WorldWideScience

Sample records for particle-core model

  1. Effective particle magnetic moment of multi-core particles

    Energy Technology Data Exchange (ETDEWEB)

    Ahrentorp, Fredrik; Astalan, Andrea; Blomgren, Jakob; Jonasson, Christian [Acreo Swedish ICT AB, Arvid Hedvalls backe 4, SE-411 33 Göteborg (Sweden); Wetterskog, Erik; Svedlindh, Peter [Department of Engineering Sciences, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden); Lak, Aidin; Ludwig, Frank [Institute of Electrical Measurement and Fundamental Electrical Engineering, TU Braunschweig, D‐38106 Braunschweig Germany (Germany); IJzendoorn, Leo J. van [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Westphal, Fritz; Grüttner, Cordula [Micromod Partikeltechnologie GmbH, D ‐18119 Rostock (Germany); Gehrke, Nicole [nanoPET Pharma GmbH, D ‐10115 Berlin Germany (Germany); Gustafsson, Stefan; Olsson, Eva [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Johansson, Christer, E-mail: christer.johansson@acreo.se [Acreo Swedish ICT AB, Arvid Hedvalls backe 4, SE-411 33 Göteborg (Sweden)

    2015-04-15

    In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems – BNF Starch from Micromod with a median particle diameter of 100 nm and FeraSpin R from nanoPET with a median particle diameter of 70 nm – and one single-core particle system – SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm.

  2. Effective particle magnetic moment of multi-core particles

    International Nuclear Information System (INIS)

    Ahrentorp, Fredrik; Astalan, Andrea; Blomgren, Jakob; Jonasson, Christian; Wetterskog, Erik; Svedlindh, Peter; Lak, Aidin; Ludwig, Frank; IJzendoorn, Leo J. van; Westphal, Fritz; Grüttner, Cordula; Gehrke, Nicole; Gustafsson, Stefan; Olsson, Eva; Johansson, Christer

    2015-01-01

    In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems – BNF Starch from Micromod with a median particle diameter of 100 nm and FeraSpin R from nanoPET with a median particle diameter of 70 nm – and one single-core particle system – SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm

  3. Effective particle magnetic moment of multi-core particles

    Science.gov (United States)

    Ahrentorp, Fredrik; Astalan, Andrea; Blomgren, Jakob; Jonasson, Christian; Wetterskog, Erik; Svedlindh, Peter; Lak, Aidin; Ludwig, Frank; van IJzendoorn, Leo J.; Westphal, Fritz; Grüttner, Cordula; Gehrke, Nicole; Gustafsson, Stefan; Olsson, Eva; Johansson, Christer

    2015-04-01

    In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems - BNF Starch from Micromod with a median particle diameter of 100 nm and FeraSpin R from nanoPET with a median particle diameter of 70 nm - and one single-core particle system - SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm.

  4. Effective particle magnetic moment of multi-core particles

    NARCIS (Netherlands)

    Ahrentorp, F.; Astalan, A.; Blomgren, J.; Jonasson, C.; Wetterskog, E.; Svedlindh, P.; Lak, A.; Ludwig, F.; Van IJzendoorn, L.J.; Westphal, F.; Grüttner, C.; Gehrke, N.; Gustafsson, S.; Olsson, E.; Johansson, C.

    2015-01-01

    In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron

  5. Core-shell particles as model compound for studying fouling

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Nielsen, Troels Bach; Andersen, Morten Boel Overgaard

    2008-01-01

    Synthetic colloidal particles with hard cores and soft, water-swollen shells were used to study cake formation during ultrafiltration. The total cake resistance was lowest for particles with thick shells, which indicates that interparticular forces between particles (steric hindrance...... and electrostatic repulsion) influenced cake formation. At low pressure the specific cake resistance could be predicted from the Kozeny-Carman equation. At higher pressures, the resistance increased due to cake compression. Both cake formation and compression were reversible. For particles with thick shells...

  6. Hysteresis effects in the cores of particle accelerator magnets

    CERN Document Server

    AUTHOR|(CDS)2086181; Schoerling, Daniel

    A study of the hysteresis effects in the cores of particle accelerator magnets has been performed in the framework of the work presented in this thesis. This study has been focused on normal conducting particle accelerator magnets whose cores are manufactured using ferromagnetic materials. The magnetic circuits have been modelled using the developed models: one model for the magnetic circuit and one for the magnetization of the material in the core. The parameters of the magnetic circuit model have been identified with the help of simulations which rely on the finite element method (Opera 3D), while the parameters of the magnetic hysteresis model have been identified through experimental measurements performed using a method developed in the framework of this work. The modelling results have been validated by means of experimental measurements performed on two magnets: one small size magnet which has been specifically designed and manufactured, and one magnet which is currently used in a particle accelerator ...

  7. Synthesis of Cationic Core-Shell Latex Particles

    NARCIS (Netherlands)

    Dziomkina, N.; Hempenius, Mark A.; Vancso, Gyula J.

    2006-01-01

    Surfactant-free seeded (core-shell) polymerization of cationic polymer colloids is presented. Polystyrene core particles with sizes between 200 nm and 500 nm were synthesized. The number average diameter of the colloidal core particles increased with increasing monomer concentration. Cationic shells

  8. Core/shell particles containing liquid cores : morphology prediction, synthesis and characterization

    NARCIS (Netherlands)

    Zyl, van A.J.P.; Sanderson, R.D.; Wet-Roos, de D.; Klumperman, B.

    2003-01-01

    The ability to synthesize core/shell particles with distinct geometries is becoming increasingly important due to their potential applications. In this study structured particles with liquid cores and polymeric shells were synthesized by an in situ miniemulsion polymerization reaction. The resulting

  9. Particle shape accounts for instrumental discrepancy in ice core dust size distributions

    Science.gov (United States)

    Folden Simonsen, Marius; Cremonesi, Llorenç; Baccolo, Giovanni; Bosch, Samuel; Delmonte, Barbara; Erhardt, Tobias; Kjær, Helle Astrid; Potenza, Marco; Svensson, Anders; Vallelonga, Paul

    2018-05-01

    The Klotz Abakus laser sensor and the Coulter counter are both used for measuring the size distribution of insoluble mineral dust particles in ice cores. While the Coulter counter measures particle volume accurately, the equivalent Abakus instrument measurement deviates substantially from the Coulter counter. We show that the difference between the Abakus and the Coulter counter measurements is mainly caused by the irregular shape of dust particles in ice core samples. The irregular shape means that a new calibration routine based on standard spheres is necessary for obtaining fully comparable data. This new calibration routine gives an increased accuracy to Abakus measurements, which may improve future ice core record intercomparisons. We derived an analytical model for extracting the aspect ratio of dust particles from the difference between Abakus and Coulter counter data. For verification, we measured the aspect ratio of the same samples directly using a single-particle extinction and scattering instrument. The results demonstrate that the model is accurate enough to discern between samples of aspect ratio 0.3 and 0.4 using only the comparison of Abakus and Coulter counter data.

  10. Synthesis and characterization of mesoporous silica core-shell particles

    Directory of Open Access Journals (Sweden)

    Milan Nikolić

    2010-06-01

    Full Text Available Core-shell particles were formed by deposition of primary silica particles synthesized from sodium silicate solution on functionalized silica core particles (having size of ~0.5 µm prepared by hydrolysis and condensation of tetraethylortosilicate. The obtained mesoporous shell has thickness of about 60 nm and consists of primary silica particles with average size of ~21 nm. Scanning electron microscopy and zeta potential measurements showed that continuous silica shell exists around functionalized core particles which was additionally proved by FTIR and TEM results.

  11. DESIGN AND CONTROL OF SOAP-FREE HYDROPHILIC-HYDROPHOBIC CORE-SHELL LATEX PARTICLES WITH HIGH CARBOXYL CONTENT IN THE CORE OF THE PARTICLES

    Institute of Scientific and Technical Information of China (English)

    Wen-jiao Ji; Yi-ming Jiang; Bo-tian Li; Wei Deng; Cheng-you Kan

    2012-01-01

    Soap-free hydrophilic-hydrophobic core-shell latex particles with high carboxyl content in the core of the particles were synthesized via the seeded emulsion polymerization using methyl methacrylate (MMA),butyl acrylate (BA),methacrylic acid (MAA),styrene (St) and ethylene glycol dimethacrylate (EGDMA) as monomers,and the influences of MMA content used in the core preparation on polymerization,particle size and morphology were investigated by transmission electron microscopy,dynamic light scattering and conductometric titration.The results showed that the seeded emulsion polymerization could be carried out smoothly using "starved monomer feeding process" when MAA content in the core preparation was equal to or less than 24 wt%,and the encapsulating efficiency of the hydrophilic P(MMA-BA-MAA-EGDMA) core with the hydrophobic PSt shell decreased with the increase in MAA content.When an interlayer of P(MMA-MAA-St) with moderate polarity was inserted between the P(MMA-BA-MAA-EGDMA) core and the PSt shell,well designed soap-free hydrophilic-hydrophobic core-shell latex particles with 24 wt% MAA content in the core preparation were obtained.

  12. Core-shell particle composition by liquid phase infrared spectroscopy

    International Nuclear Information System (INIS)

    Ribeiro, Luiz F.B.; Machado, Ricardo A.F.; Goncalves, Odinei H.; Bona, Evandro

    2011-01-01

    Polymeric particles with core-shell morphology can offer advantages over conventional particles improving properties like mechanical and chemical resistance. However, particle composition must be known due to its influence on the final properties. In this work liquid phase infrared spectroscopy was used to determine the overall composition of core-shell particles composed by polystyrene (core) and poly(methyl methacrylate) (shell). Results were in agreement with those obtained with H 1 Nuclear Magnetic Resonance data (Goncalves et al, 2008). (author)

  13. Importance of core electrostatic properties on the electrophoresis of a soft particle

    Science.gov (United States)

    De, Simanta; Bhattacharyya, Somnath; Gopmandal, Partha P.

    2016-08-01

    The impact of the volumetric charged density of the dielectric rigid core on the electrophoresis of a soft particle is analyzed numerically. The volume charge density of the inner core of a soft particle can arise for a dendrimer structure or bacteriophage MS2. We consider the electrokinetic model based on the conservation principles, thus no conditions for Debye length or applied electric field is imposed. The fluid flow equations are coupled with the ion transport equations and the equation for the electric field. The occurrence of the induced nonuniform surface charge density on the outer surface of the inner core leads to a situation different from the existing analysis of a soft particle electrophoresis. The impact of this induced surface charge density together with the double-layer polarization and relaxation due to ion convection and electromigration is analyzed. The dielectric permittivity and the charge density of the core have a significant impact on the particle electrophoresis when the Debye length is in the order of the particle size. We find that by varying the ionic concentration of the electrolyte, the particle can exhibit reversal in its electrophoretic velocity. The role of the polymer layer softness parameter is addressed in the present analysis.

  14. The coupling one quasi-particle to a Bohr core

    International Nuclear Information System (INIS)

    Lewenkopf, C.H.

    1988-01-01

    Odd nuclei are studied coupling one quasi-particle to a Bohr's core, solved by Kumar Baranger's method. Calculations are performed for energies and transition rates for the following isotopes: 133 Xe, 183 W, 99 Tc and 101 Rh. Limitations of the model are discussed. (author) [pt

  15. Infrared light extinction by charged dielectric core-coat particles

    OpenAIRE

    Thiessen, Elena; Heinisch, Rafael L.; Bronold, Franz X.; Fehske, Holger

    2014-01-01

    We study the effect of surplus electrons on the infrared extinction of dielectric particles with a core-coat structure and propose to use it for an optical measurement of the particle charge in a dusty plasma. The particles consist of an inner core with negative and an outer coat with positive electron affinity. Both the core and the coat give rise to strong transverse optical phonon resonances, leading to anomalous light scattering in the infrared. Due to the radial profile of the electron a...

  16. Predictable Particle Engineering: Programming the Energy Level, Carrier Generation, and Conductivity of Core-Shell Particles.

    Science.gov (United States)

    Yuan, Conghui; Wu, Tong; Mao, Jie; Chen, Ting; Li, Yuntong; Li, Min; Xu, Yiting; Zeng, Birong; Luo, Weiang; Yu, Lingke; Zheng, Gaofeng; Dai, Lizong

    2018-06-20

    Core-shell structures are of particular interest in the development of advanced composite materials as they can efficiently bring different components together at nanoscale. The advantage of this structure greatly relies on the crucial design of both core and shell, thus achieving an intercomponent synergistic effect. In this report, we show that decorating semiconductor nanocrystals with a boronate polymer shell can easily achieve programmable core-shell interactions. Taking ZnO and anatase TiO 2 nanocrystals as inner core examples, the effective core-shell interactions can narrow the band gap of semiconductor nanocrystals, change the HOMO and LUMO levels of boronate polymer shell, and significantly improve the carrier density of core-shell particles. The hole mobility of core-shell particles can be improved by almost 9 orders of magnitude in comparison with net boronate polymer, while the conductivity of core-shell particles is at most 30-fold of nanocrystals. The particle engineering strategy is based on two driving forces: catechol-surface binding and B-N dative bonding and having a high ability to control and predict the shell thickness. Also, this approach is applicable to various inorganic nanoparticles with different components, sizes, and shapes.

  17. Particle-core multiplets in 89Y

    International Nuclear Information System (INIS)

    Batsch, T.; Kownacki, J.; Zelazny, Z.; Guttormsen, M.; Ramsoey, T.; Rekstad, J.

    1987-10-01

    The 89 Y nucleus has been formed in its excited states via the 87 Rb(α,2n) reaction at incident energies 24-34 MeV. The γ-ray decay of the states has been studied by measuring γ-γ-t coincidences, angular distributions and relative excitation functions. The experimental results from the present investigation are in general agreement with the former studies. However, some corrections in the level scheme have been introduced. Eight new levels with spins up to around 31/2 ℎ have been observed. The uppermost levels have been arranged into a rotational-like sequence, suggesting a nuclear shape change. Using our and previously known data we have tried to locate and calculate the members of the 1g 9/2 x core multiplet. The present results are compared with the semi-empirical shell model and the particle-core weak coupling description

  18. Synthesis of eccentric titania-silica core-shell and composite particles

    NARCIS (Netherlands)

    Demirors, A.F.; van Blaaderen, A.; Imhof, A.

    2009-01-01

    We describe a novel method to synthesize colloidal particles with an eccentric core-shell structure. Titania-silica core-shell particles were synthesized by silica coating of porous titania particles under Sto¨ber (Sto¨ber et al. J. Colloid Interface Sci. 1968, 26, 62) conditions. We can control

  19. Size-exclusion chromatography using core-shell particles.

    Science.gov (United States)

    Pirok, Bob W J; Breuer, Pascal; Hoppe, Serafine J M; Chitty, Mike; Welch, Emmet; Farkas, Tivadar; van der Wal, Sjoerd; Peters, Ron; Schoenmakers, Peter J

    2017-02-24

    Size-exclusion chromatography (SEC) is an indispensable technique for the separation of high-molecular-weight analytes and for determining molar-mass distributions. The potential application of SEC as second-dimension separation in comprehensive two-dimensional liquid chromatography demands very short analysis times. Liquid chromatography benefits from the advent of highly efficient core-shell packing materials, but because of the reduced total pore volume these materials have so far not been explored in SEC. The feasibility of using core-shell particles in SEC has been investigated and contemporary core-shell materials were compared with conventional packing materials for SEC. Columns packed with very small core-shell particles showed excellent resolution in specific molar-mass ranges, depending on the pore size. The analysis times were about an order of magnitude shorter than what could be achieved using conventional SEC columns. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. One-step synthesis of gold-polyaniline core-shell particles

    International Nuclear Information System (INIS)

    Wang Zhijuan; Yuan Junhua; Han Dongxue; Niu Li; Ivaska, Ari

    2007-01-01

    A one-step method has been developed for synthesizing gold-polyaniline (Au-PANI) core-shell particles by using chlorauric acid (HAuCl 4 ) to oxidize aniline in the presence of acetic acid and Tween 40 at room temperature. SEM images indicated that the resulting core-shell particles were composed of submicrometre-scale Au particles and PANI shells with an average thickness of 25 nm. Furthermore, a possible mechanism concerning the growth of Au-PANI particles was also proposed based on the results of control experiments

  1. Modeling of calcination of single kaolinitic clay particle

    DEFF Research Database (Denmark)

    Gebremariam, Abraham Teklay; Yin, Chungen; Rosendahl, Lasse

    The present work aims at modeling of the calcination (dehydroxylation) process of clay particles, specifically kaolinite, and its thermal transformation. For such purpose, 1D single particle calcination model was developed based on the concept of shrinking core model to assess the dehydroxylation...

  2. Development of magnetic luminescent core/shell nanocomplex particles with fluorescence using Rhodamine 6G

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Uk; Song, Yoon Seok [Department of Chemical and Biological Engineering, Korea University, 5 Ga, Anam-Dong, Sungbuk-Gu, Seoul 136-701 (Korea, Republic of); Park, Chulhwan [Department of Chemical Engineering, Kwangwoon University, 447-1 Wolgye-Dong, Nowon-Gu, Seoul 139-701 (Korea, Republic of); Kim, Seung Wook, E-mail: kimsw@korea.ac.kr [Department of Chemical and Biological Engineering, Korea University, 5 Ga, Anam-Dong, Sungbuk-Gu, Seoul 136-701 (Korea, Republic of)

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► A simple method was developed to synthesize Co-B/SiO{sub 2}/dye/SiO{sub 2} composite particles. ► The magnetic particle shows that highly luminescent and core/shell particles are formed. ► Such core/shell particles can be easily suspended in water. ► The magnetic particles could detect fluorescence for the application of biosensor. -- Abstract: A simple and reproducible method was developed to synthesize a novel class of Co-B/SiO{sub 2}/dye/SiO{sub 2} composite core/shell particles. Using a single cobalt core, Rhodamine 6G of organic dye molecules was entrapped in a silica shell, resulting in core/shell particles of ∼200 nm diameter. Analyses using a variety of techniques such as transmission electron microscopy, X-ray photoelectron spectroscopy, vibration sample magnetometry, confocal laser scanning microscopy, and fluorescence intensity demonstrated that dye molecules were trapped inside the core/shell particles. A photoluminescence investigation showed that highly luminescent and photostable core/shell particles were formed. Such core/shell particles can be easily suspended in water. The synthesized magnetic particles could be used to detect fluorescence on glass substrate arrays for bioassay and biosensor applications.

  3. [The true story and advantages of the famous Hepatitis B virus core particles: Outlook 2016].

    Science.gov (United States)

    Pumpens, P; Grens, E

    2016-01-01

    This review article is a continuation of the paper "Hepatitis B core particles as a universal display model: a structure-function basis for development" written by Pumpens P. and Grens E., ordered by Professor Lev Kisselev and published in FEBS Letters, 1999, 442, 1-6. The past 17 years have strengthened the paper's finding that the human hepatitis B virus core protein, along with other Hepadnaviridae family member core proteins, is a mysterious, multifunctional protein. The core gene of the Hepadnaviridae genome encodes five partially collinear proteins. The most important of these is the HBV core protein p21, or HBc. It can self-assemble by forming viral HBc particles, but also plays a crucial role in the regulation of viral replication. Since 1986, the HBc protein has been one of the first and the most successful tools of the virus-like particle (VLP) technology. Later, the woodchuck hepatitis virus core protein (WHc) was also used as a VLP carrier. The Hepadnaviridae core proteins remain favourite VLP candidates for the knowledge-based design of future vaccines, gene therapy vectors, specifically targeted nanocontainers, and other modern nanotechnological tools for prospective medical use.

  4. Integrated core-edge-divertor modeling studies

    International Nuclear Information System (INIS)

    Stacey, W.M.

    2001-01-01

    An integrated calculation model for simulating the interaction of physics phenomena taking place in the plasma core, in the plasma edge and in the SOL and divertor of tokamaks has been developed and applied to study such interactions. The model synthesises a combination of numerical calculations (1) the power and particle balances for the core plasma, using empirical confinement scaling laws and taking into account radiation losses (2), the particle, momentum and power balances in the SOL and divertor, taking into account the effects of radiation and recycling neutrals, (3) the transport of feeling and recycling neutrals, explicitly representing divertor and pumping geometry, and (4) edge pedestal gradient scale lengths and widths, evaluation of theoretical predictions (5) confinement degradation due to thermal instabilities in the edge pedestals, (6) detachment and divertor MARFE onset, (7) core MARFE onsets leading to a H-L transition, and (8) radiative collapse leading to a disruption and evaluation of empirical fits (9) power thresholds for the L-H and H-L transitions and (10) the width of the edge pedestals. The various components of the calculation model are coupled and must be iterated to a self-consistent convergence. The model was developed over several years for the purpose of interpreting various edge phenomena observed in DIII-D experiments and thereby, to some extent, has been benchmarked against experiment. Because the model treats the interactions of various phenomena in the core, edge and divertor, yet is computationally efficient, it lends itself to the investigation of the effects of different choices of various edge plasma operating conditions on overall divertor and core plasma performance. Studies of the effect of feeling location and rate, divertor geometry, plasma shape, pumping and over 'edge parameters' on core plasma properties (line average density, confinement, density limit, etc.) have been performed for DIII-D model problems. A

  5. How to Determine the Core-Shell Nature in Bimetallic Catalyst Particles?

    Directory of Open Access Journals (Sweden)

    Emma Westsson

    2014-11-01

    Full Text Available Nanometer-sized materials have significantly different chemical and physical properties compared to bulk material. However, these properties do not only depend on the elemental composition but also on the structure, shape, size and arrangement. Hence, it is not only of great importance to develop synthesis routes that enable control over the final structure but also characterization strategies that verify the exact nature of the nanoparticles obtained. Here, we consider the verification of contemporary synthesis strategies for the preparation of bimetallic core-shell particles in particular in relation to potential particle structures, such as partial absence of core, alloying and raspberry-like surface. It is discussed what properties must be investigated in order to fully confirm a covering, pin-hole free shell and which characterization techniques can provide such information. Not uncommonly, characterization strategies of core-shell particles rely heavily on visual imaging like transmission electron microscopy. The strengths and weaknesses of various techniques based on scattering, diffraction, transmission and absorption for investigating core-shell particles are discussed and, in particular, cases where structural ambiguities still remain will be highlighted. Our main conclusion is that for particles with extremely thin or mono-layered shells—i.e., structures outside the limitation of most imaging techniques—other strategies, not involving spectroscopy or imaging, are to be employed. We will provide a specific example of Fe-Pt core-shell particles prepared in bicontinuous microemulsion and point out the difficulties that arise in the characterization process of such particles.

  6. On Maximal Hard-Core Thinnings of Stationary Particle Processes

    Science.gov (United States)

    Hirsch, Christian; Last, Günter

    2018-02-01

    The present paper studies existence and distributional uniqueness of subclasses of stationary hard-core particle systems arising as thinnings of stationary particle processes. These subclasses are defined by natural maximality criteria. We investigate two specific criteria, one related to the intensity of the hard-core particle process, the other one being a local optimality criterion on the level of realizations. In fact, the criteria are equivalent under suitable moment conditions. We show that stationary hard-core thinnings satisfying such criteria exist and are frequently distributionally unique. More precisely, distributional uniqueness holds in subcritical and barely supercritical regimes of continuum percolation. Additionally, based on the analysis of a specific example, we argue that fluctuations in grain sizes can play an important role for establishing distributional uniqueness at high intensities. Finally, we provide a family of algorithmically constructible approximations whose volume fractions are arbitrarily close to the maximum.

  7. Ultrafast Dynamics of Metallo-Dielectric Core-Shell Particles

    NARCIS (Netherlands)

    Shan, X.

    2008-01-01

    Optical properties of metallic nano-structures have attracted a lot of attention in the past decades. In this thesis, we focus on nano-sized silica-core gold-shell particles, study the linear, nonlinear and acoustic vibrations of the particles. The linear optical properties in the visible range of

  8. Influence of Shell Thickness on the Colloidal Stability of Magnetic Core-Shell Particle Suspensions.

    Science.gov (United States)

    Neville, Frances; Moreno-Atanasio, Roberto

    2018-01-01

    We present a Discrete Element study of the behavior of magnetic core-shell particles in which the properties of the core and the shell are explicitly defined. Particle cores were considered to be made of pure iron and thus possessed ferromagnetic properties, while particle shells were considered to be made of silica. Core sizes ranged between 0.5 and 4.0 μm with the actual particle size of the core-shell particles in the range between 0.6 and 21 μm. The magnetic cores were considered to have a magnetization of one tenth of the saturation magnetization of iron. This study aimed to understand how the thickness of the shell hinders the formation of particle chains. Chain formation was studied with different shell thicknesses and particle sizes in the presence and absence of an electrical double layer force in order to investigate the effect of surface charge density on the magnetic core-shell particle interactions. For core sizes of 0.5 and 4.0 μm the relative shell thicknesses needed to hinder the aggregation process were approximately 0.4 and 0.6 respectively, indicating that larger core sizes are detrimental to be used in applications in which no flocculation is needed. In addition, the presence of an electrical double layer, for values of surface charge density of less than 20 mC/m 2 , could stop the contact between particles without hindering their vertical alignment. Only when the shell thickness was considerably larger, was the electrical double layer able to contribute to the full disruption of the magnetic flocculation process.

  9. Examining Model Atmospheric Particles Inside and Out

    Science.gov (United States)

    Wingen, L. M.; Zhao, Y.; Fairhurst, M. C.; Perraud, V. M.; Ezell, M. J.; Finlayson-Pitts, B. J.

    2017-12-01

    Atmospheric particles scatter incoming solar radiation and act as cloud condensation nuclei (CCN), thereby directly and indirectly affecting the earth's radiative balance and reducing visibility. These atmospheric particles may not be uniform in composition. Differences in the composition of a particle's outer surface from its core can arise during particle growth, (photo)chemical aging, and exchange of species with the gas phase. The nature of the surface on a molecular level is expected to impact growth mechanisms as well as their ability to act as CCN. Model laboratory particle systems are explored using direct analysis in real time-mass spectrometry (DART-MS), which is sensitive to surface composition, and contrasted with average composition measurements using high resolution, time-of-flight aerosol mass spectrometry (HR-ToF-AMS). Results include studies of the heterogeneous reactions of amines with solid dicarboxylic acid particles, which are shown to generate aminium dicarboxylate salts at the particle surface, leaving an unreacted core. Combination of both mass spectrometric techniques reveals a trend in reactivity of C3-C7 dicarboxylic acids with amines and allows calculation of the DART probe depth into the particles. The results of studies on additional model systems that are currently being explored will also be reported.

  10. Variable solar control using thermotropic core/shell particles

    Energy Technology Data Exchange (ETDEWEB)

    Muehling, Olaf; Seeboth, Arno; Ruhmann, Ralf; Potechius, Elvira; Vetter, Renate [Fraunhofer Institute for Applied Polymer Research (IAP), Department of Chromogenic Polymers, Volmerstr. 7B, 12489 Berlin (Germany); Haeusler, Tobias [Brandenburg University of Technology (BTU Cottbus), Chair of Applied Physics/Thermophysics, Konrad-Zuse-Str. 1, 03046 Cottbus (Germany)

    2009-09-15

    Subject of our recent investigations is the utilization of a reversible thermotropic material for a self-regulating sun protection glazing that controls the solar energy input in order to avoid overheating. Based on the well-established UV curing technology for laminated glass a superior thermotropic material with tunable switching characteristics and of low material costs was developed. The polymer layer contains core/shell particles homogeneously dispersed in a UV-cured resin. The particle core in turn consists of an n-alkane mixture that is responsible for the temperature-induced clear/opaque switching. To obtain particles of well-defined size and with a narrow size distribution, the miniemulsion polymerization technique was used. The visible and solar optical properties (normal-normal, normal-hemispherical, and normal-diffuse transmittance) in the off (clear) and in the on state (opaque) were determined by UV/Vis/NIR spectroscopy. Samples containing particles of high median diameter (>800 nm) primarily scatter in the forward direction. However, with smaller particles (300-600 nm) a higher backscattering (reflection) efficiency was achieved. The largest difference in the normal-hemispherical transmittance could be found with a particle amount of 6% and a median scattering domain diameter of {proportional_to}380 nm. (author)

  11. An advanced coarse-grained nucleosome core particle model for computer simulations of nucleosome-nucleosome interactions under varying ionic conditions.

    Directory of Open Access Journals (Sweden)

    Yanping Fan

    Full Text Available In the eukaryotic cell nucleus, DNA exists as chromatin, a compact but dynamic complex with histone proteins. The first level of DNA organization is the linear array of nucleosome core particles (NCPs. The NCP is a well-defined complex of 147 bp DNA with an octamer of histones. Interactions between NCPs are of paramount importance for higher levels of chromatin compaction. The polyelectrolyte nature of the NCP implies that nucleosome-nucleosome interactions must exhibit a great influence from both the ionic environment as well as the positively charged and highly flexible N-terminal histone tails, protruding out from the NCP. The large size of the system precludes a modelling analysis of chromatin at an all-atom level and calls for coarse-grained approximations. Here, a model of the NCP that include the globular histone core and the flexible histone tails described by one particle per each amino acid and taking into account their net charge is proposed. DNA wrapped around the histone core was approximated at the level of two base pairs represented by one bead (bases and sugar plus four beads of charged phosphate groups. Computer simulations, using a Langevin thermostat, in a dielectric continuum with explicit monovalent (K(+, divalent (Mg(2+ or trivalent (Co(NH(3(6 (3+ cations were performed for systems with one or ten NCPs. Increase of the counterion charge results in a switch from repulsive NCP-NCP interaction in the presence of K(+, to partial aggregation with Mg(2+ and to strong mutual attraction of all 10 NCPs in the presence of CoHex(3+. The new model reproduced experimental results and the structure of the NCP-NCP contacts is in agreement with available data. Cation screening, ion-ion correlations and tail bridging contribute to the NCP-NCP attraction and the new NCP model accounts for these interactions.

  12. Characterization of spherical core–shell particles by static light scattering. Estimation of the core- and particle-size distributions

    International Nuclear Information System (INIS)

    Clementi, Luis A.; Vega, Jorge R.; Gugliotta, Luis M.; Quirantes, Arturo

    2012-01-01

    A numerical method is proposed for the characterization of core–shell spherical particles from static light scattering (SLS) measurements. The method is able to estimate the core size distribution (CSD) and the particle size distribution (PSD), through the following two-step procedure: (i) the estimation of the bivariate core–particle size distribution (C–PSD), by solving a linear ill-conditioned inverse problem through a generalized Tikhonov regularization strategy, and (ii) the calculation of the CSD and the PSD from the estimated C–PSD. First, the method was evaluated on the basis of several simulated examples, with polystyrene–poly(methyl methacrylate) core–shell particles of different CSDs and PSDs. Then, two samples of hematite–Yttrium basic carbonate core–shell particles were successfully characterized. In all analyzed examples, acceptable estimates of the PSD and the average diameter of the CSD were obtained. Based on the single-scattering Mie theory, the proposed method is an effective tool for characterizing core–shell colloidal particles larger than their Rayleigh limits without requiring any a-priori assumption on the shapes of the size distributions. Under such conditions, the PSDs can always be adequately estimated, while acceptable CSD estimates are obtained when the core/shell particles exhibit either a high optical contrast, or a moderate optical contrast but with a high ‘average core diameter’/‘average particle diameter’ ratio. -- Highlights: ► Particles with core–shell morphology are characterized by static light scattering. ► Core size distribution and particle size distribution are successfully estimated. ► Simulated and experimental examples are used to validate the numerical method. ► The positive effect of a large core/shell optical contrast is investigated. ► No a-priori assumption on the shapes of the size distributions is required.

  13. Particle bed reactor modeling

    Science.gov (United States)

    Sapyta, Joe; Reid, Hank; Walton, Lew

    The topics are presented in viewgraph form and include the following: particle bed reactor (PBR) core cross section; PBR bleed cycle; fuel and moderator flow paths; PBR modeling requirements; characteristics of PBR and nuclear thermal propulsion (NTP) modeling; challenges for PBR and NTP modeling; thermal hydraulic computer codes; capabilities for PBR/reactor application; thermal/hydralic codes; limitations; physical correlations; comparison of predicted friction factor and experimental data; frit pressure drop testing; cold frit mask factor; decay heat flow rate; startup transient simulation; and philosophy of systems modeling.

  14. Morphology and film formation of poly(butyl methacrylate)-polypyrrole core-shell latex particles

    NARCIS (Netherlands)

    Huijs, F; Lang, J

    Core-shell latex particles made of a poly(butyl methacrylate) (PBMA) core and a thin polypyrrole (PPy) shell were synthesized by two-stage polymerization. In the first stage, PBMA latex particles were synthesized in a semicontinuous process by free-radical polymerization. PBMA latex particles were

  15. The effect of surface-bulk potential difference on the kinetics of intercalation in core-shell active cathode particles

    Science.gov (United States)

    Kazemiabnavi, Saeed; Malik, Rahul; Orvananos, Bernardo; Abdellahi, Aziz; Ceder, Gerbrand; Thornton, Katsuyo

    2018-04-01

    Surface modification of active cathode particles is commonly observed in battery research as either a surface phase evolving during the cycling process, or intentionally engineered to improve capacity retention, rate capability, and/or thermal stability of the cathode material. Here, a continuum-scale model is developed to simulate the galvanostatic charge/discharge of a cathode particle with core-shell heterostructure. The particle is assumed to be comprised of a core material encapsulated by a thin layer of a second phase that has a different open-circuit voltage. The effect of the potential difference between the surface and bulk phases (Ω) on the kinetics of lithium intercalation and the galvanostatic charge/discharge profiles is studied at different values of Ω, C-rates, and exchange current densities. The difference between the Li chemical potential in the surface and bulk phases of the cathode particle results in a concentration difference between these two phases. This leads to a charge/discharge asymmetry in the galvanostatic voltage profiles, causing a decrease in the accessible capacity of the particle. These effects are more significant at higher magnitudes of surface-bulk potential difference. The proposed model provides detailed insight into the kinetics and voltage behavior of the intercalation/de-intercalation processes in core-shell heterostructure cathode particles.

  16. In Vitro-Assembled Alphavirus Core-Like Particles Maintain a Structure Similar to That of Nucleocapsid Cores in Mature Virus

    OpenAIRE

    Mukhopadhyay, Suchetana; Chipman, Paul R.; Hong, Eunmee M.; Kuhn, Richard J.; Rossmann, Michael G.

    2002-01-01

    In vitro-assembled core-like particles produced from alphavirus capsid protein and nucleic acid were studied by cryoelectron microscopy. These particles were found to have a diameter of 420 Å with 240 copies of the capsid protein arranged in a T=4 icosahedral surface lattice, similar to the nucleocapsid core in mature virions. However, when the particles were subjected to gentle purification procedures, they were damaged, preventing generation of reliable structural information. Similarly, pu...

  17. Synthesis of highly monodisperse particles composed of a magnetic core and fluorescent shell.

    Science.gov (United States)

    Nagao, Daisuke; Yokoyama, Mikio; Yamauchi, Noriko; Matsumoto, Hideki; Kobayashi, Yoshio; Konno, Mikio

    2008-09-02

    Highly monodisperse particles composed of a magnetic silica core and fluorescent polymer shell were synthesized with a combined technique of heterocoagulation and soap-free emulsion polymerization. Prior to heterocoagulation, monodisperse, submicrometer-sized silica particles were prepared with the Stober method, and magnetic nanoparticles were prepared with a modified Massart method in which a cationic silane coupling agent of N-trimethoxysilylpropyl- N, N, N-trimethylammonium chloride was added just after coprecipitation of Fe (2+) and Fe (3+). The silica particles with negative surface potential were heterocoagulated with the magnetic nanoparticles with positive surface potential. The magnetic silica particles obtained with the heterocoagulation were treated with sodium silicate to modify their surfaces with silica. In the formation of a fluorescent polymer shell onto the silica-coated magnetic silica cores, an amphoteric initiator of 2,2'-azobis[ N-(2-carboxyethyl)-2-2-methylpropionamidine] (VA-057) was used to control the colloidal stability of the magnetic cores during the polymer coating. The polymerization of St in the presence of a hydrophobic fluorophore of pyrene could coat the cores with fluorescent polymer shells, resulting in monodisperse particles with a magnetic silica core and fluorescent polymer shell. Measurements of zeta potential for the composite particles in different pH values indicated that the composite particles had an amphoteric property originating from VA-057 initiator.

  18. Photonic crystals of core-shell colloidal particles

    NARCIS (Netherlands)

    Velikov, K.P.; Moroz, A.; Blaaderen, A. van

    2001-01-01

    We report on the fabrication and optical transmission studies of thin three-dimensional (3D) photonic crystals of high-dielectric ZnS-core and low-dielectric SiO2-shell colloidal particles. These samples were fabricated using a vertical controlled drying method. The spectral position and width of a

  19. Binding of ethidium to the nucleosome core particle. 2. Internal and external binding modes

    International Nuclear Information System (INIS)

    McMurray, C.T.; Small, E.W.; van Holde, K.E.

    1991-01-01

    The authors have previously reported that the binding of ethidium bromide to the nucleosome core particle results in a stepwise dissociation of the structure which involves the initial release of one copy each of H2A and H2B. In this report, they have examined the absorbance and fluorescence properties of intercalated and outside bound forms of ethidium bromide. From these properties, they have measured the extent of external, electrostatic binding of the dye versus internal, intercalation binding to the core particle, free from contribution by linker DNA. They have established that dissociation is induced by the intercalation mode of binding to DNA within the core particle DNA, and not by binding to the histones or by nonintercalative binding to DNA. The covalent binding of [ 3 H]-8-azidoethidium to the core particle clearly shows that < 1.0 adduct is formed per histone octamer over a wide range of input ratios. Simultaneously, analyses of steady-state fluorescence enhancement and fluorescence lifetime data from bound ethidium complexes demonstrate extensive intercalation binding. Combined analyses from steady-state fluorescence intensity with equilibrium dialysis or fluorescence lifetime data revealed that dissociation began when ∼14 ethidium molecules are bound by intercalation to each core particle and < 1.0 nonintercalated ion pair was formed per core particle

  20. Fused-core particle technology in high-performance liquid chromatography: An overview

    Directory of Open Access Journals (Sweden)

    Joseph J. Kirkland

    2013-10-01

    Full Text Available The advent of superficially porous particles (SPPs for packed HPLC columns has changed the way that many practitioners have approached the problem of developing needed separations. The very high efficiency of such columns, combined with convenient operating conditions, modest back pressures and the ability to use conventional HPLC instruments has resulted in intense basic studies of SPP technology, and widespread applications in many sciences. This report contains an overview of the SPP technology first developed in 2006 by Advanced Materials Technology, Inc., for sub-3-μm particles, then expanded into a family of SPP products with different particle sizes, pore sizes and other physical parameters. This approach was designed so that each particle of the family could be optimized for separating a particular group of compounds, usually based on solute size. Keywords: Superficially porous particles, Fused-core particles, Core–shell particles, Peptides, Proteins, Drug separations

  1. Energy and particle core transport in tokamaks and stellarators compared

    Energy Technology Data Exchange (ETDEWEB)

    Beurskens, Marc; Angioni, Clemente; Beidler, Craig; Dinklage, Andreas; Fuchert, Golo; Hirsch, Matthias; Puetterich, Thomas; Wolf, Robert [Max-Planck-Institut fuer Plasmaphysik, Greifswald/Garching (Germany)

    2016-07-01

    The paper discusses expectations for core transport in the Wendelstein 7-X stellarator (W7-X) and presents a comparison to tokamaks. In tokamaks, the neoclassical trapped-particle-driven losses are small and turbulence dominates the energy and particle transport. At reactor relevant low collisionality, the heat transport is limited by ion temperature gradient limited turbulence, clamping the temperature gradient. The particle transport is set by an anomalous inward pinch, yielding peaked profiles. A strong edge pedestal adds to the good confinement properties. In traditional stellarators the 3D geometry cause increased trapped orbit losses. At reactor relevant low collisionality and high temperatures, these neoclassical losses would be well above the turbulent transport losses. The W7-X design minimizes neoclassical losses and turbulent transport can become dominant. Moreover, the separation of regions of bad curvature and that of trapped particle orbits in W7-X may have favourable implications on the turbulent electron heat transport. The neoclassical particle thermodiffusion is outward. Without core particle sources the density profile is flat or even hollow. The presence of a turbulence driven inward anomalous particle pinch in W7-X (like in tokamaks) is an open topic of research.

  2. Developments in kinetic modelling of chalcocite particle oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Jaervi, J; Ahokainen, T; Jokilaakso, A [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1998-12-31

    A mathematical model for simulating chalcocite particle oxidation is presented. Combustion of pure chalcocite with oxygen is coded as a kinetic module which can be connected as a separate part of commercial CFD-package, PHOENICS. Heat transfer, fluid flow and combustion phenomena can be simulated using CFD-calculation together with the kinetic model. Interaction between gas phase and particles are taken into account by source terms. The aim of the kinetic model is to calculate the particle temperature, contents of species inside the particle, oxygen consumption and formation of sulphur dioxide. Four oxidation reactions are considered and the shrinking core model is used to describe the rate of the oxidation reactions. The model is verified by simulating the particle oxidation reactions in a laboratory scale laminar-flow furnace under different conditions and the model predicts the effects of charges correctly. In the future, the model validation will be done after experimental studies in the laminar flow-furnace. (author) 18 refs.

  3. Developments in kinetic modelling of chalcocite particle oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Jaervi, J.; Ahokainen, T.; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1997-12-31

    A mathematical model for simulating chalcocite particle oxidation is presented. Combustion of pure chalcocite with oxygen is coded as a kinetic module which can be connected as a separate part of commercial CFD-package, PHOENICS. Heat transfer, fluid flow and combustion phenomena can be simulated using CFD-calculation together with the kinetic model. Interaction between gas phase and particles are taken into account by source terms. The aim of the kinetic model is to calculate the particle temperature, contents of species inside the particle, oxygen consumption and formation of sulphur dioxide. Four oxidation reactions are considered and the shrinking core model is used to describe the rate of the oxidation reactions. The model is verified by simulating the particle oxidation reactions in a laboratory scale laminar-flow furnace under different conditions and the model predicts the effects of charges correctly. In the future, the model validation will be done after experimental studies in the laminar flow-furnace. (author) 18 refs.

  4. Quantitative cellular uptake of double fluorescent core-shelled model submicronic particles

    Energy Technology Data Exchange (ETDEWEB)

    Leclerc, Lara, E-mail: leclerc@emse.fr [Ecole Nationale Superieure des Mines, CIS-EMSE, LINA (France); Boudard, Delphine [LINA (France); Pourchez, Jeremie; Forest, Valerie [Ecole Nationale Superieure des Mines, CIS-EMSE, LINA (France); Marmuse, Laurence; Louis, Cedric [NANO-H S.A.S (France); Bin, Valerie [LINA (France); Palle, Sabine [Universite Jean Monnet, Centre de Microscopie Confocale Multiphotonique (France); Grosseau, Philippe; Bernache-Assollant, Didier [Ecole Nationale Superieure des Mines, CIS-EMSE, LINA (France); Cottier, Michele [LINA (France)

    2012-11-15

    The relationship between particles' physicochemical parameters, their uptake by cells and their degree of biological toxicity represent a crucial issue, especially for the development of new technologies such as fabrication of micro- and nanoparticles in the promising field of drug delivery systems. This work was aimed at developing a proof-of-concept for a novel model of double fluorescence submicronic particles that could be spotted inside phagolysosomes. Fluorescein isothiocyanate (FITC) particles were synthesized and then conjugated with a fluorescent pHrodo Trade-Mark-Sign probe, red fluorescence of which increases in acidic conditions such as within lysosomes. After validation in acellular conditions by spectral analysis with confocal microscopy and dynamic light scattering, quantification of phagocytosis was conducted on a macrophage cell line in vitro. The biological impact of pHrodo functionalization (cytotoxicity, inflammatory response, and oxidative stress) was also investigated. Results validate the proof-of-concept of double fluorescent particles (FITC + pHrodo), allowing detection of entirely engulfed pHrodo particles (green and red labeling). Moreover incorporation of pHrodo had no major effects on cytotoxicity compared to particles without pHrodo, making them a powerful tool for micro- and nanotechnologies.

  5. Preparation of porous carbon particle with shell/core structure

    Directory of Open Access Journals (Sweden)

    2007-05-01

    Full Text Available Porous carbon particles with a shell/core structure have been prepared successfully by controlled precipitation of the polymer from droplets of oil-in-water emulsion, followed by curing and carbonization. The droplets of the oil phase are composed of phenolic resin (PFR, a good solvent (ethyl acetate and porogen (Poly(methyl methacrylate, PMMA. The microstructure was characterized in detail by scanning electron microscopy (SEM, transmission electron microscopy (TEM, nitrogen adsorption, and thermo gravimetric analysis (TGA. The obtained carbon particles have a capsular structure with a microporous carbon shell and a mesoporous carbon core. The BET surface area and porous volume are calculated to be 499 m2g-1 and 0.56 cm3g-1, respectively. The effects of the amount of porogen (PMMA, co-solvent (acetone and surfactant on the resultant structure were studied in detail.

  6. The effect of particle-hole interaction on the XPS core-hole spectrum

    International Nuclear Information System (INIS)

    Ohno, Masahide; Sjoegren, Lennart

    2004-01-01

    How the effective particle-hole interaction energy, U, or the polarization effect on a secondary electron in a final two-hole one-particle (2h1p) state created by the Coster-Kronig (CK) transition can solely affect the density of the CK particle states and consequently the core-hole spectral function, is discussed. The X-ray photoelectron spectroscopy (XPS) core-hole spectrum is predominantly governed by the unperturbed initial core-hole energy relative to the zero-point energy. At the latter energy, the real part of the initial core-hole self-energy becomes zero (no relaxation energy shift) and the imaginary part (the lifetime broadening) approximately maximizes. The zero-point energy relative to the double-ionization threshold energy is governed by the ratio of U relative to the bandwidth of the CK continuum. As an example, we study the 5p XPS spectra of atomic Ra (Z=88), Th (Z=90) and U (Z=92). The spectra are interpreted in terms of the change in the unperturbed initial core-hole energy relative to the zero-point energy. We explain why in general an ab initio atomic many-body calculation can provide an overall good description of solid-state spectra predominantly governed by the atomic-like localized core-hole dynamics. We explain this in terms of the change from free atom to metal in both U and the zero-point energy (self-energy)

  7. Modeling of reflood of severely damaged reactor core

    International Nuclear Information System (INIS)

    Bachrata, A.

    2012-01-01

    nucleate boiling). Moreover, the criteria characterizing the transition between different flow regimes were completed. Currently, the French IRSN sets up two experimental facilities, PEARL and PRELUDE. The aim is to predict the consequences of the reflooding of a severely damaged reactor core where a large part of the core has collapsed and formed a debris bed e.g. particles with characteristic length-scale: 1 to 5 mm. This means the prediction of debris coolability, front propagation and steam production during the quenching after the water injection. A series of experiments performed in 2010-2012 at the PRELUDE facility has provided a large amount of new data that are summarized. On the basis of those experimental results, the thermal hydraulic features of the quench front have been analyzed and the intensity of heat transfer regimes is estimated. A three-equation model for the two phase flow in a heat-generating porous medium was validated. The quantitative validation of model with experimental results was realized and showed that the model provides satisfactory results. The model is able to predict the quench front velocity in the core, steam production (instantaneous and cumulated) as well as the pressure increase during reflood for different particle diameters and different injection liquid flows. (author)

  8. NUCORE - A system for nuclear structure calculations with cluster-core models

    International Nuclear Information System (INIS)

    Heras, C.A.; Abecasis, S.M.

    1982-01-01

    Calculation of nuclear energy levels and their electromagnetic properties, modelling the nucleus as a cluster of a few particles and/or holes interacting with a core which in turn is modelled as a quadrupole vibrator (cluster-phonon model). The members of the cluster interact via quadrupole-quadrupole and pairing forces. (orig.)

  9. Hollow-core photonic band gap fibers for particle acceleration

    Directory of Open Access Journals (Sweden)

    Robert J. Noble

    2011-12-01

    Full Text Available Photonic band gap (PBG dielectric fibers with hollow cores are being studied both theoretically and experimentally for use as laser driven accelerator structures. The hollow core functions as both a longitudinal waveguide for the transverse-magnetic (TM accelerating fields and a channel for the charged particles. The dielectric surrounding the core is permeated by a periodic array of smaller holes to confine the mode, forming a photonic crystal fiber in which modes exist in frequency passbands, separated by band gaps. The hollow core acts as a defect which breaks the crystal symmetry, and so-called defect, or trapped modes having frequencies in the band gap will only propagate near the defect. We describe the design of 2D hollow-core PBG fibers to support TM defect modes with high longitudinal fields and high characteristic impedance. Using as-built dimensions of industrially made fibers, we perform a simulation analysis of prototype PBG fibers with dimensions appropriate for speed-of-light TM modes.

  10. Synthesis and characterization of magnetic and non-magnetic core-shell polyepoxide micrometer-sized particles of narrow size distribution.

    Science.gov (United States)

    Omer-Mizrahi, Melany; Margel, Shlomo

    2009-01-15

    Core polystyrene microspheres of narrow size distribution were prepared by dispersion polymerization of styrene in a mixture of ethanol and 2-methoxy ethanol. Uniform polyglycidyl methacrylate/polystyrene core-shell micrometer-sized particles were prepared by emulsion polymerization at 73 degrees C of glycidyl methacrylate in the presence of the core polystyrene microspheres. Core-shell particles with different properties (size, surface morphology and composition) have been prepared by changing various parameters belonging to the above seeded emulsion polymerization process, e.g., volumes of the monomer glycidyl methacrylate and the crosslinker monomer ethylene glycol dimethacrylate. Magnetic Fe(3)O(4)/polyglycidyl methacrylate/polystyrene micrometer-sized particles were prepared by coating the former core-shell particles with magnetite nanoparticles via a nucleation and growth mechanism. Characterization of the various particles has been accomplished by routine methods such as light microscopy, SEM, FTIR, BET and magnetic measurements.

  11. Facile synthesis of silver immobilized-poly(methyl methacrylate)/polyethyleneimine core-shell particle composites

    Energy Technology Data Exchange (ETDEWEB)

    Jenjob, Somkieath [Department of Chemistry, Faculty of Science, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170 (Thailand); Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Ratchathewi, Bangkok 10400 (Thailand); Tharawut, Teeralak [Department of Chemistry, Faculty of Science, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170 (Thailand); Sunintaboon, Panya, E-mail: panya.sun@mahidol.ac.th [Department of Chemistry, Faculty of Science, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170 (Thailand); Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Ratchathewi, Bangkok 10400 (Thailand); Center for Alternative Energy, Faculty of Science, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170 (Thailand)

    2012-10-01

    A facile route to synthesize silver-embedded-poly(methyl methacrylate)/polyethyleneimine (PMMA/PEI-Ag) core-shell particle composites was illustrated in this present work. PMMA/PEI core-shell particle templates were first prepared by a surfactant-free emulsion polymerization. PEI on the templates' surface was further used to complex and reduce Ag{sup +} ions (from silver nitrate solution) to silver nanoparticles (AgNPs) at ambient temperature, resulting in the PMMA/PEI-Ag particle composites. The formation of AgNPs was affected by the pHs of the reaction medium. The pH of reaction medium at 6.5 was optimal for the formation of PMMA/PEI-Ag with good colloidal stability, which was confirmed by size and size distribution, FTIR spectroscopy, UV-vis spectroscopy and X-ray diffraction. Moreover, the amount of AgNO{sub 3} solution (4.17-12.50 g) was found to affect the formation of AgNPs. Transmission electron microscopy (TEM) indicated that the AgNPs were incorporated in the PMMA/PEI core-shell matrix, and had 6-10 nm in diameter. AgNPs immobilized on PMMA/PEI core-shell particles were also investigated by energy dispersive X-ray spectroscopy analysis mode extended from scanning electron microscopy (SEM/EDS). Furthermore, the presence of AgNPs was found to influence the thermal degradation behavior of PMMA/PEI particle composites as observed through thermogravimetric analysis (TGA). Highlights: Black-Right-Pointing-Pointer A 2-step synthesis of Ag immobilized-PMMA/PEI particle composites was shown. Black-Right-Pointing-Pointer PMMA/PEI core-shell templates were first formed and PEI assisted AgNP formation. Black-Right-Pointing-Pointer Formation of PMMA/PEI-Ag was affected by pH of medium and amount of AgNO{sub 3}. Black-Right-Pointing-Pointer PMMA/PEI-Ag can be confirmed by color change, UV-vis, TEM, SEM with EDS, and X-ray. Black-Right-Pointing-Pointer Effect of AgNPs on thermal degradation of PMMA/PEI-Ag can be observed through TGA.

  12. Review of Bose-Fermi and ''Supersymmetry'' models; problems in particle transfer tests

    International Nuclear Information System (INIS)

    Vergnes, M.

    1986-01-01

    The first case suggested for a supersymmetry in nuclei was that of a j = 3/2 particle coupled to an 0(6) core. A more recent and elaborate scheme is the ''multi-j'' supersymmetry, describing the coupling of a particle in more than just one orbital, with the three possible cores of the interacting boson model. A general survey of the particle transfer tests of these different models is presented and the results summarized. A comparison of IBFM-2 calculations with experimental data is discussed, as well as results of sum rules analysis. Present and future tests concerning extensions of the above mentioned models, particularly to odd-odd nuclei, are briefly indicated. It appears necessary to clearly determine if the origin of the difficulties outlined for transfer reactions indeed lies -as often suggested- in the simplified form of the transfer operator used in deriving the selection rules, and not in the models themselves

  13. Online selection of short-lived particles on many-core computer architectures in the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Zyzak, Maksym

    2016-01-01

    Modern experiments in heavy ion collisions operate with huge data rates that can not be fully stored on the currently available storage devices. Therefore the data flow should be reduced by selecting those collisions that potentially carry the information of the physics interest. The future CBM experiment will have no simple criteria for selecting such collisions and requires the full online reconstruction of the collision topology including reconstruction of short-lived particles. In this work the KF Particle Finder package for online reconstruction and selection of short-lived particles is proposed and developed. It reconstructs more than 70 decays, covering signals from all the physics cases of the CBM experiment: strange particles, strange resonances, hypernuclei, low mass vector mesons, charmonium, and open-charm particles. The package is based on the Kalman filter method providing a full set of the particle parameters together with their errors including position, momentum, mass, energy, lifetime, etc. It shows a high quality of the reconstructed particles, high efficiencies, and high signal to background ratios. The KF Particle Finder is extremely fast for achieving the reconstruction speed of 1.5 ms per minimum-bias AuAu collision at 25 AGeV beam energy on single CPU core. It is fully vectorized and parallelized and shows a strong linear scalability on the many-core architectures of up to 80 cores. It also scales within the First Level Event Selection package on the many-core clusters up to 3200 cores. The developed KF Particle Finder package is a universal platform for short- lived particle reconstruction, physics analysis and online selection.

  14. Online selection of short-lived particles on many-core computer architectures in the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Zyzak, Maksym

    2016-07-07

    Modern experiments in heavy ion collisions operate with huge data rates that can not be fully stored on the currently available storage devices. Therefore the data flow should be reduced by selecting those collisions that potentially carry the information of the physics interest. The future CBM experiment will have no simple criteria for selecting such collisions and requires the full online reconstruction of the collision topology including reconstruction of short-lived particles. In this work the KF Particle Finder package for online reconstruction and selection of short-lived particles is proposed and developed. It reconstructs more than 70 decays, covering signals from all the physics cases of the CBM experiment: strange particles, strange resonances, hypernuclei, low mass vector mesons, charmonium, and open-charm particles. The package is based on the Kalman filter method providing a full set of the particle parameters together with their errors including position, momentum, mass, energy, lifetime, etc. It shows a high quality of the reconstructed particles, high efficiencies, and high signal to background ratios. The KF Particle Finder is extremely fast for achieving the reconstruction speed of 1.5 ms per minimum-bias AuAu collision at 25 AGeV beam energy on single CPU core. It is fully vectorized and parallelized and shows a strong linear scalability on the many-core architectures of up to 80 cores. It also scales within the First Level Event Selection package on the many-core clusters up to 3200 cores. The developed KF Particle Finder package is a universal platform for short- lived particle reconstruction, physics analysis and online selection.

  15. Diffusion-limited reactions of hard-core particles in one dimension

    Science.gov (United States)

    Bares, P.-A.; Mobilia, M.

    1999-02-01

    We investigate three different methods to tackle the problem of diffusion-limited reactions (annihilation) of hard-core classical particles in one dimension. We first extend an approach devised by Lushnikov [Sov. Phys. JETP 64, 811 (1986)] and calculate for a single species the asymptotic long-time and/or large-distance behavior of the two-point correlation function. Based on a work by Grynberg and Stinchcombe [Phys. Rev. E 50, 957 (1994); Phys. Rev. Lett. 74, 1242 (1995); 76, 851 (1996)], which was developed to treat stochastic adsorption-desorption models, we provide in a second step the exact two-point (one- and two-time) correlation functions of Lushnikov's model. We then propose a formulation of the problem in terms of path integrals for pseudo- fermions. This formalism can be used to advantage in the multispecies case, especially when applying perturbative renormalization group techniques.

  16. The hard-core model on random graphs revisited

    International Nuclear Information System (INIS)

    Barbier, Jean; Krzakala, Florent; Zhang, Pan; Zdeborová, Lenka

    2013-01-01

    We revisit the classical hard-core model, also known as independent set and dual to vertex cover problem, where one puts particles with a first-neighbor hard-core repulsion on the vertices of a random graph. Although the case of random graphs with small and very large average degrees respectively are quite well understood, they yield qualitatively different results and our aim here is to reconciliate these two cases. We revisit results that can be obtained using the (heuristic) cavity method and show that it provides a closed-form conjecture for the exact density of the densest packing on random regular graphs with degree K ≥ 20, and that for K > 16 the nature of the phase transition is the same as for large K. This also shows that the hard-code model is the simplest mean-field lattice model for structural glasses and jamming

  17. Influence of core size on the upconversion luminescence properties of spherical Gd2O3:Yb3+/Er3+@SiO2 particles with core-shell structures

    International Nuclear Information System (INIS)

    Zheng, Kezhi; Liu, Zhenyu; Liu, Ye; Song, Weiye; Qin, Weiping

    2013-01-01

    Spherical SiO 2 particles with different sizes (30, 80, 120, and 180 nm) have been coated with Gd 2 O 3 :Yb 3+ /Er 3+ layers by a heterogeneous precipitation method, leading to the formation of core-shell structural Gd 2 O 3 :Yb 3+ /Er 3+ @SiO 2 particles. The samples were characterized by using X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, upconversion (UC) emission spectra, and fluorescent dynamical analysis. The obtained core-shell particles have perfect spherical shape with narrow size distribution. Under the excitation of 980 nm diode laser, the core-shell samples showed size-dependent upconversion luminescence (UCL) properties. The inner SiO 2 cores in core-shell samples were proved to have limited effect on the total UCL intensities of Er 3+ ions. The UCL intensities of core-shell particles were demonstrated much higher than the values obtained in pure Gd 2 O 3 :Yb 3+ /Er 3+ with the same phosphor volume. The dependence of the specific area of a UCL shell on the size of its inner SiO 2 particle was calculated and analyzed for the first time. It was confirmed that the surface effect came from the outer surfaces of emitting shells is dominant in influencing the UCL property in the core-shell samples. Three-photon UC processes for the green emissions were observed in the samples with small sizes of SiO 2 cores. The results of dynamical analysis illustrated that more nonradiative relaxation occurred in the core-shell samples with smaller SiO 2 core sizes

  18. Statistical study of particle acceleration in the core of foreshock transients

    OpenAIRE

    Liu, Terry Z.; Angelopoulos, Vassilis; Hietala, Heli; Wilson III, Lynn B.

    2017-01-01

    Several types of foreshock transients upstream of Earth's bow shock possessing a tenuous, hot core have been observed and simulated. Because of the low dynamic pressure in their cores, these phenomena can significantly disturb the bow shock and the magnetosphere-ionosphere system. Recent observations have also demonstrated that foreshock transients can accelerate particles which, when transported earthward, can affect space weather. Understanding the potential of foreshock transients to accel...

  19. Controlled Release from Core-Shell Nanoporous Silica Particles for Corrosion Inhibition of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Xingmao Jiang

    2011-01-01

    Full Text Available Cerium (Ce corrosion inhibitors were encapsulated into hexagonally ordered nanoporous silica particles via single-step aerosol-assisted self-assembly. The core/shell structured particles are effective for corrosion inhibition of aluminum alloy AA2024-T3. Numerical simulation proved that the core-shell nanostructure delays the release process. The effective diffusion coefficient elucidated from release data for monodisperse particles in water was 1.0×10−14 m2s for Ce3+ compared to 2.5×10−13 m2s for NaCl. The pore size, pore surface chemistry, and the inhibitor solubility are crucial factors for the application. Microporous hydrophobic particles encapsulating a less soluble corrosion inhibitor are desirable for long-term corrosion inhibition.

  20. Microstructures and performance of CaO-based ceramic cores with different particle size distributions for investment casting

    Science.gov (United States)

    Zhou, P. P.; Wu, G. Q.; Tao, Y.; Cheng, X.; Zhao, J. Q.; Nan, H.

    2018-02-01

    A series of calcium-based ceramic cores for casting titanium alloy were prepared by mixing different amounts of coarse and fine powders through injection molding. The effects of particle size on the microstructures and properties of the ceramic cores were investigated using quantitative and statistical analysis methods. It is found that the shrinkage and room-temperature strength of the ceramic cores were enhanced as increasing the contents of fine particles. Moreover, the creep resistance of the ceramic cores increased initially and then decreased. The increase in the fine particle content of the cores reduced the number and mean diameter of pores after sintering. The grain boundary density decreased firstly and then increased. The flexural strength of the ceramic cores at room temperature decreased with increasing porosity of ceramic cores, whereas the creep resistance increased with decreasing grain boundary density. A core exhibiting the optimal property was obtained when mixing 65 wt% of coarse powders (75-150 μm) and 35 wt% of fine powders (25-48 μm).

  1. Polystyrene Core-Silica Shell Particles with Defined Nanoarchitectures as a Versatile Platform for Suspension Array Technology.

    Science.gov (United States)

    Sarma, Dominik; Gawlitza, Kornelia; Rurack, Knut

    2016-04-19

    The need for rapid and high-throughput screening in analytical laboratories has led to significant growth in interest in suspension array technologies (SATs), especially with regard to cytometric assays targeting a low to medium number of analytes. Such SAT or bead-based assays rely on spherical objects that constitute the analytical platform. Usually, functionalized polymer or silica (SiO2) microbeads are used which each have distinct advantages and drawbacks. In this paper, we present a straightforward synthetic route to highly monodisperse SiO2-coated polystyrene core-shell (CS) beads for SAT with controllable architectures from smooth to raspberry- and multilayer-like shells by varying the molecular weight of poly(vinylpyrrolidone) (PVP), which was used as the stabilizer of the cores. The combination of both organic polymer core and a structurally controlled inorganic SiO2 shell in one hybrid particle holds great promises for flexible next-generation design of the spherical platform. The particles were characterized by electron microscopy (SEM, T-SEM, and TEM), thermogravimetry, flow cytometry, and nitrogen adsorption/desorption, offering comprehensive information on the composition, size, structure, and surface area. All particles show ideal cytometric detection patterns and facile handling due to the hybrid structure. The beads are endowed with straightforward modification possibilities through the defined SiO2 shells. We successfully implemented the particles in fluorometric SAT model assays, illustrating the benefits of tailored surface area which is readily available for small-molecule anchoring. Very promising assay performance was shown for DNA hybridization assays with quantification limits down to 8 fmol.

  2. Fracture resistance improvement of polypropylene by joint action of core-shell particles and nucleating agent

    International Nuclear Information System (INIS)

    Yang Gang; Han Liang; Ding Haifeng; Wu Haiyan; Huang Ting; Li Xiaoxi; Wang Yong

    2011-01-01

    Research highlights: →The core-shell particles, which were prepared from melt blending of POE and nano-CaCO 3 , and different nucleating agents (α-form NA or β-form NA) were first introduced into PP to prepare the super toughened PP materials. →NAs control the crystalline structures of PP matrix including the spherulites diameter and the crystal form. →NAs and core-shell particles exhibit apparent joint effect in improving the fracture resistance of PP. - Abstract: As a serial work about the fracture resistance improvement of polypropylene (PP), this work reports the joint effect of core-shell particles and nucleating agent (NA) on the microstructure and fracture resistance of PP. Core-shell particles were prepared through melt blending of ethylene-octene copolymer (POE) and calcium carbonate (CaCO 3 ). Different NA, i.e. α-form NA (P-tert-butylbenzoic acid-Al, MD-NA-28) and β-form NA (aryl amides compound, TMB-5) were introduced into PP matrix to control the crystalline structure. The phase morphology of POE and the distribution of CaCO 3 were characterized by using scanning electron microscope (SEM), and the crystallization behavior of PP matrix were investigated by using differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and polarization optical microscope (POM). The mechanical properties were obtained through universal tensile measurement and notched Izod impact measurement. Surprisingly, the results show that through addition of so-called core-shell particles and NA simultaneously, the fracture resistance of PP can be dramatically improved.

  3. Core-Shell Particles as Building Blocks for Systems with High Duality Symmetry

    Science.gov (United States)

    Rahimzadegan, Aso; Rockstuhl, Carsten; Fernandez-Corbaton, Ivan

    2018-05-01

    Material electromagnetic duality symmetry requires a system to have equal electric and magnetic responses. Intrinsically dual materials that meet the duality conditions at the level of the constitutive relations do not exist in many frequency bands. Nevertheless, discrete objects like metallic helices and homogeneous dielectric spheres can be engineered to approximate the dual behavior. We exploit the extra degrees of freedom of a core-shell dielectric sphere in a particle optimization procedure. The duality symmetry of the resulting particle is more than 1 order of magnitude better than previously reported nonmagnetic objects. We use T -matrix-based multiscattering techniques to show that the improvement is transferred onto the duality symmetry of composite objects when the core-shell particle is used as a building block instead of homogeneous spheres. These results are relevant for the fashioning of systems with high duality symmetry, which are required for some technologically important effects.

  4. Core/shell silicon/polyaniline particles via in-flight plasma-induced polymerization

    International Nuclear Information System (INIS)

    Yasar-Inceoglu, Ozgul; Mangolini, Lorenzo; Zhong, Lanlan

    2015-01-01

    Although silicon nanoparticles have potential applications in many relevant fields, there is often the need for post-processing steps to tune the property of the nanomaterial and to optimize it for targeted applications. In particular surface modification is generally necessary to both tune dispersibility of the particles in desired solvents to achieve optimal coating conditions, and to interface the particles with other materials to realize functional heterostructures. In this contribution we discuss the realization of core/shell silicon/polymer nanoparticles realized using a plasma-initiated in-flight polymerization process. Silicon particles are produced in a non-thermal plasma reactor using silane as a precursor. After synthesis they are aerodynamically injected into a second plasma reactor into which aniline vapor is introduced. The second plasma initiates the polymerization reactor leading to the formation of a 3–4 nm thick polymer shell surrounding the silicon core. The role of processing conditions on the properties of the polymeric shell is discussed. Preliminary results on the testing of this material as an anode for lithium ion batteries are presented. (paper)

  5. Core/shell silicon/polyaniline particles via in-flight plasma-induced polymerization

    Science.gov (United States)

    Yasar-Inceoglu, Ozgul; Zhong, Lanlan; Mangolini, Lorenzo

    2015-08-01

    Although silicon nanoparticles have potential applications in many relevant fields, there is often the need for post-processing steps to tune the property of the nanomaterial and to optimize it for targeted applications. In particular surface modification is generally necessary to both tune dispersibility of the particles in desired solvents to achieve optimal coating conditions, and to interface the particles with other materials to realize functional heterostructures. In this contribution we discuss the realization of core/shell silicon/polymer nanoparticles realized using a plasma-initiated in-flight polymerization process. Silicon particles are produced in a non-thermal plasma reactor using silane as a precursor. After synthesis they are aerodynamically injected into a second plasma reactor into which aniline vapor is introduced. The second plasma initiates the polymerization reactor leading to the formation of a 3-4 nm thick polymer shell surrounding the silicon core. The role of processing conditions on the properties of the polymeric shell is discussed. Preliminary results on the testing of this material as an anode for lithium ion batteries are presented.

  6. Highly temperature responsive core-shell magnetic particles: synthesis, characterization and colloidal properties.

    Science.gov (United States)

    Rahman, Md Mahbubor; Chehimi, Mohamed M; Fessi, Hatem; Elaissari, Abdelhamid

    2011-08-15

    Temperature responsive magnetic polymer submicron particles were prepared by two step seed emulsion polymerization process. First, magnetic seed polymer particles were obtained by emulsion polymerization of styrene using potassium persulfate (KPS) as an initiator and divinylbenzne (DVB) as a cross-linker in the presence of oil-in-water magnetic emulsion (organic ferrofluid droplets). Thereafter, DVB cross-linked magnetic polymer particles were used as seed in the precipitation polymerization of N-isopropylacrylamide (NIPAM) to induce thermosensitive PNIPAM shell onto the hydrophobic polymer surface of the cross-linked magnetic polymer particles. To impart cationic functional groups in the thermosensitive PNIPAM backbone, the functional monomer aminoethylmethacrylate hydrochloride (AEMH) was used to polymerize with NIPAM while N,N'-methylenebisacrylamide (MBA) and 2, 2'-azobis (2-methylpropionamidine) dihydrochloride (V-50) were used as a cross-linker and as an initiator respectively. The effect of seed to monomer (w/w) ratio along with seed nature on the final particle morphology was investigated. Dynamic light scattering (DLS) results demonstrated particles swelling at below volume phase transition temperature (VPTT) and deswelling above the VPTT. The perfect core (magnetic) shell (polymer) structure of the particles prepared was confirmed by Transmission Electron Microscopy (TEM). The chemical composition of the particles were determined by thermogravimetric analysis (TGA). The effect of temperature, pH, ionic strength on the colloidal properties such as size and zeta potential of the micron sized thermo-sensitive magnetic particles were also studied. In addition, a short mechanistic discussion on the formation of core-shell morphology of magnetic polymer particles has also been discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Modeling analysis of pulsed magnetization process of magnetic core based on inverse Jiles-Atherton model

    Science.gov (United States)

    Liu, Yi; Zhang, He; Liu, Siwei; Lin, Fuchang

    2018-05-01

    The J-A (Jiles-Atherton) model is widely used to describe the magnetization characteristics of magnetic cores in a low-frequency alternating field. However, this model is deficient in the quantitative analysis of the eddy current loss and residual loss in a high-frequency magnetic field. Based on the decomposition of magnetization intensity, an inverse J-A model is established which uses magnetic flux density B as an input variable. Static and dynamic core losses under high frequency excitation are separated based on the inverse J-A model. Optimized parameters of the inverse J-A model are obtained based on particle swarm optimization. The platform for the pulsed magnetization characteristic test is designed and constructed. The hysteresis curves of ferrite and Fe-based nanocrystalline cores at high magnetization rates are measured. The simulated and measured hysteresis curves are presented and compared. It is found that the inverse J-A model can be used to describe the magnetization characteristics at high magnetization rates and to separate the static loss and dynamic loss accurately.

  8. Controlled Release from Core-Shell Nano porous Silica Particles for Corrosion Inhibition of Aluminum Alloys

    International Nuclear Information System (INIS)

    Jiang, X.; Rathod, Sh.; Shah, P.; Brinker, C.J.; Jiang, X.; Jiang, Y.; Liu, N.; Xu, H.; Brinker, C.J.

    2011-01-01

    Cerium (Ce) corrosion inhibitors were encapsulated into hexagonally ordered nanoporous silica particles via single-step aerosol-assisted self-assembly. The core/shell structured particles are effective for corrosion inhibition of aluminum alloy AA2024-T3. Numerical simulation proved that the core-shell nanostructure delays the release process. The effective diffusion coefficient elucidated from release data for monodisperse particles in water was 1.0x10-14 m 2 s for Ce 3+ compared to 2.5x10-13 m 2 s for NaCl. The pore size, pore surface chemistry, and the inhibitor solubility are crucial factors for the application. Microporous hydrophobic particles encapsulating a less soluble corrosion inhibitor are desirable for long-term corrosion inhibition.

  9. Controllable dielectric and electrical performance of polymer composites with novel core/shell-structured conductive particles through biomimetic method

    International Nuclear Information System (INIS)

    Yang, Dan; Tian, Ming; Wang, Wencai; Li, Dongdong; Li, Runyuan; Liu, Haoliang; Zhang, Liqun

    2013-01-01

    Highlights: ► Conductive core/shell-structured particles were synthesized by biomimetic method. ► These particles with silica/poly(dopamine)/silver core and poly(dopamine) shell. ► Dielectric composites were prepared with resulted particles and silicone elastomer. ► The dielectric properties of the composites can be controlled by shell thickness. ► This biomimetic method is simple, nontoxic, efficient and easy to control. - Abstract: Novel silica/poly(dopamine)/silver (from inner to outer) (denoted as SiO 2 /PDA/Ag) conductive micro-particles were first synthesized by biomimetic poly(dopamine) coating. These micro-particles were then coated with a poly(dopamine) layer to form core/shell-structured particles, with silica/poly(dopamine)/silver core and poly(dopamine) shell (denoted as SiO 2 /PDA/Ag/PDA). This multilayer core/shell micro-particles were confirmed by scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and transmission electron microscope. Polymer composites were then prepared by mechanical blending of poly(dimethyl siloxane) and the core/shell-structured particles. It was found that the silver layer and the poly(dopamine) shell had good adhesion with substrate and they kept intact even under violent shearing stress during mechanical mixing. The effect of the thickness of outermost poly(dopamine) shell as well as the loading amount of this filler on the dielectric and electrical properties of the composites was further studied. The results showed that the dielectric constant, dielectric loss, and conductivity of the composites decreased with increasing shell thickness (10–53 nm) at the same loading level. And the maximal dielectric constant of composites was achieved in the composites filled with SiO 2 /PDA/Ag/PDA (with 10–15 nm PDA shell) particles, which was much larger than that of the composite filled with SiO 2 /PDA/Ag particles without insulative PDA shell. At the same time, the composites can change

  10. Isostructural solid-solid phase transition in monolayers of soft core-shell particles at fluid interfaces: structure and mechanics.

    Science.gov (United States)

    Rey, Marcel; Fernández-Rodríguez, Miguel Ángel; Steinacher, Mathias; Scheidegger, Laura; Geisel, Karen; Richtering, Walter; Squires, Todd M; Isa, Lucio

    2016-04-21

    We have studied the complete two-dimensional phase diagram of a core-shell microgel-laden fluid interface by synchronizing its compression with the deposition of the interfacial monolayer. Applying a new protocol, different positions on the substrate correspond to different values of the monolayer surface pressure and specific area. Analyzing the microstructure of the deposited monolayers, we discovered an isostructural solid-solid phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases corresponded to shell-shell and core-core inter-particle contacts, respectively; with increasing surface pressure the former mechanically failed enabling the particle cores to come into contact. In the phase-transition region, clusters of particles in core-core contacts nucleate, melting the surrounding shell-shell crystal, until the whole monolayer moves into the second phase. We furthermore measured the interfacial rheology of the monolayers as a function of the surface pressure using an interfacial microdisk rheometer. The interfaces always showed a strong elastic response, with a dip in the shear elastic modulus in correspondence with the melting of the shell-shell phase, followed by a steep increase upon the formation of a percolating network of the core-core contacts. These results demonstrate that the core-shell nature of the particles leads to a rich mechanical and structural behavior that can be externally tuned by compressing the interface, indicating new routes for applications, e.g. in surface patterning or emulsion stabilization.

  11. Beam halo studies using a three-dimensional particle-core model

    Directory of Open Access Journals (Sweden)

    Ji Qiang

    2000-06-01

    Full Text Available In this paper we present a study of beam halo based on a three-dimensional particle-core model of an ellipsoidal bunched beam in a constant focusing channel including the effects of nonlinear rf focusing. For an initially mismatched beam, three linear envelope modes—a high frequency mode, a low frequency mode, and a quadrupole mode—are identified for an azimuthally symmetric bunched beam. The high frequency mode has three components all in phase; the low frequency mode has the transverse components in phase and the longitudinal component 180° out of phase; the quadrupole mode has no longitudinal component, and the two transverse components in the mode are 180° out of phase. We also study the case of an ellipsoidal bunched beam without azimuthal symmetry and find that the high frequency mode and the low frequency mode are still present but the quadrupole mode is replaced by a new mode with transverse components 180° out of phase and a nonzero longitudinal component. Previous studies, which generally addressed the situation where the longitudinal-to-transverse focusing strength is roughly 0.6 or less, conclude that the oscillation of the high frequency mode is predominantly transverse, and that of the low frequency mode is predominantly longitudinal. In this paper we present a systematic study of the features of the modes as a function of the longitudinal-to-transverse focusing strength ratio. We find that, when the ratio is greater than unity, the high frequency mode may contain a significant longitudinal component. Thus, excitation of the high frequency mode in this situation can be responsible for the formation of longitudinal beam halo. Furthermore, while previous studies have observed halo amplitudes roughly 2–3 times the matched beam edge, for the present parameters we observe much larger amplitudes (5 times or more. This is due to the fact that the longitudinal-to-transverse focusing ratio used here is greater than that of previous

  12. No-Core Shell Model for A = 47 and A = 49

    Energy Technology Data Exchange (ETDEWEB)

    Vary, J P; Negoita, A G; Stoica, S

    2006-11-13

    We apply the no-core shell model to the nuclear structure of odd-mass nuclei straddling {sup 48}Ca. Starting with the NN interaction, that fits two-body scattering and bound state data, we evaluate the nuclear properties of A = 47 and A = 49 nuclei while preserving all the underlying symmetries. Due to model space limitations and the absence of three-body interactions, we incorporate phenomenological interaction terms determined by fits to A = 48 nuclei in a previous effort. Our modified Hamiltonian produces reasonable spectra for these odd-mass nuclei. In addition to the differences in single-particle basis states, the absence of a single-particle Hamiltonian in our no-core approach complicates comparisons with valence effective NN interactions. We focus on purely off-diagonal two-body matrix elements since they are not affected by ambiguities in the different roles for one-body potentials and we compare selected sets of fp-shell matrix elements of our initial and modified Hamiltonians in the harmonic oscillator basis with those of a recent model fp-shell interaction, the GXPF1 interaction of Honma et al. While some significant differences emerge from these comparisons, there is an overall reasonably good correlation between our off-diagonal matrix elements and those of GXPF1.

  13. MODELLING CHALCOPYRITE LEACHING BY Fe+3 IONS WITH THE SHRINKING CORE MODEL

    Directory of Open Access Journals (Sweden)

    Rodrigo Rangel Porcaro

    2015-03-01

    Full Text Available Chalcopyrite leaching by ferric iron is considered a slow process with low copper recovery; a phenomenon ascribed to the passivation of the mineral surface during leaching. Thus, the current study investigated the leaching kinetics of a high purity chalcopyrite sample in the presence of ferric sulfate as oxidant. The effects of the stirring rate, temperature, Eh and Fe3+ concentration on copper extraction were assessed. The leaching data could be described by the shirking core model (SCM for particles of unchanging size and indicated diffusion in the ash layer as the rate-controlling step with a high activation energy (103.9±6.5kJ/mol; likely an outcome of neglecting the effect of particle size distribution (PSD on the kinetics equations. Both the application of the quasi-steady-state assumption to solid-liquid systems and the effect of the particle size distribution on the interpretation of kinetics data are also discussed.

  14. Synthesis of Cu/SiO2 Core-Shell Particles Using Hyperbranched Polyester as Template and Dispersant

    Science.gov (United States)

    Han, Wensong

    2017-07-01

    Third-generation hyperbranched polyester (HBPE3) was synthesized by stepwise polymerization with N, N-diethylol-3-amine methylpropionate as AB2 monomer and pentaerythritol as core molecule. Then, Cu particles were prepared by reduction of copper nitrate with ascorbic acid in aqueous solution using HBPE3 as template. Finally, Cu/SiO2 particles were prepared by coating silica on the surface of Cu particles. The structure and morphology of the samples were characterized by Fourier-transform infrared (FT-IR) spectrometry, x-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The results confirmed the formation of the silica coating on the surface of Cu and that the Cu/SiO2 particles had spherical shape with particle size in the range of 0.8 μm to 2 μm. Compared with pure Cu, the synthesized Cu/SiO2 core-shell particles exhibited better oxidation resistance at high temperature. Moreover, the oxidation resistance of the Cu/SiO2 particles increased significantly with increasing tetraethyl orthosilicate (TEOS) concentration.

  15. WNP-2 core model upgrade

    International Nuclear Information System (INIS)

    Golightly, C.E.; Ravindranath, T.K.; Belblidia, L.A.; O'Farrell, D.; Andersen, P.S.

    2006-01-01

    The paper describes the core model upgrade of the WNP-2 training simulator and the reasons for the upgrade. The core model as well as the interface with the rest of the simulator are briefly described . The paper also describes the procedure that will be used by WNP-2 to update the simulator core data after future core reloads. Results from the fully integrated simulator are presented. (author)

  16. Symplectic no-core shell-model approach to intermediate-mass nuclei

    Science.gov (United States)

    Tobin, G. K.; Ferriss, M. C.; Launey, K. D.; Dytrych, T.; Draayer, J. P.; Dreyfuss, A. C.; Bahri, C.

    2014-03-01

    We present a microscopic description of nuclei in the intermediate-mass region, including the proximity to the proton drip line, based on a no-core shell model with a schematic many-nucleon long-range interaction with no parameter adjustments. The outcome confirms the essential role played by the symplectic symmetry to inform the interaction and the winnowing of shell-model spaces. We show that it is imperative that model spaces be expanded well beyond the current limits up through 15 major shells to accommodate particle excitations, which appear critical to highly deformed spatial structures and the convergence of associated observables.

  17. Nuclear reactor core modelling in multifunctional simulators

    International Nuclear Information System (INIS)

    Puska, E.K.

    1999-01-01

    The thesis concentrates on the development of nuclear reactor core models for the APROS multifunctional simulation environment and the use of the core models in various kinds of applications. The work was started in 1986 as a part of the development of the entire APROS simulation system. The aim was to create core models that would serve in a reliable manner in an interactive, modular and multifunctional simulator/plant analyser environment. One-dimensional and three-dimensional core neutronics models have been developed. Both models have two energy groups and six delayed neutron groups. The three-dimensional finite difference type core model is able to describe both BWR- and PWR-type cores with quadratic fuel assemblies and VVER-type cores with hexagonal fuel assemblies. The one- and three-dimensional core neutronics models can be connected with the homogeneous, the five-equation or the six-equation thermal hydraulic models of APROS. The key feature of APROS is that the same physical models can be used in various applications. The nuclear reactor core models of APROS have been built in such a manner that the same models can be used in simulator and plant analyser applications, as well as in safety analysis. In the APROS environment the user can select the number of flow channels in the three-dimensional reactor core and either the homogeneous, the five- or the six-equation thermal hydraulic model for these channels. The thermal hydraulic model and the number of flow channels have a decisive effect on the calculation time of the three-dimensional core model and thus, at present, these particular selections make the major difference between a safety analysis core model and a training simulator core model. The emphasis on this thesis is on the three-dimensional core model and its capability to analyse symmetric and asymmetric events in the core. The factors affecting the calculation times of various three-dimensional BWR, PWR and WWER-type APROS core models have been

  18. Nuclear reactor core modelling in multifunctional simulators

    Energy Technology Data Exchange (ETDEWEB)

    Puska, E.K. [VTT Energy, Nuclear Energy, Espoo (Finland)

    1999-06-01

    The thesis concentrates on the development of nuclear reactor core models for the APROS multifunctional simulation environment and the use of the core models in various kinds of applications. The work was started in 1986 as a part of the development of the entire APROS simulation system. The aim was to create core models that would serve in a reliable manner in an interactive, modular and multifunctional simulator/plant analyser environment. One-dimensional and three-dimensional core neutronics models have been developed. Both models have two energy groups and six delayed neutron groups. The three-dimensional finite difference type core model is able to describe both BWR- and PWR-type cores with quadratic fuel assemblies and VVER-type cores with hexagonal fuel assemblies. The one- and three-dimensional core neutronics models can be connected with the homogeneous, the five-equation or the six-equation thermal hydraulic models of APROS. The key feature of APROS is that the same physical models can be used in various applications. The nuclear reactor core models of APROS have been built in such a manner that the same models can be used in simulator and plant analyser applications, as well as in safety analysis. In the APROS environment the user can select the number of flow channels in the three-dimensional reactor core and either the homogeneous, the five- or the six-equation thermal hydraulic model for these channels. The thermal hydraulic model and the number of flow channels have a decisive effect on the calculation time of the three-dimensional core model and thus, at present, these particular selections make the major difference between a safety analysis core model and a training simulator core model. The emphasis on this thesis is on the three-dimensional core model and its capability to analyse symmetric and asymmetric events in the core. The factors affecting the calculation times of various three-dimensional BWR, PWR and WWER-type APROS core models have been

  19. Chemical resistance of core-shell particles (PS/PMMA) polymerized by seeded suspension

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Luiz Fernando Belchior; Machado, Ricardo Antonio Francisco, E-mail: ricardo.machado@ufsc.br [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Departamento de Engenharia de Materiais; Gonçalves, Odinei Hess [Universidade Técnológica Federal do Paraná(UTFPR), Campo Mourão, PR (Brazil); Marangoni, Cintia [Universidade Federal de Santa Catarina (UFSC), Blumenau, SC (Brazil); Motz, Günter [Lehrstuhl Keramische Werkstoffe, Universität Bayreuth (Germany)

    2017-07-01

    Core-shell particles were produced on seeded suspension polymerization by using polystyrene (PS) as polymer core, or seed, and methyl methacrylate (MMA) as the shell forming monomer. Two synthesis routes were evaluated by varying the PS seed conversion before MMA addition. The main purpose of this work was to investigate the influence of synthesis routes on the morphology and chemical resistance of the resulting particles. {sup 1}H NMR spectroscopy showed that the use of PS seeds with lower conversion led to the formation of higher amount of poly(styrene-co-MMA). The copolymer acted as a compatibilizer, decreasing the interfacial energy between both homopolymers. As a consequence, a larger amount of reduced PMMA cluster were formed, as was revealed by TEM measurements. Samples in this system showed enhanced resistance to cyclohexane attack compared with pure PS, with a PS extraction of only 37% after 54 hours test. (author)

  20. Chemical resistance of core-shell particles (PS/PMMA polymerized by seeded suspension

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Belchior Ribeiro

    2017-09-01

    Full Text Available Abstract Core-shell particles were produced on seeded suspension polymerization by using polystyrene (PS as polymer core, or seed, and methyl methacrylate (MMA as the shell forming monomer. Two synthesis routes were evaluated by varying the PS seed conversion before MMA addition. The main purpose of this work was to investigate the influence of synthesis routes on the morphology and chemical resistance of the resulting particles. 1H NMR spectroscopy showed that the use of PS seeds with lower conversion led to the formation of higher amount of poly(styrene-co-MMA. The copolymer acted as a compatibilizer, decreasing the interfacial energy between both homopolymers. As a consequence, a larger amount of reduced PMMA cluster were formed, as was revealed by TEM measurements. Samples in this system showed enhanced resistance to cyclohexane attack compared with pure PS, with a PS extraction of only 37% after 54 hours test.

  1. Comparative study of random and uniform models for the distribution of TRISO particles in HTR-10 fuel elements

    International Nuclear Information System (INIS)

    Rosales, J.; Perez, J.; Garcia, C.; Munnoz, A.; Lira, C. A. B. O.

    2015-01-01

    TRISO particles are the specific features of HTR-10 and generally HTGR reactors. Their heterogeneity and random arrangement in graphite matrix of these reactors create a significant modeling challenge. In the simulation of spherical fuel elements using MCNPX are usually created repetitive structures using uniform distribution models. The use of these repetitive structures introduces two major approaches: the non-randomness of the TRISO particles inside the pebbles and the intersection of the pebble surface with the TRISO particles. These approaches could affect significantly the multiplicative properties of the core. In order to study the influence of these approaches in the multiplicative properties was estimated the K inf value in one pebble with white boundary conditions using 4 different configurations regarding the distribution of the TRISO particles inside the pebble: uniform hexagonal model, cubic uniform model, cubic uniform without the effect of cutting and a random distribution model. It was studied the impact these models on core scale solving the problem B1, from the Benchmark Problems presented in a Coordinated Research Program of the IAEA. (Author)

  2. Core–shell composite particles composed of biodegradable polymer particles and magnetic iron oxide nanoparticles for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Chiemi; Ushimaru, Kazunori [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Horiishi, Nanao [Bengala Techno Laboratory, 9-5-1006, 1-1 Kodai, Miyamae-ku, Kawasaki 216-0007 (Japan); Tsuge, Takeharu [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Kitamoto, Yoshitaka, E-mail: kitamoto.y.aa@m.titech.ac.jp [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2015-05-01

    Core–shell composite particles with biodegradability and superparamagnetic behavior were prepared using a Pickering emulsion for targeted drug delivery based on magnetic guidance. The composite particles were composed of a core of biodegradable polymer and a shell of assembled magnetic iron oxide nanoparticles. It was found that the dispersibility of the nanoparticles is crucial for controlling the core–shell structure. The addition of a small amount of dispersant into the nanoparticle's suspension could improve the dispersibility and led to the formation of composite particles with a thin magnetic shell covering a polymeric core. The composite particles were also fabricated with a model drug loaded into the core, which was released via hydrolysis of the core under strong alkaline conditions. Because the core can also be biodegraded by lipase, this result suggests that the slow release of the drug from the composite particles should occur inside the body. - Highlights: • Core−shell composites with biodegradability and magnetism are prepared. • O/W emulsion stabilized by iron oxide nanoparticles is utilized for the preparation. • The nanoparticle's dispersibility is crucial for controlling the composite structure. • Composites loading a model drug are also prepared. • The model drug is released with decomposition of the composites.

  3. Fluoride adsorption from aqueous solution by magnetic core-shell Fe_3O_4@alginate-La particles fabricated via electro-coextrusion

    International Nuclear Information System (INIS)

    Zhang, Yahui; Lin, Xiaoyan; Zhou, Quisheng; Luo, Xuegang

    2016-01-01

    Graphical abstract: The magnetic core-shell Fe_3O_4@Alg-La particles were fabricated successfully by a simple method of electro-coextrusion, and employed as an adsorbent for separation of fluoride from aqueous solution. - Highlights: • Magnetic core-shell Fe_3O_4@Alg-La particles were prepared by electro-coextrusion. • The maximum adsorption capacity for fluoride at 298.15 K was 45.230 mg/g. • The adsorbent has a good saturation magnetization value. • The adsorbent has a great potential in removing the fluoride. - Abstract: The magnetic core-shell Fe_3O_4@Alg-La particles were fabricated successfully by a simple method of electro-coextrusion, and employed as an adsorbent for separation of fluoride from aqueous solution. Main factors affecting the removal of fluoride, including pH, adsorbent dosage, initial concentration, temperature and contact time were investigated. The adsorption isotherm and adsorption kinetics were studied to understand the adsorption process in detail. The experimental data were fitted well by the non-linear Freundlich isotherm and linear pseudo-second-order model, the maximum fluoride adsorption capacity was 45.230 mg/g at pH 4, 298.15 K. Thermodynamic parameters indicated that the fluoride adsorption process was feasible and spontaneous. The presence of other anions like Cl"−, SO_4"2"−, HCO_3"− and PO_4"3"− had almost no effect on the fluoride adsorption. The adsorbent can be easily separated from the solution by a magnet. The magnetic core-shell Fe_3O_4@Alg-La particles before and after fluoride adsorption were studied by SEM, FTIR, EDX and XPS, which indicated that the adsorption mechanism may be related to electrostatic attraction and Lewis acid-base interaction.

  4. Two quasi-particle excitations with particle-hole core polarization in even-even single closed shell nuclei

    International Nuclear Information System (INIS)

    Gillet, V.; Giraud, B.; Rho, M.

    1976-01-01

    The energy levels and transition properties of the even-even N=28, 50 isotones and Z=28, 50, 82 isotopes are calculated in the framework of the Tamm-Dancoff and Random Phase Approximation, with an effective central interaction in an extended space consisting of two quasi-particle configurations for the open shell and particle-hole configurations for the closed core. Using the results of the Inverse Gap Equation Method, practically all the necessary input data (single quasi-particle energies, force strength) are extracted from the odd-mass nuclei. The ratios of the force components are kept at fixed values for all studied nuclei and no effective charge is used. An overall excellent agreement is obtained for the energies of the vibrational states. On the other hand, while the transition properties of the 3 - states are always well reproduced, those of the 2 + and 4 + states are often too small by about one order of magnitude [fr

  5. Incorporation of deoxyribonucleotides and ribonucleotides by a dNTP-binding cleft mutated reverse transcriptase in hepatitis B virus core particles

    International Nuclear Information System (INIS)

    Kim, Hee-Young; Kim, Hye-Young; Jung, Jaesung; Park, Sun; Shin, Ho-Joon; Kim, Kyongmin

    2008-01-01

    Our recent observation that hepatitis B virus (HBV) DNA polymerase (P) might initiate minus-strand DNA synthesis without primer [Kim et al., (2004) Virology 322, 22-30], raised a possibility that HBV P protein may have the potential to function as an RNA polymerase. Thus, we mutated Phe 436, a bulky amino acid with aromatic side chain, at the putative dNTP-binding cleft in reverse transcriptase (RT) domain of P protein to smaller amino acids (Gly or Val), and examined RNA polymerase activity. HBV core particles containing RT dNTP-binding cleft mutant P protein were able to incorporate 32 P-ribonucleotides, but not HBV core particles containing wild type (wt), priming-deficient mutant, or RT-deficient mutant P proteins. Since all the experiments were conducted with core particles isolated from transfected cells, our results indicate that the HBV RT mutant core particles containing RT dNTP-binding cleft mutant P protein could incorporate both deoxyribonucleotides and ribonucleotides in replicating systems

  6. CQPSO scheduling algorithm for heterogeneous multi-core DAG task model

    Science.gov (United States)

    Zhai, Wenzheng; Hu, Yue-Li; Ran, Feng

    2017-07-01

    Efficient task scheduling is critical to achieve high performance in a heterogeneous multi-core computing environment. The paper focuses on the heterogeneous multi-core directed acyclic graph (DAG) task model and proposes a novel task scheduling method based on an improved chaotic quantum-behaved particle swarm optimization (CQPSO) algorithm. A task priority scheduling list was built. A processor with minimum cumulative earliest finish time (EFT) was acted as the object of the first task assignment. The task precedence relationships were satisfied and the total execution time of all tasks was minimized. The experimental results show that the proposed algorithm has the advantage of optimization abilities, simple and feasible, fast convergence, and can be applied to the task scheduling optimization for other heterogeneous and distributed environment.

  7. Capillary micromechanics for core-shell particles

    NARCIS (Netherlands)

    Kong, T.; Wang, Liqiu; Wyss, H.M.; Shum, H.C.

    2014-01-01

    In this work, we have developed a facile, economical microfluidic approach as well as a simple model description to measure and predict the mechanical properties of composite core–shell microparticles made from materials with dramatically different elastic properties. By forcing the particles

  8. Relationship between polycyclic aromatic hydrocarbons (PAHs) and particle size in dated core sediments in Lake Lianhuan, Northeast China

    International Nuclear Information System (INIS)

    Sun, Li; Zang, Shuying

    2013-01-01

    Atmospheric particle associated with pyrogenic polycyclic aromatic hydrocarbons (PAHs) poses serious threats to human health by inhalation exposure, especially in semiarid areas. Hence, the distributions of PAHs and particle size in two core sediments collected from Lake Lianhuan, Northeast China were studied. The sediments were dated radiometrically, and particle size distribution and PAH concentration were evaluated and potential human health risk was assessed. From 1980 to 2007, the dominant PAHs in the two cores were 2- and 3-ring PAHs, and the concentrations of 3–6 ring PAHs gradually increased from the early 1990s. Diagnostic ratios indicated that pyrogenic PAHs were the main sources of PAHs which changed over time from combustions of wood and coal to liquid fossil fuel sources. Fine particles ( 125 μm were found. Future research should focus on the seven carcinogenic pyrogenic PAHs due to a rapidly increasing trend since 1995 based on the assessment of toxic equivalency factors. - Highlights: • PAHs and particle size in core sediments were used to evaluate the role of eolian particles in delivering pyrogenic PAHs. • Changes of PAH sources closely followed local historical socioeconomic development since 1980s. • Changes of particulate sources from eolian to lacustrine reflected the evolving history of the lake. • Significant correlations between pyrogenic PAHs and eolian particles indicated potential risk from inhalation exposure. • Petroleum source PAHs are likely to stick to coarse particles and accumulate in lake sediments by surface runoff

  9. ZnO core spike particles and nano-networks and their wide range of applications

    Science.gov (United States)

    Wille, S.; Mishra, Y. K.; Gedamu, D.; Kaps, S.; Jin, X.; Koschine, T.; Bathnagar, A.; Adelung, R.

    2011-05-01

    In our approach we are producing a polymer composite material with ZnO core spike particles as concave fillers. The core spike particles are synthesized by a high throughput method. Using PDMS (Polydimethylsiloxane) as a matrix material the core spike particles achieve not only a high mechanical reinforcement but also influence other material properties in a very interesting way, making such a composite very interesting for a wide range of applications. In a very similar synthesis route a nanoscopic ZnO-network is produced. As a ceramic this network can withstand high temperatures like 1300 K. In addition this material is quite elastic. To find a material with these two properties is a really difficult task, as polymers tend to decompose already at lower temperatures and metals melt. Especially under ambient conditions, often oxygen creates a problem for metals at these temperatures. If this material is at the same time a semiconductor, it has a high potential as a multifunctional material. Ceramic or classical semiconductors like III-V or IIVI type are high temperature stable, but typically brittle. This is different on the nanoscale. Even semiconductor wires like silicon with a very small diameter do not easily built up enough stress that leads to a failure while being bent, because in a first order approximation the maximum stress of a fiber scales with its diameter.

  10. Nonlinear Model of Tape Wound Core Transformers

    Directory of Open Access Journals (Sweden)

    A. Vahedi

    2015-03-01

    Full Text Available Recently, tape wound cores due to their excellent magnetic properties, are widely used in different types of transformers. Performance prediction of these transformers needs an accurate model with ability to determine flux distribution within the core and magnetic loss. Spiral structure of tape wound cores affects the flux distribution and always cause complication of analysis. In this paper, a model based on reluctance networks method is presented for analysis of magnetic flux in wound cores. Using this model, distribution of longitudinal and transverse fluxes within the core can be determined. To consider the nonlinearity of the core, a dynamic hysteresis model is included in the presented model. Having flux density in different points of the core, magnetic losses can be calculated. To evaluate the validity of the model, results are compared with 2-D FEM simulations. In addition, a transformer designed for series-resonant converter and simulation results are compared with experimental measurements. Comparisons show accuracy of the model besides simplicity and fast convergence

  11. Multilevel parallel strategy on Monte Carlo particle transport for the large-scale full-core pin-by-pin simulations

    International Nuclear Information System (INIS)

    Zhang, B.; Li, G.; Wang, W.; Shangguan, D.; Deng, L.

    2015-01-01

    This paper introduces the Strategy of multilevel hybrid parallelism of JCOGIN Infrastructure on Monte Carlo Particle Transport for the large-scale full-core pin-by-pin simulations. The particle parallelism, domain decomposition parallelism and MPI/OpenMP parallelism are designed and implemented. By the testing, JMCT presents the parallel scalability of JCOGIN, which reaches the parallel efficiency 80% on 120,000 cores for the pin-by-pin computation of the BEAVRS benchmark. (author)

  12. Partial coherence in the core/halo picture of Bose-Einstein n-particle correlations

    OpenAIRE

    Csorgo, T.; Lorstad, B.; Schmidt-Sorensen, J.; Ster, A.

    1998-01-01

    We study the influence of a possible coherent component in the boson source on the two-, three- and $n$-particle correlation functions in a generalized core/halo type of boson-emitting source. In particular, a simple formula is presented for the strengh of the $n$-particle correlation functions for such systems. Graph rules are obtained to evaluate the correlation functions of arbitrary high order. The importance of experimental determination of the 4-th and 5-th order Bose-Einstein correlati...

  13. Mathematical modelling of powder material motion and transportation in high-temperature flow core during plasma coatings application

    Science.gov (United States)

    Bogdanovich, V. I.; Giorbelidze, M. G.

    2018-03-01

    A problem of mathematical modelling of powder material motion and transportation in gas thermal flow core has been addressed. Undertaken studies indicate significant impact on dynamics of motion of sprayed particles of phenomenological law for drag coefficient and accounting momentum loss of a plasma jet upon acceleration of these particles and their diameter. It is determined that at great dispersion of spraying particles, they reach detail surface at different velocity and significant particles separation takes place at spraying spot. According to the results of mathematical modelling, requirements for admissible dispersion of diameters of particles used for spraying have been formulated. Research has also allowed reducing separation of particles at the spraying spot due to the selection of the method of powder feed to the anode channel of the plasma torch.

  14. Relationship between polycyclic aromatic hydrocarbons (PAHs) and particle size in dated core sediments in Lake Lianhuan, Northeast China

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Li; Zang, Shuying, E-mail: zsy6311@163.com

    2013-09-01

    Atmospheric particle associated with pyrogenic polycyclic aromatic hydrocarbons (PAHs) poses serious threats to human health by inhalation exposure, especially in semiarid areas. Hence, the distributions of PAHs and particle size in two core sediments collected from Lake Lianhuan, Northeast China were studied. The sediments were dated radiometrically, and particle size distribution and PAH concentration were evaluated and potential human health risk was assessed. From 1980 to 2007, the dominant PAHs in the two cores were 2- and 3-ring PAHs, and the concentrations of 3–6 ring PAHs gradually increased from the early 1990s. Diagnostic ratios indicated that pyrogenic PAHs were the main sources of PAHs which changed over time from combustions of wood and coal to liquid fossil fuel sources. Fine particles (< 65 μm) were the predominant particle size (56–97%). Lacustrine source (with the peak towards 200–400 μm) and eolian sources derived from short (2.0–10 and 30–65 μm) and long (0.4–1.0 μm) distance suspension were indentified from frequency distribution pattern of particle size. Significant correlations between 3–6 ring PAHs (especially carcinogenic 5–6 ring PAHs) and 10–35 μm particulate fractions indicated that eolian particles played an important role in adsorbing pyrogenic PAHs. Petroleum source of PAHs was only identified during the 1980s in one core sediments, in which positive correlations between 2-ring PAHs and particulate fractions of > 125 μm were found. Future research should focus on the seven carcinogenic pyrogenic PAHs due to a rapidly increasing trend since 1995 based on the assessment of toxic equivalency factors. - Highlights: • PAHs and particle size in core sediments were used to evaluate the role of eolian particles in delivering pyrogenic PAHs. • Changes of PAH sources closely followed local historical socioeconomic development since 1980s. • Changes of particulate sources from eolian to lacustrine reflected the

  15. Diffusion of finite-sized hard-core interacting particles in a one-dimensional box: Tagged particle dynamics.

    Science.gov (United States)

    Lizana, L; Ambjörnsson, T

    2009-11-01

    We solve a nonequilibrium statistical-mechanics problem exactly, namely, the single-file dynamics of N hard-core interacting particles (the particles cannot pass each other) of size Delta diffusing in a one-dimensional system of finite length L with reflecting boundaries at the ends. We obtain an exact expression for the conditional probability density function rhoT(yT,t|yT,0) that a tagged particle T (T=1,...,N) is at position yT at time t given that it at time t=0 was at position yT,0. Using a Bethe ansatz we obtain the N -particle probability density function and, by integrating out the coordinates (and averaging over initial positions) of all particles but particle T , we arrive at an exact expression for rhoT(yT,t|yT,0) in terms of Jacobi polynomials or hypergeometric functions. Going beyond previous studies, we consider the asymptotic limit of large N , maintaining L finite, using a nonstandard asymptotic technique. We derive an exact expression for rhoT(yT,t|yT,0) for a tagged particle located roughly in the middle of the system, from which we find that there are three time regimes of interest for finite-sized systems: (A) for times much smaller than the collision time tparticle concentration and D is the diffusion constant for each particle, the tagged particle undergoes a normal diffusion; (B) for times much larger than the collision time t >taucoll but times smaller than the equilibrium time ttaue , rhoT(yT,t|yT,0) approaches a polynomial-type equilibrium probability density function. Notably, only regimes (A) and (B) are found in the previously considered infinite systems.

  16. Isocratic and gradient impedance plot analysis and comparison of some recently introduced large size core-shell and fully porous particles.

    Science.gov (United States)

    Vanderheyden, Yoachim; Cabooter, Deirdre; Desmet, Gert; Broeckhoven, Ken

    2013-10-18

    The intrinsic kinetic performance of three recently commercialized large size (≥4μm) core-shell particles packed in columns with different lengths has been measured and compared with that of standard fully porous particles of similar and smaller size (5 and 3.5μm, respectively). The kinetic performance is compared in both absolute (plot of t0 versus the plate count N or the peak capacity np for isocratic and gradient elution, respectively) and dimensionless units. The latter is realized by switching to so-called impedance plots, a format which has been previously introduced (as a plot of t0/N(2) or E0 versus Nopt/N) and has in the present study been extended from isocratic to gradient elution (where the impedance plot corresponds to a plot of t0/np(4) versus np,opt(2)/np(2)). Both the isocratic and gradient impedance plot yielded a very similar picture: the clustered impedance plot curves divide into two distinct groups, one for the core-shell particles (lowest values, i.e. best performance) and one for the fully porous particles (highest values), confirming the clear intrinsic kinetic advantage of core-shell particles. If used around their optimal flow rate, the core-shell particles displayed a minimal separation impedance that is about 40% lower than the fully porous particles. Even larger gains in separation speed can be achieved in the C-term regime. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Folic acid-functionalized magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell composite particles: synthesis and application in drug release.

    Science.gov (United States)

    Yang, Dandan; Wei, Kaiwei; Liu, Qi; Yang, Yong; Guo, Xue; Rong, Hongren; Cheng, Mei-Ling; Wang, Guoxiu

    2013-07-01

    A drug delivery system was designed by deliberately combining the useful functions into one entity, which was composed of magnetic ZnFe2O4 hollow microsphere as the core, and mesoporous silica with folic acid molecules as the outer shell. Amine groups coated magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell (MZHM-MSS-NH2) composite particles were first synthesized by a one-pot direct co-condensation method. Subsequently a novel kind of folic acid-functionalized magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell (MZHM-MSS-NHFA) composite particles were synthesized by conjugating folic acid as targeted molecule to MZHM-MSS-NH2. Ibuprofen, a well-known antiphlogistic drug, was used as a model drug to assess the loading and releasing behavior of the composite microspheres. The results show that the MZHM-MSS-NHFA system has the higher capacity of drug storage and good sustained drug-release property. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Pellicular particles with spherical carbon cores and porous nanodiamond/polymer shells for reversed-phase HPLC.

    Science.gov (United States)

    Wiest, Landon A; Jensen, David S; Hung, Chuan-Hsi; Olsen, Rebecca E; Davis, Robert C; Vail, Michael A; Dadson, Andrew E; Nesterenko, Pavel N; Linford, Matthew R

    2011-07-15

    A new stationary phase for reversed-phase high performance liquid chromatography (RP HPLC) was created by coating spherical 3 μm carbon core particles in a layer-by-layer (LbL) fashion with poly(allylamine) (PAAm) and nanodiamond. Unfunctionalized core carbon particles were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and Raman spectroscopy. After LbL of PAAm and nanodiamond, which yields ca. 4 μm core-shell particles, the particles were simultaneously functionalized and cross-linked using a mixture of 1,2-epoxyoctadecane and 1,2,7,8-diepoxyoctane to obtain a mechanically stable C(18)/C(8) bonded outer layer. Core-shell particles were characterized by SEM, and their surface area, pore diameter, and volume were determined using the Brunauer-Emmett-Teller (BET) method. Short stainless steel columns (30 × 4.6 mm i.d.) were packed and the corresponding van Deemter plots obtained. The Supporting Information contains a MATLAB program used to fit the van Deemter data. The retentions of a suite of analytes were investigated on a conventional HPLC at various organic solvent compositions, pH values of mobile phases, including extreme pH values, and column temperatures. At 60 °C, a chromatogram of 2,6-diisopropylphenol showed 71,500 plates/m (N/m). Chromatograms obtained under acidic conditions (pH 2.7) of a mixture of acetaminophen, diazepam, and 2,6-diisopropylphenol and a mixture of phenol, 4-methylphenol, 2-chlorophenol, 4-chlorophenol, 4-bromophenol, and 1-tert-butyl-4-methylphenol are presented. Retention of amitriptyline, cholesterol, and diazinon at temperatures ranging from 35 to 80 °C and at pH 11.3 is reported. A series of five basic drugs was also separated at this pH. The stationary phase exhibits considerable hydrolytic stability at high pH (11.3) and even pH 13 over extended periods of time. An analysis run on a UHPLC with a "sandwich" injection

  19. Core catcher for nuclear reactor core meltdown containment

    International Nuclear Information System (INIS)

    Driscoll, M.J.; Bowman, F.L.

    1978-01-01

    A bed of graphite particles is placed beneath a nuclear reactor core outside the pressure vessel but within the containment building to catch the core debris in the event of failure of the emergency core cooling system. Spray cooling of the debris and graphite particles together with draining and flooding of coolant fluid of the graphite bed is provided to prevent debris slump-through to the bottom of the bed

  20. Shape-Controlled Synthesis of Magnetic Iron Oxide@SiO₂-Au@C Particles with Core-Shell Nanostructures.

    Science.gov (United States)

    Li, Mo; Li, Xiangcun; Qi, Xinhong; Luo, Fan; He, Gaohong

    2015-05-12

    The preparation of nonspherical magnetic core-shell nanostructures with uniform sizes still remains a challenge. In this study, magnetic iron oxide@SiO2-Au@C particles with different shapes, such as pseduocube, ellipsoid, and peanut, were synthesized using hematite as templates and precursors of magnetic iron oxide. The as-obtained magnetic particles demonstrated uniform sizes, shapes, and well-designed core-shell nanostructures. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) analysis showed that the Au nanoparticles (AuNPs) of ∼6 nm were uniformly distributed between the silica and carbon layers. The embedding of the metal nanocrystals into the two different layers prevented the aggregation and reduced the loss of the metal nanocrystals during recycling. Catalytic performance of the peanut-like particles kept almost unchanged without a noticeable decrease in the reduction of 4-nitrophenol (4-NP) in 8 min even after 7 cycles, indicating excellent reusability of the particles. Moreover, the catalyst could be readily recycled magnetically after each reduction by an external magnetic field.

  1. A Small Modular Reactor Core Design using FCM Fuel and BISO BP particles

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Yeon; Hwang, Dae Hee; Yoo, Ho Seong; Hong, Ser Gi [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    The objective of this work is to design a PWR small modular reactor which employs the advanced fuel technology of FCM particle fuels including BISO burnable poisons and advanced cladding of SiC in order to improve the fuel economy and safety by increasing fuel burnup and temperature, and by reducing hydrogen generation under accidents. Recently, many countries including USA have launched projects to develop the accident tolerant fuels (ATF) which can cope with the accidents such as LOCA (Loss of Coolant Accident). In general, the ATF fuels are required to meet the PWR operational, safety, and fuel cycle constraints which include enhanced burnup, lower or no generation of hydrogen, lower operating temperatures, and enhanced retention of fission products. Another stream of research and development in nuclear society is to develop advanced small modular reactors in order to improve inherent passive safety and to reduce the risk of large capital investment. In this work, a small PWR modular reactor core was neutronically designed and analyzed. The SMR core employs new 13x13 fuel assemblies which are loaded with thick FCM fuel rods in which TRISO fuel particles AO and also the first cycle has the AOs which are within the typical design limit. Also, this figure shows that the evolutions of AO for the cycles 6 and 7 are nearly the same. we considered the SiC cladding for reduction of hydrogen generation under accidents. From the results of core design and analysis, it is shown that the core has long cycle length of 732 -1191 EFPDs, high discharge burnup of 101-105 MWD/kg, low power peaking factors, low axial offsets, negative MTCs, and large shutdown margins except for BOC of the first cycle. So, it can be concluded that the new SMR core is neutronically feasible.

  2. A Small Modular Reactor Core Design using FCM Fuel and BISO BP particles

    International Nuclear Information System (INIS)

    Choi, Jae Yeon; Hwang, Dae Hee; Yoo, Ho Seong; Hong, Ser Gi

    2016-01-01

    The objective of this work is to design a PWR small modular reactor which employs the advanced fuel technology of FCM particle fuels including BISO burnable poisons and advanced cladding of SiC in order to improve the fuel economy and safety by increasing fuel burnup and temperature, and by reducing hydrogen generation under accidents. Recently, many countries including USA have launched projects to develop the accident tolerant fuels (ATF) which can cope with the accidents such as LOCA (Loss of Coolant Accident). In general, the ATF fuels are required to meet the PWR operational, safety, and fuel cycle constraints which include enhanced burnup, lower or no generation of hydrogen, lower operating temperatures, and enhanced retention of fission products. Another stream of research and development in nuclear society is to develop advanced small modular reactors in order to improve inherent passive safety and to reduce the risk of large capital investment. In this work, a small PWR modular reactor core was neutronically designed and analyzed. The SMR core employs new 13x13 fuel assemblies which are loaded with thick FCM fuel rods in which TRISO fuel particles AO and also the first cycle has the AOs which are within the typical design limit. Also, this figure shows that the evolutions of AO for the cycles 6 and 7 are nearly the same. we considered the SiC cladding for reduction of hydrogen generation under accidents. From the results of core design and analysis, it is shown that the core has long cycle length of 732 -1191 EFPDs, high discharge burnup of 101-105 MWD/kg, low power peaking factors, low axial offsets, negative MTCs, and large shutdown margins except for BOC of the first cycle. So, it can be concluded that the new SMR core is neutronically feasible

  3. Low-temperature behavior of core-softened models: Water and silica behavior

    International Nuclear Information System (INIS)

    Jagla, E. A.

    2001-01-01

    A core-softened model of a glass forming fluid is numerically studied in the limit of very low temperatures. The model shows two qualitatively different behaviors depending on the strength of the attraction between particles. For no or low attraction, the changes of density as a function of pressure are smooth, although hysteretic due to mechanical metastabilities. For larger attraction, sudden changes of density upon compressing and decompressing occur. This global mechanical instability is correlated to the existence of a thermodynamic first-order amorphous-amorphous transition. The two different behaviors obtained correspond qualitatively to the different phenomenology observed in silica and water

  4. Gyrokinetic modelling of the quasilinear particle flux for plasmas with neutral-beam fuelling

    Science.gov (United States)

    Narita, E.; Honda, M.; Nakata, M.; Yoshida, M.; Takenaga, H.; Hayashi, N.

    2018-02-01

    A quasilinear particle flux is modelled based on gyrokinetic calculations. The particle flux is estimated by determining factors, namely, coefficients of off-diagonal terms and a particle diffusivity. In this paper, the methodology to estimate the factors is presented using a subset of JT-60U plasmas. First, the coefficients of off-diagonal terms are estimated by linear gyrokinetic calculations. Next, to obtain the particle diffusivity, a semi-empirical approach is taken. Most experimental analyses for particle transport have assumed that turbulent particle fluxes are zero in the core region. On the other hand, even in the stationary state, the plasmas in question have a finite turbulent particle flux due to neutral-beam fuelling. By combining estimates of the experimental turbulent particle flux and the coefficients of off-diagonal terms calculated earlier, the particle diffusivity is obtained. The particle diffusivity should reflect a saturation amplitude of instabilities. The particle diffusivity is investigated in terms of the effects of the linear instability and linear zonal flow response, and it is found that a formula including these effects roughly reproduces the particle diffusivity. The developed framework for prediction of the particle flux is flexible to add terms neglected in the current model. The methodology to estimate the quasilinear particle flux requires so low computational cost that a database consisting of the resultant coefficients of off-diagonal terms and particle diffusivity can be constructed to train a neural network. The development of the methodology is the first step towards a neural-network-based particle transport model for fast prediction of the particle flux.

  5. Monolithic photonic crystals created by partial coalescence of core-shell particles.

    Science.gov (United States)

    Lee, Joon-Seok; Lim, Che Ho; Yang, Seung-Man; Kim, Shin-Hyun

    2014-03-11

    Colloidal crystals and their derivatives have been intensively studied and developed during the past two decades due to their unique photonic band gap properties. However, complex fabrication procedures and low mechanical stability severely limit their practical uses. Here, we report stable photonic structures created by using colloidal building blocks composed of an inorganic core and an organic shell. The core-shell particles are convectively assembled into an opal structure, which is then subjected to thermal annealing. During the heat treatment, the inorganic cores, which are insensitive to heat, retain their regular arrangement in a face-centered cubic lattice, while the organic shells are partially fused with their neighbors; this forms a monolithic structure with high mechanical stability. The interparticle distance and therefore stop band position are precisely controlled by the annealing time; the distance decreases and the stop band blue shifts during the annealing. The composite films can be further treated to give a high contrast in the refractive index. The inorganic cores are selectively removed from the composite by wet etching, thereby providing an organic film containing regular arrays of air cavities. The high refractive index contrast of the porous structure gives rise to pronounced structural colors and high reflectivity at the stop band position.

  6. Optimization of fuel core loading pattern design in a VVER nuclear power reactors using Particle Swarm Optimization (PSO)

    International Nuclear Information System (INIS)

    Babazadeh, Davood; Boroushaki, Mehrdad; Lucas, Caro

    2009-01-01

    The two main goals in core fuel loading pattern design optimization are maximizing the core effective multiplication factor (K eff ) in order to extract the maximum energy, and keeping the local power peaking factor (P q ) lower than a predetermined value to maintain fuel integrity. In this research, a new strategy based on Particle Swarm Optimization (PSO) algorithm has been developed to optimize the fuel core loading pattern in a typical VVER. The PSO algorithm presents a simple social model by inspiration from bird collective behavior in finding food. A modified version of PSO algorithm for discrete variables has been developed and implemented successfully for the multi-objective optimization of fuel loading pattern design with constraints of keeping P q lower than a predetermined value and maximizing K eff . This strategy has been accomplished using WIMSD and CITATION calculation codes. Simulation results show that this algorithm can help in the acquisition of a new pattern without contravention of the constraints.

  7. The core-quasiparticle model for odd-odd nuclei and applications to candidates for gamma-ray lasers

    International Nuclear Information System (INIS)

    Strottman, D.D.

    1988-01-01

    A reliable estimate of the properties of isomers that may be viable candidates for a gamma-ray laser requires the use of the most accurate save functions possible. The majority of models that have been used to estimate the properties of isomers are applicable to only selected regions of the nuclear mass table. In particular, the Bohr-Mottelson model of odd-A and odd-odd nuclei will fail if the even-even core is not strongly deformed or if the deformations are changing strongly as a function of mass. This paper reports how the problem is overcome in a new core- quasiparticle model for odd-odd nuclei. The model introduces the pairing interaction ab initio; the odd-A states are mixtures of particle and hole states. The core may be soft towards deformation or axial asymmetry and may change rapidly as a function of mass. Thus, the model is ideally suited for application to the region of transitional nuclei such as the Te, La, and Os regions

  8. Parameter Sensitivity Study of the Unreacted-Core Shrinking Model: A Computer Activity for Chemical Reaction Engineering Courses

    Science.gov (United States)

    Tudela, Ignacio; Bonete, Pedro; Fullana, Andres; Conesa, Juan Antonio

    2011-01-01

    The unreacted-core shrinking (UCS) model is employed to characterize fluid-particle reactions that are important in industry and research. An approach to understand the UCS model by numerical methods is presented, which helps the visualization of the influence of the variables that control the overall heterogeneous process. Use of this approach in…

  9. Fluoride adsorption from aqueous solution by magnetic core-shell Fe{sub 3}O{sub 4}@alginate-La particles fabricated via electro-coextrusion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yahui [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan (China); Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang 621010, Sichuan (China); Lin, Xiaoyan, E-mail: lxy20100205@163.com [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan (China); Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang 621010, Sichuan (China); Zhou, Quisheng [A State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Luo, Xuegang [Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang 621010, Sichuan (China)

    2016-12-15

    Graphical abstract: The magnetic core-shell Fe{sub 3}O{sub 4}@Alg-La particles were fabricated successfully by a simple method of electro-coextrusion, and employed as an adsorbent for separation of fluoride from aqueous solution. - Highlights: • Magnetic core-shell Fe{sub 3}O{sub 4}@Alg-La particles were prepared by electro-coextrusion. • The maximum adsorption capacity for fluoride at 298.15 K was 45.230 mg/g. • The adsorbent has a good saturation magnetization value. • The adsorbent has a great potential in removing the fluoride. - Abstract: The magnetic core-shell Fe{sub 3}O{sub 4}@Alg-La particles were fabricated successfully by a simple method of electro-coextrusion, and employed as an adsorbent for separation of fluoride from aqueous solution. Main factors affecting the removal of fluoride, including pH, adsorbent dosage, initial concentration, temperature and contact time were investigated. The adsorption isotherm and adsorption kinetics were studied to understand the adsorption process in detail. The experimental data were fitted well by the non-linear Freundlich isotherm and linear pseudo-second-order model, the maximum fluoride adsorption capacity was 45.230 mg/g at pH 4, 298.15 K. Thermodynamic parameters indicated that the fluoride adsorption process was feasible and spontaneous. The presence of other anions like Cl{sup −}, SO{sub 4}{sup 2−}, HCO{sub 3}{sup −} and PO{sub 4}{sup 3−} had almost no effect on the fluoride adsorption. The adsorbent can be easily separated from the solution by a magnet. The magnetic core-shell Fe{sub 3}O{sub 4}@Alg-La particles before and after fluoride adsorption were studied by SEM, FTIR, EDX and XPS, which indicated that the adsorption mechanism may be related to electrostatic attraction and Lewis acid-base interaction.

  10. Core monitoring with analytical model adaption

    International Nuclear Information System (INIS)

    Linford, R.B.; Martin, C.L.; Parkos, G.R.; Rahnema, F.; Williams, R.D.

    1992-01-01

    The monitoring of BWR cores has evolved rapidly due to more capable computer systems, improved analytical models and new types of core instrumentation. Coupling of first principles diffusion theory models such as applied to design to the core instrumentation has been achieved by GE with an adaptive methodology in the 3D Minicore system. The adaptive methods allow definition of 'leakage parameters' which are incorporated directly into the diffusion models to enhance monitoring accuracy and predictions. These improved models for core monitoring allow for substitution of traversing in-core probe (TIP) and local power range monitor (LPRM) with calculations to continue monitoring with no loss of accuracy or reduction of thermal limits. Experience in small BWR cores has shown that with one out of three TIP machines failed there was no operating limitation or impact from the substitute calculations. Other capabilities exist in 3D Monicore to align TIPs more accurately and accommodate other types of system measurements or anomalies. 3D Monicore also includes an accurate predictive capability which uses the adaptive results from previous monitoring calculations and is used to plan and optimize reactor maneuvers/operations to improve operating efficiency and reduce support requirements

  11. UV-durable superhydrophobic textiles with UV-shielding properties by coating fibers with ZnO/SiO2 core/shell particles

    Science.gov (United States)

    Xue, Chao-Hua; Yin, Wei; Jia, Shun-Tian; Ma, Jian-Zhong

    2011-10-01

    ZnO/SiO2 core/shell particles were fabricated by successive coating of multilayer polyelectrolytes and then a SiO2 shell onto ZnO particles. The as-prepared ZnO/SiO2 core/shell particles were coated on poly(ethylene terephthalate) (PET) textiles, followed by hydrophobization with hexadecyltrimethoxysilane, to fabricate superhydrophobic surfaces with UV-shielding properties. Transmission electron microscopy and ζ potential analysis were employed to evidence the fabrication of ZnO/SiO2 core/shell particles. Scanning electron microscopy and thermal gravimetric analysis were conducted to investigate the surface morphologies of the textile and the coating of the fibers. Ultraviolet-visible spectrophotometry and contact angle measurement indicated that the incorporation of ZnO onto fibers imparted UV-blocking properties to the textile surface, while the coating of SiO2 shell on ZnO prohibited the photocatalytic degradation of hexadecyltrimethoxysilane by ZnO, making the as-treated PET textile surface show stable superhydrophobicity with good UV-shielding properties.

  12. Models of the earth's core

    Science.gov (United States)

    Stevenson, D. J.

    1981-01-01

    Combined inferences from seismology, high-pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to models of the earth's core with five basic properties. These are that core formation was contemporaneous with earth accretion; the core is not in chemical equilibrium with the mantle; the outer core is a fluid iron alloy containing significant quantities of lighter elements and is probably almost adiabatic and compositionally uniform; the more iron-rich inner solid core is a consequence of partial freezing of the outer core, and the energy release from this process sustains the earth's magnetic field; and the thermodynamic properties of the core are well constrained by the application of liquid-state theory to seismic and labroatory data.

  13. Rapid determination of parabens in seafood sauces by high-performance liquid chromatography: A practical comparison of core-shell particles and sub-2 μm fully porous particles.

    Science.gov (United States)

    Ye, Jing; Cao, Xiaoji; Cheng, Zhuo; Qin, Ye; Lu, Yanbin

    2015-12-01

    In this work, the chromatographic performance of superficially porous particles (Halo core-shell C18 column, 50 mm × 2.1 mm, 2.7 μm) was compared with that of sub-2 μm fully porous particles (Acquity BEH C18 , 50 mm × 2.1 mm, 1.7 μm). Four parabens, methylparaben, ethylparaben, propylparaben, and butylparaben, were used as representative compounds for calculating the plate heights in a wide flow rate range and analyzed on the basis of the Van Deemter and Knox equations. Theoretical Poppe plots were constructed for each column to compare their kinetic performance. Both phases gave similar minimum plate heights when using nonreduced coordinates. Meanwhile, the flat C-term of the core-shell column provided the possibilities for applying high flow rates without significant loss in efficiency. The low backpressure of core-shell particles allowed this kind of column, especially compatible with conventional high-performance liquid chromatography systems. Based on these factors, a simple high-performance liquid chromatography method was established and validated for the determination of parabens in various seafood sauces using the Halo core-shell C18 column for separation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Controllable fabrication and characterization of biocompatible core-shell particles and hollow capsules as drug carrier

    Science.gov (United States)

    Hao, Lingyun; Gong, Xinglong; Xuan, Shouhu; Zhang, Hong; Gong, Xiuqing; Jiang, Wanquan; Chen, Zuyao

    2006-10-01

    SiO 2@CdSe core-shell particles were fabricated by controllable deposition CdSe nanoparticles on silica colloidal spheres. Step-wise coating process was tracked by the TEM and XRD measurements. In addition, SiO 2@CdSe/polypyrrole(PPy) multi-composite particles were synthesized based on the as-prepared SiO 2@CdSe particles by cationic polymerization. The direct electrochemistry of myoglobin (Mb) could be performed by immobilizing Mb on the surface of SiO 2@CdSe particles. Immobilized with Mb, SiO 2@CdSe/PPy-Mb also displayed good bioelectrochemical activity. It confirmed the good biocompatible property of the materials with protein. CdSe hollow capsules were further obtained as the removal of the cores of SiO 2@CdSe spheres. Hollow and porous character of CdSe sub-meter size capsules made them becoming hopeful candidates as drug carriers. Doxorubicin, a typical an antineoplastic drug, was introduced into the capsules. A good sustained drug release behavior of the loading capsules was discovered via performing a release test in the PBS buffer (pH 7.4) solution at 310 k. Furthermore, SiO 2@CdSe/PPy could be converted to various smart hollow capsules via selectively removal of their relevant components.

  15. Monte Carlo simulation of magnetic multi-core nanoparticles

    International Nuclear Information System (INIS)

    Schaller, Vincent; Wahnstroem, Goeran; Sanz-Velasco, Anke; Enoksson, Peter; Johansson, Christer

    2009-01-01

    In this paper, a Monte Carlo simulation is carried out to evaluate the equilibrium magnetization of magnetic multi-core nanoparticles in a liquid and subjected to a static magnetic field. The particles contain a magnetic multi-core consisting of a cluster of magnetic single-domains of magnetite. We show that the magnetization of multi-core nanoparticles cannot be fully described by a Langevin model. Inter-domain dipolar interactions and domain magnetic anisotropy contribute to decrease the magnetization of the particles, whereas the single-domain size distribution yields an increase in magnetization. Also, we show that the interactions affect the effective magnetic moment of the multi-core nanoparticles.

  16. DEM Particle Fracture Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Boning [Univ. of Colorado, Boulder, CO (United States); Herbold, Eric B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homel, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Regueiro, Richard A. [Univ. of Colorado, Boulder, CO (United States)

    2015-12-01

    An adaptive particle fracture model in poly-ellipsoidal Discrete Element Method is developed. The poly-ellipsoidal particle will break into several sub-poly-ellipsoids by Hoek-Brown fracture criterion based on continuum stress and the maximum tensile stress in contacts. Also Weibull theory is introduced to consider the statistics and size effects on particle strength. Finally, high strain-rate split Hopkinson pressure bar experiment of silica sand is simulated using this newly developed model. Comparisons with experiments show that our particle fracture model can capture the mechanical behavior of this experiment very well, both in stress-strain response and particle size redistribution. The effects of density and packings o the samples are also studied in numerical examples.

  17. Quantum behaved Particle Swarm Optimization with Differential Mutation operator applied to WWER-1000 in-core fuel management optimization

    International Nuclear Information System (INIS)

    Jamalipour, Mostafa; Sayareh, Reza; Gharib, Morteza; Khoshahval, Farrokh; Karimi, Mahmood Reza

    2013-01-01

    Highlights: ► A new method called QPSO-DM is applied to BNPP in-core fuel management optimization. ► It is found that QPSO-DM performs better than PSO and QPSO. ► This method provides a permissible arrangement for optimum loading pattern. - Abstract: This paper presents a new method using Quantum Particle Swarm Optimization with Differential Mutation operator (QPSO-DM) for optimizing WWER-1000 core fuel management. Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) have shown good performance on in-core fuel management optimization (ICFMO). The objective of this paper is to show that QPSO-DM performs very well and is comparable to PSO and Quantum Particle Swarm Optimization (QPSO). Most of the strategies for ICFMO are based on maximizing multiplication factor (k eff ) to increase cycle length and minimizing power peaking factor (P q ) in order to improve fuel integrity. PSO, QPSO and QPSO-DM have been implemented to fulfill these requirements for the first operating cycle of WWER-1000 Bushehr Nuclear Power Plant (BNPP). The results show that QPSO-DM performs better than the others. A program has been written in MATLAB to map PSO, QPSO and QPSO-DM for loading pattern optimization. WIMS and CITATION have been used to simulate reactor core for neutronic calculations

  18. Influence of core sand properties on flow dynamics of core shooting process based on experiment and multiphase simulation

    Directory of Open Access Journals (Sweden)

    Chang-jiang Ni

    2017-03-01

    Full Text Available The influence of core sand properties on flow dynamics was investigated synchronously with various core sands, transparent core-box and high-speed camera. To confirm whether the core shooting process has significant turbulence, the flow pattern of sand particles in the shooting head and core box was reproduced with colored core sands. By incorporating the kinetic theory of granular flow (KTGF, kinetic-frictional constitutive correlation and turbulence model, a two-fluid model (TFM was established to study the flow dynamics of the core shooting process. Two-fluid model (TFM simulations were then performed and a areasonable agreement was achieved between the simulation and experimental results. Based on the experimental and simulation results, the effects of turbulence, sand density, sand diameter and binder ratio were analyzed in terms of filling process, sand volume fraction (αs and sand velocity (Vs.

  19. Application of hepatitis B core particles produced by human primary hepatocellular carcinoma (PLC/342) propagated in nude mice to the determination of anti-HBc by passive hemagglutination.

    Science.gov (United States)

    Miyamoto, K; Itoh, Y; Tsuda, F; Matsui, T; Tanaka, T; Miyamoto, H; Naitoh, S; Imai, M; Usuda, S; Nakamura, T

    1986-05-22

    Human primary hepatocellular carcinoma (PLC/342), carried by nude mice, produces hepatitis B core particles as well as hepatitis B surface antigen particles. Core particles purified form PLC/342 tumors displayed epitopes of hepatitis B core antigen (HBcAg) but not epitopes of hepatitis B e antigen (HBeAg) on their surface, unlike core particles prepared from Dane particles, derived from plasma of asymptomatic carriers, that expressed epitopes of both HBcAg and HBeAg. Core particles obtained from PLC/342 tumors were applied to the determination of antibody to HBcAg (anti-HBc) by passive hemagglutination. The assay detected anti-HBc not only in individuals with persistent infection with hepatitis B virus and in those who had recovered from transient infection, but also in patients with acute type B hepatitis, indicating that it can detect anti-HBc of either IgG or IgM class. A liberal availability of core particles from tumors carried by nude mice, taken together with an easy applicability of the method, would make the passive hemagglutination for anti-HBc a valuable tool in clinical and epidemiological studies, especially in places where sophisticated methods are not feasible.

  20. Effect of particle-core-vibration coupling near the double closed $^{132}$Sn nucleus from precise magnetic moment measurements

    CERN Multimedia

    Postma, H; Heyde, K; Walker, P; Grant, I; Veskovic, M; Stone, N; Stone, J

    2002-01-01

    % IS301 \\\\ \\\\ Low temperature nuclear orientation of isotope-separator implanted short-lived radio-isotopes makes possible the measurements of nuclear magnetic dipole moments of oriented ground and excited states with half-lives longer than a few seconds. Coupling schemes characterizing the odd nucleons and ground-state deformations can be extracted from the nuclear moments. \\\\ We thus propose to measure the magnetic dipole moments of $^{127-133}$Sb to high precision using NMR/ON at the NICOLE facility. With (double magic +1) $^{133}$Sb as the reference, the main aim of this experiment is to examine whether the collective component in the 7/2$^+$ Sb ground state magnetic dipole moment varies as expected according to particle-core coupling calculations carried out for the Sb (Z=51) isotopes. Comparison of the 1-proton-particle excitations in Sb to 1-proton-hole states in In nuclei will shed light on differences between particle and hole excitations as understood within the present model. Comparison of ...

  1. The influence of magnetostatic interactions in exchange-coupled composite particles

    DEFF Research Database (Denmark)

    Vokoun, D.; Beleggia, Marco; De Graef, M.

    2010-01-01

    Exchange-coupled composite (ECC) particles are the basic constituents of ECC magnetic recording media. We examine and compare two types of ECC particles: (i) core-shell structures, consisting of a hard-magnetic core and a coaxial soft-magnetic shell and (ii) conventional ECC particles, with a hard-magnetic...... core topped by a soft cylindrical element. The model we present describes the magnetic response of the two ECC particle types, taking into account all significant magnetic contributions to the energy landscape. Special emphasis is given to the magnetostatic (dipolar) interaction energy. We find...... that both the switching fields and the zero-field energy barrier depend strongly on the particle geometry. A comparison between the two types reveals that core-shell ECC particles are more effective in switching field reduction, while conventional ECC particles maintain a larger overall figure of merit....

  2. Construction and utilization of linear empirical core models for PWR in-core fuel management

    International Nuclear Information System (INIS)

    Okafor, K.C.

    1988-01-01

    An empirical core-model construction procedure for pressurized water reactor (PWR) in-core fuel management is developed that allows determining the optimal BOC k ∞ profiles in PWRs as a single linear-programming problem and thus facilitates the overall optimization process for in-core fuel management due to algorithmic simplification and reduction in computation time. The optimal profile is defined as one that maximizes cycle burnup. The model construction scheme treats the fuel-assembly power fractions, burnup, and leakage as state variables and BOC zone enrichments as control variables. The core model consists of linear correlations between the state and control variables that describe fuel-assembly behavior in time and space. These correlations are obtained through time-dependent two-dimensional core simulations. The core model incorporates the effects of composition changes in all the enrichment control zones on a given fuel assembly and is valid at all times during the cycle for a given range of control variables. No assumption is made on the geometry of the control zones. A scatter-composition distribution, as well as annular, can be considered for model construction. The application of the methodology to a typical PWR core indicates good agreement between the model and exact simulation results

  3. Universal analytical scattering form factor for shell-, core-shell, or homogeneous particles with continuously variable density profile shape.

    Science.gov (United States)

    Foster, Tobias

    2011-09-01

    A novel analytical and continuous density distribution function with a widely variable shape is reported and used to derive an analytical scattering form factor that allows us to universally describe the scattering from particles with the radial density profile of homogeneous spheres, shells, or core-shell particles. Composed by the sum of two Fermi-Dirac distribution functions, the shape of the density profile can be altered continuously from step-like via Gaussian-like or parabolic to asymptotically hyperbolic by varying a single "shape parameter", d. Using this density profile, the scattering form factor can be calculated numerically. An analytical form factor can be derived using an approximate expression for the original Fermi-Dirac distribution function. This approximation is accurate for sufficiently small rescaled shape parameters, d/R (R being the particle radius), up to values of d/R ≈ 0.1, and thus captures step-like, Gaussian-like, and parabolic as well as asymptotically hyperbolic profile shapes. It is expected that this form factor is particularly useful in a model-dependent analysis of small-angle scattering data since the applied continuous and analytical function for the particle density profile can be compared directly with the density profile extracted from the data by model-free approaches like the generalized inverse Fourier transform method. © 2011 American Chemical Society

  4. Models of the earth's core

    International Nuclear Information System (INIS)

    Stevenson, D.J.

    1981-01-01

    The combination of seismology, high pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to strong constraints on core models. The synthesis presented here is devoted to the defense of the following properties: (1) core formation was contemporaneous with earth accretion; (2) the outer, liquid core is predominately iron but cannot be purely iron; (3) the inner core-outer core boundary represents a thermodynamic equilibrium between a liquid alloys and a predominanately iron solid; (4) thermodynamic and transport properties of outer core can be estimated from liquid-state theories; and (5) the outer core is probably adiabatic and uniform in composition. None of these propositions are universally accepted by geophysicists. But, the intent of this paper is to present a coherent picture which explains most of the data with the fewest ad hoc assumptions. Areas in which future progress is both essential and likely are geo- and cosmochronology, seismological determinations of core structure, fluid dynamics of the core and mantle, and condensed matter physics

  5. SANS study of three-layer micellar particles

    CERN Document Server

    Plestil, J; Kuklin, A I; Cubitt, R

    2002-01-01

    Three-layer nanoparticles were prepared by polymerization of methyl methacrylate (MMA) in aqueous micellar solutions of poly(methyl methacrylate)-block-poly(methacrylic acid) (PMMA-b-PMA) and polystyrene-block-poly(methacrylic acid) (PS-b-PMA). The resulting polymer forms a layer on the core surface of the original micelles. SANS curves were fitted using an ellipsoidal (PMMA/PMMA/PMA) or spherical (PS/PMMA/PMA) model for the particle core. The particle size (for the presented series of the PMMA/PMMA/PMA particles, the core semiaxes ranged from 87 to 187 A and the axis ratio was about 6) can be finely tuned by variation of monomer concentration. Time-resolved SANS experiments were carried out to describe the growth of the PS/PMMA/PMA particles during polymerization. (orig.)

  6. Solid charged-core model of ball lightning

    Science.gov (United States)

    Muldrew, D. B.

    2010-01-01

    In this study, ball lightning (BL) is assumed to have a solid, positively-charged core. According to this underlying assumption, the core is surrounded by a thin electron layer with a charge nearly equal in magnitude to that of the core. A vacuum exists between the core and the electron layer containing an intense electromagnetic (EM) field which is reflected and guided by the electron layer. The microwave EM field applies a ponderomotive force (radiation pressure) to the electrons preventing them from falling into the core. The energetic electrons ionize the air next to the electron layer forming a neutral plasma layer. The electric-field distributions and their associated frequencies in the ball are determined by applying boundary conditions to a differential equation given by Stratton (1941). It is then shown that the electron and plasma layers are sufficiently thick and dense to completely trap and guide the EM field. This model of BL is exceptional in that it can explain all or nearly all of the peculiar characteristics of BL. The ES energy associated with the core charge can be extremely large which can explain the observations that occasionally BL contains enormous energy. The mass of the core prevents the BL from rising like a helium-filled balloon - a problem with most plasma and burning-gas models. The positively charged core keeps the negatively charged electron layer from diffusing away, i.e. it holds the ball together; other models do not have a mechanism to do this. The high electrical charges on the core and in the electron layer explains why some people have been electrocuted by BL. Experiments indicate that BL radiates microwaves upon exploding and this is consistent with the model. The fact that this novel model of BL can explain these and other observations is strong evidence that the model should be taken seriously.

  7. Dielectric relaxation of glass particles with conductive nano-coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Shahid [Applied Technologies Department, QinetiQ Limited, Cody Technology Park, Farnborough, Hampshire, GU14 0LX (United Kingdom)

    2009-03-21

    This research focuses on the dielectric properties of particles consisting of glass cores with nanometre conductive coatings. The effects of the core glass particle shape (sphere, flake and fibre) and size are investigated for different coating characteristics over the frequency range 0.5-18 GHz. Experimental results for the coated glass particle combinations show the existence of a dielectric loss peak. This feature is associated with interfacial relaxation between the insulating core glass particle and the nanoscale conductive coating. The relaxation mechanism provides enhanced loss that is not observed in conventional solid metal particle composites. The results are fitted to a model, which shows that the relaxation frequency increases with increasing coating conductivity and thickness, with additional parameters identified for further particle optimizations.

  8. Determining the dark matter mass with DeepCore

    Energy Technology Data Exchange (ETDEWEB)

    Das, Chitta R. [Centro de Física Teórica de Partículas, Instituto Superior Técnico (CFTP), Universidade Tćnica de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Mena, Olga [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València, Apartado de Correos 22085, E-46071 Valencia (Spain); Palomares-Ruiz, Sergio, E-mail: sergio.palomares.ruiz@ist.utl.pt [Centro de Física Teórica de Partículas, Instituto Superior Técnico (CFTP), Universidade Tćnica de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València, Apartado de Correos 22085, E-46071 Valencia (Spain); Pascoli, Silvia [IPPP, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom)

    2013-10-01

    Cosmological and astrophysical observations provide increasing evidence of the existence of dark matter in our Universe. Dark matter particles with a mass above a few GeV can be captured by the Sun, accumulate in the core, annihilate, and produce high energy neutrinos either directly or by subsequent decays of Standard Model particles. We investigate the prospects for indirect dark matter detection in the IceCube/DeepCore neutrino telescope and its capabilities to determine the dark matter mass.

  9. One dimensional reactor core model

    International Nuclear Information System (INIS)

    Kostadinov, V.; Stritar, A.; Radovo, M.; Mavko, B.

    1984-01-01

    The one dimensional model of neutron dynamic in reactor core was developed. The core was divided in several axial nodes. The one group neutron diffusion equation for each node is solved. Feedback affects of fuel and water temperatures is calculated. The influence of xenon, boron and control rods is included in cross section calculations for each node. The system of equations is solved implicitly. The model is used in basic principle Training Simulator of NPP Krsko. (author)

  10. Core polarization and Coulomb displacement energies

    International Nuclear Information System (INIS)

    Shlomo, S.; Love, W.G.

    1982-01-01

    The contributions of core polarization terms (other than the Auerbach-Kahana-Weneser (AKW) effect) to Coulomb displacement energies of mirror nuclei near A = 16 and A = 40 are examined within the particle-vibration coupling model. The parameters of the model are determined using updated data on the locations and strengths of multipole core excitations. In the absence of relevant data an energy-weighted sum rule (EWSR) is exploited. Taking into account multipole excitations up to L = 5 and subtracting the contributions which are due to short-range correlations, significant contributions (1-3%) to ΔEsub(c) are found. These corrections arise from particle coupling to low-lying collective states (long-range correlations). The implications of these results on the Coulomb energy problem are discussed. (Auth.)

  11. Integrated predictive modeling of high-mode tokamak plasmas using a combination of core and pedestal models

    International Nuclear Information System (INIS)

    Bateman, Glenn; Bandres, Miguel A.; Onjun, Thawatchai; Kritz, Arnold H.; Pankin, Alexei

    2003-01-01

    A new integrated modeling protocol is developed using a model for the temperature and density pedestal at the edge of high-mode (H-mode) plasmas [Onjun et al., Phys. Plasmas 9, 5018 (2002)] together with the Multi-Mode core transport model (MMM95) [Bateman et al., Phys. Plasmas 5, 1793 (1998)] in the BALDUR integrated modeling code to predict the temperature and density profiles of 33 H-mode discharges. The pedestal model is used to provide the boundary conditions in the simulations, once the heating power rises above the H-mode power threshold. Simulations are carried out for 20 discharges in the Joint European Torus and 13 discharges in the DIII-D tokamak. These discharges include systematic scans in normalized gyroradius, plasma pressure, collisionality, isotope mass, elongation, heating power, and plasma density. The average rms deviation between experimental data and the predicted profiles of temperature and density, normalized by central values, is found to be about 10%. It is found that the simulations tend to overpredict the temperature profiles in discharges with low heating power per plasma particle and to underpredict the temperature profiles in discharges with high heating power per particle. Variations of the pedestal model are used to test the sensitivity of the simulation results

  12. Thermal margin model for transition core of KSNP

    International Nuclear Information System (INIS)

    Nahm, Kee Yil; Lim, Jong Seon; Park, Sung Kew; Chun, Chong Kuk; Hwang, Sun Tack

    2004-01-01

    The PLUS7 fuel was developed with mixing vane grids for KSNP. For the transition core partly loaded with the PLUS7 fuels, the procedure to set up the optimum thermal margin model of the transition core was suggested by introducing AOPM concept into the screening method which determines the limiting assembly. According to the procedure, the optimum thermal margin model of the first transition core was set up by using a part of nuclear data for the first transition and the homogeneous core with PLUS7 fuels. The generic thermal margin model of PLUS7 fuel was generated with the AOPM of 138%. The overpower penalties on the first transition core were calculated to be 1.0 and 0.98 on the limiting assembly and the generic thermal margin model, respectively. It is not usual case to impose the overpower penalty on reload cores. It is considered that the lack of channel flow due to the difference of pressure drop between PLUS7 and STD fuels results in the decrease of DNBR. The AOPM of the first transition core is evaluated to be about 135% by using the optimum generic thermal margin model which involves the generic thermal margin model and the total overpower penalty. The STD fuel is not included among limiting assembly candidates in the second transition core, because they have much lower pin power than PLUS7 fuels. The reduced number of STD fuels near the limiting assembly candidates the flow from the limiting assembly to increase the thermal margin for the second transition core. It is expected that cycle specific overpower penalties increase the thermal margin for the transition core. Using the procedure to set up the optimum thermal margin model makes sure that the enhanced thermal margin of PLUS7 fuel can be sufficiently applied to not only the homogeneous core but also the transition core

  13. Tandem fusion of hepatitis B core antigen allows assembly of virus-like particles in bacteria and plants with enhanced capacity to accommodate foreign proteins.

    Directory of Open Access Journals (Sweden)

    Hadrien Peyret

    Full Text Available The core protein of the hepatitis B virus, HBcAg, assembles into highly immunogenic virus-like particles (HBc VLPs when expressed in a variety of heterologous systems. Specifically, the major insertion region (MIR on the HBcAg protein allows the insertion of foreign sequences, which are then exposed on the tips of surface spike structures on the outside of the assembled particle. Here, we present a novel strategy which aids the display of whole proteins on the surface of HBc particles. This strategy, named tandem core, is based on the production of the HBcAg dimer as a single polypeptide chain by tandem fusion of two HBcAg open reading frames. This allows the insertion of large heterologous sequences in only one of the two MIRs in each spike, without compromising VLP formation. We present the use of tandem core technology in both plant and bacterial expression systems. The results show that tandem core particles can be produced with unmodified MIRs, or with one MIR in each tandem dimer modified to contain the entire sequence of GFP or of a camelid nanobody. Both inserted proteins are correctly folded and the nanobody fused to the surface of the tandem core particle (which we name tandibody retains the ability to bind to its cognate antigen. This technology paves the way for the display of natively folded proteins on the surface of HBc particles either through direct fusion or through non-covalent attachment via a nanobody.

  14. Geodynamo Modeling of Core-Mantle Interactions

    Science.gov (United States)

    Kuang, Wei-Jia; Chao, Benjamin F.; Smith, David E. (Technical Monitor)

    2001-01-01

    Angular momentum exchange between the Earth's mantle and core influences the Earth's rotation on time scales of decades and longer, in particular in the length of day (LOD) which have been measured with progressively increasing accuracy for the last two centuries. There are four possible coupling mechanisms for transferring the axial angular momentum across the core-mantle boundary (CMB): viscous, magnetic, topography, and gravitational torques. Here we use our scalable, modularized, fully dynamic geodynamo model for the core to assess the importance of these torques. This numerical model, as an extension of the Kuang-Bloxham model that has successfully simulated the generation of the Earth's magnetic field, is used to obtain numerical results in various physical conditions in terms of specific parameterization consistent with the dynamical processes in the fluid outer core. The results show that depending on the electrical conductivity of the lower mantle and the amplitude of the boundary topography at CMB, both magnetic and topographic couplings can contribute significantly to the angular momentum exchange. This implies that the core-mantle interactions are far more complex than has been assumed and that there is unlikely a single dominant coupling mechanism for the observed decadal LOD variation.

  15. DNA compaction by poly (amido amine) dendrimers of ammonia cored and ethylene diamine cored

    Science.gov (United States)

    Qamhieh, K.; Al-Shawwa, J.

    2017-06-01

    The complexes build-up of DNA and soft particles poly amidoamine (PAMAM) dendrimers of ammonia cored of generations (G1-G6) and ethylenediamine cored of generations (G1-G10) have been studied, using a new theoretical model developed by Qamhieh and coworkers. The model describes the interaction between linear polyelectrolyte (LPE) chain and ion-penetrable spheres. Many factors affecting LPE/dendrimer complex have been investigated such as dendrimer generation, the Bjerrum length, salt concentration, and rigidity of the LPE chain represented by the persistence length. It is found that the wrapping chain length around dendrimer increases by increasing dendrimer`s generation, Bjerrum length, and salt concentration, while decreases by increasing the persistence length of the LPE chain. Also we can conclude that the wrapping length of LPE chain around ethylenediamine cored dendrimers is larger than its length around ammonia cored dendrimers.

  16. A parallel Discrete Element Method to model collisions between non-convex particles

    Directory of Open Access Journals (Sweden)

    Rakotonirina Andriarimina Daniel

    2017-01-01

    Full Text Available In many dry granular and suspension flow configurations, particles can be highly non-spherical. It is now well established in the literature that particle shape affects the flow dynamics or the microstructure of the particles assembly in assorted ways as e.g. compacity of packed bed or heap, dilation under shear, resistance to shear, momentum transfer between translational and angular motions, ability to form arches and block the flow. In this talk, we suggest an accurate and efficient way to model collisions between particles of (almost arbitrary shape. For that purpose, we develop a Discrete Element Method (DEM combined with a soft particle contact model. The collision detection algorithm handles contacts between bodies of various shape and size. For nonconvex bodies, our strategy is based on decomposing a non-convex body into a set of convex ones. Therefore, our novel method can be called “glued-convex method” (in the sense clumping convex bodies together, as an extension of the popular “glued-spheres” method, and is implemented in our own granular dynamics code Grains3D. Since the whole problem is solved explicitly, our fully-MPI parallelized code Grains3D exhibits a very high scalability when dynamic load balancing is not required. In particular, simulations on up to a few thousands cores in configurations involving up to a few tens of millions of particles can readily be performed. We apply our enhanced numerical model to (i the collapse of a granular column made of convex particles and (i the microstructure of a heap of non-convex particles in a cylindrical reactor.

  17. Numerical investigation of compaction of deformable particles with bonded-particle model

    Directory of Open Access Journals (Sweden)

    Dosta Maksym

    2017-01-01

    Full Text Available In this contribution, a novel approach developed for the microscale modelling of particles which undergo large deformations is presented. The proposed method is based on the bonded-particle model (BPM and multi-stage strategy to adjust material and model parameters. By the BPM, modelled objects are represented as agglomerates which consist of smaller ideally spherical particles and are connected with cylindrical solid bonds. Each bond is considered as a separate object and in each time step the forces and moments acting in them are calculated. The developed approach has been applied to simulate the compaction of elastomeric rubber particles as single particles or in a random packing. To describe the complex mechanical behaviour of the particles, the solid bonds were modelled as ideally elastic beams. The functional parameters of solid bonds as well as material parameters of bonds and primary particles were estimated based on the experimental data for rubber spheres. Obtained results for acting force and for particle deformations during uniaxial compression are in good agreement with experimental data at higher strains.

  18. Real-time advanced nuclear reactor core model

    International Nuclear Information System (INIS)

    Koclas, J.; Friedman, F.; Paquette, C.; Vivier, P.

    1990-01-01

    The paper describes a multi-nodal advanced nuclear reactor core model. The model is based on application of modern equivalence theory to the solution of neutron diffusion equation in real time employing the finite differences method. The use of equivalence theory allows the application of the finite differences method to cores divided into hundreds of nodes, as opposed to the much finer divisions (in the order of ten thousands of nodes) where the unmodified method is currently applied. As a result the model can be used for modelling of the core kinetics for real time full scope training simulators. Results of benchmarks, validate the basic assumptions of the model and its applicability to real-time simulation. (orig./HP)

  19. Enhanced stability of a chimeric hepatitis B core antigen virus-like-particle (HBcAg-VLP) by a C-terminal linker-hexahistidine-peptide.

    Science.gov (United States)

    Schumacher, Jens; Bacic, Tijana; Staritzbichler, René; Daneschdar, Matin; Klamp, Thorsten; Arnold, Philipp; Jägle, Sabrina; Türeci, Özlem; Markl, Jürgen; Sahin, Ugur

    2018-04-13

    Virus-like-particles (VLPs) are attractive nanoparticulate scaffolds for broad applications in material/biological sciences and medicine. Prior their functionalization, specific adaptations have to be carried out. These adjustments frequently lead to disordered particles, but the particle integrity is an essential factor for the VLP suitability. Therefore, major requirements for particle stabilization exist. The objective of this study was to evaluate novel stabilizing elements for functionalized chimeric hepatitis B virus core antigen virus-like particles (HBcAg-VLP), with beneficial characteristics for vaccine development, imaging or delivery. The effects of a carboxy-terminal polyhistidine-peptide and an intradimer disulfide-bridge on the stability of preclinically approved chimeric HBcAg-VLPs were assessed. We purified recombinant chimeric HBcAg-VLPs bearing different modified C-termini and compared their physical and chemical particle stability by quantitative protein-biochemical and biophysical techniques. We observed lower chemical resistance of T = 3- compared to T = 4-VLP (triangulation number) capsids and profound impairment of accessibility of hexahistidine-peptides in assembled VLPs. Histidines attached to the C-terminus were associated with superior mechanical and/or chemical particle stability depending on the number of histidine moieties. A molecular modeling approach based on cryo-electron microscopy and biolayer interferometry revealed the underlying structural mechanism for the strengthening of the integrity of VLPs. Interactions triggering capsid stabilization occur on a highly conserved residue on the basis of HBcAg-monomers as well as on hexahistidine-peptides of adjacent monomers. This new stabilization mechanism appears to mimic an evolutionary conserved stabilization concept for hepadnavirus core proteins. These findings establish the genetically simply transferable C-terminal polyhistidine-peptide as a general stabilizing element

  20. Simulation study on insoluble granular corrosion products deposited in PWR core

    International Nuclear Information System (INIS)

    Yang Xu; Zhou Tao; Ru Xiaolong; Lin Daping; Fang Xiaolu

    2014-01-01

    In the operation of reactor, such as fuel rods, reactor vessel internals etc. will be affected by corrosion erosion of high pressure coolant. It will produce many insoluble corrosion products. The FLUENT software is adopted to simulate insoluble granular corrosion products deposit distribution in the reactor core. The fluid phase uses the standard model to predict the flow field in the channel and forecast turbulence variation in the near-wall region. The insoluble granular corrosion products use DPM (Discrete Phase Model) to track the trajectory of the particles. The discrete phase model in FLUENT follows the Euler-Lagrange approach. The fluid phase is treated as a continuum by solving the Navier-Stokes equations, while the dispersed phase is solved by tracking a large number of particles through the calculated flow field. Through the study found, Corrosion products particles form high concentration area near the symmetry, and the entrance section of the corrosion products particles concentration is higher than export section. Corrosion products particles deposition attached on large area for the entrance of the cladding, this will change the core neutron flux distribution and the thermal conductivity of cladding material, and cause core axial offset anomaly (AOA). Corrosion products particles dot deposit in the outlet of cladding, which can lead to pitting phenomenon in a sheath. Pitting area will cause deterioration of heat transfer, destroy the cladding integrity. In view of the law of corrosion products deposition and corrosion characteristics of components in the reactor core. this paper proposes regular targeted local cleanup and other mitigation measures. (authors)

  1. Fabrication and electromagnetic properties of bio-based helical soft-core particles by way of Ni-Fe alloy electroplating

    Energy Technology Data Exchange (ETDEWEB)

    Lan Mingming, E-mail: lan_mingming@163.com [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Zhang Deyuan; Cai Jun; Zhang Wenqiang; Yuan Liming [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China)

    2011-12-15

    Ni-Fe alloy electroplating was used as a bio-limited forming process to fabricate bio-based helical soft-core ferromagnetic particles, and a low frequency vibration device was applied to the cathode to avoid microorganism (Spirulina platens) cells adhesion to the copper net during the course of plating. The morphologies and ingredients of the coated Spirulina cells were characterized using scanning electron microscopy and energy dispersive spectrometer. The complex permittivity and permeability of the samples containing the coated Spirulina cells before and after heat treatment were measured and investigated by a vector network analyzer. The results show that the Spirulina cells after plating keep their initial helical shape, and applying low frequency vibration to the copper net cathode in the plating process can effectively prevent agglomeration and intertwinement of the Spirulina cells. The microwave absorbing and electromagnetic properties of the samples containing the coated Spirulina cells particles with heat treatment are superior to those samples containing the coated Spirulina cells particles without heat treatment. - Highlights: > We used the microorganism cells as forming template to fabricate the bio-based helical soft-core ferromagnetic particles. > Microorganism selected as forming templates was Spirulina platens, which are of natural helical shape and have high aspect ratio. > Coated Spirulina cells were a kind lightweight ferromagnetic particle.

  2. Alternating current dielectrophoresis of core-shell nanoparticles: Experiments and comparison with theory

    Science.gov (United States)

    Yang, Chungja

    Nanoparticles are fascinating where physical and optical properties are related to size. Highly controllable synthesis methods and nanoparticle assembly are essential for highly innovative technological applications. Well-defined shaped and sized nanoparticles enable comparisons between experiments, theory and subsequent new models to explain experimentally observed phenomena. Among nanoparticles, nonhomogeneous core-shell nanoparticles (CSnp) have new properties that arise when varying the relative dimensions of the core and the shell. This CSnp structure enables various optical resonances, and engineered energy barriers, in addition to the high charge to surface ratio. Assembly of homogeneous nanoparticles into functional structures has become ubiquitous in biosensors (i.e. optical labeling), nanocoatings, and electrical circuits. Limited nonhomogenous nanoparticle assembly has only been explored. Many conventional nanoparticle assembly methods exist, but this work explores dielectrophoresis (DEP) as a new method. DEP is particle polarization via non-uniform electric fields while suspended in conductive fluids. Most prior DEP efforts involve microscale particles. Prior work on core-shell nanoparticle assemblies and separately, nanoparticle characterizations with dielectrophoresis and electrorotation, did not systematically explore particle size, dielectric properties (permittivity and electrical conductivity), shell thickness, particle concentration, medium conductivity, and frequency. This work is the first, to the best of our knowledge, to systematically examine these dielectrophoretic properties for core-shell nanoparticles. Further, we conduct a parametric fitting to traditional core-shell models. These biocompatible core-shell nanoparticles were studied to fill a knowledge gap in the DEP field. Experimental results (chapter 5) first examine medium conductivity, size and shell material dependencies of dielectrophoretic behaviors of spherical CSnp into 2D and

  3. Stochastic-hydrodynamic model of halo formation in charged particle beams

    Directory of Open Access Journals (Sweden)

    Nicola Cufaro Petroni

    2003-03-01

    Full Text Available The formation of the beam halo in charged particle accelerators is studied in the framework of a stochastic-hydrodynamic model for the collective motion of the particle beam. In such a stochastic-hydrodynamic theory the density and the phase of the charged beam obey a set of coupled nonlinear hydrodynamic equations with explicit time-reversal invariance. This leads to a linearized theory that describes the collective dynamics of the beam in terms of a classical Schrödinger equation. Taking into account space-charge effects, we derive a set of coupled nonlinear hydrodynamic equations. These equations define a collective dynamics of self-interacting systems much in the same spirit as in the Gross-Pitaevskii and Landau-Ginzburg theories of the collective dynamics for interacting quantum many-body systems. Self-consistent solutions of the dynamical equations lead to quasistationary beam configurations with enhanced transverse dispersion and transverse emittance growth. In the limit of a frozen space-charge core it is then possible to determine and study the properties of stationary, stable core-plus-halo beam distributions. In this scheme the possible reproduction of the halo after its elimination is a consequence of the stationarity of the transverse distribution which plays the role of an attractor for every other distribution.

  4. Importance-truncated no-core shell model for fermionic many-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Spies, Helena

    2017-03-15

    The exact solution of quantum mechanical many-body problems is only possible for few particles. Therefore, numerical methods were developed in the fields of quantum physics and quantum chemistry for larger particle numbers. Configuration Interaction (CI) methods or the No-Core Shell Model (NCSM) allow ab initio calculations for light and intermediate-mass nuclei, without resorting to phenomenology. An extension of the NCSM is the Importance-Truncated No-Core Shell Model, which uses an a priori selection of the most important basis states. The importance truncation was first developed and applied in quantum chemistry in the 1970s and latter successfully applied to models of light and intermediate mass nuclei. Other numerical methods for calculations for ultra-cold fermionic many-body systems are the Fixed-Node Diffusion Monte Carlo method (FN-DMC) and the stochastic variational approach with Correlated Gaussian basis functions (CG). There are also such method as the Coupled-Cluster method, Green's Function Monte Carlo (GFMC) method, et cetera, used for calculation of many-body systems. In this thesis, we adopt the IT-NCSM for the calculation of ultra-cold Fermi gases at unitarity. Ultracold gases are dilute, strongly correlated systems, in which the average interparticle distance is much larger than the range of the interaction. Therefore, the detailed radial dependence of the potential is not resolved, and the potential can be replaced by an effective contact interaction. At low energy, s-wave scattering dominates and the interaction can be described by the s-wave scattering length. If the scattering length is small and negative, Cooper-pairs are formed in the Bardeen-Cooper-Schrieffer (BCS) regime. If the scattering length is small and positive, these Cooper-pairs become strongly bound molecules in a Bose-Einstein-Condensate (BEC). In between (for large scattering lengths) is the unitary limit with universal properties. Calculations of the energy spectra

  5. The sustained-release behavior and in vitro and in vivo transfection of pEGFP-loaded core-shell-structured chitosan-based composite particles

    Science.gov (United States)

    Wang, Yun; Lin, Fu-xing; Zhao, Yu; Wang, Mo-zhen; Ge, Xue-wu; Gong, Zheng-xing; Bao, Dan-dan; Gu, Yu-fang

    2014-01-01

    Novel submicron core-shell-structured chitosan-based composite particles encapsulated with enhanced green fluorescent protein plasmids (pEGFP) were prepared by complex coacervation method. The core was pEGFP-loaded thiolated N-alkylated chitosan (TACS) and the shell was pH- and temperature-responsive hydroxybutyl chitosan (HBC). pEGFP-loaded TACS-HBC composite particles were spherical, and had a mean diameter of approximately 120 nm, as measured by transmission electron microscopy and particle size analyzer. pEGFP showed sustained release in vitro for >15 days. Furthermore, in vitro transfection in human embryonic kidney 293T and human cervix epithelial cells, and in vivo transfection in mice skeletal muscle of loaded pEGFP, were investigated. Results showed that the expression of loaded pEGFP, both in vitro and in vivo, was slow but could be sustained over a long period. pEGFP expression in mice skeletal muscle was sustained for >60 days. This work indicates that these submicron core-shell-structured chitosan-based composite particles could potentially be used as a gene vector for in vivo controlled gene transfection. PMID:25364253

  6. Modelling characteristics of ferromagnetic cores with the influence of temperature

    International Nuclear Information System (INIS)

    Górecki, K; Rogalska, M; Zarȩbski, J; Detka, K

    2014-01-01

    The paper is devoted to modelling characteristics of ferromagnetic cores with the use of SPICE software. Some disadvantages of the selected literature models of such cores are discussed. A modified model of ferromagnetic cores taking into account the influence of temperature on the magnetizing characteristics and the core losses is proposed. The form of the elaborated model is presented and discussed. The correctness of this model is verified by comparing the calculated and the measured characteristics of the selected ferromagnetic cores.

  7. Fundamental study on flow characteristics of disrupted core pool at a low energy level (Joint research)

    International Nuclear Information System (INIS)

    Morita, Koji; Liu, Ping; Matsumoto, Tatsuya; Fukuda, Kenji; Tobita, Yoshiharu; Yamano, Hidemasa; Sato, Ikken

    2009-09-01

    Dynamic behaviors of solid-particle dominant multiphase flows were investigated to model the mobility of core materials in a low-energy disrupted core of a liquid metal fast reactor. Two series of experiments were performed, those were dam-break experiments and bubble visualization experiments. Verification of fluid-dynamics models used in the fast reactor safety analysis code SIMMER-III was also conducted based on the numerical simulations of these experiments. The experimental analyses show that SIMMER-III can represent effects of solid particle interaction on multiphase flow behaviors by adjusting model parameters of the particle jamming model if the particles are immersed in liquid phase. Further improvement of SIMMER-III with more generalized models is necessary to appropriately simulate interactions between solid particles in a wider range of flow conditions. (author)

  8. SCDAP/RELAP5 lower core plate model

    International Nuclear Information System (INIS)

    Coryell, E.W.; Griffin, F.P.

    1999-01-01

    The SCDAP/RELAP5 computer code is a best-estimate analysis tool for performing nuclear reactor severe accident simulations. This report describes the justification, theory, implementation, and testing of a new modeling capability which will refine the analysis of the movement of molten material from the core region to the vessel lower head. As molten material moves from the core region through the core support structures it may encounter conditions which will cause it to freeze in the region of the lower core plate, delaying its arrival to the vessel head. The timing of this arrival is significant to reactor safety, because during the time span for material relocation to the lower head, the core may be experiencing steam-limited oxidation. The time at which hot material arrives in a coolant-filled lower vessel head, thereby significantly increasing the steam flow rate through the core region, becomes significant to the progression and timing of a severe accident. This report is a revision of a report INEEL/EXT-00707, entitled ''Preliminary Design Report for SCDAP/RELAP5 Lower Core Plate Model''

  9. Liquid-solid transition in the bond particle model for elemental semiconductors

    International Nuclear Information System (INIS)

    Badirkhan, Z.; Tosi, M.P.; Rovere, M.

    1991-07-01

    Freezing of Silicon and Germanium involves a reconstruction of covalent tetrahedral bonds from a metallic liquid having density and coordination then the solid. We first contrast the metallic liquid structure of Germanium with that of its semiconducting amorphous state, in order to emphasize the changes in the atomic structure factor that arise from reconstruction of the interatomic bonds. We then use the density wave theory of freezing to discuss the liquid-solid transition within a pseudoclassical model, which describes the liquid structure by means of partial structure factors giving the pair correlations between atoms and bond particles. The phase transition is viewed as a freezing of the bonds driven by tetrahedrally constrained attractions between ionic cores and valence electrons and accompanied by an opening of the structure to allow long-range connectivity of tetrahedral atomic units. Quantitative calculations on the bond particle model illustrate the relationship between the liquid structure and the microscopic Fourier components of the single-particle densities of atoms and bonds. In further support of this picture, we also present calculations for freezing of a liquid having the density and the atomic structure of compacted amorphous Germanium. (author). 25 refs, 2 figs, 2 tabs

  10. Energy selecting action of limiters on particle fluxes penetrating into the SOL-plasma

    International Nuclear Information System (INIS)

    Hildebrandt, D.

    1986-01-01

    A single model of the penetration of particle effluxes from the core plasma into the SOL-plasma of tokamaks is proposed. The assumptions made are free streaming of particles parallel to the magnetic field and anomalous particle transport perpendicular to the toroidal field with a constant radial velocity. The model has been proved for measured particle fluxes of Li which was injected into the core plasma of the tokamak T-10. The dependence of the Li-particle flux on the minor radius as well as toroidal asymmetries in the SOL-plasma can be explained by the results of the calculations. (author)

  11. APROS 3-D core models for simulators and plant analyzers

    International Nuclear Information System (INIS)

    Puska, E.K.

    1999-01-01

    The 3-D core models of APROS simulation environment can be used in simulator and plant analyzer applications, as well as in safety analysis. The key feature of APROS models is that the same physical models can be used in all applications. For three-dimensional reactor cores the APROS models cover both quadratic BWR and PWR cores and the hexagonal lattice VVER-type cores. In APROS environment the user can select the number of flow channels in the core and either five- or six-equation thermal hydraulic model for these channels. The thermal hydraulic model and the channel description have a decisive effect on the calculation time of the 3-D core model and thus just these selection make at present the major difference between a safety analysis model and a training simulator model. The paper presents examples of various types of 3-D LWR-type core descriptions for simulator and plant analyzer use and discusses the differences of calculation speed and physical results between a typical safety analysis model description and a real-time simulator model description in transients. (author)

  12. Vaccine delivery system for tuberculosis based on nano-sized hepatitis B virus core protein particles

    Directory of Open Access Journals (Sweden)

    Dhanasooraj D

    2013-02-01

    Full Text Available Dhananjayan Dhanasooraj, R Ajay Kumar, Sathish MundayoorMycobacterium Research Group, Rajiv Gandhi Centre for Biotechnology, Kerala, IndiaAbstract: Nano-sized hepatitis B virus core virus-like particles (HBc-VLP are suitable for uptake by antigen-presenting cells. Mycobacterium tuberculosis antigen culture filtrate protein 10 (CFP-10 is an important vaccine candidate against tuberculosis. The purified antigen shows low immune response without adjuvant and tends to have low protective efficacy. The present study is based on the assumption that expression of these proteins on HBc nanoparticles would provide higher protection when compared to the native antigen alone. The cfp-10 gene was expressed as a fusion on the major immunodominant region of HBc-VLP, and the immune response in Balb/c mice was studied and compared to pure proteins, a mixture of antigens, and fusion protein-VLP, all without using any adjuvant. The humoral, cytokine, and splenocyte cell proliferation responses suggested that the HBc-VLP bearing CFP-10 generated an antigen-specific immune response in a Th1-dependent manner. By virtue of its self-adjuvant nature and ability to form nano-sized particles, HBc-VLPs are an excellent vaccine delivery system for use with subunit protein antigens identified in the course of recent vaccine research.Keywords: Mycobacterium tuberculosis, VLP, hepatitis B virus core particle, CFP-10, self-adjuvant, vaccine delivery

  13. Acceleration of the Particle Swarm Optimization for Peierls–Nabarro modeling of dislocations in conventional and high-entropy alloys

    International Nuclear Information System (INIS)

    Pei, Zongrui; Eisenbach, Markus

    2017-01-01

    Dislocations are among the most important defects in determining the mechanical properties of both conventional alloys and high-entropy alloys. The Peierls-Nabarro model supplies an efficient pathway to their geometries and mobility. The difficulty in solving the integro-differential Peierls-Nabarro equation is how to effectively avoid the local minima in the energy landscape of a dislocation core. Among the other methods to optimize the dislocation core structures, we choose the algorithm of Particle Swarm Optimization, an algorithm that simulates the social behaviors of organisms. By employing more particles (bigger swarm) and more iterative steps (allowing them to explore for longer time), the local minima can be effectively avoided. But this would require more computational cost. The advantage of this algorithm is that it is readily parallelized in modern high computing architecture. We demonstrate the performance of our parallelized algorithm scales linearly with the number of employed cores.

  14. Occurrence of dead core in catalytic particles containing immobilized enzymes: analysis for the Michaelis-Menten kinetics and assessment of numerical methods.

    Science.gov (United States)

    Pereira, Félix Monteiro; Oliveira, Samuel Conceição

    2016-11-01

    In this article, the occurrence of dead core in catalytic particles containing immobilized enzymes is analyzed for the Michaelis-Menten kinetics. An assessment of numerical methods is performed to solve the boundary value problem generated by the mathematical modeling of diffusion and reaction processes under steady state and isothermal conditions. Two classes of numerical methods were employed: shooting and collocation. The shooting method used the ode function from Scilab software. The collocation methods included: that implemented by the bvode function of Scilab, the orthogonal collocation, and the orthogonal collocation on finite elements. The methods were validated for simplified forms of the Michaelis-Menten equation (zero-order and first-order kinetics), for which analytical solutions are available. Among the methods covered in this article, the orthogonal collocation on finite elements proved to be the most robust and efficient method to solve the boundary value problem concerning Michaelis-Menten kinetics. For this enzyme kinetics, it was found that the dead core can occur when verified certain conditions of diffusion-reaction within the catalytic particle. The application of the concepts and methods presented in this study will allow for a more generalized analysis and more accurate designs of heterogeneous enzymatic reactors.

  15. Validation of new empirical model for self-leveling behavior of cylindrical particle beds based on experimental database

    International Nuclear Information System (INIS)

    Morita, Koji; Matsumoto, Tatsuya; Taketa, Shohei; Nishi, Shinpei; Cheng, Songbai; Suzuki, Tohru; Tobita, Yoshiharu

    2014-01-01

    During a material relocation phase of core disruptive accidents (CDAs) in sodium cooled fast reactors (SFRs), debris beds can be formed in the lower plenum region due to rapid quenching and fragmentation of molten core materials. Heat removal from debris beds is crucial to achieve so called in-vessel retention (IVR) of degraded core materials. Coolant boiling in the beds may lead to leveling of their mound shape, and then changes coolability of the beds with decay heat as well as neutronic characteristics. To clarify the mechanisms underlying this self-leveling behavior, several series of experiments using simulant materials has been performed in collaboration between Japan Atomic Energy Agency (JAEA) and Kyushu University in Japan. In the present study, experiments in a cylindrical system were employed to develop experimental data on self-leveling process of particle beds. In the experiments, to simulate the coolant boiling due to the decay heat in fuel, nitrogen gas was percolated uniformly through the bottom of the particle bed with a conical shape mound using a gas injection method. Time variations in bed height during the self-leveling process were measured for key experimental parameters on particle size, density and sphericity, and gas flow rate. Using a dimensional analysis approach, a new model was proposed to correlate the experimental data on transient bed height with an empirical equation using a characteristic time of self-leveling development and a terminal equilibrium height of the bed. It was demonstrated that the proposed model predicts self-leveling development of particle beds with reasonable accuracy in the present ranges of experimental conditions. (author)

  16. Modelling of a general purpose irradiation chamber using a Monte Carlo particle transport code

    International Nuclear Information System (INIS)

    Dhiyauddin Ahmad Fauzi; Sheik, F.O.A.; Nurul Fadzlin Hasbullah

    2013-01-01

    Full-text: The aim of this research is to stimulate the effectiveness use of a general purpose irradiation chamber to contain pure neutron particles obtained from a research reactor. The secondary neutron and gamma particles dose discharge from the chamber layers will be used as a platform to estimate the safe dimension of the chamber. The chamber, made up of layers of lead (Pb), shielding, polyethylene (PE), moderator and commercial grade aluminium (Al) cladding is proposed for the use of interacting samples with pure neutron particles in a nuclear reactor environment. The estimation was accomplished through simulation based on general Monte Carlo N-Particle transport code using Los Alamos MCNPX software. Simulations were performed on the model of the chamber subjected to high neutron flux radiation and its gamma radiation product. The model of neutron particle used is based on the neutron source found in PUSPATI TRIGA MARK II research reactor which holds a maximum flux value of 1 x 10 12 neutron/ cm 2 s. The expected outcomes of this research are zero gamma dose in the core of the chamber and neutron dose rate of less than 10 μSv/ day discharge from the chamber system. (author)

  17. Theoretical study on rotational bands and shape coexistence of 183,185,187Tl in the particle-triaxial-rotor model

    International Nuclear Information System (INIS)

    Chen Guojie; Cao Hui; Liu Yuxin; Song Huichao

    2006-01-01

    By taking the particle-triaxial-rotor model with variable moment of inertia, we systematically investigate the energy spectra, deformations, and single-particle configurations of the nuclei 183,185,187 Tl. The calculated energy spectra agree quite well with experimental data. The obtained results indicate that the rotation-aligned bands observed in 183,185,187 Tl originate from one of the [530](1/2) - ,[532](3/2) - ,[660](1/2) + proton configurations coupled to a prolate deformed core. Furthermore, the negative parity bands built upon the (9/2) - isomeric states in 183,185,187 Tl are formed by a proton with the [505](9/2) - configuration coupled to a core with triaxial oblate deformation, and the positive parity band on the (13/2) + isomeric state in 187 Tl is generated by a proton with configuration [606](13/2) + coupled to a triaxial oblate core

  18. Dark matter halos with cores from hierarchical structure formation

    International Nuclear Information System (INIS)

    Strigari, Louis E.; Kaplinghat, Manoj; Bullock, James S.

    2007-01-01

    We show that dark matter emerging from late decays (z or approx. 0.1 Mpc), and simultaneously generates observable constant-density cores in small dark matter halos. We refer to this class of models as meta-cold dark matter (mCDM), because it is born with nonrelativistic velocities from the decays of cold thermal relics. The constant-density cores are a result of the low phase-space density of mCDM at birth. Warm dark matter cannot produce similar size phase-space limited cores without saturating the Lyα power spectrum bounds. Dark matter-dominated galaxy rotation curves and stellar velocity dispersion profiles may provide the best means to discriminate between mCDM and CDM. mCDM candidates are motivated by the particle spectrum of supersymmetric and extra dimensional extensions to the standard model of particle physics

  19. Core-shell particles at fluid interfaces

    NARCIS (Netherlands)

    Buchcic, C.

    2016-01-01

    There is a growing interest in the use of particles as stabilizers for foams and emulsions. Applying hard particles for stabilization of fluid interface is referred to as Pickering stabilization. By using hard particles instead of surfactants and polymers, fluid interfaces can be effectively

  20. A Core Language for Separate Variability Modeling

    DEFF Research Database (Denmark)

    Iosif-Lazăr, Alexandru Florin; Wasowski, Andrzej; Schaefer, Ina

    2014-01-01

    Separate variability modeling adds variability to a modeling language without requiring modifications of the language or the supporting tools. We define a core language for separate variability modeling using a single kind of variation point to define transformations of software artifacts in object...... hierarchical dependencies between variation points via copying and flattening. Thus, we reduce a model with intricate dependencies to a flat executable model transformation consisting of simple unconditional local variation points. The core semantics is extremely concise: it boils down to two operational rules...

  1. Modification of Core Model for KNTC 2 Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.K.; Lee, J.G.; Park, J.E.; Bae, S.N.; Chin, H.C. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    KNTC 2 simulator was developed in 1986 referencing YGN 1. Since the YGN 1 has changed its fuel cycle to long term cycle(cycle 9), the data such as rod worth, boron worth, moderator temperature coefficient, and etc. of the simulator and those of the YGN 1 became different. To incorporate these changes into the simulator and make the simulator more close to the reference plant, core model upgrade became a necessity. During this research, core data for the simulator was newly generated using APA of the WH. And to make it easy tuning and verification of the key characteristics of the reactor model, PC-Based tool was also developed. And to facilitate later core model upgrade, two procedures-`the Procedures for core characteristic generation` and `the Procedures for core characteristic modification`-were also developed. (author). 16 refs., 22 figs., 1 tab.

  2. Modelling the core magnetic field of the earth

    Science.gov (United States)

    Harrison, C. G. A.; Carle, H. M.

    1982-01-01

    It is suggested that radial off-center dipoles located within the core of the earth be used instead of spherical harmonics of the magnetic potential in modeling the core magnetic field. The off-center dipoles, in addition to more realistically modeling the physical current systems within the core, are if located deep within the core more effective at removing long wavelength signals of either potential or field. Their disadvantage is that their positions and strengths are more difficult to compute, and such effects as upward and downward continuation are more difficult to manipulate. It is nevertheless agreed with Cox (1975) and Alldredge and Hurwitz (1964) that physical realism in models is more important than mathematical convenience. A radial dipole model is presented which agrees with observations of secular variation and excursions.

  3. Baryon-Baryon Interactions ---Nijmegen Extended-Soft-Core Models---

    Science.gov (United States)

    Rijken, T. A.; Nagels, M. M.; Yamamoto, Y.

    We review the Nijmegen extended-soft-core (ESC) models for the baryon-baryon (BB) interactions of the SU(3) flavor-octet of baryons (N, Lambda, Sigma, and Xi). The interactions are basically studied from the meson-exchange point of view, in the spirit of the Yukawa-approach to the nuclear force problem [H. Yukawa, ``On the interaction of Elementary Particles I'', Proceedings of the Physico-Mathematical Society of Japan 17 (1935), 48], using generalized soft-core Yukawa-functions. These interactions are supplemented with (i) multiple-gluon-exchange, and (ii) structural effects due to the quark-core of the baryons. We present in some detail the most recent extended-soft-core model, henceforth referred to as ESC08, which is the most complete, sophisticated, and successful interaction-model. Furthermore, we discuss briefly its predecessor the ESC04-model [Th. A. Rijken and Y. Yamamoto, Phys. Rev. C 73 (2006), 044007; Th. A. Rijken and Y. Yamamoto, Ph ys. Rev. C 73 (2006), 044008; Th. A. Rijken and Y. Yamamoto, nucl-th/0608074]. For the soft-core one-boson-exchange (OBE) models we refer to the literature [Th. A. Rijken, in Proceedings of the International Conference on Few-Body Problems in Nuclear and Particle Physics, Quebec, 1974, ed. R. J. Slobodrian, B. Cuec and R. Ramavataram (Presses Universitè Laval, Quebec, 1975), p. 136; Th. A. Rijken, Ph. D. thesis, University of Nijmegen, 1975; M. M. Nagels, Th. A. Rijken and J. J. de Swart, Phys. Rev. D 17 (1978), 768; P. M. M. Maessen, Th. A. Rijken and J. J. de Swart, Phys. Rev. C 40 (1989), 2226; Th. A. Rijken, V. G. J. Stoks and Y. Yamamoto, Phys. Rev. C 59 (1999), 21; V. G. J. Stoks and Th. A. Rijken, Phys. Rev. C 59 (1999), 3009]. All ingredients of these latter models are also part of ESC08, and so a description of ESC08 comprises all models so far in principle. The extended-soft-core (ESC) interactions consist of local- and non-local-potentials due to (i) one-boson-exchanges (OBE), which are the members of nonets of

  4. Enhanced Core Noise Modeling for Turbofan Engines

    Science.gov (United States)

    Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J.

    2011-01-01

    This report describes work performed by MTC Technologies (MTCT) for NASA Glenn Research Center (GRC) under Contract NAS3-00178, Task Order No. 15. MTCT previously developed a first-generation empirical model that correlates the core/combustion noise of four GE engines, the CF6, CF34, CFM56, and GE90 for General Electric (GE) under Contract No. 200-1X-14W53048, in support of GRC Contract NAS3-01135. MTCT has demonstrated in earlier noise modeling efforts that the improvement of predictive modeling is greatly enhanced by an iterative approach, so in support of NASA's Quiet Aircraft Technology Project, GRC sponsored this effort to improve the model. Since the noise data available for correlation are total engine noise spectra, it is total engine noise that must be predicted. Since the scope of this effort was not sufficient to explore fan and turbine noise, the most meaningful comparisons must be restricted to frequencies below the blade passage frequency. Below the blade passage frequency and at relatively high power settings jet noise is expected to be the dominant source, and comparisons are shown that demonstrate the accuracy of the jet noise model recently developed by MTCT for NASA under Contract NAS3-00178, Task Order No. 10. At lower power settings the core noise became most apparent, and these data corrected for the contribution of jet noise were then used to establish the characteristics of core noise. There is clearly more than one spectral range where core noise is evident, so the spectral approach developed by von Glahn and Krejsa in 1982 wherein four spectral regions overlap, was used in the GE effort. Further analysis indicates that the two higher frequency components, which are often somewhat masked by turbomachinery noise, can be treated as one component, and it is on that basis that the current model is formulated. The frequency scaling relationships are improved and are now based on combustor and core nozzle geometries. In conjunction with the Task

  5. An amino-terminal segment of hantavirus nucleocapsid protein presented on hepatitis B virus core particles induces a strong and highly cross-reactive antibody response in mice

    International Nuclear Information System (INIS)

    Geldmacher, Astrid; Skrastina, Dace; Petrovskis, Ivars; Borisova, Galina; Berriman, John A.; Roseman, Alan M.; Crowther, R. Anthony; Fischer, Jan; Musema, Shamil; Gelderblom, Hans R.; Lundkvist, Aake; Renhofa, Regina; Ose, Velta; Krueger, Detlev H.; Pumpens, Paul; Ulrich, Rainer

    2004-01-01

    Previously, we have demonstrated that hepatitis B virus (HBV) core particles tolerate the insertion of the amino-terminal 120 amino acids (aa) of the Puumala hantavirus nucleocapsid (N) protein. Here, we demonstrate that the insertion of 120 amino-terminal aa of N proteins from highly virulent Dobrava and Hantaan hantaviruses allows the formation of chimeric core particles. These particles expose the inserted foreign protein segments, at least in part, on their surface. Analysis by electron cryomicroscopy of chimeric particles harbouring the Puumala virus (PUUV) N segment revealed 90% T = 3 and 10% T = 4 shells. A map computed from T = 3 shells shows additional density splaying out from the tips of the spikes producing the effect of an extra shell of density at an outer radius compared with wild-type shells. The inserted Puumala virus N protein segment is flexibly linked to the core spikes and only partially icosahedrally ordered. Immunisation of mice of two different haplotypes (BALB/c and C57BL/6) with chimeric core particles induces a high-titered and highly cross-reactive N-specific antibody response in both mice strains

  6. Modeling and Detection of Ice Particle Accretion in Aircraft Engine Compression Systems

    Science.gov (United States)

    May, Ryan D.; Simon, Donald L.; Guo, Ten-Huei

    2012-01-01

    The accretion of ice particles in the core of commercial aircraft engines has been an ongoing aviation safety challenge. While no accidents have resulted from this phenomenon to date, numerous engine power loss events ranging from uneventful recoveries to forced landings have been recorded. As a first step to enabling mitigation strategies during ice accretion, a detection scheme must be developed that is capable of being implemented on board modern engines. In this paper, a simple detection scheme is developed and tested using a realistic engine simulation with approximate ice accretion models based on data from a compressor design tool. These accretion models are implemented as modified Low Pressure Compressor maps and have the capability to shift engine performance based on a specified level of ice blockage. Based on results from this model, it is possible to detect the accretion of ice in the engine core by observing shifts in the typical sensed engine outputs. Results are presented in which, for a 0.1 percent false positive rate, a true positive detection rate of 98 percent is achieved.

  7. Thermal hydraulic model validation for HOR mixed core fuel management

    International Nuclear Information System (INIS)

    Gibcus, H.P.M.; Vries, J.W. de; Leege, P.F.A. de

    1997-01-01

    A thermal-hydraulic core management model has been developed for the Hoger Onderwijsreactor (HOR), a 2 MW pool-type university research reactor. The model was adopted for safety analysis purposes in the framework of HEU/LEU core conversion studies. It is applied in the thermal-hydraulic computer code SHORT (Steady-state HOR Thermal-hydraulics) which is presently in use in designing core configurations and for in-core fuel management. An elaborate measurement program was performed for establishing the core hydraulic characteristics for a variety of conditions. The hydraulic data were obtained with a dummy fuel element with special equipment allowing a.o. direct measurement of the true core flow rate. Using these data the thermal-hydraulic model was validated experimentally. The model, experimental tests, and model validation are discussed. (author)

  8. The influence of some factors on the electrical conductivity and particle size of core/shell polystyrene/polyaniline composites

    Directory of Open Access Journals (Sweden)

    GORDANA D. NESTOROVIC

    2005-11-01

    Full Text Available The electrically conductive, micron-sized, core/shell polystyrene (PS/polyaniline (PANI composite particles were synthesized by chemical oxidative polymerization of aniline in the presence of micron-sized PS particles in 1 M HCl. The conditions of the dispersion polymerization of styrene were optimized. The influence of the initiator type employed for the chemical oxidative polymerization of aniline and the aniline (ANI concentration on the PS/PANI particle size and size distribution and their conductivity was investigated. The obtained results show that the conductivity of the samples increased with increasing ANI concentration. The conductivity of the PS/PANI composite particles obtained with the highest ANI concentration was of the same order of magnitude as that for PANI powder. The particle size did not depend on the concentration of ANI, while the particle size distribution was narrower at higher concentrations of ANI.

  9. Core seismic behaviour: linear and non-linear models

    International Nuclear Information System (INIS)

    Bernard, M.; Van Dorsselaere, M.; Gauvain, M.; Jenapierre-Gantenbein, M.

    1981-08-01

    The usual methodology for the core seismic behaviour analysis leads to a double complementary approach: to define a core model to be included in the reactor-block seismic response analysis, simple enough but representative of basic movements (diagrid or slab), to define a finer core model, with basic data issued from the first model. This paper presents the history of the different models of both kinds. The inert mass model (IMM) yielded a first rough diagrid movement. The direct linear model (DLM), without shocks and with sodium as an added mass, let to two different ones: DLM 1 with independent movements of the fuel and radial blanket subassemblies, and DLM 2 with a core combined movement. The non-linear (NLM) ''CORALIE'' uses the same basic modelization (Finite Element Beams) but accounts for shocks. It studies the response of a diameter on flats and takes into account the fluid coupling and the wrapper tube flexibility at the pad level. Damping consists of one modal part of 2% and one part due to shocks. Finally, ''CORALIE'' yields the time-history of the displacements and efforts on the supports, but damping (probably greater than 2%) and fluid-structures interaction are still to be precised. The validation experiments were performed on a RAPSODIE core mock-up on scale 1, in similitude of 1/3 as to SPX 1. The equivalent linear model (ELM) was developed for the SPX 1 reactor-block response analysis and a specified seismic level (SB or SM). It is composed of several oscillators fixed to the diagrid and yields the same maximum displacements and efforts than the NLM. The SPX 1 core seismic analysis with a diagrid input spectrum which corresponds to a 0,1 g group acceleration, has been carried out with these models: some aspects of these calculations are presented here

  10. Little Earth Experiment: An instrument to model planetary cores.

    Science.gov (United States)

    Aujogue, Kélig; Pothérat, Alban; Bates, Ian; Debray, François; Sreenivasan, Binod

    2016-08-01

    In this paper, we present a new experimental facility, Little Earth Experiment, designed to study the hydrodynamics of liquid planetary cores. The main novelty of this apparatus is that a transparent electrically conducting electrolyte is subject to extremely high magnetic fields (up to 10 T) to produce electromagnetic effects comparable to those produced by moderate magnetic fields in planetary cores. This technique makes it possible to visualise for the first time the coupling between the principal forces in a convection-driven dynamo by means of Particle Image Velocimetry (PIV) in a geometry relevant to planets. We first present the technology that enables us to generate these forces and implement PIV in a high magnetic field environment. We then show that the magnetic field drastically changes the structure of convective plumes in a configuration relevant to the tangent cylinder region of the Earth's core.

  11. Nonlinear Dynamic Model of PMBLDC Motor Considering Core Losses

    DEFF Research Database (Denmark)

    Fasil, Muhammed; Mijatovic, Nenad; Jensen, Bogi Bech

    2017-01-01

    The phase variable model is used commonly when simulating a motor drive system with a three-phase permanent magnet brushless DC (PMBLDC) motor. The phase variable model neglects core losses and this affects its accuracy when modelling fractional-slot machines. The inaccuracy of phase variable mod...... on the detailed analysis of the flux path and the variation of flux in different components of the machine. A prototype of fractional slot axial flux PMBLDC in-wheel motor is used to assess the proposed nonlinear dynamic model....... of fractional-slot machines can be attributed to considerable armature flux harmonics, which causes an increased core loss. This study proposes a nonlinear phase variable model of PMBLDC motor that considers the core losses induced in the stator and the rotor. The core loss model is developed based...

  12. Particle Tracking and Deposition from CFD Simulations using a Viscoelastic Particle Model

    NARCIS (Netherlands)

    Losurdo, M.

    2009-01-01

    In the present dissertation the mathematical modelling of particle deposition is studied and the solution algorithms for particle tracking, deposition and deposit growth are developed. Particle deposition is modelled according to mechanical impact and contact mechanics taking into account the

  13. Core-shell microspheres with porous nanostructured shells for liquid chromatography.

    Science.gov (United States)

    Ahmed, Adham; Skinley, Kevin; Herodotou, Stephanie; Zhang, Haifei

    2018-01-01

    The development of new stationary phases has been the key aspect for fast and efficient high-performance liquid chromatography separation with relatively low backpressure. Core-shell particles, with a solid core and porous shell, have been extensively investigated and commercially manufactured in the last decade. The excellent performance of core-shell particles columns has been recorded for a wide range of analytes, covering small and large molecules, neutral and ionic (acidic and basic), biomolecules and metabolites. In this review, we first introduce the advance and advantages of core-shell particles (or more widely known as superficially porous particles) against non-porous particles and fully porous particles. This is followed by the detailed description of various methods used to fabricate core-shell particles. We then discuss the applications of common silica core-shell particles (mostly commercially manufactured), spheres-on-sphere particles and core-shell particles with a non-silica shell. This review concludes with a summary and perspective on the development of stationary phase materials for high-performance liquid chromatography applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Recombinant in vitro assembled hepatitis C virus core particles induce strong specific immunity enhanced by formulation with an oil-based adjuvant

    Directory of Open Access Journals (Sweden)

    NELSON ACOSTA-RIVERO

    2009-01-01

    Full Text Available In the present work, immunogenicity of recombinant in vitro assembled hepatitis C virus core particles, HCcAg.120-VLPs, either alone or in combination with different adjuvants was evaluated in BALB/c mice. HCcAg.120-VLPs induced high titers of anti-HCcAg.120 antibodies and virus-specific cellular immune responses. Particularly, HCcAg.120-VLPs induced specific delayed type hypersensitivity, and generated a predominant T helper 1 cytokine pro file in immunized mice. In addition, HCcAg.120-VLPs prime splenocytes proliferate in vitro against different HCcAg.120-specific peptides, depending on either the immunization route or the adjuvant used. Remarkably, immunization with HCcAg.120-VLPs/Montanide ISA888 formulation resulted in a significant control of vaccinia virus titer in mice after challenge with a recombinant vaccinia virus expressing HCV core protein, vvCore. Animals immunized with this formulation had a marked increase in the number of IFN-γ producing spleen cells, after stimulation with P815 cells infected with vvCore. These results suggest the use of recombinant HCV core particles as components of therapeutic or preventive vaccine candidates against HCV.

  15. High Photocatalytic Activity of Fe3O4-SiO2-TiO2 Functional Particles with Core-Shell Structure

    Directory of Open Access Journals (Sweden)

    Chenyang Xue

    2013-01-01

    Full Text Available This paper describes a novel method of synthesizing Fe3O4-SiO2-TiO2 functional nanoparticles with the core-shell structure. The Fe3O4 cores which were mainly superparamagnetic were synthesized through a novel carbon reduction method. The Fe3O4 cores were then modified with SiO2 and finally encapsulated with TiO2 by the sol-gel method. The results of characterizations showed that the encapsulated 700 nm Fe3O4-SiO2-TiO2 particles have a relatively uniform size distribution, an anatase TiO2 shell, and suitable magnetic properties for allowing collection in a magnetic field. These magnetic properties, large area, relative high saturation intensity, and low retentive magnetism make the particles have high dispersibility in suspension and yet enable them to be recovered well using magnetic fields. The functionality of these particles was tested by measuring the photocatalytic activity of the decolouring of methyl orange (MO and methylene blue (MB under ultraviolet light and sunlight. The results showed that the introduction of the Fe3O4-SiO2-TiO2 functional nanoparticles significantly increased the decoloration rate so that an MO solution at a concentration of 10 mg/L could be decoloured completely within 180 minutes. The particles were recovered after utilization, washing, and drying and the primary recovery ratio was 87.5%.

  16. Synthesis and electrochemical performance of surface-modified nano-sized core/shell tin particles for lithium ion batteries

    International Nuclear Information System (INIS)

    Schmuelling, Guido; Meyer, Hinrich-Wilhelm; Placke, Tobias; Winter, Martin; Oehl, Nikolas; Knipper, Martin; Kolny-Olesiak, Joanna; Plaggenborg, Thorsten; Parisi, Jürgen

    2014-01-01

    Tin is able to lithiate and delithiate reversibly with a high theoretical specific capacity, which makes it a promising candidate to supersede graphite as the state-of-the-art negative electrode material in lithium ion battery technology. Nevertheless, it still suffers from poor cycling stability and high irreversible capacities. In this contribution, we show the synthesis of three different nano-sized core/shell-type particles with crystalline tin cores and different amorphous surface shells consisting of SnO x and organic polymers. The spherical size and the surface shell can be tailored by adjusting the synthesis temperature and the polymer reagents in the synthesis, respectively. We determine the influence of the surface modifications with respect to the electrochemical performance and characterize the morphology, structure, and thermal properties of the nano-sized tin particles by means of high-resolution transmission electron microscopy, x-ray diffraction, and thermogravimetric analysis. The electrochemical performance is investigated by constant current charge/discharge cycling as well as cyclic voltammetry. (paper)

  17. New long-cycle small modular PWR cores using particle type burnable poisons for low boron operation

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hoseong; Hwang, Dae Hee [Department of Nuclear Engineering, Kyung Hee University, Deogyeong-daero, GiHeung-gu, Yongin, Gyeonggi-do 446-701 (Korea, Republic of); Hong, Ser Gi, E-mail: sergihong@khu.ac.kr [Department of Nuclear Engineering, Kyung Hee University, Deogyeong-daero, GiHeung-gu, Yongin, Gyeonggi-do 446-701 (Korea, Republic of); Shin, Ho Choel [Core and Fuel Analysis Group, Korea Hydro & Nuclear Power Central Research Institute (KHNP-CRI), Daejon 305-343 (Korea, Republic of)

    2017-04-01

    Highlights: • New advanced burnable poison rods (BPR) are suggested for low boron operation in PWR. • The new SMR cores have long cycle length of ∼4.5 EFPYs with low boron concentration. • The SMR core satisfies all the design targets and constraints. - Abstract: In this paper, new small long-cycle PWR (Pressurized Water Reactor) cores for low boron concentration operation are designed by employing advanced burnable poison rods (BPRs) in which the BISO (Bi-Isotropic) particles of burnable poison are distributed in a SiC matrix. The BPRs are designed by adjusting the kernel diameter, the kernel material and the packing fraction to effectively reduce the excess reactivity in order to reduce the boron concentration in the coolant and achieve a flat change in excess reactivity over a long operational cycle. In addition, axial zoning of the BPRs was suggested to improve the core performances, and it was shown that the suggested axial zoning of BPRs considerably extends the cycle length compared to a core with no BPR axial zoning. The results of the core physics analyses showed that the cores using BPRs with a B{sub 4}C kernel have long cycle lengths of ∼4.5 EFPYs (Effective Full Power Years), small maximum CBCs (Critical Boron Concentration) lower than 370 ppm, low power peaking factors, and large shutdown margins of control element assemblies.

  18. In-medium no-core shell model for ab initio nuclear structure calculations

    International Nuclear Information System (INIS)

    Gebrerufael, Eskendr

    2017-01-01

    In this work, we merge two successful ab initio nuclear-structure methods, the no-core shell model (NCSM) and the multi-reference in-medium similarity renormalization group (IM-SRG), to define a novel many-body approach for the comprehensive description of ground and excited states of closed- and open-shell medium-mass nuclei. Building on the key advantages of the two methods - the decoupling of excitations at the many-body level in the IM-SRG, and the exact diagonalization in the NCSM applicable up to medium-light nuclei - their combination enables fully converged no-core calculations for an unprecedented range of nuclei and observables at moderate computational cost. The efficiency and rapid model-space convergence of the new approach make it ideally suited for ab initio studies of ground and low-lying excited states of nuclei up to the medium-mass regime. Interactions constructed within the framework of chiral effective field theory provide an excellent opportunity to describe properties of nuclei from first principles, i.e., rooted in quantum chromodynamics, they overcome the lack of predictive power of phenomenological potentials. The hard core of these interactions causes strong short-range correlations, which we soften by using the similarity-renormalization-group transformation that accelerates the model-space convergence of many-body calculations. Three-nucleon effects, which are mandatory for the correct description of bulk properties of nuclei, are included in our calculations by using the normal-ordered two-body approximation, which has been shown to be sufficient to capture the main effects of the three-nucleon interaction. Using these interactions, we analyze energies of ground and excited states in the carbon and oxygen isotopic chains, where conventional NCSM calculations are still feasible and provide an important benchmark. Furthermore, we study the Hoyle state in 12 C - a three-alpha cluster state that cannot be converged in standard NCSM

  19. An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows

    Energy Technology Data Exchange (ETDEWEB)

    Snider, D.M. [SAIC, Albuquerque, NM (United States); O`Rourke, P.J. [Los Alamos National Lab., NM (United States); Andrews, M.J. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

    1997-06-01

    A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.

  20. Luminescence study on Eu3+ doped Y2O3 nanoparticles: particle size, concentration and core-shell formation effects

    International Nuclear Information System (INIS)

    Singh, L Robindro; Ningthoujam, R S; Sudarsan, V; Srivastava, Iti; Singh, S Dorendrajit; Dey, G K; Kulshreshtha, S K

    2008-01-01

    Nanoparticles of Eu 3+ doped Y 2 O 3 (core) and Eu 3+ doped Y 2 O 3 covered with Y 2 O 3 shell (core-shell) are prepared by urea hydrolysis for 3 h in ethylene glycol medium at a relatively low temperature of 140 deg. C, followed by heating at 500 and 900 deg. C. Particle sizes determined from x-ray diffraction and transmission electron microscopic studies are 11 and 18 nm for 500 and 900 deg. C heated samples respectively. Based on the luminescence studies of 500 and 900 deg. C heated samples, it is confirmed that there is no particle size effect on the peak positions of Eu 3+ emission, and optimum luminescence intensity is observed from the nanoparticles with a Eu 3+ concentration of 4-5 at.%. A luminescence study establishes that the Eu 3+ environment in amorphous Y (OH) 3 is different from that in crystalline Y 2 O 3 . For a fixed concentration of Eu 3+ doping, there is a reduction in Eu 3+ emission intensity for core-shell nanoparticles compared to that of core nanoparticles, and this has been attributed to the concentration dilution effect. Energy transfer from the host to Eu 3+ increases with increase of crystallinity

  1. Testing the HTA core model: experiences from two pilot projects

    DEFF Research Database (Denmark)

    Pasternack, Iris; Anttila, Heidi; Mäkelä, Marjukka

    2009-01-01

    OBJECTIVES: The aim of this study was to analyze and describe process and outcomes of two pilot assessments based on the HTA Core Model, discuss the applicability of the model, and explore areas of development. METHODS: Data were gathered from HTA Core Model and pilot Core HTA documents, their va...

  2. Multistage Core Formation in Planetesimals Revealed by Numerical Modeling and Hf-W Chronometry of Iron Meteorites

    Science.gov (United States)

    Neumann, W.; Kruijer, T. S.; Breuer, D.; Kleine, T.

    2018-02-01

    Iron meteorites provide some of the most direct insights into the processes and timescales of core formation in planetesimals. Of these, group IVB irons stand out by having one of the youngest 182Hf-182W model ages for metal segregation (2.9 ± 0.6 Ma after solar system formation), as well as the lowest bulk sulfur content and hence highest liquidus temperature. Here, using a new model for the internal evolution of the IVB parent body, we show that a single stage of metal-silicate separation cannot account for the complete melting of pure Fe metal at the relatively late time given by the Hf-W model age. Instead, a complex metal-silicate separation scenario is required that includes migration of partial silicate melts, formation of a shallow magma ocean, and core formation in two distinct stages of metal segregation. In the first stage, a protocore formed at ≈1.5 Ma via settling of metal particles in a mantle magma ocean, followed by metal segregation from a shallow magma ocean at ≈5.4 Ma. As these stages of metal segregation occurred at different times, the two metal fractions had different 182W compositions. Consequently, the final 182W composition of the IVB core does not correspond to a single differentiation event, but represents the average composition of early- and late-segregated core fractions. Our best fit model indicates an ≈100 km radius for the IVB parent body and provides an accretion age of ≈0.1-0.5 Ma after solar system formation. The computed solidification time is, furthermore, consistent with the Re-Os age for crystallization of the IVB core.

  3. Emittance increase caused by core depletion in collisions

    CERN Document Server

    Bruce, R

    2009-01-01

    A new effect is presented, which changes the emittance during colliding-beam operation in circular colliders. If the initial transverse distribution is Gaussian, the collision probability is much higher for particles in the core of the beam than in the tails. When small-amplitude particles are removed, the remaining ones therefore have a larger transverse emittance. This effect, called core depletion, may cause a decrease in luminosity. An approximate analytic model is developed to study the effect and benchmarked against a multiparticle tracking simulation. Finally, the time evolution of the intensity and emittances of a Pb bunch in the Large Hadron Collider (LHC) at CERN is calculated, taking into account also other processes than collisions. The results show that integrated luminosity drops by 3--4% if core depletion is taken into account. It is also found that core depletion causes the transverse emittance to be larger when more experiments are active. This observation could be checked against experimenta...

  4. Core–shell structured FeSiAl/SiO{sub 2} particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} soft magnetic composite cores with tunable insulating layer thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Xi’an, E-mail: groupfxa@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Wang, Jian, E-mail: snove418562@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Wu, Zhaoyang, E-mail: wustwuzhaoyang@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Li, Guangqiang, E-mail: ligq-wust@mail.wust.edu.cn [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China)

    2015-11-15

    Graphical abstract: - Highlights: • FeSiAl/SiO{sub 2} core–shell particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} composite cores were prepared. • SiO{sub 2} surrounding FeSiAl were replaced by Al{sub 2}O{sub 3} during sintering process. • Fe{sub 3}Si particles were separated by Al{sub 2}O{sub 3} with tunable thickness in composite cores. • Fe{sub 3}Si/Al{sub 2}O{sub 3} had lower core loss and better frequency stability than FeSiAl core. • The insulating layer between ferromagnetic particles can reduce core loss. - Abstract: FeSiAl/SiO{sub 2} core–shell particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} composite cores with tunable insulating layer thicknesses have been synthesized via a modified Stöber method combined with following high temperature sintering process. Most of the conductive FeSiAl particles could be coated by insulating SiO{sub 2} using the modified Stöber method. During the sintering process, the reaction 4Al + 3SiO{sub 2} ≣ 2α-Al{sub 2}O{sub 3} + 3Si took place and the new Fe{sub 3}Si/Al{sub 2}O{sub 3} composite was formed. The Fe{sub 3}Si/Al{sub 2}O{sub 3} composite cores displayed more excellent soft magnetic properties, better frequency stability at high frequencies, much higher resistivity and lower core loss than the raw FeSiAl core. Based on this, several types of FeSiAl/SiO{sub 2} particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} composite cores with tunable insulating layer thicknesses were selectively prepared by simply varying TEOS contents. The thickness of Al{sub 2}O{sub 3} insulating layer and resistivity of Fe{sub 3}Si/Al{sub 2}O{sub 3} composite cores increased with increasing the TEOS contents, while the permeability and core loss changed in the opposite direction.

  5. Porous Core-Shell Nanostructures for Catalytic Applications

    Science.gov (United States)

    Ewers, Trevor David

    Porous core-shell nanostructures have recently received much attention for their enhanced thermal stability. They show great potential in the field of catalysis, as reactant gases can diffuse in and out of the porous shell while the core particle is protected from sintering, a process in which particles coalesce to form larger particles. Sintering is a large problem in industry and is the primary cause of irreversible deactivation. Despite the obvious advantages of high thermal stability, porous core-shell nanoparticles can be developed to have additional interactive properties from the combination of the core and shell together, rather than just the core particle alone. This dissertation focuses on developing new porous core-shell systems in which both the core and shell take part in catalysis. Two types of systems are explored; (1) yolk-shell nanostructures with reducible oxide shells formed using the Kirkendall effect and (2) ceramic-based porous oxide shells formed using sol-gel chemistry. Of the Kirkendall-based systems, Au FexOy and Cu CoO were synthesized and studied for catalytic applications. Additionally, ZnO was explored as a potential shelling material. Sol-gel work focused on optimizing synthetic methods to allow for coating of small gold particles, which remains a challenge today. Mixed metal oxides were explored as a shelling material to make dual catalysts in which the product of a reaction on the core particle becomes a reactant within the shell.

  6. Preparation of PBA-P(MMA-DMA) core-shell latex particles%PBA-P(MMA-DMA)核壳乳胶粒子的制备

    Institute of Scientific and Technical Information of China (English)

    辛丹丹; 刘喜军; 娄春华

    2016-01-01

    A novel poly-butyl methacry1ate(PBA)-poly(methyl methacrylate-dimethylaminoethyl methacrylate)[P(MMA-DMA)]core-shell latex particle containing amino groups in surface layer was prepared by a pre-emulsion semi-continuous seeded emulsion polymerization method. It was characterized through element analyzer, laser particle size analyzer, transmission electron microscope (TEM), and X-ray Photoelectron Spectroscopy(XPS). The results indicate that PBA-P(MMA-DMA)latex particles are well-defined core-shell structure, and the mean grain size of PBA core and PBA-P(MMA-DMA) core-shell latex particles are 270 nm and 340 nm respectively. There exists DMA in shell layer of PBA-P (MMA-DMA) core-shell latex particles. When DMA content in shell layer is 10.0% of MMA, the mass fraction of nitrogen in PBA- P(MMA-DMA) core-shell latex particles reaches 0.29%, equivalent of 0.78% amino in shell layer.%采用预乳化半连续种子乳液聚合方法制备了一种新型的表层含氨基的聚甲基丙烯酸丁酯(PBA)-聚(甲基丙烯酸甲酯-甲基丙烯酸二甲氨基乙酯)[P(MMA-DMA)]核壳乳胶粒子,并通过激光粒径分析仪、透射电子显微镜、X射线光电子能谱仪和元素分析仪等对其进行表征。结果表明:PBA-P(MMA-DMA)乳胶粒子为核壳结构,PBA核芯和PBA-P(MMA-DMA)核壳乳胶粒子的平均粒径分别为270,340nm;PBA-P(MMA-DMA)核壳乳胶粒子的壳层确实含有甲基丙烯酸二甲氨基乙酯(DMA),当DMA用量为甲基丙烯酸甲酯质量的10.0%时,PBA-P(MMA-DMA)核壳乳胶粒子氮元素质量分数达0.29%,折合壳层氨基质量分数达0.78%。

  7. Modelling perspectives on radiation chemistry in BWR reactor core

    International Nuclear Information System (INIS)

    Ibe, Eishi

    1991-01-01

    Development of a full-system boiling water reactor core model started in 1982. The model included a two-region reactor core, one with and one without boiling. Key design parameters consider variable dose rates in a three-layer liquid downcomer. Dose rates in the core and downcomer include both generation and recombination reactions of species. Agreement is good between calculations and experimental data of oxygen concentration as a function of hydrogen concentration for different bubble sizes. Oxygen concentration is reduced in the reactor pressure vessel (RPV) by increasing bubble size. The multilayer model follows the oxygen data better than a single-layered model at high concentrations of hydrogen. Key reactions are reduced to five radiolysis reactions and four decomposition reactions for hydrogen peroxide. Calculations by the DOT 3 code showed dose rates from neutrons and gamma rays in various parts of the core. Concentrations of oxygen, hydrogen peroxide, and hydrogen were calculated by the model as a function of time from core inlet. Similar calculations for NWC and HWC were made as a function of height from core inlet both in the boiling channel an the bypass channel. Finally the model was applied to calculate the oxygen plus half the hydrogen peroxide concentrations as a function of hydrogen concentration to compare with data from five plants. Power density distribution with core height was given for an early stage and an end stage of a cycle. Increases of dose rates in the turbine for seven plants were shown as a function of increased hydrogen concentration in the reactor water

  8. Nonstructural protein 5A is incorporated into hepatitis C virus low-density particle through interaction with core protein and microtubules during intracellular transport.

    Directory of Open Access Journals (Sweden)

    Chao-Kuen Lai

    Full Text Available Nonstructural protein 5A (NS5A of hepatitis C virus (HCV serves dual functions in viral RNA replication and virus assembly. Here, we demonstrate that HCV replication complex along with NS5A and Core protein was transported to the lipid droplet (LD through microtubules, and NS5A-Core complexes were then transported from LD through early-to-late endosomes to the plasma membrane via microtubules. Further studies by cofractionation analysis and immunoelectron microscopy of the released particles showed that NS5A-Core complexes, but not NS4B, were present in the low-density fractions, but not in the high-density fractions, of the HCV RNA-containing virions and associated with the internal virion core. Furthermore, exosomal markers CD63 and CD81 were also detected in the low-density fractions, but not in the high-density fractions. Overall, our results suggest that HCV NS5A is associated with the core of the low-density virus particles which exit the cell through a preexisting endosome/exosome pathway and may contribute to HCV natural infection.

  9. Computational modeling of lava domes using particle dynamics to investigate the effect of conduit flow mechanics on flow patterns

    Science.gov (United States)

    Husain, Taha Murtuza

    carapace that caps a ductile magma core. Extrusion rate and magma rheology together with crystallization temperature and volatile content govern the distribution of strength in the composite structure. This new model is calibrated against existing observational models of lava dome growth. Chapter II of this dissertation explores the effects of a spectrum of different rheological regimes, on eruptive style and morphologic evolution of lava domes, using a two-dimensional (2D) particle-dynamics model for a spreading viscoplastic (Bingham) fluid. We assume that the ductile magma core of a 2-D synthetic lava dome develops finite yield strength, and that deformable frictional talus evolves from a carapace that caps the magma core. Our new model is calibrated against an existing analytical model for a spreading viscoplastic lava dome and is further compared against observational data of lava dome growth. Chapter III of this dissertation explores different lava-dome styles by developing a two-dimensional particle-dynamics model. These growth patterns range from endogenous lava dome growth comprising expansion of a ductile dome core to the exogenous extrusion of a degassed lava plug resulting in generation of a lava spine. We couple conduit flow dynamics with surface growth of the evolving lava dome, fueled by an open-system magma chamber undergoing continuous replenishment. The conduit flow model accounts for the variation in rheology of ascending magma that results from degassing-induced crystallization. Chapter IV of this dissertation explores the Variation in the extruding lava flow patterns range from endogenous dome growth with a ductile core to the exogenous extrusion of a degassed lava plug that results in the generation of a spine. The variations are a manifestation of the changes in the magma rheology which is governed by magma composition and rate of decompression of the ascending magma. We simulate using a two-dimensional particle-dynamics model, the cyclic behavior of

  10. Interrelating the breakage and composition of mined and drill core coal

    Science.gov (United States)

    Wilson, Terril Edward

    property) indicated that the size distribution and size fraction composition of the drop-shattered/tumbled core more closely resembled the plant feed than the crushed core. An attempt to determine breakage parameters (to allow use of selection and breakage functions and population balance models in the description of bore core size reduction) was initiated. Rank determination of the three coal types was done, indicating that higher rank associates with higher breakage propensity. The two step procedure of drop-shatter and dry batch tumbling simulates the first-order (volume breakage) and zeroth-order (abrasion of particle surfaces) that occur in excavation and handling operations, and is appropriate for drill core reduction prior to laboratory analysis.

  11. Particle Tracking Model (PTM) with Coastal Modeling System (CMS)

    Science.gov (United States)

    2015-11-04

    Coastal Inlets Research Program Particle Tracking Model (PTM) with Coastal Modeling System ( CMS ) The Particle Tracking Model (PTM) is a Lagrangian...currents and waves. The Coastal Inlets Research Program (CIRP) supports the PTM with the Coastal Modeling System ( CMS ), which provides coupled wave...and current forcing for PTM simulations. CMS -PTM is implemented in the Surface-water Modeling System, a GUI environment for input development

  12. Improvement of Cycle Dependent Core Model for NPP Simulator

    International Nuclear Information System (INIS)

    Song, J. S.; Koo, B. S.; Kim, H. Y. and others

    2003-11-01

    The purpose of this study is to establish automatic core model generation system and to develop 4 cycle real time core analysis methodology with 5% power distribution and 500 pcm reactivity difference criteria for nuclear power plant simulator. The standardized procedure to generate database from ROCS and ANC, which are used for domestic PWR core design, was established for the cycle specific simulator core model generation. An automatic data interface system to generate core model also established. The system includes ARCADIS which edits group constant and DHCGEN which generates interface coupling coefficient correction database. The interface coupling coefficient correction method developed in this study has 4 cycle real time capability and accuracies of which the maximum differences between core design results are within 103 pcm reactivity, 1% relative power distribution and 6% control rod worth. A nuclear power plant core simulation program R-MASTER was developed using the methodology and applied by the concept of distributed client system in simulator. The performance was verified by site acceptance test in Simulator no. 2 in Kori Training Center for 30 initial condition generation and 27 steady state, transient and postulated accident situations

  13. Improvement of Cycle Dependent Core Model for NPP Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Song, J. S.; Koo, B. S.; Kim, H. Y. and others

    2003-11-15

    The purpose of this study is to establish automatic core model generation system and to develop 4 cycle real time core analysis methodology with 5% power distribution and 500 pcm reactivity difference criteria for nuclear power plant simulator. The standardized procedure to generate database from ROCS and ANC, which are used for domestic PWR core design, was established for the cycle specific simulator core model generation. An automatic data interface system to generate core model also established. The system includes ARCADIS which edits group constant and DHCGEN which generates interface coupling coefficient correction database. The interface coupling coefficient correction method developed in this study has 4 cycle real time capability and accuracies of which the maximum differences between core design results are within 103 pcm reactivity, 1% relative power distribution and 6% control rod worth. A nuclear power plant core simulation program R-MASTER was developed using the methodology and applied by the concept of distributed client system in simulator. The performance was verified by site acceptance test in Simulator no. 2 in Kori Training Center for 30 initial condition generation and 27 steady state, transient and postulated accident situations.

  14. Magnetic core-shell silica particles

    NARCIS (Netherlands)

    Claesson, E.M.

    2007-01-01

    This thesis deals with magnetic silica core-shell colloids and related functionalized silica structures. Synthesis routes have been developed and optimized. The physical properties of these colloids have been investigated, such as the magnetic dipole moment, dipolar structure formation and

  15. Analysis of a homogenous and heterogeneous stylized half core of a CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    EL-Khawlani, Afrah [Physics Department, Sana' a (Yemen); Aziz, Moustafa [Nuclear and radiological regulatory authority, Cairo (Egypt); Ismail, Mahmud Yehia; Ellithi, Ali Yehia [Cairo Univ. (Egypt). Faculty of Science

    2015-03-15

    The MCNPX (Monte Carlo N-Particle Transport Code System) code has been used for modeling and simulation of a half core of CANDU (CANada Deuterium-Uranium) reactor, both homogenous and heterogeneous model for the reactor core are designed. The fuel is burnt in normal operation conditions of CANDU reactors. Natural uranium fuel is used in the model. The multiplication factor for homogeneous and heterogeneous reactor core is calculated and compared during fuel burnup. The concentration of both uranium and plutonium isotopes are analysed in the model. The flux and power distributions through channels are calculated.

  16. HCV Core Residues Critical for Infectivity Are Also Involved in Core-NS5A Complex Formation

    Science.gov (United States)

    Gawlik, Katarzyna; Baugh, James; Chatterji, Udayan; Lim, Precious J.; Bobardt, Michael D.; Gallay, Philippe A.

    2014-01-01

    Hepatitis C virus (HCV) infection is a major cause of liver disease. The molecular machinery of HCV assembly and particle release remains obscure. A better understanding of the assembly events might reveal new potential antiviral strategies. It was suggested that the nonstructural protein 5A (NS5A), an attractive recent drug target, participates in the production of infectious particles as a result of its interaction with the HCV core protein. However, prior to the present study, the NS5A-binding site in the viral core remained unknown. We found that the D1 domain of core contains the NS5A-binding site with the strongest interacting capacity in the basic P38-K74 cluster. We also demonstrated that the N-terminal basic residues of core at positions 50, 51, 59 and 62 were required for NS5A binding. Analysis of all substitution combinations of R50A, K51A, R59A, and R62A, in the context of the HCVcc system, showed that single, double, triple, and quadruple mutants were fully competent for viral RNA replication, but deficient in secretion of viral particles. Furthermore, we found that the extracellular and intracellular infectivity of all the mutants was abolished, suggesting a defect in the formation of infectious particles. Importantly, we showed that the interaction between the single and quadruple core mutants and NS5A was impaired in cells expressing full-length HCV genome. Interestingly, mutations of the four basic residues of core did not alter the association of core or NS5A with lipid droplets. This study showed for the first time that basic residues in the D1 domain of core that are critical for the formation of infectious extracellular and intracellular particles also play a role in core-NS5A interactions. PMID:24533158

  17. Rotationally induced fragmentation in the prestellar core L1544

    Energy Technology Data Exchange (ETDEWEB)

    Klapp, Jaime; Zavala, Miguel [Departamento de Física, Instituto Nacional de Investigaciones Nucleares (ININ), Km. 36.5, Carretera México-Toluca, La Marquesa 52750, Estado de México (Mexico); Sigalotti, Leonardo Di G.; Peña-Polo, Franklin; Troconis, Jorge [Centro de Física, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado Postal 20632, Caracas 1020A (Venezuela, Bolivarian Republic of)

    2014-01-10

    Recent observations indicate that there is no correlation between the level of turbulence and fragmentation in detected protostellar cores, suggesting that turbulence works mainly before gravitationally bound prestellar cores form and that their inner parts are likely to be velocity coherent. Based on this evidence, we simulate the collapse and fragmentation of an isolated, initially centrally condensed, uniformly rotating core of total mass M = 5.4 M {sub ☉}, using the smoothed particle hydrodynamics code GADGET-2 modified with the inclusion of sink particles, in order to compare the statistical properties of the resulting stellar ensembles with previous gravoturbulent fragmentation models. The initial conditions are intended to fit the observed properties of the prestellar core L1544. We find that for ratios of the rotational to the gravitational energy β ≥ 0.05, a massive disk is formed at the core center from which a central primary condenses after ∼50 kyr. Soon thereafter the disk fragments into secondary protostars, consistent with an intermediate mode of star formation in which groups of 10-100 stars form from a single core. The models predict peak accretion rates between ∼10{sup –5} and 10{sup –4} M {sub ☉} yr{sup –1} for all stars and reproduce many of the statistical properties predicted from gravoturbulent fragmentation, suggesting that on the small scales of low-mass, dense cores these are independent of whether the contracting gas is turbulent or purely rotating.

  18. Antiviral Activity of Gold/Copper Sulfide Core/Shell Nanoparticles against Human Norovirus Virus-Like Particles.

    Directory of Open Access Journals (Sweden)

    Jessica Jenkins Broglie

    Full Text Available Human norovirus is a leading cause of acute gastroenteritis worldwide in a plethora of residential and commercial settings, including restaurants, schools, and hospitals. Methods for easily detecting the virus and for treating and preventing infection are critical to stopping norovirus outbreaks, and inactivation via nanoparticles (NPs is a more universal and attractive alternative to other physical and chemical approaches. Using norovirus GI.1 (Norwalk virus-like particles (VLPs as a model viral system, this study characterized the antiviral activity of Au/CuS core/shell nanoparticles (NPs against GI.1 VLPs for the rapid inactivation of HuNoV. Inactivation of VLPs (GI.1 by Au/CuS NPs evaluated using an absorbance-based ELISA indicated that treatment with 0.083 μM NPs for 10 min inactivated ~50% VLPs in a 0.37 μg/ml VLP solution and 0.83 μM NPs for 10 min completely inactivated the VLPs. Increasing nanoparticle concentration and/or VLP-NP contact time significantly increased the virucidal efficacy of Au/CuS NPs. Changes to the VLP particle morphology, size, and capsid protein were characterized using dynamic light scattering, transmission electron microscopy, and Western blot analysis. The strategy reported here provides the first reported proof-of-concept Au/CuS NPs-based virucide for rapidly inactivating human norovirus.

  19. Merging for Particle-Mesh Complex Particle Kinetic Modeling of the Multiple Plasma Beams

    Science.gov (United States)

    Lipatov, Alexander S.

    2011-01-01

    We suggest a merging procedure for the Particle-Mesh Complex Particle Kinetic (PMCPK) method in case of inter-penetrating flow (multiple plasma beams). We examine the standard particle-in-cell (PIC) and the PMCPK methods in the case of particle acceleration by shock surfing for a wide range of the control numerical parameters. The plasma dynamics is described by a hybrid (particle-ion-fluid-electron) model. Note that one may need a mesh if modeling with the computation of an electromagnetic field. Our calculations use specified, time-independent electromagnetic fields for the shock, rather than self-consistently generated fields. While a particle-mesh method is a well-verified approach, the CPK method seems to be a good approach for multiscale modeling that includes multiple regions with various particle/fluid plasma behavior. However, the CPK method is still in need of a verification for studying the basic plasma phenomena: particle heating and acceleration by collisionless shocks, magnetic field reconnection, beam dynamics, etc.

  20. A calculation model for a HTR core seismic response

    International Nuclear Information System (INIS)

    Buland, P.; Berriaud, C.; Cebe, E.; Livolant, M.

    1975-01-01

    The paper presents the experimental results obtained at Saclay on a HTGR core model and comparisons with analytical results. Two series of horizontal tests have been performed on the shaking table VESUVE: sinusoidal test and time history response. Acceleration of graphite blocks, forces on the boundaries, relative displacement of the core and PCRB model, impact velocity of the blocks on the boundaries were recorded. These tests have shown the strongly non-linear dynamic behaviour of the core. The resonant frequency of the core is dependent on the level of the excitation. These phenomena have been explained by a computer code, which is a lumped mass non-linear model. Good correlation between experimental and analytical results was obtained for impact velocities and forces on the boundaries. This comparison has shown that the damping of the core is a critical parameter for the estimation of forces and velocities. Time history displacement at the level of PCRV was reproduced on the shaking table. The analytical model was applied to this excitation and good agreement was obtained for forces and velocities. (orig./HP) [de

  1. Low-Temperature Crystal Structures of the Hard Core Square Shoulder Model

    Directory of Open Access Journals (Sweden)

    Alexander Gabriëlse

    2017-11-01

    Full Text Available In many cases, the stability of complex structures in colloidal systems is enhanced by a competition between different length scales. Inspired by recent experiments on nanoparticles coated with polymers, we use Monte Carlo simulations to explore the types of crystal structures that can form in a simple hard-core square shoulder model that explicitly incorporates two favored distances between the particles. To this end, we combine Monte Carlo-based crystal structure finding algorithms with free energies obtained using a mean-field cell theory approach, and draw phase diagrams for two different values of the square shoulder width as a function of the density and temperature. Moreover, we map out the zero-temperature phase diagram for a broad range of shoulder widths. Our results show the stability of a rich variety of crystal phases, such as body-centered orthogonal (BCO lattices not previously considered for the square shoulder model.

  2. Interplay between collective and single particle excitations around neutron-rich doubly-magic nuclei

    Directory of Open Access Journals (Sweden)

    Leoni S.

    2016-01-01

    Full Text Available The excitation spectra of nuclei with one or two particles outside a doubly-magic core are expected to be dominated, at low energy, by the couplings between phonon excitations of the core and valence particles. A survey of the experimental situation is given for some nuclei lying in close proximity of neutron-rich doubly-magic systems, such as 47,49Ca, 133Sb and 210Bi. Data are obtained with various types of reactions (multinucleon transfer with heavy ions, cold neutron capture and neutron induced fission of 235U and 241Pu targets, with the employment of complex detection systems based on HPGe arrays. A comparison with theoretical calculations is also presented, in terms of large shell model calculations and of a phenomenological particle-phonon model. In the case of 133Sb, a new microscopic “hybrid” model is introduced: it is based on the coupling between core excitations (both collective and non-collective of the doubly-magic core and the valence nucleon, using the Skyrme effective interaction in a consistent way.

  3. Interplay between collective and single particle excitations around neutron-rich doubly-magic nuclei

    Science.gov (United States)

    Leoni, S.

    2016-05-01

    The excitation spectra of nuclei with one or two particles outside a doubly-magic core are expected to be dominated, at low energy, by the couplings between phonon excitations of the core and valence particles. A survey of the experimental situation is given for some nuclei lying in close proximity of neutron-rich doubly-magic systems, such as 47,49Ca, 133Sb and 210Bi. Data are obtained with various types of reactions (multinucleon transfer with heavy ions, cold neutron capture and neutron induced fission of 235U and 241Pu targets), with the employment of complex detection systems based on HPGe arrays. A comparison with theoretical calculations is also presented, in terms of large shell model calculations and of a phenomenological particle-phonon model. In the case of 133Sb, a new microscopic "hybrid" model is introduced: it is based on the coupling between core excitations (both collective and non-collective) of the doubly-magic core and the valence nucleon, using the Skyrme effective interaction in a consistent way.

  4. Relativistic ''potential model'' for N-particle systems

    International Nuclear Information System (INIS)

    Noyes, H.P.

    1986-08-01

    Neither quantum field theory nor S-Matrix theory have a well defined procedure for going over to an approximation that can be reliably used in non-relativistic models for nuclear physics. We meet the problem here by constructing a finite particle number relativistic scattering theory for (scalar) particles and mesons using integral equations of the Faddeev-Yakubovsky type. Restricted to N particles and one meson, we can go from the relativistic theory to a ''potential theory'' in the integral equation formulation by using boundary states which do not contain the meson asymptotically. The meson-particle input amplitudes contain a pole at the particle mass, and the particle-particle input amplitudes are null. This gives unique definition (numerically calculable) to the particle-particle off-shell amplitude, and hence to the covariant ''scattering potential'' (but not to the noninvariant concept of ''potential energy''). As we have commented before, if we take these scattering amplitudes as iput for relativistic Faddeev equations, the results are identical to those obtained from the same model starting from three particles and one meson. In this paper we explore how far we can extend this relativistic ''potential model'' to higher numbers of particles and mesons. 10 refs

  5. Numerical and analytical simulation of the production process of ZrO2 hollow particles

    Science.gov (United States)

    Safaei, Hadi; Emami, Mohsen Davazdah

    2017-12-01

    In this paper, the production process of hollow particles from the agglomerated particles is addressed analytically and numerically. The important parameters affecting this process, in particular, the initial porosity level of particles and the plasma gun types are investigated. The analytical model adopts a combination of quasi-steady thermal equilibrium and mechanical balance. In the analytical model, the possibility of a solid core existing in agglomerated particles is examined. In this model, a range of particle diameters (50μm ≤ D_{p0} ≤ 160 μ m) and various initial porosities ( 0.2 ≤ p ≤ 0.7) are considered. The numerical model employs the VOF technique for two-phase compressible flows. The production process of hollow particles from the agglomerated particles is simulated, considering an initial diameter of D_{p0} = 60 μm and initial porosity of p = 0.3, p = 0.5, and p = 0.7. Simulation results of the analytical model indicate that the solid core diameter is independent of the initial porosity, whereas the thickness of the particle shell strongly depends on the initial porosity. In both models, a hollow particle may hardly develop at small initial porosity values ( p disintegrates at high initial porosity values ( p > 0.6.

  6. Radiation chemistry of heavy-particle tracks. I. General considerations

    International Nuclear Information System (INIS)

    Magee, J.L.; Chatterjee, A.

    1980-01-01

    The radiation chemistry of heavy-particle tracks in dilute aqueous solution is considered in a unified manner. Emphasis is on the physical and chemical phenomena which are involved rather than on the construction of models to be used in actual calculations although the latter problem is discussed. A differential segment of a heavy-particle track is composed of two parts which we call core and penumbra; elementary considerations show that all properties of such a differential track can be uniquely specified in terms of a two-parameter system, and we choose energy per nucleon (E) and atomic numbers (Z) as independent parameters. The nature of heavy-particle-track processes varies with the magnitude of the energy deposit (LET), and we discuss three categories of track problems, for low-, intermediate-, and high-LET cases, respectively. Scavenger reactions normally terminate radical recombination in a track, and for heavy-particle tracks we find a criterion involving the scavenger concentration for a convenient separation of core and penumbra into essentially noninteracting parts which can be treated independently. Problems of the core expansion in the three regions are considered, and it is found that a versatile model can be constructed on concepts previously introduced by Ganguly and Magee. A model for the penumbra, based on the authors' electron-track theory, is presented and discussed

  7. Effect of attractive interactions on the water-like anomalies of a core-softened model potential.

    Science.gov (United States)

    Pant, Shashank; Gera, Tarun; Choudhury, Niharendu

    2013-12-28

    It is now well established that water-like anomalies can be reproduced by a spherically symmetric potential with two length scales, popularly known as core-softened potential. In the present study we aim to investigate the effect of attractive interactions among the particles in a model fluid interacting with core-softened potential on the existence and location of various water-like anomalies in the temperature-pressure plane. We employ extensive molecular dynamic simulations to study anomalous nature of various order parameters and properties under isothermal compression. Order map analyses have also been done for all the potentials. We observe that all the systems with varying depth of attractive wells show structural, dynamic, and thermodynamic anomalies. As many of the previous studies involving model water and a class of core softened potentials have concluded that the structural anomaly region encloses the diffusion anomaly region, which in turn, encloses the density anomaly region, the same pattern has also been observed in the present study for the systems with less depth of attractive well. For the systems with deeper attractive well, we observe that the diffusion anomaly region shifts toward higher densities and is not always enclosed by the structural anomaly region. Also, density anomaly region is not completely enclosed by diffusion anomaly region in this case.

  8. Non-relativistic model of two-particle decay

    International Nuclear Information System (INIS)

    Dittrich, J.; Exner, P.

    1986-01-01

    A simple non-relativistic model of a spinless particle decaying into two lighter particles is treated in detail. It is similar to the Lee-model description of V-particle decay. Galilean covariance is formulated properly, by means of a unitary projective representation acting on the state space of the model. After separating the centre-of-mass motion the meromorphic structure of the reduced resolvent is deduced

  9. Synthesis of sol–gel silica particles in reverse micelles with mixed-solvent polar cores: tailoring nanoreactor structure and properties

    Energy Technology Data Exchange (ETDEWEB)

    Bürglová, Kristýna; Hlaváč, Jan [Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry (Czech Republic); Bartlett, John R., E-mail: jbartlett@usc.edu.au [University of the Sunshine Coast, Faculty of Science, Health, Education and Engineering (Australia)

    2015-07-15

    In this paper, we describe a new approach for producing metal oxide nano- and microparticles via sol–gel processing in confined media (sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles), in which the chemical and physical properties of the polar aqueous core of the reverse micelles are modulated by the inclusion of a second polar co-solvent. The co-solvents were selected for their capacity to solubilise compounds with low water solubility and included dimethylsulfoxide, dimethylformamide, ethylene glycol, n-propanol, dimethylacetamide and N-methylpyrrolidone. A broad range of processing conditions across the sodium bis(2-ethylhexyl)sulfosuccinate/cyclohexane/water phase diagram were identified that are suitable for preparing particles with dimensions <50 to >500 nm. In contrast, only a relatively narrow range of processing conditions were suitable for preparing such particles in the absence of the co-solvents, highlighting the role of the co-solvent in modulating the properties of the polar core of the reverse micelles. A mechanism is proposed that links the interactions between the various reactive sites on the polar head group of the surfactant and the co-solvent to the nucleation and growth of the particles.

  10. VHTR core modeling: coupling between neutronic and thermal-hydraulics

    International Nuclear Information System (INIS)

    Limaiem, I.; Damian, F.; Raepsaet, X.; Studer, E.

    2005-01-01

    Following the present interest in the next generation nuclear power plan (NGNP), Cea is deploying special effort to develop new models and qualify its research tools for this next generation reactors core. In this framework, the Very High Temperature Reactor concept (VHTR) has an increasing place in the actual research program. In such type of core, a strong interaction exists between neutronic and thermal-hydraulics. Consequently, the global core modelling requires accounting for the temperature feedback in the neutronic models. The purpose of this paper is to present the new neutronic and thermal-hydraulics coupling model dedicated to the High Temperature Reactors (HTR). The coupling model integrates a new version of the neutronic scheme calculation developed in collaboration between Cea and Framatome-ANP. The neutronic calculations are performed using a specific calculation processes based on the APOLLO2 transport code and CRONOS2 diffusion code which are part of the French reactor physics code system SAPHYR. The thermal-hydraulics model is characterised by an equivalent porous media and 1-D fluid/3-D thermal model implemented in the CAST3M/ARCTURUS code. The porous media approach involves the definition of both homogenous and heterogeneous models to ensure a correct temperature feedback. This study highlights the sensitivity of the coupling system's parameters (radial/axial meshing and data exchange strategy between neutronic and thermal-hydraulics code). The parameters sensitivity study leads to the definition of an optimal coupling system specification for the VHTR. Besides, this work presents the first physical analysis of the VHTR core in steady-state condition. The analysis gives information about the 3-D power peaking and the temperature coefficient. Indeed, it covers different core configurations with different helium distribution in the core bypass. (authors)

  11. Parallelized Kalman-Filter-Based Reconstruction of Particle Tracks on Many-Core Processors and GPUs

    Science.gov (United States)

    Cerati, Giuseppe; Elmer, Peter; Krutelyov, Slava; Lantz, Steven; Lefebvre, Matthieu; Masciovecchio, Mario; McDermott, Kevin; Riley, Daniel; Tadel, Matevž; Wittich, Peter; Würthwein, Frank; Yagil, Avi

    2017-08-01

    For over a decade now, physical and energy constraints have limited clock speed improvements in commodity microprocessors. Instead, chipmakers have been pushed into producing lower-power, multi-core processors such as Graphical Processing Units (GPU), ARM CPUs, and Intel MICs. Broad-based efforts from manufacturers and developers have been devoted to making these processors user-friendly enough to perform general computations. However, extracting performance from a larger number of cores, as well as specialized vector or SIMD units, requires special care in algorithm design and code optimization. One of the most computationally challenging problems in high-energy particle experiments is finding and fitting the charged-particle tracks during event reconstruction. This is expected to become by far the dominant problem at the High-Luminosity Large Hadron Collider (HL-LHC), for example. Today the most common track finding methods are those based on the Kalman filter. Experience with Kalman techniques on real tracking detector systems has shown that they are robust and provide high physics performance. This is why they are currently in use at the LHC, both in the trigger and offine. Previously we reported on the significant parallel speedups that resulted from our investigations to adapt Kalman filters to track fitting and track building on Intel Xeon and Xeon Phi. Here, we discuss our progresses toward the understanding of these processors and the new developments to port the Kalman filter to NVIDIA GPUs.

  12. Parallelized Kalman-Filter-Based Reconstruction of Particle Tracks on Many-Core Processors and GPUs

    Directory of Open Access Journals (Sweden)

    Cerati Giuseppe

    2017-01-01

    Full Text Available For over a decade now, physical and energy constraints have limited clock speed improvements in commodity microprocessors. Instead, chipmakers have been pushed into producing lower-power, multi-core processors such as Graphical Processing Units (GPU, ARM CPUs, and Intel MICs. Broad-based efforts from manufacturers and developers have been devoted to making these processors user-friendly enough to perform general computations. However, extracting performance from a larger number of cores, as well as specialized vector or SIMD units, requires special care in algorithm design and code optimization. One of the most computationally challenging problems in high-energy particle experiments is finding and fitting the charged-particle tracks during event reconstruction. This is expected to become by far the dominant problem at the High-Luminosity Large Hadron Collider (HL-LHC, for example. Today the most common track finding methods are those based on the Kalman filter. Experience with Kalman techniques on real tracking detector systems has shown that they are robust and provide high physics performance. This is why they are currently in use at the LHC, both in the trigger and offine. Previously we reported on the significant parallel speedups that resulted from our investigations to adapt Kalman filters to track fitting and track building on Intel Xeon and Xeon Phi. Here, we discuss our progresses toward the understanding of these processors and the new developments to port the Kalman filter to NVIDIA GPUs.

  13. Parallelized Kalman-Filter-Based Reconstruction of Particle Tracks on Many-Core Processors and GPUs

    Energy Technology Data Exchange (ETDEWEB)

    Cerati, Giuseppe [Fermilab; Elmer, Peter [Princeton U.; Krutelyov, Slava [UC, San Diego; Lantz, Steven [Cornell U.; Lefebvre, Matthieu [Princeton U.; Masciovecchio, Mario [UC, San Diego; McDermott, Kevin [Cornell U.; Riley, Daniel [Cornell U., LNS; Tadel, Matevž [UC, San Diego; Wittich, Peter [Cornell U.; Würthwein, Frank [UC, San Diego; Yagil, Avi [UC, San Diego

    2017-01-01

    For over a decade now, physical and energy constraints have limited clock speed improvements in commodity microprocessors. Instead, chipmakers have been pushed into producing lower-power, multi-core processors such as Graphical Processing Units (GPU), ARM CPUs, and Intel MICs. Broad-based efforts from manufacturers and developers have been devoted to making these processors user-friendly enough to perform general computations. However, extracting performance from a larger number of cores, as well as specialized vector or SIMD units, requires special care in algorithm design and code optimization. One of the most computationally challenging problems in high-energy particle experiments is finding and fitting the charged-particle tracks during event reconstruction. This is expected to become by far the dominant problem at the High-Luminosity Large Hadron Collider (HL-LHC), for example. Today the most common track finding methods are those based on the Kalman filter. Experience with Kalman techniques on real tracking detector systems has shown that they are robust and provide high physics performance. This is why they are currently in use at the LHC, both in the trigger and offine. Previously we reported on the significant parallel speedups that resulted from our investigations to adapt Kalman filters to track fitting and track building on Intel Xeon and Xeon Phi. Here, we discuss our progresses toward the understanding of these processors and the new developments to port the Kalman filter to NVIDIA GPUs.

  14. Summary of multi-core hardware and programming model investigations

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Suzanne Marie; Pedretti, Kevin Thomas Tauke; Levenhagen, Michael J.

    2008-05-01

    This report summarizes our investigations into multi-core processors and programming models for parallel scientific applications. The motivation for this study was to better understand the landscape of multi-core hardware, future trends, and the implications on system software for capability supercomputers. The results of this study are being used as input into the design of a new open-source light-weight kernel operating system being targeted at future capability supercomputers made up of multi-core processors. A goal of this effort is to create an agile system that is able to adapt to and efficiently support whatever multi-core hardware and programming models gain acceptance by the community.

  15. Determination of particle-release conditions in microfiltration: A simple single-particle model tested on a model membrane

    NARCIS (Netherlands)

    Kuiper, S.; van Rijn, C.J.M.; Nijdam, W.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    2000-01-01

    A simple single-particle model was developed for cross-flow microfiltration with microsieves. The model describes the cross-flow conditions required to release a trapped spherical particle from a circular pore. All equations are derived in a fully analytical way without any fitting parameters. For

  16. Comment on atomic independent-particle models

    International Nuclear Information System (INIS)

    Doda, D.D.; Gravey, R.H.; Green, A.E.S.

    1975-01-01

    The Hartree-Fock-Slater (HFS) independent-particle model in the form developed by Hermann and Skillman (HS) and the Green, Sellin, and Zachor (GSZ) analytic independent-particle model are being used for many types of applications of atomic theory to avoid cumbersome, albeit more rigorous, many-body calculations. The single-electron eigenvalues obtained with these models are examined and it is found that the GSZ model is capable of yielding energy eigenvalues for valence electrons which are substantially closer to experimental values than are the results of HS-HFS calculations. With the aid of an analytic representation of the equivalent HS-HFS screening function, the difficulty with this model is identified as a weakness of the potential in the neighborhood of the valence shell. Accurate representations of valence states are important in most atomic applications of the independent-particle model

  17. Dynamic behavior of a solid particle bed in a liquid pool

    International Nuclear Information System (INIS)

    Liu Ping; Yasunaka, Satoshi; Matsumoto, Tatsuya; Morita, Koji; Fukuda, Kenji; Yamano, Hidemasa; Tobita, Yoshiharu

    2007-01-01

    Dynamic behavior of solid particle beds in a liquid pool against pressure transients was investigated to model the mobility of core materials in a postulated disrupted core of a liquid metal fast reactor. A series of experiments was performed with a particle bed of different bed heights, comprising different monotype solid particles, where variable initial pressures of the originally pressurized nitrogen gas were adopted as the pressure sources. Computational simulations of the experiments were performed using SIMMER-III, a fast reactor safety analysis code. Comparisons between simulated and experimental results show that the physical model for multiphase flows used in the SIMMER-III code can reasonably represent the transient behaviors of pool multiphase flows with rich solid phases, as observed in the current experiments. This demonstrates the basic validity of the SIMMER-III code on simulating the dynamic behaviors induced by pressure transients in a low-energy disrupted core of a liquid metal fast reactor with rich solid phases

  18. Evaluation of core modeling effect on transients for multi-flow zone design of SFR

    International Nuclear Information System (INIS)

    Shin, Andong; Choi, Yong Won

    2016-01-01

    SFR core is composed of different types of assemblies including fuel driver, reflector, blanket, control, safety drivers and other drivers. Modeling of different types of assemblies is inevitable in general. But modeling of core flow zones of with different channels needs a lot of effort and could be a challenge for system code modeling due to its limitation on the number of modeling components. In this study, core modeling effect on SFR transient was investigated with flow-zone model and averaged inner core channel model to improve modeling efficiency and validation of simplified core model for EBR-II loss of flow transient case with the modified TRACE code for SFRs. Core modeling effect on the loss flow transient was analyzed with flow-zoned channel model, single averaged inner core model and highest flow channel with averaged inner core channel model for EBR-II SHRT-17 test core. Case study showed that estimations of transient pump and channel flow as well as channel outlet temperatures were similar for all cases macroscopically. Comparing the result of the base case (flow-zone channel inner core model) and the case 2 (highest flow channel considered averaged inner core channel model), flow and channel outlet temperature response were closer than the case1 (single averaged inner core model)

  19. Evaluation of core modeling effect on transients for multi-flow zone design of SFR

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Andong; Choi, Yong Won [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    SFR core is composed of different types of assemblies including fuel driver, reflector, blanket, control, safety drivers and other drivers. Modeling of different types of assemblies is inevitable in general. But modeling of core flow zones of with different channels needs a lot of effort and could be a challenge for system code modeling due to its limitation on the number of modeling components. In this study, core modeling effect on SFR transient was investigated with flow-zone model and averaged inner core channel model to improve modeling efficiency and validation of simplified core model for EBR-II loss of flow transient case with the modified TRACE code for SFRs. Core modeling effect on the loss flow transient was analyzed with flow-zoned channel model, single averaged inner core model and highest flow channel with averaged inner core channel model for EBR-II SHRT-17 test core. Case study showed that estimations of transient pump and channel flow as well as channel outlet temperatures were similar for all cases macroscopically. Comparing the result of the base case (flow-zone channel inner core model) and the case 2 (highest flow channel considered averaged inner core channel model), flow and channel outlet temperature response were closer than the case1 (single averaged inner core model)

  20. Scaling of Core Material in Rubble Mound Breakwater Model Tests

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Liu, Z.; Troch, P.

    1999-01-01

    The permeability of the core material influences armour stability, wave run-up and wave overtopping. The main problem related to the scaling of core materials in models is that the hydraulic gradient and the pore velocity are varying in space and time. This makes it impossible to arrive at a fully...... correct scaling. The paper presents an empirical formula for the estimation of the wave induced pressure gradient in the core, based on measurements in models and a prototype. The formula, together with the Forchheimer equation can be used for the estimation of pore velocities in cores. The paper proposes...... that the diameter of the core material in models is chosen in such a way that the Froude scale law holds for a characteristic pore velocity. The characteristic pore velocity is chosen as the average velocity of a most critical area in the core with respect to porous flow. Finally the method is demonstrated...

  1. Three-particle forces and nuclear models

    International Nuclear Information System (INIS)

    Krutov, V.A.

    1980-01-01

    Different nuclear models accounting and unaccounting for three-particle internucleon forces (TIF) are reviewed. At present only two nuclear models use manifestly TIP: the Vautherin-Brink-Skyrme (VBS) model and the model proposed by the author of the review and called the semiphenomenological (SP) nuclear model. There is a short discussion of major drawbacks of models unaccounting for TIF: multiparticle shell model, ''superfluid model'', Harty-Fock calculations with two-particle forces, Bruckner-Hartry-Fock calculations, the relativistic self-consistent nuclear model. The VBS and SP models are discussed in detail. It is concluded, that the employment of TIF even in a very simplified form (extremely short-range) puts away a lot of problems characteristic to models limited by two-particle forces (collapse at iteratious in Hartry-Fock, simultaneous fitting of the binding energy of a nucleus and the binding energy of a nucleon, etc.) and makes it possible to obtain in a rather simple way such nuclear characteristics as nuclear binding energy, nuclear mean square root radii, nucleon density of a nucleus

  2. Collective models of transition nuclei Pt. 2

    International Nuclear Information System (INIS)

    Dombradi, Zs.

    1982-01-01

    The models describing the even-odd and odd-odd transition nuclei (nuclei of moderate ground state deformation) are reviewed. The nuclear core is described by models of even-even nuclei, and the interaction of a single particle and the core is added. Different models of particle-core coupling (phenomenological models, collective models, nuclear field theory, interacting boson-fermion model, vibration nucleon cluster model) and their results are discussed. New developments like dynamical supersymmetry and new research trends are summarized. (D.Gy.)

  3. Test model of WWER core

    International Nuclear Information System (INIS)

    Tikhomirov, A. V.; Gorokhov, A. K.

    2007-01-01

    The objective of this paper is creation of precision test model for WWER RP neutron-physics calculations. The model is considered as a tool for verification of deterministic computer codes that enables to reduce conservatism of design calculations and enhance WWER RP competitiveness. Precision calculations were performed using code MCNP5/1/ (Monte Carlo method). Engineering computer package Sapfir 9 5andRC V VER/2/ is used in comparative analysis of the results, it was certified for design calculations of WWER RU neutron-physics characteristic. The object of simulation is the first fuel loading of Volgodon NPP RP. Peculiarities of transition in calculation using MCNP5 from 2D geometry to 3D geometry are shown on the full-scale model. All core components as well as radial and face reflectors, automatic regulation in control and protection system control rod are represented in detail description according to the design. The first stage of application of the model is assessment of accuracy of calculation of the core power. At the second stage control and protection system control rod worth was assessed. Full scale RP representation in calculation using code MCNP5 is time consuming that calls for parallelization of computational problem on multiprocessing computer (Authors)

  4. Burnout of pulverized biomass particles in large scale boiler - Single particle model approach

    Energy Technology Data Exchange (ETDEWEB)

    Saastamoinen, Jaakko; Aho, Martti; Moilanen, Antero [VTT Technical Research Centre of Finland, Box 1603, 40101 Jyvaeskylae (Finland); Soerensen, Lasse Holst [ReaTech/ReAddit, Frederiksborgsveij 399, Niels Bohr, DK-4000 Roskilde (Denmark); Clausen, Soennik [Risoe National Laboratory, DK-4000 Roskilde (Denmark); Berg, Mogens [ENERGI E2 A/S, A.C. Meyers Vaenge 9, DK-2450 Copenhagen SV (Denmark)

    2010-05-15

    Burning of coal and biomass particles are studied and compared by measurements in an entrained flow reactor and by modelling. The results are applied to study the burning of pulverized biomass in a large scale utility boiler originally planned for coal. A simplified single particle approach, where the particle combustion model is coupled with one-dimensional equation of motion of the particle, is applied for the calculation of the burnout in the boiler. The particle size of biomass can be much larger than that of coal to reach complete burnout due to lower density and greater reactivity. The burner location and the trajectories of the particles might be optimised to maximise the residence time and burnout. (author)

  5. On the Dynamics of Edge-core Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Hahm,T.S.; Diamond, P.H.; Lin, Z.; Rewoldt, G.; Gurcan, O.; Ethier, S.

    2005-08-26

    One of the nagging, unresolved questions in fusion theory is concerned with the extent of the edge. Gyrokinetic particle simulations of toroidal ion temperature gradient (ITG) turbulence spreading using the Gyrokinetic Toroidal Code (GTC) [Z. Lin et al., Science 281, 1835 (1998)] and its related dynamical model have been extended to a system with radially varying ion temperature gradient, in order to study the inward spreading of edge turbulence toward the core plasma. Due to such spreading, the turbulence intensity in the core region is significantly enhanced over the value obtained from simulations of the core region only, and the precise boundary of the edge region is blurred. Even when the core gradient is within the Dimits shift regime (i.e., dominated by self-generated zonal flows which reduce the transport to a negligible value), a significant level of turbulence can penetrate to the core due to spreading from the edge. The scaling of the turbulent front propagation speed is closer to the prediction from a nonlinear diffusion model than from one based on linear toroidal coupling.

  6. Fission product retention in TRISO coated UO2 particle fuels subjected to HTR simulated core heating tests

    International Nuclear Information System (INIS)

    Baldwin, C.A.; Kania, M.J.

    1991-01-01

    Results of the examination and analysis of 25,730 individual microspheres from spherical fuel elements HFR-K3/1 and HFR-K3/3 are reported. The parent spheres were irradiated in excess of end-of-life exposure and subsequently subjected to simulated core heating tests in a special high-temperature furnace at Forschungszentrum, Juelich, GmbH (KFA). Following the heating tests, the spheres were electrolytically deconsolidated to obtain unbounded fuel particles for Irradiated Microsphere Gamma Analyzer (IMGA) analysis. For sphere HFR-K3/1, which was heated for 500 h at 1600 deg. C, only four particles were identified as having released fission products. The remaining particles from the sphere showed no statistical evidence of fission product release. Scanning Electron Microscopy (SEM) examination showed that three of the defect particles had large sections of the TRISO coating missing, while the fourth appeared normal. For sphere HFR-K3/3, which was heated for 100 h at 1800 deg. C, the IMGA data revealed that fission product release (cesium) from individual particles was significant and that there was large particle-to-particle variation in retention capabilities. Individual particle release (cesium) averaged ten times the KFA-measured integral spherical fuel element release value. In addition, the bimodal distribution of the individual particle data indicated that two distinct modes of failure at fuel temperatures of 1800 deg. C and above may exist. (author). 6 refs, 6 figs, 4 tabs

  7. Fission product retention in TRISCO coated UO2 particle fuels subjected to HTR simulated core heating tests

    International Nuclear Information System (INIS)

    Baldwin, C.A.; Kania, M.J.

    1990-11-01

    Results of the examination and analysis of 25,730 individual microspheres from spherical fuel elements HFR-K3/1 and HFR-K3/3 are reported. The parent spheres were irradiated in excess of end-of-life exposure and subsequently subjected to simulated core heating tests in a special high-temperature furnace at Forschungszentrum, Juelich, GmbH (KFA). Following the heating tests, the spheres were electrolytically deconsolidated to obtain unbonded fuel particles for Irradiated Microsphere Gamma Analyzer (IMGA) analysis. For sphere HFR-K3/1, which was heated for 500 h at 1600 degree C, only four particles were identified as having released fission products. The remaining particles from the sphere showed no statistical evidence of fission product release. Scanning Electron Microscopy (SEM) examination showed that three of the defect particles had large sections of the TRISO coating missing, while the fourth appeared normal. For sphere HFR-K3/3, which was heated for 100 h at 1800 degree C, the IMGA data revealed that fission product release (cesium) from individual particles was significant and that there was large particle-to-particle variation in retention capabilities. Individual particle release (cesium) averaged ten times the KFA-measured integral spherical fuel element release value. In addition, the bimodal distribution of the individual particle data indicated that two distinct modes of failure at fuel temperatures of 1800 degree C and above may exist. 6 refs., 6 figs., 4 tabs

  8. Particle hopping vs. fluid-dynamical models for traffic flow

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, K.

    1995-12-31

    Although particle hopping models have been introduced into traffic science in the 19509, their systematic use has only started recently. Two reasons for this are, that they are advantageous on modem computers, and that recent theoretical developments allow analytical understanding of their properties and therefore more confidence for their use. In principle, particle hopping models fit between microscopic models for driving and fluiddynamical models for traffic flow. In this sense, they also help closing the conceptual gap between these two. This paper shows connections between particle hopping models and traffic flow theory. It shows that the hydrodynamical limits of certain particle hopping models correspond to the Lighthill-Whitham theory for traffic flow, and that only slightly more complex particle hopping models produce already the correct traffic jam dynamics, consistent with recent fluid-dynamical models for traffic flow. By doing so, this paper establishes that, on the macroscopic level, particle hopping models are at least as good as fluid-dynamical models. Yet, particle hopping models have at least two advantages over fluid-dynamical models: they straightforwardly allow microscopic simulations, and they include stochasticity.

  9. Extending the Modelling Framework for Gas-Particle Systems

    DEFF Research Database (Denmark)

    Rosendahl, Lasse Aistrup

    , with very good results. Single particle combustion has been tested using a number of different particle combustion models applied to coal and straw particles. Comparing the results of these calculations to measurements on straw burnout, the results indicate that for straw, existing heterogeneous combustion...... models perform well, and may be used in high temperature ranges. Finally, the particle tracking and combustion model is applied to an existing coal and straw co- fuelled burner. The results indicate that again, the straw follows very different trajectories than the coal particles, and also that burnout...

  10. Modeling of particle mixing in the atmosphere

    International Nuclear Information System (INIS)

    Zhu, Shupeng

    2015-01-01

    This thesis presents a newly developed size-composition resolved aerosol model (SCRAM), which is able to simulate the dynamics of externally-mixed particles in the atmosphere, and evaluates its performance in three-dimensional air-quality simulations. The main work is split into four parts. First, the research context of external mixing and aerosol modelling is introduced. Secondly, the development of the SCRAM box model is presented along with validation tests. Each particle composition is defined by the combination of mass-fraction sections of its chemical components or aggregates of components. The three main processes involved in aerosol dynamic (nucleation, coagulation, condensation/ evaporation) are included in SCRAM. The model is first validated by comparisons with published reference solutions for coagulation and condensation/evaporation of internally-mixed particles. The particle mixing state is investigated in a 0-D simulation using data representative of air pollution at a traffic site in Paris. The relative influence on the mixing state of the different aerosol processes and of the algorithm used to model condensation/evaporation (dynamic evolution or bulk equilibrium between particles and gas) is studied. Then, SCRAM is integrated into the Polyphemus air quality platform and used to conduct simulations over Greater Paris during the summer period of 2009. This evaluation showed that SCRAM gives satisfactory results for both PM2.5/PM10 concentrations and aerosol optical depths, as assessed from comparisons to observations. Besides, the model allows us to analyze the particle mixing state, as well as the impact of the mixing state assumption made in the modelling on particle formation, aerosols optical properties, and cloud condensation nuclei activation. Finally, two simulations are conducted during the winter campaign of MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric Pollution and climate effects, and Integrated tools for

  11. 3D Lagrangian Model of Particle Saltation in an Open Channel Flow with Emphasis on Particle-Particle Collisions

    Science.gov (United States)

    Moreno, P. A.; Bombardelli, F. A.

    2012-12-01

    Particles laying motionless at the bed of rivers, lakes and estuaries can be put into motion when the shear stress exerted by the flow on the particles exceeds the critical shear stress. When these particles start their motion they can either remain suspended by long periods of time (suspended load) or move close to the bed (bed load). Particles are transported as bed load in three different modes: Sliding, rolling and saltation. Saltation is usually described as the bouncing motion of sediment particles in a layer a few particle diameters thick. The amount of particles and the bed-load mode in which they move depend on the particle size and density, and the flow intensity, usually quantified by the shear velocity. The bottom shear stress in natural streams will most likely be large enough to set saltation as the most important bed-load transport mechanism among all three modes. Thus, studying the saltation process is crucial for the overall understanding of bed-load transport. Particularly, numerical simulations of this process have been providing important insight regarding the relative importance of the physical mechanisms involved in it. Several processes occur when particles are saltating near the bed: i) Particles collide with the bed, ii) they "fly" between collisions with the bed, as a result of their interaction with the fluid flow, iii) and they collide among themselves. These processes can be simulated using a three-dimensional Eulerian-Lagrangian model. In order to mimic these processes we have experimented with an averaged turbulent flow field represented by the logarithmic law of the wall, and with a more involved approach in which a computed turbulent velocity field for a flat plate was used as a surrogate of the three-dimensional turbulent conditions present close to stream beds. Since flat-plate and open-channel boundary layers are essentially different, a dynamic similarity analysis was performed showing that the highly-resolved three

  12. Fundamental study on flow characteristics of disrupted core pool at a low energy level (Joint research)

    International Nuclear Information System (INIS)

    Morita, Koji; Liu, Ping; Matsumoto, Tatsuya; Fukuda, Kenji; Tobita, Yoshiharu; Sato, Ikken

    2007-03-01

    Dynamic behaviors of solid particle beds in a liquid pool against pressure transients were investigated to model the mobility of core materials in a low-energy disrupted core of a liquid metal fast reactor. A series of experiments was performed with a particle bed of different heights, comprising different monotype solid particles, where variable initial pressures of the originally pressurized nitrogen gas were adopted as the pressure source. Computational simulations of the experiments were performed using SIMMER-III, a fast reactor safety analysis code. Experimental analyses using the SIMMER-III code show that physical models and method used in the code can reasonably represent the transient behaviors of multiphase flows with rich solid phase as observed in the experiments. The validation of several key models of SIMMER-III was also discussed for treating transient behaviors of the solid-particle phase in multiphase flows. (author)

  13. Development of the core-model implementation technology for YGN1 simulator

    International Nuclear Information System (INIS)

    Hong, J. H.; Lee, M. S.; Lee, Y. K.; Su, I. Y.

    2004-01-01

    The existing core models for the domestic nuclear power plant simulators for PWRs are entirely imported from the foreign simulator vendor. To solve the time-accuracy problem in the poor capabilities in the computer in the early 1990s, several simplifications and assumptions for the neutronics governing equations were indispensible for the realtime calculations of nuclear phenomena in the core region. To overcome the shortages, a new core model based on the MASTER code certified by the domestic regulatory body (KINS) instead of the existing core models is now being developed especially for the realtime core solver for the YGN-1 simulator. This code is named R-MASTER (Realtime MASTER code). Due to the deficiency of the host computer, it is quitely required to run the R-MASTER code on the separate computer with high performance from the host computer on which all the other models than the core model are running. This paper deals with the applied protocols and procedures to guarantee the realtime communication and calculation of the R-MASTER code

  14. Size analysis of single-core magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Frank, E-mail: f.ludwig@tu-bs.de [Institut für Elektrische Messtechnik und Grundlagen der Elektrotechnik, TU Braunschweig, Braunschweig (Germany); Balceris, Christoph; Viereck, Thilo [Institut für Elektrische Messtechnik und Grundlagen der Elektrotechnik, TU Braunschweig, Braunschweig (Germany); Posth, Oliver; Steinhoff, Uwe [Physikalisch-Technische Bundesanstalt, Berlin (Germany); Gavilan, Helena; Costo, Rocio [Instituto de Ciencia de Materiales de Madrid, ICMM/CSIC, Madrid (Spain); Zeng, Lunjie; Olsson, Eva [Department of Applied Physics, Chalmers University of Technology, Göteborg (Sweden); Jonasson, Christian; Johansson, Christer [ACREO Swedish ICT AB, Göteborg (Sweden)

    2017-04-01

    Single-core iron-oxide nanoparticles with nominal core diameters of 14 nm and 19 nm were analyzed with a variety of non-magnetic and magnetic analysis techniques, including transmission electron microscopy (TEM), dynamic light scattering (DLS), static magnetization vs. magnetic field (M-H) measurements, ac susceptibility (ACS) and magnetorelaxometry (MRX). From the experimental data, distributions of core and hydrodynamic sizes are derived. Except for TEM where a number-weighted distribution is directly obtained, models have to be applied in order to determine size distributions from the measurand. It was found that the mean core diameters determined from TEM, M-H, ACS and MRX measurements agree well although they are based on different models (Langevin function, Brownian and Néel relaxation times). Especially for the sample with large cores, particle interaction effects come into play, causing agglomerates which were detected in DLS, ACS and MRX measurements. We observed that the number and size of agglomerates can be minimized by sufficiently strong diluting the suspension. - Highlights: • Investigation of size parameters of single-core magnetic nanoparticles with nominal core diameters of 14 nm and 19 nm utilizing different magnetic and non-magnetic methods • Hydrodynamic size determined from ac susceptibility measurements is consistent with the DLS findings • Core size agrees determined from static magnetization curves, MRX and ACS data agrees with results from TEM although the estimation is based on different models (Langevin function, Brownian and Néel relaxation times).

  15. Preparation of surface imprinted core-shell particles via a metal chelating strategy: specific recognition of porcine serum albumin

    International Nuclear Information System (INIS)

    Li, Qinran; Li, Senwu; Liu, Lukuan; Yang, Kaiguang; Zhang, Lihua; Liang, Zhen; Zhang, Yukui

    2016-01-01

    We describe the synthesis of molecularly imprinted core-shell microparticles via a metal chelating strategy that assists in the creation of selective recognition sites for albumin. Porcine serum albumin (PSA) was immobilized on silica beads via copper(II) chelation interaction. A solution containing 2-hydroxyethyl methacrylate and methacrylic acid as the monomers was mixed with the above particles, and free radical polymerization was performed at 25 °C. Copper ion and template were then removed to obtain PSA-imprinted core-shell particles (MIPs) with a typical diameter of 5 μm. The binding capacity of such MIP was 8.9 mg protein per gram of MIPs, and the adsorption equilibrium was established within <20 min. The imprinting factor for PSA reached 2.6 when the binding capacity was 7.7 mg protein per gram of MIPs. The use of such MIPs enabled PSA to be selectively recognized even in presence of the competitive proteins ribonuclease B, cytochrome c, and myoglobin. The results indicate that this imprinting strategy for protein may become a promising method to prepare MIPs for protein recognition. (author)

  16. Competition between excited core states and 1homega single-particle excitations at comparable energies in {sup 207}Pb from photon scattering

    Energy Technology Data Exchange (ETDEWEB)

    Pietralla, N., E-mail: pietralla@ikp.tu-darmstadt.d [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Nuclear Structure Laboratory, SUNY at Stony Brook, Stony Brook, NY 11794-3800 (United States); Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Koeln (Germany); Li, T.C. [Nuclear Structure Laboratory, SUNY at Stony Brook, Stony Brook, NY 11794-3800 (United States); Fritzsche, M. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Ahmed, M.W. [Triangle Universities Nuclear Laboratory (TUNL), Duke University, Durham, NC 27708 (United States); Ahn, T.; Costin, A. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Nuclear Structure Laboratory, SUNY at Stony Brook, Stony Brook, NY 11794-3800 (United States); Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Koeln (Germany); Enders, J. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Li, J. [Duke Free Electron Laser Laboratory (DFELL), Duke University, Durham, NC 27708 (United States); Mueller, S.; Neumann-Cosel, P. von [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Pinayev, I.V. [Duke Free Electron Laser Laboratory (DFELL), Duke University, Durham, NC 27708 (United States); Ponomarev, V.Yu.; Savran, D. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Tonchev, A.P.; Tornow, W.; Weller, H.R. [Triangle Universities Nuclear Laboratory (TUNL), Duke University, Durham, NC 27708 (United States); Werner, V. [A.W. Wright Nuclear Structure Laboratory (WNSL), Yale University, New Haven, CT (United States); Wu, Y.K. [Duke Free Electron Laser Laboratory (DFELL), Duke University, Durham, NC 27708 (United States); Zilges, A. [Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Koeln (Germany)

    2009-10-26

    The Pb(gamma{sup -}>,gamma{sup '}) photon scattering reaction has been studied with the nearly monochromatic, linearly polarized photon beams at the High Intensity gamma-ray Source (HIgammaS) at the DFELL. Azimuthal scattering intensity asymmetries measured with respect to the polarization plane of the beam have been used for the first time to assign both the spin and parity quantum numbers of dipole excited states of {sup 206,207,208}Pb at excitation energies in the vicinity of 5.5 MeV. Evidence for dominant particle-core coupling is deduced from these results along with information on excitation energies and electromagnetic transition matrix elements. Implications of the existence of weakly coupled states built on highly excited core states in competition with 1homega single particle (hole) excitations at comparable energies are discussed.

  17. String model of elementary particles

    International Nuclear Information System (INIS)

    Kikkawa, Keiji

    1975-01-01

    Recent development of the models of elementary particles is described. The principal features of elementary particle physics can be expressed by quark model, mass spectrum, the Regge behavior of scattering amplitude, and duality. Venezians showed in 1968 that the B function can express these features. From the analysis of mass spectrum, the string model was introduced. The quantization of the string is performed with the same procedure as the ordinary quantum mechanics. The motion of the string is determined by the Nambu-Goto action integral, and the Schroedinger equation is obtained. Mass spectrum from the string model was same as that from the duality model such as Veneziano model. The interaction between strings can be introduced, and the Lagrangian can be formulated. The relation between the string model and the duality model has been studied. The string model is the first theory of non-local field, and the further development is attractive. The relation between this model and the quark model is still not clear. (Kato, T.)

  18. Phase transitions in the hard-core Bose-Fermi-Hubbard model at non-zero temperatures in the heavy-fermion limit

    Energy Technology Data Exchange (ETDEWEB)

    Stasyuk, I.V.; Krasnov, V.O., E-mail: krasnoff@icmp.lviv.ua

    2017-04-15

    Phase transitions at non-zero temperatures in ultracold Bose- and Fermi-particles mixture in optical lattices using the Bose-Fermi-Hubbard model in the mean field and hard-core boson approximations are investigated. The case of infinitely small fermion transfer and the repulsive on-site boson-fermion interaction is considered. The possibility of change of order (from the 2nd to the 1st one) of the phase transition to the superfluid phase in the regime of fixed values of the chemical potentials of Bose- and Fermi-particles is established. The relevant phase diagrams determining the conditions at which such a change takes place, are built.

  19. A Deformable Model for Bringing Particles in Focus

    DEFF Research Database (Denmark)

    Dahl, Anders Lindbjerg; Jørgensen, Thomas Martini; Larsen, Rasmus

    2010-01-01

    and intensity, which enables an estimation of the out-of-focus blur of the particle. Using the particle model param- eters in a regression model we are able to infer 3D information about individual particles. Based on the defocus information we are able to infer the true size and shape of the particles. We...

  20. Modelling the carbonation of cementitious matrixes by means of the unreacted-core model, UR-CORE

    International Nuclear Information System (INIS)

    Castellote, M.; Andrade, C.

    2008-01-01

    This paper presents a model for the carbonation of cementitious matrixes (UR-CORE). The model is based on the principles of the 'unreacted-core' systems, typical of chemical engineering processes, in which the reacted product remains in the solid as a layer of inert ash, adapted for the specific case of carbonation. Development of the model has been undertaken in three steps: 1) Establishment of the controlling step in the global carbonation rate, by using data of fractional conversion of different phases of the cementitious matrixes, obtained by the authors through neutron diffraction data experiments, and reported in [M. Castellote, C. Andrade, X. Turrillas, J. Campo, G. Cuello, Accelerated carbonation of cement pastes in situ monitored by neutron diffraction, Cem. Concr. Res. (2008), doi:10.1016/j.cemconres.2008.07.002]. 2) Then, the model has been adapted and applied to the cementitious materials using different concentrations of CO 2 , with the introduction of the needed assumptions and factors. 3) Finally, the model has been validated with laboratory data at different concentrations (taken from literature) and for long term natural exposure of concretes. As a result, the model seems to be reliable enough to be applied to cementitious materials, being able to extrapolate the results from accelerated tests in any conditions to predict the rate of carbonation in natural exposure, being restricted, at present stage, to conditions with a constant relative humidity

  1. Particle Tracing Modeling with SHIELDS

    Science.gov (United States)

    Woodroffe, J. R.; Brito, T. V.; Jordanova, V. K.

    2017-12-01

    The near-Earth inner magnetosphere, where most of the nation's civilian and military space assets operate, is an extremely hazardous region of the space environment which poses major risks to our space infrastructure. Failure of satellite subsystems or even total failure of a spacecraft can arise for a variety of reasons, some of which are related to the space environment: space weather events like single-event-upsets and deep dielectric charging caused by high energy particles, or surface charging caused by low to medium energy particles; other space hazards are collisions with natural or man-made space debris, or intentional hostile acts. A recently funded project through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons on both macro- and microscale. These challenging problems are addressed using a team of world-class experts and state-of-the-art physics-based models and computational facilities. We present first results of a coupled BATS-R-US/RAM-SCB/Particle Tracing Model to evaluate particle fluxes in the inner magnetosphere. We demonstrate that this setup is capable of capturing the earthward particle acceleration process resulting from dipolarization events in the tail region of the magnetosphere.

  2. Normal Mode Derived Models of the Physical Properties of Earth's Outer Core

    Science.gov (United States)

    Irving, J. C. E.; Cottaar, S.; Lekic, V.; Wu, W.

    2017-12-01

    Earth's outer core, the largest reservoir of metal in our planet, is comprised of an iron alloy of an uncertain composition. Its dynamical behaviour is responsible for the generation of Earth's magnetic field, with convection driven both by thermal and chemical buoyancy fluxes. Existing models of the seismic velocity and density of the outer core exhibit some variation, and there are only a small number of models which aim to represent the outer core's density.It is therefore important that we develop a better understanding of the physical properties of the outer core. Though most of the outer core is likely to be well mixed, it is possible that the uppermost outer core is stably stratified: it may be enriched in light elements released during the growth of the solid, iron enriched, inner core; by elements dissolved from the mantle into the outer core; or by exsolution of compounds previously dissolved in the liquid metal which will eventually be swept into the mantle. The stratified layer may host MAC or Rossby waves and it could impede communication between the chemically differentiated mantle and outer core, including screening out some of the geodynamo's signal. We use normal mode center frequencies to estimate the physical properties of the outer core in a Bayesian framework. We estimate the mineral physical parameters needed to best produce velocity and density models of the outer core which are consistent with the normal mode observations. We require that our models satisfy realistic physical constraints. We create models of the outer core with and without a distinct uppermost layer and assess the importance of this region.Our normal mode-derived models are compared with observations of body waves which travel through the outer core. In particular, we consider SmKS waves which are especially sensitive to the uppermost outer core and are therefore an important way to understand the robustness of our models.

  3. Luminescence study of Eu3+ doped GdVO4 nanoparticles: Concentration, particle size, and core/shell effects

    Science.gov (United States)

    Singh, N. Shanta; Ningthoujam, R. S.; Devi, L. Romila; Yaiphaba, N.; Sudarsan, V.; Singh, S. Dorendrajit; Vatsa, R. K.; Tewari, R.

    2008-11-01

    Nanoparticles of GdVO4 doped with Eu3+ and core/shell of GdVO4:Eu3+/GdVO4 are prepared by urea hydrolysis method using ethylene glycol as capping agent as well as reaction medium at 130 °C. Unit cell volume increases when GdVO4 is doped with Eu3+ indicating the substitution of Gd3+ lattice sites by Eu3+. From luminescence study, it is confirmed that there is no particle size effect on emission positions of Eu3+. Optimum luminescence intensity is found to be in 5-10 at. % Eu3+. Above these concentrations, luminescence intensity decreases due to concentration quenching effect. There is an enhancement in luminescence intensity of core/shell nanoparticles. This has been attributed to the reduction in surface inhomogenities of Eu3+ surroundings by bonding to GdVO4 shell. The lifetime for D50 level increases with annealing and core/shell formation.

  4. Thermal hydraulics model for Sandia's annular core research reactor

    International Nuclear Information System (INIS)

    Rao, Dasari V.; El-Genk, Mohamed S.; Rubio, Reuben A.; Bryson, James W.; Foushee, Fabian C.

    1988-01-01

    A thermal hydraulics model was developed for the Annular Core Research Reactor (ACRR) at Sandia National Laboratories. The coupled mass, momentum and energy equations for the core were solved simultaneously using an explicit forward marching numerical technique. The model predictions of the temperature rise across the central channel of the ACRR core were within ± 10 percent agreement with the in-core temperature measurements. The model was then used to estimate the coolant mass flow rate and the axial distribution of the cladding surface temperature in the central and average channels as functions of the operating power and the water inlet subcooling. Results indicated that subcooled boiling occurs at the cladding surface in the central channels of the ACRR at power levels in excess of 0.5 MW. However, the high heat transfer coefficient due to subcooled boiling causes the cladding temperature along most of the active fuel rod region to be quite uniform and to increase very little with the reactor power. (author)

  5. Nanocrystalline p-hydroxyacetanilide (paracetamol) and gold core-shell structure as a model drug deliverable organic-inorganic hybrid nanostructure

    Science.gov (United States)

    Das, Subhojit; Paul, Anumita; Chattopadhyay, Arun

    2013-09-01

    We report on the generation of core-shell nanoparticles (NPs) having an organic nanocrystal (NC) core coated with an inorganic metallic shell, being dispersed in aqueous medium. First, NCs of p-hydroxyacetanilide (pHA)--known also as paracetamol--were generated in an aqueous medium. Transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) evidenced the formation of pHA NCs and of their crystalline nature. The NCs were then coated with Au to form pHA@Au core-shell NPs, where the thickness of the Au shell was on the order of nanometers. The formation of Au nanoshell--surrounding pHA NC--was confirmed from its surface plasmon resonance (SPR) band in the UV/Vis spectrum and by TEM measurements. Further, on treatment of the core-shell particles with a solution comprising NaCl and HCl (pH paracetamol--were generated in an aqueous medium. Transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) evidenced the formation of pHA NCs and of their crystalline nature. The NCs were then coated with Au to form pHA@Au core-shell NPs, where the thickness of the Au shell was on the order of nanometers. The formation of Au nanoshell--surrounding pHA NC--was confirmed from its surface plasmon resonance (SPR) band in the UV/Vis spectrum and by TEM measurements. Further, on treatment of the core-shell particles with a solution comprising NaCl and HCl (pH < 3), the Au shell could be dissolved, subsequently releasing pHA molecules. The dissolution of Au shell was marked by a gradual diminishing of its SPR band, while the release of pHA molecules in the solution was confirmed from TEM and FTIR studies. The findings suggest that the core-shell NP could be hypothesized to be a model for encapsulating drug molecules, in their crystalline forms, for slow as well as targeted release. Electronic supplementary information (ESI) available: See DOI: 10.1039/c3nr03566b

  6. Modeling pollutant transport using a meshless-lagrangian particle model

    International Nuclear Information System (INIS)

    Carrington, D.B.; Pepper, D.W.

    2002-01-01

    A combined meshless-Lagrangian particle transport model is used to predict pollutant transport over irregular terrain. The numerical model for initializing the velocity field is based on a meshless approach utilizing multiquadrics established by Kansa. The Lagrangian particle transport technique uses a random walk procedure to depict the advection and dispersion of pollutants over any type of surface, including street and city canyons

  7. Improvement of Axial Reflector Cross Section Generation Model for PWR Core Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Cheon Bo; Lee, Kyung Hoon; Cho, Jin Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    This paper covers the study for improvement of axial reflector XS generation model. In the next section, the improved 1D core model is represented in detail. Reflector XS generated by the improved model is compared to that of the conventional model in the third section. Nuclear design parameters generated by these two XS sets are also covered in that section. Significant of this study is discussed in the last section. Two-step procedure has been regarded as the most practical approach for reactor core designs because it offers core design parameters quite rapidly within acceptable range. Thus this approach is adopted for SMART (System-integrated Modular Advanced Reac- Tor) core design in KAERI with the DeCART2D1.1/ MASTER4.0 (hereafter noted as DeCART2D/ MASTER) code system. Within the framework of the two-step procedure based SMART core design, various researches have been studied to improve the core design reliability and efficiency. One of them is improvement of reflector cross section (XS) generation models. While the conventional FA/reflector two-node model used for most core designs to generate reflector XS cannot consider the actual configuration of fuel rods that intersect at right angles to axial reflectors, the revised model reflects the axial fuel configuration by introducing the radially simplified core model. The significance of the model revision is evaluated by observing HGC generated by DeCART2D, reflector XS, and core design parameters generated by adopting the two models. And it is verified that about 30 ppm CBC error can be reduced and maximum Fq error decreases from about 6 % to 2.5 % by applying the revised model. Error of AO and axial power shapes are also reduced significantly. Therefore it can be concluded that the simplified 1D core model improves the accuracy of the axial reflector XS and leads to the two-step procedure reliability enhancement. Since it is hard for core designs to be free from the two-step approach, it is necessary to find

  8. Standard Model Particles from Split Octonions

    Directory of Open Access Journals (Sweden)

    Gogberashvili M.

    2016-01-01

    Full Text Available We model physical signals using elements of the algebra of split octonions over the field of real numbers. Elementary particles are corresponded to the special elements of the algebra that nullify octonionic norms (zero divisors. It is shown that the standard model particle spectrum naturally follows from the classification of the independent primitive zero divisors of split octonions.

  9. Exploring the Standard Model of Particles

    Science.gov (United States)

    Johansson, K. E.; Watkins, P. M.

    2013-01-01

    With the recent discovery of a new particle at the CERN Large Hadron Collider (LHC) the Higgs boson could be about to be discovered. This paper provides a brief summary of the standard model of particle physics and the importance of the Higgs boson and field in that model for non-specialists. The role of Feynman diagrams in making predictions for…

  10. On-line core monitoring system based on buckling corrected modified one group model

    International Nuclear Information System (INIS)

    Freire, Fernando S.

    2011-01-01

    Nuclear power reactors require core monitoring during plant operation. To provide safe, clean and reliable core continuously evaluate core conditions. Currently, the reactor core monitoring process is carried out by nuclear code systems that together with data from plant instrumentation, such as, thermocouples, ex-core detectors and fixed or moveable In-core detectors, can easily predict and monitor a variety of plant conditions. Typically, the standard nodal methods can be found on the heart of such nuclear monitoring code systems. However, standard nodal methods require large computer running times when compared with standards course-mesh finite difference schemes. Unfortunately, classic finite-difference models require a fine mesh reactor core representation. To override this unlikely model characteristic we can usually use the classic modified one group model to take some account for the main core neutronic behavior. In this model a course-mesh core representation can be easily evaluated with a crude treatment of thermal neutrons leakage. In this work, an improvement made on classic modified one group model based on a buckling thermal correction was used to obtain a fast, accurate and reliable core monitoring system methodology for future applications, providing a powerful tool for core monitoring process. (author)

  11. Modeling the Power Variability of Core Speed Scaling on Homogeneous Multicore Systems

    Directory of Open Access Journals (Sweden)

    Zhihui Du

    2017-01-01

    Full Text Available We describe a family of power models that can capture the nonuniform power effects of speed scaling among homogeneous cores on multicore processors. These models depart from traditional ones, which assume that individual cores contribute to power consumption as independent entities. In our approach, we remove this independence assumption and employ statistical variables of core speed (average speed and the dispersion of the core speeds to capture the comprehensive heterogeneous impact of subtle interactions among the underlying hardware. We systematically explore the model family, deriving basic and refined models that give progressively better fits, and analyze them in detail. The proposed methodology provides an easy way to build power models to reflect the realistic workings of current multicore processors more accurately. Moreover, unlike the existing lower-level power models that require knowledge of microarchitectural details of the CPU cores and the last level cache to capture core interdependency, ours are easier to use and scalable to emerging and future multicore architectures with more cores. These attributes make the models particularly useful to system users or algorithm designers who need a quick way to estimate power consumption. We evaluate the family of models on contemporary x86 multicore processors using the SPEC2006 benchmarks. Our best model yields an average predicted error as low as 5%.

  12. An analysis of multiple particle settling for LMR backup shutdown systems

    International Nuclear Information System (INIS)

    Brock, R.W.

    1992-05-01

    Backup shutdown systems proposed for future LMRs may employ discreet absorber particles to provide the negative reactivity insertion. When actuated, these systems release a dense packing of particles from an out-of-core region to settle into an in-core region. The multiple particle settling behavior is analyzed by the method of continuity waves. This method provides predictions of the dynamic response of the system including the average particle velocity and volume fraction of particles vs. time. Although hindered settling problems have been previously analyzed using continuity wave theory, this application represents an extension of the theory to conditions of unrestrained settling. Typical cases are analyzed and numerical results are calculated based on a semi-empirical drift-flux model. For 1/4-inch diameter boron-carbide particles in hot liquid sodium, the unrestrained settling problem assumes a steady-state solution when the average volume fraction of particles is 0.295 and the average particle velocity is 26.0 cm/s

  13. The Morphology of Emulsion Polymerized Latex Particles

    Science.gov (United States)

    Wignall, G. D.; Ramakrishnan, V. R.; Linne, M. A.; Klein, A.; Sperling, L. H.; Wai, M. P.; Gelman, R. A.; Fatica, M. G.; Hoerl, R. H.; Fisher, L. W.

    1987-11-01

    Under monomer starved feed conditions, emulsion polymerization of perdeuterated methyl methacrylate and styrene in the presence of preformed polymethylmethacrylate latexes resulted in particles with a core-shell morphology, as determined by small-angle neutron scattering (SANS) analysis for a hollow sphere. The locus of polymerization of the added deuterated monomer is therefore at the particle surface. In similar measurements a statistical copolymer of styrene and methyl methacrylate was used as seed particles for further polymerization of trideuteromethyl methacrylate. The resulting polymer latex was again shown to have a core-shell morphological structure as determined by SANS. SANS experiments were also undertaken on polystyrene latexes polymerized by equilibrium swelling methods, with deuterated polymer forming the first or second step. The experiments covered a molecular weight range of 6 x 10{sup 4} 10{sup 6} the molecular weights are consistent with the experimental errors, indicating that the deuterium labeled molecules are randomly distributed in the latex. These results led to the finding that the polymer chains were constrained in the latex particles by factors of 2 to 4 from the relaxed coil dimensions. For M molecules. Several models were examined, including the possible development of core-shell structures at lower molecular weights.

  14. Simulation of hemp fibre bundle and cores using discrete element method

    Energy Technology Data Exchange (ETDEWEB)

    Al-Amin Sadek, M.; Chen, Y. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Biosystems Engineering; Lague, C. [Ottawa Univ., Ottawa, ON (Canada). Faculty of Engineering; Landry, H. [Prairie Agricultural Machinery Inst., Humboldt, SK (Canada); Peng, Q. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Mechanical and Manufacturing Engineering; Zhong, W. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Textile Sciences

    2010-07-01

    The mechanical behaviour of hemp fibre and core must be well understood in order to obtain high-grade hemp fibre that is currently in high demand for various industrial applications. Modelling by discrete element method can simulate the mechanical behaviour of such materials. A commercial discrete element software called Particle Flow Code was used in this study. In particular, the 3-dimension (PFC3D) was used to simulate hemp fibre and core. Since the basic PFC3D particles are spherical, the individual virtual hemp fibres were defined as strings of balls held together by PFC3D parallel bonds. The study showed that the virtual fibre is flexible and can bend and break by forces. This reflects the characteristics of hemp fibre. Using the clump logic of PFC3D, the virtual hemp core was defined as a rigid and unbreakable body, which reflect the characteristics of the core. The virtual fibre and core were defined with several microproperties, some of which were previously calibrated. The PFC3D bond properties were calibrated in this study. They included normal and shear stiffness; pb{sub k}n and pb{sub k}s; normal and shear strength; and bond disk radius, R of the virtual fibre. The calibration started with developing a PFC3D model to simulate fibre tensile test. The microproperties of virtual fibre and core were calibrated by running the PFC3D model. Literature data from fibre tensile tests was compared with simulation results.

  15. Effect of Finite Particle Size on Convergence of Point Particle Models in Euler-Lagrange Multiphase Dispersed Flow

    Science.gov (United States)

    Nili, Samaun; Park, Chanyoung; Haftka, Raphael T.; Kim, Nam H.; Balachandar, S.

    2017-11-01

    Point particle methods are extensively used in simulating Euler-Lagrange multiphase dispersed flow. When particles are much smaller than the Eulerian grid the point particle model is on firm theoretical ground. However, this standard approach of evaluating the gas-particle coupling at the particle center fails to converge as the Eulerian grid is reduced below particle size. We present an approach to model the interaction between particles and fluid for finite size particles that permits convergence. We use the generalized Faxen form to compute the force on a particle and compare the results against traditional point particle method. We apportion the different force components on the particle to fluid cells based on the fraction of particle volume or surface in the cell. The application is to a one-dimensional model of shock propagation through a particle-laden field at moderate volume fraction, where the convergence is achieved for a well-formulated force model and back coupling for finite size particles. Comparison with 3D direct fully resolved numerical simulations will be used to check if the approach also improves accuracy compared to the point particle model. Work supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  16. Graphene supported Sn-Sb rate at carbon core-shell particles as a superior anode for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shuangqiang; Chen, Peng; Wang, Yong [Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University (China); Wu, Minghong; Pan, Dengyu [Institute of Nanochemistry and Nanobiology, Shanghai Univ. (China)

    2010-10-15

    This paper reports the preparation and Li-storage properties of graphene nanosheets(GNS), GNS supported Sn-Sb rate at carbon (50-150 nm) and Sn-Sb nanoparticles (5-10 nm). The best cycling performance and excellent high rate capabilities were observed for GNS-supported Sn-Sb rate at carbon core-shell particles, which exhibited initial capacities of 978, 850 and 668 mAh/g respectively at 0.1C, 2C and 5C (1C = 800 mA/g) with good cyclability. Besides the GNS support, the carbon skin around Sn-Sb particles is believed to be a key factor to improve electrochemical properties of Sn-Sb. (author)

  17. Self-similar two-particle separation model

    DEFF Research Database (Denmark)

    Lüthi, Beat; Berg, Jacob; Ott, Søren

    2007-01-01

    .g.; in the inertial range as epsilon−1/3r2/3. Particle separation is modeled as a Gaussian process without invoking information of Eulerian acceleration statistics or of precise shapes of Eulerian velocity distribution functions. The time scale is a function of S2(r) and thus of the Lagrangian evolving separation......We present a new stochastic model for relative two-particle separation in turbulence. Inspired by material line stretching, we suggest that a similar process also occurs beyond the viscous range, with time scaling according to the longitudinal second-order structure function S2(r), e....... The model predictions agree with numerical and experimental results for various initial particle separations. We present model results for fixed time and fixed scale statistics. We find that for the Richardson-Obukhov law, i.e., =gepsilont3, to hold and to also be observed in experiments, high Reynolds...

  18. A Practical Core Loss Model for Filter Inductors of Power Electronic Converters

    DEFF Research Database (Denmark)

    Matsumori, Hiroaki; Shimizu, Toshihisa; Wang, Xiongfei

    2018-01-01

    This paper proposes a core loss model for filter inductors of power electronic converters. The model allows a computationally efficient analysis on the core loss of the inductor under the square voltage excitation and the premagnetization condition. First, the core loss of the filter inductor under...... buck chopper excitation is evaluated with the proposed model and compared with the conventional methods. The comparison shows that the proposed method results in a better core loss prediction under the premagnetized condition than that of conventional alternatives. Then, the core loss of the filter...... inductor with the pulsewidth modulated inverter excitation is evaluated, which shows that the proposed model not only accurately predicts the core loss but also identifies the hysteresis loss part. These results demonstrate that the approach can further be used for the development of magnetic materials...

  19. Reactor core modeling practice: Operational requirements, model characteristics, and model validation

    International Nuclear Information System (INIS)

    Zerbino, H.

    1997-01-01

    The physical models implemented in power plant simulators have greatly increased in performance and complexity in recent years. This process has been enabled by the ever increasing computing power available at affordable prices. This paper describes this process from several angles: First the operational requirements which are more critical from the point of view of model performance, both for normal and off-normal operating conditions; A second section discusses core model characteristics in the light of the solutions implemented by Thomson Training and Simulation (TT and S) in several full-scope simulators recently built and delivered for Dutch, German, and French nuclear power plants; finally we consider the model validation procedures, which are of course an integral part of model development, and which are becoming more and more severe as performance expectations increase. As a conclusion, it may be asserted that in the core modeling field, as in other areas, the general improvement in the quality of simulation codes has resulted in a fairly rapid convergence towards mainstream engineering-grade calculations. This is remarkable performance in view of the stringent real-time requirements which the simulation codes must satisfy as well as the extremely wide range of operating conditions that they are called upon to cover with good accuracy. (author)

  20. Interfacing high-fidelity core neutronics models to whole plant models

    International Nuclear Information System (INIS)

    McEllin, M.

    1999-01-01

    Until recently available computer power dictated that whole-plant models of nuclear power stations have typically employed simple models of the reactor core which can not match the fidelity of safety-qualified 2-group, 3D neutronics models. As a result the treatment of situations involving strong coupling between the core and the rest of the plant has inevitably been somewhat approximate, requiring conservative modelling assumptions, or manual iteration between cases, to bound worse case scenarios. Such techniques not only place heavy demands on the engineers involved, they may also result in potentially unnecessary operational constraints. Hardware is today no longer the limiting factor, but the cost of developing and validating high-quality software is now such that it appears attractive to build new systems with a wider simulation scope by using existing stand-alone codes as sub-components. This is not always as straightforward as it might at first appear. This paper illustrates some of the pitfalls, and discusses more sophisticated and robust strategies. (author)

  1. Two-dimensional horizontal model seismic test and analysis for HTGR core

    International Nuclear Information System (INIS)

    Ikushima, Takeshi; Honma, Toshiaki.

    1988-05-01

    The resistance against earthquakes of high-temperature gas-cooled reactor (HTGR) core with block-type fuels is not fully ascertained yet. Seismic studies must be made if such a reactor plant is to be installed in areas with frequent earthquakes. The paper presented the test results of seismic behavior of a half scale two-dimensional horizontal slice core model and analysis. The following is a summary of the more important results. (1) When the core is subjected to the single axis excitation and simultaneous two-axis excitations to the core across-corners, it has elliptical motion. The core stays lumped motion at the low excitation frequencies. (2) When the load is placed on side fixed reflector blocks from outside to the core center, the core displacement and reflector impact reaction force decrease. (3) The maximum displacement occurs at simultaneous two-axis excitations. The maximum displacement occurs at the single axis excitation to the core across-flats. (4) The results of two-dimensional horizontal slice core model was compared with the results of two-dimensional vertical one. It is clarified that the seismic response of actual core can be predicted from the results of two-dimensional vertical slice core model. (5) The maximum reflector impact reaction force for seismic waves was below 60 percent of that for sinusoidal waves. (6) Vibration behavior and impact response are in good agreement between test and analysis. (author)

  2. Expression, purification, crystallization and preliminary X-ray crystallographic studies of hepatitis B virus core fusion protein corresponding to octahedral particles

    International Nuclear Information System (INIS)

    Kikuchi, Masaki; Iwabuchi, Shinichiro; Kikkou, Tatsuhiko; Noguchi, Keiichi; Odaka, Masafumi; Yohda, Masafumi; Kawata, Masaaki; Sato, Chikara; Matsumoto, Osamu

    2013-01-01

    Novel hepatitis B virus-like particles of recombinant dimeric core–GFP fusion protein were expressed, purified and crystallized. The crystals diffracted to 2.15 Å resolution and belonged to space group F432, with unit-cell parameters a = b = c = 219.7 Å. Recombinant hepatitis B virus core proteins dimerize to form building blocks that are capable of self-assembly into a capsid. A core capsid protein dimer (CPD) linked to a green fluorescent protein variant, EGFP, at the C-terminus has been designed. The recombinant fusion CPD was expressed in Escherichia coli, assembled into virus-like particles (VLPs), purified and crystallized. The single crystal diffracted to 2.15 Å resolution and belonged to the cubic space group F432, with unit-cell parameters a = b = c = 219.7 Å. The fusion proteins assembled into icosahedral VLPs in aqueous solution, but were rearranged into octahedral symmetry through the crystal-packing process under the crystallization conditions

  3. Toward a mineral physics reference model for the Moon's core.

    Science.gov (United States)

    Antonangeli, Daniele; Morard, Guillaume; Schmerr, Nicholas C; Komabayashi, Tetsuya; Krisch, Michael; Fiquet, Guillaume; Fei, Yingwei

    2015-03-31

    The physical properties of iron (Fe) at high pressure and high temperature are crucial for understanding the chemical composition, evolution, and dynamics of planetary interiors. Indeed, the inner structures of the telluric planets all share a similar layered nature: a central metallic core composed mostly of iron, surrounded by a silicate mantle, and a thin, chemically differentiated crust. To date, most studies of iron have focused on the hexagonal closed packed (hcp, or ε) phase, as ε-Fe is likely stable across the pressure and temperature conditions of Earth's core. However, at the more moderate pressures characteristic of the cores of smaller planetary bodies, such as the Moon, Mercury, or Mars, iron takes on a face-centered cubic (fcc, or γ) structure. Here we present compressional and shear wave sound velocity and density measurements of γ-Fe at high pressures and high temperatures, which are needed to develop accurate seismic models of planetary interiors. Our results indicate that the seismic velocities proposed for the Moon's inner core by a recent reanalysis of Apollo seismic data are well below those of γ-Fe. Our dataset thus provides strong constraints to seismic models of the lunar core and cores of small telluric planets. This allows us to propose a direct compositional and velocity model for the Moon's core.

  4. A transient single particle model under FCI conditions

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Yan; SHANG Zhi; XU Ji-Jun

    2005-01-01

    The paper is focused on the coupling effect between film boiling heat transfer and evaporation drag around a hot-particle in cold liquid. Based on the continuity, momentum and energy equations of the vapor film, a transient two-dimensional single particle model has been established. This paper contains a detailed description of HPMC (High-temperature Particle Moving in Coolant) model for studying some aspects of the premixing stage of fuel-coolant interactions (FCIs). The transient process of high-temperature particles moving in coolant can be simulated. Comparisons between the experiment results and the calculations using HPMC model demonstrate that HPMC model achieves a good agreement in predicting the time-varying characteristic of high-temperature spheres moving in coolant.

  5. Gold nano particle decorated graphene core first generation PAMAM dendrimer for label free electrochemical DNA hybridization sensing.

    Science.gov (United States)

    Jayakumar, K; Rajesh, R; Dharuman, V; Venkatasan, R; Hahn, J H; Pandian, S Karutha

    2012-01-15

    A novel first generation (G1) poly(amidoamine) dendrimer (PAMAM) with graphene core (GG1PAMAM) was synthesized for the first time. Single layer of GG1PAMAM was immobilized covalently on mercaptopropionic acid (MPA) monolayer on Au transducer. This allows cost effective and easy deposition of single layer graphene on the Au transducer surface than the advanced vacuum techniques used in the literature. Au nano particles (17.5 nm) then decorated the GG1PAMAM and used for electrochemical DNA hybridization sensing. The sensor discriminates selectively and sensitively the complementary double stranded DNA (dsDNA, hybridized), non-complementary DNA (ssDNA, un-hybridized) and single nucleotide polymorphism (SNP) surfaces. Interactions of the MPA, GG1PAMAM and the Au nano particles were characterized by Ultra Violet (UV), Fourier Transform Infrared (FTIR), Raman spectroscopy (RS), Thermo gravimetric analysis (TGA), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Cyclic Voltmetric (CV), Impedance spectroscopy (IS) and Differntial Pulse Voltammetry (DPV) techniques. The sensor showed linear range 1×10(-6) to 1×10(-12) M with lowest detection limit 1 pM which is 1000 times lower than G1PAMAM without graphene core. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. The sustained-release behavior and in vitro and in vivo transfection of pEGFP-loaded core-shell-structured chitosan-based composite particles

    Directory of Open Access Journals (Sweden)

    Wang Y

    2014-10-01

    Full Text Available Yun Wang,1 Fu-xing Lin,2 Yu Zhao,1 Mo-zhen Wang,2 Xue-wu Ge,2 Zheng-xing Gong,1 Dan-dan Bao,1 Yu-fang Gu1 1Department of Plastic Surgery, First Affiliated Hospital of Anhui Medical University, 2CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China Abstract: Novel submicron core-shell-structured chitosan-based composite particles ­encapsulated with enhanced green fluorescent protein plasmids (pEGFP were prepared by complex coacervation method. The core was pEGFP-loaded thiolated N-alkylated chitosan (TACS and the shell was pH- and temperature-responsive hydroxybutyl chitosan (HBC. pEGFP-loaded TACS-HBC composite particles were spherical, and had a mean diameter of approximately 120 nm, as measured by transmission electron microscopy and particle size analyzer. pEGFP showed sustained release in vitro for >15 days. Furthermore, in vitro transfection in human embryonic kidney 293T and human cervix epithelial cells, and in vivo transfection in mice skeletal muscle of loaded pEGFP, were investigated. Results showed that the expression of loaded pEGFP, both in vitro and in vivo, was slow but could be sustained over a long period. pEGFP expression in mice skeletal muscle was sustained for >60 days. This work indicates that these submicron core-shell-structured chitosan-based composite particles could potentially be used as a gene vector for in vivo controlled gene transfection. Keywords: gene therapy, gene transfection, hydroxybutyl chitosan, thiolated N-alkylated chitosan, pEGFP, complex coacervation

  7. Learning Particle Physics with DIY Play Dough Model

    Science.gov (United States)

    Thunyaniti, T.; Toedtanya, K.; Wuttiprom, S.

    2017-09-01

    The scientists once believed an atom was the smallest particle, nothing was smaller than this tiny particle. Later, they discovered an atom which consists of protons, neutrons and electrons, and they believed that these particles cannot be broken into the smaller particles. According to advanced technology, the scientists have discovered these particles are consisted of a smaller particles. The new particles are called quarks leptons and bosons which we called fundamental particle. Atomic structure cannot be observed directly, so it is complicated for studying these particles. To help the students get more understanding of its properties, so the researcher develops the learning pattern of fundamental particles from Play Dough Model for high school to graduate students. Four step of learning are 1) to introduces the concept of the fundamental particles discovery 2) to play the Happy Families game by using fundamental particles cards 3) to design and make their particle in a way that reflects its properties 4) to represents their particles from Play Dough Model. After doing activities, the students had more conceptual understanding and better memorability on fundamental particles. In addition, the students gained collaborative working experience among their friends also.

  8. Tailored Synthesis of Core-Shell Mesoporous Silica Particles—Optimization of Dye Sorption Properties

    Directory of Open Access Journals (Sweden)

    Andrzej Baliś

    2018-04-01

    Full Text Available Monodisperse spherical silica particles, with solid cores and mesoporous shells (SCMS, were synthesized at various temperatures using a one-pot method utilizing a cationic surfactant template. The temperature of the synthesis was found to significantly affect the diameters of both the cores (ca. 170–800 nm and shells (ca. 11–80 nm of the particles, which can be tailored for specific applications that require a high specific surface area of the nanocarriers (mesoporous shells and simultaneously their mechanical robustness for, e.g., facile isolation from suspensions (dense cores. The applied method enabled the formation of the relatively thick mesoporous shells at conditions below room temperature. Radially ordered pores with narrow distributions of their sizes in 3–4 nm range were found in the shells. The adsorption ability of the SCMS particles was studied using rhodamine 6G as a model dye. Decolorization of the dye solution in the presence of the SCMS particles was correlated with their structure and specific surface area and reached its maximum for the particles synthesized at 15 °C. The presented strategy may be applied for the fine-tuning of the structure of SCMS particles and the enhancement of their adsorption capabilities.

  9. Scattering by ensembles of small particles

    International Nuclear Information System (INIS)

    Gustafson, B. Aa. S.

    1980-11-01

    With the advent of high altitude rockets and of space probes, evidence has accumulated that several particle types coexiste in the interplanetary medium. It also became apparent that the zodiacal light is not produced by particles with previously known scattering characteristics. However, the scattering is here shown to be consistent with the hypothesis that presolar interstellar grains accumulate into comets which through fragmentation provide a major component of the interplanetary dust complex. Cometary debris - zodiscal light particles - are therefore modeled as conglomerates of elongated core-mantle particles. Light scattering characteristics of the conglomerates are investigated using a micro-wave analogue method. Approximate theoretical methods for prediction and interpretation of the electro-magnetic scattering patterns are developed and are found to compare favorably with the experimental results and with observations of the zodiacal light. The model is also found to be consistent with comet- and impactdata. Dynamical considerations predicts a small particle component rapidly receding from the Sun, an identification with the B-meteoroids is tentatively suggested. (author)

  10. A collision model in plasma particle simulations

    International Nuclear Information System (INIS)

    Ma Yanyun; Chang Wenwei; Yin Yan; Yue Zongwu; Cao Lihua; Liu Daqing

    2000-01-01

    In order to offset the collisional effects reduced by using finite-size particles, β particle clouds are used in particle simulation codes (β is the ratio of charge or mass of modeling particles to real ones). The method of impulse approximation (strait line orbit approximation) is used to analyze the scattering cross section of β particle clouds plasmas. The authors can obtain the relation of the value of a and β and scattering cross section (a is the radius of β particle cloud). By using this relation the authors can determine the value of a and β so that the collisional effects of the modeling system is correspondent with the real one. The authors can also adjust the values of a and β so that the authors can enhance or reduce the collisional effects fictitiously. The results of simulation are in good agreement with the theoretical ones

  11. Modelling of neutral particle transport in divertor plasma

    International Nuclear Information System (INIS)

    Kakizuka, Tomonori; Shimizu, Katsuhiro

    1995-01-01

    An outline of the modelling of neutral particle transport in the diverter plasma was described in the paper. The characteristic properties of divertor plasma were largely affected by interaction between neutral particles and divertor plasma. Accordingly, the behavior of neutral particle should be investigated quantitatively. Moreover, plasma and neutral gas should be traced consistently in the plasma simulation. There are Monte Carlo modelling and the neutral gas fluid modelling as the transport modelling. The former need long calculation time, but it is able to make the physical process modelling. A ultra-large parallel computer is good for the former. In spite of proposing some kinds of models, the latter has not been established. At the view point of reducing calculation time, a work station is good for the simulation of the latter, although some physical problems have not been solved. On the Monte Carlo method particle modelling, reducing the calculation time and introducing the interaction of particles are important subjects to develop 'the evolutional Monte Carlo Method'. To reduce the calculation time, two new methods: 'Implicit Monte Carlo method' and 'Free-and Diffusive-Motion Hybrid Monte-Carlo method' have been developing. (S.Y.)

  12. Low power loss and field-insensitive permeability of Fe-6.5%Si powder cores with manganese oxide-coated particles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junnan, E-mail: junnanli1991@163.com, E-mail: rzhgong@hust.edu.cn; Wang, Xian; Xu, Xiaojun; Gong, Rongzhou, E-mail: junnanli1991@163.com, E-mail: rzhgong@hust.edu.cn; Feng, Zekun [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen, Yajie; Harris, V. G. [Department of Electrical and Computer Engineering, Center for Microwave Magnetic Materials and Integrated Circuits, Northeastern University, Boston, Massachusetts 02115 (United States)

    2015-05-07

    Fe-6.5%Si alloy powders coated with manganese oxides using an innovative in situ process were investigated. The in-situ coating of the insulating oxides was realized with a KMnO{sub 4} solution by a chemical process. The insulating manganese oxides with mixed valance state were verified by X-ray photoelectron spectroscopy analysis. The thickness of the insulating layer on alloy particles was determined to be in a range of 20–210 nm, depending upon the KMnO{sub 4} concentration. The powder core loss and the change in permeability under a DC-bias field were measured at frequencies ranging from 50 to 100 kHz. The experiments indicated that the Fe-6.5%Si powder cores with a 210 nm-thick manganese oxide layer not only showed a low core loss of 459 mW/cm{sup 3} at 100 kHz but also showed a small reduction in permeability (μ(H)/μ(0) = 85% for μ = 42) at a DC-bias field of 80 Oe. This work has defined a novel pathway to realizing low core loss and field-insensitive permeability for Fe-Si powder cores.

  13. Characterization of single-core magnetite nanoparticles for magnetic imaging by SQUID relaxometry

    International Nuclear Information System (INIS)

    Adolphi, Natalie L; Huber, Dale L; Monson, Todd C; Provencio, Paula P; Bryant, Howard C; Fegan, Danielle L; Tessier, Trace E; Flynn, Edward R; Lim, JitKang; Majetich, Sara A; Trujillo, Jason E; Lovato, Debbie M; Butler, Kimberly S; Larson, Richard S; Hathaway, Helen J

    2010-01-01

    Optimizing the sensitivity of SQUID (superconducting quantum interference device) relaxometry for detecting cell-targeted magnetic nanoparticles for in vivo diagnostics requires nanoparticles with a narrow particle size distribution to ensure that the Neel relaxation times fall within the measurement timescale (50 ms-2 s, in this work). To determine the optimum particle size, single-core magnetite nanoparticles (with nominal average diameters 20, 25, 30 and 35 nm) were characterized by SQUID relaxometry, transmission electron microscopy, SQUID susceptometry, dynamic light scattering and zeta potential analysis. The SQUID relaxometry signal (detected magnetic moment/kg) from both the 25 nm and 30 nm particles was an improvement over previously studied multi-core particles. However, the detected moments were an order of magnitude lower than predicted based on a simple model that takes into account the measured size distributions (but neglects dipolar interactions and polydispersity of the anisotropy energy density), indicating that improved control of several different nanoparticle properties (size, shape and coating thickness) will be required to achieve the highest detection sensitivity. Antibody conjugation and cell incubation experiments show that single-core particles enable a higher detected moment per cell, but also demonstrate the need for improved surface treatments to mitigate aggregation and improve specificity.

  14. Characterization of single-core magnetite nanoparticles for magnetic imaging by SQUID relaxometry

    Energy Technology Data Exchange (ETDEWEB)

    Adolphi, Natalie L [Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131 (United States); Huber, Dale L; Monson, Todd C; Provencio, Paula P [Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185 (United States); Bryant, Howard C; Fegan, Danielle L; Tessier, Trace E; Flynn, Edward R [Senior Scientific, LLC, 11109 Country Club NE, Albuquerque, NM 87111 (United States); Lim, JitKang; Majetich, Sara A [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Trujillo, Jason E; Lovato, Debbie M; Butler, Kimberly S; Larson, Richard S [Department of Pathology, Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM 87131 (United States); Hathaway, Helen J, E-mail: NAdolphi@salud.unm.ed [Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM 87131 (United States)

    2010-10-07

    Optimizing the sensitivity of SQUID (superconducting quantum interference device) relaxometry for detecting cell-targeted magnetic nanoparticles for in vivo diagnostics requires nanoparticles with a narrow particle size distribution to ensure that the Neel relaxation times fall within the measurement timescale (50 ms-2 s, in this work). To determine the optimum particle size, single-core magnetite nanoparticles (with nominal average diameters 20, 25, 30 and 35 nm) were characterized by SQUID relaxometry, transmission electron microscopy, SQUID susceptometry, dynamic light scattering and zeta potential analysis. The SQUID relaxometry signal (detected magnetic moment/kg) from both the 25 nm and 30 nm particles was an improvement over previously studied multi-core particles. However, the detected moments were an order of magnitude lower than predicted based on a simple model that takes into account the measured size distributions (but neglects dipolar interactions and polydispersity of the anisotropy energy density), indicating that improved control of several different nanoparticle properties (size, shape and coating thickness) will be required to achieve the highest detection sensitivity. Antibody conjugation and cell incubation experiments show that single-core particles enable a higher detected moment per cell, but also demonstrate the need for improved surface treatments to mitigate aggregation and improve specificity.

  15. PART 2: LARGE PARTICLE MODELLING Simulation of particle filtration processes in deformable media

    Directory of Open Access Journals (Sweden)

    Gernot Boiger

    2008-06-01

    Full Text Available In filtration processes it is necessary to consider both, the interaction of thefluid with the solid parts as well as the effect of particles carried in the fluidand accumulated on the solid. While part 1 of this paper deals with themodelling of fluid structure interaction effects, the accumulation of dirtparticles will be addressed in this paper. A closer look is taken on theimplementation of a spherical, LAGRANGIAN particle model suitable forsmall and large particles. As dirt accumulates in the fluid stream, it interactswith the surrounding filter fibre structure and over time causes modificationsof the filter characteristics. The calculation of particle force interactioneffects is necessary for an adequate simulation of this situation. A detailedDiscrete Phase Lagrange Model was developed to take into account thetwo-way coupling of the fluid and accumulated particles. The simulation oflarge particles and the fluid-structure interaction is realised in a single finitevolume flow solver on the basis of the OpenSource software OpenFoam.

  16. Modeled heating and surface erosion comparing motile (gas borne) and stationary (surface coating) inert particle additives

    International Nuclear Information System (INIS)

    Buckingham, A.C.; Siekhaus, W.J.

    1982-01-01

    The unsteady, non-similar, chemically reactive, turbulent boundary layer equations are modified for gas plus dispersed solid particle mixtures, for gas phase turbulent combustion reactions and for heterogeneous gas-solid surface erosive reactions. The exterior (ballistic core) edge boundary conditions for the solutions are modified to include dispersed particle influences on core propellant combustion-generated turbulence levels, combustion reactants and products, and reaction-induced, non-isentropic mixture states. The wall surface (in this study it is always steel) is considered either bare or coated with a fixed particle coating which is conceptually non-reactive, insulative, and non-ablative. Two families of solutions are compared. These correspond to: (1) consideration of gas-borne, free-slip, almost spontaneously mobile (motile) solid particle additives which influence the turbulent heat transfer at the uncoated steel surface and, in contrast, (2) consideration of particle-free, gas phase turbulent heat transfer to the insulated surface coated by stationary particles. Significant differences in erosive heat transfer are found in comparing the two families of solutions over a substantial range of interior ballistic flow conditions. The most effective influences on reducing erosive heat transfer appear to favor mobile, gas-borne particle additives

  17. A Study on the Plasmonic Properties of Silver Core Gold Shell Nanoparticles: Optical Assessment of the Particle Structure

    Science.gov (United States)

    Mott, Derrick; Lee, JaeDong; Thi Bich Thuy, Nguyen; Aoki, Yoshiya; Singh, Prerna; Maenosono, Shinya

    2011-06-01

    This paper reports a qualitative comparison between the optical properties of a set of silver core, gold shell nanoparticles with varying composition and structure to those calculated using the Mie solution. To achieve this, silver nanoparticles were synthesized in aqueous phase from a silver hydroxide precursor with sodium acrylate as dual reducing-capping agent. The particles were then coated with a layer of gold with controllable thickness through a reduction-deposition process. The resulting nanoparticles reveal well defined optical properties that make them suitable for comparison to ideal calculated results using the Mie solution. The discussion focuses on the correlation between the synthesized core shell nanoparticles with varying Au shell thickness and the Mie solution results in terms of the optical properties. The results give insight in how to design and synthesize silver core, gold shell nanoparticles with controllable optical properties (e.g., SPR band in terms of intensity and position), and has implications in creating nanoparticle materials to be used as biological probes and sensing elements.

  18. Modelling of magnetostriction of transformer magnetic core for vibration analysis

    Science.gov (United States)

    Marks, Janis; Vitolina, Sandra

    2017-12-01

    Magnetostriction is a phenomenon occurring in transformer core in normal operation mode. Yet in time, it can cause the delamination of magnetic core resulting in higher level of vibrations that are measured on the surface of transformer tank during diagnostic tests. The aim of this paper is to create a model for evaluating elastic deformations in magnetic core that can be used for power transformers with intensive vibrations in order to eliminate magnetostriction as a their cause. Description of the developed model in Matlab and COMSOL software is provided including restrictions concerning geometry and properties of materials, and the results of performed research on magnetic core anisotropy are provided. As a case study modelling of magnetostriction for 5-legged 200 MVA power transformer with the rated voltage of 13.8/137kV is conducted, based on which comparative analysis of vibration levels and elastic deformations is performed.

  19. Modelling of magnetostriction of transformer magnetic core for vibration analysis

    Directory of Open Access Journals (Sweden)

    Marks Janis

    2017-12-01

    Full Text Available Magnetostriction is a phenomenon occurring in transformer core in normal operation mode. Yet in time, it can cause the delamination of magnetic core resulting in higher level of vibrations that are measured on the surface of transformer tank during diagnostic tests. The aim of this paper is to create a model for evaluating elastic deformations in magnetic core that can be used for power transformers with intensive vibrations in order to eliminate magnetostriction as a their cause. Description of the developed model in Matlab and COMSOL software is provided including restrictions concerning geometry and properties of materials, and the results of performed research on magnetic core anisotropy are provided. As a case study modelling of magnetostriction for 5-legged 200 MVA power transformer with the rated voltage of 13.8/137kV is conducted, based on which comparative analysis of vibration levels and elastic deformations is performed.

  20. Charge neutralization as the major factor for the assembly of nucleocapsid-like particles from C-terminal truncated hepatitis C virus core protein

    OpenAIRE

    Theo Luiz Ferraz de Souza; Sheila Maria Barbosa de Lima; Vanessa L. de Azevedo Braga; David S. Peabody; Davis Fernandes Ferreira; M. Lucia Bianconi; Andre Marco de Oliveira Gomes; Jerson Lima Silva; Andréa Cheble de Oliveira

    2016-01-01

    Background Hepatitis C virus (HCV) core protein, in addition to its structural role to form the nucleocapsid assembly, plays a critical role in HCV pathogenesis by interfering in several cellular processes, including microRNA and mRNA homeostasis. The C-terminal truncated HCV core protein (C124) is intrinsically unstructured in solution and is able to interact with unspecific nucleic acids, in the micromolar range, and to assemble into nucleocapsid-like particles (NLPs) in vitro. The specific...

  1. A reduced scale two loop PWR core designed with particle swarm optimization technique

    International Nuclear Information System (INIS)

    Lima Junior, Carlos A. Souza; Pereira, Claudio M.N.A; Lapa, Celso M.F.; Cunha, Joao J.; Alvim, Antonio C.M.

    2007-01-01

    Reduced scale experiments are often employed in engineering projects because they are much cheaper than real scale testing. Unfortunately, designing reduced scale thermal-hydraulic circuit or equipment, with the capability of reproducing, both accurately and simultaneously, all physical phenomena that occur in real scale and at operating conditions, is a difficult task. To solve this problem, advanced optimization techniques, such as Genetic Algorithms, have been applied. Following this research line, we have performed investigations, using the Particle Swarm Optimization (PSO) Technique, to design a reduced scale two loop Pressurized Water Reactor (PWR) core, considering 100% of nominal power and non accidental operating conditions. Obtained results show that the proposed methodology is a promising approach for forced flow reduced scale experiments. (author)

  2. Modeling of magnetic particle suspensions for simulations

    CERN Document Server

    Satoh, Akira

    2017-01-01

    The main objective of the book is to highlight the modeling of magnetic particles with different shapes and magnetic properties, to provide graduate students and young researchers information on the theoretical aspects and actual techniques for the treatment of magnetic particles in particle-based simulations. In simulation, we focus on the Monte Carlo, molecular dynamics, Brownian dynamics, lattice Boltzmann and stochastic rotation dynamics (multi-particle collision dynamics) methods. The latter two simulation methods can simulate both the particle motion and the ambient flow field simultaneously. In general, specialized knowledge can only be obtained in an effective manner under the supervision of an expert. The present book is written to play such a role for readers who wish to develop the skill of modeling magnetic particles and develop a computer simulation program using their own ability. This book is therefore a self-learning book for graduate students and young researchers. Armed with this knowledge,...

  3. Modelling guidelines for core exit temperature simulations with system codes

    Energy Technology Data Exchange (ETDEWEB)

    Freixa, J., E-mail: jordi.freixa-terradas@upc.edu [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain); Paul Scherrer Institut (PSI), 5232 Villigen (Switzerland); Martínez-Quiroga, V., E-mail: victor.martinez@nortuen.com [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain); Zerkak, O., E-mail: omar.zerkak@psi.ch [Paul Scherrer Institut (PSI), 5232 Villigen (Switzerland); Reventós, F., E-mail: francesc.reventos@upc.edu [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain)

    2015-05-15

    Highlights: • Core exit temperature is used in PWRs as an indication of core heat up. • Modelling guidelines of CET response with system codes. • Modelling of heat transfer processes in the core and UP regions. - Abstract: Core exit temperature (CET) measurements play an important role in the sequence of actions under accidental conditions in pressurized water reactors (PWR). Given the difficulties in placing measurements in the core region, CET readings are used as criterion for the initiation of accident management (AM) procedures because they can indicate a core heat up scenario. However, the CET responses have some limitation in detecting inadequate core cooling and core uncovery simply because the measurement is not placed inside the core. Therefore, it is of main importance in the field of nuclear safety for PWR power plants to assess the capabilities of system codes for simulating the relation between the CET and the peak cladding temperature (PCT). The work presented in this paper intends to address this open question by making use of experimental work at integral test facilities (ITF) where experiments related to the evolution of the CET and the PCT during transient conditions have been carried out. In particular, simulations of two experiments performed at the ROSA/LSTF and PKL facilities are presented. The two experiments are part of a counterpart exercise between the OECD/NEA ROSA-2 and OECD/NEA PKL-2 projects. The simulations are used to derive guidelines in how to correctly reproduce the CET response during a core heat up scenario. Three aspects have been identified to be of main importance: (1) the need for a 3-dimensional representation of the core and Upper Plenum (UP) regions in order to model the heterogeneity of the power zones and axial areas, (2) the detailed representation of the active and passive heat structures, and (3) the use of simulated thermocouples instead of steam temperatures to represent the CET readings.

  4. Model building and new particles

    International Nuclear Information System (INIS)

    Frampton, P.H.

    1992-01-01

    After an outline of the Standard Model, indications of new physics beyond it are discussed. The nature of model building is illustrated by three examples which predict, respectively, new particles called the axigluon, sarks and the aspon. (author). 11 refs

  5. A simple model for induction core voltage distributions

    International Nuclear Information System (INIS)

    Briggs, Richard J.; Fawley, William M.

    2004-01-01

    In fall 2003 T. Hughes of MRC used a full EM simulation code (LSP) to show that the electric field stress distribution near the outer radius of the longitudinal gaps between the four Metglas induction cores is very nonuniform in the original design of the DARHT-2 accelerator cells. In this note we derive a simple model of the electric field distribution in the induction core region to provide physical insights into this result. The starting point in formulating our model is to recognize that the electromagnetic fields in the induction core region of the DARHT-2 accelerator cells should be accurately represented within a quasi-static approximation because the timescale for the fields to change is much longer than the EM wave propagation time. The difficulty one faces is the fact that the electric field is a mixture of both a ''quasi-magnetostatic field'' (having a nonzero curl, with Bdot the source) and a ''quasi-electrostatic field'' (the source being electric charges on the various metal surfaces). We first discuss the EM field structure on the ''micro-scale'' of individual tape windings in Section 2. The insights from that discussion are then used to formulate a ''macroscopic'' description of the fields inside an ''equivalent homogeneous tape wound core region'' in Section 3. This formulation explicitly separates the nonlinear core magnetics from the quasi-electrostatic components of the electric field. In Section 4 a physical interpretation of the radial dependence of the electrostatic component of the electric field derived from this model is presented in terms of distributed capacitances, and the voltage distribution from gap to gap is related to various ''equivalent'' lumped capacitances. Analytic solutions of several simple multi-core cases are presented in Sections 5 and 6 to help provide physical insight into the effect of various proposed changes in the geometrical parameters of the DARHT-2 accelerator cell. Our results show that over most of the gap

  6. Materials behaviour in PWRs core

    International Nuclear Information System (INIS)

    Barbu, A.; Massoud, J.P.

    2008-01-01

    Like in any industrial facility, the materials of PWR reactors are submitted to mechanical, thermal or chemical stresses during particularly long durations of operation: 40 years, and even 60 years. Materials closer to the nuclear fuel are submitted to intense bombardment of particles (mainly neutrons) coming from the nuclear reactions inside the core. In such conditions, the damages can be numerous and various: irradiation aging, thermal aging, friction wear, generalized corrosion, stress corrosion etc.. The understanding of the materials behaviour inside the cores of reactors in operation is a major concern for the nuclear industry and its long term forecast is a necessity. This article describes the main ways of materials degradation without and under irradiation, with the means used to foresee their behaviour using physics-based models. Content: 1 - structures, components and materials: structure materials, nuclear materials; 2 - main ways of degradation without irradiation: thermal aging, stress corrosion, wear; 3 - main ways of degradation under irradiation: microscopic damaging - point defects, dimensional alterations, evolution of mechanical characteristics under irradiation, irradiation-assisted stress corrosion cracking (IASCC), synergies; 4 - forecast of materials evolution under irradiation using physics-based models: primary damage - fast dynamics, primary damage annealing - slow kinetics microstructural evolution, impact of microstructural changes on the macroscopic behaviour, insight on modeling methods; 5 - materials change characterization techniques: microscopic techniques - direct defects observation, nuclear techniques using a particle beam, global measurements, mechanical characterizations; 6 - perspectives. (J.S.)

  7. Charge neutralization as the major factor for the assembly of nucleocapsid-like particles from C-terminal truncated hepatitis C virus core protein.

    Science.gov (United States)

    de Souza, Theo Luiz Ferraz; de Lima, Sheila Maria Barbosa; Braga, Vanessa L de Azevedo; Peabody, David S; Ferreira, Davis Fernandes; Bianconi, M Lucia; Gomes, Andre Marco de Oliveira; Silva, Jerson Lima; de Oliveira, Andréa Cheble

    2016-01-01

    Hepatitis C virus (HCV) core protein, in addition to its structural role to form the nucleocapsid assembly, plays a critical role in HCV pathogenesis by interfering in several cellular processes, including microRNA and mRNA homeostasis. The C-terminal truncated HCV core protein (C124) is intrinsically unstructured in solution and is able to interact with unspecific nucleic acids, in the micromolar range, and to assemble into nucleocapsid-like particles (NLPs) in vitro . The specificity and propensity of C124 to the assembly and its implications on HCV pathogenesis are not well understood. Spectroscopic techniques, transmission electron microscopy and calorimetry were used to better understand the propensity of C124 to fold or to multimerize into NLPs when subjected to different conditions or in the presence of unspecific nucleic acids of equivalent size to cellular microRNAs. The structural analysis indicated that C124 has low propensity to self-folding. On the other hand, for the first time, we show that C124, in the absence of nucleic acids, multimerizes into empty NLPs when subjected to a pH close to its isoelectric point (pH ≈ 12), indicating that assembly is mainly driven by charge neutralization. Isothermal calorimetry data showed that the assembly of NLPs promoted by nucleic acids is enthalpy driven. Additionally, data obtained from fluorescence correlation spectroscopy show that C124, in nanomolar range, was able to interact and to sequester a large number of short unspecific nucleic acids into NLPs. Together, our data showed that the charge neutralization is the major factor for the nucleocapsid-like particles assembly from C-terminal truncated HCV core protein. This finding suggests that HCV core protein may physically interact with unspecific cellular polyanions, which may correspond to microRNAs and mRNAs in a host cell infected by HCV, triggering their confinement into infectious particles.

  8. Method of determining the characteristics of circulatory systems using tracer particles, making the particles and radioactive particles for use in the method

    International Nuclear Information System (INIS)

    Pratt, F.P.; Gagnon, D.L.

    1981-01-01

    In the method described tracer particles consist of ion exchange resin cores labelled with suitable radioactive ions or with a nuclide excitable by X-rays, and have a non-leaching polymeric coating. The particles are introduced into the system and are detected by visual inspection, radiation detection or X-ray fluorescence techniques. The cores are labelled using conventional batch ion exchange techniques. Coated tracers are produced by contacting a monomer, preferably furfuryl alcohol, with cores bearing catalytic ions (hydroxyl or hydrogen) on the surface which catalyse the monomer to form a polymer. The tracer particles in a physiologically acceptable liquid carrier are useful in clinical and medical investigations of blood flow. They can also be used for flow measurement in chemical process control streams. (U.K.)

  9. Modeling in the Common Core State Standards

    Science.gov (United States)

    Tam, Kai Chung

    2011-01-01

    The inclusion of modeling and applications into the mathematics curriculum has proven to be a challenging task over the last fifty years. The Common Core State Standards (CCSS) has made mathematical modeling both one of its Standards for Mathematical Practice and one of its Conceptual Categories. This article discusses the need for mathematical…

  10. IAEA CRP on HTGR Uncertainties in Modeling: Assessment of Phase I Lattice to Core Model Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Rouxelin, Pascal Nicolas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Best-estimate plus uncertainty analysis of reactors is replacing the traditional conservative (stacked uncertainty) method for safety and licensing analysis. To facilitate uncertainty analysis applications, a comprehensive approach and methodology must be developed and applied. High temperature gas cooled reactors (HTGRs) have several features that require techniques not used in light-water reactor analysis (e.g., coated-particle design and large graphite quantities at high temperatures). The International Atomic Energy Agency has therefore launched the Coordinated Research Project on HTGR Uncertainty Analysis in Modeling to study uncertainty propagation in the HTGR analysis chain. The benchmark problem defined for the prismatic design is represented by the General Atomics Modular HTGR 350. The main focus of this report is the compilation and discussion of the results obtained for various permutations of Exercise I 2c and the use of the cross section data in Exercise II 1a of the prismatic benchmark, which is defined as the last and first steps of the lattice and core simulation phases, respectively. The report summarizes the Idaho National Laboratory (INL) best estimate results obtained for Exercise I 2a (fresh single-fuel block), Exercise I 2b (depleted single-fuel block), and Exercise I 2c (super cell) in addition to the first results of an investigation into the cross section generation effects for the super-cell problem. The two dimensional deterministic code known as the New ESC based Weighting Transport (NEWT) included in the Standardized Computer Analyses for Licensing Evaluation (SCALE) 6.1.2 package was used for the cross section evaluation, and the results obtained were compared to the three dimensional stochastic SCALE module KENO VI. The NEWT cross section libraries were generated for several permutations of the current benchmark super-cell geometry and were then provided as input to the Phase II core calculation of the stand alone neutronics Exercise

  11. Geomagnetic core field models in the satellite era

    DEFF Research Database (Denmark)

    Lesur, Vincent; Olsen, Nils; Thomson, Alan W. P.

    2011-01-01

    After a brief review of the theoretical basis and difficulties that modelers are facing, we present three recent models of the geomagnetic field originating in the Earth’s core. All three modeling approaches are using recent observatory and near-Earth orbiting survey satellite data. In each case...

  12. A two-particle exchange interaction model

    International Nuclear Information System (INIS)

    Lyubina, Julia; Mueller, Karl-Hartmut; Wolf, Manfred; Hannemann, Ullrich

    2010-01-01

    The magnetisation reversal of two interacting particles was investigated within a simple model describing exchange coupling of magnetically uniaxial single-domain particles. Depending on the interaction strength W, the reversal may be cooperative or non-cooperative. A non-collinear reversal mode is obtained even for two particles with parallel easy axes. The model yields different phenomena as observed in spring magnets such as recoil hysteresis in the second quadrant of the field-magnetisation-plane, caused by exchange bias, as well as the mentioned reversal-rotation mode. The Wohlfarth's remanence analysis performed on aggregations of such pairs of interacting particles shows that the deviation δM(H m ) usually being considered as a hallmark of magnetic interaction vanishes for all maximum applied fields H m not only at W=0, but also for sufficiently large values of W. Furthermore, this so-called δM-plot depends on whether the sample is ac-field or thermally demagnetised.

  13. A two-particle exchange interaction model

    Energy Technology Data Exchange (ETDEWEB)

    Lyubina, Julia, E-mail: j.lyubina@ifw-dresden.d [IFW Dresden, Institute for Metallic Materials, P.O. Box 270016, D-01171 Dresden (Germany); Mueller, Karl-Hartmut; Wolf, Manfred; Hannemann, Ullrich [IFW Dresden, Institute for Metallic Materials, P.O. Box 270016, D-01171 Dresden (Germany)

    2010-10-15

    The magnetisation reversal of two interacting particles was investigated within a simple model describing exchange coupling of magnetically uniaxial single-domain particles. Depending on the interaction strength W, the reversal may be cooperative or non-cooperative. A non-collinear reversal mode is obtained even for two particles with parallel easy axes. The model yields different phenomena as observed in spring magnets such as recoil hysteresis in the second quadrant of the field-magnetisation-plane, caused by exchange bias, as well as the mentioned reversal-rotation mode. The Wohlfarth's remanence analysis performed on aggregations of such pairs of interacting particles shows that the deviation {delta}M(H{sub m}) usually being considered as a hallmark of magnetic interaction vanishes for all maximum applied fields H{sub m} not only at W=0, but also for sufficiently large values of W. Furthermore, this so-called {delta}M-plot depends on whether the sample is ac-field or thermally demagnetised.

  14. Preliminary model for core/concrete interactions

    International Nuclear Information System (INIS)

    Murfin, W.B.

    1977-08-01

    A preliminary model is described for computing the rate of penetration of concrete by a molten LWR core. Among the phenomena included are convective stirring of the melt by evolved gases, admixture of concrete decomposition products to the melt, chemical reactions, radiative heat loss, and variation of heat transfer coefficients with local pressure. The model is most applicable to a two-phase melt (metallic plus oxidic) having a fairly high metallic content

  15. Topological defect and quasi-particle dynamics in charge density waves

    International Nuclear Information System (INIS)

    Hayashi, Masahiko; Ebisawa, Hiromichi

    2010-01-01

    The dynamics of topological defects (dislocations) in charge density waves (CDW's) is largely affected by the quasi-particle dynamics in the cores of the dislocations. The dislocations mediate the conversion of the electron number between condensate and quasi-particle sub-systems. This is especially important in the sliding conduction of CDW. In this work we propose a simple model, which is obtained by extending the Ginzburg-Landau theory partially taking into account the quasi-particle dynamics in the sense of two-fluid model. We perform the numerical simulation of sliding conduction of CDW based on our model. Using this model we may clarify the detailed process of dislocation nucleation and annihilation near the contacts.

  16. Real-time analysis of insoluble particles in glacial ice using single-particle mass spectrometry

    Science.gov (United States)

    Osman, Matthew; Zawadowicz, Maria A.; Das, Sarah B.; Cziczo, Daniel J.

    2017-11-01

    Insoluble aerosol particles trapped in glacial ice provide insight into past climates, but analysis requires information on climatically relevant particle properties, such as size, abundance, and internal mixing. We present a new analytical method using a time-of-flight single-particle mass spectrometer (SPMS) to determine the composition and size of insoluble particles in glacial ice over an aerodynamic size range of ˜ 0.2-3.0 µm diameter. Using samples from two Greenland ice cores, we developed a procedure to nebulize insoluble particles suspended in melted ice, evaporate condensed liquid from those particles, and transport them to the SPMS for analysis. We further determined size-dependent extraction and instrument transmission efficiencies to investigate the feasibility of determining particle-class-specific mass concentrations. We find SPMS can be used to provide constraints on the aerodynamic size, composition, and relative abundance of most insoluble particulate classes in ice core samples. We describe the importance of post-aqueous processing to particles, a process which occurs due to nebulization of aerosols from an aqueous suspension of originally soluble and insoluble aerosol components. This study represents an initial attempt to use SPMS as an emerging technique for the study of insoluble particulates in ice cores.

  17. Modeling of dilute and dense dispersed fluid-particle flow

    Energy Technology Data Exchange (ETDEWEB)

    Laux, Harald

    1998-08-01

    A general two-fluid model is derived and applied in CFD computations to various test cases of important industrial multiphase flows. It is general in the sense of its applicability to dilute and dense dispersed fluid-particle flows. The model is limited to isothermal flow without mass transfer and only one particle phase is described. The instantaneous fluid phase equations, including the phase interaction terms, are derived from a volume averaging technique, and the instantaneous particle phase equations are derived from the kinetic theory of granular material. Whereas the averaging procedure, the treatment of the interaction terms, and the kinetic theory approach have been reported in literature prior to this work the combination of the approaches is new. The resulting equations are derived without ambiguity in the interpretation of the particle phase pressure (equation-of-state of particle phase). The basic modeling for the particle phase is improved in two steps. Because in the basic modeling only stresses due to kinetic and collisional interactions are included, a simple model for an effective viscosity is developed in order to allow also frictional stresses within the particle phase. Moreover, turbulent stresses and turbulent dispersion of particles play often an important role for the transport processes. Therefore in a second step, a two-equation turbulence model for both fluid and particle phase turbulence is derived by applying the phasic average to the instantaneous equations. The resulting k-{epsilon}-k{sup d}-{epsilon}{sup d} model is new. Mathematical closure is attempted such that the resulting set of equations is valid for both dilute arid dense flows. During the development of the closure relations a clear distinction is made between granular or ''viscous'' microscale fluctuations and turbulent macro scale fluctuations (true particle turbulence) within the particle phase. The set of governing equations is discretized by using a finite volume method

  18. Modeling of dilute and dense dispersed fluid-particle flow

    Energy Technology Data Exchange (ETDEWEB)

    Laux, Harald

    1998-08-01

    A general two-fluid model is derived and applied in CFD computations to various test cases of important industrial multiphase flows. It is general in the sense of its applicability to dilute and dense dispersed fluid-particle flows. The model is limited to isothermal flow without mass transfer and only one particle phase is described. The instantaneous fluid phase equations, including the phase interaction terms, are derived from a volume averaging technique, and the instantaneous particle phase equations are derived from the kinetic theory of granular material. Whereas the averaging procedure, the treatment of the interaction terms, and the kinetic theory approach have been reported in literature prior to this work the combination of the approaches is new. The resulting equations are derived without ambiguity in the interpretation of the particle phase pressure (equation-of-state of particle phase). The basic modeling for the particle phase is improved in two steps. Because in the basic modeling only stresses due to kinetic and collisional interactions are included, a simple model for an effective viscosity is developed in order to allow also frictional stresses within the particle phase. Moreover, turbulent stresses and turbulent dispersion of particles play often an important role for the transport processes. Therefore in a second step, a two-equation turbulence model for both fluid and particle phase turbulence is derived by applying the phasic average to the instantaneous equations. The resulting k-{epsilon}-k{sup d}-{epsilon}{sup d} model is new. Mathematical closure is attempted such that the resulting set of equations is valid for both dilute arid dense flows. During the development of the closure relations a clear distinction is made between granular or ''viscous'' microscale fluctuations and turbulent macro scale fluctuations (true particle turbulence) within the particle phase. The set of governing equations is discretized by using a

  19. Modelling and simulation of particle-particle interaction in a magnetophoretic bio-separation chip

    Science.gov (United States)

    Alam, Manjurul; Golozar, Matin; Darabi, Jeff

    2018-04-01

    A Lagrangian particle trajectory model is developed to predict the interaction between cell-bead particle complexes and to track their trajectories in a magnetophoretic bio-separation chip. Magnetic flux gradients are simulated in the OpenFOAM CFD software and imported into MATLAB to obtain the trapping lengths and trajectories of the particles. A connector vector is introduced to calculate the interaction force between cell-bead complexes as they flow through a microfluidic device. The interaction force calculations are performed for cases where the connector vector is parallel, perpendicular, and at an angle of 45° with the applied magnetic field. The trajectories of the particles are simulated by solving a system of eight ordinary differential equations using a fourth order Runge-Kutta method. The model is then used to study the effects of geometric positions and angles of the connector vector between the particles as well as the cell size, number of beads per cell, and flow rate on the interaction force and trajectories of the particles. The results show that the interaction forces may be attractive or repulsive, depending on the orientation of the connector vector distance between the particle complexes and the applied magnetic field. When the interaction force is attractive, the particles are observed to merge and trap sooner than a single particle, whereas a repulsive interaction force has little or no effect on the trapping length.

  20. Testing Numerical Models of Cool Core Galaxy Cluster Formation with X-Ray Observations

    Science.gov (United States)

    Henning, Jason W.; Gantner, Brennan; Burns, Jack O.; Hallman, Eric J.

    2009-12-01

    Using archival Chandra and ROSAT data along with numerical simulations, we compare the properties of cool core and non-cool core galaxy clusters, paying particular attention to the region beyond the cluster cores. With the use of single and double β-models, we demonstrate a statistically significant difference in the slopes of observed cluster surface brightness profiles while the cluster cores remain indistinguishable between the two cluster types. Additionally, through the use of hardness ratio profiles, we find evidence suggesting cool core clusters are cooler beyond their cores than non-cool core clusters of comparable mass and temperature, both in observed and simulated clusters. The similarities between real and simulated clusters supports a model presented in earlier work by the authors describing differing merger histories between cool core and non-cool core clusters. Discrepancies between real and simulated clusters will inform upcoming numerical models and simulations as to new ways to incorporate feedback in these systems.

  1. Three Dimensional Characterization of Typical Urban and Desert Particles: Implications to Particle Optics

    Science.gov (United States)

    Goel, V.; Mishra, S.; Ahlawat, A. S.; Sharma, C.; Kotnala, R. K.

    2017-12-01

    Aerosol particles are generally considered as chemically homogeneous spheres in the retrieval techniques of ground and space borne observations which is not accurate approach and can lead to erroneous observations. For better simulation of optical and radiative properties of aerosols, a good knowledge of aerosol's morphology, chemical composition and internal structure is essential. Till date, many studies have reported the morphology and chemical composition of particles but very few of them provide internal structure and spatial distribution of different chemical species within the particle. The research on the effect of particle internal structure and its contribution to particle optics is extremely limited. In present work, we characterize the PM10 particles collected form typical arid (the Thar Desert, Rajasthan, India) and typical urban (New Delhi, India) environment using microscopic techniques. The particles were milled several times to investigate their internal structure. The EDS (Energy Dispersive X-ray Spectroscopy) spectra were recorded after each milling to check the variation in the chemical composition. In arid environment, Fe, Ca, C, Al, and Mg rich shell was observed over a Si rich particle whereas in urban environment, shell of Hg, Ag, C and N was observed over a Cu rich particle. Based on the observations, different model shapes [homogenous sphere and spheroid; heterogeneous sphere and spheroid; core shell] have been considered for assessing the associated uncertainties with the routine modeling of optical properties where volume equivalent homogeneous sphere approximation is considered. The details will be discussed during presentation.

  2. The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle.

    Science.gov (United States)

    Hergeth, Sonja P; Schneider, Robert

    2015-11-01

    The linker histone H1 family members are a key component of chromatin and bind to the nucleosomal core particle around the DNA entry and exit sites. H1 can stabilize both nucleosome structure and higher-order chromatin architecture. In general, H1 molecules consist of a central globular domain with more flexible tail regions at both their N- and C-terminal ends. The existence of multiple H1 subtypes and a large variety of posttranslational modifications brings about a considerable degree of complexity and makes studying this protein family challenging. Here, we review recent progress in understanding the function of linker histones and their subtypes beyond their role as merely structural chromatin components. We summarize current findings on the role of H1 in heterochromatin formation, transcriptional regulation and embryogenesis with a focus on H1 subtypes and their specific modifications. © 2015 The Authors.

  3. CHARACTERIZING AND MODELING FERRITE-CORE PROBES

    International Nuclear Information System (INIS)

    Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H.; Aldrin, John C.

    2010-01-01

    In this paper, we accurately and carefully characterize a ferrite-core probe that is widely used for aircraft inspections. The characterization starts with the development of a model that can be executed using the proprietary volume-integral code, VIC-3D(c), and then the model is fitted to measured multifrequency impedance data taken with the probe in freespace and over samples of a titanium alloy and aluminum. Excellent results are achieved, and will be discussed.

  4. Investigation of flow regime in debris bed formation behavior with nonspherical particles

    Directory of Open Access Journals (Sweden)

    Songbai Cheng

    2018-02-01

    Full Text Available It is important to clarify the characteristics of flow regimes underlying the debris bed formation behavior that might be encountered in core disruptive accidents of sodium-cooled fast reactors. Although in our previous publications, by applying dimensional analysis technique, an empirical model, with its reasonability confirmed over a variety of parametric conditions, has been successfully developed to predict the regime transition and final bed geometry formed, so far this model is restricted to predictions of debris mixtures composed of spherical particles. Focusing on this aspect, in this study a new series of experiments using nonspherical particles have been conducted. Based on the knowledge and data obtained, an extension scheme is suggested with the purpose of extending the base model to cover the particle-shape influence. Through detailed analyses and given our current range of experimental conditions, it is found that, by coupling the base model with this scheme, respectable agreement between experiments and model predictions for the regime transition can be achieved for both spherical and nonspherical particles. Knowledge and evidence from our work might be utilized for the future improvement of design of an in-vessel core catcher as well as the development and verification of sodium-cooled fast reactor severe accident analysis codes in China.

  5. Core/corona modeling of diode-imploded annular loads

    Science.gov (United States)

    Terry, R. E.; Guillory, J. U.

    1980-11-01

    The effects of a tenuous exterior plasma corona with anomalous resistivity on the compression and heating of a hollow, collisional aluminum z-pinch plasma are predicted by a one-dimensional code. As the interior ("core") plasma is imploded by its axial current, the energy exchange between core and corona determines the current partition. Under the conditions of rapid core heating and compression, the increase in coronal current provides a trade-off between radial acceleration and compression, which reduces the implosion forces and softens the pitch. Combined with a heuristic account of energy and momentum transport in the strongly coupled core plasma and an approximate radiative loss calculation including Al line, recombination and Bremsstrahlung emission, the current model can provide a reasonably accurate description of imploding annular plasma loads that remain azimuthally symmetric. The implications for optimization of generator load coupling are examined.

  6. Sawtooth driven particle transport in tokamak plasmas

    International Nuclear Information System (INIS)

    Nicolas, T.

    2013-01-01

    The radial transport of particles in tokamaks is one of the most stringent issues faced by the magnetic confinement fusion community, because the fusion power is proportional to the square of the pressure, and also because accumulation of heavy impurities in the core leads to important power losses which can lead to a 'radiative collapse'. Sawteeth and the associated periodic redistribution of the core quantities can significantly impact the radial transport of electrons and impurities. In this thesis, we perform numerical simulations of sawteeth using a nonlinear tridimensional magnetohydrodynamic code called XTOR-2F to study the particle transport induced by sawtooth crashes. We show that the code recovers, after the crash, the fine structures of electron density that are observed with fast-sweeping reflectometry on the JET and TS tokamaks. The presence of these structure may indicate a low efficiency of the sawtooth in expelling the impurities from the core. However, applying the same code to impurity profiles, we show that the redistribution is quantitatively similar to that predicted by Kadomtsev's model, which could not be predicted a priori. Hence finally the sawtooth flushing is efficient in expelling impurities from the core. (author) [fr

  7. Laboratory evaluation of a gasifier particle sampling system using model compounds of different particle morphology

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Patrik T.; Malik, Azhar; Pagels, Joakim; Lindskog, Magnus; Rissler, Jenny; Gudmundsson, Anders; Bohgard, Mats; Sanati, Mehri [Lund University, Division of Ergonomics and Aerosol Technology, P.O. Box 118, Lund (Sweden)

    2011-07-15

    The objective of this work was to design and evaluate an experimental setup to be used for field studies of particle formation in biomass gasification processes. The setup includes a high-temperature dilution probe and a denuder to separate solid particles from condensable volatile material. The efficiency of the setup to remove volatile material from the sampled stream and the influence from condensation on particles with different morphologies is presented. In order to study the sampling setup model, aerosols were created with a nebulizer to produce compact and solid KCl particles and a diffusion flame burner to produce agglomerated and irregular soot particles. The nebulizer and soot generator was followed by an evaporation-condensation section where volatile material, dioctylsebacete (DOS), was added to the system as a tar model compound. The model aerosol particles were heated to 200 C to create a system containing both solid particles and volatile organic material in gas phase. The heated aerosol particles were sampled and diluted at the same temperature with the dilution probe. Downstream the probe, the DOS was adsorbed in the denuder. This was achieved by slowly decreasing the temperature of the diluted sample towards ambient level in the denuder. Thereby the supersaturation of organic vapors was reduced which decreased the probability for tar condensation and nucleation of new particles. Both the generation system and the sampling technique gave reproducible results. A DOS collection efficiency of >99% was achieved if the denuder inlet concentration was diluted to less than 1-6 mg/m{sup 3} depending on the denuder flow rate. Concentrations higher than that lead to significant impact on the resulting KCl size distribution. The choice of model compounds was done to study the effect from the particle morphology on the achieved particle characteristics after the sampling setup. When similar amounts of volatile material condensed on soot agglomerates and

  8. Particle force model effects in a shock-driven multiphase instability

    Science.gov (United States)

    Black, W. J.; Denissen, N.; McFarland, J. A.

    2018-05-01

    This work presents simulations on a shock-driven multiphase instability (SDMI) at an initial particle volume fraction of 1% with the addition of a suite of particle force models applicable in dense flows. These models include pressure-gradient, added-mass, and interparticle force terms in an effort to capture the effects neighboring particles have in non-dilute flow regimes. Two studies are presented here: the first seeks to investigate the individual contributions of the force models, while the second study focuses on examining the effect of these force models on the hydrodynamic evolution of a SDMI with various particle relaxation times (particle sizes). In the force study, it was found that the pressure gradient and interparticle forces have little effect on the instability under the conditions examined, while the added-mass force decreases the vorticity deposition and alters the morphology of the instability. The relaxation-time study likewise showed a decrease in metrics associated with the evolution of the SDMI for all sizes when the particle force models were included. The inclusion of these models showed significant morphological differences in both the particle and carrier species fields, which increased as particle relaxation times increased.

  9. Adjustment of cast metal post/cores modeled with different acrylic resins

    OpenAIRE

    Gusmão, João Milton Rocha; Pereira, Renato Piai; Alves, Guilhermino Oliveira; Pithon, Matheus Melo; Moreira, David Costa

    2016-01-01

    Aim: Evaluate the performance of four commercially available chemically-activated acrylic resins (CAARs) by measuring the level of displacement of the cores following casting. Materials and Methods: Two devices were constructed to model the cores based on a natural tooth. Forty post/cores were modeled, 10 in each of the following CAARs: Duralay (Reliance Dental, Illinois, USA), Pattern Resin (GC, Tokyo, Japan), Dencrilay (Dencril, Sao Paulo, Brazil), and Jet (Clássico, Sao Paulo, Brazil). Two...

  10. Differential cross section for neutron scattering from 209Bi at 37 MeV and the weak particle-core coupling

    International Nuclear Information System (INIS)

    Zhou Zuying; Ruan Xichao; Du Yanfeng; Qi Bujia; Tang Hongqing; Xia Haihong; Walter, R. L.; Braun, R. T.; Howell, C. R.; Tornow, W.; Weisel, G. J.; Dupuis, M.; Delaroche, J. P.; Chen Zemin; Chen Zhenpeng; Chen Yingtang

    2010-01-01

    Differential scattering cross-section data have been measured at 43 angles from 11 deg. to 160 deg. for 37-MeV neutrons incident on 209 Bi. The primary motivation for the measurements is to address the scarcity of neutron scattering data above 30 MeV and to improve the accuracy of optical-model predictions at medium neutron energies. The high-statistics measurements were conducted at the China Institute of Atomic Energy using the 3 H(d,n) 4 He reaction as the neutron source, a pulsed deuteron beam, and time-of-flight (TOF) techniques. Within the resolution of the TOF spectrometer, the measurements included inelastic scattering components. The sum of elastic and inelastic scattering cross sections was computed in joint optical-model and distorted-wave Born approximation calculations under the assumption of the weak particle-core coupling. The results challenge predictions from well-established spherical optical potentials. Good agreement between data and calculations is achieved at 37 MeV provided that the balance between surface and volume absorption in a recent successful model [A. J. Koning and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003)] is modified, thus suggesting the need for global optical-model improvements at medium neutron energies.

  11. AGR core models and their application to HTRs and RBMKs

    International Nuclear Information System (INIS)

    Baylis, Samuel

    2014-01-01

    EDF Energy operates 14 AGRs, commissioned between 1976 and 1989. The graphite moderators of these gas cooled reactors are subjected to a number of ageing processes under fast neutron irradiation in a high temperature CO2 environment. As the graphite ages, continued safe operation requires an advanced whole-core modeling capability to enable accurate assessments of the core’s ability to fulfil fundamental nuclear safety requirements. This is also essential in evaluating the reactor's remaining economic lifetime, and similar assessments are useful for HTRs in the design stage. A number of computational and physical models of AGR graphite cores have been developed or are in development, allowing simulation of the reactors in normal, fault and seismic conditions. Many of the techniques developed are applicable to other graphite moderated reactors. Modeling of the RBMK allows validation against a core in a more advanced state of ageing than the AGRs, while there is also an opportunity to adapt the models for high temperature reactors. As an example, a finite element model of the HTR-PM side reflector based on rigid bodies and nonlinear springs is developed, allowing rapid assessments of distortion in the structure to be made. A model of the RBMK moderator has also been produced using an established AGR code based on similar methods. In addition, this paper discusses the limitations of these techniques and the development of more complex core models that address these limitations, along with the lessons that can be applied to HTRs. (author)

  12. Review of the SCDAP/RELAP5/MOD3.1 code structure and core T/H model before core damage

    International Nuclear Information System (INIS)

    Kim, See Darl; Kim, Dong Ha

    1998-04-01

    The SCDAP/RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during a severe accident. The code is being developed at the INEL under the primary sponsorship of the Office of Nuclear Regulatory Research of the U.S. NRC. As The current time, the SCDAP/RELAP5/MOD3.1 code is the result of merging the RELAP5/MOD3 and SCDAP models. The code models the coupled behavior of the reactor coolant system, core, fission product released during a severe accident transient as well as large and small break loss of coolant accidents, operational transients such as anticipated transient without SCRAM, loss of offsite power, loss of feedwater, and loss of flow. Major purpose of the report is to provide information about the characteristics of SCDAP/RELAP5/MOD3.1 core T/H models for an integrated severe accident computer code being developed under the mid/long-term project. This report analyzes the overall code structure which consists of the input processor, transient controller, and plot file handler. The basic governing equations to simulate the thermohydraulics of the primary system are also described. As the focus is currently concentrated in the core, core nodalization parameters of the intact geometry and the phenomenological subroutines for the damaged core are summarized for the future usage. In addition, the numerical approach for the heat conduction model is investigated along with heat convection model. These studies could provide a foundation for input preparation and model improvement. (author). 6 refs., 3 tabs., 4 figs

  13. GLOBAL MODELING OF NEBULAE WITH PARTICLE GROWTH, DRIFT, AND EVAPORATION FRONTS. I. METHODOLOGY AND TYPICAL RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, Paul R. [Carl Sagan Center, SETI Institute, 189 N. Bernardo Avenue # 100, Mountain View, CA 94043 (United States); Cuzzi, Jeffrey N. [Ames Research Center, NASA, Mail Stop 245-3, Moffett Field, CA 94035 (United States); Morgan, Demitri A., E-mail: Paul.R.Estrada@nasa.gov [USRA, NASA Ames Research Center, Mail Stop 245-3, Moffett Field, CA 94035 (United States)

    2016-02-20

    We model particle growth in a turbulent, viscously evolving protoplanetary nebula, incorporating sticking, bouncing, fragmentation, and mass transfer at high speeds. We treat small particles using a moments method and large particles using a traditional histogram binning, including a probability distribution function of collisional velocities. The fragmentation strength of the particles depends on their composition (icy aggregates are stronger than silicate aggregates). The particle opacity, which controls the nebula thermal structure, evolves as particles grow and mass redistributes. While growing, particles drift radially due to nebula headwind drag. Particles of different compositions evaporate at “evaporation fronts” (EFs) where the midplane temperature exceeds their respective evaporation temperatures. We track the vapor and solid phases of each component, accounting for advection and radial and vertical diffusion. We present characteristic results in evolutions lasting 2 × 10{sup 5} years. In general, (1) mass is transferred from the outer to the inner nebula in significant amounts, creating radial concentrations of solids at EFs; (2) particle sizes are limited by a combination of fragmentation, bouncing, and drift; (3) “lucky” large particles never represent a significant amount of mass; and (4) restricted radial zones just outside each EF become compositionally enriched in the associated volatiles. We point out implications for millimeter to submillimeter SEDs and the inference of nebula mass, radial banding, the role of opacity on new mechanisms for generating turbulence, the enrichment of meteorites in heavy oxygen isotopes, variable and nonsolar redox conditions, the primary accretion of silicate and icy planetesimals, and the makeup of Jupiter’s core.

  14. GLOBAL MODELING OF NEBULAE WITH PARTICLE GROWTH, DRIFT, AND EVAPORATION FRONTS. I. METHODOLOGY AND TYPICAL RESULTS

    International Nuclear Information System (INIS)

    Estrada, Paul R.; Cuzzi, Jeffrey N.; Morgan, Demitri A.

    2016-01-01

    We model particle growth in a turbulent, viscously evolving protoplanetary nebula, incorporating sticking, bouncing, fragmentation, and mass transfer at high speeds. We treat small particles using a moments method and large particles using a traditional histogram binning, including a probability distribution function of collisional velocities. The fragmentation strength of the particles depends on their composition (icy aggregates are stronger than silicate aggregates). The particle opacity, which controls the nebula thermal structure, evolves as particles grow and mass redistributes. While growing, particles drift radially due to nebula headwind drag. Particles of different compositions evaporate at “evaporation fronts” (EFs) where the midplane temperature exceeds their respective evaporation temperatures. We track the vapor and solid phases of each component, accounting for advection and radial and vertical diffusion. We present characteristic results in evolutions lasting 2 × 10 5 years. In general, (1) mass is transferred from the outer to the inner nebula in significant amounts, creating radial concentrations of solids at EFs; (2) particle sizes are limited by a combination of fragmentation, bouncing, and drift; (3) “lucky” large particles never represent a significant amount of mass; and (4) restricted radial zones just outside each EF become compositionally enriched in the associated volatiles. We point out implications for millimeter to submillimeter SEDs and the inference of nebula mass, radial banding, the role of opacity on new mechanisms for generating turbulence, the enrichment of meteorites in heavy oxygen isotopes, variable and nonsolar redox conditions, the primary accretion of silicate and icy planetesimals, and the makeup of Jupiter’s core

  15. The QCD model of hadron cores of the meson theory

    International Nuclear Information System (INIS)

    Pokrovskii, Y.E.

    1985-01-01

    It was shown that in the previously proposed QCD model of hadron cores the exchange and self-energy contributions of the virtual quark-antiquark-gluon cloud on the outside of a bag which radius coincides with the hardon core radius of the meson theory (∼ 0.4 Fm) have been taken into account at the phenomenological level. Simulation of this cloud by the meson field results in realistic estimations of the nucleon's electroweak properties, moment fractions carried by gluons, quarks, antiquarks and hadron-hadron interaction cross-sections within a wide range of energies. The authors note that the QCD hadron core model proposed earlier not only realistically reflects the hadron masses, but reflects self-consistently main elements of the structure and interaction of hadrons at the quark-gluon bag radius (R - 0.4Fm) being close to the meson theory core radius

  16. Adsorption of Small Cationic Nanoparticles onto Large Anionic Particles from Aqueous Solution: A Model System for Understanding Pigment Dispersion and the Problem of Effective Particle Density.

    Science.gov (United States)

    North, S M; Jones, E R; Smith, G N; Mykhaylyk, O O; Annable, T; Armes, S P

    2017-02-07

    The present study focuses on the use of copolymer nanoparticles as a dispersant for a model pigment (silica). Reversible addition-fragmentation chain transfer (RAFT) alcoholic dispersion polymerization was used to synthesize sterically stabilized diblock copolymer nanoparticles. The steric stabilizer block was poly(2-(dimethylamino)ethyl methacrylate) (PDMA) and the core-forming block was poly(benzyl methacrylate) (PBzMA). The mean degrees of polymerization for the PDMA and PBzMA blocks were 71 and 100, respectively. Transmission electron microscopy (TEM) studies confirmed a near-monodisperse spherical morphology, while dynamic light scattering (DLS) studies indicated an intensity-average diameter of 30 nm. Small-angle X-ray scattering (SAXS) reported a volume-average diameter of 29 ± 0.5 nm and a mean aggregation number of 154. Aqueous electrophoresis measurements confirmed that these PDMA 71 -PBzMA 100 nanoparticles acquired cationic character when transferred from ethanol to water as a result of protonation of the weakly basic PDMA chains. Electrostatic adsorption of these nanoparticles from aqueous solution onto 470 nm silica particles led to either flocculation at submonolayer coverage or steric stabilization at or above monolayer coverage, as judged by DLS. This technique indicated that saturation coverage was achieved on addition of approximately 465 copolymer nanoparticles per silica particle, which corresponds to a fractional surface coverage of around 0.42. These adsorption data were corroborated using thermogravimetry, UV spectroscopy and X-ray photoelectron spectroscopy. TEM studies indicated that the cationic nanoparticles remained intact on the silica surface after electrostatic adsorption, while aqueous electrophoresis confirmed that surface charge reversal occurred below pH 7. The relatively thick layer of adsorbed nanoparticles led to a significant reduction in the effective particle density of the silica particles from 1.99 g cm -3 to

  17. Conceptual Models Core to Good Design

    CERN Document Server

    Johnson, Jeff

    2011-01-01

    People make use of software applications in their activities, applying them as tools in carrying out tasks. That this use should be good for people--easy, effective, efficient, and enjoyable--is a principal goal of design. In this book, we present the notion of Conceptual Models, and argue that Conceptual Models are core to achieving good design. From years of helping companies create software applications, we have come to believe that building applications without Conceptual Models is just asking for designs that will be confusing and difficult to learn, remember, and use. We show how Concept

  18. Stretchable inductor with liquid magnetic core

    Science.gov (United States)

    Lazarus, N.; Meyer, C. D.

    2016-03-01

    Adding magnetic materials is a well-established method for improving performance of inductors. However, traditional magnetic cores are rigid and poorly suited for the emerging field of stretchable electronics, where highly deformable inductors are used to wirelessly couple power and data signals. In this work, stretchable inductors are demonstrated based on the use of ferrofluids, magnetic liquids based on distributed magnetic particles, to create a compliant magnetic core. Using a silicone molding technique to create multi-layer fluidic channels, a liquid metal solenoid is fabricated around a ferrofluid channel. An analytical model is developed for the effects of mechanical strain, followed by experimental verification using two different ferrofluids with different permeabilities. Adding ferrofluid was found to increase the unstrained inductance by up to 280% relative to a similar inductor with a non-magnetic silicone core, while retaining the ability to survive uniaxial strains up to 100%.

  19. Core flow inversion tested with numerical dynamo models

    Science.gov (United States)

    Rau, Steffen; Christensen, Ulrich; Jackson, Andrew; Wicht, Johannes

    2000-05-01

    We test inversion methods of geomagnetic secular variation data for the pattern of fluid flow near the surface of the core with synthetic data. These are taken from self-consistent 3-D models of convection-driven magnetohydrodynamic dynamos in rotating spherical shells, which generate dipole-dominated magnetic fields with an Earth-like morphology. We find that the frozen-flux approximation, which is fundamental to all inversion schemes, is satisfied to a fair degree in the models. In order to alleviate the non-uniqueness of the inversion, usually a priori conditions are imposed on the flow; for example, it is required to be purely toroidal or geostrophic. Either condition is nearly satisfied by our model flows near the outer surface. However, most of the surface velocity field lies in the nullspace of the inversion problem. Nonetheless, the a priori constraints reduce the nullspace, and by inverting the magnetic data with either one of them we recover a significant part of the flow. With the geostrophic condition the correlation coefficient between the inverted and the true velocity field can reach values of up to 0.65, depending on the choice of the damping parameter. The correlation is significant at the 95 per cent level for most spherical harmonic degrees up to l=26. However, it degrades substantially, even at long wavelengths, when we truncate the magnetic data sets to l currents, similar to those seen in core-flow models derived from geomagnetic data, occur in the equatorial region. However, the true flow does not contain this flow component. The results suggest that some meaningful information on the core-flow pattern can be retrieved from secular variation data, but also that the limited resolution of the magnetic core field could produce serious artefacts.

  20. Density functional formulation of the random-phase approximation for inhomogeneous fluids: Application to the Gaussian core and Coulomb particles.

    Science.gov (United States)

    Frydel, Derek; Ma, Manman

    2016-06-01

    Using the adiabatic connection, we formulate the free energy in terms of the correlation function of a fictitious system, h_{λ}(r,r^{'}), in which interactions λu(r,r^{'}) are gradually switched on as λ changes from 0 to 1. The function h_{λ}(r,r^{'}) is then obtained from the inhomogeneous Ornstein-Zernike equation and the two equations constitute a general liquid-state framework for treating inhomogeneous fluids. The two equations do not yet constitute a closed set. In the present work we use the closure c_{λ}(r,r^{'})≈-λβu(r,r^{'}), known as the random-phase approximation (RPA). We demonstrate that the RPA is identical with the variational Gaussian approximation derived within the field-theoretical framework, originally derived and used for charged particles. We apply our generalized RPA approximation to the Gaussian core model and Coulomb charges.

  1. Performance modeling and analysis of parallel Gaussian elimination on multi-core computers

    Directory of Open Access Journals (Sweden)

    Fadi N. Sibai

    2014-01-01

    Full Text Available Gaussian elimination is used in many applications and in particular in the solution of systems of linear equations. This paper presents mathematical performance models and analysis of four parallel Gaussian Elimination methods (precisely the Original method and the new Meet in the Middle –MiM– algorithms and their variants with SIMD vectorization on multi-core systems. Analytical performance models of the four methods are formulated and presented followed by evaluations of these models with modern multi-core systems’ operation latencies. Our results reveal that the four methods generally exhibit good performance scaling with increasing matrix size and number of cores. SIMD vectorization only makes a large difference in performance for low number of cores. For a large matrix size (n ⩾ 16 K, the performance difference between the MiM and Original methods falls from 16× with four cores to 4× with 16 K cores. The efficiencies of all four methods are low with 1 K cores or more stressing a major problem of multi-core systems where the network-on-chip and memory latencies are too high in relation to basic arithmetic operations. Thus Gaussian Elimination can greatly benefit from the resources of multi-core systems, but higher performance gains can be achieved if multi-core systems can be designed with lower memory operation, synchronization, and interconnect communication latencies, requirements of utmost importance and challenge in the exascale computing age.

  2. Acoustic detection of melt particles

    International Nuclear Information System (INIS)

    Costley, R.D. Jr.

    1988-01-01

    The Reactor Safety Research Department at Sandia National Laboratories is investigating a type of Loss of Coolant Accident (LOCA). In this particular type of accident, core meltdown occurs while the pressure within the reactor pressure vessel (RPV) is high. If one of the instrument tube penetrations in the lower head fails, melt particles stream through the cavity and into the containment vessel. This experiment, which simulates this type accident, was performed in the Surtsev Direct Heating Test Facility which is approximately a 1:10 linear scaling of a large dry containment volume. A 1:10 linear scale model of the reactor cavity was placed near the bottom of the Surtsey vessel so that the exit of the cavity was at the vertical centerline of the vessel. A pressure vessel used to create the simulated molten core debris was located at the scaled height of the RPV. In order to better understand how the melt leaves the cavity and streams into the containment an array of five acoustic sensors was placed directly in the path of the melt particles about 30 feet from the exit of the sealed cavity. Highly damped, broadband sensors were chosen to minimize ringing so that individual particle hits could be detected. The goal was to count the signals produced by the individual particle hits to get some idea of how the melt particles left the cavity. This document presents some of the results of the experiment. 9 figs

  3. Evaluating nuclear physics inputs in core-collapse supernova models

    Science.gov (United States)

    Lentz, E.; Hix, W. R.; Baird, M. L.; Messer, O. E. B.; Mezzacappa, A.

    Core-collapse supernova models depend on the details of the nuclear and weak interaction physics inputs just as they depend on the details of the macroscopic physics (transport, hydrodynamics, etc.), numerical methods, and progenitors. We present preliminary results from our ongoing comparison studies of nuclear and weak interaction physics inputs to core collapse supernova models using the spherically-symmetric, general relativistic, neutrino radiation hydrodynamics code Agile-Boltztran. We focus on comparisons of the effects of the nuclear EoS and the effects of improving the opacities, particularly neutrino--nucleon interactions.

  4. The topological B model as a twisted spinning particle

    International Nuclear Information System (INIS)

    Marcus, Neil; Yankielowicz, Shimon

    1994-01-01

    The B-twisted topological sigma model coupled to topological gravity is supposed to be described by an ordinary field theory: a type of holomorphic Chern-Simons theory for the open string, and the Kodaira-Spencer theory for the closed string. We show that the B model can be represented as a particle theory, obtained by reducing the sigma model to one dimension, and replacing the coupling to topological gravity by a coupling to a twisted one-dimensional supergravity. The particle can be defined on any Kaehler manifold - it does not require the Calabi-Yau condition - so it may provide a more generalized setting for the B model than the topological sigma model.The one-loop partition function of the particle can be written in terms of the Ray-Singer torsion of the manifold, and agrees with that of the original B model. After showing how to deform the Kaehler and complex structures in the particle, we prove the independence of this partition function on the Kaehler structure, and investigate the origin of the holomorphic anomaly. To define other amplitudes, one needs to introduce interactions into the particle. The particle will then define a field theory, which may or may not be the Chern-Simons or Kodaira-Spencer theories. ((orig.))

  5. Burnout of pulverized biomass particles in large scale boiler – Single particle model approach

    DEFF Research Database (Denmark)

    Saastamoinen, Jaakko; Aho, Martti; Moilanen, Antero

    2010-01-01

    the particle combustion model is coupled with one-dimensional equation of motion of the particle, is applied for the calculation of the burnout in the boiler. The particle size of biomass can be much larger than that of coal to reach complete burnout due to lower density and greater reactivity. The burner...... location and the trajectories of the particles might be optimised to maximise the residence time and burnout....

  6. Modeling of Particle Emission During Dry Orthogonal Cutting

    Science.gov (United States)

    Khettabi, Riad; Songmene, Victor; Zaghbani, Imed; Masounave, Jacques

    2010-08-01

    Because of the risks associated with exposure to metallic particles, efforts are being put into controlling and reducing them during the metal working process. Recent studies by the authors involved in this project have presented the effects of cutting speeds, workpiece material, and tool geometry on particle emission during dry machining; the authors have also proposed a new parameter, named the dust unit ( D u), for use in evaluating the quantity of particle emissions relative to the quantity of chips produced during a machining operation. In this study, a model for predicting the particle emission (dust unit) during orthogonal turning is proposed. This model, which is based on the energy approach combined with the microfriction and the plastic deformation of the material, takes into account the tool geometry, the properties of the worked material, the cutting conditions, and the chip segmentation. The model is validated using experimental results obtained during the orthogonal turning of 6061-T6 aluminum alloy, AISI 1018, AISI 4140 steels, and grey cast iron. A good agreement was found with experimental results. This model can help in designing strategies for reducing particle emission during machining processes, at the source.

  7. Organizational Models for Non-Core Processes Management: A Classification Framework

    Directory of Open Access Journals (Sweden)

    Alberto F. De Toni

    2012-12-01

    The framework enables the identification and the explanation of the main advantages and disadvantages of each strategy and to highlight how a company should coherently choose an organizational model on the basis of: (a the specialization/complexity of the non‐core processes, (b the focus on core processes, (c its inclination towards know‐how outsourcing, and (d the desired level of autonomy in the management of non‐core processes.

  8. [Adsorption of Cu on Core-shell Structured Magnetic Particles: Relationship Between Adsorption Performance and Surface Properties].

    Science.gov (United States)

    Li, Qiu-mei; Chen, Jing; Li, Hai-ning; Zhang, Xiao-lei; Zhang, Gao-sheng

    2015-12-01

    In order to reveal the relationship between the adsorption performance of adsorbents and their compositions, structure, and surface properties, the core-shell structured Fe₃O₄/MnO2 and Fe-Mn/Mn₂2 magnetic particles were systematically characterized using multiple techniques and their Cu adsorption behaviors as well as mechanism were also investigated in details. It was found that both Fe₃O4 and Fe-Mn had spinel structure and no obvious crystalline phase change was observed after coating with MnO₂. The introduction of Mn might improve the affinity between the core and the shell, and therefore enhanced the amount and distribution uniformity of the MnO₂ coated. Consequently, Fe-Mn/MnO₂ exhibited a higher BET specific surface area and a lower isoelectric point. The results of sorption experiments showed that Fe-Mn had a higher maximal Cu adsorption capacity of 33.7 mg · g⁻¹ at pH 5.5, compared with 17.5 mg · g⁻¹ of Fe₃O4. After coating, the maximal adsorption capacity of Fe-Mn/MnO₂ was increased to 58.2 mg · g⁻¹, which was 2.6 times as high as that of Fe₃O₄/MnO₂ and outperformed the majority of magnetic adsorbents reported in literature. In addition, a specific adsorption of Cu occurred at the surface of Fe₃O₄/MnO₂ or Fe-Mn/MnO₂ through the formation of inner-sphere complexes. In conclusion, the adsorption performance of the magnetic particles was positively related to their compositions, structure, and surface properties.

  9. Quasi-exactly solvable relativistic soft-core Coulomb models

    Energy Technology Data Exchange (ETDEWEB)

    Agboola, Davids, E-mail: davagboola@gmail.com; Zhang, Yao-Zhong, E-mail: yzz@maths.uq.edu.au

    2012-09-15

    By considering a unified treatment, we present quasi exact polynomial solutions to both the Klein-Gordon and Dirac equations with the family of soft-core Coulomb potentials V{sub q}(r)=-Z/(r{sup q}+{beta}{sup q}){sup 1/q}, Z>0, {beta}>0, q{>=}1. We consider cases q=1 and q=2 and show that both cases are reducible to the same basic ordinary differential equation. A systematic and closed form solution to the basic equation is obtained using the Bethe ansatz method. For each case, the expressions for the energies and the allowed parameters are obtained analytically and the wavefunctions are derived in terms of the roots of a set of Bethe ansatz equations. - Highlights: Black-Right-Pointing-Pointer The relativistic bound-state solutions of the soft-core Coulomb models. Black-Right-Pointing-Pointer Quasi-exact treatments of the Dirac and Klein-Gordon equations for the soft-core Coulomb models. Black-Right-Pointing-Pointer Solutions obtained in terms of the roots to the Bethe ansatz equations. Black-Right-Pointing-Pointer The hidden Lie algebraic structure discussed for the models. Black-Right-Pointing-Pointer Results useful in describing mesonic atoms and interaction of intense laser fields with atom.

  10. Dynamic Hydrogen Production from Methanol/Water Photo-Splitting Using Core@Shell-Structured CuS@TiO2 Catalyst Wrapped by High Concentrated TiO2 Particles

    Directory of Open Access Journals (Sweden)

    Younghwan Im

    2013-01-01

    Full Text Available This study focused on the dynamic hydrogen production ability of a core@shell-structured CuS@TiO2 photocatalyst coated with a high concentration of TiO2 particles. The rectangular-shaped CuS particles, 100 nm in length and 60 nm in width, were surrounded by a high concentration of anatase TiO2 particles (>4~5 mol. The synthesized core@shell-structured CuS@TiO2 particles absorbed a long wavelength (a short band gap above 700 nm compared to that pure TiO2, which at approximately 300 nm, leading to easier electronic transitions, even at low energy. Hydrogen evolution from methanol/water photo-splitting over the core@shell-structured CuS@TiO2 photocatalyst increased approximately 10-fold compared to that over pure CuS. In particular, 1.9 mmol of hydrogen gas was produced after 10 hours when 0.5 g of 1CuS@4TiO2 was used at pH = 7. This level of production was increased to more than 4-fold at higher pH. Cyclic voltammetry and UV-visible absorption spectroscopy confirmed that the CuS in CuS@TiO2 strongly withdraws the excited electrons from the valence band in TiO2 because of the higher reduction potential than TiO2, resulting in a slower recombination rate between the electrons and holes and higher photoactivity.

  11. Towards quantitative analysis of core-shell catalyst nano-particles by aberration corrected high angle annular dark field STEM and EDX

    International Nuclear Information System (INIS)

    Haibo, E; Nellist, P D; Lozano-Perez, S; Ozkaya, D

    2010-01-01

    Core-shell structured heterogeneous catalyst nano-particles offer the promise of more efficient precious metal usage and also novel functionalities but are as yet poorly characterised due to large compositional variations over short ranges. High angle annular dark field detector in a scanning transmission electron microscope is frequently used to image at high resolution because of its Z-contrast and incoherent imaging process, but generally little attention is paid to quantification. Energy dispersive X-ray analysis provides information on thickness and chemical composition and, used in conjunction with HAADF-STEM, aids interpretation of imaged nano-particles. We present important calibrations and initial data for truly quantitative high resolution analysis.

  12. Experiments and modeling of single plastic particle conversion in suspension

    DEFF Research Database (Denmark)

    Nakhaei, Mohammadhadi; Wu, Hao; Grévain, Damien

    2018-01-01

    Conversion of single high density polyethylene (PE) particles has been studied by experiments and modeling. The experiments were carried out in a single particle combustor for five different shapes and masses of particles at temperature conditions of 900 and 1100°C. Each experiment was recorded...... against the experiments as well as literature data. Furthermore, a simplified isothermal model appropriate for CFD applications was developed, in order to model the combustion of plastic particles in cement calciners. By comparing predictions with the isothermal and the non–isothermal models under typical...

  13. Meaningful timescales from Monte Carlo simulations of particle systems with hard-core interactions

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Liborio I., E-mail: liborio78@gmail.com

    2016-12-01

    A new Markov Chain Monte Carlo method for simulating the dynamics of particle systems characterized by hard-core interactions is introduced. In contrast to traditional Kinetic Monte Carlo approaches, where the state of the system is associated with minima in the energy landscape, in the proposed method, the state of the system is associated with the set of paths traveled by the atoms and the transition probabilities for an atom to be displaced are proportional to the corresponding velocities. In this way, the number of possible state-to-state transitions is reduced to a discrete set, and a direct link between the Monte Carlo time step and true physical time is naturally established. The resulting rejection-free algorithm is validated against event-driven molecular dynamics: the equilibrium and non-equilibrium dynamics of hard disks converge to the exact results with decreasing displacement size.

  14. From pair correlations to the quasi-particle-phonon nuclear model

    International Nuclear Information System (INIS)

    Solov'ev, V.G.

    1986-01-01

    Modern state of the nucleus theory is discussed. The main attention is paid to pair correlation theory of superconducting type and quasiparticle - phonon nucleus model. Pair correlation account allowed one to describe in detail a series of nucleus properties which did not fall within the framework of earlier known models as, for example, double-quasi-particle states in even-even deformed nuclei. To describe the wave function low-quasi-particle components at low, mean and high excitation energies, the nucleus quasi-particle-phonon model is formulated. The strength function method is used in the model and fragmentation of mono-quasi-particle, mono-phonon states and quasi-particle phonon state by many nuclear levels is calculated

  15. High energy model for irregular absorbing particles

    International Nuclear Information System (INIS)

    Chiappetta, Pierre.

    1979-05-01

    In the framework of a high energy formulation of relativistic quantum scattering a model is presented which describes the scattering functions and polarization of irregular absorbing particles, whose dimensions are greater than the incident wavelength. More precisely in the forward direction an amplitude parametrization of eikonal type is defined which generalizes the usual diffraction theory, and in the backward direction a reflective model is used including a shadow function. The model predictions are in good agreement with the scattering measurements off irregular compact and fluffy particles performed by Zerull, Giese and Weiss (1977)

  16. Computational models of stellar collapse and core-collapse supernovae

    International Nuclear Information System (INIS)

    Ott, Christian D; O'Connor, Evan; Schnetter, Erik; Loeffler, Frank; Burrows, Adam; Livne, Eli

    2009-01-01

    Core-collapse supernovae are among Nature's most energetic events. They mark the end of massive star evolution and pollute the interstellar medium with the life-enabling ashes of thermonuclear burning. Despite their importance for the evolution of galaxies and life in the universe, the details of the core-collapse supernova explosion mechanism remain in the dark and pose a daunting computational challenge. We outline the multi-dimensional, multi-scale, and multi-physics nature of the core-collapse supernova problem and discuss computational strategies and requirements for its solution. Specifically, we highlight the axisymmetric (2D) radiation-MHD code VULCAN/2D and present results obtained from the first full-2D angle-dependent neutrino radiation-hydrodynamics simulations of the post-core-bounce supernova evolution. We then go on to discuss the new code Zelmani which is based on the open-source HPC Cactus framework and provides a scalable AMR approach for 3D fully general-relativistic modeling of stellar collapse, core-collapse supernovae and black hole formation on current and future massively-parallel HPC systems. We show Zelmani's scaling properties to more than 16,000 compute cores and discuss first 3D general-relativistic core-collapse results.

  17. F.B.R. Core mock-up RAPSODIE - II - numerical models

    International Nuclear Information System (INIS)

    Brochard, D.; Hammami, L.; Gantenbein, F.

    1990-01-01

    To study the behaviour of LMFBR cores excited by a seism, tests have been performed on the RAPSODIE core mock-up. The aim of this paper is to present the numerical models used to interprete these tests and the comparisons between calculations and experimental results

  18. Charge neutralization as the major factor for the assembly of nucleocapsid-like particles from C-terminal truncated hepatitis C virus core protein

    Directory of Open Access Journals (Sweden)

    Theo Luiz Ferraz de Souza

    2016-11-01

    Full Text Available Background Hepatitis C virus (HCV core protein, in addition to its structural role to form the nucleocapsid assembly, plays a critical role in HCV pathogenesis by interfering in several cellular processes, including microRNA and mRNA homeostasis. The C-terminal truncated HCV core protein (C124 is intrinsically unstructured in solution and is able to interact with unspecific nucleic acids, in the micromolar range, and to assemble into nucleocapsid-like particles (NLPs in vitro. The specificity and propensity of C124 to the assembly and its implications on HCV pathogenesis are not well understood. Methods Spectroscopic techniques, transmission electron microscopy and calorimetry were used to better understand the propensity of C124 to fold or to multimerize into NLPs when subjected to different conditions or in the presence of unspecific nucleic acids of equivalent size to cellular microRNAs. Results The structural analysis indicated that C124 has low propensity to self-folding. On the other hand, for the first time, we show that C124, in the absence of nucleic acids, multimerizes into empty NLPs when subjected to a pH close to its isoelectric point (pH ≈ 12, indicating that assembly is mainly driven by charge neutralization. Isothermal calorimetry data showed that the assembly of NLPs promoted by nucleic acids is enthalpy driven. Additionally, data obtained from fluorescence correlation spectroscopy show that C124, in nanomolar range, was able to interact and to sequester a large number of short unspecific nucleic acids into NLPs. Discussion Together, our data showed that the charge neutralization is the major factor for the nucleocapsid-like particles assembly from C-terminal truncated HCV core protein. This finding suggests that HCV core protein may physically interact with unspecific cellular polyanions, which may correspond to microRNAs and mRNAs in a host cell infected by HCV, triggering their confinement into infectious particles.

  19. Mathematical modelling of the combustion of a single wood particle

    Energy Technology Data Exchange (ETDEWEB)

    Porteiro, J.; Miguez, J.L.; Granada, E.; Moran, J.C. [Departamento de Ingenieria Mecanica, Maquinas y Motores Termicos y Fluidos. Universidad de Vigo, Lagoas Marcosende 9 36200 Vigo (Spain)

    2006-01-15

    A mathematical model describing the thermal degradation of densified biomass particles is presented here. The model uses a novel discretisation scheme and combines intra-particle combustion processes with extra-particle transport processes, thereby including thermal and diffusional control mechanisms. The influence of structural changes on the physical-thermal properties of wood in its different stages is studied together with shrinkage of the particle during its degradation. The model is used to compare the predicted data with data on the mass loss dynamics and internal temperature of several particles from previous works and relevant literature, with good agreement. (author)

  20. Hybrid particles and associated methods

    Science.gov (United States)

    Fox, Robert V; Rodriguez, Rene; Pak, Joshua J; Sun, Chivin

    2015-02-10

    Hybrid particles that comprise a coating surrounding a chalcopyrite material, the coating comprising a metal, a semiconductive material, or a polymer; a core comprising a chalcopyrite material and a shell comprising a functionalized chalcopyrite material, the shell enveloping the core; or a reaction product of a chalcopyrite material and at least one of a reagent, heat, and radiation. Methods of forming the hybrid particles are also disclosed.

  1. Modeling random combustion of lycopodium particles and gas

    Directory of Open Access Journals (Sweden)

    M Bidabadi

    2016-06-01

    Full Text Available The random modeling combustion of lycopodium particles has been researched by many authors. In this paper, we extend this model and we also generate a different method by analyzing the effect of random distributed sources of combustible mixture. The flame structure is assumed to consist of a preheat-vaporization zone, a reaction zone and finally a post flame zone. We divide the preheat zone to different parts. We assumed that there is different distribution of particles in sections which are really random. Meanwhile, it is presumed that the fuel particles vaporize first to yield gaseous fuel. In other words, most of the fuel particles are vaporized at the end of the preheat zone. It is assumed that the Zel’dovich number is large; therefore, the reaction term in preheat zone is negligible. In this work, the effect of random distribution of particles in the preheat zone on combustion characteristics such as burning velocity, flame temperature for different particle radius is obtained.

  2. Hardened over-coating fuel particle and manufacture of nuclear fuel using its fuel particle

    International Nuclear Information System (INIS)

    Yoshimuda, Hideharu.

    1990-01-01

    Coated-fuel particles comprise a coating layer formed by coating ceramics such as silicon carbide or zirconium carbide and carbons, etc. to a fuel core made of nuclear fuel materials. The fuel core generally includes oxide particles such as uranium, thorium and plutonium, having 400 to 600 μm of average grain size. The average grain size of the coated-fuel particle is usually from 800 to 900 μm. The thickness of the coating layer is usually from 150 to 250 μm. Matrix material comprising a powdery graphite and a thermosetting resin such as phenol resin, etc. is overcoated to the surface of the coated-fuel particle and hardened under heating to form a hardened overcoating layer to the coated-fuel particle. If such coated-fuel particles are used, cracks, etc. are less caused to the coating layer of the coated-fuel particles upon production, thereby enabling to prevent the damages to the coating layer. (T.M.)

  3. Gold/silver core-shell 20 nm nanoparticles extracted from citrate solution examined by XPS

    Energy Technology Data Exchange (ETDEWEB)

    Engelhard, Mark H.; Smith, Jordan N.; Baer, Donald R.

    2016-06-01

    Silver nanoparticles of many types are widely used in consumer and medical products. The surface chemistry of particles and the coatings that form during synthesis or use in many types of media can significantly impact the behaviors of particles including dissolution, transformation and biological or environmental impact. Consequently it is useful to be able to extract information about the thickness of surface coatings and other attributes of nanoparticles produced in a variety of ways. It has been demonstrated that X-ray Photoelectron Spectroscopy (XPS) can be reliably used to determine the thickness of organic and other nanoparticles coatings and shells. However, care is required to produce reliable and consistent information. Here we report the XPS spectra from gold/silver core-shell nanoparticles of nominal size 20 nm removed from a citrate saturated solution after one and two washing cycles. The Simulation of Electron Spectra for Surface Analysis (SESSA) program had been used to model peak amplitudes to obtain information on citrate coatings that remain after washing and demonstrate the presence of the gold core. This data is provided so that others can compare use of SESSA or other modeling approaches to quantify the nature of coatings to those already published and to explore the impacts particle non-uniformities on XPS signals from core-shell nanoparticles.

  4. [Construction of the addiction prevention core competency model for preventing addictive behavior in adolescents].

    Science.gov (United States)

    Park, Hyun Sook; Jung, Sun Young

    2013-12-01

    This study was done to provide fundamental data for the development of competency reinforcement programs to prevent addictive behavior in adolescents through the construction and examination of an addiction prevention core competency model. In this study core competencies for preventing addictive behavior in adolescents through competency modeling were identified, and the addiction prevention core competency model was developed. It was validated methodologically. Competencies for preventing addictive behavior in adolescents as defined by the addiction prevention core competency model are as follows: positive self-worth, self-control skill, time management skill, reality perception skill, risk coping skill, and positive communication with parents and with peers or social group. After construction, concurrent cross validation of the addiction prevention core competency model showed that this model was appropriate. The study results indicate that the addiction prevention core competency model for the prevention of addictive behavior in adolescents through competency modeling can be used as a foundation for an integral approach to enhance adolescent is used as an adjective and prevent addictive behavior. This approach can be a school-centered, cost-efficient strategy which not only reduces addictive behavior in adolescents, but also improves the quality of their resources.

  5. Modeling of hydrogen production methods: Single particle model and kinetics assessment

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.S.; Bellan, J. [California Institute of Technology, Pasadena, CA (United States)

    1996-10-01

    The investigation carried out by the Jet Propulsion Laboratory (JPL) is devoted to the modeling of biomass pyrolysis reactors producing an oil vapor (tar) which is a precursor to hydrogen. This is an informal collaboration with NREL whereby JPL uses the experimentally-generated NREL data both as initial and boundary conditions for the calculations, and as a benchmark for model validation. The goal of this investigation is to find drivers of biomass fast-pyrolysis in the low temperature regime. The rationale is that experimental observations produce sparse discrete conditions for model validation, and that numerical simulations produced with a validated model are an economic way to find control parameters and an optimal operation regime, thereby circumventing costly changes in hardware and tests. During this first year of the investigation, a detailed mathematical model has been formulated for the temporal and spatial accurate modeling of solid-fluid reactions in biomass particles. These are porous particles for which volumetric reaction rate data is known a priori and both the porosity and the permeability of the particle are large enough to allow for continuous gas phase flow. The methodology has been applied to the pyrolysis of spherically symmetric biomass particles by considering previously published kinetics schemes for both cellulose and wood. The results show that models which neglect the thermal and species boundary layers exterior to the particle will generally over predict both the pyrolysis rates and experimentally obtainable tar yields. An evaluation of the simulation results through comparisons with experimental data indicates that while the cellulose kinetics is reasonably accurate, the wood pyrolysis kinetics is not accurate; particularly at high reactor temperatures. Current effort in collaboration with NREL is aimed at finding accurate wood kinetics.

  6. CFD to modeling molten core behavior simultaneously with chemical phenomena

    International Nuclear Information System (INIS)

    Vladimir V Chudanov; Anna E Aksenova; Valerii A Pervichko

    2005-01-01

    Full text of publication follows: This paper deals with the basic features of a computing procedure, which can be used for modeling of destruction and melting of a core with subsequent corium retaining into the reactor vessel. The destruction and melting of core mean the account of the following phenomena: a melting, draining (moving of the melt through a porous layer of core debris), freezing with release of an energy, change of geometry, formation of the molten pool, whose convective intermixing and distribution influence on a mechanism of borders destruction. It is necessary to take into account that during of heating molten pool and development in it of convective fluxes a stratification of a multi-component melt on two layers of metal light and of oxide heavy components is observed. These layers are in interaction, they can exchange by the separate components as result of diffusion or oxidizing reactions. It can have an effect considerably on compositions, on a specific weight, and on properties of molten interacting phases, and on a structure of the molten stratified pool. In turn, the retaining of the formed molten masses in reactor vessel requires the solution of a matched heat exchange problem, namely, of a natural convection in a heat generating fluid in partially or completely molten corium and of heat exchange problem with taking into account of a melting of the reactor vessel. In addition, it is necessary to take into account phase segregation, caused by influence of local and of global natural convective flows and thermal lag of heated up boundaries. The mathematical model for simulation of the specified phenomena is based on the Navier-Stokes equations with variable properties together with the heat transfer equation. For modeling of a corium moving through a porous layer of core debris, the special computing algorithm to take into account density jump on interface between a melt and a porous layer of core debris is designed. The model was

  7. Modeling of particle agglomeration in nanofluids

    International Nuclear Information System (INIS)

    Krishna, K. Hari; Neti, S.; Oztekin, A.; Mohapatra, S.

    2015-01-01

    Agglomeration strongly influences the stability or shelf life of nanofluid. The present computational and experimental study investigates the rate of agglomeration quantitatively. Agglomeration in nanofluids is attributed to the net effect of various inter-particle interaction forces. For the nanofluid considered here, a net inter-particle force depends on the particle size, volume fraction, pH, and electrolyte concentration. A solution of the discretized and coupled population balance equations can yield particle sizes as a function of time. Nanofluid prepared here consists of alumina nanoparticles with the average particle size of 150 nm dispersed in de-ionized water. As the pH of the colloid was moved towards the isoelectric point of alumina nanofluids, the rate of increase of average particle size increased with time due to lower net positive charge on particles. The rate at which the average particle size is increased is predicted and measured for different electrolyte concentration and volume fraction. The higher rate of agglomeration is attributed to the decrease in the electrostatic double layer repulsion forces. The rate of agglomeration decreases due to increase in the size of nano-particle clusters thus approaching zero rate of agglomeration when all the clusters are nearly uniform in size. Predicted rates of agglomeration agree adequate enough with the measured values; validating the mathematical model and numerical approach is employed

  8. 300 kWt core conceptual model thermal/hydraulic characteristics

    International Nuclear Information System (INIS)

    Moody, E.

    1971-01-01

    The 300 kW(t), 199 element NASA-Lewis/AEC core conceptual model, has been analyzed to determine it's thermal-hydraulic characteristics using the GEOM-3 code. Stack-ups of tolerances and fuel rod asymmetry patterns were used to ascertain cross element Δ T's. Both zoned and uniform spacing were analyzed with a somewhat lower fuel temperature and cross element ΔT found for zoned spacing. With the models considered, the core design appears adequate to limit thermal gradients to approximately 32 0 F. Bypass flow should be controlled to prevent excessive edge element ΔT's. 11 references. (U.S.)

  9. Centroids of effective interactions from measured single-particle energies: An application

    International Nuclear Information System (INIS)

    Cole, B.J.

    1990-01-01

    Centroids of the effective nucleon-nucleon interaction for the mass region A=28--64 are extracted directly from experimental single-particle spectra, by comparing single-particle energies relative to different cores. Uncertainties in the centroids are estimated at approximately 100 keV, except in cases of exceptional fragmentation of the single-particle strength. The use of a large number of inert cores allows the dependence of the interaction on mass or model space to be investigated. The method permits accurate empirical modifications to be made to realistic interactions calculated from bare nucleon-nucleon potentials, which are known to possess defective centroids in many cases. In addition, the centroids can be used as input to the more sophisticated fitting procedures that are employed to produce matrix elements of the effective interaction

  10. Combustion of metal agglomerates in a solid rocket core flow

    Science.gov (United States)

    Maggi, Filippo; Dossi, Stefano; DeLuca, Luigi T.

    2013-12-01

    The need for access to space may require the use of solid propellants. High thrust and density are appealing features for different applications, spanning from boosting phase to other service applications (separation, de-orbiting, orbit insertion). Aluminum is widely used as a fuel in composite solid rocket motors because metal oxidation increases enthalpy release in combustion chamber and grants higher specific impulse. Combustion process of metal particles is complex and involves aggregation, agglomeration and evolution of reacting particulate inside the core flow of the rocket. It is always stated that residence time should be enough in order to grant complete metal oxidation but agglomerate initial size, rocket grain geometry, burning rate, and other factors have to be reconsidered. New space missions may not require large rocket systems and metal combustion efficiency becomes potentially a key issue to understand whether solid propulsion embodies a viable solution or liquid/hybrid systems are better. A simple model for metal combustion is set up in this paper. Metal particles are represented as single drops trailed by the core flow and reacted according to Beckstead's model. The fluid dynamics is inviscid, incompressible, 1D. The paper presents parametric computations on ideal single-size particles as well as on experimental agglomerate populations as a function of operating rocket conditions and geometries.

  11. Nuclear clustering - a cluster core model study

    International Nuclear Information System (INIS)

    Paul Selvi, G.; Nandhini, N.; Balasubramaniam, M.

    2015-01-01

    Nuclear clustering, similar to other clustering phenomenon in nature is a much warranted study, since it would help us in understanding the nature of binding of the nucleons inside the nucleus, closed shell behaviour when the system is highly deformed, dynamics and structure at extremes. Several models account for the clustering phenomenon of nuclei. We present in this work, a cluster core model study of nuclear clustering in light mass nuclei

  12. EFEKTIVITAS STRATEGI PENGELOMPOKAN BERPASANGAN DALAM PEMBELAJARAN MATEMATIKA MODEL CORE

    Directory of Open Access Journals (Sweden)

    Endah Retnowati

    2017-02-01

    Full Text Available Abstrak: Penelitian ini bertujuan untuk menguji keefektifan pembelajaran CORE (Connect, Organize, Reflect, Extend pada pembelajaran geometri transformasi dengan strategi pengelompokan yang berbeda ditinjau dari kemampuan penalaran, prestasi, dan self efficacy. Penelitian ini merupakan penelitian eksperimen semu dengan populasi siswa kelas XI IPA SMA yang baru pertama kali mempelajari materi geometri transformasi. Sampel penelitian sebanyak dua kelas masing-masing terdiri atas 40 siswa. Siswa belajar dengan dikelompokkan secara berpasangan atau kelompok kecil. Data dikumpulkan dengan teknik tes dan nontes serta dianalisis dengan teknik statistik deskriptif dan inferensial (Manova. Hasil penelitian menunjukkan bahwa pembelajaran CORE strategi berpasangan maupun kelompok kecil efektif ditinjau dari Kriteria Ketuntasan Minimum kemampuan penalaran, prestasi dan self efficacy yang ditetapkan, tetapi tidak terdapat perbedaan yang signifikan di antara kedua strategi pengelompokan tersebut. Repeated measures analysis of variance menunjukkan bahwa kompleksitas materi pembelajaran memengaruhi prestasi belajar secara signifikan. Semakin kompleks materi pembelajaran, penggunaan strategi kelompok kecil lebih baik daripada berpasangan. Kata kunci: CORE, kemampuan penalaran, prestasi belajar, self efficacy THE EFFECTIVENESS OF DYAD STRATEGY DURING MATHEMATICS LEARNING BASED ON CORE MODEL Abstract: The purpose of this study is to test the effectiveness of an instruction, namely CORE (Connect, Organize, Reflect, Extend model, for learning geometry transformation in different grouping strategies (by dyads and small-group work, in terms of reasoning ability, achievement, and self-efficacy. This study was a quasi-experimental research with the entire population of science 11th graders who were novices in geometry transformation. The research samples were two classes which respectively consist of 40 students. Students learned all material either in dyads or small

  13. Modeling the Formation of Giant Planet Cores I: Evaluating Key Processes

    OpenAIRE

    Levison, H. F.; Thommes, E.; Duncan, M. J.

    2009-01-01

    One of the most challenging problems we face in our understanding of planet formation is how Jupiter and Saturn could have formed before the the solar nebula dispersed. The most popular model of giant planet formation is the so-called 'core accretion' model. In this model a large planetary embryo formed first, mainly by two-body accretion. This is then followed by a period of inflow of nebular gas directly onto the growing planet. The core accretion model has an Achilles heel, namely the very...

  14. RANS modeling for particle transport and deposition in turbulent duct flows: Near wall model uncertainties

    International Nuclear Information System (INIS)

    Jayaraju, S.T.; Sathiah, P.; Roelofs, F.; Dehbi, A.

    2015-01-01

    Highlights: • Near-wall modeling uncertainties in the RANS particle transport and deposition are addressed in a turbulent duct flow. • Discrete Random Walk (DRW) model and Continuous Random Walk (CRW) model performances are tested. • Several near-wall anisotropic model accuracy is assessed. • Numerous sensitivity studies are performed to recommend a robust, well-validated near-wall model for accurate particle deposition predictions. - Abstract: Dust accumulation in the primary system of a (V)HTR is identified as one of the foremost concerns during a potential accident. Several numerical efforts have focused on the use of RANS methodology to better understand the complex phenomena of fluid–particle interaction at various flow conditions. In the present work, several uncertainties relating to the near-wall modeling of particle transport and deposition are addressed for the RANS approach. The validation analyses are performed in a fully developed turbulent duct flow setup. A standard k − ε turbulence model with enhanced wall treatment is used for modeling the turbulence. For the Lagrangian phase, the performance of a continuous random walk (CRW) model and a discrete random walk (DRW) model for the particle transport and deposition are assessed. For wall bounded flows, it is generally seen that accounting for near wall anisotropy is important to accurately predict particle deposition. The various near-wall correlations available in the literature are either derived from the DNS data or from the experimental data. A thorough investigation into various near-wall correlations and their applicability for accurate particle deposition predictions are assessed. The main outcome of the present work is a well validated turbulence model with optimal near-wall modeling which provides realistic particle deposition predictions

  15. A numerical study of fluidization behavior of Geldart A particles using a discrete particle model

    NARCIS (Netherlands)

    Ye, M.; van der Hoef, Martin Anton; Kuipers, J.A.M.

    2004-01-01

    This paper reports on a numerical study of fluidization behavior of Geldart A particles by use of a 2D soft-sphere discrete particle model (DPM). Some typical features, including the homogeneous expansion, gross particle circulation in the absence of bubbles, and fast bubbles, can be clearly

  16. Investigations on the magnetization behavior of magnetic composite particles

    Energy Technology Data Exchange (ETDEWEB)

    Eichholz, Christian [Process Research and Chemical Engineering, BASF SE, Ludwigshafen (Germany); Knoll, Johannes, E-mail: johannes.knoll@kit.edu [Institute of Mechanical Engineering and Mechanics, Karlsruhe Institute of Technology, Karlsruhe (Germany); Lerche, Dietmar [L.U.M. GmbH, Berlin (Germany); Nirschl, Hermann [Institute of Mechanical Engineering and Mechanics, Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2014-11-15

    In life sciences the application of surface functionalized magnetic composite particles is establishing in diagnostics and in downstream processing of modern biotechnology. These magnetic composite particles consist of non-magnetic material, e.g. polystyrene, which serves as a matrix for the second magnetic component, usually colloidal magnetite. Because of the multitude of magnetic cores these magnetic beads show a complex magnetization behavior which cannot be described with the available approaches for homogeneous magnetic material. Therefore, in this work a new model for the magnetization behavior of magnetic composite particles is developed. By introducing an effective magnetization and considering an overall demagnetization factor the deviation of the demagnetization of homogeneously magnetized particles is taken into account. Calculated and experimental results show a good agreement which allows for the verification of the adapted model of particle magnetization. Besides, a newly developed magnetic analyzing centrifuge is used for the characterization of magnetic composite particle systems. The experimental results, also used for the model verification, give both, information about the magnetic properties and the interaction behavior of particle systems. By adding further components to the particle solution, such as salts or proteins, industrial relevant systems can be reconstructed. The analyzing tool can be used to adapt industrial processes without time-consuming preliminary tests with large samples in the process equipments. - Highlights: • New model for magnetizability calculation of magnetic composite particles. • New method for particle bulk characterization relating to their magnetizability. • Model verification due to experimental data.

  17. Investigations on the magnetization behavior of magnetic composite particles

    International Nuclear Information System (INIS)

    Eichholz, Christian; Knoll, Johannes; Lerche, Dietmar; Nirschl, Hermann

    2014-01-01

    In life sciences the application of surface functionalized magnetic composite particles is establishing in diagnostics and in downstream processing of modern biotechnology. These magnetic composite particles consist of non-magnetic material, e.g. polystyrene, which serves as a matrix for the second magnetic component, usually colloidal magnetite. Because of the multitude of magnetic cores these magnetic beads show a complex magnetization behavior which cannot be described with the available approaches for homogeneous magnetic material. Therefore, in this work a new model for the magnetization behavior of magnetic composite particles is developed. By introducing an effective magnetization and considering an overall demagnetization factor the deviation of the demagnetization of homogeneously magnetized particles is taken into account. Calculated and experimental results show a good agreement which allows for the verification of the adapted model of particle magnetization. Besides, a newly developed magnetic analyzing centrifuge is used for the characterization of magnetic composite particle systems. The experimental results, also used for the model verification, give both, information about the magnetic properties and the interaction behavior of particle systems. By adding further components to the particle solution, such as salts or proteins, industrial relevant systems can be reconstructed. The analyzing tool can be used to adapt industrial processes without time-consuming preliminary tests with large samples in the process equipments. - Highlights: • New model for magnetizability calculation of magnetic composite particles. • New method for particle bulk characterization relating to their magnetizability. • Model verification due to experimental data

  18. Lagrangian Trajectory Modeling of Lunar Dust Particles

    Science.gov (United States)

    Lane, John E.; Metzger, Philip T.; Immer, Christopher D.

    2008-01-01

    Apollo landing videos shot from inside the right LEM window, provide a quantitative measure of the characteristics and dynamics of the ejecta spray of lunar regolith particles beneath the Lander during the final 10 [m] or so of descent. Photogrammetry analysis gives an estimate of the thickness of the dust layer and angle of trajectory. In addition, Apollo landing video analysis divulges valuable information on the regolith ejecta interactions with lunar surface topography. For example, dense dust streaks are seen to originate at the outer rims of craters within a critical radius of the Lander during descent. The primary intent of this work was to develop a mathematical model and software implementation for the trajectory simulation of lunar dust particles acted on by gas jets originating from the nozzle of a lunar Lander, where the particle sizes typically range from 10 micron to 500 micron. The high temperature, supersonic jet of gas that is exhausted from a rocket engine can propel dust, soil, gravel, as well as small rocks to high velocities. The lunar vacuum allows ejected particles to travel great distances unimpeded, and in the case of smaller particles, escape velocities may be reached. The particle size distributions and kinetic energies of ejected particles can lead to damage to the landing spacecraft or to other hardware that has previously been deployed in the vicinity. Thus the primary motivation behind this work is to seek a better understanding for the purpose of modeling and predicting the behavior of regolith dust particle trajectories during powered rocket descent and ascent.

  19. Generalized model for k -core percolation and interdependent networks

    Science.gov (United States)

    Panduranga, Nagendra K.; Gao, Jianxi; Yuan, Xin; Stanley, H. Eugene; Havlin, Shlomo

    2017-09-01

    Cascading failures in complex systems have been studied extensively using two different models: k -core percolation and interdependent networks. We combine the two models into a general model, solve it analytically, and validate our theoretical results through extensive simulations. We also study the complete phase diagram of the percolation transition as we tune the average local k -core threshold and the coupling between networks. We find that the phase diagram of the combined processes is very rich and includes novel features that do not appear in the models studying each of the processes separately. For example, the phase diagram consists of first- and second-order transition regions separated by two tricritical lines that merge and enclose a two-stage transition region. In the two-stage transition, the size of the giant component undergoes a first-order jump at a certain occupation probability followed by a continuous second-order transition at a lower occupation probability. Furthermore, at certain fixed interdependencies, the percolation transition changes from first-order → second-order → two-stage → first-order as the k -core threshold is increased. The analytic equations describing the phase boundaries of the two-stage transition region are set up, and the critical exponents for each type of transition are derived analytically.

  20. Gravitational instantons as models for charged particle systems

    Science.gov (United States)

    Franchetti, Guido; Manton, Nicholas S.

    2013-03-01

    In this paper we propose ALF gravitational instantons of types A k and D k as models for charged particle systems. We calculate the charges of the two families. These are -( k + 1) for A k , which is proposed as a model for k + 1 electrons, and 2 - k for D k , which is proposed as a model for either a particle of charge +2 and k electrons or a proton and k - 1 electrons. Making use of preferred topological and metrical structures of the manifolds, namely metrically preferred representatives of middle dimension homology classes, we construct two different energy functionals which reproduce the Coulomb interaction energy for a system of charged particles.

  1. Particle modeling of plasmas computational plasma physics

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1991-01-01

    Recently, through the development of supercomputers, a powerful new method for exploring plasmas has emerged; it is computer modeling of plasmas. Such modeling can duplicate many of the complex processes that go on in a plasma and allow scientists to understand what the important processes are. It helps scientists gain an intuition about this complex state of matter. It allows scientists and engineers to explore new ideas on how to use plasma before building costly experiments; it allows them to determine if they are on the right track. It can duplicate the operation of devices and thus reduce the need to build complex and expensive devices for research and development. This is an exciting new endeavor that is in its infancy, but which can play an important role in the scientific and technological competitiveness of the US. There are a wide range of plasma models that are in use. There are particle models, fluid models, hybrid particle fluid models. These can come in many forms, such as explicit models, implicit models, reduced dimensional models, electrostatic models, magnetostatic models, electromagnetic models, and almost an endless variety of other models. Here the author will only discuss particle models. He will give a few examples of the use of such models; these will be taken from work done by the Plasma Modeling Group at UCLA because he is most familiar with work. However, it only gives a small view of the wide range of work being done around the US, or for that matter around the world

  2. Standard model without Higgs particles

    International Nuclear Information System (INIS)

    Kovalenko, S.G.

    1992-10-01

    A modification of the standard model of electroweak interactions with the nonlocal Higgs sector is proposed. Proper form of nonlocality makes Higgs particles unobservable after the electroweak symmetry breaking. They appear only as a virtual state because their propagator is an entire function. We discuss some specific consequences of this approach comparing it with the conventional standard model. (author). 12 refs

  3. Evolution dynamics modeling and simulation of logistics enterprise's core competence based on service innovation

    Science.gov (United States)

    Yang, Bo; Tong, Yuting

    2017-04-01

    With the rapid development of economy, the development of logistics enterprises in China is also facing a huge challenge, especially the logistics enterprises generally lack of core competitiveness, and service innovation awareness is not strong. Scholars in the process of studying the core competitiveness of logistics enterprises are mainly from the perspective of static stability, not from the perspective of dynamic evolution to explore. So the author analyzes the influencing factors and the evolution process of the core competence of logistics enterprises, using the method of system dynamics to study the cause and effect of the evolution of the core competence of logistics enterprises, construct a system dynamics model of evolution of core competence logistics enterprises, which can be simulated by vensim PLE. The analysis for the effectiveness and sensitivity of simulation model indicates the model can be used as the fitting of the evolution process of the core competence of logistics enterprises and reveal the process and mechanism of the evolution of the core competence of logistics enterprises, and provide management strategies for improving the core competence of logistics enterprises. The construction and operation of computer simulation model offers a kind of effective method for studying the evolution of logistics enterprise core competence.

  4. Computer Models Simulate Fine Particle Dispersion

    Science.gov (United States)

    2010-01-01

    Through a NASA Seed Fund partnership with DEM Solutions Inc., of Lebanon, New Hampshire, scientists at Kennedy Space Center refined existing software to study the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces. The software, EDEM, allows users to import particles and obtain accurate representations of their shapes for modeling purposes, such as simulating bulk solids behavior, and was enhanced to be able to more accurately model fine, abrasive, cohesive particles. These new EDEM capabilities can be applied in many industries unrelated to space exploration and have been adopted by several prominent U.S. companies, including John Deere, Pfizer, and Procter & Gamble.

  5. Large enhanced dielectric permittivity in polyaniline passivated core-shell nano magnetic iron oxide by plasma polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Joy, Lija K.; Sooraj, V.; Sethulakshmi, N.; Anantharaman, M. R., E-mail: mraiyer@yahoo.com [Department of Physics, Cochin University of Science and Technology, Cochin-682022, Kerala (India); Sajeev, U. S. [Department of Physics, Government College, Kottayam-686613, Kerala (India); Nair, Swapna S. [Department of Physics, School of Mathematical and Physical Sciences, Central University of Kerala, Kasargode-671123, Kerala (India); Narayanan, T. N. [CSIR-Central Electrochemical Research Institute, Karaikkudi-630006, Tamil Nadu (India); Ajayan, P. M. [Department of Material Science and Nano Engineering, Rice University, 6100 Main Street, Houston, Texas 7700 (United States)

    2014-03-24

    Commercial samples of Magnetite with size ranging from 25–30 nm were coated with polyaniline by using radio frequency plasma polymerization to achieve a core shell structure of magnetic nanoparticle (core)–Polyaniline (shell). High resolution transmission electron microscopy images confirm the core shell architecture of polyaniline coated iron oxide. The dielectric properties of the material were studied before and after plasma treatment. The polymer coated magnetite particles exhibited a large dielectric permittivity with respect to uncoated samples. The dielectric behavior was modeled using a Maxwell–Wagner capacitor model. A plausible mechanism for the enhancement of dielectric permittivity is proposed.

  6. Computational models of stellar collapse and core-collapse supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Christian D; O' Connor, Evan [TAPIR, Mailcode 350-17, California Institute of Technology, Pasadena, CA (United States); Schnetter, Erik; Loeffler, Frank [Center for Computation and Technology, Louisiana State University, Baton Rouge, LA (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ (United States); Livne, Eli, E-mail: cott@tapir.caltech.ed [Racah Institute of Physics, Hebrew University, Jerusalem (Israel)

    2009-07-01

    Core-collapse supernovae are among Nature's most energetic events. They mark the end of massive star evolution and pollute the interstellar medium with the life-enabling ashes of thermonuclear burning. Despite their importance for the evolution of galaxies and life in the universe, the details of the core-collapse supernova explosion mechanism remain in the dark and pose a daunting computational challenge. We outline the multi-dimensional, multi-scale, and multi-physics nature of the core-collapse supernova problem and discuss computational strategies and requirements for its solution. Specifically, we highlight the axisymmetric (2D) radiation-MHD code VULCAN/2D and present results obtained from the first full-2D angle-dependent neutrino radiation-hydrodynamics simulations of the post-core-bounce supernova evolution. We then go on to discuss the new code Zelmani which is based on the open-source HPC Cactus framework and provides a scalable AMR approach for 3D fully general-relativistic modeling of stellar collapse, core-collapse supernovae and black hole formation on current and future massively-parallel HPC systems. We show Zelmani's scaling properties to more than 16,000 compute cores and discuss first 3D general-relativistic core-collapse results.

  7. Development of the Monju core safety analysis numerical models by super-COPD code

    International Nuclear Information System (INIS)

    Yamada, Fumiaki; Minami, Masaki

    2010-12-01

    Japan Atomic Energy Agency constructed a computational model for safety analysis of Monju reactor core to be built into a modularized plant dynamics analysis code Super-COPD code, for the purpose of heat removal capability evaluation at the in total 21 defined transients in the annex to the construction permit application. The applicability of this model to core heat removal capability evaluation has been estimated by back to back result comparisons of the constituent models with conventionally applied codes and by application of the unified model. The numerical model for core safety analysis has been built based on the best estimate model validated by the actually measured plant behavior up to 40% rated power conditions, taking over safety analysis models of conventionally applied COPD and HARHO-IN codes, to be capable of overall calculations of the entire plant with the safety protection and control systems. Among the constituents of the analytical model, neutronic-thermal model, heat transfer and hydraulic models of PHTS, SHTS, and water/steam system are individually verified by comparisons with the conventional calculations. Comparisons are also made with the actually measured plant behavior up to 40% rated power conditions to confirm the calculation adequacy and conservativeness of the input data. The unified analytical model was applied to analyses of in total 8 anomaly events; reactivity insertion, abnormal power distribution, decrease and increase of coolant flow rate in PHTS, SHTS and water/steam systems. The resulting maximum values and temporal variations of the key parameters in safety evaluation; temperatures of fuel, cladding, in core sodium coolant and RV inlet and outlet coolant have negligible discrepancies against the existing analysis result in the annex to the construction permit application, verifying the unified analytical model. These works have enabled analytical evaluation of Monju core heat removal capability by Super-COPD utilizing the

  8. OpenFOAM Modeling of Particle Heating and Acceleration in Cold Spraying

    Science.gov (United States)

    Leitz, K.-H.; O'Sullivan, M.; Plankensteiner, A.; Kestler, H.; Sigl, L. S.

    2018-01-01

    In cold spraying, a powder material is accelerated and heated in the gas flow of a supersonic nozzle to velocities and temperatures that are sufficient to obtain cohesion of the particles to a substrate. The deposition efficiency of the particles is significantly determined by their velocity and temperature. Particle velocity correlates with the amount of kinetic energy that is converted to plastic deformation and thermal heating. The initial particle temperature significantly influences the mechanical properties of the particle. Velocity and temperature of the particles have nonlinear dependence on the pressure and temperature of the gas at the nozzle entrance. In this contribution, a simulation model based on the reactingParcelFoam solver of OpenFOAM is presented and applied for an analysis of particle velocity and temperature in the cold spray nozzle. The model combines a compressible description of the gas flow in the nozzle with a Lagrangian particle tracking. The predictions of the simulation model are verified based on an analytical description of the gas flow, the particle acceleration and heating in the nozzle. Based on experimental data, the drag model according to Plessis and Masliyah is identified to be best suited for OpenFOAM modeling particle heating and acceleration in cold spraying.

  9. Computational Modelling of Gas-Particle Flows with Different Particle Morphology in the Human Nasal Cavity

    Directory of Open Access Journals (Sweden)

    Kiao Inthavong

    2009-01-01

    Full Text Available This paper summarises current studies related to numerical gas-particle flows in the human nasal cavity. Of interest are the numerical modelling requirements to consider the effects of particle morphology for a variety of particle shapes and sizes such as very small particles sizes (nanoparticles, elongated shapes (asbestos fibres, rough shapes (pollen, and porous light density particles (drug particles are considered. It was shown that important physical phenomena needed to be addressed for different particle characteristics. This included the Brownian diffusion for submicron particles. Computational results for the nasal capture efficiency for nano-particles and various breathing rates in the laminar regime were found to correlate well with the ratio of particle diffusivity to the breathing rate. For micron particles, particle inertia is the most significant property and the need to use sufficient drag laws is important. Drag correlations for fibrous and rough surfaced particles were investigated to enable particle tracking. Based on the simulated results, semi-empirical correlations for particle deposition were fitted in terms of Peclet number and inertial parameter for nanoparticles and micron particles respectively.

  10. Porous metal oxide particles and their methods of synthesis

    Science.gov (United States)

    Chen, Fanglin; Liu, Qiang

    2013-03-12

    Methods are generally disclosed for synthesis of porous particles from a solution formed from a leaving agent, a surfactant, and a soluble metal salt in a solvent. The surfactant congregates to form a nanoparticle core such that the metal salt forms about the nanoparticle core to form a plurality of nanoparticles. The solution is heated such that the leaving agent forms gas bubbles in the solution, and the plurality of nanoparticles congregate about the gas bubbles to form a porous particle. The porous particles are also generally disclosed and can include a particle shell formed about a core to define an average diameter from about 0.5 .mu.m to about 50 .mu.m. The particle shell can be formed from a plurality of nanoparticles having an average diameter of from about 1 nm to about 50 nm and defined by a metal salt formed about a surfactant core.

  11. Pseudoclassical supersymmetrical model for 2+1 Dirac particle

    OpenAIRE

    Gitman, D. M.; Gonçalves, A. E.; Tyutin, I. V.

    1996-01-01

    A new pseudoclassical supersymmetrical model of a spinning particle in 2+1 dimensions is proposed. Different ways of its quantization are discussed. They all reproduce the minimal quantum theory of the particle.

  12. Model Adaptation for Prognostics in a Particle Filtering Framework

    Directory of Open Access Journals (Sweden)

    Bhaskar Saha

    2011-01-01

    Full Text Available One of the key motivating factors for using particle filters for prognostics is the ability to include model parameters as part of the state vector to be estimated. This performs model adaptation in conjunction with state tracking, and thus, produces a tuned model that can used for long term predictions. This feature of particle filters works in most part due to the fact that they are not subject to the “curse of dimensionality”, i.e. the exponential growth of computational complexity with state dimension. However, in practice, this property holds for “well-designed” particle filters only as dimensionality increases. This paper explores the notion of wellness of design in the context of predicting remaining useful life for individual discharge cycles of Li-ion and Li-Polymer batteries. Prognostic metrics are used to analyze the tradeoff between different model designs and prediction performance. Results demonstrate how sensitivity analysis may be used to arrive at a well-designed prognostic model that can take advantage of the model adaptation properties of a particle filter.

  13. Model Adaptation for Prognostics in a Particle Filtering Framework

    Science.gov (United States)

    Saha, Bhaskar; Goebel, Kai Frank

    2011-01-01

    One of the key motivating factors for using particle filters for prognostics is the ability to include model parameters as part of the state vector to be estimated. This performs model adaptation in conjunction with state tracking, and thus, produces a tuned model that can used for long term predictions. This feature of particle filters works in most part due to the fact that they are not subject to the "curse of dimensionality", i.e. the exponential growth of computational complexity with state dimension. However, in practice, this property holds for "well-designed" particle filters only as dimensionality increases. This paper explores the notion of wellness of design in the context of predicting remaining useful life for individual discharge cycles of Li-ion batteries. Prognostic metrics are used to analyze the tradeoff between different model designs and prediction performance. Results demonstrate how sensitivity analysis may be used to arrive at a well-designed prognostic model that can take advantage of the model adaptation properties of a particle filter.

  14. A simplified geometrical model for transient corium propagation in core for LWR with heavy reflector

    Directory of Open Access Journals (Sweden)

    Saas Laurent

    2017-01-01

    Full Text Available In the context of the simulation of the Severe Accidents (SA in Light Water Reactors (LWR, we are interested on the in-core corium pool propagation transient in order to evaluate the corium relocation in the vessel lower head. The goal is to characterize the corium and debris flows from the core to accurately evaluate the corium pool propagation transient in the lower head and so the associated risk of vessel failure. In the case of LWR with heavy reflector, to evaluate the corium relocation into the lower head, we have to study the risk associated with focusing effect and the possibility to stabilize laterally the corium in core with a flooded down-comer. It is necessary to characterize the core degradation and the stratification of the corium pool that is formed in core. We assume that the core degradation until the corium pool formation and the corium pool propagation could be modeled separately. In this document, we present a simplified geometrical model (0D model for the in-core corium propagation transient. A degraded core with a formed corium pool is used as an initial state. This state can be obtained from a simulation computed with an integral code. This model does not use a grid for the core as integral codes do. Geometrical shapes and 0D models are associated with the corium pool and the other components of the degraded core (debris, heavy reflector, core plate…. During the transient, these shapes evolve taking into account the thermal and stratification behavior of the corium pool and the melting of the core surrounding components. Some results corresponding to the corium pool propagation in core transients obtained with this model on a LWR with a heavy reflector are given and compared to grid approach of the integral codes MAAP4.

  15. Chemodynamics of metal ion complexation by charged nanoparticles: a dimensionless rationale for soft, core-shell and hard particle types.

    Science.gov (United States)

    Duval, Jérôme F L

    2017-05-17

    Soft nanoparticulate complexants are defined by a spatial confinement of reactive sites and electric charges inside their 3D body. In turn, their reactivity with metal ions differs significantly from that of simple molecular ligands. A revisited form of the Eigen mechanism recently elucidated the processes leading to metal/soft particle pair formation. Depending on e.g. particle size and metal ion nature, chemodynamics of nanoparticulate metal complexes is controlled by metal conductive diffusion to/from the particles, by intraparticulate complex formation/dissociation kinetics, or by both. In this study, a formalism is elaborated to achieve a comprehensive and systematic identification of the rate-limiting step governing the overall formation and dissociation of nanoparticulate metal complexes. The theory covers the different types of spherical particulate complexants, i.e. 3D soft/permeable and core-shell particles, and hard particles with reactive sites at the surface. The nature of the rate-limiting step is formulated by a dynamical criterion involving a power law function of the ratio between particle radius and an intraparticulate reaction layer thickness defined by the key electrostatic, diffusional and kinetic components of metal complex formation/dissociation. The analysis clarifies the intertwined contributions of particle properties (size, soft or hard type, charge, density or number of reactive sites) and aqueous metal ion dehydration kinetics in defining the chemodynamic behavior of nanoparticulate metal complexes. For that purpose, fully parameterized chemodynamic portraits involving the defining features of particulate ligand and metal ion as well as the physicochemical conditions in the local intraparticulate environment, are constructed and thoroughly discussed under conditions of practical interest.

  16. GRAVITATIONAL ACCRETION OF PARTICLES ONTO MOONLETS EMBEDDED IN SATURN's RINGS

    International Nuclear Information System (INIS)

    Yasui, Yuki; Ohtsuki, Keiji; Daisaka, Hiroshi

    2014-01-01

    Using a local N-body simulation, we examine gravitational accretion of ring particles onto moonlet cores in Saturn's rings. We find that gravitational accretion of particles onto moonlet cores is unlikely to occur in the C ring and probably difficult in the inner B ring as well provided that the cores are rigid water ice. Dependence of particle accretion on ring thickness changes when the radial distance from the planet and/or the density of particles is varied: the former determines the size of the core's Hill radius relative to its physical size, while the latter changes the effect of self-gravity of accreted particles. We find that particle accretion onto high-latitude regions of the core surface can occur even if the rings' vertical thickness is much smaller than the core radius, although redistribution of particles onto the high-latitude regions would not be perfectly efficient in outer regions of the rings such as the outer A ring, where the size of the core's Hill sphere in the vertical direction is significantly larger than the core's physical radius. Our results suggest that large boulders recently inferred from observations of transparent holes in the C ring are not formed locally by gravitational accretion, while propeller moonlets in the A ring would be gravitational aggregates formed by particle accretion onto dense cores. Our results also imply that the main bodies of small satellites near the outer edge of Saturn's rings may have been formed in rather thin rings

  17. GRAVITATIONAL ACCRETION OF PARTICLES ONTO MOONLETS EMBEDDED IN SATURN's RINGS

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Yuki; Ohtsuki, Keiji [Department of Earth and Planetary Sciences, Kobe University, Kobe 657-8501 (Japan); Daisaka, Hiroshi, E-mail: y.yasui@whale.kobe-u.ac.jp, E-mail: ohtsuki@tiger.kobe-u.ac.jp [Graduate School of Commerce and Management, Hitotsubashi University, Tokyo 186-8601 (Japan)

    2014-12-20

    Using a local N-body simulation, we examine gravitational accretion of ring particles onto moonlet cores in Saturn's rings. We find that gravitational accretion of particles onto moonlet cores is unlikely to occur in the C ring and probably difficult in the inner B ring as well provided that the cores are rigid water ice. Dependence of particle accretion on ring thickness changes when the radial distance from the planet and/or the density of particles is varied: the former determines the size of the core's Hill radius relative to its physical size, while the latter changes the effect of self-gravity of accreted particles. We find that particle accretion onto high-latitude regions of the core surface can occur even if the rings' vertical thickness is much smaller than the core radius, although redistribution of particles onto the high-latitude regions would not be perfectly efficient in outer regions of the rings such as the outer A ring, where the size of the core's Hill sphere in the vertical direction is significantly larger than the core's physical radius. Our results suggest that large boulders recently inferred from observations of transparent holes in the C ring are not formed locally by gravitational accretion, while propeller moonlets in the A ring would be gravitational aggregates formed by particle accretion onto dense cores. Our results also imply that the main bodies of small satellites near the outer edge of Saturn's rings may have been formed in rather thin rings.

  18. Monodisperse and core-shell structured SiO{sub 2}-Lu{sub 2}O{sub 3}:Ln{sup 3+} (Ln=Eu, Tb, Dy, Sm, Er, Ho, and Tm) spherical particles: A facile synthesis and luminescent properties

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhenhe, E-mail: xuzh056@163.com [College of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang 100142 (China); Feng, Bin [China National Aviation Fuel Group Corporation, Planning and Development Department, Beijing 100088 (China); Bian, Shasha; Liu, Tao; Wang, Mingli; Gao, Yu; Sun, Di; Gao, Xin [College of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang 100142 (China); Sun, Yaguang, E-mail: yaguangsun@yahoo.com.cn [College of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang 100142 (China)

    2012-12-15

    The core-shell structured SiO{sub 2}-Lu{sub 2}O{sub 3}:Ln{sup 3+} particles were realized by coating the Lu{sub 2}O{sub 3}:Ln{sup 3+} phosphors onto the surface of non-aggregated, monodisperse and spherical SiO{sub 2} particles by the Pechini sol-gel method. The as-synthesized products were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), energy-dispersive X-ray (EDX) spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photolumiminescence (PL), and low-voltage cathodoluminescence (CL). The results indicate that the 800 Degree-Sign C annealed sample consists of crystalline Lu{sub 2}O{sub 3} shells and amorphous SiO{sub 2} cores, in spherical shape with a narrow size distribution. The as-obtained particles show strong light emission with different colors corresponding to different Ln{sup 3+} ions under ultraviolet-visible light excitation and low-voltage electron beams excitation, which have potential applications in fluorescent lamps and field emission displays. - Graphical Abstract: Representative SEM and TEM images of the core-shell structured SiO{sub 2}-Lu{sub 2}O{sub 3}:Eu{sup 3+} particles; CIE chromaticity diagram showing the emission colors for SiO{sub 2}-Lu{sub 2}O{sub 3}:Ln{sup 3+}; Multicolor emissions of SiO{sub 2}-Lu{sub 2}O{sub 3}:Ln{sup 3+} particles. Highlights: Black-Right-Pointing-Pointer The core-shell particles were realized by coating the phosphors onto the surface of SiO{sub 2} particles. Black-Right-Pointing-Pointer The sample consists of crystalline Lu{sub 2}O{sub 3} shells and amorphous SiO{sub 2} cores. Black-Right-Pointing-Pointer The particles show different light emission colors corresponding to Ln{sup 3+} ions. Black-Right-Pointing-Pointer They have potential applications in fluorescent lamps and field emission displays.

  19. MapReduce particle filtering with exact resampling and deterministic runtime

    Science.gov (United States)

    Thiyagalingam, Jeyarajan; Kekempanos, Lykourgos; Maskell, Simon

    2017-12-01

    Particle filtering is a numerical Bayesian technique that has great potential for solving sequential estimation problems involving non-linear and non-Gaussian models. Since the estimation accuracy achieved by particle filters improves as the number of particles increases, it is natural to consider as many particles as possible. MapReduce is a generic programming model that makes it possible to scale a wide variety of algorithms to Big data. However, despite the application of particle filters across many domains, little attention has been devoted to implementing particle filters using MapReduce. In this paper, we describe an implementation of a particle filter using MapReduce. We focus on a component that what would otherwise be a bottleneck to parallel execution, the resampling component. We devise a new implementation of this component, which requires no approximations, has O( N) spatial complexity and deterministic O((log N)2) time complexity. Results demonstrate the utility of this new component and culminate in consideration of a particle filter with 224 particles being distributed across 512 processor cores.

  20. Model-based temperature noise monitoring methods for LMFBR core anomaly detection

    International Nuclear Information System (INIS)

    Tamaoki, Tetsuo; Sonoda, Yukio; Sato, Masuo; Takahashi, Ryoichi.

    1994-01-01

    Temperature noise, measured by thermocouples mounted at each core fuel subassembly, is considered to be the most useful signal for detecting and locating local cooling anomalies in an LMFBR core. However, the core outlet temperature noise contains background noise due to fluctuations in the operating parameters including reactor power. It is therefore necessary to reduce this background noise for highly sensitive anomaly detection by subtracting predictable components from the measured signal. In the present study, both a physical model and an autoregressive model were applied to noise data measured in the experimental fast reactor JOYO. The results indicate that the autoregressive model has a higher precision than the physical model in background noise prediction. Based on these results, an 'autoregressive model modification method' is proposed, in which a temporary autoregressive model is generated by interpolation or extrapolation of reference models identified under a small number of different operating conditions. The generated autoregressive model has shown sufficient precision over a wide range of reactor power in applications to artificial noise data produced by an LMFBR noise simulator even when the coolant flow rate was changed to keep a constant power-to-flow ratio. (author)

  1. High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer’s disease

    Science.gov (United States)

    Plascencia-Villa, Germán; Ponce, Arturo; Collingwood, Joanna F.; Arellano-Jiménez, M. Josefina; Zhu, Xiongwei; Rogers, Jack T.; Betancourt, Israel; José-Yacamán, Miguel; Perry, George

    2016-01-01

    Abnormal accumulation of brain metals is a key feature of Alzheimer’s disease (AD). Formation of amyloid-β plaque cores (APC) is related to interactions with biometals, especially Fe, Cu and Zn, but their particular structural associations and roles remain unclear. Using an integrative set of advanced transmission electron microscopy (TEM) techniques, including spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM), nano-beam electron diffraction, electron holography and analytical spectroscopy techniques (EDX and EELS), we demonstrate that Fe in APC is present as iron oxide (Fe3O4) magnetite nanoparticles. Here we show that Fe was accumulated primarily as nanostructured particles within APC, whereas Cu and Zn were distributed through the amyloid fibers. Remarkably, these highly organized crystalline magnetite nanostructures directly bound into fibrillar Aβ showed characteristic superparamagnetic responses with saturated magnetization with circular contours, as observed for the first time by off-axis electron holography of nanometer scale particles. PMID:27121137

  2. Hypersonic vibrations of Ag@SiO2 (cubic core)-shell nanospheres.

    Science.gov (United States)

    Sun, Jing Ya; Wang, Zhi Kui; Lim, Hock Siah; Ng, Ser Choon; Kuok, Meng Hau; Tran, Toan Trong; Lu, Xianmao

    2010-12-28

    The intriguing optical and catalytic properties of metal-silica core-shell nanoparticles, inherited from their plasmonic metallic cores together with the rich surface chemistry and increased stability offered by their silica shells, have enabled a wide variety of applications. In this work, we investigate the confined vibrational modes of a series of monodisperse Ag@SiO(2) (cubic core)-shell nanospheres synthesized using a modified Stöber sol-gel method. The particle-size dependence of their mode frequencies has been mapped by Brillouin light scattering, a powerful tool for probing hypersonic vibrations. Unlike the larger particles, the observed spheroidal-like mode frequencies of the smaller ones do not scale with inverse diameter. Interestingly, the onset of the deviation from this linearity occurs at a smaller particle size for higher-energy modes than for lower-energy ones. Finite element simulations show that the mode displacement profiles of the Ag@SiO(2) core-shells closely resemble those of a homogeneous SiO(2) sphere. Simulations have also been performed to ascertain the effects that the core shape and the relative hardness of the core and shell materials have on the vibrations of the core-shell as a whole. As the vibrational modes of a particle have a bearing on its thermal and mechanical properties, the findings would be of value in designing core-shell nanostructures with customized thermal and mechanical characteristics.

  3. The treatment of mixing in core helium-burning models - III. Suppressing core breathing pulses with a new constraint on overshoot

    Science.gov (United States)

    Constantino, Thomas; Campbell, Simon W.; Lattanzio, John C.

    2017-12-01

    Theoretical predictions for the core helium burning phase of stellar evolution are highly sensitive to the uncertain treatment of mixing at convective boundaries. In the last few years, interest in constraining the uncertain structure of their deep interiors has been renewed by insights from asteroseismology. Recently, Spruit proposed a limit for the rate of growth of helium-burning convective cores based on the higher buoyancy of material ingested from outside the convective core. In this paper we test the implications of such a limit for stellar models with a range of initial mass and metallicity. We find that the constraint on mixing beyond the Schwarzschild boundary has a significant effect on the evolution late in core helium burning, when core breathing pulses occur and the ingestion rate of helium is fastest. Ordinarily, core breathing pulses prolong the core helium burning lifetime to such an extent that models are at odds with observations of globular cluster populations. Across a wide range of initial stellar masses (0.83 ≤ M/M⊙ ≤ 5), applying the Spruit constraint reduces the core helium burning lifetime because core breathing pulses are either avoided or their number and severity reduced. The constraint suggested by Spruit therefore helps to resolve significant discrepancies between observations and theoretical predictions. Specifically, we find improved agreement for R2 (the observed ratio of asymptotic giant branch to horizontal branch stars in globular clusters), the luminosity difference between these two groups, and in asteroseismology, the mixed-mode period spacing detected in red clump stars in the Kepler field.

  4. Particle adhesion and removal

    CERN Document Server

    Mittal, K L

    2015-01-01

    The book provides a comprehensive and easily accessible reference source covering all important aspects of particle adhesion and removal.  The core objective is to cover both fundamental and applied aspects of particle adhesion and removal with emphasis on recent developments.  Among the topics to be covered include: 1. Fundamentals of surface forces in particle adhesion and removal.2. Mechanisms of particle adhesion and removal.3. Experimental methods (e.g. AFM, SFA,SFM,IFM, etc.) to understand  particle-particle and particle-substrate interactions.4. Mechanics of adhesion of micro- and  n

  5. Comparison of turbulent particle dispersion models in turbulent shear flows

    Directory of Open Access Journals (Sweden)

    S. Laín

    2007-09-01

    Full Text Available This work compares the performance of two Lagrangian turbulent particle dispersion models: the standard model (e.g., that presented in Sommerfeld et al. (1993, in which the fluctuating fluid velocity experienced by the particle is composed of two components, one correlated with the previous time step and a second one randomly sampled from a Wiener process, and the model proposed by Minier and Peirano (2001, which is based on the PDF approach and performs closure at the level of acceleration of the fluid experienced by the particle. Formulation of a Langevin equation model for the increments of fluid velocity seen by the particle allows capturing some underlying physics of particle dispersion in general turbulent flows while keeping the mathematical manipulation of the stochastic model simple, thereby avoiding some pitfalls and simplifying the derivation of macroscopic relations. The performance of both dispersion models is tested in the configurations of grid-generated turbulence (Wells and Stock (1983 experiments, simple shear flow (Hyland et al., 1999 and confined axisymmetric jet flow laden with solids (Hishida and Maeda (1987 experiments.

  6. Framework Application for Core Edge Transport Simulation (FACETS)

    Energy Technology Data Exchange (ETDEWEB)

    Krasheninnikov, Sergei; Pigarov, Alexander

    2011-10-15

    The FACETS (Framework Application for Core-Edge Transport Simulations) project of Scientific Discovery through Advanced Computing (SciDAC) Program was aimed at providing a high-fidelity whole-tokamak modeling for the U.S. magnetic fusion energy program and ITER through coupling separate components for each of the core region, edge region, and wall, with realistic plasma particles and power sources and turbulent transport simulation. The project also aimed at developing advanced numerical algorithms, efficient implicit coupling methods, and software tools utilizing the leadership class computing facilities under Advanced Scientific Computing Research (ASCR). The FACETS project was conducted by a multi-discipline, multi-institutional teams, the Lead PI was J.R. Cary (Tech-X Corp.). In the FACETS project, the Applied Plasma Theory Group at the MAE Department of UCSD developed the Wall and Plasma-Surface Interaction (WALLPSI) module, performed its validation against experimental data, and integrated it into the developed framework. WALLPSI is a one-dimensional, coarse grained, reaction/advection/diffusion code applied to each material boundary cell in the common modeling domain for a tokamak. It incorporates an advanced model for plasma particle transport and retention in the solid matter of plasma facing components, simulation of plasma heat power load handling, calculation of erosion/deposition, and simulation of synergistic effects in strong plasma-wall coupling.

  7. 3D Core Model for simulation of nuclear power plants: Simulation requirements, model features, and validation

    International Nuclear Information System (INIS)

    Zerbino, H.

    1999-01-01

    In 1994-1996, Thomson Training and Simulation (TT and S) earned out the D50 Project, which involved the design and construction of optimized replica simulators for one Dutch and three German Nuclear Power Plants. It was recognized early on that the faithful reproduction of the Siemens reactor control and protection systems would impose extremely stringent demands on the simulation models, particularly the Core physics and the RCS thermohydraulics. The quality of the models, and their thorough validation, were thus essential. The present paper describes the main features of the fully 3D Core model implemented by TT and S, and its extensive validation campaign, which was defined in extremely positive collaboration with the Customer and the Core Data suppliers. (author)

  8. Heavy ion transport in the core of ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Odstrcil, Tomas [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany); Physik-Department E28, Technische Universitaet Muenchen, 85747 Garching (Germany); Puetterich, Thomas; Angioni, Clemente; Bilato, Roberto; Gude, Anja; Vezinet, Didier [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany); Mazon, Didier [CEA, IRFM F-13108 Saint Paul-lez-Durance (France); Collaboration: ASDEX Upgrade Team

    2016-07-01

    High impurity concentration in the core of the future fusion reactors can lead to the serious degradation of the achievable fusion gain. Therefore, a better understanding of the underlying impurity transport processes is necessary for higher performance, more efficient power exhaust and avoidance of impurity accumulation. Radial impurity transport is mainly driven by neoclassical and turbulent particle fluxes. Both these components show substantial variation depending on the poloidal angle. Consequently, an asymmetry in the poloidal distribution of impurities leads to significant changes in the radial impurity flow and the total content of the plasma core. The aim of this contribution is to experimentally verify a model describing the poloidal asymmetry of heavy impurities using measurements from ASDEX Upgrade. The observed asymmetries are caused mainly by the centrifugal force and poloidal electric force created by the fast particles produced by intensive ion-cyclotron heating. Finally, a change in the radial transport of the tungsten ions will be presented in the case of large inboard and outboard impurity accumulation.

  9. A simplified geometrical model for transient corium propagation in core for LWR with heavy reflector - 15271

    International Nuclear Information System (INIS)

    Saas, L.; Le Tellier, R.; Bajard, S.

    2015-01-01

    In this document, we present a simplified geometrical model (0D model) for both the in-core corium propagation transient and the characterization of the mode of corium transfer from the core to the vessel. A degraded core with a formed corium pool is used as an initial state. This initial state can be obtained from a simulation computed with an integral code. This model does not use a grid for the core as integral codes do. Geometrical shapes and 0D models are associated with the corium pool and the other components of the degraded core (debris, heavy reflector, core plate...). During the transient, these shapes evolve taking into account the thermal and stratification behavior of the corium pool and the melting of the core surrounding components. Some results corresponding to the corium pool propagation in core transients obtained with this model on a LWR with a heavy reflector are given and compared to grid approach of the integral codes MAAP4

  10. Particle acceleration at shocks in the inner heliosphere

    Science.gov (United States)

    Parker, Linda Neergaard

    This dissertation describes a study of particle acceleration at shocks via the diffusive shock acceleration mechanism. Results for particle acceleration at both quasi-parallel and quasi-perpendicular shocks are presented to address the question of whether there are sufficient particles in the solar wind thermal core, modeled as either a Maxwellian or kappa- distribution, to account for the observed accelerated spectrum. Results of accelerating the theoretical upstream distribution are compared to energetic observations at 1 AU. It is shown that the particle distribution in the solar wind thermal core is sufficient to explain the accelerated particle spectrum downstream of the shock, although the shape of the downstream distribution in some cases does not follow completely the theory of diffusive shock acceleration, indicating possible additional processes at work in the shock for these cases. Results show good to excellent agreement between the theoretical and observed spectral index for one third to one half of both quasi-parallel and quasi-perpendicular shocks studied herein. Coronal mass ejections occurring during periods of high solar activity surrounding solar maximum can produce shocks in excess of 3-8 shocks per day. During solar minimum, diffusive shock acceleration at shocks can generally be understood on the basis of single independent shocks and no other shock necessarily influences the diffusive shock acceleration mechanism. In this sense, diffusive shock acceleration during solar minimum may be regarded as Markovian. By contrast, diffusive shock acceleration of particles at periods of high solar activity (e.g. solar maximum) see frequent, closely spaced shocks that include the effects of particle acceleration at preceding and following shocks. Therefore, diffusive shock acceleration of particles at solar maximum cannot be modeled on the basis of diffusive shock acceleration as a single, independent shock and the process is essentially non-Markovian. A

  11. Post-LOCA core flushing system

    International Nuclear Information System (INIS)

    Boyajian, J.D.; Weinberger, P.A.

    1980-01-01

    A system is disclosed for flushing the core of a nuclear reactor after a loss-of-coolant accident. A pump causes flow of liquid-phase fluid from the containment-vessel sump. This flow is used to provide the motivating force for an eductor that causes suction at the hot log of the reactor. The eductor suction can draw gas-phase coolant out of the hot leg. As a result, it can reduce pressure which may be preventing the flow of liquid-phase coolant out of the hot leg. By causing liquid-phase flow through the reactor, the system ensures that particles and boric acid are flushed out of the core. The system thereby eliminates the build-up of particles and the concentrations of boric acid in the core that could result if the coolant were to leave the pressure vessel exclusively in the gas phase. 9 claims

  12. Modeling of Particle Agglomeration in Nanofluids

    Science.gov (United States)

    Kanagala, Hari Krishna

    Nanofluids are colloidal dispersions of nano sized particles (life of these nanofluids. Current research addresses the agglomeration effect and how it can affect the shelf life of a nanofluid. The reasons for agglomeration in nanofluids are attributable to the interparticle interactions which are quantified by the various theories. By altering the governing properties like volume fraction, pH and electrolyte concentration different nanofluids with instant agglomeration, slow agglomeration and no agglomeration can be produced. A numerical model is created based on the discretized population balance equations which analyses the particle size distribution at different times. Agglomeration effects have been analyzed for alumina nanoparticles with average particle size of 150nm dispersed in de-ionized water. As the pH was moved towards the isoelectric point of alumina nanofluids, the particle size distribution became broader and moved to bigger sizes rapidly with time. Particle size distributions became broader and moved to bigger sizes more quickly with time with increase in the electrolyte concentration. The two effects together can be used to create different temporal trends in the particle size distributions. Faster agglomeration is attributed to the decrease in the electrostatic double layer repulsion forces which is due to decrease in the induced charge and the double layer thickness around the particle. Bigger particle clusters show lesser agglomeration due to reaching the equilibrium size. The procedures and processes described in this work can be used to generate more stable nanofluids.

  13. Magnetic fluctuation driven cross-field particle transport in the reversed-field pinch

    International Nuclear Information System (INIS)

    Scheffel, J.; Liu, D.

    1997-01-01

    Electrostatic and electromagnetic fluctuations generally cause cross-field particle transport in confined plasmas. Thus core localized turbulence must be kept at low levels for sufficient energy confinement in magnetic fusion plasmas. Reversed-field pinch (RFP) equilibria can, theoretically, be completely stable to ideal and resistive (tearing) magnetohydrodynamic (MHD) modes at zero beta. Unstable resistive interchange modes are, however, always present at experimentally relevant values of the poloidal beta β θ . An analytical quasilinear, ambipolar diffusion model is here used to model associated particle transport. The results indicate that core density fluctuations should not exceed a level of about 1% for plasmas of fusion interest. Parameters of experimentally relevant stationary states of the RFP were adjusted to minimize growth rates, using a fully resistive linearized MHD stability code. Density gradient effects are included through employing a parabolic density profile. The scaling of particle diffusion [D(r)∝λ 2 n 0.5 T/aB, where λ is the mode width] is such that the effects of particle transport are milder in present day RFP experiments than in future reactor-relevant plasmas. copyright 1997 American Institute of Physics

  14. Modeling of Core Competencies in the Registrar's Office

    Science.gov (United States)

    Pikowsky, Reta

    2009-01-01

    The Office of the Registrar at the Georgia Institute of Technology, in cooperation with the Office of Human Resources, has been engaged since February 2008 in a pilot project to model core competencies for the leadership team and the staff. It is the hope of the office of Human resources that this pilot will result in a model that can be used…

  15. A macroscopic cross-section model for BWR pin-by-pin core analysis

    International Nuclear Information System (INIS)

    Fujita, Tatsuya; Endo, Tomohiro; Yamamoto, Akio

    2014-01-01

    A macroscopic cross-section model used in boiling water reactor (BWR) pin-by-pin core analysis is studied. In the pin-by-pin core calculation method, pin-cell averaged cross sections are calculated for many combinations of core state and depletion history variables and are tabulated prior to core calculations. Variations of cross sections in a core simulator are caused by two different phenomena (i.e. instantaneous and history effects). We treat them through the core state variables and the exposure-averaged core state variables, respectively. Furthermore, the cross-term effect among the core state and the depletion history variables is considered. In order to confirm the calculation accuracy and discuss the treatment of the cross-term effect, the k-infinity and the pin-by-pin fission rate distributions in a single fuel assembly geometry are compared. Some cross-term effects could be negligible since the impacts of them are sufficiently small. However, the cross-term effects among the control rod history (or the void history) and other variables have large impacts; thus, the consideration of them is crucial. The present macroscopic cross-section model, which considers such dominant cross-term effects, well reproduces the reference results and can be a candidate in practical applications for BWR pin-by-pin core analysis on the normal operations. (author)

  16. Development of high frequency spice models for ferrite core inductors and transformers

    Science.gov (United States)

    Muyshondt, G. Patrick; Portnoy, William M.

    In this work high frequency SPICE models were developed to simulate the hysteresis and saturation effects of toroidal shaped ferrite core inductors and transformers. The models include the nonlinear, multi-valued B-H characteristic of the core material, leakage flux, stray capacitances, and core losses. The saturation effects were modeled using two diode clamping arrangements in conjunction with nonlinear dependent sources. Two possible controlling schemes were developed for the saturation switch. One of the arrangements used the current flowing through a series RC branch to control the switch, while the other used a NAND gate. The NAND gate implementation of the switch proved to be simpler and the parameters associated with it were easier to determine from the measurements and the B-H characteristics of the material. Lumped parameters were used to simulate the parasitic effects. Techniques for measuring these effects are described. The models were verified using manganese-zinc ferrite-type toroidal cores and they have general applicability to all circuit analysis codes equivalent function blocks such as multipliers, adders, and logic components.

  17. Digital Core Modelling for Clastic Oil and Gas Reservoir

    Science.gov (United States)

    Belozerov, I.; Berezovsky, V.; Gubaydullin, M.; Yur’ev, A.

    2018-05-01

    "Digital core" is a multi-purpose tool for solving a variety of tasks in the field of geological exploration and production of hydrocarbons at various stages, designed to improve the accuracy of geological study of subsurface resources, the efficiency of reproduction and use of mineral resources, as well as applying the results obtained in production practice. The actuality of the development of the "Digital core" software is that even a partial replacement of natural laboratory experiments with mathematical modelling can be used in the operative calculation of reserves in exploratory drilling, as well as in the absence of core material from wells. Or impossibility of its research by existing laboratory methods (weakly cemented, loose, etc. rocks). 3D-reconstruction of the core microstructure can be considered as a cheap and least time-consuming method for obtaining petrophysical information about the main filtration-capacitive properties and fluid motion in reservoir rocks.

  18. Influence of extrusion rate and magma rheology on the growth of lava domes: Insights from particle-dynamics modeling

    Science.gov (United States)

    Husain, Taha; Elsworth, Derek; Voight, Barry; Mattioli, Glen; Jansma, Pamela

    2014-09-01

    Lava domes are structures that grow by the extrusion of viscous silicic or intermediate composition magma from a central volcanic conduit. Repeated cycles of growth are punctuated by collapse, as the structure becomes oversized for the strength of the composite magma that rheologically stiffens and strengthens at its surface. Here we explore lava dome growth and failure mechanics using a two-dimensional particle-dynamics model. The model follows the evolution of fractured lava, with solidification driven by degassing induced crystallization of magma. The particle-dynamics model emulates the natural development of dome growth and rearrangement of the lava dome which is difficult in mesh-based analyses due to mesh entanglement effects. The deformable talus evolves naturally as a frictional carapace that caps a ductile magma core. Extrusion rate and magma rheology together with crystallization temperature and volatile content govern the distribution of strength in the composite structure. This new model is calibrated against existing observational models of lava dome growth. Results show that the shape and extent of the ductile core and the overall structure of the lava dome are strongly controlled by the infusion rate. The effects of extrusion rate on magma rheology are sensitive to material stiffness, which in turn is a function of volatile content and crystallinity. Material stiffness and material strength are key model parameters which govern magma rheology and subsequently the morphological character of the lava dome and in turn stability. Degassing induced crystallization causes material stiffening and enhances material strength reflected in non-Newtonian magma behavior. The increase in stiffness and strength of the injected magma causes a transition in the style of dome growth, from endogenous expansion of a ductile core, to stiffer and stronger intruding material capable of punching through the overlying material and resulting in the development of a spine or

  19. Volatile particles formation during PartEmis: a modelling study

    Directory of Open Access Journals (Sweden)

    X. Vancassel

    2004-01-01

    Full Text Available A modelling study of the formation of volatile particles in a combustor exhaust has been carried out in the frame of the PartEmis European project. A kinetic model has been used in order to investigate nucleation efficiency of the H2O-H2SO4 binary mixture in the sampling system. A value for the fraction of the fuel sulphur S(IV converted into S(VI has been indirectly deduced from comparisons between model results and measurements. In the present study, ranges between roughly 2.5% and 6%, depending on the combustor settings and on the value assumed for the parameter describing sulphuric acid wall losses. Soot particles hygroscopicity has also been investigated as their activation is a key parameter for contrail formation. Growth factors of monodisperse particles exposed to high relative humidity (95% have been calculated and compared with experimental results. The modelling study confirms that the growth factor increases as the soot particle size decreases.

  20. Bose-Einstein condensate & degenerate Fermi cored dark matter halos

    Science.gov (United States)

    Chung, W.-J.; Nelson, L. A.

    2018-06-01

    There has been considerable interest in the last several years in support of the idea that galaxies and clusters could have highly condensed cores of dark matter (DM) within their central regions. In particular, it has been suggested that dark matter could form Bose-Einstein condensates (BECs) or degenerate Fermi cores. We examine these possibilities under the assumption that the core consists of highly condensed DM (either bosons or fermions) that is embedded in a diffuse envelope (e.g., isothermal sphere). The novelty of our approach is that we invoke composite polytropes to model spherical collisionless structures in a way that is physically intuitive and can be generalized to include other equations of state (EOSs). Our model is very amenable to the analysis of BEC cores (composed of ultra-light bosons) that have been proposed to resolve small-scale CDM anomalies. We show that the analysis can readily be applied to bosons with or without small repulsive self-interactions. With respect to degenerate Fermi cores, we confirm that fermionic particle masses between 1—1000 keV are not excluded by the observations. Finally, we note that this approach can be extended to include a wide range of EOSs in addition to multi-component collisionless systems.

  1. The equivalent thermal conductivity of lattice core sandwich structure: A predictive model

    International Nuclear Information System (INIS)

    Cheng, Xiangmeng; Wei, Kai; He, Rujie; Pei, Yongmao; Fang, Daining

    2016-01-01

    Highlights: • A predictive model of the equivalent thermal conductivity was established. • Both the heat conduction and radiation were considered. • The predictive results were in good agreement with experiment and FEM. • Some methods for improving the thermal protection performance were proposed. - Abstract: The equivalent thermal conductivity of lattice core sandwich structure was predicted using a novel model. The predictive results were in good agreement with experimental and Finite Element Method results. The thermal conductivity of the lattice core sandwich structure was attributed to both core conduction and radiation. The core conduction caused thermal conductivity only relied on the relative density of the structure. And the radiation caused thermal conductivity increased linearly with the thickness of the core. It was found that the equivalent thermal conductivity of the lattice core sandwich structure showed a highly dependent relationship on temperature. At low temperatures, the structure exhibited a nearly thermal insulated behavior. With the temperature increasing, the thermal conductivity of the structure increased owing to radiation. Therefore, some attempts, such as reducing the emissivity of the core or designing multilayered structure, are believe to be of benefit for improving the thermal protection performance of the structure at high temperatures.

  2. Soft template synthesis of yolk/silica shell particles.

    Science.gov (United States)

    Wu, Xue-Jun; Xu, Dongsheng

    2010-04-06

    Yolk/shell particles possess a unique structure that is composed of hollow shells that encapsulate other particles but with an interstitial space between them. These structures are different from core/shell particles in that the core particles are freely movable in the shell. Yolk/shell particles combine the properties of each component, and can find potential applications in catalysis, lithium ion batteries, and biosensors. In this Research News article, a soft-template-assisted method for the preparation of yolk/silica shell particles is presented. The demonstrated method is simple and general, and can produce hollow silica spheres incorporated with different particles independent of their diameters, geometry, and composition. Furthermore, yolk/mesoporous silica shell particles and multishelled particles are also prepared through optimization of the experimental conditions. Finally, potential applications of these particles are discussed.

  3. Repetitive heterocoagulation of oppositely charged particles for enhancement of magnetic nanoparticle loading into monodisperse silica particles.

    Science.gov (United States)

    Matsumoto, Hideki; Nagao, Daisuke; Konno, Mikio

    2010-03-16

    Oppositely charged particles were repetitively heterocoagulated to fabricate highly monodisperse magnetic silica particles with high loading of magnetic nanoparticles. Positively charged magnetic nanoparticles prepared by surface modification with N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride (TSA) were used to heterocoagulate with silica particles under basic conditions to give rise to negative silica surface charge and prevent the oxidation of the magnetic nanoparticles. The resultant particles of silica core homogeneously coated with the magnetic nanoparticles were further coated with thin silica layer with sodium silicate in order to enhance colloidal stability and avoid desorption of the magnetic nanoparticles from the silica cores. Five repetitions of the heterocoagulation and the silica coating could increase saturation magnetization of the magnetic silica particles to 27.7 emu/g, keeping the coefficient of variation of particle sizes (C(V)) less than 6.5%. Highly homogeneous loading of the magnetic component was confirmed by measuring Fe-to-Si atomic ratios of individual particles with energy dispersive X-ray spectroscopy.

  4. Concurrent Modeling of Hydrodynamics and Interaction Forces Improves Particle Deposition Predictions.

    Science.gov (United States)

    Jin, Chao; Ren, Carolyn L; Emelko, Monica B

    2016-04-19

    It is widely believed that media surface roughness enhances particle deposition-numerous, but inconsistent, examples of this effect have been reported. Here, a new mathematical framework describing the effects of hydrodynamics and interaction forces on particle deposition on rough spherical collectors in absence of an energy barrier was developed and validated. In addition to quantifying DLVO force, the model includes improved descriptions of flow field profiles and hydrodynamic retardation functions. This work demonstrates that hydrodynamic effects can significantly alter particle deposition relative to expectations when only the DLVO force is considered. Moreover, the combined effects of hydrodynamics and interaction forces on particle deposition on rough, spherical media are not additive, but synergistic. Notably, the developed model's particle deposition predictions are in closer agreement with experimental observations than those from current models, demonstrating the importance of inclusion of roughness impacts in particle deposition description/simulation. Consideration of hydrodynamic contributions to particle deposition may help to explain discrepancies between model-based expectations and experimental outcomes and improve descriptions of particle deposition during physicochemical filtration in systems with nonsmooth collector surfaces.

  5. Quasilinear Line Broadened Model for Energetic Particle Transport

    Science.gov (United States)

    Ghantous, Katy; Gorelenkov, Nikolai; Berk, Herbert

    2011-10-01

    We present a self-consistent quasi-linear model that describes wave-particle interaction in toroidal geometry and computes fast ion transport during TAE mode evolution. The model bridges the gap between single mode resonances, where it predicts the analytically expected saturation levels, and the case of multiple modes overlapping, where particles diffuse across phase space. Results are presented in the large aspect ratio limit where analytic expressions are used for Fourier harmonics of the power exchange between waves and particles, . Implemention of a more realistic mode structure calculated by NOVAK code are also presented. This work is funded by DOE contract DE-AC02-09CH11466.

  6. A versatile model for soft patchy particles with various patch arrangements.

    Science.gov (United States)

    Li, Zhan-Wei; Zhu, You-Liang; Lu, Zhong-Yuan; Sun, Zhao-Yan

    2016-01-21

    We propose a simple and general mesoscale soft patchy particle model, which can felicitously describe the deformable and surface-anisotropic characteristics of soft patchy particles. This model can be used in dynamics simulations to investigate the aggregation behavior and mechanism of various types of soft patchy particles with tunable number, size, direction, and geometrical arrangement of the patches. To improve the computational efficiency of this mesoscale model in dynamics simulations, we give the simulation algorithm that fits the compute unified device architecture (CUDA) framework of NVIDIA graphics processing units (GPUs). The validation of the model and the performance of the simulations using GPUs are demonstrated by simulating several benchmark systems of soft patchy particles with 1 to 4 patches in a regular geometrical arrangement. Because of its simplicity and computational efficiency, the soft patchy particle model will provide a powerful tool to investigate the aggregation behavior of soft patchy particles, such as patchy micelles, patchy microgels, and patchy dendrimers, over larger spatial and temporal scales.

  7. Local lubrication model for spherical particles within incompressible Navier-Stokes flows

    Science.gov (United States)

    Lambert, B.; Weynans, L.; Bergmann, M.

    2018-03-01

    The lubrication forces are short-range hydrodynamic interactions essential to describe suspension of the particles. Usually, they are underestimated in direct numerical simulations of particle-laden flows. In this paper, we propose a lubrication model for a coupled volume penalization method and discrete element method solver that estimates the unresolved hydrodynamic forces and torques in an incompressible Navier-Stokes flow. Corrections are made locally on the surface of the interacting particles without any assumption on the global particle shape. The numerical model has been validated against experimental data and performs as well as existing numerical models that are limited to spherical particles.

  8. Local lubrication model for spherical particles within incompressible Navier-Stokes flows.

    Science.gov (United States)

    Lambert, B; Weynans, L; Bergmann, M

    2018-03-01

    The lubrication forces are short-range hydrodynamic interactions essential to describe suspension of the particles. Usually, they are underestimated in direct numerical simulations of particle-laden flows. In this paper, we propose a lubrication model for a coupled volume penalization method and discrete element method solver that estimates the unresolved hydrodynamic forces and torques in an incompressible Navier-Stokes flow. Corrections are made locally on the surface of the interacting particles without any assumption on the global particle shape. The numerical model has been validated against experimental data and performs as well as existing numerical models that are limited to spherical particles.

  9. Neutron dynamics of fast-spectrum dedicated cores for waste transmutation

    International Nuclear Information System (INIS)

    Massara, S.

    2002-04-01

    Among different scenarios achieving minor actinide transmutation, the possibility of double strata scenarios with critical, fast spectrum, dedicated cores must be checked and quantified. In these cores, the waste fraction has to be at the highest level compatible with safety requirements during normal operation and transient conditions. As reactivity coefficients are poor in such critical cores (low delayed neutron fraction and Doppler feed-back, high coolant void coefficient), their dynamic behaviour during transient conditions must be carefully analysed. Three nitride-fuel configurations have been analysed: two liquid metal-cooled (sodium and lead) and a particle-fuel helium-cooled one. A dynamic code, MAT4 DYN, has been developed during the PhD thesis, allowing the study of loss of flow, reactivity insertion and loss of coolant accidents, and taking into account two fuel geometries (cylindrical and spherical) and two thermal-hydraulics models for the coolant (incompressible for liquid metals and compressible for helium). Dynamics calculations have shown that if the fuel nature is appropriately chosen (letting a sufficient margin during transients), this can counterbalance the bad state of reactivity coefficients for liquid metal-cooled cores, thus proving the interest of this kind of concept. On the other side, the gas-cooled core dynamics is very badly affected by the high value of the helium void coefficient (which is a consequence of the choice of a hard spectrum), this effect being amplified by the very low thermal inertia of particle-fuel design. So, a new kind of concept should be considered for a helium-cooled fast-spectrum dedicated core. (authors)

  10. Effect of high temperature filtration on out-core corrosion product activity

    International Nuclear Information System (INIS)

    Horvath, G.L.; Bogancs, J.

    1983-01-01

    Investigation of the effect of high temperature filtration on corrosion product transport and out-core corrosion product activity has been carried out for VVER-440 plants. In the physico-chemical model applied particulate and dissolved corrosion products were taken into account. We supposed 100% effectivity for the particulate filter. It was found that about 0,5% 160 t/h/ of the main flow would result in an approx.50% reduction of the out-core corrosion product activity. Investigation of the details of the physico-chemical model in Nuclear Power Plant Paks showed a particle deposition rate measured during power transients fairly agreeing with other measurements and data used in the calculations. (author)

  11. Equilibrium-eulerian les model for turbulent poly-dispersed particle-laden flow

    KAUST Repository

    Icardi, Matteo; Marchisio, Daniele Luca; Chidambaram, Narayanan; Fox, Rodney O.

    2013-01-01

    An efficient Eulerian method for poly-dispersed particles in turbulent flows is implemented, verified and validated for a channel flow. The approach couples a mixture model with a quadrature-based moment method for the particle size distribution in a LES framework, augmented by an approximate deconvolution method to reconstructs the unfiltered velocity. The particle velocity conditioned on particle size is calculated with an equilibrium model, valid for low Stokes numbers. A population balance equation is solved with the direct quadrature method of moments, that efficiently represents the continuous particle size distribution. In this first study particulate processes are not considered and the capability of the model to properly describe particle transport is investigated for a turbulent channel flow. First, single-phase LES are validated through comparison with DNS. Then predictions for the two-phase system, with particles characterised by Stokes numbers ranging from 0.2 to 5, are compared with Lagrangian DNS in terms of particle velocity and accumulation at the walls. Since this phenomenon (turbophoresis) is driven by turbulent fluctuations and depends strongly on the particle Stokes number, the approximation of the particle size distribution, the choice of the sub-grid scale model and the use of an approximate deconvolution method are important to obtain good results. Our method can be considered as a fast and efficient alternative to classical Lagrangian methods or Eulerian multi-fluid models in which poly-dispersity is usually neglected.

  12. Equilibrium-eulerian les model for turbulent poly-dispersed particle-laden flow

    KAUST Repository

    Icardi, Matteo

    2013-04-01

    An efficient Eulerian method for poly-dispersed particles in turbulent flows is implemented, verified and validated for a channel flow. The approach couples a mixture model with a quadrature-based moment method for the particle size distribution in a LES framework, augmented by an approximate deconvolution method to reconstructs the unfiltered velocity. The particle velocity conditioned on particle size is calculated with an equilibrium model, valid for low Stokes numbers. A population balance equation is solved with the direct quadrature method of moments, that efficiently represents the continuous particle size distribution. In this first study particulate processes are not considered and the capability of the model to properly describe particle transport is investigated for a turbulent channel flow. First, single-phase LES are validated through comparison with DNS. Then predictions for the two-phase system, with particles characterised by Stokes numbers ranging from 0.2 to 5, are compared with Lagrangian DNS in terms of particle velocity and accumulation at the walls. Since this phenomenon (turbophoresis) is driven by turbulent fluctuations and depends strongly on the particle Stokes number, the approximation of the particle size distribution, the choice of the sub-grid scale model and the use of an approximate deconvolution method are important to obtain good results. Our method can be considered as a fast and efficient alternative to classical Lagrangian methods or Eulerian multi-fluid models in which poly-dispersity is usually neglected.

  13. Numerical investigations for insulation particle transport phenomena in water flow

    International Nuclear Information System (INIS)

    Krepper, E.; Grahn, A.; Alt, S.; Kaestner, W.; Kratzsch, A.; Seeliger, A.

    2005-01-01

    The investigation of insulation debris generation, transport and sedimentation gains importance regarding the reactor safety research for PWR and BWR considering the long term behaviour of emergency core coolant systems during all types of LOCA. The insulation debris released near the break during LOCA consists of a mixture of very different particles concerning size, shape, consistence and other properties. Some fraction of the released insulation debris will be transported into the reactor sump where it may affect emergency core cooling. Open questions of generic interest are e.g. the sedimentation of the insulation debris in a water pool, possible re-suspension, transport in the sump water flow, particle load on strainers and corresponding difference pressure. A joint research project in cooperation with Institute of Process Technology, Process Automation and Measuring Technology (IPM) Zittau deals with the experimental investigation and the development of CFD models for the description of particle transport phenomena in coolant flow. While experiments are performed at the IPM-Zittau, theoretical work is concentrated at Forschungszentrum Rossendorf. In the present paper the basic concepts for CFD modelling are described and first results including feasibility studies are shown. During the ongoing work further results are expected. (author)

  14. Experimental and numerical thermal-hydraulics investigation of a molten salt reactor concept core

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, Bogdan; Aszodi, Attila [Budapest Univ. of Technology and Economics (Hungary). Inst. of Nuclear Techniques

    2017-09-15

    In the paper measurement results of experimental modelling of a molten salt fast reactor concept will be presented and compared with three-dimensional computational fluid dynamics (CFD) simulation results. Purpose of this article is twofold, on one hand to introduce a geometry modification in order to avoid the disadvantages of the original geometry and discuss new measurement results. On the other hand to present an analysis in order to suggest a method of proper numerical modelling of the problem based on the comparison of calculation results and measurement data for the new, modified geometry. The investigated concept has a homogeneous cylindrical core without any internal structures. Previous measurements on the scaled and segmented plexiglas model of the concept core and simulation results have shown that this core geometry could be optimized for better thermal-hydraulics characteristics. In case of the original geometry strong undesired flow separation could develop, that could negatively affect the characteristics of the core from neutronics point of view as well. An internal flow distributor plate was designed and installed with the purpose of optimizing the flow field in the core by enhancing its uniformity. Particle image velocimetry (PIV) measurement results of the modified experimental model will be presented and compared to numerical simulation results with the purpose of CFD model validation.

  15. A review of MAAP4 code structure and core T/H model

    International Nuclear Information System (INIS)

    Song, Yong Mann; Park, Soo Yong

    1998-03-01

    The modular accident analysis program (MAAP) version 4 is a computer code that can simulate the response of LWR plants during severe accident sequences and includes models for all of the important phenomena which might occur during accident sequences. In this report, MAAP4 code structure and core thermal hydraulic (T/H) model which models the T/H behavior of the reactor core and the response of core components during all accident phases involving degraded cores are specifically reviewed and then reorganized. This reorganization is performed via getting the related models together under each topic whose contents and order are same with other two reports for MELCOR and SCDAP/RELAP5 to be simultaneously published. Major purpose of the report is to provide information about the characteristics of MAAP4 core T/H models for an integrated severe accident computer code development being performed under the one of on-going mid/long-term nuclear developing project. The basic characteristics of the new integrated severe accident code includes: 1) Flexible simulation capability of primary side, secondary side, and the containment under severe accident conditions, 2) Detailed plant simulation, 3) Convenient user-interfaces, 4) Highly modularization for easy maintenance/improvement, and 5) State-of-the-art model selection. In conclusion, MAAP4 code has appeared to be superior for 3) and 4) items but to be somewhat inferior for 1) and 2) items. For item 5), more efforts should be made in the future to compare separated models in detail with not only other codes but also recent world-wide work. (author). 17 refs., 1 tab., 12 figs

  16. Cumulative particle production in the quark recombination model

    International Nuclear Information System (INIS)

    Gavrilov, V.B.; Leksin, G.A.

    1987-01-01

    Production of cumulative particles in hadron-nuclear inteactions at high energies is considered within the framework of recombination quark model. Predictions for inclusive cross sections of production of cumulative particles and different resonances containing quarks in s state are made

  17. Thermal-hydraulic considerations for particle bed reactors

    Science.gov (United States)

    Benenati, R.; Araj, K. J.; Horn, F.

    In the design of particle bed reactor (PBR) cores, consideration must be given to the gas coolant channels and their configuration. Neutronics analysis provides the relative volume fractions of the component materials, but these must be arranged in such a manner as to allow proper cooling of all components by the gas flow at relatively low pressure drops. The thermal hydraulic aspects of this problem are addressed. A description of the computer model used in the analysis of the steady state condition is also included. Blowdown tests on hot particle bed fuel elements were carried out and are described.

  18. Modeling the Conducting Stably-Stratified Layer of the Earth's Core

    Science.gov (United States)

    Petitdemange, L.; Philidet, J.; Gissinger, C.

    2017-12-01

    Observations of the Earth magnetic field as well as recent theoretical works tend to show that the Earth's outer liquid core is mostly comprised of a convective zone in which the Earth's magnetic field is generated - likely by dynamo action -, but also features a thin, stably stratified layer at the top of the core.We carry out direct numerical simulations by modeling this thin layer as an axisymmetric spherical Couette flow for a stably stratified fluid embedded in a dipolar magnetic field. The dynamo region is modeled by a conducting inner core rotating slightly faster than the insulating mantle due to magnetic torques acting on it, such that a weak differential rotation (low Rossby limit) can develop in the stably stratified layer.In the case of a non-stratified fluid, the combined action of the differential rotation and the magnetic field leads to the well known regime of `super-rotation', in which the fluid rotates faster than the inner core. Whereas in the classical case, this super-rotation is known to vanish in the magnetostrophic limit, we show here that the fluid stratification significantly extends the magnitude of the super-rotation, keeping this phenomenon relevant for the Earth core. Finally, we study how the shear layers generated by this new state might give birth to magnetohydrodynamic instabilities or waves impacting the secular variations or jerks of the Earth's magnetic field.

  19. Core Organizational Stakeholder Impact – An assessment model

    OpenAIRE

    Carvalho, João M. S.

    2013-01-01

    Measurement of organizational social impact is a pressing issue in corporate social responsibility research. This paper proposes an alternative measurement modelCore Organizational Stakeholder Impact (COSI) – based on economic, legal and ethical responsibilities of organizations. The model allows understanding organizational social footprint, i.e., how organizations impact each stakeholder. It has 40 indicators, easy to apply, dividing internal and external stakeholders in equa...

  20. Overall feature of EAST operation space by using simple Core-SOL-Divertor model

    International Nuclear Information System (INIS)

    Hiwatari, R.; Hatayama, A.; Zhu, S.; Takizuka, T.; Tomita, Y.

    2005-01-01

    We have developed a simple Core-SOL-Divertor (C-S-D) model to investigate qualitatively the overall features of the operational space for the integrated core and edge plasma. To construct the simple C-S-D model, a simple core plasma model of ITER physics guidelines and a two-point SOL-divertor model are used. The simple C-S-D model is applied to the study of the EAST operational space with lower hybrid current drive experiments under various kinds of trade-off for the basic plasma parameters. Effective methods for extending the operation space are also presented. As shown by this study for the EAST operation space, it is evident that the C-S-D model is a useful tool to understand qualitatively the overall features of the plasma operation space. (author)

  1. Modeling airflow and particle transport/deposition in pulmonary airways.

    Science.gov (United States)

    Kleinstreuer, Clement; Zhang, Zhe; Li, Zheng

    2008-11-30

    A review of research papers is presented, pertinent to computer modeling of airflow as well as nano- and micron-size particle deposition in pulmonary airway replicas. The key modeling steps are outlined, including construction of suitable airway geometries, mathematical description of the air-particle transport phenomena and computer simulation of micron and nanoparticle depositions. Specifically, diffusion-dominated nanomaterial deposits on airway surfaces much more uniformly than micron particles of the same material. This may imply different toxicity effects. Due to impaction and secondary flows, micron particles tend to accumulate around the carinal ridges and to form "hot spots", i.e., locally high concentrations which may lead to tumor developments. Inhaled particles in the size range of 20nm< or =dp< or =3microm may readily reach the deeper lung region. Concerning inhaled therapeutic particles, optimal parameters for mechanical drug-aerosol targeting of predetermined lung areas can be computed, given representative pulmonary airways.

  2. Maturation of the viral core enhances the fusion of HIV-1 particles with primary human T cells and monocyte-derived macrophages

    International Nuclear Information System (INIS)

    Jiang Jiyang; Aiken, Christopher

    2006-01-01

    HIV-1 infection requires fusion of viral and cellular membranes in a reaction catalyzed by the viral envelope proteins gp120 and gp41. We recently reported that efficient HIV-1 particle fusion with target cells is linked to maturation of the viral core by an activity of the gp41 cytoplasmic domain. Here, we show that maturation enhances the fusion of a variety of recombinant viruses bearing primary and laboratory-adapted Env proteins with primary human CD4 + T cells. Overall, HIV-1 fusion was more dependent on maturation for viruses bearing X4-tropic envelope proteins than for R5-tropic viruses. Fusion of HIV-1 with monocyte-derived macrophages was also dependent on particle maturation. We conclude that the ability to couple fusion to particle maturation is a common feature of HIV-1 Env proteins and may play an important role during HIV-1 replication in vivo

  3. A point particle model of lightly bound skyrmions

    Directory of Open Access Journals (Sweden)

    Mike Gillard

    2017-04-01

    Full Text Available A simple model of the dynamics of lightly bound skyrmions is developed in which skyrmions are replaced by point particles, each carrying an internal orientation. The model accounts well for the static energy minimizers of baryon number 1≤B≤8 obtained by numerical simulation of the full field theory. For 9≤B≤23, a large number of static solutions of the point particle model are found, all closely resembling size B subsets of a face centred cubic lattice, with the particle orientations dictated by a simple colouring rule. Rigid body quantization of these solutions is performed, and the spin and isospin of the corresponding ground states extracted. As part of the quantization scheme, an algorithm to compute the symmetry group of an oriented point cloud, and to determine its corresponding Finkelstein–Rubinstein constraints, is devised.

  4. State space modeling of reactor core in a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ashaari, A.; Ahmad, T.; M, Wan Munirah W. [Department of Mathematical Science, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Shamsuddin, Mustaffa [Institute of Ibnu Sina, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Abdullah, M. Adib [Swinburne University of Technology, Faculty of Engineering, Computing and Science, Jalan Simpang Tiga, 93350 Kuching, Sarawak (Malaysia)

    2014-07-10

    The power control system of a nuclear reactor is the key system that ensures a safe operation for a nuclear power plant. However, a mathematical model of a nuclear power plant is in the form of nonlinear process and time dependent that give very hard to be described. One of the important components of a Pressurized Water Reactor is the Reactor core. The aim of this study is to analyze the performance of power produced from a reactor core using temperature of the moderator as an input. Mathematical representation of the state space model of the reactor core control system is presented and analyzed in this paper. The data and parameters are taken from a real time VVER-type Pressurized Water Reactor and will be verified using Matlab and Simulink. Based on the simulation conducted, the results show that the temperature of the moderator plays an important role in determining the power of reactor core.

  5. Particle propagator of the spin Calogero–Sutherland model

    International Nuclear Information System (INIS)

    Nakai, Ryota; Kato, Yusuke

    2014-01-01

    Explicit-exact expressions for the particle propagator of the spin 1/2 Calogero–Sutherland model are derived for the system of a finite number of particles and for that in the thermodynamic limit. Derivation of the expression in the thermodynamic limit is also presented in detail. Combining this result with the hole propagator obtained in earlier studies, we calculate the spectral function of the single particle Green's function in the full range of the energy and momentum space. The resultant spectral function exhibits power-law singularity characteristic to correlated particle systems in one dimension. (paper)

  6. State-space model predictive control method for core power control in pressurized water reactor nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guo Xu; Wu, Jie; Zeng, Bifan; Wu, Wangqiang; Ma, Xiao Qian [School of Electric Power, South China University of Technology, Guangzhou (China); Xu, Zhibin [Electric Power Research Institute of Guangdong Power Grid Corporation, Guangzhou (China)

    2017-02-15

    A well-performed core power control to track load changes is crucial in pressurized water reactor (PWR) nuclear power stations. It is challenging to keep the core power stable at the desired value within acceptable error bands for the safety demands of the PWR due to the sensitivity of nuclear reactors. In this paper, a state-space model predictive control (MPC) method was applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, the MPC model, and quadratic programming (QP). The mathematical models of the reactor core were based on neutron dynamic models, thermal hydraulic models, and reactivity models. The MPC model was presented in state-space model form, and QP was introduced for optimization solution under system constraints. Simulations of the proposed state-space MPC control system in PWR were designed for control performance analysis, and the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

  7. Extreme-Scale Stochastic Particle Tracing for Uncertain Unsteady Flow Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hanqi; He, Wenbin; Seo, Sangmin; Shen, Han-Wei; Peterka, Tom

    2016-11-13

    We present an efficient and scalable solution to estimate uncertain transport behaviors using stochastic flow maps (SFM,) for visualizing and analyzing uncertain unsteady flows. SFM computation is extremely expensive because it requires many Monte Carlo runs to trace densely seeded particles in the flow. We alleviate the computational cost by decoupling the time dependencies in SFMs so that we can process adjacent time steps independently and then compose them together for longer time periods. Adaptive refinement is also used to reduce the number of runs for each location. We then parallelize over tasks—packets of particles in our design—to achieve high efficiency in MPI/thread hybrid programming. Such a task model also enables CPU/GPU coprocessing. We show the scalability on two supercomputers, Mira (up to 1M Blue Gene/Q cores) and Titan (up to 128K Opteron cores and 8K GPUs), that can trace billions of particles in seconds.

  8. Development of polymer-biomolecule core-shell particles for biomedical applications

    Science.gov (United States)

    Suthiwangcharoen, Nisaraporn

    Developing efficient strategies to introduce biomolecules around polymeric nanoparticles (NPs) is critical for targeted delivery of therapeutic or diagnostic agents. Although polymeric NPs have been well established, problems such as toxicity, stability, and immunoresistance remain potential concerns. The first part of this dissertation focuses on the development of nanosized targeted drug delivery vehicle in cancer chemotherapy. The vehicle was created by the self-assembly of folate-grafted filamentous bacteriophage M13 with poly(caprolactone- b-2-vinylpyridine) while doxorubicin, the antitumor drugs, was successfully loaded in the interior of the vehicles. These particles offer unique properties of being able to selectively target tumor cells while appearing to be safe and non-toxic to normal cells. Although they have shown great prospects in many biomedical applications, less is known about the interactions between biomolecules and polymers. The next part of the dissertation focuses on the self-assembly of proteins and polymers to create polymer-protein core-shell nanoparticles (PPCS-NPs). Several proteins with different isoelectric points and molecular weights were employed to demonstrate a versatility of our assembly method while a series of esterified derivatives of poly(2-hydroxyethyl methacrylate) (pHEMA) were synthesized to evaluate the interaction between proteins and polymers. Our data indicated that the polymers containing pyridine residues can successfully assemble with proteins, and the mechanism is mainly governed by hydrogen bonding and the hydrophobic/hydrophilic interactions. This in turn helps retaining proteins' folding conformation and functionality, which are also demonstrated in the in vitro/in vivo cellular uptake of the PPCS-NPs in endothelial cells. The last part of the dissertation focuses on the self-assembly of the bienzyme-polymer NPs. Glucose oxidase (GOX) together with horseradish peroxidase (HRP) were employed to construct bienzyme

  9. Synthesis, microstructure and magnetic properties of Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} core–shell particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} soft magnetic composite core

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian, E-mail: snove418562@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Fan, Xi’an, E-mail: groupfxa@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Wu, Zhaoyang, E-mail: wustwuzhaoyang@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Li, Guangqiang [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China)

    2015-11-15

    Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} core–shell particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} soft magnetic composite core have been synthesized via a modified stöber method combined with following high temperature sintering process. Most of conductive Fe{sub 3}Si{sub 0.7}Al{sub 0.3} particles could be uniformly coated by insulating SiO{sub 2} using the modified stöber method. The Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} core–shell particles exhibited good soft magnetic properties with low coercivity and high saturation magnetization. The reaction 4Al+3SiO{sub 2}=2α-Al{sub 2}O{sub 3}+3Si took place during the sintering process. As a result the new Fe{sub 3}Si/Al{sub 2}O{sub 3} composite was formed. The Fe{sub 3}Si/Al{sub 2}O{sub 3} composite core displayed more excellent soft magnetic properties, better frequency stability at high frequencies, much higher electrical resistivity and lower core loss than the pure Fe{sub 3}Si{sub 0.7}Al{sub 0.3} core. The method of introducing insulating layers surrounding magnetic particles provides a promising route to develop new and high compact soft magnetic materials with good magnetic and electric properties. - Graphical abstract: In Fe{sub 3}Si/Al{sub 2}O{sub 3} composite, Fe{sub 3}Si phases are separated by Al{sub 2}O{sub 3} layers and the eddy currents are confined in Fe{sub 3}Si phases, thus increasing resistivity and reducing core loss. - Highlights: • Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} core–shell particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} cores were prepared. • Fe{sub 3}Si{sub 0.7}Al{sub 0.3} particles could be uniformly coated by nano-sized SiO{sub 2} clusters. • Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} cores showed good soft magnetic properties. • Fe{sub 3}Si/Al{sub 2}O{sub 3} had lower core loss and better frequency stability than Fe{sub 3}Si{sub 0.7}Al{sub 0.3} cores.

  10. A Simple Mathematical Model for Standard Model of Elementary Particles and Extension Thereof

    Science.gov (United States)

    Sinha, Ashok

    2016-03-01

    An algebraically (and geometrically) simple model representing the masses of the elementary particles in terms of the interaction (strong, weak, electromagnetic) constants is developed, including the Higgs bosons. The predicted Higgs boson mass is identical to that discovered by LHC experimental programs; while possibility of additional Higgs bosons (and their masses) is indicated. The model can be analyzed to explain and resolve many puzzles of particle physics and cosmology including the neutrino masses and mixing; origin of the proton mass and the mass-difference between the proton and the neutron; the big bang and cosmological Inflation; the Hubble expansion; etc. A novel interpretation of the model in terms of quaternion and rotation in the six-dimensional space of the elementary particle interaction-space - or, equivalently, in six-dimensional spacetime - is presented. Interrelations among particle masses are derived theoretically. A new approach for defining the interaction parameters leading to an elegant and symmetrical diagram is delineated. Generalization of the model to include supersymmetry is illustrated without recourse to complex mathematical formulation and free from any ambiguity. This Abstract represents some results of the Author's Independent Theoretical Research in Particle Physics, with possible connection to the Superstring Theory. However, only very elementary mathematics and physics is used in my presentation.

  11. GPU Computing For Particle Tracking

    International Nuclear Information System (INIS)

    Nishimura, Hiroshi; Song, Kai; Muriki, Krishna; Sun, Changchun; James, Susan; Qin, Yong

    2011-01-01

    This is a feasibility study of using a modern Graphics Processing Unit (GPU) to parallelize the accelerator particle tracking code. To demonstrate the massive parallelization features provided by GPU computing, a simplified TracyGPU program is developed for dynamic aperture calculation. Performances, issues, and challenges from introducing GPU are also discussed. General purpose Computation on Graphics Processing Units (GPGPU) bring massive parallel computing capabilities to numerical calculation. However, the unique architecture of GPU requires a comprehensive understanding of the hardware and programming model to be able to well optimize existing applications. In the field of accelerator physics, the dynamic aperture calculation of a storage ring, which is often the most time consuming part of the accelerator modeling and simulation, can benefit from GPU due to its embarrassingly parallel feature, which fits well with the GPU programming model. In this paper, we use the Tesla C2050 GPU which consists of 14 multi-processois (MP) with 32 cores on each MP, therefore a total of 448 cores, to host thousands ot threads dynamically. Thread is a logical execution unit of the program on GPU. In the GPU programming model, threads are grouped into a collection of blocks Within each block, multiple threads share the same code, and up to 48 KB of shared memory. Multiple thread blocks form a grid, which is executed as a GPU kernel. A simplified code that is a subset of Tracy++ (2) is developed to demonstrate the possibility of using GPU to speed up the dynamic aperture calculation by having each thread track a particle.

  12. Feasibility analysis of real-time physical modeling using WaveCore processor technology on FPGA

    NARCIS (Netherlands)

    Verstraelen, Martinus Johannes Wilhelmina; Pfeifle, Florian; Bader, Rolf

    2015-01-01

    WaveCore is a scalable many-core processor technology. This technology is specifically developed and optimized for real-time acoustical modeling applications. The programmable WaveCore soft-core processor is silicon-technology independent and hence can be targeted to ASIC or FPGA technologies. The

  13. Core fluctuations and current profile dynamics in the MST reversed-field pinch

    International Nuclear Information System (INIS)

    Brower, D.L.; Ding, W.X.; Lei, J.

    2003-01-01

    First measurements of the current density profile, magnetic field fluctuations and electrostatic (e.s.) particle flux in the core of a high-temperature reversed-field pinch (RFP) are presented. We report three new results: (1) The current density peaks during the slow ramp phase of the sawtooth cycle and flattens promptly at the crash. Profile flattening can be linked to magnetic relaxation and the dynamo which is predicted to drive anti-parallel current in the core. Measured core magnetic fluctuations are observed to increases four-fold at the crash. Between sawtooth crashes, measurements indicate the particle flux driven by e.s. fluctuations is too small to account for the total radial particle flux. (2) Core magnetic fluctuations are observed to decrease at least twofold in plasmas where energy confinement time improves ten-fold. In this case, the radial particle flux is also reduced, suggesting core e.s. fluctuation-induced transport may play role in confinement. (3) The parallel current density increases in the outer region of the plasma during high confinement, as expected, due to the applied edge parallel electric field. However, the core current density also increases due to dynamo reduction and the emergence of runaway electrons. (author)

  14. Study of a model Fermi liquid interacting via a hard-core repulsive potential and an attractive tail

    International Nuclear Information System (INIS)

    Ng, Tai Kai; Singwi, K.S.

    1986-02-01

    In this paper we present an extensive microscopic study of the collective and single-particle properties of a model Fermi liquid whose particles interact via a repulsive hard-core potential and an attractive tail. The model system is intended to simulate liquid 3 He. The study is based on an approximate scheme of Singwi, Tosi, Land and Sjoelander (STLS) which was devised to treat correlations in Coulomb Fermi liquids. The primary aim of this study is to learn whether the model system is capable of reproducing some of the salient features observed in normal liquid 3 He, and about the role of the repulsive and attractive parts of the potential. We have calculated the Landau parameters F 0 /sup s/ and F 0 /sup a/ and their variation with pressure, the wave number and pressure dependence of the spin-symmetric and spin-anti-symmetric polarization potentials, pressure dependence of the dispersion of the zero sound, the static structure factors and the quasiparticle mass. Although we make no quantitative claims when comparing our calculations with experiments in real liquid 3 He, we do conclude that our model system within the framework of the STLS scheme can account qualitatively for the latter. Besides, since the theory is microscopic in nature and is parameter free, it has enabled us to understand better the role of the repulsive and the attractive parts of the bare potential in determining the properties of liquid 3 He. 27 figs., 2 tabs

  15. Coupled Particle Transport and Pattern Formation in a Nonlinear Leaky-Box Model

    Science.gov (United States)

    Barghouty, A. F.; El-Nemr, K. W.; Baird, J. K.

    2009-01-01

    Effects of particle-particle coupling on particle characteristics in nonlinear leaky-box type descriptions of the acceleration and transport of energetic particles in space plasmas are examined in the framework of a simple two-particle model based on the Fokker-Planck equation in momentum space. In this model, the two particles are assumed coupled via a common nonlinear source term. In analogy with a prototypical mathematical system of diffusion-driven instability, this work demonstrates that steady-state patterns with strong dependence on the magnetic turbulence but a rather weak one on the coupled particles attributes can emerge in solutions of a nonlinearly coupled leaky-box model. The insight gained from this simple model may be of wider use and significance to nonlinearly coupled leaky-box type descriptions in general.

  16. Particle-based model for skiing traffic.

    Science.gov (United States)

    Holleczek, Thomas; Tröster, Gerhard

    2012-05-01

    We develop and investigate a particle-based model for ski slope traffic. Skiers are modeled as particles with a mass that are exposed to social and physical forces, which define the riding behavior of skiers during their descents on ski slopes. We also report position and speed data of 21 skiers recorded with GPS-equipped cell phones on two ski slopes. A comparison of these data with the trajectories resulting from computer simulations of our model shows a good correspondence. A study of the relationship among the density, speed, and flow of skiers reveals that congestion does not occur even with arrival rates of skiers exceeding the maximum ski lift capacity. In a sensitivity analysis, we identify the kinetic friction coefficient of skis on snow, the skier mass, the range of repelling social forces, and the arrival rate of skiers as the crucial parameters influencing the simulation results. Our model allows for the prediction of speed zones and skier densities on ski slopes, which is important in the prevention of skiing accidents.

  17. Toxicological Assessment of a Lignin Core Nanoparticle Doped with Silver as an Alternative to Conventional Silver Core Nanoparticles

    Directory of Open Access Journals (Sweden)

    Cassandra E. Nix

    2018-05-01

    Full Text Available Elevated levels of silver in the environment are anticipated with an increase in silver nanoparticle (AgNP production and use in consumer products. To potentially reduce the burden of silver ion release from conventional solid core AgNPs, a lignin-core particle doped with silver ions and surface-stabilized with a polycationic electrolyte layer was engineered. Our objective was to determine whether any of the formulation components elicit toxicological responses using embryonic zebrafish. Ionic silver and free surface stabilizer were the most toxic constituents, although when associated separately or together with the lignin core particles, the toxicity of the formulations decreased significantly. The overall toxicity of lignin formulations containing silver was similar to other studies on a silver mass basis, and led to a significantly higher prevalence of uninflated swim bladder and yolk sac edema. Comparative analysis of dialyzed samples which had leached their loosely bound Ag+, showed a significant increase in mortality immediately after dialysis, in addition to eliciting significant increases in types of sublethal responses relative to the freshly prepared non-dialyzed samples. ICP-OES/MS analysis indicated that silver ion release from the particle into solution was continuous, and the rate of release differed when the surface stabilizer was not present. Overall, our study indicates that the lignin core is an effective alternative to conventional solid core AgNPs for potentially reducing the burden of silver released into the environment from a variety of consumer products.

  18. Thermal-hydraulic analysis techniques for axisymmetric pebble bed nuclear reactor cores

    International Nuclear Information System (INIS)

    Stroh, K.R.

    1979-03-01

    The pebble bed reactor's cylindrical core volume contains a random bed of small, spherical fuel-moderator elements. These graphite spheres, containing a central region of dispersed coated-particle fissile and fertile material, are cooled by high pressure helium flowing through the connected interstitial voids. A mathematical model and numerical solution technique have been developed which allow calculation of macroscopic values of thermal-hydraulic variables in an axisymmetric pebble bed nuclear reactor core. The computer program PEBBLE is based on a mathematical model which treats the bed macroscopically as a generating, conducting porous medium. The steady-state model uses a nonlinear Forchheimer-type relation between the coolant pressure gradient and mass flux, with newly derived coefficients for the linear and quadratic resistance terms. The remaining equations in the model make use of mass continuity, and thermal energy balances for the solid and fluid phases

  19. Comparative study between single core model and detail core model of CFD modelling on reactor core cooling behaviour

    Science.gov (United States)

    Darmawan, R.

    2018-01-01

    Nuclear power industry is facing uncertainties since the occurrence of the unfortunate accident at Fukushima Daiichi Nuclear Power Plant. The issue of nuclear power plant safety becomes the major hindrance in the planning of nuclear power program for new build countries. Thus, the understanding of the behaviour of reactor system is very important to ensure the continuous development and improvement on reactor safety. Throughout the development of nuclear reactor technology, investigation and analysis on reactor safety have gone through several phases. In the early days, analytical and experimental methods were employed. For the last four decades 1D system level codes were widely used. The continuous development of nuclear reactor technology has brought about more complex system and processes of nuclear reactor operation. More detailed dimensional simulation codes are needed to assess these new reactors. Recently, 2D and 3D system level codes such as CFD are being explored. This paper discusses a comparative study on two different approaches of CFD modelling on reactor core cooling behaviour.

  20. Monte Carlo simulation of core physics parameters of the Nigeria Research Reactor-1 (NIRR-1)

    Energy Technology Data Exchange (ETDEWEB)

    Jonah, S.A. [Reactor Engineering Section, Centre for Energy Research and Training, Ahmadu Bello University, Zaria, P.M.B. 1014 (Nigeria)], E-mail: jonahsa2001@yahoo.com; Liaw, J.R.; Matos, J.E. [RERTR Program, Nuclear Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2007-12-15

    The Monte Carlo N-Particle (MCNP) code, version 4C (MCNP4C) and a set of neutron cross-section data were used to develop an accurate three-dimensional computational model of the Nigeria Research Reactor-1 (NIRR-1). The geometry of the reactor core was modeled as closely as possible including the details of all the fuel elements, reactivity regulators, the control rod, all irradiation channels, and Be reflectors. The following reactor core physics parameters were calculated for the present highly enriched uranium (HEU) core: clean cold core excess reactivity ({rho}{sub ex}), control rod (CR) and shim worth, shut down margin (SDM), neutron flux distributions in the irradiation channels, reactivity feedback coefficients and the kinetics parameters. The HEU input model was validated by experimental data from the final safety analyses report (SAR). The model predicted various key neutronics parameters fairly accurately and the calculated thermal neutron fluxes in the irradiation channels agree with the values obtained by foil activation method. Results indicate that the established Monte Carlo model is an accurate representation of the NIRR-1 HEU core and will be used to perform feasibility for conversion to low enriched uranium (LEU)

  1. Neutronics methods, models, and applications at the Idaho National Engineering Laboratory for the advanced neutron source reactor three-element core design

    International Nuclear Information System (INIS)

    Wemple, C.A.; Schnitzler, B.G.; Ryskamp, J.M.

    1995-08-01

    A summary of the methods and models used to perform neutronics analyses on the Advanced Neutron Source reactor three-element core design is presented. The applications of the neutral particle Monte Carlo code MCNP are detailed, as well as the expansion of the static role of MCNP to analysis of fuel cycle depletion calculations. Results to date of these applications are presented also. A summary of the calculations not yet performed is also given to provide a open-quotes to-doclose quotes list if the project is resurrected

  2. Fort St. Vrain core performance

    International Nuclear Information System (INIS)

    McEachern, D.W.; Brown, J.R.; Heller, R.A.; Franek, W.J.

    1977-07-01

    The Fort St. Vrain High Temperature Gas Cooled Reactor core performance has been evaluated during the startup testing phase of the reactor operation. The reactor is graphite moderated, helium cooled, and uses coated particle fuel and on-line flow control to each of the 37 refueling regions. Principal objectives of startup testing were to determine: core and control system reactivity, radial power distribution, flow control capability, and initial fission product release. Information from the core demonstrates that Technical Specifications are being met, performance of the core and fuel is as expected, flow and reactivity control are predictable and simple for the operator to carry out

  3. Tailored Core Shell Cathode Powders for Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Swartz, Scott [NexTech Materials, Ltd.,Lewis Center, OH (United States)

    2015-03-23

    In this Phase I SBIR project, a “core-shell” composite cathode approach was evaluated for improving SOFC performance and reducing degradation of lanthanum strontium cobalt ferrite (LSCF) cathode materials, following previous successful demonstrations of infiltration approaches for achieving the same goals. The intent was to establish core-shell cathode powders that enabled high performance to be obtained with “drop-in” process capability for SOFC manufacturing (i.e., rather than adding an infiltration step to the SOFC manufacturing process). Milling, precipitation and hetero-coagulation methods were evaluated for making core-shell composite cathode powders comprised of coarse LSCF “core” particles and nanoscale “shell” particles of lanthanum strontium manganite (LSM) or praseodymium strontium manganite (PSM). Precipitation and hetero-coagulation methods were successful for obtaining the targeted core-shell morphology, although perfect coverage of the LSCF core particles by the LSM and PSM particles was not obtained. Electrochemical characterization of core-shell cathode powders and conventional (baseline) cathode powders was performed via electrochemical impedance spectroscopy (EIS) half-cell measurements and single-cell SOFC testing. Reliable EIS testing methods were established, which enabled comparative area-specific resistance measurements to be obtained. A single-cell SOFC testing approach also was established that enabled cathode resistance to be separated from overall cell resistance, and for cathode degradation to be separated from overall cell degradation. The results of these EIS and SOFC tests conclusively determined that the core-shell cathode powders resulted in significant lowering of performance, compared to the baseline cathodes. Based on the results of this project, it was concluded that the core-shell cathode approach did not warrant further investigation.

  4. A CFD model for particle dispersion in turbulent boundary layer flows

    International Nuclear Information System (INIS)

    Dehbi, A.

    2008-01-01

    In Lagrangian particle dispersion modeling, the assumption that turbulence is isotropic everywhere yields erroneous predictions of particle deposition rates on walls, even in simple geometries. In this investigation, the stochastic particle tracking model in Fluent 6.2 is modified to include a better treatment of particle-turbulence interactions close to walls where anisotropic effects are significant. The fluid rms velocities in the boundary layer are computed using fits of DNS data obtained in channel flow. The new model is tested against correlations for particle removal rates in turbulent pipe flow and 90 o bends. Comparison with experimental data is much better than with the default model. The model is also assessed against data of particle removal in the human mouth-throat geometry where the flow is decidedly three-dimensional. Here, the agreement with the data is reasonable, especially in view of the fact that the DNS fits used are those of channel flows, for lack of better alternatives. The CFD Best Practice Guidelines are followed to a large extent, in particular by using multiple grid resolutions and at least second order discretization schemes

  5. DCMIP2016: a review of non-hydrostatic dynamical core design and intercomparison of participating models

    Science.gov (United States)

    Ullrich, Paul A.; Jablonowski, Christiane; Kent, James; Lauritzen, Peter H.; Nair, Ramachandran; Reed, Kevin A.; Zarzycki, Colin M.; Hall, David M.; Dazlich, Don; Heikes, Ross; Konor, Celal; Randall, David; Dubos, Thomas; Meurdesoif, Yann; Chen, Xi; Harris, Lucas; Kühnlein, Christian; Lee, Vivian; Qaddouri, Abdessamad; Girard, Claude; Giorgetta, Marco; Reinert, Daniel; Klemp, Joseph; Park, Sang-Hun; Skamarock, William; Miura, Hiroaki; Ohno, Tomoki; Yoshida, Ryuji; Walko, Robert; Reinecke, Alex; Viner, Kevin

    2017-12-01

    Atmospheric dynamical cores are a fundamental component of global atmospheric modeling systems and are responsible for capturing the dynamical behavior of the Earth's atmosphere via numerical integration of the Navier-Stokes equations. These systems have existed in one form or another for over half of a century, with the earliest discretizations having now evolved into a complex ecosystem of algorithms and computational strategies. In essence, no two dynamical cores are alike, and their individual successes suggest that no perfect model exists. To better understand modern dynamical cores, this paper aims to provide a comprehensive review of 11 non-hydrostatic dynamical cores, drawn from modeling centers and groups that participated in the 2016 Dynamical Core Model Intercomparison Project (DCMIP) workshop and summer school. This review includes a choice of model grid, variable placement, vertical coordinate, prognostic equations, temporal discretization, and the diffusion, stabilization, filters, and fixers employed by each system.

  6. Modelling high-resolution electron microscopy based on core-loss spectroscopy

    International Nuclear Information System (INIS)

    Allen, L.J.; Findlay, S.D.; Oxley, M.P.; Witte, C.; Zaluzec, N.J.

    2006-01-01

    There are a number of factors affecting the formation of images based on core-loss spectroscopy in high-resolution electron microscopy. We demonstrate unambiguously the need to use a full nonlocal description of the effective core-loss interaction for experimental results obtained from high angular resolution electron channelling electron spectroscopy. The implications of this model are investigated for atomic resolution scanning transmission electron microscopy. Simulations are used to demonstrate that core-loss spectroscopy images formed using fine probes proposed for future microscopes can result in images that do not correspond visually with the structure that has led to their formation. In this context, we also examine the effect of varying detector geometries. The importance of the contribution to core-loss spectroscopy images by dechannelled or diffusely scattered electrons is reiterated here

  7. Investigation of Large Scale Cortical Models on Clustered Multi-Core Processors

    Science.gov (United States)

    2013-02-01

    Playstation 3 with 6 available SPU cores outperforms the Intel Xeon processor (with 4 cores) by about 1.9 times for the HTM model and by 2.4 times...runtime breakdowns of the HTM and Dean models respectively on the Cell processor (on the Playstation 3) and the Intel Xeon processor ( 4 thread...YOUR FORM TO THE ABOVE ORGANIZATION. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 4 . TITLE AND SUBTITLE 5a. CONTRACT NUMBER

  8. Accelerating Atmospheric Modeling Through Emerging Multi-core Technologies

    OpenAIRE

    Linford, John Christian

    2010-01-01

    The new generations of multi-core chipset architectures achieve unprecedented levels of computational power while respecting physical and economical constraints. The cost of this power is bewildering program complexity. Atmospheric modeling is a grand-challenge problem that could make good use of these architectures if they were more accessible to the average programmer. To that end, software tools and programming methodologies that greatly simplify the acceleration of atmospheric modeling...

  9. Steady-state and dynamic models for particle engulfment during solidification

    Science.gov (United States)

    Tao, Yutao; Yeckel, Andrew; Derby, Jeffrey J.

    2016-06-01

    Steady-state and dynamic models are developed to study the physical mechanisms that determine the pushing or engulfment of a solid particle at a moving solid-liquid interface. The mathematical model formulation rigorously accounts for energy and momentum conservation, while faithfully representing the interfacial phenomena affecting solidification phase change and particle motion. A numerical solution approach is developed using the Galerkin finite element method and elliptic mesh generation in an arbitrary Lagrangian-Eulerian implementation, thus allowing for a rigorous representation of forces and dynamics previously inaccessible by approaches using analytical approximations. We demonstrate that this model accurately computes the solidification interface shape while simultaneously resolving thin fluid layers around the particle that arise from premelting during particle engulfment. We reinterpret the significance of premelting via the definition an unambiguous critical velocity for engulfment from steady-state analysis and bifurcation theory. We also explore the complicated transient behaviors that underlie the steady states of this system and posit the significance of dynamical behavior on engulfment events for many systems. We critically examine the onset of engulfment by comparing our computational predictions to those obtained using the analytical model of Rempel and Worster [29]. We assert that, while the accurate calculation of van der Waals repulsive forces remains an open issue, the computational model developed here provides a clear benefit over prior models for computing particle drag forces and other phenomena needed for the faithful simulation of particle engulfment.

  10. Cold deconfined matter EOS through an HTL quasi-particle model

    OpenAIRE

    Romatschke, Paul

    2002-01-01

    Using quasi-particle models, lattice data can be mapped to finite chemical potential. By comparing a simple and an HTL quasi-particle model, we derive the general trend that a full inclusion of the plasmon effect will give.

  11. Numerical analysis of crust formation in molten core-concrete interaction using MPS method

    International Nuclear Information System (INIS)

    Seiichi, Koshizuka; Shoji, Matsuura; Mizue, Sekine; Yoshiaki, Oka

    2001-01-01

    A two-dimensional code is developed for molten core-concrete interaction (MCCI) based on Moving Particle Semi-implicit (MPS) method. Heat transfer is calculated without any specific correlations. A particle can be changed to a moving (fluid) or fixed (solid) particle corresponding to its enthalpy, which provide the phase change model for particles. The phase change model is verified by one-dimensional test calculations. Nucleate boiling and radiation heat transfers are considered between the core debris and the water pool. The developed code is applied to SWISS-2 experiment in which stainless steel is used as the melt material. Calculated heat flux to the water pool agrees well with the experiment, though the ablation speed in the concrete is a little slower. A stable crust is formed in a short time after water is poured in and the heat flux to the water pool rapidly decreases. MACE-M0 using corium is also analyzed. The ablation speed of concrete is slower than that of SWISS-2 because of low heat conduction in corium. An unlimited geometry is analyzed by setting the cyclic boundary condition on the sides. When the crust is broken by the decomposition gas, heat transfer to the water pool is kept high for a longer time because the crust re-formation is delayed. (author)

  12. Application of the Particle Swarm Optimization (PSO) technique to the thermal-hydraulics project of a PWR reactor core in reduced scale

    International Nuclear Information System (INIS)

    Lima Junior, Carlos Alberto de Souza

    2008-09-01

    The reduced scale models design have been employed by engineers from several different industries fields such as offshore, spatial, oil extraction, nuclear industries and others. Reduced scale models are used in experiments because they are economically attractive than its own prototype (real scale) because in many cases they are cheaper than a real scale one and most of time they are also easier to build providing a way to lead the real scale design allowing indirect investigations and analysis to the real scale system (prototype). A reduced scale model (or experiment) must be able to represent all physical phenomena that occurs and further will do in the real scale one under operational conditions, e.g., in this case the reduced scale model is called similar. There are some different methods to design a reduced scale model and from those two are basic: the empiric method based on the expert's skill to determine which physical measures are relevant to the desired model; and the differential equation method that is based on a mathematical description of the prototype (real scale system) to model. Applying a mathematical technique to the differential equation that describes the prototype then highlighting the relevant physical measures so the reduced scale model design problem may be treated as an optimization problem. Many optimization techniques as Genetic Algorithm (GA), for example, have been developed to solve this class of problems and have also been applied to the reduced scale model design problem as well. In this work, Particle Swarm Optimization (PSO) technique is investigated as an alternative optimization tool for such problem. In this investigation a computational approach, based on particle swarm optimization technique (PSO), is used to perform a reduced scale two loop Pressurized Water Reactor (PWR) core, considering 100% of nominal power operation on a forced flow cooling circulation and non-accidental operating conditions. A performance comparison

  13. Survey of composite particle models of electroweak interaction

    International Nuclear Information System (INIS)

    Suzuki, Mahiko.

    1992-05-01

    Models of composite weak bosons, the top-condensate model of electroweak interaction and related models we surveyed. Composite weak bosons must be tightly bound with a high compositeness scale in order to generate approximate puge symmetry dynamically. However, naturalness argument suggests that the compositeness scale is low at least in toy models. In the top-condensate model, where a composite Higgs doublet is formed with a very high scale, the prediction of the model is insensitive to details of the model and almost model-independent Actually, the numerical prediction of the t-quark and Higgs boson masses does not test compositeness of the Higgs boson nor condensation of the t-quark field. To illustrate the point, a composite t R -quark model is discussed which leads to the same numerical prediction as the top-condensate model. However, different constraints an imposed on the structure of the Higgs sector, depending on which particles are composite. The attempt to account the large t-b mass splitting by the high compositeness scale of the top-condensate model is reinterpreted in terms of fine tuning of more than one vacuum expectation value. It is difficult to lower, without a fourth generation, the t-quark mass in the composite particle models in general because the Yukawa coupling of the i-quark to the Higgs boson, t2 /4π = 0.1 for m t = 200 GeV, is too small for a coupling of a composite particle

  14. Preparation and characterization of SiO2-coated submicron-sized L10 Fe-Pt particles

    Directory of Open Access Journals (Sweden)

    Yoshiaki Hayashi

    2018-05-01

    Full Text Available The development of magnets with higher performance is attracting increasing interest. The optimization of their microstructure is essential to enhance their properties, and a microstructure comprising magnetically isolated hard magnetic grains of a single-domain size has been proposed as an ideal structure for enhancing the coercivity of magnets. To obtain magnets with an ideal structure, we consider the fabrication of magnets by an approach based on core/shell nanoparticles with a hard magnetic core and a non-magnetic shell. In this study, to obtain particles for our proposed approach, we attempted to fabricate L10 Fe-Pt/SiO2-core/shell particles with submicron-sized cores less than the critical single-domain size. The fabrication of such core/shell particles was confirmed from morphology observations and XRD analysis of the particles. Although the formation of more desirable core/shell particles with submicron-sized single-crystal cores in the single-domain size range was not achieved, the fabricated core/shell particles showed a high coercivity of 25 kOe.

  15. Particle based 3D modeling of positive streamer inception

    NARCIS (Netherlands)

    H.J. Teunissen (Jannis)

    2012-01-01

    htmlabstractIn this report we present a particle based 3D model for the study of streamer inception near positive electrodes in air. The particle code is of the PIC-MCC type and an electrode is included using the charge simulation method. An algorithm for the adaptive creation of super-particles is

  16. Comprehensive Laser-induced Incandescence (LII) modeling for soot particle sizing

    KAUST Repository

    Lisanti, Joel

    2015-03-30

    To evaluate the current state of the art in LII particle sizing, a comprehensive model for predicting the temporal incandescent response of combustion-generated soot to absorption of a pulsed laser is presented. The model incorporates particle heating through laser absorption, thermal annealing, and oxidation at the surface as well as cooling through sublimation and photodesorption, radiation, conduction and thermionic emission. Thermodynamic properties and the thermal accommodation coefficient utilized in the model are temperature dependent. In addition, where appropriate properties are also phase dependent, thereby accounting for annealing effects during laser heating and particle cooling.

  17. Particle simulation models and their application to controlled fusion

    International Nuclear Information System (INIS)

    Okuda, H.

    1977-01-01

    Plasma simulation models using particles are described which have been developed for studying the microscopic behavior of a confined plasma in a magnetic field. The first model is developed to investigate the anomalous diffusion of particles and energy due to low-frequency electrostatic microinstabilities in cylindrical and toroidal systems. The model makes use of the combination of eigenfunction expansion in one direction and the multipole expansion on a two-dimensional spatial grid for solving the Maxwell equations and for pushing particles. The second model is developed to study the neutral beam injection heating of a tokamak plasma taking into account the spatial variation of plasma parameters and the finite ion beam banana orbit. The self-consistent electric and magnetic fields are totally ignored in this model and the Fokker-Planck collisions on the beam ions due to background ions and electrons are built in through the Monte Carlo method

  18. Weibull modeling of particle cracking in metal matrix composites

    International Nuclear Information System (INIS)

    Lewis, C.A.; Withers, P.J.

    1995-01-01

    An investigation into the occurrence of reinforcement cracking within a particulate ZrO 2 /2618 Al alloy metal matrix composite under tensile plastic straining has been carried out, special attention being paid to the dependence of fracture on particle size and shape. The probability of particle cracking has been modeled using a Weibull approach, giving good agreement with the experimental data. Values for the Weibull modulus and the stress required to crack the particles were found to be within the range expected for the cracking of ceramic particles. Additional information regarding the fracture behavior of the particles was provided by in-situ neutron diffraction monitoring of the internal strains, measurement of the variation in the composite Young's modulus with straining and by direct observation of the cracked particles. The values of the particle stress required for the initiation of particle cracking deduced from these supplementary experiments were found to be in good agreement with each other and with the results from the Weibull analysis. Further, it is shown that while both the current experiments, as well as the previous work of others, can be well described by the Weibull approach, the exact values of the Weibull parameters do deduced are very sensitive to the approximations and the assumptions made in constructing the model

  19. Test particle modeling of wave-induced energetic electron precipitation

    International Nuclear Information System (INIS)

    Chang, H.C.; Inan, U.S.

    1985-01-01

    A test particle computer model of the precipitation of radiation belt electrons is extended to compute the dynamic energy spectrum of transient electron fluxes induced by short-duration VLF wave packets traveling along the geomagnetic field lines. The model is adapted to estimate the count rate and associated spectrum of precipitated electrons that would be observed by satellite-based particle detectors with given geometric factor and orientation with respect to the magnetic field. A constant-frequency wave pulse and a lightning-induced whistler wave packet are used as examples of the stimulating wave signals. The effects of asymmetry of particle mirror heights in the two hemispheres and the atmospheric backscatter of loss cone particles on the computed precipitated fluxes are discussed

  20. Wave-particle duality in a quark model

    International Nuclear Information System (INIS)

    Gudder, S.P.

    1984-01-01

    A quark model based on finite-dimensional quantum mechanics is presented. Observables associated with color, flavor, charge, and spin are considered. Using these observables, quark and baryon Hamiltonians are constructed. Wave-particle dualities in this model are pointed out. (Auth.)

  1. Effect of Particle Shape on Mechanical Behaviors of Rocks: A Numerical Study Using Clumped Particle Model

    Science.gov (United States)

    Rong, Guan; Liu, Guang; Zhou, Chuang-bing

    2013-01-01

    Since rocks are aggregates of mineral particles, the effect of mineral microstructure on macroscopic mechanical behaviors of rocks is inneglectable. Rock samples of four different particle shapes are established in this study based on clumped particle model, and a sphericity index is used to quantify particle shape. Model parameters for simulation in PFC are obtained by triaxial compression test of quartz sandstone, and simulation of triaxial compression test is then conducted on four rock samples with different particle shapes. It is seen from the results that stress thresholds of rock samples such as crack initiation stress, crack damage stress, and peak stress decrease with the increasing of the sphericity index. The increase of sphericity leads to a drop of elastic modulus and a rise in Poisson ratio, while the decreasing sphericity usually results in the increase of cohesion and internal friction angle. Based on volume change of rock samples during simulation of triaxial compression test, variation of dilation angle with plastic strain is also studied. PMID:23997677

  2. Effect of particle shape on mechanical behaviors of rocks: a numerical study using clumped particle model.

    Science.gov (United States)

    Rong, Guan; Liu, Guang; Hou, Di; Zhou, Chuang-Bing

    2013-01-01

    Since rocks are aggregates of mineral particles, the effect of mineral microstructure on macroscopic mechanical behaviors of rocks is inneglectable. Rock samples of four different particle shapes are established in this study based on clumped particle model, and a sphericity index is used to quantify particle shape. Model parameters for simulation in PFC are obtained by triaxial compression test of quartz sandstone, and simulation of triaxial compression test is then conducted on four rock samples with different particle shapes. It is seen from the results that stress thresholds of rock samples such as crack initiation stress, crack damage stress, and peak stress decrease with the increasing of the sphericity index. The increase of sphericity leads to a drop of elastic modulus and a rise in Poisson ratio, while the decreasing sphericity usually results in the increase of cohesion and internal friction angle. Based on volume change of rock samples during simulation of triaxial compression test, variation of dilation angle with plastic strain is also studied.

  3. Assessment of particle-tracking models for dispersed particle-laden flows implemented in OpenFOAM and ANSYS FLUENT

    Directory of Open Access Journals (Sweden)

    Franziska Greifzu

    2016-01-01

    Full Text Available In the present study two benchmark problems for turbulent dispersed particle-laden flow are investigated with computational fluid dynamics (CFD. How the CFD programs OpenFOAM and ANSYS FLUENT model these flows is tested and compared. The numerical results obtained with Lagrangian–Eulerian (LE point-particle (PP models for Reynolds-averaged Navier–Stokes (RANS simulations of the fluid flow in steady state and transient modes are compared with the experimental data available in the literature. The effect of the dispersion model on the particle motion is investigated in particular, as well as the order of coupling between the continuous carrier phase and the dispersed phase. First, a backward-facing step (BFS case is validated. As a second case, the confined bluff body (CBB is used. The simulated fluid flows correspond well with the experimental data for both test cases. The results for the dispersed solid phase reveal a good accordance between the simulation results and the experiments. It seems that particle dispersion is slightly under-predicted when ANSYS FLUENT is used, whereas the applied solver in OpenFOAM overestimates the dispersion somewhat. Only minor differences between the coupling schemes are detected due to the low volume fractions and mass loadings that are investigated. In the BFS test case the importance of the spatial dimension of the numerical model is demonstrated. Even if it is reasonable to assume a two-dimensional fluid flow structure, it is crucial to simulate the turbulent particle-laden flow with a three-dimensional model since the turbulent dispersion of the particles is three-dimensional.

  4. Muscle spindles exhibit core lesions and extensive degeneration of intrafusal fibers in the Ryr1I4895T/wt mouse model of core myopathy

    International Nuclear Information System (INIS)

    Zvaritch, Elena; MacLennan, David H.

    2015-01-01

    Muscle spindles from the hind limb muscles of adult Ryr1 I4895T/wt (IT/+) mice exhibit severe structural abnormalities. Up to 85% of the spindles are separated from skeletal muscle fascicles by a thick layer of connective tissue. Many intrafusal fibers exhibit degeneration, with Z-line streaming, compaction and collapse of myofibrillar bundles, mitochondrial clumping, nuclear shrinkage and pyknosis. The lesions resemble cores observed in the extrafusal myofibers of this animal model and of core myopathy patients. Spindle abnormalities precede those in extrafusal fibers, indicating that they are a primary pathological feature in this murine Ryr1-related core myopathy. Muscle spindle involvement, if confirmed for human core myopathy patients, would provide an explanation for an array of devastating clinical features characteristic of these diseases and provide novel insights into the pathology of RYR1-related myopathies. - Highlights: • Muscle spindles exhibit structural abnormalities in a mouse model of core myopathy. • Myofibrillar collapse and mitochondrial clumping is observed in intrafusal fibers. • Myofibrillar degeneration follows a pattern similar to core formation in extrafusal myofibers. • Muscle spindle abnormalities are a part of the pathological phenotype in the mouse model of core myopathy. • Direct involvement of muscle spindles in the pathology of human RYR1-related myopathies is proposed

  5. Multi-core MgO NPs(at)C core-shell nanospheres for selective CO2 capture under mild conditions

    International Nuclear Information System (INIS)

    Tae Kyung Kim; Kyung Joo Lee; Hoi Ri Moon; Junhan Yuh; Sang Kyu Kwak

    2014-01-01

    The core-shell structures have attracted attention in catalysis, because the outer shells isolate the catalytically active NP cores and prevent the possibility of sintering of core particles during catalytic reaction under physically and chemically harsh conditions. We aimed to adopt this core-shell system for CO 2 sorption materials. In this study, a composite material of multi-core 3 nm-sized magnesium oxide nanoparticles embedded in porous carbon nanospheres (MgO NPs(at)C) was synthesized by a gas phase reaction via a solvent-free process. It showed selective CO 2 adsorption capacity over N 2 under mild regeneration conditions. (authors)

  6. The effects of particle recycling on the divertor plasma: A particle-in-cell with Monte Carlo collision simulation

    Science.gov (United States)

    Chang, Mingyu; Sang, Chaofeng; Sun, Zhenyue; Hu, Wanpeng; Wang, Dezhen

    2018-05-01

    A Particle-In-Cell (PIC) with Monte Carlo Collision (MCC) model is applied to study the effects of particle recycling on divertor plasma in the present work. The simulation domain is the scrape-off layer of the tokamak in one-dimension along the magnetic field line. At the divertor plate, the reflected deuterium atoms (D) and thermally released deuterium molecules (D2) are considered. The collisions between the plasma particles (e and D+) and recycled neutral particles (D and D2) are described by the MCC method. It is found that the recycled neutral particles have a great impact on divertor plasma. The effects of different collisions on the plasma are simulated and discussed. Moreover, the impacts of target materials on the plasma are simulated by comparing the divertor with Carbon (C) and Tungsten (W) targets. The simulation results show that the energy and momentum losses of the C target are larger than those of the W target in the divertor region even without considering the impurity particles, whereas the W target has a more remarkable influence on the core plasma.

  7. DCMIP2016: a review of non-hydrostatic dynamical core design and intercomparison of participating models

    Directory of Open Access Journals (Sweden)

    P. A. Ullrich

    2017-12-01

    Full Text Available Atmospheric dynamical cores are a fundamental component of global atmospheric modeling systems and are responsible for capturing the dynamical behavior of the Earth's atmosphere via numerical integration of the Navier–Stokes equations. These systems have existed in one form or another for over half of a century, with the earliest discretizations having now evolved into a complex ecosystem of algorithms and computational strategies. In essence, no two dynamical cores are alike, and their individual successes suggest that no perfect model exists. To better understand modern dynamical cores, this paper aims to provide a comprehensive review of 11 non-hydrostatic dynamical cores, drawn from modeling centers and groups that participated in the 2016 Dynamical Core Model Intercomparison Project (DCMIP workshop and summer school. This review includes a choice of model grid, variable placement, vertical coordinate, prognostic equations, temporal discretization, and the diffusion, stabilization, filters, and fixers employed by each system.

  8. Modeling Correlation Effects in Nickelates with Slave Particles

    Science.gov (United States)

    Georgescu, Alexandru Bogdan; Ismail-Beigi, Sohrab

    Nickelate interfaces display interesting electronic properties including orbital ordering similar to that of cuprate superconductors and thickness dependent metal-insulator transitions. One-particle band theory calculations do not include dynamic localized correlation effects on the nickel sites and thus often incorrectly predict metallic systems or incorrect ARPES spectra. Building on two previous successful slave-particle treatments of local correlations, we present a generalized slave-particle method that includes prior models and allows us to produce new intermediate models. The computational efficiency of these slave-boson methods means that one can readily study correlation effects in complex heterostructures. We show some predictions of these methods for the electronic structure of bulk and thin film nickelates. Work supported by NSF Grant MRSEC DMR-1119826.

  9. Modeling of the core of Atucha II nuclear power plant

    International Nuclear Information System (INIS)

    Blanco, Anibal

    2007-01-01

    This work is part of a Nuclear Engineer degree thesis of the Instituto Balseiro and it is carried out under the development of an Argentinean Nuclear Power Plant Simulator. To obtain the best representation of the reactor physical behavior using the state of the art tools this Simulator should couple a 3D neutronics core calculation code with a thermal-hydraulics system code. Focused in the neutronic nature of this job, using PARCS, we modeled and performed calculations of the nuclear power plant Atucha 2 core. Whenever it is possible, we compare our results against results obtained with PUMA (the official core code for Atucha 2). (author) [es

  10. Improvement of core degradation model in ISAAC

    International Nuclear Information System (INIS)

    Kim, Dong Ha; Kim, See Darl; Park, Soo Yong

    2004-02-01

    If water inventory in the fuel channels depletes and fuel rods are exposed to steam after uncover in the pressure tube, the decay heat generated from fuel rods is transferred to the pressure tube and to the calandria tube by radiation, and finally to the moderator in the calandria tank by conduction. During this process, the cladding will be heated first and ballooned when the fuel gap internal pressure exceeds the primary system pressure. The pressure tube will be also ballooned and will touch the calandria tube, increasing heat transfer rate to the moderator. Although these situation is not desirable, the fuel channel is expected to maintain its integrity as long as the calandria tube is submerged in the moderator, because the decay heat could be removed to the moderator through radiation and conduction. Therefore, loss of coolant and moderator inside and outside the channel may cause severe core damage including horizontal fuel channel sagging and finally loss of channel integrity. The sagged channels contact with the channels located below and lose their heat transfer area to the moderator. As the accident goes further, the disintegrated fuel channels will be heated up and relocated onto the bottom of the calandria tank. If the temperature of these relocated materials is high enough to attack the calandria tank, the calandria tank would fail and molten material would contact with the calandria vault water. Steam explosion and/or rapid steam generation from this interaction may threaten containment integrity. Though a detailed model is required to simulate the severe accident at CANDU plants, complexity of phenomena itself and inner structures as well as lack of experimental data forces to choose a simple but reasonable model as the first step. ISAAC 1.0 was developed to model the basic physicochemical phenomena during the severe accident progression. At present, ISAAC 2.0 is being developed for accident management guide development and strategy evaluation. In

  11. Fast three-dimensional core optimization based on modified one-group model

    Energy Technology Data Exchange (ETDEWEB)

    Freire, Fernando S. [ELETROBRAS Termonuclear S.A. - ELETRONUCLEAR, Rio de Janeiro, RJ (Brazil). Dept. GCN-T], e-mail: freire@eletronuclear.gov.br; Martinez, Aquilino S.; Silva, Fernando C. da [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear], e-mail: aquilino@con.ufrj.br, e-mail: fernando@con.ufrj.br

    2009-07-01

    The optimization of any nuclear reactor core is an extremely complex process that consumes a large amount of computer time. Fortunately, the nuclear designer can rely on a variety of methodologies able to approximate the analysis of each available core loading pattern. Two-dimensional codes are usually used to analyze the loading scheme. However, when particular axial effects are present in the core, two-dimensional analysis cannot produce good results and three-dimensional analysis can be required at all time. Basically, in this paper are presented the major advantages that can be found when one use the modified one-group diffusion theory coupled with a buckling correction model in optimization process. The results of the proposed model are very accurate when compared to benchmark results obtained from detailed calculations using three-dimensional nodal codes (author)

  12. Fast three-dimensional core optimization based on modified one-group model

    International Nuclear Information System (INIS)

    Freire, Fernando S.; Martinez, Aquilino S.; Silva, Fernando C. da

    2009-01-01

    The optimization of any nuclear reactor core is an extremely complex process that consumes a large amount of computer time. Fortunately, the nuclear designer can rely on a variety of methodologies able to approximate the analysis of each available core loading pattern. Two-dimensional codes are usually used to analyze the loading scheme. However, when particular axial effects are present in the core, two-dimensional analysis cannot produce good results and three-dimensional analysis can be required at all time. Basically, in this paper are presented the major advantages that can be found when one use the modified one-group diffusion theory coupled with a buckling correction model in optimization process. The results of the proposed model are very accurate when compared to benchmark results obtained from detailed calculations using three-dimensional nodal codes (author)

  13. Failure mechanisms for compacted uranium oxide fuel cores

    International Nuclear Information System (INIS)

    Berghaus, D.G.; Peacock, H.B.

    1980-01-01

    Tension, compression, and shear tests were performed on test specimens of aluminum-clad, compacted powder fuel cores to determine failure mechanisms of the core material. The core, which consists of 70% uranium oxide in an aluminum matrix, frequently fails during post-extrusion drawing. Tests were conducted to various strain levels up to failure of the core. Sections were made of tested specimens to microscopically study initiation of failure. Two failure modes wee observed. Tensile failure mode is initiated by prior tensile failure of uranium oxide particles with the separation path strongly influenced by the arrangement of particles. Delamination mode consists of the separation of laminae formed during extrusion of tubes. Separation proceeds from fine cracks formed parallel to the laminae. Tensile failure mode was experienced in tension and shear tests. Delamination mode was produced in compression tests

  14. Particle Based Modeling of Electrical Field Flow Fractionation Systems

    Directory of Open Access Journals (Sweden)

    Tonguc O. Tasci

    2015-10-01

    Full Text Available Electrical Field Flow Fractionation (ElFFF is a sub method in the field flow fractionation (FFF family that relies on an applied voltage on the channel walls to effect a separation. ElFFF has fallen behind some of the other FFF methods because of the optimization complexity of its experimental parameters. To enable better optimization, a particle based model of the ElFFF systems has been developed and is presented in this work that allows the optimization of the main separation parameters, such as electric field magnitude, frequency, duty cycle, offset, flow rate and channel dimensions. The developed code allows visualization of individual particles inside the separation channel, generation of realistic fractograms, and observation of the effects of the various parameters on the behavior of the particle cloud. ElFFF fractograms have been generated via simulations and compared with experiments for both normal and cyclical ElFFF. The particle visualizations have been used to verify that high duty cycle voltages are essential to achieve long retention times and high resolution separations. Furthermore, by simulating the particle motions at the channel outlet, it has been demonstrated that the top channel wall should be selected as the accumulation wall for cyclical ElFFF to reduce band broadening and achieve high efficiency separations. While the generated particle based model is a powerful tool to estimate the outcomes of the ElFFF experiments and visualize particle motions, it can also be used to design systems with new geometries which may lead to the design of higher efficiency ElFFF systems. Furthermore, this model can be extended to other FFF techniques by replacing the electrical field component of the model with the fields used in the other FFF techniques.

  15. Modeling reactive transport with particle tracking and kernel estimators

    Science.gov (United States)

    Rahbaralam, Maryam; Fernandez-Garcia, Daniel; Sanchez-Vila, Xavier

    2015-04-01

    Groundwater reactive transport models are useful to assess and quantify the fate and transport of contaminants in subsurface media and are an essential tool for the analysis of coupled physical, chemical, and biological processes in Earth Systems. Particle Tracking Method (PTM) provides a computationally efficient and adaptable approach to solve the solute transport partial differential equation. On a molecular level, chemical reactions are the result of collisions, combinations, and/or decay of different species. For a well-mixed system, the chem- ical reactions are controlled by the classical thermodynamic rate coefficient. Each of these actions occurs with some probability that is a function of solute concentrations. PTM is based on considering that each particle actually represents a group of molecules. To properly simulate this system, an infinite number of particles is required, which is computationally unfeasible. On the other hand, a finite number of particles lead to a poor-mixed system which is limited by diffusion. Recent works have used this effect to actually model incomplete mix- ing in naturally occurring porous media. In this work, we demonstrate that this effect in most cases should be attributed to a defficient estimation of the concentrations and not to the occurrence of true incomplete mixing processes in porous media. To illustrate this, we show that a Kernel Density Estimation (KDE) of the concentrations can approach the well-mixed solution with a limited number of particles. KDEs provide weighting functions of each particle mass that expands its region of influence, hence providing a wider region for chemical reactions with time. Simulation results show that KDEs are powerful tools to improve state-of-the-art simulations of chemical reactions and indicates that incomplete mixing in diluted systems should be modeled based on alternative conceptual models and not on a limited number of particles.

  16. Control of the Speed of a Light-Induced Spin Transition through Mesoscale Core-Shell Architecture.

    Science.gov (United States)

    Felts, Ashley C; Slimani, Ahmed; Cain, John M; Andrus, Matthew J; Ahir, Akhil R; Abboud, Khalil A; Meisel, Mark W; Boukheddaden, Kamel; Talham, Daniel R

    2018-05-02

    The rate of the light-induced spin transition in a coordination polymer network solid dramatically increases when included as the core in mesoscale core-shell particles. A series of photomagnetic coordination polymer core-shell heterostructures, based on the light-switchable Rb a Co b [Fe(CN) 6 ] c · mH 2 O (RbCoFe-PBA) as core with the isostructural K j Ni k [Cr(CN) 6 ] l · nH 2 O (KNiCr-PBA) as shell, are studied using temperature-dependent powder X-ray diffraction and SQUID magnetometry. The core RbCoFe-PBA exhibits a charge transfer-induced spin transition (CTIST), which can be thermally and optically induced. When coupled to the shell, the rate of the optically induced transition from low spin to high spin increases. Isothermal relaxation from the optically induced high spin state of the core back to the low spin state and activation energies associated with the transition between these states were measured. The presence of a shell decreases the activation energy, which is associated with the elastic properties of the core. Numerical simulations using an electro-elastic model for the spin transition in core-shell particles supports the findings, demonstrating how coupling of the core to the shell changes the elastic properties of the system. The ability to tune the rate of optically induced magnetic and structural phase transitions through control of mesoscale architecture presents a new approach to the development of photoswitchable materials with tailored properties.

  17. The Modelling of Particle Resuspension in a Turbulent Boundary Layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan

    2011-10-20

    The work presented concerns the way small particles attached to a surface are resuspended when exposed to a turbulent flow. Of particular concern to this work is the remobilization of radioactive particles as a consequence of potential nuclear accidents. In this particular case the focus is on small particles, < 5 microns in diameter, where the principal force holding such particles onto a surface arises from van der Waals inter-molecular forces. Given its suitable treatment of the microphysics of small particles, it was decided here to aim to develop improved versions of the Rock'n'Roll (R'n'R) model; the R'n'R model is based on a statistical approach to resuspension involving the rocking and rolling of a particle about surface asperities induced by the moments of the fluctuating drag forces acting on the particle close to the surface. Firstly, a force (moment) balance model has been modified by including the distribution of the aerodynamic force instead of considering only its mean value. The R'n'R model is significantly improved by using realistic statistical fluctuations of both the stream-wise fluid velocity and acceleration close to the wall obtained from Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) of turbulent channel flow; in the standard model a major assumption is that these obey a Gaussian distribution. The flow conditions are translated into the moments of the drag force acting on the particle attached to the surface. In so doing the influence of highly non-Gaussian forces on the resuspension rate has been examined along with the sensitivity of the fluctuation statistics to LES and DNS. As a result of the analysis of our DNS/LES data 3 distinct features of the modified R'n'R model have emerged as playing an important part in the resuspension. The first is the typical forcing frequency due to the turbulent aerodynamic drag forces acting on the particle attached to a surface. The

  18. Uncertainty quantification in Eulerian-Lagrangian models for particle-laden flows

    Science.gov (United States)

    Fountoulakis, Vasileios; Jacobs, Gustaaf; Udaykumar, Hs

    2017-11-01

    A common approach to ameliorate the computational burden in simulations of particle-laden flows is to use a point-particle based Eulerian-Lagrangian model, which traces individual particles in their Lagrangian frame and models particles as mathematical points. The particle motion is determined by Stokes drag law, which is empirically corrected for Reynolds number, Mach number and other parameters. The empirical corrections are subject to uncertainty. Treating them as random variables renders the coupled system of PDEs and ODEs stochastic. An approach to quantify the propagation of this parametric uncertainty to the particle solution variables is proposed. The approach is based on averaging of the governing equations and allows for estimation of the first moments of the quantities of interest. We demonstrate the feasibility of our proposed methodology of uncertainty quantification of particle-laden flows on one-dimensional linear and nonlinear Eulerian-Lagrangian systems. This research is supported by AFOSR under Grant FA9550-16-1-0008.

  19. A new model for the simplification of particle counting data

    Directory of Open Access Journals (Sweden)

    M. F. Fadal

    2012-06-01

    Full Text Available This paper proposes a three-parameter mathematical model to describe the particle size distribution in a water sample. The proposed model offers some conceptual advantages over two other models reported on previously, and also provides a better fit to the particle counting data obtained from 321 water samples taken over three years at a large South African drinking water supplier. Using the data from raw water samples taken from a moderately turbid, large surface impoundment, as well as samples from the same water after treatment, typical ranges of the model parameters are presented for both raw and treated water. Once calibrated, the model allows the calculation and comparison of total particle number and volumes over any randomly selected size interval of interest.

  20. Transient core-debris bed heat-removal experiments and analysis

    International Nuclear Information System (INIS)

    Ginsberg, T.; Klein, J.; Klages, J.; Schwarz, C.E.; Chen, J.C.

    1982-08-01

    An experimental investigation is reported of the thermal interaction between superheated core debris and water during postulated light-water reactor degraded core accidents. Data are presented for the heat transfer characteristics of packed beds of 3 mm spheres which are cooled by overlying pools of water. Results of transient bed temperature and steam flow rate measurements are presented for bed heights in the range 218 mm-433 mm and initial particle bed temperatures between 530K and 972K. Results display a two-part sequential quench process. Initial frontal cooling leaves pockets or channels of unquenched spheres. Data suggest that heat transfer process is limited by a mechanism of countercurrent two-phase flow. An analytical model which combines a bed energy equation with either a quasisteady version of the Lipinski debris bed model or a critical heat flux model reasonably well predicts the characteristic features of the bed quench process. Implications with respect to reactor safety are discussed

  1. Advances in Bayesian Model Based Clustering Using Particle Learning

    Energy Technology Data Exchange (ETDEWEB)

    Merl, D M

    2009-11-19

    Recent work by Carvalho, Johannes, Lopes and Polson and Carvalho, Lopes, Polson and Taddy introduced a sequential Monte Carlo (SMC) alternative to traditional iterative Monte Carlo strategies (e.g. MCMC and EM) for Bayesian inference for a large class of dynamic models. The basis of SMC techniques involves representing the underlying inference problem as one of state space estimation, thus giving way to inference via particle filtering. The key insight of Carvalho et al was to construct the sequence of filtering distributions so as to make use of the posterior predictive distribution of the observable, a distribution usually only accessible in certain Bayesian settings. Access to this distribution allows a reversal of the usual propagate and resample steps characteristic of many SMC methods, thereby alleviating to a large extent many problems associated with particle degeneration. Furthermore, Carvalho et al point out that for many conjugate models the posterior distribution of the static variables can be parametrized in terms of [recursively defined] sufficient statistics of the previously observed data. For models where such sufficient statistics exist, particle learning as it is being called, is especially well suited for the analysis of streaming data do to the relative invariance of its algorithmic complexity with the number of data observations. Through a particle learning approach, a statistical model can be fit to data as the data is arriving, allowing at any instant during the observation process direct quantification of uncertainty surrounding underlying model parameters. Here we describe the use of a particle learning approach for fitting a standard Bayesian semiparametric mixture model as described in Carvalho, Lopes, Polson and Taddy. In Section 2 we briefly review the previously presented particle learning algorithm for the case of a Dirichlet process mixture of multivariate normals. In Section 3 we describe several novel extensions to the original

  2. Smoothed Particle Hydro-dynamic Analysis of Improvement in Sludge Conveyance Efficiency of Screw Decanter Centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dae Woong [Korea Testing and Research Institute, Kwachun (Korea, Republic of)

    2015-03-15

    A centrifuge works on the principle that particles with different densities will separate at a rate proportional to the centrifugal force during high-speed rotation. Dense particles are quickly precipitated, and particles with relatively smaller densities are precipitated more slowly. A decanter-type centrifuge is used to remove, concentrate, and dehydrate sludge in a water treatment process. This is a core technology for measuring the sludge conveyance efficiency improvement. In this study, a smoothed particle hydro-dynamic analysis was performed for a decanter centrifuge used to convey sludge to evaluate the efficiency improvement. This analysis was applied to both the original centrifugal model and the design change model, which was a ball-plate rail model, to evaluate the sludge transfer efficiency.

  3. Smoothed Particle Hydro-dynamic Analysis of Improvement in Sludge Conveyance Efficiency of Screw Decanter Centrifuge

    International Nuclear Information System (INIS)

    Park, Dae Woong

    2015-01-01

    A centrifuge works on the principle that particles with different densities will separate at a rate proportional to the centrifugal force during high-speed rotation. Dense particles are quickly precipitated, and particles with relatively smaller densities are precipitated more slowly. A decanter-type centrifuge is used to remove, concentrate, and dehydrate sludge in a water treatment process. This is a core technology for measuring the sludge conveyance efficiency improvement. In this study, a smoothed particle hydro-dynamic analysis was performed for a decanter centrifuge used to convey sludge to evaluate the efficiency improvement. This analysis was applied to both the original centrifugal model and the design change model, which was a ball-plate rail model, to evaluate the sludge transfer efficiency.

  4. Modeling of impurity transport in the core plasma

    International Nuclear Information System (INIS)

    Hulse, R.A.

    1992-01-01

    This paper presents a brief overview of computer modeling of impurity transport in the core region of controlled thermonuclear fusion plasmas. The atomic processes of importance in these high temperature plasmas and the numerical formulation of the model are described. Selected modeling examples are then used to highlight some features of the physics of impurity behavior in large tokamak fusion devices, with an emphasis on demonstrating the sensitivity of such modeling to uncertainties in the rate coefficients used for the atomic processes. This leads to a discussion of current requirements and opportunities for generating the improved sets of comprehensive atomic data needed to support present and future fusion impurity modeling studies

  5. One particle-hole excitations in p- and fp-shell nuclei

    International Nuclear Information System (INIS)

    Hees, A.G.M. van.

    1982-01-01

    Results are presented of shell model calculations of medium and light atomic nuclei. The influence of the allowance of one particle-hole excitations is investigated. This enables improved descriptions of intermediate mass nuclei in the fp-shell. For light p-shell nuclei one particle-hole excitations create exclusively situations with abnormal parity. The description of situations with normal parity is not changed by enlarging the model space. In the first chapter shell-model calculations are performed on the light Ni-isotopes (A = 57-59). One nucleon is allowed to be excited from the fsub(7/2) orbit to one of the other fp-shell orbits. The general observation in the enlarged model space is that one can use operators that require a much weaker 'renormalization' and the calculation requires only a selected set of matrix elements of the Hamiltonian. An additional advantage of the inclusion of one particle-hole excitations is that it allows a description of several intruder states, i.e. states that cannot be produced with the assumption of a closed 56 Ni core. In the second chapter the nuclei with mass number A = 52-55, i.e. a small number of holes in the 56 Ni core, are investigated similarly. In the third chapter much lighter nuclei (A = 4-16) are discussed. For a theoretical description of nonnormal-parity states one has to admit the excitation of at least one nucleon to a higher harmonic-oscillator major-shell. (Auth.)

  6. High mobility group protein number17 cross-links primarily to histone H2A in the reconstituted HMG 17 - nucleosome core particle complex

    International Nuclear Information System (INIS)

    Cook, G.R.; Yau, P.; Yasuda, H.; Traut, R.R.; Bradbury, E.M.

    1986-01-01

    The neighbor relationship of lamb thymus High Mobility Group (HMG) protein 17 to native HeLa nucleosome core particle histones in the reconstituted complex has been studied. 125 I-labeled HMG 17 was cross-linking to core histones using the protein-protein cross-linking reagent 2-iminothiolane. Specific cross-linked products were separated on a two-dimensional Triton-acid-urea/SDS gel system, located by autoradiography, excised and quantified. Disulfide bonds in the cross links were then cleaved and the protein constituents were identified by SDS gel electrophoresis. HMG 17 cross-linked primarily to histone H2A while lower levels of cross-linking occurred between HMG 17 and the other histones. In contrast, cross-linking between two HMG 17 molecules bound on the same nucleosome was relatively rare. It is concluded that the same nucleosome was relatively rare. It is concluded that H2A comprises part of the HMG 17 binding site but that HMG 17 is sufficiently elongated and mobile to permit cross-linking to the other histones and to a second HMG 17 molecule. These results are in agreement with the current model for the structure of the nucleosome and the proposed binding sites for HMG 17

  7. Rapid core field variations during the satellite era: Investigations using stochastic process based field models

    DEFF Research Database (Denmark)

    Finlay, Chris; Olsen, Nils; Gillet, Nicolas

    We present a new ensemble of time-dependent magnetic field models constructed from satellite and observatory data spanning 1997-2013 that are compatible with prior information concerning the temporal spectrum of core field variations. These models allow sharper field changes compared to tradition...... physical hypotheses can be tested by asking questions of the entire ensemble of core field models, rather than by interpreting any single model.......We present a new ensemble of time-dependent magnetic field models constructed from satellite and observatory data spanning 1997-2013 that are compatible with prior information concerning the temporal spectrum of core field variations. These models allow sharper field changes compared to traditional...... regularization methods based on minimizing the square of second or third time derivative. We invert satellite and observatory data directly by adopting the external field and crustal field modelling framework of the CHAOS model, but apply the stochastic process method of Gillet et al. (2013) to the core field...

  8. Hyper-heuristic applied to nuclear reactor core design

    International Nuclear Information System (INIS)

    Domingos, R P; Platt, G M

    2013-01-01

    The design of nuclear reactors gives rises to a series of optimization problems because of the need for high efficiency, availability and maintenance of security levels. Gradient-based techniques and linear programming have been applied, as well as genetic algorithms and particle swarm optimization. The nonlinearity, multimodality and lack of knowledge about the problem domain makes de choice of suitable meta-heuristic models particularly challenging. In this work we solve the optimization problem of a nuclear reactor core design through the application of an optimal sequence of meta-heuritics created automatically. This combinatorial optimization model is known as hyper-heuristic.

  9. Pseudoclassical supergauge model for a (2 + 1) Dirac particle

    International Nuclear Information System (INIS)

    Gitman, D.M.; Gonsalves, A.E.; Tyhtin, I.V.

    1997-01-01

    A new pseudo-classical supergauge model of the Dirac particle in 2 + 1 dimensions is proposed. Two ways of its quantization are discussed. Both reproduce the minimal quantum theory of the particle. 24 refs

  10. Core-Shell Structured Electro- and Magneto-Responsive Materials: Fabrication and Characteristics

    Directory of Open Access Journals (Sweden)

    Hyoung Jin Choi

    2014-11-01

    Full Text Available Core-shell structured electrorheological (ER and magnetorheological (MR particles have attracted increasing interest owing to their outstanding field-responsive properties, including morphology, chemical and dispersion stability, and rheological characteristics of shear stress and yield stress. This study covers recent progress in the preparation of core-shell structured materials as well as their critical characteristics and advantages. Broad emphasises from the synthetic strategy of various core-shell particles to their feature behaviours in the magnetic and electric fields have been elaborated.

  11. A-DROP: A predictive model for the formation of oil particle aggregates (OPAs)

    Science.gov (United States)

    Zhao, Lin; Boufadel, Michel C.; Geng, Xiaolong; Lee, Kenneth; King, Thomas; Robinson, Brian; Fitzpatrick, Faith A.

    2016-01-01

    Oil–particle interactions play a major role in removal of free oil from the water column. We present a new conceptual–numerical model, A-DROP, to predict oil amount trapped in oil–particle aggregates. A new conceptual formulation of oil–particle coagulation efficiency is introduced to account for the effects of oil stabilization by particles, particle hydrophobicity, and oil–particle size ratio on OPA formation. A-DROP was able to closely reproduce the oil trapping efficiency reported in experimental studies. The model was then used to simulate the OPA formation in a typical nearshore environment. Modeling results indicate that the increase of particle concentration in the swash zone would speed up the oil–particle interaction process; but the oil amount trapped in OPAs did not correspond to the increase of particle concentration. The developed A-DROP model could become an important tool in understanding the natural removal of oil and developing oil spill countermeasures by means of oil–particle aggregation.

  12. A model study of aggregates composed of spherical soot monomers with an acentric carbon shell

    Science.gov (United States)

    Luo, Jie; Zhang, Yongming; Zhang, Qixing

    2018-01-01

    Influences of morphology on the optical properties of soot particles have gained increasing attentions. However, studies on the effect of the way primary particles are coated on the optical properties is few. Aimed to understand how the primary particles are coated affect the optical properties of soot particles, the coated soot particle was simulated using the acentric core-shell monomers model (ACM), which was generated by randomly moving the cores of concentric core-shell monomers (CCM) model. Single scattering properties of the CCM model with identical fractal parameters were calculated 50 times at first to evaluate the optical diversities of different realizations of fractal aggregates with identical parameters. The results show that optical diversities of different realizations for fractal aggregates with identical parameters cannot be eliminated by averaging over ten random realizations. To preserve the fractal characteristics, 10 realizations of each model were generated based on the identical 10 parent fractal aggregates, and then the results were averaged over each 10 realizations, respectively. The single scattering properties of all models were calculated using the numerically exact multiple-sphere T-matrix (MSTM) method. It is found that the single scattering properties of randomly coated soot particles calculated using the ACM model are extremely close to those using CCM model and homogeneous aggregate (HA) model using Maxwell-Garnett effective medium theory. Our results are different from previous studies. The reason may be that the differences in previous studies were caused by fractal characteristics but not models. Our findings indicate that how the individual primary particles are coated has little effect on the single scattering properties of soot particles with acentric core-shell monomers. This work provides a suggestion for scattering model simplification and model selection.

  13. Drift of suspended ferromagnetic particles due to the Magnus effect

    Science.gov (United States)

    Denisov, S. I.; Pedchenko, B. O.

    2017-01-01

    A minimal system of equations is introduced and applied to study the drift motion of ferromagnetic particles suspended in a viscous fluid and subjected to a time-periodic driving force and a nonuniformly rotating magnetic field. It is demonstrated that the synchronized translational and rotational oscillations of these particles are accompanied by their drift in a preferred direction, which occurs under the action of the Magnus force. We calculate both analytically and numerically the drift velocity of particles characterized by single-domain cores and nonmagnetic shells and show that there are two types of drift, unidirectional and bidirectional, which can be realized in suspensions composed of particles with different core-shell ratios. The possibility of using the phenomenon of bidirectional drift for the separation of core-shell particles in suspensions is also discussed.

  14. The 5th Generation model of Particle Physics

    Science.gov (United States)

    Lach, Theodore

    2009-05-01

    The Standard model of Particle Physics is able to account for all known HEP phenomenon, yet it is not able to predict the masses of the quarks or leptons nor can it explain why they have their respective values. The Checker Board Model (CBM) predicts that there are 5 generation of quarks and leptons and shows a pattern to those masses, namely each three quarks or leptons (within adjacent generations or within a generation) are related to each other by a geometric mean relationship. A 2D structure of the nucleus can be imaged as 2D plate spinning on its axis, it would for all practical circumstances appear to be a 3D object. The masses of the hypothesized ``up'' and ``dn'' quarks determined by the CBM are 237.31 MeV and 42.392 MeV respectively. These new quarks in addition to a lepton of 7.4 MeV make up one of the missing generations. The details of this new particle physics model can be found at the web site: checkerboard.dnsalias.net. The only areas were this theory conflicts with existing dogma is in the value of the mass of the Top quark. The particle found at Fermi Lab must be some sort of composite particle containing Top quarks.

  15. Prototype models for particle structure in gauge supersymmetry

    International Nuclear Information System (INIS)

    Nath, P.; Arnowitt, R.

    1981-01-01

    Particle content in prototype models of gauge supersymmetry is examined. The properties of the prototype models which are in common with those of gauge supersymmetries are the initial non-diagonality of the quadratic part of the action, global supersymmetry invariance and the existence of a mass parameter in the quadratic part of the action. The analysis exhibits the particle content of prototype models to consist of normal poles and sets of complex conjugate poles on the physical sheet. Diagonalization of the hamiltonian can be carried out for such systems (in contrast to the prototype model of conformal supergravity where dipole ghosts arose). Essentially the pole structure observed in the prototype models of gauge supersymmetry is the supersymmetric analogue of the Lee-Wick phenomenon where the normal and the complex conjugate poles form global multiplets. (orig.)

  16. PENGARUH TECHNOLOGY ACCEPTANCE MODEL DAN PENGEMBANGANNYA DALAM PERILAKU MENGGUNAKAN CORE BANKING SYSTEM

    Directory of Open Access Journals (Sweden)

    Dessanti Putri Sekti Ari

    2017-03-01

    Full Text Available The purpose of this study was to examine the antecedents that affected the acceptance of individuals in using theCore Banking System through the constructs Technology Acceptance Model and its development. Constructsused in this study were perceived usefulness, perceived ease of use, attitude, social influences, behavioral inten-tion, facilitating conditions, and behavior. Data were collected through survey methods. The samples of thisstudy were employees working in commercial banks in Malang Raya. This study used 136 respondents and wasanalyzed by smart PLS. The result of this study was that the construct of perceived usefulness and perceived easeof use in the Technology Acceptance Model affected attitude and behavior. Attitude and behavior in the Technol-ogy Acceptance Model and social influence which was the development of the Technology Acceptance Modelaffected behavioral intention to use the Core Banking System, as well as the construct of behavioral intention inTechnology Acceptance Model affected behavior, whereas construct of facilitating conditions which was thedevelopment of the Technology Acceptance Model did not affect the behavior on using the Core Banking System.

  17. Modeling of melt retention in EU-APR1400 ex-vessel core catcher

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, V. S.; Sulatsky, A. A.; Khabensky, V. B.; Sulatskaya, M. B. [Alexandrov Research Inst. of Technology NITI, Sosnovy Bor (Russian Federation); Gusarov, V. V.; Almyashev, V. I.; Komlev, A. A. [Saint Petersburg State Technological Univ. SPbSTU, St.Petersburg (Russian Federation); Bechta, S. [KTH, Stockholm (Sweden); Kim, Y. S. [KHNP, 1312 Gil 70, Yuseongdaero, Yuseong-gu, Daejeon (Korea, Republic of); Park, R. J.; Kim, H. Y.; Song, J. H. [KAERI, 989 Gil 111, Daedeokdaero, Yuseong-gu, Daejeon (Korea, Republic of)

    2012-07-01

    A core catcher is adopted in the EU-APR1400 reactor design for management and mitigation of severe accidents with reactor core melting. The core catcher concept incorporates a number of engineering solutions used in the catcher designs of European EPR and Russian WER-1000 reactors, such as thin-layer corium spreading for better cooling, retention of the melt in a water-cooled steel vessel, and use of sacrificial material (SM) to control the melt properties. SM is one of the key elements of the catcher design and its performance is critical for melt retention efficiency. This SM consists of oxide components, but the core catcher also includes sacrificial steel which reacts with the metal melt of the molten corium to reduce its temperature. The paper describes the required properties of SM. The melt retention capability of the core catcher can be confirmed by modeling the heat fluxes to the catcher vessel to show that it will not fail. The fulfillment of this requirement is demonstrated on the example of LBLOCA severe accident. Thermal and physicochemical interactions between the oxide and metal melts, interactions of the melts with SM, sacrificial steel and vessel, core catcher external cooling by water and release of non-condensable gases are modeled. (authors)

  18. Ab Initio Study of 40Ca with an Importance Truncated No-Core Shell Model

    Energy Technology Data Exchange (ETDEWEB)

    Roth, R; Navratil, P

    2007-05-22

    We propose an importance truncation scheme for the no-core shell model, which enables converged calculations for nuclei well beyond the p-shell. It is based on an a priori measure for the importance of individual basis states constructed by means of many-body perturbation theory. Only the physically relevant states of the no-core model space are considered, which leads to a dramatic reduction of the basis dimension. We analyze the validity and efficiency of this truncation scheme using different realistic nucleon-nucleon interactions and compare to conventional no-core shell model calculations for {sup 4}He and {sup 16}O. Then, we present the first converged calculations for the ground state of {sup 40}Ca within no-core model spaces including up to 16{h_bar}{Omega}-excitations using realistic low-momentum interactions. The scheme is universal and can be easily applied to other quantum many-body problems.

  19. A benchmark for coupled thermohydraulics system/three-dimensional neutron kinetics core models

    International Nuclear Information System (INIS)

    Kliem, S.

    1999-01-01

    During the last years 3D neutron kinetics core models have been coupled to advanced thermohydraulics system codes. These coupled codes can be used for the analysis of the whole reactor system. Although the stand-alone versions of the 3D neutron kinetics core models and of the thermohydraulics system codes generally have a good verification and validation basis, there is a need for additional validation work. This especially concerns the interaction between the reactor core and the other components of a nuclear power plant (NPP). In the framework of the international 'Atomic Energy Research' (AER) association on VVER Reactor Physics and Reactor Safety, a benchmark for these code systems was defined. (orig.)

  20. Probabilistic Models for Solar Particle Events

    Science.gov (United States)

    Adams, James H., Jr.; Dietrich, W. F.; Xapsos, M. A.; Welton, A. M.

    2009-01-01

    Probabilistic Models of Solar Particle Events (SPEs) are used in space mission design studies to provide a description of the worst-case radiation environment that the mission must be designed to tolerate.The models determine the worst-case environment using a description of the mission and a user-specified confidence level that the provided environment will not be exceeded. This poster will focus on completing the existing suite of models by developing models for peak flux and event-integrated fluence elemental spectra for the Z>2 elements. It will also discuss methods to take into account uncertainties in the data base and the uncertainties resulting from the limited number of solar particle events in the database. These new probabilistic models are based on an extensive survey of SPE measurements of peak and event-integrated elemental differential energy spectra. Attempts are made to fit the measured spectra with eight different published models. The model giving the best fit to each spectrum is chosen and used to represent that spectrum for any energy in the energy range covered by the measurements. The set of all such spectral representations for each element is then used to determine the worst case spectrum as a function of confidence level. The spectral representation that best fits these worst case spectra is found and its dependence on confidence level is parameterized. This procedure creates probabilistic models for the peak and event-integrated spectra.