WorldWideScience

Sample records for particles carrying severe

  1. Axisymmetrical separator for separating particulate matter from a fluid carrying medium

    Science.gov (United States)

    Linhardt, Hans D.

    1984-09-04

    A separator for separating particles carried in a fluid carrying medium is disclosed. The separator includes an elongated duct and associated openings incorporated in a solid body. The duct is axisymmetrical relative to its longitudinal axis, and includes a curved wall portion having a curved cross-section taken along the longitudinal axis. An axisymmetrical opening located downstream of the curved wall portion leads from the duct into an axisymmetrical channel which is substantially radially disposed relative to the longitudinal axis. Continuation of the duct downstream of the opening is a discharge portion which is substantially colinear with the longitudinal axis. In operation, a substantial majority of the fluid carrying medium leaves the duct radially through the opening and channel in a state substantially free of particles. A remaining small portion of the fluid carrying medium and a substantial majority of the particles are channelled into the discharge portion by centrifugal forces arising due to travel of the particles along the curved walls. For industrial scale separation of particles from a fluid carrying medium, such as for the clean-up of stack gases, an array of several hundred to several thousand of the separators is provided.

  2. Charged Particle Dynamics in the Magnetic Field of a Long Straight Current-Carrying Wire

    Science.gov (United States)

    Prentice, A.; Fatuzzo, M.; Toepker, T.

    2015-01-01

    By describing the motion of a charged particle in the well-known nonuniform field of a current-carrying long straight wire, a variety of teaching/learning opportunities are described: 1) Brief review of a standard problem; 2) Vector analysis; 3) Dimensionless variables; 4) Coupled differential equations; 5) Numerical solutions.

  3. Free vibrations of a multi-span Timoshenko beam carrying multiple ...

    Indian Academy of Sciences (India)

    natural frequency values and mode shapes for a beam carrying any number of spring masses. Naguleswaran (2002, 2003) obtained the natural frequency values of the beams on up to five resilient supports including ends and carrying several particles by using EBT and obtained a fourth-order determinant equated to zero.

  4. Instrumental charged-particle activation analysis of several selected elements in biological materials using the internal standard method

    International Nuclear Information System (INIS)

    Yagi, M.; Masumoto, K.

    1987-01-01

    In order to study instrumental charged-particle activation analysis using the internal standard method, simultaneous determinations of several selected elements such as Ca, Ti, V, Fe, Zn, As, Sr, Zr and Mo, in oyster tissue, brewer's yeast and mussel were carried out by using the respective (p, n) reactions and a personal computer-based gamma-ray spectrometer equipped with a micro-robot for sample changing. In the determination constant amounts of Y and La were added to the sample and comparative standard as exotic internal standards. As a result, it was demonstrated that concentrations of the above elements could be determined accurately and precisely. (author)

  5. Numerical study of fundamental processes of severe accidents using a particle method

    International Nuclear Information System (INIS)

    Koshizuka, Seiichi

    2006-01-01

    A particle method has been developed for multiphase flows with large deformation of phase interfaces. The method is called Moving Particle Semi-implicit (MPS) which enables us to analyze incompressible fluid dynamics based on a semi-implicit algorithm. The MPS method has been applied to complex thermal-hydraulic problems in light water reactors and sodium-cooled fast reactors. The present paper provides the review of the past studies using MPS and an introduction of a new research project for severe accident analysis of fast reactors. (author)

  6. In vivo characteristics of targeted drug-carrying filamentous bacteriophage nanomedicines

    Directory of Open Access Journals (Sweden)

    Vaks Lilach

    2011-12-01

    Full Text Available Abstract Background Targeted drug-carrying phage nanomedicines are a new class of nanomedicines that combines biological and chemical components into a modular nanometric drug delivery system. The core of the system is a filamentous phage particle that is produced in the bacterial host Escherichia coli. Target specificity is provided by a targeting moiety, usually an antibody that is displayed on the tip of the phage particle. A large drug payload is chemically conjugated to the protein coat of the phage via a chemically or genetically engineered linker that provides for controlled release of the drug after the particle homed to the target cell. Recently we have shown that targeted drug-carrying phage nanomedicines can be used to eradicate pathogenic bacteria and cultured tumor cells with great potentiation over the activity of the free untargeted drug. We have also shown that poorly water soluble drugs can be efficiently conjugated to the phage coat by applying hydrophilic aminoglycosides as branched solubility-enhancing linkers. Results With an intention to move to animal experimentation of efficacy, we tested anti-bacterial drug-carrying phage nanomedicines for toxicity and immunogenicity and blood pharmacokinetics upon injection into mice. Here we show that anti-bacterial drug-carrying phage nanomedicines that carry the antibiotic chloramphenicol conjugated via an aminoglycoside linker are non-toxic to mice and are greatly reduced in immunogenicity in comparison to native phage particles or particles to which the drug is conjugated directly and are cleared from the blood more slowly in comparison to native phage particles. Conclusion Our results suggest that aminoglycosides may serve as branched solubility enhancing linkers for drug conjugation that also provide for a better safety profile of the targeted nanomedicine.

  7. The effect of coarse second-phase particles on the rate of grain refinement during severe deformation processing

    DEFF Research Database (Denmark)

    Apps, P.J.; Bowen, Jacob R.; Prangnell, P.B.

    2003-01-01

    The effect of second-phase particles on the rate of grain refinement during severe deformation processing has been investigated, by comparing the microstructure evolution in an AA8079 aluminium alloy, containing 2.5 vol.% of ~2 μm particles, with that in a high purity, single-phase, Al-0.13% Mg a...... by an effective strain of only five in the particle-containing alloy, compared to ten in the single-phase material. The mechanisms that contribute to this acceleration of the grain refinement process are discussed.......The effect of second-phase particles on the rate of grain refinement during severe deformation processing has been investigated, by comparing the microstructure evolution in an AA8079 aluminium alloy, containing 2.5 vol.% of ~2 μm particles, with that in a high purity, single-phase, Al-0.13% Mg...... alloy, deformed identically by ECAE to an effective strain of ten. The materials were analysed by high-resolution EBSD orientation mapping, which revealed that grain refinement occurred at a dramatically higher rate in the particle-containing alloy. A submicron grain structure could be achieved...

  8. Eulerian numerical simulation of gas-solid flows with several particles species

    International Nuclear Information System (INIS)

    Patino-Palacios, G.

    2007-11-01

    The simulation of the multiphase flows is currently an important scientific, industrial and economic challenge. The objective of this work is to improve comprehension via simulations of poly-dispersed flows and contribute the modeling and characterizing of its hydrodynamics. The study of gas-solid systems involves the models that takes account the influence of the particles and the effects of the collisions in the context of the momentum transfer. This kind of study is covered on the framework of this thesis. Simulations achieved with the Saturne-polyphasique-Tlse code, developed by Electricite de France and co-worked with the Institut de Mecanique des Fluides de Toulouse, allowed to confirm the feasibility of approach CFD for the hydrodynamic study of the injectors and dense fluidized beds. The stages of validation concern, on the one hand, the placement of the tool for simulation in its current state to make studies of validation and sensitivity of the models and to compare the numerical results with the experimental data. In addition, the development of new physical models and their establishments in the code Saturne will allow the optimization of the industrial process. To carry out this validation in a satisfactory way, a key simulation is made, in particular a monodisperse injection and the radial force of injection in the case of a poly-disperse flow, as well as the fluidization of a column made up of solid particles. In this last case, one approached three configurations of dense fluidized beds, in order to study the influence of the grid on simulations; then, one simulates the operation of a dense fluidized bed with which one characterizes the segregation between two various species of particles. The study of the injection of the poly-disperse flows presents two configurations; a flow Co-current gas-particle in gas (Case Hishida), and in addition, a poly-phase flow in a configuration of the jet type confined with zones of recirculation and stagnation (case

  9. Using the Aerasense NanoTracer for simultaneously obtaining several ultrafine particle exposure metrics

    International Nuclear Information System (INIS)

    Marra, J

    2011-01-01

    The expanding production and use of nanomaterials increases the chance of human exposure to engineered nanoparticles (NP), also referred to as ultrafine particles (UFP; ≤ 100 - 300 nm). This is particularly true in workplaces where they can become airborne and thereafter inhaled by workers during nanopowder processing. Considering the suspected hazard of many engineered UFPs, the general recommendation is to take measures for minimizing personal exposure while monitoring the UFP pollution for assessment and control purposes. The portable Aerasense NanoTracer accomplishes this UFP monitoring, either intermittently or in real time. This paper reviews its design and operational characteristics and elaborates on a number of application extensions and constraints. The NanoTracer's output signals enable several UFP exposure metrics to be simultaneously inferred. These include the airborne UFP number concentration and the number-averaged particle size, serving as characteristics of the pertaining UFP pollution. When non-hygroscopic particles are involved, the NanoTracer's output signals also allow an estimation of the lung-deposited UFP surface area concentration and the lung-deposited UFP mass concentration. It is thereby possible to distinguish between UFP depositions in the alveolar region, the trachea-bronchial region and the head airway region, respectively, by making use of the ICRP particle deposition model.

  10. Aerosol Particles from Dried Salt-Lakes and Saline Soils Carried on Dust Storms over Beijing

    Directory of Open Access Journals (Sweden)

    Xingying Zhang

    2009-01-01

    Full Text Available Characteristics of individual particles from a super dust storm (DS on 20 March 2002, and those of non dust storm aero sols for Beijing (NDS and Duolun (DL (a desert area are determined using a variety of methods. In China, typically the source of aero sols in dust storms is thought to be deserts with alumino silicates being the main constituent particles; how ever, this does not reflect a complete analysis with our evidence indicating potential alternate dust sources along the storm's trans port path. Individual particle anal y sis of aero sols collected from a super dust storm on 20 March 2002 in Beijing shows that among all the 14 elements measured, only S and Cl have re mark able positive correlation. 82.5% of all particles measured contained both S and Cl, and the relative mass per cent age of S and Cl in these particles is much higher than the average of all particles. 62.0% of all particles contained S, Cl, and Na, in which the concentration of Na is 1.4 times higher than average. PMF (Positive Matrix Factorization anal y sis indicates that NaCl and Na2SO4 are major components of these particles with S and Cl showing significant positive correlation. More over, SO4 2- and Cl- also show significant positive correlation in bulk aero sol analysis. XPS (X-ray Pho to electron Spectros copy analysis of the surface of aero sols demonstrates that concentrations of Na and S on particles from the dust storm are higher than those from non-dust storm particles in Beijing and also for particles from. It is very likely that particles enriched with S, Cl, and Na is from the surface soils of dried salt-lakes and saline soils enriched with chloride and sulfate. This evidence demonstrates that be sides deserts, surface soils from dry salt-lakes and saline soils of arid and semi-arid areas are also sources of particulates in dust storms over Beijing.

  11. Prolate spheroidal hematite particles equatorially belt with drug-carrying layered double hydroxide disks: Ring Nebula-like nanocomposites.

    Science.gov (United States)

    Nedim Ay, Ahmet; Konuk, Deniz; Zümreoglu-Karan, Birgul

    2011-02-03

    A new nanocomposite architecture is reported which combines prolate spheroidal hematite nanoparticles with drug-carrying layered double hydroxide [LDH] disks in a single structure. Spindle-shaped hematite nanoparticles with average length of 225 nm and width of 75 nm were obtained by thermal decomposition of hydrothermally synthesized hematite. The particles were first coated with Mg-Al-NO3-LDH shell and then subjected to anion exchange with salicylate ions. The resulting bio-nanohybrid displayed a close structural resemblance to that of the Ring Nebula. Scanning electron microscope and transmission electron microscopy images showed that the LDH disks are stacked around the equatorial part of the ellipsoid extending along the main axis. This geometry possesses great structural tunability as the composition of the LDH and the nature of the interlayer region can be tailored and lead to novel applications in areas ranging from functional materials to medicine by encapsulating various guest molecules.

  12. Searches for Long-lived Particles at the Tevatron Collider

    International Nuclear Information System (INIS)

    Adams, T.; Florida State U.

    2008-01-01

    Several searches for long-lived particles have been performed using data from p(bar p) collisions from Run II at the Tevatron. In most cases, new analysis techniques have been developed to carry out each search and/or estimate the backgrounds. These searches expand the discovery potential of the CDF and D0 experiments to new physics that may have been missed by traditional search techniques. This review discusses searches for (1) neutral, long-lived particles decaying to muons, (2) massive, neutral, long-lived particles decaying to a photon and missing energy, (3) stopped gluinos, and (4) charged massive stable particles. It summarizes some of the theoretical and experimental motivations for such searches

  13. r-particle irreducible kernels, asymptotic completeness and analyticity properties of several particle collision amplitudes

    International Nuclear Information System (INIS)

    Bros, J.

    1984-01-01

    An account is given of the present status of many-particle structure analysis in the general framework of massive quantum field theory. Two main questions are discussed, namely: i) the equivalence between the asymptotic completeness of a field and the r-particle irreducibility of associated Bether-Salpeter type kernels; ii) the derivation of extended analyticity properties of the Green functions and multiparticle collision amplitudes around the corresponding physical regions. Substantial results concerning the 3→3 particle processes are described. An analogous multiparticle version of these results yields a partial understanding of the general case

  14. Prolate spheroidal hematite particles equatorially belt with drug-carrying layered double hydroxide disks: Ring Nebula-like nanocomposites

    Directory of Open Access Journals (Sweden)

    Nedim Ay Ahmet

    2011-01-01

    Full Text Available Abstract A new nanocomposite architecture is reported which combines prolate spheroidal hematite nanoparticles with drug-carrying layered double hydroxide [LDH] disks in a single structure. Spindle-shaped hematite nanoparticles with average length of 225 nm and width of 75 nm were obtained by thermal decomposition of hydrothermally synthesized hematite. The particles were first coated with Mg-Al-NO3-LDH shell and then subjected to anion exchange with salicylate ions. The resulting bio-nanohybrid displayed a close structural resemblance to that of the Ring Nebula. Scanning electron microscope and transmission electron microscopy images showed that the LDH disks are stacked around the equatorial part of the ellipsoid extending along the main axis. This geometry possesses great structural tunability as the composition of the LDH and the nature of the interlayer region can be tailored and lead to novel applications in areas ranging from functional materials to medicine by encapsulating various guest molecules.

  15. System of automized determination of charged particle trajectories in extended magnetic fields

    International Nuclear Information System (INIS)

    Toumanian, A.R.

    1981-01-01

    An automized system for the determination of particle trajectories by the floating current-carrying wire method is described. The system is able to determine the charged particle trajectories with the energy above 100 MeV in magnetic systems of any configuration and with track extent up to several tens metres with momentum resolution up to 3.10 -4 . The system efficiency makes 1500 tracks/hour on the average [ru

  16. Low-level radioactive river sediment particles originating from the Chalk river nuclear site carry a mixture of radionuclides and metals

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Ole Christian; Cagno, Simone; Salbu, Brit [Norwegian University of Life Sciences - NMBU, Center of Excellence in Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Aas (Norway); Falkenberg, Gerald [Photon science, DESY, Hamburg (Germany); Janssens, Koen; Nuyts, Gert; Vanmeert, Frederik [AXIL, Department of Chemistry, University of Antwerpen (Belgium); Jaroszewicz, Jakub [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Priest, Nicholas D.; Audet, Marc [Nuclear Science Division, AECL Chalk River Laboratories (Canada)

    2014-07-01

    The Chalk River Laboratory of Atomic Energy of Canada Ltd., site is located on the Ottawa River approximately 200 km northwest of Ottawa, Canada. The site has two large research reactors: NRX, which operated from 1947 to 1991 and NRU, which continues to operate and is used to produce a significant fraction of the world's supply of medical isotopes. During the course of the operation of the NRX reactor small quantities of radioactive particles were discharged to the Ottawa River through a process sewer discharge pipe. These are now located in river bed sediments within a 0.08 km² area close to the discharge pipe. In the present study, selected particles were isolated from riverbed sediments. These were then characterized by environmental scanning electron microscopy with energy dispersive micro X-ray analysis (ESEM-EDX). This was undertaken to obtain information on particle size, structure and the distribution of elements across particle surfaces. Based on the results of ESEM-EDX, particles were selected for X-ray absorption nano-tomography analysis, which provides videos showing the 3D density distribution of the particles. Furthermore, 2D and 3D Synchrotron Radiation based X-ray techniques (micro-X-ray fluorescence; micro-XRF, micro-X-ray absorption near edge spectroscopy; micro-XANES and micro-X-ray diffraction; micro-XRD) with submicron resolution (beam size 0.5 μm) were employed to investigate the elemental and phase composition (micro-XRF/XRD) and oxidation states (micro-XANES) of matrix elements with high spatial resolution and sensitivity. Results show that the particles investigated so far varied according to: 1) <~40 μm diameter sized U fuel particles similar in structure to particles observed from Chernobyl and Krasnoyarsk-26 and 2) larger particles with diameters up to several hundred μm. The larger particles comprised a matrix of low density, sediment material with high density inclusions that contained a range of metals including Cu, Cr, As

  17. Source reconciliation of atmospheric gas-phase and particle-phase pollutants during a severe photochemical smog episode.

    Science.gov (United States)

    Schauer, James J; Fraser, Matthew P; Cass, Glen R; Simoneit, Bernd R T

    2002-09-01

    A comprehensive organic compound-based receptor model is developed that can simultaneously apportion the source contributions to atmospheric gas-phase organic compounds, semivolatile organic compounds, fine particle organic compounds, and fine particle mass. The model is applied to ambient data collected at four sites in the south coast region of California during a severe summertime photochemical smog episode, where the model determines the direct primary contributions to atmospheric pollutants from 11 distinct air pollution source types. The 11 sources included in the model are gasoline-powered motor vehicle exhaust, diesel engine exhaust, whole gasoline vapors, gasoline headspace vapors, organic solvent vapors, whole diesel fuel, paved road dust, tire wear debris, meat cooking exhaust, natural gas leakage, and vegetative detritus. Gasoline engine exhaust plus whole gasoline vapors are the predominant sources of volatile organic gases, while gasoline and diesel engine exhaust plus diesel fuel vapors dominate the emissions of semivolatile organic compounds from these sources during the episode studied at all four air monitoring sites. The atmospheric fine particle organic compound mass was composed of noticeable contributions from gasoline-powered motor vehicle exhaust, diesel engine exhaust, meat cooking, and paved road dust with smaller but quantifiable contributions from vegetative detritus and tire wear debris. In addition, secondary organic aerosol, which is formed from the low-vapor pressure products of gas-phase chemical reactions, is found to be a major source of fine particle organic compound mass under the severe photochemical smog conditions studied here. The concentrations of secondary organic aerosol calculated in the present study are compared with previous fine particle source apportionment results for less intense photochemical smog conditions. It is shown that estimated secondary organic aerosol concentrations correlate fairly well with the

  18. Small particle aerosol inoculation of cowpox Brighton Red in rhesus monkeys results in a severe respiratory disease

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Reed F. [Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702 (United States); Hammoud, Dima A. [Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892 (United States); Lackemeyer, Matthew G.; Yellayi, Srikanth [Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702 (United States); Solomon, Jeffrey [Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892 (United States); Bohannon, Jordan K.; Janosko, Krisztina B.; Jett, Catherine; Cooper, Kurt [Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702 (United States); Blaney, Joseph E. [Office of the Scientific Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 (United States); Jahrling, Peter B. [Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702 (United States); Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702 (United States)

    2015-07-15

    Cowpox virus (CPXV) inoculation of nonhuman primates (NHPs) has been suggested as an alternate model for smallpox (Kramski et al., 2010, PLoS One, 5, e10412). Previously, we have demonstrated that intrabronchial inoculation of CPXV-Brighton Red (CPXV-BR) into cynomolgus monkeys resulted in a disease that shared many similarities to smallpox; however, severe respiratory tract disease was observed (Smith et al., 2011, J. Gen. Virol.). Here we describe the course of disease after small particle aerosol exposure of rhesus monkeys using computed tomography (CT) to monitor respiratory disease progression. Subjects developed a severe respiratory disease that was uniformly lethal at 5.7 log{sub 10} PFU of CPXV-BR. CT indicated changes in lung architecture that correlated with changes in peripheral blood monocytes and peripheral oxygen saturation. While the small particle aerosol inoculation route does not accurately mimic human smallpox, the data suggest that CT can be used as a tool to monitor real-time disease progression for evaluation of animal models for human diseases. - Highlights: • Small particle aerosol exposure of rhesus results in a severe respiratory disease. • CT findings correlated with peripheral oxygen saturation and monocyte increases. • Virus dissemination was limited and mainly confined to the respiratory tract. • CT provides insight into pathogenesis to aid development of animal models of disease.

  19. Small particle aerosol inoculation of cowpox Brighton Red in rhesus monkeys results in a severe respiratory disease

    International Nuclear Information System (INIS)

    Johnson, Reed F.; Hammoud, Dima A.; Lackemeyer, Matthew G.; Yellayi, Srikanth; Solomon, Jeffrey; Bohannon, Jordan K.; Janosko, Krisztina B.; Jett, Catherine; Cooper, Kurt; Blaney, Joseph E.; Jahrling, Peter B.

    2015-01-01

    Cowpox virus (CPXV) inoculation of nonhuman primates (NHPs) has been suggested as an alternate model for smallpox (Kramski et al., 2010, PLoS One, 5, e10412). Previously, we have demonstrated that intrabronchial inoculation of CPXV-Brighton Red (CPXV-BR) into cynomolgus monkeys resulted in a disease that shared many similarities to smallpox; however, severe respiratory tract disease was observed (Smith et al., 2011, J. Gen. Virol.). Here we describe the course of disease after small particle aerosol exposure of rhesus monkeys using computed tomography (CT) to monitor respiratory disease progression. Subjects developed a severe respiratory disease that was uniformly lethal at 5.7 log 10 PFU of CPXV-BR. CT indicated changes in lung architecture that correlated with changes in peripheral blood monocytes and peripheral oxygen saturation. While the small particle aerosol inoculation route does not accurately mimic human smallpox, the data suggest that CT can be used as a tool to monitor real-time disease progression for evaluation of animal models for human diseases. - Highlights: • Small particle aerosol exposure of rhesus results in a severe respiratory disease. • CT findings correlated with peripheral oxygen saturation and monocyte increases. • Virus dissemination was limited and mainly confined to the respiratory tract. • CT provides insight into pathogenesis to aid development of animal models of disease

  20. Platelet-, monocyte-derived and tissue factor-carrying circulating microparticles are related to acute myocardial infarction severity.

    Directory of Open Access Journals (Sweden)

    Gemma Chiva-Blanch

    Full Text Available Circulating microparticles (cMPs are phospholipid-rich vesicles released from cells when activated or injured, and contribute to the formation of intracoronary thrombi. Tissue factor (TF, CD142 is the main trigger of fibrin formation and TF-carrying cMPs are considered one of the most procoagulant cMPs. Similar types of atherosclerotic lesions may lead to different types of AMI, although the mechanisms behind are unresolved. Therefore, we aimed to investigate the phenotype of cMPs found in plasma of ACS patients and its relation to AMI severity and thrombotic burden.In a cross-sectional study, two hundred patients aged 75±4 years were included in the study 2-8 weeks after suffering an AMI. Annexin V positive (AV+-cMPs derived from blood and vascular cells were measured by flow cytometry. Plasma procoagulant activity (TF-PCA was measured through a chromogenic assay.STEMI patients (n = 75 showed higher levels of platelet-derived cMPs [CD61+/AV+, CD31+/AV+, CD42b+/AV+ and CD31+/CD42b+/AV+, P = 0.048, 0.038, 0.009 and 0.006, respectively], compared to NSTEMI patients (n = 125. Patients who suffered a heart failure during AMI (n = 17 had increased levels of platelet (CD61+-and monocyte (CD14+-derived cMPs carrying TF (CD142+ (P<0.0001 and 0.004, respectively. Additionally, NYHA class III (n = 23 patients showed higher levels of CD142+/AV+, CD14+/AV+ and CD14+/CD142+/AV+ cMPs than those in class I/II (P = 0.001, 0.015 and 0.014, respectively. The levels of these cMPs positively correlated with TF-PCA (r≥0.166, P≤0.027, all.Platelets and monocytes remain activated in AMI patients treated as per guidelines and release cMPs that discriminate AMI severity. Therefore, TF-MPs, and platelet- and monocyte-MPs may reflect thrombotic burden in AMI patients.

  1. Systemic characterization and evaluation of particle packings as initial sets for discrete element simulations

    Science.gov (United States)

    Morfa, Carlos Recarey; Cortés, Lucía Argüelles; Farias, Márcio Muniz de; Morales, Irvin Pablo Pérez; Valera, Roberto Roselló; Oñate, Eugenio

    2018-07-01

    A methodology that comprises several characterization properties for particle packings is proposed in this paper. The methodology takes into account factors such as dimension and shape of particles, space occupation, homogeneity, connectivity and isotropy, among others. This classification and integration of several properties allows to carry out a characterization process to systemically evaluate the particle packings in order to guarantee the quality of the initial meshes in discrete element simulations, in both the micro- and the macroscales. Several new properties were created, and improvements in existing ones are presented. Properties from other disciplines were adapted to be used in the evaluation of particle systems. The methodology allows to easily characterize media at the level of the microscale (continuous geometries—steels, rocks microstructures, etc., and discrete geometries) and the macroscale. A global, systemic and integral system for characterizing and evaluating particle sets, based on fuzzy logic, is presented. Such system allows researchers to have a unique evaluation criterion based on the aim of their research. Examples of applications are shown.

  2. Systemic characterization and evaluation of particle packings as initial sets for discrete element simulations

    Science.gov (United States)

    Morfa, Carlos Recarey; Cortés, Lucía Argüelles; Farias, Márcio Muniz de; Morales, Irvin Pablo Pérez; Valera, Roberto Roselló; Oñate, Eugenio

    2017-10-01

    A methodology that comprises several characterization properties for particle packings is proposed in this paper. The methodology takes into account factors such as dimension and shape of particles, space occupation, homogeneity, connectivity and isotropy, among others. This classification and integration of several properties allows to carry out a characterization process to systemically evaluate the particle packings in order to guarantee the quality of the initial meshes in discrete element simulations, in both the micro- and the macroscales. Several new properties were created, and improvements in existing ones are presented. Properties from other disciplines were adapted to be used in the evaluation of particle systems. The methodology allows to easily characterize media at the level of the microscale (continuous geometries—steels, rocks microstructures, etc., and discrete geometries) and the macroscale. A global, systemic and integral system for characterizing and evaluating particle sets, based on fuzzy logic, is presented. Such system allows researchers to have a unique evaluation criterion based on the aim of their research. Examples of applications are shown.

  3. Particle bed reactor scaling relationships

    Science.gov (United States)

    Slovik, G.; Araj, K.; Horn, F. L.; Ludewig, H.; Benenati, R.

    The Particle Bed Reactor (PBR) concept can be used in several applications both as part of a power generating system or as a direct propulsion unit. In order to carry out optimization studies of systems involving a PBR, it is necessary to know the variation of the critical mass with pertinent system parameters such as weight, size, power level and thrust level. A parametric study is presented for all the practical combinations of fuel and moderating material. The PBR is described, the practical combinations of materials and dimensions are discussed, and an example is presented.

  4. Numerical Study of Particle Interaction in Gas-Particle and Liquid-Particle Flows: Part II Particle Response

    Directory of Open Access Journals (Sweden)

    K. Mohanarangam

    2009-09-01

    Full Text Available In this paper the numerical model, which was presented in the first paper (Mohanarangam & Tu; 2009 of this series of study, is employed to study the different particle responses under the influence of two carrier phases namely the gas and the liquid. The numerical model takes into consideration the turbulent behaviour of both the carrier and the dispersed phases, with additional equations to take into account the combined fluid particle behaviour, thereby effecting a two-way coupling. The first paper in this series showed the distinct difference in particulate response both at the mean as well as at the turbulent level for two varied carrier phases. In this paper further investigation has been carried out over a broad range of particle Stokes number to further understand their behaviour in turbulent environments. In order to carry out this prognostic study, the backward facing step geometry of Fessler and Eaton (1999 has been adopted, while the inlet conditions for the carrier as well as the particle phases correspond to that of the experiments of Founti and Klipfel (1998. It is observed that at the mean velocity level the particulate velocities increased with a subsequent increase in the Stokes number for both the GP (Gas-Particle as well as the LP (Liquid-Particle flow. It was also observed that across the Stokes number there was a steady increase in the particulate turbulence for the GP flows with successive increase in Stokes number. However, for the LP flows, the magnitude of the increase in the particulate turbulence across the increasing of Stokes number is not as characteristic as the GP flow. Across the same sections for LP flows the majority of the trend shows a decrease after which they remain more or less a constant.

  5. Quantum dynamics via Planck-scale-stepped action-carrying 'Graph Paths'

    CERN Document Server

    Chew, Geoffrey Foucar

    2003-01-01

    A divergence-free, parameter-free, path-based discrete-time quantum dynamics is designed to not only enlarge the achievements of general relativity and the standard particle model, by approximations at spacetime scales far above Planck scale while far below Hubble scale, but to allow tackling of hitherto inaccessible questions. ''Path space'' is larger than and precursor to Hilbert-space basis. The wave-function-propagating paths are action-carrying structured graphs-cubic and quartic structured vertices connected by structured ''fermionic'' or ''bosonic'' ''particle'' and ''nonparticle'' arcs. A Planck-scale path step determines the gravitational constant while controlling all graph structure. The basis of the theory's (zero-rest-mass) elementary-particle Hilbert space (which includes neither gravitons nor scalar bosons) resides in particle arcs. Nonparticle arcs within a path are responsible for energy and rest mass.

  6. Characterization of BJT-based particle detectors

    International Nuclear Information System (INIS)

    Piemonte, C.; Batignani, G.; Bettarini, S.; Bondioli, M.; Boscardin, M.; Bosisio, L.; Dalla Betta, G.-F.; Dittongo, S.; Forti, F.; Giorgi, M.; Gregori, P.; Rachevskaia, I.; Ronchin, S.; Zorzi, N.

    2004-01-01

    We report on the static and dynamic behavior of BJT-based particle detectors realized on high-resistivity silicon. Several prototypes, featuring different doping profiles and geometries, have been fabricated at ITC-irst (Trento, Italy). These devices have been thoroughly characterized from the electrical viewpoint, and, in order to understand the fundamental parameters of the structure, device simulations have been performed, whose results are in very good agreement with experimental data. Preliminary functional measurements have been carried out by using a 109Cd source excitation

  7. Numerical Study of Particle Interaction in Gas-Particle and Liquid-Particle Flows: Part I Analysis and Validation

    Directory of Open Access Journals (Sweden)

    K. Mohanarangam

    2009-09-01

    Full Text Available A detailed study into the turbulent behaviour of dilute particulate flow under the influence of two carrier phases namely gas and liquid has been carried out behind a sudden expansion geometry. The major endeavour of the study is to ascertain the response of the particles within the carrier (gas or liquid phase. The main aim prompting the current study is the density difference between the carrier and the dispersed phases. While the ratio is quite high in terms of the dispersed phase for the gas-particle flows, the ratio is far more less in terms of the liquid-particle flows. Numerical simulations were carried out for both these classes of flows using an Eulerian two-fluid model with RNG based k-emodel as the turbulent closure. An additional kinetic energy equation to better represent the combined fluid-particle behaviour is also employed in the current set of simulations. In the first part of this two part series, experimental results of Fessler and Eaton (1995 for Gas-Particle (GP flow and that of Founti and Klipfel (1998 for Liquid-Particle (LP flow have been compared and analysed. This forms the basis of the current study which aims to look at the particulate behaviour under the influence of two carrier phases. Further numerical simulations were carried out to test whether the current numerical formulation can used to simulate these varied type of flows and the same were validated against the experimental data of both GP as well LP flow. Qualitative results have been obtained for both these classes of flows with their respective experimental data both at the mean as well as at the turbulence level for carrier as well as the dispersed phases.

  8. New particles and interactions

    International Nuclear Information System (INIS)

    Gilman, F.J.; Grannis, P.D.

    1984-04-01

    The Working Group on New Particles and Interactions met as a whole at the beginning and at the end of the Workshop. However, much of what was accomplished was done in five subgroups. These were devoted to: (1) new quarks and leptons; (2) technicolor; (3) supersymmetry; (4) rare decays and CP; and (5) substructure of quarks and leptons. Other aspects of new particles, e.g., Higgs, W', Z', fell to the Electroweak Working Group to consider. The central question of this Workshop of comparing anti pp (with L = 10 32 /cm 2 -sec) with pp (with L = 10 33 /cm 2 -sec) colliders carried through to all these subgroups. In addition there were several other aspects of hadron colliders which were considered: what does an increase in √s gain in cross section and resultant sensitivity to new physics versus an increase in luminosity; will polarized beams or the use of asymmetries be essential in finding new interactions; where and at what level do rate limitations due to triggering or detection systems play a role; and how and where will the detection of particles with short, but detectable, lifetimes be important. 25 references

  9. A study of MRI gradient echo signals from discrete magnetic particles with considerations of several parameters in simulations.

    Science.gov (United States)

    Kokeny, Paul; Cheng, Yu-Chung N; Xie, He

    2018-05-01

    Modeling MRI signal behaviors in the presence of discrete magnetic particles is important, as magnetic particles appear in nanoparticle labeled cells, contrast agents, and other biological forms of iron. Currently, many models that take into account the discrete particle nature in a system have been used to predict magnitude signal decays in the form of R2* or R2' from one single voxel. Little work has been done for predicting phase signals. In addition, most calculations of phase signals rely on the assumption that a system containing discrete particles behaves as a continuous medium. In this work, numerical simulations are used to investigate MRI magnitude and phase signals from discrete particles, without diffusion effects. Factors such as particle size, number density, susceptibility, volume fraction, particle arrangements for their randomness, and field of view have been considered in simulations. The results are compared to either a ground truth model, theoretical work based on continuous mediums, or previous literature. Suitable parameters used to model particles in several voxels that lead to acceptable magnetic field distributions around particle surfaces and accurate MR signals are identified. The phase values as a function of echo time from a central voxel filled by particles can be significantly different from those of a continuous cubic medium. However, a completely random distribution of particles can lead to an R2' value which agrees with the prediction from the static dephasing theory. A sphere with a radius of at least 4 grid points used in simulations is found to be acceptable to generate MR signals equivalent from a larger sphere. Increasing number of particles with a fixed volume fraction in simulations reduces the resulting variance in the phase behavior, and converges to almost the same phase value for different particle numbers at each echo time. The variance of phase values is also reduced when increasing the number of particles in a fixed

  10. Coolability of volumetrically heated particle beds

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Muhammad

    2017-03-22

    In case of a severe nuclear reactor accident, with loss of coolant, a particle bed may be formed from the fragmentation of the molten core in the residual water at different stages of the accident. To avoid further propagation of the accident and maintain the integrity of the reactor pressure vessel, the decay heat of the particle bed must be removed. To better understand the various thermo-hydraulic processes within such heat-generating particle beds, the existing DEBRIS test facility at IKE has been modified to be able to perform novel boiling, dryout and quenching experiments. The essential experimental data includes the pressure gradients measured by 8 differential pressure transducers along the bed height as a function of liquid and vapour superficial velocities, the determination of local dryout heat fluxes for different system pressures as well as the local temperature distribution measured by a set of 51 thermocouples installed inside the particle bed. The experiments were carried out for two different particle beds: a polydispersed particle bed which consisted of stainless steel balls (2 mm, 3 mm and 6 mm diameters) and an irregular particle bed which consisted of a mixture of steel balls (3 mm and 6 mm) and irregularly shaped Al{sub 2}O{sub 3} particles. Additionally, all experiments were carried out for different flow conditions, such as the reference case of passive 1D top-flooding, 1D bottom flooding (driven by external pumps and different downcomer configurations) and 2D top-/bottom-/lateral flooding with a perforated downcomer. In this work, it has been observed that for both particle beds with downcomer configurations an open downcomer leads to the best coolability (dryout heat flux = 1560 kW/m{sup 2}, polydispersed particle bed, psys = 1 bar) of the particle bed, mainly due to bottom-flow with enhanced natural convection. It has also been shown that a potential lateral flow via a perforation of the downcomer does not bring any further improvements

  11. Coolability of volumetrically heated particle beds

    International Nuclear Information System (INIS)

    Rashid, Muhammad

    2017-01-01

    In case of a severe nuclear reactor accident, with loss of coolant, a particle bed may be formed from the fragmentation of the molten core in the residual water at different stages of the accident. To avoid further propagation of the accident and maintain the integrity of the reactor pressure vessel, the decay heat of the particle bed must be removed. To better understand the various thermo-hydraulic processes within such heat-generating particle beds, the existing DEBRIS test facility at IKE has been modified to be able to perform novel boiling, dryout and quenching experiments. The essential experimental data includes the pressure gradients measured by 8 differential pressure transducers along the bed height as a function of liquid and vapour superficial velocities, the determination of local dryout heat fluxes for different system pressures as well as the local temperature distribution measured by a set of 51 thermocouples installed inside the particle bed. The experiments were carried out for two different particle beds: a polydispersed particle bed which consisted of stainless steel balls (2 mm, 3 mm and 6 mm diameters) and an irregular particle bed which consisted of a mixture of steel balls (3 mm and 6 mm) and irregularly shaped Al 2 O 3 particles. Additionally, all experiments were carried out for different flow conditions, such as the reference case of passive 1D top-flooding, 1D bottom flooding (driven by external pumps and different downcomer configurations) and 2D top-/bottom-/lateral flooding with a perforated downcomer. In this work, it has been observed that for both particle beds with downcomer configurations an open downcomer leads to the best coolability (dryout heat flux = 1560 kW/m 2 , polydispersed particle bed, psys = 1 bar) of the particle bed, mainly due to bottom-flow with enhanced natural convection. It has also been shown that a potential lateral flow via a perforation of the downcomer does not bring any further improvements in

  12. Particle size determination

    International Nuclear Information System (INIS)

    Burr, K.J.

    1979-01-01

    A specification is given for an apparatus to provide a completely automatic testing cycle to determine the proportion of particles of less than a predetermined size in one of a number of fluid suspensions. Monitoring of the particle concentration during part of the process can be carried out by an x-ray source and detector. (U.K.)

  13. Carry

    DEFF Research Database (Denmark)

    Koijen, Ralph S.J.; Moskowitz, Tobias J.; Heje Pedersen, Lasse

    that include global equities, global bonds, currencies, commodities, US Treasuries, credit, and equity index options. This predictability underlies the strong returns to "carry trades" that go long high-carry and short low-carry securities, applied almost exclusively to currencies, but shown here...

  14. True many-particle scattering theory in oscillator representation

    International Nuclear Information System (INIS)

    Smirnov, Yu.F.; Shirokov, A.M.

    1988-01-01

    The scattering theory in oscillator representation in case of true multiparticle scattering (TMS) is generalized. All necessary expressions to construct a wave function of several particles system in a discrete or continuous spectra at TMS approximation are obtained. Essential advantage of the method suggested lies in the fact that the most difficult part: construction and diagonolization of the Hamiltonian cutted matrix is to be carried out only once, and then the wave function can be calculated at any designed energy. 23 refs

  15. Study on effective particle diameters and coolability of particulate beds packed with irregular multi-size particles

    Energy Technology Data Exchange (ETDEWEB)

    Thakre, S.; Ma, W.; Kudinov, P.; Bechta, S. [Royal Institute of Technology, KTH. Div. of Nuclear Power Safety, Stockholm (Sweden)

    2013-08-15

    One of the key questions in severe accident research is the coolability of the debris bed, i.e., whether decay heat can be completely removed by the coolant flow into the debris bed. Extensive experimental and analytical work has been done to substantiate the coolability research. Most of the available experimental data is related to the beds packed with single size (mostly spherical) particles, and less data is available for multi-size/irregular-shape particles. There are several analytical models available, which rely on the mean particle diameter and porosity of the bed in their predictions. Two different types of particles were used to investigate coolability of particulate beds at VTT, Finland. The first type is irregular-shape Aluminum Oxide gravel particles whose sizes vary from 0.25 mm to 10 mm, which were employed in the STYX experiment programme (2001-2008). The second type is spherical beads of Zirconium silicate whose sizes vary between 0.8 mm to 1 mm, which were used in the COOLOCE tests (Takasuo et al., 2012) to study the effect of multi-dimensional flooding on coolability. In the present work, the two types of particles are used in the POMECO-FL and POMECO-HT test facility to obtain their effective particle diameters and dryout heat flux of the beds, respectively. The main idea is to check how the heaters' orientations (vertical in COOLOCE vs. horizontal in POMECO-HT) and diameters (6 mm in COOLOCE vs. 3 mm in POMECO-HT) affect the coolability (dryout heat flux) of the test beds. The tests carried out on the POMECO-FL facility using a bed packed with aluminum oxide gravel particles show the effective particle diameter of the gravel particles is 0.65 mm, by which the frictional pressure gradient can be predicted by the Ergun equation. After the water superficial velocity is higher than 0.0025 m/s, the pressure gradient is underestimated. The effective particle diameter of the zirconium particles is found as 0.8 mm. The dryout heat flux is measured on

  16. Study on effective particle diameters and coolability of particulate beds packed with irregular multi-size particles

    International Nuclear Information System (INIS)

    Thakre, S.; Ma, W.; Kudinov, P.; Bechta, S.

    2013-08-01

    One of the key questions in severe accident research is the coolability of the debris bed, i.e., whether decay heat can be completely removed by the coolant flow into the debris bed. Extensive experimental and analytical work has been done to substantiate the coolability research. Most of the available experimental data is related to the beds packed with single size (mostly spherical) particles, and less data is available for multi-size/irregular-shape particles. There are several analytical models available, which rely on the mean particle diameter and porosity of the bed in their predictions. Two different types of particles were used to investigate coolability of particulate beds at VTT, Finland. The first type is irregular-shape Aluminum Oxide gravel particles whose sizes vary from 0.25 mm to 10 mm, which were employed in the STYX experiment programme (2001-2008). The second type is spherical beads of Zirconium silicate whose sizes vary between 0.8 mm to 1 mm, which were used in the COOLOCE tests (Takasuo et al., 2012) to study the effect of multi-dimensional flooding on coolability. In the present work, the two types of particles are used in the POMECO-FL and POMECO-HT test facility to obtain their effective particle diameters and dryout heat flux of the beds, respectively. The main idea is to check how the heaters' orientations (vertical in COOLOCE vs. horizontal in POMECO-HT) and diameters (6 mm in COOLOCE vs. 3 mm in POMECO-HT) affect the coolability (dryout heat flux) of the test beds. The tests carried out on the POMECO-FL facility using a bed packed with aluminum oxide gravel particles show the effective particle diameter of the gravel particles is 0.65 mm, by which the frictional pressure gradient can be predicted by the Ergun equation. After the water superficial velocity is higher than 0.0025 m/s, the pressure gradient is underestimated. The effective particle diameter of the zirconium particles is found as 0.8 mm. The dryout heat flux is measured on

  17. 3D Lagrangian Model of Particle Saltation in an Open Channel Flow with Emphasis on Particle-Particle Collisions

    Science.gov (United States)

    Moreno, P. A.; Bombardelli, F. A.

    2012-12-01

    Particles laying motionless at the bed of rivers, lakes and estuaries can be put into motion when the shear stress exerted by the flow on the particles exceeds the critical shear stress. When these particles start their motion they can either remain suspended by long periods of time (suspended load) or move close to the bed (bed load). Particles are transported as bed load in three different modes: Sliding, rolling and saltation. Saltation is usually described as the bouncing motion of sediment particles in a layer a few particle diameters thick. The amount of particles and the bed-load mode in which they move depend on the particle size and density, and the flow intensity, usually quantified by the shear velocity. The bottom shear stress in natural streams will most likely be large enough to set saltation as the most important bed-load transport mechanism among all three modes. Thus, studying the saltation process is crucial for the overall understanding of bed-load transport. Particularly, numerical simulations of this process have been providing important insight regarding the relative importance of the physical mechanisms involved in it. Several processes occur when particles are saltating near the bed: i) Particles collide with the bed, ii) they "fly" between collisions with the bed, as a result of their interaction with the fluid flow, iii) and they collide among themselves. These processes can be simulated using a three-dimensional Eulerian-Lagrangian model. In order to mimic these processes we have experimented with an averaged turbulent flow field represented by the logarithmic law of the wall, and with a more involved approach in which a computed turbulent velocity field for a flat plate was used as a surrogate of the three-dimensional turbulent conditions present close to stream beds. Since flat-plate and open-channel boundary layers are essentially different, a dynamic similarity analysis was performed showing that the highly-resolved three

  18. Drug-Carrying Magnetic Nanocomposite Particles for Potential Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    R. Asmatulu

    2009-01-01

    nanoparticles and poly (D,L-lactide-co-glycolide (PLGA for the purpose of magnetic targeted drug delivery. Magnetic nanoparticles (∼13 nm on average of magnetite were prepared by a chemical coprecipitation of ferric and ferrous chloride salts in the presence of a strong basic solution (ammonium hydroxide. An oil-in-oil emulsion/solvent evaporation technique was conducted at 7000 rpm and 1.5–2 hours agitation for the synthesis of nanocomposite spheres. Specifically, PLGA and drug were first dissolved in acetonitrile (oily phase I and combined with magnetic nanoparticles, then added dropwise into viscous paraffin oil combined with Span 80 (oily phase II. With different contents (0%, 10%, 20%, and 25% of magnetite, the nanocomposite spheres were evaluated in terms of particle size, morphology, and magnetic properties by using dynamic laser light scattering (DLLS, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and a superconducting quantum interference device (SQUID. The results indicate that nanocomposite spheres (200 nm to 1.1 μm in diameter are superparamagnetic above the blocking temperature near 40 K and their magnetization saturates above 5 000 Oe at room temperature.

  19. The search for fractional charge elemental particles and very massive particles in bulk matter

    International Nuclear Information System (INIS)

    Perl, M.

    2000-01-01

    The authors describe their ongoing work on, and future plans for, searches in bulk matter for fractional charge elementary particles and very massive elementary particles. Their primary interest is in searching for such particles that may have been produced in the early universe and may be found in the more primeval matter available in the solar system: meteorites, material from the moon's surface, and certain types of ancient terrestrial rocks. In the future the authors are interested in examining material brought back by sample return probes from asteroids. The authors will describe their experimental methods that are based on new modifications of the Millikan liquid drop technique and modern technology: micromachining, CCD cameras, and desktop computers. Extensions of the experimental methods and technology allow searches for very massive charged particles in primeval matter; particles with masses greater than 1,013 GeV. In the first such searches carried out on earth there will be uncertainties in the mass search range. Therefore the authors will also discuss the advantages of eventually carrying out such searches directly on an asteroid

  20. Paramagnetic particles carried by cell-penetrating peptide tracking of bone marrow mesenchymal stem cells, a research in vitro

    International Nuclear Information System (INIS)

    Liu Min; Guo Youmin; Wu Qifei; Yang Junle; Wang Peng; Wang Sicen; Guo Xiaojuan; Qiang Yongqian; Duan Xiaoyi

    2006-01-01

    The ability to track the distribution and differentiation of stem cells by high-resolution imaging techniques would have significant clinical and research implications. In this study, a model cell-penetrating peptide was used to carry gadolinium particles for magnetic resonance imaging of the mesenchymal stem cells. The mesenchymal stem cells were isolated from rat bone marrow by Percoll and identified by osteogenic differentiation in vitro. The cell-penetrating peptides labeled with fluorescein-5-isothiocyanate and gadolinium were synthesized by a solid-phase peptide synthesis method and the relaxivity of cell-penetrating peptide-gadolinium paramagnetic conjugate on 400 MHz nuclear magnetic resonance was 5.7311 ± 0.0122 mmol -1 s -1 , higher than that of diethylenetriamine pentaacetic acid gadolinium (p < 0.05). Fluorescein imaging confirmed that this new peptide could internalize into the cytoplasm and nucleus. Gadolinium was efficiently internalized into mesenchymal stem cells by the peptide in a time- or concentration-dependent fashion, resulting in intercellular T1 relaxation enhancement, which was obviously detected by 1.5 T magnetic resonance imaging. Cytotoxicity assay and flow cytometric analysis showed the intercellular contrast medium incorporation did not affect cell viability and membrane potential gradient. The research in vitro suggests that the newly constructed peptides could be a vector for tracking mesenchymal stem cells

  1. A comparative evaluation of drilling techniques for deposits containing free gold using radioactive gold particles as tracers

    International Nuclear Information System (INIS)

    Clarkson, R.

    1998-01-01

    In the summers of 1992 and 1994, the author designed and carried out a statistically valid research program using radioactivated gold particles as tracers (radiotracers). Two types of fully cased normal circulation (N / C) drills, two types of reverse circulation (R/C) drills and three solid auger drills were evaluated under a variety of field conditions. A frozen cylindrical core of compacted gravels containing four sizes ( 1.2, 0.60, 0.30 and 0.15 mm), (+l4,+28,+48and+100 mesh)of radiotracers was placed in 44 drill holes and the holes were re drilled. Scintillometers were used to track free gold losses due to spillage and blow-by around the collar (top) of the hole. Some gold particles were located in temporary traps in the drilling equipment and these particles would have contaminated subsequent samples (as carry-over). Several myths commonly attributed to particular drilling methods were dispelled. There was no significant difference between the recovery of the four sizes of gold particles with any of the drills tested. Observations and down-hole scintillometer records indicated that the free gold particles did not follow the bit down the hole and were either carried out of the hole or forced onto the sides of the hole at or above the depth at which the radioactive gold was positioned. A comparative evaluation of the results of these tests is presented

  2. Severe signal loss in diamond beam loss monitors in high particle rate environments by charge trapping in radiation-induced defects

    CERN Document Server

    Kassel, Florian; Dabrowski, Anne; de Boer, Wim

    2016-01-01

    The beam condition monitoring leakage (BCML) system is a beam monitoring device in the compact muon solenoid (CMS) experiment at the large hadron collider (LHC). As detectors 32 poly-crystalline (pCVD) diamond sensors are positioned in rings around the beam pipe. Here, high particle rates occur from the colliding beams scattering particles outside the beam pipe. These particles cause defects, which act as traps for the ionization, thus reducing the charge collection efficiency (CCE). However, the loss in CCE was much more severe than expected from low rate laboratory measurements and simulations, especially in single-crystalline (sCVD) diamonds, which have a low initial concentration of defects. The reason why in real experiments the CCE is much worse than in laboratory experiments is related to the ionization rate. At high particle rates the trapping rate of the ionization is so high compared with the detrapping rate, that space charge builds up. This space charge reduces locally the internal electric field,...

  3. Investigating the Possibility to Individualize Asthma Attack Therapy Based on Attack Severity and Patient Characteristics

    Directory of Open Access Journals (Sweden)

    Sárkány Zoltán

    2016-03-01

    Full Text Available Introduction: The objective of this study was to investigate with the help of a computerized simulation model whether the treatment of an acute asthma attack can be individualized based on the severity of the attack and the characteristics of the patient. Material and Method: A stochastic lung model was used to simulate the deposition of 1 nm - 10 μm particles during a mild and a moderate asthma attack. Breathing parameters were varied to maximize deposition, and simulation results were compared with those obtained in the case of a severe asthma attack. In order to investigate the effect of height on the deposition of inhaled particles, another series of simulations was carried out with identical breathing parameters, comparing patient heights of 155 cm, 175 cm and 195 cm. Results: The optimization process yielded an increase in the maximum deposition values of around 6-7% for each type of investigated asthma attack, and the difference between attacks of different degree of severity was around 5% for both the initial and the optimized values, a higher degree of obstruction increasing the amount of deposited particles. Conclusions: Our results suggest that the individualization of asthma attack treatment cannot be based on particles of different size, as the highest deposited fraction in all three types of attacks can be obtained using 0.01 μm particles. The use of a specific set of breathing parameters yields a difference between a mild and a moderate, as well as a moderate and a severe asthma attack of around 5%.

  4. Internal structure of an ex-vessel corium debris bed during severe accidents of LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eunho; Park, Jin Ho; Moriyama, Kiyofumi; Park, Hyun Sun [POSTECH, Daejeon (Korea, Republic of)

    2015-10-15

    In the aspect of the coolability assessment the configuration of the debris bed, including internal and external characteristics, has significant importance as boundary conditions for simulations, however, relatively little investigation of the sedimentation process. For the development of a debris bed, recently there have been several studies that focused on thermal characteristics of corium particles. Yakush et al. performed simulation studies and showed that two phase natural convection affects the particle settling trajectory and changes the final arrival location of particles to result more flattened bed. Those simulation results have been supported by the experimental studies of Kim et al. using simulant particles and air bubble injection. For the internal structure of a debris bed, there have been several simulation and experimental studies, which investigated the effect of internal structure on debris bed coolability. Magallon has reported the particle size distribution at three elevations of the debris bed of FARO L-31 case, where the mean particle size was bigger for the lower elevation. However, there is a lack of detailed information on the characteristics of the debris bed, including the local structure and porosity. In this study, we investigated the internal structure of the debris bed using a mixture of stainless steel particles and air bubble injection. Local particle sedimentation quantity, particle size distribution change in radial direction and axial direction, and bed porosity was measured to investigate a relationship between the internal structure and the accident condition. An experimental investigation was carried out for the internal structure of ex-vessel corium debris bed in the flooded cavity during sever accident. Moderate corium discharge in high flooding level was assumed for full fragmentation of melt jet. The test particle mixture was prepared by following an empirical correlation, which reflects the particle size distribution of

  5. Internal structure of an ex-vessel corium debris bed during severe accidents of LWRs

    International Nuclear Information System (INIS)

    Kim, Eunho; Park, Jin Ho; Moriyama, Kiyofumi; Park, Hyun Sun

    2015-01-01

    In the aspect of the coolability assessment the configuration of the debris bed, including internal and external characteristics, has significant importance as boundary conditions for simulations, however, relatively little investigation of the sedimentation process. For the development of a debris bed, recently there have been several studies that focused on thermal characteristics of corium particles. Yakush et al. performed simulation studies and showed that two phase natural convection affects the particle settling trajectory and changes the final arrival location of particles to result more flattened bed. Those simulation results have been supported by the experimental studies of Kim et al. using simulant particles and air bubble injection. For the internal structure of a debris bed, there have been several simulation and experimental studies, which investigated the effect of internal structure on debris bed coolability. Magallon has reported the particle size distribution at three elevations of the debris bed of FARO L-31 case, where the mean particle size was bigger for the lower elevation. However, there is a lack of detailed information on the characteristics of the debris bed, including the local structure and porosity. In this study, we investigated the internal structure of the debris bed using a mixture of stainless steel particles and air bubble injection. Local particle sedimentation quantity, particle size distribution change in radial direction and axial direction, and bed porosity was measured to investigate a relationship between the internal structure and the accident condition. An experimental investigation was carried out for the internal structure of ex-vessel corium debris bed in the flooded cavity during sever accident. Moderate corium discharge in high flooding level was assumed for full fragmentation of melt jet. The test particle mixture was prepared by following an empirical correlation, which reflects the particle size distribution of

  6. Transport characteristics of nanoscale zero-valent iron carried by three different "vehicles" in porous media.

    Science.gov (United States)

    Su, Yan; Zhao, Yong S; Li, Lu L; Qin, Chuan Y; Wu, Fan; Geng, Nan N; Lei, Jian S

    2014-01-01

    This study investigated the transport properties of nanoscale zero-valent iron (Fe(0)) (nZVI) carried by three vehicles: water, sodium dodecyl sulfate (SDS) solution, and SDS foam. Batch experiments were conducted to assess the sedimentation capability of nZVI particles in these three vehicles. Column experiments were conducted to investigate the transport properties of nZVI in porous media formed with different sizes of sand (0.25 mm to 0.5 mm, 0.5 mm to 0.9 mm, and 0.9 mm to 1.4 mm). Three main results were obtained. First, the batch experiments revealed that the stabilities of nZVI particles in SDS solution and SDS foam were improved, compared with that of nZVI particles in water. Moreover, the sedimentation of nZVI in foam was closely associated with the foam drainage volume. The nZVI content in foam was similar to that in the original foaming suspension, and the nZVI particle distribution in foam became significantly more uniform at a stirring speed of 3000 r/min. Second, the transport of nZVI was enhanced by foam compared with water and SDS solution for 0.25 mm to 0.5 mm diameter sand. For sand with diameters of 0.5 mm to 0.9 mm and 0.9 mm to 1.4 mm, the mobility of nZVI carried by SDS solution was optimal, followed by that of nZVI carried by foam and water. Thus, the mobility of nZVI in finer sand was significantly enhanced by foam, compared with that in coarse sand. In contrast, compared with the bare nZVI suspension and nZVI-laden foam, the spatial distribution of nZVI particles carried by SDS solution was significantly uniform along the column length. Third, the SDS concentration significantly influenced the migration of nZVI in porous media. The enhancement in the migration of nZVI carried by SDS solution was greater at an SDS dose of 0.25% compared with that at the other three doses (0.2%, 0.5%, and 1%) for sand with a 0.25 mm to 0.5 mm diameter. Increased SDS concentrations positively affected the transport of nZVI by foam for sand with a

  7. Physics through the 1990s: Elementary-particle physics

    International Nuclear Information System (INIS)

    Kirk, W.T.

    1986-01-01

    This report on elementary-particle physics is part of an overall survey of physics carried out for the National Academy of Sciences by the National Research Council. The panel that wrote this report had three goals. The first goal was to explain the nature of elementary-particle physics and to describe how research is carried out in this field. The second goal was to summarize our present knowledge of the elementary particles and the fundamental forces. The third goal was to consider the future course of elementary-particle physics research and to propose a program for this research in the United States. All of these goals are covered in this report

  8. Particle physics experiments

    International Nuclear Information System (INIS)

    Stuart, G.W.

    1986-01-01

    The report of the Rutherford Appleton Laboratory describes the work carried out in 1985 on experiments approved by the Particle Physics Experiments Selection Panel. The contents consist of unedited contributions from each experiment. (author)

  9. CVD diamond sensors for charged particle detection

    CERN Document Server

    Krammer, Manfred; Berdermann, E; Bergonzo, P; Bertuccio, G; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; D'Angelo, P; Dabrowski, W; Delpierre, P A; Dencuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Hallewell, G D; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Kass, R; Koeth, T W; Lo Giudice, A; Lü, R; MacLynne, L; Manfredotti, C; Meier, D; Mishina, M; Moroni, L; Oh, A; Pan, L S; Pernicka, Manfred; Peitz, A; Perera, L P; Pirollo, S; Procario, M; Riester, J L; Roe, S; Rousseau, L; Rudge, A; Russ, J; Sala, S; Sampietro, M; Schnetzer, S; Sciortino, S; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R; Trischuk, W; Tromson, D; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; Wetstein, M; White, C; Zeuner, W; Zöller, M

    2001-01-01

    CVD diamond material was used to build position-sensitive detectors for single-charged particles to be employed in high-intensity physics experiments. To obtain position information, metal contacts shaped as strips or pixels are applied to the detector surface for one- or two- dimensional coordinate measurement. Strip detectors 2*4 cm/sup 2/ in size with a strip distance of 50 mu m were tested. Pixel detectors of various pixel sizes were bump bonded to electronics chips and investigated. A key issue for the use of these sensors in high intensity experiments is the radiation hardness. Several irradiation experiments were carried out with pions, protons and neutrons exceeding a fluence of 10/sup 15/ particles/cm/sup 2/. The paper presents an overview of the results obtained with strip and pixel detectors in high-energy test beams and summarises the irradiation studies. (8 refs).

  10. Influence of severe plastic deformation on intermetallic particles in Mg-12wt.%Zn alloy investigated using transmission electron microscopy

    Czech Academy of Sciences Publication Activity Database

    Němec, Martin; Gärtnerová, Viera; Jäger, Aleš

    2016-01-01

    Roč. 119, Sep (2016), 129-136 ISSN 1044-5803 R&D Projects: GA ČR GBP108/12/G043 Institutional support: RVO:68378271 Keywords : Mg-Zn * severe plastic deformation * equal channel angular pressing * transmission electron microscopy * microstructure * intermetallic particles Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.714, year: 2016

  11. Elementary particle physics: Experimental

    International Nuclear Information System (INIS)

    Lord, J.J.; Burnett, T.H.; Wilkes, R.J.

    1989-01-01

    We are carrying out a research program in high energy experimental particle physics. Studies of high energy hadronic interactions and leptoproduction processes continue using several experimental techniques. Progress has been made on the study of multiparticle production processes in nuclei. Ultra-high energy cosmic ray nucleus-nucleus interactions have been investigated by the Japanese American Cosmic Emulsion Experiment (JACEE) using balloon-borne emulsion chamber detectors. In the area of particle astrophysics, our studies of cosmic ray nuclear interactions have enabled use to make the world's most accurate determination of the comparison of the cosmic rays above 10 13 eV. We have only the detector that can observe interaction vertices and identify particles at energies up to 10**15 eV. Our observations are getting close to placing limits on the acceleration mechanisms postulated for pulsars in which the spin and magnetic moment axes are at different angles. In June, 1989 approval was given by NASA for our participation in the Space Station program. The SCINATT experiment will make use of emulsion chamber detectors, similar to the planned JACEE hybrid balloon flight detectors. These detector will permit precise determination of secondary particle charges, momenta and rapidities, and the accumulation of data will be at least a factor of 10 to 100 greater than in balloon experiments. Emulsion chamber techniques ate also employed in an experiment using accelerator heavy ion beams at CERN and Brookhaven National Laboratory to investigate particle production processes in central collisions of nuclei in the energy range 15 -- 200A GeV. Our study of hadroproduction in lepton interactions is continuing with approval of another 8 months run for deep inelastic muon scattering experiment E665 at Fermilab

  12. Probability and severity of fires on board ships carrying radioactive materials. Annex 6

    International Nuclear Information System (INIS)

    Young, C.N.

    2001-01-01

    This paper summarises the five UK contributions to the International Atomic Energy Agency's Co-ordinated Research Programme (CRP) on Accident Severity at Sea During Transport of Radioactive Material (CRP) on Accident Severity at Sea During Transport of Radioactive Material. (author)

  13. Particle physics experiments 1983

    International Nuclear Information System (INIS)

    Stuart, G.W.

    1983-01-01

    The report describes work carried out in 1983 on experiments approved by the Particle Physics Experiments Selection Panel. The contents consist of unedited contributions from each experiment. (author)

  14. Particle physics experiments 1986

    International Nuclear Information System (INIS)

    Stuart, G.W.

    1987-01-01

    The paper presents research work carried out in 1986 on 52 elementary particle experiments approved by the Particle Physics Experiments Selection Panel. Most of the experiments were collaborative and involved research groups from different countries. About half of the experiments were conducted at CERN, the remaining experiments employed the accelerators: LAMPT, LEP, PETRA, SLAC, and HERA. The contents consist of unedited contributions from each experiment. (U.K.)

  15. The Particle Number Emission Characteristics of the Diesel Engine with a Catalytic Diesel Particle Filter

    Directory of Open Access Journals (Sweden)

    Li Jia Qiang

    2016-01-01

    Full Text Available Due to their adverse health effects and their abundance in urban areas, diesel exhaust ultrafine particles caused by the aftertreatment devices have been of great concern in the past years. An experiment of particles number emissions was carried out on a high-pressure, common rail diesel engine with catalytic diesel particle filter (CDPF to investigate the impact of CDPF on the number emission characteristics of particles. The results indicated that the conversion rates of CDPF is over 97%. The size distributions of particles are bimodal lognormal distributions downstream CDPF at 1400 r/min and 2300 r/min. CDPF has a lower conversion rates on the nucleation mode particles. The geometric number mean diameters of particles downstream CDPF is smaller than that upstream CDPF.

  16. The COLIMA experiment on aerosol retention in containment leak paths under severe nuclear accidents

    Energy Technology Data Exchange (ETDEWEB)

    Parozzi, Flavio, E-mail: flavio.parozzi@rse-web.it [RSE, Power Generation Department, via Rubattino 54, I-20134 Milano (Italy); Caracciolo, Eduardo D.J., E-mail: eduardo.caracciolo@rse-web.it [RSE, Power Generation Department, via Rubattino 54, I-20134 Milano (Italy); Journeau, Christophe, E-mail: christophe.journeau@cea.fr [CEA Cadarache (France); Piluso, Pascal, E-mail: pascal.piluso@cea.fr [CEA Cadarache (France)

    2013-08-15

    Highlights: ► Experiment investigating aerosol retention within concrete containment cracks under nuclear severe accident conditions. ► Provided representative conditions of the aerosols suspended inside the containment of PWRs under a severe accident. ► Prototypical aerosol particles generated with a thermite reaction and transported through the crack sample reproducing surface characteristics, temperature, pressure drop and gas leakage. ► The results indicate the significant retention due to zig-zag path. -- Abstract: CEA and RSE managed an experimental research concerning the investigation of aerosol retention within concrete containment cracks under severe accident conditions. The main experiment was carried out in November 2008 with aerosol generated from the COLIMA facility and a sample of cracked concrete with defined geometric characteristics manufactured by RSE. The facility provided representative conditions of the aerosols suspended inside the containment of PWRs under a severe accident. Prototypical aerosol particles were generated with a thermite reaction and transported through the crack sample, where surface characteristics, temperature, pressure drop and gas leakage were properly reproduced. The paper describes the approach adopted for the preparation of the cracked concrete sample and the dimensioning of the experimental apparatus, the test procedure and the measured parameters. The preliminary results, obtained from this single test, are also discussed in the light of the present knowledge about aerosol phenomena and the theoretical analyses of particle behaviour with the crack path.

  17. Elementary particle interactions

    International Nuclear Information System (INIS)

    Bugg, W.M.; Condo, G.T.; Handler, T.; Hart, E.L.; Read, K.; Ward, B.F.L.

    1992-10-01

    Work continues on strange particle production in weak interactions using data from a high-energy neutrino exposure in a freon bubble chamber. Meson photoproduction has also consumed considerable effort. Detector research and development activities have been carried out

  18. Dispersion of Bed Load Particles

    OpenAIRE

    SAWAI, Kenji

    1987-01-01

    The motion of bed load particles is so irregular that they disperse remarkably with time.In this study, some flume tests using painted tracer particles were carried out, in which thedispersive property of tracers changed variously with sediment feed rate.In analysing this process, a stochastic simulation model is proposed where it is discussedabout the degree of exposure of individual particle near the bed surface and about the variationof its pick up rate. The exponential distribution of ste...

  19. Consumerism and the Sister Carrie's American Dream%Consumerism and the Sister Carrie''s American Dream

    Institute of Scientific and Technical Information of China (English)

    卢亚丽

    2017-01-01

    From the aspect of consumerism to this text analyze Sister Carrie's"American dream"destruction. The author wholly and deeply analyzes the embodiment of consumerism in Dreiser's Sister Carrie and Dreiser's outlook and values under the effect of consumerism. To prove that the reason for destruction of Carrie's American dream is consumerism.

  20. Particle physics experiments 1984

    International Nuclear Information System (INIS)

    Stuart, G.

    1985-01-01

    The Rutherford Appleton laboratory report describes work carried out in 1984 on experiments approved by the Particle Physics selection panel. The contents consist of unedited contributions from each experiment. (author)

  1. Particle physics experiments 1987

    International Nuclear Information System (INIS)

    Stuart, G.W.

    1988-01-01

    This report describes work carried out in 1987 on experiments approved by the Particle Physics Experiments Selection Panel (United Kingdom). The contents consist of unedited contributions from each experiment. (author)

  2. Luminescence imaging of water during alpha particle irradiation

    Science.gov (United States)

    Yamamoto, Seiichi; Komori, Masataka; Koyama, Shuji; Toshito, Toshiyuki

    2016-05-01

    The luminescence imaging of water using the alpha particle irradiation of several MeV energy range is thought to be impossible because this alpha particle energy is far below the Cerenkov-light threshold and the secondary electrons produced in this energy range do not emit Cerenkov-light. Contrary to this consensus, we found that the luminescence imaging of water was possible with 5.5 MeV alpha particle irradiation. We placed a 2 MBq of 241Am alpha source in water, and luminescence images of the source were conducted with a high-sensitivity, cooled charge-coupled device (CCD) camera. We also carried out such imaging of the alpha source in three different conditions to compare the photon productions with that of water, in air, with a plastic scintillator, and an acrylic plate. The luminescence imaging of water was observed from 10 to 20 s acquisition, and the intensity was linearly increased with time. The intensity of the luminescence with the alpha irradiation of water was 0.05% of that with the plastic scintillator, 4% with air, and 15% with the acrylic plate. The resolution of the luminescence image of water was better than 0.25 mm FWHM. Alpha particles of 5.5 MeV energy emit luminescence in water. Although the intensity of the luminescence was smaller than that in air, it was clearly observable. The luminescence of water with alpha particles would be a new method for alpha particle detection and distribution measurements in water.

  3. Luminescence imaging of water during alpha particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Komori, Masataka; Koyama, Shuji [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center (Japan)

    2016-05-21

    The luminescence imaging of water using the alpha particle irradiation of several MeV energy range is thought to be impossible because this alpha particle energy is far below the Cerenkov-light threshold and the secondary electrons produced in this energy range do not emit Cerenkov-light. Contrary to this consensus, we found that the luminescence imaging of water was possible with 5.5 MeV alpha particle irradiation. We placed a 2 MBq of {sup 241}Am alpha source in water, and luminescence images of the source were conducted with a high-sensitivity, cooled charge-coupled device (CCD) camera. We also carried out such imaging of the alpha source in three different conditions to compare the photon productions with that of water, in air, with a plastic scintillator, and an acrylic plate. The luminescence imaging of water was observed from 10 to 20 s acquisition, and the intensity was linearly increased with time. The intensity of the luminescence with the alpha irradiation of water was 0.05% of that with the plastic scintillator, 4% with air, and 15% with the acrylic plate. The resolution of the luminescence image of water was better than 0.25 mm FWHM. Alpha particles of 5.5 MeV energy emit luminescence in water. Although the intensity of the luminescence was smaller than that in air, it was clearly observable. The luminescence of water with alpha particles would be a new method for alpha particle detection and distribution measurements in water.

  4. Design of particle bed reactors for the space nuclear thermal propulsion program

    International Nuclear Information System (INIS)

    Ludewig, H.; Powell, J.R.; Todosow, M.; Maise, G.; Barletta, R.; Schweitzer, D.G.

    1996-01-01

    This paper describes the design for the Particle Bed Reactor (PBR) that was considered for the Space Nuclear Thermal Propulsion (SNTP) Program. The methods of analysis and their validation are outlined first. Monte Carlo methods were used for the physics analysis, several new algorithms were developed for the fluid dynamics, heat transfer and transient analysis; and commercial codes were used for the stress analysis. We carried out a critical experiment, prototypic of the PBR to validate the reactor physics; blowdown experiments with beds of prototypic dimensions were undertaken to validate the power-extraction capabilities from particle beds. In addition, materials and mechanical design concepts for the fuel elements were experimentally validated. (author)

  5. A spectrometer for submicron particles

    International Nuclear Information System (INIS)

    Pourprix, M.

    1995-01-01

    The electrostatic spectrometer for aerosol particles, is composed of two coaxial parallel conductive disks between which an electric field is established; an annular slot in the first disk allows for the atmosphere air intake. Suction and injection systems, and a third intermediate conductive disk are used to carry out a dynamic confinement that allows for the separation of particles having various electronic mobility and the determination of the suspended particle size distribution. Application to aerosol size spectrum determination and air quality monitoring

  6. Particle physics experiments 1989

    International Nuclear Information System (INIS)

    Bairstow, R.

    1990-01-01

    This report describes work carried out in 1989 on experiments approved by the Particle Physics Experiments Selection Panel of Rutherford Appleton Laboratory. The contents consist of unedited contributions from each experiment. (author)

  7. The connection between solar wind charged particles and tornadoes: Case analysis

    Directory of Open Access Journals (Sweden)

    Radovanović Milan M.

    2013-01-01

    Full Text Available The temperature of charged particles coming from the Sun ranges from several hundred thousands to several millions °C, in extreme cases. Theoretical possibilities of the hydrodynamic air mass seizing by charged particles, i. e. solar wind, are discussed in this paper. On one hand, they are characterized by extremely high temperatures, on the other, by the compression of cold air at an approximate altitude of 90 km towards the top of the cloud of the cyclone, they influence the phenomenon of extremely low temperatures. By using the Mann-Whitney U test we have tried to determine the potential link between certain indicators of solar activity and resulting disturbances in the atmosphere. Analyzed data refer to global daily values for the 2004-2010 period. Our results confirm the possibility of coupling between the charged particles and the vortex air mass movements, based on which a more detailed study of the appearance of a tornado near Sombor on May 12th, 2010, was carried out. It has also been proven that there are grounds for a causality between the sudden arrival of the solar wind charged particles, i. e. protons, and the appearance of a tornado. Based on the presented approach, elements for an entirely novel prediction model are given. [Projekat Ministarstva nauke Republike Srbije, br. III47007 i br. 176008

  8. Intense particle beam and multiple applications

    International Nuclear Information System (INIS)

    Ueda, M.; Machida, M.

    1988-01-01

    The Multiple Application Intense Particle Beam project is an experiment in which an injector of high energy neutral or ionized particles will be used to diagnose high density and high temperature plasmas. The acceleration of the particles will be carried out feeding a diode with a high voltage pulse produced by a Marx generator. Other apllications of intense particle beam generated by this injector that could be explored in the future include: heating and stabilization of compact toroids, treatment of metallic surfaces and ion implantation. (author) [pt

  9. Sediment particle entrainment in an obstructed annular

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, Bruno Venturini; Siqueira, Renato do Nascimento [Faculdade do Centro Leste (UCL), Serra, ES (Brazil). Lab. de Fenomenos de Transporte], e-mail: brunovl@ucl.br, e-mail: renatons@ucl.br

    2006-07-01

    Flow in an annular region with internal cylinder rotation is a classic problem in fluid mechanics and has been widely studied. Besides its importance as a fundamental problem, flow in annular regions has several practical applications. This project was motivated by an application of this kind of flow to the drilling of oil and gas wells. In this work, an erosion apparatus was constructed in order to study the effect of the internal cylinder rotation on particle entrainment in an obstructed annular space and bed package as well. The study also analyzed the influence of height of the particles bed on the process performance. The experiment was designed so that the internal cylinder rotation could be measured by an encoder. The fluid temperature was measured by a thermocouple and the experiments were carried out at the temperature of 25 deg C. The study revealed that the particle entrainment for the height of the bed that is close to the center of the cylinders is negligible and the internal cylinder rotation provokes the movement and packing of the bed. For lower height of the bed, with same dimension of the annular gap, the particle entrainment process was satisfactory and the bed compaction was smaller than in the previous case, leading to a more efficient cleaning process in the annular space. (author)

  10. Nanostructures by Severe Plastic Deformation of Steels: Advantages and Problems

    Directory of Open Access Journals (Sweden)

    Dobatkin, S. V.

    2006-01-01

    Full Text Available The aim of this paper is to consider the features of structure evolution during severe plastic deformation (SPD of steels and its influence on mechanical properties. The investigation have been carried out mainly on low carbon steels as well as on austenitic stainless steels after SPD by torsion under high pressure (HPT and equal channel angular (ECA pressing. Structure formation dependencies on temperature deformation conditions, strain degree, chemical composition, initial state and pressure are considered. The role of phase transformations for additional grain refinement, namely, martensitic transformation, precipitation of carbide particles during SPD and heating is underlined.

  11. Memory immune responses against pandemic (H1N1 2009 influenza virus induced by a whole particle vaccine in cynomolgus monkeys carrying Mafa-A1*052:02.

    Directory of Open Access Journals (Sweden)

    Masahiko Arikata

    Full Text Available We made an H1N1 vaccine candidate from a virus library consisting of 144 ( = 16 HA×9 NA non-pathogenic influenza A viruses and examined its protective effects against a pandemic (2009 H1N1 strain using immunologically naïve cynomolgus macaques to exclude preexisting immunity and to employ a preclinical study since preexisting immunity in humans previously vaccinated or infected with influenza virus might make comparison of vaccine efficacy difficult. Furthermore, macaques carrying a major histocompatibility complex class I molecule, Mafa-A1*052:02, were used to analyze peptide-specific CD8(+ T cell responses. Sera of macaques immunized with an inactivated whole particle formulation without addition of an adjuvant showed higher neutralization titers against the vaccine strain A/Hokkaido/2/1981 (H1N1 than did sera of macaques immunized with a split formulation. Neutralization activities against the pandemic strain A/Narita/1/2009 (H1N1 in sera of macaques immunized twice with the split vaccine reached levels similar to those in sera of macaques immunized once with the whole particle vaccine. After inoculation with the pandemic virus, the virus was detected in nasal samples of unvaccinated macaques for 6 days after infection and for 2.67 days and 5.33 days on average in macaques vaccinated with the whole particle vaccine and the split vaccine, respectively. After the challenge infection, recall neutralizing antibody responses against the pandemic virus and CD8(+ T cell responses specific for nucleoprotein peptide NP262-270 bound to Mafa-A1*052:02 in macaques vaccinated with the whole particle vaccine were observed more promptly or more vigorously than those in macaques vaccinated with the split vaccine. These findings demonstrated that the vaccine derived from our virus library was effective for pandemic virus infection in macaques and that the whole particle vaccine conferred more effective memory and broader cross-reactive immune responses

  12. Particle surface area and bacterial activity in recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Pedersen, Per Bovbjerg; von Ahnen, Mathis; Fernandes, Paulo

    2017-01-01

    Suspended particles in recirculating aquaculture systems (RAS) provide surface area that can be colonized by bacteria. More particles accumulate as the intensity of recirculation increases thus potentially increasing the bacterial carrying capacity of the systems. Applying a recent, rapid, culture...... but may provide significant surface area. Hence, the study substantiates that particles in RAS provide surface area supporting bacterial activity, and that particles play a key role in controlling the bacterial carrying capacity at least in less intensive RAS. Applying fast, culture-independent techniques......-independent fluorometric detection method (Bactiquant®) for measuring bacterial activity, the current study explored the relationship between total particle surface area (TSA, derived from the size distribution of particles >5 μm) and bacterial activity in freshwater RAS operated at increasing intensity of recirculation...

  13. Particle transport in porous media

    Science.gov (United States)

    Corapcioglu, M. Yavuz; Hunt, James R.

    The migration and capture of particles (such as colloidal materials and microorganisms) through porous media occur in fields as diversified as water and wastewater treatment, well drilling, and various liquid-solid separation processes. In liquid waste disposal projects, suspended solids can cause the injection well to become clogged, and groundwater quality can be endangered by suspended clay and silt particles because of migration to the formation adjacent to the well bore. In addition to reducing the permeability of the soil, mobile particles can carry groundwater contaminants adsorbed onto their surfaces. Furthermore, as in the case of contamination from septic tanks, the particles themselves may be pathogens, i.e., bacteria and viruses.

  14. Electrodeposition of nickel particles and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, G. T. [Centro de Investigacion en Quimica Aplicada, Laboratorio de Microscopia. Blvd. Enrique Reyna No. 140, Saltillo 25253, Coahuila (Mexico); Zavala, G.; Videa, M. [ITESM, Campus Monterrey, Depto. de Fisica, Av. Garza Sada 2501 Sur, Monterrey 64849, N. L. (Mexico)], e-mail: gtadeo@ciqa.mx

    2009-07-01

    Electrodeposition of nickel particles on ITO substrates is achieved by current pulse reduction. A comparison between potential pulse and current pulse experiments presents differences in particle size and particle size distribution. The latter shows smaller particle size dispersion than what is found with potential pulses. Characterization of the particles carried out by Atomic Force Microscopy shows particles with average sizes between 100 to 300 nm. Magnetic characterization by Magnetic Force Microscopy and SQUID shows that particles of {approx} 300 nm were ferromagnetic with a coercive field of 200 Oe and a saturation magnetization of 40 x 10{sup -6} emu at 300 K. (Author)

  15. Sand Particles Impact on the Tribological Behavior of Sliding Contact

    Directory of Open Access Journals (Sweden)

    Aldajah Saud

    2016-01-01

    Full Text Available Lubricant contaminants cause severe problems to machines. Substantial research has been conducted to study the impact of such contaminates on the tribological performance of lubricated contacts. The primary goal of such studies is to find solutions to avoid the dirtiest cause of damaging machines’ parts and to reduce energy consumption and maintenance costs. The current study investigates the tribological behavior of contaminated lubricated contacts; the contaminants considered in this research are sand particles. The effect of the sand particles concentration levels on friction and wear of a tribological system under sliding contact was studied. Three different concentration levels were tested; 5%, 10% and 15%.The experimental program was carried out using an in-house built ball on disc machine at room temperature, constant normal load, constant speed, constant running time and constant travelling distance. Results showed that both friction coefficient and wear volume of the contacting surfaces are dependent on the concentration level of the sand particles. Both friction coefficient and wear volume increased by increasing the sand particles concentration. SEM was utilized to study the wear mechanisms of the contacting surfaces, it was found that the dominant wear mechanism in all cases was abrasive wear.

  16. PART 2: LARGE PARTICLE MODELLING Simulation of particle filtration processes in deformable media

    Directory of Open Access Journals (Sweden)

    Gernot Boiger

    2008-06-01

    Full Text Available In filtration processes it is necessary to consider both, the interaction of thefluid with the solid parts as well as the effect of particles carried in the fluidand accumulated on the solid. While part 1 of this paper deals with themodelling of fluid structure interaction effects, the accumulation of dirtparticles will be addressed in this paper. A closer look is taken on theimplementation of a spherical, LAGRANGIAN particle model suitable forsmall and large particles. As dirt accumulates in the fluid stream, it interactswith the surrounding filter fibre structure and over time causes modificationsof the filter characteristics. The calculation of particle force interactioneffects is necessary for an adequate simulation of this situation. A detailedDiscrete Phase Lagrange Model was developed to take into account thetwo-way coupling of the fluid and accumulated particles. The simulation oflarge particles and the fluid-structure interaction is realised in a single finitevolume flow solver on the basis of the OpenSource software OpenFoam.

  17. EWKino Production and Long-Lived particles at LHC

    CERN Document Server

    Verducci, M; The ATLAS collaboration

    2013-01-01

    The Large Hadron Collider has extended the reach of particle-physics experiments with a potential for discovery of new physics at the TeV scale and many searches have been carried out by both ATLAS and CMS. Searches for long-lived particles and electroweak “ino” production using 2012 LHV data have been carried by both ATLAS and CMS. The methodology of the searches (reconstruction techniques, background suppression, etc.) and the sensitivity of these searches are reviewed. Many models of physics beyond the Standard Model predict new particles with long lifetimes. Examples include Supersymmetry with R-parity violation, suppressed decays of the next-to-lightest Supersymmetric particle, or models with hidden sectors. The decay vertices of particles with lifetimes of order 10 ps to 10 ns can be efficiently identified by the ATLAS and CMS detectors. In addition, in quark and gluons collisions it is easy to produce coloured objects like gluinos and squarks, which decay typically to jets and MET, while the cross ...

  18. Electron cooling and elementary particle physics

    International Nuclear Information System (INIS)

    Budker, G.I.; Skrinskij, A.N.

    1978-01-01

    This review is devoted to a new method in experimental physics - the electron cooling. This method opens possibilities in storing the intense and highly monochromatic beams of heavy particles and allows to carry out a wide series of experiments of a high luminocity and resolution. The method is based on the beam cooling by an accompanying flux of electrons. The cooling is due to Coulomb collisions of the beam particles with electrons. In the first part the theoretical aspects of the method are considered shortly. The layout of the NAP-M installation with electron cooling and results of successful experiments on cooling the proton beam are given. In the second part the new possibilities are discussed which appear due to application of electron cooling: storing the intense antiproton beams and realization of the proton - antiproton colliding beams, carrying out experiments with the super fine targets in storage rings, experiments with particles and antiparticles at ultimately low energies, storing the polarized antiprotons and other particles, production of antiatoms, antideuton storing, experiments with ion beams

  19. Dysfunctional lipoproteins from young smokers exacerbate cellular senescence and atherogenesis with smaller particle size and severe oxidation and glycation.

    Science.gov (United States)

    Park, Ki-Hoon; Shin, Dong-Gu; Cho, Kyung-Hyun

    2014-07-01

    Until now, there has been limited information on the effects of smoking on atherogenesis and senescence in the context of lipoprotein parameters, particularly in young smokers who have smoked fewer than 10 cigarettes per day for 3 years. In this study, lipoprotein profiles and functions were compared between smoker (n = 21) and control groups (n = 20). In the smoking group, ferric ion reduction abilities of serum and high-density lipoprotein (HDL) fractions were significantly reduced, and low-density lipoprotein (LDL) was severely oxidized. All lipoprotein particles from the smoker group showed higher advanced glycated end products with more triglyceride (TG) content compared with the control group. Lipoproteins from smokers showed faster agarose gel electromobility as well as greater smear band intensity in SDS-PAGE due to oxidation and glycation. LDL from smokers was more sensitive to oxidation and promoted foam cell forma-tion in macrophages. Gel filtration column chromatography revealed that the protein and cholesterol peaks of VLDL and LDL were elevated in the smoker group, whereas those of HDL were reduced. Human dermal fibroblast cells from the smoker group showed severe senescence following treatment with HDL2 and HDL3. Although HDL from young smokers showed impaired antioxidant ability, smaller particle size, and increased TG content, cholesteryl ester transfer protein activities were greatly enhanced in the serum and HDL fractions of the smoker group. In conclusion, smoking can cause production of dysfunctional lipoproteins having a smaller particle size that exacerbate senescence and atherogenic progress due to oxidation and glycation. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Probabilistic Teleportation of an Unknown One-Particle State by a Three-Particle General W State

    International Nuclear Information System (INIS)

    Xiu Xiaoming; Dong Li; Gao Yajun

    2007-01-01

    Two schemes for teleporting an unknown one-particle state are proposed when a general W state is utilized as quantum channel. In the first scheme, after the sender (Alice) makes a Bell-state measurement on her particles, the recipient (Bob) performs a Von Neumann measurement and introduces an auxiliary particle, and carries out a unitary transformation on his particle and the auxiliary particle, and performs a Von Neumann measurement on the auxiliary particle to confirm whether the teleportation succeeds or not. In the second scheme, the recipient (Bob) does not need to perform the first Von Neumann measurement or introduce the auxiliary particle, which is necessary in the first scheme. It is shown that the maximal probabilities of successful teleportation of the two schemes are identical if the recipient (Bob) performs an appropriate unitary transformation and adopts a proper particle on which he recovers the quantum information of state to be teleported.

  1. Probabilistic Teleportation of an Unknown One-Particle State by a Three-Particle General W State

    Institute of Scientific and Technical Information of China (English)

    XIU Xiao-Ming; DONG Li; GAO Ya-Jun

    2007-01-01

    Two schemes for teleporting an unknown one-particle state are proposed when a general W state is utilized as quantum channel.In the first scheme,after the sender (Alice) makes a Bell-state measurement on her particles,the recipient (Bob) performs a Von Neumann measurement and introduces an auxiliary particle,and carries out a unitary transformation on his particle and the auxiliary particle,and performs a Von Neumann measurement on the auxiliary particle to confirm whether the teleportation succeeds or not.In the second scheme,the recipient (Bob) does not need to perform the first Von Neumann measurement or introduce the auxiliary particle,which is necessary in the first scheme.It is shown that the maximal probabilities of successful teleportation of the two schemes are identical if the recipient (Bob) performs an appropriate unitary transformation and adopts a proper particle on which he recovers the quantum information of state to be teleported.

  2. A study of the behaviour of 0.5 μm aerosol particles in the human lung

    International Nuclear Information System (INIS)

    Subba Ramu, M.C.

    1974-01-01

    The evaluation of the tissue dose of inhaled aerosol particles (including radioactive particles) requires a study of the behaviour of particles in the human lung. Half-micron particles (unit density spheres) of di-2-ethyl hexyl subacate have been used for carrying out the study since their deposition is mostly in the pulmonary region and they are good tracers of air flow in the lung. The deposition measured is the lowest reported so far and is affected by physiological parameters like the tidal volume, the breathing frequency and the resting expiratory level. Steady-state and single-breath aerosol experiments show that the particles inhaled remain airborne in the lung during several breaths and support the view that mechanical mixing is completely absent in the alveolated airways of the lung. Studies of the effect of breath-holding on the deposition of 0.5 μm particles in the lung show that these particles may be used for the calculation of the diameter of the alveolar space in life. (author)

  3. Equilibration of particles with abelian charges

    International Nuclear Information System (INIS)

    Redlich, K.; Tounsi, A.

    2002-01-01

    We formulate the kinetic equation for time evolution and chemical equilibration of particles that carries an abelian charge. We show that dependently on the thermal conditions inside a fireball the system approaches to different chemical equilibrium limits. The role of exact conservation of quantum numbers in the kinetic description of rarely produced particles is explained. (orig.)

  4. Dynamics of collisional particles in a fluctuating magnetic field

    International Nuclear Information System (INIS)

    Spineanu, F.; Vlad, M.

    1995-01-01

    The equations of motion of a test particle in a stochastic magnetic field and interacting through collisions with a plasma are Langevin-type equations. Under reasonable assumptions on the statistical properties of the random processes (field and collisional velocity fluctuations), we perform an analytical calculation of the mean-square displacement (MSD) of the particle. The basic nonlinearity in the problem (Lagrangian argument of the random field) yields complicated averages, which we carry out using a functional formalism. The result is expressed as a series, and we find the conditions for its convergence, i.e. the limits of validity of our approach (essentially, we must restrict attention to non-chaotic regimes). Further, employing realistic bounds (spectral cut-off and limited time of observation), we derive an explicit formula for the MSD. We show that from this unique expression, we can obtain several previously known results. (author)

  5. Comparison of several algorithms of the electric force calculation in particle plasma models

    International Nuclear Information System (INIS)

    Lachnitt, J; Hrach, R

    2014-01-01

    This work is devoted to plasma modelling using the technique of molecular dynamics. The crucial problem of most such models is the efficient calculation of electric force. This is usually solved by using the particle-in-cell (PIC) algorithm. However, PIC is an approximative algorithm as it underestimates the short-range interactions of charged particles. We propose a hybrid algorithm which adds these interactions to PIC. Then we include this algorithm in a set of algorithms which we test against each other in a two-dimensional collisionless magnetized plasma model. Besides our hybrid algorithm, this set includes two variants of pure PIC and the direct application of Coulomb's law. We compare particle forces, particle trajectories, total energy conservation and the speed of the algorithms. We find out that the hybrid algorithm can be a good replacement of direct Coulomb's law application (quite accurate and much faster). It is however probably unnecessary to use it in practical 2D models.

  6. Enhanced Particle Swarm Optimization Algorithm: Efficient Training of ReaxFF Reactive Force Fields.

    Science.gov (United States)

    Furman, David; Carmeli, Benny; Zeiri, Yehuda; Kosloff, Ronnie

    2018-05-04

    Particle swarm optimization is a powerful metaheuristic population-based global optimization algorithm. However, when applied to non-separable objective functions its performance on multimodal landscapes is significantly degraded. Here we show that a significant improvement in the search quality and efficiency on multimodal functions can be achieved by enhancing the basic rotation-invariant particle swarm optimization algorithm with isotropic Gaussian mutation operators. The new algorithm demonstrates a superior performance across several nonlinear, multimodal benchmark functions compared to the rotation-invariant Particle Swam Optimization (PSO) algorithm and the well-established simulated annealing and sequential one-parameter parabolic interpolation methods. A search for the optimal set of parameters for the dispersion interaction model in ReaxFF-lg reactive force field is carried out with respect to accurate DFT-TS calculations. The resulting optimized force field accurately describes the equations of state of several high-energy molecular crystals where such interactions are of crucial importance. The improved algorithm also presents a better performance compared to a Genetic Algorithm optimization method in the optimization of a ReaxFF-lg correction model parameters. The computational framework is implemented in a standalone C++ code that allows a straightforward development of ReaxFF reactive force fields.

  7. DETACHMENT OF BACTERIOPHAGE FROM ITS CARRIER PARTICLES.

    Science.gov (United States)

    Hetler, D M; Bronfenbrenner, J

    1931-05-20

    The active substance (phage) present in the lytic broth filtrate is distributed through the medium in the form of particles. These particles vary in size within broad limits. The average size of these particles as calculated on the basis of the rate of diffusion approximates 4.4 mmicro in radius. Fractionation by means of ultrafiltration permits partial separation of particles of different sizes. Under conditions of experiments here reported the particles varied in the radius size from 0.6 mmicro to 11.4 mmicro. The active agent apparently is not intimately identified with these particles. It is merely carried by them by adsorption, and under suitable experimental conditions it can be detached from the larger particles and redistributed on smaller particles of the medium.

  8. Pseudo-classical theory of Majorana-Weyl particle

    International Nuclear Information System (INIS)

    Grigoryan, G.V.; Grigoryan, R.P.; Tyutin, I.V.

    1996-01-01

    A pseudo-classical theory of Weyl particle in the space-time dimensions D = 2 n is constructed. The canonical quantization of that pseudo-classical theory is carried out and it results in the theory of the D = 2 n dimensional Weyl particle in the Foldy-Wouthuysen representation. 28 refs

  9. Carry

    DEFF Research Database (Denmark)

    Koijen, Ralph S.J.; Moskowitz, Tobias; Pedersen, Lasse Heje

    2018-01-01

    -sectionally and in time series for a host of different asset classes, including global equities, global bonds, commodities, US Treasuries, credit, and options. Carry is not explained by known predictors of returns from these asset classes, and it captures many of these predictors, providing a unifying framework...... for return predictability. We reject a generalized version of Uncovered Interest Parity and the Expectations Hypothesis in favor of models with varying risk premia, in which carry strategies are commonly exposed to global recession, liquidity, and volatility risks, though none fully explains carry’s premium....

  10. The flexible application of carrying capacity in ecology

    Directory of Open Access Journals (Sweden)

    Eric J. Chapman

    2018-01-01

    Full Text Available Carrying capacity encompasses a broad collection of approaches used to better understand biotic interactions in ecosystems and is often applied with no explicit regard to its historical origin. In this paper, we reviewed the primary literature to examine how carrying capacity is applied in ecology. We focused our review on ecosystem studies—studies that frame their results at the ecosystem level—published after the 1950s and highlight emerging trends of this concept. We found that while carrying capacity offers some underlying commonalities, a wide range of definitions and approaches hinders a unified framework to better understand biotic ecosystem interactions. Not surprisingly, these studies most often use K—the number of individuals that the environment “can support” in a given area—to define carrying capacity, despite considerable ambiguity and uncertainty in this approach. Furthermore, the studies that we reviewed spanned several levels of ecological organization: molecules to communities and up to landscapes. To add further complexity, it is not clear whether carrying capacity was intended as a dynamic concept subject to temporal variability as it was often applied in the reviewed studies. We found that carrying capacity is most often applied to studies in conservation biology, rangeland and wildlife management, aquaculture, and fisheries biology. We explore ecosystem level responses to implications of “carrying capacity” overshoot and discuss proposed mechanisms that govern ecosystem carrying capacity. We discuss the usefulness of the concept and end with suggestions to improve carrying capacity's general application in ecosystem studies. Keywords: Carrying capacity, Conservation biology, Ecosystems, Ecosystem management, Natural resources

  11. Number and mass analysis of particles emitted by aircraft engine

    Directory of Open Access Journals (Sweden)

    Jasiński Remigiusz

    2017-01-01

    Full Text Available Exhaust emissions from aircraft is a complex issue because of the limited possibility of measurements in flight conditions. Most of the studies on this subject were performed on the basis of stationary test. Engine certification data is used to calculate total emissions generated by air transport. However, it doesnt provide any information about the local effects of air traffic. The main threat to local communities is particulate matter emissions, which adversely affects human health. Emissions from air transport affect air quality, particularly in the vicinity of the airports; it also contributes to the greenhouse effect. The article presents the measurement results of the concentration and size distribution of particles emitted during aircraft landing operation. Measurements were carried out during the landings of aircraft at a civilian airport. It was found that a single landing operation causes particle number concentration value increase of several ten-fold in a short period of time. Using aircraft engine certification data, the methodology for determination of the total number of particles emitted during a single landing operation was introduced.

  12. Statistical examination of particle in a turbulent, non-dilute particle suspension flow experimental measurements

    International Nuclear Information System (INIS)

    Souza, R.C.; Jones, B.G.

    1986-01-01

    An experimental study of particles suspended in fully developed turbulent water flow in a vertical pipe was done. Three series of experiments were conducted to investigate the statistical behaviour of particles in nondilute turbulent suspension flow, for two particle densities and particle sizes, and for several particle volume loadings ranging from 0 to 1 percent. The mean free fall velocity of the particles was determined at these various particle volume loadings, and the phenomenon of cluster formation was observed. The precise volume loading which gives the maximum relative settling velocity was observed to depend on particle density and size. (E.G.) [pt

  13. Particle physics experiments 1982

    International Nuclear Information System (INIS)

    Rousseau, M.D.; Stuart, G.

    1983-01-01

    Work carried out in 1982 on 52 experiments approved by the Particle Physics Experiments Selection Panel is described. Each experiment is listed under title, collaboration, technique, accelerator, year of running, status and spokesman. Unedited contributions are given from each experiment. (U.K.)

  14. Retrieving simulated volcanic, desert dust and sea-salt particle properties from two/three-component particle mixtures using UV-VIS polarization lidar and T matrix

    Directory of Open Access Journals (Sweden)

    G. David

    2013-07-01

    Full Text Available During transport by advection, atmospheric nonspherical particles, such as volcanic ash, desert dust or sea-salt particles experience several chemical and physical processes, leading to a complex vertical atmospheric layering at remote sites where intrusion episodes occur. In this paper, a new methodology is proposed to analyse this complex vertical layering in the case of a two/three-component particle external mixtures. This methodology relies on an analysis of the spectral and polarization properties of the light backscattered by atmospheric particles. It is based on combining a sensitive and accurate UV-VIS polarization lidar experiment with T-matrix numerical simulations and air mass back trajectories. The Lyon UV-VIS polarization lidar is used to efficiently partition the particle mixture into its nonspherical components, while the T-matrix method is used for simulating the backscattering and depolarization properties of nonspherical volcanic ash, desert dust and sea-salt particles. It is shown that the particle mixtures' depolarization ratio δ p differs from the nonspherical particles' depolarization ratio δns due to the presence of spherical particles in the mixture. Hence, after identifying a tracer for nonspherical particles, particle backscattering coefficients specific to each nonspherical component can be retrieved in a two-component external mixture. For three-component mixtures, the spectral properties of light must in addition be exploited by using a dual-wavelength polarization lidar. Hence, for the first time, in a three-component external mixture, the nonsphericity of each particle is taken into account in a so-called 2β + 2δ formalism. Applications of this new methodology are then demonstrated in two case studies carried out in Lyon, France, related to the mixing of Eyjafjallajökull volcanic ash with sulfate particles (case of a two-component mixture and to the mixing of dust with sea-salt and water-soluble particles

  15. Effect of particle morphology of Ni on the mechanical behavior of AZ91E-Ni coated nano Al2O3 composites

    Science.gov (United States)

    Sameer Kumar, D.; Suman, K. N. S.; Poddar, Palash

    2017-06-01

    The properties of any composite always depend on the bonding between the matrix and reinforcement phases. One way of improving the wettability of reinforcement in a matrix is to apply a layer of coating on reinforcing particles. The present study aims at developing Ni coating on nano Al2O3 ceramic particles and dispersing them in AZ91E magnesium matrix material. The electroless plating method has been employed to coat the particles and semi solid stir casting technique was adopted to prepare the composites. Several weight fractions of dispersed phase are considered to analyze the behavior of the fabricated composites. Field emission scanning electron microscopy (FESEM) and x-ray diffraction analysis has been carried out to investigate the distribution of particles and phase characteristics of the proposed material. The physical and mechanical behavior of the material was examined through density measurements, hardness, elastic modulus, ductility and tensile strength calculations. The metal coating on reinforcement aids to promote metal-metal bonding interface reactions which result in improved properties of the composite. Tensile fractography was carried out under FESEM and presented.

  16. Study of Events with Identified Forward Particles at the Split Field Magnet

    CERN Multimedia

    2002-01-01

    This experiment will study two aspects of particle production in the forward region : \\item 1) In the recent discovery of charm production in hadronic interactions at the Split Field Magnet, the triggering on strange particles at medium p^t has proven to be a very effective tool for the study of heavy resonances, especially those carrying new flavours like charm and beauty. We want to carry out a more detailed investigation of the production-dynamics of charmed particles, together with a search for beauty mesons and baryons. \\item 2) A trigger on forward particles at high p^t ($>$ 5GeV/c) provides unique features to determine the properties of the parton-parton subprocesses. We want to study the relative contributions of quark, diquark and gluon scattering.\\\\ \\\\ This experimental programme will be carried out, using the improved Split Field Magnet spectrometer (SFM). The different detection systems provide : \\item a) Detection and momentum analysis of charged particles in 4@p solid angle. An improved programm...

  17. Batch extracting process using magnetic particle held solvents

    Science.gov (United States)

    Nunez, L.; Vandergrift, G.F.

    1995-11-21

    A process is described for selectively removing metal values which may include catalytic values from a mixture containing same, wherein a magnetic particle is contacted with a liquid solvent which selectively dissolves the metal values to absorb the liquid solvent onto the magnetic particle. Thereafter the solvent-containing magnetic particles are contacted with a mixture containing the heavy metal values to transfer metal values into the solvent carried by the magnetic particles, and then magnetically separating the magnetic particles. Ion exchange resins may be used for selective solvents. 5 figs.

  18. Method to detect biological particles

    International Nuclear Information System (INIS)

    Giaever, I.

    1976-01-01

    A medical-diagnostic method to detect immunological as well as other specific reactions is described. According to the invention, first reactive particles (e.g. antibodies) are adsorbed on the surface of a solid, non-reactive substrate. The coated substrate is subjected to a solution which one assumes to contain the second biological particles (e.g. antigens) which are specific to the first and form complexes with these. A preferential radioactive labelling (e.g. with iodine 125) of the second biological particle is then directly or indirectly carried out. Clearage follows labelling in order to separate the second biological particles from the first ones. A specific splitting agent can selectively break the bond of both types of particle. The splitting agent solution is finally separated off and its content is investigated for the presence of labelling. (VJ) [de

  19. Gas-particle interactions in dense gas-fluidised beds

    NARCIS (Netherlands)

    Li, J.; Kuipers, J.A.M.

    2003-01-01

    The occurrence of heterogeneous flow structures in gas-particle flows seriously affects gas¿solid contacting and transport processes in dense gas-fluidized beds. A computational study, using a discrete particle method based on Molecular Dynamics techniques, has been carried out to explore the

  20. Proposed hardware architectures of particle filter for object tracking

    Science.gov (United States)

    Abd El-Halym, Howida A.; Mahmoud, Imbaby Ismail; Habib, SED

    2012-12-01

    In this article, efficient hardware architectures for particle filter (PF) are presented. We propose three different architectures for Sequential Importance Resampling Filter (SIRF) implementation. The first architecture is a two-step sequential PF machine, where particle sampling, weight, and output calculations are carried out in parallel during the first step followed by sequential resampling in the second step. For the weight computation step, a piecewise linear function is used instead of the classical exponential function. This decreases the complexity of the architecture without degrading the results. The second architecture speeds up the resampling step via a parallel, rather than a serial, architecture. This second architecture targets a balance between hardware resources and the speed of operation. The third architecture implements the SIRF as a distributed PF composed of several processing elements and central unit. All the proposed architectures are captured using VHDL synthesized using Xilinx environment, and verified using the ModelSim simulator. Synthesis results confirmed the resource reduction and speed up advantages of our architectures.

  1. Ternary particle yields in 249Cf(nth,f)

    Science.gov (United States)

    Tsekhanovich, I.; Büyükmumcu, Z.; Davi, M.; Denschlag, H. O.; Gönnenwein, F.; Boulyga, S. F.

    2003-03-01

    An experiment measuring ternary particle yields in 249Cf(nth,f) was carried out at the high flux reactor of the Institut Laue-Langevin using the Lohengrin recoil mass separator. Parameters of energy distributions were determined for 27 ternary particles up to 30Mg and their yields were calculated. The yields of 17 further ternary particles were estimated on the basis of the systematics developed. The heaviest particles observed in the experiment are 37Si and 37S; their possible origin is discussed.

  2. Four-dimensional optical manipulation of colloidal particles

    DEFF Research Database (Denmark)

    Rodrigo, P.J.; Daria, V.R.; Glückstad, J.

    2005-01-01

    We transform a TEM00 laser mode into multiple counterpropagating optical traps to achieve four-dimensional simultaneous manipulation of multiple particles. Efficient synthesis and dynamic control of the counterpropagating-beam traps is carried out via the generalized phase contrast method......, and a spatial polarization-encoding scheme. Our experiments genuinely demonstrate real-time, interactive particle-position control for forming arbitrary volumetric constellations and complex three-dimensional trajectories of multiple particles. This opens up doors for cross-disciplinary cutting-edge research...

  3. Parallel computing of a digital hologram and particle searching for microdigital-holographic particle-tracking velocimetry

    International Nuclear Information System (INIS)

    Satake, Shin-ichi; Kanamori, Hiroyuki; Kunugi, Tomoaki; Sato, Kazuho; Ito, Tomoyoshi; Yamamoto, Keisuke

    2007-01-01

    We have developed a parallel algorithm for microdigital-holographic particle-tracking velocimetry. The algorithm is used in (1) numerical reconstruction of a particle image computer using a digital hologram, and (2) searching for particles. The numerical reconstruction from the digital hologram makes use of the Fresnel diffraction equation and the FFT (fast Fourier transform),whereas the particle search algorithm looks for local maximum graduation in a reconstruction field represented by a 3D matrix. To achieve high performance computing for both calculations (reconstruction and particle search), two memory partitions are allocated to the 3D matrix. In this matrix, the reconstruction part consists of horizontally placed 2D memory partitions on the x-y plane for the FFT, whereas, the particle search part consists of vertically placed 2D memory partitions set along the z axes.Consequently, the scalability can be obtained for the proportion of processor elements,where the benchmarks are carried out for parallel computation by a SGI Altix machine

  4. On the transport, segregation, and dispersion of heavy and light particles interacting with rising thermal plumes

    Science.gov (United States)

    Lappa, Marcello

    2018-03-01

    A systematic numerical analysis is carried out on the multiplicity of patterns produced by inertial particles dispersed in a fluid and localized gravitational convection developing in the form of a rising thermal plume. In particular, specific numerical examples are presented to provide inputs for an increased understanding of the underlying flow-particle interaction mechanisms and cause-and-effect relationships. A rich spectrum of convective dynamics is obtained at the relatively high value of the considered Rayleigh number (Ra = 108), which naturally allows the investigation of several intriguing effects (including, but not limited to, particle interaction with plume jet, associated vortices, shear instabilities, and symmetry breaking phenomena). An important degree of freedom is introduced in the problem by changing the particle viscous drag through proper tuning of the related Stokes number (St). Similarly, inertia and weight of solid matter are varied parametrically by performing numerical simulations for both light and heavy particles at different values of the Froude number. This framework lets us identify the average behavior of particles by revealing the mean evolution. We connect such statistics to the behavior of the temporally evolving thermal plume, giving deeper insights into the particle transport mechanisms and associated dissipative dynamics.

  5. Micro-computer based control system and its software for carrying out the sequential acceleration on SMCAMS

    International Nuclear Information System (INIS)

    Li Deming

    2001-01-01

    Micro-computer based control system and its software for carrying out the sequential acceleration on SMCAMS is described. Also, the establishment of the 14 C particle measuring device and the improvement of the original power supply system are described

  6. SoAx: A generic C++ Structure of Arrays for handling particles in HPC codes

    Science.gov (United States)

    Homann, Holger; Laenen, Francois

    2018-03-01

    The numerical study of physical problems often require integrating the dynamics of a large number of particles evolving according to a given set of equations. Particles are characterized by the information they are carrying such as an identity, a position other. There are generally speaking two different possibilities for handling particles in high performance computing (HPC) codes. The concept of an Array of Structures (AoS) is in the spirit of the object-oriented programming (OOP) paradigm in that the particle information is implemented as a structure. Here, an object (realization of the structure) represents one particle and a set of many particles is stored in an array. In contrast, using the concept of a Structure of Arrays (SoA), a single structure holds several arrays each representing one property (such as the identity) of the whole set of particles. The AoS approach is often implemented in HPC codes due to its handiness and flexibility. For a class of problems, however, it is known that the performance of SoA is much better than that of AoS. We confirm this observation for our particle problem. Using a benchmark we show that on modern Intel Xeon processors the SoA implementation is typically several times faster than the AoS one. On Intel's MIC co-processors the performance gap even attains a factor of ten. The same is true for GPU computing, using both computational and multi-purpose GPUs. Combining performance and handiness, we present the library SoAx that has optimal performance (on CPUs, MICs, and GPUs) while providing the same handiness as AoS. For this, SoAx uses modern C++ design techniques such template meta programming that allows to automatically generate code for user defined heterogeneous data structures.

  7. Cationic flocculants carrying hydrophobic functionalities: applications for solid/liquid separation.

    Science.gov (United States)

    Schwarz, S; Jaeger, W; Paulke, B-R; Bratskaya, S; Smolka, N; Bohrisch, J

    2007-07-26

    The flocculation behaviors of three series of polycations with narrow molecular weight distributions carrying hydrophobic substituents on their backbones [poly(N-vinylbenzyl-N,N,N-trimethylammonium chloride), poly(N-vinylbenzyl-N,N-dimethyl-N-butylammonium chloride), and poly(N-vinylbenzylpyridinium chloride)] were investigated in dispersions of monodisperse polystyrene latexes and kaolin. Apparently, the charge density of the polycations decreases with increasing substituent hydrophobicity and increasing molecular weight of the polyelectrolytes. The necessary amount of flocculant for phase separation in dispersions with high substrate surface charge densities increases with increasing hydrophobicity of the polyelectrolyte. Nevertheless, the introduction of hydrophobic functionalities is beneficial, resulting in a substantial broadening of the range between the minimum and maximum amounts of flocculant necessary for efficient flocculation (flocculation window). An increase in ionic strength supports this effect. When the substrate has a low charge density, the hydrophobic interactions play a much more significant role in the flocculation process. Here, the minimum efficient doses remained the same for all three polyelectrolytes investigated, but the width of the flocculation window increased as the polycation hydrophobicity and the molecular weight increased. The necessary amount of flocculant increased with an increase in particle size at constant solid content of the dispersion, as well as with a decreasing number of particles at a constant particle size.

  8. Adsorption of acids and bases from aqueous solutions onto silicon dioxide particles.

    Science.gov (United States)

    Zengin, Huseyin; Erkan, Belgin

    2009-12-30

    The adsorption of acids and bases onto the surface of silicon dioxide (SiO(2)) particles was systematically studied as a function of several variables, including activation conditions, contact time, specific surface area, particle size, concentration and temperature. The physical properties of SiO(2) particles were investigated, where characterizations were carried out by FT-IR spectroscopy, and morphology was examined by scanning electron microscopy (SEM). The SEM of samples showed good dispersion and uniform SiO(2) particles with an average diameter of about 1-1.5 microm. The adsorption results revealed that SiO(2) surfaces possessed effective interactions with acids and bases, and greatest adsorption capacity was achieved with NaOH, where the best fit isotherm model was the Freundlich adsorption model. The adsorption properties of raw SiO(2) particles were further improved by ultrasonication. Langmuir monolayer adsorption capacity of NaOH adsorbate at 25 degrees C on sonicated SiO(2) (182.6 mg/g) was found to be greater than that of the unsonicated SiO(2) (154.3mg/g). The spontaneity of the adsorption process was established by decreases in DeltaG(ads)(0), which varied from -10.5 to -13.6 kJ mol(-1), in the temperature range 283-338K.

  9. Ternary particle yields in 249Cf(nth,f)

    International Nuclear Information System (INIS)

    Tsekhanovich, I.; Bueyuekmumcu, Z.; Davi, M.; Denschlag, H.O.; Goennenwein, F.; Boulyga, S.F.

    2003-01-01

    An experiment measuring ternary particle yields in 249 Cf(n th ,f) was carried out at the high flux reactor of the Institut Laue-Langevin using the Lohengrin recoil mass separator. Parameters of energy distributions were determined for 27 ternary particles up to 30 Mg and their yields were calculated. The yields of 17 further ternary particles were estimated on the basis of the systematics developed. The heaviest particles observed in the experiment are 37 Si and 37 S; their possible origin is discussed

  10. Particle Correlations at LEP

    CERN Document Server

    Kress, Thomas

    2002-01-01

    Particle correlations are extensively studied to obtain information about the dynamics of hadron production. From 1989 to 2000 the four LEP collaborations recorded more than 16 million hadronic Z0 decays and several thousand W+W- events. In Z0 decays, two-particle correlations were analysed in detail to study Bose-Einstein and Fermi-Dirac correlations for various particle species. In fully-hadronic W+W- decays, particle correlations were used to study whether the two W bosons decay independently. A review of selected results is presented.

  11. Satellite-borne time-of-flight particle spectrometer and its response to protons

    International Nuclear Information System (INIS)

    Shino, T.

    1994-01-01

    One of the purposes of the high energy particle (HEP) experiment of the GEOTAIL satellite launched in 1992 is the elucidation of plasma dynamics in the tail region of planetary magnetosphere. For that purpose, a low energy particle detector (LD) was on board, which mainly observed relatively low energy particles up to a few MeV. The LD is the particle spectrometer based on time of flight technique. In order to confirm further its sensitivity to high energy protons, the beam experiment was carried out at Waseda University using the engineering model of the LD spectrometer that is exactly the same as the launched one. The LD spectrometer is shown, and its functions are explained. The LD was designed to identify electrons of 30 - 400 keV, protons of 30 - 1500 keV, helium ions of 80 - 4000 keV, and heavy ions (mainly C, N and O) of 160 - 1500 keV. The relation of measured time of flight signals with energy signals is shown. There are several factors that determine the detection efficiency of the spectrometer, which are discussed. The experiment and the results are reported. (K.I.)

  12. Particle Separation of Non-Decontamination Soil using Attrition and Washing

    International Nuclear Information System (INIS)

    Koo, Daeseo; Sung, Hyun-Hee; Kim, Seung-Soo; Hong, Sang Bum; Seo, Bum Kyoung; Choi, Jong-Won

    2017-01-01

    In this study, to improve the decontamination efficiency of uranium soil, a preliminary experiment on the particle separation of non-decontamination soil was carried out using attrition and washing. The characteristics of the attrition and washing system are investigated. A conditional experiment on particle separation of non-decontamination soil will be performed. A preliminary experiment on the particle separation of non-decontamination soil was carried out to improve the decontamination efficiency of uranium soil. This experiment was performed with the ratio of soil to water (1:4) for the particle separation of non-decontamination soil. The operations of all equipment such as attrition scrubber, ultrasonic reaction, vibrating screen, and hydro-cyclone were conducted and confirmed. In the future, the additional experiments will be conducted for optimal experimental condition.

  13. Classical trajectory Monte Carlo simulations of particle confinement using dual levitated coils

    Directory of Open Access Journals (Sweden)

    R. A. Lane

    2014-07-01

    Full Text Available The particle confinement properties of plasma confinement systems that employ dual levitated magnetic coils are investigated using classical trajectory Monte Carlo simulations. Two model systems are examined. In one, two identical current-carrying loops are coaxial and separated axially. In the second, two concentric and coplanar loops have different radii and carry equal currents. In both systems, a magnetic null circle is present between the current loops. Simulations are carried out for seven current loop separations for each system and at numerous values of magnetic field strength. Particle confinement is investigated at three locations between the loops at different distances from the magnetic null circle. Each simulated particle that did not escape the system exhibited one of four modes of confinement. Reduced results are given for both systems as the lowest magnetic field strength that exhibits complete confinement of all simulated particles for a particular loop separation.

  14. Single-particle characterization of ice-nucleating particles and ice particles residuals sampled by three different techniques

    Science.gov (United States)

    Kandler, Konrad; Worringen, Annette; Benker, Nathalie; Dirsch, Thomas; Mertes, Stephan; Schenk, Ludwig; Kästner, Udo; Frank, Fabian; Nillius, Björn; Bundke, Ulrich; Rose, Diana; Curtius, Joachim; Kupiszewski, Piotr; Weingartner, Ernest; Vochezer, Paul; Schneider, Johannes; Schmidt, Susan; Weinbruch, Stephan; Ebert, Martin

    2015-04-01

    During January/February 2013, at the High Alpine Research Station Jungfraujoch a measurement campaign was carried out, which was centered on atmospheric ice-nucleating particles (INP) and ice particle residuals (IPR). Three different techniques for separation of INP and IPR from the non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed phase clouds and allow for the analysis of the residuals. The combination of the Fast Ice Nucleus Chamber (FINCH) and the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated INP for analysis. Collected particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine size, chemical composition and mixing state. All INP/IPR-separating techniques had considerable abundances (median 20 - 70 %) of instrumental contamination artifacts (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH+IN-PCVI: steel particles). Also, potential sampling artifacts (e.g., pure soluble material) occurred with a median abundance of separated by all three techniques. Soot was a minor contributor. Lead was detected in less than 10 % of the particles, of which the majority were internal mixtures with other particle types. Sea-salt and sulfates were identified by all three methods as INP/IPR. Most samples showed a maximum of the INP/IPR size distribution at 400 nm geometric diameter. In a few cases, a second super-micron maximum was identified. Soot/carbonaceous material and metal oxides were present mainly in the submicron range. ISI and FINCH yielded silicates and Ca-rich particles mainly with diameters above 1 µm, while the Ice-CVI also separated many submicron IPR. As strictly parallel sampling could not be performed, a part of the discrepancies between the different techniques may result from

  15. Carrying Capacity

    DEFF Research Database (Denmark)

    Schroll, Henning; Andersen, Jan; Kjærgård, Bente

    2012-01-01

    A spatial planning act was introduced inIndonesia 1992 and renewed in 2008. It emphasised the planning role of decentralised authorities. The spatial planning act covers both spatial and environmental issues. It defines the concept of carrying capacity and includes definitions of supportive....../cities. Four different sectors (water, food production, waste, and forests) were selected as core areas for decentralised spatial planning. Indicators for SCC and ACC were identified and assessed with regard to relevance and quantifiability. For each of the indicators selected, a legal threshold or guiding...... was introduced inIndonesia 1992 and renewed in 2008. It emphasised the planning role of decentralised authorities. The spatial planning act covers both spatial and environmental issues. It defines the concept of carrying capacity and includes definitions of supportive carrying capacity (SCC) and assimilative...

  16. LAPP - Annecy le Vieux Particle Physics Laboratory. Activity report 1996-1997

    International Nuclear Information System (INIS)

    Colas, Jacques; Minard, Marie-Noelle; Decamp, Daniel; Marion, Frederique; Drancourt, Cyril; Riva, Vanessa; Berger, Nicole; Bombar, Claudine; Dromby, Gerard

    2004-01-01

    LAPP is a high energy physics laboratory founded in 1976 and is one of the 19 laboratories of IN2P3 (National Institute of Nuclear and particle physics), institute of CNRS (National Centre for Scientific Research). LAPP is joint research facility of the University Savoie Mont Blanc (USMB) and the CNRS. Research carried out at LAPP aims at understanding the elementary particles and the fundamental interactions between them as well as exploring the connections between the infinitesimally small and the unbelievably big. Among other subjects LAPP teams try to understand the origin of the mass of the particles, the mystery of dark matter and what happened to the anti-matter that was present in the early universe. LAPP researchers work in close contact with phenomenologist teams from LAPTh, a theory laboratory hosted in the same building. LAPP teams also work since several decades at understanding the neutrinos, those elementary almost massless particles with amazing transformation properties. They took part in the design and realization of several experiments. Other LAPP teams collaborate in experiments studying signals from the cosmos. This document presents the activities of the laboratory during the years 1996-1997: 1 - Presentation of LAPP; 2 - Data acquisition experiments: e"+e"- annihilations at LEP (standard model and beyond the standard model - ALEPH, Study of hadronic final state events and Search for supersymmetric particles at L3 detector); Neutrino experiments (neutrino oscillation search at 1 km of the Chooz reactors, search for neutrino oscillations at the CERN Wide Band neutrino beam - NOMAD); Quarks-Gluons plasma; Hadronic spectroscopy; 3 - Experiments under preparation (CP violation study - BABAR, Anti Matter Spectrometer in Space - AMS, Search for gravitational waves - VIRGO, Search for the Higgs boson - ATLAS and CMS); 4 - Technical departments; 5 - Theoretical physics; 6 - Other activities

  17. Effect of particle-particle shearing on the bioleaching of sulfide minerals.

    Science.gov (United States)

    Chong, N; Karamanev, D G; Margaritis, A

    2002-11-05

    The biological leaching of sulfide minerals, used for the production of gold, copper, zinc, cobalt, and other metals, is very often carried out in slurry bioreactors, where the shearing between sulfide particles is intensive. In order to be able to improve the efficiency of the bioleaching, it is of significant importance to know the effect of particle shearing on the rate of leaching. The recently proposed concept of ore immobilization allowed us to study the effect of particle shearing on the rate of sulfide (pyrite) leaching by Thiobacillus ferrooxidans. Using this concept, we designed two very similar bioreactors, the main difference between which was the presence and absence of particle-particle shearing. It was shown that when the oxygen mass transfer was not the rate-limiting step, the rate of bioleaching in the frictionless bioreactor was 2.5 times higher than that in a bioreactor with particle friction (shearing). The concentration of free suspended cells in the frictionless bioreactor was by orders of magnitude lower than that in the frictional bioreactor, which showed that particle friction strongly reduces the microbial attachment to sulfide surface, which, in turn, reduces the rate of bioleaching. Surprisingly, it was found that formation of a layer of insoluble iron salts on the surface of sulfide particles is much slower under shearless conditions than in the presence of particle-particle shearing. This was explained by the effect of particle friction on liquid-solid mass transfer rate. The results of this study show that reduction of the particle friction during bioleaching of sulfide minerals can bring important advantages not only by increasing significantly the bioleaching rate, but also by increasing the rate of gas-liquid oxygen mass transfer, reducing the formation of iron precipitates and reducing the energy consumption. One of the efficient methods for reduction of particle friction is ore immobilization in a porous matrix. Copyright 2002

  18. Carrying photosynthesis genes increases ecological fitness of cyanophage in silico.

    Science.gov (United States)

    Hellweger, Ferdi L

    2009-06-01

    Several viruses infecting marine cyanobacteria carry photosynthesis genes (e.g. psbA, hli) that are expressed, yield proteins (D1, HLIP) and help maintain the cell's photosynthesis apparatus during the latent period. This increases energy and speeds up virus production, allowing for a reduced latent period (a fitness benefit), but it also increases the DNA size, which slows down new virus production and reduces burst size (a fitness cost). How do these genes affect the net ecological fitness of the virus? Here, this question is explored using a combined systems biology and systems ecology ('systems bioecology') approach. A novel agent-based model simulates individual cyanobacteria cells and virus particles, each with their own genes, transcripts, proteins and other properties. The effect of D1 and HLIP proteins is explicitly considered using a mechanistic photosynthesis component. The model is calibrated to the available database for Prochlorococcus ecotype MED4 and podovirus P-SSP7. Laboratory- and field-scale in silico survival, competition and evolution (gene packaging error) experiments with wild type and genetically engineered viruses are performed to develop vertical survival and fitness profiles, and to determine the optimal gene content. The results suggest that photosynthesis genes are nonessential, increase fitness in a manner correlated with irradiance, and that the wild type has an optimal gene content.

  19. Influence of severe plastic deformation on intermetallic particles in Mg-12 wt.%Zn alloy investigated using transmission electron microscopy

    International Nuclear Information System (INIS)

    Němec, M.; Gärtnerová, V.; Jäger, A.

    2016-01-01

    The in-depth microstructural characterization of intermetallic particles in an Mg-12 wt.%Zn binary alloy subjected to a severe plastic deformation is presented. The alloy was processed by four passes via equal channel angular pressing with an applied back pressure at a gradually decreasing temperature and analyzed using transmission electron microscopy techniques to observe the influence of processing on intermetallic particles. The results are compared with the initial state of the material prior to severe plastic deformation. The microstructural evolution of the α-Mg matrix and the Mg 21 Zn 25 , Mg 51 Zn 20 and MgZn 2 was analyzed using bright field imaging, selected area electron diffraction, high-resolution transmission electron microscopy and high-angle annular dark field imaging in scanning mode. The plastic deformation process influenced the α-Mg matrix and each type of intermetallic particle. The α-Mg matrix consisted of two types of areas. The first type of area had a highly deformed structure, and the second type of area had a partially recrystallized structure with an average grain size of approximately 250 nm. The Mg 21 Zn 25 microparticles exhibited distinct forms in the α-Mg matrix that were characterized as a single-crystalline form, a nano-crystalline form and a broken up form. No evidence of Mg 51 Zn 20 nanoparticles within the α-Mg matrix was found in the microstructure, which indicates their dissolution or phase transformation during the deformation process. MgZn 2 nanoparticles exhibited different behavior in both types of α-Mg matrix. Two orientation relationships toward the highly deformed α-Mg matrix were observed; however, there was no relationship toward the partially recrystallized α-Mg matrix. Additionally, the growth of the MgZn 2 nanoparticles was different in the two types of α-Mg matrix. The Mg 51 Zn 20 nanoparticles inside Mg 21 Zn 25 microparticles exhibited a distinct behavior within the single-crystalline or nano

  20. Black holes are neither particle accelerators nor dark matter probes.

    Science.gov (United States)

    McWilliams, Sean T

    2013-01-04

    It has been suggested that maximally spinning black holes can serve as particle accelerators, reaching arbitrarily high center-of-mass energies. Despite several objections regarding the practical achievability of such high energies, and demonstrations past and present that such large energies could never reach a distant observer, interest in this problem has remained substantial. We show that, unfortunately, a maximally spinning black hole can never serve as a probe of high energy collisions, even in principle and despite the correctness of the original diverging energy calculation. Black holes can indeed facilitate dark matter annihilation, but the most energetic photons can carry little more than the rest energy of the dark matter particles to a distant observer, and those photons are actually generated relatively far from the black hole where relativistic effects are negligible. Therefore, any strong gravitational potential could probe dark matter equally well, and an appeal to black holes for facilitating such collisions is unnecessary.

  1. [Relationship between atmospheric particles and rain water chemistry character].

    Science.gov (United States)

    Huo, Ming-Qun; Sun, Qian; Xie, Peng; Bai, Yu-Hua; Liu, Zhao-Rong; Li, Ji-Long; Lu, Si-Hua

    2009-11-01

    Rain and atmospheric particle samples were collected in the rural area of Taian and Shenzhen in 2007, respectively. Rain sampling was carried out during the precipitation process and several samples were got from the beginning of one precipitation to the end. The chemical character changes during precipitation and the changes of concentration of particles before and after rain were studied in this research to understand the contribution of particles on the rain chemical character and the rain-out effect for particles. The volume-weighted mean pH of rainwater in Taian was 5.97 and the total concentration of ions was 1 187.96 microeq x L(-1). The mass concentration of PM10 in Taian was 131.76 microg/m3 and that of PM2.5 was 103.84 microg/m3. The volume-weighted mean pH of rainwater in Shenzhen was 4.72 and the total concentration of ions was 175.89 microeq x L(-1). The mass concentration of PM10 in Shenzhen was 56.66 microg/m3 and that of PM2.5 was 41.52 microg/m3. During precipitation process pH and ion concentration of rain decrease and it is shown the neutralizing effect happens. The difference between rainwater of Taian and Shenzhen is due to cloud water acidity, atmospheric particles character and atmospheric acid-basic gases concentration. The clean-up effect of Na+ and Ca2+ by rain is high and which of NH4+ and NO3- is low. The clean-up effect for mass concentration, ions concentration and element concentration of particles by rain are significant.

  2. Murine polyomavirus virus-like particles carrying full-length human PSA protect BALB/c mice from outgrowth of a PSA expressing tumor.

    Directory of Open Access Journals (Sweden)

    Mathilda Eriksson

    Full Text Available Virus-like particles (VLPs consist of capsid proteins from viruses and have been shown to be usable as carriers of protein and peptide antigens for immune therapy. In this study, we have produced and assayed murine polyomavirus (MPyV VLPs carrying the entire human Prostate Specific Antigen (PSA (PSA-MPyVLPs for their potential use for immune therapy in a mouse model system. BALB/c mice immunized with PSA-MPyVLPs were only marginally protected against outgrowth of a PSA-expressing tumor. To improve protection, PSA-MPyVLPs were co-injected with adjuvant CpG, either alone or loaded onto murine dendritic cells (DCs. Immunization with PSA-MPyVLPs loaded onto DCs in the presence of CpG was shown to efficiently protect mice from tumor outgrowth. In addition, cellular and humoral immune responses after immunization were examined. PSA-specific CD4(+ and CD8(+ cells were demonstrated, but no PSA-specific IgG antibodies. Vaccination with DCs loaded with PSA-MPyVLPs induced an eight-fold lower titre of anti-VLP antibodies than vaccination with PSA-MPyVLPs alone. In conclusion, immunization of BALB/c mice with PSA-MPyVLPs, loaded onto DCs and co-injected with CpG, induces an efficient PSA-specific tumor protective immune response, including both CD4(+ and CD8(+ cells with a low induction of anti-VLP antibodies.

  3. Murine Polyomavirus Virus-Like Particles Carrying Full-Length Human PSA Protect BALB/c Mice from Outgrowth of a PSA Expressing Tumor

    Science.gov (United States)

    Eriksson, Mathilda; Andreasson, Kalle; Weidmann, Joachim; Lundberg, Kajsa; Tegerstedt, Karin

    2011-01-01

    Virus-like particles (VLPs) consist of capsid proteins from viruses and have been shown to be usable as carriers of protein and peptide antigens for immune therapy. In this study, we have produced and assayed murine polyomavirus (MPyV) VLPs carrying the entire human Prostate Specific Antigen (PSA) (PSA-MPyVLPs) for their potential use for immune therapy in a mouse model system. BALB/c mice immunized with PSA-MPyVLPs were only marginally protected against outgrowth of a PSA-expressing tumor. To improve protection, PSA-MPyVLPs were co-injected with adjuvant CpG, either alone or loaded onto murine dendritic cells (DCs). Immunization with PSA-MPyVLPs loaded onto DCs in the presence of CpG was shown to efficiently protect mice from tumor outgrowth. In addition, cellular and humoral immune responses after immunization were examined. PSA-specific CD4+ and CD8+ cells were demonstrated, but no PSA-specific IgG antibodies. Vaccination with DCs loaded with PSA-MPyVLPs induced an eight-fold lower titre of anti-VLP antibodies than vaccination with PSA-MPyVLPs alone. In conclusion, immunization of BALB/c mice with PSA-MPyVLPs, loaded onto DCs and co-injected with CpG, induces an efficient PSA-specific tumor protective immune response, including both CD4+ and CD8+ cells with a low induction of anti-VLP antibodies. PMID:21858228

  4. NANODERM. Quality of skin as a barrier to ultra-fine particles

    International Nuclear Information System (INIS)

    Kiss, A.Z.; Kertesz, Zs.; Szikszai, Z.; Biro, T.; Czifra, G.; Toth, B.I.; Juhasz, I.; Kiss, B.; Hunyadi, J.

    2007-01-01

    Complete text of publication follows. The EU5 project carried out by a consortium of 12 European universities and research institutes under the leadership of the Faculty of Physics and Geosciences, University of Leipzig started in 2003 and ended with the publication of its final report in 2007. The main goal of the project was to get quantitative information on the penetration of ultra-fine particles in all strata of skin, on their penetration pathways as well as on their impact on human health. Details of the project can be found on the following website: http://www.uni-leipzig.de/"~nanoderm. The Hungarian team was lead by the Department of Dermatology, University of Debrecen, who provided human skin grafted on SCID (Severe Combined Immune Deficiency) mice as a suitable model for studying particle penetration. In the Institute of Physiology, University of Debrecen, the cellular effects of the nanoparticles were assessed. The ATOMKI group performed ion beam analytical investigations using proton induced x-ray emission and scanning transmission ion microscopy techniques to determine the particle distribution on porcine, SCID graft and human skin samples on which various nanoparticle (TiO 2 ) formulations including commercially available sunscreens were applied. Several pre-treatments of the skin were tested, too. The skin samples were cryofixed native specimens, reducing considerably the possibility of creating artefacts. Results Titanium was only detected in the stratum corneum for healthy skin. Penetration to layers consisting of living cells was not observed. No diffusion profile was present therefore we conclude that the penetration takes place through mechanical action. Deep penetration into hair follicles was also observed, but not into vital tissue. Clearance is expected via desquamation and sebum excretion respectively for corneocyte layers and hair follicles. In conclusion, the NANODERM group does not expect any harmful effects of sunscreens containing

  5. Experimental study on inter-particle acoustic forces.

    Science.gov (United States)

    Garcia-Sabaté, Anna; Castro, Angélica; Hoyos, Mauricio; González-Cinca, Ricard

    2014-03-01

    A method for the experimental measurement of inter-particle forces (secondary Bjerknes force) generated by the action of an acoustic field in a resonator micro-channel is presented. The acoustic radiation force created by an ultrasonic standing wave moves suspended particles towards the pressure nodes and the acoustic pressure induces particle volume oscillations. Once particles are in the levitation plane, transverse and secondary Bjerknes forces become important. Experiments were carried out in a resonator filled with a suspension composed of water and latex particles of different size (5-15 μm) at different concentrations. Ultrasound was generated by means of a 2.5 MHz nominal frequency transducer. For the first time the acoustic force generated by oscillating particles acting on other particles has been measured, and the critical interaction distance in various cases has been determined. Inter-particle forces on the order of 10(-14) N have been measured by using this method.

  6. On the equation of transport for cosmic-ray particles in the interplanetary region

    International Nuclear Information System (INIS)

    Webb, G.M.; Gleeson, L.J.

    1979-01-01

    Two new alternative derivations of the equation of transport for cosmic-ray particles in the interplanetary region are provided. Both derivations are carried out by using particle position r and time t in a frame of reference fixed in the solar system, and the particle momentum p' is specified relative to a local frame of reference moving with the solar wind. The first derivation is carried out by writing down a continuity equation for the cosmic rays, taking into account particle streaming and energy changes, and subsequently deriving the streaming and energy change terms in this equation. The momentum change term in the continuity equation, previously considered to be due to the adiabatic deceleration of particles in the expanding magnetic fields carried by the solar wing, appears in the present analysis as a dynamic effect in which the Lorentz force on the particle does not appear explicitly. An alternative derivation based on the ensemble averaged Liouville equation for charged particles in the stochastic interplanetary magnetic field using (r,p',t) as independent coordinates is also given. The latter derivation confirms the momentum change interpretation of the first derivation. A new derivation of the adiabatic rate as a combination of inverse-Fermi and betatron deceleration processes is also provided. (Auth.)

  7. Fermi level equilibration between colloidal lead and silver particles in aqueous solution

    International Nuclear Information System (INIS)

    Henglein, A.; Holzwarth, A.; Mulvaney, P.

    1992-01-01

    Colloidal solutions of lead and silver were mixed under the exclusion of air. The equilibration of the Fermi levels in the two different types of metal particles took place over a few days at room temperature. The equilibration took place by the transfer of lead atoms from lead to silver particles until the latter carried a lead mantle of one to two monolayers. This could be concluded from the observed changes in the optical spectrum of the silver particles. The results are discussed in terms of two mechanisms: (1) Pb atom transfer following heterocoagulation of the lead and silver particles and (2) electron transfer during Brownian encounters, followed by Pb 2+ desorption from the lead particles and subsequent Pb 2+ reductor on the silver particles carrying the transferred electrons. Traces of methylviologen, MV 2+ , in the solution drastically increase the rate of equilibration; this is explained by a relay mechanism in which electrons in the lead particles are first picked up by MV 2+ and are then transferred from MV + to the silver particles. 2 refs., 4 figs

  8. Development of automatic flaw detection systems for magnetic particle examination

    International Nuclear Information System (INIS)

    Shirai, T.; Kimura, J.; Amako, T.

    1988-01-01

    Utilizing a video camera and an image processor, development was carried out on automatic flaw detection and discrimination techniques for the purpose of achieving automated magnetic particle examination. Following this, fluorescent wet magnetic particle examination systems for blade roots and rotor grooves of turbine rotors and the non-fluorescent dry magnetic particle examination system for butt welds, were developed. This paper describes these automatic magnetic particle examination (MT) systems and the functional test results

  9. Gas-solute dispersivity ratio in granular porous media as related to particle size distribution and particle shape

    DEFF Research Database (Denmark)

    Pugliese, Lorenzo; Poulsen, Tjalfe; Straface, Salvatore

    2013-01-01

    Measurements of solute dispersion in porous media is generally much more time consuming than gas dispersion measurements performed under equivalent conditions. Significant time savings may therefore, be achieved if solute dispersion coefficients can be estimated based on measured gas dispersion...... data. This paper evaluates the possibility for estimating solute dispersion based on gas dispersion measurements. Breakthrough measurements were carried out at different fluid velocities (covering the same range in Reynolds number), using O2 and NaCl as gas and solute tracers, respectively. Three...... different, granular porous materials were used: (1) crushed granite (very angular particles), (2) gravel (particles of intermediate roundness) and (3) Leca® (almost spherical particles). For each material, 21 different particle size fractions were used. Gas and solute dispersion coefficients were determined...

  10. Reducing the anisotropy of a Brazilian disc generated in a bonded-particle model

    Science.gov (United States)

    Zhang, Q.; Zhang, X. P.; Ji, P. Q.

    2018-03-01

    The Brazilian test is a widely used method for determining the tensile strength of rocks and for calibrating parameters in bonded-particle models (BPMs). In previous studies, the Brazilian disc has typically been trimmed from a compacted rectangular specimen. The present study shows that different tensile strength values are obtained depending on the compressive loading direction. Several measures are proposed to reduce the anisotropy of the disc. The results reveal that the anisotropy of the disc is significantly influenced by the compactibility of the specimen from which it is trimmed. A new method is proposed in which the Brazilian disc is directly generated with a particle boundary, effectively reducing the anisotropy. The stiffness (particle and bond) and strength (bond) of the boundary are set at less than and greater than those of the disc assembly, respectively, which significantly decreases the stress concentration at the boundary contacts and prevents breakage of the boundary particle bonds. This leads to a significant reduction in the anisotropy of the disc and the discreteness of the tensile strength. This method is more suitable for carrying out a realistic Brazilian test for homogeneous rock-like material in the BPM.

  11. DEM Particle Fracture Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Boning [Univ. of Colorado, Boulder, CO (United States); Herbold, Eric B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homel, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Regueiro, Richard A. [Univ. of Colorado, Boulder, CO (United States)

    2015-12-01

    An adaptive particle fracture model in poly-ellipsoidal Discrete Element Method is developed. The poly-ellipsoidal particle will break into several sub-poly-ellipsoids by Hoek-Brown fracture criterion based on continuum stress and the maximum tensile stress in contacts. Also Weibull theory is introduced to consider the statistics and size effects on particle strength. Finally, high strain-rate split Hopkinson pressure bar experiment of silica sand is simulated using this newly developed model. Comparisons with experiments show that our particle fracture model can capture the mechanical behavior of this experiment very well, both in stress-strain response and particle size redistribution. The effects of density and packings o the samples are also studied in numerical examples.

  12. Global Particle-in-Cell Simulations of Mercury's Magnetosphere

    Science.gov (United States)

    Schriver, D.; Travnicek, P. M.; Lapenta, G.; Amaya, J.; Gonzalez, D.; Richard, R. L.; Berchem, J.; Hellinger, P.

    2017-12-01

    Spacecraft observations of Mercury's magnetosphere have shown that kinetic ion and electron particle effects play a major role in the transport, acceleration, and loss of plasma within the magnetospheric system. Kinetic processes include reconnection, the breakdown of particle adiabaticity and wave-particle interactions. Because of the vast range in spatial scales involved in magnetospheric dynamics, from local electron Debye length scales ( meters) to solar wind/planetary magnetic scale lengths (tens to hundreds of planetary radii), fully self-consistent kinetic simulations of a global planetary magnetosphere remain challenging. Most global simulations of Earth's and other planet's magnetosphere are carried out using MHD, enhanced MHD (e.g., Hall MHD), hybrid, or a combination of MHD and particle in cell (PIC) simulations. Here, 3D kinetic self-consistent hybrid (ion particle, electron fluid) and full PIC (ion and electron particle) simulations of the solar wind interaction with Mercury's magnetosphere are carried out. Using the implicit PIC and hybrid simulations, Mercury's relatively small, but highly kinetic magnetosphere will be examined to determine how the self-consistent inclusion of electrons affects magnetic reconnection, particle transport and acceleration of plasma at Mercury. Also the spatial and energy profiles of precipitating magnetospheric ions and electrons onto Mercury's surface, which can strongly affect the regolith in terms of space weathering and particle outflow, will be examined with the PIC and hybrid codes. MESSENGER spacecraft observations are used both to initiate and validate the global kinetic simulations to achieve a deeper understanding of the role kinetic physics play in magnetospheric dynamics.

  13. Search for a particle with a long interaction length. [particle mandela to explain anomalous energy spectra at mountain altitude

    Science.gov (United States)

    Barrowes, S. C.; Huggett, R. W.; Jones, W. V.; Levit, L. B.; Porter, L. G.

    1975-01-01

    A search has been carried out for a long-lived particle having an interaction length lambda sub m equals 300 to 2000 gm/sq cm in air. Such a particle, called the mandela, has been proposed to explain an anomalous energy spectrum of particles observed near sea level with a shallow spectrometer. Data taken at mountain altitude with a deep spectrometer has been examined for compatibility with the existence of the mandela. Although data tend to favor the mandela hypothesis the results are not conclusive and appear to be explainable by conventional means.

  14. An analytical force balance model for dust particles with size up to several Debye lengths

    Science.gov (United States)

    Aussems, D. U. B.; Khrapak, S. A.; Doǧan, I.; van de Sanden, M. C. M.; Morgan, T. W.

    2017-11-01

    In this study, we developed a revised stationary force balance model for particles in the regime a / λ D < 10 . In contrast to other analytical models, the pressure and dipole force were included too, and for anisotropic plasmas, a novel contribution to the dipole moment was derived. Moreover, the Coulomb logarithm and collection cross-section were modified. The model was applied on a case study where carbon dust is formed near the plasma sheath in the linear plasma device Pilot-PSI. The pressure force and dipole force were found to be significant. By tracing the equilibrium position, the particle radius was determined at which the particle deposits. The obtained particle radius agrees well with the experimentally obtained size and suggests better agreement as compared to the unrevised model.

  15. Single-particle motion in large-amplitude quadrupole shape transition

    International Nuclear Information System (INIS)

    Yamada, Kazuya

    1991-01-01

    The microscopic structure of the single-particle motion for the spherical-deformed transitional nuclei is analysed by using the self-consistent collective-coordinate method (SCC method). The single-particle motion in the moving-frame of reference called the collective vibrating coordinate frame is introduced by the generalized Bogoliubov transformation depending on the collective coordinate. The numerical calculations of the single-particle (quasi-particle) energy level diagrams and their occupation probabilities for the static deformation are carried out for the Sm isotopes. A clear change of the single-particle distribution structure appears in the course of deformation. (author)

  16. Particle-based characterisation of pulverised coals and chars for carbon burnout studies

    Energy Technology Data Exchange (ETDEWEB)

    Gibbins, J.R.; Seitz, M.H.; Kennedy, S.M.; Beeley, T.J.; Riley, G.S. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Mechanical Engineering Department

    1999-07-01

    The study of individual particle properties, as opposed to averaged behaviour of differing particles, was carried out for the combustion of coals and chars using optical microscopy and digital image processing. Chars from entrained flow reactors and corresponding pulverized fuel samples were characterized to examine possible char particle origins for real heterogeneous particles. 7 refs., 5 figs., 1 tab.

  17. Diffusion and release of noble gas and halogen fission products with several days half-life in UO2 particle

    International Nuclear Information System (INIS)

    Fang Chao

    2013-01-01

    The exact solutions of diffusion and release model of noble gas and halogen fission products in UO 2 particle of HTGR were built under the conditions of adsorption effect and other physical processes. The corresponding release fractions (F(t)) and the ratio of release and productive amounts (R(t)/B (t)) of fission products were also derived. Furthermore, the F(t) and R(t)/B(t) of 131 I, 131 IXe m , 133 Xe and 133 Xe m whose half-lifes are several days in UO 2 particle with the exact solutions, approximate solutions and corresponding numerical solutions under different temperature histories of reactor core were investigated. The results show that the F(t) and R(t)/B(t) are different in numerical values unless the time of release is long enough. The properties of conservation of exact solutions are much more reasonable than the ones of approximate solutions. It is also found that the results of exact solutions approach the actual working conditions more than the approximate and numerical solutions. (author)

  18. Tensorial spacetime geometries carrying predictive, interpretable and quantizable matter dynamics

    International Nuclear Information System (INIS)

    Rivera Hernandez, Sergio

    2012-01-01

    Which tensor fields G on a smooth manifold M can serve as a spacetime structure? In the first part of this thesis, it is found that only a severely restricted class of tensor fields can provide classical spacetime geometries, namely those that can carry predictive, interpretable and quantizable matter dynamics. The obvious dependence of this characterization of admissible tensorial spacetime geometries on specific matter is not a weakness, but rather presents an insight: it was Maxwell theory that justified Einstein to promote Lorentzian manifolds to the status of a spacetime geometry. Any matter that does not mimick the structure of Maxwell theory, will force us to choose another geometry on which the matter dynamics of interest are predictive, interpretable and quantizable. These three physical conditions on matter impose three corresponding algebraic conditions on the totally symmetric contravariant coefficient tensor field P that determines the principal symbol of the matter field equations in terms of the geometric tensor G: the tensor field P must be hyperbolic, time-orientable and energy-distinguishing. Remarkably, these physically necessary conditions on the geometry are mathematically already sufficient to realize all kinematical constructions familiar from Lorentzian geometry, for precisely the same structural reasons. This we were able to show employing a subtle interplay of convex analysis, the theory of partial differential equations and real algebraic geometry. In the second part of this thesis, we then explore general properties of any hyperbolic, time-orientable and energy-distinguishing tensorial geometry. Physically most important are the construction of freely falling non-rotating laboratories, the appearance of admissible modified dispersion relations to particular observers, and the identification of a mechanism that explains why massive particles that are faster than some massless particles can radiate off energy until they are slower than all

  19. Tensorial spacetime geometries carrying predictive, interpretable and quantizable matter dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Rivera Hernandez, Sergio

    2012-02-15

    Which tensor fields G on a smooth manifold M can serve as a spacetime structure? In the first part of this thesis, it is found that only a severely restricted class of tensor fields can provide classical spacetime geometries, namely those that can carry predictive, interpretable and quantizable matter dynamics. The obvious dependence of this characterization of admissible tensorial spacetime geometries on specific matter is not a weakness, but rather presents an insight: it was Maxwell theory that justified Einstein to promote Lorentzian manifolds to the status of a spacetime geometry. Any matter that does not mimick the structure of Maxwell theory, will force us to choose another geometry on which the matter dynamics of interest are predictive, interpretable and quantizable. These three physical conditions on matter impose three corresponding algebraic conditions on the totally symmetric contravariant coefficient tensor field P that determines the principal symbol of the matter field equations in terms of the geometric tensor G: the tensor field P must be hyperbolic, time-orientable and energy-distinguishing. Remarkably, these physically necessary conditions on the geometry are mathematically already sufficient to realize all kinematical constructions familiar from Lorentzian geometry, for precisely the same structural reasons. This we were able to show employing a subtle interplay of convex analysis, the theory of partial differential equations and real algebraic geometry. In the second part of this thesis, we then explore general properties of any hyperbolic, time-orientable and energy-distinguishing tensorial geometry. Physically most important are the construction of freely falling non-rotating laboratories, the appearance of admissible modified dispersion relations to particular observers, and the identification of a mechanism that explains why massive particles that are faster than some massless particles can radiate off energy until they are slower than all

  20. Trapped particles at a magnetic discontinuity

    Science.gov (United States)

    Stern, D. P.

    1972-01-01

    At a tangential discontinuity between two constant magnetic fields a layer of trapped particles can exist, this work examines the conditions under which the current carried by such particles tends to maintain the discontinuity. Three cases are examined. If the discontinuity separates aligned vacuum fields, the only requirement is that they be antiparallel. With arbitrary relative orientations, the field must have equal intensities on both sides. Finally, with a guiding center plasma on both sides, the condition reduces to a relation which is also derivable from hydromagnetic theory. Arguments are presented for the occurrence of such trapped modes in the magnetopause and for the non-existence of specular particle reflection.

  1. From particle physics to medical applications

    CERN Document Server

    Dosanjh, Manjit

    2017-01-01

    CERN is the world's largest particle physics research laboratory. Since it was established in 1954, it has made an outstanding contribution to our understanding of the fundamental particles and their interactions, and also to the technologies needed to analyse their properties and behaviour. The experimental challenges have pushed the performance of particle accelerators and detectors to the limits of our technical capabilities, and these groundbreaking technologies can also have a significant impact in applications beyond particle physics. In particular, the detectors developed for particle physics have led to improved techniques for medical imaging, while accelerator technologies lie at the heart of the irradiation methods that are widely used for treating cancer. Indeed, many important diagnostic and therapeutic techniques used by healthcare professionals are based either on basic physics principles or the technologies developed to carry out physics research. Ever since the discovery of x-rays by Roentgen...

  2. DNA vaccines based on chimeric potyvirus-like particles carrying HPV16 E7 peptide (aa 44-60)

    Czech Academy of Sciences Publication Activity Database

    Pokorná, D.; Čeřovská, Noemi; Šmahel, M.; Moravec, Tomáš; Ludvíková, V.; Machková, J.; Synková, Helena; Dušková, M.; Hozák, P.; Velemínský, Jiří

    2005-01-01

    Roč. 14, č. 4 (2005), s. 1045-1053 ISSN 1021-335X R&D Projects: GA ČR GA310/00/0381 Grant - others:IGA MHCR NC7552-3/2003 Institutional research plan: CEZ:AV0Z50380511 Keywords : human papillomavirus * E7 * virus-like particles Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.572, year: 2005

  3. Analysis of lung tissue particles among silicosis cases

    Directory of Open Access Journals (Sweden)

    B Case

    2005-10-01

    Full Text Available Background and Aims:Lung tissue samples of several miners, millers, sandblaster, welders andconstruction workers with historical exposure to mineral particles were analyzed. These subjectshad significant respiratory exposure to silica particles and demanded compensation foroccupational lung diseases.Method: Lung tissue samples were observed under an Electron microscope with 10000Xmagnification. Mineral particles were sized and analyzed by EDS detector based on X-rayspectrophotometry.Results: The results have indicated that the lung particle burden of the subjects was closelyrelated to their occupational history. The highest level of mineral silica particles were found in thelungs of miners and sandblasters. The highest concentration of metallic particles was found in thelungs of welders and miners in ferric mining industry. Severity of lung fibrosis was directlyrelated to the lung free silica concentration. However, no association was found between particlediameter and severity of fibrosis. In addition, lung particle burden of silicotic cases with lungcancer contained a much higher concentration of metallic particles and asbestos fibres that thelung of those subject with silicosis only.Conclusion: Although workers in mining and construction may be predominantly exposed tosilica particles including quartz, the role of other mineral particles including asbestos fibres,metallic fibres and other minerals should be taken into account in the genesis of occupational lungdisease in particular lung cancer. Lung tissue sample analysis can provide valuable informationto assess the legal and compensation cases.

  4. A Search for Free Fractional Electric Charge Elementary Particles

    Energy Technology Data Exchange (ETDEWEB)

    Halyo, Valerie

    2000-12-04

    A direct search was carried out in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied--about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0.16 e (e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71 x 10{sup -22} particles per nucleon with 95% confidence.

  5. A Search for Free Fractional Electric Charge Elementary Particles

    Energy Technology Data Exchange (ETDEWEB)

    Halyo, Valerie

    2000-12-04

    A direct search was carried out in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied| about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0.16 e (e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71 x 10{sup -22} particles per nucleon with 95% confidence.

  6. Quasi-linear absorption of lower hybrid waves by fusion generated alpha particles

    International Nuclear Information System (INIS)

    Barbato, E.; Santini, F.

    1991-01-01

    Lower hybrid waves are expected to be used in a steady state reactor to produce current and to control the current profile and the stability of internal modes. In the ignition phase, however, the presence of energetic alpha particles may prevent wave-electron interaction, thus reducing the current drive efficiency. This is due to the very high birth energy of the alpha particles that may absorb much of the lower hybrid wave power. This unfavourable effect is absent at high frequencies (∼ 8 GHz for typical reactor parameters). Nevertheless, because of the technical difficulties involved in using such high frequencies, it is very important to investigate whether power absorption by alpha particles would be negligible also at relatively low frequencies. Such a study has been carried out on the basis of the quasi-linear theory of wave-alpha particle interaction, since the distortion of the alpha distribution function may enhance the radiofrequency absorption above the linear level. New effects have been found, such as local alpha concentration and acceleration. The model for alpha particles is coupled with a 1-D deposition code for lower hybrid waves to calculate the competition in the power absorption between alphas and electrons as the waves propagate into the plasma core for typical reactor (ITER) parameters. It is shown that at a frequency as low as 5 GHz, power absorption by alpha particles is negligible for conventional plasma conditions and realistic alpha particle concentrations. In more ''pessimistic'' and severe conditions, negligible absorption occurs at 6 GHz. (author). 19 refs, 11 figs, 2 tabs

  7. Comparative study of the performance of columns packed with several new fine silica particles. Would the external roughness of the particles affect column properties?

    Science.gov (United States)

    Gritti, Fabrice; Guiochon, Georges

    2007-09-28

    We measured and compared the characteristics and performance of columns packed with particles of five different C(18)-bonded silica, 3 and 5 microm Luna, 3 microm Atlantis, 3.5 microm Zorbax, and 2.7 microm Halo. The average particle size of each material was derived from the SEM pictures of 200 individual particles. These pictures contrast the irregular morphology of the external surface of the Zorbax and Halo particles and the smooth surface of the Luna and Atlantis particles. In a wide range of mobile phase velocities (from 0.010 to 3 mL/min) and at ambient temperature, we measured the first and second central moments of the peaks of naphthalene, insulin, and bovine serum albumin (BSA). These moments were corrected for the contributions of the extra-column volumes to calculate the reduced HETPs. The C-terms of naphthalene and insulin are largest for the Halo and Zorbax materials and the A-term smallest for the Halo-packed column. The Halo column performs the best for the low molecular weight compound naphthalene (minimum reduced HETP, 1.4) but is not as good as the Atlantis or Luna columns for the large molecular weight compound insulin. The Zorbax column is the least efficient column because of its large C-term. The lowest sample diffusivity through these particles, alone, does not account for the results. It is most likely that the roughness of the external surface of the Halo and Zorbax particles limit the performance of these columns at high flow rates generating an unusually high film mass transfer resistance.

  8. Lung Deposition Calculations for Radioactive Aerosol Particles Originating from Caves and Uranium Mines

    International Nuclear Information System (INIS)

    Alfoldy, B.; Torok, Sz.; Winkler, R.

    2001-01-01

    Full text: The present study simulates lung deposition of radioactive aerosol particles originating from the atmosphere of a therapeutic cave (Szemlohegyi cave, Budapest) and several uranium mines. Particle deposition patterns and surface densities have been calculated by the stochastic lung model of Koblinger and Hofmann. In the model, deposition can be caused by the simultaneous effects of Brownian motion, inertial impaction and gravitational settling. The calculations were carried out by considering the aerosol particle size distribution and radon concentration of the atmosphere of the cave and mines. The deposition was computed in the whole lung, in characteristic parts of the respiratory system such as extrathoracic, tracheobronchial, acinar and alveolar regions and in the singe airway generations at different flow rates for adults. The adverse health effects of inhaled radionuclides strongly depend from the local deposition density values in cellular dimensions. Thus we will built in the results to a cellular effects model of Balashazy and Hofmann for the simulation of the pathological effects of inhaled radionuclides for risk assessment. (author)

  9. Sources of sub-micrometre particles near a major international airport

    Science.gov (United States)

    Masiol, Mauro; Harrison, Roy M.; Vu, Tuan V.; Beddows, David C. S.

    2017-10-01

    The international airport of Heathrow is a major source of nitrogen oxides, but its contribution to the levels of sub-micrometre particles is unknown and is the objective of this study. Two sampling campaigns were carried out during warm and cold seasons at a site close to the airfield (1.2 km). Size spectra were largely dominated by ultrafine particles: nucleation particles ( strategies are applied successfully.

  10. Thermodynamics of phase-separating nanoalloys: Single particles and particle assemblies

    Science.gov (United States)

    Fèvre, Mathieu; Le Bouar, Yann; Finel, Alphonse

    2018-05-01

    The aim of this paper is to investigate the consequences of finite-size effects on the thermodynamics of nanoparticle assemblies and isolated particles. We consider a binary phase-separating alloy with a negligible atomic size mismatch, and equilibrium states are computed using off-lattice Monte Carlo simulations in several thermodynamic ensembles. First, a semi-grand-canonical ensemble is used to describe infinite assemblies of particles with the same size. When decreasing the particle size, we obtain a significant decrease of the solid/liquid transition temperatures as well as a growing asymmetry of the solid-state miscibility gap related to surface segregation effects. Second, a canonical ensemble is used to analyze the thermodynamic equilibrium of finite monodisperse particle assemblies. Using a general thermodynamic formulation, we show that a particle assembly may split into two subassemblies of identical particles. Moreover, if the overall average canonical concentration belongs to a discrete spectrum, the subassembly concentrations are equal to the semi-grand-canonical equilibrium ones. We also show that the equilibrium of a particle assembly with a prescribed size distribution combines a size effect and the fact that a given particle size assembly can adopt two configurations. Finally, we have considered the thermodynamics of an isolated particle to analyze whether a phase separation can be defined within a particle. When studying rather large nanoparticles, we found that the region in which a two-phase domain can be identified inside a particle is well below the bulk phase diagram, but the concentration of the homogeneous core remains very close to the bulk solubility limit.

  11. The effect of particle addition and fibrous reinforcement on epoxy-matrix composites for severe sliding conditions

    DEFF Research Database (Denmark)

    Larsen, Thomas Ricco Ølholm; Løgstrup Andersen, Tom; Thorning, Bent

    2008-01-01

    This paper reports production and tribological testing of epoxy-matrix composites for dry-sliding conditions. The examined composites are produced using the following components: epoxy resin (EP), glass fiber weave (G), carbon/aramid hybrid weave (CA), PTFE particles and nano-scale CuO particles...... are seen when the fibers are parallel and anti-parallel (P-AP) to the sliding direction compared to normal and parallel (N-P). Experiments with incorporating micro-scale PTFE particles and nano-scale CuO particles, respectively, into the epoxy resin along with the carbon/aramid weave shows no difference...... in friction but minor improvements in wear. When micro-scale PTFE particles are incorporated into the neat epoxy resin, i.e. without fibers, an increase in and a decrease in A are measured. When the same is done with nano-CuO a deterioration of both friction and wear properties are seen. At the three roughest...

  12. AI systems approach in particle accelerators

    International Nuclear Information System (INIS)

    Kataria, S.K.; Bhagwat, P.V.; Kori, S.A.

    1992-01-01

    The large particle accelerators machines like pelletron accelerator at Tata Institute of Fundamental Research (T.I.F.R) have several levels of controls with operators responsible for overall global control decisions and closed loop feedback controllers for relatively small subsystems of the machines. As the accelerator machines are becoming more complicated and the requirements more stringent, there is a need to provide the operators with an artificial intelligence (AI) system to aid in the tuning the machine and in failure diagnosis. There are few major areas in the pelletron operation, which can be done more efficiently using AI systems approach so that useful beam is available for much more time: 1) Accelerator Conditioning, 2) Accelerator Tuning, and 3) Maintaining the Tune beams. The feasibility study for using expert system for above areas and also for safety evaluation of the various subsystems is carried out. (author). 10 refs., 4 figs

  13. Laser and Particle Guiding Micro-Elements for Particle Accelerators

    CERN Document Server

    Plettner, Tomas; Spencer, James; Wisdom, Jeffrey

    2005-01-01

    Laser driven particle accelerators based on the current generation of lasers will require sub-micron control of the laser field as well as precise beam guiding. Hence the fabrication techniques that allow integrating both elements into an accelerator-on-chip format become critical for the success of such particle accelerators. Micromachining technology for silicon has been shown to be one such feasible technology in PAC2003 but with a variety of complications on the laser side. Fortunately, in recent years the fabrication of transparent ceramics has become an interesting technology that could be applied for laser-particle accelerators in several ways. We discuss this area, its advantages such as the range of materials it provides and various ways to implement it followed by some different test examples that have been considered. One important goal of this approach is an integrated system that could avoid the necessity of having to inject either laser or particle pulses into these structures.

  14. Reminiscences a journey through particle physics

    CERN Document Server

    Melissinos, Adrian

    2013-01-01

    A personal recount in areas of particle physics and related fields as a research physicist for over 50 years, Adrian Melissinos' insights into the ways that general research was carried out, as well as the evolution of particle physics from 1958 to 2008 will prove valuable to science history enthusiasts, as well as particle physicists. Be it conventional accelerator experiments, the use of microwave techniques in search of cosmic axions, or taking advantage of high power lasers to observe light-by-light scattering, the excitement of searching for something new in the face of failures and then successes is enriching, and the collaboration with gifted and outstanding colleagues and students proves insightful. A hybrid of personal reminiscences and a professional journey, readers get to relive the joy and excitement of researching and teaching in small groups during those early years while gaining a partial historical perspective of particle physics since 1958 - all in "Reminiscences: A Journey through Particle ...

  15. Pre-equilibrium particle decay in the photonuclear reactions

    International Nuclear Information System (INIS)

    Wu, J.R.; Chang, C.C.

    1976-11-01

    Calculations of particle energy spectra resulting from the photonuclear reactions at energies below the meson production threshold have been carried out in the framework of combining the pre-equilibrium exiton model and the quasi-deuteron model. A 2p-2h initial state in the exciton model is assumed because in the energy region above giant resonance the quasi-deuteron absorption is the dominant process. With these combined models, the subsequent secondary interactions of the emerging particle with the rest of the nucleus following the initial photon-nucleus interaction are appropriately taken into account. The experimental difference energy spectra of fast photoneutrons from several elements (Al, Cu, In, Sn, Ta, Pb, Bi and U) at bremsstrahlung energies of 55 and 85 MeV and the photoproton energy spectra from 12 C at bremsstrahlung energy 110 MeV were compared with the theoretical predictions. General agreements in both spectral shapes and cross sections are obtained. The relative yields of the reactions (γ, xn) resulting from monoenergetic photons on 127 I at 50, 100 and 150 MeV are also predicted reasonably well by the combined models together with the conventional evaporation theory

  16. Measurement by phase severance

    International Nuclear Information System (INIS)

    Noyes, H.P.

    1987-03-01

    It is claimed that the measurement process is more accurately described by ''quasi-local phase severance'' than by ''wave function collapse''. The approach starts from the observation that the usual route to quantum mechanics starting from the Hamilton-Jacobi equations throws away half the degrees of freedom, namely, the classical initial state parameters. To overcome this difficulty, the full set of Hamilton-Jacobi equations is interpreted as operator equations acting on a state vector. The measurement theory presented is based on the conventional S-matrix boundary condition of N/sub A/ free particles in the distant past and N/sub B/ free particles in the distant future and taking the usual free particle wave functions, multiplied by phase factors

  17. Particle-bearing currents in uniform density and two-layer fluids

    Science.gov (United States)

    Sutherland, Bruce R.; Gingras, Murray K.; Knudson, Calla; Steverango, Luke; Surma, Christopher

    2018-02-01

    Lock-release gravity current experiments are performed to examine the evolution of a particle bearing flow that propagates either in a uniform-density fluid or in a two-layer fluid. In all cases, the current is composed of fresh water plus micrometer-scale particles, the ambient fluid is saline, and the current advances initially either over the surface as a hypopycnal current or at the interface of the two-layer fluid as a mesopycnal current. In most cases the tank is tilted so that the ambient fluid becomes deeper with distance from the lock. For hypopycnal currents advancing in a uniform density fluid, the current typically slows as particles rain out of the current. While the loss of particles alone from the current should increase the current's buoyancy and speed, in practice the current's speed decreases because the particles carry with them interstitial fluid from the current. Meanwhile, rather than settling on the sloping bottom of the tank, the particles form a hyperpycnal (turbidity) current that advances until enough particles rain out that the relatively less dense interstitial fluid returns to the surface, carrying some particles back upward. When a hypopycnal current runs over the surface of a two-layer fluid, the particles that rain out temporarily halt their descent as they reach the interface, eventually passing through it and again forming a hyperpycnal current. Dramatically, a mesopycnal current in a two-layer fluid first advances along the interface and then reverses direction as particles rain out below and fresh interstitial fluid rises above.

  18. Particle physics experiments 1992

    International Nuclear Information System (INIS)

    Roberts, B.A.

    1993-03-01

    The research programs described here were carried out in 1992 at Rutherford Appleton Laboratory and funded by the United Kingdom Science and Engineering Research Council. The area covered in these experiments is particle physics. Unedited contributions from over forty experimental programs are included. Experiments are listed according to their current status, the accelerator used and its years of operation. (UK)

  19. Measurement of Turbulence Modulation by Non-Spherical Particles

    DEFF Research Database (Denmark)

    Mandø, Matthias; Rosendahl, Lasse

    2010-01-01

    The change in the turbulence intensity of an air jet resulting from the addition of particles to the flow is measured using Laser Doppler Anemometry. Three distinct shapes are considered: the prolate spheroid, the disk and the sphere. Measurements of the carrier phase and particle phase velocities...... at the centerline of the jet are carried out for mass loadings of 0.5, 1, 1.6 and particle sizes 880μm, 1350μm, 1820μm for spherical particles. For each non-spherical shape only a single size and loading are considered. The turbulence modulation of the carrier phase is found to highly dependent on the turbulence......, the particle mass flow and the integral length scale of the flow. The expression developed on basis of spherical particles only is applied on the data for the non-spherical particles. The results suggest that non-spherical particles attenuate the carrier phase turbulence significantly more than spherical...

  20. Cosmology and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Steigman, G [California Univ., Santa Barbara (USA). Inst. for Theoretical Physics; Bartol Research Foundation, Newark, Delaware (USA))

    1982-01-29

    The cosmic connections between physics on the very largest and very smallest scales are reviewed with an emphasis on the symbiotic relation between elementary particle physics and cosmology. After a review of the early Universe as a cosmic accelerator, various cosmological and astrophysical constraints on models of particle physics are outlined. To illustrate this approach to particle physics via cosmology, reference is made to several areas of current research: baryon non-conservation and baryon asymmetry; free quarks, heavy hadrons and other exotic relics; primordial nucleosynthesis and neutrino masses.

  1. SANS study of three-layer micellar particles

    CERN Document Server

    Plestil, J; Kuklin, A I; Cubitt, R

    2002-01-01

    Three-layer nanoparticles were prepared by polymerization of methyl methacrylate (MMA) in aqueous micellar solutions of poly(methyl methacrylate)-block-poly(methacrylic acid) (PMMA-b-PMA) and polystyrene-block-poly(methacrylic acid) (PS-b-PMA). The resulting polymer forms a layer on the core surface of the original micelles. SANS curves were fitted using an ellipsoidal (PMMA/PMMA/PMA) or spherical (PS/PMMA/PMA) model for the particle core. The particle size (for the presented series of the PMMA/PMMA/PMA particles, the core semiaxes ranged from 87 to 187 A and the axis ratio was about 6) can be finely tuned by variation of monomer concentration. Time-resolved SANS experiments were carried out to describe the growth of the PS/PMMA/PMA particles during polymerization. (orig.)

  2. A biodetection method using magnetic particles and micro traps

    KAUST Repository

    Li, Fuquan

    2012-03-09

    The general working principle of magnetoresistive sensors for biological applications is to specifically attach bioanalytesto magnetic particles and then detect the particles that are immobilized on the sensor surface. The immobilization of the particles on the sensor surface commonly uses biomolecular interactions, e.g., antigen-antibody. Thus, the sensor surface needs to be functionalized via biological treatments in order to capture certain bioanalytes. In the presented work, a new method is proposed, which does not rely on functionalization of the sensor surface. Current carrying microstructures in combination with mechanical micro traps are used to immobilize magnetic particles. Analyte detection is based on the difference in size between bare magnetic particles and particles with analyte attached, which causes a different number of particles to be captured in the micro traps.

  3. A concentrated solar cavity absorber with direct heat transfer through recirculating metallic particles

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, M. R. I., E-mail: islamrabiul@yahoo.com; Saha, Manabendra, E-mail: manabendra.saha@adelaide.edu.au, E-mail: manab04me@gmail.com; Beg, R. A. [Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi-6204 (Bangladesh)

    2016-07-12

    A recirculating flow solar particle cavity absorber (receiver) is modeled to investigate the flow behavior and heat transfer characteristics of a novel developing concept. It features a continuous recirculating flow of non-reacting metallic particles (black silicon carbide) with air which are used as a thermal enhancement medium. The aim of the present study is to numerically investigate the thermal behavior and flow characteristics of the proposed concept. The proposed solar particle receiver is modeled using two phase discrete particle model (DPM), RNG k-flow model and discrete ordinate (DO) radiation model. Numerical analysis is carried out considering a solar receiver with only air and the mixture of non-reacting particles and air as a heat transfer as well as heat carrying medium. The parametric investigation is conducted considering the incident solar flux on the receiver aperture and changing air flow rate and recirculation rate inside the receiver. A stand-alone feature of the recirculating flow solar particle receiver concept is that the particles are directly exposed to concentrated solar radiation monotonously through recirculating flow inside the receiver and results in efficient irradiation absorption and convective heat transfer to air that help to achieve high temperature air and consequently increase in thermal efficiency. This paper presents, results from the developed concept and highlights its flow behavior and potential to enhance the heat transfer from metallic particles to air by maximizing heat carrying capacity of the heat transfer medium. The imposed milestones for the present system will be helpful to understand the radiation absorption mechanism of the particles in a recirculating flow based receiver, the thermal transport between the particles, the air and the cavity, and the fluid dynamics of the air and particle in the cavity.

  4. Selection Of Suitable Particle Size And Particle Ratio For Japanese Cucumber Cucumis Sativus L. Plants

    Directory of Open Access Journals (Sweden)

    Galahitigama GAH

    2015-08-01

    Full Text Available This study was conducted to select the best particle size of coco peat for cucumber nurseries as well as best particle ratio for optimum plant growth and development of cucumber. The experiment was carried out in International Foodstuff Company and Faculty of Agriculture University of Ruhuna Sri Lanka during 2015 to 2016. Under experiment one three types of different particle sizes were used namely fine amp88040.5mm T2 medium 3mm-0.5mm T3 and coarse 4mm T4 with normal coco peat T1 as treatments. Complete Randomized Design CRD used as experimental design with five replicates. Germination percentage number of leaves per seedling seedling height in frequent day intervals was taken as growth parameters. Analysis of variance procedure was applied to analyze the data at 5 probability level. The results revealed that medium size particle media sieve size 0.5mm -3mm of coco peat was the best particle size for cucumber nursery practice when considered the physical and chemical properties of medium particles of coco peat. In the experiment of selecting of suitable particle ratio for cucumber plants the compressed mixture of coco peat particles that contain 70 ww unsieved coco peat 20 ww coarse particles and 10 ww coconut husk chips 5 12mm has given best results for growth performances compared to other treatments and cucumber grown in this mixture has shown maximum growth and yield performances.

  5. ESF collection effectiveness, a study in fine particle dynamics

    International Nuclear Information System (INIS)

    Winegardner, W.K.; Owczarski, P.C.

    1985-04-01

    The characterization and dynamic behavior of fine particles are the main subjects of an ongoing investigation of the particle collection effectiveness of the engineered safety feature (ESF) systems in nuclear power plants. This investigation is part of a larger study of the release of radionuclides to the environment from such plants during postulated accidents that are severe but extremely unlikely. The ESF systems are installed to prevent the occurrence of severe accidents or mitigate their consequences. Several of these engineered systems can serve as particle collection devices. This report focuses on the analytical models that were developed to predict particle behavior in two systems that were not specifically designed for particle retention: the ice compartments of ice condenser containment systems in Pressurized Water Reactors (PWRs) and the suppression pools of Boiling Water Reactors (BWRs). The following section summarizes the topics considered in the development of models and computer codes for estimating the particle retention effectiveness of these two ESF systems. After the summary this paper describes the two ESF systems in more detail and discusses the behavior of particles in both situations

  6. Problems in the forecasting of solar particle events for manned missions

    International Nuclear Information System (INIS)

    Feynman, J.; Ruzmaikin, A.

    1999-01-01

    Manned spacecraft will require a much improved ability to forecast solar particle events. The lead time required will depend on the use to which the forecast is put. Here we discuss problems of forecasting with the lead times of hours to weeks. Such forecasts are needed for scheduling and carrying out activities. Our present capabilities with these lead times is extremely limited. To improve our capability we must develop an ability to predict fast coronal mass ejections (CMEs). It is not sufficient to observe that a CME has already taken place since by that time it is already too late to make predictions with these lead times. Both to learn how to predict CMEs and to carry out forecasts on time scales of several days to weeks, observations of the other side of the Sun are required. We describe a low-cost space mission of this type that would further the development of an hours-to-weeks forecast capability

  7. Balance carried out on an alpha waste incinerator in order to qualify its filtration system

    International Nuclear Information System (INIS)

    Cartier, R.; Burghofer, P.; Tregoures, A.; Maurel, J.M.; Vendel, J.

    1991-01-01

    A balance was carried out on a pilot incinerator of inactive solid waste running at 4 kg/h. Various measurements were taken in order to qualify the prefiltration system of the incineration process operating by pyrolysis, afterburning and calcination: determining the ventilation characteristics of the plant (gas flow rates and residence time) and the physico-chemical characteristics of the effluent (mass flow and granulometric range of particles, chemical composition of gases). Various methods of sampling and of analyzing the gases were adopted and a thermochemical model was produced. Its results are reasonably close to the experimental measurements. The emission consists of submicronic particles and porous layers are the best adapted cleaning system

  8. FOCUS PARTICLES (JUST, EVEN, AND, ETC. IN THE ADVERTISEMENTS

    Directory of Open Access Journals (Sweden)

    Danguolė Valančė

    2015-10-01

    Full Text Available The article has been prepared by carrying out the analysis of focus particles: just, even, and, etc. It is important to note that particles play a very important role in linguistic pragmatics: they convey additional meanings called the conventional implicatures, and in that way they strengthen their effect on the consumers. First, the article discusses slogans which were advertised in January – March 2014; then, it discusses how focus particles are used in these slogans, besides the attention which is drawn to the visual advertising and invitation design. The research of advertisements and slogans has approved the prior statement just partially, and for this reason two corpora of advertisement articles (from the fields of education and medicine were formed. They were analysed separately and later on compared in order to find out whether the focus particles are used similarly in different discourse advertisements. The comparison of the data has disclosed that the focus particles are more commonly used in the original texts related to Lithuania’s education than in the medical advertisements, which are mostly translations used to inform about new medical tools or medical treatment innovations. The research has been carried out by applying the method of corpus linguistics.

  9. Relativistic Collisions of Structured Atomic Particles

    CERN Document Server

    Voitkiv, Alexander

    2008-01-01

    The book reviews the progress achieved over the last decade in the study of collisions between an ion and an atom in which both the atomic particles carry electrons and can undergo transitions between their internal states -- including continua. It presents the detailed considerations of different theoretical approaches, that can be used to describe collisions of structured atomic particles for the very broad interval of impact energies ranging from 0.5--1 MeV/u till extreme relativistic energies where the collision velocity very closely approaches the speed of light.

  10. Introduction to the elementary particle physics

    International Nuclear Information System (INIS)

    Shellard, R.C.

    1982-03-01

    An introduction is given to the subject of elementary particle physics. Several particle properties are discussed and some models are shown. This introduction covers the theoretical as well as the experimental aspects including a topic on detectors. (L.C.) [pt

  11. Experiments and modeling of single plastic particle conversion in suspension

    DEFF Research Database (Denmark)

    Nakhaei, Mohammadhadi; Wu, Hao; Grévain, Damien

    2018-01-01

    Conversion of single high density polyethylene (PE) particles has been studied by experiments and modeling. The experiments were carried out in a single particle combustor for five different shapes and masses of particles at temperature conditions of 900 and 1100°C. Each experiment was recorded...... against the experiments as well as literature data. Furthermore, a simplified isothermal model appropriate for CFD applications was developed, in order to model the combustion of plastic particles in cement calciners. By comparing predictions with the isothermal and the non–isothermal models under typical...

  12. Simulation of the Production of Secondary Particles from a Neutron Beam on Polyethylene Targets using the GEANT4 Simulation Tool

    CERN Document Server

    Ilgner, C

    2003-01-01

    In view of a beam test of RadFET semiconductor detectors and optically stimulated luminescence (OSL) detectors as on-line dosimeters for radiation monitoring purposes in the caverns of the Large Hadron Collider (LHC) experiments, a simulation on the production of secondary particles from a neutron beam on a polyethylene target was carried out. We describe the yield of recoil protons, scattered neutrons as well as electrons, positrons and photons, when neutrons of an average energy of 20 MeV hit polyethylene targets of several thicknesses. The simulation was carried out using the latest release 5.2 of the GEANT4 detector description and simulation tool, including advanced hadron interaction models.

  13. Erosion Behaviour of API X100 Pipeline Steel at Various Impact Angles and Particle Speeds

    Directory of Open Access Journals (Sweden)

    Paul C. Okonkwo

    2016-09-01

    Full Text Available Erosion is the gradual removal of material due to solid particle impingement and results in a failure of pipeline materials. In this study, a series of erosion tests were carried out to investigate the influence of particle speed and impact angle on the erosion mechanism of API X100 pipeline steel. A dry erosion machine was used as the test equipment, while the particle speed ranged from 20 to 80 m/s and impact angles of 30° and 90° were used as test parameters. The eroded API X100 steel surface was characterized using scanning electron microscope (SEM and X-ray photoelectron spectroscopy (XPS. The weight loss and erosion rate were also investigated. The results showed that at a 90° impact angle, a ploughing mechanism was occurring on the tested specimens, while material removal through low-angle cutting was the dominant mechanism at lower impact angles. Embedment of alumina particles on the target steel surface, micro-cutting, and low-angle cutting were observed at low impact angles. Therefore, the scratches, cuttings, and severe ploughings observed on some failed oil and gas pipelines could be attributed to the erosion mechanism.

  14. Particle filters for object tracking: enhanced algorithm and efficient implementations

    International Nuclear Information System (INIS)

    Abd El-Halym, H.A.

    2010-01-01

    Object tracking and recognition is a hot research topic. In spite of the extensive research efforts expended, the development of a robust and efficient object tracking algorithm remains unsolved due to the inherent difficulty of the tracking problem. Particle filters (PFs) were recently introduced as a powerful, post-Kalman filter, estimation tool that provides a general framework for estimation of nonlinear/ non-Gaussian dynamic systems. Particle filters were advanced for building robust object trackers capable of operation under severe conditions (small image size, noisy background, occlusions, fast object maneuvers ..etc.). The heavy computational load of the particle filter remains a major obstacle towards its wide use.In this thesis, an Excitation Particle Filter (EPF) is introduced for object tracking. A new likelihood model is proposed. It depends on multiple functions: position likelihood; gray level intensity likelihood and similarity likelihood. Also, we modified the PF as a robust estimator to overcome the well-known sample impoverishment problem of the PF. This modification is based on re-exciting the particles if their weights fall below a memorized weight value. The proposed enhanced PF is implemented in software and evaluated. Its results are compared with a single likelihood function PF tracker, Particle Swarm Optimization (PSO) tracker, a correlation tracker, as well as, an edge tracker. The experimental results demonstrated the superior performance of the proposed tracker in terms of accuracy, robustness, and occlusion compared with other methods Efficient novel hardware architectures of the Sample Important Re sample Filter (SIRF) and the EPF are implemented. Three novel hardware architectures of the SIRF for object tracking are introduced. The first architecture is a two-step sequential PF machine, where particle generation, weight calculation and normalization are carried out in parallel during the first step followed by a sequential re

  15. Experiences in automatic keywording of particle physics literature

    CERN Document Server

    Montejo Ráez, Arturo

    2001-01-01

    Attributing keywords can assist in the classification and retrieval of documents in the particle physics literature. As information services face a future with less available manpower and more and more documents being written, the possibility of keyword attribution being assisted by automatic classification software is explored. A project being carried out at CERN (the European Laboratory for Particle Physics) for the development and integration of automatic keywording is described.

  16. Particle transport in urban dwellings

    International Nuclear Information System (INIS)

    Cannell, R.J.; Goddard, A.J.H.; ApSimon, H.M.

    1988-01-01

    A quantitative investigation of the potential for contamination of a dwelling by material carried in on the occupants' footwear has been completed. Data are now available on the transport capacity of different footwear for a small range of particle sizes and contamination source strengths. Additional information is also given on the rate of redistribution

  17. Particle physics experiments 1988

    International Nuclear Information System (INIS)

    Bairstow, R.

    1989-01-01

    This report describes work carried out in 1988 on experiments approved by the Particle Physics Experiments Selection Panel. The contents consist of unedited contributions from each experiment. More than forty projects at different accelerators (SPS, ISIS, PETRA, LAMPF, LEP, HERA, BNL, ILL, LEAR) are listed. Different organisations collaborate on different projects. A brief progress report is given. References to published articles are given. (author)

  18. SERPUKHOV: Focusing particles by a crystal

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    With several Laboratories having shown how bent crystals can be used to steer particle beams, a team working at the Institute for High Energy Physics (IHEP) at Serpukhov, near Moscow, has shown how these crystals can also be used to focus particle beams

  19. Health effects of exhaust particles

    Energy Technology Data Exchange (ETDEWEB)

    Pihlava, T.; Uuppo, M.; Niemi, S.

    2013-11-01

    This report introduces general information about diesel particles and their health effects. The purpose of this report is to introduce particulate matter pollution and present some recent studies made regarding the health effects of particulate matter. The aim is not to go very deeply into the science, but instead to keep the text understandable for the average layman. Particulate matter is a complex mixture of extremely small particles and liquid droplets. These small particles are made up of a number of components that include for example acids, such as nitrates and sulphates, as well as organic chemicals, metals and dust particles from the soil. Particulate matter comes from several sources, such as transportation emissions, industrial emissions, forest fires, cigarette smoke, volcanic ash and climate variations. Particles are divided into coarse particles with diameters less than 10 ..m, fine particles with diameters smaller than 2.5 ..m and ultra-fine particles with diameters less than 0.1 ..m. The particulate matter in diesel exhaust gas is a highly complex mixture of organic, inorganic, solid, volatile and partly volatile compounds. Many of these particles do not form until they reach the air. Many carcinogenic compounds have been found in diesel exhaust gas and it is considered carcinogenic to humans. Particulate matter can cause several health effects, such as premature death in persons with heart or lung disease, cancer, nonfatal heart attacks, irregular heartbeat, aggravated asthma, decreased lung function and an increase in respiratory symptoms, such as irritation of the airways, coughing or difficulty breathing. It is estimated that in Finland about 1300 people die prematurely due to particles and the economic loss in the EU due to the health effects of particles can be calculated in the billions. Ultra-fine particles are considered to be the most harmful to human health. Ultrafine particles usually make the most of their quantity and surface area

  20. TransPlanckian Particles and the Quantization of Time

    NARCIS (Netherlands)

    Hooft, G. 't

    1999-01-01

    Trans-Planckian particles are elementary particles accelerated such that their energies surpass the Planck value. There are several reasons to believe that trans-Planckian particles do not represent independent degrees of freedom in Hilbert space, but they are controlled by the cis-Planckian

  1. Severe signal loss in diamond beam loss monitors in high particle rate environments by charge trapping in radiation-induced defects

    Energy Technology Data Exchange (ETDEWEB)

    Kassel, Florian; Boer, Wim de [Institute for Experimental Nuclear Physics (IEKP), KIT, Karlsruhe (Germany); Guthoff, Moritz; Dabrowski, Anne [CERN, Meyrin (Switzerland)

    2016-10-15

    The beam condition monitoring leakage (BCML) system is a beam monitoring device in the compact muon solenoid (CMS) experiment at the large hadron collider (LHC). As detectors 32 poly-crystalline (pCVD) diamond sensors are positioned in rings around the beam pipe. Here, high particle rates occur from the colliding beams scattering particles outside the beam pipe. These particles cause defects, which act as traps for the ionization, thus reducing the charge collection efficiency (CCE). However, the loss in CCE was much more severe than expected from low rate laboratory measurements and simulations, especially in single-crystalline (sCVD) diamonds, which have a low initial concentration of defects. After an integrated luminosity of a few fb{sup -1} corresponding to a few weeks of LHC operation, the CCE of the sCVD diamonds dropped by a factor of five or more and quickly approached the poor CCE of pCVD diamonds. The reason why in real experiments the CCE is much worse than in laboratory experiments is related to the ionization rate. At high particle rates the trapping rate of the ionization is so high compared with the detrapping rate, that space charge builds up. This space charge reduces locally the internal electric field, which in turn increases the trapping rate and recombination and hence reduces the CCE in a strongly non-linear way. A diamond irradiation campaign was started to investigate the rate-dependent electrical field deformation with respect to the radiation damage. Besides the electrical field measurements via the transient current technique (TCT), the CCE was measured. The experimental results were used to create an effective deep trap model that takes the radiation damage into account. Using this trap model, the rate-dependent electrical field deformation and the CCE were simulated with the software SILVACO TCAD. The simulation, tuned to rate-dependent measurements from a strong radioactive source, was able to predict the non-linear decrease of the

  2. Severe signal loss in diamond beam loss monitors in high particle rate environments by charge trapping in radiation-induced defects

    International Nuclear Information System (INIS)

    Kassel, Florian; Boer, Wim de; Guthoff, Moritz; Dabrowski, Anne

    2016-01-01

    The beam condition monitoring leakage (BCML) system is a beam monitoring device in the compact muon solenoid (CMS) experiment at the large hadron collider (LHC). As detectors 32 poly-crystalline (pCVD) diamond sensors are positioned in rings around the beam pipe. Here, high particle rates occur from the colliding beams scattering particles outside the beam pipe. These particles cause defects, which act as traps for the ionization, thus reducing the charge collection efficiency (CCE). However, the loss in CCE was much more severe than expected from low rate laboratory measurements and simulations, especially in single-crystalline (sCVD) diamonds, which have a low initial concentration of defects. After an integrated luminosity of a few fb -1 corresponding to a few weeks of LHC operation, the CCE of the sCVD diamonds dropped by a factor of five or more and quickly approached the poor CCE of pCVD diamonds. The reason why in real experiments the CCE is much worse than in laboratory experiments is related to the ionization rate. At high particle rates the trapping rate of the ionization is so high compared with the detrapping rate, that space charge builds up. This space charge reduces locally the internal electric field, which in turn increases the trapping rate and recombination and hence reduces the CCE in a strongly non-linear way. A diamond irradiation campaign was started to investigate the rate-dependent electrical field deformation with respect to the radiation damage. Besides the electrical field measurements via the transient current technique (TCT), the CCE was measured. The experimental results were used to create an effective deep trap model that takes the radiation damage into account. Using this trap model, the rate-dependent electrical field deformation and the CCE were simulated with the software SILVACO TCAD. The simulation, tuned to rate-dependent measurements from a strong radioactive source, was able to predict the non-linear decrease of the CCE in

  3. Urban development control based on transportation carrying capacity

    Science.gov (United States)

    Miharja, M.; Sjafruddin, A. H.

    2017-06-01

    Severe transportation problems in Indonesian urban areas are stimulated by one fundamental factor, namely lack of awareness on transportation carrying capacity in these areas development control. Urban land use development towards more physical coverage is typically not related with the capability of transportation system to accommodate additional trips volume. Lack of clear connection between development permit with its implication on the transportation side has led to a phenomenon of exceeding transport demand over supply capacity. This paper discusses the concept of urban land use development control which will be related with transport carrying capacity. The discussion would cover both supply and demand sides of transportation. From supply side, the analysis regarding the capacity of transport system would take both existing as well as potential road network capacity could be developed. From demand side, the analysis would be through the control of a maximum floor area and public transport provision. Allowed maximum floor area for development would be at the level of generating traffic at reasonable volume. Ultimately, the objective of this paper is to introduce model to incorporate transport carrying capacity in Indonesian urban land use development control.

  4. Occupational exposure to ultrafine particles among airport employees--combining personal monitoring and global positioning system

    DEFF Research Database (Denmark)

    Møller, Karina Lauenborg; Thygesen, Lau Caspar; Schipperijn, Jasper

    2014-01-01

    BACKGROUND: Exposure to ultrafine particles (UFP) has been linked to cardiovascular and lung diseases. Combustion of jet fuel and diesel powered handling equipment emit UFP resulting in potentially high exposure levels among employees working at airports. High levels of UFP have been reported...... at several airports, especially on the apron, but knowledge on individual exposure profiles among different occupational groups working at an airport is lacking. PURPOSE: The aim of this study was to compare personal exposure to UFP among five different occupational groups working at Copenhagen Airport (CPH......). METHOD: 30 employees from five different occupational groups (baggage handlers, catering drivers, cleaning staff and airside and landside security) at CPH were instructed to wear a personal monitor of particle number concentration in real time and a GPS device. The measurements were carried out on 8 days...

  5. Model of fragmentation of limestone particles during thermal shock and calcination in fluidised beds

    Energy Technology Data Exchange (ETDEWEB)

    Saastamoinen, J.; Pikkarainen, T.; Tourunen, A.; Rasanen, M.; Jantti, T. [VTT Technical Research Center, Jyvaskyla (Finland)

    2008-11-15

    Fragmentation of limestone due to thermal shock and calcination in a fluidised bed was studied through experiments and modelling. The time for heating was estimated by model calculations and the time for calcination by measurements. Fragmentation due to thermal shock was carried out by experiments in a CO{sub 2} atmosphere in order to prevent the effect of calcination. It was found to be much less than fragmentation due to calcination. Average particle sizes before and after fragmentation are presented for several types of limestone. The effects of particle size and gas composition on the primary fragmentation were studied through experiments. Increasing the fluidisation velocity increased the tendency to fragment. The evolution of the particle size distribution (PSD) of limestone particles due to thermal shock and during calcination (or simultaneous calcination and sulphation) were calculated using a population balance model. Fragmentation due to thermal shock is treated as an instantaneous process. The fragmentation frequency during calcination is presented as exponentially decaying over time. In addition to the final PSD, this model also predicts the PSD during the calcination process. The fragmentation was practically found to end after 10 min. Furthermore. a population balance method to calculate the particle size distribution and amount of limestone in fluidised beds in dynamic and steady state, when feeding history is known, is presented.

  6. LAPP - Annecy le Vieux Particle Physics Laboratory. Activity report 2002-2003

    International Nuclear Information System (INIS)

    Colas, Jacques; Minard, Marie-Noelle; Decamp, Daniel; Marion, Frederique; Drancourt, Cyril; Riva, Vanessa; Berger, Nicole; Bombar, Claudine; Dromby, Gerard

    2004-01-01

    LAPP is a high energy physics laboratory founded in 1976 and is one of the 19 laboratories of IN2P3 (National Institute of Nuclear and particle physics), institute of CNRS (National Centre for Scientific Research). LAPP is joint research facility of the University Savoie Mont Blanc (USMB) and the CNRS. Research carried out at LAPP aims at understanding the elementary particles and the fundamental interactions between them as well as exploring the connections between the infinitesimally small and the unbelievably big. Among other subjects LAPP teams try to understand the origin of the mass of the particles, the mystery of dark matter and what happened to the anti-matter that was present in the early universe. LAPP researchers work in close contact with phenomenologist teams from LAPTh, a theory laboratory hosted in the same building. LAPP teams also work since several decades at understanding the neutrinos, those elementary almost massless particles with amazing transformation properties. They took part in the design and realization of several experiments. Other LAPP teams collaborate in experiments studying signals from the cosmos. This document presents the activities of the laboratory during the years 2002-2003: 1 - Presentation of LAPP; 2 - Experimental programs: Standard model and its extensions (accurate measurements and search for new particles, The end of ALEPH and L3 LEP experiments, ATLAS experiment at LHC, CMS experiment at LHC); CP violation (BaBar experiment on PEPII collider at SLAC, LHCb experiment); Neutrino physics (OPERA experiment on CERN's CNGS neutrino beam); Astro-particles (AMS experiment, EUSO project on the Columbus module of the International Space Station); Search for gravitational waves - Virgo experiment; 3 - Laboratory's know-how: Skills, Technical departments (Electronics, Computers, Mechanics); R and D - CLIC and Positrons; Valorisation and industrial relations; 4 - Laboratory operation: Administration and general services; Laboratory

  7. Few-body system and particle resonances

    International Nuclear Information System (INIS)

    Mubarak, Ahmad.

    1979-01-01

    Techniques of few-body system in nuclear physics are exploited to analyze the spectrum of the T resonance and its family. Their relation to nuclear resonances are established so as to apply few-body dynamical techniques in the dynamical structure of particles carrying the truth quantum number. (author)

  8. Analytic theory of the energy and time independent particle transport in the plane geometry

    International Nuclear Information System (INIS)

    Simovic, R.D.

    2001-01-01

    An analytic investigation of the energy and time independent particle transport in the plane geometry described by a common anisotropic scattering function is carried out. Regarding the particles with specific diffusion histories in the infinite or the semi-infinite medium, new exact solutions of the corresponding transport equations are analytically derived by means of the Fourier inversion technique. Two particular groups of particles scattered after each successive collision into the directions μ 0, were considered. Its Fourier transformed transport equations have solutions without logarithmic singular points, in the upper part or the lower part of the complex k-plane. The Fourier inversion of solutions are carried out analytically and the obtained formulae represents valid generalization of the expressions for the flux of once scattered particles. (author)

  9. Physical properties of charged particle beams for use in radiotherapy

    International Nuclear Information System (INIS)

    Knapp, E.A.

    1975-01-01

    The physical properties of the possible charged particle beams used for cancer radiotherapy are reviewed. Each property is discussed for all interesting particles (π, p, α, Ne ion) and the differences are emphasized. This is followed by a short discussion of the several beam delivery systems used in particle therapy today, emphasizing the differences in the problems for the several different radiations, particularly the differences between the accelerated particle beams and those of a secondary nature. Dose calculation techniques are described

  10. Performance evaluation of different types of particle representation procedures of Particle Swarm Optimization in Job-shop Scheduling Problems

    Science.gov (United States)

    Izah Anuar, Nurul; Saptari, Adi

    2016-02-01

    This paper addresses the types of particle representation (encoding) procedures in a population-based stochastic optimization technique in solving scheduling problems known in the job-shop manufacturing environment. It intends to evaluate and compare the performance of different particle representation procedures in Particle Swarm Optimization (PSO) in the case of solving Job-shop Scheduling Problems (JSP). Particle representation procedures refer to the mapping between the particle position in PSO and the scheduling solution in JSP. It is an important step to be carried out so that each particle in PSO can represent a schedule in JSP. Three procedures such as Operation and Particle Position Sequence (OPPS), random keys representation and random-key encoding scheme are used in this study. These procedures have been tested on FT06 and FT10 benchmark problems available in the OR-Library, where the objective function is to minimize the makespan by the use of MATLAB software. Based on the experimental results, it is discovered that OPPS gives the best performance in solving both benchmark problems. The contribution of this paper is the fact that it demonstrates to the practitioners involved in complex scheduling problems that different particle representation procedures can have significant effects on the performance of PSO in solving JSP.

  11. Visualization of Content Release from Cell Surface-Attached Single HIV-1 Particles Carrying an Extra-Viral Fluorescent pH-Sensor.

    Science.gov (United States)

    Sood, Chetan; Marin, Mariana; Mason, Caleb S; Melikyan, Gregory B

    2016-01-01

    HIV-1 fusion leading to productive entry has long been thought to occur at the plasma membrane. However, our previous single virus imaging data imply that, after Env engagement of CD4 and coreceptors at the cell surface, the virus enters into and fuses with intracellular compartments. We were unable to reliably detect viral fusion at the plasma membrane. Here, we implement a novel virus labeling strategy that biases towards detection of virus fusion that occurs in a pH-neutral environment-at the plasma membrane or, possibly, in early pH-neutral vesicles. Virus particles are co-labeled with an intra-viral content marker, which is released upon fusion, and an extra-viral pH sensor consisting of ecliptic pHluorin fused to the transmembrane domain of ICAM-1. This sensor fully quenches upon virus trafficking to a mildly acidic compartment, thus precluding subsequent detection of viral content release. As an interesting secondary observation, the incorporation of the pH-sensor revealed that HIV-1 particles occasionally shuttle between neutral and acidic compartments in target cells expressing CD4, suggesting a small fraction of viral particles is recycled to the plasma membrane and re-internalized. By imaging viruses bound to living cells, we found that HIV-1 content release in neutral-pH environment was a rare event (~0.4% particles). Surprisingly, viral content release was not significantly reduced by fusion inhibitors, implying that content release was due to spontaneous formation of viral membrane defects occurring at the cell surface. We did not measure a significant occurrence of HIV-1 fusion at neutral pH above this defect-mediated background loss of content, suggesting that the pH sensor may destabilize the membrane of the HIV-1 pseudovirus and, thus, preclude reliable detection of single virus fusion events at neutral pH.

  12. Visualization of Content Release from Cell Surface-Attached Single HIV-1 Particles Carrying an Extra-Viral Fluorescent pH-Sensor.

    Directory of Open Access Journals (Sweden)

    Chetan Sood

    Full Text Available HIV-1 fusion leading to productive entry has long been thought to occur at the plasma membrane. However, our previous single virus imaging data imply that, after Env engagement of CD4 and coreceptors at the cell surface, the virus enters into and fuses with intracellular compartments. We were unable to reliably detect viral fusion at the plasma membrane. Here, we implement a novel virus labeling strategy that biases towards detection of virus fusion that occurs in a pH-neutral environment-at the plasma membrane or, possibly, in early pH-neutral vesicles. Virus particles are co-labeled with an intra-viral content marker, which is released upon fusion, and an extra-viral pH sensor consisting of ecliptic pHluorin fused to the transmembrane domain of ICAM-1. This sensor fully quenches upon virus trafficking to a mildly acidic compartment, thus precluding subsequent detection of viral content release. As an interesting secondary observation, the incorporation of the pH-sensor revealed that HIV-1 particles occasionally shuttle between neutral and acidic compartments in target cells expressing CD4, suggesting a small fraction of viral particles is recycled to the plasma membrane and re-internalized. By imaging viruses bound to living cells, we found that HIV-1 content release in neutral-pH environment was a rare event (~0.4% particles. Surprisingly, viral content release was not significantly reduced by fusion inhibitors, implying that content release was due to spontaneous formation of viral membrane defects occurring at the cell surface. We did not measure a significant occurrence of HIV-1 fusion at neutral pH above this defect-mediated background loss of content, suggesting that the pH sensor may destabilize the membrane of the HIV-1 pseudovirus and, thus, preclude reliable detection of single virus fusion events at neutral pH.

  13. Electromagnetics of active coated nano-particles

    DEFF Research Database (Denmark)

    Arslanagic, Samel

    2013-01-01

    This work reviews the fundamental properties of several spherical and cylindrical active coated nano-particles excited by their respective single and/or multiple sources of radiation at optical frequencies. Particular attention is devoted to the influence of the source location and orientation, t......, the optical gain constant and the nano-particle material composition on the electric and magnetic near fields, the power flow density, the radiated power as well as the directivities. Resonant as well as quasi-transparent states will be emphasized in the discussion.......This work reviews the fundamental properties of several spherical and cylindrical active coated nano-particles excited by their respective single and/or multiple sources of radiation at optical frequencies. Particular attention is devoted to the influence of the source location and orientation...

  14. Big Bang Day: 5 Particles - 4. The Neutrino

    CERN Multimedia

    2008-01-01

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". It's the most populous particle in the universe. Millions of these subatomic particles are passing through each one of us. With no charge and virtually no mass they can penetrate vast thicknesses of matter without any interaction - indeed the sun emits huge numbers that pass through earth at the speed of light. Neutrinos are similar to the more familiar electron, with one crucial difference: neutrinos do not carry electric charge. As a result they're extremely difficult to detect . But like HG Wells' invisible man they can give themselves away by bumping into things at high energy and detectors hidden in mines are exploiting this to observe these rare interactions.

  15. Pitched Blade Turbine Efficiency at Particle Suspension

    Directory of Open Access Journals (Sweden)

    D. Ceres

    2010-01-01

    Full Text Available Mixing suspensions is a very important hydraulic operation. The pitched six-blade turbine is a widely-used axial-flow impeller. This paper deals with effect relative impeller size and particle content on theefficiency of a pitched six-blade turbine at particle suspension. Two pitched six-blade turbines were used in model measurements of just suspension impeller speed. The ratios of the vessel to agitator diameter D/d were 3 and 4.5. The measurements were carried out in a dish-bottomed vessel 300 mm in diameter. The just suspension impeller speeds were measured using an electrochemical method, and were checked visually. A 2.5 % NaCl water solution was used as the liquid phase, and glass particles with four equivalent diameters between 0.18 and 0.89 mmand volumetric concentration from 2.5 % to 40% were usedasthesolid phase. The criterion values πs=Po√Fr'3(d/D7 were calculated from the particle suspension and power consumption measurements. The dependencies of πs on particle content cv show that larger agitators are more efficient for higher particle content.

  16. Construction and immunological evaluation of truncated hepatitis B core particles carrying HBsAg amino acids 119–152 in the major immunodominant region (MIR)

    Energy Technology Data Exchange (ETDEWEB)

    Su, Qiudong; Yi, Yao [National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Changbai Road 155, Changping District, Beijing 102206 (China); Guo, Minzhuo [Beijing Entry-Exit Inspection and Quarantine Beureau, Tianshuiyuan Lane 6, Chaoyang District, Beijing 100026 (China); Qiu, Feng; Jia, Zhiyuan; Lu, Xuexin; Meng, Qingling [National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Changbai Road 155, Changping District, Beijing 102206 (China); Bi, Shengli, E-mail: shengli_bi@163.com [National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Changbai Road 155, Changping District, Beijing 102206 (China)

    2013-09-13

    Highlights: •The conformational HBV neutralization antigen domain was successfully displayed on the surface of truncated HBc particles. •Appropriate dialysis procedures to support the renaturing environment for the protein refolding. •Efficient purification procedures to obtain high purity and icosahedral particles of mosaic HBV antigen. •Strong immune responses not only including neutralization antibody response but also Th1 cell response were induced in mice. -- Abstract: Hepatitis B capsid protein expressed in Escherichia coli can reassemble into icosahedral particles, which could strongly enhance the immunogenicity of foreign epitopes, especially those inserted into its major immunodominant region. Herein, we inserted the entire ‘α’ antigenic determinant amino acids (aa) 119–152 of HBsAg into the truncated HBc (aa 1–144), between Asp{sup 78} and Pro{sup 79}. Prokaryotic expression showed that the mosaic HBc was mainly in the form of inclusion bodies. After denaturation with urea, it was dialyzed progressively for protein renaturation. We observed that before and after renaturation, mosaic HBc was antigenic as determined by HBsAg ELISA and a lot of viruslike particles were observed after renaturation. Thus, we further purified the mosaic viruslike particles by (NH{sub 4}){sub 2}SO{sub 4} precipitation, DEAE chromatography, and Sepharose 4FF chromatography. Negative staining electron microscopy demonstrated the morphology of the viruslike particles. Immunization of Balb/c mice with mosaic particles induced the production of anti-HBs antibody and Th1 cell immune response supported by ELISPOT and CD4/CD8 proportions assay. In conclusion, we constructed mosaic hepatitis core particles displaying the entire ‘α’ antigenic determinant on the surface and laid a foundation for researching therapeutic hepatits B vaccines.

  17. Contribution of various microenvironments to the daily personal exposure to ultrafine particles

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Kjeldsen, Birthe Uldahl; Olsen, Yulia

    2015-01-01

    a backpack equipped with a portable monitor, continuously recording particle number concentrations (PN), in order to measure the real-time individual exposure over a period of similar to 48 h. A GPS logger was carried along with the particle monitor and allowed us to estimate the contribution of UFP exposure......, compared to the GPS. These results may indicate limitations of using diaries, but also possible inaccuracy and miss-classification in the GPS data. (C) 2015 Elsevier Ltd. All rights reserved.......Exposure to ultrafine particles (UFP) may have adverse health effects. Central monitoring stations do not represent the personal exposure to UFP accurately. Few studies have previously focused on personal exposure to UFP. Sixty non-smoking residents living in Copenhagen, Denmark were asked to carry...

  18. Behavior of Particle Depots in Molten Silicon During Float-Zone Growth in Strong Static Magnetic Fields

    Science.gov (United States)

    Jauss, T.; SorgenFrei, T.; Croell, A.; Azizi, M.; Reimann, C.; Friedrich, J.; Volz, M. P.

    2014-01-01

    In the photovoltaics industry, the largest market share is represented by solar cells made from multicrystalline silicon, which is grown by directional solidification. During the growth process, the silicon melt is in contact with the silicon nitride coated crucible walls and the furnace atmosphere which contains carbon monoxide. The dissolution of the crucible coating, the carbon bearing gas, and the carbon already present in the feedstock, lead to the precipitation of silicon carbide, and silicon nitride, at later stages of the growth process. The precipitation of Si3N4 and SiC particles of up to several hundred micrometers in diameter leads to severe problems during the wire sawing process for wafering the ingots. Furthermore the growth of the silicon grains can be negatively influenced by the presence of particles, which act as nucleation sources and lead to a grit structure of small grains and are sources for dislocations. If doped with Nitrogen from the dissolved crucible coating, SiC is a semi conductive material, and can act as a shunt, short circuiting parts of the solar cell. For these reasons, the incorporation of such particles needs to be avoided. In this contribution we performed model experiments in which the transport of intentionally added SiC particles and their interaction with the solid-liquid interface during float zone growth of silicon in strong steady magnetic fields was investigated. SiC particles of 7µm and 60µm size are placed in single crystal silicon [100] and [111] rods of 8mm diameter. This is achieved by drilling a hole of 2mm diameter, filling in the particles and closing the hole by melting the surface of the rod until a film of silicon covers the hole. The samples are processed under a vacuum of 1x10(exp -5) mbar or better, to prevent gas inclusions. An oxide layer to suppress Marangoni convection is applied by wet oxidation. Experiments without and with static magnetic field are carried out to investigate the influence of melt

  19. Particle resuspension due to human walking

    International Nuclear Information System (INIS)

    Mana, Zakaria

    2014-01-01

    In nuclear facilities, during normal operations in controlled areas, workers could be exposed to radioactive aerosols (1 μm ≤ dp ≤ 10 μm). One of the airborne contamination sources is particles that are initially seeded on the floor and could be removed by workers while they are walking. During the outage of EDF nuclear facilities, there is a resuspension of some radionuclides in aerosol form (1 μm ≤ dp ≤ 10 μm). Since the number of co-activity will increase in reactors buildings of EDF, it becomes important to understand particle resuspension due to the activity of the operators to reduce their radiation exposure. The purpose of this Ph.D thesis is to quantify the resuspension of particles due to the progress of operators on a contaminated soil. Thus, the approach is to combine an aerodynamic resuspension model with numerical calculations of flow under a shoe, and then to characterize experimentally some input parameters of the model (particle diameter, adhesion forces, shoes motion). The resuspension model Rock'n'Roll proposed by Reeks and Hall (2001) was chosen because it describes physically the resuspension mechanism and because it is based on the moment of forces applied to a particle. This model requires two input parameters such as friction velocity and adhesion forces distribution applied on each particle. Regarding the first argument, numerical simulations were carried on using the ANSYS CFX software applied to a safety shoe in motion (digitized by 3D CAO); the mapping of friction velocity shows values of about 1 m.s -1 for an angular average velocity of 200 degrees.s -1 . As regards the second parameter, AFM (Atomic Force Microscopy) measurements were carried out with alumina and cobalt oxide particles in contact with epoxy surfaces representative of those encountered in EDF power plants. AFM provides the distribution of adhesion forces and reveals a much lower value than what can be calculated theoretically using JKR model (Johnson

  20. The influence of particle composition on Thorium scavenging in the Mediterranean Sea

    International Nuclear Information System (INIS)

    Roy-Barman, M.; Lemaitre, C.; Ayrault, S.; Lemaitre, C.; Jeandel, C.; Souhaut, M.

    2009-01-01

    Sediment trap data are crucial for the study of marine biochemical cycles but they need careful validation by Thorium (Th) isotopes. In the present study, 230 Th, 232 Th, Uranium (U), Aluminum (Al), Barium (Ba) and Manganese (Mn) were analyzed in sinking particles collected by moored sediment traps in the Ligurian sea (DYFAMED site) in order to determine the collection efficiency of the traps and to constrain which particulate phase(s) carries Th isotopes in a region with strong lithogenic inputs. The 230 Th xs evaluation was based on the U content of each sample rather than on the 232 Th content of each sample and the average 238 U/ 232 Th ratio of the continental crust because the latter method introduced too much uncertainty in the calculation. High trapping efficiencies (187 ± 85% at 200 m and 87 ± 11% at 1000 m) indicated no evidence of particle under-collection by the traps. The lack of correlation between 230 Th xs and the carbonate or the organic matter fraction suggests that these phases are not major 230 Th xs -carrying phases in the deep ocean. For most samples of the time series, the 230 Th xs concentration is correlated with the lithogenic fraction and the Mn concentration, but pulses of particles with high lithogenic and Mn content and low 230 Th xs concentration occur in winter. Assuming that 230 Th xs is only carried by lithogenic particles, we estimate K d Th litho ranges from (0.42 ± 0.04) * 10 7 ml/g to (0.8 ± 0.2) * 10 7 ml/g. Assuming that 230 Th xs is only carried by authigenic Mn oxide precipitates (MnO 2 ), we estimate that K d Th MnO2 ) ranges from (0.6 ± 0.1) * 10 10 ml/g to (1.1 ± 0.4) * 10 10 ml/g. The relative variation of K d T h MnO2 ) (a factor 7) between different oceanic sites is significantly lower than the relative variation of K d Th litho (a factor 50), suggesting that 230 Th xs has a tighter link with MnO 2 rather than with lithogenic particles and hence that 230 Th xs may be more likely scavenged by MnO 2 than by

  1. Shock Interaction with Random Spherical Particle Beds

    Science.gov (United States)

    Neal, Chris; Mehta, Yash; Salari, Kambiz; Jackson, Thomas L.; Balachandar, S. "Bala"; Thakur, Siddharth

    2016-11-01

    In this talk we present results on fully resolved simulations of shock interaction with randomly distributed bed of particles. Multiple simulations were carried out by varying the number of particles to isolate the effect of volume fraction. Major focus of these simulations was to understand 1) the effect of the shockwave and volume fraction on the forces experienced by the particles, 2) the effect of particles on the shock wave, and 3) fluid mediated particle-particle interactions. Peak drag force for particles at different volume fractions show a downward trend as the depth of the bed increased. This can be attributed to dissipation of energy as the shockwave travels through the bed of particles. One of the fascinating observations from these simulations was the fluctuations in different quantities due to presence of multiple particles and their random distribution. These are large simulations with hundreds of particles resulting in large amount of data. We present statistical analysis of the data and make relevant observations. Average pressure in the computational domain is computed to characterize the strengths of the reflected and transmitted waves. We also present flow field contour plots to support our observations. U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  2. Real-time measurement of aerosol particle concentration at high temperatures; Hiukkaspitoisuuden reaaliaikainen mittaaminen korkeassa laempoetilassa

    Energy Technology Data Exchange (ETDEWEB)

    Keskinen, J; Hautanen, J; Laitinen, A [Tampere Univ. of Technology (Finland). Physics

    1997-10-01

    The aim of this project is to develop a new method for continuous aerosol particle concentration measurement at elevated temperatures (up to 800-1000 deg C). The measured property of the aerosol particles is the so called Fuchs surface area. This quantity is relevant for diffusion limited mass transfer to particles. The principle of the method is as follows. First, aerosol particles are charged electrically by diffusion charging process. The charging takes place at high temperature. After the charging, aerosol is diluted and cooled. Finally, aerosol particles are collected and the total charge carried by the aerosol particles is measured. Particle collection and charge measurement take place at low temperature. Benefits of this measurement method are: particles are charged in-situ, charge of the particles is not affected by the temperature and pressure changes after sampling, particle collection and charge measurement are carried out outside the process conditions, and the measured quantity is well defined. The results of this study can be used when the formation of the fly ash particles is studied. Another field of applications is the study and the development of gasification processes. Possibly, the method can also be used for the monitoring the operation of the high temperature particle collection devices. (orig.)

  3. Cosmology and particle physics

    International Nuclear Information System (INIS)

    Barrow, J.D.

    1982-01-01

    A brief overview is given of recent work that integrates cosmology and particle physics. The observational data regarding the abundance of matter and radiation in the Universe is described. The manner in which the cosmological survival density of stable massive particles can be calculated is discussed along with the process of cosmological nucleosynthesis. Several applications of these general arguments are given with reference to the survival density of nucleons, neutrinos and unconfined fractionally charge particles. The use of nucleosynthesis to limit the number of lepton generations is described together with the implications of a small neutrino mass for the origin of galaxies and clusters. (Auth.)

  4. A microstructure-composition map of a ternary liquid/liquid/particle system with partially-wetting particles.

    Science.gov (United States)

    Yang, Junyi; Roell, David; Echavarria, Martin; Velankar, Sachin S

    2017-11-22

    We examine the effect of composition on the morphology of a ternary mixture comprising two molten polymeric liquid phases (polyisobutylene and polyethylene oxide) and micron-scale spherical silica particles. The silica particles were treated with silanes to make them partially wetted by both polymers. Particle loadings up to 30 vol% are examined while varying the fluid phase ratios across a wide range. Numerous effects of particle addition are catalogued, stabilization of Pickering emulsions and of interfacially-jammed co-continuous microstructures, meniscus-bridging of particles, particle-induced coalescence of the dispersed phase, and significant shifts in the phase inversion composition. Many of the effects are asymmetric, for example particle-induced coalescence is more severe and drop sizes are larger when polyisobutylene is the continuous phase, and particles promote phase continuity of the polyethylene oxide. These asymmetries are likely attributable to a slight preferential wettability of the particles towards the polyethylene oxide. A state map is constructed which classifies the various microstructures within a triangular composition diagram. Comparisons are made between this diagram vs. a previous one constructed for the case when particles are fully-wetted by polyethylene oxide.

  5. In Situ Balloon-Borne Ice Particle Imaging in High-Latitude Cirrus

    Science.gov (United States)

    Kuhn, Thomas; Heymsfield, Andrew J.

    2016-09-01

    Cirrus clouds reflect incoming solar radiation, creating a cooling effect. At the same time, these clouds absorb the infrared radiation from the Earth, creating a greenhouse effect. The net effect, crucial for radiative transfer, depends on the cirrus microphysical properties, such as particle size distributions and particle shapes. Knowledge of these cloud properties is also needed for calibrating and validating passive and active remote sensors. Ice particles of sizes below 100 µm are inherently difficult to measure with aircraft-mounted probes due to issues with resolution, sizing, and size-dependent sampling volume. Furthermore, artefacts are produced by shattering of particles on the leading surfaces of the aircraft probes when particles several hundred microns or larger are present. Here, we report on a series of balloon-borne in situ measurements that were carried out at a high-latitude location, Kiruna in northern Sweden (68N 21E). The method used here avoids these issues experienced with the aircraft probes. Furthermore, with a balloon-borne instrument, data are collected as vertical profiles, more useful for calibrating or evaluating remote sensing measurements than data collected along horizontal traverses. Particles are collected on an oil-coated film at a sampling speed given directly by the ascending rate of the balloon, 4 m s-1. The collecting film is advanced uniformly inside the instrument so that an always unused section of the film is exposed to ice particles, which are measured by imaging shortly after sampling. The high optical resolution of about 4 µm together with a pixel resolution of 1.65 µm allows particle detection at sizes of 10 µm and larger. For particles that are 20 µm (12 pixel) in size or larger, the shape can be recognized. The sampling volume, 130 cm3 s-1, is well defined and independent of particle size. With the encountered number concentrations of between 4 and 400 L-1, this required about 90- to 4-s sampling times to

  6. Proposal of a novel gravity-fed, particle-filled solar receiver

    Science.gov (United States)

    Johnson, Evan; Baker, Derek; Tari, Ilker

    2017-06-01

    Solar Thermal Electricity power plants utilizing solid particles as heat transfer and storage media have been proposed by several research groups, with studies citing benefits of increased thermal efficiency and lower cost. Several types of solid particle receivers have been proposed, with leading designs consisting of particles falling or suspended in air. A new solid particle receiver is proposed here, consisting of a receiver fully packed with particles flowing downward with gravity. Particle flow rate is regulated with an outlet valve. This Particle-Filled receiver concept is compared to other receiver designs, and initial cold and hot experiments are conducted. Mass flux values of up to 379 kg m-2 s-1 are demonstrated, and heat transfer coefficients between 136 and 251 W m-2 K-1 are found.

  7. Optical Particle Characterization in Flows

    Science.gov (United States)

    Tropea, Cameron

    2011-01-01

    Particle characterization in dispersed multiphase flows is important in quantifying transport processes both in fundamental and applied research: Examples include atomization and spray processes, cavitation and bubbly flows, and solid particle transport in gas and liquid carrier phases. Optical techniques of particle characterization are preferred owing to their nonintrusiveness, and they can yield information about size, velocity, composition, and to some extent the shape of individual particles. This review focuses on recent advances for measuring size, temperature, and the composition of particles, including several planar methods, various imaging techniques, laser-induced fluorescence, and the more recent use of femtosecond pulsed light sources. It emphasizes the main sources of uncertainty, the achievable accuracy, and the outlook for improvement of specific techniques and for specific applications. Some remarks are also directed toward the computational tools used to design and investigate the performance of optical particle diagnostic instruments.

  8. Mechanism of travelling-wave transport of particles

    International Nuclear Information System (INIS)

    Kawamoto, Hiroyuki; Seki, Kyogo; Kuromiya, Naoyuki

    2006-01-01

    Numerical and experimental investigations have been carried out on transport of particles in an electrostatic travelling field. A three-dimensional hard-sphere model of the distinct element method was developed to simulate the dynamics of particles. Forces applied to particles in the model were the Coulomb force, the dielectrophoresis force on polarized dipole particles in a non-uniform field, the image force, gravity and the air drag. Friction and repulsion between particle-particle and particle-conveyer were included in the model to replace initial conditions after mechanical contacts. Two kinds of experiments were performed to confirm the model. One was the measurement of charge of particles that is indispensable to determine the Coulomb force. Charge distribution was measured from the locus of free-fallen particles in a parallel electrostatic field. The averaged charge of the bulk particle was confirmed by measurement with a Faraday cage. The other experiment was measurements of the differential dynamics of particles on a conveyer consisting of parallel electrodes to which a four-phase travelling electrostatic wave was applied. Calculated results agreed with measurements, and the following characteristics were clarified. (1) The Coulomb force is the predominant force to drive particles compared with the other kinds of forces, (2) the direction of particle transport did not always coincide with that of the travelling wave but changed partially. It depended on the frequency of the travelling wave, the particle diameter and the electric field, (3) although some particles overtook the travelling wave at a very low frequency, the motion of particles was almost synchronized with the wave at the low frequency and (4) the transport of some particles was delayed to the wave at medium frequency; the majority of particles were transported backwards at high frequency and particles were not transported but only vibrated at very high frequency

  9. Modelling of interactions between variable mass and density solid particles and swirling gas stream

    International Nuclear Information System (INIS)

    Wardach-Święcicka, I; Kardaś, D; Pozorski, J

    2011-01-01

    The aim of this work is to investigate the solid particles - gas interactions. For this purpose, numerical modelling was carried out by means of a commercial code for simulations of two-phase dispersed flows with the in-house models accounting for mass and density change of solid phase. In the studied case the particles are treated as spherical moving grains carried by a swirling stream of hot gases. Due to the heat and mass transfer between gas and solid phase, the particles are losing their mass and they are changing their volume. Numerical simulations were performed for turbulent regime, using two methods for turbulence modelling: RANS and LES.

  10. Particle roughness in magnetorheology: effect on the strength of the field-induced structures

    International Nuclear Information System (INIS)

    Vereda, F; Segovia-Gutiérrez, J P; De Vicente, J; Hidalgo-Alvarez, R

    2015-01-01

    We report a study on the effect of particle roughness on the strength of the field-induced structures of magnetorheological (MR) fluids in the quasi-static regime. We prepared one set of MR fluids with carbonyl iron particles and another set with magnetite particles, and in both sets we had particles with different degrees of surface roughness. Small amplitude oscillatory shear (SAOS) magnetosweeps and steady shear (SS) tests were carried out on the suspensions to measure their elastic modulus (G′) and static yield stress (τ static ). Results for both the iron and the magnetite sets of suspensions were consistent: for the MR fluids prepared with rougher particles, G′ increased at smaller fields and τ static was ca. 20% larger than for the suspensions prepared with relatively smooth particles. In addition to the experimental study, we carried out finite element method calculations to assess the effect of particle roughness on the magnetic interaction between particles. These calculations showed that roughness can facilitate the magnetization of the particles, thus increasing the magnetic energy of the system for a given field, but that this effect depends on the concrete morphology of the surface. For our real systems, no major differences were observed between the magnetization cycles of the MR fluids prepared with particles with different degree of roughness, which implied that the effect of roughness on the measured G′ and τ static was due mainly to friction between the solid surfaces of adjacent particles. (paper)

  11. A search for stable massive particles carrying electric charges in the range of 2e to 6e in proton-proton collisions at $\\sqrt{s}$ = 7 TeV recorded with the ATLAS detector at the LHC

    CERN Document Server

    Zimmermann, Simone

    This dissertation presents a search for long-lived, multi-charged particles using the ATLAS detector at the LHC. Motivation for this search arose from an unexploited search regime at ATLAS of stable massive particles with electric charges of |q| = 2e to |q| = 5e. Additional motivation can be found in several beyond the Standard Model physics theories. Proton-proton collisions recorded during the 2011 LHC running at $\\sqrt{s}$ = 7 TeV, corresponding to an integrated luminosity of 4.4 $fb^{-1}$, are examined in a signature-based analysis. The search seeks out charged particle tracks exhibiting anomalously high ionization consistent with stable massive particles with electric charges in the range from |q| = 2e to |q| = 6e. For this search, new variables of specific energy loss per path length dE/dx are used in the candidate selection. One of these variables, the TRT dE/dx, is developed in the course of this thesis and is described in detail. No excess is observed with respect to the prediction of Standard Model...

  12. PARTICLE SCATTERING OFF OF RIGHT-HANDED DISPERSIVE WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Schreiner, C.; Kilian, P.; Spanier, F., E-mail: cschreiner@astro.uni-wuerzburg.de [Centre for Space Research, North-West University, 2520 Potchefstroom (South Africa)

    2017-01-10

    Resonant scattering of fast particles off low frequency plasma waves is a major process determining transport characteristics of energetic particles in the heliosphere and contributing to their acceleration. Usually, only Alfvén waves are considered for this process, although dispersive waves are also present throughout the heliosphere. We investigate resonant interaction of energetic electrons with dispersive, right-handed waves. For the interaction of particles and a single wave a variable transformation into the rest frame of the wave can be performed. Here, well-established analytic models derived in the framework of magnetostatic quasi-linear theory can be used as a reference to validate simulation results. However, this approach fails as soon as several dispersive waves are involved. Based on analytic solutions modeling the scattering amplitude in the magnetostatic limit, we present an approach to modify these equations for use in the plasma frame. Thereby we aim at a description of particle scattering in the presence of several waves. A particle-in-cell code is employed to study wave–particle scattering on a micro-physically correct level and to test the modified model equations. We investigate the interactions of electrons at different energies (from 1 keV to 1 MeV) and right-handed waves with various amplitudes. Differences between model and simulation arise in the case of high amplitudes or several waves. Analyzing the trajectories of single particles we find no microscopic diffusion in the case of a single plasma wave, although a broadening of the particle distribution can be observed.

  13. Mathematical simulation of cascade-probabilistic functions for charged particles

    International Nuclear Information System (INIS)

    Kupchishin, A.A.; Kupchishin, A.I.; Smygaleva, T.A.

    1998-01-01

    Analytical expressions for cascade-probabilistic functions (CPF) for electrons, protons, α-particles and ions with taking into account energy losses are received. Mathematical analysis of these functions is carried out and main properties of function are determined. Algorithms of CPF are developed and their computer calculation were conducted. Regularities in behavior of function in dependence on initial particles energy, atomic number and registration depth are established. Book is intended to specialists on mathematical simulation of radiation defects, solid state physics, elementary particle physics and applied mathematics. There are 3 chapters in the book: 1. Cascade-probabilistic functions for electrons; 2. CPF for protons and α-particles; 3. CPF with taking unto account energy losses of ions. (author)

  14. [Medium energy particle physics

    International Nuclear Information System (INIS)

    Nefkens, B.M.K.

    1985-10-01

    Investigations currently carried out by the UCLA Particle Physics Research Group can be arranged into four programs: Pion-Nucleon Scattering; Tests of Charge Symmetry and Isospin Invariance; Light Nuclei (Strong Form Factors of 3 H, 3 He, 4 He; Detailed Balance in pd right reversible γ 3 H; Interaction Dynamics); and Search for the Rare Decay Μ + → e + + γ (MEGA). The general considerations which led to the choice of physics problems investigated by our group are given in the next section. We also outline the scope of the research being done which includes over a dozen experiments. The main body of this report details the research carried out in the past year, the status of various experiments, and new projects

  15. THE ROMAN-CATHOLIC DEFINITIONS TO COMMEMORATIVE PARTICLES

    Directory of Open Access Journals (Sweden)

    MICHAIL ASMUS

    2008-11-01

    Full Text Available The author overviews and analyses selected Roman-Catholic theological texts deal-ing with the meaning of commemorative particles in the Protesis of the Byzantine rite dating back to the XV–XVIII centuries. Peter Arcudius is the key person because it was his theological doctrine that in 1720 brought on the Counsil decision about the trans-substantiation of particles. This work gives further development to the previous study of the particles’ conception in the Orthodox East carried out by the author in 2005 and published in this review (issue 14, 2005.

  16. Heating of charged particles by electrostatic wave propagating perpendicularly to uniform magnetic field

    International Nuclear Information System (INIS)

    Niu, Keishiro; Shimojo, Takashi.

    1978-02-01

    Increase in kinetic energy of a charged particle, affected by an electrostatic wave propagating perpendicularly to a uniform magnetic field, is obtained for both the initial and later stages. Detrapping time of the particle from the potential dent of the electrostatic wave and energy increase during trapping of the particle is analytically derived. Numerical simulations are carried out to support theoretical results. (auth.)

  17. Introducing carrying capacity-based normalisation in LCA: framework and development of references at midpoint level

    DEFF Research Database (Denmark)

    Bjørn, Anders; Hauschild, Michael Zwicky

    2015-01-01

    carrying capacity-based normalisation references. The purpose of this article is to present a framework for normalisation against carrying capacity-based references and to develop average normalisation references (NR) for Europe and the world for all those midpoint impact categories commonly included....... A literature review was carried out to identify scientifically sound thresholds for each impact category. Carrying capacities were then calculated from these thresholds and expressed in metrics identical to midpoint indicators giving priority to those recommended by ILCD. NR was expressed as the carrying...... ozone formation and soil quality were found to exceed carrying capacities several times.The developed carrying capacity-based normalisation references offer relevant supplementary reference information to the currently applied references based on society’s background interventions by supporting...

  18. Particle methods: An introduction with applications

    Directory of Open Access Journals (Sweden)

    Moral Piere Del

    2014-01-01

    Full Text Available Interacting particle methods are increasingly used to sample from complex high-dimensional distributions. They have found a wide range of applications in applied probability, Bayesian statistics and information engineering. Understanding rigorously these new Monte Carlo simulation tools leads to fascinating mathematics related to Feynman-Kac path integral theory and their interacting particle interpretations. In these lecture notes, we provide a pedagogical introduction to the stochastic modeling and the theoretical analysis of these particle algorithms. We also illustrate these methods through several applications including random walk confinements, particle absorption models, nonlinear filtering, stochastic optimization, combinatorial counting and directed polymer models.

  19. Voltage-carrying states in superconducting microstrips

    International Nuclear Information System (INIS)

    Stuivinga, M.E.C.

    1983-01-01

    When the critical current is exceeded in a superconducting microstrip, voltage-carrying states with a resistance significantly below the normal state resistance can occur. Phase-slip centers (PSC) appear at about the critical temperature. These are successive local voltage units which manifest themselves as strip-like increments in voltage in the I-V characteristic. For temperatures off the critical temperature the PSC regime degenerates into a region of normal material, a so-called hot spot. These two phenomena, PSC and hot spots, form the subject of this thesis. To gain a better understanding of the phase-slip center process, an experiment was designed to measure local values of the quasi-particle and pair potential. The results of local potential and gap measurements at a PSC in aluminium are presented and discussed. Special attention is paid to pair-breaking interactions which can shorten the relaxation time. A non-linear differential equation is derived which describes the development of a PSC into a normal hot spot under the influence of Joule heating. It incorporates the temperature rise due to the dissipative processes occurring in the charge imbalance tails. Numerical solutions are presented for a set of parameters, including those for aluminium and tin. Subsequently, they are compared with experiments. (Auth.)

  20. Prediction of bird-day carrying capacity on a staging site: a test of depletion models

    NARCIS (Netherlands)

    Nolet, B.A.; Gyimesi, A.; Klaassen, R.H.G.

    2006-01-01

    1. The carrying capacity of a site for migratory water birds, expressed in bird-days, can be of particular conservation value. Several attempts have been made to model this carrying capacity using ideal free distribution models such as, for instance, depletion models, in which the distribution is

  1. Radioactive Pollution Estimate for Fukushima Nuclear Power Plant by a Particle Model

    Science.gov (United States)

    Saito, Keisuke; Ogawa, Susumu

    2016-06-01

    On Mar 12, 2011, very wide radioactive pollution occurred by a hydrogen explosion in Fukushima Nuclear Power Plant. A large amount of radioisotopes started with four times of explosions. With traditional atmospheric diffusion models could not reconstruct radioactive pollution in Fukushima. Then, with a particle model, this accident was reconstructed from meteorological archive and Radar- AMeDAS. Calculations with the particle model were carried out for Mar 12, 15, 18 and 20 when east southeast winds blew for five hours continuously. Meteorological archive is expressed by wind speeds and directions in five-km grid every hour with eight classes of height till 3000 m. Radar- AMeDAS is precipitation data in one-km grid every thirty minutes. Particles are ten scales of 0.01 to 0.1 mm in diameter with specific weight of 2.65 and vertical speeds given by Stokes equation. But, on Mar 15, it rained from 16:30 and then the particles fell down at a moment as wet deposit in calculation. On the other hand, the altitudes on the ground were given by DEM with 1 km-grid. The spatial dose by emitted radioisotopes was referred to the observation data at monitoring posts of Tokyo Electric Power Company. The falling points of radioisotopes were expressed on the map using the particle model. As a result, the same distributions were obtained as the surface spatial dose of radioisotopes in aero-monitoring by Ministry of Education, Culture, Sports, Science and Technology. Especially, on Mar 15, the simulated pollution fitted to the observation, which extended to the northwest of Fukushima Daiichi Nuclear Power Plant and caused mainly sever pollution. By the particle model, the falling positions on the ground were estimated each particle size. Particles with more than 0.05 mm of size were affected by the topography and blocked by the mountains with the altitudes of more than 700 m. The particle model does not include the atmospheric stability, the source height, and deposit speeds. The

  2. Particle deposition and clearance of atmospheric particles in the human respiratory tract during LACE 98

    Science.gov (United States)

    Bundke, U.; Hänel, G.

    2003-04-01

    During the LACE 98footnote{Lindenberg Aerosol Characterization Experiment, (Germany) 1998} experiment microphysical, chemical and optical properties of atmospheric particles were measured by several groups. (Bundke et al.). The particle deposition and clearance of the particles in the human respiratory tract was calculated using the ICRP (International Commission on Radiological Protection) deposition and clearance model (ICRP 1994). Particle growth as function of relative humidity outside the body was calculated from measurement data using the model introduced by Bundke et al.. Particle growth inside the body was added using a non-equilibrium particle growth model. As a result of the calculations, time series of the total dry particle mass and -size distribution were obtained for all compartments of the human respiratory tract defined by ICRP 1994. The combined ICRP deposition and clearance model was initialized for different probationers like man, woman, children of different ages and several circumstances like light work, sitting, sleeping etc. Keeping the conditions observed during LACE 98 constant a approximation of the aerosol burdens of the different compartments was calculated up to 4 years of exposure and compared to the results from Snipes et al. for the "Phoenix" and "Philadelphia" aerosol. References: footnotesize{ Bundke, U. et al.,it{Aerosol Optical Properties during the Lindenberg Aerosol Characterization Experiment (LACE 98)} ,10.1029/2000JD000188, JGR, 2002 ICRP,it{Human Respiratory Tract Model for Radiological Protection, Bd. ICRP Publication 66}, Annals of the ICRP, 24,1-3, Elsevier Science, Ocford, 1994 Snipes et al. ,it{The 1994 ICRP66 Human Respiratory Tract Model as a Tool for predicting Lung Burdens from Exposure to Environmental Aerosols}, Appl. Occup. Environ. Hyg., 12, 547-553,1997}

  3. Search for a particle with a long interaction length

    International Nuclear Information System (INIS)

    Barrowes, S.C.; Huggett, R.W.; Jones, W.V.; Levit, L.B.; Porter, L.G.

    1975-01-01

    A search has been carried out for a long-lived particle having an interaction length lambdasub(m) = 300 to 2,000 cm -2 in air. Such a particle, called the mandela, has been proposed by the Leeds group to explain an anomalous energy spectrum of particles observed near sea level with a shallow spectrometer. Data taken at mountain altitude with a deep spectrometer has been examined for compatibility with the existence of the mandela. Although the data tend to favor the mandela hypothesis the results are not conclusive and appear to be explainable by conventional means. (orig.) [de

  4. The effect of particles in different sizes on the mechanical properties of spray formed steel composites

    DEFF Research Database (Denmark)

    Petersen, Kenneth; Pedersen, A. S.; Pryds, N.

    2000-01-01

    particle size of 46 and 134 μm were carried out with respect to their mechanical properties e.g. wear resistance and tensile strength. It was found that the addition of Al2O3 particles to the steel improves its wear properties and reduces the elongation and tensile strength of the material......The main objective of the work was to investigate the effect of addition of ceramic particles with different size distributions on the mechanical properties, e.g. wear resistance and tensile strength, of spray formed materials. The experiments were carried out in a spray-forming unit at Risø...... National Laboratory, Denmark, where composites with a low alloyed boron steel (0.2 wt.% carbon) matrix containing alumina particles were produced. A comparison between cast hot-rolled material without particles, spray formed material without particles and the spray formed composites with an average ceramic...

  5. An Empirical Method for Particle Damping Design

    Directory of Open Access Journals (Sweden)

    Zhi Wei Xu

    2004-01-01

    Full Text Available Particle damping is an effective vibration suppression method. The purpose of this paper is to develop an empirical method for particle damping design based on extensive experiments on three structural objects – steel beam, bond arm and bond head stand. The relationships among several key parameters of structure/particles are obtained. Then the procedures with the use of particle damping are proposed to provide guidelines for practical applications. It is believed that the results presented in this paper would be helpful to effectively implement the particle damping for various structural systems for the purpose of vibration suppression.

  6. A general method to coat colloidal particles with titiana

    NARCIS (Netherlands)

    Demirors, A.F.; van Blaaderen, A.; Imhof, A.

    2010-01-01

    We describe a general one-pot method for coating colloidal particles with amorphous titania. Various colloidal particles such as silica particles, large silver colloids, gibbsite platelets, and polystyrene spheres were successfully coated with a titania shell. Although there are several ways of

  7. Recovery of cobalt-rare earth alloy particles by hydration-disintegration in a magnetic field

    International Nuclear Information System (INIS)

    McFarland, C.M.; Lerman, T.B.; Rockwood, A.C.

    1975-01-01

    A process for recovering magnetic alloy particles from a reaction product cake. The cake is placed in a reactor where it is contacted with a flowing water vapor-carrying gas which reacts with its calcium content to disintegrate the cake and produce a hydrated powder comprised substantially of calcium hydroxide and the alloy particles. A magnetic zone is generated into a cross-section of the reactor substantially encircling the inside wall thereof. The zone is generated by at least two poles of opposite polarity running the length of the zone. The hydrated powder is fluidized to dissociate and pass the calcium hydroxide out of the reactor. Finer-sized alloy particles carried by the fluidizing gas into the magnetic zone are subjected to the magnetic field where the poles are rotated or reversed at a rate which reverses the positions of the particles sufficiently to release adherent calcium hydroxide leaving the finer-sized alloy particles substantially within the magnetic zone. (auth)

  8. Simulation of capillary bridges between nanoscale particles.

    Science.gov (United States)

    Dörmann, Michael; Schmid, Hans-Joachim

    2014-02-04

    Capillary forces are very important as they exceed in general other adhesion forces. But at the same time the exact calculation of these forces is very complex, so often assumptions and approximations are used. Previous research was done with regard to micrometer sized particles, but the behavior of nanoscale particles is different. Hence, the results for micrometer sized particles cannot be directly transferred when considering nanoscale particles. Therefore, a simulation method was developed to calculate numerically the shape of a rotationally symmetrical capillary bridge between two spherical particles or a particle and a plate. The capillary bridge in the gap between the particles is formed due to capillary condensation and is in thermodynamic equilibrium with the gas phase. Hence the Kelvin equation and the Young-Laplace equation can be used to calculate the profile of the capillary bridge, depending on the relative humidity of the surrounding air. The bridge profile consists of several elements that are determined consecutively and interpolated linearly. After the shape is determined, the volume and force, divided into capillary pressure force and surface tension force, can be calculated. The validation of this numerical model will be shown by comparison with several different analytical calculations for micrometer-sized particles. Furthermore, it is demonstrated that two often used approximations, (1) the toroidal approximation and (2) the use of an effective radius, cannot be used for nanoscale particles without remarkable mistake. It will be discussed how the capillary force and its components depend on different parameters, like particle size, relative humidity, contact angle, and distance, respectively. The rupture of a capillary bridge due to particle separation will also be presented.

  9. BLOOD SUBSTITUTES: EVOLUTION FROM NON-CARRYING TO OXYGEN AND GAS CARRYING FLUIDS

    Science.gov (United States)

    Cabrales, Pedro; Intaglietta, Marcos

    2013-01-01

    The development of oxygen (O2) carrying blood substitutes has evolved from the goal of replicating blood O2 transports properties to that of preserving microvascular and organ function, reducing the inherent or potential toxicity of the material used to carry O2, and treating pathologies initiated by anemia and hypoxia. Furthermore, the emphasis has shifted from blood replacement fluid to “O2 therapeutics” that restore tissue oxygenation to specific tissues regions. This review covers the different alternatives, potential and limitations of hemoglobin based O2 carriers (HBOCs) and perfluorocarbon based O2 carriers (PFCOCs), with emphasis on the physiological conditions disturbed in the situation that they will be used. It describes how concepts learned from plasma expanders without O2 carrying capacity can be applied to maintain O2 delivery and summarizes the microvascular responses due to HBOCs and PFCOCs. This review also presents alternative applications of HBOCs and PFCOCs namely: 1) How HBOC O2 affinity can be engineered to target O2 delivery to hypoxic tissues; and 2) How the high gas solubility of PFCOCs provides new opportunities for carrying, dissolving and delivering gases with biological activity. It is concluded that current blood substitutes development has amplified their applications horizon by devising therapeutic functions for oxygen carriers requiring limited O2 delivery capacity restoration. Conversely, full, blood-like O2 carrying capacity re-establishment awaits control of O2 carrier toxicity. PMID:23820271

  10. Shape evolution of a melting nonspherical particle

    Science.gov (United States)

    Kintea, Daniel M.; Hauk, Tobias; Roisman, Ilia V.; Tropea, Cameron

    2015-09-01

    In this study melting of irregular ice crystals was observed in an acoustic levitator. The evolution of the particle shape is captured using a high-speed video system. Several typical phenomena have been discovered: change of the particle shape, appearance of a capillary flow of the melted liquid on the particle surface leading to liquid collection at the particle midsection (where the interface curvature is smallest), and appearance of sharp cusps at the particle tips. No such phenomena can be observed during melting of spherical particles. An approximate theoretical model is developed which accounts for the main physical phenomena associated with melting of an irregular particle. The agreement between the theoretical predictions for the melting time, for the evolution of the particle shape, and the corresponding experimental data is rather good.

  11. Charged-particle calculations using Boltzmann transport methods

    International Nuclear Information System (INIS)

    Hoffman, T.J.; Dodds, H.L. Jr.; Robinson, M.T.; Holmes, D.K.

    1981-01-01

    Several aspects of radiation damage effects in fusion reactor neutron and ion irradiation environments are amenable to treatment by transport theory methods. In this paper, multigroup transport techniques are developed for the calculation of charged particle range distributions, reflection coefficients, and sputtering yields. The Boltzmann transport approach can be implemented, with minor changes, in standard neutral particle computer codes. With the multigroup discrete ordinates code, ANISN, determination of ion and target atom distributions as functions of position, energy, and direction can be obtained without the stochastic error associated with atomistic computer codes such as MARLOWE and TRIM. With the multigroup Monte Carlo code, MORSE, charged particle effects can be obtained for problems associated with very complex geometries. Results are presented for several charged particle problems. Good agreement is obtained between quantities calculated with the multigroup approach and those obtained experimentally or by atomistic computer codes

  12. Meeting on establishing a sponsoring consortium for Open Access publishing in particle physics, 3rd November 2006, CERN. Minutes

    CERN Document Server

    Yeomans, Joanne

    2006-01-01

    In December 2005 a Task Force on Open Access Publishing in Particle Physics was set up, and it produced its report in June 2006. Its main conclusion was that a sponsorship model was the most appropriate for the transition period to full Open Access. The present meeting was called to discuss the formation of a consortium (SCOAP3) that could coordinate this sponsorship. Representatives from major European particle physics funding agencies, library consortia and the research community attended. In the past year, many more physics publishers have introduced Open Access options of one kind or another. It is fairly clear that these moves have been a direct consequence of the discussion on Open Access in the particle physics research community. The maintenance of a peer-review system for quality assurance, currently carried out by the publishers, was felt to be an essential element to preserve in the transition to Open Access. A move to full Open Access, rather than the hybrid variety currently proposed by several p...

  13. Granulation study of porous silica particles for MA recovery process

    International Nuclear Information System (INIS)

    Goto, Ichiro; Kofuji, Hirohide; Oriuchi, Akio; Watanabe, Sou; Takeuchi, Masayuki

    2017-01-01

    JAEA has been working on partition of MA from HLLW generated in the reprocessing by extraction chromatography technology. This technology utilizes 50 μm porous silica particles coated by styrene-divinylbenzene copolymer in which an extractant for MA recovery is impregnated as adsorbent. In this study, spray drying granulating experiments with various operating conditions and with different experimental apparatuses were carried out to find an appropriate condition to control the size of the particle and the pore. The target average sizes of the particle and pore are more than 50 μm and 600 nm respectively. Suspension containing fine silica particles were supplied to the spray drying devices, and small droplets generated through the spray nozzle were dried inside the drying chamber. In this study, viscosity of the feed solution and some granulation conditions were parametrically changed, and two different types of the spray nozzles were used. An air atomizing nozzle and a rotary disk nozzle were equipped at different chambers respectively. Then, performance of the product particle was evaluated by particle and pore size distributions and adsorption experiment after the polymer coating and an extractant impregnation. The particle size of the product depended on the atomizing pressure and viscosity of the feed solution, and the size increased with decrease in the pressure and in the viscosity. The maximum size obtained in this study was about 40 μm. Large viscosity of the feed solution lead poor recovery ratio and uniformity in the size distribution of the product powder. The pore size of the resultant particle was 550-800 nm as expected. As the type of the nozzle changed from the air atomizing nozzle to the rotary disk nozzle and size of the drying chamber became large, the average particle size and the particle size distribution became large and sharp, respectively. Rotation speed of the nozzle also influenced on the particle size, and targeted average size of the

  14. Gravity influence on the clustering of charged particles in turbulence

    Science.gov (United States)

    Lu, Jiang; Nordsiek, Hansen; Shaw, Raymond

    2010-11-01

    We report results aimed at studying the interactions of bidisperse charged inertial particles in homogeneous, isotropic turbulence, under the influence of gravitational settling. We theoretically and experimentally investigate the impact of gravititational settling on particle clustering, which is quantified by the radial distribution function (RDF). The theory is based on a drift-diffusion (Fokker-Planck) model with gravitational settling appearing as a diffusive term depending on a dimensionless settling parameter. The experiments are carried out in a laboratory chamber with nearly homogeneous, isotropic turbulence in which the flow is seeded with charged particles and digital holography used to obtain 3D particle positions and velocities. The derived radial distribution function for bidisperse settling charged particles is compared to the experimental RDFs.

  15. Microtubule self-organisation by reaction-diffusion processes causes collective transport and organisation of cellular particles

    Directory of Open Access Journals (Sweden)

    Demongeot Jacques

    2004-06-01

    Full Text Available Abstract Background The transport of intra-cellular particles by microtubules is a major biological function. Under appropriate in vitro conditions, microtubule preparations behave as a 'complex' system and show 'emergent' phenomena. In particular, they form dissipative structures that self-organise over macroscopic distances by a combination of reaction and diffusion. Results Here, we show that self-organisation also gives rise to a collective transport of colloidal particles along a specific direction. Particles, such as polystyrene beads, chromosomes, nuclei, and vesicles are carried at speeds of several microns per minute. The process also results in the macroscopic self-organisation of these particles. After self-organisation is completed, they show the same pattern of organisation as the microtubules. Numerical simulations of a population of growing and shrinking microtubules, incorporating experimentally realistic reaction dynamics, predict self-organisation. They forecast that during self-organisation, macroscopic parallel arrays of oriented microtubules form which cross the reaction space in successive waves. Such travelling waves are capable of transporting colloidal particles. The fact that in the simulations, the aligned arrays move along the same direction and at the same speed as the particles move, suggest that this process forms the underlying mechanism for the observed transport properties. Conclusions This process constitutes a novel physical chemical mechanism by which chemical energy is converted into collective transport of colloidal particles along a given direction. Self-organisation of this type provides a new mechanism by which intra cellular particles such as chromosomes and vesicles can be displaced and simultaneously organised by microtubules. It is plausible that processes of this type occur in vivo.

  16. Microtubule self-organisation by reaction-diffusion processes causes collective transport and organisation of cellular particles

    Science.gov (United States)

    Glade, Nicolas; Demongeot, Jacques; Tabony, James

    2004-01-01

    Background The transport of intra-cellular particles by microtubules is a major biological function. Under appropriate in vitro conditions, microtubule preparations behave as a 'complex' system and show 'emergent' phenomena. In particular, they form dissipative structures that self-organise over macroscopic distances by a combination of reaction and diffusion. Results Here, we show that self-organisation also gives rise to a collective transport of colloidal particles along a specific direction. Particles, such as polystyrene beads, chromosomes, nuclei, and vesicles are carried at speeds of several microns per minute. The process also results in the macroscopic self-organisation of these particles. After self-organisation is completed, they show the same pattern of organisation as the microtubules. Numerical simulations of a population of growing and shrinking microtubules, incorporating experimentally realistic reaction dynamics, predict self-organisation. They forecast that during self-organisation, macroscopic parallel arrays of oriented microtubules form which cross the reaction space in successive waves. Such travelling waves are capable of transporting colloidal particles. The fact that in the simulations, the aligned arrays move along the same direction and at the same speed as the particles move, suggest that this process forms the underlying mechanism for the observed transport properties. Conclusions This process constitutes a novel physical chemical mechanism by which chemical energy is converted into collective transport of colloidal particles along a given direction. Self-organisation of this type provides a new mechanism by which intra cellular particles such as chromosomes and vesicles can be displaced and simultaneously organised by microtubules. It is plausible that processes of this type occur in vivo. PMID:15176973

  17. Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity

    NARCIS (Netherlands)

    Ten Cate, A.; Nieuwstad, C.H.; Derksen, J.J.; Van den Akker, H.E.A.

    2002-01-01

    A comparison is made between experiments and simulations on a single sphere settling in silicon oil in a box. Cross-correlation particle imaging velocimetry measurements were carried out at particle Reynolds numbers ranging from 1.5 to 31.9. The particle Stokes number varied from 0.2 to 4 and at

  18. Heat transfer coefficients for particles in liquid in axially rotating cans

    Science.gov (United States)

    Hassan, B. H.

    A theoretical analysis was carried out to determine the nondimensional parameters and corresponding correlations for the overall heat transfer coefficient (between the external steam and internal rotating liquid) and the liquid-particle film heat transfer coefficient for spherical particles in liquid in axially rotating 303 x 406 cans undergoing steam heating. The correlations were obtained from dimensional analysis of the equations of continuity, motion and energy, together with the thermal energy balances and the particle-fluid dynamics of the system. The theoretical solutions for the temperature distribution in spherical particles with a time varying boundary condition were presented.

  19. The Particle Beam Optics Interactive Computer Laboratory

    International Nuclear Information System (INIS)

    Gillespie, George H.; Hill, Barrey W.; Brown, Nathan A.; Babcock, R. Chris; Martono, Hendy; Carey, David C.

    1997-01-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is an educational software concept to aid students and professionals in learning about charged particle beams and particle beam optical systems. The PBO Lab is being developed as a cross-platform application and includes four key elements. The first is a graphic user interface shell that provides for a highly interactive learning session. The second is a knowledge database containing information on electric and magnetic optics transport elements. The knowledge database provides interactive tutorials on the fundamental physics of charged particle optics and on the technology used in particle optics hardware. The third element is a graphical construction kit that provides tools for students to interactively and visually construct optical beamlines. The final element is a set of charged particle optics computational engines that compute trajectories, transport beam envelopes, fit parameters to optical constraints and carry out similar calculations for the student designed beamlines. The primary computational engine is provided by the third-order TRANSPORT code. Augmenting TRANSPORT is the multiple ray tracing program TURTLE and a first-order matrix program that includes a space charge model and support for calculating single particle trajectories in the presence of the beam space charge. This paper describes progress on the development of the PBO Lab

  20. Particle induced X-ray emission: a valuable tool for the analysis of metalpoint drawings

    International Nuclear Information System (INIS)

    Duval, A.; Guicharnaud, H.; Dran, J.C.

    2004-01-01

    For several years, we carry out a research on metalpoint drawings, a graphic technique mainly employed by European artists during the 15th and 16th centuries. As a non-destructive and very sensitive analytical technique is required, particle induced X-ray emission (PIXE) analysis with an external beam has been used for this purpose. More than 70 artworks drawn by Italian, Flemish and German artists have been analysed, including leadpoint and silverpoint drawings. Following a short description of the metalpoint technique, the results are compared with the recipes written by Cennino Cennini at the beginning of the 15th century and specific examples are presented

  1. Particle manipulation techniques in AEgIS

    Energy Technology Data Exchange (ETDEWEB)

    Canali, C., E-mail: canali@ge.infn.it; Carraro, C.; Di Noto, L.; Krasnicky, D.; Lagomarsino, V.; Testera, G.; Zavatarelli, S. [Istituto Nazionale Fisica Nucleare Sez. Genova (Italy)

    2011-07-15

    The AEgIS experiment (http://aegis.web.cern.chhttp://aegis.web.cern.ch) will measure the gravitational acceleration g of antihydrogen. Once performed this could be the first direct test of the gravitational interaction between matter and antimatter. In the AEgIS experiment a beam of antihydrogen will travel horizontally along a path of about 1 m trough a moire deflectometer followed by a position sensitive detector. The g value will be obtained measuring the vertical displacement of the annihilation patterns. Before producing the beam, several tasks have to be performed mainly involving positron and electron plasma manipulation and particles cooling in Malmberg-Penning traps. The AEgIS experiment is currently under construction at CERN, meanwhile several tests involving particle manipulation and particle cooling are in progress. In this report some experimental results involving diocotron manipulation of plasma will be presented.

  2. Influence of gravity on inertial particle clustering in turbulence

    Science.gov (United States)

    Lu, J.; Nordsiek, H.; Saw, E. W.; Fugal, J. P.; Shaw, R. A.

    2008-11-01

    We report results from experiments aimed at studying inertial particles in homogeneous, isotropic turbulence, under the influence of gravitational settling. Conditions are selected to investigate the transition from negligible role of gravity to gravitationally dominated, as is expected to occur in atmospheric clouds. We measure droplet clustering, relative velocities, and the distribution of collision angles in this range. The experiments are carried out in a laboratory chamber with nearly homogeneous, isotropic turbulence. The turbulence is characterized using LDV and 2-frame holographic particle tracking velocimetry. We seed the flow with particles of various Stokes and Froude numbers and use digital holography to obtain 3D particle positions and velocities. From particle positions, we investigate the impact of gravity on inertial clustering through the calculation of the radial distribution function and we compare to computational results and other recent experiments.

  3. Experiments on Alignment of Dust Particles in Plasma Sheath

    International Nuclear Information System (INIS)

    Samarian, A.A.; Vladimirov, S.V.; James, B.W.

    2005-01-01

    Here, we report an experimental investigation of the stability of vertical and horizontal confinement of dust particles levitated in an rf sheath. The experiments were carried out in argon plasma with micron-sized dust particles. Changes of particle arrangement were triggered by changing the discharge parameters, applying an additional bias to the confining electrode and by laser beam. The region where the transition was triggered by changes of discharge parameters and the transition from horizontal to vertical alignment has been found to be more pronounced than for the reverse transition. A clear hysteretic effect was observed for transitions triggered by changes of the confining voltage. A vertical alignment occurs in a system of two dust horizontally arranged particles with the decrease of the particle separation. This disruption is attributed to the formation of the common ion wake in the system

  4. Particle therapy planning

    International Nuclear Information System (INIS)

    Zink, S.

    1987-01-01

    The Radiation Research Program (RRP) supports a variety of research through grants and contracts. During the last few years, considerable effort has been devoted to treatment planning evaluation in particle, photon and electron radiotherapy. In 1981, RRP issued a request for proposals (RFP) for the evaluation of treatment planning with particle beam radiotherapy - to include protons, heavy ions and neutrons. Contracts were subsequently awarded to four institutions: Massachusetts General Hospital (MGH), University of Texas and M.D. Anderson Hospital (MDAH), the heavy ion project at Lawrence Berkeley Laboratory (LBL) and University of Pennsylvania (UPa). These contracts reached completion December 31, 1986. The work for the contracts was carried out at the individual institutions and guided through a Working Group made up of the Project Officer and Principal Investigators and primary physicians and physicists at each of the participating institutions. This report summarizes the findings of the Working Group and makes recommendations for further research

  5. New particle searches at PEP

    International Nuclear Information System (INIS)

    Berley, D.; Bulos, F.; Cheng, D.

    1988-01-01

    The new particles that could be produced at PEP are discussed in terms of their specific signatures and production rates. We find that a small number of general signatures characterize these particles. Backgrounds associated with the general signatures are considered and necessary rejection rates are calculated. We describe several typical detectors and tabulate the requirements they place on the PEP machine and the experimental areas. 10 figs., 2 tabs

  6. Three Dimensional Characterization of Typical Urban and Desert Particles: Implications to Particle Optics

    Science.gov (United States)

    Goel, V.; Mishra, S.; Ahlawat, A. S.; Sharma, C.; Kotnala, R. K.

    2017-12-01

    Aerosol particles are generally considered as chemically homogeneous spheres in the retrieval techniques of ground and space borne observations which is not accurate approach and can lead to erroneous observations. For better simulation of optical and radiative properties of aerosols, a good knowledge of aerosol's morphology, chemical composition and internal structure is essential. Till date, many studies have reported the morphology and chemical composition of particles but very few of them provide internal structure and spatial distribution of different chemical species within the particle. The research on the effect of particle internal structure and its contribution to particle optics is extremely limited. In present work, we characterize the PM10 particles collected form typical arid (the Thar Desert, Rajasthan, India) and typical urban (New Delhi, India) environment using microscopic techniques. The particles were milled several times to investigate their internal structure. The EDS (Energy Dispersive X-ray Spectroscopy) spectra were recorded after each milling to check the variation in the chemical composition. In arid environment, Fe, Ca, C, Al, and Mg rich shell was observed over a Si rich particle whereas in urban environment, shell of Hg, Ag, C and N was observed over a Cu rich particle. Based on the observations, different model shapes [homogenous sphere and spheroid; heterogeneous sphere and spheroid; core shell] have been considered for assessing the associated uncertainties with the routine modeling of optical properties where volume equivalent homogeneous sphere approximation is considered. The details will be discussed during presentation.

  7. Measured gas and particle temperatures in VTT's entrained flow reactor

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Sørensen, L.H.

    2006-01-01

    Particle and gas temperature measurements were carried out in experiments on VTTs entrained flow reactor with 5% and 10% oxygen using Fourier transform infrared emission spectroscopy (FTIR). Particle temperature measurements were performed on polish coal,bark, wood, straw particles, and bark...... and wood particles treated with additive. A two-color technique with subtraction of the background light was used to estimate particle temperatures during experiments. A transmission-emission technique was used tomeasure the gas temperature in the reactor tube. Gas temperature measurements were in good...... agreement with thermocouple readings. Gas lines and bands from CO, CO2 and H2O can be observed in the spectra. CO was only observed at the first measuring port (100ms) with the strongest CO-signal seen during experiments with straw particles. Variations in gas concentration (CO2 and H2O) and the signal from...

  8. Transient particle transport studies at the W7-AS stellarator

    International Nuclear Information System (INIS)

    Koponen, J.

    2000-01-01

    One of the crucial problems in fusion research is the understanding of the transport of particles and heat in plasmas relevant for energy production. Extensive experimental transport studies have unraveled many details of heat transport in tokamaks and stellarators. However, due to larger experimental difficulties, the properties of particle transport have remained much less known. In particular, very few particle transport studies have been carried out in stellarators. This thesis summarises the transient particle transport experiments carried out at the Wendelstein 7-Advanced Stellarator (W7-AS). The main diagnostics tool was a 10-channel microwave interferometer. A technique for reconstructing the electron density profiles from the multichannel interferometer data was developed and implemented. The interferometer and the reconstruction software provide high quality electron density measurements with high temporal and sufficient spatial resolution. The density reconstruction is based on regularization methods studied during the development work. An extensive program of transient particle transport studies was carried out with the gas modulation method. The experiments resulted in a scaling expression for the diffusion coefficient. Transient inward convection was found in the edge plasma. The role of convection is minor in the core plasma, except at higher heating power, when an outward directed convective flux is observed. Radially peaked density profiles were found in discharges free of significant central density sources. Such density profiles are usually observed in tokamaks, but never before in W7-AS. Existence of an inward pinch is confirmed with two independent transient transport analysis methods. The density peaking is possible if the plasma is heated with extreme off-axis Electron Cyclotron Heating (ECH), when the temperature gradient vanishes in the core plasma, and if the gas puffing level is relatively low. The transport of plasma particles and heat

  9. Search milli-charged particles at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Langeveld, W.G.J. [Stanford Univ., CA (United States)

    1997-01-01

    Particles with electric charge q {triple_bond} Qe {le} 10{sup -3} e and masses in the range 1-1000 MeV/c{sup 2} are not excluded by present experiments or by astrophysical or cosmological arguments. A beam dump experiment uniquely suited to the detection of such {open_quotes}milli-charged{close_quotes} particles has been carried out at SLAC, utilizing the short-duration pulses of the SLC electron beam to establish a tight coincidence window for the signal. The detector, a large scintillation counter sensitive to very small energy depositions, provided much greater sensitivity than previous searches. Analysis of the data leads to the exclusion of a substantial portion of the charge-mass plane. In this report, a preliminary mass-dependent upper limit is presented for the charge of milli-charged particles, ranging from Q = 1.7 x 10{sup -5} at milli-charged particle mass 0.1 MeV/c{sup 2} to Q = 9.5 x 10{sup -4} at 100 MeV/c{sup 2}.

  10. Proposal of experimental study on particle diffusion in superficially confined plasma by magnetic multi-dipole fields

    International Nuclear Information System (INIS)

    Ferreira, J.L.; Ferreira, J.G.; Sandonato, G.M.; Damasio, W.C.; Montes, A.; Ludwig, G.O.

    1989-08-01

    The anomalous particle diffusion in regions near to magnetic confinement walls due to ion acoustic turbulence in superficially confined quiescent plasma is studied comparing the measured diffusion coefficient with the Bohm diffusion coefficient. The plasma diagnostics are carried out using Langmuir probe, electron and ion energy analyzers, emission probes for measuring plasma potential and, mass spectrometer, the purchase of data acquisition system composed by storage unit and signal register interfaced with IBM PC computer is proposed for simultaneous measurements with several diagnostics in the quiescent plasma machine of LAP-INPE operating in pulsed regime. (M.C.K.)

  11. Optical Carry Adder.

    Science.gov (United States)

    1987-03-01

    AOM’s) with the deflected beam as the modulator "on" state. These AOM’s ( TeO2 crystals, manufactured by Newport E.O. Systems) have high deflection...caused by the slow acoustic propagation (4.2 - 105 cm/s for TeO2 ), but this delay can be minimized by placing the laser beam close to the acoustic...dependent jitter in the optical carry to below 1 ns, the total carry path must be less than 30 cm long (or 20 cm in glass , 14 cm in LiNbO 3). Thus, a 32

  12. Formation of charged particles in condensation aerosol generators used for inhalation studies

    International Nuclear Information System (INIS)

    Ramu, M.C.R.; Vohra, K.G.

    1976-01-01

    Formation of charged particles in a condensation aerosol generator has been studied using a charge collector and a mobility analyzer. Measurements carried out using the charge collector show that the number of charged particles increases with an increase in the particle diameter. The number of charged particles measured also depends on the thickness of the sodium chloride coating on the platinum wire used in the aerosol generator for the production of condensation nuclei. It was found that the charged particle concentration increases with decreasing coating thickness. Mobility measurements have shown that the particles are singly and doubly charged. It has been estimated that about 10% of the particles produced in the generator are charged. The mechanism of formation of charged particles in the aerosol generator has been briefly discussed. (author)

  13. Particle agglomeration and properties of nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yijun; Oztekin, Alparslan, E-mail: alo2@lehigh.edu; Neti, Sudhakar [Lehigh University, Department of Mechanical Engineering and Mechanics (United States); Mohapatra, Satish [Dynalene Inc. (United States)

    2012-05-15

    The present study demonstrates the importance of actual agglomerated particle size in the nanofluid and its effect on the fluid properties. The current work deals with 5 to 100 nm nanoparticles dispersed in fluids that resulted in 200 to 800 nm agglomerates. Particle size distributions for a range of nanofluids are measured by dynamic light scattering (DLS). Wet scanning electron microscopy method is used to visualize agglomerated particles in the dispersed state and to confirm particle size measurements by DLS. Our results show that a combination of base fluid chemistry and nanoparticle type is very important to create stable nanofluids. Several nanofluids resulted in stable state without any stabilizers, but in the long term had agglomerations of 250 % over a 2 month period. The effects of agglomeration on the thermal and rheological properties are presented for several types of nanoparticle and base fluid chemistries. Despite using nanodiamond particles with high thermal conductivity and a very sensitive laser flash thermal conductivity measurement technique, no anomalous increases of thermal conductivity was measured. The thermal conductivity increases of nanofluid with the particle concentration are as those predicted by Maxwell and Bruggeman models. The level of agglomeration of nanoparticles hardly influenced the thermal conductivity of the nanofluid. The viscosity of nanofluids increased strongly as the concentration of particle is increased; it displays shear thinning and is a strong function of the level of agglomeration. The viscosity increase is significantly above of that predicted by the Einstein model even for very small concentration of nanoparticles.

  14. Particle agglomeration and properties of nanofluids

    International Nuclear Information System (INIS)

    Yang Yijun; Oztekin, Alparslan; Neti, Sudhakar; Mohapatra, Satish

    2012-01-01

    The present study demonstrates the importance of actual agglomerated particle size in the nanofluid and its effect on the fluid properties. The current work deals with 5 to 100 nm nanoparticles dispersed in fluids that resulted in 200 to 800 nm agglomerates. Particle size distributions for a range of nanofluids are measured by dynamic light scattering (DLS). Wet scanning electron microscopy method is used to visualize agglomerated particles in the dispersed state and to confirm particle size measurements by DLS. Our results show that a combination of base fluid chemistry and nanoparticle type is very important to create stable nanofluids. Several nanofluids resulted in stable state without any stabilizers, but in the long term had agglomerations of 250 % over a 2 month period. The effects of agglomeration on the thermal and rheological properties are presented for several types of nanoparticle and base fluid chemistries. Despite using nanodiamond particles with high thermal conductivity and a very sensitive laser flash thermal conductivity measurement technique, no anomalous increases of thermal conductivity was measured. The thermal conductivity increases of nanofluid with the particle concentration are as those predicted by Maxwell and Bruggeman models. The level of agglomeration of nanoparticles hardly influenced the thermal conductivity of the nanofluid. The viscosity of nanofluids increased strongly as the concentration of particle is increased; it displays shear thinning and is a strong function of the level of agglomeration. The viscosity increase is significantly above of that predicted by the Einstein model even for very small concentration of nanoparticles.

  15. UCLA Particle Physics Research Group annual progress report

    International Nuclear Information System (INIS)

    Nefkens, B.M.K.

    1981-08-01

    The objectives, basic research programs, recent results and continuing activities of the UCLA Particle Physics Research Group are presented. The objectives of the research are to discover, to formulate, and to elucidate the physics laws that govern the elementary constituents of matter and to determine basic properties of particles. A synopsis of research carried out last year is given. The main body of this report is the account of the techniques used in our investigations, the results obtained, and the plans for continuing and new research

  16. Influence of in situ formed ZrB2 particles on microstructure and mechanical properties of AA6061 metal matrix composites

    International Nuclear Information System (INIS)

    Dinaharan, I.; Murugan, N.; Parameswaran, Siva

    2011-01-01

    Highlights: → In situ fabrication of aluminium metal matrix composite reinforced ZrB 2 particles. → Colour metallography of composites. → Improvement of matrix properties by ZrB 2 particles. → Sliding wear behaviour of in situ composites. - Abstract: Particulate reinforced metal matrix composites (PMMCs) have gained considerable amount of research emphasis and attention in the present era. Research is being carried out across the globe to produce new combination of PMMCs. PMMCs are prepared by adding a variety of ceramic particles with monolithic alloys using several techniques. An attempt has been made to produce aluminium metal matrix composites reinforced with zirconium boride (ZrB 2 ) particles by the in situ reaction of K 2 ZrF 6 and KBF 4 salts with molten aluminium. The influence of in situ formed ZrB 2 particles on the microstructure and mechanical properties of AA6061 alloy was studied in this work. The in situ formed ZrB 2 particles significantly refined the microstructure and enhanced the mechanical properties of AA6061 alloy. The weight percentage of ZrB 2 was varied from 0 to 10 in steps of 2.5. Improvement of hardness, ultimate tensile strength and wear resistance of AA6061 alloy was observed with the increase in ZrB 2 content.

  17. New particle searches

    International Nuclear Information System (INIS)

    Derrick, M.

    1985-01-01

    The Standard Model is a remarkable result of decades of work in particle physics, but it is clearly an incomplete representation of the world. Exploring possibilities beyond the Standard Model is a major preoccupation of both theorists and experimentalists. Despite the many suggestions that are extant about the missing links within the Standard Model as well as extensions beyond it, no hard experimental evidence exists. In particular, in more than five years of experimentation both at PETRA and PEP no new particles have been found that would indicate new physics. Several reasons are possible for these negative results: the particles may be too heavy; the experiments may not be looking in the proper way; the cross sections may be too small or finally the particles may not exist. A continuing PEP program, at high luminosity will ensure that the second and third reason continue to be addressed. The higher energy e + e - storage rings such as TRISTAN and LEP will extend the mass limits. High mass particles can also be produced at the CERN collider and soon with the Tevatron collider. A concise summary of the mass limits from the PETRA experiments has been given in a recent Mark J publication. The results shown provide a convenient yardstick against which to measure future search experiments

  18. Element determination of fine particles in environmental aerosols using PIXE

    International Nuclear Information System (INIS)

    Garcia O, B.; Aldape U, F.

    2007-01-01

    The Mexico city is classified as one of the more populated cities of the world which presents a decrease in the air quality and that gives place to a severe problematic in atmospheric pollution. To cooperate in the solution of this problem it is necessary to carry out studies that allow a better knowledge of the atmosphere of the city. This study presents the results of a monitoring campaign of fine particle carried out from September 21 to December 12, 2001 in three sites of the Mexico City center area. The samples were collected every third day with a collector type unit of heaped filters (Gent). The analysis of these samples was carried out in the 2 MV accelerator of the National Institute of Nuclear Research (ININ) applying the PIXE technique and with this analysis its were identified in the samples approximately 15 elements in each one of the 3 sites and was calculated the concentration in that its were present. With these results a database was created and by means of it mathematical treatment the Enrichment factor (FE), the time series of each element and the multiple correlation matrix were evaluated. The obtained results showed that the Civil Registration site (Salto del Agua) it was the more polluted coinciding that to a bigger concentration of activities a bigger increase in the pollution is generated. (Author)

  19. From particle segregation to the granular clock

    International Nuclear Information System (INIS)

    Lambiotte, R.; Salazar, J.M.; Brenig, L.

    2005-01-01

    Recently several authors studied the segregation of particles for a system composed of mono-dispersed inelastic spheres contained in a box divided by a wall in the middle. The system exhibited a symmetry breaking leading to an overpopulation of particles in one side of the box. Here we study the segregation of a mixture of particles composed of inelastic hard spheres and fluidized by a vibrating wall. Our numerical simulations show a rich phenomenology: horizontal segregation and periodic behavior. We also propose an empirical system of ODEs representing the proportion of each type of particles and the segregation flux of particles. These equations reproduce the major features observed by the simulations

  20. From particle segregation to the granular clock

    Energy Technology Data Exchange (ETDEWEB)

    Lambiotte, R. [Physique Statistique, Plasmas et Optique Non-lineaire, Universite Libre de Bruxelles, Campus Plaine, Boulevard du Triomphe, Code Postal 231, 1050 Brussels (Belgium)]. E-mail: rlambiot@ulb.ac.be; Salazar, J.M. [Universite De Bougogne-LRRS UMR-5613 CNRS, Faculte des Sciences Mirande, 9 Av. Alain Savary, 21078 Dijon Cedex (France)]. E-mail: jmarcos@u-bourgogne.fr; Brenig, L. [Physique Statistique, Plasmas et Optique Non-lineaire, Universite Libre de Bruxelles, Campus Plaine, Boulevard du Triomphe, Code Postal 231, 1050 Brussels (Belgium)]. E-mail: lbrenig@ulb.ac.be

    2005-08-01

    Recently several authors studied the segregation of particles for a system composed of mono-dispersed inelastic spheres contained in a box divided by a wall in the middle. The system exhibited a symmetry breaking leading to an overpopulation of particles in one side of the box. Here we study the segregation of a mixture of particles composed of inelastic hard spheres and fluidized by a vibrating wall. Our numerical simulations show a rich phenomenology: horizontal segregation and periodic behavior. We also propose an empirical system of ODEs representing the proportion of each type of particles and the segregation flux of particles. These equations reproduce the major features observed by the simulations.

  1. Dynamical theory of hadrons based upon extended particle picture

    International Nuclear Information System (INIS)

    Hara, Osamu

    1980-01-01

    An extended particle model of hadrons is discussed on the basis of the assumption that the hadrons correspond to the respective eigenstates of the internal motion of extended bodies which are considered as deformable spheres for simplicity. Such three-dimensionally extended bodies have several remarkable features. The first point is that it is allowed to make half-integer spin. The internal motion of the bodies can be described in terms of quark-like excitons. But the great difference is that these quark-like excitons obey Bose statistics. Therefore in this model, there is no positive reason to introduce the degree of freedom of color at least from the symmetry reason. The second point is that the triality must be restricted to zero. Therefore, the particles with fractional charge do not appear, and the confinement is automatic. It is assumed that the interaction among hadrons takes place due to the coupling of current carried by excited quark-like excitons. All hadron interactions are described in terms of a single coupling constant characterizing the coupling between current and intermediate field. Once the interaction Hamiltonian is given, it is straight forward to calculate scattering amplitude. High energy charge exchange scattering and the decay width of higher resonances can be understood. (Kako, I.)

  2. Particle size- and concentration-dependent separation of magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Witte, Kerstin, E-mail: witte@micromod.de [University of Rostock, Institute of Physics, Albert-Einstein-Str. 23, 18059 Rostock (Germany); Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Str. 4, 18119 Rostock (Germany); Müller, Knut; Grüttner, Cordula; Westphal, Fritz [Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Str. 4, 18119 Rostock (Germany); Johansson, Christer [Acreo Swedish ICT AB, 40014 Göteborg (Sweden)

    2017-04-01

    Small magnetic nanoparticles with a narrow size distribution are of great interest for several biomedical applications. When the size of the particles decreases, the magnetic moment of the particles decreases. This leads to a significant increase in the separation time by several orders of magnitude. Therefore, in the present study the separation processes of bionized nanoferrites (BNF) with different sizes and concentrations were investigated with the commercial Sepmag Q system. It was found that an increasing initial particle concentration leads to a reduction of the separation time for large nanoparticles due to the higher probability of building chains. Small nanoparticles showed exactly the opposite behavior with rising particle concentration up to 0.1 mg(Fe)/ml. For higher iron concentrations the separation time remains constant and the measured Z-average decreases in the supernatant at same time intervals. At half separation time a high yield with decreasing hydrodynamic diameter of particles can be obtained using higher initial particle concentrations. - Highlights: • Size dependent separation processes of multicore nanoparticles. • Concentration dependent separation processes of multicore nanoparticles. • Increasing separation time with rising concentrations for small particles. • Large particles show typical cooperative magnetophoresis behavior.

  3. Development Of Radioimmunoassay For Prolactin HORMONE Using Solid Phase Magnetic Particles

    International Nuclear Information System (INIS)

    SHAFIK, H.M.; MEHANY, N.L.

    2009-01-01

    The preparation and development of primary reagents of prolactin (PRL) radioimmunoassay (RIA) technique using solid phase magnetic particles with low cost is considered to be the main objective of the present study. The production of polyclonal antibodies was undertaken by immunizing four female New-Zealand rabbits through primary injection and four booster doses subcutaneously. The preparation of 125 I-prolactin radiotracer was carried out using chloramine-T. The preparation of standard prolactin was undertaken by preparing stock standard solution of prolactin and diluted with assay buffer. Activation and coupling of low magnetizable particles with the purified anti-PRL was carried out. Optimization and validation of the assay were carried out. The results obtained provide a highly sensitive, specific and accurate RIA system of PRL. In conclusion, this assay could be used in diagnosis of galactorrhea, prolactinoma, visual impairment and diagnosis of infertility in males and females.

  4. Enhancement of aspirin capsulation by porous particles including iron hydrous oxide

    International Nuclear Information System (INIS)

    Saito, Kenji; Koishi, Masumi; Hosoi, Fumio; Makuuchi, Keizo.

    1986-01-01

    Polymer-coated porous particles containing aspirin as a drug were prepared and the release of rate of aspirin was studied. The impregnation of aspirin was carried out by post-graft polymerization, where methyl methacrylate containing aspirin was treated with porous particles including iron oxide, pre-irradiated with γ-ray form Co-60. Release of aspirin from modified particles was examined with 50 % methanol solution. The amount of aspirin absorbed in porous particles increased by grafting of methyl methacrylate. The particles treated with iron hydrous oxide sols before irradiation led to the increment of aspirin absorption. Diffusion of aspirin through the polymer matrix and the gelled layer was the limiting process in the aspirin release from particles. The rate of aspirin released from modified particles including iron hydrous oxide wasn't affected by the grafting of methyl methacrylate. (author)

  5. Thermal-hydraulic considerations for particle bed reactors

    Science.gov (United States)

    Benenati, R.; Araj, K. J.; Horn, F.

    In the design of particle bed reactor (PBR) cores, consideration must be given to the gas coolant channels and their configuration. Neutronics analysis provides the relative volume fractions of the component materials, but these must be arranged in such a manner as to allow proper cooling of all components by the gas flow at relatively low pressure drops. The thermal hydraulic aspects of this problem are addressed. A description of the computer model used in the analysis of the steady state condition is also included. Blowdown tests on hot particle bed fuel elements were carried out and are described.

  6. Gun Carrying by High School Students in Boston, MA: Does Overestimation of Peer Gun Carrying Matter?

    Science.gov (United States)

    Hemenway, David; Vriniotis, Mary; Johnson, Renee M.; Miller, Matthew; Azrael, Deborah

    2011-01-01

    This paper investigates: (1) whether high school students overestimate gun carrying by their peers, and (2) whether those students who overestimate peer gun carrying are more likely to carry firearms. Data come from a randomly sampled survey conducted in 2008 of over 1700 high school students in Boston, MA. Over 5% of students reported carrying a…

  7. From Particle Physics to Medical Applications

    Science.gov (United States)

    Dosanjh, Manjit

    2017-06-01

    CERN is the world's largest particle physics research laboratory. Since it was established in 1954, it has made an outstanding contribution to our understanding of the fundamental particles and their interactions, and also to the technologies needed to analyse their properties and behaviour. The experimental challenges have pushed the performance of particle accelerators and detectors to the limits of our technical capabilities, and these groundbreaking technologies can also have a significant impact in applications beyond particle physics. In particular, the detectors developed for particle physics have led to improved techniques for medical imaging, while accelerator technologies lie at the heart of the irradiation methods that are widely used for treating cancer. Indeed, many important diagnostic and therapeutic techniques used by healthcare professionals are based either on basic physics principles or the technologies developed to carry out physics research. Ever since the discovery of x-rays by Roentgen in 1895, physics has been instrumental in the development of technologies in the biomedical domain, including the use of ionizing radiation for medical imaging and therapy. Some key examples that are explored in detail in this book include scanners based on positron emission tomography, as well as radiation therapy for cancer treatment. Even the collaborative model of particle physics is proving to be effective in catalysing multidisciplinary research for medical applications, ensuring that pioneering physics research is exploited for the benefit of all.

  8. Ultrafine particles of Ni and FeCr studied by positron annihilation

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Pedersen, N.J.; Sethi, S.A.

    1995-01-01

    Ultrafine particles of Ni and Fe80Cr20 have been produced by the gas condensation technique. After surface oxidation the paticles were heated in a reducing H2 atmosphere and positron lifetime and Doppler broadening measurements were carried out. Reduction of the oxide on the Ni powder takes place...... at about 350K and at about 650K for the FeCr powder. Electron microscopy shows sintering of the Ni particles above 450K, and the present results show that defects develop in the growing particles....

  9. PHITS-a particle and heavy ion transport code system

    International Nuclear Information System (INIS)

    Niita, Koji; Sato, Tatsuhiko; Iwase, Hiroshi; Nose, Hiroyuki; Nakashima, Hiroshi; Sihver, Lembit

    2006-01-01

    The paper presents a summary of the recent development of the multi-purpose Monte Carlo Particle and Heavy Ion Transport code System, PHITS. In particular, we discuss in detail the development of two new models, JAM and JQMD, for high energy particle interactions, incorporated in PHITS, and show comparisons between model calculations and experiments for the validations of these models. The paper presents three applications of the code including spallation neutron source, heavy ion therapy and space radiation. The results and examples shown indicate PHITS has great ability of carrying out the radiation transport analysis of almost all particles including heavy ions within a wide energy range

  10. On the functional form of particle number size distributions: influence of particle source and meteorological variables

    Science.gov (United States)

    Cugerone, Katia; De Michele, Carlo; Ghezzi, Antonio; Gianelle, Vorne; Gilardoni, Stefania

    2018-04-01

    Particle number size distributions (PNSDs) have been collected periodically in the urban area of Milan, Italy, during 2011 and 2012 in winter and summer months. Moreover, comparable PNSD measurements were carried out in the rural mountain site of Oga-San Colombano (2250 m a.s.l.), Italy, during February 2005 and August 2011. The aerosol data have been measured through the use of optical particle counters in the size range 0.3-25 µm, with a time resolution of 1 min. The comparison of the PNSDs collected in the two sites has been done in terms of total number concentration, showing higher numbers in Milan (often exceeding 103 cm-3 in winter season) compared to Oga-San Colombano (not greater than 2×102 cm-3), as expected. The skewness-kurtosis plane has been used in order to provide a synoptic view, and select the best distribution family describing the empirical PNSD pattern. The four-parameter Johnson system-bounded distribution (called Johnson SB or JSB) has been tested for this aim, due to its great flexibility and ability to assume different shapes. The PNSD pattern has been found to be generally invariant under site and season changes. Nevertheless, several PNSDs belonging to the Milan winter season (generally more than 30 %) clearly deviate from the standard empirical pattern. The seasonal increase in the concentration of primary aerosols due to combustion processes in winter and the influence of weather variables throughout the year, such as precipitation and wind speed, could be considered plausible explanations of PNSD dynamics.

  11. Mass spectrometer provided with an optical system for separating neutron particles against charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Reeher, J R; Story, M S; Smith, R D

    1977-03-03

    This invention concerns a mass spectrometer with an ion focusing optical system that efficiently separates the charged and neutral particles. It concerns an apparatus that can be used in ionisation areas operating at relatively high pressure (> 10/sup -2/ Torr). The invention relates more particularly to a mass spectrometer with an inlet device for the samples to be identified, a sample ionisation system for forming charged and neutral particles, a mass analyser and an optical system for focusing the ions formed in the mass analyser. The optics include several conducting components of which at least one has sides formed of grids, in the direction of the axis, towards the analyser the optics forming a potential well along the axis. The selected charged particles are focused in the analyser and the remaining particles can escape by the openings in the conducting grids.

  12. Properties and effects of dust particles suspended in the martian atmosphere

    International Nuclear Information System (INIS)

    Pollack, J.B.; Colburn, D.S.; Flasar, M.; Kahn, R.; Carlston, C.E.; Pidek, D.

    1979-01-01

    Direct measurements of the optical depth above the two Viking landers are reported for a period of covering the summer, fall, and winter seasons in the northern hemisphere, a time period during which two global dust storms occurred. The optical depth had a value of about 1 just before the onset of each storm; it increased very rapidly, on a time scale of a few days, to peak values of about 3 and 6 with the arrival of the first and second storms, respectively; and its steadily decreased shortly thereafter (> or approx. = few days to few weeks) for both storms, with the decay occurring more rapidly during the initial period of decay. We have also carried out further analyses of observations of the sky brightness made with the lander cameras during the summer season to obtain improved estimates of other dust particle parameters, including the cross section weighted mean particle radius, several shape factors, and the imaginary indices of refraction. These results have been used to define the radiative properties of the suspended dust particles at solar wavelenths. The derived radiative properties of the dust were incorporated into a 1D radiative convective model. Satisfactory agreement with the temperature structure determined during the descent of the landers to the surface. Is achieved when allowance is made for the effects of vertical motions induced by large scale atmospheric dynamics. The diurnal temperature variations predicted by the 1D calculations for the observed optical depths are also in crude agreement with values inferred from orbiter and lander measurements. The 1D model predicts that the diurnal temperature change and daily mean temperature, averaged over the entire atmospheric vertical column, steadily increase as the optical depth of the dust increases to a value of several, and then subsequently change little

  13. Elementary particle physics---Experimental

    International Nuclear Information System (INIS)

    Lord, J.J.; Burnett, T.H.; Wilkes, R.J.

    1990-01-01

    We are continuing a research program in high energy experimental particle physics and particle astrophysics. Studies of high energy hadronic interactions were performed using several techniques, in addition, a high energy leptoproduction experiment was continued at the Fermi National Accelerator Laboratory. We are participants in a joint US/Japan program to study nuclear interactions at energies two orders of magnitude greater than those of existing accelerators. The data are being collected with ballon-borne emulsion chambers. The properties of nuclear interactions at these high energies will reveal whether new production mechanisms come into play due to the high nuclear densities and temperatures obtained. We carried out closely related studies of hadronic interactions in emulsions exposed to high energy accelerator beams. We are members of a large international collaboration which has exposed emulsion chamber detectors to beams of 32 S and 16 O with energy 60 and 200 GeV/n at CERN and 15 GeV/n at Brookhaven National Laboratory. The primary objectives of this program are to determine the existence and properties of the hypothesized quark-gluon phase of matter, and its possible relation to a variety of anomalous observations. Studies of leptoproduction processes at high energies involve two separate experiments, one using the Tevatron 500 GeV muon beam and the other exploring the >TeV regime. We are participants in Fermilab experiment E665 employing a comprehensive counter/streamer chamber detector system. During the past year we joined the DUMAND Collaboration, and have been assigned responsibility for development and construction of critical components for the deep undersea neutrino detector facility, to be deployed in 1991. In addition, we are making significant contributions to the design of the triggering system to be used

  14. Medium-energy charged-particle data for evaluation

    International Nuclear Information System (INIS)

    Pearlstein, S.

    1989-01-01

    Medium-energy charged particles incident on targets can cause a variety of nuclear reactions. Charged-particle transport calculations require access to a large body of cross-section data, which results in interest in an evaluated charged-particle data library. Developing an evaluated data library can involve several steps. An index to the literature on measurements and theory is useful to locate information relevant to data evaluation. A computerized compilation of measurements facilitates the intercomparison of different experiments and the determination of how well data are known. Nuclear models, based on theory or phenomenological evidence, are compared with experiment and, where validated, are used to fill in regions where experimental data are not available. Finally, the selected data are placed into computer-readable formats for use in transport calculations. Specialized indexes to bibliography help the scientist to keep up with his field and catch up with new subjects of interest. Several indexes are relevant to medium-energy nuclear data. In addition, these data are covered in several reports not issued on a regular basis. The technical area of medium-energy charged-particle data is maturing. From isolated measurements and theories, a comprehensive approach toward establishing a validated data base extending from low to high energies is emerging

  15. Quenching of Particle-Gas Combustible Mixtures Using Electric Particulate Suspension (EPS) and Dispersion Methods

    Science.gov (United States)

    Colver, Gerald M.; Goroshin, Samuel; Lee, John H. S.

    2001-01-01

    A cooperative study is being carried out between Iowa State University and McGill University. The new study concerns wall and particle quenching effects in particle-gas mixtures. The primary objective is to measure and interpret flame quenching distances, flammability limits, and burning velocities in particulate suspensions. A secondary objective is to measure particle slip velocities and particle velocity distribution as these influence flame propagation. Two suspension techniques will be utilized and compared: (1) electric particle suspension/EPS; and (2) flow dispersion. Microgravity tests will permit testing of larger particles and higher and more uniform dust concentrations than is possible in normal gravity.

  16. Micrometer-scale 3-D shape characterization of eight cements: Particle shape and cement chemistry, and the effect of particle shape on laser diffraction particle size measurement

    International Nuclear Information System (INIS)

    Erdogan, S.T.; Nie, X.; Stutzman, P.E.; Garboczi, E.J.

    2010-01-01

    Eight different portland cements were imaged on a synchrotron beam line at Brookhaven National Laboratory using X-ray microcomputed tomography at a voxel size of about 1 μm per cubic voxel edge. The particles ranged in size roughly between 10 μm and 100 μm. The shape and size of individual particles were computationally analyzed using spherical harmonic analysis. The particle shape difference between cements was small but significant, as judged by several different quantitative shape measures, including the particle length, width, and thickness distributions. It was found that the average shape of cement particles was closely correlated with the volume fraction of C 3 S (alite) and C 2 S (belite) making up the cement powder. It is shown that the non-spherical particle shape of the cements strongly influence laser diffraction results, at least in the sieve size range of 20 μm to 38 μm. Since laser diffraction particle size measurement is being increasingly used by the cement industry, while cement chemistry is always a main factor in cement production, these results could have important implications for how this kind of particle size measurement should be understood and used in the cement industry.

  17. Multistage charged particle accelerator, with high-vacuum insulation

    International Nuclear Information System (INIS)

    Holl, P.

    1976-01-01

    A multistage charged-particle accelerator for operating with accelerating voltages higher than 150 kV is described. The device consists essentially of a high-voltage insulator, a source for producing charged particles, a Wehnelt cylinder, an anode, and a post-accelerating tube containing stack-wise positioned post-accelerating electrodes. A high vacuum is used for insulating the parts carrying the high voltages, and at least one cylindrical screen surrounding these parts is interposed between them and the vacuum vessel, which can itself also function as a cylindrical screen

  18. Effect of seeds of heavy charged particles of galactic cosmic radiation

    International Nuclear Information System (INIS)

    Maksimova, Y.N.

    1985-01-01

    The experiments were carried out on Lactuca sativa seeds exposed for 20, 66, 123 and 308 days in a biostack also containing physical detectors of heavy charged particles. The yield of aberrant cells and its dependence on the exposure time and the site where particles hit the object were measured. The cytogenetic examination demonstrated a significant difference between the seeds that were or were not hit by heavy charged particles. A significant contribution of galactic cosmic radiation to the radiobiological effect is indicated. The yield of aberrant cells as a function of the localization of heavy charged particles in the seed is established. The most sensitive target is the root meristem

  19. Particle detection with superconducting tunnel junctions

    International Nuclear Information System (INIS)

    Jany, P.

    1990-08-01

    At the Institute of Experimental Nuclear Physics of the University of Karlsruhe (TH) and at the Institute for Nuclear Physics of the Kernforschungszentrum Karlsruhe we started to produce superconducting tunnel junctions and to investigate them for their suitability as particle detectors. The required facilities for the production of tunnel junctions and the experimental equipments to carry out experiments with them were erected. Experiments are presented in which radiations of different kinds of particles could successfully be measured with the tunnel junctions produced. At first we succeeded in detectioning light pulses of a laser. In experiments with alpha-particles of an energy of 4,6 MeV the alpha-particles were detected with an energy resolution of 1,1%, and it was shown in specific experiments that the phonons originating from the deposition of energy by an alpha-particle in the substrate can be detected with superconducting tunnel junctions at the surface. On that occasion it turned out that the signals could be separated with respect to their point of origin (tunnel junction, contact leads, substrate). Finally X-rays with an energy of 6 keV were detected with an energy resolution of 8% in a test arrangement that makes use of the so-called trapping effect to read out a larger absorber volume. (orig.) [de

  20. Particle platforms for cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Serda RE

    2013-04-01

    Full Text Available Rita Elena Serda Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, TX, USA Abstract: Elevated understanding and respect for the relevance of the immune system in cancer development and therapy has led to increased development of immunotherapeutic regimens that target existing cancer cells and provide long-term immune surveillance and protection from cancer recurrence. This review discusses using particles as immune adjuvants to create vaccines and to augment the anticancer effects of conventional chemotherapeutics. Several particle prototypes are presented, including liposomes, polymer nanoparticles, and porous silicon microparticles, the latter existing as either single- or multiparticle platforms. The benefits of using particles include immune-cell targeting, codelivery of antigens and immunomodulatory agents, and sustained release of the therapeutic payload. Nanotherapeutic-based activation of the immune system is dependent on both intrinsic particle characteristics and on the immunomodulatory cargo, which may include danger signals known as pathogen-associated molecular patterns and cytokines for effector-cell activation. Keywords: adjuvant, particle, immunotherapy, dendritic cell, cancer, vaccine

  1. Biological effects of particle radiation

    International Nuclear Information System (INIS)

    Sakamoto, Kiyohiko

    1988-01-01

    Conventional radiations such as photons, gamma rays or electrons show several physical or biological disadvantages to bring tumors to cure, therefore, more and more attentions is being paid to new modalitie such as fast neutrons, protons, negative pions and heavy ions, which are expected to overcome some of the defects of the conventional radiations. Except for fast neutrons, these particle radiations show excellet physical dose localization in tissue, moreover, in terms of biological effects, they demonstrate several features compared to conventional radiations, namely low oxygen enhancement ratio, high value of relative biological effectiveness, smaller cellular recovery, larger therapeutic gain factor and less cell cycle dependency in radiation sensitivity. In present paper the biological effects of particle radiations are shown comparing to the effects of conventional radiations. (author)

  2. Neutron activation analysis of size-separated airborne dust particles, (2)

    International Nuclear Information System (INIS)

    Aoki, Atsushi; Ishii, Taka; Tomiyama, Tsuyoshi; Yamamoto, Isao.

    1976-01-01

    The size distribution of the component element concentration in particle floating matters contained in the atmosphere is related closely to atmospheric pollution. In this paper, the results of the neutron activation analysis and the measurement of size distribution of component element concentration are reported, which were carried out in Minami-ku, Kyoto, in May and November, 1975, by collecting airbone dust with Andersen air samples. The activation of samples was carried out with the research reactor in Kyoto University. The gamma-ray spectra of the samples were measured with a Ge(Li) semiconductor detector. The size distributions of Al, Sc, Th and Ti showed the similar pattern. The concentration of Zn was abnormally high as compared with that in other districts, and it is related to the local industry in this district. The size distribution of airborne dust usually follows the logarithmic normal distribution when it is not affected by atmospheric pollution. Accordingly, the size distribution of the concentration also follows the same distribution. The accumulated percentages of the concentrations of Al, Sc and Th fall on the same straight line, and it means that these elements were contained in the same particles as the components. Also it was decided that the particles of Al, Sc, Th, Fe and Ti were soil particles. (Kako, I.)

  3. Eulerian numerical simulation of gas-solid flows with several particles species; Modelisation numerique eulerienne des ecoulements gaz-solide avec plusieurs especes de particules

    Energy Technology Data Exchange (ETDEWEB)

    Patino-Palacios, G

    2007-11-15

    The simulation of the multiphase flows is currently an important scientific, industrial and economic challenge. The objective of this work is to improve comprehension via simulations of poly-dispersed flows and contribute the modeling and characterizing of its hydrodynamics. The study of gas-solid systems involves the models that takes account the influence of the particles and the effects of the collisions in the context of the momentum transfer. This kind of study is covered on the framework of this thesis. Simulations achieved with the Saturne-polyphasique-Tlse code, developed by Electricite de France and co-worked with the Institut de Mecanique des Fluides de Toulouse, allowed to confirm the feasibility of approach CFD for the hydrodynamic study of the injectors and dense fluidized beds. The stages of validation concern, on the one hand, the placement of the tool for simulation in its current state to make studies of validation and sensitivity of the models and to compare the numerical results with the experimental data. In addition, the development of new physical models and their establishments in the code Saturne will allow the optimization of the industrial process. To carry out this validation in a satisfactory way, a key simulation is made, in particular a monodisperse injection and the radial force of injection in the case of a poly-disperse flow, as well as the fluidization of a column made up of solid particles. In this last case, one approached three configurations of dense fluidized beds, in order to study the influence of the grid on simulations; then, one simulates the operation of a dense fluidized bed with which one characterizes the segregation between two various species of particles. The study of the injection of the poly-disperse flows presents two configurations; a flow Co-current gas-particle in gas (Case Hishida), and in addition, a poly-phase flow in a configuration of the jet type confined with zones of recirculation and stagnation (case

  4. Effect of particle breakage on cyclic densification of ballast: A DEM approach

    International Nuclear Information System (INIS)

    Thakur, P K; Vinod, J S; Indraratna, B

    2010-01-01

    In this paper, an attempt has been made to investigate the effect of particle breakage on densification behaviour of ballast under cyclic loading using Discrete Element Method (DEM). Numerical simulations using PFC 2D have been carried out on an assembly of angular particles with and without incorporation of particle breakage. Two-dimensional projection of angular ballast particles were simulated using clusters of bonded circular particles. Degradation of the bonds within a cluster was considered to represent particle breakage. Clump logic was used to make the cluster of particles unbreakable. DEM simulation results highlight that the particle breakage has a profound influence on the cyclic densification behaviour of ballast. The deformation behaviour exhibited by the assembly with breakage is in good agreement with the laboratory experiments. In addition, the evolution of particle displacement vectors clearly explains the breakage mechanism and associated deformations during cyclic loading.

  5. Atypical energetic particle events observed prior energetic particle enhancements associated with corotating interaction regions

    Science.gov (United States)

    Khabarova, Olga; Malandraki, Olga; Zank, Gary; Jackson, Bernard; Bisi, Mario; Desai, Mihir; Li, Gang; le Roux, Jakobus; Yu, Hsiu-Shan

    2017-04-01

    Recent studies of mechanisms of particle acceleration in the heliosphere have revealed the importance of the comprehensive analysis of stream-stream interactions as well as the heliospheric current sheet (HCS) - stream interactions that often occur in the solar wind, producing huge magnetic cavities bounded by strong current sheets. Such cavities are usually filled with small-scale magnetic islands that trap and re-accelerate energetic particles (Zank et al. ApJ, 2014, 2015; le Roux et al. ApJ, 2015, 2016; Khabarova et al. ApJ, 2015, 2016). Crossings of these regions are associated with unusual variations in the energetic particle flux up to several MeV/nuc near the Earth's orbit. These energetic particle flux enhancements called "atypical energetic particle events" (AEPEs) are not associated with standard mechanisms of particle acceleration. The analysis of multi-spacecraft measurements of energetic particle flux, plasma and the interplanetary magnetic field shows that AEPEs have a local origin as they are observed by different spacecraft with a time delay corresponding to the solar wind propagation from one spacecraft to another, which is a signature of local particle acceleration in the region embedded in expanding and rotating background solar wind. AEPEs are often observed before the arrival of corotating interaction regions (CIRs) or stream interaction regions (SIRs) to the Earth's orbit. When fast solar wind streams catch up with slow solar wind, SIRs of compressed heated plasma or more regular CIRs are created at the leading edge of the high-speed stream. Since coronal holes are often long-lived structures, the same CIR re-appears often for several consecutive solar rotations. At low heliographic latitudes, such CIRs are typically bounded by forward and reverse waves on their leading and trailing edges, respectively, that steepen into shocks at heliocentric distances beyond 1 AU. Energetic ion increases have been frequently observed in association with CIR

  6. Insight into particle production mechanisms from angular correlations of identified particles in pp collisions measured by ALICE

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Two-particle angular correlations are a robust tool which provide access to the underlying physics phenomena of particle production in collisions of both protons and heavy ions by studying distributions of particles in pseudorapidity and azimuthal angle difference. The correlation measurement is sensitive to several phenomena, including mini-jets, elliptic flow, Bose-Einstein correlations, resonance decays, conservation laws, which can be separated by selections of momentum, particle type and by analysing the shapes of the correlation structures. In this talk, we report measurements of the correlations of identified particles and their antiparticles (for pions, kaons, protons, and lambdas) at low transverse momenta in pp collisions at sqrt(s) = 7 TeV, recently submitted for publication by the ALICE Collaboration [arXiv:1612.08975]. The analysis reveals differences in particle production between baryons and mesons. The correlation functions for mesons exhibit the expected peak dominated by effects of mini-jet...

  7. The Particle Beam Optics Interactive Computer Laboratory

    International Nuclear Information System (INIS)

    Gillespie, G.H.; Hill, B.W.; Brown, N.A.; Babcock, R.C.; Martono, H.; Carey, D.C.

    1997-01-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is an educational software concept to aid students and professionals in learning about charged particle beams and particle beam optical systems. The PBO Lab is being developed as a cross-platform application and includes four key elements. The first is a graphic user interface shell that provides for a highly interactive learning session. The second is a knowledge database containing information on electric and magnetic optics transport elements. The knowledge database provides interactive tutorials on the fundamental physics of charged particle optics and on the technology used in particle optics hardware. The third element is a graphical construction kit that provides tools for students to interactively and visually construct optical beamlines. The final element is a set of charged particle optics computational engines that compute trajectories, transport beam envelopes, fit parameters to optical constraints and carry out similar calculations for the student designed beamlines. The primary computational engine is provided by the third-order TRANSPORT code. Augmenting TRANSPORT is the multiple ray tracing program TURTLE and a first-order matrix program that includes a space charge model and support for calculating single particle trajectories in the presence of the beam space charge. This paper describes progress on the development of the PBO Lab. copyright 1997 American Institute of Physics

  8. Infant carrying methods: Correlates and associated musculoskeletal disorders among nursing mothers in Nigeria.

    Science.gov (United States)

    Ojukwu, Chidiebele Petronilla; Anyanwu, Godson Emeka; Anekwu, Emelie Morris; Chukwu, Sylvester Caesar; Fab-Agbo, Chukwubuikem

    2017-10-01

    Infant carrying is an integral part of the mothering occupation. Paucity of data exists on its correlates and associated musculoskeletal injuries. In this study, factors and musculoskeletal injuries associated with infant carrying were investigated in 227 nursing mothers, using a structured questionnaire. 77.1% utilised the back infant carrying methods (ICM). Maternal comfort was the major factor influencing participants' (37.4%) choices of ICMs. Infant's age (p = .000) and transportation means (p = .045) were significantly associated with ICMs. Low back pain (82.8%) and upper back pain (74.9%) were the most reported musculoskeletal discomforts associated with ICMs, especially among women who utilised back ICM. Back ICM is predominantly used by nursing mothers. Impact statement Infant carrying has been associated with increased energy cost and biomechanical changes. Currently, there is a paucity of data on infant carrying-related musculoskeletal injuries. In this study, investigating factors and musculoskeletal injuries associated with infant carrying, the results showed that back infant carrying method is predominantly used by nursing mothers. Age of the infant and mothers' means of transportation were determinant factors of infant carrying methods. Among the several reported infant carrying-related musculoskeletal disorders, low back and upper back pain were the most prevalent, especially among women who utilised the back infant carrying method. There is need for women's health specialists to introduce appropriate ergonomic training and interventions on infant carrying tasks in order to improve maternal musculoskeletal health during the childbearing years and beyond. Further experimental studies on the effects of various infant carrying methods on the musculoskeletal system are recommended.

  9. Polymeric micro/nanoparticles: Particle design and potential vaccine delivery applications.

    Science.gov (United States)

    Yue, Hua; Ma, Guanghui

    2015-11-04

    Particle based adjuvant showed promising signs on delivering antigen to immune cells and acting as stimulators to elicit preventive or therapeutic response. Nevertheless, the wide size distribution of available polymeric particles has so far obscured the immunostimulative effects of particle adjuvant, and compromised the progress in pharmacological researches. To conquer this hurdle, our research group has carried out a series of researches regarding the particulate vaccine, by taking advantage of the successful fabrication of polymeric particles with uniform size. In this review, we highlight the insight and practical progress focused on the effects of physiochemical property (e.g. particle size, charge, hydrophobicity, surface chemical group, and particle shape) and antigen loading mode on the resultant biological/immunological outcome. The underlying mechanisms of how the particles-based vaccine functioned in the immune system are also discussed. Based on the knowledge, particles with high antigen payload and optimized attributes could be designed for expected adjuvant purpose, leading to the development of high efficient vaccine candidates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Nanoparticle electrostatic loss within corona needle charger during particle-charging process

    International Nuclear Information System (INIS)

    Huang Chenghsiung; Alonso, Manuel

    2011-01-01

    A numerical investigation has been carried out to examine the electrostatic loss of nanoparticles in a corona needle charger. Two-dimensional flow field, electric field, particle charge, and particle trajectory were simulated to obtain the electrostatic deposition loss at different conditions. Simulation of particle trajectories shows that the number of charges per particle during the charging process depends on the particle diameter, radial position from the symmetry axis, applied voltage, Reynolds number, and axial distance along the charger. The numerical results of nanoparticle electrostatic loss agreed fairly well with available experimental data. The results reveal that the electrostatic loss of nanoparticles increases with increasing applied voltage and electrical mobility of particles; and with decreasing particle diameter and Reynolds number. A regression equation closely fitted the obtained numerical results for different conditions. The equation is useful for directly calculating the electrostatic loss of nanoparticles in the corona needle charger during particle-charging process.

  11. Theoretical Studies of Strongly Interacting Fine Particle Systems

    Science.gov (United States)

    Fearon, Michael

    Available from UMI in association with The British Library. A theoretical analysis of the time dependent behaviour of a system of fine magnetic particles as a function of applied field and temperature was carried out. The model used was based on a theory assuming Neel relaxation with a distribution of particle sizes. This theory predicted a linear variation of S_{max} with temperature and a finite intercept, which is not reflected by experimental observations. The remanence curves of strongly interacting fine-particle systems were also investigated theoretically. It was shown that the Henkel plot of the dc demagnetisation remanence vs the isothermal remanence is a useful representation of interactions. The form of the plot was found to be a reflection of the magnetic and physical microstructure of the material, which is consistent with experimental data. The relationship between the Henkel plot and the noise of a particulate recording medium, another property dependent on the microstructure, is also considered. The Interaction Field Factor (IFF), a single parameter characterising the non-linearity of the Henkel plot, is investigated. These results are consistent with a previous experimental study. Finally the results of the noise power spectral density for erased and saturated recording media are presented, so that characterisation of interparticle interactions may be carried out with greater accuracy.

  12. Filtration device for rapid separation of biological particles from complex matrices

    Science.gov (United States)

    Kim, Sangil; Naraghi-Arani, Pejman; Liou, Megan

    2018-01-09

    Methods and systems for filtering of biological particles are disclosed. Filtering membranes separate adjacent chambers. Through osmotic or electrokinetic processes, flow of particles is carried out through the filtering membranes. Cells, viruses and cell waste can be filtered depending on the size of the pores of the membrane. A polymer brush can be applied to a surface of the membrane to enhance filtering and prevent fouling.

  13. An improved particle filtering algorithm for aircraft engine gas-path fault diagnosis

    Directory of Open Access Journals (Sweden)

    Qihang Wang

    2016-07-01

    Full Text Available In this article, an improved particle filter with electromagnetism-like mechanism algorithm is proposed for aircraft engine gas-path component abrupt fault diagnosis. In order to avoid the particle degeneracy and sample impoverishment of normal particle filter, the electromagnetism-like mechanism optimization algorithm is introduced into resampling procedure, which adjusts the position of the particles through simulating attraction–repulsion mechanism between charged particles of the electromagnetism theory. The improved particle filter can solve the particle degradation problem and ensure the diversity of the particle set. Meanwhile, it enhances the ability of tracking abrupt fault due to considering the latest measurement information. Comparison of the proposed method with three different filter algorithms is carried out on a univariate nonstationary growth model. Simulations on a turbofan engine model indicate that compared to the normal particle filter, the improved particle filter can ensure the completion of the fault diagnosis within less sampling period and the root mean square error of parameters estimation is reduced.

  14. Method for producing ceramic particles and agglomerates

    Science.gov (United States)

    Phillips, Jonathan; Gleiman, Seth S.; Chen, Chun-Ku

    2001-01-01

    A method for generating spherical and irregularly shaped dense particles of ceramic oxides having a controlled particle size and particle size distribution. An aerosol containing precursor particles of oxide ceramics is directed into a plasma. As the particles flow through the hot zone of the plasma, they melt, collide, and join to form larger particles. If these larger particles remain in the hot zone, they continue melting and acquire a spherical shape that is retained after they exit the hot zone, cool down, and solidify. If they exit the hot zone before melting completely, their irregular shape persists and agglomerates are produced. The size and size distribution of the dense product particles can be controlled by adjusting several parameters, the most important in the case of powder precursors appears to be the density of powder in the aerosol stream that enters the plasma hot zone. This suggests that particle collision rate is responsible for determining ultimate size of the resulting sphere or agglomerate. Other parameters, particularly the gas flow rates and the microwave power, are also adjusted to control the particle size distribution.

  15. Mesophase behaviour of polyhedral particles

    KAUST Repository

    Agarwal, Umang; Escobedo, Fernando A.

    2011-01-01

    Translational and orientational excluded-volume fields encoded in particles with anisotropic shapes can lead to purely entropy-driven assembly of morphologies with specific order and symmetry. To elucidate this complex correlation, we carried out detailed Monte Carlo simulations of six convex space-filling polyhedrons, namely, truncated octahedrons, rhombic dodecahedrons, hexagonal prisms, cubes, gyrobifastigiums and triangular prisms. Simulations predict the formation of various new liquid-crystalline and plastic-crystalline phases at intermediate volume fractions. By correlating these findings with particle anisotropy and rotational symmetry, simple guidelines for predicting phase behaviour of polyhedral particles are proposed: high rotational symmetry is in general conducive to mesophase formation, with low anisotropy favouring plastic-solid behaviour and intermediate anisotropy (or high uniaxial anisotropy) favouring liquid-crystalline behaviour. It is also found that dynamical disorder is crucial in defining mesophase behaviour, and that the apparent kinetic barrier for the liquid-mesophase transition is much lower for liquid crystals (orientational order) than for plastic solids (translational order). © 2011 Macmillan Publishers Limited. All rights reserved.

  16. Mesophase behaviour of polyhedral particles

    KAUST Repository

    Agarwal, Umang

    2011-02-13

    Translational and orientational excluded-volume fields encoded in particles with anisotropic shapes can lead to purely entropy-driven assembly of morphologies with specific order and symmetry. To elucidate this complex correlation, we carried out detailed Monte Carlo simulations of six convex space-filling polyhedrons, namely, truncated octahedrons, rhombic dodecahedrons, hexagonal prisms, cubes, gyrobifastigiums and triangular prisms. Simulations predict the formation of various new liquid-crystalline and plastic-crystalline phases at intermediate volume fractions. By correlating these findings with particle anisotropy and rotational symmetry, simple guidelines for predicting phase behaviour of polyhedral particles are proposed: high rotational symmetry is in general conducive to mesophase formation, with low anisotropy favouring plastic-solid behaviour and intermediate anisotropy (or high uniaxial anisotropy) favouring liquid-crystalline behaviour. It is also found that dynamical disorder is crucial in defining mesophase behaviour, and that the apparent kinetic barrier for the liquid-mesophase transition is much lower for liquid crystals (orientational order) than for plastic solids (translational order). © 2011 Macmillan Publishers Limited. All rights reserved.

  17. A portable virtual machine target for proof-carrying code

    DEFF Research Database (Denmark)

    Franz, Michael; Chandra, Deepak; Gal, Andreas

    2005-01-01

    Virtual Machines (VMs) and Proof-Carrying Code (PCC) are two techniques that have been used independently to provide safety for (mobile) code. Existing virtual machines, such as the Java VM, have several drawbacks: First, the effort required for safety verification is considerable. Second and mor...... simultaneously providing efficient justin-time compilation and target-machine independence. In particular, our approach reduces the complexity of the required proofs, resulting in fewer proof obligations that need to be discharged at the target machine....

  18. Deflection of high energy channeled charged particles by elastically bent silicon single crystals

    International Nuclear Information System (INIS)

    Gibson, W.M.; Kim, I.J.; Pisharodoy, M.; Salman, S.M.; Sun, C.R.; Wang, G.H.; Wijayawardana, R.; Forster, J.S.; Mitchell, I.V.; Baker, S.I.; Carrigan, R.A. Jr.; Toohig, T.E.; Avdeichikov, V.V.; Ellison, J.A.; Siffert, P.

    1984-01-01

    An experiment has been carried out to observe the deflection of charged particles by planar channeling in bent single crystals of silicon for protons with energy up to 180 GeV. Anomolous loss of particles from the center point of a three point bending apparatus was observed at high incident particle energy. This effect has been exploited to fashion a 'dechanneling spectrometer' to study dechanneling effects due to centripital displacement of channeled particle trajectories in a bent crystal. The bending losses generally conform to the predictions of calculations based on a classical model. (orig.)

  19. Turbulent resuspension of small nondeformable particles

    International Nuclear Information System (INIS)

    Lazaridis, M.; Drossinos, Y.

    1998-01-01

    An energy-balance resuspension model is modified and applied to the resuspension of a monolayer of nondeformable spherical particles. The particle-surface adhesive force is calculated from a microscopic model based on the Lennard-Jones intermolecular potential. Pairwise additivity of intermolecular interactions is assumed and elastic flattening of the particles is neglected. From the resulting particle-surface interaction potential the natural frequency of vibration of a particle on a surface and the depth of the potential well are calculated. The particle resuspension rate is calculated using the results of a previously developed energy-balance model, where the influence of fluid flow on the bound particle motion is recognized. The effect of surface roughness is included by introducing an effective particle radius that results in log-normally distributed adhesive forces. The predictions of the model are compared with experimental results for the resuspension of Al 2 O 3 particles from stainless steel surfaces. Particle resuspension due to turbulent fluid flow is important in the interaction of the atmosphere with various surfaces and in numerous industrial processes. For example, in the nuclear industry, fission-product aerosols released during a postulated severe accident in a Light Water Reactor may deposit and resuspend repeatedly in the vessel circuit and containment

  20. The ideas of particle physics. 2. ed.

    International Nuclear Information System (INIS)

    Coughlan, G.D.; Dodd, J.E.

    1991-01-01

    Our main concern in writing this book has been to communicate the central ideas and concepts of elementary particle physics. We have attempted to present a comprehensive overview of the subject at a level which carries the reader beyond the simplifications and generalisations necessary in popular science books. Matter consists of just two types of elementary particles: quarks and leptons. These are the fundamental building blocks of the material world. The theory describing the microscopic behaviour of these particles has, over the past decade or so, become known as the 'standard model', providing as it does an accurate account of the force of electromagnetism, the weak nuclear force (responsible for radioactive decay), and the strong nuclear force (which holds atomic nuclei together). The standard model has been remarkably successful; all experimental tests have verified the detailed predictions of the theory. (author)

  1. Theoretical Evaluation of the Escape Rate of Charged Particles Trapped in a Potential Energy Well

    International Nuclear Information System (INIS)

    Chang Yongbin; Ordonez, C.A.

    2003-01-01

    In various types of charged particle sources and traps, charged particles are temporarily trapped within a potential energy well. In the work reported, a theoretical evaluation of the escape rate of trapped charged particles is carried out. As a specific example, the loss rate is evaluated for trapped plasma particles that are undergoing both collisions among themselves and collisions with particles of a different plasma species having a different temperature. Conditions are considered in which both species are confined within a nested Penning trap

  2. Thermonuclear Tokamak plasmas in the presence of fusion alpha particles

    International Nuclear Information System (INIS)

    Anderson, D.; Hamnen, H.; Lisak, M.

    1988-01-01

    In this overview, we have focused on several results of the thermonuclear plasma research pertaining to the alpha particle physics and diagnostics in a fusion tokamak plasma. As regards the discussion of alpha particle effects, two distinct classes of phenomena have been distinguished: the simpler class containing phenomena exhibited by individual alpha particles under the influence of bulk plasma properties and, the more complex class including collective effects which become important for increasing alpha particle density. We have also discussed several possibilities to investigate alpha particle effects by simulation experiments using an equivalent population of highly energetic ions in the plasma. Generally, we find that the present theoretical knowledge on the role of fusion alpha particles in a fusion tokamak plasma is incomplete. There are still uncertainties and partial lack of quantitative results in this area. Consequently, further theoretical work and, as far a possible, simulation experiments are needed to improve the situation. Concerning the alpha particle diagnostics, the various diagnostic techniques and the status of their development have been discussed in two different contexts: the escaping alpha particles and the confined alpha particles in the fusion plasma. A general conclusion is that many of the different diagnostic methods for alpha particle measurements require further major development. (authors)

  3. Migration of finite sized particles in a laminar square channel flow from low to high Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, M., E-mail: micheline.abbas@ensiacet.fr [Laboratoire de Génie Chimique, Université de Toulouse INPT-UPS, 31030, Toulouse (France); CNRS, Fédération de recherche FERMaT, CNRS, 31400, Toulouse (France); Magaud, P. [CNRS, Fédération de recherche FERMaT, CNRS, 31400, Toulouse (France); Institut Clément Ader, Université de Toulouse UPS-INSA-ISAE-Mines Albi, 31400, Toulouse (France); Gao, Y. [Institut Clément Ader, Université de Toulouse UPS-INSA-ISAE-Mines Albi, 31400, Toulouse (France); Geoffroy, S. [CNRS, Fédération de recherche FERMaT, CNRS, 31400, Toulouse (France); Laboratoire Matériaux et Durabilité des Constructions, Université de Toulouse (France); UPS, INSA, 31077, Toulouse (France)

    2014-12-15

    The migration of neutrally buoyant finite sized particles in a Newtonian square channel flow is investigated in the limit of very low solid volumetric concentration, within a wide range of channel Reynolds numbers Re = [0.07-120]. In situ microscope measurements of particle distributions, taken far from the channel inlet (at a distance several thousand times the channel height), revealed that particles are preferentially located near the channel walls at Re > 10 and near the channel center at Re < 1. Whereas the cross-streamline particle motion is governed by inertia-induced lift forces at high inertia, it seems to be controlled by shear-induced particle interactions at low (but finite) Reynolds numbers, despite the low solid volume fraction (<1%). The transition between both regimes is observed in the range Re = [1-10]. In order to exclude the effect of multi-body interactions, the trajectories of single freely moving particles are calculated thanks to numerical simulations based on the force coupling method. With the deployed numerical tool, the complete particle trajectories are accessible within a reasonable computational time only in the inertial regime (Re > 10). In this regime, we show that (i) the particle undergoes cross-streamline migration followed by a cross-lateral migration (parallel to the wall) in agreement with previous observations, and (ii) the stable equilibrium positions are located at the midline of the channel faces while the diagonal equilibrium positions are unstable. At low flow inertia, the first instants of the numerical simulations (carried at Re = O(1)) reveal that the cross-streamline migration of a single particle is oriented towards the channel wall, suggesting that the particle preferential positions around the channel center, observed in the experiments, are rather due to multi-body interactions.

  4. Migration of finite sized particles in a laminar square channel flow from low to high Reynolds numbers

    International Nuclear Information System (INIS)

    Abbas, M.; Magaud, P.; Gao, Y.; Geoffroy, S.

    2014-01-01

    The migration of neutrally buoyant finite sized particles in a Newtonian square channel flow is investigated in the limit of very low solid volumetric concentration, within a wide range of channel Reynolds numbers Re = [0.07-120]. In situ microscope measurements of particle distributions, taken far from the channel inlet (at a distance several thousand times the channel height), revealed that particles are preferentially located near the channel walls at Re > 10 and near the channel center at Re < 1. Whereas the cross-streamline particle motion is governed by inertia-induced lift forces at high inertia, it seems to be controlled by shear-induced particle interactions at low (but finite) Reynolds numbers, despite the low solid volume fraction (<1%). The transition between both regimes is observed in the range Re = [1-10]. In order to exclude the effect of multi-body interactions, the trajectories of single freely moving particles are calculated thanks to numerical simulations based on the force coupling method. With the deployed numerical tool, the complete particle trajectories are accessible within a reasonable computational time only in the inertial regime (Re > 10). In this regime, we show that (i) the particle undergoes cross-streamline migration followed by a cross-lateral migration (parallel to the wall) in agreement with previous observations, and (ii) the stable equilibrium positions are located at the midline of the channel faces while the diagonal equilibrium positions are unstable. At low flow inertia, the first instants of the numerical simulations (carried at Re = O(1)) reveal that the cross-streamline migration of a single particle is oriented towards the channel wall, suggesting that the particle preferential positions around the channel center, observed in the experiments, are rather due to multi-body interactions

  5. DEM Study of Wet Cohesive Particles in the Presence of Liquid Bridges in a Gas Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Yurong He

    2014-01-01

    Full Text Available A modified discrete element method (DEM was constructed by compositing an additional liquid-bridge module into the traditional soft-sphere interaction model. Simulations of particles with and without liquid bridges are conducted in a bubbling fluidized bed. The geometry of the simulated bed is the same as the one in Müller’s experiment (Müller et al., 2008. A comparison between the dry and the wet particular systems is carried out on the bubble behavior, the bed fluctuation, and the mixing process. The bubble in the dry system possesses a regular round shape and falling of scattered particles exists while the bubble boundary of the wet particles becomes rough with branches of agglomerates stretching into it. The mixing of the dry system is quicker than that of the wet system. Several interparticle liquid contents are applied in this work to find their influence on the kinetic characteristic of the wet particle flow. With an increase of liquid content, the mixing process costs more time to be completed. Symmetrical profiles of the velocity and granular temperature are found for two low liquid contents (0.001% and 0.01%, while it is antisymmetrical for the highest liquid content (0.1%.

  6. Charge-fluctuation-induced heating of dust particles in a plasma.

    Science.gov (United States)

    Vaulina, O S; Khrapak, S A; Nefedov, A P; Petrov, O F

    1999-11-01

    Random charge fluctuations are always present in dusty plasmas due to the discrete nature of currents charging the dust particle. These fluctuations can be a reason for the heating of the dust particle system. Such unexpected heating leading to the melting of the dust crystals was observed recently in several experiments. In this paper we show by analytical evaluations and numerical simulation that charge fluctuations provide an effective source of energy and can heat the dust particles up to several eV, in conditions close to experimental ones.

  7. A search for stable massive particles carrying electric charges in the range of 2e to 6e in proton-proton collisions at √(s)=7 TeV recorded with the ATLAS detector at the LHC

    International Nuclear Information System (INIS)

    Zimmermann, Simone

    2013-08-01

    This dissertation presents a search for long-lived, multi-charged particles using the ATLAS detector at the LHC. Motivation for this search arose from an unexploited search regime at ATLAS of stable massive particles with electric charges of vertical stroke q vertical stroke = 2e to vertical stroke q vertical stroke = 5e. Additional motivation can be found in several beyond the Standard Model physics theories. Proton-proton collisions recorded during the 2011 LHC running at √(s)=7 TeV, corresponding to an integrated luminosity of 4.4 fb -1 , are examined in a signature-based analysis. The search seeks out charged particle tracks exhibiting anomalously high ionization consistent with stable massive particles with electric charges in the range from vertical stroke q vertical stroke =2e to vertical stroke q vertical stroke =6e. For this search, new variables of specific energy loss per path length dE/dx are used in the candidate selection. One of these variables, the TRT dE/dx, is developed in the course of this thesis and is described in detail. No excess is observed with respect to the prediction of Standard Model processes. The 95% C.L. upper cross section limits are also interpreted as mass exclusion limits for a simplified Drell-Yan production model.

  8. A search for stable massive particles carrying electric charges in the range of 2e to 6e in proton-proton collisions at {radical}(s)=7 TeV recorded with the ATLAS detector at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Simone

    2013-08-15

    This dissertation presents a search for long-lived, multi-charged particles using the ATLAS detector at the LHC. Motivation for this search arose from an unexploited search regime at ATLAS of stable massive particles with electric charges of vertical stroke q vertical stroke = 2e to vertical stroke q vertical stroke = 5e. Additional motivation can be found in several beyond the Standard Model physics theories. Proton-proton collisions recorded during the 2011 LHC running at {radical}(s)=7 TeV, corresponding to an integrated luminosity of 4.4 fb{sup -1}, are examined in a signature-based analysis. The search seeks out charged particle tracks exhibiting anomalously high ionization consistent with stable massive particles with electric charges in the range from vertical stroke q vertical stroke =2e to vertical stroke q vertical stroke =6e. For this search, new variables of specific energy loss per path length dE/dx are used in the candidate selection. One of these variables, the TRT dE/dx, is developed in the course of this thesis and is described in detail. No excess is observed with respect to the prediction of Standard Model processes. The 95% C.L. upper cross section limits are also interpreted as mass exclusion limits for a simplified Drell-Yan production model.

  9. Load management strategy for Particle-In-Cell simulations in high energy particle acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Beck, A., E-mail: beck@llr.in2p3.fr [Laboratoire Leprince-Ringuet, École polytechnique, CNRS-IN2P3, Palaiseau 91128 (France); Frederiksen, J.T. [Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø (Denmark); Dérouillat, J. [CEA, Maison de La Simulation, 91400 Saclay (France)

    2016-09-01

    In the wake of the intense effort made for the experimental CILEX project, numerical simulation campaigns have been carried out in order to finalize the design of the facility and to identify optimal laser and plasma parameters. These simulations bring, of course, important insight into the fundamental physics at play. As a by-product, they also characterize the quality of our theoretical and numerical models. In this paper, we compare the results given by different codes and point out algorithmic limitations both in terms of physical accuracy and computational performances. These limitations are illustrated in the context of electron laser wakefield acceleration (LWFA). The main limitation we identify in state-of-the-art Particle-In-Cell (PIC) codes is computational load imbalance. We propose an innovative algorithm to deal with this specific issue as well as milestones towards a modern, accurate high-performance PIC code for high energy particle acceleration.

  10. Irradiation testing of coated particle fuel at Hanaro

    International Nuclear Information System (INIS)

    Goo Kim, Bong; Sung Cho, Moo; Kim, Yong Wan

    2014-01-01

    TRISO-coated particle fuel is developing to support development of VHTR in Korea. From August 2013, the first irradiation testing of coated particle fuel was begun to demonstrate and qualify TRISO fuel for use in VHTR in the HANARO at KAERI. This experiment is currently undergoing under the atmosphere of a mixed inert gas without on-line temperature monitoring and control combined with on-line fission product monitoring of the sweep gas. The irradiation device contains two test rods, one contains nine fuel compacts and the other five compacts and eight graphite specimens. Each compact has 263 coated particles. After a peak burn-up of about 4 at% and a peak fast neutron fluence of about 1.7 x 10 21 n/cm 2 , PIE will be carried out at KAERI's Irradiated Material Examination Facility. This paper is described characteristics of coated particle fuel, the design of test rod and irradiation device for coated particle fuel, discusses the technical results for irradiation testing at HANARO. (authors)

  11. On the mass spectrum of particles

    International Nuclear Information System (INIS)

    Sajo, Istvan

    1983-01-01

    An eigenvalue formula of general validity was developed with correct mathematical methods from measured data of the stationary mass and self-energy of stationary particles; this is able to generate universally the mass of particles belonging to any class or group, i.e. to produce the spectra of particles with a stationary mass surpassing that of the electron. The author shows that this eigenvalue formula can be produced as the produc t of several partial formulae which, separately, are not more complicated than that developed by Balmer from data measured on the spectrum of the hydrogen atom. The validity of the first version of the formulae was checked for many particles discovered subsequently. The results are published in detail in the present paper, together with the method of development of the universal eigenvalue formula generating the mass spectrum of elementary particles. The formulae describing the discrete energy levels of the particles can be extended by considering the theory of special relativity, also to the mass of moving particles proportional with their inertia. (author)

  12. A molecular assembly system for presentation of antigens on the surface of HBc virus-like particles

    International Nuclear Information System (INIS)

    Blokhina, Elena A.; Kuprianov, Victor V.; Stepanova, Ludmila A.; Tsybalova, Ludmila M.; Kiselev, Oleg I.; Ravin, Nikolai V.; Skryabin, Konstantin G.

    2013-01-01

    Hepatitis B virus-like particles, icosahedral structures formed by multiple core protein dimers, are promising immune-enhancing vaccine carriers for foreign antigens. Insertions into the surface-exposed immunodominant loop are especially immunogenic. However, the need to conserve the particulate structure to ensure high immunogenicity imposes restraints on the nature of the heterologous sequence that can be inserted. We propose a new approach to constructing HBc particles linked to the target epitopes that relies on non-covalent interactions between the epitope and pre-assembled unmodified HBc particles. Interaction was enabled by fusion of the epitope to the GSLLGRMKGA peptide, binding to the spike tips. This peptide may be used as a “binding tag” allowing in vitro construction of HBc particles carrying the target peptide. Such virus-like particles carrying multiple copies of the extracellular domain of the M2 protein of different influenza strains appeared to be highly immunogenic and protected immunised mice against a lethal influenza challenge.

  13. A molecular assembly system for presentation of antigens on the surface of HBc virus-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Blokhina, Elena A.; Kuprianov, Victor V. [Centre ' Bioengineering' , Russian Academy of Sciences, 117312 Prosp. 60-letya Oktyabrya 7-1, Moscow (Russian Federation); Stepanova, Ludmila A.; Tsybalova, Ludmila M. [Research Institute of Influenza, Russian Federation Ministry of Health and Social Development, St. Petersburg (Russian Federation); Kiselev, Oleg I. [Research Institute of Influenza, Russian Federation Ministry of Health and Social Development, St. Petersburg (Russian Federation); GenNanotech Ltd, St. Petersburg (Russian Federation); Ravin, Nikolai V., E-mail: nravin@biengi.ac.ru [Centre ' Bioengineering' , Russian Academy of Sciences, 117312 Prosp. 60-letya Oktyabrya 7-1, Moscow (Russian Federation); GenNanotech Ltd, St. Petersburg (Russian Federation); Skryabin, Konstantin G. [Centre ' Bioengineering' , Russian Academy of Sciences, 117312 Prosp. 60-letya Oktyabrya 7-1, Moscow (Russian Federation); GenNanotech Ltd, St. Petersburg (Russian Federation)

    2013-01-20

    Hepatitis B virus-like particles, icosahedral structures formed by multiple core protein dimers, are promising immune-enhancing vaccine carriers for foreign antigens. Insertions into the surface-exposed immunodominant loop are especially immunogenic. However, the need to conserve the particulate structure to ensure high immunogenicity imposes restraints on the nature of the heterologous sequence that can be inserted. We propose a new approach to constructing HBc particles linked to the target epitopes that relies on non-covalent interactions between the epitope and pre-assembled unmodified HBc particles. Interaction was enabled by fusion of the epitope to the GSLLGRMKGA peptide, binding to the spike tips. This peptide may be used as a 'binding tag' allowing in vitro construction of HBc particles carrying the target peptide. Such virus-like particles carrying multiple copies of the extracellular domain of the M2 protein of different influenza strains appeared to be highly immunogenic and protected immunised mice against a lethal influenza challenge.

  14. Gigantic particle collision machine does "mini Big Bangs"

    CERN Multimedia

    2007-01-01

    "The world's largest machine is reputed to be the Large Hadron Collider (LHC) at CERN in Geneva and everything about it is big. Designed to carry out high energy particle collisions, when completed next year, one of the collider's experiments includes a 10'000 ton detector." (1/2 page)

  15. Simulating immersed particle collisions: the Devil's in the details

    Science.gov (United States)

    Biegert, Edward; Vowinckel, Bernhard; Meiburg, Eckart

    2015-11-01

    Simulating densely-packed particle-laden flows with any degree of confidence requires accurate modeling of particle-particle collisions. To this end, we investigate a few collision models from the fluids and granular flow communities using sphere-wall collisions, which have been studied by a number of experimental groups. These collisions involve enough complexities--gravity, particle-wall lubrication forces, particle-wall contact stresses, particle-wake interactions--to challenge any collision model. Evaluating the successes and shortcomings of the collision models, we seek improvements in order to obtain more consistent results. We will highlight several implementation details that are crucial for obtaining accurate results.

  16. Mechanism of Corrosion of Activated Aluminum Particles by Hot Water

    International Nuclear Information System (INIS)

    Razavi-Tousi, S.S.; Szpunar, J.A.

    2014-01-01

    Mechanism of corrosion in aluminum particles by hot water treatment for hydrogen generation is evaluated. The aluminum powder was activated by ball milling for different durations, which modified size and microstructure of the particles. Open circuit potential test was carried out to elucidate different stages of the reaction. Tafel test was used to explain the effect of ball milling and growth of hydroxide layer on corrosion of the particles. Surface, cross section and thickness of the grown hydroxide on the aluminum particles were studied in a scanning electron microscope. The corrosion potential of the aluminum powders depends on microstructure of the aluminum particles, growth of the hydroxide layer and a change in pH because of cathodic reactions. The hydrogen production test showed that a deformed microstructure and smaller particle size accelerates the corrosion rate of aluminum by hot water, the effect of the deformed microstructure being more significant at the beginning of the reaction. Effect of growth of the hydroxide layer on corrosion mechanism is discussed

  17. Comprehensive Benchmark Suite for Simulation of Particle Laden Flows Using the Discrete Element Method with Performance Profiles from the Multiphase Flow with Interface eXchanges (MFiX) Code

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Peiyuan [Univ. of Colorado, Boulder, CO (United States); Brown, Timothy [Univ. of Colorado, Boulder, CO (United States); Fullmer, William D. [Univ. of Colorado, Boulder, CO (United States); Hauser, Thomas [Univ. of Colorado, Boulder, CO (United States); Hrenya, Christine [Univ. of Colorado, Boulder, CO (United States); Grout, Ray [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sitaraman, Hariswaran [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-29

    Five benchmark problems are developed and simulated with the computational fluid dynamics and discrete element model code MFiX. The benchmark problems span dilute and dense regimes, consider statistically homogeneous and inhomogeneous (both clusters and bubbles) particle concentrations and a range of particle and fluid dynamic computational loads. Several variations of the benchmark problems are also discussed to extend the computational phase space to cover granular (particles only), bidisperse and heat transfer cases. A weak scaling analysis is performed for each benchmark problem and, in most cases, the scalability of the code appears reasonable up to approx. 103 cores. Profiling of the benchmark problems indicate that the most substantial computational time is being spent on particle-particle force calculations, drag force calculations and interpolating between discrete particle and continuum fields. Hardware performance analysis was also carried out showing significant Level 2 cache miss ratios and a rather low degree of vectorization. These results are intended to serve as a baseline for future developments to the code as well as a preliminary indicator of where to best focus performance optimizations.

  18. Compact and portable system for evaluation of individual exposure at aerosol particle in urban area

    International Nuclear Information System (INIS)

    De Zaiacomo, T.

    1995-01-01

    A compact and portable system for real-time acquisition of aerosol concentration data in urban and extra-urban area is presented. It is based on two optical type aerosol monitors integrated by aerosol particle separating and collecting devices, assembled into a carrying case together with temperature and relative humidity sensors and a programmable analog data logger; data output is addressed to a dedicated printer or personal computer. Further data about particle size, morphological aspect and particle mass concentration are obtainable by weighing supports used to concurrently collect aerosol particles and/or by means of microanalytical techniques. System performances are evaluated from the point of view of portability, possibility of use as stationary sampler for long-term monitoring purposes and coherence between optical response and ponderal mass. Some tests are finally carried out, to investigate the effect of relative humidity on the optical response of this type of instruments

  19. Entropic transport of active particles driven by a transverse ac force

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jian-chun, E-mail: wjchun2010@163.com; Chen, Qun; Ai, Bao-quan, E-mail: aibq@scnu.edu.cn

    2015-12-18

    Transport of active particles is numerically investigated in a two-dimensional period channel. In the presence of a transverse ac force, the directed transport of active particles demonstrates striking behaviors. By adjusting the amplitude and the frequency of the transverse ac force, the average velocity will be influenced significantly and the direction of the transport can be reversed several times. Remarkably, it is also found that the direction of the transport varies with different self-propelled speeds. Therefore, particles with different self-propelled speeds will move to the different directions, which is able to separate particles of different self-propelled speeds. - Highlights: • A transverse ac force strongly influence the transport of active particles. • The direction of the transport can be reversed several times. • Active particles with different self-propelled speeds can be separated.

  20. Polarization phenomena on coherent particle backscattering by random media

    International Nuclear Information System (INIS)

    Gorodnichev, E.E.; Dudarev, S.L.; Rogozkin, D.B.

    1990-01-01

    An exact solution is found for the problem of coherent enhanced backscattering of spin 1/2 particles by random media with small-radius scatterers. The polarization features in the angular spectrum are analyzed for particles reflected by three- and two-dimensional disordered systems and by medium with Anderson disorder (periodic system of random scatterers). The analysis is carried out in the case of magnetic and spin-orbit interaction with the scattering centers. The effects predicted have not any analogues on coherent backscattering of light and scalar waves

  1. Possible consequences of severe accidents at the Lubiatowo site, Poland

    Science.gov (United States)

    Seibert, Petra; Philipp, Anne; Hofman, Radek; Gufler, Klaus; Sholly, Steven

    2014-05-01

    The construction of a nuclear power plant is under consideration in Poland. One of the sites under discussion is near Lubiatowo, located on the cost of the Baltic Sea northwest of Gdansk. An assessment of possible environmental consequences is carried out for 88 real meteorological cases with the Lagrangian particle dispersion model FLEXPART. Based on literature research, three reactor designs (ABWR, EPR, AP 1000) were identified as being under discussion in Poland. For each of the designs, a set of accident scenarios was evaluated and two source terms per reactor design were selected for analysis. One of the selected source terms was a relatively large release while the second one was a severe accident with an intact containment. Considered endpoints of the calculations are ground contamination with Cs-137 and time-integrated concentrations of I-131 in air as well as committed doses. They are evaluated on a grid of ca. 3 km mesh size covering eastern Central Europe.

  2. Irradiation Testing of TRISO-Coated Particle Fuel in Korea

    International Nuclear Information System (INIS)

    Kim, Bong Goo; Yeo, Sunghwan; Jeong, Kyung-Chai; Eom, Sung-Ho; Kim, Yeon-Ku; Kim, Woong Ki; Lee, Young Woo; Cho, Moon Sung; Kim, Yong Wan

    2014-01-01

    In Korea, coated particle fuel is being developed to support development of a VHTR. At the end of March 2014, the first irradiation test in HANARO at KAERI to demonstrate and qualify TRISO-coated particle fuel for use in a VHTR was terminated. This experiment was conducted in an inert gas atmosphere without on-line temperature monitoring and control, or on-line fission product monitoring of the sweep gas. The irradiation device contained two test rods, one has nine fuel compacts and the other five compacts and eight graphite specimens. Each compact contains about 260 TRISO-coated particles. The duration of irradiation testing at HANARO was about 135 full power days from last August 2013. The maximum average power per particle was about 165 mW/particle. The calculated peak burnup of the TRISO-coated fuel was a little less than 4 atom percent. Post-irradiation examination is being carried out at KAERI’s Irradiated Material Examination Facility beginning in September of 2014. This paper describes characteristics of coated particle fuel, the design of the test rod and irradiation device for this coated particle fuel, and discusses the technical results of irradiation testing at HANARO. (author)

  3. Effect of heavy charged particles of galactic cosmic radiation on seeds

    International Nuclear Information System (INIS)

    Maksimova, E.N.

    1985-01-01

    The experiments were carried out on Lactuca sativa seeds exposed for 20, 66, 123 and 308 days in a biostack also containing physical detectors of heavy charged particles. The puppose of the experiments was to measure the yield of abberrant cells and its dependence on the exposure time and the site where particles hit the object. The cytogenetic examination demonstrated a significant difference between the seeds that were or were not hit by heavy charged particles. This is indicative of a significant contribution of galactic cosmic radiation to the radiobiological effect. The yield of aberrant cells as a function of the localization of heavy charged particles in the seed was established. The most sensitive target was the root meristem

  4. Internal distribution of micro- / nano-sized inorganic particles and their cytocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Shigeaki; Iwadera, Nobuki; Esaki, Mitsue; Kida, Ikuhiro; Akasaka, Tsukasa; Uo, Motohiro; Yawaka, Yasutaka; Watari, Fumio [Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586 (Japan); Mutoh, Mami [School of Dental Medicine, Hokkaido University, Sapporo 060-8586 (Japan); Morita, Manabu [Department of Oral Health, Okayama University Graduate School of Medicine, Dentisity and Pharmaceutical Science, Okayama 700-8525 (Japan); Haneda, Koichi [Department of Information Technology and Electronics, Senshu University of Ishinomaki, Ishinomaki 986-8580 (Japan); Yonezawa, Tetsu, E-mail: sabe@den.hokudai.ac.jp [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)

    2011-10-29

    Nano-sized materials have received much attention lately, both in terms of their multiple applications and their biocompatibility. From both viewpoints, understanding the biodistribution of administered nano-materials is very important. In this study, we succeeded in visualizing the biodistribution of administered nano-materials using a scanning X-ray analytical microscope and magnetic resonance imaging method. Quantitative observation was carried out by inductively coupled plasma - atomic emission spectroscopy. We observed that the administered nano-particles accumulated in the liver, lung and spleen of mice. To estimate their cytocompatibility, the nano-particles were exposed to human liver cells. The results suggested that the micro-/ nano- particles have good cytocompatibility, except for copper oxide nano-particles.

  5. Modification of Plasma Solitons by Resonant Particles

    DEFF Research Database (Denmark)

    Karpman, Vladimir; Lynov, Jens-Peter; Michelsen, Poul

    1980-01-01

    A consistent theory of plasma soliton interaction with resonant particles is developed. A simple derivation of a perturbed Korteweg–de Vries equation with the interaction term is presented. It is shown how the known limit cases (such as Ott–Sudan’s, etc.) can be derived from the general equations...... Korteweg–de Vries equation. Laboratory measurements carried out in a strongly magnetized, plasma‐filled waveguide and results from particle simulation are interpreted in terms of the analytical results.......A consistent theory of plasma soliton interaction with resonant particles is developed. A simple derivation of a perturbed Korteweg–de Vries equation with the interaction term is presented. It is shown how the known limit cases (such as Ott–Sudan’s, etc.) can be derived from the general equations...... and what their regions of applicability are. Some effects caused by the soliton‐particle interaction (amplitude change‐rate, tail formation, etc.) are analyzed by means of a recently developed perturbation method. The analytical results are compared with a direct numerical integration of the perturbed...

  6. IMPLANT-ASSOCIATED PATHOLOGY: AN ALGORITHM FOR IDENTIFYING PARTICLES IN HISTOPATHOLOGIC SYNOVIALIS/SLIM DIAGNOSTICS

    Directory of Open Access Journals (Sweden)

    V. Krenn

    2014-01-01

    Full Text Available In histopathologic SLIM diagnostic (synovial-like interface membrane, SLIM apart from diagnosing periprosthetic infection particle identification has an important role to play. The differences in particle pathogenesis and variability of materials in endoprosthetics explain the particle heterogeneity that hampers the diagnostic identification of particles. For this reason, a histopathological particle algorithm has been developed. With minimal methodical complexity this histopathological particle algorithm offers a guide to prosthesis material-particle identification. Light microscopic-morphological as well as enzyme-histochemical characteristics and polarization-optical proporties have set and particles are defined by size (microparticles, macroparticles and supra- macroparticles and definitely characterized in accordance with a dichotomous principle. Based on these criteria, identification and validation of the particles was carried out in 120 joint endoprosthesis pathological cases. A histopathological particle score (HPS is proposed that summarizes the most important information for the orthopedist, material scientist and histopathologist concerning particle identification in the SLIM.

  7. Phosphate recovery from wastewater using engineered superparamagnetic particles modified with layered double hydroxide ion exchangers.

    Science.gov (United States)

    Drenkova-Tuhtan, Asya; Mandel, Karl; Paulus, Anja; Meyer, Carsten; Hutter, Frank; Gellermann, Carsten; Sextl, Gerhard; Franzreb, Matthias; Steinmetz, Heidrun

    2013-10-01

    An innovative nanocomposite material is proposed for phosphate recovery from wastewater using magnetic assistance. Superparamagnetic microparticles modified with layered double hydroxide (LDH) ion exchangers of various compositions act as phosphate adsorbers. Magnetic separation and chemical regeneration of the particles allows their reuse, leading to the successful recovery of phosphate. Based upon the preliminary screening of different LDH ion exchanger modifications for phosphate selectivity and uptake capacity, MgFe-Zr LDH coated magnetic particles were chosen for further characterization and application. The adsorption kinetics of phosphate from municipal wastewater was studied in dependence with particle concentration, contact time and pH. Adsorption isotherms were then determined for the selected particle system. Recovery of phosphate and regeneration of the particles was examined via testing a variety of desorption solutions. Reusability of the particles was demonstrated for 15 adsorption/desorption cycles. Adsorption in the range of 75-97% was achieved in each cycle after 1 h contact time. Phosphate recovery and enrichment was possible through repetitive application of the desorption solution. Finally, a pilot scale experiment was carried out by treating 125 L of wastewater with the particles in five subsequent 25 L batches. Solid-liquid separation on this scale was carried out with a high-gradient magnetic filter (HGMF). Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Modification of Particle Distributions By MHD Instabilities I

    International Nuclear Information System (INIS)

    White, R.B.

    2010-01-01

    The modification of particle distributions by low amplitude magnetohydrodynamic modes is an important topic for magnetically confined plasmas. Low amplitude modes are known to be capable of producing significant modification of injected neutral beam profiles, and the same can be expected in burning plasmas for the alpha particle distributions. Flattening of a distribution due to phase mixing in an island or due to portions of phase space becoming stochastic is a process extremely rapid on the time scale of an experiment but still very long compared to the time scale of guiding center simulations. Thus it is very valuable to be able to locate significant resonances and to predict the final particle distribution produced by a given spectrum of magnetohydrodynamic modes. In this paper we introduce a new method of determining domains of phase space in which good surfaces do not exist and use this method for quickly determining the final state of the particle distribution without carrying out the full time evolution leading to it.

  9. Light absorption by coated nano-sized carbonaceous particles

    Science.gov (United States)

    Gangl, Martin; Kocifaj, Miroslav; Videen, Gorden; Horvath, Helmuth

    The optical properties of strongly absorbing soot particles coated by transparent material are investigated experimentally and described by several modeling approaches. Soot is produced by spark discharge and passed through a Sinclair-La Mer generator where non-absorbing carnauba wax is condensed onto it to obtain internal soot-wax mixtures in a controlled way. Measurements of the extinction and volume scattering coefficient show an amplification of absorption by a factor of approximately 1.8. This behavior was described by different approaches of internally mixed materials for the modal diameters of the measured size distributions: concentric-sphere model, effective medium approximations and heterogeneous ellipsoids. The concentric-sphere model describes the absorption increase quantitatively; and hence, it is chosen to be applied to the entire particle population in the size distribution. The growth of the soot particles by condensing wax is described by a simplified growth model to estimate the different contributions of several soot particle diameters to the overall absorption cross-section.

  10. Factors controlling deposits in recovery boilers -particle formation and deposition; Soodakattilan likaantuminen ja siihen vaikuttavien tekijoeiden hallinta. Hiukkasten muodostuminen ja depositio

    Energy Technology Data Exchange (ETDEWEB)

    Kauppinen, E I; Mikkanen, P; Tapper, U; Ylaetalo, S; Jaervinen, R [VTT Chemical Technology, Espoo (Finland); Jokiniemi, J K; Pyykoenen, J; Eskola, A [VTT Energy, Espoo (Finland)

    1997-10-01

    In this project the aim is to find critical factors controlling the deposit formation in the recovery boilers. Focus is on particle formation, growth and deposition. During year 1995 the aerosol particle formation was studied by an experimental study within the recovery boiler furnace and by a sensitivity study with the ABC (Aerosol Behaviour in Combustion) computer code. During year 1996 the experimental studies on the aerosol particle formation continued within the furnace and the deposition mechanisms for carry over particles were included in the ABC code and sensitivity studies of the deposition were carried out. The experimental study confirmed the fact that the particles are already formed in the recovery boiler furnace. The particle formation is initiated in the boundary layer of the burning droplet or char bed, where metals are vaporised and oxidised to form tiny seed particles

  11. Detectors for Particle Radiation

    Science.gov (United States)

    Kleinknecht, Konrad

    1999-01-01

    This textbook provides a clear, concise and comprehensive review of the physical principles behind the devices used to detect charged particles and gamma rays, and the construction and performance of these many different types of detectors. Detectors for high-energy particles and radiation are used in many areas of science, especially particle physics and nuclear physics experiments, nuclear medicine, cosmic ray measurements, space sciences and geological exploration. This second edition includes all the latest developments in detector technology, including several new chapters covering micro-strip gas chambers, silicion strip detectors and CCDs, scintillating fibers, shower detectors using noble liquid gases, and compensating calorimeters for hadronic showers. This well-illustrated textbook contains examples from the many areas in science in which these detectors are used. It provides both a coursebook for students in physics, and a useful introduction for researchers in other fields.

  12. Search for Long-lived particles with the ATLAS detector

    CERN Document Server

    Saito, Masahiko; The ATLAS collaboration

    2017-01-01

    Several supersymmetric models predict the production of massive long-lived supersymmetric particles. Such particles, if charged, may be detected through abnormal specific energy loss or long time-of-flight to the calorimeters. The poster presents recent results from searches of long-lived supersymmetric charged particles using proton-proton collisions at a centre of mass energy of 13 TeV with the ATLAS detector.

  13. Statistical analysis of magnetically soft particles in magnetorheological elastomers

    Science.gov (United States)

    Gundermann, T.; Cremer, P.; Löwen, H.; Menzel, A. M.; Odenbach, S.

    2017-04-01

    The physical properties of magnetorheological elastomers (MRE) are a complex issue and can be influenced and controlled in many ways, e.g. by applying a magnetic field, by external mechanical stimuli, or by an electric potential. In general, the response of MRE materials to these stimuli is crucially dependent on the distribution of the magnetic particles inside the elastomer. Specific knowledge of the interactions between particles or particle clusters is of high relevance for understanding the macroscopic rheological properties and provides an important input for theoretical calculations. In order to gain a better insight into the correlation between the macroscopic effects and microstructure and to generate a database for theoretical analysis, x-ray micro-computed tomography (X-μCT) investigations as a base for a statistical analysis of the particle configurations were carried out. Different MREs with quantities of 2-15 wt% (0.27-2.3 vol%) of iron powder and different allocations of the particles inside the matrix were prepared. The X-μCT results were edited by an image processing software regarding the geometrical properties of the particles with and without the influence of an external magnetic field. Pair correlation functions for the positions of the particles inside the elastomer were calculated to statistically characterize the distributions of the particles in the samples.

  14. Weibull modeling of particle cracking in metal matrix composites

    International Nuclear Information System (INIS)

    Lewis, C.A.; Withers, P.J.

    1995-01-01

    An investigation into the occurrence of reinforcement cracking within a particulate ZrO 2 /2618 Al alloy metal matrix composite under tensile plastic straining has been carried out, special attention being paid to the dependence of fracture on particle size and shape. The probability of particle cracking has been modeled using a Weibull approach, giving good agreement with the experimental data. Values for the Weibull modulus and the stress required to crack the particles were found to be within the range expected for the cracking of ceramic particles. Additional information regarding the fracture behavior of the particles was provided by in-situ neutron diffraction monitoring of the internal strains, measurement of the variation in the composite Young's modulus with straining and by direct observation of the cracked particles. The values of the particle stress required for the initiation of particle cracking deduced from these supplementary experiments were found to be in good agreement with each other and with the results from the Weibull analysis. Further, it is shown that while both the current experiments, as well as the previous work of others, can be well described by the Weibull approach, the exact values of the Weibull parameters do deduced are very sensitive to the approximations and the assumptions made in constructing the model

  15. Cosmic censorship and test particles

    International Nuclear Information System (INIS)

    Needham, T.

    1980-01-01

    In this paper one unambiguous prediction of cosmic censorship is put to the test, namely that it should be impossible to destroy a black hole (i.e. eliminate its horizon) by injecting test particles into it. Several authors have treated this problem and have not found their conclusions in contradiction with the prediction. Here we prove that if a general charged spinning particle (with parameters very much smaller than the respective hole parameters) is injected in an arbitrary manner into an extreme Kerr-Newman black hole, then cosmic censorship is upheld. As a by-product of the analysis a natural proof is given of the Christodoulou-Ruffini conditions on the injection of a spinless particle which yield a reversible black-hole transformation. Finally we consider the injection of particles with parameters that are not small compared with those of the hole, for which cosmic censorship is apparently violated. By assuming the validity of cosmic censorship we are led to a few conjectures concerning the extent of the particle's interaction with the hole while approaching it

  16. Two Decades of Mexican Particle Physics at Fermilab

    International Nuclear Information System (INIS)

    Rubinstein, R.

    2003-01-01

    This report is a view from Fermilab of Mexican particle physics at the Laboratory since about 1980; it is not intended to be a history of Mexican particle physics: that topic is outside the expertise of the writer. The period 1980 to the present coincides with the growth of Mexican experimental particle physics from essentially no activity to its current state where Mexican groups take part in experiments at several of the world's major laboratories

  17. Neutron activation analysis of small particles brought back from the asteroid Itokawa by the space probe Hayabusa

    International Nuclear Information System (INIS)

    Ebihara, Mitsuru

    2013-01-01

    The probe in the title launched in May 2003, landed on the asteroid 25143 (Itokawa) to collect the surface material, and returned to the desert of Australia in June 2010. The material carried in Japan Aerospace Exploration Agency (JAXA) was found to be >1,500 particles of extraterrestrial origin. This paper reports the results of activation analysis of a part of particles for the purpose of characterizing the elemental composition. The size of particles was mostly <100 mc-m and the mass, several 10s mc-g. The experiment was performed preliminarily on Kilabo meteorite using Kyoto University Research Reactor (KURR) as a neutron source, and then on 1 Itokawa particle named RA-QD02-0049, which was activated for 19 hr. The cooled particle was found to be split mainly in 2 parts (0049-1 and -2), which were subjected to analysis of gamma ray with Ge semiconductor detector in the KURR Institute and Kanazawa University. Analysis revealed that the 2 particles contained 8 elements of Na, Sc, Cr, Fe, Co, Ni, Zn and Ir, which were then quantitated with similarly neutron irradiated Allende meteorite, basalt JB-1 and highly purified Fe, and with previous findings by scanning electron microscope with energy dispersive X-ray spectrometer (SEM-EDX) showing the Itokawa particle was an olivine. Finally, 0049-1 and -2 were found to be of mass of 1.6 and 1.5 mc-g, respectively, based on which the calculated contents of the 8 elements revealed that they were homogeneously existed in the Itokawa particle. Comparison of elemental composition of the particle with those of various intra- and extra-terrestrial rocks and meteorites suggested that Itokawa had a feature of elements aggregated at the early stage after formation of the solar system 4.5 billion years ago. (T.T.)

  18. On the description of classical Einstein relativistic two-particle systems

    International Nuclear Information System (INIS)

    Aaberge, T.

    1978-01-01

    The author starts by considering the system of one free particle, and gives a sufficiently general description of this system to include the center of mass of systems of several particles. He then passes to the system of two particles. The coordinates separating the center of mass and the internal system are defined and the dynamics discussed. Finally the author outlines the construction of a more restrictive two-particle theory, and studies some consequences of the definition of a particle in an external field as a two-particle system in the limit where the mass of one of the particles becomes infinite. (Auth.)

  19. Linear response approach to active Brownian particles in time-varying activity fields

    Science.gov (United States)

    Merlitz, Holger; Vuijk, Hidde D.; Brader, Joseph; Sharma, Abhinav; Sommer, Jens-Uwe

    2018-05-01

    In a theoretical and simulation study, active Brownian particles (ABPs) in three-dimensional bulk systems are exposed to time-varying sinusoidal activity waves that are running through the system. A linear response (Green-Kubo) formalism is applied to derive fully analytical expressions for the torque-free polarization profiles of non-interacting particles. The activity waves induce fluxes that strongly depend on the particle size and may be employed to de-mix mixtures of ABPs or to drive the particles into selected areas of the system. Three-dimensional Langevin dynamics simulations are carried out to verify the accuracy of the linear response formalism, which is shown to work best when the particles are small (i.e., highly Brownian) or operating at low activity levels.

  20. Particle creation in inhomogeneous spacetimes

    International Nuclear Information System (INIS)

    Frieman, J.A.

    1989-01-01

    We study the creation of particles by inhomogeneous perturbations of spatially flat Friedmann-Robertson-Walker cosmologies. For massless scalar fields, the pair-creation probability can be expressed in terms of geometric quantities (curvature invariants). The results suggest that inhomogeneities on scales up to the particle horizon will be damped out near the Planck time. Perturbations on scales larger than the horizon are explicitly shown to yield no created pairs. The results generalize to inhomogeneous spacetimes several earlier studies of pair creation in homogeneous anisotropic cosmologies

  1. Particle tracking in sophisticated CAD models for simulation purposes

    International Nuclear Information System (INIS)

    Sulkimo, J.; Vuoskoski, J.

    1995-01-01

    The transfer of physics detector models from computer aided design systems to physics simulation packages like GEANT suffers from certain limitations. In addition, GEANT is not able to perform particle tracking in CAD models. We describe an application which is able to perform particle tracking in boundary models constructed in CAD systems. The transfer file format used is the new international standard, STEP. The design and implementation of the application was carried out using object-oriented techniques. It will be integrated in the future object-oriented version of GEANT. (orig.)

  2. Particle tracking in sophisticated CAD models for simulation purposes

    Science.gov (United States)

    Sulkimo, J.; Vuoskoski, J.

    1996-02-01

    The transfer of physics detector models from computer aided design systems to physics simulation packages like GEANT suffers from certain limitations. In addition, GEANT is not able to perform particle tracking in CAD models. We describe an application which is able to perform particle tracking in boundary models constructed in CAD systems. The transfer file format used is the new international standard, STEP. The design and implementation of the application was carried out using object-oriented techniques. It will be integrated in the future object-oriented version of GEANT.

  3. CHARGED PARTICLE MULTIPLICITIES IN ULTRA-RELATIVISTIC AU+AU AND CU+CU COLLISIONS

    Science.gov (United States)

    Back, B. B.; Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; Garcia, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Harnarine, I.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Richardson, E.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Szostak, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; Vannieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Willhelm, D.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wyngaardt, S.; Wyslouch, B.

    The PHOBOS collaboration has carried out a systematic study of charged particle multiplicities in Cu+Cu and Au+Au collisions at the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory. A unique feature of the PHOBOS detector is its ability to measure charged particles over a very wide angular range from 0.5° to 179.5° corresponding to |η| <5.4. The general features of the charged particle multiplicity distributions as a function of pseudo-rapidity, collision energy and centrality, as well as system size, are discussed.

  4. Limits for the fluxes of non-conventional particles in muon showers underground

    International Nuclear Information System (INIS)

    Dardo, M.; D'Ettorre Piazzoli, B.; Mannocchi, G.; Picchi, P.; Visentin, R.; Sitte, K.

    1975-01-01

    A search for non-conventional massive particles was carried out with the Mt. Cappuccini spark chamber array, by a study of the interactions initiated in the chamber absorbers. Neither an excess of large electro-magnetic cascades, nor an excess of large-angle scattering events was found. Likewise no difference was seen between the interaction features of prompt and of delayed shower particles. The estimated upper limits of the underground fluxes are not or barely consistent with the assumptions of the mandela or passive X-particle hypotheses; zero fluxes appear most likely. (orig./BJ) [de

  5. Light weakly interacting massive particles

    Science.gov (United States)

    Gelmini, Graciela B.

    2017-08-01

    Light weakly interacting massive particles (WIMPs) are dark matter particle candidates with weak scale interaction with the known particles, and mass in the GeV to tens of GeV range. Hints of light WIMPs have appeared in several dark matter searches in the last decade. The unprecedented possible coincidence into tantalizingly close regions of mass and cross section of four separate direct detection experimental hints and a potential indirect detection signal in gamma rays from the galactic center, aroused considerable interest in our field. Even if these hints did not so far result in a discovery, they have had a significant impact in our field. Here we review the evidence for and against light WIMPs as dark matter candidates and discuss future relevant experiments and observations.

  6. Model of Random Polygon Particles for Concrete and Mesh Automatic Subdivision

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to study the constitutive behavior of concrete in mesoscopic level, a new method is proposed in this paper. This method uses random polygon particles to simulate full grading broken aggregates of concrete. Based on computational geometry, we carry out the automatic generation of the triangle finite element mesh for the model of random polygon particles of concrete. The finite element mesh generated in this paper is also applicable to many other numerical methods.

  7. Biosynthesis of silver fine particles and particles decorated with nanoparticles using the extract of Illicium verum (star anise) seeds.

    Science.gov (United States)

    Luna, Carlos; Chávez, V H G; Barriga-Castro, Enrique Díaz; Núñez, Nuria O; Mendoza-Reséndez, Raquel

    2015-04-15

    Given the upsurge of new technologies based on nanomaterials, the development of sustainable methods to obtain functional nanostructures has become an imperative task. In this matter, several recent researches have shown that the biodegradable natural antioxidants of several plant extracts can be used simultaneously as reducing and stabilizing agents in the wet chemical synthesis of metallic nanoparticles, opening new opportunities to design greener synthesis. However, the challenge of these new techniques is to produce stable colloidal nanoparticles with controlled particle uniformity, size, shape and aggregation state, in similar manner than the well-established synthetic methods. In the present work, colloidal metallic silver nanoparticles have been synthesized using silver nitrate and extracts of Illicium verum (star anise) seeds at room temperature in a facile one-step procedure. The resulting products were colloidal suspensions of two populations of silver nanoparticles, one of them with particle sizes of few nanometers and the other with particles of tens of nm. Strikingly, the variation of the AgNO3/extract weight ratio in the reaction medium yielded to the variation of the spatial distribution of the nanoparticles: high AgNO3/extract concentration ratios yielded to randomly dispersed particles, whereas for lower AgNO3/extract ratios, the biggest particles appeared coated with the finest nanoparticles. This biosynthesized colloidal system, with controlled particle aggregation states, presents plasmonic and SERS properties with potential applications in molecular sensors and nanophotonic devices. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Current experiments in particle physics - particle data group

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H. [Stanford Univ., CA (United States). Stanford Linear Accelerator Center; Lehar, F. [Centre d`Etudes Nucleaires de Saclay, Gif-sur-Yvette (France); Kettle, P.R. [Paul Scherrer Institute, Villigen (Switzerland)] [and others

    1996-09-01

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries.

  9. Current experiments in particle physics - particle data group

    International Nuclear Information System (INIS)

    Galic, H.; Kettle, P.R.

    1996-09-01

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries

  10. Aerodynamic Improvements to Cargo Carrying Rail Cars due to Roof Modifications

    Science.gov (United States)

    Condie, Robert; Maynes, Daniel

    2012-11-01

    The aerodynamic drag associated with the transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. We provide an assessment of the influence of the roof structure on aerodynamic performance of two dissimilar rail cars, namely automobile carrying cars and coal carrying cars. Currently, the roof material for automobile carrying rail cars is corrugated steel, with the corrugation aligned perpendicular to the direction of travel. Coal cars are currently left uncovered for loading convenience and on the return leg from the power plant are empty. Aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the tops of both these car types. For the automobile-carrying cars, testing is performed for the corrugated and smooth roof configurations. This modification alone has the potential of reducing the car drag coefficient by nominally 25%. A broader study is performed for the coal cars, with data being acquired for coal filled models, empty models, and several cover prototype configurations. The results reveal that implementation of a cover may yield reductions in the aerodynamic drag for both coal filled (nominally 7%) and empty coal cars (nominally 30%).

  11. Characterization of particle states in relativistic classical quantum theory

    International Nuclear Information System (INIS)

    Horwitz, L.P.; Rabin, Y.

    1977-02-01

    Classical and quantum relativistic mechanics are studied. The notion of a ''particle'' is defined in the classical case and the interpretation of mechanics in space-time is clarified. These notions are carried over to the quantum theory, as much as possible. The relation between the results of Feyman's path integral approach and the theory of Horwitz and Piron is discussed. The ''particle'' interpretation is shown to imply an asymptotic condition for scattering. A general method of constructing the dynamical mass spectrum of composite ''particle'' states is discussed. An interference experiment is proposed to affirm the interpretation and applicability of Stueckelberg type wave functions for actual physical phenomena. Some discussion of the relation of this relativistic quantum theory to Feynman's approach to quantum field theory is also given

  12. Strategy for determination of an efficient Cochleate particle size.

    Science.gov (United States)

    Gil, Danay; Bracho, Gustavo; Zayas, Caridad; del Campo, Judith; Acevedo, Reinaldo; Toledo, Arturo; Lastre, Miriam; Pérez, Oliver

    2006-04-12

    Cochleate structures obtained from the outer membrane of Neisseria meningitidis serotype B have demonstrated to be high immunogenicity when administrated by intramuscular, oral or intranasal routes, and could be used as adjuvant and meningococcal nasal vaccine candidate. Due to the microparticulate nature of Cochleate it is necessary to control the particle size since it capture by cells of the immune system could be affected by this aspect. We combined optic microscopy and immunisation experiments to select the optimum particle size. Six different processes of producing Cochleate obtaining were evaluated and different mechanical stress conditions were carried out to homogenize and modulate the particles size. The more immunogenic particles were selected on the basis of the levels of specific IgA and IgG antibodies induced after intranasal immunisation in mice. The best treatment parameter for mechanical stress of the Cochleate was prolonged treatment with untrasonic low frequency waves.

  13. New particle formation at ground level and in the vertical column over the Barcelona area

    Science.gov (United States)

    Minguillón, M. C.; Brines, M.; Pérez, N.; Reche, C.; Pandolfi, M.; Fonseca, A. S.; Amato, F.; Alastuey, A.; Lyasota, A.; Codina, B.; Lee, H.-K.; Eun, H.-R.; Ahn, K.-H.; Querol, X.

    2015-10-01

    The vertical profiles (up to 975 m a.s.l.) of ultrafine and micronic particles across the planetary boundary layer and the free troposphere over a Mediterranean urban environment were investigated. Measurements were carried out using a tethered balloon equipped with a miniaturized condensation particle counter, a miniaturized optical particle counter, a micro-aethalometer, a rotating impactor, and meteorological instrumentation. Simultaneous ground measurements were carried out at an urban and a regional background site. New particle formation episodes initiating in the urban area were observed under high insolation conditions. The precursors were emitted by the city and urban photochemically-activated nucleation occurred both at high atmospheric levels (tens to hundreds of meters) and at ground level. The new particle formation at ground level was limited by the high particulate matter concentrations recorded during the morning traffic rush hours that increase the condensation sink and prevent new particle formation, and therefore restricted to midday and early afternoon. The aloft new particle formation occurred earlier as the thermally ascending polluted air mass was diluted. The regional background was only affected from midday and early afternoon when sea and mountain breezes transported the urban air mass after particle growth. These events are different from most new particle formation events described in literature, characterized by a regionally originated nucleation, starting early in the morning in the regional background and persisting with a subsequent growth during a long period. An idealized and simplified model of the spatial and time occurrence of these two types of new particle formation episodes into, around and over the city was elaborated.

  14. Discrete particle noise in particle-in-cell simulations of plasma microturbulence

    International Nuclear Information System (INIS)

    Nevins, W.M.; Hammett, G.W.; Dimits, A.M.; Dorland, W.; Shumaker, D.E.

    2005-01-01

    Recent gyrokinetic simulations of electron temperature gradient (ETG) turbulence with the global particle-in-cell (PIC) code GTC [Z. Lin et al., Proceedings of the 20th Fusion Energy Conference, Vilamoura, Portugal, 2004 (IAEA, Vienna, 2005)] yielded different results from earlier flux-tube continuum code simulations [F. Jenko and W. Dorland, Phys. Rev. Lett. 89, 225001 (2002)] despite similar plasma parameters. Differences between the simulation results were attributed to insufficient phase-space resolution and novel physics associated with global simulation models. The results of the global PIC code are reproduced here using the flux-tube PIC code PG3EQ [A. M. Dimits et al., Phys. Rev. Lett. 77, 71 (1996)], thereby eliminating global effects as the cause of the discrepancy. The late-time decay of the ETG turbulence and the steady-state heat transport observed in these PIC simulations are shown to result from discrete particle noise. Discrete particle noise is a numerical artifact, so both these PG3EQ simulations and, by inference, the GTC simulations that they reproduced have little to say about steady-state ETG turbulence and the associated anomalous heat transport. In the course of this work several diagnostics are developed to retrospectively test whether a particular PIC simulation is dominated by discrete particle noise

  15. Microstripes for transport and separation of magnetic particles

    DEFF Research Database (Denmark)

    Donolato, Marco; Dalslet, Bjarke Thomas; Hansen, Mikkel Fougt

    2012-01-01

    We present a simple technique for creating an on-chip magnetic particle conveyor based on exchange-biased permalloy microstripes. The particle transportation relies on an array of stripes with a spacing smaller than their width in conjunction with a periodic sequence of four different externally...... applied magnetic fields. We demonstrate the controlled transportation of a large population of particles over several millimeters of distance as well as the spatial separation of two populations of magnetic particles with different magnetophoretic mobilities. The technique can be used for the controlled...... selective manipulation and separation of magnetically labelled species. (C) 2012 American Institute of Physics....

  16. Particle acceleration at a reconnecting magnetic separator

    Science.gov (United States)

    Threlfall, J.; Neukirch, T.; Parnell, C. E.; Eradat Oskoui, S.

    2015-02-01

    Context. While the exact acceleration mechanism of energetic particles during solar flares is (as yet) unknown, magnetic reconnection plays a key role both in the release of stored magnetic energy of the solar corona and the magnetic restructuring during a flare. Recent work has shown that special field lines, called separators, are common sites of reconnection in 3D numerical experiments. To date, 3D separator reconnection sites have received little attention as particle accelerators. Aims: We investigate the effectiveness of separator reconnection as a particle acceleration mechanism for electrons and protons. Methods: We study the particle acceleration using a relativistic guiding-centre particle code in a time-dependent kinematic model of magnetic reconnection at a separator. Results: The effect upon particle behaviour of initial position, pitch angle, and initial kinetic energy are examined in detail, both for specific (single) particle examples and for large distributions of initial conditions. The separator reconnection model contains several free parameters, and we study the effect of changing these parameters upon particle acceleration, in particular in view of the final particle energy ranges that agree with observed energy spectra.

  17. Four-body problem for four bound alpha particles in 16O

    International Nuclear Information System (INIS)

    Osman, A.

    1980-02-01

    The alpha cluster model is used in considering the 16 O nucleus as a bound state of four alpha particles. This problem is represented by integral equations which are exact effective two-particle equations. These equations have the form of two-particle Lippmann-Schwinger equations. The separable expressions are used in approximating the scattering amplitudes in the separable potential model to include also few and small non-separable rest parts of the interactions. The integral equations obtained are manageable and suitable for computations. Numerical calculations are carried out for the 16 O nucleus, with the structure of four bound alpha particles. The obtained binding energy of 16 O with that structure is 16.86 MeV which is in good agreement with the experimental value. (author)

  18. Microfluidic Production of Alginate Hydrogel Particles for Antibody Encapsulation and Release.

    Science.gov (United States)

    Mazutis, Linas; Vasiliauskas, Remigijus; Weitz, David A

    2015-12-01

    Owing to their biocompatibility and reduced side effects, natural polymers represent an attractive choice for producing drug delivery systems. Despite few successful examples, however, the production of monodisperse biopolymer-based particles is often hindered by high viscosity of polymer fluids. In this work, we present a microfluidic approach for production of alginate-based particles carrying encapsulated antibodies. We use a triple-flow micro-device to induce hydrogel formation inside droplets before their collection off-chip. The fast mixing and gelation process produced alginate particles with a unique biconcave shape and dimensions of the mammalian cells. We show slow and fast dissolution of particles in different buffers and evaluate antibody release over time. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Simulating Biomass Fast Pyrolysis at the Single Particle Scale

    Energy Technology Data Exchange (ETDEWEB)

    Ciesielski, Peter [National Renewable Energy Laboratory (NREL); Wiggins, Gavin [ORNL; Daw, C Stuart [ORNL; Jakes, Joseph E. [U.S. Forest Service, Forest Products Laboratory, Madison, Wisconsin, USA

    2017-07-01

    Simulating fast pyrolysis at the scale of single particles allows for the investigation of the impacts of feedstock-specific parameters such as particle size, shape, and species of origin. For this reason particle-scale modeling has emerged as an important tool for understanding how variations in feedstock properties affect the outcomes of pyrolysis processes. The origins of feedstock properties are largely dictated by the composition and hierarchical structure of biomass, from the microstructural porosity to the external morphology of milled particles. These properties may be accounted for in simulations of fast pyrolysis by several different computational approaches depending on the level of structural and chemical complexity included in the model. The predictive utility of particle-scale simulations of fast pyrolysis can still be enhanced substantially by advancements in several areas. Most notably, considerable progress would be facilitated by the development of pyrolysis kinetic schemes that are decoupled from transport phenomena, predict product evolution from whole-biomass with increased chemical speciation, and are still tractable with present-day computational resources.

  20. Exposure to inhalable, respirable, and ultrafine particles in welding fume.

    Science.gov (United States)

    Lehnert, Martin; Pesch, Beate; Lotz, Anne; Pelzer, Johannes; Kendzia, Benjamin; Gawrych, Katarzyna; Heinze, Evelyn; Van Gelder, Rainer; Punkenburg, Ewald; Weiss, Tobias; Mattenklott, Markus; Hahn, Jens-Uwe; Möhlmann, Carsten; Berges, Markus; Hartwig, Andrea; Brüning, Thomas

    2012-07-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m(-3) for inhalable and 1.29 mg m(-3) for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m(-3)). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements welding fume. Concentrations were mainly predicted by the welding process and were significantly higher when local exhaust ventilation (LEV) was inefficient or when welding was performed in confined spaces. Substitution of high-emission techniques like FCAW, efficient LEV, and using PAPRs where applicable can reduce exposure to welding fume. However, harmonizing the different exposure metrics for UFP (as particle counts) and for the respirable or inhalable fraction of the welding fume (expressed as their mass) remains challenging.

  1. Particle retention during long discharges in Tore Supra and JET

    International Nuclear Information System (INIS)

    Loarer, T.; Tsitrone, E.; Brosset, C.; Bucalossi, J.; Gunn, J.; Joffrin, E.; Monier-Garbet, P.; Pegourie, B.; Thomas, P.; Lomas, P.; Ongena, J.

    2003-01-01

    The particle balances and the associated particle retentions for the long discharge experiments performed in Tore-Supra and for the L and H mode discharges carried out in JET are reported in this paper. From the reported experiments, the same particle retention behaviors are observed in Tore-Supra and JET in spite of the differences between the plasma geometry and the confinement mode (respectively limiter L-mode and divertor H-mode). A particle retention up to 70-80% of Γ(puff) for the larger gas injection has been obtained in JET. The particle retention behavior observed with the gas puff appears to be strongly dominant in the particle retention process. Indeed, no influence has been noticed from the active pumping, the saturation of the recycling area (0.4 D/C), the precedent discharges history (in terms of total 'particles retained' in the vessel) and even from the disruptions (conditioning). Also, the outgassing between discharges becomes negligible in terms of particle recovering when Γ(puff) and/or the discharge duration are increased. Finally, neither the edge localized modes (ELMs type-I or III) nor the disruptions modify the reported behaviour. For ITER, the particle retention is strictly limited and from the presented results it seems that strong gas injection should be avoided. (A.C.)

  2. Scattering by ensembles of small particles

    International Nuclear Information System (INIS)

    Gustafson, B. Aa. S.

    1980-11-01

    With the advent of high altitude rockets and of space probes, evidence has accumulated that several particle types coexiste in the interplanetary medium. It also became apparent that the zodiacal light is not produced by particles with previously known scattering characteristics. However, the scattering is here shown to be consistent with the hypothesis that presolar interstellar grains accumulate into comets which through fragmentation provide a major component of the interplanetary dust complex. Cometary debris - zodiscal light particles - are therefore modeled as conglomerates of elongated core-mantle particles. Light scattering characteristics of the conglomerates are investigated using a micro-wave analogue method. Approximate theoretical methods for prediction and interpretation of the electro-magnetic scattering patterns are developed and are found to compare favorably with the experimental results and with observations of the zodiacal light. The model is also found to be consistent with comet- and impactdata. Dynamical considerations predicts a small particle component rapidly receding from the Sun, an identification with the B-meteoroids is tentatively suggested. (author)

  3. Virus-Like Particles of Chimeric Recombinant Porcine Circovirus Type 2 as Antigen Vehicle Carrying Foreign Epitopes

    Directory of Open Access Journals (Sweden)

    Huawei Zhang

    2014-12-01

    Full Text Available Virus-like particles (VLPs of chimeric porcine circovirus type 2 (PCV2 were generated by replacing the nuclear localization signal (NLS; at 1–39 aa of PCV2 capsid protein (Cap with classical swine fever virus (CSFV T-cell epitope (1446–1460 aa, CSFV B-cell epitope (693–716 aa and CSFV T-cell epitope conjugated with B-cell epitope. The recombinant proteins were expressed using the baculovirus expression system and detected by immunoblotting and indirect immunofluorescence assay. The abilities to form PCV2 VLPs were confirmed by transmission electron microscopy. Immunogenicities of the three recombinant proteins were evaluated in mice. Our Results indicated that Cap protein NLS deletion or substitution with CSFV epitopes did not affect the VLPs assembly. Three chimeric Cap proteins could form VLPs and induce efficient humoral and cellular immunity against PCV2 and CSFV in mice. Results show that PCV2 VLPs can be used as an efficient antigen carrier for delivery of foreign epitopes, and a potential novel vaccine.

  4. Measurements and Monte-Carlo simulations of the particle self-shielding effect of B4C grains in neutron shielding concrete

    Science.gov (United States)

    DiJulio, D. D.; Cooper-Jensen, C. P.; Llamas-Jansa, I.; Kazi, S.; Bentley, P. M.

    2018-06-01

    A combined measurement and Monte-Carlo simulation study was carried out in order to characterize the particle self-shielding effect of B4C grains in neutron shielding concrete. Several batches of a specialized neutron shielding concrete, with varying B4C grain sizes, were exposed to a 2 Å neutron beam at the R2D2 test beamline at the Institute for Energy Technology located in Kjeller, Norway. The direct and scattered neutrons were detected with a neutron detector placed behind the concrete blocks and the results were compared to Geant4 simulations. The particle self-shielding effect was included in the Geant4 simulations by calculating effective neutron cross-sections during the Monte-Carlo simulation process. It is shown that this method well reproduces the measured results. Our results show that shielding calculations for low-energy neutrons using such materials would lead to an underestimate of the shielding required for a certain design scenario if the particle self-shielding effect is not included in the calculations.

  5. Hanford Tank Waste Particle Atlas

    Energy Technology Data Exchange (ETDEWEB)

    Herting, D. L. [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States); Cooke, G. A. [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States); Page, J S [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States); Valerio, J. L. [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States)

    2015-08-01

    Several methods have been utilized to perform solid phase characterization. Polarized light microscopy (PLM) is used to identify individual particles based on size, shape, color, and optical properties (e.g., refractive index1, birefringence, extinction positions, and interference figures). Scanning electron microscopy with energy-dispersive spectroscopy (SEM/EDS) is used to detect which elements are present in individual particles and to infer chemical phase identification based on the metals present in combination with the size and shape of the particles. Powder X-ray diffraction (XRD) is used to identify crystalline phases present in bulk samples by matching the X-ray patterns with a library of known patterns for pure phases. Transmission electron microscopy (TEM) is used to identify individual particles by their X-ray diffraction patterns. RAMAN analysis is used to identify bulk sample compositions by matching RAMAN spectra with a library of known patterns. Other specialized techniques have not been employed routinely for Hanford tank waste samples.

  6. Localized corrosion in AA2099-T83 aluminum–lithium alloy: The role of intermetallic particles

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y., E-mail: myl@cqut.edu.cn [College of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054 (China); Zhou, X., E-mail: xiaorong.zhou@manchester.ac.uk [Corrosion and Protection Centre, School of Materials, The University of Manchester, Manchester, M13 9PL (United Kingdom); Huang, W. [College of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054 (China); Thompson, G.E. [Corrosion and Protection Centre, School of Materials, The University of Manchester, Manchester, M13 9PL (United Kingdom); Zhang, X.; Luo, C.; Sun, Z. [Beijing Institute of Aeronautical Materials, Beijing, 100095 (China)

    2015-07-01

    The corrosion behavior of intermetallic particles and their role in the process of localized corrosion in AA2099-T83 aluminum–lithium alloy has been investigated. It was found that both high- and low-copper containing Al–Fe–Mn–Cu-(Li) particles could result in superficial pits on the alloy, and the high level of lithium in the high-copper-containing particles rendered them electrochemically more active than the low-copper-containing particles. Additionally, severe localized corrosion was found not to be directly related to the distribution of constituent particles in the alloy. The findings are not only relevant to the understanding of corrosion mechanism but also beneficial to the evaluation of thermomechanical treatments of the alloy. - Highlights: • Lithium was detected in the high-copper-containing Al–Fe–Mn–Cu particles. • The high-copper-containing particles were relatively more active. • Localized corrosion induced by constituent particles was superficial. • Severe localized corrosion in the alloy propagated via grain/subgrain boundaries. • Severe localized corrosion was not related to constituent particles.

  7. The particle suppliers

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Particles are supplied to the LHC by six accelerators inter-connected by several kilometres of transfer lines. This represents yet another complex chain of processes whereby particles are produced, bunched, synchronised and injected into the LHC at the precise moment it's ready to receive them. In other words, for collisions to be produced at the end of the chain, all the injectors must be in perfect working order.   Among all the questions asked by the many visitors to CERN, one in particular comes up time and time again: "Why don't you just connect the LHC directly to the proton source?" In other words, why do you need this whole chain of accelerators acting as an "injector" for the LHC? Before colliding inside the LHC, particles first have to pass through no fewer than six different accelerators: the 90 keV duoplasmatron source, the 750 keV RFQ, the 50 MeV Linac 2, the 1.4 GeV synchrotron injector ("PS Booster" or PSB), the 25 GeV Proton Sy...

  8. Monte Carlo Particle Lists: MCPL

    DEFF Research Database (Denmark)

    Kittelmann, Thomas; Klinkby, Esben Bryndt; Bergbäck Knudsen, Erik

    2017-01-01

    A binary format with lists of particle state information, for interchanging particles between various Monte Carlo simulation applications, is presented. Portable C code for file manipulation is made available to the scientific community, along with converters and plugins for several popular...... simulation packages. Program summary: Program Title: MCPL. Program Files doi: http://dx.doi.org/10.17632/cby92vsv5g.1 Licensing provisions: CC0 for core MCPL, see LICENSE file for details. Programming language: C and C++ External routines/libraries: Geant4, MCNP, McStas, McXtrace Nature of problem: Saving...

  9. Transfer of fissile material through shielding coatings in emergency heating of HTGR coated particles

    International Nuclear Information System (INIS)

    Gudkov, A.N.; Zhuravkov, S.G.; Koptev, M.A.; Kurepin, A.D.

    1990-01-01

    The measurement results of leakage dynamics of fissile material from the coated particles within a temperature range of 1200 + 2000 deg. C are given. The methods of carrying out the experiments are briefly described. The relation of the leakage rate of uranium-235 from CP (coated particles) with the pyrocarbonic coatings has been obtained. (author)

  10. Allergy adjuvant effect of particles from wood smoke and road traffic.

    Science.gov (United States)

    Samuelsen, Mari; Nygaard, Unni Cecilie; Løvik, Martinus

    2008-04-18

    There is growing evidence that in addition to augmenting the severity of asthma and allergic diseases, particulate air pollution also increases the incidence of allergy and asthma. We studied the adjuvant effect of particles from wood smoke and road traffic on the immune response to the allergen ovalbumin (OVA). OVA with and without particles was injected into one hind footpad of Balb/cA mice. All particles together with OVA significantly increased the level of OVA-specific immunoglobulin E (IgE) in serum, compared to groups given OVA or particles alone. Reference diesel exhaust particles (DEP) with OVA induced the highest levels of IgE, whereas no clear difference was observed between particles from road traffic and wood smoke. Road traffic particles collected in the autumn induced higher IgE values with OVA than corresponding particles collected during the winter season when studded tires are used, suggesting that studded tire-generated road pavement particles have less allergy adjuvant activity than exhaust particles. Compared to OVA or particles alone, all particles with OVA increased popliteal lymph node cell numbers, cell proliferation, ex vivo secretion of IL-4 and IL-10 after ConA stimulation, and the expression of several cell surface molecules (CD19, MHC class II, CD86 and CD23). Wood smoke particles with OVA induced somewhat higher cellular responses than road traffic particles, but less than DEP with OVA which seemed to be the most potent particle in inducing cellular as well as antibody responses. Thus, wood smoke particles had about the same capacity to enhance allergic sensitization as road traffic particles, but less than diesel exhaust particles.

  11. Allergy adjuvant effect of particles from wood smoke and road traffic

    International Nuclear Information System (INIS)

    Samuelsen, Mari; Nygaard, Unni Cecilie; Lovik, Martinus

    2008-01-01

    There is growing evidence that in addition to augmenting the severity of asthma and allergic diseases, particulate air pollution also increases the incidence of allergy and asthma. We studied the adjuvant effect of particles from wood smoke and road traffic on the immune response to the allergen ovalbumin (OVA). OVA with and without particles was injected into one hind footpad of Balb/cA mice. All particles together with OVA significantly increased the level of OVA-specific immunoglobulin E (IgE) in serum, compared to groups given OVA or particles alone. Reference diesel exhaust particles (DEP) with OVA induced the highest levels of IgE, whereas no clear difference was observed between particles from road traffic and wood smoke. Road traffic particles collected in the autumn induced higher IgE values with OVA than corresponding particles collected during the winter season when studded tires are used, suggesting that studded tire-generated road pavement particles have less allergy adjuvant activity than exhaust particles. Compared to OVA or particles alone, all particles with OVA increased popliteal lymph node cell numbers, cell proliferation, ex vivo secretion of IL-4 and IL-10 after ConA stimulation, and the expression of several cell surface molecules (CD19, MHC class II, CD86 and CD23). Wood smoke particles with OVA induced somewhat higher cellular responses than road traffic particles, but less than DEP with OVA which seemed to be the most potent particle in inducing cellular as well as antibody responses. Thus, wood smoke particles had about the same capacity to enhance allergic sensitization as road traffic particles, but less than diesel exhaust particles

  12. Development Of Solid Phase Radioimmunoassay Using Antibody Coupled Cellulose Particles For Measurement Of Prolactin In Human Serum

    International Nuclear Information System (INIS)

    Abdel-Ghany, I.Y.

    2013-01-01

    The objective of the present study was to prepare solid phase radioimmunoassay (RIA) reagents. Development as well as optimization and validation of RIA system using solid phase cellulose particles for the measurement of prolactin (PRL) in human serum were described. The production of polyclonal antibodies was carried out by immunizing three Balb/C mice intraperitoneal through primary injection and two booster doses. The activation of cellulose particles using 1,1-carbonyl diimidazole (CDI) and coupling of these solid phase particles with IgG fraction of mouse anti-PRL were carried out. Preparation of 125 I-PRL tracer was prepared using lactoperoxidase method then purified by gel filtration using sephadex G-100. The PRL standards were prepared using a highly purified PRL antigen with assay buffer as standard matrix. Optimization and validation of the assay were carried out. The results obtained provide a low cost, simple, sensitive, specific and accurate RIA system of prolactin based on solid phase separation. These cellulose particles retain their characteristics during storage for 6 months at 4 degree C. In conclusion, this assay could be used as a useful diagnostic tool for pituitary dysfunctions and possible reproductive disability

  13. Recent progress of hybrid simulation for energetic particles and MHD

    International Nuclear Information System (INIS)

    Todo, Y.

    2013-01-01

    Several hybrid simulation models have been constructed to study the evolution of Alfven eigenmodes destabilized by energetic particles. Recent hybrid simulation results of energetic particle driven instabilities are presented in this paper. (J.P.N.)

  14. Effect of indoor-generated airborne particles on radon progeny dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Trassierra, C. Vargas [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR (Italy); Stabile, L., E-mail: l.stabile@unicas.it [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR (Italy); Cardellini, F.; Morawska, L. [National Institute of Ionizing Radiation Metrology (INMRI-ENEA), Rome (Italy); Buonanno, G. [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR (Italy); International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane (Australia)

    2016-08-15

    Highlights: • Investigation of the interaction between particles and radon progeny dynamics. • Measurements of particles emitted by different indoor sources. • Tests performed in a controlled radon chamber. • Particle size strongly influences the radon progeny dynamics. • Particle surface area concentration is the key parameter of the radon-particle interaction. - Abstract: In order to investigate the interaction between radon progeny and particles, an experimental campaign was carried out in a radon chamber at the Italian National Institute of Ionizing Radiation Metrology, quantifying the amount of attached and unattached radon daughters present in air, as well as the equilibrium factor in the presence of particles generated through indoor sources. A fixed radon concentration was maintained, while particles were generated using incense sticks, mosquito coils and gas combustion. Aerosols were characterized in terms of particle concentrations and size distributions. Simultaneously, radon concentration and attached/unattached potential alpha energy concentration in the air were continuously monitored by two different devices, based on alpha spectroscopy techniques. The presence of particles was found to affect the attached fraction of radon decay products, in such a way that the particles acted as a sink for radionuclides. In terms of sources which emit large particles (e.g. incense, mosquito coils), which greatly increase particle surface area concentrations, the Equilibrium Factor was found to double with respect to the background level before particle generation sessions. On the contrary, the radon decay product dynamics were not influenced by gas combustion processes, mainly due to the small surface area of the particles emitted.

  15. Irreversible data compression concepts with polynomial fitting in time-order of particle trajectory for visualization of huge particle system

    International Nuclear Information System (INIS)

    Ohtani, H; Ito, A M; Hagita, K; Kato, T; Saitoh, T; Takeda, T

    2013-01-01

    We propose in this paper a data compression scheme for large-scale particle simulations, which has favorable prospects for scientific visualization of particle systems. Our data compression concepts deal with the data of particle orbits obtained by simulation directly and have the following features: (i) Through control over the compression scheme, the difference between the simulation variables and the reconstructed values for the visualization from the compressed data becomes smaller than a given constant. (ii) The particles in the simulation are regarded as independent particles and the time-series data for each particle is compressed with an independent time-step for the particle. (iii) A particle trajectory is approximated by a polynomial function based on the characteristic motion of the particle. It is reconstructed as a continuous curve through interpolation from the values of the function for intermediate values of the sample data. We name this concept ''TOKI (Time-Order Kinetic Irreversible compression)''. In this paper, we present an example of an implementation of a data-compression scheme with the above features. Several application results are shown for plasma and galaxy formation simulation data

  16. A study on the particle penetration in RMS Right Single Quotation Marks particle transport system

    International Nuclear Information System (INIS)

    Son, S. M.; Oh, S. H.; Choi, C. R.

    2014-01-01

    In nuclear facilities, a radiation monitoring system (RMS) monitors the exhaust gas containing the radioactive material. Samples of exhaust gas are collected in the downstream region of air cleaning units (ACUs) in order to examine radioactive materials. It is possible to predict an amount of radioactive material by analyzing the corrected samples. Representation of the collected samples should be assured in order to accurately sense and measure of radioactive materials. The radius of curvature is mainly 5 times of tube diameter. Sometimes, a booster fan is additionally added to enhance particle penetration rate... In this study, particle penetrations are calculated to evaluate particle penetration rate with various design parameters (tube lengths, tube declined angles, radius of curvatures, etc). The particle penetration rates have been calculated for several elements in the particle transport system. In general, the horizontal length of tube and the number of bending tube have a big impact on the penetration rate in the particle transport system. If the sampling location is far from the radiation monitoring system, additional installation of booster fans could be considered in case of large diameter tubes, but is not recommended in case of small diameter tube. In order to enhance particle penetration rate, the following works are recommended by priority. 1) to reduce the interval between sampling location and radiation monitoring system 2) to reduce the number of the bending tube

  17. A point particle model of lightly bound skyrmions

    Directory of Open Access Journals (Sweden)

    Mike Gillard

    2017-04-01

    Full Text Available A simple model of the dynamics of lightly bound skyrmions is developed in which skyrmions are replaced by point particles, each carrying an internal orientation. The model accounts well for the static energy minimizers of baryon number 1≤B≤8 obtained by numerical simulation of the full field theory. For 9≤B≤23, a large number of static solutions of the point particle model are found, all closely resembling size B subsets of a face centred cubic lattice, with the particle orientations dictated by a simple colouring rule. Rigid body quantization of these solutions is performed, and the spin and isospin of the corresponding ground states extracted. As part of the quantization scheme, an algorithm to compute the symmetry group of an oriented point cloud, and to determine its corresponding Finkelstein–Rubinstein constraints, is devised.

  18. Fission product released experiment of coated fuel particles

    Energy Technology Data Exchange (ETDEWEB)

    Shijiang, Xu; Bing, Yang; Chunhe, Tang; Junguo, Zhu; Jintao, Huang; Binzhong, Zhang [Inst. of Nucl. Energy Technology, Tsinghua Univ., Beijing (China); Jinghan, Luo [Inst. of Atomic Energy, Beijing (China)

    1992-01-15

    Four samples of coated fuel particles were irradiated in the Heavy-Water Research Reactor of the Institute of Atomic Energy. Each of them was divided into two groups and irradiated to the burn up of 0.394% fima and 0.788% fima in two static capsules, respectively. After irradiation and cooling, post irradiation annealing experiment was carried out, the release ratios of the fission product {sup 133}Xe and {sup 131}I were measured, they are in the order of 10{sup -6}{approx}10{sup -7}. The fission product release ratio of naked kernel was also measured under the same conditions as for the coated fuel particles, the ratio of the fission product release of the coated fuel particles and of the naked kernel was in the order of 10{sup -5}{approx}10{sup -4}.

  19. Right of innocent passage of ships carrying ultra-hazardous cargoes

    International Nuclear Information System (INIS)

    Sousa Ferro, M.

    2006-01-01

    The analysis carried out in this paper suggests that coastal states would probably fail to persuade an international tribunal of the existence of the right to deny passage of ships carrying ultra-hazardous cargoes through their territorial seas, much less through their exclusive economic zones. The same applies to the obligation to provide (or right to require) prior notification of such passage. This may partly explain why no international litigation concerning these issues has so far taken place, even though there have been a number of conflicts between coastal states and shipping states, widely published in the media. Still, evidence suggests that officers at the head of authorities in several coastal states, often non legal experts, firmly believe in the existence of these rights and obligations, at least insofar as concerns the territorial sea; The gap between the law and practice seems to be widening. At the same time, several states are clearly pursuing a policy of pushing for an evolution of customary law, either by claiming that this evolution has already taken place, or that the letter of this or that treaty already allows for claims. It would not be surprising if this strategy should succeed eventually. For the time being, however, one must not be too hasty to confuse diplomatic concessions with an evolution of the law. (author)

  20. Digital particle image thermometry/velocimetry: a review

    Energy Technology Data Exchange (ETDEWEB)

    Dabiri, Dana [University of Washington, Department of Aeronautics and Astronautics, Seattle, WA (United States)

    2009-02-15

    Digital particle image thermometry/velocimetry (DPIT/V) is a relatively new methodology that allows for measurements of simultaneous temperature and velocity within a two-dimensional domain, using thermochromic liquid crystal tracer particles as the temperature and velocity sensors. Extensive research has been carried out over recent years that have allowed the methodology and its implementation to grow and evolve. While there have been several reviews on the topic of liquid crystal thermometry (Moffat in Exp Therm Fluid Sci 3:14-32, 1990; Baughn in Int J Heat Fluid Flow 16:365-375, 1995; Roberts and East in J Spacecr Rockets 33:761-768, 1996; Wozniak et al. in Appl Sci Res 56:145-156, 1996; Behle et al. in Appl Sci Res 56:113-143, 1996; Stasiek in Heat Mass Transf 33:27-39, 1997; Stasiek and Kowalewski in Opto Electron Rev 10:1-10, 2002; Stasiek et al. in Opt Laser Technol 38:243-256, 2006; Smith et al. in Exp Fluids 30:190-201, 2001; Kowalewski et al. in Springer handbook of experimental fluid mechanics, 1st edn. Springer, Berlin, pp 487-561, 2007), the focus of the present review is to provide a relevant discussion of liquid crystals pertinent to DPIT/V. This includes a background on liquid crystals and color theory, a discussion of experimental setup parameters, a description of the methodology's most recent advances and processing methods affecting temperature measurements, and finally an explanation of its various implementations and applications. (orig.)

  1. Severe Psychomotor Delay in a Severe Presentation of Cat-Eye Syndrome

    Directory of Open Access Journals (Sweden)

    Guillaume Jedraszak

    2015-01-01

    Full Text Available Cat-eye syndrome is a rare genetic syndrome of chromosomal origin. Individuals with cat-eye syndrome are characterized by the presence of preauricular pits and/or tags, anal atresia, and iris coloboma. Many reported cases also presented with variable congenital anomalies and intellectual disability. Most patients diagnosed with CES carry a small supernumerary bisatellited marker chromosome, resulting in partial tetrasomy of 22p-22q11.21. There are two types of small supernumerary marker chromosome, depending on the breakpoint site. In a very small proportion of cases, other cytogenetic anomalies are reportedly associated with the cat-eye syndrome phenotype. Here, we report a patient with cat-eye syndrome caused by a type 1 small supernumerary marker chromosome. The phenotype was atypical and included a severe developmental delay. The use of array comparative genomic hybridization ruled out the involvement of another chromosomal imbalance in the neurological phenotype. In the literature, only a few patients with cat-eye syndrome present with a severe developmental delay, and all of the latter carried an atypical partial trisomy 22 or an uncharacterized small supernumerary marker chromosome. Hence, this is the first report of a severe neurological phenotype in cat-eye syndrome with a typical type 1 small supernumerary marker chromosome. Our observation clearly complicates prognostic assessment, particularly when cat-eye syndrome is diagnosed prenatally.

  2. Fly ash particles spheroidization using low temperature plasma energy

    Science.gov (United States)

    Shekhovtsov, V. V.; Volokitin, O. G.; Kondratyuk, A. A.; Vitske, R. E.

    2016-11-01

    The paper presents the investigations on producing spherical particles 65-110 μm in size using the energy of low temperature plasma (LTP). These particles are based on flow ash produced by the thermal power plant in Seversk, Tomsk region, Russia. The obtained spherical particles have no defects and are characterized by a smooth exterior surface. The test bench is designed to produce these particles. With due regard for plasma temperature field distribution, it is shown that the transition of fly ash particles to a state of viscous flow occurs at 20 mm distance from the plasma jet. The X-ray phase analysis is carried out for the both original state of fly ash powders and the particles obtained. This analysis shows that fly ash contains 56.23 wt.% SiO2; 20.61 wt.% Al2O3 and 17.55 wt.% Fe2O3 phases that mostly contribute to the integral (experimental) intensity of the diffraction maximum. The LTP treatment results in a complex redistribution of the amorphous phase amount in the obtained spherical particles, including the reduction of O2Si, phase, increase of O22Al20 and Fe2O3 phases and change in Al, O density of O22Al20 chemical unit cell.

  3. Dynamic Simulation of Random Packing of Polydispersive Fine Particles

    Science.gov (United States)

    Ferraz, Carlos Handrey Araujo; Marques, Samuel Apolinário

    2018-02-01

    In this paper, we perform molecular dynamic (MD) simulations to study the two-dimensional packing process of both monosized and random size particles with radii ranging from 1.0 to 7.0 μm. The initial positions as well as the radii of five thousand fine particles were defined inside a rectangular box by using a random number generator. Both the translational and rotational movements of each particle were considered in the simulations. In order to deal with interacting fine particles, we take into account both the contact forces and the long-range dispersive forces. We account for normal and static/sliding tangential friction forces between particles and between particle and wall by means of a linear model approach, while the long-range dispersive forces are computed by using a Lennard-Jones-like potential. The packing processes were studied assuming different long-range interaction strengths. We carry out statistical calculations of the different quantities studied such as packing density, mean coordination number, kinetic energy, and radial distribution function as the system evolves over time. We find that the long-range dispersive forces can strongly influence the packing process dynamics as they might form large particle clusters, depending on the intensity of the long-range interaction strength.

  4. Permanent magnet system to guide superparamagnetic particles

    Science.gov (United States)

    Baun, Olga; Blümler, Peter

    2017-10-01

    A new concept of using permanent magnet systems for guiding superparamagnetic nano-particles on arbitrary trajectories over a large volume is proposed. The basic idea is to use one magnet system which provides a strong, homogeneous, dipolar magnetic field to magnetize and orient the particles, and a second constantly graded, quadrupolar field, superimposed on the first, to generate a force on the oriented particles. In this configuration the motion of the particles is driven predominantly by the component of the gradient field which is parallel to the direction of the homogeneous field. As a result, particles are guided with constant force and in a single direction over the entire volume. The direction is simply adjusted by varying the angle between quadrupole and dipole. Since a single gradient is impossible due to Gauß' law, the other gradient component of the quadrupole determines the angular deviation of the force. However, the latter can be neglected if the homogeneous field is stronger than the local contribution of the quadrupole field. A possible realization of this idea is a coaxial arrangement of two Halbach cylinders. A dipole to evenly magnetize and orient the particles, and a quadrupole to generate the force. The local force was calculated analytically for this particular geometry and the directional limits were analyzed and discussed. A simple prototype was constructed to demonstrate the principle in two dimensions on several nano-particles of different size, which were moved along a rough square by manual adjustment of the force angle. The observed velocities of superparamagnetic particles in this prototype were always several orders of magnitude higher than the theoretically expected value. This discrepancy is attributed to the observed formation of long particle chains as a result of their polarization by the homogeneous field. The magnetic moment of such a chain is then the combination of that of its constituents, while its hydrodynamic radius

  5. A multimedia package for particle technology

    International Nuclear Information System (INIS)

    Mathers, B.; Rhodes, M.; Iveson, S.

    2002-01-01

    A CD-ROM-based package is being prepared for Particle Technology education. It is based on the textbook 'Introduction to Particle Technology' by Martin Rhodes, and aims to expand on the information given in the text by making best possible use of the advantages offered by the CD-ROM format, including use of videos, animations and interactive functions. The CD-ROM will be divided into the same twelve sections as the text. Each section will have subsections of: 1) Industrial Relevance (showing a video and/or photos and explanation of how the subject matter is used in industry). 2) Experiment/Demonstration (a video where measurements can be taken by the user, or explanatory video and raw data provided. The user will be given directions on how to carry out the experiment and the necessary calculations). 3) Quiz (multiple choice format testing the knowledge gained in the previous sections). 4) Calculators (allowing the user to easily make important particle technology calculations) The CD-ROM will allow users the opportunity to observe particulate processes and operations without the necessity of participating in laboratories or site visits, and will therefore be a useful tool for distance education, for users learning on an individual basis or as an addition to institutionally based particle technology courses

  6. Identity of Particles and Continuum Hypothesis

    Science.gov (United States)

    Berezin, Alexander A.

    2001-04-01

    Why all electrons are the same? Unlike other objects, particles and atoms (same isotopes) are forbidden to have individuality or personal history (or reveal their hidden variables, even if they do have them). Or at least, what we commonly call physics so far was unable to disprove particle's sameness (Berezin and Nakhmanson, Physics Essays, 1990). Consider two opposing hypotheses: (A) particles are indeed absolutely same, or (B) they do have individuality, but it is beyond our capacity to demonstrate. This dilemma sounds akin to undecidability of Continuum Hypothesis of existence (or not) of intermediate cardinalities between integers and reals (P.Cohen). Both yes and no of it are true. Thus, (alleged) sameness of electrons and atoms may be a physical translation (embodiment) of this fundamental Goedelian undecidability. Experiments unlikely to help: even if we find that all electrons are same within 30 decimal digits, could their masses (or charges) still differ in100-th digit? Within (B) personalized informationally rich (infinitely rich?) digital tails (starting at, say, 100-th decimal) may carry individual record of each particle history. Within (A) parameters (m, q) are indeed exactly same in all digits and their sameness is based on some inherent (meta)physical principle akin to Platonism or Eddington-type numerology.

  7. Charged particle flux near the Mars

    International Nuclear Information System (INIS)

    Vernov, S.N.; Tverskoj, B.A.; Yakovlev, V.A.

    1974-01-01

    The data on cosmic ray fluxes, obtained for the first time in the areocentric orbit by means of the 'Mars-2' satellite are given and discussed. The measurements were carried out on the variable solar cosmic ray flux background from December 14, 1971, to June 1, 1972. For this reason it is difficult to strictly separate local increases in the soft particle fluxes near the planet (electrons with Esub(e)>0.1 and 0.3MeV and protons with Esub(p)>1 and 5MeV) from the variation of corresponding particles of a solar origin. The detected intensities exceed the background which is caused by detection of particles of a galactic origin even at the complete overlap of the counter aperture by the planet. The possible causes of the detected irregularities in an intensity are discussed. It has been established definitely that neither Mars nor Venus have radiation belts at an election energy of Esub(e)>100KeV and proton energy of Esup(p)>1

  8. Influence of cow urine in the bioavailability of plutonium oxide particles in Palomares soils

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, A.; Aragon, A.; De La Cruz, B.; Gutierrez, J. [CIEMAT, DIAE, Madrid (Spain)

    2004-07-01

    The nuclear accident that occurred in Palomares in 1966 caused the release of plutonium weapon grade particles into a Mediterranean ecosystem, and consequently, urban and farming areas were contaminated with this material. Several studies focussed on the characterization and behaviour of trans-uranides have been carried out in the area. In this work, the solubility evolution of plutonium is analysed for a period of more than 30 years, as well as the influence that the incorporation of cow urine into organic fertilizers has on the solubility of the mentioned element. The average value of the plutonium solubility in water determined in five samples was 0.008% in 1986. However, determinations carried out in samples taken in 1999 and 2000 indicated an increase of the plutonium solubility of 22 to 96 times higher. In order to check the influence of organic fertilizers on the solubility of plutonium, a solubility test was carried out using cow urine as extracting solution. The results show that the solubility of plutonium can reach a value equal to 14%, which is similar to the one obtained with sodium pyrophosphate acting as extracting solution. Thus, these results are a clear warning of what might happen if organic fertilizers are used in transuranic-contaminated soils. (author)

  9. Influence of cow urine in the bioavailability of plutonium oxide particles in Palomares soils

    International Nuclear Information System (INIS)

    Espinosa, A.; Aragon, A.; De La Cruz, B.; Gutierrez, J.

    2004-01-01

    The nuclear accident that occurred in Palomares in 1966 caused the release of plutonium weapon grade particles into a Mediterranean ecosystem, and consequently, urban and farming areas were contaminated with this material. Several studies focussed on the characterization and behaviour of trans-uranides have been carried out in the area. In this work, the solubility evolution of plutonium is analysed for a period of more than 30 years, as well as the influence that the incorporation of cow urine into organic fertilizers has on the solubility of the mentioned element. The average value of the plutonium solubility in water determined in five samples was 0.008% in 1986. However, determinations carried out in samples taken in 1999 and 2000 indicated an increase of the plutonium solubility of 22 to 96 times higher. In order to check the influence of organic fertilizers on the solubility of plutonium, a solubility test was carried out using cow urine as extracting solution. The results show that the solubility of plutonium can reach a value equal to 14%, which is similar to the one obtained with sodium pyrophosphate acting as extracting solution. Thus, these results are a clear warning of what might happen if organic fertilizers are used in transuranic-contaminated soils. (author)

  10. New Spectral Method for Halo Particle Definition in Intense Mis-matched Beams

    Energy Technology Data Exchange (ETDEWEB)

    Dorf, Mikhail A.; Davidson, Ronald C.; Startsev, Edward A.

    2011-04-27

    An advanced spectral analysis of a mis-matched charged particle beam propagating through a periodic focusing transport lattice is utilized in particle-in-cell (PIC) simulations. It is found that the betatron frequency distribution function of a mismatched space-charge-dominated beam has a bump-on-tail structure attributed to the beam halo particles. Based on this observation, a new spectral method for halo particle definition is proposed that provides the opportunity to carry out a quantitative analysis of halo particle production by a beam mismatch. In addition, it is shown that the spectral analysis of the mismatch relaxation process provides important insights into the emittance growth attributed to the halo formation and the core relaxation processes. Finally, the spectral method is applied to the problem of space-charge transport limits.

  11. The Wondrous New World of Modern Particle Astrophysics

    Science.gov (United States)

    Hallin, Aksel; Hallman, Doug

    2009-01-01

    To investigate the frontiers of particle physics, physicists and engineers are building detectors and making measurements in unusual settings from outer space to far-flung regions of the Earth. In the past several decades, laboratories have been set up deep underground in working mines or mountain tunnels to look at subatomic particles from our…

  12. Relativistic three-particle dynamical equations: I. Theoretical development

    International Nuclear Information System (INIS)

    Adhikari, S.K.; Tomio, L.; Frederico, T.

    1993-11-01

    Starting from the two-particle Bethe-Salpeter equation in the ladder approximation and integrating over the time component of momentum, three dimensional scattering integral equations satisfying constrains of relativistic unitarity and covariance are rederived. These equations were first derived by Weinberg and by Blankenbecler and Sugar. These two-particle equations are shown to be related by a transformation of variables. Hence it is shown to perform and relate dynamical calculation using these two equations. Similarly, starting from the Bethe-Salpeter-Faddeev equation for the three-particle system and integrating over the time component of momentum, several three dimensional three-particle scattering equations satisfying constraints of relativistic unitary and covariance are derived. Two of these three-particle equations are related by a transformation of variables as in the two-particle case. The three-particle equations obtained are very practical and suitable for performing relativistic scattering calculations. (author)

  13. Radiation reaction effect on laser driven auto-resonant particle acceleration

    International Nuclear Information System (INIS)

    Sagar, Vikram; Sengupta, Sudip; Kaw, P. K.

    2015-01-01

    The effects of radiation reaction force on laser driven auto-resonant particle acceleration scheme are studied using Landau-Lifshitz equation of motion. These studies are carried out for both linear and circularly polarized laser fields in the presence of static axial magnetic field. From the parametric study, a radiation reaction dominated region has been identified in which the particle dynamics is greatly effected by this force. In the radiation reaction dominated region, the two significant effects on particle dynamics are seen, viz., (1) saturation in energy gain by the initially resonant particle and (2) net energy gain by an initially non-resonant particle which is caused due to resonance broadening. It has been further shown that with the relaxation of resonance condition and with optimum choice of parameters, this scheme may become competitive with the other present-day laser driven particle acceleration schemes. The quantum corrections to the Landau-Lifshitz equation of motion have also been taken into account. The difference in the energy gain estimates of the particle by the quantum corrected and classical Landau-Lifshitz equation is found to be insignificant for the present day as well as upcoming laser facilities

  14. TOP counter for particle identification at the Belle II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Inami, Kenji

    2014-12-01

    Ring imaging Cherenkov counter, named TOP counter, utilizing precise photon detection timing has been developed as a particle identification detector for the Belle II experiment. The real size prototype has been produced and tested with 2 GeV positrons at Spring-8 LEPS beam line. The quartz radiator production and assembling with microchannel plate photomultipliers was successfully carried out. The beam test data shows good agreement with full Monte-Carlo simulation results in the ring image and the distribution of number of detected photons and timing information. - Highlights: • TOP counter was developed as a particle identification detector for the Belle II experiment. • The real size prototype was produced and tested with 2 GeV positrons. • The quartz radiator production and assembling with MCP-PMT was successfully carried out. • The beam test data shows good agreement with full Monte-Carlo simulation results.

  15. Stability of large orbit, high-current particle rings

    International Nuclear Information System (INIS)

    Lovelace, R.V.E.

    1994-01-01

    A review is made of theory of the low-frequency stability of large orbit, high-current particle rings which continue to be of interest for compact fusion systems. The precession mode was the first mode predicted by Furth and observed by Christofilos to be unstable under certain conditions. Subsequently, many detailed studies have been made of the stability of particle rings- different modes, different ring geometries, systems with/without a toroidal B field, and sytems with/without a current carrying plasma component. The possibly dangerous modes are still thought to include the precession mode, the tilting mode, and the low order kink modes. copyright American Institute of Physics

  16. High-LET charged particle radiotherapy

    International Nuclear Information System (INIS)

    Castro, J.R.; California Univ., San Francisco, CA

    1991-07-01

    The Department of Radiation Oncology at UCSF Medical Center and the Radiation Oncology Department at UC Lawrence Berkeley Laboratory have been evaluating the use of high LET charged particle radiotherapy in a Phase 1--2 research trial ongoing since 1979. In this clinical trail, 239 patients have received at least 10 Gy (physical) minimum tumor dose with neon ions, meaning that at least one-half of their total treatment was given with high-LET charged particle therapy. Ninety-one patients received all of their therapy with neon ions. Of the 239 patients irradiated, target sites included lesions in the skin, subcutaneous tissues, head and neck such as paranasal sinuses, nasopharynx and salivary glands (major and minor), skull base and juxtaspinal area, GI tract including esophagus, pancreas and biliary tract, prostate, lung, soft tissue and bone. Analysis of these patients has been carried out with a minimum followup period of 2 years

  17. Investigation of chemical changes in uranium oxyfluoride particles using secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Kips, R.S.; Kristo, M.J.

    2009-01-01

    Understanding how environmental conditions may affect sample composition is critical to the interpretation of laboratory analyses from environmental sampling. We prepared a set of UO 2 F 2 particle samples from the hydrolysis of UF 6 and stored these samples in environmental chambers at different temperature, humidity and lighting conditions. The NanoSIMS ion microprobe was used to measure the UF + /U + secondary ion ratio of individual particles. Monitoring variations in this ratio may provide insights on changes in particle composition over time and in response to environmental exposure. This report presents the baseline measurements carried out on freshly-prepared particle samples to determine the initial amount of fluorine. (author)

  18. TOF for heavy stable particle identification

    International Nuclear Information System (INIS)

    Chang, C.Y.

    1983-01-01

    Searching for heavy stable particle production in a new energy region of hadron-hadron collisions is of fundamental theoretical interest. Observation of such particles produced in high energy collisions would indicate the existence of stable heavy leptons or any massive hadronic system carrying new quantum numbers. Experimentally, evidence of its production has not been found for PP collisions either at FNAL or at the CERN ISR for √S = 23 and 62 GeV respectively. However, many theories beyond the standard model do predict its existence on a mass scale ranging from 50 to a few hundred GeV. If so, it would make a high luminosity TeV collider an extremely ideal hunting ground for searching the production of such a speculated object. To measure the mass of a heavy stable charged particle, one usually uses its time of flight (TOF) and/or dE/dX information. For heavy neutral particle, one hopes it may decay at some later time after its production. Hence a pair of jets or a jet associated with a high P/sub t/ muon originated from some places other than the interacting point (IP) of the colliding beams may be a good signal. In this note, we examine the feasibility of TOF measurement on a heavy stable particle produced in PP collisions at √S = 1 TeV and a luminosity of 10 33 cm -2 sec -1 with a single arm spectrometer pointing to the IP

  19. Reticulated vitreous carbon doped with nano silver metallic particles for antimicrobial inhibitory application

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Ana Paula Silva; Oishi, Silvia; Marcuzzo, Jossano Saldanha; Baldan, Mauricio Ribeiro, E-mail: silvadeoliveira.ana@gmail.com [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Ito, Cristiane Yoga; Goncalves, Emerson Sarmento [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sao Paulo, SP (Brazil)

    2016-07-01

    Full text: The development of composites for biocides application has attracted considerable attention in several research fields. Silver nanoparticles is a very know antimicrobial material.Manufacturing composite materials with high surface area and biocides characteristics is challenge. In this work was studied the morphological and structural characterization of silver nanoparticles dispersed in a structure of carbon Reticulated Vitreous (CVR), treated at different temperatures, resulting in a nanocomposite.The silver impregnation technique in carbon materials is not a simple work due to its chemical stability. The objective in this study was to evaluate the deposition of silver nanoparticles on the CVR as a composite material for microorganisms inhibition or eliminate. The characterization of the material will be carried out using the Raman spectroscopy, spectroscopy Photoelectron Excited by X-rays, diffraction X-ray-EDS.Through the results it was concluded that the CRV treated at 1300 ° C showed the highest concentration of silver on its structure. These results potentiate the deposition of silver nanoparticles on CRV structures and disorganized with large concentration of active sites to anchor silver particles. In addition, the average size of the deposited particles decreases due to heat treatment. (author)

  20. Reticulated vitreous carbon doped with nano silver metallic particles for antimicrobial inhibitory application

    International Nuclear Information System (INIS)

    Oliveira, Ana Paula Silva; Oishi, Silvia; Marcuzzo, Jossano Saldanha; Baldan, Mauricio Ribeiro; Ito, Cristiane Yoga; Goncalves, Emerson Sarmento

    2016-01-01

    Full text: The development of composites for biocides application has attracted considerable attention in several research fields. Silver nanoparticles is a very know antimicrobial material.Manufacturing composite materials with high surface area and biocides characteristics is challenge. In this work was studied the morphological and structural characterization of silver nanoparticles dispersed in a structure of carbon Reticulated Vitreous (CVR), treated at different temperatures, resulting in a nanocomposite.The silver impregnation technique in carbon materials is not a simple work due to its chemical stability. The objective in this study was to evaluate the deposition of silver nanoparticles on the CVR as a composite material for microorganisms inhibition or eliminate. The characterization of the material will be carried out using the Raman spectroscopy, spectroscopy Photoelectron Excited by X-rays, diffraction X-ray-EDS.Through the results it was concluded that the CRV treated at 1300 ° C showed the highest concentration of silver on its structure. These results potentiate the deposition of silver nanoparticles on CRV structures and disorganized with large concentration of active sites to anchor silver particles. In addition, the average size of the deposited particles decreases due to heat treatment. (author)

  1. Morphological Changes of Limestone Sorbent Particles during Carbonation/Calcination Looping Cycles in a Thermogravimetric Analyzer (TGA) and Reactivation with Steam

    KAUST Repository

    Wu, Y.

    2010-04-15

    Carbonation and calcination looping cycles were carried out on four limestones in a thermogravimetric analyzer (TGA). The CO2 carrying capacity of a limestone particle decays very quickly in the first 10 cycles, reducing to about 20% of its original uptake capacity after 10 cycles for the four limestones studied in this work, and it decreases further to 6-12% after 50 cycles. A new steam reactivation method was applied on the spent sorbent to recover the loss of reactivity. The steam reactivation of multi-cycled samples was conducted at atmospheric pressure. Steam reactivation for 5 min at 130 °C of particles that had undergone 10 cycles resulted in an immediate increase (by 45-60% points) in carrying capacity. The morphological changes of limestone particles during the cycling and steam reactivation were studied using both an optical microscope and scanning electron microscopy (SEM). The diameters of limestone particles shrank by about 2-7% after 10 carbonation/calcination cycles, and the particle diameters swelled significantly (12-22% increase) after steam reactivation. These size changes are important for studies of attrition and mathematical modeling of carbonation. © 2010 American Chemical Society.

  2. Micro- and Nanostructural Characteristics of Particles Before and After an Exhaust Gas Recirculation System Scrubber

    DEFF Research Database (Denmark)

    Lieke, Kirsten Inga; Rosenørn, Thomas; Pedersen, Jannik

    2013-01-01

    microscopy (TEM) grids on two stages. Micro- and nanostructural characteristics of sin-gle particles were studied by TEM. Image analysis was carried out on overview and high-resolution images, revealing influence of the exhaust gas treatment (scrubber) on the particle morphology and mixing state. Soot......This work provides insight into the morphology and mixing state of submicron particles in diesel exhaust from a ship engine with an exhaust gas recirculation scrubber. Particles from this low-speed ship engine on test bed were collected using a microiner-tial impactor with transmission electron...

  3. Search for free fractional electric charge elementary particles using an automated millikan oil drop technique

    Science.gov (United States)

    Halyo; Kim; Lee; Lee; Loomba; Perl

    2000-03-20

    We have carried out a direct search in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied-about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0. 16e ( e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71x10(-22) particles per nucleon with 95% confidence.

  4. Volatile particles formation during PartEmis: a modelling study

    Directory of Open Access Journals (Sweden)

    X. Vancassel

    2004-01-01

    Full Text Available A modelling study of the formation of volatile particles in a combustor exhaust has been carried out in the frame of the PartEmis European project. A kinetic model has been used in order to investigate nucleation efficiency of the H2O-H2SO4 binary mixture in the sampling system. A value for the fraction of the fuel sulphur S(IV converted into S(VI has been indirectly deduced from comparisons between model results and measurements. In the present study, ranges between roughly 2.5% and 6%, depending on the combustor settings and on the value assumed for the parameter describing sulphuric acid wall losses. Soot particles hygroscopicity has also been investigated as their activation is a key parameter for contrail formation. Growth factors of monodisperse particles exposed to high relative humidity (95% have been calculated and compared with experimental results. The modelling study confirms that the growth factor increases as the soot particle size decreases.

  5. Generation of zonal magnetic fields by drift waves in a current carrying nonuniform magnetoplasma

    International Nuclear Information System (INIS)

    Shukla, Nitin; Shukla, P.K.

    2010-01-01

    It is shown that zonal magnetic fields (ZMFs) can be nonlinearly excited by incoherent drift waves (DWs) in a current carrying nonuniform magnetoplasma. The dynamics of incoherent DWs in the presence of ZMFs is governed by a wave-kinetic equation. The governing equation for ZMFs in the presence of nonlinear advection force of the DWs is obtained from the parallel component of the electron momentum equation and the Faraday law. Standard techniques are used to derive a nonlinear dispersion relation, which depicts instability via which ZMFs are excited in plasmas. ZMFs may inhibit the turbulent cross-field particle and energy transport in a nonuniform magnetoplasma.

  6. Phenomenological and Astro-particle analysis of light dark matter particles

    International Nuclear Information System (INIS)

    Albornoz Vasquez, D.

    2011-09-01

    The nature of Dark Matter (DM) is still unveiled. Experimental efforts aiming to detect the Dark Matter have shown a great progress in the last decade. This work is devoted to the phenomenological and astro-particle studies of Dark Matter candidates of supersymmetric nature - the neutralino - and beyond - scalar particles. The former, in the (1-100) GeV mass range, is currently being tested by the Large Hadron Collider, direct detection and indirect detection experiments; this work shows that the interplay between experimental techniques is a decisive tool to thoroughly search for theoretical predictions. The latter is a non-standard candidate as light as 1 MeV which could be copiously produced at the Large Hadron Collider and, at the same time, it could explain other phenomena such as neutrino masses and/or the 511 keV line from the galactic center of the Milky Way. We start by describing the DM problem in Part I, where we give a review for evidence of the existence of DM, we set the cosmological framework in which we work and describe the history of DM from the Early Universe (EU), to the formation of structure and up to the current distribution of the DM in haloes. Then, in Part II, we go through the important Cosmological, Astro-particle and Particle Physics constraints to particle DM candidates and subsequently introduce models providing relatively light DM candidates, models of standard supersymmetric nature such as the Minimal Supersymmetric Standard Model (MSSM) and the Next-to-MSSM (NMSSM) with neutralino DM, and beyond N=1 SUSY in a light scalar DM scenario inspired in N=2 SUSY. Finally, in Part III we present the findings of the investigations carried out: we describe a numerical tool developed to scan the multidimensional supersymmetric parameter space, then we present an application of this tool to the search of light neutralino configurations in the MSSM and NMSSM as well as an application to the search for neutralino DM in directional detectors, and

  7. Regular and stochastic particle motion in plasma dynamics

    International Nuclear Information System (INIS)

    Kaufman, A.N.

    1979-08-01

    A Hamiltonian formalism is presented for the study of charged-particle trajectories in the self-consistent field of the particles. The intention is to develop a general approach to plasma dynamics. Transformations of phase-space variables are used to separate out the regular, adiabatic motion from the irregular, stochastic trajectories. Several new techniques are included in this presentation

  8. Eulerian-Lagrangian analysis for particle velocities and trajectories in a pure wave motion using particle image velocimetry.

    Science.gov (United States)

    Umeyama, Motohiko

    2012-04-13

    This paper investigates the velocity and the trajectory of water particles under surface waves, which propagate at a constant water depth, using particle image velocimetry (PIV). The vector fields and vertical distributions of velocities are presented at several phases in one wave cycle. The third-order Stokes wave theory was employed to express the physical quantities. The PIV technique's ability to measure both temporal and spatial variations of the velocity was proved after a series of attempts. This technique was applied to the prediction of particle trajectory in an Eulerian scheme. Furthermore, the measured particle path was compared with the positions found theoretically by integrating the Eulerian velocity to the higher order of a Taylor series expansion. The profile of average travelling distance is also presented with a solution of zero net mass flux in a closed wave flume.

  9. Machine learning based global particle indentification algorithms at LHCb experiment

    CERN Multimedia

    Derkach, Denis; Likhomanenko, Tatiana; Rogozhnikov, Aleksei; Ratnikov, Fedor

    2017-01-01

    One of the most important aspects of data processing at LHC experiments is the particle identification (PID) algorithm. In LHCb, several different sub-detector systems provide PID information: the Ring Imaging CHerenkov (RICH) detector, the hadronic and electromagnetic calorimeters, and the muon chambers. To improve charged particle identification, several neural networks including a deep architecture and gradient boosting have been applied to data. These new approaches provide higher identification efficiencies than existing implementations for all charged particle types. It is also necessary to achieve a flat dependency between efficiencies and spectator variables such as particle momentum, in order to reduce systematic uncertainties during later stages of data analysis. For this purpose, "flat” algorithms that guarantee the flatness property for efficiencies have also been developed. This talk presents this new approach based on machine learning and its performance.

  10. Elementary particle interactions. Progress report, October 1, 1991--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Bugg, W.M.; Condo, G.T.; Handler, T.; Hart, E.L.; Read, K.; Ward, B.F.L.

    1992-10-01

    Work continues on strange particle production in weak interactions using data from a high-energy neutrino exposure in a freon bubble chamber. Meson photoproduction has also consumed considerable effort. Detector research and development activities have been carried out.

  11. Proton: the particle.

    Science.gov (United States)

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10(80). Protons were created at 10(-6) -1 second after the Big Bang at ≈1.37 × 10(10) years beforethe present. Proton life span has been experimentally determined to be ≥10(34) years; that is, the age of the universe is 10(-24)th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W(+), W(-), Z(0), and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter. Copyright © 2013 Elsevier Inc. All

  12. Proton: The Particle

    Energy Technology Data Exchange (ETDEWEB)

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10{sup 80}. Protons were created at 10{sup −6} –1 second after the Big Bang at ≈1.37 × 10{sup 10} years beforethe present. Proton life span has been experimentally determined to be ≥10{sup 34} years; that is, the age of the universe is 10{sup −24}th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W{sup +}, W{sup −}, Z{sup 0}, and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter.

  13. The flooding phenomenon and its connection with dry-out in boiling particle beds

    International Nuclear Information System (INIS)

    Macbeth, R.V.; Anderson, A.R.

    1986-03-01

    Experimental studies of boiling in particle beds representing reactor core debris have been restricted to very small beds compared with those that may be found in a reactor. The use of air and water to simulate some of the many features of boiling in a particle bed has given results that were inconclusive. The work reported here is that carried out at Winfrith to extend the dryout data to larger particle diameters, and to provide new experimental data which removes earlier doubts, and makes the air-water analogue position much clearer. (U.K.)

  14. Determination of polymerization particle morphology using synchrotron computed microtomography

    International Nuclear Information System (INIS)

    Jones, K.W.; Spanne, P.; Lindquist, W.B.; Conner, W.C.; Ferrero, M.

    1991-10-01

    Polymerization of monomers over heterogeneous catalysts results in the fragmentation of the catalysts and subsequent transport in the polymer particles that are produced. Characterization of the process using nondestructive synchrotron computed microtomography techniques makes possible measurement of the distribution of the catalyst fragments in an individual particle and, in addition, gives an estimate of the particle porosity and surface area. The present experiment was carried out using the x-ray microscopy facility at the Brookhaven National Synchrotron Light Source (NSLS) X26 beam line. The tomographic sections were analyzed using autocorrelation techniques to determine porosity and surface area values. The results are compared to values obtained using conventional methods. This procedure makes possible the extraction of quantitative information about porosity and specific area from the tomograms. 9 refs., 7 figs., 1 tab

  15. Promising MS2 mediated virus-like particle vaccine against foot-and-mouth disease.

    Science.gov (United States)

    Dong, Yan-mei; Zhang, Guo-guang; Huang, Xiao-jun; Chen, Liang; Chen, Hao-tai

    2015-05-01

    Foot-and-mouth disease (FMD) has caused severe economic losses to millions of farmers worldwide. In this work, the coding genes of 141-160 epitope peptide (EP141-160) of VP1 were inserted into the coat protein (CP) genes of MS2 in prokaryotic expression vector, and the recombinant protein self-assembled into virus-like particles (VLP). Results showed that the CP-EP141-160 VLP had a strong immunoreaction with the FMD virus (FMDV) antigen in vitro, and also had an effective immune response in mice. Further virus challenge tests were carried out on guinea pigs and swine, high-titer neutralizing antibodies were produced and the CP-EP141-160 VLP vaccine could protect most of the animals against FMDV. Copyright © 2015. Published by Elsevier B.V.

  16. Electron microscopy of atmospheric particles

    Science.gov (United States)

    Huang, Po-Fu

    Electron microscopy coupled with energy dispersive spectrometry (EM/EDS) is a powerful tool for single particle analysis. However, the accuracy with which atmospheric particle compositions can be quantitatively determined by EDS is often hampered by substrate-particle interactions, volatilization losses in the low pressure microscope chamber, electron beam irradiation and use of inaccurate quantitation factors. A pseudo-analytical solution was derived to calculate the temperature rise due to the dissipation of the electron energy on a particle-substrate system. Evaporative mass loss for a spherical cap-shaped sulfuric acid particle resting on a thin film supported by a TEM grid during electron beam impingement has been studied. Measured volatilization rates were found to be in very good agreement with theoretical predictions. The method proposed can also be used to estimate the vapor pressure of a species by measuring the decay of X-ray intensities. Several types of substrates were studied. We found that silver-coated silicon monoxide substrates give carbon detection limits comparable to commercially available substrates. An advantage of these substrates is that the high thermal conductivity of the silver reduces heating due to electron beam impingement. In addition, exposure of sulfuric acid samples to ammonia overnight substantially reduces sulfur loss in the electron beam. Use of size-dependent k-factors determined from particles of known compositions shows promise for improving the accuracy of atmospheric particle compositions measured by EM/EDS. Knowledge accumulated during the course of this thesis has been used to analyze atmospheric particles (Minneapolis, MN) selected by the TDMA and collected by an aerodynamic focusing impactor. 'Less' hygroscopic particles, which do not grow to any measurable extent when humidified to ~90% relative humidity, included chain agglomerates, spheres, flakes, and irregular shapes. Carbon was the predominant element detected in

  17. Discrete element method modeling of the triboelectric charging of polyethylene particles: Can particle size distribution and segregation reduce the charging?

    International Nuclear Information System (INIS)

    Konopka, Ladislav; Kosek, Juraj

    2015-01-01

    Polyethylene particles of various sizes are present in industrial gas-dispersion reactors and downstream processing units. The contact of the particles with a device wall as well as the mutual particle collisions cause electrons on the particle surface to redistribute in the system. The undesirable triboelectric charging results in several operational problems and safety risks in industrial systems, for example in the fluidized-bed polymerization reactor. We studied the charging of polyethylene particles caused by the particle-particle interactions in gas. Our model employs the Discrete Element Method (DEM) describing the particle dynamics and incorporates the ‘Trapped Electron Approach’ as the physical basis for the considered charging mechanism. The model predicts the particle charge distribution for systems with various particle size distributions and various level of segregation. Simulation results are in a qualitative agreement with experimental observations of similar particulate systems specifically in two aspects: 1) Big particles tend to gain positive charge and small particles the negative one. 2) The wider the particle size distribution is, the more pronounced is the charging process. Our results suggest that not only the size distribution, but also the effect of the spatial segregation of the polyethylene particles significantly influence the resulting charge distribution ‘generated’ in the system. The level of particle segregation as well as the particle size distribution of polyethylene particles can be in practice adjusted by the choice of supported catalysts, by the conditions in the fluidized-bed polymerization reactor and by the fluid dynamics. We also attempt to predict how the reactor temperature affects the triboelectric charging of particles. (paper)

  18. Probabilistic homogenization of random composite with ellipsoidal particle reinforcement by the iterative stochastic finite element method

    Science.gov (United States)

    Sokołowski, Damian; Kamiński, Marcin

    2018-01-01

    This study proposes a framework for determination of basic probabilistic characteristics of the orthotropic homogenized elastic properties of the periodic composite reinforced with ellipsoidal particles and a high stiffness contrast between the reinforcement and the matrix. Homogenization problem, solved by the Iterative Stochastic Finite Element Method (ISFEM) is implemented according to the stochastic perturbation, Monte Carlo simulation and semi-analytical techniques with the use of cubic Representative Volume Element (RVE) of this composite containing single particle. The given input Gaussian random variable is Young modulus of the matrix, while 3D homogenization scheme is based on numerical determination of the strain energy of the RVE under uniform unit stretches carried out in the FEM system ABAQUS. The entire series of several deterministic solutions with varying Young modulus of the matrix serves for the Weighted Least Squares Method (WLSM) recovery of polynomial response functions finally used in stochastic Taylor expansions inherent for the ISFEM. A numerical example consists of the High Density Polyurethane (HDPU) reinforced with the Carbon Black particle. It is numerically investigated (1) if the resulting homogenized characteristics are also Gaussian and (2) how the uncertainty in matrix Young modulus affects the effective stiffness tensor components and their PDF (Probability Density Function).

  19. Deliquescence and efflorescence of small particles.

    Science.gov (United States)

    McGraw, Robert; Lewis, Ernie R

    2009-11-21

    We examine size-dependent deliquescence/efflorescence phase transformation for particles down to several nanometers in size. Thermodynamic properties of inorganic salt particles, coated with aqueous solution layers of varying thickness and surrounded by vapor, are analyzed. A thin layer criterion (TLC) is introduced to define a limiting deliquescence relative humidity (RH(D)) for small particles. This requires: (1) equality of chemical potentials between salt in an undissolved core, and thin adsorbed solution layer, and (2) equality of chemical potentials between water in the thin layer and vapor phase. The usual bulk deliquescence conditions are recovered in the limit of large dry particle size. Nanosize particles are found to deliquesce at relative humidity just below the RH(D) on crossing a nucleation barrier, located at a critical solution layer thickness. This barrier vanishes precisely at the RH(D) defined by the TLC. Concepts and methods from nucleation theory including the kinetic potential, self-consistent nucleation theory, nucleation theorems, and the Gibbs dividing surface provide theoretical foundation and point to unifying features of small particle deliquescence/efflorescence processes. These include common thermodynamic area constructions, useful for interpretation of small particle water uptake measurements, and a common free-energy surface, with constant RH cross sections describing deliquescence and efflorescence related through the nucleation theorem.

  20. Effect of dispersed phase particle size on microstructure of cup fracture

    International Nuclear Information System (INIS)

    Goritskij, V.M.; Guseva, I.A.

    1978-01-01

    A correlation-regressive analysis has been carried out to reveal the influence of the size and the mean distance between the disperse particles of deposits V(C,N) on the microstructure (size of micropores and cups, density of the cups) of a viscous cup-like fracture of specimens made of 30Kh2NMFA grade steel that has been hardened and annealed. It is shown that micropores develop at relatively large particles of deposits V(C,N) (>=0.04/m). A strong correlation linear connection exists between the size of a disperse particle of deposits V(C,N), the size of micropore and cup. This connection is attributable to the close, pairwise correlative connection between the size of the particle and the micropore, the micropore and the cup

  1. Energetics of load carrying in Nepalese porters.

    Science.gov (United States)

    Bastien, Guillaume J; Schepens, Bénédicte; Willems, Patrick A; Heglund, Norman C

    2005-06-17

    Nepalese porters routinely carry head-supported loads equal to 100 to 200% of their body weight (Mb) for many days up and down steep mountain footpaths at high altitudes. Previous studies have shown that African women carry head-supported loads of up to 60% of their Mb far more economically than army recruits carrying equivalent loads in backpacks. Here we show that Nepalese porters carry heavier loads even more economically than African women. Female Nepalese porters, for example, carry on average loads that are 10% of their Mb heavier than the maximum loads carried by the African women, yet do so at a 25% smaller metabolic cost.

  2. Particle size distribution control of Pt particles used for particle gun

    Science.gov (United States)

    Ichiji, M.; Akiba, H.; Nagao, H.; Hirasawa, I.

    2017-07-01

    The purpose of this study is particle size distribution (PSD) control of submicron sized Pt particles used for particle gun. In this report, simple reaction crystallization is conducted by mixing H2PtCl6 and ascorbic acid. Without the additive, obtained Pt particles have broad PSD and reproducibility of experiment is low. With seeding, Pt particles have narrow PSD and reproducibility improved. Additionally, mean particle diameter of 100-700 nm is controlled by changing seeding amount. Obtained particles are successfully characterized as Pt by XRD results. Moreover, XRD spectra indicate that obtained particles are polycrystals. These experimental results suggest that seeding consumed nucleation, as most nuclei attached on the seed surface. This mechanism virtually restricted nucleation to have narrow PSD can be obtained.

  3. Research in Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    White, Andrew Paul [Univ. of Texas, Arlington, TX (United States); De, Kaushik [Univ. of Texas, Arlington, TX (United States); Brandt, Andrew [Univ. of Texas, Arlington, TX (United States); Yu, Jaehoon [Univ. of Texas, Arlington, TX (United States); Farbin, Amir [Univ. of Texas, Arlington, TX (United States)

    2015-02-02

    This report details the accomplishments and research results for the High Energy Physics Group at the University of Texas at Arlington at the Energy and Intensity Frontiers. For the Energy Frontier we have made fundamental contributions in the search for supersymmetric particles, proposed to explain the stabilization of the mass of the Higgs Boson – the agent giving mass to all known particles. We have also made major contributions to the search for additional Higgs Bosons and to the planning for future searches. This work has been carried out in the context of the ATLAS Experiment at CERN (European Nuclear Research Laboratory) and for which we have made major contributions to computing and data distribution and processing, and have worked to calibrate the detector and prepare upgraded electronics for the future. Our other contribution to the Energy Frontier has been to the International Linear Collider (ILC) project, potentially hosted by Japan, and to the Silicon Detector Concept (SiD) in particular. We have lead the development of the SiD Concept and have worked on a new form of precise energy measurement for particles from the high energy collisions of electrons and positrons at the ILC. For the Intensity Frontier, we have worked to develop the concept of Long Baseline Neutrino Experiment(s) (LBNE) at the Fermi National Accelerator Laboratory. Our contributions to detector development, neutrino beam studies, particle identification, software development will facilitate future studies of the oscillation of one type of neutrino into other type(s), establish the order of the neutrino masses, and, through an innovative new idea, allow us to create a beam of dark matter particles.

  4. Currency flaw severity. [Banknotes

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.; Burnett, M.; Goodman, C.; Sherrod, R.; Schmoyer, R.; Harrison, C.; Uppuluri, R.

    1986-01-01

    A survey of currency flaw severity was carried out using 300 banknotes and 37 judges. Each judge assigned each note to one of five flaw severity categories. These categories correspond to severity grades of 1 to 5 with 1 equivalent to ''always accepted'' and 5 ''never accepted.'' An average flaw severity grade for each note was obtained by taking the mean of the severity grades assigned to that note by the 37 judges. Thus, each note has a single numerical real-number flaw grade between 1 and 5. Mathematical modeling of the currency flaw survey results is continuing with some very promising initial results. Our present model handles common excess ink and missing ink flaw types quite well. We plan to extend the model to ink level, mash, setoff and blanket impression flaw types.

  5. Iron solubility related to particle sulfur content in source emission and ambient fine particles.

    Science.gov (United States)

    Oakes, M; Ingall, E D; Lai, B; Shafer, M M; Hays, M D; Liu, Z G; Russell, A G; Weber, R J

    2012-06-19

    The chemical factors influencing iron solubility (soluble iron/total iron) were investigated in source emission (e.g., biomass burning, coal fly ash, mineral dust, and mobile exhaust) and ambient (Atlanta, GA) fine particles (PM2.5). Chemical properties (speciation and mixing state) of iron-containing particles were characterized using X-ray absorption near edge structure (XANES) spectroscopy and micro-X-ray fluorescence measurements. Bulk iron solubility (soluble iron/total iron) of the samples was quantified by leaching experiments. Major differences were observed in iron solubility in source emission samples, ranging from low solubility (iron solubility did not correspond to silicon content or Fe(II) content. However, source emission and ambient samples with high iron solubility corresponded to the sulfur content observed in single particles. A similar correspondence between bulk iron solubility and bulk sulfate content in a series of Atlanta PM2.5 fine particle samples (N = 358) further supported this trend. In addition, results of linear combination fitting experiments show the presence of iron sulfates in several high iron solubility source emission and ambient PM2.5 samples. These results suggest that the sulfate content (related to the presence of iron sulfates and/or acid-processing mechanisms by H(2)SO(4)) of iron-containing particles is an important proxy for iron solubility.

  6. Chemical composition shape form and size of suspended solids in the atmosphere carried by rain water

    International Nuclear Information System (INIS)

    Iturbe G, J.L.; Lopez M, B.E.; Torre O, J. De la

    2001-01-01

    The interest of this work is to know about shape form, size and chemical composition of the suspended solids in the atmosphere of Toluca city and which are carried by the rains. The harvest of the samples was carried out during january to november 1999. The separation of the particulate matter from the rain water was realized through centrifugation. The solids were analysed by Scanning Electron Microscopy to know the shape form and size and the chemical composition was determined by X-ray dispersive energy in general form and of some particles individually analysed. The p H was measured to the solutions and the quantification of some dissolved ions by the Icp technique was realized. The results of the solids showed C, O, Na, Mg, Al, Si, S, P, K, Ca, Ti and Fe. Moreover they present sizes which varying from a ten of nanometers until some tens of microns. (Author)

  7. Introduction to the supersymmetry theories of particles

    International Nuclear Information System (INIS)

    Fayet, P.

    We present the motivations for a supersymmetry relating bosons and fermions, and we show how the supersymmetry algebra can be naturally introduced. We study supersymmetric field theories: super Yukawa model, and gauge theories. We show how supersymmetry relates massive gauge bosons such as the W +- and Z, and Higgs bosons. We discuss spontaneous supersymmetry breaking, and its special features. We also define a new invariance R, related with a conserved quantum number carried by the supersymmetry generators. We apply these ideas to elementary particles. This leads to new particles such as spin 0 leptons and quarks, photino and gluinos; their properties are discussed in detail. We also introduce gravitation (supergravity) and we study the properties of the gravitino. Finally we comment on supersymmetric grand unified theories [fr

  8. A Review of Particle Swarm Optimization

    Science.gov (United States)

    Jain, N. K.; Nangia, Uma; Jain, Jyoti

    2018-03-01

    This paper presents an overview of the research progress in Particle Swarm Optimization (PSO) during 1995-2017. Fifty two papers have been reviewed. They have been categorized into nine categories based on various aspects. This technique has attracted many researchers because of its simplicity which led to many improvements and modifications of the basic PSO. Some researchers carried out the hybridization of PSO with other evolutionary techniques. This paper discusses the progress of PSO, its improvements, modifications and applications.

  9. Evolution of particle composition in CLOUD nucleation experiments

    CERN Document Server

    Keskinen, H; Joutsensaari, J; Tsagkogeorgas, G; Duplissy, J; Schobesberger, S; Gysel, M; Riccobono, F; Bianchi, F; Yli-Juuti, T; Lehtipalo, K; Rondo, L; Breitenlechner, M; Kupc, A; Almeida, J; Amorim, A; Dunne, E M; Downard, A J; Ehrhart, S; Franchin, A; Kajos, M K; Kirkby, J; Kurten, A; Nieminen, T; Makhmutov, V; Mathot, S; Miettinen, P; Onnela, A; Petaja, T; Praplan, A; Santos, F D; Schallhart, S; Sipila, M; Stozhkov, Y; Tome, A; Vaattovaara, P; Wimmer, D; Prevot, A; Dommen, J; Donahue, N M; Flagan, R C; Weingartner, E; Viisanen, Y; Riipinen, I; Hansel, A; Curtius, J; Kulmala, M; Worsnop, D R; Baltensperger, U; Wex, H; Stratmann, F; Laaksonen, A; Slowik, J G

    2013-01-01

    Sulphuric acid, ammonia, amines, and oxidised organics play a crucial role in nanoparticle formation in the atmosphere. In this study, we investigate the composition of nucleated nanoparticles formed from these compounds in the CLOUD (Cosmics Leaving Outdoor Droplets) chamber experiments at CERN (Centre europ ́ een pour la recherche nucl ́ eaire). The investigation was carried out via analysis of the particle hygroscopicity, ethanol affinity, oxidation state, and ion composition. Hygroscopicity was studied by a hygroscopic tandem differential mobility analyser and a cloud condensation nuclei counter, ethanol affinity by an organic differential mobility analyser and particle oxidation level by a high-resolution time-of-flight aerosol mass spectrometer. The ion composition was studied by an atmospheric pressure interface time-of-flight mass spectrometer. The volume fraction of the organics in the particles during theirgrowth from sizes of a few nanometers to tens of nanometers was derived from measured hygros...

  10. Radiation heat transfer in particle clouds. Numerical and experimental investigations on iron oxide systems with a view to chemical storage of solar energy

    International Nuclear Information System (INIS)

    Mischler, D.U.

    1995-01-01

    The radiation heat transfer in particle clouds is considered. The cloud is modelled as a non-gray, nonisothermal, absorbing, emitting and anisotropically scattering medium under concentrated irradiation. A simulation model based on Monte Carlo method is used to calculate the attenuation characteristics of the cloud and its temperature distribution under radiative equilibrium. The spectrally and directionally optical properties of magnetite and hematite particles are calculated using the Mie theory and are incorporated into the simulation as Bezier-splines. The theoretical validation of the model is accomplished by comparison with the exact analytical solutions of simplified problems. In addition, the simulation model is experimentally validated by spectroscopic measurements. Several parametric studies are carried out to demonstrate the influence of particle size, suspension medium, direction and spectrum of irradiation, and optical properties of the particles. It is shown that simplifying assumptions of the optical properties can lead to considerable deviations of the radiation heat transfer solutions. The simulation model can find wide application in the design and optimisation of high-temperature reactors. In particular, the model can be applied for the study of solar thermochemical processes that make use of particle suspensions as radiation absorbers and chemical reactants. (author) figs., tabs., 70 refs

  11. Elimination of effect of α-particles in tritium gas monitor

    International Nuclear Information System (INIS)

    Matsumoto, Yuzuru; Asaoka, Koichi; Manako, Hiroaki; Kumabe, Isao

    1982-01-01

    In order to obtain the high sensitivity in a tritium monitor, a cancellation circuit for α-particles emitted by Rn in air was designed and constructed. The cancellation circuit consists of a differentiating circuit, discriminator, peak-hold circuit and difference amplifier. Pulsed signals induced by α-particles are separated from tritium #betta#-signals by the differentiating circuit and the discriminator. After being shaped by the peak-hold circuit with the same decay time constant as that of the initial α-signals, the α-signals are subtracted from the initial signals by the difference amplifier. The experimental test of this system was carried out, and it was confirmed that the elimination of the effect of α-particles was achieved successfully by the use of this cancellation circuit. (author)

  12. Prevalence of exchange blood transfusion in severe ...

    African Journals Online (AJOL)

    Background: Exchange blood transfusion (EBT) is carried out for the treatment of conditions presenting with severe hyperbilirubinaemia and anaemia, such as ABO incompatibility, sepsis, prematurity and birth trauma among others. While it is fast being abandoned as treatment modality for severe neonatal jaundice in the ...

  13. CIRCUMSOLAR ENERGETIC PARTICLE DISTRIBUTION ON 2011 NOVEMBER 3

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Herrero, R.; Blanco, J.J.; Rodríguez-Pacheco, J. [SRG, Universidad de Alcalá, E-28871 Alcalá de Henares (Spain); Dresing, N.; Klassen, A.; Heber, B.; Banjac, S. [IEAP, Christian-Albrechts-Universität zu Kiel, D-24118 Kiel (Germany); Lario, D. [The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Agueda, N. [Departament d' Astronomia i Meteorologia. Institut de Ciències del Cosmos. Universitat de Barcelona, E-08028 Barcelona (Spain); Malandraki, O. E., E-mail: raul.gomezh@uah.es [IAASARS, National Observatory of Athens, GR-15236 Penteli (Greece)

    2015-01-20

    Late on 2011 November 3, STEREO-A, STEREO-B, MESSENGER, and near-Earth spacecraft observed an energetic particle flux enhancement. Based on the analysis of in situ plasma and particle observations, their correlation with remote sensing observations, and an interplanetary transport model, we conclude that the particle increases observed at multiple locations had a common single-source active region and the energetic particles filled a very broad region around the Sun. The active region was located at the solar backside (as seen from Earth) and was the source of a large flare, a fast and wide coronal mass ejection, and an EIT wave, accompanied by type II and type III radio emission. In contrast to previous solar energetic particle events showing broad longitudinal spread, this event showed clear particle anisotropies at three widely separated observation points at 1 AU, suggesting direct particle injection close to the magnetic footpoint of each spacecraft, lasting for several hours. We discuss these observations and the possible scenarios explaining the extremely broad particle spread for this event.

  14. Vectorization of a particle simulation method for hypersonic rarefied flow

    Science.gov (United States)

    Mcdonald, Jeffrey D.; Baganoff, Donald

    1988-01-01

    An efficient particle simulation technique for hypersonic rarefied flows is presented at an algorithmic and implementation level. The implementation is for a vector computer architecture, specifically the Cray-2. The method models an ideal diatomic Maxwell molecule with three translational and two rotational degrees of freedom. Algorithms are designed specifically for compatibility with fine grain parallelism by reducing the number of data dependencies in the computation. By insisting on this compatibility, the method is capable of performing simulation on a much larger scale than previously possible. A two-dimensional simulation of supersonic flow over a wedge is carried out for the near-continuum limit where the gas is in equilibrium and the ideal solution can be used as a check on the accuracy of the gas model employed in the method. Also, a three-dimensional, Mach 8, rarefied flow about a finite-span flat plate at a 45 degree angle of attack was simulated. It utilized over 10 to the 7th particles carried through 400 discrete time steps in less than one hour of Cray-2 CPU time. This problem was chosen to exhibit the capability of the method in handling a large number of particles and a true three-dimensional geometry.

  15. Vectorization of a particle simulation method for hypersonic rarefied flow

    International Nuclear Information System (INIS)

    Mcdonald, J.D.; Baganoff, D.

    1988-01-01

    An efficient particle simulation technique for hypersonic rarefied flows is presented at an algorithmic and implementation level. The implementation is for a vector computer architecture, specifically the Cray-2. The method models an ideal diatomic Maxwell molecule with three translational and two rotational degrees of freedom. Algorithms are designed specifically for compatibility with fine grain parallelism by reducing the number of data dependencies in the computation. By insisting on this compatibility, the method is capable of performing simulation on a much larger scale than previously possible. A two-dimensional simulation of supersonic flow over a wedge is carried out for the near-continuum limit where the gas is in equilibrium and the ideal solution can be used as a check on the accuracy of the gas model employed in the method. Also, a three-dimensional, Mach 8, rarefied flow about a finite-span flat plate at a 45 degree angle of attack was simulated. It utilized over 10 to the 7th particles carried through 400 discrete time steps in less than one hour of Cray-2 CPU time. This problem was chosen to exhibit the capability of the method in handling a large number of particles and a true three-dimensional geometry. 14 references

  16. A study on the particle melting by plasma spraying

    International Nuclear Information System (INIS)

    Jung, In Ha; Ji, C. G.; Bae, S. O.; Yoon, J. H.; Kwon, H. I.

    2001-12-01

    As a preliminary study for fabricating a thick and dense free standing type deposit, powder melting studies were carried out. Various morphologies and sizes of powder having the same chemical compositions were applied in particle melting experiments with varying systematic parameters. Through the study of powder melting by inductively coupled plasma, we can conclude as followings: Argon-hydrogen plasma gas with a higher plasma power gave good quality of splats and shown a higher density with a higher build-up rate. Reproducibility of the experiments appeared in the range of 99%. Degree of particle melting and its density just before impinging played a predominant role in the density of a deposit. Chamber pressure has an effect on degree of deformation of the splats, i.e. on the particle momentum. Completely melted particle showed a high deformation appearance. Build-up rate had a relation with a fraction of the fully melted particle, and this also closely associates with productivity and economical efficiency. For increasing the fraction of the fully melted particle, either increasing the power or limiting the particle size was recommended. Mean pore size and its distribution of a deposit seemed to have a relation with a viscosity of the melted powder, i.e. particle temperature, and also with a chamber pressure and spraying distances. Particle temperature may be governed by a plasma power, plasma gas property, probe position, and spraying distance in the present experimental range. Some results might be appeared with mutual interactions of the effects, for example, particle residence time and momentum with chamber pressure, particle temperature with chamber pressure, spraying distance and its size

  17. A study on the particle melting by plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Jung, In Ha; Ji, C. G.; Bae, S. O.; Yoon, J. H.; Kwon, H. I

    2001-12-01

    As a preliminary study for fabricating a thick and dense free standing type deposit, powder melting studies were carried out. Various morphologies and sizes of powder having the same chemical compositions were applied in particle melting experiments with varying systematic parameters. Through the study of powder melting by inductively coupled plasma, we can conclude as followings: Argon-hydrogen plasma gas with a higher plasma power gave good quality of splats and shown a higher density with a higher build-up rate. Reproducibility of the experiments appeared in the range of 99%. Degree of particle melting and its density just before impinging played a predominant role in the density of a deposit. Chamber pressure has an effect on degree of deformation of the splats, i.e. on the particle momentum. Completely melted particle showed a high deformation appearance. Build-up rate had a relation with a fraction of the fully melted particle, and this also closely associates with productivity and economical efficiency. For increasing the fraction of the fully melted particle, either increasing the power or limiting the particle size was recommended. Mean pore size and its distribution of a deposit seemed to have a relation with a viscosity of the melted powder, i.e. particle temperature, and also with a chamber pressure and spraying distances. Particle temperature may be governed by a plasma power, plasma gas property, probe position, and spraying distance in the present experimental range. Some results might be appeared with mutual interactions of the effects, for example, particle residence time and momentum with chamber pressure, particle temperature with chamber pressure, spraying distance and its size.

  18. Mathematical modelling of the combustion of a single wood particle

    Energy Technology Data Exchange (ETDEWEB)

    Porteiro, J.; Miguez, J.L.; Granada, E.; Moran, J.C. [Departamento de Ingenieria Mecanica, Maquinas y Motores Termicos y Fluidos. Universidad de Vigo, Lagoas Marcosende 9 36200 Vigo (Spain)

    2006-01-15

    A mathematical model describing the thermal degradation of densified biomass particles is presented here. The model uses a novel discretisation scheme and combines intra-particle combustion processes with extra-particle transport processes, thereby including thermal and diffusional control mechanisms. The influence of structural changes on the physical-thermal properties of wood in its different stages is studied together with shrinkage of the particle during its degradation. The model is used to compare the predicted data with data on the mass loss dynamics and internal temperature of several particles from previous works and relevant literature, with good agreement. (author)

  19. Review of the stack discharge active particle contamination problem

    Energy Technology Data Exchange (ETDEWEB)

    Parker, H M

    1948-03-22

    Quantities of the order of ten million to 100 million radioactive particles per month were emitted from the stacks over a period of several months. High activity in the range 0.1 to 3..mu..c was probably confined to large carrier particles of corrosion debris from iron ductwork in the separations plant ventilation air system. This report discusses chemical, physical and radiochemical properties of the particles, and possible biological and health effects of exposure to them. (ACR)

  20. Alpha particle physics experiments in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Zweben, S.J.; Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Stratton, B.C.; Synakowski, E.J.; Taylor, G.

    2000-01-01

    Alpha particle physics experiments were done on TFTR during its DT run from 1993 to 1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single particle confinement model in MHD quiescent discharges. The alpha loss due to toroidal field ripple was identified in some cases, and the low radial diffusivity inferred for high energy alphas was consistent with orbit averaging over small scale turbulence. Finally, the observed alpha particle interactions with sawteeth, toroidal Alfven eigenmodes and ICRF waves were approximately consistent with theoretical modelling. What was learned is reviewed and what remains to be understood is identified. (author)

  1. Evaluation of instruments used in particle size analysis by using the sedimentation technique

    International Nuclear Information System (INIS)

    Elmasry, M.A.A.; Abdrahman, A.A.M.; Ahmed, A.Z.

    2007-01-01

    This study is carried out to evaluate the performance of some instruments in which the sedimentation technique is used for the determination of particle size distribution using Stoke's law. A mathematical formula has been developed to calculate the particle size distribution for different cases and the results were compared to the real ones. The results revealed unsatisfactory agreement between the calculated and the measured values. In addition, illogic results were obtained indicating that the instruments in which the sedimentation technique is used are not the proper ones to provide accurate measurements except for mono particle size cases. More above, the results obtained represent the sedimentation rate but not the particle size distribution.

  2. Memory effects in chaotic advection of inertial particles

    International Nuclear Information System (INIS)

    Daitche, Anton; Tél, Tamás

    2014-01-01

    A systematic investigation of the effect of the history force on particle advection is carried out for both heavy and light particles. General relations are given to identify parameter regions where the history force is expected to be comparable with the Stokes drag. As an illustrative example, a paradigmatic two-dimensional flow, the von Kármán flow is taken. For small (but not extremely small) particles all investigated dynamical properties turn out to heavily depend on the presence of memory when compared to the memoryless case: the history force generates a rather non-trivial dynamics that appears to weaken (but not to suppress) inertial effects, it enhances the overall contribution of viscosity. We explore the parameter space spanned by the particle size and the density ratio, and find a weaker tendency for accumulation in attractors and for caustics formation. The Lyapunov exponent of transients becomes larger with memory. Periodic attractors are found to have a very slow, t −1/2 type convergence towards the asymptotic form. We find that the concept of snapshot attractors is useful to understand this slow convergence: an ensemble of particles converges exponentially fast towards a snapshot attractor, which undergoes a slow shift for long times. (paper)

  3. Search for Higgs bosons and for Supersymmetric particles at particle collider experiments

    CERN Document Server

    Muanza, Steve

    The corner stone of the Standard Model (SM) of Particle Physics is the Higgs mechanism. It explains how the bosons W, Z and H acquire a mass via weak interactions. In addition it explains how the charged fermions also acquire a mass through Yukawa interactions. And on top of this, it regularizes the scattering of longitudinal W and Z bosons at high energy. The discovery of a Higgs boson by the ATLAS and the CMS collaborations in 2012 marked the culminating success of the SM at explaining most of the known phenomena. However a few other phenomena such as the Dark Matter and the Dark energy cannot be explained by the SM particles. What's more, the SM leaves several open questions such as a quest for a quantum theory for gravity, the naturalness in the Higgs sector, a possible Grand Unification,... The common thread in topics presented in this habilitation thesis is the search for manifestations of a TeV scale supersymmetric (SUSY) extension of the Standard Model at particle collider experiments. Among the predi...

  4. Neutron densities and the single particle structure of several even-even nuclei from 40Ca to 208Pb

    International Nuclear Information System (INIS)

    Ray, L.; Hodgson, P.E.

    1979-01-01

    Previously developed techniques which sum the squares of proton single particle wave functions to obtain nuclear charge densities are applied to the study of neutron distributions in /sup 40,48/Ca, /sup 58,64/Ni, /sup 116,124/Sn, and 208 Pb by comparing to those neutron densities deduced from 800 MeV proton elastic scattering data. The proton and neutron single particle wave functions are derived from a one-body, nonlocal Woods-Saxon binding potential whose parameters are adjusted to give the experimental single particle energies. Empirical spectroscopic factors determine the appropriate occupation probabilities for the single particle levels near the Fermi surface. Proper attention is given to nonorthogonality problems and to the removal of the spurious center-of-mass motion. These semiphenomenological neutron densities are compared to the predictions of the density matrix expansion variant of Hartree-Fock theory and to densities which are empirically deduced from recent 800 MeV polarized proton elastic scattering data. These ''experimental'' neutron distributions are obtained from approximate second order Kerman, McManus, and Thaler optical potential analyses using essentially ''model independent'' neutron densities. Qualitatively good agreement is obtained between the semiphenomenological neutron densities computed here, the density matrix expansion predictions, and the empirical results

  5. Comments on (n, charged particle) reactions at E/sub n/ = 14 MeV

    International Nuclear Information System (INIS)

    Haight, R.C.

    1984-01-01

    The study of charged particles produced by bombarding materials with 14 MeV neutrons is important for the development of fusion reactors and for biomedical applications as well as for the basic understanding of nuclear reactions. Several experimental techniques for investigating these reactions are discussed here. The interpretation of the data requires the consideration of several possible reaction mechanisms including equilibrium and preequilibrium particle emission and, for light nuclei, sequential particle emission, final state interactions, and the effect of resonances. 17 references

  6. Turbidimetric Measurement for On-line Monitoring of SiO2 Particles

    International Nuclear Information System (INIS)

    Kim, In Sook; Lim, H. B.; Kim, Yang Sun

    2004-01-01

    In this work, the fundamental study of on-line monitoring of SiO 2 particles in the size range of 40 nm to 725 nm was carried out using turbidimetry. The size of particle was measured using a field emission scanning electron microscope (FE-SEM). The factors affecting on the turbidity were discussed, for example, wavelength, size, and concentration. In order to observe the dependence of turbidity on the wavelength, a turbidimetric system equipped with charged coupled detector (CCD) was built. The shape of the transmitted peak was changed and the peak maximum was shifted to the red when the concentration of particle was increased. This result indicates that the turbidity is related to the wavelength, which corresponds to the characteristic of the Mie extinction coefficient, Q, that is a function of not only particle diameter and refractive index but also wavelength. It is clear that a linear calibration curve for each particle in different size can be obtained at an optimized wavelength

  7. Testing and assessment of a large BGO detector for beach monitoring of radioactive particles

    International Nuclear Information System (INIS)

    Graaf, E.R. van der; Rigollet, C.; Maleka, P.P.; Jones, D.G.

    2007-01-01

    The Beach Monitoring Steering Group (BMSG) was set up by UKAEA to explore whether improved systems for beach monitoring of radioactive particles are available. The BMSG commissioned the British Geological Survey (BGS) and the Nuclear Geophysics Division of the Kernfysisch Versneller Instituut (KVI/NGD), and other companies, to test their most sensitive system. This paper presents the results of trials in a specially created test facility at UKAEA Harwell with a large BGO detector. The detector's size and weight mean that it would be suitable for vehicle deployment but would be too large and heavy to carry in areas that could not be accessed by a vehicle. However, it would be possible to use the same methodology that is described here with a smaller detector capable of being carried in a backpack, albeit with reduced sensitivity for particle detection. The approach that we present is also applicable, with modifications, to the detection of offshore particles using a towed seabed detector

  8. REAL TIME MEASUREMENT OF ULTRAFINE AND NANO PARTICLES AND SIGNIFICANCE OF OPERATING GEARS

    Directory of Open Access Journals (Sweden)

    H. A. NAKHAWA

    2017-03-01

    Full Text Available This research paper focuses on characterization of ultrafine and nanoparticle emissions from diesel vehicle to investigate their physical characterization in terms of number and size as they are more vulnerable and responsible for toxicity, mutagenicity and carcinogenicity. An investigation has been carried out to identify the significance of different operating gears, clutch, declutch and gear change operations for their contributions to particle number(PN on urban and extra urban part of the driving cycle. A bi-modal particle size distribution pattern was observed for both urban and extra urban parts where almost all the particles are below 200 nm and particle number peaks appear at 7 to 8 nm and at 70 nm. Nano particles contribute approximately, 70% of total particle number over urban part. Experimental investigation shows that the most significant gear for their contribution to particle number are 3rd and 5th gears on urban and extra urban part of the driving cycle respectively.

  9. Experiment study of a quartz tube falling particle receiver

    Institute of Scientific and Technical Information of China (English)

    Tianjian WANG; Fengwu BAI; Shunzhou CHU; Xiliang ZHANG; Zhifeng WANG

    2017-01-01

    This paper presents an experimental evaluation of a specially designed falling particle receiver.A quartz tube was used in the design,with which the particles would not be blown away by wind.Concentrated solar radiation was absorbed and converted into thermal energy by the solid particles flowed inside the quartz tube.Several experiments were conducted to test the dynamic thermal performance of the receiver on solar furnace system.During the experiments,the maximum particle temperature rise is 212℃,with an efficiency of 61.2%,which shows a good thermal performance with a falling distance of 0.2 m in a small scale particle receiver.The average outlet particle temperature is affected by direct normal irradiance (DNI) and other factors such as wind speed.The solid particles obtain a larger viscosity with a higher temperature while smaller solid particles are easier to get stuck in the helix quartz tube.The heat capacity of the silicon carbide gets larger with the rise of particle temperature,because as the temperature of solid particles increases,the temperature rise of the silicon carbide decreases.

  10. Experimental study of the form of "hot" steel particles on the ignition characteristics of liquid fuels

    Science.gov (United States)

    Zakharevich, Arkadiy V.

    2015-01-01

    The results of an experimental study of laws governing the ignition of liquid propellants (kerosene, diesel fuel and petroleum residue) by the single spherical steel particle heated to high temperatures are presented. Is carried out the comparison of the ignition delay times of the investigated flammable substances by the particles in the sphere and disk forms. It is established that the particle shape does not exert a substantial influence on the ignition process characteristics.

  11. A Comprehensive Comparison of Relativistic Particle Integrators

    Science.gov (United States)

    Ripperda, B.; Bacchini, F.; Teunissen, J.; Xia, C.; Porth, O.; Sironi, L.; Lapenta, G.; Keppens, R.

    2018-03-01

    We compare relativistic particle integrators commonly used in plasma physics, showing several test cases relevant for astrophysics. Three explicit particle pushers are considered, namely, the Boris, Vay, and Higuera–Cary schemes. We also present a new relativistic fully implicit particle integrator that is energy conserving. Furthermore, a method based on the relativistic guiding center approximation is included. The algorithms are described such that they can be readily implemented in magnetohydrodynamics codes or Particle-in-Cell codes. Our comparison focuses on the strengths and key features of the particle integrators. We test the conservation of invariants of motion and the accuracy of particle drift dynamics in highly relativistic, mildly relativistic, and non-relativistic settings. The methods are compared in idealized test cases, i.e., without considering feedback onto the electrodynamic fields, collisions, pair creation, or radiation. The test cases include uniform electric and magnetic fields, {\\boldsymbol{E}}× {\\boldsymbol{B}} fields, force-free fields, and setups relevant for high-energy astrophysics, e.g., a magnetic mirror, a magnetic dipole, and a magnetic null. These tests have direct relevance for particle acceleration in shocks and in magnetic reconnection.

  12. Measurement of heavy particle and isotope

    International Nuclear Information System (INIS)

    Matsuoka, Masaru; Kohno, Takeshi; Imai, Takashi; Munakata, Kazuoki

    1987-01-01

    The report describes some achievements made so far in developing heavy particle and isotope measuring equipment that is planned to be mounted on the No.6 technical test satelite of the National Space Development Agency, ETS VI. Some ideas are proposed for such heavy particle and isotope measuring equipment that uses Astromag. The structure of SSD is shown which is planned to be incorporated in the sensor for the equipment. The planned charged particle detector consists of position sensitive detectors, PIN diodes and Si(Li) plates. Tests are made for the basic characteristics of such a detector. The characteristics of a PSD are also investigated. The PSD has a resolution of about 1 mm for 14 MeV He. Tests of a 0.3 mm PIN diode and 1.2 mm Si(Li) is carried out with 234 MeV-nucl Fe beams to determine their pulse height distribution. The PIN diode and Si(Li) are found to have a resolution of 6.79 and 17.6 MeV for energy loss of 158 and 710 MeV, respectively. If developed, a stripe-type Si PIN diode will serve for analysis of isotopes. A conceptual diagram of such a stripe device is proposed. The mechanism of measurement by a heavy particle and isotope detecting system incorporating Astromag is also illustrated. (Nogami, K.)

  13. Particle size distribution instrument. Topical report 13

    Energy Technology Data Exchange (ETDEWEB)

    Okhuysen, W.; Gassaway, J.D.

    1995-04-01

    The development of an instrument to measure the concentration of particles in gas is described in this report. An in situ instrument was designed and constructed which sizes individual particles and counts the number of occurrences for several size classes. Although this instrument was designed to detect the size distribution of slag and seed particles generated at an experimental coal-fired magnetohydrodynamic power facility, it can be used as a nonintrusive diagnostic tool for other hostile industrial processes involving the formation and growth of particulates. Two of the techniques developed are extensions of the widely used crossed beam velocimeter, providing simultaneous measurement of the size distribution and velocity of articles.

  14. Hydroxyapatite particles as carriers for "2"2"3Ra

    International Nuclear Information System (INIS)

    Vasiliev, A.N.

    2017-01-01

    Systematic investigation of optimal conditions for preparation and in vitro stability of HAP particles labeled with "2"2"3Ra, that could be considered as promising candidates for targeted α-therapy, has been carried out. Two different approaches to HAP labelling were tested: sorption of Ra"2"+ on pre-synthesized HAP-particles and incorporation of Ra"2"+ into the structure of HAP during its synthesis. Two textural forms of HAP particles were used-nanoparticles and particles with the diameter of 350 ± 20 μm. Kinetics of "2"2"3Ra sorption on HAP of different particle size and desorption in 0.9 % NaCl solution were studied. The influence of solution acidity and solid to liquid phase ratio on sorption of Ra was evaluated and the sorption yield up to 98 % was achieved. It was found that the optimal conditions for the sorption included synthesis of HAP nanoparticles in the presence of "2"2"3Ra at pH values of 4-7 followed by annealing at 900 deg C. In this case subsequent cumulative desorption of Ra was <5 % of initial activity. (author)

  15. Multi-particle structure in the Zn-chiral Potts models

    International Nuclear Information System (INIS)

    Gehlen, G. von; Honecker, A.

    1992-10-01

    We calculate the lowest translationally invariant levels of the Z 3 - and Z 4 -symmetrical chiral Potts quantum chains, using numerical diagonalization of the hamiltonian for N≤12 and N≤10 sites, respectively, and extrapolating N→∞. In the high-temperature massive phase we find that the pattern of the low-lying zero momentum levels can be explained assuming the existence of n-1 particles carrying Z n -charges Q=1, ..., n-1 (mass m Q ), and their scattering states. In the superintegrable case the masses of the n-1 particles become proportional to their respective charges: m Q =Qm 1 . Exponential convergence in N is observed for the single particle gaps, while power convergence is seen for the scattering levels. We also verify that qualitatively the same pattern appears for the self-dual and integrable cases. For general Z n we show that the energy-momentum relations of the particles show a parity non-conservation asymmetry which for very high temperatures is exclusive due to the presence of a macroscopic momentum P m =(1-2Q/n)Φ, where Φ is the chiral angle and Q is the Z n -charge of the respective particle. (orig.)

  16. DESIGN AND CONTROL OF SOAP-FREE HYDROPHILIC-HYDROPHOBIC CORE-SHELL LATEX PARTICLES WITH HIGH CARBOXYL CONTENT IN THE CORE OF THE PARTICLES

    Institute of Scientific and Technical Information of China (English)

    Wen-jiao Ji; Yi-ming Jiang; Bo-tian Li; Wei Deng; Cheng-you Kan

    2012-01-01

    Soap-free hydrophilic-hydrophobic core-shell latex particles with high carboxyl content in the core of the particles were synthesized via the seeded emulsion polymerization using methyl methacrylate (MMA),butyl acrylate (BA),methacrylic acid (MAA),styrene (St) and ethylene glycol dimethacrylate (EGDMA) as monomers,and the influences of MMA content used in the core preparation on polymerization,particle size and morphology were investigated by transmission electron microscopy,dynamic light scattering and conductometric titration.The results showed that the seeded emulsion polymerization could be carried out smoothly using "starved monomer feeding process" when MAA content in the core preparation was equal to or less than 24 wt%,and the encapsulating efficiency of the hydrophilic P(MMA-BA-MAA-EGDMA) core with the hydrophobic PSt shell decreased with the increase in MAA content.When an interlayer of P(MMA-MAA-St) with moderate polarity was inserted between the P(MMA-BA-MAA-EGDMA) core and the PSt shell,well designed soap-free hydrophilic-hydrophobic core-shell latex particles with 24 wt% MAA content in the core preparation were obtained.

  17. PENTACLE: Parallelized particle-particle particle-tree code for planet formation

    Science.gov (United States)

    Iwasawa, Masaki; Oshino, Shoichi; Fujii, Michiko S.; Hori, Yasunori

    2017-10-01

    We have newly developed a parallelized particle-particle particle-tree code for planet formation, PENTACLE, which is a parallelized hybrid N-body integrator executed on a CPU-based (super)computer. PENTACLE uses a fourth-order Hermite algorithm to calculate gravitational interactions between particles within a cut-off radius and a Barnes-Hut tree method for gravity from particles beyond. It also implements an open-source library designed for full automatic parallelization of particle simulations, FDPS (Framework for Developing Particle Simulator), to parallelize a Barnes-Hut tree algorithm for a memory-distributed supercomputer. These allow us to handle 1-10 million particles in a high-resolution N-body simulation on CPU clusters for collisional dynamics, including physical collisions in a planetesimal disc. In this paper, we show the performance and the accuracy of PENTACLE in terms of \\tilde{R}_cut and a time-step Δt. It turns out that the accuracy of a hybrid N-body simulation is controlled through Δ t / \\tilde{R}_cut and Δ t / \\tilde{R}_cut ˜ 0.1 is necessary to simulate accurately the accretion process of a planet for ≥106 yr. For all those interested in large-scale particle simulations, PENTACLE, customized for planet formation, will be freely available from https://github.com/PENTACLE-Team/PENTACLE under the MIT licence.

  18. Dissolved Air Flotation of arsenic adsorbent particles

    Directory of Open Access Journals (Sweden)

    Mario Enrique Santander Muñoz

    2015-01-01

    Full Text Available The removal of arsenic from synthetic effluent was studied using the adsorbent particle flotation technique (APF and dissolved air flotation (DAF. A sample of an iron mineral was used as adsorbent particles of arsenic, ferric chloride as coagulant, cationic poly-acrylamide (NALCO 9808 as flocculants, and sodium oleate as collector. Adsorption studies to determine the pH influence, contact time, and adsorbent particles concentration on the adsorption of arsenic were carried out along with flotation studies to determine the removal efficiency of adsorbents particles. The results achieved indicate that the adsorption kinetic of arsenic is very rapid and that in range of pH’s from 2 to 7 the adsorption percentages remain constant. The equilibrium conditions were achieved in 60 minutes and about 95% of arsenic was adsorbed when used an adsorbent concentration of 2 g/L and pH 6.3. The maximum adsorption capacity of adsorbent particles was 4.96 mg/g. The mean free energy of adsorption (E was found to be 2.63 kJ/mol, which suggests physisorption. The results of the flotation studies demonstrated that when synthetic effluents with 8.9 mg/L of arsenic were treated under the following experimental conditions; 2 g/L of adsorbent particles, 120 mg/L of Fe(III, 2 mg/L of Nalco 9808, 20 mg/L of sodium oleate, and 40% of recycle ratio in the DAF, it was possible to reach 98% of arsenic removal and 6.3 NTU of residual turbidity in clarified synthetic effluent.

  19. StarSmasher: Smoothed Particle Hydrodynamics code for smashing stars and planets

    Science.gov (United States)

    Gaburov, Evghenii; Lombardi, James C., Jr.; Portegies Zwart, Simon; Rasio, F. A.

    2018-05-01

    Smoothed Particle Hydrodynamics (SPH) is a Lagrangian particle method that approximates a continuous fluid as discrete nodes, each carrying various parameters such as mass, position, velocity, pressure, and temperature. In an SPH simulation the resolution scales with the particle density; StarSmasher is able to handle both equal-mass and equal number-density particle models. StarSmasher solves for hydro forces by calculating the pressure for each particle as a function of the particle's properties - density, internal energy, and internal properties (e.g. temperature and mean molecular weight). The code implements variational equations of motion and libraries to calculate the gravitational forces between particles using direct summation on NVIDIA graphics cards. Using a direct summation instead of a tree-based algorithm for gravity increases the accuracy of the gravity calculations at the cost of speed. The code uses a cubic spline for the smoothing kernel and an artificial viscosity prescription coupled with a Balsara Switch to prevent unphysical interparticle penetration. The code also implements an artificial relaxation force to the equations of motion to add a drag term to the calculated accelerations during relaxation integrations. Initially called StarCrash, StarSmasher was developed originally by Rasio.

  20. Radar cross-section measurements of ice particles using vector network analyzer

    Directory of Open Access Journals (Sweden)

    Jinhu Wang

    2016-09-01

    Full Text Available We carried out radar cross-section (RSC measurements of ice particles in a microwave anechoic chamber at Nanjing University of Information Science and Technology. We used microwave similarity theory to enlarge the size of particle from the micrometer to millimeter scale and to reduce the testing frequency from 94 GHz to 10 GHz. The microwave similarity theory was validated using the method of moments for single metal sphere, single dielectric sphere, and spherical and non-spherical dielectric particle swarms. The differences between the retrieved and theoretical results at 94 GHz were 0.016117%, 0.0023029%, 0.027627%, and 0.0046053%, respectively. We proposed a device that can measure the RCS of ice particles in the chamber based on the S21 parameter obtained from vector network analyzer. On the basis of the measured S21 parameter of the calibration material (metal plates and their corresponding theoretical RCS values, the RCS values of a spherical Teflon particle swarm and cuboid candle particle swarm was retrieved at 10 GHz. In this case, the differences between the retrieved and theoretical results were 12.72% and 24.49% for the Teflon particle swarm and cuboid candle swarm, respectively.

  1. High-Strain-Rate Material Behavior and Adiabatic Material Instability in Impact of Micron-Scale Al-6061 Particles

    Science.gov (United States)

    Chen, Qiyong; Alizadeh, Arash; Xie, Wanting; Wang, Xuemei; Champagne, Victor; Gouldstone, Andrew; Lee, Jae-Hwang; Müftü, Sinan

    2018-04-01

    Impact of spherical particles onto a flat sapphire surface was investigated in 50-950 m/s impact speed range experimentally and theoretically. Material parameters of the bilinear Johnson-Cook model were determined based on comparison of deformed particle shapes from experiment and simulation. Effects of high-strain-rate plastic flow, heat generation due to plasticity, material damage, interfacial friction and heat transfer were modeled. Four distinct regions were identified inside the particle by analyzing temporal variation of material flow. A relatively small volume of material near the impact zone becomes unstable due to plasticity-induced heating, accompanied by severe drop in the flow stress for impact velocity that exceeds 500 m/s. Outside of this region, flow stress is reduced due to temperature effects without the instability. Load carrying capacity of the material degrades and the material expands horizontally leading to jetting. The increase in overall plastic and frictional dissipation with impact velocity was found to be inherently lower than the increase in the kinetic energy at high speeds, leading to the instability. This work introduces a novel method to characterize HSR (109 s-1) material properties and also explains coupling between HSR material behavior and mechanics that lead to extreme deformation.

  2. Cataract production in mice by heavy charged particles

    International Nuclear Information System (INIS)

    Ainsworth, E.H.; Jose, J.; Yang, V.V.; Barker, M.E.

    1981-03-01

    The cataractogenic effects of heavy charged particles have been evaluated in mice in relation to dose and ionization density (LET/sub infinity/). The study was undertaken due to the high potential for eye exposures to HZE particles among SPS personnel working in outer space. This has made it imperative that the relative biological effectiveness (RBE) in relation to LET/sub infinity/ for various particles be defined so that appropriate quality factors (Q) could be assigned for estimation of risk. Although mice and men differ in susceptibility to radiation-induced cataracts, the results from this project should assist in defining appropriate quality factors in relation to LET/sub infinity/, particle mass, charge, or velocity. Evaluation of results indicated that : (1) low single doses (5 to 20 rad) of iron ( 56 Fe) or argon ( 40 Ar) particles are cataractogenic at 11 to 18 months after irradiation; (2) onset and density of the opacification are dose related; (3) cataract density (grade) at 9, 11, 13, and 16 months after irradiation shows partial LET/sub infinity/-dependence; and (4) the severity of cataracts is reduced significantly when 417 rad of 60 Co gamma radiation is given in 24 weekly 17 rad fractions compared to giving this radiation as a single dose, but cataract severity is not reduced by fractionation of 12 C doses over 24 weeks

  3. Factors contributing to airborne particle dispersal in the operating room.

    Science.gov (United States)

    Noguchi, Chieko; Koseki, Hironobu; Horiuchi, Hidehiko; Yonekura, Akihiko; Tomita, Masato; Higuchi, Takashi; Sunagawa, Shinya; Osaki, Makoto

    2017-07-06

    Surgical-site infections due to intraoperative contamination are chiefly ascribable to airborne particles carrying microorganisms. The purpose of this study is to identify the actions that increase the number of airborne particles in the operating room. Two surgeons and two surgical nurses performed three patterns of physical movements to mimic intraoperative actions, such as preparing the instrument table, gowning and donning/doffing gloves, and preparing for total knee arthroplasty. The generation and behavior of airborne particles were filmed using a fine particle visualization system, and the number of airborne particles in 2.83 m 3 of air was counted using a laser particle counter. Each action was repeated five times, and the particle measurements were evaluated through one-way analysis of variance multiple comparison tests followed by Tukey-Kramer and Bonferroni-Dunn multiple comparison tests for post hoc analysis. Statistical significance was defined as a P value ≤ .01. A large number of airborne particles were observed while unfolding the surgical gown, removing gloves, and putting the arms through the sleeves of the gown. Although numerous airborne particles were observed while applying the stockinet and putting on large drapes for preparation of total knee arthroplasty, fewer particles (0.3-2.0 μm in size) were detected at the level of the operating table under laminar airflow compared to actions performed in a non-ventilated preoperative room (P airborne particles near a sterile area and that laminar airflow has the potential to reduce the incidence of bacterial contamination.

  4. Necking down of sausages in current-carrying plasma pinches

    International Nuclear Information System (INIS)

    Trubnikov, B.A.; Zhdanov, S.K.

    1986-01-01

    The evolution of long-wave perturbations is shown to be equivalent, for various unstable media, to the dynamics of a gas with a negative adiabatic index γ. This evolution is described (for various values at N) by the quasi-Chaplygin system of equations Several examples of such media are considered, including a ''Chaplygin gas'' (N = 3), drops on a ceiling or ''solitons which have broken'' (N = 0), necks in a current-carrying plasma pinch with a skin effect, for both incompressible and compressible models (N = 2), and the breakup of liquid jets into drops (N = 3/2). A principle for selecting evolutionary solutions corresponding to the absence of perturbations in the limit t → -∞ is formulated. In the cases N = 0 and N = 2, a hodograph transformation reduces system (1) to a magnetostatic equation (ΔA)/sub phi/ = -(4π/c)j/sub phi/ and all the instability modes are equivalent to multipoles of circular currents which are localized on a circle. Exact solutions are given for periodic and isolated (localized) perturbations. The breakup of a medium into distinct blobs, in particular, the rupture of necks in a current-carrying plasma pinch, is demonstrated

  5. Coulomb scatter of diamagnetic dust particles in a cusp magnetic trap under microgravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Myasnikov, M. I., E-mail: miasnikovmi@mail.ru; D’yachkov, L. G.; Petrov, O. F.; Vasiliev, M. M., E-mail: mixxy@mail.ru; Fortov, V. E. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Savin, S. F.; Serova, E. O. [Korolev Rocket and Space Corporation Energia, ul. Lenina 4A (Russian Federation)

    2017-02-15

    The effect of a dc electric field on strongly nonideal Coulomb systems consisting of a large number (~10{sup 4}) of charged diamagnetic dust particles in a cusp magnetic trap are carried out aboard the Russian segment of the International Space Station (ISS) within the Coulomb Crystal experiment. Graphite particles of 100–400 μm in size are used in the experiments. Coulomb scatter of a dust cluster and the formation of threadlike chains of dust particles are observed experimentally. The processes observed are simulated by the molecular dynamics (MD) method.

  6. Influence of complex particle emission on properties of giant dipole resonance of hot nuclei

    International Nuclear Information System (INIS)

    Wen Wanxin; Jin Genming

    2003-01-01

    The possible reasons for the discrepancy between calculation results based on the statistical evaporation model and experimental data of giant dipole resonance of very hot nuclei are discussed. Both of simulations with the standard CASCADE code and the code coupling complex particle emission are carried out. It is shown that the complex particle emission affects the properties of giant dipole resonance of very hot nuclei

  7. Stochastic particle acceleration by plasma waves in AGN jets

    International Nuclear Information System (INIS)

    Li, Hui; Colgate, S.A.; Miller, J.A.

    1997-01-01

    The free energy stored in the stressed magnetic fields in AGN jets could be dissipated via generating turbulent plasma waves. The authors review several key wave-particle resonant interactions and point out the importance of a broad wave spectrum. Under several idealized assumptions, they show that the transit-time damping process can accelerate electrons to TeV energies in an AGN jet environment, and present a preliminary calculation on the evolution of plasma wave, electron, and photon distributions. The authors especially emphasize several open questions on particle acceleration by waves, and argue that a plausible scenario is to energize electrons out of the thermal background via transit-time damping and further accelerate them by the parallel propagating right-handed waves

  8. A software for computer automated radioactive particle tracking

    International Nuclear Information System (INIS)

    Vieira, Wilson S.; Brandao, Luis E.; Braz, Delson

    2008-01-01

    TRACO-1 is the first software developed in Brazil for optimization and diagnosis of multiphase chemical reactors employing the technique known as 'Computer Automated Radioactive Particle Tracking' whose main idea is to follow the movement of a punctual radioactive particle inside a vessel. Considering that this particle has a behavior similar of the phase under investigation, important conclusions can be achieved. As a preliminary TRACO-1 evaluation, a simulation was carried out with the aid of a commercial software called MICROSHIELD, version 5.05, to obtain values of photon counting rates at four detector surfaces. These counting were related to the emission of gamma radiation from a radioactive source because they are the main TRACO-1 input variables. Although the results that has been found are incipient, the analysis of them suggest that the tracking of a radioactive source using TRACO- 1 can be well succeed, but a better evaluation of the capabilities of this software will only be achieved after its application in real experiments. (author)

  9. A deformable particle-in-cell method for advective transport in geodynamic modeling

    Science.gov (United States)

    Samuel, Henri

    2018-06-01

    This paper presents an improvement of the particle-in-cell method commonly used in geodynamic modeling for solving pure advection of sharply varying fields. Standard particle-in-cell approaches use particle kernels to transfer the information carried by the Lagrangian particles to/from the Eulerian grid. These kernels are generally one-dimensional and non-evolutive, which leads to the development of under- and over-sampling of the spatial domain by the particles. This reduces the accuracy of the solution, and may require the use of a prohibitive amount of particles in order to maintain the solution accuracy to an acceptable level. The new proposed approach relies on the use of deformable kernels that account for the strain history in the vicinity of particles. It results in a significant improvement of the spatial sampling by the particles, leading to a much higher accuracy of the numerical solution, for a reasonable computational extra cost. Various 2D tests were conducted to compare the performances of the deformable particle-in-cell method with the particle-in-cell approach. These consistently show that at comparable accuracy, the deformable particle-in-cell method was found to be four to six times more efficient than standard particle-in-cell approaches. The method could be adapted to 3D space and generalized to cases including motionless transport.

  10. (Medium energy particle physics): Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Nefkens, B.M.K.

    1985-10-01

    Investigations currently carried out by the UCLA Particle Physics Research Group can be arranged into four programs: Pion-Nucleon Scattering; Tests of Charge Symmetry and Isospin Invariance; Light Nuclei (Strong Form Factors of /sup 3/H, /sup 3/He, /sup 4/He; Detailed Balance in pd /r reversible/ /gamma//sup 3/H; Interaction Dynamics); and Search for the Rare Decay /Mu//sup +/ /yields/ e/sup +/ + /gamma/ (MEGA). The general considerations which led to the choice of physics problems investigated by our group are given in the next section. We also outline the scope of the research being done which includes over a dozen experiments. The main body of this report details the research carried out in the past year, the status of various experiments, and new projects.

  11. Magnetic particles in medical research - a review

    International Nuclear Information System (INIS)

    Sajid, K.M.

    2001-01-01

    Magnetic (or magnetizable) particles have assumed increasing importance in medical and biological research since 1966 when the effect of a magnetic field on the movement of suspended particles was initially studied. In fields like haematology, cell biology, microbiology, biochemistry and immunoassays, they currently provide the basis for separation techniques, which previously relied on gravitational forces. The body cells (e.g., blood cells) can be made magnetic by incubating them in a medium containing several Fe/sub 3/O/sub 4/ particles, which are adsorbed to the membrane surfaces. Some bacteria (also called magnetostatic bacteria) respond to externally applied magnetic lines of force due to their intracellular magnetic particles. These properties are useful in the isolation of these cells/bacteria. In biochemistry magnetic particles are used to immobilize enzymes without any loss of enzyme activity. The immobilized enzymes can facilitate the separation of end products without extensive instrumentation. In immunoassays the antibodies are covalently linked to polymer coated iron oxide particles. An electromagnet is used to sediment these particles after reaction. This excludes the use of centrifuge to separate antigen-antibody complexes. In pharmacy and pharmacology the magnetic particles are important in drug transport. In techniques like ferrography, nuclear magnetic resonance imaging (NMRI), spectroscopic studies and magnetic resonance imaging (MRI) the magnetic particles serve as contrast agents and give clinically important spatial resolution. Magnetic particles also find extensive applications in cancer therapy, genetic engineering, pneumology, nuclear medicine, radiology and many other fields. This article reviews these applications. (author)

  12. Assessment of particle size distribution in CO 2 accidental releases

    NARCIS (Netherlands)

    Hulsbosch-Dam, C.E.C.; Spruijt, M.P.N.; Necci, A.; Cozzani, V.

    2012-01-01

    A model was developed to calculate the particle size distribution following the release of pressurised supercritical CO 2. The model combines several sub-models for the different stages of jet break-up and specifically addresses the possible formation of solid particles, which is important for CO 2

  13. Particle Size Control for PIV Seeding Using Dry Ice

    Science.gov (United States)

    2010-03-01

    in flight actually being carried out, the observations, drawings and notes of Leonardo da Vinci showed an analytical process to develop a way for...theoretical particle response: dvp dt = −C(vp − U) C = 18µ ρpd2p 86 87 Bibliography 1. Linscott, R. N. and Da Vinci , L., The Notebooks of Leonardo Da Vinci

  14. Diffusion of Finite-Size Particles in Confined Geometries

    KAUST Repository

    Bruna, Maria

    2013-05-10

    The diffusion of finite-size hard-core interacting particles in two- or three-dimensional confined domains is considered in the limit that the confinement dimensions become comparable to the particle\\'s dimensions. The result is a nonlinear diffusion equation for the one-particle probability density function, with an overall collective diffusion that depends on both the excluded-volume and the narrow confinement. By including both these effects, the equation is able to interpolate between severe confinement (for example, single-file diffusion) and unconfined diffusion. Numerical solutions of both the effective nonlinear diffusion equation and the stochastic particle system are presented and compared. As an application, the case of diffusion under a ratchet potential is considered, and the change in transport properties due to excluded-volume and confinement effects is examined. © 2013 Society for Mathematical Biology.

  15. Test-particle motion in the nonsymmetric gravitation theory

    International Nuclear Information System (INIS)

    Moffat, J.W.

    1987-01-01

    A derivation of the motion of test particles in the nonsymmetric gravitational theory (NGT) is given using the field equations in the presence of matter. The motion of the particle is governed by the Christoffel symbols, which are formed from the symmetric part of the fundamental tensor g/sub μ//sub ν/, as well as by a tensorial piece determined by the skew part of the contracted curvature tensor R/sub μ//sub ν/. Given the energy-momentum tensor for a perfect fluid and the definition of a test particle in the NGT, the equations of motion follow from the conservation laws. The tensorial piece in the equations of motion describes a new force in nature that acts on the conserved charge in a body. Particles that carry this new charge do not follow geodesic world lines in the NGT, whereas photons do satisfy geodesic equations of motion and the equivalence principle of general relativity. Astronomical predictions, based on the exact static, spherically symmetric solution of the field equations in a vacuum and the test-particle equations of motion, are derived in detail. The maximally extended coordinates that remove the event-horizon singularities in the static, spherically symmetric solution are presented. It is shown how an inward radially falling test particle can be prevented from forming an event horizon for a value greater than a specified critical value of the source charge. If a test particle does fall through an event horizon, then it must continue to fall until it reaches the singularity at r = 0

  16. Test-particle motion in the nonsymmetric gravitation theory

    Science.gov (United States)

    Moffat, J. W.

    1987-06-01

    A derivation of the motion of test particles in the nonsymmetric gravitational theory (NGT) is given using the field equations in the presence of matter. The motion of the particle is governed by the Christoffel symbols, which are formed from the symmetric part of the fundamental tensor gμν, as well as by a tensorial piece determined by the skew part of the contracted curvature tensor Rμν. Given the energy-momentum tensor for a perfect fluid and the definition of a test particle in the NGT, the equations of motion follow from the conservation laws. The tensorial piece in the equations of motion describes a new force in nature that acts on the conserved charge in a body. Particles that carry this new charge do not follow geodesic world lines in the NGT, whereas photons do satisfy geodesic equations of motion and the equivalence principle of general relativity. Astronomical predictions, based on the exact static, spherically symmetric solution of the field equations in a vacuum and the test-particle equations of motion, are derived in detail. The maximally extended coordinates that remove the event-horizon singularities in the static, spherically symmetric solution are presented. It is shown how an inward radially falling test particle can be prevented from forming an event horizon for a value greater than a specified critical value of the source charge. If a test particle does fall through an event horizon, then it must continue to fall until it reaches the singularity at r=0.

  17. Behaviour of HTGR coated fuel particles at high-temperature tests

    International Nuclear Information System (INIS)

    Chernikov, A.S.; Lyutikov, R.A.; Kurbakov, S.D.; Repnikov, V.M.; Khromonozhkin, V.V.; Soloviyov, G.I.

    1990-01-01

    At the temperature range 1200-2600 deg. C prereactor tests of TRISO fuel particles on the base of UO 2 , UC x O y and UO 2 +2Al 2 O 3 . SiO 2 kernels, and also fuel particle models with ZrC kernels were performed. Isothermal annealings carried out at temperatures of 1400-2600 deg. C, thermogradient ones at 1200-2200 deg. C (Δ T = 200-1200 deg. C/cm). It is shown that at heating to 2200 deg. C integrity of fuel particles is limited by different thermal expansion of PyC and SiC coatings, and also by thermal dissociation of SiC. At higher temperatures the failure is caused by development of high pressures within weakened fuel particles. It is found that uranium migration from alloyed fuel (UC x O y , UO 2 +2Al 2 O 3 .SiO 2 ) in the process of annealing is higher than that from UO 2 . (author)

  18. Particle structure of gauge theories

    International Nuclear Information System (INIS)

    Fredenhagen, K.

    1985-11-01

    The implications of the principles of quantum field theory for the particle structure of gauge theories are discussed. The general structure which emerges is compared with that of the Z 2 Higgs model on a lattice. The discussion leads to several confinement criteria for gauge theories with matter fields. (orig.)

  19. Investigations of percutaneous uptake of ultrafine TiO2 particles at the high energy ion nanoprobe LIPSION

    International Nuclear Information System (INIS)

    Menzel, F.; Reinert, T.; Vogt, J.; Butz, T.

    2004-01-01

    Micronised TiO 2 particles with a diameter of about 15 nm are used in sunscreens as physical UV filter. Due to the small particle size it may be supposed that TiO 2 particles can pass through the uppermost horny skin layer (stratum corneum) via intercellular channels and penetrate into deeper vital skin layers. Accumulations of TiO 2 particles in the skin can decrease the threshold for allergies of the immune system or cause allergic reactions directly. Spatially resolved ion beam analysis (PIXE, RBS, STIM and secondary electron imaging) was carried out on freeze-dried cross-sections of biopsies of pig skin, on which four different formulations containing TiO 2 particles were applied. The investigations were carried out at the high energy ion nanoprobe LIPSION in Leipzig with a 2.25 MeV proton beam, which was focused to a diameter of 1 μm. The analysis concentrated on the penetration depth and on pathways of the TiO 2 particles into the skin. In these measurements a penetration of TiO 2 particles through the s. corneum into the underlying stratum granulosum via intercellular space was found. Hair follicles do not seem to be important penetration pathways because no TiO 2 was detected inside. The TiO 2 particle concentration in the stratum spinosum was below the minimum detection limit of about 1 particle/μm 2 . These findings show the importance of coating the TiO 2 particles in order to prevent damage of RNA and DNA of skin cells by photocatalytic reactions of the penetrated particles caused by absorption of UV light

  20. Parallelization of Reversible Ripple-carry Adders

    DEFF Research Database (Denmark)

    Thomsen, Michael Kirkedal; Axelsen, Holger Bock

    2009-01-01

    The design of fast arithmetic logic circuits is an important research topic for reversible and quantum computing. A special challenge in this setting is the computation of standard arithmetical functions without the generation of \\emph{garbage}. Here, we present a novel parallelization scheme...... wherein $m$ parallel $k$-bit reversible ripple-carry adders are combined to form a reversible $mk$-bit \\emph{ripple-block carry adder} with logic depth $\\mathcal{O}(m+k)$ for a \\emph{minimal} logic depth $\\mathcal{O}(\\sqrt{mk})$, thus improving on the $mk$-bit ripple-carry adder logic depth $\\mathcal...

  1. Research of the arid aerosol carrying out with a help of a set of sodars

    International Nuclear Information System (INIS)

    Valery, K; Igor, G

    2008-01-01

    Study of spatial and vertical distribution of vertical wind velocity was carried out in the 'Har-Gzyr 2007' field program in the 'Black Sands' region, Russia, with the help of four sodars. Continuous (about half an hour) and stable anabatic motions of the air were revealed for altitudes 10m to 800m over the area of some square kilometres. The measured vertical speed reached 2m/s. Permanent and quick transfer of sub-micron aerosol particles from the surface layer to the troposphere can be explained by this phenomenon. The scheme is proposed to design a mass balance equation to calculate aerosol concentration in the upper layers of the ABL

  2. Lung cancer risk of airborne particles for Italian population

    Energy Technology Data Exchange (ETDEWEB)

    Buonanno, G., E-mail: buonanno@unicas.it [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043 Cassino, FR (Italy); International Laboratory for Air Quality and Health, Queensland University of Technology, 2 George Street 2, 4001 Brisbane, Qld. (Australia); Giovinco, G., E-mail: giovinco@unicas.it [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043 Cassino, FR (Italy); Morawska, L., E-mail: morawska@qut.edu.au [International Laboratory for Air Quality and Health, Queensland University of Technology, 2 George Street 2, 4001 Brisbane, Qld. (Australia); Stabile, L., E-mail: stabile@unicas.it [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043 Cassino, FR (Italy)

    2015-10-15

    Airborne particles, including both ultrafine and supermicrometric particles, contain various carcinogens. Exposure and risk-assessment studies regularly use particle mass concentration as dosimetry parameter, therefore neglecting the potential impact of ultrafine particles due to their negligible mass compared to supermicrometric particles. The main purpose of this study was the characterization of lung cancer risk due to exposure to polycyclic aromatic hydrocarbons and some heavy metals associated with particle inhalation by Italian non-smoking people. A risk-assessment scheme, modified from an existing risk model, was applied to estimate the cancer risk contribution from both ultrafine and supermicrometric particles. Exposure assessment was carried out on the basis of particle number distributions measured in 25 smoke-free microenvironments in Italy. The predicted lung cancer risk was then compared to the cancer incidence rate in Italy to assess the number of lung cancer cases attributed to airborne particle inhalation, which represents one of the main causes of lung cancer, apart from smoking. Ultrafine particles are associated with a much higher risk than supermicrometric particles, and the modified risk-assessment scheme provided a more accurate estimate than the conventional scheme. Great attention has to be paid to indoor microenvironments and, in particular, to cooking and eating times, which represent the major contributors to lung cancer incidence in the Italian population. The modified risk assessment scheme can serve as a tool for assessing environmental quality, as well as setting up exposure standards for particulate matter. - Highlights: • Lung cancer risk for non-smoking Italian population due to particle inhalation. • The average lung cancer risk for Italian population is equal to 1.90×10{sup −2}. • Ultrafine particle is the aerosol metric mostly contributing to lung cancer risk. • B(a)P is the main (particle-bounded) compound

  3. Lung cancer risk of airborne particles for Italian population

    International Nuclear Information System (INIS)

    Buonanno, G.; Giovinco, G.; Morawska, L.; Stabile, L.

    2015-01-01

    Airborne particles, including both ultrafine and supermicrometric particles, contain various carcinogens. Exposure and risk-assessment studies regularly use particle mass concentration as dosimetry parameter, therefore neglecting the potential impact of ultrafine particles due to their negligible mass compared to supermicrometric particles. The main purpose of this study was the characterization of lung cancer risk due to exposure to polycyclic aromatic hydrocarbons and some heavy metals associated with particle inhalation by Italian non-smoking people. A risk-assessment scheme, modified from an existing risk model, was applied to estimate the cancer risk contribution from both ultrafine and supermicrometric particles. Exposure assessment was carried out on the basis of particle number distributions measured in 25 smoke-free microenvironments in Italy. The predicted lung cancer risk was then compared to the cancer incidence rate in Italy to assess the number of lung cancer cases attributed to airborne particle inhalation, which represents one of the main causes of lung cancer, apart from smoking. Ultrafine particles are associated with a much higher risk than supermicrometric particles, and the modified risk-assessment scheme provided a more accurate estimate than the conventional scheme. Great attention has to be paid to indoor microenvironments and, in particular, to cooking and eating times, which represent the major contributors to lung cancer incidence in the Italian population. The modified risk assessment scheme can serve as a tool for assessing environmental quality, as well as setting up exposure standards for particulate matter. - Highlights: • Lung cancer risk for non-smoking Italian population due to particle inhalation. • The average lung cancer risk for Italian population is equal to 1.90×10 −2 . • Ultrafine particle is the aerosol metric mostly contributing to lung cancer risk. • B(a)P is the main (particle-bounded) compound contributing

  4. Personal exposure to ultrafine particles.

    Science.gov (United States)

    Wallace, Lance; Ott, Wayne

    2011-01-01

    Personal exposure to ultrafine particles (UFP) can occur while people are cooking, driving, smoking, operating small appliances such as hair dryers, or eating out in restaurants. These exposures can often be higher than outdoor concentrations. For 3 years, portable monitors were employed in homes, cars, and restaurants. More than 300 measurement periods in several homes were documented, along with 25 h of driving two cars, and 22 visits to restaurants. Cooking on gas or electric stoves and electric toaster ovens was a major source of UFP, with peak personal exposures often exceeding 100,000 particles/cm³ and estimated emission rates in the neighborhood of 10¹² particles/min. Other common sources of high UFP exposures were cigarettes, a vented gas clothes dryer, an air popcorn popper, candles, an electric mixer, a toaster, a hair dryer, a curling iron, and a steam iron. Relatively low indoor UFP emissions were noted for a fireplace, several space heaters, and a laser printer. Driving resulted in moderate exposures averaging about 30,000 particles/cm³ in each of two cars driven on 17 trips on major highways on the East and West Coasts. Most of the restaurants visited maintained consistently high levels of 50,000-200,000 particles/cm³ for the entire length of the meal. The indoor/outdoor ratios of size-resolved UFP were much lower than for PM₂.₅ or PM₁₀, suggesting that outdoor UFP have difficulty in penetrating a home. This in turn implies that outdoor concentrations of UFP have only a moderate effect on personal exposures if indoor sources are present. A time-weighted scenario suggests that for typical suburban nonsmoker lifestyles, indoor sources provide about 47% and outdoor sources about 36% of total daily UFP exposure and in-vehicle exposures add the remainder (17%). However, the effect of one smoker in the home results in an overwhelming increase in the importance of indoor sources (77% of the total).

  5. Shortwave radiative effects of unactivated aerosol particles in clouds

    International Nuclear Information System (INIS)

    Ackerman, T.; Baker, M.B.

    1977-01-01

    Clouds in some polluted areas may contain high concentrations of anthropogenic aerosol particles. The possible role of these particles in perturbing the optical and dynamical properties of the clouds is an important question for climate studies. The direct radiative effects of unactivated aerosol particles in stable stratus clouds have been calculated at lambda=0.5μm. Several simplifying asumptions have been made relating the behavior of such particles in the high humidity enviornment within the cloud to their physicochemical make-up. It is shown that the energy absorbed by particles within the clouds may be, for realistic concentrations, comparable to the latent heat released and thus may play a significant role in cloud dynamics in some areas. These results are shown to be relatively insensitive to the assumptions about the particle properties within the cloud

  6. A CMOS integrated pulse mode alpha-particle counter for application in radon monitoring

    International Nuclear Information System (INIS)

    Ahmed, A.; Walkey, D.J.; Tarr, N.G.

    1997-01-01

    A custom integrated circuit for detecting alpha particles for application in the monitoring of radon has been designed and tested. The design uses the reverse-biased well to a substrate capacitance of a p-n junction in a conventional CMOS process as a sense capacitor for incident alpha particles. A simple CMOS inverter is used as an analog amplifier to detect the small potential change induced by an alpha-particle strike on the sense capacitor. The design was implemented in a 1.2-microm conventional CMOS process with a sense capacitor area of 110 microm 2 . Tests carried out under vacuum conditions using a calibrated 241 Am alpha-particle source showed an output voltage swing of ≥2.0 V for an alpha event. The detector is also shown to have good immunity to noise and high-quantum efficiency for alpha particles

  7. Biodistribution of doxorubicin and nanostructured ferrocarbon carrier particles in organism during magnetically controlled drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Anatoly A.; Filippov, Victor I.; Nikolskaya, Tatiana A. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation); Budko, Andrei P. [Oncological Center, Russian Academy of Medical Sciences, Moscow (Russian Federation); Kovarskii, Alexander L. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation); Zontov, Sergei V. [Oncological Center, Russian Academy of Medical Sciences, Moscow (Russian Federation); Kogan, Boris Ya. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation); Kuznetsov, Oleg A. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation)], E-mail: kuznetsov_oa@yahoo.com

    2009-05-15

    Biodistribution of doxorubicin and ferrocarbon carrier particles in organism during and after magnetically controlled anti-tumor drug delivery and deposition was studied. Animal tests show high concentration of the cytostatic drug in the target zone, while its concentration is three orders of magnitude lower in bloodstream and other organs. A significant depot of the drug remains on the deposited particles days after the procedure. Macrophages actively phagocytose the ferrocarbon (FeC) particles and remain viable long enough to carry them to the lymph nodes.

  8. Biodistribution of doxorubicin and nanostructured ferrocarbon carrier particles in organism during magnetically controlled drug delivery

    International Nuclear Information System (INIS)

    Kuznetsov, Anatoly A.; Filippov, Victor I.; Nikolskaya, Tatiana A.; Budko, Andrei P.; Kovarskii, Alexander L.; Zontov, Sergei V.; Kogan, Boris Ya.; Kuznetsov, Oleg A.

    2009-01-01

    Biodistribution of doxorubicin and ferrocarbon carrier particles in organism during and after magnetically controlled anti-tumor drug delivery and deposition was studied. Animal tests show high concentration of the cytostatic drug in the target zone, while its concentration is three orders of magnitude lower in bloodstream and other organs. A significant depot of the drug remains on the deposited particles days after the procedure. Macrophages actively phagocytose the ferrocarbon (FeC) particles and remain viable long enough to carry them to the lymph nodes.

  9. Research and systematization of 'hot' particles in the Semipalatinsk nuclear test site soils - methodology and first results

    International Nuclear Information System (INIS)

    Gorlachev, I.D.; Knyazev, B.B.; Kvochkina, T.N.; Lukashenko, S.N.

    2005-01-01

    Full text: Sources of soil activity in Semipalatinsk Nuclear Test Site (SNTS) could be both 'hot' particles dimensions from tens microns to units millimeters and sub-microns particles determining a matrix activity of soil samples. The fractionating of radionuclides and formation of 'hot' particles radionuclide composition arose from temperature changes and complicated nuclear-physical and thermodynamics processes occurring in a fire ball and cloud of nuclear explosion. Knowledge of 'hot' particles physical-chemical properties is needed for evaluation of radioactive products migration in the environment and danger level of the people external and internal exposure. Moreover, minute information about the structure and compound of 'radioactive' particles can be useful for specification of processes occurring in a fiery sphere when conducting explosions of different phylum and also for specification of radioactive fallout forming mechanism. The main polluted spots of SNTS could be divided into the four the species depending on nuclear explosion phylum. Species of radionuclide and their distribution for the different nuclear explosions are able to differ considerably. Therefore, several most typical areas for the each phylum test were selected and twenty soil samples were collected to reveal their radionuclide pollution peculiarities. Collected soil samples were separated into the five granulometric fractions: 1 mm - 2 mm, 0.5 mm - 1 mm. 0.28 mm-0.5 mm, 0.112 mm - 0.28 mm and 1 mm), 210 'hot' particles of second fraction (1>f>0.5 mm) and 154 'hot' particles of third fraction (0.5>f>0.28 mm) have been selection from the twelve SNTS soil samples by the compelled fission and visual identification methods. Main sources of soil samples and 'hot' particles activities are 239+240 Pu, 241 Am, 137 Cs and 152 Eu isotopes.In addition to the described works the special sampling of large 'hot' particles (dimension more than 2 mm) was carried out in areas of the ground and air tests

  10. Fate of microplastics and mesoplastics carried by surface currents and wind waves: A numerical model approach in the Sea of Japan.

    Science.gov (United States)

    Iwasaki, Shinsuke; Isobe, Atsuhiko; Kako, Shin'ichiro; Uchida, Keiichi; Tokai, Tadashi

    2017-08-15

    A numerical model was established to reproduce the oceanic transport processes of microplastics and mesoplastics in the Sea of Japan. A particle tracking model, where surface ocean currents were given by a combination of a reanalysis ocean current product and Stokes drift computed separately by a wave model, simulated particle movement. The model results corresponded with the field survey. Modeled results indicated the micro- and mesoplastics are moved northeastward by the Tsushima Current. Subsequently, Stokes drift selectively moves mesoplastics during winter toward the Japanese coast, resulting in increased contributions of mesoplastics south of 39°N. Additionally, Stokes drift also transports micro- and mesoplastics out to the sea area south of the subpolar front where the northeastward Tsushima Current carries them into the open ocean via the Tsugaru and Soya straits. Average transit time of modeled particles in the Sea of Japan is drastically reduced when including Stokes drift in the model. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Particle physics contribution to the elimination of nuclear waste

    International Nuclear Information System (INIS)

    Revol, Jean-Pierre

    2001-01-01

    My introduction on fundamental research and innovation will explain how CERN, a laboratory which is a priori entirely dedicated to fundamental research, came to contribute to a major challenge of society: the energy problem. I will describe the motivation behind the original experimental effort carried out at CERN (FEAT and TARC experiments) and discuss some of the main elements of the energy problem. Progress in particle accelerator technology makes it possible nowadays to use a proton accelerator to produce energy and eliminate nuclear waste efficiently. The Energy Amplifier proposed by Carlo Rubbia and his group is a subcritical fast neutron system driven by a proton accelerator. It is particularly attractive as it could destroy, through fission, transuranic elements produced by present nuclear reactors. The Energy Amplifier could also efficiently transform long lived fission fragments at minimal cost using the concept of Adiabatic Resonance Crossing (ARC) recently tested at CERN with the TARC experiment. The ARC concept can be extended to several other domains of application (production of radioactive isotopes for medicine and industry, neutron research applications, etc.)

  12. Study on the effects of temperature, time and policy of pre polymerization on particle morphology in propylene slurry polymerization with heterogeneous ziegler-Natta catalysts

    International Nuclear Information System (INIS)

    Pircheraghi, G.; Pourmahdian, S.; Vatankhah, M.

    2008-01-01

    The effects of temperature, time and the strategy of pre polymerization were studied on the morphology of polypropylene particles. Propylene polymerization was carried out in slurry phase using fourth generation of Ziegler-Natta Catalyst, cyclohexylmethyl dimethoxysilane as external electron donor, and triethyl aluminum as co-catalyst. Pre polymerizations were carried out based on two strategies: isothermal and non-isothermal conditions. Particle imaging using SEM, bulk density, and particle size distribution was used to analyse the particle morphology. It was found that the variation of initial condition together with the change in the mechanism of particle fracture has a dominant effect on particle morphology. Each combination between the temperature and reaction time causes to have a special effect on the product particle morphology. It has become clear that in isothermal pre polymerization, spherical particles with identical properties were produced. In low temperature experiments particles with porous surface were observed. At increasing temperature, however, the pores disappeared. Non-isothermal pre polymerization produced different morphological types. In all experiments core shell structures were observed that seemed to be related to the structure of catalysts

  13. Uptake of small particles by tree canopies

    International Nuclear Information System (INIS)

    Belot, Y.; Camus, H.; Gauthier, D.; Caput, C.

    1992-01-01

    Most of the deposition data that are available to assess the radiological consequences of an accident have been acquired for low-growing vegetation and are inadapted to forest areas. Consequently, a programme was undertaken to study the deposition of particles on components of different trees and extrapolate the experimental data so obtained to large-scale canopies. The experiments were performed in a wind tunnel allowing canopy components to be exposed to a flow of suspended fluorescent particles of reasonably uniform size. Emphasis was put on particles in the 0.3-1.2 μm subrange, because most of the radioactive particles sampled at long distance from sources are comprised in this size interval. The uptake rates were determined for bare and leaf bearing twigs of several evergreen species (Picea abies, Pinus sylvestris and Quercus ilex), as a function of wind speed and particle size. The deposition rates obtained for the tree components were then used as input to a model that describes the uptake of particles by a large-scale canopy under specified conditions of weather and canopy structure. The model accounts for the diffusion of particles between different strata of the canopy, as well as deposition of particles on the canopy components. It calculates the rates of particle deposition to the horizontal surface of the canopy, and the repartition of the deposited particles within the canopy. Increases in wind speed cause increased deposition, but the effect is less important that it would have been for larger particles. The deposition is relatively insensitive to the size of particles within the subrange considered in this study. 13 refs., 2 figs., 1 tab

  14. Parallel and Perpendicular Alignment of Anisotropic Particles in Free Liquid Microjets and Emerging Microdroplets.

    Science.gov (United States)

    Schlenk, Mathias; Hofmann, Eddie; Seibt, Susanne; Rosenfeldt, Sabine; Schrack, Lukas; Drechsler, Markus; Rothkirch, Andre; Ohm, Wiebke; Breu, Josef; Gekle, Stephan; Förster, Stephan

    2018-04-24

    Liquid microjets play a key role in fiber spinning, inkjet printing, and coating processes. In all of these applications, the liquid jets carry dispersed particles whose spatial and orientational distributions within the jet critically influence the properties of the fabricated structures. Despite its importance, there is currently no knowledge about the orientational distribution of particles within microjets and droplets. Here, we demonstrate a microfluidic device that allows to determine the local particle distribution and orientation by X-ray scattering. Using this methodology, we discovered unexpected changes in the particle orientation upon exiting the nozzle to form a free jet, and upon jet break-up into droplets, causing an unusual biaxial particle orientation. We show how flow and aspect ratio determine the flow orientation of anisotropic particles. Furthermore, we demonstrate that the observed phenomena are a general characteristic of anisotropic particles. Our findings greatly enhance our understanding of particle orientation in free jets and droplets and provide a rationale for controlling particle alignment in liquid jet-based fabrication methodologies.

  15. Particle beam accelerator

    International Nuclear Information System (INIS)

    Turner, N.L.

    1982-01-01

    A particle beam accelerator is described which has several electrodes that are selectively short circuited together synchronously with changes in the magnitude of a DC voltage applied to the accelerator. By this method a substantially constant voltage gradient is maintained along the length of the unshortened electrodes despite variations in the energy applied to the beam by the accelerator. The invention has particular application to accelerating ion beams that are implanted into semiconductor wafers. (U.K.)

  16. New decontamination process using foams containing particles

    International Nuclear Information System (INIS)

    Guignot, S.; Faure, S.

    2008-01-01

    One key point in the dismantling of nuclear facilities is the thorough cleaning of radiation- exposed surfaces on which radioactive deposits have formed. This cleaning step is often achieved by successive liquid rinses with specific solutions containing alkaline, acidic, or even oxidizing species depending on whether the aim is to dissolve greasy deposits (like ter-butylphosphate) or to corrode surfaces on micrometric thicknesses. An alternative process to reduce the amount of chemicals and the volume of the resulting nuclear wastes consists in using the same but foamed solutions (1). Carrying less liquid, the resulting foams still display similar kinetics of dissolution rates and their efficiency is determined by their ability to hold sufficient wetnesses during the time required for the decontamination. Classical foam decontamination process illustrated by foam pulverization or circulation in the 90 turned five years ago into a specific static process using high-lifetime viscosified foam at a steady state. One way to slow down the liquid drainage is to raise liquid viscosity by adding organic viscosifiers like xanthan gum (2). In 2005, new studies started on an innovative process proposed by S. Faure and based on triphasic foams containing particles [3]. The aim is to generate new decontamination foams containing less quantities of organics materials (surfactants and viscosifiers). Silica particles are obviously known to stabilize or destabilize foams (4). In the frame of S. Guignot Ph.D., new fundamental studies are initiated in order to clarify the role of silica solid microparticles in these foams. Our final goal is to determine whether this kind of new foam can be stable for several hours for a decontamination process. The results we will report focus on wet foams used for nuclear decontamination and incorporating fumed silica. The study is conducted on a vertical foam column in a pseudo-free drainage configuration, and aims at investigating the influence of

  17. Consumerism and the Sister Carrie's American Dream

    Institute of Scientific and Technical Information of China (English)

    卢亚丽

    2017-01-01

    From the aspect of consumerism to this text analyze Sister Carrie's"American dream"destruction. The author wholly and deeply analyzes the embodiment of consumerism in Dreiser's Sister Carrie and Dreiser's outlook and values under the effect of consumerism. To prove that the reason for destruction of Carrie's American dream is consumerism.

  18. Local Dynamic Stability Associated with Load Carrying

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2013-03-01

    Conclusion: Current study confirmed the sensitivity of local dynamic stability measure in load carrying situation. It was concluded that load carrying tasks were associated with declined local dynamic stability, which may result in increased risk of fall accident. This finding has implications in preventing fall accidents associated with occupational load carrying.

  19. Real-time aerosol photometer and optical particle counter comparison

    International Nuclear Information System (INIS)

    Santi, E.; Belosi, F.; Santachiara, G.; Prodi, F.; Berico, M.

    2010-01-01

    The paper presents the results of a comparison exercise among real-time aerosol samplers, based on different light scattering techniques. The comparison was carried out near to the ISAC institute in a box positioned inside the CNR research area in Bologna. Two nephelometers (Dust Trak from TSI, and Air Genius from Unitec) and an optical particle counter (ENVIRO-check from Grimm) were used for P M1 and P M10 fraction assessment. In the case of the optical particle counter, the particle number concentration in each size bin was also used. In parallel, two manual sampling lines were employed for reference (gravimetric) measurements. The results highlight different factor scales for the dust monitors, in comparison with gravimetric assessment, underlining the importance of a user calibration of such monitors as a function of the specific aerosol sampled. Moreover, the relative fluctuations of the hourly P M 10 and P M1 concentrations, against daily average concentrations, were studied in order to compare the ability of each sampler to follow changes in the aerosol size distribution. It was found that the photometers and optical particle counter revealed different behaviours. In the latter, a small increase in the particle concentration number in the coarse fraction gave a relatively high increase in the mass concentration that was not measured by the photometers. The explanation could be the relatively slight influence of a small particle number variation on the total scattered light for the photometers, unlike the case of the optical particle counter, where each particle contributes to the mass concentration. This aspect merits future research in order to better understand optical particle counter output used in P Mx monitoring activities.

  20. Are consistent equal-weight particle filters possible?

    Science.gov (United States)

    van Leeuwen, P. J.

    2017-12-01

    Particle filters are fully nonlinear data-assimilation methods that could potentially change the way we do data-assimilation in highly nonlinear high-dimensional geophysical systems. However, the standard particle filter in which the observations come in by changing the relative weights of the particles is degenerate. This means that one particle obtains weight one, and all other particles obtain a very small weight, effectively meaning that the ensemble of particles reduces to that one particle. For over 10 years now scientists have searched for solutions to this problem. One obvious solution seems to be localisation, in which each part of the state only sees a limited number of observations. However, for a realistic localisation radius based on physical arguments, the number of observations is typically too large, and the filter is still degenerate. Another route taken is trying to find proposal densities that lead to more similar particle weights. There is a simple proof, however, that shows that there is an optimum, the so-called optimal proposal density, and that optimum will lead to a degenerate filter. On the other hand, it is easy to come up with a counter example of a particle filter that is not degenerate in high-dimensional systems. Furthermore, several particle filters have been developed recently that claim to have equal or equivalent weights. In this presentation I will show how to construct a particle filter that is never degenerate in high-dimensional systems, and how that is still consistent with the proof that one cannot do better than the optimal proposal density. Furthermore, it will be shown how equal- and equivalent-weights particle filters fit within this framework. This insight will then lead to new ways to generate particle filters that are non-degenerate, opening up the field of nonlinear filtering in high-dimensional systems.