arrays of permanent magnets for the size-selective concentration of non-magnetic particles. The micro magnetofluidic device consists of a straight channels sandwiched between two arrays of permanent magnets. The permanent magnets create multiple capture zones with minimum magnetic field strength along the channel. The complex interaction between magnetic forces and hydrodynamic force allows the device to operate in different regimes suitable for concentration of non-magnetic particles with small difference in size. Our experimental results show that non-magnetic particles with diameters of 3.1 μm and 4.8 μm can be discriminated and separated with this method. The results from this study could be used as a guide for the design of size-sensitive separation devices for particle and cell based on negative magnetophoresis. PMID:27478527

  4. Vibration energy harvesting using the Halbach array

    International Nuclear Information System (INIS)

    Zhu, Dibin; Beeby, Steve; Tudor, John; Harris, Nick

    2012-01-01

    This paper studies the feasibility of vibration energy harvesting using a Halbach array. A Halbach array is a specific arrangement of permanent magnets that concentrates the magnetic field on one side of the array while cancelling the field to almost zero on the other side. This arrangement can improve electromagnetic coupling in a limited space. The Halbach array offers an advantage over conventional layouts of magnets in terms of its concentrated magnetic field and low-profile structure, which helps improve the output power of electromagnetic energy harvesters while minimizing their size. Another benefit of the Halbach array is that due to the existence of an almost-zero magnetic field zone, electronic components can be placed close to the energy harvester without any chance of interference, which can potentially reduce the overall size of a self-powered device. The first reported example of a low-profile, planar electromagnetic vibration energy harvester utilizing a Halbach array was built and tested. Results were compared to ones for energy harvesters with conventional magnet layouts. By comparison, it is concluded that although energy harvesters with a Halbach array can have higher magnetic field density, a higher output power requires careful design in order to achieve the maximum magnetic flux gradient. (paper)

  5. Chemical composition and methane yield of reed canary grass as influenced by harvesting time and harvest frequency

    DEFF Research Database (Denmark)

    Kandel, Tanka Prasad; Sutaryo, Sutaryo; Møller, Henrik Bjarne

    2013-01-01

    This study examined the influence of harvest time on biomass yield, dry matter partitioning, biochemical composition and biological methane potential of reed canary grass harvested twice a month in one-cut (OC) management. The regrowth of biomass harvested in summer was also harvested in autumn...... as a two-cut management with (TC-F) or without (TC-U) fertilization after summer harvest. The specific methane yields decreased significantly with crop maturity that ranged from 384 to 315 and from 412 to 283 NL (normal litre) (kg VS)-1 for leaf and stem, respectively. Approximately 45% more methane...... was produced by the TC-F management (5430 Nm3 ha-1) as by the OC management (3735 Nm3 ha-1). Specific methane yield was moderately correlated with the concentrations of fibre components in the biomass. Larger quantity of biogas produced at the beginning of the biogas assay from early harvested biomass...

  6. Number concentrations of solid particles from the spinning top aerosol generator

    International Nuclear Information System (INIS)

    Mitchell, J.P.

    1983-02-01

    A spinning top aerosol generator has been used to generate monodisperse methylene blue particles in the size range from 0.6 to 6 μm. The number concentrations of these aerosols have been determined by means of an optical particle counter and compared with the equivalent measurements obtained by filter collection and microscopy. (author)

  7. Effect of precursor concentration and spray pyrolysis temperature upon hydroxyapatite particle size and density.

    Science.gov (United States)

    Cho, Jung Sang; Lee, Jeong-Cheol; Rhee, Sang-Hoon

    2016-02-01

    In the synthesis of hydroxyapatite powders by spray pyrolysis, control of the particle size was investigated by varying the initial concentration of the precursor solution and the pyrolysis temperature. Calcium phosphate solutions (Ca/P ratio of 1.67) with a range of concentrations from 0.1 to 2.0 mol/L were prepared by dissolving calcium nitrate tetrahydrate and diammonium hydrogen phosphate in deionized water and subsequently adding nitric acid. Hydroxyapatite powders were then synthesized by spray pyrolysis at 900°C and at 1500°C, using these calcium phosphate precursor solutions, under the fixed carrier gas flow rate of 10 L/min. The particle size decreased as the precursor concentration decreased and the spray pyrolysis temperature increased. Sinterability tests conducted at 1100°C for 1 h showed that the smaller and denser the particles were, the higher the relative densities were of sintered hydroxyapatite disks formed from these particles. The practical implication of these results is that highly sinterable small and dense hydroxyapatite particles can be synthesized by means of spray pyrolysis using a low-concentration precursor solution and a high pyrolysis temperature under a fixed carrier gas flow rate. © 2015 Wiley Periodicals, Inc.

  8. Particle Size Affects Concentration-Dependent Cytotoxicity of Chitosan Nanoparticles towards Mouse Hematopoietic Stem Cells

    International Nuclear Information System (INIS)

    Zaki, S. S. O.; Ibrahim, M. N.; Katas, H.

    2015-01-01

    Chitosan nanoparticles (CSNPs) have been extensively applied in medical and pharmaceutical fields as promising drug delivery systems. Despite that, the safety of CSNPs remains inadequate and needs further investigation, particularly on hematopoietic stem cells (HSCs). CSNPs were prepared by ionic gelation method and later were characterized for their physical characteristics (particle size and zeta potential). Cytotoxicity of CSNPs was assessed by MTT assay. Particle size was highly influenced by chitosan concentration and molecular weight (medium and high molecular weight (MMW and HMW)). Higher chitosan concentration and molecular weight produced larger nanoparticles. Zeta potential of CSNPs was not significantly affected by chitosan concentrations and molecular weights used in the present study. MMW had a better stability than HMW CSNPs as their particle size and zeta potential were not significantly altered after autoclaving. Cytotoxicity of CSNPs was influenced by zeta potential and particle size. On the other hand, chitosan concentration and molecular weight indirectly influenced cytotoxicity by affecting particle size and zeta potential of CSNPs. In conclusion, cytotoxicity of CSNPs was mainly attributed to their physical characteristics and this opens a strategy to ensure the safety of CSNPs applications in stem cell technology.

  9. Particle number concentration, size distribution and chemical composition during haze and photochemical smog episodes in Shanghai.

    Science.gov (United States)

    Wang, Xuemei; Chen, Jianmin; Cheng, Tiantao; Zhang, Renyi; Wang, Xinming

    2014-09-01

    The aerosol number concentration and size distribution as well as size-resolved particle chemical composition were measured during haze and photochemical smog episodes in Shanghai in 2009. The number of haze days accounted for 43%, of which 30% was severe (visibilitysmog episodes, about 5.89 times and 4.29 times those of clean days. The particle volume concentration and surface concentration in haze, photochemical smog and clean days were 102, 49, 15μm(3)/cm(3) and 949, 649, 206μm(2)/cm(3), respectively. As haze events got more severe, the number concentration of particles smaller than 50nm decreased, but the particles of 50-200nm and 0.5-1μm increased. The diurnal variation of particle number concentration showed a bimodal pattern in haze days. All soluble ions were increased during haze events, of which NH4(+), SO4(2-) and NO3(-) increased greatly, followed by Na(+), K(+), Ca(2+) and Cl(-). These ions were very different in size-resolved particles during haze and photochemical smog episodes. Copyright © 2014. Published by Elsevier B.V.

  10. Variability of sub-micrometer particle number size distributions and concentrations in the Western Mediterranean regional background

    Directory of Open Access Journals (Sweden)

    Michael Cusack

    2013-02-01

    Full Text Available This study focuses on the daily and seasonal variability of particle number size distributions and concentrations, performed at the Montseny (MSY regional background station in the western Mediterranean from October 2010 to June 2011. Particle number concentrations at MSY were shown to be within range of various other sites across Europe reported in literature, but the seasonality of the particle number size distributions revealed significant differences. The Aitken mode is the dominant particle mode at MSY, with arithmetic mean concentrations of 1698 cm3, followed by the accumulation mode (877 cm−3 and the nucleation mode (246 cm−3. Concentrations showed a strong seasonal variability with large increases in particle number concentrations observed from the colder to warmer months. The modality of median size distributions was typically bimodal, except under polluted conditions when the size distribution was unimodal. During the colder months, the daily variation of particle number size distributions are strongly influenced by a diurnal breeze system, whereby the Aitken and accumulation modes vary similarly to PM1 and BC mass concentrations, with nocturnal minima and sharp day-time increases owing to the development of a diurnal mountain breeze. Under clean air conditions, high levels of nucleation and lower Aitken mode concentrations were measured, highlighting the importance of new particle formation as a source of particles in the absence of a significant condensation sink. During the warmer months, nucleation mode concentrations were observed to be relatively elevated both under polluted and clean conditions due to increased photochemical reactions, with enhanced subsequent growth owing to elevated concentrations of condensable organic vapours produced from biogenic volatile organic compounds, indicating that nucleation at MSY does not exclusively occur under clean air conditions. Finally, mixing of air masses between polluted and non

  11. Effects of temperature sum on vitamin C concentration and yield of sea buckthorn (Hippophae rhamnoides fruit: optimal time of fruit harvest

    Directory of Open Access Journals (Sweden)

    Yingmou Yao

    1993-12-01

    Full Text Available To investigate the effects of temperature sum on vitamin C concentration (Vc, yield and maturity of sea buckthorn fruit (Hippophae rhamnoides L. and to predict the optimal harvest time, berries were collected from eight genotypes at an interval of about one week from August 16 to December 2. Maturity was visually observed, berry weight measured and Vc determined. Berries matured at 1165-1316 degree-days (d.d.. Vc reached maximum at about 1229 d.d., while fruit size and yield reached maximum at 1380 d.d.. Mathematical models of polynomial equations were highly significant for predicting the effects of temperature sum on Vc, maturity and fruit yield. Optimal harvest time for maximizing Vc, yield or economic income could be determined according to differential equations. Great variations in Vc, fruit maturity and fruit size suggested good opportunities for selection and breeding. Low rank correlations in vitamin C concentration during fruit maturity, however, call for special attention in selection and breeding.

  12. Outdoor ultrafine particle concentrations in front of fast food restaurants.

    Science.gov (United States)

    Vert, Cristina; Meliefste, Kees; Hoek, Gerard

    2016-01-01

    Ultrafine particles (UFPs) have been associated with negative effects on human health. Emissions from motor vehicles are the principal source of UFPs in urban air. A study in Vancouver suggested that UFP concentrations were related to density of fast food restaurants near the monitoring sites. A previous monitoring campaign could not separate the contribution of restaurants from road traffic. The main goal of this study has been the quantification of fast food restaurants' contribution to outdoor UFP concentrations. A portable particle number counter (DiscMini) has been used to carry out mobile monitoring in a largely pedestrianized area in the city center of Utrecht. A fixed route passing 17 fast food restaurants was followed on 8 days. UFP concentrations in front of the restaurants were 1.61 times higher than in a nearby square without any local sources used as control area and 1.22 times higher compared with all measurements conducted in between the restaurants. Adjustment for other sources such as passing mopeds, smokers or candles did not explain the increase. In conclusion, fast food restaurants result in significant increases in outdoor UFP concentrations in front of the restaurant.

  13. Enhancement of Chlorella vulgaris harvesting via the electro-coagulation-flotation (ECF) method.

    Science.gov (United States)

    Wong, Y K; Ho, Y H; Leung, H M; Ho, K C; Yau, Y H; Yung, K K L

    2017-04-01

    This article explores the potential of using an electro-coagulation-flotation (ECF) harvester to allow flotation of microalgae cells for surface harvesting. A response surface methodology (RSM) model was used to optimize ECF harvesting by adjusting electrode plate material, electrode plate number, charge of the electrodes, electrolyte concentration, and pH value of the culture solution. The result revealed that three aluminum electrode plates (one anode and two cathodes), brine solution (8 g/L), and acidity (pH = 4) of culture solution (optimized ECF harvester) The highest flocculant concentration was measured at 2966 mg/L after 60 min and showed a 79.8 % increase of flocculation concentration. Such results can provide a basis for designing a large-scale microalgae harvester for commercial use in the future.

  14. Soil reclamation with turfing plant harvest

    International Nuclear Information System (INIS)

    Jouve, A.; Maubert, H.; Bon, P.; Barthe, P.

    1992-01-01

    This work performed within the European RESSAC Programme aims at providing efficient countermeasures to decontaminate agricultural soils. The evaluation of the admissible concentration of radionuclides in the soil is an important question in this topic. Two considerations may help to answer this question: the health aspect approaches with ICRP recommendations and the economical aspects which can widely interfere with the other. If the cleaning technique is inexpensive, it will be possible to enlarge its use beyond the low intervention levels. According to the frequently low migration rate of radionuclides in the soil profile after deposition on the soil surface, a method removing a thin layer of the soil surface entrapped by turfing plants will allow to limit the waste production. The method being tried in summer 1991 is inexpensive because it uses the power of the plants to convert sunlight energy into biomass. The method consist in sowing turfing plants able to develop a very dense root network entrapping the soil surface contaminated particles allowing their mechanical removal by means of existing machines: sod harvesters. This promising method, according to lab-experiments, can use the green techniques as well for hydro-seeding: a very fast tool for sowing by helicopter at the rate of 0,3 km sup 2 per day, as sod harvester able to remove a sod-soil layer thinner than 2 cm. (author)

  15. The role of energy losses in photosynthetic light harvesting

    Science.gov (United States)

    Krüger, T. P. J.; van Grondelle, R.

    2017-07-01

    Photosynthesis operates at the bottom of the food chain to convert the energy of light into carbohydrates at a remarkable global rate of about 130 TW. Nonetheless, the overall photosynthetic process has a conversion efficiency of a few percent at best, significantly less than bottom-up photovoltaic cells. The primary photosynthetic steps, consisting of light harvesting and charge separation, are often presented as having near-unity quantum efficiency but this holds only true under ideal conditions. In this review, we discuss the importance of energy loss mechanisms to establish robustness in photosynthetic light harvesting. Thermal energy dissipation of light-harvesting complexes (LHCs) in different environments is investigated and the relationships and contrasts between concentration quenching of high pigment concentrations, photoprotection (non-photochemical quenching), quenching due to protein aggregation, and fluorescence blinking are discussed. The role of charge-transfer states in light harvesting and energy dissipation is highlighted and the importance of controlled protein structural disorder to switch the light-harvesting antennae between effective light harvesters and efficient energy quenchers is underscored. The main LHC of plants, LHCII, is used as a prime example.

  16. Optical sensor technology for simultaneous measurement of particle speed and concentration of micro sized particles

    DEFF Research Database (Denmark)

    Clausen, Casper; Han, Anpan; Kristensen, Martin

    2013-01-01

    Experimental characterization of a sensor technology that can measure particle speed and concentration simultaneously in liquids and gases is presented here. The basic sensor principle is based on an optical element that shapes a light beam into well-defined fringes. The technology can be described...

  17. A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency

    Science.gov (United States)

    Duan, Xin; Chen, Xing; Zhou, Lin

    2016-12-01

    A novel metamaterial rectifying surface (MRS) for electromagnetic energy capture and rectification with high harvesting efficiency is presented. It is fabricated on a three-layer printed circuit board, which comprises an array of periodic metamaterial particles in the shape of mirrored split rings, a metal ground, and integrated rectifiers employing Schottky diodes. Perfect impedance matching is engineered at two interfaces, i.e. one between free space and the surface, and the other between the metamaterial particles and the rectifiers, which are connected through optimally positioned vias. Therefore, the incident electromagnetic power is captured with almost no reflection by the metamaterial particles, then channeled maximally to the rectifiers, and finally converted to direct current efficiently. Moreover, the rectifiers are behind the metal ground, avoiding the disturbance of high power incident electromagnetic waves. Such a MRS working at 2.45 GHz is designed, manufactured and measured, achieving a harvesting efficiency up to 66.9% under an incident power density of 5 mW/cm2, compared with a simulated efficiency of 72.9%. This high harvesting efficiency makes the proposed MRS an effective receiving device in practical microwave power transmission applications.

  18. A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency

    Directory of Open Access Journals (Sweden)

    Xin Duan

    2016-12-01

    Full Text Available A novel metamaterial rectifying surface (MRS for electromagnetic energy capture and rectification with high harvesting efficiency is presented. It is fabricated on a three-layer printed circuit board, which comprises an array of periodic metamaterial particles in the shape of mirrored split rings, a metal ground, and integrated rectifiers employing Schottky diodes. Perfect impedance matching is engineered at two interfaces, i.e. one between free space and the surface, and the other between the metamaterial particles and the rectifiers, which are connected through optimally positioned vias. Therefore, the incident electromagnetic power is captured with almost no reflection by the metamaterial particles, then channeled maximally to the rectifiers, and finally converted to direct current efficiently. Moreover, the rectifiers are behind the metal ground, avoiding the disturbance of high power incident electromagnetic waves. Such a MRS working at 2.45 GHz is designed, manufactured and measured, achieving a harvesting efficiency up to 66.9% under an incident power density of 5 mW/cm2, compared with a simulated efficiency of 72.9%. This high harvesting efficiency makes the proposed MRS an effective receiving device in practical microwave power transmission applications.

  19. Determination of particles concentration in Black Sea waters from spectral beam attenuation coefficient

    Science.gov (United States)

    Korchemkina, E. N.; Latushkin, A. A.; Lee, M. E.

    2017-11-01

    The methods of determination of concentration and scattering by suspended particles in seawater are compared. The methods considered include gravimetric measurements of the mass concentration of suspended matter, empirical and analytical calculations based on measurements of the light beam attenuation coefficient (BAC) in 4 spectral bands, calculation of backscattering by particles using satellite measurements in the visible spectral range. The data were obtained in two cruises of the R/V "Professor Vodyanitsky" in the deep-water part of the Black Sea in July and October 2016., Spatial distribution of scattering by marine particles according to satellite data is in good agreement with the contact measurements.

  20. Estimation of inhaled airborne particle number concentration by subway users in Seoul, Korea.

    Science.gov (United States)

    Kim, Minhae; Park, Sechan; Namgung, Hyeong-Gyu; Kwon, Soon-Bark

    2017-12-01

    Exposure to airborne particulate matter (PM) causes several diseases in the human body. The smaller particles, which have relatively large surface areas, are actually more harmful to the human body since they can penetrate deeper parts of the lungs or become secondary pollutants by bonding with other atmospheric pollutants, such as nitrogen oxides. The purpose of this study is to present the number of PM inhaled by subway users as a possible reference material for any analysis of the hazards to the human body arising from the inhalation of such PM. Two transfer stations in Seoul, Korea, which have the greatest number of users, were selected for this study. For 0.3-0.422 μm PM, particle number concentration (PNC) was highest outdoors but decreased as the tester moved deeper underground. On the other hand, the PNC between 1 and 10 μm increased as the tester moved deeper underground and showed a high number concentration inside the subway train as well. An analysis of the particles to which subway users are actually exposed to (inhaled particle number), using particle concentration at each measurement location, the average inhalation rate of an adult, and the average stay time at each location, all showed that particles sized 0.01-0.422 μm are mostly inhaled from the outdoor air whereas particles sized 1-10 μm are inhaled as the passengers move deeper underground. Based on these findings, we expect that the inhaled particle number of subway users can be used as reference data for an evaluation of the hazards to health caused by PM inhalation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Concentrations and size distributions of fine aerosol particles measured at roof level in urban zone

    Science.gov (United States)

    Despiau, S.; Croci, D.

    2007-05-01

    During the experimental Field Experiments to Constrain Models of Atmospheric Pollution and Transport of Emissions (ESCOMPTE) campaign in June-July 2001, concentrations and size distributions of fine particles (14-722 nm) were measured at roof level in downtown Marseille (France). Part of the campaign was dedicated to the study of aerosol behavior in relation to strong photochemical events (which were identified as "IOP" days) and their regional modeling. The analysis of the concentration variations and the evolution of average diurnal size distribution showed that an "IOP day" is not characterized by a specific concentration or its variation, nor by a specific evolution of the average size distribution. The morning traffic rush is detected at roof level by a net increase in particle concentration over the whole size range measured, indicating a production of ultrafine particles by the traffic but also the raising to roof level of particles of the accumulation mode. The increase is observed about 1 hour after the traffic peak at street level, which is characterized by strong increases in NOx and CO concentrations. The corresponding flux of particles at roof level has been estimated around 3 × 104 cm-2 s-1. A specific signature characterized by a strong and rapid burst of concentration (factor 2 to 4 in 15 min) of particles between 25 and 50 nm, independent of the traffic source, has been detected on six occasions during the campaign. These events occur systematically around noon, in cases of strong radiation, low relative humidity, and common wind direction. Despite the high-diameter value of these particles, it is suggested that they could result from a specific "secondary aerosol process" event involving ozone, biogenic, and/or anthropogenic gas precursors like iodine and VOCs.

  2. Decreasing particle number concentrations in a warming atmosphere and implications

    Directory of Open Access Journals (Sweden)

    F. Yu

    2012-03-01

    Full Text Available New particle formation contributes significantly to the number concentration of condensation nuclei (CN as well as cloud CN (CCN, a key factor determining aerosol indirect radiative forcing of the climate system. Using a physics-based nucleation mechanism that is consistent with a range of field observations of aerosol formation, it is shown that projected increases in global temperatures could significantly inhibit new particle, and CCN, formation rates worldwide. An analysis of CN concentrations observed at four NOAA ESRL/GMD baseline stations since the 1970s and two other sites since 1990s reveals long-term decreasing trends that are consistent in sign with, but are larger in magnitude than, the predicted temperature effects. The possible reasons for larger observed long-term CN reductions at remote sites are discussed. The combined effects of rising temperatures on aerosol nucleation rates and other chemical and microphysical processes may imply substantial decreases in future tropospheric particle abundances associated with global warming, delineating a potentially significant feedback mechanism that increases Earth's climate sensitivity to greenhouse gas emissions. Further research is needed to quantify the magnitude of such a feedback process.

  3. The effect of roofing material on the quality of harvested rainwater.

    Science.gov (United States)

    Mendez, Carolina B; Klenzendorf, J Brandon; Afshar, Brigit R; Simmons, Mark T; Barrett, Michael E; Kinney, Kerry A; Kirisits, Mary Jo

    2011-02-01

    Due to decreases in the availability and quality of traditional water resources, harvested rainwater is increasingly used for potable and non-potable purposes. In this study, we examined the effect of conventional roofing materials (i.e., asphalt fiberglass shingle, Galvalume(®) metal, and concrete tile) and alternative roofing materials (i.e., cool and green) on the quality of harvested rainwater. Results from pilot-scale and full-scale roofs demonstrated that rainwater harvested from any of these roofing materials would require treatment if the consumer wanted to meet United States Environmental Protection Agency primary and secondary drinking water standards or non-potable water reuse guidelines; at a minimum, first-flush diversion, filtration, and disinfection are recommended. Metal roofs are commonly recommended for rainwater harvesting applications, and this study showed that rainwater harvested from metal roofs tends to have lower concentrations of fecal indicator bacteria as compared to other roofing materials. However, concrete tile and cool roofs produced harvested rainwater quality similar to that from the metal roofs, indicating that these roofing materials also are suitable for rainwater harvesting applications. Although the shingle and green roofs produced water quality comparable in many respects to that from the other roofing materials, their dissolved organic carbon concentrations were very high (approximately one order of magnitude higher than what is typical for a finished drinking water in the United States), which might lead to high concentrations of disinfection byproducts after chlorination. Furthermore the concentrations of some metals (e.g., arsenic) in rainwater harvested from the green roof suggest that the quality of commercial growing media should be carefully examined if the harvested rainwater is being considered for domestic use. Hence, roofing material is an important consideration when designing a rainwater catchment. Copyright

  4. Reduced Ultrafine Particle Concentration in Urban Air: Changes in Nucleation and Anthropogenic Emissions.

    Science.gov (United States)

    Saha, Provat K; Robinson, Ellis S; Shah, Rishabh U; Zimmerman, Naomi; Apte, Joshua S; Robinson, Allen L; Presto, Albert A

    2018-06-19

    Nucleation is an important source of ambient ultrafine particles (UFP). We present observational evidence of the changes in the frequency and intensity of nucleation events in urban air by analyzing long-term particle size distribution measurements at an urban background site in Pittsburgh, Pennsylvania during 2001-2002 and 2016-2017. We find that both frequency and intensity of nucleation events have been reduced by 40-50% over the past 15 years, resulting in a 70% reduction in UFP concentrations from nucleation. On average, the particle growth rates are 30% slower than 15 years ago. We attribute these changes to dramatic reductions in SO 2 (more than 90%) and other pollutant concentrations. Overall, UFP concentrations in Pittsburgh have been reduced by ∼48% in the past 15 years, with a ∼70% reduction in nucleation, ∼27% in weekday local sources (e.g., weekday traffic), and 49% in the regional background. Our results highlight that a reduction in anthropogenic emissions can considerably reduce nucleation events and UFP concentrations in a polluted urban environment.

  5. The role of dust storms in total atmospheric particle concentrations at two sites in the western U.S.

    Science.gov (United States)

    Neff, Jason C.; Reynolds, Richard L.; Munson, Seth M.; Fernandez, Daniel; Belnap, Jayne

    2013-01-01

    Mineral aerosols are produced during the erosion of soils by wind and are a common source of particles (dust) in arid and semiarid regions. The size of these particles varies widely from less than 2 µm to larger particles that can exceed 50 µm in diameter. In this study, we present two continuous records of total suspended particle (TSP) concentrations at sites in Mesa Verde and Canyonlands National Parks in Colorado and Utah, USA, respectively, and compare those values to measurements of fine and coarse particle concentrations made from nearby samplers. Average annual concentrations of TSP at Mesa Verde were 90 µg m−3 in 2011 and at Canyonlands were 171 µg m−3 in 2009, 113 µg m−3 in 2010, and 134 µg m−3 in 2011. In comparison, annual concentrations of fine (diameter of 2.5 µm and below) and coarse (2.5–10 µm diameter) particles at these sites were below 10 µg m−3 in all years. The high concentrations of TSP appear to be the result of regional dust storms with elevated concentrations of particles greater than 10 µm in diameter. These conditions regularly occur from spring through fall with 2 week mean TSP periodically in excess of 200 µg m−3. Measurement of particles on filters indicates that the median particle size varies between approximately 10 µm in winter and 40 µm during the spring. These persistently elevated concentrations of large particles indicate that regional dust emission as dust storms and events are important determinants of air quality in this region.

  6. Primary standard for the number concentration of liquid-borne particles in the 10 to 20 µm diameter range

    Science.gov (United States)

    Sakaguchi, T.; Ehara, K.

    2011-02-01

    The national primary standard for the number concentration of liquid-borne particles in the 10 to 20 µm diameter range has been developed at the National Institute of Advanced Industrial Science and Technology (AIST), Japan. The standard consists of a total number counting type flow cytometer (T-FCM) and an electronic balance. The T-FCM is a commercial flow cytometer modified so that the total number of particles in an aqueous suspension sampled in a test tube can be counted, and the electronic balance is used to determine the mass of the suspension. This standard is intended to be used for calibrating commercial standard suspensions of monodisperse polystyrene latex (PSL) particles. The measurand in the calibration is the mass-based number concentration (the particle number in a unit mass of a suspension), and the calibration capability covers the concentration range from 5 × 102 to 2 × 106 particles g-1. When the concentration of the suspension is higher than 2 × 103 particles g-1, the suspension is first diluted to about 1 × 103 particles g-1 to suppress the coincidence loss in particle counting by the T-FCM. The validity of the calibration with the T-FCM was examined by comparison with an independent method in which a scanning electron microscope (SEM) was used to determine the number concentration of particles deposited on a silicon wafer. For a suspension of 10 µm PSL particles with a concentration of approximately 1 × 106 particles g-1, the concentration values determined by the T-FCM and SEM methods were 1.042 × 106 and 1.035 × 106 particles g-1, respectively: The difference was less than 0.7%. The relative expanded uncertainty of the measurement by the T-FCM method with the coverage factor k = 2 was 4.4%.

  7. The role of energy losses in photosynthetic light harvesting

    International Nuclear Information System (INIS)

    Krüger, T P J; Van Grondelle, R

    2017-01-01

    Photosynthesis operates at the bottom of the food chain to convert the energy of light into carbohydrates at a remarkable global rate of about 130 TW. Nonetheless, the overall photosynthetic process has a conversion efficiency of a few percent at best, significantly less than bottom-up photovoltaic cells. The primary photosynthetic steps, consisting of light harvesting and charge separation, are often presented as having near-unity quantum efficiency but this holds only true under ideal conditions. In this review, we discuss the importance of energy loss mechanisms to establish robustness in photosynthetic light harvesting. Thermal energy dissipation of light-harvesting complexes (LHCs) in different environments is investigated and the relationships and contrasts between concentration quenching of high pigment concentrations, photoprotection (non-photochemical quenching), quenching due to protein aggregation, and fluorescence blinking are discussed. The role of charge-transfer states in light harvesting and energy dissipation is highlighted and the importance of controlled protein structural disorder to switch the light-harvesting antennae between effective light harvesters and efficient energy quenchers is underscored. The main LHC of plants, LHCII, is used as a prime example. (topical review)

  8. Harvesting of Dunaliella salina by membrane filtration at pilot scale

    KAUST Repository

    Monte, Joana

    2017-09-02

    The microalgae Dunaliella salina is industrially produced due to its high content in carotenoids induced by low nitrogen and high salinity conditions. D. salina with low carotenoids content also produces other added value compounds, however its recovery have hardly been studied. This work aims to examine the potential of pre-concentrating D. salina by membrane processing prior to a final harvesting step by low-shear centrifugation. The aim is to minimize the overall energy expenditure and reduce capital costs, while assuring a minimal loss of cell integrity. This task is challenging, considering the sensitivity of D. salina to shear. Harvesting of D. salina by ultrafiltration allowed reaching a final concentration factor of 5.9, with an average permeate flux of 31 L/(m2 h). The Total Cost of Ownership and energy consumption for harvesting are respectively 52% and 45% lower when applying a two-step approach with pre-concentration (ultrafiltration) compared to only harvesting by centrifugation.

  9. Harvesting of Dunaliella salina by membrane filtration at pilot scale

    KAUST Repository

    Monte, Joana; Sá , Marta; Galinha, Clá udia F.; Costa, Luí s; Hoekstra, Herre; Brazinha, Carla; Crespo, Joã o G.

    2017-01-01

    The microalgae Dunaliella salina is industrially produced due to its high content in carotenoids induced by low nitrogen and high salinity conditions. D. salina with low carotenoids content also produces other added value compounds, however its recovery have hardly been studied. This work aims to examine the potential of pre-concentrating D. salina by membrane processing prior to a final harvesting step by low-shear centrifugation. The aim is to minimize the overall energy expenditure and reduce capital costs, while assuring a minimal loss of cell integrity. This task is challenging, considering the sensitivity of D. salina to shear. Harvesting of D. salina by ultrafiltration allowed reaching a final concentration factor of 5.9, with an average permeate flux of 31 L/(m2 h). The Total Cost of Ownership and energy consumption for harvesting are respectively 52% and 45% lower when applying a two-step approach with pre-concentration (ultrafiltration) compared to only harvesting by centrifugation.

  10. A splitting integration scheme for the SPH simulation of concentrated particle suspensions

    Science.gov (United States)

    Bian, Xin; Ellero, Marco

    2014-01-01

    Simulating nearly contacting solid particles in suspension is a challenging task due to the diverging behavior of short-range lubrication forces, which pose a serious time-step limitation for explicit integration schemes. This general difficulty limits severely the total duration of simulations of concentrated suspensions. Inspired by the ideas developed in [S. Litvinov, M. Ellero, X.Y. Hu, N.A. Adams, J. Comput. Phys. 229 (2010) 5457-5464] for the simulation of highly dissipative fluids, we propose in this work a splitting integration scheme for the direct simulation of solid particles suspended in a Newtonian liquid. The scheme separates the contributions of different forces acting on the solid particles. In particular, intermediate- and long-range multi-body hydrodynamic forces, which are computed from the discretization of the Navier-Stokes equations using the smoothed particle hydrodynamics (SPH) method, are taken into account using an explicit integration; for short-range lubrication forces, velocities of pairwise interacting solid particles are updated implicitly by sweeping over all the neighboring pairs iteratively, until convergence in the solution is obtained. By using the splitting integration, simulations can be run stably and efficiently up to very large solid particle concentrations. Moreover, the proposed scheme is not limited to the SPH method presented here, but can be easily applied to other simulation techniques employed for particulate suspensions.

  11. Concentration Measurements of Suspended Load using ADV with Influence of the Particle Size

    Science.gov (United States)

    Schwarzwälder, Kordula

    2017-04-01

    ADV backscatter data can be used under certain conditions to gain information about the concentrations of suspended loads. This was shown in many studies before (Fugate and Friedrichs 2002; Chanson et al 2008; Ha et al. 2009). This paper reports on a pre-study to investigate the influence of particle size on concentration measurements for suspended sediment load with ADV. The study was conducted in a flume in the Oskar-von-Miller-Institute using fresh water from a river including the natural suspended load. The ADV used in the experiments was a Vectrino Profiler (Nortek). In addition water samples were taken for TSS and TOC. For the measurements a surge was generated in the flume to ensure that also particles of larger size will be present in the water phase. The measurements and samples were taken during the whole surge event. Therefore we were able to find a good correlation between the backscatter data of the ADV and the TSS as well as TOC results. For the decreasing part of the flow event the concentration of TOC in the suspended load of the water phase is decreasing much slower than the TSS and results in a damped decrease of the backscatter values. This means that the results for concentration measurements might be slightly influenced by the size of the particles. Further evaluations of measurements conducted with a LISST SL (Sequoia) will be investigated to show the trend of the particle sizes during this process and fortify this result. David C. Fugate, Carl T. Friedrichs, Determining concentration and fall velocity of estuarine particle populations using ADV, OBS and LISST, Continental Shelf Research, Volume 22, Issues 11-13, 2002 H.K. Ha, W.-Y. Hsu, J.P.-Y. Maa, Y.Y. Shao, C.W. Holland, Using ADV backscatter strength for measuring suspended cohesive sediment concentration, Continental Shelf Research, Volume 29, Issue 10, 2009 Hubert Chanson, Maiko Takeuchi, Mark Trevethan, Using turbidity and acoustic backscatter intensity as surrogate measures of

  12. Atherogenic lipoprotein particle size and concentrations and the effect of pravastatin in children with familial hypercholesterolemia

    NARCIS (Netherlands)

    van der Graaf, Anouk; Rodenburg, Jessica; Vissers, Maud N.; Hutten, Barbara A.; Wiegman, Albert; Trip, Mieke D.; Stroes, Erik S. G.; Wijburg, Frits A.; Otvos, James D.; Kastelein, John J. P.

    2008-01-01

    OBJECTIVE: To determine lipoprotein particle concentrations and size in children with familial hypercholesterolemia (FH) and investigate the effect of pravastatin therapy on these measures. STUDY DESIGN: Lipoprotein particle concentrations and sizes were examined by nuclear magnetic resonance (NMR)

  13. Suspended particle and drug ingredient concentrations in hospital dispensaries and implications for pharmacists' working environments.

    Science.gov (United States)

    Inaba, Ryoichi; Hioki, Atsushi; Kondo, Yoshihiro; Nakamura, Hiroki; Nakamura, Mitsuhiro

    2016-03-01

    The aim of this study was to assess the present status of working environments for pharmacists, including the concentrations of suspended particles and suspended drug ingredients in dispensaries. We conducted a survey on the work processes and working environment in 15 hospital dispensaries, and measured the concentrations of suspended particles and suspended drug ingredients using digital dust counter and high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS), respectively. Of 25 types of powdered drugs that were frequently handled in the 15 dispensaries surveyed, 11 could be quantitatively determined. The amounts of suspended particles were relatively high, but below the reference value, in three dispensaries without dust collectors. The sedative-hypnotic drug zopiclone was detected in the suspended particles at one dispensary that was not equipped with dust collectors, and the antipyretic and analgesic drug acetaminophen was detected in two dispensaries equipped with dust collectors. There was no correlation between the daily number of prescriptions containing powdered drugs and the concentration of suspended particles in dispensaries. On the basis of the suspended particle concentrations measured, we concluded that dust collectors were effective in these dispensaries. However, suspended drug ingredients were detected also in dispensaries with dust collectors. These results suggest that the drug dust control systems of individual dispensaries should be properly installed and managed.

  14. Measurement of airborne concentrations of radon-220 daughter products by alpha-particle spectrometry

    International Nuclear Information System (INIS)

    Kerr, G.D.; Ryan, M.T.; Perdue, P.T.

    1978-01-01

    The decay of naturally occurring uranium-238 and thorium-232 produces radon-222 and radon-220 isotopes which can escape into the atmosphere. If these radon gases become concentrated in air, their daughter products may present an inhalation hazard to man. The airborne concentrations of radon-222 can usually be measured very accurately in the presence of normal airborne concentrations of radon-220 and its daughters. In contrast, the measurements of the airborne concentrations of radon-220 daughters are usually complicated by the presence of radon-222 and its daughters even at normally occurring airborne concentrations. The complications involved in these measurements can be overcome in most situations by using an alpha particle spectrometer to distinguish the activity of radon-222 daughters from that due to radon-220 daughters collected on a filter. A practical spectrometer for field measurements of alpha particle activity on a filter is discussed

  15. Multi-step process for concentrating magnetic particles in waste sludges

    Science.gov (United States)

    Watson, John L.

    1990-01-01

    This invention involves a multi-step, multi-force process for dewatering sludges which have high concentrations of magnetic particles, such as waste sludges generated during steelmaking. This series of processing steps involves (1) mixing a chemical flocculating agent with the sludge; (2) allowing the particles to aggregate under non-turbulent conditions; (3) subjecting the mixture to a magnetic field which will pull the magnetic aggregates in a selected direction, causing them to form a compacted sludge; (4) preferably, decanting the clarified liquid from the compacted sludge; and (5) using filtration to convert the compacted sludge into a cake having a very high solids content. Steps 2 and 3 should be performed simultaneously. This reduces the treatment time and increases the extent of flocculation and the effectiveness of the process. As partially formed aggregates with active flocculating groups are pulled through the mixture by the magnetic field, they will contact other particles and form larger aggregates. This process can increase the solids concentration of steelmaking sludges in an efficient and economic manner, thereby accomplishing either of two goals: (a) it can convert hazardous wastes into economic resources for recycling as furnace feed material, or (b) it can dramatically reduce the volume of waste material which must be disposed.

  16. The effects of fluvial transport on radionuclide concentrations on different particle size classes

    International Nuclear Information System (INIS)

    Dyer, F.J.; Olley, J.M.

    1998-01-01

    This paper reports on the effects of grain abrasion and disaggregation on the distribution of 137 Cs with respect to particle size and the effects this may have on the use of 137 Cs for determining the origin of recent sediment. Cs-137 is a product of above ground nuclear testing and has been deposited on the earth's surface by rainfall. On contact with soil, 137 Cs is strongly adsorbed by soil particles and there is a direct correlation between 137 Cs concentration and decreasing particle size. Rapid adsorption means that 137 Cs is preferentially concentrated in surface soils, and it's subsequent redistribution by physical processes rather than chemical has lead to 137 Cs being widely used to study soil erosion

  17. Explaining the spatiotemporal variation of fine particle number concentrations over Beijing and surrounding areas in an air quality model with aerosol microphysics

    International Nuclear Information System (INIS)

    Chen, Xueshun; Wang, Zifa; Li, Jie; Chen, Huansheng; Hu, Min; Yang, Wenyi; Wang, Zhe; Ge, Baozhu; Wang, Dawei

    2017-01-01

    In this study, a three-dimensional air quality model with detailed aerosol microphysics (NAQPMS + APM) was applied to simulate the fine particle number size distribution and to explain the spatiotemporal variation of fine particle number concentrations in different size ranges over Beijing and surrounding areas in the haze season (Jan 15 to Feb 13 in 2006). Comparison between observations and the simulation indicates that the model is able to reproduce the main features of the particle number size distribution. The high number concentration of total particles, up to 26600 cm −3 in observations and 39800 cm −3 in the simulation, indicates the severity of pollution in Beijing. We find that primary particles with secondary species coating and secondary particles together control the particle number size distribution. Secondary particles dominate particle number concentration in the nucleation mode. Primary and secondary particles together determine the temporal evolution and spatial pattern of particle number concentration in the Aitken mode. Primary particles dominate particle number concentration in the accumulation mode. Over Beijing and surrounding areas, secondary particles contribute at least 80% of particle number concentration in the nucleation mode but only 10–20% in the accumulation mode. Nucleation mode particles and accumulation mode particles are anti-phased with each other. Nucleation or primary emissions alone could not explain the formation of the particle number size distribution in Beijing. Nucleation has larger effects on ultrafine particles while primary particles emissions are efficient in producing large particles in the accumulation mode. Reduction in primary particle emissions does not always lead to a decrease in the number concentration of ultrafine particles. Measures to reduce fine particle pollution in terms of particle number concentration may be different from those addressing particle mass concentration. - Highlights:

  18. Outdoor ultrafine particle concentrations in front of fast food restaurants

    NARCIS (Netherlands)

    Vert, Cristina; Meliefste, Kees; Hoek, Gerard

    2016-01-01

    Ultrafine particles (UFPs) have been associated with negative effects on human health. Emissions from motor vehicles are the principal source of UFPs in urban air. A study in Vancouver suggested that UFP concentrations were related to density of fast food restaurants near the monitoring sites. A

  19. Primary standard for the number concentration of liquid-borne particles in the 10 to 20 µm diameter range

    International Nuclear Information System (INIS)

    Sakaguchi, T; Ehara, K

    2011-01-01

    The national primary standard for the number concentration of liquid-borne particles in the 10 to 20 µm diameter range has been developed at the National Institute of Advanced Industrial Science and Technology (AIST), Japan. The standard consists of a total number counting type flow cytometer (T-FCM) and an electronic balance. The T-FCM is a commercial flow cytometer modified so that the total number of particles in an aqueous suspension sampled in a test tube can be counted, and the electronic balance is used to determine the mass of the suspension. This standard is intended to be used for calibrating commercial standard suspensions of monodisperse polystyrene latex (PSL) particles. The measurand in the calibration is the mass-based number concentration (the particle number in a unit mass of a suspension), and the calibration capability covers the concentration range from 5 × 10 2 to 2 × 10 6 particles g −1 . When the concentration of the suspension is higher than 2 × 10 3 particles g −1 , the suspension is first diluted to about 1 × 10 3 particles g −1 to suppress the coincidence loss in particle counting by the T-FCM. The validity of the calibration with the T-FCM was examined by comparison with an independent method in which a scanning electron microscope (SEM) was used to determine the number concentration of particles deposited on a silicon wafer. For a suspension of 10 µm PSL particles with a concentration of approximately 1 × 10 6 particles g −1 , the concentration values determined by the T-FCM and SEM methods were 1.042 × 10 6 and 1.035 × 10 6 particles g −1 , respectively: The difference was less than 0.7%. The relative expanded uncertainty of the measurement by the T-FCM method with the coverage factor k = 2 was 4.4%

  20. Increased ultrafine particles and carbon monoxide concentrations are associated with asthma exacerbation among urban children

    Science.gov (United States)

    Evans, Kristin A.; Halterman, Jill S.; Hopke, Philip K.; Fagnano, Maria; Rich, David Q.

    2014-01-01

    Objectives Increased air pollutant concentrations have been linked to several asthma-related outcomes in children, including respiratory symptoms, medication use, and hospital visits. However, few studies have examined effects of ultrafine particles in a pediatric population. Our primary objective was to examine the effects of ambient concentrations of ultrafine particles on asthma exacerbation among urban children and determine whether consistent treatment with inhaled corticosteroids could attenuate these effects. We also explored the relationship between asthma exacerbation and ambient concentrations of accumulation mode particles, fine particles (≤ 2.5 micrograms [μm]; PM2.5), carbon monoxide, sulfur dioxide, and ozone. We hypothesized that increased 1 to 7 day concentrations of ultrafine particles and other pollutants would be associated with increases in the relative odds of an asthma exacerbation, but that this increase in risk would be attenuated among children receiving school-based corticosteroid therapy. Methods We conducted a pilot study using data from 3–10 year-old children participating in the School-Based Asthma Therapy trial. Using a time-stratified case-crossover design and conditional logistic regression, we estimated the relative odds of a pediatric asthma visit treated with prednisone (n=96 visits among 74 children) associated with increased pollutant concentrations in the previous 7 days. We re-ran these analyses separately for children receiving medications through the school-based intervention and children in a usual care control group. Results Interquartile range increases in ultrafine particles and carbon monoxide concentrations in the previous 7 days were associated with increases in the relative odds of a pediatric asthma visit, with the largest increases observed for 4-day mean ultrafine particles (interquartile range=2088 p/cm3; OR=1.27; 95% CI=0.90–1.79) and 7-day mean carbon monoxide (interquartile range=0.17 ppm; OR=1.63; 95

  1. Correlation of Air Quality Data to Ultrafine Particles (UFP Concentration and Size Distribution in Ambient Air

    Directory of Open Access Journals (Sweden)

    Werner Hofmann

    2010-07-01

    Full Text Available This study monitored ultrafine particles (UFP concurrent with environmental air quality data, investigating whether already existing instrumentation used by environmental authorities can provide reference values for estimating UFP concentrations. Of particular interest was the relation of UFP to PM10 (particulate matter and nitrogen oxides (NOx, NO2 in ambient air. Existing PM measurement methods alone did not correspond exactly enough with the actual particle number, but we observed a link between NOx and NO2 to UFP concentration. The combined data could act as proxy-indicator for authorities in estimating particle number concentrations, but cannot replace UFP monitoring.

  2. Preparing Platelet-Rich Plasma with Whole Blood Harvested Intraoperatively During Spinal Fusion.

    Science.gov (United States)

    Shen, Bin; Zhang, Zheng; Zhou, Ning-Feng; Huang, Yu-Feng; Bao, Yu-Jie; Wu, De-Sheng; Zhang, Ya-Dong

    2017-07-22

    BACKGROUND Platelet-rich plasma (PRP) has gained growing popularity in use in spinal fusion procedures in the last decade. Substantial intraoperative blood loss is frequently accompanied with spinal fusion, and it is unknown whether blood harvested intraoperatively qualifies for PRP preparation. MATERIAL AND METHODS Whole blood was harvested intraoperatively and venous blood was collected by venipuncture. Then, we investigated the platelet concentrations in whole blood and PRP, the concentration of growth factors in PRP, and the effects of PRP on the proliferation and viability of human bone marrow-derived mesenchymal stem cells (HBMSCs). RESULTS Our results revealed that intraoperatively harvested whole blood and whole blood collected by venipuncture were similar in platelet concentration. In addition, PRP formulations prepared from both kinds of whole blood were similar in concentration of platelet and growth factors. Additional analysis showed that the similar concentrations of growth factors resulted from the similar platelet concentrations of whole blood and PRP between the two groups. Moreover, these two kinds of PRP formulations had similar effects on promoting cell proliferation and enhancing cell viability. CONCLUSIONS Therefore, intraoperatively harvested whole blood may be a potential option for preparing PRP spinal fusion.

  3. Power law relation between particle concentrations and their sizes in the blood plasma

    International Nuclear Information System (INIS)

    Kirichenko, M N; Chaikov, L L; Zaritskii, A R

    2016-01-01

    This work is devoted to the investigation of sizes and concentrations of particles in blood plasma by dynamic light scattering (DLS). Blood plasma contains many different proteins and their aggregates, microparticles and vesicles. Their sizes, concentrations and shapes can give information about donor's health. Our DLS study of blood plasma reveals unexpected dependence: with increasing of the particle sizes r (from 1 nm up to 1 μm), their concentrations decrease as r -4 (almost by 12 orders). We found also that such dependence was repeated for model solution of fibrinogen and thrombin with power coefficient is -3,6. We believe that this relation is a fundamental law of nature that shows interaction of proteins (and other substances) in biological liquids. (paper)

  4. Height profile of particle concentration in an aeolian saltating cloud: A wind tunnel investigation by PIV MSD

    Science.gov (United States)

    Dong, Zhibao; Wang, Hongtao; Zhang, Xiaohang; Ayrault, Michael

    2003-10-01

    Attempt is made to define the particle concentration in an aeolian saltating cloud and its variation with height using artificial spherical quartz sand in a wind tunnel. The height profiles of the relative particle concentration in aeolian saltating cloud at three wind velocities were detected by the state of the art PIV (Particle Image Velocimetry) MSD (Mie Scattering Diffusion) technique, and converted to actual concentration based on sand transport rate and the variation with height of velocity of the saltating cloud. The particle concentration was found to decay exponentially with height and to increase with wind velocity. It decayed more rapidly when the wind velocity decreased. The volume/volume concentration in the near-surface layer was at the order of 10-4. The results obtained by PIV MSD technique were in good agreement with those derived from the sand flux and velocity profiles, the former being about 15% greater than the later.

  5. Piezoelectric energy harvesting from broadband random vibrations

    International Nuclear Information System (INIS)

    Adhikari, S; Friswell, M I; Inman, D J

    2009-01-01

    Energy harvesting for the purpose of powering low power electronic sensor systems has received explosive attention in the last few years. Most works using deterministic approaches focusing on using the piezoelectric effect to harvest ambient vibration energy have concentrated on cantilever beams at resonance using harmonic excitation. Here, using a stochastic approach, we focus on using a stack configuration and harvesting broadband vibration energy, a more practically available ambient source. It is assumed that the ambient base excitation is stationary Gaussian white noise, which has a constant power-spectral density across the frequency range considered. The mean power acquired from a piezoelectric vibration-based energy harvester subjected to random base excitation is derived using the theory of random vibrations. Two cases, namely the harvesting circuit with and without an inductor, have been considered. Exact closed-form expressions involving non-dimensional parameters of the electromechanical system have been given and illustrated using numerical examples

  6. Piezoelectric energy harvesting from broadband random vibrations

    Science.gov (United States)

    Adhikari, S.; Friswell, M. I.; Inman, D. J.

    2009-11-01

    Energy harvesting for the purpose of powering low power electronic sensor systems has received explosive attention in the last few years. Most works using deterministic approaches focusing on using the piezoelectric effect to harvest ambient vibration energy have concentrated on cantilever beams at resonance using harmonic excitation. Here, using a stochastic approach, we focus on using a stack configuration and harvesting broadband vibration energy, a more practically available ambient source. It is assumed that the ambient base excitation is stationary Gaussian white noise, which has a constant power-spectral density across the frequency range considered. The mean power acquired from a piezoelectric vibration-based energy harvester subjected to random base excitation is derived using the theory of random vibrations. Two cases, namely the harvesting circuit with and without an inductor, have been considered. Exact closed-form expressions involving non-dimensional parameters of the electromechanical system have been given and illustrated using numerical examples.

  7. Mass and elemental concentrations of air bone particles at Kuala Lumpur site in 2000 to 2006

    International Nuclear Information System (INIS)

    Abdul Khalik Wood; Mohd Suhaimi Hamzah; Shamsiah Abdul Rahman

    2008-01-01

    Atmospheric Pollution due to air bone particle is a major concern to many cities in the Southeast Asian region, including Kuala Lumpur. Within the last six years air particulate samples have been collected from a site in Kuala Lumpur and measured for their PM10, PM2.5 and elemental concentrations. The results showed that the daily PM10 (<10μ diameter) concentrations were generally acceptable but the values occasionally very high, especially during the haze episodes. The PM10 annual average values were just below the national set standard and these values were mostly contributed by the fine particles (<2μ diameter) concentration. The annual average for PM2.5 (fine particle) concentrations over the past few years were considerably high where elemental carbon, sulfur and potassium were the main components. (Author)

  8. Chemical characteristics of dissolved organic matter (DOM) in relation to heavy metal concentrations in soil water from boreal peatlands after clear-cut harvesting

    Science.gov (United States)

    Kiikkilä, O.; Nieminen, T.; Starr, M.; Ukonmaanaho, L.

    2012-04-01

    Boreal peatlands form an important terrestrial carbon reserve and are a major source of dissolved organic matter (DOM) to surface waters, particularly when disturbed through forestry practices such as draining or timber harvesting. Heavy metals show a strong affinity to organic matter and so, along with DOM, heavy metals can be mobilized and transported from the soil to surface waters and sediments where they may become toxic to aquatic organisms and pass up the food chain. The complexation of heavy metals with DOM can be expected to be related and determined by the chemical characteristics of DOM and oxidation/reducing conditions in the peat. We extracted interstitial water from peat samples and determined the concentrations of dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and Al, Cu, Zn and Fe in various fractions of DOM isolated by adsorption properties (XAD-8 fractionation) and molecular-weight (ultrafiltration). The peat samples were taken from 0-30 and 30-50 cm depth in drained peatland catchments two years after whole-tree or stem-only clear-cut harvesting (Scots pine or Norway spruce) had been carried out. The samples from the upper layer had been subject to alternating saturation/aeration conditions while the deeper layer had been continuously under the water table. The fractionation of DOC and DON according to both adsorption properties and molecular-weight fractions clearly differed between the upper and lower peat layers. While the hydrophobic acid fraction contained proportionally more DOC and DON than the hydrophilic acid fraction in the upper peat layer the results were vice versa in the lower peat layer. High-molecular-weight compounds (> 100 kDa) were proportionally more abundant in the upper and low-molecular-weight compounds (< 1 kDa) in the lower peat layer. These differences are assumed to reflect differences in the aerobic/ anaerobic conditions and degree of decomposition between the two layers. The concentrations of Zn, Al

  9. Preferential Concentration Of Solid Particles In Turbulent Horizontal Circular Pipe Flow

    Science.gov (United States)

    Kim, Jaehee; Yang, Kyung-Soo

    2017-11-01

    In particle-laden turbulent pipe flow, turbophoresis can lead to a preferential concentration of particles near the wall. To investigate this phenomenon, one-way coupled Direct Numerical Simulation (DNS) has been performed. Fully-developed turbulent pipe flow of the carrier fluid (air) is at Reτ = 200 based on the pipe radius and the mean friction velocity, whereas the Stokes numbers of the particles (solid) are St+ = 0.1 , 1 , 10 based on the mean friction velocity and the kinematic viscosity of the fluid. The computational domain for particle simulation is extended along the axial direction by duplicating the domain of the fluid simulation. By doing so, particle statistics in the spatially developing region as well as in the fully-developed region can be obtained. Accumulation of particles has been noticed at St+ = 1 and 10 mostly in the viscous sublayer, more intensive in the latter case. Compared with other authors' previous results, our results suggest that drag force on the particles should be computed by using an empirical correlation and a higher-order interpolation scheme even in a low-Re regime in order to improve the accuracy of particle simulation. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2015R1A2A2A01002981).

  10. Ultrafine particles in inhabited areas in the Arctic - From very low to high concentrations

    DEFF Research Database (Denmark)

    Pétursdóttir, Una; Kirkelund, Gunvor Marie; Press-Kristensen, Kåre

    2017-01-01

    The Arctic is considered a pristine environment, where pollution mainly originates from global sources. The present study examines particle number concentrations (PNCs) and the main sources of airborne ultrafine particles (UFPs, d < 100 nm) in the town Sisimiut and two nearby settlements, Sarfann......The Arctic is considered a pristine environment, where pollution mainly originates from global sources. The present study examines particle number concentrations (PNCs) and the main sources of airborne ultrafine particles (UFPs, d ..., Sarfannguit and Itilleq, in West Greenland. Measurements were carried out during three weeks in April and May 2016. Air temperatures during the measurements ranged from −4.4 to +8.7 °C. A portable condensation particle counter (P-Trak) was used for the measurements. Results showed that the lowest...... in Sisimiut, while subsequent measurements at the same location showed much lower PNCs. The presence of heavy machinery elevated PNCs highly during two measurement events, giving PNCs up to 270,993 cm−3 but dropping to 1180 cm−3 10 min later, after the vehicle had passed by. A measurement event in Sisimiut...

  11. Optical Sensing of Weed Infestations at Harvest.

    Science.gov (United States)

    Barroso, Judit; McCallum, John; Long, Dan

    2017-10-19

    Kochia ( Kochia scoparia L.), Russian thistle ( Salsola tragus L.), and prickly lettuce ( Lactuca serriola L.) are economically important weeds infesting dryland wheat ( Triticum aestivum L.) production systems in the western United States. Those weeds produce most of their seeds post-harvest. The objectives of this study were to determine the ability of an optical sensor, installed for on-the-go measurement of grain protein concentration, to detect the presence of green plant matter in flowing grain and assess the potential usefulness of this information for mapping weeds at harvest. Spectra of the grain stream were recorded continuously at a rate of 0.33 Hz during harvest of two spring wheat fields of 1.9 and 5.4 ha. All readings were georeferenced using a Global Positioning System (GPS) receiver with 1 m positional accuracy. Chlorophyll of green plant matter was detectable in the red (638-710 nm) waveband. Maps of the chlorophyll signal from both fields showed an overall agreement of 78.1% with reference maps, one constructed prior to harvest and the other at harvest time, both based on visual evaluations of the three green weed species conducted by experts. Information on weed distributions at harvest may be useful for controlling post-harvest using variable rate technology for herbicide applications.

  12. Evaluation of correlating factors between 238U concentration measured in fine and course atmospheric particles

    International Nuclear Information System (INIS)

    Peixoto, Claudia Marques; Jacomino, Vanusa Maria Feliciano; Barreto, Alberto Avelar; Dias, Vagner Silva; Dias, Fabiana Ferrari

    2009-01-01

    Air quality is ever more important in function of the enormous proportion of human actions that have affected the environment over the last two centuries. Particulate material is one among many pollutants that can cause great risk to human health and the environment. It can be classified as: Total Suspended Particles (TSP), defined simply as particles with less than 50 μm aerodynamic diameter (one group of these particles can be inhaled and may cause health problems, while others may unfavorably affect the population's quality of life, interfering in environmental conditions and impairing normal community activities); and Inhalable Particles (PM 10 ), defined as those particles with less than 10 μm aerodynamic diameter. These particles penetrate the respiratory system and can reach pulmonary alveoli due to their small size, causing serious health damage. The Nuclear Technology Development Center (CDTN) has monitored air quality around its installations since 2000. CDTN's Environmental Monitoring Program (EMP) includes monitoring radioactivity levels contained in atmospheric TSP. In order to optimize its program, CDTN is carrying out a study to estimate the correlation between concentrations of particulate material measured in TSP and those measured in PM 10 , PI 2.5 and PI 1 , as well as determination of activity concentration for each controlled radionuclide in all parts. The objective of this study is to present preliminary results and report 238 U activity concentration results. (author)

  13. Faecal particle-size distribution from ewes fed grass silages harvested at different stages of maturity

    DEFF Research Database (Denmark)

    Jalali, Alireza; Nørgaard, Peder; Nadeau, E.

    2008-01-01

    The aim of this experiment was to study the effect of maturity stage of grass at harvest on particle size in faeces from ewes fed grass silage ad libitum. Eighteen pregnant Swedish ewes bearing two foetuses were given one of three treatments as their only feed. The treatments were early (ECS......), medium (MCS) or late (LCS) cut grass silage. The ECS, MCS and LCS silages contained 449, 578, and 634 g NDF kg-1 and 166, 111 and 81 g crude protein kg-1 DM, respectively. The in situ rumen indigestible NDF (INDF) was 77, 164 and 268 g kg-1 of NDF; the degradation rate of digestible NDF (kdDNDF) was 64......, 47 and 44 g kg-1 h-1 and DM intake was 2.5, 2.1 and 1.5 kg d-1 for ECS, MCS and LCS silage, respectively. Faeces samples were collected during four days, washed in nylon bags, freeze dried and sieved into six sieving fractions; bottom bowl (B), 0.106 (C), 0.212 (D), 0.5 (S), 1.0 (M) and 2.36 (O) mm...

  14. Measurement of radon progeny concentrations in air by alpha-particle spectrometey

    International Nuclear Information System (INIS)

    Kerr, G.D.

    1975-07-01

    A technique is presented for measuring air concentrations of the short-lived progeny of radon-222 by the use of alpha spectrometry. In this technique, the concentration of RaA, RaB, and RaC are calculated from one integral count of the RaA and two integral counts of the RaC' alpha-particle activity collected on a filter with an air sampling device. The influence of air sampling and counting intervals of time on the accuracy of the calculated concentrations is discussed in the report. A computer program is presented for use with this technique. It is written in the BASIC language. The program will calculate the air concentrations of RaA, RaB, and RaC, and will estimate the accuracy in these calculated concentrations. (U.S.)

  15. How do changes in bulk soil organic carbon content affect carbon concentrations in individual soil particle fractions?

    Science.gov (United States)

    Yang, X. M.; Drury, C. F.; Reynolds, W. D.; Yang, J. Y.

    2016-06-01

    We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2-53 μm) and sand (53-2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg-1 soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg-1, but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation.

  16. Impact of bone graft harvesting techniques on bone formation and graft resorption

    DEFF Research Database (Denmark)

    Saulacic, Nikola; Bosshardt, Dieter D; Jensen, Simon S

    2015-01-01

    BACKGROUND: Harvesting techniques can affect cellular parameters of autogenous bone grafts in vitro. Whether these differences translate to in vivo bone formation, however, remains unknown. OBJECTIVE: The purpose of this study was to assess the impact of different harvesting techniques on bone fo......: Transplantation of autogenous bone particles harvested with four techniques in the present model resulted in moderate differences in terms of bone formation and graft resorption.......BACKGROUND: Harvesting techniques can affect cellular parameters of autogenous bone grafts in vitro. Whether these differences translate to in vivo bone formation, however, remains unknown. OBJECTIVE: The purpose of this study was to assess the impact of different harvesting techniques on bone...... formation and graft resorption in vivo. MATERIAL AND METHODS: Four harvesting techniques were used: (i) corticocancellous blocks particulated by a bone mill; (ii) bone scraper; (iii) piezosurgery; and (iv) bone slurry collected from a filter device upon drilling. The grafts were placed into bone defects...

  17. Wind energy harvesting with a piezoelectric harvester

    International Nuclear Information System (INIS)

    Wu, Nan; Wang, Quan; Xie, Xiangdong

    2013-01-01

    An energy harvester comprising a cantilever attached to piezoelectric patches and a proof mass is developed for wind energy harvesting, from a cross wind-induced vibration of the cantilever, by the electromechanical coupling effect of piezoelectric materials. The vibration of the cantilever under the cross wind is induced by the air pressure owing to a vortex shedding phenomenon that occurs on the leeward side of the cantilever. To describe the energy harvesting process, a theoretical model considering the cross wind-induced vibration on the piezoelectric coupled cantilever energy harvester is developed, to calculate the charge and the voltage from the harvester. The influences of the length and location of the piezoelectric patches as well as the proof mass on the generated electric power are investigated. Results show that the total generated electric power can be as high as 2 W when the resonant frequency of the cantilever harvester is close to the vortex shedding frequency. Moreover, a value of total generated electric power up to 1.02 W can be practically realized for a cross wind with a variable wind velocity of 9–10 m s −1 by a harvester with a length of 1.2 m. This research facilitates an effective and compact wind energy harvesting device. (paper)

  18. Energy Harvesting by Nickel Prussian Blue Analogue Electrode in Neutralization and Mixing Entropy Batteries.

    Science.gov (United States)

    Gomes, Wellington J A S; de Oliveira, Cainã; Huguenin, Fritz

    2015-08-11

    Some industries usually reduce the concentration of protons in acidic wastewater by conducting neutralization reactions and/or adding seawater to industrial effluents. This work proposes a novel electrochemical system that can harvest energy originating from entropic changes due to alteration in the concentration of sodium ions along wastewater treatment. Preparation of a self-assembled material from nickel Prussian blue analogue (NPBA) was the first step to obtain such electrochemical system. Investigation into the electrochemical properties of this material helped to evaluate its potential use in neutralization and mixing entropy batteries. Assessment of parameters such as the potentiodynamic profile of the current density as a function of the concentration of protons and sodium ions, charge capacity, and cyclability as well as the reversibility of the sodium ion electroinsertion process aided estimation of the energy storage efficiency of the system. Frequency-domain measurements and models and the proposed charge compensation mechanism provided the rate constants at different dc potentials. After each charge/discharge cycle, the NPBA electrode harvested 12.4 kJ per mol of intercalated sodium ion in aqueous solutions of NaCl at concentrations of 20 mM and 3.0 M. The full electrochemical cell consisted of an NPBA positive electrode and a negative electrode of silver particles dispersed in a polypyrrole electrode. This cell extracted 16.8 kJ per mol of intercalated ion after each charge/discharge cycle. On the basis of these results, the developed electrochemical system should encourage wastewater treatment and help to achieve sustainable growth.

  19. Bottom concentrations Determination of particle material in suspension in Medellin City

    International Nuclear Information System (INIS)

    Echeverri Londono, Carlos Alberto

    2000-01-01

    The aim of this work is at achieving a better understanding of background concentrations of particle materials in suspension (pst) in Medellin. This will allow certain actions and programs for watching and controlling air pollution in this city. Metals analyzed in particle material were: calcium, chromium, copper, iron, magnesium, nickel and lead. Chromium and nickel were not detected in any station and lead was detected in one station only. It is observed that all metals have a large dispersion, excepting total iron in La America and magnesium in point 2 at Belencito, which demonstrates the high temporal variability of these metals in these places. also It is observed that metals do not have a homogenous variation in their breathable fraction (encountered in pm-10) in relation to the total metals (encountered in PST) which is indication of the different sources contribution to the metals concentration and, in general, of PST and PM - 10

  20. The effect of particle size and concentration on the flow properties of a homogeneous slurry

    International Nuclear Information System (INIS)

    Abbas, M.A.; Crowe, C.T.

    1986-01-01

    This paper presents the results of the effects of particle size and concentration on the velocity distribution in the fully developed flow of a homogeneous slurry. The slurry consisted of chloroform and silica gel with matched index of refraction to enable Laser-Doppler anemometry (LDA) measurements through the mixture. Slurries with two particle sizes and solids concentration up to 30% by volume were studied. Measurements were made over a Reynolds number range of 1,200 to 30,000

  1. Contributions of Organic Sources to Atmospheric Aerosol Particle Concentrations and Growth

    Science.gov (United States)

    Russell, L. M.

    2017-12-01

    Organic molecules are important contributors to aerosol particle mass and number concentrations through primary emissions as well as secondary growth in the atmosphere. New techniques for measuring organic aerosol components in atmospheric particles have improved measurements of this contribution in the last 20 years, including Scanning Transmission X-ray Microscopy Near Edge X-ray Absorption Fine Structure (STXM-NEXAFS), Fourier Transform Infrared spectroscopy (FTIR), and High-Resolution Aerosol Mass Spectrometry (AMS). STXM-NEXAFS individual aerosol particle composition illustrated the variety of morphology of organic components in marine aerosols, the inherent relationships between organic composition and shape, and the links between atmospheric aerosol composition and particles produced in smog chambers. This type of single particle microscopy has also added to size distribution measurements by providing evidence of how surface-controlled and bulk-controlled processes contribute to the growth of particles in the atmosphere. FTIR analysis of organic functional groups are sufficient to distinguish combustion, marine, and terrestrial organic particle sources and to show that each of those types of sources has a surprisingly similar organic functional group composition over four different oceans and four different continents. Augmenting the limited sampling of these off-line techniques with side-by-side inter-comparisons to online AMS provides complementary composition information and consistent quantitative attribution to sources (despite some clear method differences). Single-particle AMS techniques using light scattering and event trigger modes have now also characterized the types of particles found in urban, marine, and ship emission aerosols. Most recently, by combining with off-line techniques, single particle composition measurements have separated and quantified the contributions of organic, sulfate and salt components from ocean biogenic and sea spray

  2. Seasonal variation of atmospheric particle number concentrations, new particle formation and atmospheric oxidation capacity at the high Arctic site Villum Research Station, Station Nord

    Directory of Open Access Journals (Sweden)

    Q. T. Nguyen

    2016-09-01

    Full Text Available This work presents an analysis of the physical properties of sub-micrometer aerosol particles measured at the high Arctic site Villum Research Station, Station Nord (VRS, northeast Greenland, between July 2010 and February 2013. The study focuses on particle number concentrations, particle number size distributions and the occurrence of new particle formation (NPF events and their seasonality in the high Arctic, where observations and characterization of such aerosol particle properties and corresponding events are rare and understanding of related processes is lacking.A clear accumulation mode was observed during the darker months from October until mid-May, which became considerably more pronounced during the prominent Arctic haze months from March to mid-May. In contrast, nucleation- and Aitken-mode particles were predominantly observed during the summer months. Analysis of wind direction and wind speed indicated possible contributions of marine sources from the easterly side of the station to the observed summertime particle number concentrations, while southwesterly to westerly winds dominated during the darker months. NPF events lasting from hours to days were mostly observed from June until August, with fewer events observed during the months with less sunlight, i.e., March, April, September and October. The results tend to indicate that ozone (O3 might be weakly anti-correlated with particle number concentrations of the nucleation-mode range (10–30 nm in almost half of the NPF events, while no positive correlation was observed. Calculations of air mass back trajectories using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT model for the NPF event days suggested that the onset or interruption of events could possibly be explained by changes in air mass origin. A map of event occurrence probability was computed, indicating that southerly air masses from over the Greenland Sea were more likely linked to those

  3. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.

    Science.gov (United States)

    Collins, David J; Ma, Zhichao; Ai, Ye

    2016-05-17

    Concentration and separation of particles and biological specimens are fundamental functions of micro/nanofluidic systems. Acoustic streaming is an effective and biocompatible way to create rapid microscale fluid motion and induce particle capture, though the >100 MHz frequencies required to directly generate acoustic body forces on the microscale have traditionally been difficult to generate and localize in a way that is amenable to efficient generation of streaming. Moreover, acoustic, hydrodynamic, and electrical forces as typically applied have difficulty manipulating specimens in the submicrometer regime. In this work, we introduce highly focused traveling surface acoustic waves (SAW) at high frequencies between 193 and 636 MHz for efficient and highly localized production of acoustic streaming vortices on microfluidic length scales. Concentration occurs via a novel mechanism, whereby the combined acoustic radiation and streaming field results in size-selective aggregation in fluid streamlines in the vicinity of a high-amplitude acoustic beam, as opposed to previous acoustic radiation induced particle concentration where objects typically migrate toward minimum pressure locations. Though the acoustic streaming is induced by a traveling wave, we are able to manipulate particles an order of magnitude smaller than possible using the traveling wave force alone. We experimentally and theoretically examine the range of particle sizes that can be captured in fluid streamlines using this technique, with rapid particle concentration demonstrated down to 300 nm diameters. We also demonstrate that locations of trapping and concentration are size-dependent, which is attributed to the combined effects of the acoustic streaming and acoustic forces.

  4. Behaviour of solute and particle markers in the stomach of sheep given a concentrate diet

    International Nuclear Information System (INIS)

    Faichney, G.J.; Griffiths, D.A.

    1978-01-01

    Fistulated sheep given a concentrate diet were used to study the behaviour of solute ([ 51 Cr]EDTA) and particle ([ 103 Ru]phenanthroline) markers in the stomach under conditions of continuous feeding. An injection of a mixed dose of [ 51 Cr]EDTA and [ 103 Ru]phenanthroline was given into the rumen and the time course of marker concentrations in the rumen and the abomasum was recorded. The curves were analysed on the assumption that the stomach of the sheep could be represented as two mixing compartments (reticulo-rumen and abomasum) and a time delay (omasum). This model provided a very good description of the data. [ 103 Ru]-phenanthroline associated with small particles was retained in the rumen much longer than [ 51 Cr]EDTA. Although exchange of [ 103 Ru] phenanthroline occurred between large and small particle fractions, the results suggested that small particles may have been retained somewhat longer in the rumen than solutes. However, it was clear from the results that the mean retention times for particulate matter in the rumen could not be simply obtained using adsorbable markers. Cyclical fluctuations in the concentration of [ 51 Cr]EDTA in the rumen indicated that there were daily variations in net water flux in the rumen. The presence of protozoa was associated with much shorter retention times of both solutes and particles in the rumen. Protozoa were also associated with reduced rumen volumes. (author)

  5. Omega-3 PUFA concentration by a novel PVDF nano-composite membrane filled with nano-porous silica particles.

    Science.gov (United States)

    Ghasemian, Samaneh; Sahari, Mohammad Ali; Barzegar, Mohsen; Ahmadi Gavlighi, Hasan

    2017-09-01

    In this study, polyvinylidene fluoride (PVDF) and nano-porous silica particle were used to fabricate an asymmetric nano-composite membrane. Silica particles enhanced the thermal stability of PVDF/SiO 2 membranes; increasing the decomposition temperature from 371°C to 408°C. Cross sectional morphology showed that silica particles were dispersed in polymer matrix uniformly. However, particle agglomeration was found at higher loading of silica (i.e., 20 by weight%). The separation performance of nano-composite membranes was also evaluated using the omega-3 polyunsaturated fatty acids (PUFA) concentration at a temperature and pressure of 30°C and 4bar, respectively. Silica particle increased the omega-3PUFA concentration from 34.8 by weight% in neat PVDF to 53.9 by weight% in PVDF with 15 by weight% of silica. Moreover, PVDF/SiO 2 nano-composite membranes exhibited enhanced anti-fouling property compared to neat PVDF membrane. Fouling mechanism analysis revealed that complete pore blocking was the predominant mechanism occurring in oil filtration. The concentration of omega-3 polyunsaturated fatty acids (PUFA) is important in the oil industries. While the current methods demand high energy consumptions in concentrating the omega-3, membrane separation technology offers noticeable advantages in producing pure omega-3 PUFA. Moreover, concentrating omega-3 via membrane separation produces products in the triacylglycerol form which possess better oxidative stability. In this work, the detailed mechanisms of fouling which limits the performance of membrane separation were investigated. Incorporating silica particles to polymeric membrane resulted in the formation of mixed matrix membrane with improved anti-fouling behaviour compared to the neat polymeric membrane. Hence, the industrial potential of membrane processing to concentrate omega-3 fatty acids is enhanced. Copyright © 2017. Published by Elsevier Ltd.

  6. A concentration correction scheme for Lagrangian particle model and its application in street canyon air dispersion modelling

    Energy Technology Data Exchange (ETDEWEB)

    Jiyang Xia [Shanghai Jiao Tong University, Shanghai (China). Department of Engineering Mechanics; Leung, D.Y.C. [The University of Hong Kong (Hong Kong). Department of Mechanical Engineering

    2001-07-01

    Pollutant dispersion in street canyons with various configurations was simulated by discharging a large number of particles into the computation domain after developing a time-dependent wind field. Trajectory of the released particles was predicted using a Lagrangian particle model developed in an earlier study. A concentration correction scheme, based on the concept of 'visibility', was adopted for the Lagrangian particle model to correct the calculated pollutant concentration field in street canyons. The corrected concentrations compared favourably with those from wind tunnel experiments and a linear relationship between the computed concentrations and wind tunnel data were found. The developed model was then applied to four simulations to test for the suitability of the correction scheme and to study pollutant distribution in street canyons with different configurations. For those cases with obstacles presence in the computation domain, the correction scheme gives more reasonable results compared with the one without using it. Different flow regimes are observed in the street canyons, which depend on building configurations. A counter-clockwise rotating vortex may appear in a two-building case with wind flow from left to right, causing lower pollutant concentration at the leeward side of upstream building and higher concentration at the windward side of downstream building. On the other hand, a stable clockwise rotating vortex is formed in the street canyon with multiple identical buildings, resulting in poor natural ventilation in the street canyon. Moreover, particles emitted in the downstream canyon formed by buildings with large height-to-width ratios will be transported to upstream canyons. (author)

  7. Effects of wind on background particle concentrations at truck freight terminals.

    Science.gov (United States)

    Garcia, Ronald; Hart, Jaime E; Davis, Mary E; Reaser, Paul; Natkin, Jonathan; Laden, Francine; Garshick, Eric; Smith, Thomas J

    2007-01-01

    Truck freight terminals are predominantly located near highways and industrial facilities. This proximity to pollution sources, coupled with meteorological conditions and wind patterns, may affect occupational exposures to particles at these work locations. To understand this process, data from an environmental sampling study of particles at U.S. trucking terminals, along with weather and geographic maps, were analyzed to determine the extent to which the transportation of particles from local pollutant sources elevated observed occupational exposures at these locations. To help identify potential upwind sources, wind direction weighted averages and speed measurements were used to construct wind roses that were superimposed on overhead photos of the terminal and examined for upwind source activity. Statistical tests were performed on these "source" and "nonsource" directions to determine whether there were significant differences in observed particle levels between the two groups. Our results provide evidence that nearby upwind pollution sources significantly elevated background concentrations at only a few of the locations sampled, whereas the majority provided little to no evidence of a significant upwind source effect.

  8. PDADMAC flocculation of Chinese hamster ovary cells: enabling a centrifuge-less harvest process for monoclonal antibodies.

    Science.gov (United States)

    McNerney, Thomas; Thomas, Anne; Senczuk, Anna; Petty, Krista; Zhao, Xiaoyang; Piper, Rob; Carvalho, Juliane; Hammond, Matthew; Sawant, Satin; Bussiere, Jeanine

    2015-01-01

    High titer (>10 g/L) monoclonal antibody (mAb) cell culture processes are typically achieved by maintaining high viable cell densities over longer culture durations. A corresponding increase in the solids and sub-micron cellular debris particle levels are also observed. This higher burden of solids (≥15%) and sub-micron particles typically exceeds the capabilities of a continuous centrifuge to effectively remove the solids without a substantial loss of product and/or the capacity of the harvest filtration train (depth filter followed by membrane filter) used to clarify the centrate. We discuss here the use of a novel and simple two-polymer flocculation method used to harvest mAb from high cell mass cell culture processes. The addition of the polycationic polymer, poly diallyldimethylammonium chloride (PDADMAC) to the cell culture broth flocculates negatively-charged cells and cellular debris via an ionic interaction mechanism. Incorporation of a non-ionic polymer such as polyethylene glycol (PEG) into the PDADMAC flocculation results in larger flocculated particles with faster settling rate compared to PDADMAC-only flocculation. PDADMAC also flocculates the negatively-charged sub-micron particles to produce a feed stream with a significantly higher harvest filter train throughput compared to a typical centrifuged harvest feed stream. Cell culture process variability such as lactate production, cellular debris and cellular densities were investigated to determine the effect on flocculation. Since PDADMAC is cytotoxic, purification process clearance and toxicity assessment were performed.

  9. Prediction of indoor concentration of 0.5-4 µm particles of outdoor origin in an uninhabited apartment

    DEFF Research Database (Denmark)

    Schneider, T.; Jensen, K.A.; Clausen, P.A.

    2004-01-01

    Indoor and outdoor particle size distributions, indoor-outdoor pressure difference, indoor air-exchange rate, and meteorological conditions were measured at an uninhabited apartment located in a busy street in Copenhagen during 1-month long fall, winter and spring campaigns. Particle penetration...... was estimated from concentration rebound measurements following HEPA filtering of the indoor air by fitting a simple deterministic model. The model included measured air exchange rates and published surface deposition loss rates. This model was then used to predict indoor particle concentration. The model...

  10. Evaluation of physical structure value in spring-harvested grass/clover silage and hay fed to heifers

    DEFF Research Database (Denmark)

    Schulze, A.K.S.; Nørgaard, P.; Byskov, M.V.

    2015-01-01

    The physical structure value of conserved grass/clover forages of spring harvest was evaluated by assessing effects of harvest time, conservation method, iNDF/NDF ratio and NDF intake (NDFI) per kg BW on chewing activity and fecal particle size in dairy heifers. A mixed sward consisting of ryegrass...

  11. Effect of traffic restriction on atmospheric particle concentrations and their size distributions in urban Lanzhou, Northwestern China.

    Science.gov (United States)

    Zhao, Suping; Yu, Ye; Liu, Na; He, Jianjun; Chen, Jinbei

    2014-02-01

    During the 2012 Lanzhou International Marathon, the local government made a significant effort to improve traffic conditions and air quality by implementing traffic restriction measures. To evaluate the direct effect of these measures on urban air quality, especially particle concentrations and their size distributions, atmospheric particle size distributions (0.5-20 microm) obtained using an aerodynamic particle sizer (model 3321, TSI, USA) in June 2012 were analyzed. It was found that the particle number, surface area and volume concentrations for size range 0.5-10 microm were (15.0 +/- 2.1) cm(-3), (11.8 +/- 2.6) microm2/cm3 and (1.9 +/- 0.6) microm2/cm3, respectively, on the traffic-restricted day (Sunday), which is 63.2%, 53.0% and 47.2% lower than those on a normal Sunday. For number and surface area concentrations, the most affected size range was 0.5-0.7 and 0.5-0.8 microm, respectively, while for volume concentration, the most affected size ranges were 0.5-0.8, 1.7-2.0 and 5.0-5.4 microm. Number and volume concentrations of particles in size range 0.5-1.0 microm correlated well with the number of non-CNG (Compressed Natural Gas) powered vehicles, while their correlation with the number of CNG-powered vehicles was very low, suggesting that reasonable urban traffic controls along with vehicle technology improvements could play an important role in improving urban air quality.

  12. Ultrasonic device for real-time sewage velocity and suspended particles concentration measurements.

    Science.gov (United States)

    Abda, F; Azbaid, A; Ensminger, D; Fischer, S; François, P; Schmitt, P; Pallarès, A

    2009-01-01

    In the frame of a technological research and innovation network in water and environment technologies (RITEAU, Réseau de Recherche et d'Innovation Technologique Eau et Environnement), our research group, in collaboration with industrial partners and other research institutions, has been in charge of the development of a suitable flowmeter: an ultrasonic device measuring simultaneously the water flow and the concentration of size classes of suspended particles. Working on the pulsed ultrasound principle, our multi-frequency device (1 to 14 MHz) allows flow velocity and water height measurement and estimation of suspended solids concentration. Velocity measurements rely on the coherent Doppler principle. A self developed frequency estimator, so called Spectral Identification method, was used and compared to the classical Pulse-Pair method. Several measurements campaigns on one wastewater collector of the French city of Strasbourg gave very satisfactory results and showed smaller standard deviation values for the Doppler frequency extracted by the Spectral Identification method. A specific algorithm was also developed for the water height measurements. It relies on the water surface acoustic impedance rupture and its peak localisation and behaviour in the collected backscattering data. This algorithm was positively tested on long time measurements on the same wastewater collector. A large part of the article is devoted to the measurements of the suspended solids concentrations. Our data analysis consists in the adaptation of the well described acoustic behaviour of sand to the behaviour of wastewater particles. Both acoustic attenuation and acoustic backscattering data over multiple frequencies are analyzed for the extrapolation of size classes and respective concentrations. Under dry weather conditions, the massic backscattering coefficient and the overall size distribution showed similar evolution whatever the measurement site was and were suggesting a global

  13. Energy Harvesting in Heterogeneous Networks with Hybrid Powered Communication Systems

    KAUST Repository

    Alsharoa, Ahmad

    2018-02-12

    In this paper, we investigate an energy efficient and energy harvesting (EH) system model in heterogeneous networks (HetNets) where all base stations (BSS) are equipped to harvest energy from renewable energy sources. We consider a hybrid power supply of green (renewable) and traditional micro-grid, such that traditional micro-grid is not exploited as long as the BSS can meet their power demands from harvested and stored green energy. Therefore, our goal is to minimize the networkwide energy consumption subject to users\\' certain quality of service and BSS\\' power consumption constraints. As a result of binary BS sleeping status and user-cell association variables, proposed is formulated as a binary linear programming (BLP) problem. A green communication algorithm based on binary particle swarm optimization is implemented to solve the problem with low complexity time.

  14. High concentrations of coarse particles emitted from a cattle feeding operation

    Science.gov (United States)

    Hiranuma, N.; Brooks, S. D.; Gramann, J.; Auvermann, B. W.

    2011-08-01

    Housing roughly 10 million head of cattle in the United States alone, open air cattle feedlots represent a significant but poorly constrained source of atmospheric particles. Here we present a comprehensive characterization of physical and chemical properties of particles emitted from a large representative cattle feedlot in the Southwest United States. In the summer of 2008, measurements and samplings were conducted at the upwind and downwind edges of the facility. A series of far-field measurements and samplings was also conducted 3.5 km north of the facility. Two instruments, a GRIMM Sequential Mobility Particle Sizer (SMPS) and a GRIMM Portable Aerosol Spectrometer (PAS), were used to measure particle size distributions over the range of 0.01 to 25 μm diameter. Raman microspectroscopy was used to determine the chemical composition of particles on a single particle basis. Volume size distributions of dust were dominated by coarse mode particles. Twenty-four hour averaged concentrations of PM10 (particulate matter with a diameter of 10 μm or less) were as high as 1200 μg m-3 during the campaign. The primary constituents of the particulate matter were carbonaceous materials, such as humic acid, water soluble organics, and less soluble fatty acids, including stearic acid and tristearin. A significant fraction of the organic particles was present in internal mixtures with salts. Basic characteristics such as size distribution and composition of agricultural aerosols were found to be different than the properties of those found in urban and semi-urban aerosols. Failing to account for such differences may lead to errors in estimates of aerosol effects on local air quality, visibility, and public health.

  15. Determinants of spikes in ultrafine particle concentration whilst commuting by bus

    Science.gov (United States)

    Lim, Shanon; Dirks, Kim N.; Salmond, Jennifer A.; Xie, Shanju

    2015-07-01

    This paper examines concentration of ultrafine particles (UFPs) based on data collected using high-resolution UFP monitors whilst travelling by bus during rush hour along three different urban routes in Auckland, New Zealand. The factors influencing in-bus UFP concentration were assessed using a combination of spatial, statistical and GIS analysis techniques to determine both spatial and temporal variability. Results from 68 bus trips showed that concentrations varied more within a route than between on a given day, despite differences in urban morphology, land use and traffic densities between routes. A number of trips were characterised by periods of very rapid increases in UFPs (concentration 'spikes'), followed by slow declines. Trips which recorded at least one spike (an increase of greater than 10,000 pt/cm3) resulted in significantly higher mean concentrations. Spikes in UFPs were significantly more likely to occur when travelling at low speeds and when passengers were alighting and boarding at bus stops close to traffic light intersections.

  16. Aerosol surface area concentration: a governing factor in new particle formation in Beijing

    Directory of Open Access Journals (Sweden)

    R. Cai

    2017-10-01

    Full Text Available The predominating role of aerosol Fuchs surface area, AFuchs, in determining the occurrence of new particle formation (NPF events in Beijing was elucidated in this study. The analysis was based on a field campaign from 12 March to 6 April 2016 in Beijing, during which aerosol size distributions down to  ∼  1 nm and sulfuric acid concentrations were simultaneously monitored. The 26 days were classified into 11 typical NPF days, 2 undefined days, and 13 non-event days. A dimensionless factor, LΓ, characterized by the relative ratio of the coagulation scavenging rate over the condensational growth rate (Kuang et al., 2010, was applied in this work to reveal the governing factors for NPF events in Beijing. The three parameters determining LΓ are sulfuric acid concentration, the growth enhancement factor characterized by contribution of other gaseous precursors to particle growth, Γ, and AFuchs. Different from other atmospheric environments, such as in Boulder and Hyytiälä, the daily-maximum sulfuric acid concentration and Γ in Beijing varied in a narrow range with geometric standard deviations of 1.40 and 1.31, respectively. A positive correlation between the estimated new particle formation rate, J1.5, and sulfuric acid concentration was found with a mean fitted exponent of 2.4. However, the maximum sulfuric acid concentrations on NPF days were not significantly higher (even lower, sometimes than those on non-event days, indicating that the abundance of sulfuric acid in Beijing was high enough to initiate nucleation, but may not necessarily lead to NPF events. Instead, AFuchs in Beijing varied greatly among days with a geometric standard deviation of 2.56, whereas the variabilities of AFuchs in Tecamac, Atlanta, and Boulder were reported to be much smaller. In addition, there was a good correlation between AFuchs and LΓ in Beijing (R2 = 0.88. Therefore, it was AFuchs that fundamentally determined the occurrence of NPF events

  17. Measurements of ice nucleating particle concentrations at 242 K in the free troposphere

    Science.gov (United States)

    Lacher, L.; Lohmann, U.; Boose, Y.; Zipori, A.; Herrmann, E.; Bukowiecki, N.; Steinbacher, M.; Gute, E.; Kanji, Z. A.

    2017-12-01

    Clouds containing ice play an important role in the Earth's system, but some fundamental knowledge on their formation and further development is still missing. The phase change from vapor or liquid to ice in the atmosphere can occur heterogeneously in the presence of ice nucleating particles (INPs) at temperatures warmer, and supersaturations lower than required for homogeneous freezing. Only a small fraction of particles in an environment relevant for the occurrence of ice- and mixed-phase clouds are INPs, and their identification and quantification remains challenging. We measure INP concentrations with the ETH Horizontal Ice Nucleation Chamber (HINC) at the High Altitude Research Station Jungfraujoch (JFJ) during several field campaigns in different seasons and years. The measurements are performed at 242 K and above water saturation, representing ice- and mixed-phase clouds conditions. Due to its elevation of 3580 m a.s.l. the site encounters mostly free tropospheric conditions, and is influenced by boundary layer injections up to 80% of the time in summer. JFJ regularly encounters Saharan dust events and receives air masses of marine origin, which can both occur within the free troposphere. Our measurements show that INP concentrations in the free troposphere do not follow a seasonal cycle. They are remarkably constant, with concentrations from 0.5 - 8 L-1 (interquartile range), which compares well to measurements performed under the same conditions at another location within the free troposphere, the Izaña Atmospheric Research Station in Tenerife. At JFJ, correlations with parameters of physical properties of ambient particles, meteorology and air mass characteristics do not show a single best estimator to predict INP concentrations, emphasizing the complexity of ice nucleation in the free troposphere. Increases in INP concentrations of a temporary nature were observed in the free troposphere during Saharan dust events and marine air mass influence, which

  18. Desert water harvesting to benefit wildlife: a simple, cheap, and durable sub-surface water harvester for remote locations.

    Science.gov (United States)

    Rice, William E

    2004-12-01

    A sub-surface desert water harvester was constructed in the sagebrush steppe habitat of south-central Idaho, U.S.A. The desert water harvester utilizes a buried micro-catchment and three buried storage tanks to augment water for wildlife during the dry season. In this region, mean annual precipitation (MAP) ranges between about 150-250 mm (6"-10"), 70% of which falls during the cold season, November to May. Mid-summer through early autumn, June through October, is the dry portion of the year. During this period, the sub-surface water harvester provides supplemental water for wildlife for 30-90 days, depending upon the precipitation that year. The desert water harvester is constructed with commonly available, "over the counter" materials. The micro-catchment is made of a square-shaped, 20 mL. "PERMALON" polyethylene pond liner (approximately 22.9 m x 22.9 m = 523 m2) buried at a depth of about 60 cm. A PVC pipe connects the harvester with two storage tanks and a drinking trough. The total capacity of the water harvester is about 4777 L (1262 U.S. gallons) which includes three underground storage tanks, a trough and pipes. The drinking trough is refined with an access ramp for birds and small animals. The technology is simple, cheap, and durable and can be adapted to other uses, e.g. drip irrigation, short-term water for small livestock, poultry farming etc. The desert water harvester can be used to concentrate and collect water from precipitation and run-off in semi-arid and arid regions. Water harvested in such a relatively small area will not impact the ground water table but it should help to grow small areas of crops or vegetables to aid villagers in self-sufficiency.

  19. High concentrations of coarse particles emitted from a cattle feeding operation

    Directory of Open Access Journals (Sweden)

    N. Hiranuma

    2011-08-01

    Full Text Available Housing roughly 10 million head of cattle in the United States alone, open air cattle feedlots represent a significant but poorly constrained source of atmospheric particles. Here we present a comprehensive characterization of physical and chemical properties of particles emitted from a large representative cattle feedlot in the Southwest United States. In the summer of 2008, measurements and samplings were conducted at the upwind and downwind edges of the facility. A series of far-field measurements and samplings was also conducted 3.5 km north of the facility. Two instruments, a GRIMM Sequential Mobility Particle Sizer (SMPS and a GRIMM Portable Aerosol Spectrometer (PAS, were used to measure particle size distributions over the range of 0.01 to 25 μm diameter. Raman microspectroscopy was used to determine the chemical composition of particles on a single particle basis. Volume size distributions of dust were dominated by coarse mode particles. Twenty-four hour averaged concentrations of PM10 (particulate matter with a diameter of 10 μm or less were as high as 1200 μg m−3 during the campaign. The primary constituents of the particulate matter were carbonaceous materials, such as humic acid, water soluble organics, and less soluble fatty acids, including stearic acid and tristearin. A significant fraction of the organic particles was present in internal mixtures with salts. Basic characteristics such as size distribution and composition of agricultural aerosols were found to be different than the properties of those found in urban and semi-urban aerosols. Failing to account for such differences may lead to errors in estimates of aerosol effects on local air quality, visibility, and public health.

  20. Harmonisation of nanoparticle concentration measurements using GRIMM and TSI scanning mobility particle sizers

    International Nuclear Information System (INIS)

    Joshi, Manish; Sapra, B. K.; Khan, Arshad; Tripathi, S. N.; Shamjad, P. M.; Gupta, Tarun; Mayya, Y. S.

    2012-01-01

    Regional studies focusing on the role of atmospheric nanoparticles in climate change have gained impetus in the last decade. Several multi-institutional studies involving measurement of nanoparticles with several kinds of instruments are on the rise. It is important to harmonize these measurements as the instruments may work on different techniques or principles and are developed by different manufacturers. Scanning mobility particle sizers (SMPS) are often used to measure size distribution of nanoparticles in the airborne phase. Two such commercially available instruments namely, GRIMM and TSI-SMPS have been compared for ambient and laboratory generated conditions. A stand-alone condensation particle counter (CPC) of TSI make was used as a reference for particle concentration measurements. The consistency of the results in terms of mean size and geometric standard deviation was seen to be excellent for both the SMPSs, with GRIMM always showing slightly (approximately 10 %) lower mean size. The integrated number concentration from GRIMM-SMPS was seen to be closer to stand-alone reference CPC compared to TSI-SMPS, for an ambient overnight comparison. However, a concentration-dependent response, i.e. the variations between the two instruments increasing with the concentration, was observed and possible reasons for this have been suggested. A separate experiment was performed for studying the modifying effect of diffusion dryer and sheath air dryer on the measured aerosol size spectra. A significant hygroscopic growth was noted when diffusion dryer was attached to one of the SMPS. The introduction of sheath air dryer in GRIMM-SMPS produced a significant shift towards lower mean size. These results have been compared and discussed with the recent inter-comparison results to strengthen and harmonize the measurement protocols.

  1. Harmonisation of nanoparticle concentration measurements using GRIMM and TSI scanning mobility particle sizers

    Science.gov (United States)

    Joshi, Manish; Sapra, B. K.; Khan, Arshad; Tripathi, S. N.; Shamjad, P. M.; Gupta, Tarun; Mayya, Y. S.

    2012-12-01

    Regional studies focusing on the role of atmospheric nanoparticles in climate change have gained impetus in the last decade. Several multi-institutional studies involving measurement of nanoparticles with several kinds of instruments are on the rise. It is important to harmonize these measurements as the instruments may work on different techniques or principles and are developed by different manufacturers. Scanning mobility particle sizers (SMPS) are often used to measure size distribution of nanoparticles in the airborne phase. Two such commercially available instruments namely, GRIMM and TSI-SMPS have been compared for ambient and laboratory generated conditions. A stand-alone condensation particle counter (CPC) of TSI make was used as a reference for particle concentration measurements. The consistency of the results in terms of mean size and geometric standard deviation was seen to be excellent for both the SMPSs, with GRIMM always showing slightly (approximately 10 %) lower mean size. The integrated number concentration from GRIMM-SMPS was seen to be closer to stand-alone reference CPC compared to TSI-SMPS, for an ambient overnight comparison. However, a concentration-dependent response, i.e. the variations between the two instruments increasing with the concentration, was observed and possible reasons for this have been suggested. A separate experiment was performed for studying the modifying effect of diffusion dryer and sheath air dryer on the measured aerosol size spectra. A significant hygroscopic growth was noted when diffusion dryer was attached to one of the SMPS. The introduction of sheath air dryer in GRIMM-SMPS produced a significant shift towards lower mean size. These results have been compared and discussed with the recent inter-comparison results to strengthen and harmonize the measurement protocols.

  2. Capacitive Mixing for Harvesting the Free Energy of Solutions at Different Concentrations

    NARCIS (Netherlands)

    Rica, R.A.; Ziano, R.; Salerno, D.; Mantegazza, F.; van Roij, R.H.H.G.|info:eu-repo/dai/nl/152978984; Brogioli, D.

    2013-01-01

    An enormous dissipation of the order of 2 kJ/L takes place during the natural mixing process of fresh river water entering the salty sea. “Capacitive mixing” is a promising technique to efficiently harvest this energy in an environmentally clean and sustainable fashion. This method has its roots in

  3. Light harvesting complexes of Chromera velia, photosynthetic relative of apicomplexan parasites

    KAUST Repository

    Tichý, Josef

    2013-06-01

    The structure and composition of the light harvesting complexes from the unicellular alga Chromera velia were studied by means of optical spectroscopy, biochemical and electron microscopy methods. Two different types of antennae systems were identified. One exhibited a molecular weight (18-19 kDa) similar to FCP (fucoxanthin chlorophyll protein) complexes from diatoms, however, single particle analysis and circular dichroism spectroscopy indicated similarity of this structure to the recently characterized XLH antenna of xanthophytes. In light of these data we denote this antenna complex CLH, for "Chromera Light Harvesting" complex. The other system was identified as the photosystem I with bound Light Harvesting Complexes (PSI-LHCr) related to the red algae LHCI antennae. The result of this study is the finding that C. velia, when grown in natural light conditions, possesses light harvesting antennae typically found in two different, evolutionary distant, groups of photosynthetic organisms. © 2013 Elsevier B.V. All rights reserved.

  4. Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-08)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q.; Farmer, D. K.; Rizzo, L. V.; Pauliqueivis, T.; Kuwata, Mikinori; Karl, Thomas G.; Guenther, Alex B.; Allan, James D.; Coe, H.; Andreae, M. O.; Poeschl, U.; Jiminez, J. L.; Artaxo, Paulo; Martin, Scot T.

    2015-01-01

    Real-time mass spectra of non-refractory component of submicron aerosol particles were recorded in a tropical rainforest in the central Amazon basin during the wet season of 2008, as a part of the Amazonian Aerosol Characterization Experiment (AMAZE-08). Organic components accounted on average for more than 80% of the non-refractory submicron particle mass concentrations during the period of measurements. Ammonium was present in sufficient quantities to halfway neutralize sulfate. In this acidic, isoprene-dominated, low-NOx environment the high-resolution mass spectra as well as mass closures with ion chromatography measurements did not provide evidence for significant contributions of organosulfate species, at least at concentrations above uncertainty levels. Positive-matrix factorization of the time series of particle mass spectra identified four statistical factors to account for the variance of the signal intensities of the organic constituents: a factor HOA having a hydrocarbon-like signature and identified as regional emissions of primary organic material, a factor OOA-1 associated with fresh production of secondary organic material by a mechanism of BVOC oxidation followed by gas-to-particle conversion, a factor OOA-2 consistent with reactive uptake of isoprene oxidation products, especially epoxydiols by acidic particles, and a factor OOA-3 associated with long range transport and atmospheric aging. The OOA-1, -2, and -3 factors had progressively more oxidized signatures. Diameter-resolved mass spectral markers also suggested enhanced reactive uptake of isoprene oxidation products to the accumulation mode for the OOA-2 factor, and such size partitioning can be indicative of in-cloud process. The campaign-average factor loadings were in a ratio of 1.1:1.0 for the OOA-1 compared to the OOA-2 pathway, suggesting the comparable importance of gas-phase compared to particle-phase (including cloud waters) production pathways of secondary organic material during

  5. Harvest Regulations and Implementation Uncertainty in Small Game Harvest Management

    Directory of Open Access Journals (Sweden)

    Pål F. Moa

    2017-09-01

    Full Text Available A main challenge in harvest management is to set policies that maximize the probability that management goals are met. While the management cycle includes multiple sources of uncertainty, only some of these has received considerable attention. Currently, there is a large gap in our knowledge about implemention of harvest regulations, and to which extent indirect control methods such as harvest regulations are actually able to regulate harvest in accordance with intended management objectives. In this perspective article, we first summarize and discuss hunting regulations currently used in management of grouse species (Tetraonidae in Europe and North America. Management models suggested for grouse are most often based on proportional harvest or threshold harvest principles. These models are all built on theoretical principles for sustainable harvesting, and provide in the end an estimate on a total allowable catch. However, implementation uncertainty is rarely examined in empirical or theoretical harvest studies, and few general findings have been reported. Nevertheless, circumstantial evidence suggest that many of the most popular regulations are acting depensatory so that harvest bag sizes is more limited in years (or areas where game density is high, contrary to general recommendations. A better understanding of the implementation uncertainty related to harvest regulations is crucial in order to establish sustainable management systems. We suggest that scenario tools like Management System Evaluation (MSE should be more frequently used to examine robustness of currently applied harvest regulations to such implementation uncertainty until more empirical evidence is available.

  6. Emulsion Polymerization of Etyl Acrylate: The Effect of Surfactant, Initiator Concentration and PolymerizationTechnique on Particle Size Distribution

    Directory of Open Access Journals (Sweden)

    Nitri Arinda

    2009-04-01

    Full Text Available Emulsion polymerization was conducted using ethyl acrylate monomer. Theeffect of sodium lauryl sulfate concentration, ammonium persulfate concentration, the various of polymerizationtechniques and feeding time to the conversion, particle size and its distribution were observed. The purpose of thisresearch is to obtain the optimum condition of ethyl acrylate homopolymer with particle size around 100 nm, to get theparticle size distribution monodisperse and to get solid content value of the experiment closed to its theoretical value.The optimum condition then could be applied in shell polymerization of core-shell polymers. The results of the researchshowed that semicontinuous technique obtained optimum sodium lauryl sulfate concentration at 20 CMC (criticalmicelle concentration and ammonium persulfate concentration is 3%. By using batch technique that the biggestparticle size is 123 nm with conversion 95.8% and monodisperse. The shorter of feeding time the more monomer ofethyl acrylate being polymerized, it is showed by the higher conversion up to 94.4% and the bigger particle size is107.9 nm.

  7. Distribution of concentration of coarse particle-water mixture in horizontal smooth pipe

    Czech Academy of Sciences Publication Activity Database

    Vlasák, Pavel; Chára, Zdeněk; Konfršt, Jiří; Krupička, Jan

    2016-01-01

    Roč. 94, č. 6 (2016), s. 1040-1047 ISSN 0008-4034 R&D Projects: GA ČR GAP105/10/1574 Institutional support: RVO:67985874 Keywords : coarse particle-water mixture * gamma-ray radiometry * concentration distribution * horizontal conveying Subject RIV: BK - Fluid Dynamics Impact factor: 1.356, year: 2016

  8. Distribution of concentration of coarse particle-water mixture in horizontal smooth pipe

    Czech Academy of Sciences Publication Activity Database

    Vlasák, Pavel; Chára, Zdeněk; Konfršt, Jiří; Krupička, Jan

    2016-01-01

    Roč. 94, č. 6 (2016), s. 1040-1047 ISSN 0008-4034 R&D Projects: GA ČR GAP105/10/1574 Institutional support: RVO:67985874 Keywords : coarse particle- water mixture * gamma-ray radiometry * concentration distribution * horizontal conveying Subject RIV: BK - Fluid Dynamics Impact factor: 1.356, year: 2016

  9. Effect of tomato post-harvest fungicide treatment and storage conditions on the quality of fruits, and biological value of tomato pulp and concentrated pulp

    Directory of Open Access Journals (Sweden)

    H. Parynow

    2013-12-01

    Full Text Available The influence of storage conditions on the quality of tomato fruits was tested. The rate of ripening was established in normal air, where tomatoes ripen quickly, under controlled atmosphere where they ripen more slowly and under low pressure, where they ripen slowest. The influence of post-harvest benomyl or methylthiophanate treatment on tomato rot, ripening, and biological value were examined. Post-harvest tomato treatment did not reduce fruit rot. The color of fruits and the processed products depended on the fungicide treatment. Concentrated tomato pulp made of fruits treated with methylthiophanate was redder than the others. The fungicide treatment increased or decreased the level of some chemical substances in the fruits in dependence on the applied fungicide, storage conditions and the length of storage, e.g. tomatoes treated with benomyl and stored for 14 days contained the highest level of vitamin C under 0% CO2:3%O2 and tomatoes treated with methylthiophanate contained the highest level of vitamin C under 38 mm Hg. Degradation of vitamin C in pulp was faster than in the concentrated pulp. Tomato pulp made of tomatoes treated with methylthiophanate contained the lowest level of vitamin C.

  10. Indoor and ambient air concentrations of respirable particles between two hospitals in Kashan (2014-2015

    Directory of Open Access Journals (Sweden)

    Mahmoud Mohammadyan

    2017-04-01

    Full Text Available Background: The hospital environment requires special attention to provide healthful indoor air quality for protecting patients and healthcare workers against the occupational diseases. The aim of this study was to determine the concentrations of respirable particles indoor and ambient air of two hospitals in Kashan. Materials and Method: This cross-sectional study was conducted during 3 months (Marth 2014 to May 2015. Indoor and outdoor PM10 and PM2.5 concentrations were measured four times a week in the operating room, pediatric and ICU2 (Intensive Care Unit wards using a real time dust monitor at two hospitals. A total number of 480 samples (80 samples indoors and 40 outdoors from wards were collected. Results: The highest mean PM2.5 and PM10 for indoors were determined 57.61± 68.57 µg m-3 and 212.36±295.49 µg m-3, respectively. The results showed a significant relationship between PM2.5 and PM10 in the indoor and ambient air of two hospitals (P<0.05. PM2.5 and PM10 concentrations were different in all of the selected wards (P<0.05. Conclusion: The respirable particle concentrations in the indoor and ambient air in both hospitals were higher than the 24-hours WHO and US-EPA standards. Thence, utilizing sufficient and efficient air conditioning systems in hospitals can be useful in improving indoor air quality and reducing the respirable particle concentrations.

  11. Short-term exposure with high concentrations of pristine microplastic particles leads to immobilisation of Daphnia magna.

    Science.gov (United States)

    Rehse, Saskia; Kloas, Werner; Zarfl, Christiane

    2016-06-01

    Recent studies revealed that freshwaters are not only polluted by chemicals, but also by persistent synthetic material like microplastics (plastic particles pollutants or release additives. Although there is rising concern about the pollution of freshwaters by microplastics, knowledge about their potential effects on organisms is limited. For a better understanding of their risks, it is crucial to unravel which characteristics influence their effects on organisms. Analysing effects by the mere particles is the first step before including more complex interactions e.g. with associated chemicals. The aim of this study was to analyse potential physical effects of microplastics on one representative organism for limnic zooplankton (Daphnia magna). We investigated whether microplastics can be ingested and whether their presence causes adverse effects after short-term exposure. Daphnids were exposed for up to 96 h to 1-μm and 100-μm polyethylene particles at concentrations between 12.5 and 400 mg L(-1). Ingestion of 1-μm particles led to immobilisation increasing with dose and time with an EC50 of 57.43 mg L(-1) after 96 h. 100-μm particles that could not be ingested by the daphnids had no observable effects. These results underline that, considering high concentrations, microplastic particles can already induce adverse effects in limnic zooplankton. Although it needs to be clarified if these concentrations can be found in the environment these results are a basis for future impact analysis, especially in combination with associated chemicals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effects of mechanical harvest plus chipping and prescribed fire on Sierran runoff water quality.

    Science.gov (United States)

    Loupe, T M; Miller, W W; Johnson, D W; Sedinger, J S; Carroll, E M; Walker, R F; Murphy, J D; Stein, C M

    2009-01-01

    Fire suppression in Sierran ecosystems creates a substantial wildfire hazard and may exacerbate nutrient inputs into Lake Tahoe by allowing the buildup of O horizon material, which serves as a source for high N and P concentrations in runoff water. The purpose of this study was to evaluate the effects of biomass reduction using cut-to-length mechanical harvest followed by chipping and controlled burning on surface runoff volume and water quality. Based on previous findings regarding N and P leaching flux and soil solution concentrations, we hypothesized that controlled burning and/or mechanical harvest with residue chipping does not increase inorganic N, P, and S concentrations in overland flow. Runoff, snowmelt, and rainfall were collected, volume measurements were taken, and samples were analyzed for NO(3)-N, NH(4)-N, PO(4)-P, and SO(4). Runoff volume, season, and year were identified as important parameters influencing overland flow nutrient concentrations and loads. Higher nutrient concentrations were commonly associated with summer rather than winter runoff, but the opposite was true for nutrient loads due to the higher runoff volumes. Treatment (unharvested, harvested, unburned, burned) effect was a strong predictor for discharge loads of NO(3)-N and SO(4) but was a weak predictor for PO(4)-P. Discharge loads of NO(3)-N and SO(4) were greater for the unburned harvested and the burned unharvested treatments than for the unburned, unharvested control sites or the burned and harvested combined treatment. Although mechanical harvest and/or controlled burning had a small initial impact on increased nutrient loading, the effects were minimal compared with background levels. Hence, these management practices may have the potential to improve forest health without the danger of large-magnitude nutrient mobilization and degradation of runoff water quality found with wildfire.

  13. Selection harvests in Amazonian rainforests: long-term impacts on soil properties

    Science.gov (United States)

    K.L. McNabb; M.S. Miller; B.G. Lockaby; B.J. Stokes; R.G. Clawson; John A. Stanturf; J.N.M. Silva

    1997-01-01

    Surface soil properties were compared among disturbance classes associated with a single-tree selection harvest study installed in 1979 in the Brazilian Amazon. Response variables included pH, total N, total organic C, extractable P, exchangeable K, Ca, Mg, and bulk density. In general, concentrations of all elements displayed residual effects 16 years after harvests...

  14. Sustainability of Mangrove Harvesting: How do Harvesters' Perceptions Differ from Ecological Analysis?

    Directory of Open Access Journals (Sweden)

    Laura López-Hoffman

    2006-12-01

    Full Text Available To harvest biological resources sustainably, it is first necessary to understand what "sustainability" means in an ecological context, and what it means to the people who use the resources. As a case study, we examined the extractive logging of the mangrove Rhizophora mangle in the Río Limón area of Lake Maracaibo, in western Venezuela. The ecological definition of sustainable harvesting is harvesting that allows population numbers to be maintained or to increase over time. In interviews, the harvesters defined sustainable harvesting as levels permitting the maintenance of the mangrove population over two human generations, about 50 yr. In Río Limón, harvesters extract a combination of small adult and juvenile trees. Harvesting rates ranged from 7-35% of small adult trees. These harvesting levels would be sustainable according to the harvester's definition as long as juvenile harvesting was less than 40%. However, some harvesting levels that would be sustainable according to the harvesters were ecologically unsustainable, i.e., eventually causing declines in mangrove population numbers. It was also determined that the structure of mangrove forests was significantly affected by harvesting; even areas harvested at low, ecologically sustainable intensities had significantly fewer adult trees than undisturbed sites. Western Venezuela has no organized timber industry, so mangrove logs are used in many types of construction. A lagging economy and a lack of alternative construction materials make mangrove harvesting inevitable, and for local people, an economic necessity. This creates a trade-off between preserving the ecological characteristics of the mangrove population and responding to human needs. In order to resolve this situation, we recommended a limited and adaptive mangrove harvesting regime. We also suggest that harvesters could participate in community-based management programs as harvesting monitors.

  15. Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories

    Science.gov (United States)

    Schmale, Julia; Henning, Silvia; Decesari, Stefano; Henzing, Bas; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Pöhlker, Mira L.; Brito, Joel; Bougiatioti, Aikaterini; Kristensson, Adam; Kalivitis, Nikos; Stavroulas, Iasonas; Carbone, Samara; Jefferson, Anne; Park, Minsu; Schlag, Patrick; Iwamoto, Yoko; Aalto, Pasi; Äijälä, Mikko; Bukowiecki, Nicolas; Ehn, Mikael; Frank, Göran; Fröhlich, Roman; Frumau, Arnoud; Herrmann, Erik; Herrmann, Hartmut; Holzinger, Rupert; Kos, Gerard; Kulmala, Markku; Mihalopoulos, Nikolaos; Nenes, Athanasios; O'Dowd, Colin; Petäjä, Tuukka; Picard, David; Pöhlker, Christopher; Pöschl, Ulrich; Poulain, Laurent; Prévôt, André Stephan Henry; Swietlicki, Erik; Andreae, Meinrat O.; Artaxo, Paulo; Wiedensohler, Alfred; Ogren, John; Matsuki, Atsushi; Yum, Seong Soo; Stratmann, Frank; Baltensperger, Urs; Gysel, Martin

    2018-02-01

    Aerosol-cloud interactions (ACI) constitute the single largest uncertainty in anthropogenic radiative forcing. To reduce the uncertainties and gain more confidence in the simulation of ACI, models need to be evaluated against observations, in particular against measurements of cloud condensation nuclei (CCN). Here we present a data set - ready to be used for model validation - of long-term observations of CCN number concentrations, particle number size distributions and chemical composition from 12 sites on 3 continents. Studied environments include coastal background, rural background, alpine sites, remote forests and an urban surrounding. Expectedly, CCN characteristics are highly variable across site categories. However, they also vary within them, most strongly in the coastal background group, where CCN number concentrations can vary by up to a factor of 30 within one season. In terms of particle activation behaviour, most continental stations exhibit very similar activation ratios (relative to particles > 20 nm) across the range of 0.1 to 1.0 % supersaturation. At the coastal sites the transition from particles being CCN inactive to becoming CCN active occurs over a wider range of the supersaturation spectrum. Several stations show strong seasonal cycles of CCN number concentrations and particle number size distributions, e.g. at Barrow (Arctic haze in spring), at the alpine stations (stronger influence of polluted boundary layer air masses in summer), the rain forest (wet and dry season) or Finokalia (wildfire influence in autumn). The rural background and urban sites exhibit relatively little variability throughout the year, while short-term variability can be high especially at the urban site. The average hygroscopicity parameter, κ, calculated from the chemical composition of submicron particles was highest at the coastal site of Mace Head (0.6) and lowest at the rain forest station ATTO (0.2-0.3). We performed closure studies based on κ-Köhler theory

  16. Briquetting of wastes from coffee plants conducted in zero harvest system

    Directory of Open Access Journals (Sweden)

    Oberdan Everton Zerbinatti

    2014-06-01

    Full Text Available The briquetting process consists of lignocellulosic residues densification in solid biofuel with high calorific value denominated briquette. Coffee crop is one of the most important Brazilian commodities and according to the cultural practices produces plant residues in different amounts. The zero harvest system in coffee crop is based in pruning of plagiotropic branches in alternated years to make possible to concentrate the harvest and to avoid coffee biannual production. The aim of the present work was to verify the viability of briquette production using the biomass waste obtained by zero harvest system. The treatments were composed of briquetting process: 1 coffee rind; 2 mixture of branches and leaves; 3 25% of coffee rind + 75% of branches and leaves; 4 75% of coffee rind + 25% of branches and leaves; 5 50% of coffee rind + 50% of branches and leaves; 6 40% of coffee rind + 60% of branches and leaves. The mixtures were realized in v/v base, milled to produce 5-10 mm particles and were briqueted with 12% of humidity. The C-teor of briquettes produced ranged from 41.85 to 43. 84% and sulphur teor was below 0.1%. The calorific value of briquettes produced ranged from 3,359 to 4, 028 Kcal/ kg and the ashes were below 6%. The isolated use of coffee rind or branches and leaves, as well the mixtures of coffee rind with 50% or more of branches and leaves allow the production of briquettes with calorific value around 4,000 Kcal/ kg which is within the quality parameters. The briquetting of coffee crop wastes is viable and sustainable energetically.

  17. A Process-Based Model of TCA Cycle Functioning to Analyze Citrate Accumulation in Pre- and Post-Harvest Fruits.

    Science.gov (United States)

    Etienne, Audrey; Génard, Michel; Bugaud, Christophe

    2015-01-01

    Citrate is one of the most important organic acids in many fruits and its concentration plays a critical role in organoleptic properties. The regulation of citrate accumulation throughout fruit development, and the origins of the phenotypic variability of the citrate concentration within fruit species remain to be clarified. In the present study, we developed a process-based model of citrate accumulation based on a simplified representation of the TCA cycle to predict citrate concentration in fruit pulp during the pre- and post-harvest stages. Banana fruit was taken as a reference because it has the particularity of having post-harvest ripening, during which citrate concentration undergoes substantial changes. The model was calibrated and validated on the two stages, using data sets from three contrasting cultivars in terms of citrate accumulation, and incorporated different fruit load, potassium supply, and harvest dates. The model predicted the pre and post-harvest dynamics of citrate concentration with fairly good accuracy for the three cultivars. The model suggested major differences in TCA cycle functioning among cultivars during post-harvest ripening of banana, and pointed to a potential role for NAD-malic enzyme and mitochondrial malate carriers in the genotypic variability of citrate concentration. The sensitivity of citrate accumulation to growth parameters and temperature differed among cultivars during post-harvest ripening. Finally, the model can be used as a conceptual basis to study citrate accumulation in fleshy fruits and may be a powerful tool to improve our understanding of fruit acidity.

  18. Designing A General Deep Web Harvester by Harvestability Factor

    NARCIS (Netherlands)

    Khelghati, Mohammadreza; van Keulen, Maurice; Hiemstra, Djoerd

    2014-01-01

    To make deep web data accessible, harvesters have a crucial role. Targeting different domains and websites enhances the need of a general-purpose harvester which can be applied to different settings and situations. To develop such a harvester, a large number of issues should be addressed. To have

  19. Evaluating Ice Nucleating Particle Concentrations From Prognostic Dust Minerals in an Earth System Model

    Science.gov (United States)

    Perlwitz, J. P.; Knopf, D. A.; Fridlind, A. M.; Miller, R. L.; Pérez García-Pando, C.; DeMott, P. J.

    2016-12-01

    The effect of aerosol particles on the radiative properties of clouds, the so-called, indirect effect of aerosols, is recognized as one of the largest sources of uncertainty in climate prediction. The distribution of water vapor, precipitation, and ice cloud formation are influenced by the atmospheric ice formation, thereby modulating cloud albedo and thus climate. It is well known that different particle types possess different ice formation propensities with mineral dust being a superior ice nucleating particle (INP) compared to soot particles. Furthermore, some dust mineral types are more proficient INP than others, depending on temperature and relative humidity.In recent work, we have presented an improved dust aerosol module in the NASA GISS Earth System ModelE2 with prognostic mineral composition of the dust aerosols. Thus, there are regional variations in dust composition. We evaluated the predicted mineral fractions of dust aerosols by comparing them to measurements from a compilation of about 60 published literature references. Additionally, the capability of the model to reproduce the elemental composition of the simulated dusthas been tested at Izana Observatory at Tenerife, Canary Islands, which is located off-shore of Africa and where frequent dust events are observed. We have been able to show that the new approach delivers a robust improvement of the predicted mineral fractions and elemental composition of dust.In the current study, we use three-dimensional dust mineral fields and thermodynamic conditions, which are simulated using GISS ModelE, to calculate offline the INP concentrations derived using different ice nucleation parameterizations that are currently discussed. We evaluate the calculated INP concentrations from the different parameterizations by comparing them to INP concentrations from field measurements.

  20. Characterisation of sub-micron particle number concentrations and formation events in the western Bushveld Igneous Complex, South Africa

    Directory of Open Access Journals (Sweden)

    A. Hirsikko

    2012-05-01

    Full Text Available South Africa holds significant mineral resources, with a substantial fraction of these reserves occurring and being processed in a large geological structure termed the Bushveld Igneous Complex (BIC. The area is also highly populated by informal, semi-formal and formal residential developments. However, knowledge of air quality and research related to the atmosphere is still very limited in the area. In order to investigate the characteristics and processes affecting sub-micron particle number concentrations and formation events, air ion and aerosol particle size distributions and number concentrations, together with meteorological parameters, trace gases and particulate matter (PM were measured for over two years at Marikana in the heart of the western BIC. The observations showed that trace gas (i.e. SO2, NOx, CO and black carbon concentrations were relatively high, but in general within the limits of local air quality standards. The area was characterised by very high condensation sink due to background aerosol particles, PM10 and O3 concentration. The results indicated that high amounts of Aitken and accumulation mode particles originated from domestic burning for heating and cooking in the morning and evening, while during daytime SO2-based nucleation followed by the growth by condensation of vapours from industrial, residential and natural sources was the most probable source for large number concentrations of nucleation and Aitken mode particles. Nucleation event day frequency was extremely high, i.e. 86% of the analysed days, which to the knowledge of the authors is the highest frequency ever reported. The air mass back trajectory and wind direction analyses showed that the secondary particle formation was influenced both by local and regional pollution and vapour sources. Therefore, our observation of the annual cycle and magnitude of the particle formation and growth rates during

  1. Aircraft observations and model simulations of concentration and particle size distribution in the Eyjafjallajökull volcanic ash cloud

    Directory of Open Access Journals (Sweden)

    H. F. Dacre

    2013-02-01

    Full Text Available The Eyjafjallajökull volcano in Iceland emitted a cloud of ash into the atmosphere during April and May 2010. Over the UK the ash cloud was observed by the FAAM BAe-146 Atmospheric Research Aircraft which was equipped with in-situ probes measuring the concentration of volcanic ash carried by particles of varying sizes. The UK Met Office Numerical Atmospheric-dispersion Modelling Environment (NAME has been used to simulate the evolution of the ash cloud emitted by the Eyjafjallajökull volcano during the period 4–18 May 2010. In the NAME simulations the processes controlling the evolution of the concentration and particle size distribution include sedimentation and deposition of particles, horizontal dispersion and vertical wind shear. For travel times between 24 and 72 h, a 1/t relationship describes the evolution of the concentration at the centre of the ash cloud and the particle size distribution remains fairly constant. Although NAME does not represent the effects of microphysical processes, it can capture the observed decrease in concentration with travel time in this period. This suggests that, for this eruption, microphysical processes play a small role in determining the evolution of the distal ash cloud. Quantitative comparison with observations shows that NAME can simulate the observed column-integrated mass if around 4% of the total emitted mass is assumed to be transported as far as the UK by small particles (< 30 μm diameter. NAME can also simulate the observed particle size distribution if a distal particle size distribution that contains a large fraction of < 10 μm diameter particles is used, consistent with the idea that phraetomagmatic volcanoes, such as Eyjafjallajökull, emit very fine particles.

  2. Concentration levels and source apportionment of ultrafine particles in road microenvironments

    Science.gov (United States)

    Argyropoulos, G.; Samara, C.; Voutsa, D.; Kouras, A.; Manoli, E.; Voliotis, A.; Tsakis, A.; Chasapidis, L.; Konstandopoulos, A.; Eleftheriadis, K.

    2016-03-01

    A mobile laboratory unit (MOBILAB) with on-board instrumentation (Scanning Mobility Particle Sizer, SMPS; Ambient NOx analyzer) was used to measure size-resolved particle number concentrations (PNCs) of quasi-ultrafine particles (UFPs, 9-372 nm), along with NOx, in road microenvironments. On-road measurements were carried out in and around a large Greek urban agglomeration, the Thessaloniki Metropolitan Area (TMA). Two 2-week measurement campaigns were conducted during the warm period of 2011 and the cold period of 2012. During each sampling campaign, MOBILAB was driven through a 5-day inner-city route and a second 5-day external route covering in total a wide range of districts (urban, urban background, industrial and residential), and road types (major and minor urban roads, freeways, arterial and interurban roads). All routes were conducted during working days, in morning and in afternoon hours under real-world traffic conditions. Spatial classification of MOBILAB measurements involved the assignment of measurement points to location bins defined by the aspect ratio of adjacent urban street canyons (USCs). Source apportionment was further carried out, by applying Positive Matrix Factorization (PMF) to particle size distribution data. Apportioned PMF factors were interpreted, by employing a two-step methodology, which involved (a) statistical association of PMF factor contributions with 12 h air-mass back-trajectories ending at the TMA during MOBILAB measurements, and (b) Multiple Linear Regression (MLR) using PMF factor contributions as the dependent variables, while relative humidity, solar radiation flux, and vehicle speed were used as the independent variables. The applied data analysis showed that low-speed cruise and high-load engine operation modes are the two dominant sources of UFPs in most of the road microenvironments in the TMA, with significant contributions from background photochemical processes during the warm period, explaining the reversed

  3. Spatial and indoor/outdoor gradients in urban concentrations of ultrafine particles and PM2.5 mass and chemical components

    Science.gov (United States)

    Zauli Sajani, Stefano; Ricciardelli, Isabella; Trentini, Arianna; Bacco, Dimitri; Maccone, Claudio; Castellazzi, Silvia; Lauriola, Paolo; Poluzzi, Vanes; Harrison, Roy M.

    2015-02-01

    In order to investigate relationships between outdoor air pollution and concentrations indoors, a novel design of experiment has been conducted at two sites, one heavily trafficked and the other residential. The novel design aspect involves the introduction of air directly to the centre of an unoccupied room by use of a fan and duct giving a controlled air exchange rate and allowing an evaluation of particle losses purely due to uptake on indoor surfaces without the losses during penetration of the building envelope which affect most measurement programmes. The rooms were unoccupied and free of indoor sources, and consequently reductions in particle concentration were due to deposition processes within the room alone. Measurements were made of indoor and outdoor concentrations of PM2.5, major chemical components and particle number size distributions. Despite the absence of penetration losses, indoor to outdoor ratios were very similar to those in other studies showing that deposition to indoor surfaces is likely to be the major loss process for indoor air. The results demonstrated a dramatic loss of nitrate in the indoor atmosphere as well as a selective loss of particles in the size range below 50 nm, in comparison to coarser particles. Depletion of indoor particles was greater during a period of cold weather with higher outdoor concentrations probably due to an enhancement of semi-volatile materials in the outdoor particulate matter. Indoor/outdoor ratios for PM2.5 were generally higher at the trafficked site than the residential site, but for particle number were generally lower, reflecting the different chemical composition and size distributions of particles at the two sites.

  4. Concentration of aqueous extracts of defatted soy flour by ultrafiltration; Effect of suspended particles on the filtration flux

    NARCIS (Netherlands)

    Noordman, T.R.; Kooiker, K.; Bel, W.; Dekker, M.; Wesselingh, J.A.

    2003-01-01

    Suspended particles can have a positive effect on the flux and concentration curve of soy flour extracts during ultrafiltration. This is described by a simple empirical model. The suspended particles in this study were insoluble milled bean material (mean particle size 25 m). It is shown that it is

  5. Effects of maturity and harvest season of grass-clover silage and of forage-to-concentrate ratio on milk production of dairy cows

    DEFF Research Database (Denmark)

    Alstrup, L; Søegaard, K; Weisbjerg, M R

    2016-01-01

    This study examined the effects of maturity and season of harvest of grass-clover silages and forage:concentrate ratio (FCR) on feed intake, milk production, chewing activity, digestibility, and fecal consistency of Holstein dairy cows. Comparison included 2 cuts in spring season (early and late......) and 2 cuts in summer season (early and late) combined with high FCR (80:20; HFCR) and low FCR (50:50; LFCR). The experiment included 24 lactating Holstein cows arranged as 2 repeated 4 × 4 Latin squares with four 21-d periods and included measurements of feed composition, feed intake, milk production...... digestible than late maturity cuts, which was also reflected in a lower concentration of neutral detergent fiber (NDF) in early maturity cuts, whereas summer cuts had a higher crude protein concentration than spring cuts. Increased maturity decreased the intake of DM and energy, increased NDF intake...

  6. Emulsion Polymerization of Etyl Acrylate: The Effect of Surfactant, Initiator Concentration and PolymerizationTechnique on Particle Size Distribution

    OpenAIRE

    Nitri Arinda; Emil Budianto; Helmiyati

    2009-01-01

    Emulsion polymerization was conducted using ethyl acrylate monomer. Theeffect of sodium lauryl sulfate concentration, ammonium persulfate concentration, the various of polymerizationtechniques and feeding time to the conversion, particle size and its distribution were observed. The purpose of thisresearch is to obtain the optimum condition of ethyl acrylate homopolymer with particle size around 100 nm, to get theparticle size distribution monodisperse and to get solid content value of the exp...

  7. Energy harvesting from high-rise buildings by a piezoelectric harvester device

    International Nuclear Information System (INIS)

    Xie, X.D.; Wang, Q.; Wang, S.J.

    2015-01-01

    A novel piezoelectric technology of harvesting energy from high-rise buildings is developed. While being used to harness vibration energy of a building, the technology is also helpful to dissipate vibration of the building by the designed piezoelectric harvester as a tuned mass damper. The piezoelectric harvester device is made of two groups of series piezoelectric generators connected by a shared shaft. The shaft is driven by a linking rod hinged on a proof mass on the tip of a cantilever fixed on the roof of the building. The influences of some practical considerations, such as the mass ratio of the proof mass to the main structure, the ratios of the length and flexural rigidity of the cantilever to those of the main structure, on the root mean square (RMS) of the generated electric power and the energy harvesting efficiency of the piezoelectric harvester device are discussed. The research provides a new method for an efficient and practical energy harvesting from high-rise buildings by piezoelectric harvesters. - Highlights: • A new piezoelectric technology in energy harvesting from high-rise buildings is introduced. • A new mathematics model to calculate the energy harvested by the piezoelectric device is developed. • A novel efficient design of the piezoelectric harvester device in provided. • An electric power up to 432 MW under a seismic excitation at a frequency of 30 rad/s is achieved.

  8. Real-time measurement of aerosol particle concentration at high temperatures; Hiukkaspitoisuuden reaaliaikainen mittaaminen korkeassa laempoetilassa

    Energy Technology Data Exchange (ETDEWEB)

    Keskinen, J; Hautanen, J; Laitinen, A [Tampere Univ. of Technology (Finland). Physics

    1997-10-01

    The aim of this project is to develop a new method for continuous aerosol particle concentration measurement at elevated temperatures (up to 800-1000 deg C). The measured property of the aerosol particles is the so called Fuchs surface area. This quantity is relevant for diffusion limited mass transfer to particles. The principle of the method is as follows. First, aerosol particles are charged electrically by diffusion charging process. The charging takes place at high temperature. After the charging, aerosol is diluted and cooled. Finally, aerosol particles are collected and the total charge carried by the aerosol particles is measured. Particle collection and charge measurement take place at low temperature. Benefits of this measurement method are: particles are charged in-situ, charge of the particles is not affected by the temperature and pressure changes after sampling, particle collection and charge measurement are carried out outside the process conditions, and the measured quantity is well defined. The results of this study can be used when the formation of the fly ash particles is studied. Another field of applications is the study and the development of gasification processes. Possibly, the method can also be used for the monitoring the operation of the high temperature particle collection devices. (orig.)

  9. Estimation of sport fish harvest for risk and hazard assessment of environmental contaminants

    International Nuclear Information System (INIS)

    Poston, T.M.; Strenge, D.L.

    1989-01-01

    Consumption of contaminated fish flesh can be a significant route of human exposure to hazardous chemicals. Estimation of exposure resulting from the consumption of fish requires knowledge of fish consumption and contaminant levels in the edible portion of fish. Realistic figures of sport fish harvest are needed to estimate consumption. Estimates of freshwater sport fish harvest were developed from a review of 72 articles and reports. Descriptive statistics based on fishing pressure were derived from harvest data for four distinct groups of freshwater sport fish in three water types: streams, lakes, and reservoirs. Regression equations were developed to relate harvest to surface area fished where data bases were sufficiently large. Other aspects of estimating human exposure to contaminants in fish flesh that are discussed include use of bioaccumulation factors for trace metals and organic compounds. Using the bioaccumulation factor and the concentration of contaminants in water as variables in the exposure equation may also lead to less precise estimates of tissue concentration. For instance, muscle levels of contaminants may not increase proportionately with increases in water concentrations, leading to overestimation of risk. In addition, estimates of water concentration may be variable or expressed in a manner that does not truly represent biological availability of the contaminant. These factors are discussed. 45 refs., 1 fig., 7 tabs

  10. A Process-Based Model of TCA Cycle Functioning to Analyze Citrate Accumulation in Pre- and Post-Harvest Fruits.

    Directory of Open Access Journals (Sweden)

    Audrey Etienne

    Full Text Available Citrate is one of the most important organic acids in many fruits and its concentration plays a critical role in organoleptic properties. The regulation of citrate accumulation throughout fruit development, and the origins of the phenotypic variability of the citrate concentration within fruit species remain to be clarified. In the present study, we developed a process-based model of citrate accumulation based on a simplified representation of the TCA cycle to predict citrate concentration in fruit pulp during the pre- and post-harvest stages. Banana fruit was taken as a reference because it has the particularity of having post-harvest ripening, during which citrate concentration undergoes substantial changes. The model was calibrated and validated on the two stages, using data sets from three contrasting cultivars in terms of citrate accumulation, and incorporated different fruit load, potassium supply, and harvest dates. The model predicted the pre and post-harvest dynamics of citrate concentration with fairly good accuracy for the three cultivars. The model suggested major differences in TCA cycle functioning among cultivars during post-harvest ripening of banana, and pointed to a potential role for NAD-malic enzyme and mitochondrial malate carriers in the genotypic variability of citrate concentration. The sensitivity of citrate accumulation to growth parameters and temperature differed among cultivars during post-harvest ripening. Finally, the model can be used as a conceptual basis to study citrate accumulation in fleshy fruits and may be a powerful tool to improve our understanding of fruit acidity.

  11. Microalgae Harvest through Fungal Pelletization—Co-Culture of Chlorella vulgaris and Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Sarman Oktovianus Gultom

    2014-07-01

    Full Text Available Microalgae harvesting is a labor- and energy-intensive process and new approaches to harvesting microalgae need to be developed in order to decrease the costs. In this study; co-cultivatation of filamentous fungus (Aspergillus niger and microalgae (Chlorella vulgaris to form cell pellets was evaluated under different conditions, including organic carbon source (glucose; glycerol; and sodium acetate concentration; initial concentration of fungal spores and microalgal cells and light. Results showed that 2 g/L of glucose with a 1:300 ratio of fungi to microalgae provided the best culturing conditions for the process to reach >90% of cell harvest efficiency. The results also showed that an organic carbon source was required to sustain the growth of fungi and form the cell pellets. The microalgae/fungi co-cultures at mixotrophic conditions obtained much higher total biomass than pure cultures of each individual strains; indicating the symbiotic relationship between two strains. This can benefit the microbial biofuel production in terms of cell harvest and biomass production.

  12. Enhancing effect of marine oligotrophy on environmental concentrations of particle-reactive trace elements

    International Nuclear Information System (INIS)

    Jeffree, R.A.; Szymczak, R.

    2000-01-01

    A biogeochemical model has been previously developed that explains the inverse and nonlinear relationship between Po-210 concentration in zooplankton and their biomass, under oligotrophic conditions in French Polynesia. In this study the model structure was reviewed to determine a set of biogeochemical behaviors of Po-210, proposed to be critical to its environmental enhancement under oligotrophy: this set was then used to identify 25 other elements with comparable behaviors to Po-210. Field investigation in the Timor Sea showed that four of these a priori identified elements, viz. Cd, Co, Pb, and Mn as well as Cr and Ni, showed elevated water concentrations with reduced particle removal rates in the euphotic zone, results that are consistent with those previously obtained for Po-210 and the proposed explanatory model. These findings point to the enhanced susceptibility to contamination with particle-reactive elements of oligotrophic marine systems, whose degree and geographic extent may be enhanced by projected increases in sea surface temperatures from global warming

  13. Effect of pre-harvest fruit bagging on post-harvest quality of guava cv. Swarupkathi

    Directory of Open Access Journals (Sweden)

    Md. Mokter Hossain

    2018-04-01

    The investigation was carried out at Germplasm Centre (BAU-GPC, Bangladesh Agricultural University, during March to July 2016 in order to investigate the effect of pre-harvest fruit bagging on post-harvest quality of guava cv. Swarupkathi. Four different bagging materials viz. brown paper bag, white paper bag, white polythene bag, black polythene bag included for the study and uncovered fruits were used as control treatment. The experiment was laid out in randomized complete block design with three replications. Fruit bagging treatments showed significant effects on different parameters studied. It was observed that fruit size, fruit weight, vitamin C concentration, and moisture content increased due to fruit bagging. Fruits were gained maximum in size (6.59 cm length, 5.86 cm diameter and weight (164.26 g under white paper bag followed by white polythene bag (131.3g. The skin color of fruits was very attractive in case of white paper bag than that of other treatments. Total soluble solid concentration of the fruit was found maximum (12.33% Brix under brown paper bag while maximum vitamin C concentration (162.14 mg 100 g-1 was recorded under white paper bag. Uncovered fruits showed maximum total sugar, non-reducing sugar, reducing sugar concentrations (10.13%, 6.05%, 4.08%, respectively.The results revealed that fruit bagging in general, improved the growth and quality of guava fruits as compared to control. Among the various fruit covering materials, white paper bag was found to be the best for overall improvement of physical and chemical quality of guava cv. Swarupkathi. [Fundam Appl Agric 2018; 3(1.000: 363-371

  14. A concentrated solar cavity absorber with direct heat transfer through recirculating metallic particles

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, M. R. I., E-mail: islamrabiul@yahoo.com; Saha, Manabendra, E-mail: manabendra.saha@adelaide.edu.au, E-mail: manab04me@gmail.com; Beg, R. A. [Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi-6204 (Bangladesh)

    2016-07-12

    A recirculating flow solar particle cavity absorber (receiver) is modeled to investigate the flow behavior and heat transfer characteristics of a novel developing concept. It features a continuous recirculating flow of non-reacting metallic particles (black silicon carbide) with air which are used as a thermal enhancement medium. The aim of the present study is to numerically investigate the thermal behavior and flow characteristics of the proposed concept. The proposed solar particle receiver is modeled using two phase discrete particle model (DPM), RNG k-flow model and discrete ordinate (DO) radiation model. Numerical analysis is carried out considering a solar receiver with only air and the mixture of non-reacting particles and air as a heat transfer as well as heat carrying medium. The parametric investigation is conducted considering the incident solar flux on the receiver aperture and changing air flow rate and recirculation rate inside the receiver. A stand-alone feature of the recirculating flow solar particle receiver concept is that the particles are directly exposed to concentrated solar radiation monotonously through recirculating flow inside the receiver and results in efficient irradiation absorption and convective heat transfer to air that help to achieve high temperature air and consequently increase in thermal efficiency. This paper presents, results from the developed concept and highlights its flow behavior and potential to enhance the heat transfer from metallic particles to air by maximizing heat carrying capacity of the heat transfer medium. The imposed milestones for the present system will be helpful to understand the radiation absorption mechanism of the particles in a recirculating flow based receiver, the thermal transport between the particles, the air and the cavity, and the fluid dynamics of the air and particle in the cavity.

  15. The contribution of lakes to global inland fisheries harvest

    Science.gov (United States)

    Deines, Andrew M.; Bunnell, David B.; Rogers, Mark W.; Bennion, David; Woelmer, Whitney; Sayers, Michael J.; Grimm, Amanda G.; Shuchman, Robert A.; Raymer, Zachary B.; Brooks, Colin N.; Mychek-Londer, Justin G.; Taylor, William W.; Beard, Douglas

    2017-01-01

    Freshwater ecosystems provide numerous services for communities worldwide, including irrigation, hydropower, and municipal water; however, the services provided by inland fisheries – nourishment, employment, and recreational opportunities – are often comparatively undervalued. We provide an independent estimate of global lake harvest to improve biological and socioeconomic assessments of inland fisheries. On the basis of satellite-derived estimates of chlorophyll concentration from 80,012 globally distributed lakes, lake-specific fishing effort based on human population, and output from a Bayesian hierarchical model, we estimated that the global lake fishery harvest in the year 2011 was 8.4 million tons (mt). Our calculations excluded harvests from highly productive rivers, wetlands, and very small lakes; therefore, the true cumulative global fishery harvest from all freshwater sources likely exceeded 11 mt as reported by the Food and Agriculture Organization of the United Nations (FAO). This putative underestimate by the FAO could diminish the perceived importance of inland fisheries and perpetuate decisions that adversely affect these fisheries and millions of people.

  16. Reduction of indoor particles concentration using re-circulating filtration units in Danish dwellings

    DEFF Research Database (Denmark)

    Spilak, Michal; Frederiksen, Marie; Karottki, Gabriela D.

    2012-01-01

    air was recirculated through the unit during two weeks in a randomized and double blinded design. The measurements included concentration of PM2.5 and ultrafine particles (UPC), carbon dioxide, temperature and relative humidity, ventilation, air flow through the unit, allergen and fungal levels....... Additional information was collected through questionnaires. Several medical tests were made, however the results are not included in this paper. Preliminary results showed significant decrease in PM2.5 concentration during the filtered period compared to placebo period. Likewise was UPC significantly lower...

  17. Enhanced Harvesting of Chlorella vulgaris Using Combined Flocculants.

    Science.gov (United States)

    Ma, Xiaochen; Zheng, Hongli; Zhou, Wenguang; Liu, Yuhuan; Chen, Paul; Ruan, Roger

    2016-10-01

    In this study, a novel flocculation strategy for harvesting Chlorella vulgaris with combined flocculants, poly (γ-glutamic acid) (γ-PGA) and calcium oxide (CaO), has been developed. The effect of flocculant dosage, the order of flocculant addition, mixing speed, and growth stage on the harvesting efficiency was evaluated. Results showed that the flocculation using combined flocculants significantly decreases the flocculant dosage and settling time compared with control. It was also found that CaO and γ-PGA influenced microalgal flocculation by changing the zeta potential of cells and pH of microalgal suspension. The most suitable order of flocculant addition was CaO first and then γ-PGA. The optimal mixing speed was 200 rpm for 0.5 min, followed by 50 rpm for another 4.5 min for CaO and γ-PGA with the highest flocculation efficiency of 95 % and a concentration factor of 35.5. The biomass concentration and lipid yield of the culture reusing the flocculated medium were similar to those when a fresh medium was used. Overall, the proposed method requires low energy input, alleviates biomass and water contamination, and reduces utilization of water resources and is feasible for harvesting C. vulgaris for biofuel and other bio-based chemical production.

  18. Tangential Flow Ultrafiltration Allows Purification and Concentration of Lauric Acid-/Albumin-Coated Particles for Improved Magnetic Treatment.

    Science.gov (United States)

    Zaloga, Jan; Stapf, Marcus; Nowak, Johannes; Pöttler, Marina; Friedrich, Ralf P; Tietze, Rainer; Lyer, Stefan; Lee, Geoffrey; Odenbach, Stefan; Hilger, Ingrid; Alexiou, Christoph

    2015-08-14

    Superparamagnetic iron oxide nanoparticles (SPIONs) are frequently used for drug targeting, hyperthermia and other biomedical purposes. Recently, we have reported the synthesis of lauric acid-/albumin-coated iron oxide nanoparticles SEON(LA-BSA), which were synthesized using excess albumin. For optimization of magnetic treatment applications, SPION suspensions need to be purified of excess surfactant and concentrated. Conventional methods for the purification and concentration of such ferrofluids often involve high shear stress and low purification rates for macromolecules, like albumin. In this work, removal of albumin by low shear stress tangential ultrafiltration and its influence on SEON(LA-BSA) particles was studied. Hydrodynamic size, surface properties and, consequently, colloidal stability of the nanoparticles remained unchanged by filtration or concentration up to four-fold (v/v). Thereby, the saturation magnetization of the suspension can be increased from 446.5 A/m up to 1667.9 A/m. In vitro analysis revealed that cellular uptake of SEON(LA-BSA) changed only marginally. The specific absorption rate (SAR) was not greatly affected by concentration. In contrast, the maximum temperature Tmax in magnetic hyperthermia is greatly enhanced from 44.4 °C up to 64.9 °C by the concentration of the particles up to 16.9 mg/mL total iron. Taken together, tangential ultrafiltration is feasible for purifying and concentrating complex hybrid coated SPION suspensions without negatively influencing specific particle characteristics. This enhances their potential for magnetic treatment.

  19. Effects of concentrated ambient particles on normal and hypersecretory airways in rats.

    Science.gov (United States)

    Harkema, Jack R; Keeler, Gerald; Wagner, James; Morishita, Masako; Timm, Edward; Hotchkiss, Jon; Marsik, Frank; Dvonch, Timothy; Kaminski, Norbert; Barr, Edward

    2004-08-01

    .5 from this local urban atmosphere. Rats in the inhalation studies were exposed for 1 day or for 4 or 5 consecutive days (10 hours/day) to either filtered air (controls) or concentrated ambient particles (CAPs) delivered by a Harvard ambient fine particle concentrator. Rats were killed 24 hours after the end of the exposure. Biochemical, morphometric, and molecular techniques were used to identify airway epithelial and inflammatory responses to CAPs. Lung lobes were also either intratracheally lavaged with saline to determine cellular composition and protein in bronchoalveolar lavage fluid (BALF) or removed for analysis by inductively coupled plasma-mass spectrometry (ICPMS) to detect retention of ambient PM2.5--derived trace elements. The Harvard concentrator effectively concentrated the fine ambient particles from this urban atmosphere (10-30 times) without significantly changing the major physicochemical features of the atmospheric particles. Daily CAPs mass concentrations during the 10-hour exposure period (0800-1800) in July ranged from 16 to 895 microg/m3 and in September ranged from 81 to 755 microg/m3. In general, chemical characteristics of ambient particles were conserved through the concentrator into the exposure chamber. Single or repeated exposures to CAPs did not cause adverse effects in the nasal or pulmonary airways of healthy F344 or BN rats. In addition, CAPs-related toxicity was not observed in F344 rats pretreated with bacterial endotoxin. Variable airway responses to CAPs exposure were observed in BN rats with preexisting allergic airway disease induced by OVA sensitization and challenge. Only OVA-challenged BN rats exposed to CAPs for 5 consecutive days in September 2000 had significant increases in airway mucosubstances and pulmonary inflammation compared to saline-challenged/air-exposed control rats. OVA-challenged BN rats that were repeatedly exposed to CAPs in July 2000 had only minor CAPs-related effects. In only the September 5-day exposure

  20. Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories

    Directory of Open Access Journals (Sweden)

    J. Schmale

    2018-02-01

    Full Text Available Aerosol–cloud interactions (ACI constitute the single largest uncertainty in anthropogenic radiative forcing. To reduce the uncertainties and gain more confidence in the simulation of ACI, models need to be evaluated against observations, in particular against measurements of cloud condensation nuclei (CCN. Here we present a data set – ready to be used for model validation – of long-term observations of CCN number concentrations, particle number size distributions and chemical composition from 12 sites on 3 continents. Studied environments include coastal background, rural background, alpine sites, remote forests and an urban surrounding. Expectedly, CCN characteristics are highly variable across site categories. However, they also vary within them, most strongly in the coastal background group, where CCN number concentrations can vary by up to a factor of 30 within one season. In terms of particle activation behaviour, most continental stations exhibit very similar activation ratios (relative to particles  > 20 nm across the range of 0.1 to 1.0 % supersaturation. At the coastal sites the transition from particles being CCN inactive to becoming CCN active occurs over a wider range of the supersaturation spectrum. Several stations show strong seasonal cycles of CCN number concentrations and particle number size distributions, e.g. at Barrow (Arctic haze in spring, at the alpine stations (stronger influence of polluted boundary layer air masses in summer, the rain forest (wet and dry season or Finokalia (wildfire influence in autumn. The rural background and urban sites exhibit relatively little variability throughout the year, while short-term variability can be high especially at the urban site. The average hygroscopicity parameter, κ, calculated from the chemical composition of submicron particles was highest at the coastal site of Mace Head (0.6 and lowest at the rain forest station ATTO (0.2–0.3. We performed closure

  1. Relationships between harvest time and wine composition in Vitis vinifera L. cv. Cabernet Sauvignon 1. Grape and wine chemistry.

    Science.gov (United States)

    Bindon, Keren; Varela, Cristian; Kennedy, James; Holt, Helen; Herderich, Markus

    2013-06-01

    The study aimed to quantify the effects of grape maturity on wine alcohol, phenolics, flavour compounds and polysaccharides in Vitis vinifera L. cv Cabernet Sauvignon. Grapes were harvested at juice soluble solids from 20 to 26 °Brix which corresponded to a range of wine ethanol concentrations between 12% and 15.5%. Grape anthocyanin and skin tannin concentration increased as ripening progressed, while seed tannin declined. In the corresponding wines, monomeric anthocyanin and wine tannin concentration increased with harvest date, consistent with an enhanced extraction of skin-derived phenolics. In wines, there was an observed increase in yeast-derived metabolites, including volatile esters, dimethyl sulfide, glycerol and mannoproteins with harvest date. Wine volatiles which were significantly influenced by harvest date were isobutyl methoxypyrazine, C(6) alcohols and hexyl acetate, all of which decreased as ripening progressed. The implications of harvest date for wine composition is discussed in terms of both grape composition and yeast metabolism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Concentration, size distribution and dry deposition of amines in atmospheric particles of urban Guangzhou, China

    Science.gov (United States)

    Liu, Fengxian; Bi, Xinhui; Zhang, Guohua; Peng, Long; Lian, Xiufeng; Lu, Huiying; Fu, Yuzhen; Wang, Xinming; Peng, Ping'an; Sheng, Guoying

    2017-12-01

    Size-segregated PM10 samples were collected in Guangzhou, China during autumn of 2014. Nine amines, including seven aliphatic amines and two heterocyclic amines, were detected using a gas chromatography-mass spectrometer after derivatization by benzenesulfonyl chloride. The total concentration of the nine amines (Ʃamines) was 79.6-140.9 ng m-3 in PM10. The most abundant species was methylamine (MA), which had a concentration of 29.2-70.1 ng m-3. MA, dimethylamine (DMA), diethylamine (DEA) and dibutylamine (DBA) were the predominant amines in the samples and accounted for approximately 80% of Ʃamines in each size segment. Two heterocyclic amines, pyrrolidine (PYR) and morpholine (MOR), were detected in all samples and had average concentrations of 1.14 ± 0.37 and 1.89 ± 0.64 ng m-3, respectively, in particles with aerodynamic diameters ammonium ranged from 0.0068 to 0.0107 in particles with diameters <1.5 μm, and the maximum ratio occurred in the smallest particles (diameter< 0.49 μm). The average dry deposition flux and velocity of Ʃamines in PM10 were 7.9 ± 1.6 μg m-2 d-1 and 0.084 ± 0.0021 cm s-1, respectively. The results of this study provide essential information on the contribution of amines to secondary organic aerosols and dry removal mechanisms in urban areas.

  3. Improvement in mechanical properties of high concentration particle doped thermoset composites

    International Nuclear Information System (INIS)

    Ahmed, N.

    2009-01-01

    The paper relates to high concentration particle doped composites based on thermosetting polymer systems in which the sequential addition of particles of certain size distribution is followed by curing and casting of the slurry to form a thermoset composite. Conventionally, at a threshold of beyond 90% of particles by weight of the polymer using triglyceride, the mechanical properties of the composite exhibit a sharp decline. The present research mitigates this behavior by incorporating a unique combination of cross-linking agents in the base polymer to impart exceptional mechanical properties to the composite. More specifically, the base polymer consists of butadiene, with triglyceride as cross-linking agent together with hydroxy-alkane as the chain extension precursors, when tune to the appropriate level of hard segment ratio in the polymer. An added advantage according to the present work resides in the analytical nature of butadiene pre-polymer as opposed to natural product; traditional composites based on natural sources are hampered by their inconsistent chemical composition and poor shelf life in the fabricated composite. The thermoset composite according the present research exhibits superior tensile strength (200-300 psi) properties using particle loading as high as 92% by weight of the fabricated composite as measured on a Tinius Olsen machine. Dynamic Mechanical Testing reveals interesting combination of storage and loss moduli in the fabricated specimens as a function of optimizing the thermal response of the viscoelastic composite to imposed vibration loading. (author)

  4. Characterisation of particle mass and number concentration on the east coast of the Malaysian Peninsula during the northeast monsoon

    Science.gov (United States)

    Dominick, Doreena; Latif, Mohd Talib; Juneng, Liew; Khan, Md Firoz; Amil, Norhaniza; Mead, Mohammed Iqbal; Nadzir, Mohd Shahrul Mohd; Moi, Phang Siew; Samah, Azizan Abu; Ashfold, Matthew J.; Sturges, William T.; Harris, Neil R. P.; Robinson, Andrew D.; Pyle, John A.

    2015-09-01

    Particle mass concentrations (PM10, PM2.5 and PM1) and particle number concentration ((PNC); 0.27 μm ≤ Dp ≤ 34.00 μm) were measured in the tropical coastal environment of Bachok, Kelantan on the Malaysian Peninsula bordering the southern edge of the South China Sea. Statistical methods were applied on a three-month hourly data set (9th January to 24th March 2014) to study the influence of north-easterly winds on the patterns of particle mass and PNC size distributions. The 24-h concentrations of particle mass obtained in this study were below the standard values detailed by the Recommended Malaysian Air Quality Guideline (RMAQG), United States Environmental Protection Agency (US EPA) and European Union (EU) except for PM2.5, which recorded a 24-h average of 30 ± 18 μg m-3 and exceeded the World Health Organisation (WHO) threshold value (25 μg m-3). Principal component analysis (PCA) revealed that PNC with smaller diameter sizes (0.27-4.50 μm) showed a stronger influence, accounting for 57.6% of the variability in PNC data set. Concentrations of both particle mass and PNC increased steadily in the morning with a distinct peak observed at around 8.00 h, related to a combination of dispersion of accumulated particles overnight and local traffic. In addition to local anthropogenic, agricultural burning and forest fire activities, long-range transport also affects the study area. Hotspot and backward wind trajectory observations illustrated that the biomass burning episode (around February-March) significantly influenced PNC. Meteorological parameters influenced smaller size particles (i.e. PM1 and Dp (0.27-0.43 μm)) the most.

  5. Temperature dependence of the particle/gas partition coefficient: An application to predict indoor gas-phase concentrations of semi-volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wenjuan, E-mail: Wenjuan.Wei@cstb.fr [University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2 (France); Mandin, Corinne [University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2 (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); Blanchard, Olivier [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Mercier, Fabien [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Pelletier, Maud [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Le Bot, Barbara [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); and others

    2016-09-01

    The indoor gas-phase concentrations of semi-volatile organic compounds (SVOCs) can be predicted from their respective concentrations in airborne particles by applying the particle/gas partitioning equilibrium. The temperature used for partitioning is often set to 25 °C. However, indoor temperatures frequently differ from this reference value. This assumption may result in errors in the predicted equilibrium gas-phase SVOC concentrations. To improve the prediction model, the temperature dependence of the particle/gas partition coefficient must be addressed. In this paper, a theoretical relationship between the particle/gas partition coefficient and temperature was developed based on the SVOC absorptive mechanism. The SVOC particle/gas partition coefficients predicted by employing the derived theoretical relationship agree well with the experimental data retrieved from the literature (R > 0.93). The influence of temperature on the equilibrium gas-phase SVOC concentration was quantified by a dimensionless analysis of the derived relationship between the SVOC particle/gas partition coefficient and temperature. The predicted equilibrium gas-phase SVOC concentration decreased by between 31% and 53% when the temperature was lowered by 6 °C, while it increased by up to 750% when the indoor temperature increased from 15 °C to 30 °C. - Highlights: • A theoretical relationship between K{sub p} and temperature was developed. • The relationship was based on the SVOC absorptive mechanism. • The temperature impact was quantified by a dimensionless analysis.

  6. Post-harvest physiology

    Science.gov (United States)

    Weather and management constraints, as well as the intended use of the harvested forage, all influence the forage harvest system selected by the producer. Generally, maximum retention of dry matter from harvested forage crops is achieved at moistures intermediate between the standing fresh crop and ...

  7. Simultaneous measurement of local particle movement, solids concentrations and bubble properties in fluidized bed reactors using a novel fiber optical technique

    Energy Technology Data Exchange (ETDEWEB)

    Tayebi, Davoud

    1999-12-31

    This thesis develops a new method for simultaneous measurements of local flow properties in highly concentrated multiphase flow systems such as gas-solid fluidized bed reactors. The method is based on fiber optical technique and tracer particles. A particle present in the measuring volume in front of the probe is marked with a fluorescent dye. A light source illuminates the particles and the detecting fibres receive reflected light from uncoated particles and fluorescent light from the tracer particle. Using optical filters, the fluorescent light can be distinguished and together with a small fraction of background light from uncoated particles can be used for determination of local flow properties. Using this method, one can simultaneously measure the local movement of a single tracer particle, local bubble properties and the local solids volume fractions in different positions in the bed. The method is independent of the physical properties of the tracer particles. It is also independent of the local solids concentrations in the range of 0 to 60 vol.-%, but is mainly designed for highly concentrated flow systems. A computer programme that uses good signals from at least three sensors simultaneously to calculate the tracer particle velocity in two dimensions have been developed. It also calculates the bubble properties and local solids volume fractions from the same time series. 251 refs., 150 figs., 5 tabs.

  8. Simultaneous measurement of local particle movement, solids concentrations and bubble properties in fluidized bed reactors using a novel fiber optical technique

    Energy Technology Data Exchange (ETDEWEB)

    Tayebi, Davoud

    1998-12-31

    This thesis develops a new method for simultaneous measurements of local flow properties in highly concentrated multiphase flow systems such as gas-solid fluidized bed reactors. The method is based on fiber optical technique and tracer particles. A particle present in the measuring volume in front of the probe is marked with a fluorescent dye. A light source illuminates the particles and the detecting fibres receive reflected light from uncoated particles and fluorescent light from the tracer particle. Using optical filters, the fluorescent light can be distinguished and together with a small fraction of background light from uncoated particles can be used for determination of local flow properties. Using this method, one can simultaneously measure the local movement of a single tracer particle, local bubble properties and the local solids volume fractions in different positions in the bed. The method is independent of the physical properties of the tracer particles. It is also independent of the local solids concentrations in the range of 0 to 60 vol.-%, but is mainly designed for highly concentrated flow systems. A computer programme that uses good signals from at least three sensors simultaneously to calculate the tracer particle velocity in two dimensions have been developed. It also calculates the bubble properties and local solids volume fractions from the same time series. 251 refs., 150 figs., 5 tabs.

  9. Harvesting energy from airflow with a michromachined piezoelectric harvester inside a Helmholtz resonator

    International Nuclear Information System (INIS)

    Matova, S P; Elfrink, R; Vullers, R J M; Van Schaijk, R

    2011-01-01

    In this paper we report an airflow energy harvester that combines a piezoelectric energy harvester with a Helmholtz resonator. The resonator converts airflow energy to air oscillations which in turn are converted into electrical energy by a piezoelectric harvester. Two Helmholtz resonators with adjustable resonance frequencies have been designed—one with a solid bottom and one with membrane on the bottom. The resonance frequencies of the resonators were matched to the complementing piezoelectric harvesters during harvesting. The aim of the presented work is a feasibility study on using packaged piezoelectric energy harvesters with Helmholtz resonators for airflow energy harvesting. The maximum energy we were able to obtain was 42.2 µW at 20 m s −1

  10. Concentration of circulating miRNA-containing particles in serum enhances miRNA detection and reflects CRC tissue-related deregulations.

    Science.gov (United States)

    ElSharawy, Abdou; Röder, Christian; Becker, Thomas; Habermann, Jens K; Schreiber, Stefan; Rosenstiel, Philip; Kalthoff, Holger

    2016-11-15

    The emerging potential of miRNAs as biomarkers for cancer detection demands parallel evaluation of strategies for reliable identification of disease-related signatures from easily accessible and pertinent body compartments. Here, we addressed whether efficient concentration of circulating miRNA-carrying particles is a rationale for miRNA biomarker discovery. We systematically compared miRNA signatures in 93 RNA preparations from three serum entities (whole serum, particle-concentrated, and particle-depleted fractions) and corresponding tissue samples from patients with colorectal cancer (CRC) as a model disease. Significant differences between whole sera and particle-concentrated serum fractions of CRC patients emerged for 45 of 742 tested miRNAs. Twenty-eight of these 45 miRNAs were differentially expressed between particle-concentrated serum fractions of metastatic CRC- and healthy individuals. Over half of these candidates (15 of 28) showed deregulations only in concentrated serum fractions, but not in whole sera, compared to the respective controls.Our results also provided evidence of a consistent downregulation of miR-486 and miR-92a, and further showed a possible "strand-specific" deregulation of extracellular miRNAs in CRC. More importantly, most of the identified miRNAs in the enriched sera reflected the patterns of the corresponding tumor tissues and showed links to cancer-related inflammation. Further investigation of seven serum pools revealed a subset of potential extracellular miRNA candidates to be implicated in both neoplastic and inflammatory bowel disease.Our findings demonstrate that enrichment and sensitive detection of miRNA carriers is a promising approach to detect CRC-related pathological changes in liquid biopsies, and has potential for clinical diagnostics.

  11. Tryptanthrin content in Isatis tinctoria leaves--a comparative study of selected strains and post-harvest treatments.

    Science.gov (United States)

    Oberthür, Christine; Hamburger, Matthias

    2004-07-01

    Tryptanthrin is a pharmacologically active compound in the anti-inflammatory herb Isatis tinctoria, with potent inhibitory activity on prostaglandin and leukotriene synthesis and on inducible NO synthase. The tryptanthrin content of five defined woad strains was analyzed in dependence of the time of harvest and post-harvest treatment. Tryptanthrin was determined by a validated ESI-LC-MS isotope dilution assay with d(8)-tryptanthrin as internal standard. The tryptanthrin concentration in freeze-dried leaf samples was low. Drying at ambient temperature led to a significant increase of tryptanthrin concentration, but the highest concentrations were found when leaves were dried at 40 degrees C. Tryptanthrin content in fermented woad leaves was below the limit of quantification. Tryptanthrin appears thus to be a product of post-harvest processes, but details of its formation remain to be elucidated.

  12. Methyl Jasmonate and 1-Methylcyclopropene Treatment Effects on Quinone Reductase Inducing Activity and Post-Harvest Quality of Broccoli

    Science.gov (United States)

    Ku, Kang Mo; Choi, Jeong Hee; Kim, Hyoung Seok; Kushad, Mosbah M.; Jeffery, Elizabeth H.; Juvik, John A.

    2013-01-01

    Effect of pre-harvest methyl jasmonate (MeJA) and post-harvest 1-methylcyclopropene (1-MCP) treatments on broccoli floret glucosinolate (GS) concentrations and quinone reductase (QR, an in vitro anti-cancer biomarker) inducing activity were evaluated two days prior to harvest, at harvest and at 10, 20, and 30 days of post-harvest storage at 4 °C. MeJA treatments four days prior to harvest of broccoli heads was observed to significantly increase floret ethylene biosynthesis resulting in chlorophyll catabolism during post-harvest storage and reduced product quality. Post-harvest treatment with 1-methylcyclopropene (1-MCP), which competitively binds to protein ethylene receptors, maintained post-harvest floret chlorophyll concentrations and product visual quality in both control and MeJA-treated broccoli. Transcript abundance of BoPPH, a gene which is responsible for the synthesis of pheophytinase, the primary enzyme associated with chlorophyll catabolism in broccoli, was reduced by 1-MCP treatment and showed a significant, negative correlation with floret chlorophyll concentrations. The GS, glucobrassicin, neoglucobrassicin, and gluconasturtiin were significantly increased by MeJA treatments. The products of some of the GS from endogenous myrosinase hydrolysis [sulforaphane (SF), neoascorbigen (NeoASG), N-methoxyindole-3-carbinol (NI3C), and phenethyl isothiocyanate (PEITC)] were also quantified and found to be significantly correlated with QR. Sulforaphane, the isothiocyanate hydrolysis product of the GS glucoraphanin, was found to be the most potent QR induction agent. Increased sulforaphane formation from the hydrolysis of glucoraphanin was associated with up-regulated gene expression of myrosinase (BoMyo) and the myrosinase enzyme co-factor gene, epithiospecifier modifier1 (BoESM1). This study demonstrates the combined treatment of MeJA and 1-MCP increased QR activity without post-harvest quality loss. PMID:24146962

  13. Effect of particle size distribution and concentration on flow behavior of dense slurries

    Czech Academy of Sciences Publication Activity Database

    Vlasák, Pavel; Chára, Zdeněk

    2011-01-01

    Roč. 29, č. 1 (2011), s. 53-65 ISSN 0272-6351 R&D Projects: GA ČR(CZ) GAP105/10/1574 Institutional research plan: CEZ:AV0Z20600510 Keywords : concentration effect * dense complex slurry * experimental investigation * flow behavior * particle size distribution effect * pressure drop Subject RIV: BK - Fluid Dynamics Impact factor: 0.545, year: 2011

  14. Helical Piezoelectric Energy Harvester and Its Application to Energy Harvesting Garments

    Directory of Open Access Journals (Sweden)

    Minsung Kim

    2017-04-01

    Full Text Available In this paper, we propose a helical piezoelectric energy harvester, examine its application to clothes in the form of an energy harvesting garment, and analyze its design and characteristics. The helical harvester is composed of an elastic core and a polymer piezoelectric strap twining the core. The fabricated harvester is highly elastic and can be stretched up to 158% of its initial length. Following the experiments using three different designs, the maximum output power is measured as 1.42 mW at a 3 MΩ load resistance and 1 Hz motional frequency. The proposed helical harvesters are applied at four positions of stretchable tight-fitting sportswear, namely shoulder, arm joint, knee, and hip. The maximum output voltage is measured as more than 20 V from the harvester at the knee position during intended body motions. In addition, electric power is also generated from this energy harvesting garment during daily human motions, which is about 3.9 V at the elbow, 3.1 V at the knee, and 4.4 V at the knee during push-up, walking, and squatting motions, respectively.

  15. Effect of size and concentration of silt particles on erosion of Pelton turbine buckets

    Energy Technology Data Exchange (ETDEWEB)

    Padhy, M.K.; Saini, R.P. [Alternate Hydro Energy Centre, Indian Institute of Technology Roorkee, Roorkee (India)

    2009-10-15

    Erosive wear of hydro turbine runners depends upon different parameters such as size, hardness and concentration of silt particles, velocity of flow, properties of the base material of the turbine components and operating hours of the turbine. Various researchers have conducted experiments to study the effect of these parameters on erosive wear. Most of these experiments were on small-size samples at different types of test rigs to simulate the flow conditions in turbines, however actual flow conditions and the phenomenon of erosive wear are too complex to simulate. Under the present study, effect of these parameters on erosion in actual conditions has been investigated experimentally. An extensive experimental study has been carried out on a small scale Pelton turbine. Based on the experimental data collected for different parameters, correlations have been developed for wear rate of Pelton turbine buckets as a function of critical parameters, i.e., size and concentration of silt particles and jet velocity. (author)

  16. Particle concentrating and sorting under a rotating electric field by direct optical-liquid heating in a microfluidics chip.

    Science.gov (United States)

    Chen, Yu-Liang; Jiang, Hong-Ren

    2017-05-01

    We demonstrate a functional rotating electrothermal technique for rapidly concentrating and sorting a large number of particles on a microchip by the combination of particle dielectrophoresis (DEP) and inward rotating electrothermal (RET) flows. Different kinds of particles can be attracted (positive DEP) to or repelled (negative DEP) from electrode edges, and then the n-DEP responsive particles are further concentrated in the heated region by RET flows. The RET flows arise from the spatial inhomogeneous electric properties of fluid caused by direct infrared laser (1470 nm) heating of solution in a rotating electric field. The direction of the RET flows is radially inward to the heated region with a co-field (the same as the rotating electric field) rotation. Moreover, the velocity of the RET flows is proportional to the laser power and the square of the electric field strength. The RET flows are significant over a frequency range from 200 kHz to 5 MHz. The RET flows are generated by the simultaneous application of the infrared laser and the rotating electric field. Therefore, the location of particle concentrating can be controlled within the rotating electric field depending on the position of the laser spot. This multi-field technique can be operated in salt solutions and at higher frequency without external flow pressure, and thus it can avoid electrokinetic phenomena at low frequency to improve the manipulation accuracy for lab-on-chip applications.

  17. Improved concentration and separation of particles in a 3D dielectrophoretic chip integrating focusing, aligning and trapping

    KAUST Repository

    Li, Ming

    2012-10-18

    This article presents a dielectrophoresis (DEP)-based microfluidic device with the three-dimensional (3D) microelectrode configuration for concentrating and separating particles in a continuous throughflow. The 3D electrode structure, where microelectrode array are patterned on both the top and bottom surfaces of the microchannel, is composed of three units: focusing, aligning and trapping. As particles flowing through the microfluidic channel, they are firstly focused and aligned by the funnel-shaped and parallel electrode array, respectively, before being captured at the trapping unit due to negative DEP force. For a mixture of two particle populations of different sizes or dielectric properties, with a careful selection of suspending medium and applied field, the population exhibits stronger negative DEP manipulated by the microelectrode array and, therefore, separated from the other population which is easily carried away toward the outlet due to hydrodynamic force. The functionality of the proposed microdevice was verified by concentrating different-sized polystyrene (PS) microparticles and yeast cells dynamically flowing in the microchannel. Moreover, separation based on size and dielectric properties was achieved by sorting PS microparticles, and isolating 5 μm PS particles from yeast cells, respectively. The performance of the proposed micro-concentrator and separator was also studied, including the threshold voltage at which particles begin to be trapped, variation of cell-trapping efficiency with respect to the applied voltage and flow rate, and the efficiency of separation experiments. The proposed microdevice has various advantages, including multi-functionality, improved manipulation efficiency and throughput, easy fabrication and operation, etc., which shows a great potential for biological, chemical and medical applications. © 2012 Springer-Verlag Berlin Heidelberg.

  18. Physicochemical characterization of Capstone depleted uranium aerosols I: uranium concentration in aerosols as a function of time and particle size.

    Science.gov (United States)

    Parkhurst, Mary Ann; Cheng, Yung Sung; Kenoyer, Judson L; Traub, Richard J

    2009-03-01

    During the Capstone Depleted Uranium (DU) Aerosol Study, aerosols containing DU were produced inside unventilated armored vehicles (i.e., Abrams tanks and Bradley Fighting Vehicles) by perforation with large-caliber DU penetrators. These aerosols were collected and characterized, and the data were subsequently used to assess human health risks to personnel exposed to DU aerosols. The DU content of each aerosol sample was first quantified by radioanalytical methods, and selected samples, primarily those from the cyclone separator grit chambers, were analyzed radiochemically. Deposition occurred inside the vehicles as particles settled on interior surfaces. Settling rates of uranium from the aerosols were evaluated using filter cassette samples that collected aerosol as total mass over eight sequential time intervals. A moving filter was used to collect aerosol samples over time, particularly within the first minute after a shot. The results demonstrate that the peak uranium concentration in the aerosol occurred in the first 10 s after perforation, and the concentration decreased in the Abrams tank shots to about 50% within 1 min and to less than 2% after 30 min. The initial and maximum uranium concentrations were lower in the Bradley vehicle than those observed in the Abrams tank, and the concentration levels decreased more slowly. Uranium mass concentrations in the aerosols as a function of particle size were evaluated using samples collected in a cyclone sampler, which collected aerosol continuously for 2 h after perforation. The percentages of uranium mass in the cyclone separator stages ranged from 38 to 72% for the Abrams tank with conventional armor. In most cases, it varied with particle size, typically with less uranium associated with the smaller particle sizes. Neither the Abrams tank with DU armor nor the Bradley vehicle results were specifically correlated with particle size and can best be represented by their average uranium mass concentrations of 65

  19. Rainwater harvesting - An investigation into the potential for rainwater harvesting in Bradford

    OpenAIRE

    Doncaster, S.; Blanksby, J.; Shepherd, W.

    2012-01-01

    This report provides a brief review of rainwater harvesting and rainwater harvesting tools, which are then used in case study examples for domestic, office block and warehouse rain water harvesting scenarios. Rainwater harvesting is placed in an historical context as a source of water supply and in a modern context as being complementary to centralised water distribution networks with benefits for wider water management including flood risk treatment as well as providing environmental and eco...

  20. Determining the most effective concentration of cypermethrin and the appropriate carrier particle size for fire ant (Hymenoptera: Formicidae) bait.

    Science.gov (United States)

    Kafle, Lekhnath; Shih, Cheng-Jen

    2012-03-01

    The purpose of this study was to determine the most effective particle size of DDGS (distiller's dried grains with solubles) as fire ant bait carrier, as well as the most effective concentration of cypermethrin as a toxicant against the red imported fire ant (RIFA) Solenopsis invicta Buren under laboratory conditions. The DDGS particle size did not affect the fire ant's preference for the bait, but it did affect the mass of DDGS being carried back to the nest. The size of the DDGS particles and the mass of DDGS being carried back to the nest were positively correlated. The most efficient particle size of DDGS was 0.8-2 mm. The concentration of cypermethrin has a specific range for killing fire ants in an efficient manner. Neither a very low nor a very high concentration of cypermethrin was able to kill fire ants efficiently. The most effective concentration of cypermethrin was 0.13% in DDGS when mixed with 15% shrimp shell powders and 11% soybean oil. Based on its ability to kill fire ants when mixed with cypermethrin, as well as the advantage of having a larger area coverage when sprayed in the field, DDGS as the carrier and cypermethrin as the toxicant can be considered to be an efficient way to prepare fire ant bait for controlling fire ants in infested areas. Copyright © 2012 Society of Chemical Industry.

  1. Bundling harvester; Nippukorjausharvesteri

    Energy Technology Data Exchange (ETDEWEB)

    Koponen, K [Eko-Log Oy, Kuopio (Finland)

    1997-12-31

    The staring point of the project was to design and construct, by taking the silvicultural point of view into account, a harvesting and processing system especially for energy-wood, containing manually driven bundling harvester, automatizing of the harvester, and automatized loading. The equipment forms an ideal method for entrepreneur`s-line harvesting. The target is to apply the system also for owner`s-line harvesting. The profitability of the system promotes the utilization of the system in both cases. The objectives of the project were: to construct a test equipment and prototypes for all the project stages, to carry out terrain and strain tests in order to examine the usability and durability, as well as the capacity of the machine, to test the applicability of the Eko-Log system in simultaneous harvesting of energy and pulp woods, and to start the marketing and manufacturing of the products. The basic problems of the construction of the bundling harvester have been solved using terrain-tests. The prototype machine has been shown to be operable. Loading of the bundles to form sufficiently economically transportable loads has been studied, and simultaneously, the branch-biomass has been tried to be utilized without loosing the profitability of transportation. The results have been promising, and will promote the profitable utilization of wood-energy

  2. Bundling harvester; Nippukorjausharvesteri

    Energy Technology Data Exchange (ETDEWEB)

    Koponen, K. [Eko-Log Oy, Kuopio (Finland)

    1996-12-31

    The staring point of the project was to design and construct, by taking the silvicultural point of view into account, a harvesting and processing system especially for energy-wood, containing manually driven bundling harvester, automatizing of the harvester, and automatized loading. The equipment forms an ideal method for entrepreneur`s-line harvesting. The target is to apply the system also for owner`s-line harvesting. The profitability of the system promotes the utilization of the system in both cases. The objectives of the project were: to construct a test equipment and prototypes for all the project stages, to carry out terrain and strain tests in order to examine the usability and durability, as well as the capacity of the machine, to test the applicability of the Eko-Log system in simultaneous harvesting of energy and pulp woods, and to start the marketing and manufacturing of the products. The basic problems of the construction of the bundling harvester have been solved using terrain-tests. The prototype machine has been shown to be operable. Loading of the bundles to form sufficiently economically transportable loads has been studied, and simultaneously, the branch-biomass has been tried to be utilized without loosing the profitability of transportation. The results have been promising, and will promote the profitable utilization of wood-energy

  3. The effect of growth regulators on post-harvest Alchemilla mollis (Bauser Rothm. leaf longevity

    Directory of Open Access Journals (Sweden)

    Janowska Beata

    2016-12-01

    Full Text Available Leaves of Alchemilla mollis (Bauser Rothm. were the subject of the study. The leaves were harvested early in the morning from the department’s ornamental plant collection. Selected leaves were fully-developed and showed no signs of damage or discolouring. Gibberellic acid (GA3, benzyladenine (BA, meta-methoxytopolin (MemT and its riboside (MemTR at concentrations of 25, 50 and 75 mg dm−3 were applied in the form of solutions to four-hour leaf-conditioning in the room at a temperature of 18-20°C. After conditioning, the leaves were placed in distilled water. Leaves put into distilled water immediately after cutting served as the control. The post-harvest longevity of leaves of Alchemilla mollis was 7.2-11.8 days. The conditioning of leaves in gibberellic acid solutions at concentrations of 25-50 mg dm−3, benzyladenine at concentrations of 25 mg dm−3 and meta-methoxytopolin and its riboside at concentrations of 75 mg dm−3 extended the post-harvest longevity of leaves by 10.1-81.9%. The conditioning of leaves in gibberellic acid at a concentration of 50 mg dm−3 inhibited the degradation of chlorophyll, as indicated by the highest SPAD index values.

  4. Optimization Design and Simulation of a Multi-Source Energy Harvester Based on Solar and Radioisotope Energy Sources

    Directory of Open Access Journals (Sweden)

    Hao Li

    2016-12-01

    Full Text Available A novel multi-source energy harvester based on solar and radioisotope energy sources is designed and simulated in this work. We established the calculation formulas for the short-circuit current and open-circuit voltage, and then studied and analyzed the optimization thickness of the semiconductor, doping concentration, and junction depth with simulation of the transport process of β particles in a semiconductor material using the Monte Carlo simulation program MCNP (version 5, Radiation Safety Information Computational Center, Oak Ridge, TN, USA. In order to improve the efficiency of converting solar light energy into electric power, we adopted PC1D (version 5.9, University of New South Wales, Sydney, Australia to optimize the parameters, and selected the best parameters for converting both the radioisotope energy and solar energy into electricity. The results concluded that the best parameters for the multi-source energy harvester are as follows: Na is 1 × 1019 cm−3, Nd is 3.8 × 1016 cm−3, a PN junction depth of 0.5 μm (using the 147Pm radioisotope source, and so on. Under these parameters, the proposed harvester can achieve a conversion efficiency of 5.05% for the 147Pm radioisotope source (with the activity of 9.25 × 108 Bq and 20.8% for solar light radiation (AM1.5. Such a design and parameters are valuable for some unique micro-power fields, such as applications in space, isolated terrestrial applications, and smart dust in battlefields.

  5. Trends in size classified particle number concentration in subtropical Brisbane, Australia, based on a 5 year study

    Science.gov (United States)

    Mejía, J. F.; Wraith, D.; Mengersen, K.; Morawska, L.

    Particle number size distribution data in the range from 0.015 to 0.630 μm were collected over a 5-year period in the central business district (CBD) of Brisbane, Australia. Particle size distribution was summarised by total number concentration and number median diameter (NMD) as well as the number concentration of the 0.015-0.030 ( N15-30), 0.030-0.050 ( N30-50), 0.050-0.100 ( N50-100), 0.100-0.300 ( N100-300) and 0.300-0.630 ( N300-630) μm size classes. Morning (6:00-10:00) and afternoon (16:00-19:00) measurements, the former representing fresh traffic emissions (based on the local meteorological conditions) and the latter well-mixed emissions from the CBD, during weekdays were extracted and the respective monthly mean values were estimated for time series analysis. For all size fractions, average morning concentrations were about 1.5 higher than in the afternoon whereas NMD did not vary between the morning and afternoon. The trend and seasonal components were extracted through weighted linear regression models, using the monthly variance as weights. Only the morning measurements exhibited significant trends. During this time of the day, total particle number increased by 105.7% and the increase was greater for larger particles, resulting in a shift in NMD by 7.9%. Although no seasonal component was detected the evidence against it remained weak due to the limitations of the database.

  6. Comparison of sources of submicron particle number concentrations measured at two sites in Rochester, NY.

    Science.gov (United States)

    Kasumba, John; Hopke, Philip K; Chalupa, David C; Utell, Mark J

    2009-09-01

    Sources contributing to the submicron particles (100-470 nm) measured between January 2002 and December 2007 at two different New York State Department of Environmental Conservation (NYS DEC) sites in Rochester, NY were identified and apportioned using a bilinear receptor model, positive matrix factorization (PMF). Measurements of aerosol size distributions and number concentrations for particles in the size range of 10-500 nm have been made since December 2001 to date in Rochester. The measurements are being made using a scanning mobility particle sizer (SMPS) consisting of a DMA and a CPC (TSI models 3071 and 3010, respectively). From December 2001 to March 2004, particle measurements were made at the NYS DEC site in downtown Rochester, but it was moved to the eastside of Rochester in May 2004. Each measurement period was divided into three seasons i.e., winter (December, January, and February), summer (June, July, and August), and the transitional periods (March, April, May, September, October, and November) so as to avoid experimental uncertainty resulting from too large season-to-season variability in ambient temperature and solar photon intensity that would lead to unstable/non-stationary size distributions. Therefore, the seasons were analyzed independently for possible sources. Ten sources were identified at both sites and these include traffic, nucleation, residential/commercial heating, industrial emissions, secondary nitrate, ozone- rich secondary aerosol, secondary sulfate, regionally transported aerosol, and a mixed source of nucleation and traffic. These results show that the measured total outdoor particle number concentrations in Rochester generally vary with similar temporal patterns, suggesting that the central monitoring site data can be used to estimate outdoor exposure in other parts of the city.

  7. Physiological changes in pre-harvest dropped fruits in the pummelo cultivars ‘Thong Dee’ and ‘Khao Nam Phueng’

    Directory of Open Access Journals (Sweden)

    Pongnart Nartvaranant

    2012-09-01

    Full Text Available This investigation of physiological changes in pummelo pre-harvest dropped fruit, termed “yellow fruit calyx symptoms” in Thailand, aimed to examine in two particular cultivars Thong Dee and Khao Nam Phueng grown in the central regionof Thailand. The results show that the normal pummelo fruits of either variety had statistically more total non-structuralcarbohydrate (TNC in their peel and pulp than did those of the dropped fruits. On the other hand, the leaves of normal fruittrees of both cultivars show less TNC than those found in the leaves of pre-harvest dropped fruit trees. There were significantdifferences in some plant nutrients in the leaves, peel and pulp of the dropped and normal pummelo cultivars. IAA concentration in fruit was determined with the result that normal fruits had a statistically higher IAA concentration than did those inpre-harvest dropped fruits. The PCR technique used for the greening disease test identified infections in leaves taken fromthe pre-harvest dropped fruit trees but none in leaves from the normal fruit trees. There were no differences in soil chemicalproperties between soil samples taken from the normal and pre-harvest dropped fruit trees. It seems likely that greeningdisease is the cause of ‘yellow fruit calyx symptom’ in Thailand and is the resulting from low TNC concentrations, low plantnutrients and low IAA concentrations in the pre-harvest dropped fruits in the pummelo cultivars.

  8. Influence of the harvesting time, temperature and drying period on basil (Ocimum basilicum L. essential oil

    Directory of Open Access Journals (Sweden)

    José Luiz S. Carvalho Filho

    Full Text Available Ocimum basilicum L. essential oil with high concentration of linalool is valuable in international business. O. basilicum essential oil is widely used as seasoning and in cosmetic industry. To assure proper essential oil yield and quality, it is crucial to determine which environmental and processing factors are affecting its composition. The goal of our work is to evaluate the effects of harvesting time, temperature, and drying period on the yield and chemical composition of O. basilicum essential oil. Harvestings were performed 40 and 93 days after seedling transplantation. Harvesting performed at 8:00 h and 12:00 h provided higher essential oil yield. After five days drying, the concentration of linalool raised from 45.18% to 86.80%. O. basilicum should be harvested during morning and the biomass dried at 40ºC for five days to obtain linalool rich essential oil.

  9. An Integrated Instrumentation System for Velocity, Concentration and Mass Flow Rate Measurement of Solid Particles Based on Electrostatic and Capacitance Sensors

    Directory of Open Access Journals (Sweden)

    Jian Li

    2015-12-01

    Full Text Available The online and continuous measurement of velocity, concentration and mass flow rate of pneumatically conveyed solid particles for the high-efficiency utilization of energy and raw materials has become increasingly significant. In this paper, an integrated instrumentation system for the velocity, concentration and mass flow rate measurement of dense phase pneumatically conveyed solid particles based on electrostatic and capacitance sensorsis developed. The electrostatic sensors are used for particle mean velocity measurement in combination with the cross-correlation technique, while the capacitance sensor with helical surface-plate electrodes, which has relatively homogeneous sensitivity distribution, is employed for the measurement of particle concentration and its capacitance is measured by an electrostatic-immune AC-based circuit. The solid mass flow rate can be further calculated from the measured velocity and concentration. The developed instrumentation system for velocity and concentration measurement is verified and calibrated on a pulley rig and through static experiments, respectively. Finally the system is evaluated with glass beads on a gravity-fed rig. The experimental results demonstrate that the system is capable of the accurate solid mass flow rate measurement, and the relative error is within −3%–8% for glass bead mass flow rates ranging from 0.13 kg/s to 0.9 kg/s.

  10. Efficient harvesting of marine Chlorella vulgaris microalgae utilizing cationic starch nanoparticles by response surface methodology.

    Science.gov (United States)

    Bayat Tork, Mahya; Khalilzadeh, Rasoul; Kouchakzadeh, Hasan

    2017-11-01

    Harvesting involves nearly thirty percent of total production cost of microalgae that needs to be done efficiently. Utilizing inexpensive and highly available biopolymer-based flocculants can be a solution for reducing the harvest costs. Herein, flocculation process of Chlorella vulgaris microalgae using cationic starch nanoparticles (CSNPs) was evaluated and optimized through the response surface methodology (RSM). pH, microalgae and CSNPs concentrations were considered as the main independent variables. Under the optimum conditions of microalgae concentration 0.75gdry weight/L, CSNPs concentration 7.1mgdry weight/L and pH 11.8, the maximum flocculation efficiency (90%) achieved. Twenty percent increase in flocculation efficiency observed with the use of CSNPs instead of the non-particulate starch which can be due to the more electrostatic interactions between the cationic nanoparticles and the microalgae. Therefore, the synthesized CSNPs can be employed as a convenient and economical flocculants for efficient harvest of Chlorella vulgaris microalgae at large scale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. heteroHarvest: Harvesting Information from Heterogeneous Sources

    DEFF Research Database (Denmark)

    Qureshi, Pir Abdul Rasool; Memon, Nasrullah; Wiil, Uffe Kock

    2011-01-01

    The abundance of information regarding any topic makes the Internet a very good resource. Even though searching the Internet is very easy, what remains difficult is to automate the process of information extraction from the available online information due to the lack of structure and the diversity...... in the sharing methods. Most of the times, information is stored in different proprietary formats, complying with different standards and protocols which makes tasks like data mining and information harvesting very difficult. In this paper, an information harvesting tool (heteroHarvest) is presented...... with objectives to address these problems by filtering the useful information and then normalizing the information in a singular non hypertext format. Finally we describe the results of experimental evaluation. The results are found promising with an overall error rate equal to 6.5% across heterogeneous formats....

  12. Implication of Abscisic Acid on Ripening and Quality in Sweet Cherries: Differential Effects during Pre- and Post-harvest

    Science.gov (United States)

    Tijero, Verónica; Teribia, Natalia; Muñoz, Paula; Munné-Bosch, Sergi

    2016-01-01

    Sweet cherry, a non-climacteric fruit, is usually cold-stored during post-harvest to prevent over-ripening. The aim of the study was to evaluate the role of abscisic acid (ABA) on fruit growth and ripening of this fruit, considering as well its putative implication in over-ripening and effects on quality. We measured the endogenous concentrations of ABA during the ripening of sweet cherries (Prunus avium L. var. Prime Giant) collected from orchard trees and in cherries exposed to 4°C and 23°C during 10 days of post-harvest. Furthermore, we examined to what extent endogenous ABA concentrations were related to quality parameters, such as fruit biomass, anthocyanin accumulation and levels of vitamins C and E. Endogenous concentrations of ABA in fruits increased progressively during fruit growth and ripening on the tree, to decrease later during post-harvest at 23°C. Cold treatment, however, increased ABA levels and led to an inhibition of over-ripening. Furthermore, ABA levels positively correlated with anthocyanin and vitamin E levels during pre-harvest, but not during post-harvest. We conclude that ABA plays a major role in sweet cherry development, stimulating its ripening process and positively influencing quality parameters during pre-harvest. The possible influence of ABA preventing over-ripening in cold-stored sweet cherries is also discussed. PMID:27200070

  13. A shear-mode magnetoelectric heterostructure for harvesting external magnetic field energy

    Science.gov (United States)

    He, Wei; Zhang, Jitao; Lu, Yueran; Yang, Aichao; Qu, Chiwen; Yuan, Shuai

    2017-03-01

    In this paper, a magnetoelectric (ME) energy harvester is presented for scavenging external magnetic field energy. The proposed heterostructure consists of a Terfenol-D plate, a piezoelectric PZT5H plate, a NdFeB magnet, and two concentrators. The external magnetic field is concentrated to the Terfenol-D plate and the PZT5H plate working in shear-mode, which can potentially increase the magnetoelectric response. Experiments have been performed to verify the feasibility of the harvester. Under the magnetic field of 0.6 Oe, the device produces a RMS voltage of 0.53 V at the resonant frequency of 32.6 kHz. The corresponding output power reaches 44.96 μW across a 3.1 kΩ matching resistor.

  14. Isolation, identification, and biocontrol of antagonistic bacterium against Botrytis cinerea after tomato harvest

    Directory of Open Access Journals (Sweden)

    Jun-Feng Shi

    Full Text Available ABSTRACT Tomato is one of the most important vegetables in the world. Decay after harvest is a major issue in the development of tomato industry. Currently, the most effective method for controlling decay after harvest is storage of tomato at low temperature combined with usage of chemical bactericide; however, long-term usage of chemical bactericide not only causes pathogen resistance but also is harmful for human health and environment. Biocontrol method for the management of disease after tomato harvest has great practical significance. In this study, antagonistic bacterium B-6-1 strain was isolated from the surface of tomato and identified as Enterobacter cowanii based on morphological characteristics and physiological and biochemical features combined with sequence analysis of 16SrDNA and ropB gene and construction of dendrogram. Effects of different concentrations of antagonistic bacterium E. cowanii suspension on antifungal activity after tomato harvest were analyzed by mycelium growth rate method. Results revealed that antifungal activity was also enhanced with increasing concentrations of antagonistic bacterium; inhibitory rates of 1 × 105 colony-forming units (cfu/mL antagonistic bacterial solution on Fusarium verticillioides, Alternaria tenuissima, and Botrytis cinerea were 46.31%, 67.48%, and 75.67%, respectively. By using in vivo inoculation method, it was further confirmed that antagonistic bacterium could effectively inhibit the occurrence of B. cinerae after tomato harvest, biocontrol effect of 1 × 109 cfu/mL zymotic fluid reached up to 95.24%, and antagonistic bacterium E. cowanii has biocontrol potential against B. cinerea after harvest of fruits and vegetables.

  15. Particle size distributions, size concentration relationships, and adherence to hands of selected geologic media derived from mining, smelting, and quarrying activities

    Energy Technology Data Exchange (ETDEWEB)

    Bergstrom, Carolyn; Shirai, Jeffry; Kissel, John, E-mail: jkissel@uw.edu

    2011-09-15

    Hand-to-mouth activity, especially in children, is a potentially significant pathway of exposure to soil contaminants. Hand-mouthing behavior is of particular concern in areas impacted by mining, smelting, and quarrying activities as these activities may lead to elevated levels of heavy metals in soil. In order to estimate potential exposures to contaminated geologic media attributable to hand-to-mouth contact, it is useful to characterize adherence of those media to skin, as contaminant concentrations in adhered media may differ greatly from unfractionated, whole media concentrations. Such an investigation has been undertaken to aid estimation of exposures to arsenic, cadmium, lead, and zinc in nine different geologic media collected in the Pacific Northwest region of the United States. After establishing the particle size distribution of each medium (fractions < 63 {mu}m, 63-150 {mu}m, 150-250 {mu}m, and 250 {mu}m-2 mm were determined) and target elemental concentrations within each particle size fraction, an active handling protocol involving six volunteers was conducted. Wet media always adhered to a greater extent than dry media and adhered media generally had higher elemental concentrations than bulk media. Regression analyses suggest smaller particle fractions may have higher elemental concentrations. Results of application of a maximum likelihood estimation technique generally indicate that handling of dry media leads to preferential adherence of smaller particle sizes, while handling of wet media does not. Because adhered material can differ greatly in particle size distribution from that found in bulk material, use of bulk concentrations in exposure calculations may lead to poor estimation of actual exposures. Since lead has historically been a metal of particular concern, EPA's Integrated Exposure Uptake Biokinetic (IEUBK) Model was used to examine the potential consequences of evaluating ingestion of the selected media assuming concentrations in

  16. Flow behaviour and local concentration of coarse particles-water mixture in inclined pipes

    Czech Academy of Sciences Publication Activity Database

    Vlasák, Pavel; Chára, Zdeněk; Konfršt, Jiří

    2017-01-01

    Roč. 65, č. 2 (2017), s. 183-191 ISSN 0042-790X R&D Projects: GA ČR GAP105/10/1574 Institutional support: RVO:67985874 Keywords : coarse particle mixture * concentration distribution * effect of pipe inclination * gamma-ray radiometry * Hydraulic conveying * mixture flow behaviour Subject RIV: BK - Fluid Dynamics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.654, year: 2016

  17. In-field direct combustion fuel property changes of switchgrass harvested from summer to fall

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, C.A.; Ileleji, K.E. [Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN (United States); Johnson, K.D. [Department of Agronomy, Purdue University, West Lafayette, IN (United States); Wang, Q. [State Key Laboratory for Clean Energy Utilization, Zhejiang University, Hangzhou, 310027 (China)

    2010-03-15

    Switchgrass, a perennial warm-season grass and potential energy crop, is usually harvested during the time between full maturity in the fall to the following spring. During this wide harvest window, the changes in fuel properties that could occur are important for making appropriate decisions with respect to the optimum harvest time for maximum fuel quality. A field plot study was carried out to investigate the quantitative fuel properties (proximate, ultimate and mineral analyses) of switchgrass over a harvest period from crop maturity in July through November. Harvest moisture decreased from July to November and moisture was uniformly distributed in the switchgrass plant at all times in the harvest period. There were significant differences in ash, volatiles, fixed carbon and nitrogen among months of harvest. Nitrogen, ash and fixed carbon contents decreased while oxygen and volatiles increased through the harvest period. Also, there were significant differences in oxides of silicon, calcium, potassium, phosphorus and sulfur among harvest times. The concentration of oxides of potassium and sulfur decreased at the end of the harvesting period. Fouling and slagging indices decreased as harvest was delayed but remained low throughout harvest. However, the decreases are small and might not dramatically impact fouling and slagging. Overall, the results appear to favor a later harvest for switchgrass used for direct combustion. This study will benefit feedstock producers as well as biomass feedstock facility operators by providing a better understanding of how the properties of switchgrass vary over a typical harvest period and their potential effect on boiler equipment. (author)

  18. Toward a semi-mechanical harvesting platform system for harvesting blueberries with fresh-market quality

    Science.gov (United States)

    Major concerns related to harvesting blueberries for fresh market with over-the-row (OTR) harvesters are that the quality of the fruit harvested with OTR machines is generally low and ground loss is excessive. Machine-harvested blueberries have more internal bruise and usually soften rapidly in col...

  19. Development of multi-functional combine harvester with grain harvesting and straw baling

    International Nuclear Information System (INIS)

    Tang, Z.; Li, Y.; Cheng, C.

    2017-01-01

    The decomposition and burning of straw results in serious environmental pollution, and research is needed to improve strategies for straw collection to reduce pollution. This work presents an integrated design of multi-functional rice combine harvester that allows grain harvesting and straw baling. This multi-functional combine harvester could reduce the energy consumption required for rice harvesting and simplify the process of harvesting and baling. The transmission schematic, matching parameters and the rotation speed of threshing cylinder and square baler were designed and checked. Then the evaluation of grain threshing and straw baling were tested on a transverse threshing cylinders device tes rig and straw square bales compression test rig. The test results indicated that, with a feeding rate of 3.0 kg/s, the remaining straw flow rate at the discharge outlet was only 1.22 kg/s, which indicates a variable mass threshing process by the transverse threshing cylinder. Then the optimal diameter, length and rotating speed of multi-functional combine harvester transverse threshing cylinder were 554 mm, 1590 mm, and 850 r/min, respectively. The straw bale compression rotating speed of crank compression slider and piston was 95 r/min. Field trials by the multi-functional combine harvester formed bales with height×width×length of 40×50×54-63 cm, bale mass of 22.5 to 26.0 kg and bale density 206 to 216 kg/m3. This multi-functional combine harvester could be used for stem crops (such as rice, wheat and soybean) grain harvesting and straw square baling, which could reduce labor cost and power consumption.

  20. Development of multi-functional combine harvester with grain harvesting and straw baling

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Z.; Li, Y.; Cheng, C.

    2017-09-01

    The decomposition and burning of straw results in serious environmental pollution, and research is needed to improve strategies for straw collection to reduce pollution. This work presents an integrated design of multi-functional rice combine harvester that allows grain harvesting and straw baling. This multi-functional combine harvester could reduce the energy consumption required for rice harvesting and simplify the process of harvesting and baling. The transmission schematic, matching parameters and the rotation speed of threshing cylinder and square baler were designed and checked. Then the evaluation of grain threshing and straw baling were tested on a transverse threshing cylinders device tes rig and straw square bales compression test rig. The test results indicated that, with a feeding rate of 3.0 kg/s, the remaining straw flow rate at the discharge outlet was only 1.22 kg/s, which indicates a variable mass threshing process by the transverse threshing cylinder. Then the optimal diameter, length and rotating speed of multi-functional combine harvester transverse threshing cylinder were 554 mm, 1590 mm, and 850 r/min, respectively. The straw bale compression rotating speed of crank compression slider and piston was 95 r/min. Field trials by the multi-functional combine harvester formed bales with height×width×length of 40×50×54-63 cm, bale mass of 22.5 to 26.0 kg and bale density 206 to 216 kg/m3. This multi-functional combine harvester could be used for stem crops (such as rice, wheat and soybean) grain harvesting and straw square baling, which could reduce labor cost and power consumption.

  1. Concentration of Mercury in Cockles (Anadara granosa and A. antiquata) Harvested from Estuaries of Western Lombok, Indonesia, and Potential Risks to Human Health.

    Science.gov (United States)

    Rahayu, Rachmawati Noviana; Irawan, Bambang; Soegianto, Agoes

    2016-01-01

    This study measured the levels of total mercury (tHg) in the whole tissues of cockles (Anadara granosa and A. antiquata) harvested from three estuaries of Western Lombok Island (WLI), Indonesia. This paper also evaluated the hazard level posed by the mercury in relation to the maximum residual limit for human consumption and to estimate the weekly intake and compare it with the provisional tolerable weekly intake (PTWI). The tHg concentrations in A. granosa ranged from 0.020 to 0.070 mg kg(-1), and those in A. antiquata were between 0.032 and 0.077 mg kg(-1) at all locations. All samples of cockles harvested from WLI contain tHg below the permissible limit for human consumption. The maximum weekly intakes for total mercury by coastal people range from 0.28 to 1.08 µg kg(-1) b.w., and they are below the recommended values of PTWI (5.6 µg kg(-1) b.w.). If it is assumed that 100% of the Hg in cockles is methyl mercury (MeHg), consumption of the indicated amounts at the measured values wouldn't exceed the MeHg PTWI (1.6 µg kg(-1) b.w.).

  2. Effect of (Cd:ZnS Particle Concentration and Photoexcitation on the Electrical and Ferroelectric Properties of (Cd:ZnS/P(VDF-TrFE Composite Films

    Directory of Open Access Journals (Sweden)

    Sebastian Engel

    2017-11-01

    Full Text Available The influence of semiconductor particle concentration and photoexcitation on the electrical and ferroelectric properties of ferroelectric-semiconductor-composites was investigated. For this purpose, 32 µm thin films of poly(vinylidene fluoride-co-trifluoroethylene with (Cd:ZnS particle concentrations of between 0 and 20 vol % were fabricated and characterized by scanning electron microscopy, Fourier transformed infrared spectroscopy, X-ray diffraction, and optical spectroscopy. It was shown that the particle concentration has only a negligible influence on the molecular structure of the polymer but strongly determines the optical properties of the composite. For (Cd:ZnS particle concentrations below 20 vol %, the I-V characteristics of the composites is only marginally affected by the particle concentration and the optical excitation of the composite material. On the contrary, a strong influence of both parameters on the ferro- and pyroelectric properties of the composite films was observed. For particle fractions that exhibit ferroelectric hysteresis, an increased remanent polarization and pyroelectric coefficient due to optical excitation was obtained. A theoretical approach that is based on a “three phase model” of the internal structure was developed to explain the observed results.

  3. The Contribution of Black Carbon to Ice Nucleating Particle Concentrations from Prescribed Burns and Wildfires

    Science.gov (United States)

    Schill, G. P.; DeMott, P. J.; Suski, K. J.; Emerson, E. W.; Rauker, A. M.; Kodros, J.; Levin, E. J.; Hill, T. C. J.; Farmer, D.; Pierce, J. R.; Kreidenweis, S. M.

    2017-12-01

    Black carbon (BC) has been implicated as a potential immersion-mode ice nucleating particle (INP) because of its relative abundance in the upper troposphere. Furthermore, several field and aircraft measurements have observed positive correlations between BC and INP concentrations. Despite this, the efficiency of BC to act as an immersion-mode INP is poorly constrained. Indeed, previous results from laboratory studies are in conflict, with estimates of BC's impact on INP ranging from no impact to being efficient enough to rival the well-known INP mineral dust. It is, however, becoming clear that the ice nucleation activity of BC may depend on both its fuel type and combustion conditions. For example, previous work has shown that diesel exhaust BC is an extremely poor immersion-mode INP, but laboratory burns of biomass fuels indicate that BC can contribute up to 70% of all INP for some fuel types. Given these dependencies, we propose that sampling from real-world biomass burning sources would provide the most useful new information on the contribution of BC to atmospheric INP. In this work, we will present recent results looking at the sources of INP from prescribed burns and wildfires. To determine the specific contribution of refractory black carbon (rBC) to INP concentrations, we utilized a new technique that couples the Single Particle Soot Photometer (SP2) to the Colorado State University Continuous Flow Diffusion Chamber (CFDC). The SP2 utilizes laser-induced incandescence to quantify rBC mass on a particle-by-particle basis; in doing so, it also selectively destroys rBC particles by heating them to their vaporization temperature. Thus, the SP2 can be used as a selective pre-filter for rBC into the CFDC. Furthermore, we have also used a filter-based technique for measuring INP, the Ice Spectrometer, which can employ pretreatments such as heating and digestion by H2O2 to determine the contribution of heat-labile and organic particles, respectively.

  4. Investigating the size, shape and surface roughness dependence of polarization lidars with light-scattering computations on real mineral dust particles: Application to dust particles' external mixtures and dust mass concentration retrievals

    Science.gov (United States)

    Mehri, Tahar; Kemppinen, Osku; David, Grégory; Lindqvist, Hannakaisa; Tyynelä, Jani; Nousiainen, Timo; Rairoux, Patrick; Miffre, Alain

    2018-05-01

    Our understanding of the contribution of mineral dust to the Earth's radiative budget is limited by the complexity of these particles, which present a wide range of sizes, are highly-irregularly shaped, and are present in the atmosphere in the form of particle mixtures. To address the spatial distribution of mineral dust and atmospheric dust mass concentrations, polarization lidars are nowadays frequently used, with partitioning algorithms allowing to discern the contribution of mineral dust in two or three-component particle external mixtures. In this paper, we investigate the dependence of the retrieved dust backscattering (βd) vertical profiles with the dust particle size and shape. For that, new light-scattering numerical simulations are performed on real atmospheric mineral dust particles, having determined mineralogy (CAL, DOL, AGG, SIL), derived from stereogrammetry (stereo-particles), with potential surface roughness, which are compared to the widely-used spheroidal mathematical shape model. For each dust shape model (smooth stereo-particles, rough stereo-particles, spheroids), the dust depolarization, backscattering Ångström exponent, lidar ratio are computed for two size distributions representative of mineral dust after long-range transport. As an output, two Saharan dust outbreaks involving mineral dust in two, then three-component particle mixtures are studied with Lyon (France) UV-VIS polarization lidar. If the dust size matters most, under certain circumstances, βd can vary by approximately 67% when real dust stereo-particles are used instead of spheroids, corresponding to variations in the dust backscattering coefficient as large as 2 Mm- 1·sr- 1. Moreover, the influence of surface roughness in polarization lidar retrievals is for the first time discussed. Finally, dust mass-extinction conversion factors (ηd) are evaluated for each assigned shape model and dust mass concentrations are retrieved from polarization lidar measurements. From

  5. Observations of the vertical concentrations of aerosol particles in the boundary layer by means of tethered balloon method

    Energy Technology Data Exchange (ETDEWEB)

    Ishioka, Futoshi; Lee, D.I; Taniguchi, Takashi; Kikuchi,Katsuhiro

    1988-09-30

    In general, it is difficult to accurately understand the behavior of aerosol particles in the boundary layer above urban areas because aerosol sources are influenced by time-dependent factors and local climate. To overcome this difficulty, a particle counter which can count Mie particles with diameters of 0.3 /mu/m or more in five diameter ranges was installed on a large tehered balloon. With this method, the vertical distribution of aerosol concentration was measured in several areas different in meteorological condition, and the dependence of the particle behavior on particle diameter was studied. As a result, it has been revealed that the results of the observations explained above agree with the results of studies conducted in the past, but that dependence on particle diameter is not significant. 37 references, 21 figures, 1 table.

  6. Stand, Harvest, and Equipment Interactions in Simulated Harvesting Prescriptions

    Science.gov (United States)

    Jingxin Wang; W. Dale Greene; Bryce J. Stokes

    1998-01-01

    We evaluated potential interactions of stand type, harvesting method, and equipment in an experiment using interactive simulation. We examined three felling methods (chain saw, feller-buncher, harvester) and two extraction methods (grapple skidder and forwarder) performing clearcuts, sheltenvood cuts, and single-tree selection cuts in both an uneven-aged natural stand...

  7. Effect of time of harvest, stage of fruit ripening, and post-harvest ...

    African Journals Online (AJOL)

    Seeds were extracted from half of the fruits harvested from each stage immediately after harvest while the other halves were stored at room temperature to ripen to the soft-red stage before seed extraction. Fruit weight in both cultivars decreased with plant age. Fruits harvested at the yellow-ripe stage produced the highest ...

  8. Elevated sodium chloride concentrations enhance the bystander effects induced by low dose alpha-particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Han Wei; Zhu Lingyan; Jiang Erkang; Wang Jun; Chen Shaopeng; Bao Linzhi; Zhao Ye; Xu An; Yu Zengliang [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wu Lijun [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)], E-mail: ljw@ipp.ac.cn

    2007-11-01

    Previous studies have shown that high NaCl can be genotoxic, either alone or combined with irradiation. However, little is known about the relationship between environmental NaCl at elevated conditions and radiation-induced bystander effects (RIBE). RIBE, which has been considered as non-targeted bystander responses, has been demonstrated to occur widely in various cell lines. In the present study, RIBE under the elevated NaCl culture condition was assessed in AG 1522 cells by both the induction of {gamma}-H2AX, a reliable marker of DNA double-strand break (DSB) for the early process (<1 h post irradiation), and the generation of micronuclei (MN), a sensitive marker for relative long process of RIBE. Our results showed that in the absence of irradiation, NaCl at elevated concentration such as 8.0, 9.0 and 10.0 g/L did not significantly increase the frequency of {gamma}-H2AX foci-positive cells and the number of foci per positive cell comparing with that NaCl at a normal concentration (6.8 g/L). However, with 0.2 cGy {alpha}-particle irradiation, the induced fraction of {gamma}-H2AX foci-positive cells and the number of induced {gamma}-H2AX foci per positive cell were significantly increased in both irradiated and adjacent non-irradiated regions. Similarly, the induction of MN by 0.2 cGy {alpha}-particle irradiation also increased with the elevated NaCl concentrations. With N{sup G}-methyl-L-arginine, an inhibitor of nitric oxide synthase, the induced fraction of foci-positive cells was effectively inhibited both in 0.2 cGy {alpha}-particle irradiated and adjacent non-irradiated regions under either normal or elevated NaCl conditions. These results suggested that the cultures with elevated NaCl medium magnified the damage effects induced by the low dose {alpha}-particle irradiation and nitric oxide generated by irradiation was also very important in this process.

  9. Consequences of nitrate leaching following stem-only harvesting of Swedish forests are dependent on spatial scale

    Energy Technology Data Exchange (ETDEWEB)

    Futter, M.N., E-mail: martyn.futter@vatten.slu.s [Swedish University of Agricultural Sciences, Department of Environmental Assessment, SE 750 07 Uppsala (Sweden); Ring, E., E-mail: eva.ring@skogforsk.s [Skogforsk, Uppsala Science Park, SE 751 83 Uppsala (Sweden); Hoegbom, L., E-mail: lars.hogbom@skogforsk.s [Skogforsk, Uppsala Science Park, SE 751 83 Uppsala (Sweden); Entenmann, S., E-mail: steffen.entenmann@landespflege.uni-freiburg.d [University of Freiburg, Institute for Landscape Management, D - 79085 Freiburg (Germany); Bishop, K.H., E-mail: kevin.bishop@vatten.slu.s [Swedish University of Agricultural Sciences, Department of Environmental Assessment, SE 750 07 Uppsala (Sweden)

    2010-12-15

    Short-term increases in soil solution nitrate (NO{sub 3}{sup -}) concentration are often observed after forest harvest, even in N-limited systems. We model NO{sub 3}{sup -} leaching below the rooting zone as a function of site productivity. Using national forest inventories and published estimates of N attenuation in rivers and the riparian zone, we estimate effects of stem-only harvesting on NO{sub 3}{sup -} leaching to groundwater, surface waters and the marine environment. Stem-only harvesting is a minor contributor to NO{sub 3}{sup -} pollution of Swedish waters. Effects in surface waters are rapidly diluted downstream, but can be locally important for shallow well-waters as well as for the total amount of N reaching the sea. Harvesting adds approximately 8 Gg NO{sub 3}-N to soil waters in Sweden, with local concentrations up to 7 mg NO{sub 3}-N l{sup -1}. Of that, {approx}3.3 Gg reaches the marine environment. This is {approx}3% of the overall Swedish N load to the Baltic. - Forest harvesting in Sweden is a minor contributor to N pollution in the Baltic.

  10. Errors analysis in the evaluation of particle concentration by PDA on a turbulent two-phase jet: application for cross section and transit time methods

    Science.gov (United States)

    Calvo, Esteban; García, Juan A.; García, Ignacio; Aísa, Luis A.

    2009-09-01

    Phase-Doppler anemometry (PDA) is a powerful tool for two-phase flow measurements and testing. Particle concentration and mass flux can also be evaluated using the raw particle data supplied by this technique. The calculation starts from each particle velocity, diameter, transit time data, and the total measurement time. There are two main evaluation strategies. The first one uses the probe volume effective cross section, and it is usually simplified assuming that particles follow quasi one-directional trajectories. In the text, it will be called the cross section method. The second one includes a set of methods which will be denoted as “Generalized Integral Methods” (GIM). Concentration algorithms such as the transit time method (TTM) and the integral volume method (IVM) are particular cases of the GIM. In any case, a previous calibration of the measurement volume geometry is necessary to apply the referred concentration evaluation methods. In this study, concentrations and mass fluxes both evaluated by the cross-section method and the TTM are compared. Experimental data are obtained from a particle-laden jet generated by a convergent nozzle. Errors due to trajectory dispersion, burst splitting, and multi-particle signals are discussed.

  11. Errors analysis in the evaluation of particle concentration by PDA on a turbulent two-phase jet: application for cross section and transit time methods

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, Esteban; Garcia, Juan A.; Garcia, Ignacio; Aisa, Luis A. [University of Zaragoza, Area de Mecanica de Fluidos, Centro Politecnico Superior, Zaragoza (Spain)

    2009-09-15

    Phase-Doppler anemometry (PDA) is a powerful tool for two-phase flow measurements and testing. Particle concentration and mass flux can also be evaluated using the raw particle data supplied by this technique. The calculation starts from each particle velocity, diameter, transit time data, and the total measurement time. There are two main evaluation strategies. The first one uses the probe volume effective cross section, and it is usually simplified assuming that particles follow quasi one-directional trajectories. In the text, it will be called the cross section method. The second one includes a set of methods which will be denoted as ''Generalized Integral Methods'' (GIM). Concentration algorithms such as the transit time method (TTM) and the integral volume method (IVM) are particular cases of the GIM. In any case, a previous calibration of the measurement volume geometry is necessary to apply the referred concentration evaluation methods. In this study, concentrations and mass fluxes both evaluated by the cross-section method and the TTM are compared. Experimental data are obtained from a particle-laden jet generated by a convergent nozzle. Errors due to trajectory dispersion, burst splitting, and multi-particle signals are discussed. (orig.)

  12. The effect of concentration of glycerol and electric current on the morphology and particle size of electrodeposited cadmium powder

    Directory of Open Access Journals (Sweden)

    S. G. Viswanath

    2013-06-01

    Full Text Available Cadmium powder was obtained by electrodeposition of cadmium from glycerol and sulphuric acid. The morphology and particle size of these powders were studied. Broken dendrites, intermingled with spongy and irregular particles were observed in the powder. Around 60% of particles were below 100 µm. XRD studies showed that particles with sizes between 212.2 and 303.2 nm were present in the powder. The apparent density of cadmium powder decreased with increase in concentration of glycerol. The stability of the powder and current efficiency were also studied

  13. Harvesting energy from airflow with a michromachined piezoelectric harvester inside a Helmholtz resonator

    NARCIS (Netherlands)

    Matova, S.P.; Elfrink, R.; Vullers, R.J.M.; Schaijk, R. van

    2011-01-01

    In this paper we report an airflow energy harvester that combines a piezoelectric energy harvester with a Helmholtz resonator. The resonator converts airflow energy to air oscillations which in turn are converted into electrical energy by a piezoelectric harvester. Two Helmholtz resonators with

  14. Fog Harvesting with Harps.

    Science.gov (United States)

    Shi, Weiwei; Anderson, Mark J; Tulkoff, Joshua B; Kennedy, Brook S; Boreyko, Jonathan B

    2018-04-11

    Fog harvesting is a useful technique for obtaining fresh water in arid climates. The wire meshes currently utilized for fog harvesting suffer from dual constraints: coarse meshes cannot efficiently capture microscopic fog droplets, whereas fine meshes suffer from clogging issues. Here, we design and fabricate fog harvesters comprising an array of vertical wires, which we call "fog harps". Under controlled laboratory conditions, the fog-harvesting rates for fog harps with three different wire diameters were compared to conventional meshes of equivalent dimensions. As expected for the mesh structures, the mid-sized wires exhibited the largest fog collection rate, with a drop-off in performance for the fine or coarse meshes. In contrast, the fog-harvesting rate continually increased with decreasing wire diameter for the fog harps due to efficient droplet shedding that prevented clogging. This resulted in a 3-fold enhancement in the fog-harvesting rate for the harp design compared to an equivalent mesh.

  15. Absorption of macronutrients by cassava in different harvest dates and dosages of nitrogen

    Directory of Open Access Journals (Sweden)

    Nádia Souza dos Santos

    Full Text Available A field experiment was carried out in 2010-2011 crop years in the experimental area of the Centro de Ciências Agrárias of the Universidade Federal de Roraima, in Boa Vista, Roraima, Brazil. This study aimed to evaluate the effect of nitrogen availability on the concentrations of N, P, K, Ca, Mg and S in cassava, cultivar Aciolina, in different harvest times. A randomized block design was used in split-plot, with four replications. Dosages of N in cover were applied randomly on the plots (0, 30, 60, 150 and 330 kg ha-1, and in the subplot the harvest dates 120, 150, 180, 210, 240, 270 and 300 days after emergence (DAE. The vegetal material was collected, ground and then underwent an analysis for determination of nutrients concentrations in the leaves (N, P, K, Ca Mg and S. The harvest dates and dosages of N affect the nutrient concentrations in the cassava leaves, cv. Aciolina. The macronutrients dosage in the leaves, 120 DAE, is a good indicator of the nutritional status of the cassava plant. The dosage of 150 kg ha-1 of N raises the tubers roots per plant. The sequence of the macronutrients concentration in the leaves of the cassava, cv. Aciolina is N>Ca>K>Mg>P>S.

  16. Real-time measurements of suspended sediment concentration and particle size using five techniques

    Science.gov (United States)

    Felix, D.; Albayrak, I.; Abgottspon, A.; Boes, R. M.

    2016-11-01

    Fine sediments are important in the design and operation of hydropower plants (HPPs), in particular with respect to sediment management and hydro-abrasive erosion in hydraulic machines. Therefore, there is a need for reliable real-time measurements of suspended sediment mass concentration (SSC) and particle size distribution (PSD). The following instruments for SSC measurements were investigated in a field study during several years at the HPP Fieschertal in the Swiss Alps: (1) turbidimeters, (2) a Laser In-Situ Scattering and Trans- missometry instrument (LISST), (3) a Coriolis Flow and Density Meter (CFDM), (4) acoustic transducers, and (5) pressure sensors. LISST provided PSDs in addition to concentrations. Reference SSCs were obtained by gravimetrical analysis of automatically taken water samples. In contrast to widely used turbidimeters and the single-frequency acoustic method, SSCs obtained from LISST, the CFDM or the pressure sensors were less or not affected by particle size variations. The CFDM and the pressure sensors allowed measuring higher SSC than the optical or the acoustic techniques (without dilution). The CFDM and the pressure sensors were found to be suitable to measure SSC ≥ 2 g/l. In this paper, the measuring techniques, instruments, setup, methods for data treatment, and selected results are presented and discussed.

  17. A new harvest operation cost model to evaluate forest harvest layout alternatives

    Science.gov (United States)

    Mark M. Clark; Russell D. Meller; Timothy P. McDonald; Chao Chi Ting

    1997-01-01

    The authors develop a new model for harvest operation costs that can be used to evaluate stands for potential harvest. The model is based on felling, extraction, and access costs, and is unique in its consideration of the interaction between harvest area shapes and access roads. The scientists illustrate the model and evaluate the impact of stand size, volume, and road...

  18. Calculation of concentration fields of high-inertia aerosol particles in the flow past a cylindrical fibre

    Science.gov (United States)

    Zaripov, T. S.; Gilfanov, A. K.; Zaripov, S. K.; Rybdylova, O. D.; Sazhin, S. S.

    2018-01-01

    The behaviour of high-inertia aerosol particles’ concentration fields in stationary gas suspension flows around a cylinder is investigated using a numerical solution to the Navier-Stokes equations and the fully Lagrangian approach for four Stokes numbers (Stk = 0.1, 1, 4, 10) and three Reynolds numbers (Re = 1, 10, 100). It has been shown that the points of maximum particle concentration along each trajectory shift downstream both when Stk and/or Re increase.

  19. Improved sentinel node visualization in breast cancer by optimizing the colloid particle concentration and tracer dosage

    NARCIS (Netherlands)

    Valdés Olmos, R. A.; Tanis, P. J.; Hoefnagel, C. A.; Nieweg, O. E.; Muller, S. H.; Rutgers, E. J.; Kooi, M. L.; Kroon, B. B.

    2001-01-01

    Faint lymph uptake may hamper sentinel node (SN) identification by scintigraphy and subsequent gamma probe localization. The aim of the present study was to evaluate an adjustment in the colloid particle concentration and tracer dosage to optimize mammary lymphoscintigraphy. Scintigraphy was

  20. Improved concentration and separation of particles in a 3D dielectrophoretic chip integrating focusing, aligning and trapping

    KAUST Repository

    Li, Ming; Li, Shunbo; Cao, Wenbin; Li, Weihua; Wen, Weijia; Alici, Gursel

    2012-01-01

    This article presents a dielectrophoresis (DEP)-based microfluidic device with the three-dimensional (3D) microelectrode configuration for concentrating and separating particles in a continuous throughflow. The 3D electrode structure, where

  1. Simultaneous energy harvesting and information processing in wireless multiple relays with multiple antennas

    Science.gov (United States)

    Albaaj, Azhar; Makki, S. Vahab A.; Alabkhat, Qassem; Zahedi, Abdulhamid

    2017-07-01

    Wireless networks suffer from battery discharging specially in cooperative communications when multiple relays have an important role but they are energy constrained. To overcome this problem, energy harvesting from radio frequency signals is applied to charge the node battery. These intermediate nodes have the ability to harvest energy from the source signal and use the energy harvested to transmit information to the destination. In fact, the node tries to harvest energy and then transmit the data to destination. Division of energy harvesting and data transmission can be done in two algorithms: time-switching-based relaying protocol and power-splitting-based relaying protocol. These two algorithms also can be applied in delay-limited and delay-tolerant transmission systems. The previous works have assumed a single relay for energy harvesting, but in this article, the proposed method is concentrated on improving the outage probability and throughput by using multiple antennas in each relay node instead of using single antenna. According to our simulation results, when using multi-antenna relays, ability of energy harvesting is increased and thus system performance will be improved to great extent. Maximum ratio combining scheme has been used when the destination chooses the best signal of relays and antennas satisfying the required signal-to-noise ratio.

  2. Evaluation and modelling of the size fractionated aerosol particle number concentration measurements nearby a major road in Helsinki - Part I: Modelling results within the LIPIKA project

    Science.gov (United States)

    Pohjola, M. A.; Pirjola, L.; Karppinen, A.; Härkönen, J.; Korhonen, H.; Hussein, T.; Ketzel, M.; Kukkonen, J.

    2007-08-01

    A field measurement campaign was conducted near a major road "Itäväylä" in an urban area in Helsinki in 17-20 February 2003. Aerosol measurements were conducted using a mobile laboratory "Sniffer" at various distances from the road, and at an urban background location. Measurements included particle size distribution in the size range of 7 nm-10 μm (aerodynamic diameter) by the Electrical Low Pressure Impactor (ELPI) and in the size range of 3-50 nm (mobility diameter) by Scanning Mobility Particle Sizer (SMPS), total number concentration of particles larger than 3 nm detected by an ultrafine condensation particle counter (UCPC), temperature, relative humidity, wind speed and direction, driving route of the mobile laboratory, and traffic density on the studied road. In this study, we have compared measured concentration data with the predictions of the road network dispersion model CAR-FMI used in combination with an aerosol process model MONO32. For model comparison purposes, one of the cases was additionally computed using the aerosol process model UHMA, combined with the CAR-FMI model. The vehicular exhaust emissions, and atmospheric dispersion and transformation of fine and ultrafine particles was evaluated within the distance scale of 200 m (corresponding to a time scale of a couple of minutes). We computed the temporal evolution of the number concentrations, size distributions and chemical compositions of various particle size classes. The atmospheric dilution rate of particles is obtained from the roadside dispersion model CAR-FMI. Considering the evolution of total number concentration, dilution was shown to be the most important process. The influence of coagulation and condensation on the number concentrations of particle size modes was found to be negligible on this distance scale. Condensation was found to affect the evolution of particle diameter in the two smallest particle modes. The assumed value of the concentration of condensable organic

  3. Effects of local and spatial conditions on the quality of harvested rainwater in the Mekong Delta, Vietnam

    International Nuclear Information System (INIS)

    Wilbers, Gert-Jan; Sebesvari, Zita; Rechenburg, Andrea; Renaud, Fabrice G.

    2013-01-01

    The objective of this study was to assess the quality of harvested rainwater in the Mekong Delta (MD), Vietnam for local (roof types, storage system and duration) and spatial (proximity of industry, main roads, coastline) conditions. 78 harvested rainwater samples were collected in the MD and analyzed for pH, turbidity, TDS, COD, nutrients (NH 4 , NO 3 , NO 2 , o-PO 4 ), trace metals and coliforms. The results show that thatch roofs lead to an increase of pollutants like COD (max 23.2 mgl −1 ) and turbidity (max 10.1 mgl −1 ) whereas galvanized roofs lead to an increase of Zn (max 2.2 mgl −1 ). The other local and spatial parameters had no or only minor influence on the quality of household harvested rainwater. However, lead (Pb) (max. 16.9 μgl −1 ) and total coliforms (max. 102 500 CFU100 ml −1 ) were recorded at high concentrations, probably due to a variety of household-specific conditions such as rainwater storage, collection and handling practices. -- Highlights: •Rainwater is a main drinking water source in the Mekong Delta. •Harvested rainwater is severely polluted for turbidity, lead and (total) coliforms. •Roof types significantly affect the quality of harvested rainwater. •Effects of household conditions on harvested rainwater quality should be further assessed. •Harvested rainwater is in potential a safe drinking water resource in the Mekong Delta. -- Concentrations of lead and total coliforms in household-harvested rainwater in the Mekong Delta exceed drinking water guidelines in 17% and 92% of the samples, respectively

  4. Nature of Atmospheric Aerosols over the Desert Areas in the Asian Continent: Chemical State and Number Concentration of Particles Measured at Dunhuang, China

    International Nuclear Information System (INIS)

    Iwasaka, Y.; Shi, G.-Y.; Shen, Z.; Kim, Y. S.; Trochkine, D.; Matsuki, A.; Zhang, D.; Shibata, T.; Nagatani, M.; Nakata, H.

    2003-01-01

    Measurements of aerosol were made in August and October 2001, and January 2002, at Dunhuang, China (40 o 00'N, 94 o 30'E), to understand the nature of atmospheric particles over the desert areas in the Asian continent. Balloon-borne measurements with an optical particle counter suggested that particle size and concentration had a noticeable peak in size range of super micron in not only the boundary mixing layer but also the free troposphere. Thickness of the boundary mixing layer, from distributions of particle concentration, was about 4 km in summer (17 August 2001), about2.5 km in fall (17 October 2001), and about 3 km in winter (11 January 2002), which suggest active mixing of particles near the boundary in summer. Number-size distribution of particle showed a noticeable peak in the super micron particles size range in the mixing boundary layer: 0.4-2 particles cm -3 at diameter>1.2 μm in summer, 0.05-4 particles cm -3 at diameter >1.2 μm in fall, and 0.1-5 particles cm -3 at diameter>1.2 μm in winter. In winter strong inversion of atmospheric temperature was found in the height range from the boundary to about 3 km and vertical distribution of particle concentration well corresponded with the temperature distribution. Chemical elements of individual aerosols, which were collected in the boundary layer atmosphere at Dunhuang (18 October 2001) were analyzed with an electron microscope equipped with EDX. Those single particle analysis suggested that most of the particles with supermicron size were soil particles, and those particles had little sulfate on its surface. This is a very important different point,comparing with the chemical state of soil particles, which were transported from the desert area of China to Japan, and showed frequently the existence of sulfate on the particle surface. Therefore, it is strongly suggested that dust particles can be chemically modified during their long-range transport from desert areas to Japan

  5. Concentration-elastic-stress instabilities in the distribution of ions and neutral particles in the insulator layer at the semiconductor surface

    International Nuclear Information System (INIS)

    Gol'dman, E. I.

    2006-01-01

    Mobile impurities in the form of ions and neutral associations are present in the insulator films that isolate the semiconductor from the metal electrode. If temperatures and the polarizing electric field are sufficiently high, impurities concentrate at the insulator-semiconductor interface where they exchange electrons with the semiconductor. It is shown that the pairwise interaction of particles via the field of elastic stresses caused by the concentration-related expansion of the insulator can give rise to an instability in the impurity distribution that is uniform over the contact. The stationary small-scale ordering of the particles over the contact of the insulator with the semiconductor arises in the solution of point defects, which is accompanied by annular flows of the particles

  6. Post-harvest treatments in smooth-stalked meadow grass (Poa pratensis L.) - effect on carbohydrates and tiller development

    DEFF Research Database (Denmark)

    Boelt, Birte

    2007-01-01

    Temperate grass species require a period of short days/low temperature to respond to flower induction stimuli. The same environmental conditions stimulate the increase in carbohydrate concentration in aboveground biomass and the accumulation of reserve carbohydrates in the basal plant parts....... The present investigation was initiated to investigate the effect of post-harvest treatments on dry matter production in autumn, carbohydrate content, the number of reproductive tillers and seed yield in a turf-type cultivar ‘Conni' of smooth-stalked meadow grass. The results show that post-harvest treatments...... harvest and all residues removed. The results from plant samples in autumn indicate that decreasing aboveground biomass production leads to a higher carbohydrate concentration which may stimulate the reproductive development in smooth-stalked meadow grass....

  7. Effects of intensive harvesting on forest floor properties in Betula papyrifera stands in Newfoundland

    International Nuclear Information System (INIS)

    Roberts, B.A.; Deering, K.W.; Titus, B.D.

    1998-01-01

    This study investigates litter and organic matter production and related site ecology in nine medium to high quality Betula papyrifera stands in three locations in central Newfoundland on a variety of land form and drainage conditions. Three sites, Badger West (BW), Moose Pond (MP) and Middleton Lake (ML) were selected. The ML site has the highest quality (with the best height/age ratio, 18 m/60 yr, and height/DBH ratio, 18 m/30 cm), followed by MP and BW. Litter depth on well developed moders or mulls was usually 2 - 3 cm and varied from 1 - 15 cm. Forest floor depths (measured in 324 profiles) rarely reached 20 cm and was commonly 5 - 10 cm; it varied with position and site. Total and available nutrients indicate that B. papyrifera produces one of the highest-quality organic matter types of the local forest types and is important in improving site quality. The mean N-concentration in green foliage (2.21 %) and trapped litter (1.03 %) was highest at the best quality site ML, followed by MP and BW. The concentration of calcium, 0.85 %, was highest at the poorest quality site. Four years after harvesting, litter depth significantly decreased in all sites and treatments with the exception of the BW whole-tree harvest treatment. Total forest floor depth significantly decreased at all sites in the stem-only harvest treatment as well as the MP whole-tree harvest treatment. There was a significant decrease in available nitrogen following harvesting in both treatments at both the MP and BW sites. Change in available phosphorus was insignificant, with the exception of an increase in the MP stem-only harvest treatment. There was a significant decrease in available potassium at both the ML and BW whole-tree harvest treatments, but a significant increase in the stem-only harvest treatments at ML and MP. There was a significant decrease in available calcium in both treatments at both the MP and BW sites 34 refs, 4 figs, 1 tab

  8. Seasonal changes and effect of harvest on glucosinolates in Isatis leaves.

    Science.gov (United States)

    Mohn, Tobias; Suter, Kathrin; Hamburger, Matthias

    2008-04-01

    The seasonal fluctuation of glucosinolates in five defined Isatis tinctoria and one Isatis indigotica accessions (first year, rosette stage), grown on field plots under identical conditions, was investigated. Analysis of the intact glucosinolates was carried out with shock frozen, freeze dried leaf samples using a recently developed and validated PLE (pressurized liquid extraction) protocol and ion-pair HPLC coupled with ESI-MS in the negative mode. When comparing the two Isatis species, significant qualitative and quantitative differences in the glucosinolate patterns were observed. Differences among the various Isatis tinctoria accessions were much smaller. We studied the effects of repeated harvesting during the growth season on glucosinolate concentrations and found that repeated harvest did not have a major effect on glucosinolate concentrations of newly grown leaves. Glucosinolates could not be detected in woad leaves submitted to conventional drying.

  9. Timber harvest as the predominant disturbance regime in northeastern U.S. forests: Effects of harvest intensification

    Science.gov (United States)

    Brown, Michelle L.; Canham, Charles D.; Murphy, Lora; Donovan, Therese M.

    2018-01-01

    Harvesting is the leading cause of adult tree mortality in forests of the northeastern United States. While current rates of timber harvest are generally sustainable, there is considerable pressure to increase the contribution of forest biomass to meet renewable energy goals. We estimated current harvest regimes for different forest types and regions across the U.S. states of New York, Vermont, New Hampshire, and Maine using data from the U.S. Forest Inventory and Analysis Program. We implemented the harvest regimes in SORTIE‐ND, an individual‐based model of forest dynamics, and simulated the effects of current harvest regimes and five additional harvest scenarios that varied by harvest frequency and intensity over 150 yr. The best statistical model for the harvest regime described the annual probability of harvest as a function of forest type/region, total plot basal area, and distance to the nearest improved road. Forests were predicted to increase in adult aboveground biomass in all harvest scenarios in all forest type and region combinations. The magnitude of the increase, however, varied dramatically—increasing from 3% to 120% above current landscape averages as harvest frequency and intensity decreased. The variation can be largely explained by the disproportionately high harvest rates estimated for Maine as compared with the rest of the region. Despite steady biomass accumulation across the landscape, stands that exhibited old‐growth characteristics (defined as ≥300 metric tons of biomass/hectare) were rare (8% or less of stands). Intensified harvest regimes had little effect on species composition due to widespread partial harvesting in all scenarios, resulting in dominance by late‐successional species over time. Our analyses indicate that forest biomass can represent a sustainable, if small, component of renewable energy portfolios in the region, although there are tradeoffs between carbon sequestration in forest biomass and sustainable

  10. Low temperature and Daphnia-associated infochemicals promote colony formation of Scenedesmus obliquus and its harvesting.

    Science.gov (United States)

    Zhu, Xuexia; Yang, Jingwen; Zhang, Xingxing; Zhang, Lu; Wang, Xiaojun; Huang, Yuan; Yang, Zhou

    2017-01-01

    To explore the combined effects of temperature and Daphnia-associated infochemicals on colony formation of Scenedesmus obliquus to faciliate harvesting the algal biomass. A three-parameter modified Gaussian model fitted the changes of the number of cells per particle in S. obliquus induced by Daphnia culture filtrate well under any temperature. Decreases in temperature enhanced the induced-colony formation of Scenedesmus. The maximum colony size at 15-25 °C was significantly larger than those at 30-35 °C. An additional 1 or 2 days at low temperature was needed to reach the maximum colony size, which indicates the best harvest time for algal biomass. Induced-colony formation of Scenedesmus by Daphnia culture filtrate at 15-25 °C is recommended to settle algal cells. This condition facilitates harvesting the biomass.

  11. Evaluation of asbestos exposures during firewood-harvesting simulations in Libby, MT, USA--preliminary data.

    Science.gov (United States)

    Hart, Julie F; Ward, Tony J; Spear, Terry M; Crispen, Kelly; Zolnikov, Tara R

    2007-11-01

    Research was conducted in order to assess potential exposure to asbestos while harvesting firewood from amphibole-contaminated trees near Libby, MT, USA. Three firewood-harvesting simulations took place in the summer and fall of 2006 in the Kootenai Forest inside the US Environmental Protection Agency (EPA) restricted zone surrounding the former W.R. Grace vermiculite mine. Another simulation was conducted near Missoula, MT, USA, which served as the control. The work practices following each simulation were consistent throughout each trial. Personal breathing zone (PBZ) asbestos concentrations were measured by phase contrast microscopy (PCM) and transmission electron microscopy (TEM). Surface wipe samples of personal protective clothing were measured by TEM. The mean (n = 12) PBZ PCM sample time-weighted average (TWA) concentration was 0.29 fibers per milliliter, standard deviation (SD = 0.54). A substantial portion (more than five fibers per sample) of non-asbestos fibers (cellulose) was reported on all PBZ samples (excluding field blanks) when analyzed by TEM. The mean (n = 12) PBZ TEM sample TWA concentration for amphibole fibers 5-microm long was 0.07 fibers per milliliter (SD = 0.08). Substantial amphibole fiber concentrations were revealed on Tyvek clothing wipe samples. The mean concentration (n = 12) was 29 826 fibers per square centimeter (SD = 37 555), with 91% (27 192 fibers per square centimeter) comprised fibers firewood-harvesting activities in asbestos-contaminated areas and that the potential for exposure exists during such activities.

  12. Effective harvesting of the microalgae Chlorella protothecoides via bioflocculation with cationic starch

    DEFF Research Database (Denmark)

    Letelier Gordo, Carlos Octavio; Holdt, Susan Løvstad; De Francisci, Davide

    2014-01-01

    In the present work, the flocculation efficiency of cationic starch (Greenfloc 120) was tested on the fresh water microalga Chlorella protothecoides under different conditions (pH and flocculant concentrations). Different concentrations of Greenfloc 120 (0, 2.5, 5, 10, 20, 40mgL-1) were screened...... to use, efficient and cost-effective flocculant for harvesting of microalgae....

  13. Inhaled concentrated ambient particles are associated with hematologic and bronchoalveolar lavage changes in canines.

    Science.gov (United States)

    Clarke, R W; Coull, B; Reinisch, U; Catalano, P; Killingsworth, C R; Koutrakis, P; Kavouras, I; Murthy, G G; Lawrence, J; Lovett, E; Wolfson, J M; Verrier, R L; Godleski, J J

    2000-01-01

    Pulmonary inflammatory and hematologic responses of canines were studied after exposure to concentrated ambient particles (CAPs) using the Harvard ambient particle concentrator (HAPC). For pulmonary inflammatory studies, normal dogs were exposed in pairs to either CAPs or filtered air (paired studies) for 6 hr/day on 3 consecutive days. For hematologic studies, dogs were exposed for 6 hr/day for 3 consecutive days with one receiving CAPs while the other was simultaneously exposed to filtered air; crossover of exposure took place the following week (crossover studies). Physicochemical characterization of CAPs exposure samples included measurements of particle mass, size distribution, and composition. No statistical differences in biologic responses were found when all CAPs and all sham exposures were compared. However, the variability in biologic response was considerably higher with CAPs exposure. Subsequent exploratory graphical analyses and mixed linear regression analyses suggested associations between CAPs constituents and biologic responses. Factor analysis was applied to the compositional data from paired and crossover experiments to determine elements consistently associated with each other in CAPs samples. In paired experiments, four factors were identified; in crossover studies, a total of six factors were observed. Bronchoalveolar lavage (BAL) and hematologic data were regressed on the factor scores. Increased BAL neutrophil percentage, total peripheral white blood cell (WBC) counts, circulating neutrophils, and circulating lymphocytes were associated with increases in the aluminum/silicon factor. Increased circulating neutrophils and increased BAL macrophages were associated with the vanadium/nickel factor. Increased BAL neutrophils were associated with the bromine/lead factor when only the compositional data from the third day of CAPs exposure were used. Significant decreases in red blood cell counts and hemoglobin levels were correlated with the sulfur

  14. Evaluation and modelling of the size fractionated aerosol particle number concentration measurements nearby a major road in Helsinki ─ Part I: Modelling results within the LIPIKA project

    Directory of Open Access Journals (Sweden)

    M. Ketzel

    2007-08-01

    Full Text Available A field measurement campaign was conducted near a major road "Itäväylä" in an urban area in Helsinki in 17–20 February 2003. Aerosol measurements were conducted using a mobile laboratory "Sniffer" at various distances from the road, and at an urban background location. Measurements included particle size distribution in the size range of 7 nm–10 μm (aerodynamic diameter by the Electrical Low Pressure Impactor (ELPI and in the size range of 3–50 nm (mobility diameter by Scanning Mobility Particle Sizer (SMPS, total number concentration of particles larger than 3 nm detected by an ultrafine condensation particle counter (UCPC, temperature, relative humidity, wind speed and direction, driving route of the mobile laboratory, and traffic density on the studied road. In this study, we have compared measured concentration data with the predictions of the road network dispersion model CAR-FMI used in combination with an aerosol process model MONO32. For model comparison purposes, one of the cases was additionally computed using the aerosol process model UHMA, combined with the CAR-FMI model. The vehicular exhaust emissions, and atmospheric dispersion and transformation of fine and ultrafine particles was evaluated within the distance scale of 200 m (corresponding to a time scale of a couple of minutes. We computed the temporal evolution of the number concentrations, size distributions and chemical compositions of various particle size classes. The atmospheric dilution rate of particles is obtained from the roadside dispersion model CAR-FMI. Considering the evolution of total number concentration, dilution was shown to be the most important process. The influence of coagulation and condensation on the number concentrations of particle size modes was found to be negligible on this distance scale. Condensation was found to affect the evolution of particle diameter in the two smallest particle modes. The assumed value of the concentration of

  15. Atmospheric concentration characteristics and gas-particle partitioning of PCBs in a rural area of eastern Germany

    International Nuclear Information System (INIS)

    Mandalakis, Manolis; Stephanou, Euripides G.

    2007-01-01

    Atmospheric concentrations of polychlorinated biphenyls (PCBs) were measured in 14 successive daytime and nighttime air samples collected from Melpitz, a rural site in eastern Germany. The average total concentration of PCBs was 110+/-80pgm -3 and they were predominately present in the gas phase (∼95%). Composition of individual congeners closely resembled those of Clophen A30 and Aroclor 1232. Partial vapor pressures of PCBs were well correlated with temperature and the steep slopes obtained from Clausius-Clapeyron plots (-4500 to -8000) indicated that evaporation from adjacent land surfaces still controls the atmospheric levels of these pollutants. Particle-gas partitioning coefficients (K P ) of PCBs were well correlated with the respective sub-cooled vapor pressures (P L o ), but the slopes obtained from logK P versus logP L o plots (-0.16 to -0.59) deviated significantly from the expected value of -1. Overall, gas-particle partitioning of PCBs was better simulated by Junge-Pankow than octanol/air partition coefficient-based model

  16. Local PM10 and PM2.5 emission inventories from agricultural tillage and harvest in northeastern China.

    Science.gov (United States)

    Chen, Weiwei; Tong, Daniel Q; Zhang, Shichun; Zhang, Xuelei; Zhao, Hongmei

    2017-07-01

    Mineral particles or particulate matters (PMs) emitted during agricultural activities are major recurring sources of atmospheric aerosol loading. However, precise PM inventory from agricultural tillage and harvest in agricultural regions is challenged by infrequent local emission factor (EF) measurements. To understand PM emissions from these practices in northeastern China, we measured EFs of PM 10 and PM 2.5 from three field operations (i.e., tilling, planting and harvesting) in major crop production (i.e., corn and soybean), using portable real-time PM analyzers and weather station data. County-level PM 10 and PM 2.5 emissions from agricultural tillage and harvest were estimated, based on local EFs, crop areas and crop calendars. The EFs averaged (107±27), (17±5) and 26mg/m 2 for field tilling, planting and harvesting under relatively dry conditions (i.e., soil moisture agricultural dust emissions to regional air quality in northeastern China. Copyright © 2016. Published by Elsevier B.V.

  17. The effect of a concentration-dependent viscosity on particle transport in a channel flow with porous walls

    KAUST Repository

    Herterich, James G.; Griffiths, Ian M.; Vella, Dominic; Field, Robert W.

    2014-01-01

    The transport of a dilute suspension of particles through a channel with porous walls, accounting for the concentration dependence of the viscosity, is analyzed. In particular, we study two cases of fluid permeation through the porous channel walls

  18. Effects of Successive Harvests on Soil Nutrient Stocks in Established Tropical Plantation Forests

    Science.gov (United States)

    Mendoza, L.; McMahon, D.; Jackson, R. B.

    2017-12-01

    Large-scale plantation forests in tropical regions alter biogeochemical processes, raising concerns about the long-term sustainability of this land use. Current commercial practices result in nutrient export with removed biomass that may not be balanced by fertilizer application. Consequent changes in a landscape's nutrient distributions can affect the growth of future plantations or other vegetation. Prior studies have reported changes in soil chemical and physical properties when plantation forests replace pastures or native vegetation, but few have examined the impacts of multiple harvest cycles following plantation establishment. This study analyzed macronutrient and carbon content of soil samples from the world's most productive plantation forests, in southeastern Brazil, to understand the long-term effects of plantation forests on soil nutrient stocks and soil fertility. Soil was collected from Eucalyptus plantation sites and adjacent vegetation in 2004 and again in 2016, after at least one full cycle of harvesting and replanting. We found that within surface soil (0-10 cm) Mg and N did not change significantly and C, P, K and Ca concentrations generally increased, but to varying extents within individual management units. This trend of increasing nutrient concentrations suggests that additional harvests do not result in cumulative nutrient depletion. However, large changes in Ca and K concentrations in individual plantation units indicate that added fertilizer does not consistently accumulate in the surface soil. Analysis of deeper soil layers and comparison to unfertilized vegetation will help to determine the fate of fertilizers and native soil nutrients in repeatedly harvested plantations. These results address the necessity of long-term investigation of nutrient changes to better understand and determine the impacts of different types of land use in the tropics.

  19. Design optimization of harvester head and actuation system of forest harvester

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Hansen, Michael R.; Mouritsen, Ole Ø.

    2005-01-01

    This paper is on the analysis and subsequent efficiency optimization of a forrest harvester. As basis for the optimization the existing machine has undergone substantial experimental testing with a view to determine the loading that the harvester head is subjected to and also the corresponding...

  20. Harvest of table olives by mechanical harvesting equipment

    Directory of Open Access Journals (Sweden)

    Filippo Gambella

    2013-09-01

    Full Text Available In this work, we have evaluated the performance, of an electric comb equipped with five undulated fingers used for mechanized the harvesting of table olives. The first aim of the work was to test three different types of coating materials used for covering the fingers: Silicon (S, Vulcanized rubber (VR and Natural rubber (NR. The diameter of the coating materials tested were 7mm (D1, 14 mm (D2, 19 mm (D3 in order to evaluate the damage of different working conditions on the intact olives. During harvesting, silicon at 7mm and 14mm resulted in the largest percentage of undamaged the fruit (67% and 65%, natural rubber 63% and vulcanized rubber at the 54%. The second aim was to evaluate the combination, in terms of the best performance, of the machines used for mechanized harvesting of table olives. Several factors have been examined: undulating fingers variation thickness, different rotational speeds and different coating materials used to reduce the impact damage on olives. From the tests on olive tree we have determined that while plastic materials (S and (NR appear to have a positive role in harvest quality, the vibration transmitted to the operator’s hand is great from 6.48 m/s2 for S to 6.31 m/ s2 for NR and 2.92 m/s2 for VR, respect to the materials used.

  1. CONSISTENT INFLAMMATORY RESPONSE FOLLOWING EXPOSURE TO CONCENTRATED AMBIENT PARTICLES (CAPS) DURING FALL SEASON IN WISTAR-KYOTO RATS

    Science.gov (United States)

    CONSISTENT INFLAMMATORY RESPONSE FOLLOWING EXPOSURE TO CONCENTRATED AMBIENT PARTICLES (CAPs) DURING FALL SEASON IN WISTAR-KYOTO RATS.UP Kodavanti, MC Schladweiler, AD Ledbetter, LC Walsh, PS Gilmour, MI Gilmour, WP Watkinson, JP Nolan, JH Richards, D Andrews, DL Costa. US EPA...

  2. Evaluation of physical structure value in spring-harvested grass/clover silage and hay fed to heifers

    DEFF Research Database (Denmark)

    Schulze, A.K.S.; Nørgaard, P.; Byskov, M.V.

    2015-01-01

    The physical structure value of conserved grass/clover forages of spring harvest was evaluated by assessing effects of harvest time, conservation method, iNDF/NDF ratio and NDF intake (NDFI) per kg BW on chewing activity and fecal particle size in dairy heifers. A mixed sward consisting of ryegrass...... of 315, 436, 414 and 503 g/kg DM, respectively. Forages were fed as sole feed to four Jersey heifers of 435±30 kg BW in a 4×4 Latin square experiment. Feeding level was 90% of individual ad libitum intake, divided equally across two daily meals offered at 0800 and 1530 h. Chewing activity was estimated...... from recorded jaw movements (JM) oscillations continuously logged for 96 h and summarized per 24 h as mean effective rumination time and eating time. Eating behavior was further observed during four 20-min test meals. Weight proportion of large feces particles (>1.0 mm) and geometric mean fecal...

  3. The influences of ambient particle composition and size on particle infiltration in Los Angeles, CA, residences.

    Science.gov (United States)

    Sarnat, Stefanie Ebelt; Coull, Brent A; Ruiz, Pablo A; Koutrakis, Petros; Suh, Helen H

    2006-02-01

    Particle infiltration is a key determinant of the indoor concentrations of ambient particles. Few studies have examined the influence of particle composition on infiltration, particularly in areas with high concentrations of volatile particles, such as ammonium nitrate (NH4NO3). A comprehensive indoor monitoring study was conducted in 17 Los Angeles-area homes. As part of this study, indoor/outdoor concentration ratios during overnight (nonindoor source) periods were used to estimate the fraction of ambient particles remaining airborne indoors, or the particle infiltration factor (FINF), for fine particles (PM2.5), its nonvolatile (i.e., black carbon [BC]) and volatile (i.e., nitrate [NO3-]) components, and particle sizes ranging between 0.02 and 10 microm. FINF was highest for BC (median = 0.84) and lowest for NO3- (median = 0.18). The low FINF for NO3- was likely because of volatilization of NO3- particles once indoors, in addition to depositional losses upon building entry. The FINF for PM2.5 (median = 0.48) fell between those for BC and NO3-, reflecting the contributions of both particle components to PM25. FINF varied with particle size, air-exchange rate, and outdoor NO3- concentrations. The FINF for particles between 0.7 and 2 microm in size was considerably lower during periods of high as compared with low outdoor NO3- concentrations, suggesting that outdoor NO3- particles were of this size. This study demonstrates that infiltration of PM2.5 varies by particle component and is lowest for volatile species, such as NH4NO3. Our results suggest that volatile particle components may influence the ability for outdoor PM concentrations to represent indoor and, thus, personal exposures to particles of ambient origin, because volatilization of these particles causes the composition of PM2.5 to differ indoors and outdoors. Consequently, particle composition likely influences observed epidemiologic relationships based on outdoor PM concentrations, especially in areas

  4. Fluorescent bioaerosol particle, molecular tracer, and fungal spore concentrations during dry and rainy periods in a semi-arid forest

    Directory of Open Access Journals (Sweden)

    M. I. Gosselin

    2016-12-01

    Full Text Available Bioaerosols pose risks to human health and agriculture and may influence the evolution of mixed-phase clouds and the hydrological cycle on local and regional scales. The availability and reliability of methods and data on the abundance and properties of atmospheric bioaerosols, however, are rather limited. Here we analyze and compare data from different real-time ultraviolet laser/light-induced fluorescence (UV-LIF instruments with results from a culture-based spore sampler and offline molecular tracers for airborne fungal spores in a semi-arid forest in the southern Rocky Mountains of Colorado. Commercial UV-APS (ultraviolet aerodynamic particle sizer and WIBS-3 (wideband integrated bioaerosol sensor, version 3 instruments with different excitation and emission wavelengths were utilized to measure fluorescent aerosol particles (FAPs during both dry weather conditions and periods heavily influenced by rain. Seven molecular tracers of bioaerosols were quantified by analysis of total suspended particle (TSP high-volume filter samples using a high-performance anion-exchange chromatography system with pulsed amperometric detection (HPAEC-PAD. From the same measurement campaign, Huffman et al. (2013 previously reported dramatic increases in total and fluorescent particle concentrations during and immediately after rainfall and also showed a strong relationship between the concentrations of FAPs and ice nuclei (Huffman et al., 2013; Prenni et al., 2013. Here we investigate molecular tracers and show that during rainy periods the atmospheric concentrations of arabitol (35.2 ± 10.5 ng m−3 and mannitol (44.9 ± 13.8 ng m−3 were 3–4 times higher than during dry periods. During and after rain, the correlations between FAP and tracer mass concentrations were also significantly improved. Fungal spore number concentrations on the order of 104 m−3, accounting for 2–5 % of TSP mass during dry periods and 17–23 % during rainy

  5. Radio Frequency Energy Harvesting Sources

    Directory of Open Access Journals (Sweden)

    Action NECHIBVUTE

    2017-12-01

    Full Text Available This radio frequency (RF energy harvesting is an emerging technology and research area that promises to produce energy to run low-power wireless devices. The great interest that has recently been paid to RF harvesting is predominantly driven by the great progress in both wireless communication systems and broadcasting technologies that have availed a lot of freely propagating ambient RF energy. The principle aim of an RF energy harvesting system is to convert the received ambient RF energy into usable DC power. This paper presents a state of the art concise review of RF energy harvesting sources for low power applications, and also discusses open research questions and future research directions on ambient RF energy harvesting.

  6. A nonlocal species concentration theory for diffusion and phase changes in electrode particles of lithium ion batteries

    Science.gov (United States)

    Zhang, Tao; Kamlah, Marc

    2018-01-01

    A nonlocal species concentration theory for diffusion and phase changes is introduced from a nonlocal free energy density. It can be applied, say, to electrode materials of lithium ion batteries. This theory incorporates two second-order partial differential equations involving second-order spatial derivatives of species concentration and an additional variable called nonlocal species concentration. Nonlocal species concentration theory can be interpreted as an extension of the Cahn-Hilliard theory. In principle, nonlocal effects beyond an infinitesimal neighborhood are taken into account. In this theory, the nonlocal free energy density is split into the penalty energy density and the variance energy density. The thickness of the interface between two phases in phase segregated states of a material is controlled by a normalized penalty energy coefficient and a characteristic interface length scale. We implemented the theory in COMSOL Multiphysics^{circledR } for a spherically symmetric boundary value problem of lithium insertion into a Li_xMn_2O_4 cathode material particle of a lithium ion battery. The two above-mentioned material parameters controlling the interface are determined for Li_xMn_2O_4 , and the interface evolution is studied. Comparison to the Cahn-Hilliard theory shows that nonlocal species concentration theory is superior when simulating problems where the dimensions of the microstructure such as phase boundaries are of the same order of magnitude as the problem size. This is typically the case in nanosized particles of phase-separating electrode materials. For example, the nonlocality of nonlocal species concentration theory turns out to make the interface of the local concentration field thinner than in Cahn-Hilliard theory.

  7. Isoprene in poplar emissions: effects on new particle formation and OH concentrations

    Science.gov (United States)

    Kiendler-Scharr, A.; Andres, S.; Bachner, M.; Behnke, K.; Broch, S.; Hofzumahaus, A.; Holland, F.; Kleist, E.; Mentel, T. F.; Rubach, F.; Springer, M.; Steitz, B.; Tillmann, R.; Wahner, A.; Schnitzler, J.-P.; Wildt, J.

    2012-01-01

    Stress-induced volatile organic compound (VOC) emissions from transgenic Grey poplar modified in isoprene emission potential were used for the investigation of photochemical secondary organic aerosol (SOA) formation. In poplar, acute ozone stress induces the emission of a wide array of VOCs dominated by sesquiterpenes and aromatic VOCs. Constitutive light-dependent emission of isoprene ranged between 66 nmol m-2 s-1 in non-transgenic controls (wild type WT) and nearly zero (plants (line RA22), respectively. Nucleation rates of up to 3600 cm-3 s-1 were observed in our experiments. In the presence of isoprene new particle formation was suppressed compared to non-isoprene containing VOC mixtures. Compared to isoprene/monoterpene systems emitted from other plants the suppression of nucleation by isoprene was less effective for the VOC mixture emitted from stressed poplar. This is explained by the observed high efficiency of new particle formation for emissions from stressed poplar. Direct measurements of OH in the reaction chamber revealed that the steady state concentration of OH is lower in the presence of isoprene than in the absence of isoprene, supporting the hypothesis that isoprenes' suppressing effect on nucleation is related to radical chemistry. In order to test whether isoprene contributes to SOA mass formation, fully deuterated isoprene (C5D8) was added to the stress-induced emission profile of an isoprene free poplar mutant. Mass spectral analysis showed that, despite the isoprene-induced suppression of particle formation, fractions of deuterated isoprene were incorporated into the SOA. A fractional mass yield of 2.3% of isoprene was observed. Future emission changes due to land use and climate change may therefore affect both gas phase oxidation capacity and new particle number formation.

  8. Brownian coagulation at high particle concentrations

    NARCIS (Netherlands)

    Trzeciak, T.M.

    2012-01-01

    The process of Brownian coagulation, whereby particles are brought together by thermal motion and grow by collisions, is one of the most fundamental processes influencing the final properties of particulate matter in a variety of technically important systems. It is of importance in colloids,

  9. Harvesting a short rotation forest

    Energy Technology Data Exchange (ETDEWEB)

    Perttu, K L [ed.

    1984-12-01

    Willow and Sallow, considered of great interest for Swedish conditions, present new problems in harvesting. Traditional logging techniques offer few elements of equipment or methods. Light whips may be comminuted to a bulk product, easy to handle, difficult to store, requiring a hot logging system - and requiring a heavy, powerful harvester. Aggregating the material introduces an intermediate wood-fuel unit, suitable for storing, transport and infeed into any comminuter. If the harvester produced billets it would require less energy for its operation and it may be used for other purposes such as pre-commercial thinning or row thinning during the growing season. A few groups of designers have worked on analyses of requirements and possible solutions. Test rigs for severing and bundling were built and evaluated. Public funding was made available for design work on harvesters. Five groups were selected to produce layout designs of large and small harvesters. An evaluation procedure was performed, leading to selection of two concepts, slightly reworked from their original shapes. One is a large self-propelled front-sutting harvester, the other is a harvesting unit to be mounted on a suitable farm tractor. With 3 refs.

  10. Vertical profiles of black carbon concentration and particle number size distribution in the North China Plain

    Science.gov (United States)

    Ran, L.; Deng, Z.

    2013-12-01

    The vertical distribution of aerosols is of great importance to our understanding in the impacts of aerosols on radiation balance and climate, as well as air quality and public health. To better understand and estimate the effects of atmospheric components including trace gases and aerosols on atmospheric environment and climate, an intensive field campaign, Vertical Observations of trace Gases and Aerosols in the North China Plain (VOGA-NCP), was carried out from late July to early August 2013 over a rural site in the polluted NCP. During the campaign, vertical profiles of black carbon (BC) concentration and particle number size distribution were measured respectively by a micro-Aethalometer and an optical particle counter attached to a tethered balloon within 1000 m height. Meteorological parameters, including temperature, relative humidity, wind speed and wind direction, were measured simultaneously by a radiosonde also attached to the tethered balloon. Preliminary results showed distinct diurnal variations of the vertical distribution of aerosol total number concentration and BC concentration, following the development of the mixing layer. Generally, there was a well mixing of aerosols within the mixing layer and a sharp decrease above the mixing layer. Particularly, a small peak of BC concentrations was observed around 400-500 m height for several profiles. Further analysis would be needed to explain such phenomenon. It was also found that measured vertical profiles of BC using the filter-based method might be affected by the vertical distribution of relative humidity.

  11. High relative humidity pre-harvest reduces post-harvest proliferation of Salmonella in tomatoes.

    Science.gov (United States)

    Devleesschauwer, Brecht; Marvasi, Massimiliano; Giurcanu, Mihai C; Hochmuth, George J; Speybroeck, Niko; Havelaar, Arie H; Teplitski, Max

    2017-09-01

    Outbreaks of human illness caused by enteric pathogens such as Salmonella are increasingly linked to the consumption of fruits and vegetables. Knowledge on the factors affecting Salmonella proliferation on fresh produce therefore becomes increasingly important to safeguard public health. Previous experiments showed a limited impact of pre-harvest production practices on Salmonella proliferation on tomatoes, but suggested a significant effect of harvest time. We explored the data from two previously published and one unpublished experiment using regression trees, which allowed overcoming the interpretational difficulties of classical statistical models with higher order interactions. We assessed the effect of harvest time by explicitly modeling the climatic conditions at harvest time and by performing confirmatory laboratory experiments. Across all datasets, regression trees confirmed the dominant effect of harvest time on Salmonella proliferation, with humidity-related factors emerging as the most important underlying climatic factors. High relative humidity the week prior to harvest was consistently associated with lower Salmonella proliferation. A controlled lab experiment confirmed that tomatoes containing their native epimicrobiota supported significantly lower Salmonella proliferation when incubated at higher humidity prior to inoculation. The complex interactions between environmental conditions and the native microbiota of the tomato crop remain to be fully understood. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Organic Nitrogen in Atmospheric Drops and Particles: Concentrations, (Limited) Speciation, and Chemical Transformations

    Science.gov (United States)

    Anastasio, C.; Zhang, Q.

    2003-12-01

    While quite a bit is known of the concentrations, speciation, and chemistry of inorganic forms of nitrogen in the atmosphere, the same cannot be said for organic forms. Despite this, there is growing evidence that organic N (ON) is ubiquitous in the atmosphere, especially in atmospheric condensed phases such as fog/cloud drops and aerosol particles. Although the major compounds that make up organic N are generally unknown, as are the sources of these compounds, it is clear that there are significant fluxes of ON between the atmosphere and ecosystems. It also appears that organic N can have significant effects in both spheres. The goal of our recent work in this area has been to better describe the atmospheric component of the biogeochemistry of organic nitrogen. Based on particle, gas, and fogwater samples from Northern California we have made three major findings: 1) Organic N represents a significant component, approximately 20%, of the total atmospheric N loading in these samples. This is broadly consistent with studies from other locations. 2) Amino compounds, primarily as combined amino acids, account for approximately 20% of the measured ON in our condensed phase samples. Given the properties of amino acids, these compounds could significantly affect the chemical and physical properties of atmospheric particles. 3) Organic nitrogen in atmospheric particles and drops is transformed to inorganic forms - primarily ammonium, nitrate, and nitrogen oxides (NOx) - during exposure to sunlight and/or ozone. These chemical reactions likely increase the bioavailability of the condensed phase nitrogen pool and enhance its biological effects after deposition to ecosystems.

  13. Harvesting of short rotation coppice. Harvesting trials with a cut and storage system in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Schweier, J.; Becker, G.

    2012-11-01

    Short rotation coppice (SRC) harvesting techniques are available in Germany, but broad experience and knowledge about machine performance and the related effective costs of harvesting operations are still missing. This information is crucial, as harvesting costs strongly influence the economic performance of the overall supply chain. Therefore, it was the aim of this study to collect and analyze productivity data of different harvesting systems for SRC. The combined cut and chip system on the one hand and the cut and storage system on the other hand were studied by literature review. Several studies analyze the combined cut and chip systems and the reported machine productivities showed great variations. The average was 30 green tons per scheduled machine hour (gt smh{sup -1}). Few studies are analysing the cut and storage system. They report that machines still are under development and that further research is needed. Therefore, time studies of harvesting operations using the cut and storage system were carried out. Five trials were performed with the harvesting machine 'Stemster MK III' developed by Nordic Biomass. The share of productive working time was 85% and the average productivity was 21 gt smh{sup -1}. These results were compared with values from the literature. Resulting harvesting costs were calculated per oven dry ton (Euro odt{sup -1}). The advantages and disadvantages of both harvesting systems are highlighted. (orig.)

  14. Genotoxic effects of daily personal exposure to particle mass and number concentrations on buccal cells

    Science.gov (United States)

    de Almeida, Daniela S.; da Costa, Silvano César; Ribeiro, Marcos; Moreira, Camila A. B.; Beal, Alexandra; Squizzato, Rafaela; Rudke, Anderson Paulo; Rafee, Sameh Adib Abou; Martins, Jorge A.; Palioto, Graciana Freitas; Kumar, Prashant; Martins, Leila D.

    2018-03-01

    The aim of this study is to assess personal exposure to Particle Number Concentrations (PNC) in four size ranges between 0.3 and 10 μm, and particulate matter (PM1; PM2.5; PM4; PM10) in order to evaluate possible genotoxic effects through a comet assay in buccal cells. A convenience cohort of 30 individuals from a Brazilian medium-sized city was selected. These individuals aged between 20 and 61 and worked in typical job categories (i.e., administrative, commerce, education, general services and transport). They were recruited to perform personal exposure measurements during their typical daily routine activities, totaling 240 h of sampling. The 8-h average mass concentrations in air for volunteers ranged from 2.4 to 31.8 μg m-3 for PM1, 4.2-45.1 μg m-3 for PM2.5, 7.9-66.1 μg m-3 for PM4 and from 23.1 to 131.7 μg m-3 for PM10. The highest PNC variation was found for 0.3-0.5 range, between 14 and 181 particles cm-3, 1 to 14 particles cm-3 for the 0.5-1.0 range, 0.2 to 2 particles cm-3 for the 1.0-2.5 range, and 0.06 to 0.7 particles cm-3 for the 2.5-10 range. Volunteers in the 'education' category experienced the lowest inhaled dose of PM2.5, as opposed to those involved in 'commercial' activities with the highest doses for PM10 (1.63 μg kg-1 h-1) and PM2.5 (0.61 μg kg-1 h-1). The predominant cause for these high doses was associated with the proximity of the workplace to the street and vehicle traffic. The comet assay performed in buccal cells indicated that the volunteers in 'commerce' category experienced the highest damage to their DeoxyriboNucleic Acid (DNA) compared with the control category (i.e. 'education'). These results indicate the variability in personal exposure of the volunteers in different groups, and the potential damage to DNA was much higher for those spending time in close proximity to the vehicle sources (e.g. commercial services) leading to exposure to a higher fraction of fine particles. This study builds understanding on the exposure

  15. Radionuclides and particles in seawater with the large volume in situ filtration and concentration system in the coastal waters off Japan

    International Nuclear Information System (INIS)

    Aono, Tatsuo; Nakanishi, Takahiro; Okubo, Ayako; Zheng, Jian; Yamada, Masatoshi; Kusakabe, Masashi

    2008-01-01

    It is necessary to determine the radionuclides in dissolved and particulate state in order to clarify the distributions and behavior of these in seawater. Because the concentrations of radionuclides and particles are very low in the ocean, it is difficult to concentrate and fractionate the particulate matters with the filtration systems in seawater. The large volume in situ filtration and concentration system (LV-FiCS) was developed to collect various forms of trace radionuclides and particles in seawater. The LV-FiCS has been operated during several cruises in the coastal waters off Japan, and several m 3 of seawaters were filtered through different kinds of filters and then pass through the adsorbents to concentrate radionuclides simultaneously. This system could be shown the vertical profiles of thorium with the size-fractionated method and the behavior of these nuclides in the ocean. (author)

  16. Investigations into the penetration and pressure drop of HEPA filter media during loading with submicron particle aerosols at high concentrations

    International Nuclear Information System (INIS)

    Leibold, H; Wilhelm, J.G.

    1991-01-01

    High Efficiency Particulate Air (HEPA) filters are typically employed in particle removal and retention within the air cleaning systems of clean rooms in the pharmaceutical, nuclear and semiconductor industries for dust concentrations of some μg/m 3 . Their extremely high removal efficiencies for submicron particles make them attractive candidates in complying with increasingly lower emission limits for industrial processes that involve dust concentrations of up to several g/m 3 . Cost-effective operation under such conditions requires the filter units to be recleanable. The recleanability of HEPA filter media depends not only on the operating conditions during the cleaning process but also on the filtration conditions during particle loading. The structure and location of the particles captured by the glass fiber matrix greatly affect the degree to which they can be subsequently dislodged and removed from the filter medium. Changes in filtration efficiency with service time for various particle diameters in the critical submicron size range, as well as the effects of filtration velocity on the increase in pressure drop, are important criteria with regard to recleaning HEPA filter units. Of special significance for the recleanability of HEPA filter media is knowledge of how operating conditions affect dust cake formation. (author)

  17. Reducing post-harvest losses in South Asia's mango orchards ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-04-29

    Apr 29, 2016 ... Spraying a small concentration of hexanal in mango orchards has been found to delay the ripening of the fruit by an extra three weeks, enabling farmers to earn up to 15% more for their crop. Once the crop is harvested, hexanal-sprayed mangoes also have a much longer shelf life—up to 26 days in cold ...

  18. Characterization of particle number concentrations and PM2.5 in a school: influence of outdoor air pollution on indoor air.

    Science.gov (United States)

    Guo, Hai; Morawska, Lidia; He, Congrong; Zhang, Yanli L; Ayoko, Godwin; Cao, Min

    2010-07-01

    The impact of air pollution on school children's health is currently one of the key foci of international and national agencies. Of particular concern are ultrafine particles which are emitted in large quantities, contain large concentrations of toxins and are deposited deeply in the respiratory tract. In this study, an intensive sampling campaign of indoor and outdoor airborne particulate matter was carried out in a primary school in February 2006 to investigate indoor and outdoor particle number (PN) and mass concentrations (PM(2.5)), and particle size distribution, and to evaluate the influence of outdoor air pollution on the indoor air. For outdoor PN and PM(2.5), early morning and late afternoon peaks were observed on weekdays, which are consistent with traffic rush hours, indicating the predominant effect of vehicular emissions. However, the temporal variations of outdoor PM(2.5) and PN concentrations occasionally showed extremely high peaks, mainly due to human activities such as cigarette smoking and the operation of mower near the sampling site. The indoor PM(2.5) level was mainly affected by the outdoor PM(2.5) (r = 0.68, p changes to the modal structure of particle number and size distribution, even though the I/O ratio was different for different size classes. The I/O curves had a maximum value for particles with diameters of 100-400 nm under both occupied and unoccupied scenarios, whereas no significant difference in I/O ratio for PM(2.5) was observed between occupied and unoccupied conditions. Inspection of the size-resolved I/O ratios in the preschool centre and the classroom suggested that the I/O ratio in the preschool centre was the highest for accumulation mode particles at 600 nm after school hours, whereas the average I/O ratios of both nucleation mode and accumulation mode particles in the classroom were much lower than those of Aitken mode particles. The findings obtained in this study are useful for epidemiological studies to estimate the

  19. Modeling the vacuolar storage of malate shed lights on pre- and post-harvest fruit acidity.

    Science.gov (United States)

    Etienne, Audrey; Génard, Michel; Lobit, Philippe; Bugaud, Christophe

    2014-11-18

    Malate is one of the most important organic acids in many fruits and its concentration plays a critical role in organoleptic properties. Several studies suggest that malate accumulation in fruit cells is controlled at the level of vacuolar storage. However, the regulation of vacuolar malate storage throughout fruit development, and the origins of the phenotypic variability of the malate concentration within fruit species remain to be clarified. In the present study, we adapted the mechanistic model of vacuolar storage proposed by Lobit et al. in order to study the accumulation of malate in pre and postharvest fruits. The main adaptation concerned the variation of the free energy of ATP hydrolysis during fruit development. Banana fruit was taken as a reference because it has the particularity of having separate growth and post-harvest ripening stages, during which malate concentration undergoes substantial changes. Moreover, the concentration of malate in banana pulp varies greatly among cultivars which make possible to use the model as a tool to analyze the genotypic variability. The model was calibrated and validated using data sets from three cultivars with contrasting malate accumulation, grown under different fruit loads and potassium supplies, and harvested at different stages. The model predicted the pre and post-harvest dynamics of malate concentration with fairly good accuracy for the three cultivars (mean RRMSE = 0.25-0.42). The sensitivity of the model to parameters and input variables was analyzed. According to the model, vacuolar composition, in particular potassium and organic acid concentrations, had an important effect on malate accumulation. The model suggested that rising temperatures depressed malate accumulation. The model also helped distinguish differences in malate concentration among the three cultivars and between the pre and post-harvest stages by highlighting the probable importance of proton pump activity and particularly of the free

  20. Energy harvesting for microsystems

    Energy Technology Data Exchange (ETDEWEB)

    Ruichao Xu

    2012-05-15

    The purpose of this project is to design and fabricate piezoelectric energy harvesters based on integration of Pb(ZrxTi1-x)O3 (PZT) thick film technology and silicon microtechnology. The fabrication processes are carried out in close collaboration with Meggitt Sensing Systems (MSS) who has the unique expertise to screen print piezoelectric thick film layers, thus all screen printing steps are done by MSS while the silicon micromachining is carried out at Danchip facility at DTU. The presented energy harvesters are all based on using piezoelectric thick film operating in the 31-mode to generate power when strained. Three archetypes of the numerous fabricated energy harvesters will be presented in detail, they represent three major milestones in this project. The first energy harvester archetype has an unimorph cantilever beam, which consists of a 20 {mu}m silicon layer and 10-30 {mu}m screen printed PZT layer, anchored on a silicon frame at one end and attached to a silicon proof mass at the other. Electrodes will cover both side of the PZT layer, so the harvested energy can be collected electrically. The second archetype has a bimorph cantilever beam, which consists of two 15-35 {mu}m PZT layers, anchored on a silicon frame at the one end and attached to a silicon proof mass at the other. Electrodes are deposited below, between and above the two PZT layers. The root mean square (RMS) power output measured on this type of harvesters is as high as 37.1{mu}W at 1 g. The third archetype is similar to the first one, the screen printed PZT layer is replaced by a lead free piezoelectric material, (KxNa1-x)NbO3 (KNN). Some of the major challenges encountered during the development processes are bad adhesion, fragile structures and short circuiting through the PZT layer. All of which have being fully or partially solved in this project. The final energy harvesters are designed to be used in an energy harvester powered wireless sensing system. (Author)

  1. Influence of harvest time on the composition and quality of Rosinjola cultivar virgin olive oils

    Directory of Open Access Journals (Sweden)

    Olivera Koprivnjak

    2012-01-01

    Full Text Available The aim of this investigation was to determine the influence of Rosinjola cultivar fruits harvest time on oil content in olive pastes and on composition and quality of obtained oils. In the late harvest time the higher value of oil in the dry matter of olive paste was determined than in the early harvest time, but the late harvest negatively affected oil quality parameters. The proportion of oleic acid decreased slightly in the late harvest time and linoleic acid increased. The ratio of oleic/linoleic acid, total phenols and ortho-diphenols, as well as bitterness index and antioxidant capacity decreased in the oil obtained from black fruit. Late harvest time influenced the decrease in chlorophyll and carotenoid content and color parameter values (a*, b* and C in obtained oils, but lightness (L* increased. The concentration of volatiles responsible for positive odour of Rosinjola oils decreased, except for aldehydes which increased slightly. Sensory score of oil obtained from the late harvest time decreased, as well as intensities of sensory characteristics olive fruity, apple, green grass, bitter and pungent, while the intensities of characteristics sweet and ripe fruits increased. Oils obtained in the early harvest time were described as harmonious and astringent with pronounced green odour notes, and oils obtained in the late harvest time as overripe and without freshness. The obtained results are important for optimal harvest time determination and understanding the potential of Rosinjola cultivar for production of high quality virgin olive oil with targeted and specific characteristics.

  2. Wide-range particle characterization and elemental concentration in Beijing aerosol during the 2013 Spring Festival.

    Science.gov (United States)

    Jing, Hui; Li, Yu-Feng; Zhao, Jiating; Li, Bai; Sun, Jialong; Chen, Rui; Gao, Yuxi; Chen, Chunying

    2014-09-01

    The number and mass concentration, size distribution, and the concentration of 16 elements were studied in aerosol samples during the Spring Festival celebrations in 2013 in Beijing, China. Both the number and mass concentration increased sharply in a wide range from 10 nm to 10 μm during the firecrackers and fireworks activities. The prominent increase of the number concentration was in 50 nm-500 nm with a peak of 1.7 × 10(5)/cm(3) at 150 nm, which is 8 times higher than that after 1.5 h. The highest mass concentration was in 320-560 nm, which is 4 times higher than the control. K, Mg, Sr, Ba and Pb increased sharply during the firework activities in PM10. Although the aerosol emission from firework activities is a short-term air quality degradation event, there may be a substantial hazard arising from the chemical composition of the emitted particles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Harvesting of Chlorella sp. by Co-cultivation with Some Fil-amentous Fungi

    Directory of Open Access Journals (Sweden)

    Rana H. Hameed Al-Shammari

    2018-04-01

    Full Text Available Algae are play a major role as straight producers of biofuels, so expansion of a new. harvesting-technology is important to achieve economic feasibility of biofuel production from algae.. Fungal pelletization-assisted.. Microalgal harvesting has Emerged as new research area for decreasing the harvesting cost and energy inputs in the algae-to-biofuel method. The present study tried to opti-mize process circumstances as (substrate inputs, process time and pH. Through choice of a ro-bust fungal strain. Four fungal strains (Aspergillus terreus, Trichoderma sp., Mucor sp. and Rhi-zopus sp. were screened for their pelletizing efficiency in fresh/supplemented chu-10 with select-ed media nutrient (glucose, nitrogen and phosphorous. Results showed that Aspergillus terreus was the most efficient strain for pelletizing in the nutrient supplemented chu-10 with its neutral pH (7 and acidic pH (5. Stimulatingly, A. terreus was capable to harvest nearly 100 % of the Clorella sp. cells (1×106 spore/ml at optical density (OD approximately 2.5 initial working algal concentration within only 24 h. at supplementation of (10 g/l glucose, 2.5 mg/l aNH4NO3 and 0.5 mg/l mK2HPO4 also performed well at lower glucose level (5 g/l can also results in similar har-vesting but its need relatively higher incubation time. The procedure kinetics in term of harvesting index (H. I as well as the variation of residual glucose and pH with time was also studied. The mechanism of harvesting process was studied through microscopic, examination. A. terreus strain investigated in this study could emerge as an efficient, sustainable and economically viable tool in microalgae harvesting for biofuel production and time conservation

  4. Simulating the environmental performance of post-harvest management measures to comply with the EU Nitrates Directive.

    Science.gov (United States)

    De Waele, J; D'Haene, K; Salomez, J; Hofman, G; De Neve, S

    2017-02-01

    Nitrate (NO 3 - ) leaching from farmland remains the predominant source of nitrogen (N) loads to European ground- and surface water. As soil mineral N content at harvest is often high and may increase by mineralisation from crop residues and soil organic matter, it is critical to understand which post-harvest management measures can be taken to restrict the average NO 3 - concentration in ground- and surface waters below the norm of 50 mg l -1 . Nitrate leaching was simulated with the EU-rotate_N model on a silty and a sandy soil following the five main arable crops cultivated in Flanders: cut grassland, silage maize, potatoes, sugar beets and winter wheat, in scenarios of optimum fertilisation with and without post-harvest measures. We compared the average NO 3 - concentration in the leaching water at a depth of 90 cm in these scenarios after dividing it by a factor of 2.1 to include natural attenuation processes occurring during transport towards ground- and surface water. For cut grassland, the average attenuated NO 3 - concentration remained below the norm on both soils. In order to comply with the Nitrates Directive, post-harvest measures seemed to be necessary on sandy soils for the four other crops and on silty soils for silage maize and for potatoes. Successful measures appeared to be the early sowing of winter crops after harvesting winter wheat, the undersowing of grass in silage maize and the removal of sugar beet leaves. Potatoes remained a problematic crop as N uptake by winter crops was insufficient to prevent excessive NO 3 - leaching. For each crop, maximum levels of soil mineral N content at harvest were proposed, both with and without additional measures, which could be used in future nutrient legislation. The approach taken here could be upscaled from the field level to the subcatchment level to see how different crops could be arranged within a subcatchment to permit the cultivation of problem crops without adversely affecting the water

  5. Beyond phthalates: Gas phase concentrations and modeled gas/particle distribution of modern plasticizers

    Energy Technology Data Exchange (ETDEWEB)

    Schossler, Patricia [Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Bienroder Weg 54E, D-38108 Braunschweig (Germany); Institute of Environmental and Sustainable Chemistry, Technische Universitaet Braunschweig, Hagenring 30, D-38106 Braunschweig (Germany); Schripp, Tobias, E-mail: tobias.schripp@wki.fraunhofer.de [Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Bienroder Weg 54E, D-38108 Braunschweig (Germany); Salthammer, Tunga [Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Bienroder Weg 54E, D-38108 Braunschweig (Germany); Bahadir, Muefit [Institute of Environmental and Sustainable Chemistry, Technische Universitaet Braunschweig, Hagenring 30, D-38106 Braunschweig (Germany)

    2011-09-01

    The ongoing health debate about polymer plasticizers based on the esters of phthalic acid, especially di(2-ethylhexyl) phthalate (DEHP), has caused a trend towards using phthalates of lower volatility such as diisononyl phthalate (DINP) and towards other acid esters, such as adipates, terephthalates, citrates, etc. Probably the most important of these so-called 'alternative' plasticizers is diisononyl cyclohexane-1,2-dicarboxylate (DINCH). In the indoor environment, the continuously growing market share of this compound since its launch in 2002 is inter alia apparent from the increasing concentration of DINCH in settled house dust. From the epidemiological point of view there is considerable interest in identifying how semi-volatile organic compounds (SVOCs) distribute in the indoor environment, especially in air, airborne particles and sedimented house dust. This, however, requires reliable experimental concentration data for the different media and good measurements or estimates of their physical and chemical properties. This paper reports on air concentrations for DINP, DINCH, diisobutyl phthalate (DIBP), diisobutyl adipate (DIBA), diisobutyl succinate (DIBS) and diisobutyl glutarate (DIBG) from emission studies in the Field and Laboratory Emission Cell (FLEC). For DINP and DINCH it took about 50 days to reach the steady-state value: for four months no decay in the concentration could be observed. Moreover, vapor pressures p{sub 0} and octanol-air partitioning coefficients K{sub OA} were obtained for 37 phthalate and non-phthalate plasticizers from two different algorithms: EPI Suite and SPARC. It is shown that calculated gas/particle partition coefficients K{sub p} and fractions can widely differ due to the uncertainty in the predicted p{sub 0} and K{sub OA} values. For most of the investigated compounds reliable experimental vapor pressures are not available. Rough estimates can be obtained from the measured emission rate of the pure compound in a

  6. Comparison of Postoperative Pain Relief by Intercostal Block Between Pre-rib Harvest and Post-rib Harvest Groups

    International Nuclear Information System (INIS)

    Bashir, M. M.; Shahzad, M. A.; Yousaf, M. N.; Khan, B. A.; Khan, F. A.

    2014-01-01

    Objective: To compare intercostal nerve block before and after rib harvest in terms of mean postoperative pain score and mean postoperative tramadol usage. Study Design: Randomized controlled trial. Place and Duration of Study: Department of Plastic Surgery, Mayo Hospital, KEMU, Lahore, from January 2011 to July 2012. Methodology: Patients (n = 120) of either gender with ASA class-I and II requiring autogenous costal cartilage graft were inducted. Patients having history of local anaesthetic hypersensitivity and age 60 years were excluded. Subjects were randomly assigned to pre-rib harvest (group-1) and post-rib harvest (group-2). Local anaesthetic mixture was prepared by adding 10 milliliters 2% lidocaine to 10 milliliters 0.5% bupivacaine to obtain a total 20 ml solution. Group-1 received local anaesthetic infiltration along the proposed incision lines and intercostals block before the rib harvest. Group-2 received the infiltration and block after rib harvest. Postoperative consumption of tramadol and pain scores were measured at 6 and 12 hours postoperatively using VAS. Results: Mean age was 31.43 A +- 10.78 years. The mean pain scores at 6 hours postoperatively were 1.033 A +- 0.609 and 2.4667 A +- 0.812 in pre-rib harvest and post-rib harvest groups respectively (p < 0.0001). The mean pain scores at 12 hours postoperatively were 1.45 A +- 0.565 and 3.65 A +- 0.633 in pre-rib harvest and post-rib harvest groups respectively (p < 0.0001). The mean tramadol used postoperatively in first 24 hours was 169 A +- 29.24 mg and 255 A +- 17.70 mg in prerib harvest and post-rib harvest groups respectively (p < 0.0001). Conclusion: Intercostal block administered before rib harvest as preemptive strategy result in decreased postoperative pain scores and narcotic use. (author)

  7. Cover Crop Biomass Harvest Influences Cotton Nitrogen Utilization and Productivity

    Directory of Open Access Journals (Sweden)

    F. Ducamp

    2012-01-01

    Full Text Available There is a potential in the southeastern US to harvest winter cover crops from cotton (Gossypium hirsutum L. fields for biofuels or animal feed use, but this could impact yields and nitrogen (N fertilizer response. An experiment was established to examine rye (Secale cereale L. residue management (RM and N rates on cotton productivity. Three RM treatments (no winter cover crop (NC, residue removed (REM and residue retained (RET and four N rates for cotton were studied. Cotton population, leaf and plant N concentration, cotton biomass and N uptake at first square, and cotton biomass production between first square and cutout were higher for RET, followed by REM and NC. However, leaf N concentration at early bloom and N concentration in the cotton biomass between first square and cutout were higher for NC, followed by REM and RET. Seed cotton yield response to N interacted with year and RM, but yields were greater with RET followed by REM both years. These results indicate that a rye cover crop can be beneficial for cotton, especially during hot and dry years. Long-term studies would be required to completely understand the effect of rye residue harvest on cotton production under conservation tillage.

  8. Doped luminescent materials and particle discrimination using same

    Science.gov (United States)

    Doty, F. Patrick; Allendorf, Mark D; Feng, Patrick L

    2014-10-07

    Doped luminescent materials are provided for converting excited triplet states to radiative hybrid states. The doped materials may be used to conduct pulse shape discrimination (PSD) using luminescence generated by harvested excited triplet states. The doped materials may also be used to detect particles using spectral shape discrimination (SSD).

  9. MECHANIZED HARVESTING TESTS PERFORMED BY GRAPE HARVESTERS IN SUPER INTENSIVE OLIVE ORCHARD CULTIVATION IN SPAIN

    Directory of Open Access Journals (Sweden)

    Gennaro Giametta

    2009-06-01

    Full Text Available Today also those countries boasting a century-old olive growing tradition have to look at the latest, most dynamic, non labour-intensive olive growing systems to abate production (notably, harvesting operations costs and remain competitive in a globalized market. This is why over the last few years super intensive olive orchard cultivation has been attracting a lot of interest on the part of olive growers all over the world as it accounts for an innovative model whereby olive groves are tailored to the special needs of grape harvesters. This paper reports the first results of experimental mechanical harvesting tests in a super-intensive olive cultivation. The study is intended to explore both productivity and work capacity of two of the most commonly used grape harvesters, Grégoire G120SW and New Holland Braud VX680, in a view to assessing their harvesting performance by a series of tests conducted in Spain. On the basis of the tests it was possible to verify that the machines are able to detach the almost all the drupes (more than 90%, with one only passage, and this independently of both size and location of drupes on the tree crown and of their maturity stage. Using these machines, two people can often carry out the whole harvest process: an operator driving the harvester and another person transferring the fruit from the harvester in the field to the olive oil mill for processing. With this system, the work speed is usually, in the best working conditions, about 1.7 km/hour and the average harvesting time is about 2.5-3 hours/ha. For the time being it is however impossible to draw definitive conclusions in terms of performance of the above cultivation systems and harvesting machines. Additional key observational studies are needed in the years to come to assess the efficiency of the entire model.

  10. Harvesting of freshwater microalgae biomass by Scenedesmus sp. as bioflocculant

    Science.gov (United States)

    Rinanti, A.; Purwadi, R.

    2018-01-01

    This study is particularly expected to provide information on the diversity of microalgae as the flocculant agent that gives the highest biomass yield. Bioflocculation was done by using one of the flocculating microalgae i.e. Scenedesmus obliquus to concentrate on non-flocculating microalgae Chlorella vulgaris. The freshwater microalgae S. obliquus tested it ability to harvest other non-flocculating microalgae, increased sedimentation rate in the flocculation process and increased biomass yield. The flocculation of biomass microalgae with chemical flocculant as comparison was done by adding alum (K2SO4·Al2 (SO4)3·24H2O). The addition of alum (K2SO4·Al2 (SO4)3·24H2O) as flocculant at pH 11 and S. obliquus sp. as bioflocculant caused significant alteration of nutrition of microalgae. Overall, the essential content produced by flocculation method with addition of alum or with bioflocculation (%, mg/100 mg dry weight) are lipid 31,64; 38,69, protein 30,79; 38.50%, and chlorophyll 0.6253; 0.8420). Harvesting with bioflocculation methods conducted at the end of the cultivation period increase the amount of biomass significantly and can accelerate the settling time of biomass. Harvesting microalgae cells by bioflocculation method becomes an economically competitive harvesting method compared to alum as a chemical flocculant because of the cheaper cost of flocculant, not toxic so it does not require further water treatment after harvesting due to the use of alum as chemical flocculants.

  11. Single/Dual-Polarized Infrared Rectenna for Solar Energy Harvesting

    Directory of Open Access Journals (Sweden)

    S. H. Zainud-Deen

    2016-05-01

    Full Text Available Single and dual linearly-polarized receiving mode nanoantennas are designed for solar energy harvesting at 28.3 THz. The infrared rectennas are used to harvest the solar energy and converting it to electrical energy.  The proposed infrared rectenna is a thin dipole made of gold and printed on a silicon dioxide substrate. Different shapes of the dipole arms have been investigated for maximum collected energy. The two poles of the dipole have been determined in a rectangular, circular and rhombus shapes. The rectenna dipole is used to concentrate the electromagnetic energy into a small localized area at the inner tips of the gap between the dipole arms. The dimensions of the different dipole shapes are optimized for maximum near electric field intensity at a frequency of 28.3 THz. A Metal Insulator Metal (MIM diode is incorporated with the nanoantenna dipole to rectify the received energy. The receiving efficiency of the solar energy collector with integrated MIM diode has been investigated. A dual-polarized, four arms, rhombus shaped nanoantenna dipole for solar energy harvesting has been designed and optimized for 28.3 THz applications.

  12. Energy-Harvesting Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Fafoutis, Xenofon; Vuckovic, Dusan; Di Mauro, Alessio

    2012-01-01

    Energy Harvesting comprises a promising solution to one of the key problems faced by battery-powered Wireless Sensor Networks, namely the limited nature of the energy supply (finite battery capacity). By harvesting energy from the surrounding environment, the sensors can have a continuous lifetime...... Sensor Networks with energy harvesting capability....... without any needs for battery recharge or replacement. However, energy harvesting introduces a change to the fundamental principles based on which WSNs are designed and realized. In this poster we sketch some of the key research challenges as well as our ongoing work in designing and realizing Wireless...

  13. Effects of locust bean gum and mono- and diglyceride concentrations on particle size and melting rates of ice cream.

    Science.gov (United States)

    Cropper, S L; Kocaoglu-Vurma, N A; Tharp, B W; Harper, W J

    2013-06-01

    The objective of this study was to determine how varying concentrations of the stabilizer, locust bean gum (LBG), and different levels of the emulsifier, mono- and diglycerides (MDGs), influenced fat aggregation and melting characteristics of ice cream. Ice creams were made containing MDGs and LBG singly and in combination at concentrations ranging between 0.0% to 0.14% and 0.0% to 0.23%, respectively. Particle size analysis, conducted on both the mixes and ice cream, and melting rate testing on the ice cream were used to determine fat aggregation. No significant differences (P ice cream mixes. However, higher concentrations of both LBG and MDG in the ice creams resulted in values that were larger than the control. This study also found an increase in the particle size values when MDG levels were held constant and LBG amounts were increased in the ice cream. Ice creams with higher concentrations of MDG and LBG together had the greatest difference in the rate of melting than the control. The melting rate decreased with increasing LBG concentrations at constant MDG levels. These results illustrated that fat aggregation may not only be affected by emulsifiers, but that stabilizers may play a role in contributing to the destabilization of fat globules. © 2013 Institute of Food Technologists®

  14. Cantilever piezoelectric energy harvester with multiple cavities

    International Nuclear Information System (INIS)

    S Srinivasulu Raju; M Umapathy; G Uma

    2015-01-01

    Energy harvesting employing piezoelectric materials in mechanical structures such as cantilever beams, plates, diaphragms, etc, has been an emerging area of research in recent years. The research in this area is also focused on structural tailoring to improve the harvested power from the energy harvesters. Towards this aim, this paper presents a method for improving the harvested power from a cantilever piezoelectric energy harvester by introducing multiple rectangular cavities. A generalized model for a piezoelectric energy harvester with multiple rectangular cavities at a single section and two sections is developed. A method is suggested to optimize the thickness of the cavities and the number of cavities required to generate a higher output voltage for a given cantilever beam structure. The performance of the optimized energy harvesters is evaluated analytically and through experimentation. The simulation and experimental results show that the performance of the energy harvester can be increased with multiple cavities compared to the harvester with a single cavity. (paper)

  15. Characterization study of cesium concentrated particles in the soils near the Fukushima Daiichi nuclear power plant

    Science.gov (United States)

    Satou, Yukihiko; Sueki, Keisuke; Sasa, Kimikazu; Adachi, Kouji; Igarashi, Yasuhito

    2015-04-01

    Radionuclides from the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident contaminated a vast area. Two types of contamination, spread and spot types, were observed in soils with autoradiography using an imaging plate. Other samples such as dust filters, vegetation, X-ray films, and so on, also indicate the spot type contamination in the early stage of the FDNPP accident. The source of spot type contamination is well known as hot particles at the Chernobyl Nuclear Power Plant (ChNPP) accident in 1986. Hot particles were divided into two groups, fuel hot particles and fission product particles, and they were emitted directly from reactor core with phreatic explosion and fire. In contrast, the official reports of the FDNPP accident did not conforme core explosion. In addition, the emitted total amount of Uranium was very few (Yamamoto et al., 2014). Thus, the spot type contaminations were not identified as the same of hot particles yet. Therefore, the present study aimed to pick up and identify the spot contaminations in soils. Surface soil samples were collected at 20 km northwest from the FDNPP in June 2013. Soils were spread in plastic bags for autoradiography with imaging plate analysis. Then, the soil particles were collected on a sticky carbon tape and analyzed by SEM-EDS to detect radioactive particles. Finally, particles were confirmed to contain photo peaks in the γ-spectrum by a germanium semiconductor detector. Four radioactive particles were isolated from the soil samples in the present study. Detected γ-ray emission radionuclides were only Cs-134 and Cs-137. The X-ray spectra on the SEM-EDS of all particles showed a Cs peak as well as O, Fe, Zn, and Rb peaks, and these elements were distributed uniformly within the particles. In addition, uniform distribution of Si was also shown. Moreover, U was detected from one of the particles, but U concentration was very low and existed locally in the particle. These characters are very similar to previous

  16. Comparison of consecutive harvests versus blending treatments to produce lower alcohol wines from Cabernet Sauvignon grapes: Impact on wine volatile composition and sensory properties.

    Science.gov (United States)

    Schelezki, Olaf J; Šuklje, Katja; Boss, Paul K; Jeffery, David W

    2018-09-01

    This study extends previous work on Cabernet Sauvignon wines of lowered alcohol concentrations produced by pre-fermentatively substituting proportions of juice from an overripe crop with "green harvest wine" or water to adjust initial sugar concentrations. Resulting wines were assessed for their volatile compositions and sensory characteristics to evaluate the suitability of this winemaking approach to managing wine alcohol concentrations in warm viticulture regions. Wines from water or green harvest wine substitution were also compared to wines of similar alcohol content produced from earlier harvested grapes. Implementation of water substitution in particular resulted in minor alterations of wine volatile composition compared to the control, and positive aroma and flavour characteristics were preserved. However, overripe sensory attributes such as 'hotness' and 'port wine' were conserved whereas they were absent in wines of similar alcohol level made from earlier harvested grapes, thereby emphasising the relevance of grape (over)maturity when producing lower alcohol wines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Characterization of fluidization regime in circulating fluidized bed reactor with high solid particle concentration using computational fluid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Chalermsinsuwan, Benjapon; Thummakul, Theeranan; Piumsomboon, Pornpote [Chulalongkorn University, Bangkok (Thailand); Gidaspow, Dimitri [Armour College of Engineering, Chicago (United States)

    2014-02-15

    The hydrodynamics inside a high solid particle concentration circulating fluidized bed reactor was investigated using computational fluid dynamics simulation. Compared to a low solid particle reactor, all the conventional fluidization regimes were observed. In addition, two unconventional fluidization regimes, circulating-turbulent and dense suspension bypassing regimes, were found with only primary gas injection. The circulating-turbulent fluidization regime showed uniformly dense solid particle distribution in all the system directions, while the dense suspension bypassing fluidization regime exhibited the flow of solid particles at only one side system wall. Then, comprehensive fluidization regime clarification and mapping were evaluated using in-depth system parameters. In the circulating-turbulent fluidization regime, the total granular temperature was low compared to the adjacent fluidization regimes. In the dense suspension bypassing fluidization regime, the highest total granular temperature was obtained. The circulating-turbulent and dense suspension bypassing fluidization regimes are suitable for sorption and transportation applications, respectively.

  18. Energy harvesting for microsystems

    DEFF Research Database (Denmark)

    Xu, Ruichao

    The purpose of this project is to design and fabricate piezoelectric energy harvesters based on integration of Pb(ZrxTi1-x)O3 (PZT) thick film technology and silicon microtechnology. The fabrication processes are carried out in close collaboration with Meggitt Sensing Systems (MSS) who has...... the unique expertise to screen print piezoelectric thick film layers, thus all screen printing steps are done by MSS while the silicon micromachining is carried out at Danchip facility at DTU. The presented energy harvesters are all based on using piezoelectric thick film operating in the 31-mode to generate...... power when strained. Three archetypes of the numerous fabricated energy harvesters will be presented in detail, they represent three major milestones in this project. The first energy harvester archetype has an unimorph cantilever beam, which consists of a 20 µm silicon layer and 10-30 µm screen printed...

  19. Applying New Technologies to Transform Blueberry Harvesting

    Directory of Open Access Journals (Sweden)

    Fumiomi Takeda

    2017-05-01

    Full Text Available The growth of the blueberry industry in the past three decades has been remarkably robust. However, a labor shortage for hand harvesting, increasingly higher labor costs, and low harvest efficiencies are becoming bottlenecks for sustainable development of the fresh market blueberry production. In this study, we evaluated semi-mechanical harvesting systems consisting of a harvest-aid platform with soft fruit catching surfaces that collected the fruit detached by portable, hand-held, pneumatic shakers. The softer fruit catching surfaces were not glued to the hard sub-surfaces of the harvest-aid platform, but suspended over them. Also, the ergonomic aspect of operating powered harvesting equipment was determined. The pneumatic shakers removed 3.5 to 15 times more fruit (g/min than by hand. Soft fruit catching surfaces reduced impact force and bruise damage. Fruit firmness was higher in fruit harvested by hand compared to that by pneumatic shakers in some cultivars. The bruise area was less than 8% in fruit harvested by hand and with semi-mechanical harvesting system. The percentage of blue, packable fruit harvested by pneumatic shakers comprised as much as 90% of the total, but less than that of hand-harvested fruit. The ergonomic analysis by electromyography showed that muscle strain in the back, shoulders, and forearms was low in workers operating the light-weight, pneumatic shakers that were tethered to the platform with a tool balancer. The new harvesting method can reduce the labor requirement to about 100 hour/hectare/year and help to mitigate the rising labor cost and shortage of workers for harvesting fresh-market quality blueberries.

  20. Thermodynamics of phase-separating nanoalloys: Single particles and particle assemblies

    Science.gov (United States)

    Fèvre, Mathieu; Le Bouar, Yann; Finel, Alphonse

    2018-05-01

    The aim of this paper is to investigate the consequences of finite-size effects on the thermodynamics of nanoparticle assemblies and isolated particles. We consider a binary phase-separating alloy with a negligible atomic size mismatch, and equilibrium states are computed using off-lattice Monte Carlo simulations in several thermodynamic ensembles. First, a semi-grand-canonical ensemble is used to describe infinite assemblies of particles with the same size. When decreasing the particle size, we obtain a significant decrease of the solid/liquid transition temperatures as well as a growing asymmetry of the solid-state miscibility gap related to surface segregation effects. Second, a canonical ensemble is used to analyze the thermodynamic equilibrium of finite monodisperse particle assemblies. Using a general thermodynamic formulation, we show that a particle assembly may split into two subassemblies of identical particles. Moreover, if the overall average canonical concentration belongs to a discrete spectrum, the subassembly concentrations are equal to the semi-grand-canonical equilibrium ones. We also show that the equilibrium of a particle assembly with a prescribed size distribution combines a size effect and the fact that a given particle size assembly can adopt two configurations. Finally, we have considered the thermodynamics of an isolated particle to analyze whether a phase separation can be defined within a particle. When studying rather large nanoparticles, we found that the region in which a two-phase domain can be identified inside a particle is well below the bulk phase diagram, but the concentration of the homogeneous core remains very close to the bulk solubility limit.

  1. Review of magnetostrictive vibration energy harvesters

    Science.gov (United States)

    Deng, Zhangxian; Dapino, Marcelo J.

    2017-10-01

    The field of energy harvesting has grown concurrently with the rapid development of portable and wireless electronics in which reliable and long-lasting power sources are required. Electrochemical batteries have a limited lifespan and require periodic recharging. In contrast, vibration energy harvesters can supply uninterrupted power by scavenging useful electrical energy from ambient structural vibrations. This article reviews the current state of vibration energy harvesters based on magnetostrictive materials, especially Terfenol-D and Galfenol. Existing magnetostrictive harvester designs are compared in terms of various performance metrics. Advanced techniques that can reduce device size and improve performance are presented. Models for magnetostrictive devices are summarized to guide future harvester designs.

  2. Development of harvesting and up concentration technologies for microalgae as an ingredient in fish feed

    DEFF Research Database (Denmark)

    Safafar, Hamed; Jacobsen, Charlotte; Møller, Per

    2014-01-01

    andfish oil. In applications of algae in fish feed, it is essential to produce a product comparable to fish proteinand fish oil both in terms of quality and costs.Downstream processing of microalgae includes harvest, dewatering, cell rupture, fractionation and drying.The dewatering and drying which...... ingredients forfish feed. Further we evaluate the chemical composition of six different microalgae species including;Nanochloropsis limnethica, Chlorella sorokiniana, Phaeodactylum tinctorium, Dunaliella salina,Nannochloropsis salina and Nannochloropsis occulata ....

  3. Isoprene in poplar emissions: effects on new particle formation and OH concentrations

    Directory of Open Access Journals (Sweden)

    A. Kiendler-Scharr

    2012-01-01

    Full Text Available Stress-induced volatile organic compound (VOC emissions from transgenic Grey poplar modified in isoprene emission potential were used for the investigation of photochemical secondary organic aerosol (SOA formation. In poplar, acute ozone stress induces the emission of a wide array of VOCs dominated by sesquiterpenes and aromatic VOCs. Constitutive light-dependent emission of isoprene ranged between 66 nmol m−2 s−1 in non-transgenic controls (wild type WT and nearly zero (<0.5 nmol m−2 s−1 in isoprene emission-repressed plants (line RA22, respectively. Nucleation rates of up to 3600 cm−3 s−1 were observed in our experiments. In the presence of isoprene new particle formation was suppressed compared to non-isoprene containing VOC mixtures. Compared to isoprene/monoterpene systems emitted from other plants the suppression of nucleation by isoprene was less effective for the VOC mixture emitted from stressed poplar. This is explained by the observed high efficiency of new particle formation for emissions from stressed poplar. Direct measurements of OH in the reaction chamber revealed that the steady state concentration of OH is lower in the presence of isoprene than in the absence of isoprene, supporting the hypothesis that isoprenes' suppressing effect on nucleation is related to radical chemistry. In order to test whether isoprene contributes to SOA mass formation, fully deuterated isoprene (C5D8 was added to the stress-induced emission profile of an isoprene free poplar mutant. Mass spectral analysis showed that, despite the isoprene-induced suppression of particle formation, fractions of deuterated isoprene were incorporated into the SOA. A fractional mass yield of 2.3% of isoprene was observed. Future emission changes due to land use and climate change may therefore affect both gas phase oxidation capacity and new particle number formation.

  4. Energy harvesting using ionic electro-active polymer thin films with Ag-based electrodes

    International Nuclear Information System (INIS)

    Anand, S V; Arvind, K; Bharath, P; Roy Mahapatra, D

    2010-01-01

    In this paper we employ the phenomenon of bending deformation induced transport of cations via the polymer chains in the thickness direction of an electro-active polymer (EAP)–metal composite thin film for mechanical energy harvesting. While EAPs have been applied in the past in actuators and artificial muscles, promising applications of such materials in hydrodynamic and vibratory energy harvesting are reported in this paper. For this, functionalization of EAPs with metal electrodes is the key factor in improving the energy harvesting efficiency. Unlike Pt-based electrodes, Ag-based electrodes have been deposited on an EAP membrane made of Nafion. The developed ionic metal polymer composite (IPMC) membrane is subjected to a dynamic bending load, hydrodynamically, and evaluated for the voltage generated against an external electrical load. An increase of a few orders of magnitude has been observed in the harvested energy density and power density in air, deionized water and in electrolyte solutions with varying concentrations of sodium chloride (NaCl) as compared to Pt-based IPMC performances reported in the published literature. This will have potential applications in hydrodynamic and residual environmental energy harvesting to power sensors and actuators based on micro-and nano-electro-mechanical systems (MEMS and NEMS) for biomedical, aerospace and oceanic applications

  5. A handy motion driven hybrid energy harvester: dual Halbach array based electromagnetic and triboelectric generators

    International Nuclear Information System (INIS)

    Salauddin, M; Park, J Y

    2016-01-01

    In this work, we have proposed and experimentally validated of hybrid electromagnetic and triboelectric energy harvester using dual Halbach magnets array excited by human handy motion. Hybrid electromagnetic (EM) and triboelectric (TE) generator that can deliver an output performance much higher than that of the individual energy-harvesting unit due to the combination operation of EM and TE mechanisms under the same mechanical movements. A Halbach array concentrates the magnetic flux lines on one side of the array while suppressing the flux lines on the other side. Dual Halbach array allows the concentrated magnetic flux lines to interact with the same coil in a way where maximum flux linkage occurs. When an external mechanical vibration is applied to the hybrid structure in the axial direction of the harvester, the suspended mass (two sided dual-Halbach-array frame) starts to oscillate within the magnetic springs and TEG part. Therefore, the TEG part, the Al film and microstructure PDMS film are collected into full contact with each other, generating triboelectric charges due to the various triboelectricities between them. A prototype of the hybrid harvester has been fabricated and tested. The EMG is capable of delivering maximum 11.5mW peak power at 32.5Ω matching load resistance and the TEG delivering 88μW peak power at 10MΩ load resistance. (paper)

  6. Performance evaluation of prototype mechanical cassava harvester ...

    African Journals Online (AJOL)

    Large-scale cassava harvesting, especially during the dry season, is a major constraint to its industrial demand and commercial production. Manual harvesting is slow and ... Results from field trials showed prototype harvesters weighing 268 – 310 kg can achieve optimum performance on ridged landforms. When harvested ...

  7. Flow Energy Piezoelectric Bimorph Nozzle Harvester

    Science.gov (United States)

    Sherrit, Stewart (Inventor); Walkemeyer, Phillip E. (Inventor); Hall, Jeffrey L. (Inventor); Lee, Hyeong Jae (Inventor); Colonius, Tim (Inventor); Tosi, Phillipe (Inventor); Kim, Namhyo (Inventor); Sun, Kai (Inventor); Corbett, Thomas Gary (Inventor); Arrazola, Alvaro Jose (Inventor)

    2016-01-01

    A flow energy harvesting device having a harvester pipe includes a flow inlet that receives flow from a primary pipe, a flow outlet that returns the flow into the primary pipe, and a flow diverter within the harvester pipe having an inlet section coupled to the flow inlet, a flow constriction section coupled to the inlet section and positioned at a midpoint of the harvester pipe and having a spline shape with a substantially reduced flow opening size at a constriction point along the spline shape, and an outlet section coupled to the constriction section. The harvester pipe may further include a piezoelectric structure extending from the inlet section through the constriction section and point such that the fluid flow past the constriction point results in oscillatory pressure amplitude inducing vibrations in the piezoelectric structure sufficient to cause a direct piezoelectric effect and to generate electrical power for harvesting.

  8. Evaluation of building characteristics in 27 dwellings in Denmark and the effect of using particle filtration units on PM2.5 concentrations

    DEFF Research Database (Denmark)

    Spilak, Michal; Karottki, Dorina Gabriela; Kolarik, Barbara

    2014-01-01

    Exposure to airborne particulate matter in homes is associated with the risk of cardiovascular diseases and respiratory problems. Due to the extended time people spend at home, reducing the particle concentration in homes may be a means to reduce the risk of cardiovascular diseases and respiratory...... concentrations. Furthermore, the winter period and a location farther from a trafficked street were associated with increased PM2.5 mass. Overall, the use of PFU led to a decrease in the concentrations of PM2.5 of 54.5% (median value).We assessed the PFU particle-removal efficiency by using the amount...

  9. Relationship between dioxin concentration and particle size for suspended sediment

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, K.; Sakurai, T.; Choi, J.W.; Suzuki, N.; Morita, M. [National Inst. for Environmental Studies, Tsukuba (Japan)

    2004-09-15

    The purpose of the present study was to find out how the amounts of adsorbed dioxins, i.e., polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDDs/Fs), mono-ortho-polychlorinated biphenyls (PCBs) and non-ortho-PCBs, vary with the particle size of suspended sediment. As dioxins are hydrophobic, they tend to adsorb onto particles suspended in water, and the determination of which dioxin congeners readily dissolve in water or adsorb onto particles is central to the characterization of dioxin behavior in water/sediment systems. Presumably suspension of sediments and the size of the particles govern the transfer of dioxins to aquatic organisms. Therefore, in the present study, we investigated the relationship between the amount of dioxins and the particle-size distribution of resuspended, rather than settled, sediment.

  10. Influence of the ambient humidity on the concentration of natural deposition-mode ice-nucleating particles

    Directory of Open Access Journals (Sweden)

    M. L. López

    2016-01-01

    Full Text Available This study reports measurements of deposition-mode ice-nucleating particle (INP concentrations at ground level during the period July–December 2014 in Córdoba, Argentina. Ambient air was sampled into a cloud chamber where the INP concentration was measured at a temperature of −25 °C and a 15 % supersaturation over ice. Measurements were performed on days with different thermodynamic conditions, including rainy days. The effect of the relative humidity at ground level (RHamb on the INP concentration was analyzed. The number of INPs activated varied from 1 L−1 at RHamb of 25 % to 30 L−1 at RHamb of 90 %. In general, a linear trend between the INP concentration and the RHamb was found, suggesting that this variability must be related to the effectiveness of the aerosols acting as INPs. From the backward trajectories analysis, it was found that the link between INP concentration and RHamb is independent of the origin of the air masses. The role of biological INPs and nucleation occurring in pores and cavities was discussed as a possible mechanism to explain the increase of the INP concentration during high ambient relative humidity events. This work provides valuable measurements of deposition-mode INP concentrations from the Southern Hemisphere where INP data are sparse so far.

  11. Are the Economically Optimal Harvesting Strategies of Uneven-Aged Pinus nigra Stands Always Sustainable and Stabilizing?

    Directory of Open Access Journals (Sweden)

    Carmen Fullana-Belda

    2013-10-01

    Full Text Available Traditional uneven-aged forest management seeks a balance between equilibrium stand structure and economic profitability, which often leads to harvesting strategies concentrated in the larger diameter classes. The sustainability (i.e., population persistence over time and influence of such economically optimal strategies on the equilibrium position of a stand (given by the stable diameter distribution have not been sufficiently investigated in prior forest literature. This article therefore proposes a discrete optimal control model to analyze the sustainability and stability of the economically optimal harvesting strategies of uneven-aged Pinus nigra stands. For this model, we rely on an objective function that integrates financial data of harvesting operations with a projection matrix model that can describe the population dynamics. The model solution reveals the optimal management schedules for a wide variety of scenarios. To measure the distance between the stable diameter distribution and the economically optimal harvesting strategy distribution, the model uses Keyfitz’s delta, which returns high values for all the scenarios and, thus, suggests that those economically optimal harvesting strategies have an unstabilizing influence on the equilibrium positions. Moreover, the economically optimal harvesting strategies were unsustainable for all the scenarios.

  12. Estimation of surface area concentration of workplace incidental nanoparticles based on number and mass concentrations

    Science.gov (United States)

    Park, J. Y.; Ramachandran, G.; Raynor, P. C.; Kim, S. W.

    2011-10-01

    Surface area was estimated by three different methods using number and/or mass concentrations obtained from either two or three instruments that are commonly used in the field. The estimated surface area concentrations were compared with reference surface area concentrations (SAREF) calculated from the particle size distributions obtained from a scanning mobility particle sizer and an optical particle counter (OPC). The first estimation method (SAPSD) used particle size distribution measured by a condensation particle counter (CPC) and an OPC. The second method (SAINV1) used an inversion routine based on PM1.0, PM2.5, and number concentrations to reconstruct assumed lognormal size distributions by minimizing the difference between measurements and calculated values. The third method (SAINV2) utilized a simpler inversion method that used PM1.0 and number concentrations to construct a lognormal size distribution with an assumed value of geometric standard deviation. All estimated surface area concentrations were calculated from the reconstructed size distributions. These methods were evaluated using particle measurements obtained in a restaurant, an aluminum die-casting factory, and a diesel engine laboratory. SAPSD was 0.7-1.8 times higher and SAINV1 and SAINV2 were 2.2-8 times higher than SAREF in the restaurant and diesel engine laboratory. In the die casting facility, all estimated surface area concentrations were lower than SAREF. However, the estimated surface area concentration using all three methods had qualitatively similar exposure trends and rankings to those using SAREF within a workplace. This study suggests that surface area concentration estimation based on particle size distribution (SAPSD) is a more accurate and convenient method to estimate surface area concentrations than estimation methods using inversion routines and may be feasible to use for classifying exposure groups and identifying exposure trends.

  13. Estimation of surface area concentration of workplace incidental nanoparticles based on number and mass concentrations

    International Nuclear Information System (INIS)

    Park, J. Y.; Ramachandran, G.; Raynor, P. C.; Kim, S. W.

    2011-01-01

    Surface area was estimated by three different methods using number and/or mass concentrations obtained from either two or three instruments that are commonly used in the field. The estimated surface area concentrations were compared with reference surface area concentrations (SA REF ) calculated from the particle size distributions obtained from a scanning mobility particle sizer and an optical particle counter (OPC). The first estimation method (SA PSD ) used particle size distribution measured by a condensation particle counter (CPC) and an OPC. The second method (SA INV1 ) used an inversion routine based on PM1.0, PM2.5, and number concentrations to reconstruct assumed lognormal size distributions by minimizing the difference between measurements and calculated values. The third method (SA INV2 ) utilized a simpler inversion method that used PM1.0 and number concentrations to construct a lognormal size distribution with an assumed value of geometric standard deviation. All estimated surface area concentrations were calculated from the reconstructed size distributions. These methods were evaluated using particle measurements obtained in a restaurant, an aluminum die-casting factory, and a diesel engine laboratory. SA PSD was 0.7–1.8 times higher and SA INV1 and SA INV2 were 2.2–8 times higher than SA REF in the restaurant and diesel engine laboratory. In the die casting facility, all estimated surface area concentrations were lower than SA REF . However, the estimated surface area concentration using all three methods had qualitatively similar exposure trends and rankings to those using SA REF within a workplace. This study suggests that surface area concentration estimation based on particle size distribution (SA PSD ) is a more accurate and convenient method to estimate surface area concentrations than estimation methods using inversion routines and may be feasible to use for classifying exposure groups and identifying exposure trends.

  14. Direct observation of solid-phase adsorbate concentration profile in powdered activated carbon particle to elucidate mechanism of high adsorption capacity on super-powdered activated carbon.

    Science.gov (United States)

    Ando, Naoya; Matsui, Yoshihiko; Matsushita, Taku; Ohno, Koichi

    2011-01-01

    Decreasing the particle size of powdered activated carbon (PAC) by pulverization increases its adsorption capacities for natural organic matter (NOM) and polystyrene sulfonate (PSS, which is used as a model adsorbate). A shell adsorption mechanism in which NOM and PSS molecules do not completely penetrate the adsorbent particle and instead preferentially adsorb near the outer surface of the particle has been proposed as an explanation for this adsorption capacity increase. In this report, we present direct evidence to support the shell adsorption mechanism. PAC particles containing adsorbed PSS were sectioned with a focused ion beam, and the solid-phase PSS concentration profiles of the particle cross-sections were directly observed by means of field emission-scanning electron microscopy/energy-dispersive X-ray spectrometry (FE-SEM/EDXS). X-ray emission from sulfur, an index of PSS concentration, was higher in the shell region than in the inner region of the particles. The X-ray emission profile observed by EDXS did not agree completely with the solid-phase PSS concentration profile predicted by shell adsorption model analysis of the PSS isotherm data, but the observed and predicted profiles were not inconsistent when the analytical errors were considered. These EDXS results provide the first direct evidence that PSS is adsorbed mainly in the vicinity of the external surface of the PAC particles, and thus the results support the proposition that the increase in NOM and PSS adsorption capacity with decreasing particle size is due to the increase in external surface area on which the molecules can be adsorbed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Fruit quality traits of ten California-grown pomegranate cultivars harvested over three months

    Science.gov (United States)

    Pomegranate (Punica granatum L.) is a deciduous tree crop. Its fruit are known to have relatively high concentrations of polyphenolic compounds and antioxidant properties. The USDA-ARS pomegranate germplasm collection maintains over 250 cultivars, but most have not been evaluated for optimal harvest...

  16. The start of the harvest

    CERN Multimedia

    2011-01-01

    The first major particle physics summer conference has just started this week in Grenoble. After the Quark-Matter conference, the Europhysics Conference on High-Energy Physics marks the start of a promising harvest for the LHC experiments.   For the first time, the collaborations will be presenting their latest results based on all luminosity taken until end of June, which will provide more precise measurements in many areas. Thanks to the excellent performance of the LHC, the experiments have already accumulated a substantial quantity of data allowing them to push back the known limits and refine measurements in many fields ranging from b physics to the search for the Higgs boson and for dark matter. At the time of writing, the LHC collaborations are about to present these new results in an energy range which has never previously been explored. I have congratulated all the teams involved in getting the LHC into operation in record time with great efficiency. Today I would like to acknowledge the...

  17. Total and size-resolved particle number and black carbon concentrations in urban areas near Schiphol airport (the Netherlands)

    NARCIS (Netherlands)

    Keuken, M.P.; Moerman, M.; Zandveld, P.; Henzing, J.S.; Hoek, G.

    2015-01-01

    The presence of black carbon, and size-resolved and total particle number concentrations (PNC) were investigated in the vicinity of Schiphol airport in the Netherlands, the fourth busiest airport in Europe. Continuous measurements were conducted between March and May 2014at Adamse Bos, located 7km

  18. Two-phase flow modeling for low concentration spherical particle motion through a Newtonian fluid

    CSIR Research Space (South Africa)

    Smit GJF

    2010-11-01

    Full Text Available the necessity to model the discrete nature of sep- cite this article in press as: G.J.F. Smit et al., Two-phase flow modeling for low concentration spherical particle motion through a ian fluid, Appl. Math. Comput. (2010), doi:10.1016/j.amc.2010.07.055 2... and Ribberin large-scale and long term morphologica Please cite this article in press as: G.J.F. Smit Newtonian fluid, Appl. Math. Comput. (2010), � 2010 Elsevier Inc. All rights reserved. modeling of multiphase flow has increasingly become the subject...

  19. High-concentrate diets based on forages harvested at different maturity stages affect ruminal synthesis of B vitamins in lactating dairy cows.

    Science.gov (United States)

    Castagnino, D S; Kammes, K L; Allen, M S; Gervais, R; Chouinard, P Y; Girard, C L

    2017-04-01

    Effects of plant maturity on apparent ruminal synthesis and post-ruminal supply of B vitamins were evaluated in two feeding trials. Diets containing alfalfa (Trial 1) or orchardgrass (Trial 2) silages harvested either (1) early cut, less mature (EC) or (2) late cut, more mature (LC) as the sole forage were offered to ruminally and duodenally cannulated lactating Holstein cows in crossover design experiments. In Trial 1, conducted with 16 cows (569±43 kg of empty BW (ruminal content removed) and 43.7±8.6 kg/day of 3.5% fat-corrected milk yield; mean±SD) in two 17-day treatment periods, both diets provided ~22% forage NDF and 27% total NDF, and the forage-to-concentrate ratios were 53 : 47 and 42 : 58 for EC and LC, respectively. In Trial 2, conducted with 13 cows (588±55 kg of empty BW and 43.7±7.7 kg/day of 3.5% fat-corrected milk yield; mean±SD) in two 18-day treatment periods, both diets provided ~25% forage NDF and 31% total NDF; the forage-to-concentrate ratios were 58 : 42 and 46 : 54 for EC and LC, respectively. Thiamin, riboflavin, niacin, vitamin B6, folates and vitamin B12 were measured in feed and duodenal content. Apparent ruminal synthesis was calculated as the duodenal flow minus the intake. Diets based on EC alfalfa decreased the amounts of thiamin, niacin and folates reaching the duodenum, whereas diets based on EC orchardgrass increased riboflavin duodenal flow. Daily apparent ruminal synthesis of thiamin, riboflavin, niacin and vitamin B6 were correlated negatively with their intake, suggesting a microbial regulation of their concentration in the rumen. Vitamin B12 apparent ruminal synthesis was correlated negatively with total volatile fatty acids concentration, but positively with ruminal pH and microbial N duodenal flow.

  20. Magnetic Nanocomposite Cilia Energy Harvester

    KAUST Repository

    Khan, Mohammed Asadullah; Alfadhel, Ahmed; Kosel, Jü rgen

    2016-01-01

    An energy harvester capable of converting low frequency vibrations into electrical energy is presented. The operating principle, fabrication process and output characteristics at different frequencies are discussed. The harvester is realized

  1. 1970 Oregon timber harvest.

    Science.gov (United States)

    Brian R. Wall

    1971-01-01

    The 1970 Oregon timber harvest of 7.98 billion board feet was the lowest recorded since the recession year of 1961 when 7.41 billion board feet of timber was produced. The 1970 log production figure was 12.8 percent below the 1969 harvest, the second consecutive year of declining production in Oregon.

  2. Characteristics of Ambient Black Carbon Mass and Size-Resolved Particle Number Concentrations during Corn Straw Open-Field Burning Episode Observations at a Rural Site in Southern Taiwan.

    Science.gov (United States)

    Cheng, Yu-Hsiang; Yang, Li-Sing

    2016-07-08

    Information on the effect of open-field burning of agricultural residues on ambient black carbon (BC) mass and size-resolved particle number concentrations is scarce. In this study, to understand the effect of such open-field burning on short-term air quality, real-time variations of the BC mass and size-resolved particle number concentrations were monitored before and during a corn straw open-field burning episode at a rural site. Correlations between the BC mass and size-resolved particle number concentrations during the episode were investigated. Moreover, the particle number size distribution and absorption Ångström exponent were determined for obtaining the characteristics of aerosol emissions from the corn straw open-field burning. The results can be used to address public health concerns and as a reference for managing similar episodes of open-field burning of agricultural residues.

  3. A Hip Implant Energy Harvester

    Science.gov (United States)

    Pancharoen, K.; Zhu, D.; Beeby, S. P.

    2014-11-01

    This paper presents a kinetic energy harvester designed to be embedded in a hip implant which aims to operate at a low frequency associated with body motion of patients. The prototype is designed based on the constrained volume available in a hip prosthesis and the challenge is to harvest energy from low frequency movements (< 1 Hz) which is an average frequency during free walking of a patient. The concept of magnetic-force-driven energy harvesting is applied to this prototype considering the hip movements during routine activities of patients. The magnetic field within the harvester was simulated using COMSOL. The simulated resonant frequency was around 30 Hz and the voltage induced in a coil was predicted to be 47.8 mV. A prototype of the energy harvester was fabricated and tested. A maximum open circuit voltage of 39.43 mV was obtained and the resonant frequency of 28 Hz was observed. Moreover, the power output of 0.96 μW was achieved with an optimum resistive load of 250Ω.

  4. A Hip Implant Energy Harvester

    International Nuclear Information System (INIS)

    Pancharoen, K; Zhu, D; Beeby, S P

    2014-01-01

    This paper presents a kinetic energy harvester designed to be embedded in a hip implant which aims to operate at a low frequency associated with body motion of patients. The prototype is designed based on the constrained volume available in a hip prosthesis and the challenge is to harvest energy from low frequency movements (< 1 Hz) which is an average frequency during free walking of a patient. The concept of magnetic-force-driven energy harvesting is applied to this prototype considering the hip movements during routine activities of patients. The magnetic field within the harvester was simulated using COMSOL. The simulated resonant frequency was around 30 Hz and the voltage induced in a coil was predicted to be 47.8 mV. A prototype of the energy harvester was fabricated and tested. A maximum open circuit voltage of 39.43 mV was obtained and the resonant frequency of 28 Hz was observed. Moreover, the power output of 0.96 μW was achieved with an optimum resistive load of 250Ω

  5. Determinants of black carbon, particle mass and number concentrations in London transport microenvironments

    Science.gov (United States)

    Rivas, Ioar; Kumar, Prashant; Hagen-Zanker, Alex; Andrade, Maria de Fatima; Slovic, Anne Dorothee; Pritchard, John P.; Geurs, Karst T.

    2017-07-01

    We investigated the determinants of personal exposure concentrations of commuters' to black carbon (BC), ultrafine particle number concentrations (PNC), and particulate matter (PM1, PM2.5 and PM10) in different travel modes. We quantified the contribution of key factors that explain the variation of the previous pollutants in four commuting routes in London, each covered by four transport modes (car, bus, walk and underground). Models were performed for each pollutant, separately to assess the effect of meteorology (wind speed) or ambient concentrations (with either high spatial or temporal resolution). Concentration variations were mainly explained by wind speed or ambient concentrations and to a lesser extent by route and period of the day. In multivariate models with wind speed, the wind speed was the common significant predictor for all the pollutants in the above-ground modes (i.e., car, bus, walk); and the only predictor variable for the PM fractions. Wind speed had the strongest effect on PM during the bus trips, with an increase in 1 m s-1 leading to a decrease in 2.25, 2.90 and 4.98 μg m-3 of PM1, PM2.5 and PM10, respectively. PM2.5 and PM10 concentrations in car trips were better explained by ambient concentrations with high temporal resolution although from a single monitoring station. On the other hand, ambient concentrations with high spatial coverage but lower temporal resolution predicted better the concentrations in bus trips, due to bus routes passing through streets with a high variability of traffic intensity. In the underground models, wind speed was not significant and line and type of windows on the train explained 42% of the variation of PNC and 90% of all PM fractions. Trains in the district line with openable windows had an increase in concentrations of 1 684 cm-3 for PNC and 40.69 μg m-3 for PM2.5 compared with trains that had non-openable windows. The results from this work can be used to target efforts to reduce personal exposures of

  6. Structure of the higher plant light harvesting complex I: In vivo characterization and structural interdependence of the Lhca proteins

    NARCIS (Netherlands)

    Klimmek, F.; Ganeteg, U.; Ihalainen, J.A.; van Roon, H.; Jensen, P.E.; Scheller, H.V.; Dekker, J.P.; Jansson, S.

    2005-01-01

    We have investigated the structure of the higher plant light harvesting complex of photosystem I (LHCI) by analyzing PSI-LHCI particles isolated from a set of Arabidopsis plant lines, each lacking a specific Lhca (Lhca1-4) polypeptide. Functional antenna size measurements support the recent finding

  7. Effect of physiological harvest stages on the composition of bioactive compounds in Cavendish bananas*

    Science.gov (United States)

    Bruno Bonnet, Christelle; Hubert, Olivier; Mbeguie-A-Mbeguie, Didier; Pallet, Dominique; Hiol, Abel; Reynes, Max; Poucheret, Patrick

    2013-01-01

    The combined influence of maturation, ripening, and climate on the profile of bioactive compounds was studied in banana (Musa acuminata, AAA, Cavendish, cv. Grande Naine). Their bioactive compounds were determined by the Folin-Ciocalteu assay and high-performance thin layer chromatographic (HPTLC) method. The polyphenol content of bananas harvested after 400 degree days remained unchanged during ripening, while bananas harvested after 600 and 900 degree days exhibited a significant polyphenol increase. Although dopamine was the polyphenol with the highest concentration in banana peels during the green developmental stage and ripening, its kinetics differed from the total polyphenol profile. Our results showed that this matrix of choice (maturation, ripening, and climate) may allow selection of the banana (M. acuminata, AAA, Cavendish, cv. Grande Naine) status that will produce optimal concentrations of identified compounds with human health relevance. PMID:23549844

  8. Approaches to automated protein crystal harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Deller, Marc C., E-mail: mdeller@scripps.edu; Rupp, Bernhard, E-mail: mdeller@scripps.edu

    2014-01-28

    Approaches to automated and robot-assisted harvesting of protein crystals are critically reviewed. While no true turn-key solutions for automation of protein crystal harvesting are currently available, systems incorporating advanced robotics and micro-electromechanical systems represent exciting developments with the potential to revolutionize the way in which protein crystals are harvested.

  9. Sustainable harvest of waterbirds: a global review

    DEFF Research Database (Denmark)

    Kanstrup, Niels

    ABSTRACT Waterbirds have a long tradition of being harvested in various ways. In many countries, the harvest takes place as a primary food source, but recreational hunting is also very popular. Various methods are used. Subsistence hunting of waterbirds has a history that dates back to the dawn...... and the degree of stability in local communities obtained through nature conservation. In many countries there is a long tradition of detailed wildlife harvest management including programmes for bag surveys and monitoring of harvest levels. In most countries, however, the management of waterbird harvests...

  10. Exact Solution of Fractional Diffusion Model with Source Term used in Study of Concentration of Fission Product in Uranium Dioxide Particle

    International Nuclear Information System (INIS)

    Fang Chao; Cao Jianzhu; Sun Lifeng

    2011-01-01

    The exact solution of fractional diffusion model with a location-independent source term used in the study of the concentration of fission product in spherical uranium dioxide (UO 2 ) particle is built. The adsorption effect of the fission product on the surface of the UO 2 particle and the delayed decay effect are also considered. The solution is given in terms of Mittag-Leffler function with finite Hankel integral transformation and Laplace transformation. At last, the reduced forms of the solution under some special physical conditions, which is used in nuclear engineering, are obtained and corresponding remarks are given to provide significant exact results to the concentration analysis of nuclear fission products in nuclear reactor. (nuclear physics)

  11. Quality and seasonal variation of rainwater harvested from concrete, asphalt, ceramic tile and green roofs in Chongqing, China.

    Science.gov (United States)

    Zhang, Qianqian; Wang, Xiaoke; Hou, Peiqiang; Wan, Wuxing; Li, Ruida; Ren, Yufen; Ouyang, Zhiyun

    2014-01-01

    There is an urgent requirement to examine the quality of harvested rainwater for potable and non-potable purposes, based on the type of roofing material. In this study, we examined the effect on the quality of harvested rainwater of conventional roofing materials (concrete, asphalt and ceramic tile roofs) compared with alternative roofing materials (green roof). The results showed that the ceramic tile roof was the most suitable for rainwater-harvesting applications because of the lower concentrations of leachable pollutants. However, in this study, the green roof was not suitable for rainwater harvesting applications. In addition, seasonal trends in water quality parameters showed that pollutants in roof runoff in summer and autumn were lower than those in winter and spring. This study revealed that the quality of harvested rainwater was significantly affected by the roofing material; therefore, local government and urban planners should develop stricter testing programs and produce more weathering resistant roofing materials to allow the harvesting of rainwater for domestic and public uses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. The effects of deep convection on the concentration and size distribution of aerosol particles within the upper troposphere: A case study

    Science.gov (United States)

    Yin, Yan; Chen, Qian; Jin, Lianji; Chen, Baojun; Zhu, Shichao; Zhang, Xiaopei

    2012-11-01

    A cloud resolving model coupled with a spectral bin microphysical scheme was used to investigate the effects of deep convection on the concentration and size distribution of aerosol particles within the upper troposphere. A deep convective storm that occurred on 1 December, 2005 in Darwin, Australia was simulated, and was compared with available radar observations. The results showed that the radar echo of the storm in the developing stage was well reproduced by the model. Sensitivity tests for aerosol layers at different altitudes were conducted in order to understand how the concentration and size distribution of aerosol particles within the upper troposphere can be influenced by the vertical transport of aerosols as a result of deep convection. The results indicated that aerosols originating from the boundary layer can be more efficiently transported upward, as compared to those from the mid-troposphere, due to significantly increased vertical velocity through the reinforced homogeneous freezing of droplets. Precipitation increased when aerosol layers were lofted at different altitudes, except for the case where an aerosol layer appeared at 5.4-8.0 km, in which relatively more efficient heterogeneous ice nucleation and subsequent Wegener-Bergeron-Findeisen process resulted in more pronounced production of ice crystals, and prohibited the formation of graupel particles via accretion. Sensitivity tests revealed, at least for the cases considered, that the concentration of aerosol particles within the upper troposphere increased by a factor of 7.71, 5.36, and 5.16, respectively, when enhanced aerosol layers existed at 0-2.2 km, 2.2-5.4 km, and 5.4-8.0 km, with Aitken mode and a portion of accumulation mode (0.1-0.2μm) particles being the most susceptible to upward transport.

  13. Mechanical harvesting of pumpkin seeds

    OpenAIRE

    Sito, Stjepan; Ivančan, Stjepan; Barković, Edi; Mucalo, Ana

    2009-01-01

    One of the key problems in production technology of pumpkin seed for oil production is mechanized harvesting and losses of seed during mechanical harvesting. The losses of pumpkin seed during mechanical harvesting at peripheral velocity of 1.57 m/s (optimally adjusted machine) were 4.4% for Gleisdorf species, 5.2% for Slovenska species and 7.8% for pumpkin with husk. The higher average losses of pumpkin seed with husk were caused by tight connection of seed and pumpkin fruit.

  14. Calculations of critical micelle concentration by dissipative particle dynamics simulations: the role of chain rigidity.

    Science.gov (United States)

    Lee, Ming-Tsung; Vishnyakov, Aleksey; Neimark, Alexander V

    2013-09-05

    Micelle formation in surfactant solutions is a self-assembly process governed by complex interplay of solvent-mediated interactions between hydrophilic and hydrophobic groups, which are commonly called heads and tails. However, the head-tail repulsion is not the only factor affecting the micelle formation. For the first time, we present a systematic study of the effect of chain rigidity on critical micelle concentration and micelle size, which is performed with the dissipative particle dynamics simulation method. Rigidity of the coarse-grained surfactant molecule was controlled by the harmonic bonds set between the second-neighbor beads. Compared to flexible molecules with the nearest-neighbor bonds being the only type of bonded interactions, rigid molecules exhibited a lower critical micelle concentration and formed larger and better-defined micelles. By varying the strength of head-tail repulsion and the chain rigidity, we constructed two-dimensional diagrams presenting how the critical micelle concentration and aggregation number depend on these parameters. We found that the solutions of flexible and rigid molecules that exhibited approximately the same critical micelle concentration could differ substantially in the micelle size and shape depending on the chain rigidity. With the increase of surfactant concentration, primary micelles of more rigid molecules were found less keen to agglomeration and formation of nonspherical aggregates characteristic of flexible molecules.

  15. Maple Sugar Harvesting/Wild Rice Harvesting.

    Science.gov (United States)

    Minneapolis Public Schools, MN.

    Comprised of two separate booklets, this resource unit assists elementary teachers in explaining how the Ojibwe people harvest maple sugar and wild rice. The first booklet explains the procedure of tapping the maple trees for sap, preparation for boiling the sap, and the three forms the sugar is made into (granulated, "molded," and…

  16. Final Harvest of Above-Ground Biomass and Allometric Analysis of the Aspen FACE Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mark E. Kubiske

    2013-04-15

    The Aspen FACE experiment, located at the US Forest Service Harshaw Research Facility in Oneida County, Wisconsin, exposes the intact canopies of model trembling aspen forests to increased concentrations of atmospheric CO2 and O3. The first full year of treatments was 1998 and final year of elevated CO2 and O3 treatments is scheduled for 2009. This proposal is to conduct an intensive, analytical harvest of the above-ground parts of 24 trees from each of the 12, 30 m diameter treatment plots (total of 288 trees) during June, July & August 2009. This above-ground harvest will be carefully coordinated with the below-ground harvest proposed by D.F. Karnosky et al. (2008 proposal to DOE). We propose to dissect harvested trees according to annual height growth increment and organ (main stem, branch orders, and leaves) for calculation of above-ground biomass production and allometric comparisons among aspen clones, species, and treatments. Additionally, we will collect fine root samples for DNA fingerprinting to quantify biomass production of individual aspen clones. This work will produce a thorough characterization of above-ground tree and stand growth and allocation above ground, and, in conjunction with the below ground harvest, total tree and stand biomass production, allocation, and allometry.

  17. Production system and harvesting stage influence on nitrate content and quality of butterhead lettuce

    Directory of Open Access Journals (Sweden)

    Siti Fairuz Yosoff

    2015-01-01

    Full Text Available Leafy vegetables such as lettuce grown under different production systems may accumulate different concentrations of nitrate which may reach to the levels potentially toxic to humans. Moreover, nitrate accumulation varies in various plant parts and physiological age of the plant. Therefore, to determine the effect of production system and harvesting stage on nitrate accumulation and quality of butterhead lettuce, a study was conducted considering two lettuce production systems namely hydroponic and organic, and four different harvesting stages such as 35, 38, 41 and 44 days after transplanting (DAT. The experimental design was complete randomized design (CRD with four replications. Hydroponic and organic systems performed similar in terms of yield, quality and nitrate content of butterhead lettuce. Delaying harvesting can not only increase yield but also can minimize nitrate accumulation and health hazard risk as well. Delay in harvesting stage may result in quality deterioration of lettuce and increased production cost. Thus, a compromise is necessary to consider 41 DAT as the optimum stage to harvest butterhead lettuce with significantly higher reduction of nitrate content in both outer adult leaf blades and young leaves of hydroponic lettuce. Fresh weight, firmness and color of butterhead lettuce at this stage were still acceptable.

  18. Autotransplantation donor tooth site harvesting using piezosurgery.

    Science.gov (United States)

    Ylikontiola, Leena P; Sándor, George K

    2016-01-01

    The harvesting of a tooth as a candidate for tooth autotransplantation requires that the delicate dental tissues around the tooth be minimally traumatized. This is especially so for the periradicular tissues of the tooth root and the follicular tissues surrounding the crown. The aim of this report is to describe the use of piezosurgery as an attempt at morbidity reduction in the harvesting of teeth for autotransplantation. A piezosurgical handpiece and its selection of tips were easily adapted to allow the harvesting and delivery of teeth for autotransplantation purposes. Twenty premolar teeth were harvested using a piezosurgical device. The harvested teeth were subsequently successfully autotransplanted. All twenty teeth healed in a satisfactory manner without excessive mobility or ankyloses. Piezosurgery avoids some of the traumatic aspects of harvesting teeth and removing bone which are associated with thermal damage from the use of conventional rotary instruments or saws. Piezosurgery can be adapted to facilitate the predictable harvesting of teeth for autotransplantation purposes.

  19. A high gradient and strength bioseparator with nano-sized immunomagnetic particles for specific separation and efficient concentration of E. coli O157:H7

    International Nuclear Information System (INIS)

    Lin, Jianhan; Li, Min; Li, Yanbin; Chen, Qi

    2015-01-01

    Sample pretreatment is a key to rapid screening of pathogens for prevention and control of foodborne diseases. Magnetic immunoseparation is a specific method based on antibody–antigen reaction to capture the target bacteria and concentrate them in a smaller-volume buffer. The use of nano-sized magnetic particles could improve the separation efficiency of bacteria but require much higher gradient and strength magnetic field. In this study, a strong magnetic bioseparator with a mean field strength of 1.35 T and a mean gradient of 90 T/m was developed with the use of the 30 nm and 180 nm magnetic particles to specifically separate and efficiently concentrate foodborne bacterial pathogens using Escherichia coli O157:H7 as a model bacterium. The polyclonal antibodies against E. coli were evaluated using Dot ELISA analysis for their good affinity with the target bacteria and then used to modify the surface of the magnetic nanoparticles by 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC·HCl) method and streptavidin-biotin binding. The magnetic particle concentrations were optimized to be 40 µg/ml and 100 µg/ml for the 30 nm and 180 nm particles, respectively, the immunoreaction time was optimized to be 45 min for both sizes of particles, and the separation times were optimized to be 60 min and 2 min for the 30 nm and 180 nm particles, respectively. The total magnetic separation time was 2 h and 1 h for the 30 nm and 180 nm particles, respectively. The experimental results demonstrated that the bioseparator with the use of either 30 nm or 180 nm immunomagnetic particles could achieve a separation efficiency of >90% for E. coli O157:H7 at the concentrations ranging from 10 2 to 10 5 cfu/ml. No obvious interferences from non-target foodborne pathogens, such as SalmonellaTyphimurium and Listeria innocua, were found. For overall consideration of the consuming time, the cost, and the separation efficiency, the 180 nm magnetic particles are practical for

  20. A high gradient and strength bioseparator with nano-sized immunomagnetic particles for specific separation and efficient concentration of E. coli O157:H7

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jianhan, E-mail: jianhan@cau.edu.cn [Ministry of Agriculture Key Laboratory of Agricultural Information Acquisition Technology (Beijing), 17 East Tsinghua Road, China Agricultural University, Mailbox 125, Beijing 100083 (China); Li, Min [College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058 (China); Li, Yanbin [College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058 (China); Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701 (United States); Chen, Qi [Modern Precision Agriculture System Integration Research Key Laboratory of Ministry of Education, China Agricultural University, Beijing 100083 (China)

    2015-03-15

    Sample pretreatment is a key to rapid screening of pathogens for prevention and control of foodborne diseases. Magnetic immunoseparation is a specific method based on antibody–antigen reaction to capture the target bacteria and concentrate them in a smaller-volume buffer. The use of nano-sized magnetic particles could improve the separation efficiency of bacteria but require much higher gradient and strength magnetic field. In this study, a strong magnetic bioseparator with a mean field strength of 1.35 T and a mean gradient of 90 T/m was developed with the use of the 30 nm and 180 nm magnetic particles to specifically separate and efficiently concentrate foodborne bacterial pathogens using Escherichia coli O157:H7 as a model bacterium. The polyclonal antibodies against E. coli were evaluated using Dot ELISA analysis for their good affinity with the target bacteria and then used to modify the surface of the magnetic nanoparticles by 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC·HCl) method and streptavidin-biotin binding. The magnetic particle concentrations were optimized to be 40 µg/ml and 100 µg/ml for the 30 nm and 180 nm particles, respectively, the immunoreaction time was optimized to be 45 min for both sizes of particles, and the separation times were optimized to be 60 min and 2 min for the 30 nm and 180 nm particles, respectively. The total magnetic separation time was 2 h and 1 h for the 30 nm and 180 nm particles, respectively. The experimental results demonstrated that the bioseparator with the use of either 30 nm or 180 nm immunomagnetic particles could achieve a separation efficiency of >90% for E. coli O157:H7 at the concentrations ranging from 10{sup 2} to 10{sup 5} cfu/ml. No obvious interferences from non-target foodborne pathogens, such as SalmonellaTyphimurium and Listeria innocua, were found. For overall consideration of the consuming time, the cost, and the separation efficiency, the 180 nm magnetic particles are

  1. Ultrasound acoustic wave energy transfer and harvesting

    Science.gov (United States)

    Shahab, Shima; Leadenham, Stephen; Guillot, François; Sabra, Karim; Erturk, Alper

    2014-04-01

    This paper investigates low-power electricity generation from ultrasound acoustic wave energy transfer combined with piezoelectric energy harvesting for wireless applications ranging from medical implants to naval sensor systems. The focus is placed on an underwater system that consists of a pulsating source for spherical wave generation and a harvester connected to an external resistive load for quantifying the electrical power output. An analytical electro-acoustic model is developed to relate the source strength to the electrical power output of the harvester located at a specific distance from the source. The model couples the energy harvester dynamics (piezoelectric device and electrical load) with the source strength through the acoustic-structure interaction at the harvester-fluid interface. Case studies are given for a detailed understanding of the coupled system dynamics under various conditions. Specifically the relationship between the electrical power output and system parameters, such as the distance of the harvester from the source, dimensions of the harvester, level of source strength, and electrical load resistance are explored. Sensitivity of the electrical power output to the excitation frequency in the neighborhood of the harvester's underwater resonance frequency is also reported.

  2. Dust emissions eliminated in pneumatic harvesting

    International Nuclear Information System (INIS)

    Kallio, M.

    1998-01-01

    Pneumatic harvesting is the most efficient milled peat production method in unsteady weather conditions. In good summers, the best contractors harvest more than 1 000 m 3 /ha milled peat from suitable production fields. The greatest problem of the method is caused by dust emissions, in particular in fields close to settled areas. About 15 % of Finland's present peat production is collected using pneumatic harvesters. A pneumatic harvester with smaller dust emissions has been developed by VTT Energy and Vapo Oy. The wagon is based on two-stage separation of peat. The main part of the coarser milled peat is first separated, e.g. in a settling chamber, and fine dry peat dust in correctly dimensioned side by side cyclones. The first series of pneumatic harvesters based on the new separation technology was employed in summer 1996. Besides decreasing the dust emissions the harvesting capacity of the new equipment was increased. The collection capacity of the pneumatic harvester can be made more effective by enlarging the container size, be decreasing the weight, by increasing the driving speed and by developing the suction capacity. Using lighter and durable construction materials combined with advanced design lighter and stronger pneumatic harvesters have been constructed. Nozzles and their mounting have also been developed. In the improvement of nozzles, the former studies with pneumatic simulator of VTT Energy, have been of great help. Studies with the pneumatic simulator and field conditions have been made in collaboration with Turveruukki Oy, Turvemetalli Oy, Raussin Metalli Oy and Vapo Oy, as well as VNIITP of St. Petersburg, Russia

  3. Dielectric loss against piezoelectric power harvesting

    Science.gov (United States)

    Liang, Junrui; Shu-Hung Chung, Henry; Liao, Wei-Hsin

    2014-09-01

    Piezoelectricity is one of the most popular electromechanical transduction mechanisms for constructing kinetic energy harvesting systems. When a standard energy harvesting (SEH) interface circuit, i.e., bridge rectifier plus filter capacitor, is utilized for collecting piezoelectric power, the previous literature showed that the power conversion can be well predicted without much consideration for the effect of dielectric loss. Yet, as the conversion power gets higher by adopting power-boosting interface circuits, such as synchronized switch harvesting on inductor (SSHI), the neglect of dielectric loss might give rise to deviation in harvested power estimation. Given the continuous progress on power-boosting interface circuits, the role of dielectric loss in practical piezoelectric energy harvesting (PEH) systems should receive attention with better evaluation. Based on the integrated equivalent impedance network model, this fast track communication provides a comprehensive study on the susceptibility of harvested power in PEH systems under different conditions. It shows that, dielectric loss always counteracts piezoelectric power harvesting by causing charge leakage across piezoelectric capacitance. In particular, taking corresponding ideal lossless cases as references, the counteractive effect might be aggravated under one of the five conditions: larger dielectric loss tangent, lower vibration frequency, further away from resonance, weaker electromechanical coupling, or using power-boosting interface circuit. These relationships are valuable for the study of PEH systems, as they not only help explain the role of dielectric loss in piezoelectric power harvesting, but also add complementary insights for material, structure, excitation, and circuit considerations towards holistic evaluation and design for practical PEH systems.

  4. Dielectric loss against piezoelectric power harvesting

    International Nuclear Information System (INIS)

    Liang, Junrui; Shu-Hung Chung, Henry; Liao, Wei-Hsin

    2014-01-01

    Piezoelectricity is one of the most popular electromechanical transduction mechanisms for constructing kinetic energy harvesting systems. When a standard energy harvesting (SEH) interface circuit, i.e., bridge rectifier plus filter capacitor, is utilized for collecting piezoelectric power, the previous literature showed that the power conversion can be well predicted without much consideration for the effect of dielectric loss. Yet, as the conversion power gets higher by adopting power-boosting interface circuits, such as synchronized switch harvesting on inductor (SSHI), the neglect of dielectric loss might give rise to deviation in harvested power estimation. Given the continuous progress on power-boosting interface circuits, the role of dielectric loss in practical piezoelectric energy harvesting (PEH) systems should receive attention with better evaluation. Based on the integrated equivalent impedance network model, this fast track communication provides a comprehensive study on the susceptibility of harvested power in PEH systems under different conditions. It shows that, dielectric loss always counteracts piezoelectric power harvesting by causing charge leakage across piezoelectric capacitance. In particular, taking corresponding ideal lossless cases as references, the counteractive effect might be aggravated under one of the five conditions: larger dielectric loss tangent, lower vibration frequency, further away from resonance, weaker electromechanical coupling, or using power-boosting interface circuit. These relationships are valuable for the study of PEH systems, as they not only help explain the role of dielectric loss in piezoelectric power harvesting, but also add complementary insights for material, structure, excitation, and circuit considerations towards holistic evaluation and design for practical PEH systems. (fast track communications)

  5. Powering a wireless sensor node with a vibration-driven piezoelectric energy harvester

    International Nuclear Information System (INIS)

    Reilly, Elizabeth K; Wright, Paul; Burghardt, Fred; Fain, Romy

    2011-01-01

    This paper discusses the direct application of scavenged energy to power a wireless sensor platform. A trapezoidal piezoelectric harvester was designed for a specific machine tool application and tested for robustness and longevity as well as performance. The design focused on resonant performance and distributed strain concentrations at a given resonant frequency and acceleration. Critical issues of power coupling and conditioning between harvester and wireless platform were addressed. The wireless platform consisted of a sensor, controller, power conditioning circuitry, and a custom low power radio. The system transmitted a sensor sample once every 10 s in a scavenging environment of 0.25 g and 100 Hz for a system duty cycle of approximately 0.2%

  6. Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: Repeated harvests and arsenic redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Gonzaga, Maria I.S.; Santos, Jorge A.G. [Department of Soil Chemistry, Universidade Federal da Bahia, Cruz das Almas, 44380000 (Brazil); Ma, Lena Q. [Soil and Water Science Department, University of Florida, 2169 McCarty Hall, Gainesville, FL 32611-0290 (United States)], E-mail: lqma@ifas.ufl.edu

    2008-07-15

    This greenhouse experiment evaluated arsenic removal by Pteris vittata and its effects on arsenic redistribution in soils. P. vittata grew in six arsenic-contaminated soils and its fronds were harvested and analyzed for arsenic in October, 2003, April, 2004, and October, 2004. The soil arsenic was separated into five fractions via sequential extraction. The ferns grew well and took up arsenic from all soils. Fern biomass ranged from 24.8 to 33.5 g plant{sup -1} after 4 months of growth but was reduced in the subsequent harvests. The frond arsenic concentrations ranged from 66 to 6,151 mg kg{sup -1}, 110 to 3,056 mg kg{sup -1}, and 162 to 2,139 mg kg{sup -1} from the first, second and third harvest, respectively. P. vittata reduced soil arsenic by 6.4-13% after three harvests. Arsenic in the soils was primarily associated with amorphous hydrous oxides (40-59%), which contributed the most to arsenic taken up by P. vittata (45-72%). It is possible to use P. vittata to remediate arsenic-contaminated soils by repeatedly harvesting its fronds. - Pteris vittata was effective in continuously removing arsenic from contaminated soils after three repeated harvests.

  7. Particle Emissions from Biomass Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Szpila, Aneta; Bohgard, Mats [Lund Inst. of Technology (Sweden). Div. of Ergonomics and Aerosol Technology; Strand, Michael; Lillieblad, Lena; Sanati, Mehri [Vaexjoe Univ. (Sweden). Div. of Bioenergy Technology; Pagels, Joakim; Rissler, Jenny; Swietlicki, Erik; Gharibi, Arash [Lund Univ. (Sweden). Div. of Nuclear Physics

    2003-05-01

    We have shown that high concentrations of fine particles of the order of 2-7x10{sup -7} particles per cm{sup 3} are being formed in all the combustion units studied. There was a higher difference between the units in terms of particle mass concentrations. While the largest differences was found for gas-phase constituents (CO and THC) and polyaromatic hydrocarbons. In 5 out of 7 studied units, multi-cyclones were the only measure for flue-gas separation. The multicyclones had negligible effect on the particle number concentration and a small effect on the mass of particles smaller than 5 {mu}m. The separation efficiency was much higher for the electrostatic precipitators. The boiler load had a dramatic influence on the coarse mode concentration during combustion of forest residue. PM0.8-6 increased from below 5 mg/m{sup 3} to above 50 mg/m{sup 3} even at a moderate change in boiler load from medium to high. A similar but less pronounced trend was found during combustion of dry wood. PM0.8-PM6 increased from 12 to 23 mg/m{sup 3} when the load was changed from low to high. When increasing the load, the primary airflow taken through the grate is increased; this itself may lead to a higher potential of the air stream to carry coarse particles away from the combustion zone. Measurements with APS-instrument with higher time-resolution showed a corresponding increase in coarse mode number concentration with load. Additional factor influencing observed higher concentration of coarse mode during combustion of forest residues, could be relatively high ash content in this type of fuel (2.2 %) in comparison to dry wood (0.3 %) and pellets (0.5 %). With increasing load we also found a decrease in PM1 during combustion of forest residue. Whether this is caused by scavenging of volatilized material by the high coarse mode concentration or a result of a different amount of volatilized material available for formation of fine particles needs to be shown in future studies. The

  8. The effects of harvest on waterfowl populations

    Science.gov (United States)

    Cooch, Evan G.; Guillemain, Matthieu; Boomer, G Scott; Lebreton, Jean-Dominique; Nichols, James D.

    2014-01-01

    Change in the size of populations over space and time is, arguably, the motivation for much of pure and applied ecological research. The fundamental model for the dynamics of any population is straightforward: the net change in the abundance is the simple difference between the number of individuals entering the population and the number leaving the population, either or both of which may change in response to factors intrinsic and extrinsic to the population. While harvest of individuals from a population constitutes a clear extrinsic source of removal of individuals, the response of populations to harvest is frequently complex, reflecting an interaction of harvest with one or more population processes. Here we consider the role of these interactions, and factors influencing them, on the effective harvest management of waterfowl populations. We review historical ideas concerning harvest and discuss the relationship(s) between waterfowl life histories and the development and application of population models to inform harvest management. The influence of population structure (age, spatial) on derivation of optimal harvest strategies (with and without explicit consideration of various sources of uncertainty) is considered. In addition to population structure, we discuss how the optimal harvest strategy may be influenced by: 1) patterns of density-dependence in one or more vital rates, and 2) heterogeneity in vital rates among individuals within an age-sex-size class. Although derivation of the optimal harvest strategy for simple population models (with or without structure) is generally straightforward, there are several potential difficulties in application. In particular, uncertainty concerning the population structure at the time of harvest, and the ability to regulate the structure of the harvest itself, are significant complications. We therefore review the evidence of effects of harvest on waterfowl populations. Some of this evidence has

  9. Energy harvesting with Di-Electro Active Polymers

    DEFF Research Database (Denmark)

    Due, Jens; Munk-Nielsen, Stig; Nielsen, Rasmus Ørndrup

    2010-01-01

    This article presents a way of using Di-Electro Active Polymers (D-EAPs) for harvesting mechanical energy sources. The article describes the basics of energy harvesting with D-EAPs, and an electrical model of a D-EAP is suggested. This leads to a converter design which is able to extract...... the electrical energy harvested by the D-EAP. This converter is simulated and realized. Through experimental results both the model of the DEAP and the converter are verified. It is found that it is possible to harvest energy with a D-EAP and build a converter that can extract the harvested energy....

  10. Bundling harvester; Harvennuspuun automaattisen nippukorjausharvesterin kehittaeminen

    Energy Technology Data Exchange (ETDEWEB)

    Koponen, K [Eko-Log Oy, Kuopio (Finland)

    1997-12-01

    The starting point of the project was to design and construct, by taking the silvicultural point of view into account, a harvesting and processing system especially for energy-wood, containing manually driven bundling harvester, automating of the harvester, and automated loading. The equipment forms an ideal method for entrepreneur`s-line harvesting. The target is to apply the system also for owner`s-line harvesting. The profitability of the system promotes the utilisation of the system in both cases. The objectives of the project were: to construct a test equipment and prototypes for all the project stages, to carry out terrain and strain tests in order to examine the usability and durability, as well as the capacity of the machine, to test the applicability of the Eko-Log system in simultaneous harvesting of energy and pulp woods, and to start the marketing and manufacturing of the products. The basic problems of the construction of the bundling harvester have been solved using terrain-tests. The prototype machine has been shown to be operable. Loading of the bundles to form sufficiently economically transportable loads has been studied, and simultaneously, the branch-biomass has been tried to be utilised without loosing the profitability of transportation. The results have been promising, and will promote the profitable utilisation of wood-energy. (orig.)

  11. Electromagnetic energy harvester for harvesting acoustic energy

    Indian Academy of Sciences (India)

    Farid U Khan

    Acoustics; energy harvesting; electromagnetic; Helmholtz resonator; sound pressure level; suspended coil. ... WSNs, which are supposed to operate for longer period of time. However ... several ambient energies such as wind, thermal, vibration, and solar are ..... textile plants in Northern India with specific reference to noise.

  12. Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments

    Science.gov (United States)

    Morales Betancourt, R.; Galvis, B.; Balachandran, S.; Ramos-Bonilla, J. P.; Sarmiento, O. L.; Gallo-Murcia, S. M.; Contreras, Y.

    2017-05-01

    This research determined intake dose of fine particulate matter (PM2.5), equivalent black carbon (eBC), and number of sub-micron particles (Np) for commuters in Bogotá, Colombia. Doses were estimated through measurements of exposure concentration, a surrogate of physical activity, as well as travel times and speeds. Impacts of travel mode, traffic load, and street configuration on dose and exposure were explored. Three road segments were selected because of their different traffic loads and composition, and dissimilar street configuration. The transport modes considered include active modes (walking and cycling) and motorized modes (bus, car, taxi, and motorcycle). Measurements were performed simultaneously in the available modes at each road segment. High average eBC concentrations were observed throughout the campaign, ranging from 20 to 120 μgm-3 . Commuters in motorized modes experienced significantly higher exposure concentrations than pedestrians and bicyclists. The highest average concentrations of PM2.5, eBC , and Np were measured inside the city's Bus Rapid Transit (BRT) system vehicles. Pedestrians and bicycle users in an open street configuration were exposed to the lowest average concentrations of PM2.5 and eBC , six times lower than those experienced by commuters using the BRT in the same street segment. Pedestrians experienced the highest particulate matter intake dose in the road segments studied, despite being exposed to lower concentrations than commuters in motorized modes. Average potential dose of PM2.5 and eBC per unit length traveled were nearly three times higher for pedestrians in a street canyon configuration compared to commuters in public transport. Slower travel speed and elevated inhalation rates dominate PM dose for pedestrians. The presence of dedicated bike lanes on sidewalks has a significant impact on reducing the exposure concentration for bicyclists compared to those riding in mixed traffic lanes. This study proposes a simple

  13. N-3 polyunsaturated fatty acids improve lipoprotein particle size and concentration in Japanese patients with type 2 diabetes and hypertriglyceridemia: a pilot study.

    Science.gov (United States)

    Ide, Kana; Koshizaka, Masaya; Tokuyama, Hirotake; Tokuyama, Takahiko; Ishikawa, Takahiro; Maezawa, Yoshiro; Takemoto, Minoru; Yokote, Koutaro

    2018-03-15

    Patients with type 2 diabetes are at high risk for cardiovascular disease. Although hydroxymethylglutaryl-CoA reductase inhibitors (statins) can reduce cardiovascular events, residual risk remains even after target low-density lipoprotein cholesterol (LDL-C) levels have been achieved. Lipoprotein particle size and fraction changes are thought to contribute to such risks. The purpose of this study was to evaluate the effects of n-3 polyunsaturated fatty acids (n-3 PUFAs), predominantly eicosapentaenoic acid and docosahexaenoic acid, on lipoprotein particle size, concentration, and glycemic control in Japanese patients with type 2 diabetes and hypertriglyceridemia. This was a multicenter, prospective, open-label, single arm study. We enrolled 14 patients with type 2 diabetes and hypertriglyceridemia treated with statins and dipeptidyl peptidase-4 inhibitors with glycated hemoglobin (HbA1c) n-3 PUFAs for 12 weeks. Lipoprotein particle sizes, concentrations, lipoprotein insulin resistance (LPIR) scores, lipid profiles, HbA1c, and fasting plasma glucose (FPG) were measured before and after treatment. Lipoprotein profiles were measured by nuclear magnetic resonance spectroscopy. Data were analyzed using Wilcoxon signed-rank tests. Concentrations of total cholesterol (P n-3 PUFA administration. N-3 PUFAs decreased the size of very low-density lipoprotein (VLDL; P N-3 PUFAs partly improved atherogenic lipoprotein particle size and concentration, and produced less atherogenic lipoprotein subclass ratios in patients that achieved target LDL-C levels and glycemic control. These results suggest that n-3 PUFAs may reduce residual cardiovascular risk factors in statin-treated patients with type 2 diabetes and hypertriglyceridemia. The study was registered at UMIN-ID: UMIN000013776 .

  14. Surgical smoke and ultrafine particles

    Directory of Open Access Journals (Sweden)

    Nowak Dennis

    2008-12-01

    Full Text Available Abstract Background Electrocautery, laser tissue ablation, and ultrasonic scalpel tissue dissection all generate a 'surgical smoke' containing ultrafine ( Methods To measure the amount of generated particulates in 'surgical smoke' during different surgical procedures and to quantify the particle number concentration for operation room personnel a condensation particle counter (CPC, model 3007, TSI Inc. was applied. Results Electro-cauterization and argon plasma tissue coagulation induced the production of very high number concentration (> 100000 cm-3 of particles in the diameter range of 10 nm to 1 μm. The peak concentration was confined to the immediate local surrounding of the production side. In the presence of a very efficient air conditioning system the increment and decrement of ultrafine particle occurrence was a matter of seconds, with accumulation of lower particle number concentrations in the operation room for only a few minutes. Conclusion Our investigation showed a short term very high exposure to ultrafine particles for surgeons and close assisting operating personnel – alternating with longer periods of low exposure.

  15. Energy harvesting for self-powered aerostructure actuation

    Science.gov (United States)

    Bryant, Matthew; Pizzonia, Matthew; Mehallow, Michael; Garcia, Ephrahim

    2014-04-01

    This paper proposes and experimentally investigates applying piezoelectric energy harvesting devices driven by flow induced vibrations to create self-powered actuation of aerostructure surfaces such as tabs, flaps, spoilers, or morphing devices. Recently, we have investigated flow-induced vibrations and limit cycle oscillations due to aeroelastic flutter phenomena in piezoelectric structures as a mechanism to harvest energy from an ambient fluid flow. We will describe how our experimental investigations in a wind tunnel have demonstrated that this harvested energy can be stored and used on-demand to actuate a control surface such as a trailing edge flap in the airflow. This actuated control surface could take the form of a separate and discrete actuated flap, or could constitute rotating or deflecting the oscillating energy harvester itself to produce a non-zero mean angle of attack. Such a rotation of the energy harvester and the associated change in aerodynamic force is shown to influence the operating wind speed range of the device, its limit cycle oscillation (LCO) amplitude, and its harvested power output; hence creating a coupling between the device's performance as an energy harvester and as a control surface. Finally, the induced changes in the lift, pitching moment, and drag acting on a wing model are quantified and compared for a control surface equipped with an oscillating energy harvester and a traditional, static control surface of the same geometry. The results show that when operated in small amplitude LCO the energy harvester adds negligible aerodynamic drag.

  16. Evaluating Suspended Particles Concentration of the Inside and Outside Air of the Classroom and Its Influencing Factors in Middle schools and High Schools of Yazd

    Directory of Open Access Journals (Sweden)

    MH Ehrampoosh

    2015-11-01

    Full Text Available Abstract Introduction: Airborne pollution in such public environments as schools has adverse health effects on pupils and teachers who spend a noticeable amount of time in the school. Therefore, this study aimed to measure the suspended particles concentration of indoor and outdoor air of Yazd schools as well as to determine the influencing parameters on the pollution intensity. Methods: This analytical cross-sectional study was conducted in 20 middle-schools and high schools of males and females in winter of 2013. The environmental aerosol monitoring device, (HAZ-DUST EPAM5000 model was used to measure the concentration of PM1, PM2.5 and PM10. The study data were analyzed via applying correlation, simple linear regression and means comparison tests. Moreover, the study results were compared with the standards of World health organization(WHO and Environmental Health Organization(EPA. Results: The mean concentration of PM10, PM2.5 and PM1 in indoor class air was reported higher compared to the outdoor air. The indoor and outdoor air quality of schools in terms of Air Quality Index9 (AQI Calculator indicated an average condition for PM10, and an unhealthy condition for PM2.5 in regard with the vulnerable groups. A significant relationship was detected between indoor and outdoor air concentration particles (P<0.05. The mean indoor per outdoor air particles ratio (I/O was 1.68, 1.31, 1.46 respectively for PM10, PM2.5, PM1. Conclusion: The study findings revealed a significant relationship between indoor and outdoor suspended particle concentration demonstrating the particles penetration into the classrooms. Therefore, utilizing appropriate air conditioner systems are regarded effective in order to mitigate indoor class pollution.  

  17. African Anthropogenic Combustion Emissions: Estimate of Regional Mortality Attributable to Fine Particle Concentrations in 2030

    Science.gov (United States)

    Liousse, C.; Roblou, L.; Assamoi, E.; Criqui, P.; Galy-Lacaux, C.; Rosset, R.

    2014-12-01

    Fossil fuel (traffic, industries) and biofuel (domestic fires) emissions of gases and particles in Africa are expected to significantly increase in the near future, particularly due to rapid growth of African cities and megacities. In this study, we will present the most recent developments of African combustion emission inventories, including African specificities. Indeed, a regional fossil fuel and biofuel inventory for gases and particulates described in Liousse et al. (2014) has been developed for Africa at a resolution of 0.25° x 0.25° for the years 2005 and 2030. For 2005, the original database of Junker and Liousse (2008) was used after modification for updated regional fuel consumption and emission factors. Two prospective inventories for 2030 are derived based on Prospective Outlook on Long-term Energy Systems (POLES) model (Criqui, 2001). The first is a reference scenario (2030ref) with no emission controls and the second is for a "clean" scenario (2030ccc*) including Kyoto policy and African specific emission control. This inventory predicts very large increases of pollutant emissions in 2030 (e.g. contributing to 50% of global anthropogenic organic particles), if no emission regulations are implemented. These inventories have been introduced in RegCM4 model. In this paper we will focus on aerosol modelled concentrations in 2005, 2030ref and 2030ccc*. Spatial distribution of aerosol concentrations will be presented with a zoom at a few urban and rural sites. Finally mortality rates (respiratory, cardiovascular) caused by anthropogenic PM2.5 increase from 2005 to 2030, calculated following Lelieveld et al. (2013), will be shown for each scenarios. To conclude, this paper will discuss the effectiveness of scenarios to reduce emissions, aerosol concentrations and mortality rates, underlining the need for further measurements scheduled in the frame of the new DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions) program.

  18. Nutrient concentrations in coarse and fine woody debris of Populus tremuloides Michx.-dominated forests, northern Minnesota, USA

    Science.gov (United States)

    Klockow, Paul A.; D'Amato, Anthony W.; Bradford, John B.; Fraver, Shawn

    2014-01-01

    Contemporary forest harvesting practices, specifically harvesting woody biomass as a source of bioenergy feedstock, may remove more woody debris from a site than conventional harvesting. Woody debris, particularly smaller diameter woody debris, plays a key role in maintaining ecosystem nutrient stores following disturbance. Understanding nutrient concentrations within woody debris is necessary for assessing the long-term nutrient balance consequences of altered woody debris retention, particularly in forests slated for use as bioenergy feedstocks. Nutrient concentrations in downed woody debris of various sizes, decay classes, and species were characterized within one such forest type, Populus tremuloides Michx.-dominated forests of northern Minnesota, USA. Nutrient concentrations differed significantly between size and decay classes and generally increased as decay progressed. Fine woody debris (≤ 7.5 cm diameter) had higher nutrient concentrations than coarse woody debris (> 7.5 cm diameter) for all nutrients examined except Na and Mn, and nutrient concentrations varied among species. Concentrations of N, Mn, Al, Fe, and Zn in coarse woody debris increased between one and three orders of magnitude, while K decreased by an order of magnitude with progressing decay. The variations in nutrient concentrations observed here underscore the complexity of woody debris nutrient stores in forested ecosystems and suggest that retaining fine woody debris at harvest may provide a potentially important source of nutrients following intensive removals of bioenergy feedstocks.

  19. Piezoelectric energy harvesting with parametric uncertainty

    International Nuclear Information System (INIS)

    Ali, S F; Friswell, M I; Adhikari, S

    2010-01-01

    The design and analysis of energy harvesting devices is becoming increasing important in recent years. Most of the literature has focused on the deterministic analysis of these systems and the problem of uncertain parameters has received less attention. Energy harvesting devices exhibit parametric uncertainty due to errors in measurement, errors in modelling and variability in the parameters during manufacture. This paper investigates the effect of parametric uncertainty in the mechanical system on the harvested power, and derives approximate explicit formulae for the optimal electrical parameters that maximize the mean harvested power. The maximum of the mean harvested power decreases with increasing uncertainty, and the optimal frequency at which the maximum mean power occurs shifts. The effect of the parameter variance on the optimal electrical time constant and optimal coupling coefficient are reported. Monte Carlo based simulation results are used to further analyse the system under parametric uncertainty

  20. Waste energy harvesting mechanical and thermal energies

    CERN Document Server

    Ling Bing, Kong; Hng, Huey Hoon; Boey, Freddy; Zhang, Tianshu

    2014-01-01

    Waste Energy Harvesting overviews the latest progress in waste energy harvesting technologies, with specific focusing on waste thermal mechanical energies. Thermal energy harvesting technologies include thermoelectric effect, storage through phase change materials and pyroelectric effect. Waste mechanical energy harvesting technologies include piezoelectric (ferroelectric) effect with ferroelectric materials and nanogenerators. The book aims to strengthen the syllabus in energy, materials and physics and is well suitable for students and professionals in the fields.

  1. [Construction of Lactobacillus rhamnosus GG particles surface display system].

    Science.gov (United States)

    Su, Runyu; Nie, Boyao; Yuan, Shengling; Tao, Haoxia; Liu, Chunjie; Yang, Bailiang; Wang, Yanchun

    2017-01-25

    To describe a novel particles surface display system which is consisted of gram-positive enhancer matrix (GEM) particles and anchor proteins for bacteria-like particles vaccines, we treated Lactobacillus rhamnosus GG bacteria with 10% heated-TCA for preparing GEM particles, and then identified the harvested GEM particles by electron microscopy, RT-PCR and SDS-PAGE. Meanwhile, Escherichia coli was induced to express hybrid proteins PA3-EGFP and P60-EGFP, and GEM particles were incubated with them. Then binding of anchor proteins were determined by Western blotting, transmission electron microscopy, fluorescence microscopy and spectrofluorometry. GEM particles preserved original size and shape, and proteins and DNA contents of GEM particles were released substantially. The two anchor proteins both had efficiently immobilized on the surface of GEM. GEM particles that were bounded by anchor proteins were brushy. The fluorescence of GEM particles anchoring PA3 was slightly brighter than P60, but the difference was not significant (P>0.05). GEM particles prepared from L. rhamnosus GG have a good binding efficiency with anchor proteins PA3-EGFP and P60-EGFP. Therefore, this novel foreign protein surface display system could be used for bacteria-like particle vaccines.

  2. Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles

    Science.gov (United States)

    Linbo, GU; Yixi, CAI; Yunxi, SHI; Jing, WANG; Xiaoyu, PU; Jing, TIAN; Runlin, FAN

    2017-11-01

    To explore the effect of the gas source flow rate on the actual diesel exhaust particulate matter (PM), a test bench for diesel engine exhaust purification was constructed, using indirect non-thermal plasma technology. The effects of different gas source flow rates on the quantity concentration, composition, and apparent activation energy of PM were investigated, using an engine exhaust particle sizer and a thermo-gravimetric analyzer. The results show that when the gas source flow rate was large, not only the maximum peak quantity concentrations of particles had a large drop, but also the peak quantity concentrations shifted to smaller particle sizes from 100 nm to 80 nm. When the gas source flow rate was 10 L min-1, the total quantity concentration greatly decreased where the removal rate of particles was 79.2%, and the variation of the different mode particle proportion was obvious. Non-thermal plasma (NTP) improved the oxidation ability of volatile matter as well as that of solid carbon. However, the NTP gas source rate had little effects on oxidation activity of volatile matter, while it strongly influenced the oxidation activity of solid carbon. Considering the quantity concentration and oxidation activity of particles, a gas source flow rate of 10 L min-1 was more appropriate for the purification of particles.

  3. Magnetic Nanocomposite Cilia Energy Harvester

    KAUST Repository

    Khan, Mohammed Asadullah

    2016-02-11

    An energy harvester capable of converting low frequency vibrations into electrical energy is presented. The operating principle, fabrication process and output characteristics at different frequencies are discussed. The harvester is realized by fabricating an array of polydimethylsiloxane (PDMS) - iron nanowire nanocomposite cilia on a planar coil array. Each coil element consists of 14 turns and occupies an area of 600 μm x 600μm. The cilia are arranged in a 12x5 array and each cilium is 250 μm wide and 2 mm long. The magnetic characteristics of the fabricated cilia indicate that the nanowires are well aligned inside of the nanocomposite, increasing the efficiency of energy harvesting. The energy harvester occupies an area of 66.96 mm2 and produces an output r.m.s voltage of 206.47μV, when excited by a 40 Hz vibration of 1 mm amplitude.

  4. Extraction of Pathogenesis-Related Proteins and Phenolics in Sauvignon Blanc as Affected by Grape Harvesting and Processing Conditions

    Directory of Open Access Journals (Sweden)

    Bin Tian

    2017-07-01

    Full Text Available Thaumatin-like proteins (TLPs and chitinases are the two main groups of pathogenesis-related (PR proteins found in wine that cause protein haze formation. Previous studies have found that phenolics are also involved in protein haze formation. In this study, Sauvignon Blanc grapes were harvested and processed in two vintages (2011 and 2012 by three different treatments: (1 hand harvesting with whole bunch press (H-WB; (2 hand harvesting with destem/crush and 3 h skin contact (H-DC-3; and (3 machine harvesting with destem/crush and 3 h skin contact (M-DC-3. The juices were collected at three pressure levels (0.4 MPa, 0.8 MPa and 1.6 MPa, some juices were fermented in 750 mL of wine bottles to determine the bentonite requirement for the resulting wines. Results showed juices of M-DC-3 had significantly lower concentration of proteins, including PR proteins, compared to those of H-DC-3, likely due to the greater juice yield of M-DC-3 and interactions between proteins and phenolics. Juices from the 0.8–1.6 MPa pressure and resultant wines had the highest concentration of phenolics but the lowest concentration of TLPs. This supported the view that TLPs are released at low pressure as they are mainly present in grape pulp but additional extraction of phenolics largely present in skin occurs at higher pressing pressure. Wine protein stability tests showed a positive linear correlation between bentonite requirement and the concentration of chitinases, indicating the possibility of predicting bentonite requirement by quantification of chitinases. This study contributes to an improved understanding of extraction of haze-forming PR proteins and phenolics that can influence bentonite requirement for protein stabilization.

  5. Effect of H3PO4 Concentration and Particle Size of the Eggshell Used in Laying Hens Fed on Bone and Blood

    Directory of Open Access Journals (Sweden)

    S. Kismiati

    2013-06-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 The objective of this research was to evaluate the effect of H3 PO4 concentrations and particle size of eggshell used in the feed of laying hens on bone and blood profiles. Ninety-six laying hens (Isa Brown strain age 25 weeks were kept in individual battery cage and divided into 8 groups randomly. Group 1 was fed using eggshell with out H3PO4 and particle size of <1 mm (feed 1 , group 2 was fed using eggshell that has been soaked in H3PO4 3% and particle size of <1 mm (feed 2, group 3 were fed using eggshell that has been soaked in H3PO4 4% and particle size of <1 mm (feed 3, group 4 was fed using eggshell that has been soaked in H3PO4 5% and particle size of <1 mm (feed 4, group 5 was fed using eggshell that has been soaked in H3PO4 and particle size of <3 mm (feed 5 , group of 6 was fed using eggshell that has been soaked in H3PO4 3% and particle size of <3 mm (feed 6, group 7 was fed using eggshell that has been soaked in H3PO4 4 % and particle size of <3 mm (feed 7 and a group of 8 was fed using eggshell that has been soaked in H3PO4 5% and particle size of <3 mm (feed 8. A Completely Randomized Design patterns factorial 4 x 2 x 3 was used in this research. Result of this research showed that had no interaction effect (P>0.05 between the H3PO4 concentration and particle size of eggshell on weight, volume, diameter of tibia bone and calcium and phosphorus content of the blood. The concentration of H3PO4 or particles size also had no effect (P>0.05 on all variables. Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font

  6. Pushing Boreal Headwaters: Responses of Dissolved Organic Carbon to Increased Hydro-Meteorological Forcing by Forest Harvesting

    Science.gov (United States)

    Schelker, J.; Grabs, T. J.; Bishop, K. H.; Laudon, H.

    2012-12-01

    Concentrations of dissolved organic carbon (DOC) in stream water show large variations as a response to disturbances such as forestry operations. We used a paired catchment experiment in northern Sweden which shows well quantified increases of DOC concentrations and C-exports as a result of forest harvesting. To identify the drivers of these increases, a physically-based process model (Riparian Flow Integration Model, RIM) was used to inversely simulate the DOC availability in the peat-rich riparian soils of the catchments. DOC availability in soils followed a seasonal signal paralleling the seasonality of soil-temperatures (min: February; max: August) during 2005-2011. Further, high-frequency event sampling of DOC during spring and summer seasons of 2007, 2008 and 2009, respectively, revealed that event size acted as a secondary control of DOC in streams: Spring snowmelt events (as well as one major event in 2009) showed clockwise hysteresis, whereas minor runoff episodes during summer (when DOC availability in soils was highest) were characterized by a counterclockwise behavior. The higher hydro-meteorological forcing consisting of increases of soil temperature and soil moisture after the forest removal governed additional increases in DOC availability in soils. The higher DOC concentrations observed in streams after forest harvesting can therefore be ascribed to i) the increased climatic forcing comprising higher water flows through riparian soils, ii) increased soil temperatures and soil moisture, respectively, favoring an increased production of DOC, and iii) additional variation by event size. Overall these results underline the large impact of forestry operations on stream water quality as well as DOC exports leaving managed boreal forests. Simulated and measured soil water TOC concentration profiles within the three Balsjö catchments (CC-4 = clear-cut with 67% harvest; NO-5 = 35% harvest; NR-7 = northern reference). The simulated curves represent the

  7. Characterization of Piezoelectric Energy Harvesting MEMS

    Science.gov (United States)

    2015-12-01

    of previously fabricated MEMS piezoelectric energy harvesters and use the results to optimize an advanced finite element model to be used in...possibilities of using solar power and the piezoelectric effect to harvest energy [12]. The design goal was to develop an energy harvester with a resonant... The piezoelectric properties of AlN are also relatively constant over a wide range of temperatures [7]. AlN was further characterized

  8. Dynamics and segregation of particles in a cyclone

    International Nuclear Information System (INIS)

    Mothes, H.

    1982-01-01

    In cyclone separator systems, the separation efficiency increases with increasing dust concentration, although the centripetal force, which is responsible for particle separation in a vortex, decreases with increasing particle concentration. This is demonstrated by laser-doppler-velocity-measurements. The measurements of separation efficiency together with the determination of particle size using stray radiation show that the effect of particle agglomeration is of major importance in the case of higher particle concentrations. Also smaller particles can be separated from the gas by agglomeration to larger particles, which can easily be separated. The calculations show that the improved separation at higher concentrations can be explained by this particle agglomeration effect. Finally different cyclone design models are discussed on the basis of the experimental results and the theoretical considerations on the particle dynamics in a cyclone. (orig./DG) [de

  9. The influence of particle size and AgNO3 concentration in the ionic exchange process on the fungicidal action of antimicrobial glass

    International Nuclear Information System (INIS)

    Mendes, E.; Piletti, R.; Barichello, T.; Oliveira, C.M.; Kniess, C.T.; Angioletto, E.; Riella, H.G.

    2012-01-01

    Antimicrobial materials have long been used as an effective means of reducing the risks posed to humans by fungi, bacteria and other microorganisms. These materials are essential in environments where cleanliness, comfort and hygiene are the predominate concerns. This work presents preliminary results for the development of a fungicidal vitreous material that is produced by the incorporation of a silver ionic specimen through ionic exchange reactions. Silver ions were incorporated into powdered glass via ionic exchange in an ionic medium containing silver species with different concentrations of AgNO 3 . The fungicidal efficiency of the samples was studied as a function of the AgNO 3 concentration and the particle size of the glass using the agar diffusion test for the microbiological analysis of the fungus species Candida albicans. The samples were examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The experimental results showed that the fungicidal effect was dependent on the AgNO 3 concentration in the ionic exchange medium but was not dependent on the particle size of the glass. - Highlights: ► The fungicidal powder glass presents high potential for application as polymeric additive and others application in the medical area. ► The fungicidal effect was dependent on AgNO3 concentration, but was not dependent on the particle size of the glass. ► The XRD results show that the ionic exchange process promotes the formation of silver crystalline phases with cubic cells.

  10. Contribution of post-harvest agricultural paddy residue fires in the N.W. Indo-Gangetic Plain to ambient carcinogenic benzenoids, toxic isocyanic acid and carbon monoxide.

    Science.gov (United States)

    Chandra, B P; Sinha, Vinayak

    2016-03-01

    In the north west Indo-Gangetic Plain (N.W.IGP), large scale post-harvest paddy residue fires occur every year during the months of October-November. This anthropogenic perturbation causes contamination of the atmospheric environment with adverse impacts on regional air quality posing health risks for the population exposed to high concentrations of carcinogens such as benzene and toxic VOCs such as isocyanic acid. These gases and carbon monoxide are known to be emitted from biomass fires along with acetonitrile. Yet no long-term in-situ measurements quantifying the impact of this activity have been carried out in the N.W. IGP. Using high quality continuous online in-situ measurements of these gases at a strategic downwind site over a three year period from 2012 to 2014, we demonstrate the strong impact of this anthropogenic emission activity on ambient concentrations of these gases. In contrast to the pre-paddy harvest period, excellent correlation of benzenoids, isocyanic acid and CO with acetonitrile (a biomass burning chemical tracer); (r≥0.82) and distinct VOC/acetonitrile emission ratios were observed for the post-paddy harvest period which was also characterized by high ambient concentrations of these species. The average concentrations of acetonitrile (1.62±0.18ppb), benzene (2.51±0.28ppb), toluene (3.72±0.41ppb), C8-aromatics (2.88±0.30ppb), C9-aromatics (1.55±0.19ppb) and CO (552±113ppb) in the post-paddy harvest periods were about 1.5 times higher than the annual average concentrations. For isocyanic acid, a compound with both primary and secondary sources, the concentration in the post-paddy harvest period was 0.97±0.17ppb. The annual average concentrations of benzene, a class A carcinogen, exceeded the annual exposure limit of 1.6ppb at NTP mandated by the National Ambient Air Quality Standard of India (NAAQS). We show that mitigating the post-harvest paddy residue fires can lower the annual average concentration of benzene and ensure

  11. Measurements and predictors of on-road ultrafine particle concentrations and associated pollutants in Los Angeles

    Energy Technology Data Exchange (ETDEWEB)

    Fruin, S. [California Air Resources Board, Sacramento (United States); University of Southern California, Los Angeles (United States). Keck School of Medicine, Department of Preventive Medicine; Westerdahl, D.; Sax, T. [California Air Resources Board, Sacramento (United States); Sioutas, C. [University of Southern California, Los Angeles (United States). Civil and Environmental Engineering; Fine, P.M. [University of Southern California, Los Angeles (United States). Civil and Environmental Engineering; South Coast Air Quality Management District, Diamond Bar, CA (United States)

    2008-01-15

    Motor vehicles are the dominant source of oxides of nitrogen (NO{sub x}), particulate matter(PM), and certain air toxics (e.g., benzene, 1,3-butadiene) in urban areas. On roadways, motor vehicle-related pollutant concentrations are typically many times higher than ambient concentrations. Due to high air exchange rates typical of moving vehicles, this makes time spent in vehicles on roadways a major source of exposure. This paper presents on-road measurements for Los Angeles freeways and arterial roads taken from a zero-emission electric vehicle outfitted with real-time instruments. The objective was to characterize air pollutant concentrations on roadways and identify the factors associated with the highest concentrations. Our analysis demonstrated that on freeways, concentrations of ultrafine particles (UFPs), black carbon, nitric oxide, and PM-bound polycyclic aromatic hydrocarbons (PM-PAH) are generated primarily by diesel-powered vehicles, despite the relatively low fraction ({approx}6%) of diesel-powered vehicles on Los Angeles freeways. However, UFP concentrations on arterial roads appeared to be driven primarily by proximity to gasoline-powered vehicles undergoing hard accelerations. Concentrations were roughly one-third of those on freeways. By using a multiple regression model for the freeway measurements, we were able to explain 60-70% of the variability in concentrations of UFP, black carbon, nitric oxide, and PM-PAH using measures of diesel truck density and hour of day (as an indicator of wind speed). Freeway concentrations of these pollutants were also well correlated wth readily available annual average daily truck counts, potentially allowing improved population exposure estimates for epidemiology studies. Based on these roadway measurements and average driving time, it appears that 33-45% of total UFP exposure for Los Angeles residents occurs due to time spent traveling in vehicles. (author)

  12. Measurements and predictors of on-road ultrafine particle concentrations and associated pollutants in Los Angeles

    International Nuclear Information System (INIS)

    Fruin, S.; Sioutas, C.

    2008-01-01

    Motor vehicles are the dominant source of oxides of nitrogen (NO x ), particulate matter(PM), and certain air toxics (e.g., benzene, 1,3-butadiene) in urban areas. On roadways, motor vehicle-related pollutant concentrations are typically many times higher than ambient concentrations. Due to high air exchange rates typical of moving vehicles, this makes time spent in vehicles on roadways a major source of exposure. This paper presents on-road measurements for Los Angeles freeways and arterial roads taken from a zero-emission electric vehicle outfitted with real-time instruments. The objective was to characterize air pollutant concentrations on roadways and identify the factors associated with the highest concentrations. Our analysis demonstrated that on freeways, concentrations of ultrafine particles (UFPs), black carbon, nitric oxide, and PM-bound polycyclic aromatic hydrocarbons (PM-PAH) are generated primarily by diesel-powered vehicles, despite the relatively low fraction (∼6%) of diesel-powered vehicles on Los Angeles freeways. However, UFP concentrations on arterial roads appeared to be driven primarily by proximity to gasoline-powered vehicles undergoing hard accelerations. Concentrations were roughly one-third of those on freeways. By using a multiple regression model for the freeway measurements, we were able to explain 60-70% of the variability in concentrations of UFP, black carbon, nitric oxide, and PM-PAH using measures of diesel truck density and hour of day (as an indicator of wind speed). Freeway concentrations of these pollutants were also well correlated wth readily available annual average daily truck counts, potentially allowing improved population exposure estimates for epidemiology studies. Based on these roadway measurements and average driving time, it appears that 33-45% of total UFP exposure for Los Angeles residents occurs due to time spent traveling in vehicles. (author)

  13. Measurements and predictors of on-road ultrafine particle concentrations and associated pollutants in Los Angeles

    Science.gov (United States)

    Fruin, S.; Westerdahl, D.; Sax, T.; Sioutas, C.; Fine, P. M.

    Motor vehicles are the dominant source of oxides of nitrogen (NO x), particulate matter (PM), and certain air toxics (e.g., benzene, 1,3-butadiene) in urban areas. On roadways, motor vehicle-related pollutant concentrations are typically many times higher than ambient concentrations. Due to high air exchange rates typical of moving vehicles, this makes time spent in vehicles on roadways a major source of exposure. This paper presents on-road measurements for Los Angeles freeways and arterial roads taken from a zero-emission electric vehicle outfitted with real-time instruments. The objective was to characterize air pollutant concentrations on roadways and identify the factors associated with the highest concentrations. Our analysis demonstrated that on freeways, concentrations of ultrafine particles (UFPs), black carbon, nitric oxide, and PM-bound polycyclic aromatic hydrocarbons (PM-PAH) are generated primarily by diesel-powered vehicles, despite the relatively low fraction (˜6%) of diesel-powered vehicles on Los Angeles freeways. However, UFP concentrations on arterial roads appeared to be driven primarily by proximity to gasoline-powered vehicles undergoing hard accelerations. Concentrations were roughly one-third of those on freeways. By using a multiple regression model for the freeway measurements, we were able to explain 60-70% of the variability in concentrations of UFP, black carbon, nitric oxide, and PM-PAH using measures of diesel truck density and hour of day (as an indicator of wind speed). Freeway concentrations of these pollutants were also well correlated with readily available annual average daily truck counts, potentially allowing improved population exposure estimates for epidemiology studies. Based on these roadway measurements and average driving time, it appears that 33-45% of total UFP exposure for Los Angeles residents occurs due to time spent traveling in vehicles.

  14. Power harvesting in helicopter rotorblades

    NARCIS (Netherlands)

    de Jong, Pieter; de Boer, Andries; Loendersloot, Richard; van der Hoogt, Peter

    2010-01-01

    Current power harvesting research has focused on bending beams and determining power output under a given excitation. For the European CleanSky – Green Rotor Craft project a tool is being developed which optimizes the piezoelectric material and placement thereof for power harvesting. It focuses on

  15. PHOSPHORUS FERTILIZATION AND HARVEST INTERVALS INFLUENCE ENERGETIC AND PHYSICAL PROPERTIES OF BRIQUETTES AND LARGE BRANCHES OF MATE

    Directory of Open Access Journals (Sweden)

    Delmar Santin

    Full Text Available ABSTRACT In mate crop, the commercial part consists of leaves and thin branches, while the large branches (LB are considered unused residues and left in the field, although they may have potential for use as energy. The objective of this paper was to evaluate the influence of phosphorus fertilization and harvest interval in productivity of mate large branches and in their physical and energetic properties, as well as in derived briquettes. In a seven-year-old plantation, doses of 0, 20, 40, 80, 160 and 320 kg.ha-1 of P2O5 were applied considering harvest intervals of 12, 18 and 24 months. Dry mass, average diameter, P content, and physical and energetic properties of LB were determined. With LB, after its transformation into particles and briquetting, physical and energetic properties were determined, as well as P availability in soil. The phosphorus fertilization increased LB productivity in larger harvest intervals, increasing the amount of energy produced per unit of area, but did not change basic density and gross calorific value of wood. Mate harvest intervals did not affect the apparent density and calorific value of briquettes produced by LB. LB harvested at intervals of 18 and 24 months produced wood with higher basic density and gross calorific value. LB or briquettes have adequate energetic and physical properties, being technically a plant residue with great potential for use as energy.

  16. Tethered balloon-based particle number concentration, and size distribution vertical profiles within the lower troposphere of Shanghai

    Science.gov (United States)

    Zhang, Kun; Wang, Dongfang; Bian, Qinggen; Duan, Yusen; Zhao, Mengfei; Fei, Dongnian; Xiu, Guangli; Fu, Qingyan

    2017-04-01

    A tethered balloon-based measurement campaign of particle number concentration (PNC) and particle number size distribution (PNSD) in the size range of 15.7-661.2 nm was conducted within the lower troposphere of 1000 m in Shanghai, a Chinese megacity, during December of 2015. The meteorological conditions, PNC, and PNSD were synchronously measured at the ground-based station as well as by the tethered balloon. On ground level, the 88.2 nm particles were found to have the highest PNC. The Pearson correlation analysis based on the ground level data showed NO2 had a strong correlation with PNC. The synchronous measurement of PNC and PNSD at the ground station and on the tethered balloon showed that the 15.7-200 nm particles had higher PNC on ground level, but the PNC of 200-661.2 nm particles was higher at 400 m. One haze event (Dec 22nd-Dec 23rd) was selected for detailed discussion on the variation of vertical profiles of PNSD and PNC. The vertical distribution of characteristics of PNC and PNSD were observed and compared. Results indicated that the highest MaxDm (the diameter with the highest PNC) during those three launches all appeared at a high altitude, usually above 300 m. Compared to the clean days, the relatively bigger MaxDm at each height in the haze days also indicated regional transport of pollutants might contribute to more to that haze event.

  17. Risk factors of musculoskeletal disorders among oil palm fruit harvesters during early harvesting stage

    Directory of Open Access Journals (Sweden)

    Yee Guan Ng

    2015-05-01

    Full Text Available This cross-sectional study intends to investigate the associations of musculoskeletal disorders (MSDs among foreign labourers on a socio-economic background, occupational exposure, social lifestyle, and postures adopted during harvesting tasks. A total of 446 male respondents (263 FFB cutters; 183 FFB collectors were studied using an interview-assisted questionnaire. OWAS was used to determine the severity of awkward posture based on videos of harvesting tasks recorded for each respondent. Analysis found that increasingly educated respondents had higher risk of developing MSDs. Shorter daily work duration and longer resting duration appear to increase the risk of neck and shoulder disorders among harvesters, which may be attributable to organizational work design. Awkward posture was a particularly significant risk factor of MSDs among FFB collectors. Among the results of the study, occupational exposure, postures and certain socio-demographic backgrounds explained some, but not all, the risk factor of MSDs among harvesters. An in-depth investigation, preferably a longitudinal study investigating the dynamic of work activities and other risk factors, such as psychosocial risk factors, are recommended.

  18. Determination of concentration levels of arsenic, gold and antimony in particle-size fractions of gold ore using Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Nyarku, M.

    2009-02-01

    Instrumental Neutron Activation Analysis (INAA) has been used to quantify the concentrations of arsenic, gold and antimony in particle-size fractions of a gold ore. The ore, which was taken from the Ahafo project site of Newmont Ghana Gold Ltd, was first fractionated into fourteen (14) particle-size fractions using state-of-the-art analytical sieve machine. The minimum sieve mesh size used was 36 microns and grains >2000 microns were not considered for analysis. Results of the sieving were analysed with easysieve software. The < 36 microns sub fraction was found to be the optimum, hosting bulk of all three elements. For arsenic, the element was found to be highly concentrated in < 36 to +100 microns size fractions and erratically distributed from +150 microns fraction and above. For gold, in exception of the sub fraction <36 which had exceptionally high concentration, the element is distributed in all the size fractions but slightly 'plays out' in the +150 to +400 microns fractions. Antimony occurrence in the sample was relatively high in <36 microns size fraction followed by 600 - 800, 800 - 1000, 400 - 600 and 36 - 40 microns size fractions in that order. Gold content in the sample was far higher than that of arsenic and antimony. Gold concentration in the composite sample was in the range 564 - 8420 ppm. Arsenic levels were higher as compared to antimony. The range of arsenic concentration in the composite sample was 14.33 - 186.92 ppm. Antimony concentration was in the range 1.09 - 9.48 ppm. (au)

  19. Remaining questions in the case for balanced harvesting

    DEFF Research Database (Denmark)

    Burgess, Matthew G; Diekert, Florian K; Jacobsen, Nis Sand

    2016-01-01

    are controversial, including its call for extensive harvesting of juveniles and forage fish. Balanced harvesting also calls for targeting species and size-classes that are not currently marketable, possibly at a significant economic cost. Some have argued that this cost is outweighed by the ecological benefits......Balanced harvestingharvesting all species and sizes in an ecosystem in proportion to their productivity – is a fisheries management strategy that has been suggested recently to increase yields, while reducing overall ecosystem impact. However, some aspects of balanced harvesting...

  20. Smart multi-application energy harvester using Arduino | Rizman ...

    African Journals Online (AJOL)

    This paper presents a Smart Multi-App Harvester Energy Using Arduino for energy harvesting. The system consists of a few mechanical parts such as solar, thermal plate and dynamo (for kinetic) to harvest the energy. The objectives of the project are to harvest the wasted energy from the mechanical parts and used it as a ...

  1. Do biomass harvesting guidelines influence herpetofauna following harvests of logging residues for renewable energy?.

    Science.gov (United States)

    Fritts, Sarah; Moorman, Christopher; Grodsky, Steven; Hazel, Dennis; Homyack, Jessica; Farrell, Chris; Castleberry, Steven

    2016-04-01

    Forests are a major supplier of renewable energy; however, gleaning logging residues for use as woody biomass feedstock could negatively alter habitat for species dependent on downed wood. Biomass Harvesting Guidelines (BHGs) recommend retaining a portion of woody biomass on the forest floor following harvest. Despite BHGs being developed to help ensure ecological sustainability, their contribution to biodiversity has not been evaluated experimentally at operational scales. We compared herpetofauanal evenness, diversity, and richness and abundance of Anaxyrus terrestris and Gastrophryne carolinensis among six treatments that varied in volume and spatial arrangement of woody biomass retained after clearcutting loblolly pine (Pinus taeda) plantations in North Carolina, USA (n = 4), 2011-2014 and Georgia (n = 4), USA 2011-2013. Treatments were: (1) biomass harvest with no BHGs, (2) 15% retention with biomass clustered, (3) 15% retention with biomass dispersed, (4) 30% retention with biomass clustered, (5) 30% retention with biomass dispersed, and (6) no biomass harvest. We captured individuals with drift fence arrays and compared evenness, diversity, and richness metrics among treatments with repeated-measure, linear mixed-effects models. We determined predictors of A. terrestris and G. carolinensis abundances using a priori candidate N-mixture models with woody biomass volume, vegetation structure, and groundcover composition as covariates. We had 206 captures of 25 reptile species and 8710 captures of 17 amphibian species during 53690 trap nights. Herpetofauna diversity, evenness, and richness were similar among treatments. A. terrestris abundance was negatively related to volume of retained woody biomass in treatment units in North Carolina in 2013. G. carolinensis abundance was positively related with volume of retained woody debris in treatment units in Georgia in 2012. Other relationships between A. terrestris and G. carolinensis abundances and habitat metrics

  2. Evaluation of Microflow Digital Imaging Particle Analysis for Sub-Visible Particles Formulated with an Opaque Vaccine Adjuvant.

    Directory of Open Access Journals (Sweden)

    Grant E Frahm

    Full Text Available Microflow digital imaging (MDI has become a widely accepted method for assessing sub-visible particles in pharmaceutical formulations however, to date; no data have been presented on the utility of this methodology when formulations include opaque vaccine adjuvants. This study evaluates the ability of MDI to assess sub-visible particles under these conditions. A Fluid Imaging Technologies Inc. FlowCAM® instrument was used to assess a number of sub-visible particle types in solution with increasing concentrations of AddaVax™, a nanoscale squalene-based adjuvant. With the objective (10X used and the limitations of the sensor resolution, the instrument was incapable of distinguishing between sub-visible particles and AddaVax™ droplets at particle sizes less than 5 μm. The instrument was capable of imaging all particle types assessed (polystyrene beads, borosilicate glass, cellulose, polyethylene protein aggregate mimics, and lysozyme protein aggregates at sizes greater than 5 μm in concentrations of AddaVax™ up to 50% (vol:vol. Reduced edge gradients and a decrease in measured particle sizes were noted as adjuvant concentrations increased. No significant changes in particle counts were observed for polystyrene particle standards and lysozyme protein aggregates, however significant reductions in particle counts were observed for borosilicate (80% of original and cellulose (92% of original particles. This reduction in particle counts may be due to the opaque adjuvant masking translucent particles present in borosilicate and cellulose samples. Although the results suggest that the utility of MDI for assessing sub-visible particles in high concentrations of adjuvant may be highly dependent on particle morphology, we believe that further investigation of this methodology to assess sub-visible particles in challenging formulations is warranted.

  3. An assessment of dispersing pollutants from the pre-harvest burning of sugarcane in rural areas in the northeast of Brazil

    Science.gov (United States)

    Rangel, Maria Gabriela L.; Henríquez, Jorge R.; Costa, José A. P.; de Lira Junior, José C.

    2018-04-01

    In recent years, the Brazilian government has been applying several restrictions with regard to preventing environmental pollution. Although Brazilian legislation is becoming stricter as to the pre-harvest burning of sugarcane, this practice is frequently used in order to assist manual harvesting. In the northeast region of Brazil, sugarcane is an important crop, which accounts for about 15% of the national production in a total area of 1,060,660 ha, the average production being 51,119 kg per hectare. The pre-harvest burning of sugarcane generates smoke, which has a high concentration of atmospheric pollutants such as carbon dioxide (CO2), carbon monoxide (CO), particulate matter (P.M. 2.5 and 10), polycyclic aromatic hydrocarbons (PAH), volatile organic compounds (VOC) and nitrogen oxides (NOX). This article estimates the volume of CO, P.M. 2.5 and NOX generated and how they are dispersed in the atmosphere when this arises from the burning of sugarcane biomass in rural areas of Northeast Brazil, and does so by using AERMOD VIEW® simulation software. Using the characteristics of the emissions and environmental (meteorological and topographical) data, quality air profiles based on pollutant dispersion were obtained. Three studies were taken into account in order to determine the relationship between pollutant dispersion and some parameters of the burning process, such as those for the spatial distribution of resources, the duration of pre-harvest burning and the influence of undertaking burning in different months. As to spatial distribution, to divide an area into small lots contributes to decreasing the maximum concentration of pollutants by 53% compared to burning a single area of equivalent size. The study of the burning duration indicated that doing so gradually (using a lengthier procedure) could decrease the maximum concentration of the pollutants by an inverse relation. The harvesting period in this region is between November and April. The pollutants

  4. Water harvest via dewing.

    Science.gov (United States)

    Lee, Anna; Moon, Myoung-Woon; Lim, Hyuneui; Kim, Wan-Doo; Kim, Ho-Young

    2012-07-10

    Harvesting water from humid air via dewing can provide a viable solution to a water shortage problem where liquid-phase water is not available. Here we experimentally quantify the effects of wettability and geometry of the condensation substrate on the water harvest efficiency. Uniformly hydrophilic surfaces are found to exhibit higher rates of water condensation and collection than surfaces with lower wettability. This is in contrast to a fog basking method where the most efficient surface consists of hydrophilic islands surrounded by hydrophobic background. A thin drainage path in the lower portion of the condensation substrate is revealed to greatly enhance the water collection efficiency. The optimal surface conditions found in this work can be used to design a practical device that harvests water as its biological counterpart, a green tree frog, Litoria caerulea , does during the dry season in tropical northern Australia.

  5. Harvesting systems for the northern forest hardwoods

    Science.gov (United States)

    Chris B. LeDoux

    2011-01-01

    This monograph is a summary of research results and environmental compliance measures for timber harvesting operations. Data are presented from the Northern Research Station's forest inventory and analysis of 20 states in the northern forest hardwoods. Harvesting systems available in the region today are summarized. Equations for estimating harvesting costs are...

  6. A cosmic-ray nuclear event with an anomalously strong concentration of energy and particles in the central region

    International Nuclear Information System (INIS)

    Amato, N.M.; Arata, N.; Maldonado, R.H.C.

    1986-01-01

    A cosmic-ray induced nuclear event detected in the emulsion chamber is described. The event consists of 217 shower cores with ΣEγ = 1,275 TeV. In log scale, energy and particles are emitted most densely at the small lateral distance corresponding to 0.5 mm; 77 % of the total energy and 61 % of the total multiplicity are inside the radius of 0.65 cm. The shower cores in the central region show exponential-type energy distribution and non-isotropic azimuthal distribution. This event indicates a possibility that phenomena of large transverse momentum could happen to produce a strong concentration of energy and particles in the very forward direction. (Authors) [pt

  7. Single-particle characterization of 'Asian Dust' certified reference materials using low-Z particle electron probe X-ray microanalysis

    International Nuclear Information System (INIS)

    Hwang, Hee Jin; Ro, Chul-Un

    2006-01-01

    In order to clearly elucidate whether Asian Dust particles experience chemical modification during long-range transport, it is necessary to characterize soil particles where Asian Dust particles originate. If chemical compositions of source soil particles are well characterized, then chemical compositions of Asian Dust particles collected outside source regions can be compared with those of source soil particles in order to find out the occurrence of chemical modification. Asian Dust particles are chemically and morphologically heterogeneous, and thus the average composition and the average aerodynamic diameter (obtainable by bulk analysis) are not much relevant if the chemical modifications of the particles must be followed. The major elemental composition and abundance of the particle types that are potential subjects of chemical modification can only be obtained using single-particle analysis. A single particle analytical technique, named low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA), was applied to characterize two certified reference materials (CRMs) for Asian Dust particles, which were collected from a loess plateau area and a desert of China. The CRMs were defined by bulk analyses to provide certified concentrations for 13 chemical elements. Using the low-Z particle EPMA technique, the concentrations of major chemical species such as aluminosilicates, SiO 2 , CaCO 3 , and carbonaceous species were obtained. Elemental concentrations obtained by the low-Z particle EPMA are close to the certified values, with considering that the single particle and bulk analyses employ very different approaches. There are still some discrepancies between those concentration values, resulting from analyses of particles with different sizes, different sample amounts analyzed, and uncertainties involved in the single particle analysis

  8. Dependence of the degree of antibacterial and antiphage action of ozone on cell and phage particle concentrations in nutrient media

    Energy Technology Data Exchange (ETDEWEB)

    Grits, N.V.; Fomichev, A.Iu.

    1985-05-01

    The work was aimed at studying the inactivating effect of ozone on Escherichia coli K-12 AB1157, Pseudomonas aeruginosa PA01, Erwinia herbicola EH103 and their phages T4, SM and I4. The degree of bacterial and phage inactivation was found to increase with a decrease in their initial concentration during the treatment. The effect depends on differences in the quantity of ozone per cell or per phage particle in the reaction medium. This conclusion is based on the fact that, irrespective of the suspension density, the amount of surviving bacteria and phages plotted versus O3 concentration and recalculated per one bacterial cell or phage particle is described graphically by one and the same curve typical of a strain under study. This technique for assessing the sensitivity of microbiological objects to ozone can be used in order to compare experimental data obtained in different laboratories.

  9. Luminescence study on Eu3+ doped Y2O3 nanoparticles: particle size, concentration and core-shell formation effects

    International Nuclear Information System (INIS)

    Singh, L Robindro; Ningthoujam, R S; Sudarsan, V; Srivastava, Iti; Singh, S Dorendrajit; Dey, G K; Kulshreshtha, S K

    2008-01-01

    Nanoparticles of Eu 3+ doped Y 2 O 3 (core) and Eu 3+ doped Y 2 O 3 covered with Y 2 O 3 shell (core-shell) are prepared by urea hydrolysis for 3 h in ethylene glycol medium at a relatively low temperature of 140 deg. C, followed by heating at 500 and 900 deg. C. Particle sizes determined from x-ray diffraction and transmission electron microscopic studies are 11 and 18 nm for 500 and 900 deg. C heated samples respectively. Based on the luminescence studies of 500 and 900 deg. C heated samples, it is confirmed that there is no particle size effect on the peak positions of Eu 3+ emission, and optimum luminescence intensity is observed from the nanoparticles with a Eu 3+ concentration of 4-5 at.%. A luminescence study establishes that the Eu 3+ environment in amorphous Y (OH) 3 is different from that in crystalline Y 2 O 3 . For a fixed concentration of Eu 3+ doping, there is a reduction in Eu 3+ emission intensity for core-shell nanoparticles compared to that of core nanoparticles, and this has been attributed to the concentration dilution effect. Energy transfer from the host to Eu 3+ increases with increase of crystallinity

  10. High-efficiency integrated piezoelectric energy harvesting systems

    Science.gov (United States)

    Hande, Abhiman; Shah, Pradeep

    2010-04-01

    This paper describes hierarchically architectured development of an energy harvesting (EH) system that consists of micro and/or macro-scale harvesters matched to multiple components of remote wireless sensor and communication nodes. The micro-scale harvesters consist of thin-film MEMS piezoelectric cantilever arrays and power generation modules in IC-like form to allow efficient EH from vibrations. The design uses new high conversion efficiency thin-film processes combined with novel cantilever structures tuned to multiple resonant frequencies as broadband arrays. The macro-scale harvesters are used to power the collector nodes that have higher power specifications. These bulk harvesters can be integrated with efficient adaptive power management circuits that match transducer impedance and maximize power harvested from multiple scavenging sources with very low intrinsic power consumption. Texas MicroPower, Inc. is developing process based on a composition that has the highest reported energy density as compared to other commercially available bulk PZT-based sensor/actuator ceramic materials and extending it to thin-film materials and miniature conversion transducer structures. The multiform factor harvesters can be deployed for several military and commercial applications such as underground unattended sensors, sensors in oil rigs, structural health monitoring, supply chain management, and battlefield applications such as sensors on soldier apparel, equipment, and wearable electronics.

  11. Contribution of post-harvest agricultural paddy residue fires in the N.W. Indo-Gangetic Plain to ambient carcinogenic benzenoids, toxic isocyanic acid and carbon monoxide

    Science.gov (United States)

    Praphulla Chandra, Boggarapu; Sinha, Vinayak

    2016-04-01

    In the North West Indo-Gangetic Plain (N.W.IGP), large scale post-harvest paddy residue fires occur every year during the months of October-November. This anthropogenic perturbation causes contamination of the atmospheric environment with adverse impacts on regional air quality posing health risks for the population exposed to high concentrations of carcinogens such as benzene and toxic VOCs such as isocyanic acid. These gases and carbon monoxide are known to be emitted from biomass fires along with acetonitrile. Yet no long-term in-situ measurements quantifying the impact of this activity have been carried out in the N.W. IGP. Using high quality continuous online in-situ measurements of these gases at a strategic downwind site over a three year period from 2012 to 2014, we demonstrate the strong impact of this anthropogenic emission activity on ambient concentrations of these gases. In contrast to the pre-paddy harvest period, excellent correlation of benzenoids, isocyanic acid and CO with acetonitrile (a biomass burning chemical tracer); (r ≥ 0.82) and distinct VOC/acetonitrile emission ratios were observed for the post-paddy harvest period which was also characterized by high ambient concentrations of these species. The average concentrations of acetonitrile (1.62 ± 0.18 ppb), benzene (2.51 ± 0.28 ppb), toluene (3.72 ± 0.41 ppb), C8-aromatics (2.88 ± 0.30 ppb), C9-aromatics (1.55 ± 0.19 ppb) and CO (552 ± 113 ppb) in the post-paddy harvest periods were about 1.5 times higher than the annual average concentrations. For isocyanic acid, a compound with both primary and secondary sources, the concentration in the post-paddy harvest period was 0.97 ± 0.17 ppb. The annual average concentrations of benzene, a class A carcinogen, exceeded the annual exposure limit of 1.6 ppb at NTP mandated by the National Ambient Air Quality Standard of India (NAAQS). We show that mitigating the post-harvest paddy residue fires can lower the annual average concentration of

  12. Summer-winter concentrations and gas-particle partitioning of short chain chlorinated paraffins in the atmosphere of an urban setting.

    Science.gov (United States)

    Wang, Thanh; Han, Shanlong; Yuan, Bo; Zeng, Lixi; Li, Yingming; Wang, Yawei; Jiang, Guibin

    2012-12-01

    Short chain chlorinated paraffins (SCCPs) are semi-volatile chemicals that are considered persistent in the environment, potential toxic and subject to long-range transport. This study investigates the concentrations and gas-particle partitioning of SCCPs at an urban site in Beijing during summer and wintertime. The total atmospheric SCCP levels ranged 1.9-33.0 ng/m(3) during wintertime. Significantly higher levels were found during the summer (range 112-332 ng/m(3)). The average fraction of total SCCPs in the particle phase (ϕ) was 0.67 during wintertime but decreased significantly during the summer (ϕ = 0.06). The ten and eleven carbon chain homologues with five to eight chlorine atoms were the predominant SCCP formula groups in air. Significant linear correlations were found between the gas-particle partition coefficients and the predicted subcooled vapor pressures and octanol-air partition coefficients. The gas-particle partitioning of SCCPs was further investigated and compared with both the Junge-Pankow adsorption and K(oa)-based absorption models. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Improving Vibration Energy Harvesting Using Dynamic Magnifier

    Directory of Open Access Journals (Sweden)

    Almuatasim Alomari

    2016-01-01

    Full Text Available This paper reports on the design and evaluation of vibration-based piezoelectric energy-harvesting devices based on a polyvinylidene fluoride unimorph cantilever beam attached to the front of a dynamic magnifier. Experimental studies of the electromechanical frequency response functions are studied for the first three resonance frequencies. An analytical analysis is undertaken by applying the chain matrix in order to predict output voltage and output power with respect to the vibration frequency. The proposed harvester was modeled using MATLAB software and COMSOL multi- physics to study the mode shapes and electrical output parameters. The voltage and power output of the energy harvester with a dynamic magnifier was 2.62 V and 13.68 mW, respectively at the resonance frequency of the second mode. The modeling approach provides a basis to design energy harvesters exploiting dynamic magnification for improved performance and bandwidth. The potential application of such energy harvesting devices in the transport sector include autonomous structural health monitoring systems that often include embedded sensors, data acquisition, wireless communication, and energy harvesting systems.

  14. Reduction of 3-methoxytyramine concentrations in the caudate nucleus of rats after exposure to high-energy iron particles: evidence for deficits in dopaminergic neurons

    International Nuclear Information System (INIS)

    Hunt, W.A.; Dalton, T.K.; Joseph, J.A.; Rabin, B.M.

    1990-01-01

    Exposure to low doses of high-energy iron particles can alter motor behavior. The ability of rats to hang from a wire has been reported to be significantly degraded after exposure to doses as low as 0.5 Gy. In addition, deficits in the ability of acetylcholine to regulate dopamine release in the caudate nucleus (an area in the brain important for motor function) have been found. The concentrations of 3-methoxytyramine (3-MT), a metabolite of dopamine whose concentrations reflect dopamine release in vivo, were measured after rats were exposed to different doses of high-energy iron particles to gain further information about the effect of radiation on the dopaminergic system. Concentrations of 3-MT were significantly reduced 3 days after exposure to 5 Gy but returned to control values by 8 days. After 6 months, concentrations were again less than control values. Exposure to 5 Gy of high-energy electrons or gamma photons had no effect 3 days after exposure. Very high doses of electrons were needed to alter 3-MT concentrations. One hundred grays of electrons decreased 3-MT 30 min after irradiation but levels returned to control values by 60 min. Gamma photons had no effect after doses up to 200 Gy. These results provide further evidence that exposure to heavy particles can degrade motor behavior through an action on dopaminergic mechanisms and that this can occur after doses much lower than those needed for low-LET radiation

  15. Direct strain energy harvesting in automobile tires using piezoelectric PZT–polymer composites

    International Nuclear Information System (INIS)

    Van den Ende, D A; Van de Wiel, H J; Groen, W A; Van der Zwaag, S

    2012-01-01

    Direct piezoelectric strain energy harvesting can be used to power wireless autonomous sensors in environments where low frequency, high strains are present, such as in automobile tires during operation. However, these high strains place stringent demands on the materials with respect to mechanical failure or depolarization, especially at elevated temperatures. In this work, three kinds of ceramic–polymer composite piezoelectric materials were evaluated and compared against state-of-the-art piezoelectric materials. The new composites are unstructured and structured composites containing granular lead zirconate titanate (PZT) particles or PZT fibers in a polyurethane matrix. The composites were used to build energy harvesting patches which were attached to a tire and tested under simulated rolling conditions. The energy density of the piezoelectric ceramic–polymer composite materials is initially not as high as that of the reference materials (a macro-fiber composite and a polyvinylidene fluoride polymer). However, the area normalized power output of the composites after temperature and strain cycling is comparable to that of the reference devices because the piezoelectric ceramic–polymer composites did not degrade during operation. (paper)

  16. The Effect of Plant Cultivar, Growth Media, Harvest Method and Post Harvest Treatment on the Microbiology of Edible Crops

    Science.gov (United States)

    Hummerick, Mary P.; Gates, Justin R.; Nguyen, Bao-Thang; Massa, Gioia D.; Wheeler, Raymond M.

    2011-01-01

    Systems for the growth of crops in closed environments are being developed and tested for potential use in space applications to provide a source of fresh food. Plant growth conditions, growth media composition and harvest methods can have an effect on the microbial population of the plant, and therefore should be considered along with the optimization of plant growth and harvest yields to ensure a safe and palatable food crop. This work examines the effect of plant cultivar, growth media, and harvest method on plant microbial populations. Twelve varieties of leafy greens and herbs were grown on a mixture of Fafard #2 and Arcillite in the pillow root containment system currently being considered for the VEGGIE plant growth unit developed by Orbitec. In addition, ,Sierra and Outredgeous lettuce varieties were grown in three different mixtures (Fafard #2, Ardllite, and Perlite/Vermiculite). The plants were analyzed for microbial density. Two harvest methods, "cut and come again" (CACA) and terminal harvest were also compared. In one set ofexpe'riments red leaf lettuce and mizuna were grown in pots in a Biomass Production System for education. Plants were harvested every two weeks by either method. Another set of experiments was performed using the rooting pillows to grow 5 varieties of leafy greens and cut harvesting at different intervals. Radishes were harvested and replanted at two-week intervals. Results indicate up to a 3 IOglO difference in microbial counts between some varieties of plants. Rooting medium resulted in an approximately 2 IOglO lower count in the lettuce grown in arscillite then those grown in the other mixtures. Harvest method and frequency had less impact on microbial counts only showing a significant increase in one variety of plant. Post harvest methods to decrease the bacterial counts on edible crops were investigated in these and other experiments. The effectiveness of PRO-SAN and UV-C radiation is compared.

  17. Long-term decomposition of sugarcane harvest residues in Sao Paulo state, Brazil

    International Nuclear Information System (INIS)

    Fortes, Caio; Trivelin, Paulo Cesar Ocheuze; Vitti, Andre Cesar

    2012-01-01

    Crop residues returned to the soil are important to preserve fertility and sustainability. This research addressed the long-term decomposition of sugarcane post-harvest residues (trash) under reduced tillage, therefore field renewal was performed with herbicide followed by subsoiling and ratoons were deprived of interrow scarification. The trial was conducted in the northern Sao Paulo State, Brazil during four consecutive crops (2005–2008) where litter bags containing 15 N-labeled trash were disposed in the field attempting to simulate two distinct situations: the previous crop trash (PCT) or residues incorporated in the field after tillage, and post-harvest trash (PHT) or the remains of plant-cane harvest. Decomposition rates regarding dry matter (DM), carbon (C), root growth, plant nutrients (N, P, K, Ca, Mg and S), lignin (LIG) cellulose (CEL) and hemicellulose (HCEL) contents were assessed for PCT (2005 ndash;2008) and for PHT (2006–2008). There were significant reductions on DM and C:N ratio due to C losses and root growth within the litter bags over time. The DM from PCT and PHT decreased 96% and 73% after four and three crops, respectively, and the higher nutrients release were found for K, Ca and N. The LIG, CEL and HCEL concentrations in PCT decreased 60%, 29%, 70% after four crops and 47%, 35%, 70% from PHT after three crops, respectively. Trash decomposition was driven mainly by residues biochemical composition, root growth within the trash blanket and the climatic conditions during the crop cycles. -- Highlights: ► Degradation of sugarcane previous or post-harvest trash (PCT or PHT) was evaluated. ► Dry matter and C decreased due to microbial and root growth within trash blankets. ► C:N ratio of PCT linearly decreased 23% per year during four consecutive crops. ► Lignin, cellulose and hemicellulose concentration averagely declined 54, 41 and 70%. ► PCT and PHT are long-term sources of C, K, Ca and N to the soil-plant system.

  18. Electrodynamic energy harvester for electrical transformer's ...

    Indian Academy of Sciences (India)

    Electrical transformer; electrodynamic; energy harvester; self-powered ...... Kennedy S P and Gordner T 2013 Hot spot studies for sheet wound transformer wind- ... and Lambert F 2011 Powering low-cost utility sensors using energy harvesting.

  19. Concentration and characterization of airborne particles in Tehran's subway system.

    Science.gov (United States)

    Kamani, Hosein; Hoseini, Mohammad; Seyedsalehi, Mahdi; Mahdavi, Yousef; Jaafari, Jalil; Safari, Gholam Hosein

    2014-06-01

    Particulate matter is an important air pollutant, especially in closed environments like underground subway stations. In this study, a total of 13 elements were determined from PM10 and PM2.5 samples collected at two subway stations (Imam Khomeini and Sadeghiye) in Tehran's subway system. Sampling was conducted in April to August 2011 to measure PM concentrations in platform and adjacent outdoor air of the stations. In the Imam Khomeini station, the average concentrations of PM10 and PM2.5 were 94.4 ± 26.3 and 52.3 ± 16.5 μg m(-3) in the platform and 81.8 ± 22.2 and 35 ± 17.6 μg m(-3) in the outdoor air, respectively. In the Sadeghiye station, mean concentrations of PM10 and PM2.5 were 87.6 ± 23 and 41.3 ± 20.4 μg m(-3) in the platform and 73.9 ± 17.3 and 30 ± 15 μg m(-3), in the outdoor air, respectively. The relative contribution of elemental components in each particle fraction were accounted for 43% (PM10) and 47.7% (PM2.5) in platform of Imam Khomeini station and 15.9% (PM10) and 18.5% (PM2.5) in the outdoor air of this station. Also, at the Sadeghiye station, each fraction accounted for 31.6% (PM10) and 39.8% (PM2.5) in platform and was 11.7% (PM10) and 14.3% (PM2.5) in the outdoor. At the Imam Khomeini station, Fe was the predominant element to represent 32.4 and 36 % of the total mass of PM10 and PM2.5 in the platform and 11.5 and 13.3% in the outdoor, respectively. At the Sadeghiye station, this element represented 22.7 and 29.8% of total mass of PM10 and PM2.5 in the platform and 8.7 and 10.5% in the outdoor air, respectively. Other major crustal elements were 5.8% (PM10) and 5.3% (PM2.5) in the Imam Khomeini station platform and 2.3 and 2.4% in the outdoor air, respectively. The proportion of other minor elements was significantly lower, actually less than 7% in total samples, and V was the minor concentration in total mass of PM10 and PM2.5 in both platform stations.

  20. Computer Vision for Timber Harvesting

    DEFF Research Database (Denmark)

    Dahl, Anders Lindbjerg

    The goal of this thesis is to investigate computer vision methods for timber harvesting operations. The background for developing computer vision for timber harvesting is to document origin of timber and to collect qualitative and quantitative parameters concerning the timber for efficient harvest...... segments. The purpose of image segmentation is to make the basis for more advanced computer vision methods like object recognition and classification. Our second method concerns image classification and we present a method where we classify small timber samples to tree species based on Active Appearance...... to the development of the logTracker system the described methods have a general applicability making them useful for many other computer vision problems....

  1. Modeling and experimental verification of proof mass effects on vibration energy harvester performance

    International Nuclear Information System (INIS)

    Kim, Miso; Hoegen, Mathias; Dugundji, John; Wardle, Brian L

    2010-01-01

    An electromechanically coupled model for a cantilevered piezoelectric energy harvester with a proof mass is presented. Proof masses are essential in microscale devices to move device resonances towards optimal frequency points for harvesting. Such devices with proof masses have not been rigorously modeled previously; instead, lumped mass or concentrated point masses at arbitrary points on the beam have been used. Thus, this work focuses on the exact vibration analysis of cantilevered energy harvester devices including a tip proof mass. The model is based not only on a detailed modal analysis, but also on a thorough investigation of damping ratios that can significantly affect device performance. A model with multiple degrees of freedom is developed and then reduced to a single-mode model, yielding convenient closed-form normalized predictions of device performance. In order to verify the analytical model, experimental tests are undertaken on a macroscale, symmetric, bimorph, piezoelectric energy harvester with proof masses of different geometries. The model accurately captures all aspects of the measured response, including the location of peak-power operating points at resonance and anti-resonance, and trends such as the dependence of the maximal power harvested on the frequency. It is observed that even a small change in proof mass geometry results in a substantial change of device performance due not only to the frequency shift, but also to the effect on the strain distribution along the device length. Future work will include the optimal design of devices for various applications, and quantification of the importance of nonlinearities (structural and piezoelectric coupling) for device performance

  2. Particle dispersing system and method for testing semiconductor manufacturing equipment

    Science.gov (United States)

    Chandrachood, Madhavi; Ghanayem, Steve G.; Cantwell, Nancy; Rader, Daniel J.; Geller, Anthony S.

    1998-01-01

    The system and method prepare a gas stream comprising particles at a known concentration using a particle disperser for moving particles from a reservoir of particles into a stream of flowing carrier gas. The electrostatic charges on the particles entrained in the carrier gas are then neutralized or otherwise altered, and the resulting particle-laden gas stream is then diluted to provide an acceptable particle concentration. The diluted gas stream is then split into a calibration stream and the desired output stream. The particles in the calibration stream are detected to provide an indication of the actual size distribution and concentration of particles in the output stream that is supplied to a process chamber being analyzed. Particles flowing out of the process chamber within a vacuum pumping system are detected, and the output particle size distribution and concentration are compared with the particle size distribution and concentration of the calibration stream in order to determine the particle transport characteristics of a process chamber, or to determine the number of particles lodged in the process chamber as a function of manufacturing process parameters such as pressure, flowrate, temperature, process chamber geometry, particle size, particle charge, and gas composition.

  3. Fully Integrated Solar Energy Harvester and Sensor Interface Circuits for Energy-Efficient Wireless Sensing Applications

    Directory of Open Access Journals (Sweden)

    Maher Kayal

    2013-02-01

    Full Text Available This paper presents an energy-efficient solar energy harvesting and sensing microsystem that harvests solar energy from a micro-power photovoltaic module for autonomous operation of a gas sensor. A fully integrated solar energy harvester stores the harvested energy in a rechargeable NiMH microbattery. Hydrogen concentration and temperature are measured and converted to a digital value with 12-bit resolution using a fully integrated sensor interface circuit, and a wireless transceiver is used to transmit the measurement results to a base station. As the harvested solar energy varies considerably in different lighting conditions, in order to guarantee autonomous operation of the sensor, the proposed area- and energy-efficient circuit scales the power consumption and performance of the sensor. The power management circuit dynamically decreases the operating frequency of digital circuits and bias currents of analog circuits in the sensor interface circuit and increases the idle time of the transceiver under reduced light intensity. The proposed microsystem has been implemented in a 0.18 µm complementary metal-oxide-semiconductor (CMOS process and occupies a core area of only 0.25 mm2. This circuit features a low power consumption of 2.1 µW when operating at its highest performance. It operates with low power supply voltage in the 0.8V to 1.6 V range.

  4. Development of energy harvesting modules based on piezoceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, V.; Waechter, D.; Ben Mrad, R. [Toronto Univ., ON (Canada). Dept. of Mechanical and Industrial Engineering; El-Diraby, T. [Toronto Univ., ON (Canada). Dept. of Civil Engineering; Somayajula, N.; Nemana, S.; Prasad, E. [Sensor Technology Ltd., Collingwood, ON (Canada)

    2009-07-01

    Self-powered devices can overcome the current reliance and limitations of finite-supply batteries. They have potential in developing next-generation wireless electronics for a wide variety of applications such as health monitoring in civil infrastructure, micro-electro-mechanical system (MEMS) sensor arrays for automotive and aerospace applications, and sensor arrays for environmental control. These energy harvesting devices capture the ambient energy surrounding a system and convert it into usable electrical energy. A common method of power harvesting is to convert ambient mechanical vibrations into electricity through the use of piezoelectric materials such as piezoceramics (PZT). This paper highlighted some of the recent developments in piezoceramic energy harvesting along with proposed circuits that can improve the performance of energy harvesters. The successful storage and use of energy generated by various harvesting devices requires the use of specific circuitry to optimize the output from the devices. Energy harvesting circuitry was characterized in terms of energy storage; AC/DC converter; DC-DC step down converter; and non-linear voltage processing. The patent activity and applications on piezoceramic energy harvesting was also summarized. It was concluded that despite significant research, piezoceramic energy harvesting remains an emerging technology that requires considerable advancement before it can be commercially viable. The power generated by current piezoelectric harvesters is too low for many applications. Alternative piezoceramic materials and their characteristics must be investigated. 31 refs., 1 tab., 4 figs.

  5. Effects of biochemical and physical processes on concentrations and size distributions of dimethylaminium and trimethylaminium in atmospheric particles from marginal seas of China to the northwest Pacific Ocean

    Science.gov (United States)

    Hu, Q.; Yao, X.; Qu, K.; Cui, Z.; Gao, H.; Xie, H.

    2017-12-01

    This study aim to assess the effects of concentrations and size distributions of aminium ions in atmospheric particles from offshore to open oceans. Size-segregated dimethylaminium (DMA+) and trimethylaminium (TMA+) in atmospheric particles were measured during March-May, 2014. One cruise was over marginal seas of China, in which the concentrations of DMA+ and TMA+ in PM0.056-10 varied from 0.08 nmol m-3 to 0.43 nmol m-3 and from 0.10 to 0.27 nmol m-3, respectively. The two ions both had good positive correlations with subsurface chlorophyll-a maximum and salinity, respectively. The highest concentrations of (DMA+ + TMA+) were observed during cyanobacteria bloom period which happened in subsurface water. The results implied that the concentrations of DMA+ (TMA+) in marine atmospheric particles might be influenced by phytoplankton quantities and species in subsurface seawater. Another cruise was carried out from marginal seas of China to the northwest Pacific Ocean (NWPO). The concentrations of DMA+ and TMA+ in PM0.056-1.8 varied from 0.19 nmol m-3 to 1.53 nmol m-3 and from 0.57 to 3.85 nmol m-3, respectively. The highest (lowest) concentrations of (DMA+ + TMA+) were observed near the cyclonic (anticyclonic) eddy, indicating that the cyclonic (anticyclonic) eddy with high (low) chlorophyll-a enhanced (suppressed) DMA+ (TMA+) production in atmospheric particles. In addition, the dominant particle modes less than 0.2 μm for DMA+ (TMA+) were observed, ie., 0.13±0.02 μm for DMA+ over marginal seas of China, and 0.08±0.00 μm for TMA+ in NWPO, but if they were emitted via bubble bursting needed to be further researched.

  6. CRITICAL INDICATORS IN MECHANIZED HARVEST GRAINS AND FIBER

    Directory of Open Access Journals (Sweden)

    E. Boeing

    2017-10-01

    Full Text Available Due to the growth in grain production and intensification of production systems losses are inevitable. The harvest as the last operation performed in the field requires better attention. Although the origins are varied and losses occur both before and during harvesting, approximately 80% of them occur by mechanisms of action of the harvester cutting platform. It is necessary to know the causes of losses, whether physical or physiological operational. Thus, the objective was to conduct a survey of potential losses and / or environmental factors that affect machinery and effectively and should be prioritized in a management program in order to raise the efficiency of harvesting. From the collected data determined if the potential of critical failures through the method of analysis and failure mode effects, using a questionnaire listed with the selected quality indicators. It was concluded that in the mechanical harvesting of cotton harvested product loss and impurity had insusceptible rates be prioritized goals in the management of the production process. While the grain crop (soybean / corn moisture grain and grain breaks are still the main causes in the loss of quality of the product, stressing the importance of harvesters in improving the characteristics at harvest in order to minimize qualitative grain losses.

  7. Combined Euler column vibration isolation and energy harvesting

    Science.gov (United States)

    Davis, R. B.; McDowell, M. D.

    2017-05-01

    A new device that combines vibration isolation and energy harvesting is modeled, simulated, and tested. The vibration isolating portion of the device uses post-buckled beams as its spring elements. Piezoelectric film is applied to the beams to harvest energy from their dynamic flexure. The entire device operates passively on applied base excitation and requires no external power or control system. The structural system is modeled using the elastica, and the structural response is applied as forcing on the electric circuit equation to predict the output voltage and the corresponding harvested power. The vibration isolation and energy harvesting performance is simulated across a large parameter space and the modeling approach is validated with experimental results. Experimental transmissibilities of 2% and harvested power levels of 0.36 μW are simultaneously demonstrated. Both theoretical and experimental data suggest that there is not necessarily a trade-off between vibration isolation and harvested power. That is, within the practical operational range of the device, improved vibration isolation will be accompanied by an increase in the harvested power as the forcing frequency is increased.

  8. Effects of maturity and harvest season of grass-clover silage and of forage-to-concentrate ratio on milk production of dairy cows.

    Science.gov (United States)

    Alstrup, L; Søegaard, K; Weisbjerg, M R

    2016-01-01

    This study examined the effects of maturity and season of harvest of grass-clover silages and forage:concentrate ratio (FCR) on feed intake, milk production, chewing activity, digestibility, and fecal consistency of Holstein dairy cows. Comparison included 2 cuts in spring season (early and late) and 2 cuts in summer season (early and late) combined with high FCR (80:20; HFCR) and low FCR (50:50; LFCR). The experiment included 24 lactating Holstein cows arranged as 2 repeated 4 × 4 Latin squares with four 21-d periods and included measurements of feed composition, feed intake, milk production and composition, chewing activities, digestibilities, and fecal dry matter (DM) concentration and scoring. Forages were fed as two-thirds grass-clover and one-third corn silage supplemented with either 20 or 50% concentrate. Rations were fed ad libitum as total mixed rations. Early maturity cuts were more digestible than late maturity cuts, which was also reflected in a lower concentration of neutral detergent fiber (NDF) in early maturity cuts, whereas summer cuts had a higher crude protein concentration than spring cuts. Increased maturity decreased the intake of DM and energy, increased NDF intake, and decreased the yield of energy-corrected milk (ECM). Summer cuts increased the ECM yield compared with spring cuts. Milk yield (kg and kilogram of ECM) was numerically higher for cows fed early summer cut, independent of FCR in the ration. Milk protein concentration decreased, or tended to decrease, with maturity. For LFCR, the milk fat concentration increased with maturity resulting in a decreased protein:fat ratio. At HFCR, increased maturity increased the time spent chewing per kilogram of DM. Digestibility of silages was positively correlated with the fecal DM concentration. The DM intake and ECM yield showed no significant response to FCR in the ration, but the milk composition was affected. The LFCR decreased the milk fat percentage and increased the milk protein

  9. Flexible Piezoelectric Energy Harvesting from Mouse Click Motions

    Directory of Open Access Journals (Sweden)

    Youngsu Cha

    2016-07-01

    Full Text Available In this paper, we study energy harvesting from the mouse click motions of a robot finger and a human index finger using a piezoelectric material. The feasibility of energy harvesting from mouse click motions is experimentally and theoretically assessed. The fingers wear a glove with a pocket for including the piezoelectric material. We model the energy harvesting system through the inverse kinematic framework of parallel joints in a finger and the electromechanical coupling equations of the piezoelectric material. The model is validated through energy harvesting experiments in the robot and human fingers with the systematically varying load resistance. We find that energy harvesting is maximized at the matched load resistance to the impedance of the piezoelectric material, and the harvested energy level is tens of nJ.

  10. Physicochemical and antioxidant properties of kiwifruit as a function of cultivar and fruit harvested month

    Directory of Open Access Journals (Sweden)

    Ramesh Singh Pal

    2015-04-01

    Full Text Available The present study was carried out to find the effect of fruit harvesting stage (October, November and December on the physicochemical and antioxidant properties in five kiwi cultivars (Abbot, Bruno, Allison, Hayward, Monty. Results showed that soluble solid content (SSC and pH increased while ascorbic acid (Vit C, titrated acidity (TAD and SSC/TAD decreased in all the cultivars with delay in harvesting. Total polyphenols (TP were decreased while total flavonoids (TF increased in all tested cultivars with delay in harvesting. The highest concentration of TP (2.02 mg gallic acid equivalent/g fresh weight and TF (51.12 mg catechin equivalent/100g FW were found in cultivar 'Allison' in the month of October and December, respectively. Antioxidant activities (AA were genotype depended and no trend was observed with month of harvesting. Principal component analysis (PCA showed strong correlation between Vit C, TP and antioxidant activities. Two major clusters were computed using agglomerative hierarchical clustering (AHC. All the studied important traits may be used in the breeding programmes to increase the variability for different physiochemical and antioxidative characteristics and to make suitable selections that could be acceptable to consumers.

  11. Refreshing Music: Fog Harvesting with Harps

    Science.gov (United States)

    Shi, Weiwei; Anderson, Mark; Kennedy, Brook; Boreyko, Jonathan

    2017-11-01

    Fog harvesting is a useful technique for obtaining fresh water in arid climates. The wire meshes currently utilized for fog harvesting suffer from dual constraints: coarse meshes cannot efficiently capture fog, while fine meshes suffer from clogging issues. Here, we design a new type of fog harvester comprised of an array of vertical wires, which we call ``fog harps.'' To investigate the water collection efficiency, three fog harps were designed with different diameters (254 μm, 508 μm and 1.30 mm) but the same pitch-to-diameter ratio of 2. For comparison, three different size meshes were purchased with equivalent dimensions. As expected for the mesh structures, the mid-sized wires performed the best, with a drop-off in performance for the fine or coarse meshes. In contrast, the fog harvesting rate continually increased with decreasing wire diameter for the fog harps, due to its low hysteresis that prevented droplet clogging. This resulted in a 3-fold enhancement in the fog harvesting rate for the harp form factor compared to the mesh. The lack of a performance ceiling for the harps suggest that even greater enhancements could be achieved by scaling down to yet smaller sizes.

  12. 36 CFR 223.219 - Sustainable harvest of special forest products.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Sustainable harvest of....219 Sustainable harvest of special forest products. (a) Sustainable harvest levels. Prior to offering... product's sustainable harvest level. A special forest product's sustainable harvest level is the total...

  13. Dynamics of suspended sediment concentration, flow discharge and sediment particle size interdependency to identify sediment source

    Science.gov (United States)

    Sadeghi, Seyed Hamidreza; Singh, Vijay P.

    2017-11-01

    Spatiotemporal behavior of sediment yield is a key for proper watershed management. This study analyzed statistical characteristics and trends of suspended sediment concentration (SCS), flow discharge (FD) and sediment particle sizes using data from 24 gage stations scattered throughout the United States. Analysis showed significant time- and location-specific differences of these variables. The median values of SSC, FD and percentage of particle sizes smaller than 63 μm (P63) for all 24 gage stations were found to be 510.236 mg l-1 (right skewed), 45.406 m3 s-1 (left skewed) and 78.648% (right skewed), respectively. Most of the stations exhibited significant trends (P practices which may call for local or regional planning based on natural (i.e., precipitation amount, type and erosivity, watershed area, and soil erodibility) and human-affected (i.e., land use and hydraulic structures and water resources management) factors governing the study variables.

  14. Harvest of Plasmodium falciparum merozoites from continuous culture.

    Science.gov (United States)

    Mrema, J E; Campbell, G H; Jaramillo, A L; Miranda, R; Rieckmann, K H

    1979-01-01

    Spontaneously released merozoites were harvested from cultures in which 42-90% of the erythrocytes had been infected with mature forms of Plasmodium falciparum at the start of incubation. The mature forms had been extracted from asynchronous cultures by the use of Ficoll and Plasmagel gradients. As the mature forms consisted of both trophozoites and schizonts, merozoites were released into the culture medium over a long period of time. The synchrony of merozoite release did not appear to be improved by prior exposure of parasites to sorbitol. Over this prolonged period of incubation, the yield of merozoites was disappointingly low in cultures containing 2.5% of erythrocytes. At erythrocyte concentrations of 0.01-0.25%, 3-10 times more merozoites were released into the medium; 0.4-2.3 merozoites per initial mature form were harvested over a 15-19-hour period. In addition to merozoites, contents of the culture medium included intact erythrocytes, ghost cells, and other cellular fragments. Only intact erythrocytes were effectively removed from the medium by simple or Ficoll gradient centrifugation. Merozoite preparations that are free from host cellular material are important in the development of a human malaria vaccine.

  15. Effect of type and concentration of ballasting particles on sinking rate of marine snow produced by the Appendicularian Oikopleura dioica

    DEFF Research Database (Denmark)

    Lombard, Fabien; Guidi, L.; Kiørboe, Thomas

    2013-01-01

    Ballast material (organic, opal, calcite, lithogenic) is suggested to affect sinking speed of aggregates in the ocean. Here, we tested this hypothesis by incubating appendicularians in suspensions of different algae or Saharan dust, and observing the sinking speed of the marine snow formed...... by their discarded houses. We show that calcite increases the sinking speeds of aggregates by ~100% and lithogenic material by ~150% while opal only has a minor effect. Furthermore the effect of ballast particle concentration was causing a 33 m d-1 increase in sinking speed for a 5×105 μm3 ml-1 increase in particle...

  16. Small-Sized Whole-Tree Harvesting in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Kaerhae, Kalle [Metsaeteho Oy, Helsinki (Finland)

    2006-07-15

    In Finland, there are two mechanized harvesting systems used for small diameter (d{sub 1.3}= 10 cm) thinning wood: 1) the traditional two-machine (harvester and forwarder) system, and 2) the harwarder system (i.e. the same machine performs both felling and haulage to the roadside). At present, there are more than 20 energy wood harwarders in use in Finland. However, there have been no comprehensive studies carried out on the energy wood harwarders. This paper looks into the productivity results obtained with energy wood harwarders. In addition, the energy wood harvesting costs for harwarders are compared with those of the two-machine system. The results clearly indicated what kind of machine resources can be profitably allocated to different whole-tree harvesting sites. The energy wood harwarders should be directed towards harvesting sites where the forwarding distances are small, the trees harvested are relatively small, and the total volume of energy wood removed is quite low. Respectively, when the stem size removed is relatively large in young stands, and the forest haulage distances are long, the traditional two-machine system is more competitive.

  17. Tropical forest harvesting and taxation: a dynamic model of harvesting behavior under selective extraction systems

    Science.gov (United States)

    Robert F. Conrad; Malcolm Gillis; D. Evan Mercer

    2005-01-01

    A dynamic model of selective harvesting in multi-species,multi-age tropical forests is developed. Forests are predicted to exhibit different optimal harvesting profiles depending on the nature of their joint cost functions and own or cross-species stock effects. The model is applied to the controversy about incentives produced by various taxes. The impacts of specific...

  18. Turbulent Concentration of mm-Size Particles in the Protoplanetary Nebula: Scale-Dependent Cascades

    Science.gov (United States)

    Cuzzi, J. N.; Hartlep, T.

    2015-01-01

    The initial accretion of primitive bodies (here, asteroids in particular) from freely-floating nebula particles remains problematic. Traditional growth-by-sticking models encounter a formidable "meter-size barrier" (or even a mm-to-cm-size barrier) in turbulent nebulae, making the preconditions for so-called "streaming instabilities" difficult to achieve even for so-called "lucky" particles. Even if growth by sticking could somehow breach the meter size barrier, turbulent nebulae present further obstacles through the 1-10km size range. On the other hand, nonturbulent nebulae form large asteroids too quickly to explain long spreads in formation times, or the dearth of melted asteroids. Theoretical understanding of nebula turbulence is itself in flux; recent models of MRI (magnetically-driven) turbulence favor low-or- no-turbulence environments, but purely hydrodynamic turbulence is making a comeback, with two recently discovered mechanisms generating robust turbulence which do not rely on magnetic fields at all. An important clue regarding planetesimal formation is an apparent 100km diameter peak in the pre-depletion, pre-erosion mass distribution of asteroids; scenarios leading directly from independent nebula particulates to large objects of this size, which avoid the problematic m-km size range, could be called "leapfrog" scenarios. The leapfrog scenario we have studied in detail involves formation of dense clumps of aerodynamically selected, typically mm-size particles in turbulence, which can under certain conditions shrink inexorably on 100-1000 orbit timescales and form 10-100km diameter sandpile planetesimals. There is evidence that at least the ordinary chondrite parent bodies were initially composed entirely of a homogeneous mix of such particles. Thus, while they are arcane, turbulent concentration models acting directly on chondrule size particles are worthy of deeper study. The typical sizes of planetesimals and the rate of their formation can be

  19. Apparatus and method for harvesting woody plantations

    Science.gov (United States)

    Eggen, D.L.

    1988-11-15

    A tree harvester for harvesting felled trees includes a wheel mounted wood chipper which moves toward the butt ends of the tree stems to be processed. The harvester includes a plurality of rotating alignment discs in front of the chipper. These discs align the tree stems to be processed with the mouth of the chipper. A chipper infeed cylinder is rotatably mounted between the discs and the front end of the chipper, and lifts the tree stem butts up from the ground into alignment with the chipper inlet port. The chips discharge from the chipper and go into a chip hopper which moves with the tree harvester. 8 figs.

  20. Microelectronic circuit design for energy harvesting systems

    CERN Document Server

    Di Paolo Emilio, Maurizio

    2017-01-01

    This book describes the design of microelectronic circuits for energy harvesting, broadband energy conversion, new methods and technologies for energy conversion. The author also discusses the design of power management circuits and the implementation of voltage regulators. Coverage includes advanced methods in low and high power electronics, as well as principles of micro-scale design based on piezoelectric, electromagnetic and thermoelectric technologies with control and conditioning circuit design. Provides a single-source reference to energy harvesting and its applications; Serves as a practical guide to microelectronics design for energy harvesting, with application to mobile power supplies; Enables readers to develop energy harvesting systems for wearable/mobile electronics.

  1. The effect of a concentration-dependent viscosity on particle transport in a channel flow with porous walls

    KAUST Repository

    Herterich, James G.

    2014-02-02

    The transport of a dilute suspension of particles through a channel with porous walls, accounting for the concentration dependence of the viscosity, is analyzed. In particular, we study two cases of fluid permeation through the porous channel walls: (1) at a constant flux and (2) dependent on the pressure drop across the wall. We also consider the effect of mixing the suspension first compared with point injection by considering inlet concentration distributions of different widths. We find that a pessimal inlet distribution width exists that maximizes the required hydrodynamic pressure for a constant fluid influx. The effect of an external hydrodynamic pressure, to compensate for the reduced transmembrane pressure difference due to osmotic pressure, is investigated. © 2014 American Institute of Chemical Engineers.

  2. Chromium concentrations in ruminant feed ingredients.

    Science.gov (United States)

    Spears, J W; Lloyd, K E; Krafka, K

    2017-05-01

    Chromium (Cr), in the form of Cr propionate, has been permitted for supplementation to cattle diets in the United States at levels up to 0.50 mg of Cr/kg of DM since 2009. Little is known regarding Cr concentrations naturally present in practical feed ingredients. The present study was conducted to determine Cr concentrations in feed ingredients commonly fed to ruminants. Feed ingredients were collected from dairy farms, feed mills, grain bins, and university research farms. Mean Cr concentrations in whole cereal grains ranged from 0.025 mg/kg of DM for oats to 0.041 mg/kg of DM for wheat. Grinding whole samples of corn, soybeans, and wheat through a stainless steel Wiley mill screen greatly increased analyzed Cr concentrations. Harvested forages had greater Cr concentrations than concentrates, and alfalfa hay or haylage had greater Cr concentrations than grass hay or corn silage. Chromium in alfalfa hay or haylage (n = 13) averaged 0.522 mg/kg of DM, with a range of 0.199 to 0.889 mg/kg of DM. Corn silage (n = 21) averaged 0.220 mg of Cr/kg of DM with a range of 0.105 to 0.441 mg of Cr/kg of DM. By-product feeds ranged from 0.040 mg of Cr/kg of DM for cottonseed hulls to 1.222 mg of Cr/kg of DM for beet pulp. Of the feed ingredients analyzed, feed grade phosphate sources had the greatest Cr concentration (135.0 mg/kg). Most ruminant feedstuffs and feed ingredients had less than 0.50 mg of Cr/kg of DM. Much of the analyzed total Cr in feed ingredients appears to be due to Cr contamination from soil or metal contact during harvesting, processing, or both. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Pyroelectric Energy Harvesting: With Thermodynamic-Based Cycles

    OpenAIRE

    Saber Mohammadi; Akram Khodayari

    2012-01-01

    This work deals with energy harvesting from temperature variations using ferroelectric materials as a microgenerator. The previous researches show that direct pyroelectric energy harvesting is not effective, whereas thermodynamic-based cycles give higher energy. Also, at different temperatures some thermodynamic cycles exhibit different behaviours. In this paper pyroelectric energy harvesting using Lenoir and Ericsson thermodynamic cycles has been studied numerically and the two cycles were c...

  4. Estimate of main local sources to ambient ultrafine particle number concentrations in an urban area

    Science.gov (United States)

    Rahman, Md Mahmudur; Mazaheri, Mandana; Clifford, Sam; Morawska, Lidia

    2017-09-01

    Quantifying and apportioning the contribution of a range of sources to ultrafine particles (UFPs, D oil refineries, and seaport) sources to the total ambient particle number concentration (PNC) in a busy, inner-city area in Brisbane, Australia using Bayesian statistical modelling and other exploratory tools. The Bayesian model was trained on the PNC data on days where NP formations were known to have not occurred, hourly traffic counts, solar radiation data, and smooth daily trend. The model was applied to apportion and quantify the contribution of NP formations and local traffic and non-traffic sources to UFPs. The data analysis incorporated long-term measured time-series of total PNC (D ≥ 6 nm), particle number size distributions (PSD, D = 8 to 400 nm), PM2.5, PM10, NOx, CO, meteorological parameters and traffic counts at a stationary monitoring site. The developed Bayesian model showed reliable predictive performances in quantifying the contribution of NP formation events to UFPs (up to 4 × 104 particles cm- 3), with a significant day to day variability. The model identified potential NP formation and no-formations days based on PNC data and quantified the sources contribution to UFPs. Exploratory statistical analyses show that total mean PNC during the middle of the day was up to 32% higher than during peak morning and evening traffic periods, which were associated with NP formation events. The majority of UFPs measured during the peak traffic and NP formation periods were between 30-100 nm and smaller than 30 nm, respectively. To date, this is the first application of Bayesian model to apportion different sources contribution to UFPs, and therefore the importance of this study is not only in its modelling outcomes but in demonstrating the applicability and advantages of this statistical approach to air pollution studies.

  5. 75 FR 3888 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Science.gov (United States)

    2010-01-25

    ...-0082; 91200-1231-9BPP-L2] RIN 1018-AW67 Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska During the 2010 Season AGENCY: Fish and Wildlife Service, Interior... Service, are reopening the public comment period on our proposed rule to establish migratory bird...

  6. Influence of some atmospheric variables on the concentration and particle size distribution of sulfate in urban air

    Energy Technology Data Exchange (ETDEWEB)

    Wagman, J; Lee, Jr, R E; Axt, C J

    1967-01-01

    Variations in the particle size distribution and concentration of atmospheric sulfate during a week in each of four cities were assessed with regard to the influence of such factors as location, humidity, sulfur dioxide level and time of day. Average sulfate mass median equivalent diameters (MMD) in Cincinnati, Chicago and Fairfax (Ohio) were nearly the same (0.42 micron) despite large differences in sulfate concentration and heterodispersity. A higher MMD (0.66 micron) in downtown Philadelphia was at least partly attributable to the presence of dust generated by road construction near the sampling site. Sulfate MMD generally increased with increasing relative humidity, whereas sulfate concentration was more closely correlated with absolute humidity except when SO/sub 2/ levels exceeded 3pphm. Periodic variations in the sulfate parameters at the different locations were characterized by the lack of a consistent pattern and could not be explained on the basis of humidity changes alone.

  7. White butterflies as solar photovoltaic concentrators

    Science.gov (United States)

    Shanks, Katie; Senthilarasu, S.; Ffrench-Constant, Richard H.; Mallick, Tapas K.

    2015-07-01

    Man’s harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies’ wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies’ thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.

  8. White butterflies as solar photovoltaic concentrators.

    Science.gov (United States)

    Shanks, Katie; Senthilarasu, S; Ffrench-Constant, Richard H; Mallick, Tapas K

    2015-07-31

    Man's harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies' wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies' thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.

  9. Summer–winter concentrations and gas-particle partitioning of short chain chlorinated paraffins in the atmosphere of an urban setting

    International Nuclear Information System (INIS)

    Wang Thanh; Han Shanlong; Yuan Bo; Zeng Lixi; Li Yingming; Wang Yawei; Jiang Guibin

    2012-01-01

    Short chain chlorinated paraffins (SCCPs) are semi-volatile chemicals that are considered persistent in the environment, potential toxic and subject to long-range transport. This study investigates the concentrations and gas-particle partitioning of SCCPs at an urban site in Beijing during summer and wintertime. The total atmospheric SCCP levels ranged 1.9–33.0 ng/m 3 during wintertime. Significantly higher levels were found during the summer (range 112–332 ng/m 3 ). The average fraction of total SCCPs in the particle phase (φ) was 0.67 during wintertime but decreased significantly during the summer (φ = 0.06). The ten and eleven carbon chain homologues with five to eight chlorine atoms were the predominant SCCP formula groups in air. Significant linear correlations were found between the gas-particle partition coefficients and the predicted subcooled vapor pressures and octanol–air partition coefficients. The gas-particle partitioning of SCCPs was further investigated and compared with both the Junge–Pankow adsorption and K oa -based absorption models. - Highlights: ► Short chain chlorinated paraffins were investigated in air samples from Beijing. ► Higher levels of SCCPs were found in air during summertime than wintertime. ► Relevant physical–chemical properties were estimated by SPARC and EPI Suite. ► Obtained data were used to model the gas-particle partitioning of SCCPs. - Atmospheric levels and gas-particle partitioning of SCCPs in Beijing, China.

  10. Nano/microscale pyroelectric energy harvesting: challenges and opportunities

    Directory of Open Access Journals (Sweden)

    Devashish Lingam

    2013-12-01

    Full Text Available With the ever-growing demand for renewable energy sources, energy harvesting from natural resources has gained much attention. Energy sources such as heat and mechanical motion could be easily harvested based on pyroelectric, thermoelectric, and piezoelectric effects. The energy harvested from otherwise wasted energy in the environment can be utilized in self-powered micro and nano devices, and wearable electronics, which required only µW–mW power. This article reviews pyroelectric energy harvesting with an emphasis on recent developments in pyroelectric energy harvesting and devices at micro/nanoscale. Recent developments are presented and future challenges and opportunities for more efficient materials and devices with higher energy conversion efficiency are also discussed.

  11. The effect of harvesting on biomass production and nutrient removal in phototrophic biofilm reactors for effluent polishing

    NARCIS (Netherlands)

    Boelee, N.C.; Janssen, M.; Temmink, H.; Taparaviciute, L.; Khiewwijit, R.; Janoska, A.; Buisman, C.J.N.; Wijffels, R.H.

    2014-01-01

    An increasing number of wastewater treatment plants require post-treatment to remove residual nitrogen and phosphorus. This study investigated various harvesting regimes that would achieve consistent low effluent concentrations of nitrogen and phosphorus in a phototrophic biofilm reactor.

  12. Fluid flow nozzle energy harvesters

    Science.gov (United States)

    Sherrit, Stewart; Lee, Hyeong Jae; Walkemeyer, Phillip; Winn, Tyler; Tosi, Luis Phillipe; Colonius, Tim

    2015-04-01

    Power generation schemes that could be used downhole in an oil well to produce about 1 Watt average power with long-life (decades) are actively being developed. A variety of proposed energy harvesting schemes could be used to extract energy from this environment but each of these has their own limitations that limit their practical use. Since vibrating piezoelectric structures are solid state and can be driven below their fatigue limit, harvesters based on these structures are capable of operating for very long lifetimes (decades); thereby, possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. An initial survey [1] identified that spline nozzle configurations can be used to excite a vibrating piezoelectric structure in such a way as to convert the abundant flow energy into useful amounts of electrical power. This paper presents current flow energy harvesting designs and experimental results of specific spline nozzle/ bimorph design configurations which have generated suitable power per nozzle at or above well production analogous flow rates. Theoretical models for non-dimensional analysis and constitutive electromechanical model are also presented in this paper to optimize the flow harvesting system.

  13. OAI-PMH for resource harvesting, tutorial 2

    CERN Multimedia

    CERN. Geneva; Nelson, Michael

    2005-01-01

    A variety of examples have arisen in which the Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) has been used for applications beyond bibliographic metadata interchange. One of these examples is the use of OAI-PMH to harvest resources and not just metadata. Advanced resource discovery and preservations capabilities are possible by combining complex object formats such as MPEG-21 DIDL, METS and SCORM with the OAI-PMH. In this tutorial, we review community conventions and practices that have provided the impetus for resource harvesting. We show how the introduction of complex object formats for the representation of resources leads to a robust, OAI-PMH-based framework for resource harvesting. We detail how complex object formats fit in the OAI-PMH data model, and how (compound) digital objects can be represented using a complex object format for exposure by an OAI-PMH repository. We also cover tools that are available for the implementation of an OAI-PMH-based resource harvesting solution. Fu...

  14. A Miniature Coupled Bistable Vibration Energy Harvester

    International Nuclear Information System (INIS)

    Zhu, D; Arthur, D C; Beeby, S P

    2014-01-01

    This paper reports the design and test of a miniature coupled bistable vibration energy harvester. Operation of a bistable structure largely depends on vibration amplitude rather than frequency, which makes it very promising for wideband vibration energy harvesting applications. A coupled bistable structure consists of a pair of mobile magnets that create two potential wells and thus the bistable phenomenon. It requires lower excitation to trigger bistable operation compared to conventional bistable structures. Based on previous research, this work focused on miniaturisation of the coupled bistable structure for energy harvesting application. The proposed bistable energy harvester is a combination of a Duffing's nonlinear structure and a linear assisting resonator. Experimental results show that the output spectrum of the miniature coupled bistable vibration energy harvester was the superposition of several spectra. It had a higher maximum output power and a much greater bandwidth compared to simply the Duffing's structure without the assisting resonator

  15. A Galloping Energy Harvester with Attached Flow

    Science.gov (United States)

    Denissenko, Petr; Khovanov, Igor; Tucker-Harvey, Sam

    2017-11-01

    Aeroelastic energy harvesters are a promising technology for the operation of wireless sensors and microelectromechanical systems, as well as providing the possibility of harvesting wind energy in applications were conventional wind turbines are ineffective, such as in highly turbulent flows, or unreliable, such as in harsh environmental conditions. The development of aeroelastic energy harvesters to date has focused on the flutter of airfoils, the galloping of prismatic structures, and the vortex induced vibrations. We present a novel type of galloping energy harvester with the flow becoming attached when the oscillation amplitude is high enough. With the flow attached, the harvester blade acts closer to an aerofoil than a bluff body, which results in a higher efficiency. The dynamics of a prototype device has been characterised experimentally with the use of a motion tracking system. The flow structure in the vicinity of the device has been studied using smoke visualisation and PIV measurements. A lumped parameter mathematical model has been developed and related to the experimental results.

  16. PROTOCOL FOR HARVESTING ‘BRS PRINCESS’ BANANA FRUITS

    Directory of Open Access Journals (Sweden)

    LUIZ FERNANDO GANASSALI DE OLIVEIRA JUNIOR

    Full Text Available ABSTRACT The aim of this study was to develop a protocol to determine the ideal harvest time for ‘BRS Princess’ banana, using the number of aborted bracts. The bananas were selected according to the number of aborted bracts since the flowering until the time of harvest, yield clusters with 90, 95, 100 and 105 aborted bracts. The physical and chemical analyzes were performed every 3 days on fruits: soluble solids, titratable acidity, weight loss, length and diameter, pH, firmness, skin color (CIELab and pectin enzyme activity. The statistical design was completely randomized in a 4x5 factorial, with 4 points and 5 periods of harvest analysis and data were evaluated using analysis of variance and regression. For all parameters, fruits harvested at 90 and 105 aborted bracts had unwanted changes in its metabolism when compared to the other treatments, while fruits harvested at 95 and 100 aborted bracts had the best post-harvest characteristics. This method was effective in determining the point of harvest in ‘BRS Princess’ banana fruits, since it allows to obtain fruit quality after storage, and is a simple and objective method.

  17. High concentration agglomerate dynamics at high temperatures.

    Science.gov (United States)

    Heine, M C; Pratsinis, S E

    2006-11-21

    The dynamics of agglomerate aerosols are investigated at high solids concentrations that are typical in industrial scale manufacture of fine particles (precursor mole fraction larger than 10 mol %). In particular, formation and growth of fumed silica at such concentrations by chemical reaction, coagulation, and sintering is simulated at nonisothermal conditions and compared to limited experimental data and commercial product specifications. Using recent chemical kinetics for silica formation by SiCl4 hydrolysis and neglecting aerosol polydispersity, the evolution of the diameter of primary particles (specific surface area, SSA), hard- and soft-agglomerates, along with agglomerate effective volume fraction (volume occupied by agglomerate) is investigated. Classic Smoluchowski theory is fundamentally limited for description of soft-agglomerate Brownian coagulation at high solids concentrations. In fact, these high concentrations affect little the primary particle diameter (or SSA) but dominate the soft-agglomerate diameter, structure, and volume fraction, leading to gelation consistent with experimental data. This indicates that restructuring and fragmentation should affect product particle characteristics during high-temperature synthesis of nanostructured particles at high concentrations in aerosol flow reactors.

  18. Reducing electrocoagulation harvesting costs for practical microalgal biodiesel production.

    Science.gov (United States)

    Dassey, Adam J; Theegala, Chandra S

    2014-01-01

    Electrocoagulation has shown potential to be a primary microalgae harvesting technique for biodiesel production. However, methods to reduce energy and electrode costs are still necessary for practical application. Electrocoagulation tests were conducted on Nannochloris sp. and Dunaliella sp. using perforated aluminium and iron electrodes under various charge densities. Aluminium electrodes were shown to be more efficient than iron electrodes when harvesting both algal species. Despite the lower harvesting efficiency, however, the iron electrodes were more energy and cost efficient. Operational costs of less than $0.03/L oil were achieved when harvesting Nannochloris sp. with iron electrodes at 35% harvest efficiency, whereas aluminium electrodes cost $0.75/L oil with 42% harvesting efficiency. Increasing the harvesting efficiencies for both aluminium and iron electrodes also increased the overall cost per litre of oil, therefore lower harvesting efficiencies with lower energy inputs was recommended. Also, increasing the culturing salinity to 2 ppt sodium chloride for freshwater Nannochloris sp. was determined practical to improve the electrocoagulation energy efficiency despite a 25% reduction in cell growth.

  19. Wireless Energy Harvesting Using Signals from Multiple Fading Channels

    KAUST Repository

    Chen, Yunfei

    2017-08-01

    In this paper, we study the average, the probability density function and the cumulative distribution function of the harvested power. In the study, the signals are transmitted from multiple sources. The channels are assumed to be either Rician fading or Gamma-shadowed Rician fading. The received signals are then harvested by using either a single harvester for simultaneous transmissions or multiple harvesters for transmissions at different frequencies, antennas or time slots. Both linear and nonlinear models for the energy harvester at the receiver are examined. Numerical results are presented to show that, when a large amount of harvested power is required, a single harvester or the linear range of a practical nonlinear harvester are more efficient, to avoid power outage. Further, the power transfer strategy can be optimized for fixed total power. Specifically, for Rayleigh fading, the optimal strategy is to put the total power at the source with the best channel condition and switch off all other sources, while for general Rician fading, the optimum magnitudes and phases of the transmitting waveforms depend on the channel parameters.

  20. Brominated flame retardants in the urban atmosphere of Northeast China: Concentrations, temperature dependence and gas-particle partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Hong; Li, Wen-Long; Liu, Li-Yan; Song, Wei-Wei; Ma, Wan-Li, E-mail: mawanli002@163.com; Li, Yi-Fan, E-mail: ijrc_pts_paper@yahoo.com

    2014-09-01

    57 pairs of air samples (gas and particle phases) were collected using a high volume air sampler in a typical city of Northeast China. Brominated flame retardants (BFRs) including 13 polybrominated diphenyl ethers (PBDEs, including BDEs 17, 28, 47, 49, 66, 85, 99, 100, 138, 153, 154, 183, and 209) and 9 alternative BFRs (p-TBX, PBBZ, PBT, PBEB, DPTE, HBBZ, γ-HBCD, BTBPE, and DBDPE) were analyzed. The annual average total concentrations of the 13 PBDEs and the 9 alternative BFRs were 69 pg/m{sup 3} and 180 pg/m{sup 3}, respectively. BDE 209 and γ-HBCD were the dominant congeners, according to the one-year study. The partial pressure of BFRs in the gas phase was significantly correlated with the ambient temperature, except for BDE 85, γ-HBCD and DBDPE, indicating the important influence of ambient temperature on the behavior of BFRs in the atmosphere. It was found that the gas–particle partitioning coefficients (logK{sub p}) for most low molecular weight BFRs were highly temperature dependent as well. Gas–particle partitioning coefficients (logK{sub p}) also correlated with the sub-cooled liquid vapor pressure (logP{sub L}{sup o}). Our results indicated that absorption into organic matter is the main control mechanism for the gas–particle partitioning of atmospheric PBDEs. - Highlights: • Both PBDEs and alternative BFRs were analyzed in the atmosphere of Northeast China. • Partial pressure of BFRs was significantly correlated with the ambient temperature. • A strong temperature dependence of gas-particle partitioning was found. • Absorption into organic matter was the control mechanism for G-P partitioning.

  1. Distribution of AAV8 particles in cell lysates and culture media changes with time and is dependent on the recombinant vector

    Directory of Open Access Journals (Sweden)

    Bryan A Piras

    2016-01-01

    Full Text Available With clinical trials ongoing, efficient clinical production of adeno-associated virus (AAV to treat large numbers of patients remains a challenge. We compared distribution of AAV8 packaged with Factor VIII (FVIII in cell culture media and lysates on days 3, 5, 6, and 7 post-transfection and found increasing viral production through day 6, with the proportion of viral particles in the media increasing from 76% at day 3 to 94% by day 7. Compared to FVIII, AAV8 packaged with Factor IX and Protective Protein/Cathepsin A vectors demonstrated a greater shift from lysate towards media from day 3 to 6, implying that particle distribution is dependent on recombinant vector. Larger-scale productions showed that the ratio of full-to-empty AAV particles is similar in media and lysate, and that AAV harvested on day 6 post-transfection provides equivalent function in mice compared to AAV harvested on day 3. This demonstrates that AAV8 production can be optimized by prolonging the duration of culture post-transfection, and simplified by allowing harvest of media only, with disposal of cells that contain 10% or less of total vector yield. Additionally, the difference in particle distribution with different expression cassettes implies a recombinant vector-dependent processing mechanism which should be taken into account during process development.

  2. Harvesting budworm-damaged stands for fuel

    Energy Technology Data Exchange (ETDEWEB)

    Henley, S.G. (York, Sunbury, Charlotte Wood Products Marketing Board, (Canada))

    1985-01-01

    This project was initiated to demonstrate the economics and logistics of harvesting budworm-damaged stands for use as fuel. Dead spruce and balsam fir were to be harvested from small private woodlots in southwestern New Brunswick, using an integrated, full-tree harvesting system to produce wood chip fuel and other forest products. The overall objectives of the study are listed. The harvesting equipment and the selection of sites are discussed. The most efficient methods of finding candidate woodlots was found to be by advertising and word of mouth. Contact was made with 85 woodlot owners, and 45 woodlots were visited and evaluated for their suitability. A further 150 management plans were screened and rejected for various reasons. Only 2 woodlots were initially recognized as potential sites; however, after showing some interest, the owners decided not to participate. The reasons for the rejection of the various woodlots are listed. The fact that a number of owners were against clearcutting, and, in some cases, against any cutting, and that others showed no interest in the study, is attributed to the high percentage of white-collar workers owning woodlots. Other strategies for harvesting dead or scrap wood are suggested. 1 ref., 1 tab.

  3. Elemental composition at different points of the rainwater harvesting system

    International Nuclear Information System (INIS)

    Morrow, A.C.; Dunstan, R.H.; Coombes, P.J.

    2010-01-01

    Entry of contaminants, such as metals and non-metals, into rainwater harvesting systems can occur directly from rainfall with contributions from collection surfaces, accumulated debris and leachate from storage systems, pipes and taps. Ten rainwater harvesting systems on the east coast of Australia were selected for sampling of roof runoff, storage systems and tap outlets to investigate the variations in rainwater composition as it moved throughout the system, and to identify potential points of contribution to elemental loads. A total of 26 elements were screened at each site. Iron was the only element which was present in significantly higher concentrations in roof runoff samples compared with tank tap samples (P < 0.05). At one case study site, results suggested that piping and tap material can contribute to contaminant loads of harvested rainwater. Increased loads of copper were observed in hot tap samples supplied by the rainwater harvesting system via copper piping and a storage hot water system (P < 0.05). Similarly, zinc, lead, arsenic, strontium and molybdenum were significantly elevated in samples collected from a polyvinyl chloride pipe sampling point that does not supply household uses, compared with corresponding roof runoff samples (P < 0.05). Elemental composition was also found to vary significantly between the tank tap and an internal cold tap at one of the sites investigated, with several elements fluctuating significantly between the two outlets of interest at this site, including potassium, zinc, manganese, barium, copper, vanadium, chromium and arsenic. These results highlighted the variability in the elemental composition of collected rainwater between different study sites and between different sampling points. Atmospheric deposition was not a major contributor to the rainwater contaminant load at the sites tested. Piping materials, however, were shown to contribute significantly to the total elemental load at some locations.

  4. Influence of dome phosphor particle concentration on mid-power LED thermal resistance

    NARCIS (Netherlands)

    Alexeev, A.; Martin, G.; Hildenbrand, V.D.; Bosschaart, K.J.

    2016-01-01

    The modern white mid-power LEDs usually contain phosphor particles encapsulated in silicone dome material. The particles convert the blue light emitted from the epitaxial layer and play significant role in thermal processes of LED packages. In this paper the influence of the phosphor particles

  5. Analysis of piezoelectric energy harvester under modulated and filtered white Gaussian noise

    Science.gov (United States)

    Quaranta, Giuseppe; Trentadue, Francesco; Maruccio, Claudio; Marano, Giuseppe C.

    2018-05-01

    This paper proposes a comprehensive method for the electromechanical probabilistic analysis of piezoelectric energy harvesters subjected to modulated and filtered white Gaussian noise (WGN) at the base. Specifically, the dynamic excitation is simulated by means of an amplitude-modulated WGN, which is filtered through the Clough-Penzien filter. The considered piezoelectric harvester is a cantilever bimorph modeled as Euler-Bernoulli beam with a concentrated mass at the free-end, and its global behavior is approximated by the fundamental vibration mode (which is tuned with the dominant frequency of the dynamic input). A resistive electrical load is considered in the circuit. Once the Lyapunov equation of the coupled electromechanical problem has been formulated, an original and efficient semi-analytical procedure is proposed to estimate mean and standard deviation of the electrical energy extracted from the piezoelectric layers.

  6. Use of mineral magnetic concentration data as a particle size proxy: a case study using marine, estuarine and fluvial sediments in the Carmarthen Bay area, South Wales, U.K.

    Science.gov (United States)

    Booth, C A; Walden, J; Neal, A; Smith, J P

    2005-07-15

    Compositional (non-magnetic) data can correlate strongly with particle size, which deems it appropriate as a particle size proxy and, therefore, a reliable means of normalising analytical data for particle size effects. Previous studies suggest magnetic concentration parameters represent an alternative means of normalising for these effects and, given the speed, low-cost and sensitivity of the measurements may, therefore, offer some advantages over other compositional signals. In this work, contemporary sediments from a range of depositional environments have been analysed with regard to their mineral magnetic concentration and textural characteristics, to observe if the strength and nature of the relationship identified in previous studies is universal. Our data shows magnetic parameters (chi(LF), chi(ARM) and SIRM) possess contrasting relationships with standard textural parameters for sediment samples collected from marine (Carmarthen Bay), estuarine (Gwendraeth Estuary) and fluvial (Rivers Gwendraeth Fach and Gwendraeth Fawr) settings. Magnetic concentrations of sediments from both the marine and estuarine environments are highly influenced by the magnetic contribution of finer particle sizes; Gwendraeth Fawr River sediments are influenced by the magnetic contribution of coarser particle sizes, while sediments from the Gwendraeth Fach River are not influenced significantly by any variations in textural properties. These results indicate mineral magnetic measurements have considerable potential as a particle size proxy for particular sedimentary environments, which in certain instances could be useful for geochemical, sediment transport, and sediment provenance studies. However, the data also highlight the importance of fully determining the nature of the relationship between sediment particle size and magnetic properties before applying mineral magnetic data as a particle size proxy.

  7. The consequences of balanced harvesting of fish communities

    DEFF Research Database (Denmark)

    Jacobsen, Nis Sand; Gislason, Henrik; Andersen, Ken Haste

    2014-01-01

    community structure and yield. We use a size- and trait-based model that resolves individual interactions through competition and predation to compare balanced harvesting with traditional selective harvesting, which protects juvenile fish from fishing. Four different exploitation patterns, generated......Balanced harvesting, where species or individuals are exploited in accordance with their productivity, has been proposed as a way to minimize the effects of fishing on marine fish communities and ecosystems. This calls for a thorough examination of the consequences balanced harvesting has on fish...... by combining selective or unselective harvesting with balanced or unbalanced fishing, are compared. We find that unselective balanced fishing, where individuals are exploited in proportion to their productivity, produces a slightly larger total maximum sustainable yield than the other exploitation patterns and...

  8. On the peculiarities of LDA method in two-phase flows with high concentrations of particles

    Science.gov (United States)

    Poplavski, S. V.; Boiko, V. M.; Nesterov, A. U.

    2016-10-01

    Popular applications of laser Doppler anemometry (LDA) in gas dynamics are reviewed. It is shown that the most popular method cannot be used in supersonic flows and two-phase flows with high concentrations of particles. A new approach to implementation of the known LDA method based on direct spectral analysis, which offers better prospects for such problems, is presented. It is demonstrated that the method is suitable for gas-liquid jets. Owing to the progress in laser engineering, digital recording of spectra, and computer processing of data, the method is implemented at a higher technical level and provides new prospects of diagnostics of high-velocity dense two-phase flows.

  9. An autonomous robot for harvesting cucumbers in greenhouses

    NARCIS (Netherlands)

    Henten, van E.J.; Hemming, J.; Tuijl, van B.A.J.; Kornet, J.G.; Meuleman, J.; Bontsema, J.; Os, van E.A.

    2002-01-01

    This paper describes the concept of an autonomous robot for harvesting cucumbers in greenhouses. A description is given of the working environment of the robot and the logistics of harvesting. It is stated that for a 2 ha Dutch nursery, 4 harvesting robots and one docking station are needed during

  10. Fabrication of SU-8 low frequency electrostatic energy harvester

    KAUST Repository

    Ramadan, Khaled S.

    2011-11-01

    A 1500μm × 1500μm × 150μm out-of-plane, gap closing, electrostatic energy harvester is designed and fabricated to harvest low-frequency ambient vibrations. SU-8 is used to fabricate the proof mass (1200μm × 1200μm × 150μm) and the 5 m springs. Different harvesters were designed to harvest at 50, 75 and 110 Hz. At 110 Hz, Simulations show that with an input vibration of 10 μm amplitude at the frequency of resonance of the structure, the energy harvester should generate an average output power density of 0.032μW/mm3. This is the most area-efficient low-frequency electrostatic harvester to-date. © 2011 IEEE.

  11. Ethephon As a Potential Abscission Agent for Table Grapes: Effects on Pre-Harvest Abscission, Fruit Quality, and Residue

    Science.gov (United States)

    Ferrara, Giuseppe; Mazzeo, Andrea; Matarrese, Angela M. S.; Pacucci, Carmela; Trani, Antonio; Fidelibus, Matthew W.; Gambacorta, Giuseppe

    2016-01-01

    Some plant growth regulators, including ethephon, can stimulate abscission of mature grape berries. The stimulation of grape berry abscission reduces fruit detachment force (FDF) and promotes the development of a dry stem scar, both of which could facilitate the production of high quality stemless fresh-cut table grapes. The objective of this research was to determine how two potential abscission treatments, 1445 and 2890 mg/L ethephon, affected FDF, pre-harvest abscission, fruit quality, and ethephon residue of Thompson Seedless and Crimson Seedless grapes. Both ethephon treatments strongly induced abscission of Thompson Seedless berries causing >90% pre-harvest abscission. Lower ethephon rates, a shorter post-harvest interval, or berry retention systems such as nets, would be needed to prevent excessive pre-harvest losses. The treatments also slightly affected Thompson Seedless berry skin color, with treated fruit being darker, less uniform in color, and with a more yellow hue than non-treated fruit. Ethephon residues on Thompson Seedless grapes treated with the lower concentration of ethephon were below legal limits at harvest. Ethephon treatments also promoted abscission of Crimson Seedless berries, but pre-harvest abscission was much lower (≅49%) in Crimson Seedless compared to Thompson Seedless. Treated fruits were slightly darker than non-treated fruits, but ethephon did not affect SSC, acidity, or firmness of Crimson Seedless, and ethephon residues were below legal limits. PMID:27303407

  12. Carbon sequestration via wood harvest and storage: An assessment of its harvest potential

    DEFF Research Database (Denmark)

    Zeng, Ning; King, Anthony W.; Zaitchik, Ben

    2013-01-01

    A carbon sequestration strategy has recently been proposed in which a forest is actively managed, and a fraction of the wood is selectively harvested and stored to prevent decomposition. The forest serves as a ‘carbon scrubber’ or ‘carbon remover’ that provides continuous sequestration (negative ...... to be managed this way on half of the world’s forested land, or on a smaller area but with higher harvest intensity.We recommendWHS be considered part of the portfolio of climate mitigation and adaptation options that needs further research....

  13. Applying Dispersive Changes to Lagrangian Particles in Groundwater Transport Models

    Science.gov (United States)

    Konikow, Leonard F.

    2010-01-01

    Method-of-characteristics groundwater transport models require that changes in concentrations computed within an Eulerian framework to account for dispersion be transferred to moving particles used to simulate advective transport. A new algorithm was developed to accomplish this transfer between nodal values and advecting particles more precisely and realistically compared to currently used methods. The new method scales the changes and adjustments of particle concentrations relative to limiting bounds of concentration values determined from the population of adjacent nodal values. The method precludes unrealistic undershoot or overshoot for concentrations of individual particles. In the new method, if dispersion causes cell concentrations to decrease during a time step, those particles in the cell having the highest concentration will decrease the most, and those with the lowest concentration will decrease the least. The converse is true if dispersion is causing concentrations to increase. Furthermore, if the initial concentration on a particle is outside the range of the adjacent nodal values, it will automatically be adjusted in the direction of the acceptable range of values. The new method is inherently mass conservative. ?? US Government 2010.

  14. An optimal staggered harvesting strategy for herbaceous biomass energy crops

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, M.G.; English, B.C. [Univ. of Tennessee, Knoxville, TN (United States)

    1993-12-31

    Biofuel research over the past two decades indicates lignocellulosic crops are a reliable source of feedstock for alternative energy. However, under the current technology of producing, harvesting and converting biomass crops, the cost of biofuel is not competitive with conventional biofuel. Cost of harvesting biomass feedstock is a single largest component of feedstock cost so there is a cost advantage in designing a biomass harvesting system. Traditional farmer-initiated harvesting operation causes over investment. This study develops a least-cost, time-distributed (staggered) harvesting system for example switch grass, that calls for an effective coordination between farmers, processing plant and a single third-party custom harvester. A linear programming model explicitly accounts for the trade-off between yield loss and benefit of reduced machinery overhead cost, associated with the staggered harvesting system. Total cost of producing and harvesting switch grass will decline by 17.94 percent from conventional non-staggered to proposed staggered harvesting strategy. Harvesting machinery cost alone experiences a significant reduction of 39.68 percent from moving from former to latter. The net return to farmers is estimated to increase by 160.40 percent. Per tonne and per hectare costs of feedstock production will decline by 17.94 percent and 24.78 percent, respectively. These results clearly lend support to the view that the traditional system of single period harvesting calls for over investment on agricultural machinery which escalates the feedstock cost. This social loss to the society in the form of escalated harvesting cost can be avoided if there is a proper coordination among farmers, processing plant and custom harvesters as to when and how biomass crop needs to be planted and harvested. Such an institutional arrangement benefits producers, processing plant and, in turn, end users of biofuels.

  15. Cassava and its harvesting | La yuca y su cosecha

    Directory of Open Access Journals (Sweden)

    Américo Hossne García

    2017-11-01

    Full Text Available Cassava (Manihot esculenta Crant is one of the most important economic crops in tropical and subtropical areas. The average yield, compared to its potential, is often low. Harvesting is done with several procedures in global areas; the operation is difficult, costly and of low productivity in most regions. The primary objectives of this study were: to assess the techniques of cassava harvest under different methods, land preparation and planting, damage or break of tubers, manual and mechanized harvesting, adaptation of varieties, the effect of agronomic parameters, soil moisture during harvest, new hand tools and mechanical harvesting. The evaluation methods consisted of literature reviewing, explorations, examination of existing tools, modifications and mathematical analysis with design and calculation. As a result, an assessment is made of manual and mechanized techniques for harvesting, and recommendations are provided about mechanical properties, devices for tuber collection, genetics, seed and importance of soil moisture during harvest.

  16. Final cutting of shelterwood. Harvesting techniques and effects on the Picea abies regeneration

    International Nuclear Information System (INIS)

    Gloede, Dan

    2001-01-01

    During the last decade, environmental and biological aspects have grown increasingly important in forestry. At the same time conventional planting after clear-cutting has failed on many sites with a high ground water table, abundant competitive vegetation and frequent frosts. Therefore, on these sites the use of the shelterwood system for regeneration of Norway spruce (Picea abies [L.] Karst.) has increased in Sweden. The main objective of the thesis is to study if it is possible to final-cut shelterwoods at acceptable harvesting costs, logging damage and release effects in the regeneration. Final cutting of three shelterwoods (180-200 m 3 /ha) in Sweden were carried out with single- and double-grip harvester systems in 1-1.5 m high regeneration (6 400-26 700 seedlings/ha). In a fourth shelterwood (140-165 m 3 /ha), also situated in Sweden, conventional felling with a single-grip harvester was compared with a more concentrated felling according to a method named 'tossing the caber', where the trees were felled top-end first over the 1.2-1.3 m high regeneration (9 530-11 780 seedlings/ha) and into the striproad. No differences in productivity and cost between single- and double-grip harvesters in final cutting of shelterwood were found. Despite few stems/ha and extensive regeneration the harvesting cost was considered low (33.5 SEK/m 3 ). Approximately one third of the seedlings suffered mortal logging damage, which was considered acceptable. No differences between conventional felling and the tossing the caber method were found regarding productivity, cost and damage to the regeneration. However, tossing the caber may be a more productive alternative in final cutting of pine-dominated shelterwood or seed tree stands. Seedling growth and survival after shelterwood removal was not influenced by the choice of harvester system. Seedling height and vitality were found to be good estimators of post-release survival and growth which, in total, was found to be acceptable

  17. Analytical model for nonlinear piezoelectric energy harvesting devices

    International Nuclear Information System (INIS)

    Neiss, S; Goldschmidtboeing, F; M Kroener; Woias, P

    2014-01-01

    In this work we propose analytical expressions for the jump-up and jump-down point of a nonlinear piezoelectric energy harvester. In addition, analytical expressions for the maximum power output at optimal resistive load and the 3 dB-bandwidth are derived. So far, only numerical models have been used to describe the physics of a piezoelectric energy harvester. However, this approach is not suitable to quickly evaluate different geometrical designs or piezoelectric materials in the harvester design process. In addition, the analytical expressions could be used to predict the jump-frequencies of a harvester during operation. In combination with a tuning mechanism, this would allow the design of an efficient control algorithm to ensure that the harvester is always working on the oscillator's high energy attractor. (paper)

  18. Learning and adaptation in the management of waterfowl harvests

    Science.gov (United States)

    Johnson, Fred A.

    2011-01-01

    A formal framework for the adaptive management of waterfowl harvests was adopted by the U.S. Fish and Wildlife Service in 1995. The process admits competing models of waterfowl population dynamics and harvest impacts, and relies on model averaging to compute optimal strategies for regulating harvest. Model weights, reflecting the relative ability of the alternative models to predict changes in population size, are used in the model averaging and are updated each year based on a comparison of model predictions and observations of population size. Since its inception the adaptive harvest program has focused principally on mallards (Anas platyrhynchos), which constitute a large portion of the U.S. waterfowl harvest. Four competing models, derived from a combination of two survival and two reproductive hypotheses, were originally assigned equal weights. In the last year of available information (2007), model weights favored the weakly density-dependent reproductive hypothesis over the strongly density-dependent one, and the additive mortality hypothesis over the compensatory one. The change in model weights led to a more conservative harvesting policy than what was in effect in the early years of the program. Adaptive harvest management has been successful in many ways, but nonetheless has exposed the difficulties in defining management objectives, in predicting and regulating harvests, and in coping with the tradeoffs inherent in managing multiple waterfowl stocks exposed to a common harvest. The key challenge now facing managers is whether adaptive harvest management as an institution can be sufficiently adaptive, and whether the knowledge and experience gained from the process can be reflected in higher-level policy decisions.

  19. Effect of indoor-generated airborne particles on radon progeny dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Trassierra, C. Vargas [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR (Italy); Stabile, L., E-mail: l.stabile@unicas.it [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR (Italy); Cardellini, F.; Morawska, L. [National Institute of Ionizing Radiation Metrology (INMRI-ENEA), Rome (Italy); Buonanno, G. [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR (Italy); International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane (Australia)

    2016-08-15

    Highlights: • Investigation of the interaction between particles and radon progeny dynamics. • Measurements of particles emitted by different indoor sources. • Tests performed in a controlled radon chamber. • Particle size strongly influences the radon progeny dynamics. • Particle surface area concentration is the key parameter of the radon-particle interaction. - Abstract: In order to investigate the interaction between radon progeny and particles, an experimental campaign was carried out in a radon chamber at the Italian National Institute of Ionizing Radiation Metrology, quantifying the amount of attached and unattached radon daughters present in air, as well as the equilibrium factor in the presence of particles generated through indoor sources. A fixed radon concentration was maintained, while particles were generated using incense sticks, mosquito coils and gas combustion. Aerosols were characterized in terms of particle concentrations and size distributions. Simultaneously, radon concentration and attached/unattached potential alpha energy concentration in the air were continuously monitored by two different devices, based on alpha spectroscopy techniques. The presence of particles was found to affect the attached fraction of radon decay products, in such a way that the particles acted as a sink for radionuclides. In terms of sources which emit large particles (e.g. incense, mosquito coils), which greatly increase particle surface area concentrations, the Equilibrium Factor was found to double with respect to the background level before particle generation sessions. On the contrary, the radon decay product dynamics were not influenced by gas combustion processes, mainly due to the small surface area of the particles emitted.

  20. Particle Settling in Low Energy Turbulence

    Science.gov (United States)

    Allen, Rachel; MacVean, Lissa; Tse, Ian; Mazzaro, Laura; Stacey, Mark; Variano, Evan

    2014-11-01

    Particle settling velocities can be altered by turbulence. In turbulence, dense particles may get trapped in convergent flow regions, and falling particles may be swept towards the downward side of turbulent eddies, resulting in enhanced settling velocities. The degree of velocity enhancement may depend on the Stokes number, the Rouse number, and the turbulent Reynolds number. In a homogeneous, isotropic turbulence tank, we tested the effects of particle size and type, suspended sediment concentration, and level of turbulence on the settling velocities of particles typically found in muddy estuaries. Two Acoustic Doppler Velocimeters (ADVs), separated vertically, measured turbulent velocities and suspended sediment concentrations, which yield condition dependent settling velocities, via ∂/á C ñ ∂ t = -∂/∂ z (ws á C ñ + á w ' C ' ñ) . These results are pertinent to fine sediment transport in estuaries, where high concentrations of suspended material are transported and impacted by low energy turbulence.

  1. Spring harvest of corn stover

    Energy Technology Data Exchange (ETDEWEB)

    Lizotte, P.L. [Laval Univ., Quebec City, PQ (Canada). Dept. des sols et de genie agroalimentaire; Savoie, P. [Agriculture and Agri-Food Canada, Quebec City, PQ (Canada)

    2010-07-01

    Corn stover is typically left behind in the field after grain harvest. Although part of the stover should remain in the field for soil organic matter renewal and erosion protection, half of the stover could be removed sustainably. This represents about one million t dry matter (DM) of stover per year in the province of Quebec. Stover harvested in the fall is very wet. While there are applications for wet stover, the available markets currently require a dry product. Preliminary measurements have shown that stover left in the field throughout the winter becomes very dry, and a considerable amount would still be harvestable in the spring. In the spring of 2009, corn stover was harvested at 2 sites, each subdivided into 2 parcels. The first parcel was cut and raked in the fall of 2008 (fall parcel), while the second parcel was cut and raked in spring 2009. Fibre from both parcels was baled in the spring 2009. At the first site, a large square baler was used in late April to produce bales measuring 0.8 m x 0.9 m x 1.8 m. On the second site a round baler was used in late May to produce bales of 1.2 m in width by 1.45 m in diameter. On the second site, a small square baler was also used to produce bales of 0.35 m x 0.45 m x 0.60 m (spring cutting only). With the large square baler, an average of 3.9 t DM/ha was harvested equally on the fall parcel and the spring parcel, representing a 48 per cent recovery of biomass based on stover yields.

  2. Thermodynamic limits of energy harvesting from outgoing thermal radiation.

    Science.gov (United States)

    Buddhiraju, Siddharth; Santhanam, Parthiban; Fan, Shanhui

    2018-04-17

    We derive the thermodynamic limits of harvesting power from the outgoing thermal radiation from the ambient to the cold outer space. The derivations are based on a duality relation between thermal engines that harvest solar radiation and those that harvest outgoing thermal radiation. In particular, we derive the ultimate limit for harvesting outgoing thermal radiation, which is analogous to the Landsberg limit for solar energy harvesting, and show that the ultimate limit far exceeds what was previously thought to be possible. As an extension of our work, we also derive the ultimate limit of efficiency of thermophotovoltaic systems.

  3. Triboelectric effect in energy harvesting

    Science.gov (United States)

    Logothetis, I.; Vassiliadis, S.; Siores, E.

    2017-10-01

    With the development of wearable technology, much research has been undertaken in the field of flexible and stretchable electronics for use in interactive attire. The challenging problem wearable technology faces is the ability to provide energy whilst keeping the endproduct comfortable, light, ergonomic and nonintrusive. Energy harvesting, or energy scavenging as it is also known, is the process by which ambient energy is captured and converted into electric energy. The triboelectric effect converts mechanical energy into electrical energy based on the coupling effect of triboelectrification and electrostatic induction and is utilized as the basis for triboelectric generators (TEG). TEG’s are promising for energy harvesting due their high output power and efficiency in conjunction with simple and economical production. Due to the wide availability of materials and ease of integration, in order to produce the triboelectric effect such functional materials are effective for wearable energy harvesting systems. Flexible TEG’s can be built and embedded into attire, although a thorough understanding of the underlying principle of how TEG’s operate needs to be comprehended for the development and in incorporation in smart technical textiles. This paper presents results associated with TEG’S and discusses their suitability for energy harvesting in textiles structures.

  4. STUDY OF THE ADAPTATION PROCESS IN COMMON CARP (CYPRINUS CARPIO L. AFTER HARVESTING

    Directory of Open Access Journals (Sweden)

    Milena Bušová

    2013-02-01

    Full Text Available Fish is sensitive to exogenous and endogenous ammonia. Ammonia formed in fish as a product of metabolism of proteins may be under certain circumstances life-threatening. Ammonia autointoxication is a serious problem and can cause mass mortalities in fish farms. This study focused on the common carp Cyprinus carpio L. in large-capacity breeding farms. It was focused on monitoring the blood ammonia levels in fish blood in the period of metabolic attenuation and the influence of harvesting and handling of fish on the fish's ability to withstand such changes. The study results confirmed the effect of sudden changes in water temperature to values of ammonia in the blood of fish. On the contrary, there were no dramatically increased concentrations of ammonia in the blood of fish nor symptoms of autointoxication. The measured ammonia concentrations ranged between 98.3 ± 56µmol/L and 141.4 ± 31 µmol/L in the monitored period, which corresponds with the study results of other authors. This study has confirmed good technological conditions in the market production of carp after harvesting and a good level of adaptation process of the common carp Cyprinus carpio L. to these changes.

  5. Productivity and cost of harvesting a stemwood biomass product from integrated cut-to-length harvest operations in Australian Pinus radiata plantations

    International Nuclear Information System (INIS)

    Walsh, D.; Strandgard, M.

    2014-01-01

    Significant quantities of woody biomass from the tops of trees and larger woody ‘waste’ pieces that fall outside existing sawlog and pulpwood specifications are left on site post final harvest in Australian radiata Pinus radiata (D. Don) (radiata pine) plantations. Woody biomass is a potential product for pulp making or energy generation. Commercial use of woody biomass from radiata pine plantations would add extra value to the Australian plantation estate through improved resource utilisation, and potentially reduced post-harvesting silvicultural costs. This study investigated the productivity and cost impact of the harvest and extraction to roadside of woody biomass in an integrated harvest operation in a typical Australian two machine (harvester/processor and forwarder), cut-to-length, clearfall operation in a mature, thinned radiata pine plantation. The harvest operation yielded 23 GMt/ha (5% of the total yield) of woody biomass (known as ‘fibreplus’), 443 GMt/ha of sawlogs and 28 GMt/ha of pulpwood. The mean quantity of biomass left on site was 128 GMt/ha, mainly consisting of branches and needles, sufficient to minimise nutrient loss and protect the soil from erosion. Woodchips derived from the fibreplus product were suitable for kraft pulp making, (when blended in small amounts with clean de-barked roundwood woodchips), and for energy generation. The method trialed with the fibreplus product being produced did not impact harvesting and processing productivity and costs, but extraction was 14% less productive. Through analysis of the productivities of each phase and development of a cost model the harvest and extraction of the fibreplus product was estimated to increase total unit costs by ∼4.9%. - Highlights: • Study of the productivity and cost impact of producing a woody biomass product. • We compared two scenarios – harvesting with and without the biomass product. • An additional 23 GMt/ha (5% of the total yield) of woody biomass

  6. Conceptual design of a chickpea harvesting header

    Directory of Open Access Journals (Sweden)

    H. Golpira

    2013-07-01

    Full Text Available Interest in the development of stripper headers is growing owing to the excessive losses of combine harvesters and costs of manually harvesting for chickpeas. The design of a new concept can enhance the mechanized process for chickpea harvesting. A modified stripper platform was designed, in which passive fingers with V-shape slots removes the pods from the anchored plant. The floating platform was accompanied by a reel to complete the harvesting header. Black-box modeling was used to redesign the functional operators of the header followed by an investigation of the system behavior. Physical models of the platform and reel were modified to determine the crucial variables of the header arrangement during field trials. The slot width was fixed at 40 mm, finger length at 40 mm, keyhole diameter at 10 mm and entrance width at 6 mm; the batted reel at peripheral diameter of 700 mm and speed at 50 rpm. A tractor-mounted experimental harvester was built to evaluate the work quality of the stripper header. The performance of the prototype was tested with respect to losses and results confirmed the efficiency of the modified stripper header for chickpea harvesting. Furthermore, the header with a 1.4 m working width produced the spot work rates of 0.42 ha h-1.

  7. Piezoelectric Energy Harvesting in Internal Fluid Flow

    Directory of Open Access Journals (Sweden)

    Hyeong Jae Lee

    2015-10-01

    Full Text Available We consider piezoelectric flow energy harvesting in an internal flow environment with the ultimate goal powering systems such as sensors in deep oil well applications. Fluid motion is coupled to structural vibration via a cantilever beam placed in a converging-diverging flow channel. Two designs were considered for the electromechanical coupling: first; the cantilever itself is a piezoelectric bimorph; second; the cantilever is mounted on a pair of flextensional actuators. We experimentally investigated varying the geometry of the flow passage and the flow rate. Experimental results revealed that the power generated from both designs was similar; producing as much as 20 mW at a flow rate of 20 L/min. The bimorph designs were prone to failure at the extremes of flow rates tested. Finite element analysis (FEA showed fatigue failure was imminent due to stress concentrations near the bimorph’s clamped region; and that robustness could be improved with a stepped-joint mounting design. A similar FEA model showed the flextensional-based harvester had a resonant frequency of around 375 Hz and an electromechanical coupling of 0.23 between the cantilever and flextensional actuators in a vacuum. These values; along with the power levels demonstrated; are significant steps toward building a system design that can eventually deliver power in the Watts range to devices down within a well.

  8. Piezoelectric energy harvesting in internal fluid flow.

    Science.gov (United States)

    Lee, Hyeong Jae; Sherrit, Stewart; Tosi, Luis Phillipe; Walkemeyer, Phillip; Colonius, Tim

    2015-10-14

    We consider piezoelectric flow energy harvesting in an internal flow environment with the ultimate goal powering systems such as sensors in deep oil well applications. Fluid motion is coupled to structural vibration via a cantilever beam placed in a converging-diverging flow channel. Two designs were considered for the electromechanical coupling: first; the cantilever itself is a piezoelectric bimorph; second; the cantilever is mounted on a pair of flextensional actuators. We experimentally investigated varying the geometry of the flow passage and the flow rate. Experimental results revealed that the power generated from both designs was similar; producing as much as 20 mW at a flow rate of 20 L/min. The bimorph designs were prone to failure at the extremes of flow rates tested. Finite element analysis (FEA) showed fatigue failure was imminent due to stress concentrations near the bimorph's clamped region; and that robustness could be improved with a stepped-joint mounting design. A similar FEA model showed the flextensional-based harvester had a resonant frequency of around 375 Hz and an electromechanical coupling of 0.23 between the cantilever and flextensional actuators in a vacuum. These values; along with the power levels demonstrated; are significant steps toward building a system design that can eventually deliver power in the Watts range to devices down within a well.

  9. Wireless Energy Harvesting Using Signals from Multiple Fading Channels

    KAUST Repository

    Chen, Yunfei; Zhao, Nan; Alouini, Mohamed-Slim

    2017-01-01

    fading or Gamma-shadowed Rician fading. The received signals are then harvested by using either a single harvester for simultaneous transmissions or multiple harvesters for transmissions at different frequencies, antennas or time slots. Both linear

  10. Concentration change of radiocaesium in persimmon leaves and fruits. Observation results in 2011 Spring - 2013 Summer

    International Nuclear Information System (INIS)

    Tagami, Keiko; Uchida, Shigeo

    2014-01-01

    To make dried-fruits of persimmon (Diospyros kaki), its fresh fruits were generally processed to decrease their water-contents to about 30-50%. During this food process, their radiocaesium concentrations increased without any loss, and, occasionally, the dried-fruits may exceed the food standard level of 100 Bq/kg (edible form). Thus, it is necessary to estimate the radiocaesium concentrations in the products before the fresh fruit harvesting and processing. For this purpose, radiocaesium concentrations in leaves of persimmon trees were monitored with time. The 137 Cs concentrations in the fruits were usually lower than those in the leaves and the concentration ratio was less than 0.4 on a fresh weight basis. The ratio became smaller when closer the harvest season. Thus the concentration of leaves could be a good indicator to estimate the processed persimmon fruits. (author)

  11. Increasing global crop harvest frequency: recent trends and future directions

    International Nuclear Information System (INIS)

    Ray, Deepak K; Foley, Jonathan A

    2013-01-01

    The world’s agricultural systems face the challenge of meeting the rising demands from population growth, changing dietary preferences, and expanding biofuel use. Previous studies have put forward strategies for meeting this growing demand by increasing global crop production, either expanding the area under cultivation or intensifying the crop yields of our existing agricultural lands. However, another possible means for increasing global crop production has received less attention: increasing the frequency of global cropland harvested each year. Historically, many of the world’s croplands were left fallow, or had failed harvests, each year, foregoing opportunities for delivering crop production. Furthermore, many regions, particularly in the tropics, may be capable of multiple harvests per year, often more than are harvested today. Here we analyze a global compilation of agricultural statistics to show how the world’s harvested cropland has changed. Between 2000 and 2011, harvested land area grew roughly 4 times faster than total standing cropland area. Using a metric of cropland harvest frequency (CHF)—the ratio of land harvested each year to the total standing cropland—and its recent trends, we identify countries that harvest their croplands more frequently, and those that have the potential to increase their cropland harvest frequency. We suggest that a possible ‘harvest gap’ may exist in many countries that represents an opportunity to increase crop production on existing agricultural lands. However, increasing the harvest frequency of existing croplands could have significant environmental and social impacts, which need careful evaluation. (letter)

  12. Energy harvesting from hydraulic pressure fluctuations

    International Nuclear Information System (INIS)

    Cunefare, K A; Skow, E A; Erturk, A; Savor, J; Verma, N; Cacan, M R

    2013-01-01

    State-of-the-art hydraulic hose and piping systems employ integral sensor nodes for structural health monitoring to avoid catastrophic failures. Energy harvesting in hydraulic systems could enable self-powered wireless sensor nodes for applications such as energy-autonomous structural health monitoring and prognosis. Hydraulic systems inherently have a high energy intensity associated with the mean pressure and flow. Accompanying the mean pressure is the dynamic pressure ripple, which is caused by the action of pumps and actuators. Pressure ripple is a deterministic source with a periodic time-domain behavior conducive to energy harvesting. An energy harvester prototype was designed for generating low-power electricity from pressure ripples. The prototype employed an axially-poled off-the-shelf piezoelectric stack. A housing isolated the stack from the hydraulic fluid while maintaining a mechanical coupling allowing for dynamic-pressure-induced deflection of the stack. The prototype exhibited an off-resonance energy harvesting problem since the fundamental resonance of the piezoelectric stack was much higher than the frequency content of the pressure ripple. The prototype was designed to provide a suitable power output for powering sensors with a maximum output of 1.2 mW. This work also presents electromechanical model simulations and experimental characterization of the piezoelectric power output from the pressure ripple in terms of the force transmitted into the harvester. (paper)

  13. A novel bistable energy harvesting concept

    International Nuclear Information System (INIS)

    Scarselli, G; Nicassio, F; Pinto, F; Ciampa, F; Iervolino, O; Meo, M

    2016-01-01

    Bistable energy harvesting has become a major field of research due to some unique features for converting mechanical energy into electrical power. When properly loaded, bistable structures snap-through from one stable configuration to another, causing large strains and consequently power generation. Moreover, bistable structures can harvest energy across a broad-frequency bandwidth due to their nonlinear characteristics. Despite the fact that snap-through may be triggered regardless of the form or frequency of exciting vibration, the external force must reach a specific snap-through activation threshold value to trigger the transition from one stable state to another. This aspect is a limiting factor for realistic vibration energy harvesting application with bistable devices. This paper presents a novel power harvesting concept for bistable composites based on a ‘lever effect’ aimed at minimising the activation force to cause the snap through by choosing properly the bistable structures’ constraints. The concept was demonstrated with the help of numerical simulation and experimental testing. The results showed that the actuation force is one order of magnitude smaller (3%–6%) than the activation force of conventionally constrained bistable devices. In addition, it was shown that the output voltage was higher than the conventional configuration, leading to a significant increase in power generation. This novel concept could lead to a new generation of more efficient bistable energy harvesters for realistic vibration environments. (paper)

  14. Effects of fumaric acid supplementation on methane production and rumen fermentation in goats fed diets varying in forage and concentrate particle size.

    Science.gov (United States)

    Li, Zongjun; Liu, Nannan; Cao, Yangchun; Jin, Chunjia; Li, Fei; Cai, Chuanjiang; Yao, Junhu

    2018-01-01

    In rumen fermentation, fumaric acid (FA) could competitively utilize hydrogen with methanogenesis to enhance propionate production and suppress methane emission, but both effects were diet-dependent. This study aimed to explore the effects of FA supplementation on methanogenesis and rumen fermentation in goats fed diets varying in forage and concentrate particle size. Four rumen-cannulated goats were used in a 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments: low or high ratio of forage particle size: concentrate particle size (Fps:Cps), without or with FA supplementation (24 g/d). Fps:Cps was higher in the diet with chopped alfalfa hay plus ground corn than in that with ground alfalfa hay plus crushed corn. Both increasing dietary Fps:Cps and FA supplementation shifted ruminal volatile fatty acid (VFA) patterns toward more propionate and less acetate in goats. An interaction between dietary Fps:Cps and FA supplementation was observed for the ratio of acetate to propionate (A:P), which was more predominant when FA was supplemented in the low-Fps:Cps diet. Methane production was reduced by FA, and the reduction was larger in the low-Fps:Cps diet (31.72%) than in the high-Fps:Cps diet (17.91%). Fumaric acid decreased ruminal total VFA concentration and increased ruminal pH. No difference was found in ruminal DM degradation of concentrate or alfalfa hay by dietary Fps:Cps or FA. Goats presented a lower ruminal methanogen abundance with FA supplementation and a higher B. fibrisolvens abundance with high dietary Fps:Cps. Adjusting dietary Fps:Cps is an alternative dietary model for studying diet-dependent effects without changing dietary chemical composition. Fumaric acid supplementation in the low-Fps:Cps diet showed greater responses in methane mitigation and propionate increase.

  15. Methodology for choice of harvesting system for energy wood from early thinning

    Energy Technology Data Exchange (ETDEWEB)

    Laitila, J

    2012-11-01

    The primary aim of the present study was to develop a methodology for estimating the procurement cost of forest chips from early thinnings. The most common logging systems and supply chains of forest chips used in early thinnings in Finland were compared at stand and regional level using productivity models and cost parameters obtained mainly from the substudies of this thesis. Furthermore, a decision tree was constructed for selecting harvesting method for energy wood originating from early thinnings. Forwarding productivity following mechanised cutting was significantly higher compared to productivity after motor-manual cutting. Mechanised cutting by the harvester enables felling and bunching of whole trees into large grapple loads close to strip roads, which facilitates increasing forwarding output and reducing costs. The two-machine system comprised of a harvester and a forwarder was the most cost-efficient logging system due to higher efficiency in cutting and especially in the forwarding phase. The cost of motor-manual whole-tree cutting was equal to mechanised whole-tree cutting, while forwarding cost after motor-manual cutting was almost double that after mechanised cutting. Using a forwarderbased harwarder resulted in the highest logging costs. However, with large tree volumes and removals its costs were almost equal to those of motor-manual-based logging. In order to achieve a breakthrough for the harwarder system, costs must be reduced by improving both machine technology and working techniques. Available volumes and procurement costs of fuel chips made of small-diameter trees were compared at regional level. The trees were harvested either by the multi-stem delimbed shortwood or whole-tree method and chipped by a truck-mounted drum chipper at the roadside. Based on the availability analysis, delimbing reduced regional cutting recovery by 42% compared to whole tree harvesting, when the minimum concentration of energy wood was set at 25 m{sup 3} ha{sup -1

  16. Measurement of airborne concentrations of tire and road wear particles in urban and rural areas of France, Japan, and the United States

    Science.gov (United States)

    Panko, Julie M.; Chu, Jennifer; Kreider, Marisa L.; Unice, Ken M.

    2013-06-01

    In addition to industrial facilities, fuel combustion, forest fires and dust erosion, exhaust and non-exhaust vehicle emissions are an important source of ambient air respirable particulate matter (PM10). Non-exhaust vehicle emissions are formed from wear particles of vehicle components such as brakes, clutches, chassis and tires. Although the non-exhaust particles are relatively minor contributors to the overall ambient air particulate load, reliable exposure estimates are few. In this study, a global sampling program was conducted to quantify tire and road wear particles (TRWP) in the ambient air in order to understand potential human exposures and the overall contribution of these particles to the PM10. The sampling was conducted in Europe, the United States and Japan and the sampling locations were selected to represent a variety of settings including both rural and urban core; and within each residential, commercial and recreational receptors. The air samples were analyzed using validated chemical markers for rubber polymer based on a pyrolysis technique. Results indicated that TRWP concentrations in the PM10 fraction were low with averages ranging from 0.05 to 0.70 μg m-3, representing an average PM10 contribution of 0.84%. The TRWP concentration in air was associated with traffic load and population density, but the trend was not statistically significant. Further, significant differences across days were not observed. This study provides a robust dataset to understand potential human exposures to airborne TRWP.

  17. Vertical distribution of trace-element concentrations and occurrence of metallurgical slag particles in accumulated bed sediments of Lake Roosevelt, Washington, September 2002

    Science.gov (United States)

    Cox, S.E.; Bell, P.R.; Lowther, J.S.; Van Metre, P.C.

    2005-01-01

    observed in cores from along the pre-reservoir Columbia River. Particles of slag, which have physical and chemical characteristics of slag discharged to the Columbia River by a lead-zinc smelter upstream of the reservoir at Trail, British Columbia, were found in sediments of Lake Roosevelt. Slag particles are more common in the upstream reaches of the reservoir. The chemical composition of the interior matrix of slag collected from Lake Roosevelt closely approximated the reported elemental concentrations of fresh smelter slag, although evidence of slag weathering was observed. Exfoliation flakes were observed on the surface of weathered slag particles isolated from the core sediments. The concentrations of zinc on the exposed surface of slag grains were smaller than concentrations on interior surfaces. Weathering rinds also were observed in the cross section of weathered slag grains, indicating that the glassy slag material was undergoing hydration and chemical weathering. Trace elements observed in accumulated sediments in the middle and lower reaches of the reservoir are more likely due to the input from liquid effluent discharges compared to slag discharges from the upstream smelter.

  18. Performance Limits of Communication with Energy Harvesting

    KAUST Repository

    Znaidi, Mohamed Ridha

    2016-01-01

    In energy harvesting communications, the transmitters have to adapt transmission to the availability of energy harvested during communication. The performance of the transmission depends on the channel conditions which vary randomly due to mobility

  19. Electronically droplet energy harvesting using piezoelectric cantilevers

    KAUST Repository

    Al Ahmad, Mahmoud Al; Jabbour, Ghassan E.

    2012-01-01

    A report is presented on free falling droplet energy harvesting using piezoelectric cantilevers. The harvester incorporates a multimorph clamped-free cantilever which is composed of five layers of lead zirconate titanate piezoelectric thick films

  20. Cost, energy use and GHG emissions for forest biomass harvesting operations

    International Nuclear Information System (INIS)

    Zhang, Fengli; Johnson, Dana M.; Wang, Jinjiang; Yu, Chunxia

    2016-01-01

    For forest-based biomass to become a significant contribution to the United States' energy portfolio, harvesting operations must be physically feasible and economically viable. An assessment of cost, energy and greenhouse gas (GHG) emissions of forest biomass harvesting was conducted. The assessment differentiates harvesting systems by cut-to-length and whole tree; harvest types of 30%, 70%, and 100% cut; and forest types of hardwoods, softwoods, mixed hardwood/softwood, and softwood plantations. Harvesting cost models were developed for economic assessment and life cycle energy and emission assessment was applied to calculate energy and emissions for different harvesting scenarios, considering material and energy inputs (machinery, diesel, etc.) and outputs (GHG emissions) for each harvesting process (felling, forwarding/skidding, etc.). The developed harvesting cost models and the life cycle energy and emission assessment method were applied in Michigan, U.S. using information collected from different sources. A sensitivity analysis was performed for selected input variables for the harvesting operations in order to explore their relative importance. The results indicated that productivity had the largest impact on harvesting cost followed by machinery purchase price, yearly scheduled hours, and expected utilization. Productivity and fuel use, as well as fuel factors, are the most influential environmental impacts of harvesting operations. - Highlights: • Life cycle energy and emissions for forest biomass harvesting operations. • Harvesting cost models were developed for economic assessment. • Productivity had the largest impact on harvesting cost. • Fuel use contributes the most emissions while lubricants contribute the least.