WorldWideScience

Sample records for particle-beam fusion research

  1. Pulsed power particle beam fusion research

    International Nuclear Information System (INIS)

    Yonas, G.

    1979-01-01

    Although substantial progress has been made in the last few years in developing the technology of intense particle beam drivers, there are still several unanswered questions which will determine their ultimate feasibility as fusion ignition systems. The questions of efficiency, cost, and single pulse scalability appear to have been answered affirmatively but repetitive pulse technology is still in its infancy. The allowable relatively low pellet gains and high available beam energies should greatly ease questions of pellet implosion physics. Insofar as beam-target coupling is concerned, ion deposition is thought to be understood and our measurements of enhanced electron deposition agree with theory. With the development of plasma discharges for intense beam transport and concentration it appears that light ion beams will be the preferred approach for reactors

  2. Achievements and challenges in particle beam fusion research

    International Nuclear Information System (INIS)

    Yonas, G.

    1978-01-01

    Recent developments in particle beam fusion research, as well as critical issues which remain to be solved are summarized. Until now primary emphasis has been on driver development, but as sources have increased in energy output and intensity and diagnostic techniques have improved, implosion studies have been initiated

  3. Sandia's recent results in particle beam fusion research

    International Nuclear Information System (INIS)

    Yonas, G.

    Sandia's latest achievements in the particle beam fusion program are enumerated and pulse power accelerators offering a route to an experimental reactor ignition system are discussed. Four interdependent elements of the program are investigated: 1) power concentration and dielectric breakdown, 2) beam focusing and transport, 3) beam target interaction, and 4) implosion hydrodynamics. Results of the spherical target irradiation experiment on the 1 TW Proto I accelerator and the successful neutron production experiment using the 0.25 TW electron beam from the Rehyd generator are reported. Beam propagation in plasma discharge channels and magnetically insulated vacuum transmission lines have been tested as alternative ways of the power transport. The first-time operation of the Proto II accelerator at 6 TW level is the first step in scaling of intense particle accelerators to higher power levels. (J.U.)

  4. Particle beam fusion progress report January 1979 through June 1979

    International Nuclear Information System (INIS)

    1980-10-01

    The following chapters are included: (1) fusion target studies, (2) target experiments, (3) particle beam source development, (4) particle beam experiments, (5) pulsed power research and development, (6) pulsed fusion applications, and (7) electron beam fusion accelerator project

  5. Automatic calibration and signal switching system for the particle beam fusion research data acquisition facility

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, W.B.

    1979-09-01

    This report describes both the hardware and software components of an automatic calibration and signal system (Autocal) for the data acquisition system for the Sandia particle beam fusion research accelerators Hydra, Proto I, and Proto II. The Autocal hardware consists of off-the-shelf commercial equipment. The various hardware components, special modifications and overall system configuration are described. Special software has been developed to support the Autocal hardware. Software operation and maintenance are described.

  6. Automatic calibration and signal switching system for the particle beam fusion research data acquisition facility

    International Nuclear Information System (INIS)

    Boyer, W.B.

    1979-09-01

    This report describes both the hardware and software components of an automatic calibration and signal system (Autocal) for the data acquisition system for the Sandia particle beam fusion research accelerators Hydra, Proto I, and Proto II. The Autocal hardware consists of off-the-shelf commercial equipment. The various hardware components, special modifications and overall system configuration are described. Special software has been developed to support the Autocal hardware. Software operation and maintenance are described

  7. Sandia's Particle Beam Fusion Program

    International Nuclear Information System (INIS)

    Sweeney, M.A.

    1979-01-01

    Sandia's Particle Beam Fusion Program is investigating pulsed electron and light ion beam accelerators, with the goal of demonstrating the practical application of such drivers as igniters in inertial confinement fusion (ICF) reactors. Recent developments in the program are described. Traditionally, two requirements of ICF reactor operation have been the most difficult to satisfy in conceptual designs. Adequate standoff of critical components from damaging pellet emissions must be assured, and the shot repetition rate must be consistent with the desired reactor power level at reasonable pellet gains. Progress in power compression, beam focusing and transport, first-wall protection schemes, and net-energy-gain target design shows how these requirements can be met

  8. Particle beam fusion progress report, January-June 1980

    International Nuclear Information System (INIS)

    1981-05-01

    An overview and technical summaries are given for research progress in each of the following general areas: (1) fusion target studies; (2) target experiments; (3) particle beam source theory; (4) diagnostics development; (5) particle beam experiments; (6) pulsed power research and development; (7) pulse power application; and (8) Electron Beam Fusion Accelerator project

  9. Engineering aspects of particle beam fusion systems

    International Nuclear Information System (INIS)

    Cook, D.L.

    1982-01-01

    The Department of Energy is supporting research directed toward demonstration of DT fuel ignition in an Inertial Confinement Fusion (ICF) capsule. As part of the ICF effort, two major Particle Beam Fusion Accelerators (PBFA I and II) are being developed at Sandia National Laboratories with the objective of providing energetic light ion beams of sufficient power density for target implosion. Supporting light ion beam research is being performed at the Naval Research Laboratory and at Cornell University. If the answers to several key physics and engineering questions are favorable, pulsed power accelerators will be able to provide an efficient and inexpensive approach to high target gain and eventual power production applications

  10. Sandia's recent results in particle beam research

    International Nuclear Information System (INIS)

    Yonas, G.

    1977-01-01

    Recent results in the Sandia particle beam fusion research program are briefly discussed. Ignition of pellet fusion targets by both electron and ion beams are under study. Power concentration, dielectric breakdown, diode optimization, and beam-target interaction experiments are briefly described. Magnetic insulation considerations are discussed. Efforts to utilize higher impedance diode sources and reduce minimum power pulse widths are described. Analyses indicate that particle beam ignition systems might yield pellet gains greater than 10 in hybrid and approximately 100 in pure fusion reactors. A bibliography of 23 references is included

  11. Lasers and particle beam for fusion and strategic defense

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    This special issue of the Journal of Fusion Energy consists of the edited transscripts of a symposium on the applications of laser and particle beams to fusion and strategic defense. Its eleven papers discuss these topics: the Strategic Defense Initiative; accelerators for heavy ion fusion; rf accelerators for fusion and strategic defense; Pulsed power, ICF, and the Strategic Defense Initiative; chemical lasers; the feasibility of KrF lasers for fusion; the damage resistance of coated optic; liquid crystal devices for laser systems; fusion neutral-particle beam research and its contribution to the Star Wars program; and induction linacs and free electron laser amplifiers for ICF devices and directed-energy weapons

  12. Pulsed power accelerators for particle beam fusion

    International Nuclear Information System (INIS)

    Martin, T.H.; Barr, G.W.; VanDevender, J.P.; White, R.A.; Johnson, D.L.

    1980-01-01

    Sandia National Laboratories is completing the construction phase of the Particle Beam Fusion Accelerator-I (PBFA-I). Testing of the 36 module, 30 TW, 1 MJ output accelerator is in the initial stages. The 4 MJ, PBFA Marx generator has provided 3.6 MA into water-copper sulfate load resistors with a spread from first to last Marx firing between 15 to 25 ns and an output power of 5.7 TW. This accelerator is a modular, lower voltage, pulsed power device that is capable of scaling to power levels exceeding 100 TW. The elements of the PBFA technology and their integration into an accelerator system for particle beam fusion will be discussed

  13. Engineering aspects of particle-beam fusion systems

    International Nuclear Information System (INIS)

    Cook, D.L.

    1982-01-01

    The Department of Energy is supporting research directed toward demonstration of DT fuel ignition in an Inertial Confinement Fusion (ICF) capsule. As part of the ICF effort, two major Particle Beam Fusion Accelerators (PBFA I and II) are being developed at Sandia National Laboratories with the objective of providing energetic light ion beams of sufficient power density for target implosion. Supporting light ion beam research is being performed at the Naval Research Laboratory and at Cornell University. If the answers to several key physics and engineering questions are favorable, pulsed power accelerators will be able to provide an efficient and inexpensive approach to high target gain and eventual power production applications

  14. Progress toward fusion with particle beams

    International Nuclear Information System (INIS)

    Kuswa, G.W.; Bieg, K.W.; Burns, E.J.T.

    1979-01-01

    This report discusses ion beam diodes which use insulating magnetic fields produced by coil systems. The development of ion diodes to produce light ion beams for fusion pellet ignition is briefly reviewed. The major goals for the light ion effort, which include the development of an ion diode to provide several TW/cm 2 , are discussed. The necessity to design ion sources which provide a prompt and uniform plasma layer when the diode voltage uses, in order to minimize electron loss and anode damage, is noted. Results of a number of materials and configurations tested for ion sources are reported. Numerical calculations are performed to investigate diode behavior. Future work on diodes with extracted beams is mentioned

  15. Particle beam fusion progress report for 1989

    International Nuclear Information System (INIS)

    Sweeney, M.A.

    1994-08-01

    This report summarizes the progress on the pulsed power approach to inertial confinement fusion. In 1989, the authors achieved a proton focal intensity of 5 TW/cm 2 on PBFA-II in a 15-cm-radius applied magnetic-field (applied-B) ion diode. This is an improvement by a factor of 4 compared to previous PBFA-II experiments. They completed development of the three-dimensional (3-D), electromagnetic, particle-in-cell code QUICKSILVER and obtained the first 3-D simulations of an applied-B ion diode. The simulations, together with analytic theory, suggest that control of electromagnetic instabilities could reduce ion divergence. In experiments using a lithium fluoride source, they delivered 26 kJ of lithium energy to the diode axis. Rutherford-scattered ion diagnostics have been developed and tested using a conical foil located inside the diode. They can now obtain energy density profiles by using range filters and recording ion images on nuclear track recording film. Timing uncertainties in power flow experiments on PBFA-II have been reduced by a factor of 5. They are investigating three plasma opening switches that use magnetic fields to control and confine the injected plasma. These new switches provide better power flow than the standard plasma erosion switch. Advanced pulsed-power fusion drivers will require extraction-geometry applied-B ion diodes. During this reporting period, progress was made in evaluating the generation, transport, and focus of multiple ion beams in an extraction geometry and in assessing the probable damage to a target chamber first wall

  16. Soviet exoatmospheric neutral particle beam research

    International Nuclear Information System (INIS)

    Leiss, J.E.; Abrams, R.H.; Ehlers, K.W.; Farrell, J.A.; Gillespie, G.H.; Jameson, R.A.; Keefe, D.; Parker, R.K.

    1988-02-01

    This technical assessment was performed by a panel of eight U.S. scientists and engineers who are familiar with Soviet research through their own research experience, their knowledge of the published scientific literature and conference proceedings, and personal contacts with Soviet scientists and other foreign colleagues. Most of the technical components of a neutral particle beam generating system including the ion source, the accelerator, the accelerator radio frequency power supply, the beam conditioning and aiming system, and the beam neutralizer system are addressed. It does not address a number of other areas important to an exoatmospheric neutral beam system

  17. Technical review of the Sandia Laboratories' Particle Beam Fusion Program

    International Nuclear Information System (INIS)

    1979-01-01

    This report considers the technical aspects of Sandia Laboratories' Particle Beam Fusion Program and examines the program's initial goals, the progress made to date towards reaching those goals, and the future plans or methods of reaching those original or modified goals. A summary of Sandia Laboratories' effort, which seeks to demonstrate that high voltage pulsed power generated high-current electron or light ion beams can be used to ignite a deuterium or tritium pellet, is provided. A brief review and assessment of the Sandia Pulse Power Program is given. Several critical issues and summaries of the committee members' opinions are discussed

  18. Particle beam fusion. Progress report, April 1978-December 1978

    International Nuclear Information System (INIS)

    1979-12-01

    During this period substantial improvements in the theoretical basis for particle beam fusion as well as the execution of critical experiments were instrumental in further definition of the optimum route to our goals of demonstrating scientific and practical feasibility. The major emphasis in the program continues to be focused primarily on issues of power concentration and energy deposition of intense particle beams in solid targets. This utilization of program resources is directed toward conducting significant target implosion and thermonuclear burn experiments using EBFA-I (1 MJ) in the 1981-1983 time period. This step, using EBFA-I, will then set the stage for net energy gain experiments to follow on EBFA-II (> 2 MJ) after 1985. Current program emphasis and activities differ substantially from those stressed in the laser approaches to inertial confinement fusion. Here the critical issues relate to delivering the needed power densities and energies to appropriate targets and to insure that the coupling of energy is efficient and matches target requirements

  19. Particle-beam-fusion progress report, July 1979 through December 1979

    International Nuclear Information System (INIS)

    1981-01-01

    The following chapters are included in this semi-annual progress report: (1) fusion target studies, (2) target experiments, (3) particle-beam source developments, (4) particle beam experiments, (5) pulsed power, (6) pulsed power applications, and (7) electron beam fusion accelerator project

  20. Fusion reactor development using high power particle beams

    International Nuclear Information System (INIS)

    Ohara, Y.

    1990-01-01

    The present paper outlines major applications of the ion source/accelerator to fusion research and also addresses the present status and future plans for accelerator development. Applications of ion sources/accelerators for fusion research are discussed first, focusing on plasma heating, plasma current drive, plasma current profile control, and plasma diagnostics. The present status and future plan of ion sources/accelerators development are then described focusing on the features of existing and future tokamak equipment. Positive-ion-based NBI systems of 100 keV class have contributed to obtaining high temperature plasmas whose parameters are close to the fusion break-even condition. For the next tokamak fusion devices, a MeV class high power neutral beam injector, which will be used to obtain a steady state burning plasma, is considered to become the primary heating and current drive system. Development of such a system is a key to realize nuclear fusion reactor. It will be entirely indebted to the development of a MeV class high current negative deuterium ion source/accelerator. (N.K.)

  1. Civilian applications of particle-beam-initiated inertial confinement fusion technology

    International Nuclear Information System (INIS)

    Varnado, S.G.; Mitchiner, J.L.

    1977-05-01

    Electrical power generation by controlled fusion may provide a partial solution to the world's long-term energy supply problem. Achievement of a fusion reaction requires the confinement of an extremely hot plasma for a time long enough to allow fuel burnup. Inertial confinement of the plasma may be possible through the use of tightly focused, relativistic electron or ion beams to compress a fuel pellet. The Sandia Particle Beam Fusion program is developing the particle-beam accelerators necessary to achieve fuel ignition. In this report we review the status of the particle-beam fusion technology development program and identify several potential civilian applications for this technology. We describe program objectives, discuss the specific accelerators presently under development, and briefly review the results of beam-focusing and target-irradiation experiments. Then we identify and discuss applications for the beam technology and for the fusion neutrons. The applications are grouped into near-term, intermediate-term, and long-term categories. Near-term applications for the beam technology include electron-beam (e-beam) pumping of gas lasers and several commercial applications. Intermediate-term applications (pellet gain less than 50) include hybrid reactors for electrical power production and fissile fuel breeding, pure fusion reactors for electrical power production, and medical therapy using ion accelerators. In the long term, complex, high-gain pellets may be used in pure fusion reactors

  2. Ion movie camera for particle-beam-fusion experiments

    International Nuclear Information System (INIS)

    Stygar, W.A.; Mix, L.P.; Leeper, R.J.; Maenchen, J.; Wenger, D.F.; Mattson, C.R.; Muron, D.J.

    1992-01-01

    A camera with a 3 ns time resolution and a continuous (>100 ns) record length has been developed to image a 10 12 --10 13 W/cm 2 ion beam for inertial-confinement-fusion experiments. A thin gold Rutherford-scattering foil placed in the path of the beam scatters ions into the camera. The foil is in a near-optimized scattering geometry and reduces the beam intensity∼seven orders of magnitude. The scattered ions are pinhole imaged onto a 2D array of 39 p-i-n diode detectors; outputs are recorded on LeCroy 6880 transient-waveform digitizers. The waveforms are analyzed and combined to produce a 39-pixel movie which can be displayed on an image processor to provide time-resolved horizontal- and vertical-focusing information

  3. Charged--particle beam implosion of fusion targets

    International Nuclear Information System (INIS)

    Clauser, M.J.; Sweeney, M.A.

    1975-01-01

    This paper discusses the calculated behavior of fusion targets consisting of solid shells filled with DT gas, irradiated by high power electron or ion beams. The current required for breakeven with gold shells is 500 to 1000 MA, independent of target radius and nearly independent of beam voltage in the 1 / 2 to 1 MeV range. Above 1 MeV the breakeven current increases because of the increased bremsstrahlung production by the beam electrons. By using a diamond ablator and a gold pusher, the breakeven current is reduced to 220 MA. The ion current required for breakeven (about 10 MA of protons) is independent of proton voltage above 10 MeV with gold shell targets. Below 10 MeV the range of the proton becomes too short for efficient coupling, and the required current increases, but the power does not. Various aspects of the symmetry and stability of the implosion are discussed. One finds that the relatively long deposition lengths of electrons result in relatively small growths of the Rayleigh--Taylor instability during the acceleration of the pusher, resulting in a relatively stable implosion

  4. PBFA [Particle Beam Fusion Accelerator] II: The pulsed power characterization phase

    International Nuclear Information System (INIS)

    Martin, T.H.; Turman, B.N.; Goldstein, S.A.

    1987-01-01

    The Particle Beam Fusion Accelerator II, PBFA II, is now the largest pulsed power device in operation. This paper summarizes its first year and a half of operation for the Department of Energy (DOE) Inertial Confinement Fusion (ICF) program. Thirty-six separate modules provide 72 output pulses that combine to form a 100 TW output pulse at the accelerator center. PBFA II was successfully test fired for the first time on December 11, 1985. This test completed the construction phase (Phase 1) within the expected schedule and budget. The accelerator checkout phase then started (Phase 2). The first priority during checkout was to bring the Phase 1 subsystems into full operation. The accelerator was first tested to determine overall system performance. Next, subsystems that were not performing adequately were modified. The accelerator is now being used for ion diode studies. 32 refs

  5. Transport of intense particle beams with application to heavy ion fusion

    International Nuclear Information System (INIS)

    Buchanan, H.L.; Chambers, F.W.; Lee, E.P.; Yu, S.S.; Briggs, R.J.; Rosenbluth, M.N.

    1979-01-01

    An attractive feature of the high energy (> GeV) heavy ion beam approach to inertial fusion, as compared with other particle beam systems, is the relative simplicity involved in the transport and focusing of energy on the target inside a reactor chamber. While this focusing could be done in vacuum by conventional methods with multiple beams, there are significant advantages in reactor design if one can operate at gas pressures around one torr. In this paper we summarize the results of our studies of heavy ion beam transport in gases. With good enough charge and current neutralization, one could get a ballistically-converging beam envelope down to a few millimeters over a 10 meter path inside the chamber. Problems of beam filamentation place important restrictions on this approach. We also discuss transport in a self-focused mode, where a relatively stable pressure window is predicted similar to the observed window for electron beam transport

  6. Particle-beam driven inertial confinement fusion. A theoretical approach of the particle beam-matter interaction

    International Nuclear Information System (INIS)

    Duborgel, Bernard; Dufour, J.M.; Fedotoff, Michel; Gouard, Philippe.

    1981-11-01

    A major difficulty in the relativistic electron beam (REB) inertial confinement approach is the low REB-target coupling resulting from long electron range in the matter. The beam stagnation mechanism, induced in a thin target by macroscopic electric and magnetic fields, can appreciably enhance this coupling. The chapter 2 of the rapport contributes to the theoretical study of this effect. Models and numerical programs are described, which permit to establish the characteristics of this mechanism and evaluate the role of the various parameters. These models were used to interpret thin foils heating experiments performed on CHANTECLAIR generator at the Centre of Valduc. The orientation of particle research to the light ions beams (LIB) has to led to an intensive study of ions-matter interaction. DEPION model described in chapter 3 of the report provides an evaluation of energy deposition characteristics for any ion incident upon a target, taking into account their evolution during the plasma heating phase [fr

  7. Safety training and safe operating procedures written for PBFA [Particle Beam Fusion Accelerator] II and applicable to other pulsed power facilities

    International Nuclear Information System (INIS)

    Donovan, G.L.; Goldstein, S.A.

    1986-12-01

    To ensure that work in advancing pulsed power technology is performed with an acceptably low risk, pulsed power research facilities at Sandia National Laboratories must satisfy general safety guidelines established by the Department of Energy, policies and formats of the Environment, Safety, and Health (ES and H) Department, and detailed procedures formulated by the Pulsed Power Sciences Directorate. The approach to safety training and to writing safe operating procedures, and the procedures presented here are specific to the Particle Beam Fusion Accelerator II (PBFA II) Facility but are applicable as guidelines to other research and development facilities which have similar hazards

  8. Safety training and safe operating procedures written for PBFA (Particle Beam Fusion Accelerator) II and applicable to other pulsed power facilities

    Energy Technology Data Exchange (ETDEWEB)

    Donovan, G.L.; Goldstein, S.A.

    1986-12-01

    To ensure that work in advancing pulsed power technology is performed with an acceptably low risk, pulsed power research facilities at Sandia National Laboratories must satisfy general safety guidelines established by the Department of Energy, policies and formats of the Environment, Safety, and Health (ES and H) Department, and detailed procedures formulated by the Pulsed Power Sciences Directorate. The approach to safety training and to writing safe operating procedures, and the procedures presented here are specific to the Particle Beam Fusion Accelerator II (PBFA II) Facility but are applicable as guidelines to other research and development facilities which have similar hazards.

  9. Plasma opening switch development for the Particle Beam Fusion Accelerator II (PBFA II)

    International Nuclear Information System (INIS)

    Stinnett, R.W.; McDaniel, D.H.; Rochau, G.E.

    1987-01-01

    The authors conducted plasma opening switch (POS) experiments on Sandia National Laboratories' new Particle Beam Fusin Accelerator II (PBFA II) (12 MV, 100 TW, 50 ns), on the Supermite accelerator (2 MV, 2 TW, 50 ns) and on the Naval Research Laboratory's Gamble II accelerator (1.8 MV, 1.6 TW, 70 ns). The POS systems on the PBFA II and Supermite accelerators use a newly developed flashboard plasma source to provide the plasma necessary to conduct the large (> 1 MA) currents produced byu these accelerators. In the Supermite experiments, the plasma opening switch conducted currents up to 1 MA before opening in less than 10 ns into an electron beam load. These experiments achieved significant voltage gain relative to the voltage across a matched load. In experiments on Gamble II, power gains of up to 1.7 were achieved using a POS in a strongly coaxial geometry (r/sub outer//r/sub inner/ = 2) with a large magnetic field at the cathode. The POS system on PBFA II is unique because of its size and voltage. This POS system is designed to conduct over 6 MA before opening. In present experiments it has conducted currents of 4-5 MA for over 50 ns

  10. Charged particle beam propagation studies at the Naval Research Laboratory

    International Nuclear Information System (INIS)

    Meger, R.A.; Hubbard, R.F.; Antoniades, J.A.; Fernsler, R.F.; Lampe, M.; Murphy, D.P.; Myers, M.C.; Pechacek, R.E.; Peyser, T.A.; Santos, J.; Slinker, S.P.

    1993-01-01

    The Plasma Physics Division of the Naval Research Laboratory has been performing research into the propagation of high current electron beams for 20 years. Recent efforts have focused on the stabilization of the resistive hose instability. Experiments have utilized the SuperIBEX e-beam generator (5-MeV, 100-kA, 40-ns pulse) and a 2-m diameter, 5-m long propagation chamber. Full density air propagation experiments have successfully demonstrated techniques to control the hose instability allowing stable 5-m transport of 1-2 cm radius, 10-20 kA total current beams. Analytic theory and particle simulations have been used to both guide and interpret the experimental results. This paper will provide background on the program and summarize the achievements of the NRL propagation program up to this point. Further details can be found in other papers presented in this conference

  11. A Shot Parameter Specification Subsystem for automated control of PBFA [Particle Beam Fusion Accelerator] II accelerator shots

    International Nuclear Information System (INIS)

    Spiller, J.L.

    1987-01-01

    The Shot Parameter Specification Subsystem (SPSS) is an integral part of the automatic control system developed for the Particle Beam Fusion Accelerator II (PBFA II) by the Control Monitor (C/M) Software Development Team. This system has been designed to fully utilize the accelerator by tailoring shot parameters to the needs of the experimenters. The SPSS is the key to this flexibility. Automatic systems will be required on many pulsed power machines for the fastest turnaround, the highest reliability, and most cost effective operation. These systems will require the flexibility and the ease of use that is part of the SPSS. The PBFA II control system has proved to be an effective modular system, flexible enough to meet the demands of both the fast track construction of PBFA II and the control needs of Hermes III at the Simulation Technology Laboratory. This system is expected to meet the demands of most future machine changes

  12. Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma

    International Nuclear Information System (INIS)

    Labaune, C.; Baccou, C.; Loisel, G.; Yahia, V.; Depierreux, S.; Goyon, C.; Rafelski, J.

    2013-01-01

    The advent of high-intensity-pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. Relaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high-energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments. (authors)

  13. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    International Nuclear Information System (INIS)

    Lasche, G.P.

    1988-01-01

    A method for recovering energy in an inertial confinement fusion reactor having a reactor chamber and a sphere forming means positioned above an opening in the reactor chamber is described, comprising: embedding a fusion target fuel capsule having a predetermined yield in the center of a hollow solid lithium tube and subsequently embedding the hollow solid lithium tube in a liquid lithium medium; using the sphere forming means for forming the liquid lithium into a spherical shaped liquid lithium mass having a diameter smaller than the length of the hollow solid lithium tube with the hollow solid lithium tube being positioned along a diameter of the spherical shaped mass, providing the spherical shaped liquid lithium mass with the fusion fuel target capsule and hollow solid lithium tube therein as a freestanding liquid lithium shaped spherical shaped mass without any external means for maintaining the spherical shape by dropping the liquid lithium spherical shaped mass from the sphere forming means into the reactor chamber; producing a magnetic field in the reactor chamber; imploding the target capsule in the reactor chamber to produce fusion energy; absorbing fusion energy in the liquid lithium spherical shaped mass to convert substantially all the fusion energy to shock induced kinetic energy of the liquid lithium spherical shaped mass which expands the liquid lithium spherical shaped mass; and compressing the magnetic field by expansion of the liquid lithium spherical shaped mass and recovering useful energy

  14. A community call for a dedicated radiobiological research facility to support particle beam cancer therapy

    DEFF Research Database (Denmark)

    Holzscheiter, Michael H.; Bassler, Niels; Dosanjh, Manjit

    2012-01-01

    Recently more than one hundred researchers followed an invitation to a brainstorming meeting on the topic of a future dedicated radio-biological and radio-physical research center. 100 more joint the meeting via webcast. After a day of presentations and discussions it was clear, that an urgent need...

  15. PARTICLE BEAMS: Frontier course

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Driven by the quest for higher energies and optimal physics conditions, the behaviour of particle beams in accelerators and storage rings is the subject of increasing attention. Thus the second course organized jointly by the US and CERN Accelerator Schools looked towards the frontiers of particle beam knowledge. The programme held at South Padre Island, Texas, from 23-29 October attracted 125 participants including some 35 from Europe

  16. PARTICLE BEAMS: Frontier course

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-01-15

    Driven by the quest for higher energies and optimal physics conditions, the behaviour of particle beams in accelerators and storage rings is the subject of increasing attention. Thus the second course organized jointly by the US and CERN Accelerator Schools looked towards the frontiers of particle beam knowledge. The programme held at South Padre Island, Texas, from 23-29 October attracted 125 participants including some 35 from Europe.

  17. Economics of fusion research

    International Nuclear Information System (INIS)

    1977-01-01

    This report provides the results of a study of methods of economic analysis applied to the evaluation of fusion research. The study recognizes that a hierarchy of economic analyses of research programs exists: standard benefit-cost analysis, expected value of R and D information, and expected utility analysis. It is shown that standard benefit-cost analysis, as commonly applied to research programs, is inadequate for the evaluation of a high technology research effort such as fusion research. A methodology for performing an expected value analysis is developed and demonstrated and an overview of an approach to perform an expected utility analysis of fusion research is presented. In addition, a potential benefit of fusion research, not previously identified, is discussed and rough estimates of its magnitude are presented. This benefit deals with the effect of a fusion research program on optimal fossil fuel consumption patterns. The results of this study indicate that it is both appropriate and possible to perform an expected value analysis of fusion research in order to assess the economics of a fusion research program. The results indicate further that the major area of benefits of fusion research is likely due to the impact of a fusion research program on optimal fossil fuel consumption patterns and it is recommended that this benefit be included in future assessments of fusion research economics

  18. Economics of fusion research

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1977-10-15

    This report provides the results of a study of methods of economic analysis applied to the evaluation of fusion research. The study recognizes that a hierarchy of economic analyses of research programs exists: standard benefit-cost analysis, expected value of R and D information, and expected utility analysis. It is shown that standard benefit-cost analysis, as commonly applied to research programs, is inadequate for the evaluation of a high technology research effort such as fusion research. A methodology for performing an expected value analysis is developed and demonstrated and an overview of an approach to perform an expected utility analysis of fusion research is presented. In addition, a potential benefit of fusion research, not previously identified, is discussed and rough estimates of its magnitude are presented. This benefit deals with the effect of a fusion research program on optimal fossil fuel consumption patterns. The results of this study indicate that it is both appropriate and possible to perform an expected value analysis of fusion research in order to assess the economics of a fusion research program. The results indicate further that the major area of benefits of fusion research is likely due to the impact of a fusion research program on optimal fossil fuel consumption patterns and it is recommended that this benefit be included in future assessments of fusion research economics.

  19. Charged particle beams

    CERN Document Server

    Humphries, Stanley

    2013-01-01

    Detailed enough for a text and sufficiently comprehensive for a reference, this volume addresses topics vital to understanding high-power accelerators and high-brightness-charged particle beams. Subjects include stochastic cooling, high-brightness injectors, and the free electron laser. Humphries provides students with the critical skills necessary for the problem-solving insights unique to collective physics problems. 1990 edition.

  20. Frontiers in fusion research

    CERN Document Server

    Kikuchi, Mitsuru

    2011-01-01

    Frontiers in Fusion Research provides a systematic overview of the latest physical principles of fusion and plasma confinement. It is primarily devoted to the principle of magnetic plasma confinement, that has been systematized through 50 years of fusion research. Frontiers in Fusion Research begins with an introduction to the study of plasma, discussing the astronomical birth of hydrogen energy and the beginnings of human attempts to harness the Sun's energy for use on Earth. It moves on to chapters that cover a variety of topics such as: * charged particle motion, * plasma kinetic theory, *

  1. Fusion research principles

    CERN Document Server

    Dolan, Thomas James

    2013-01-01

    Fusion Research, Volume I: Principles provides a general description of the methods and problems of fusion research. The book contains three main parts: Principles, Experiments, and Technology. The Principles part describes the conditions necessary for a fusion reaction, as well as the fundamentals of plasma confinement, heating, and diagnostics. The Experiments part details about forty plasma confinement schemes and experiments. The last part explores various engineering problems associated with reactor design, vacuum and magnet systems, materials, plasma purity, fueling, blankets, neutronics

  2. International fusion research council

    International Nuclear Information System (INIS)

    Belozerov, A.N.

    1977-01-01

    A brief history of the International Fusion Research Council (IFRC) is given and the minutes of the 1976 meeting in Garching are summarized. At the Garching meeting, the IFRC evaluated the quality of papers presented at recent IAEA conferences on plasma physics and controlled thermonuclear research, and made recommendations on the organization and timing of future meetings on nuclear fusion

  3. Particle beam accelerator

    International Nuclear Information System (INIS)

    Turner, N.L.

    1982-01-01

    A particle beam accelerator is described which has several electrodes that are selectively short circuited together synchronously with changes in the magnitude of a DC voltage applied to the accelerator. By this method a substantially constant voltage gradient is maintained along the length of the unshortened electrodes despite variations in the energy applied to the beam by the accelerator. The invention has particular application to accelerating ion beams that are implanted into semiconductor wafers. (U.K.)

  4. Particles beams and applications

    International Nuclear Information System (INIS)

    Uzureau, J.L.

    1996-01-01

    This issue of the ''Chocs'' journal is devoted to particles beams used by the D.A.M. (Direction of Military Applications) and to their applications. The concerned beams are limited to those in an energy range from hundred of Kev to several Gev. Light ions (protons, deuterons, alpha) where it is easy to produce neutrons sources and heavy ions (from carbon to gold). (N.C.). 8 refs., 2 figs

  5. Pulsed power ion accelerators for inertially confined fusion

    International Nuclear Information System (INIS)

    Olson, C.L.

    1976-01-01

    Current research is described on pulsed power ion accelerators for inertial fusion, i.e., ion diodes and collective accelerators. Particle beam energy and power requirements for fusion, and basic deposition characteristics of charged particle beams are discussed. Ion diodes and collective accelerators for fusion are compared with existing conventional accelerators

  6. Fusion research in Hungary

    International Nuclear Information System (INIS)

    Zoletnik, S.

    2004-01-01

    Hungarian fusion research started in the 1970s, when the idea of installing a small tokamak experiment emerged. In return to computer equipment a soviet tokamak was indeed sent to Hungary and started to operate as MT-1 at the Central Research Institute for Physics (KFKI) in 1979. Major research topics included diagnostic development, edge plasma studies and investigation of disruptions. Following a major upgrade in 1992 (new vacuum vessel, active position control and PC network based data acquisition system) the MT-1M tokamak was used for the study of transport processes with trace impurity injection, micropellet ablation studies, X-ray tomography and laser blow-off diagnostic development. Although funding ceased in the middle of the 90's the group was held alive by collaborations with EU fusion labs: FZ -Juelich, IPP-Garching and CRPP-EPFL Lausanne. In 1998 the machine was dismantled due to reorganization of the Hungarian Academy of Sciences. New horizons opened to fusion research from 1999, when Hungary joined EURATOM and a fusion Association was formed. Since then fusion physics studies are done in collaboration with major EU fusion laboratories, Hungarian researchers also play an active role in JET diagnostics upgrade and ITER design. Major topics are pellet ablation studies, plasma turbulence diagnosis using Beam Emission Spectroscopy and other techniques, tomography and plasma diagnostics using various neutral beams. In fusion relevant technology R and D Hungary has less records. Before joining EURATOM some materials irradiation studies were done at the Budapest Research Reactor at KFKI-AEKI. The present day fusion technology programme focuses still on irradiation studies, nuclear material database and electromagnetic testing techniques. Increasing the fusion technology research activities is a difficult task, as the competition in Hungarian industry is very strong and the interest of organizations in long-term investments into R and D is rather weak and

  7. Japanese fusion research

    International Nuclear Information System (INIS)

    Uchida, T.

    1987-01-01

    The Japan experience during thirty years in nuclear fusion research is reported, after attending the 1st Geneva Conference in 1955, Osaka University, immedeately began linear pinch study using capacitor bank discharge. Subsequently to his trial several groups were organized to ward fusion R and D at universities in Tokyo, Nagoya, Kyoto, Sendai and son on. Based upon the recommendation of Japan Science Council, Institut of Plasma Physics (IPP) was established at Nagoya University in 1961 When the 1st International Conference on Plasma Physics and Controlled Nuclear Fusion Research was held in Saltzburg. The gloomy Bohm barrier had stood in front of many of experiments at that time. (author) [pt

  8. Bringing together fusion research

    International Nuclear Information System (INIS)

    Leiser, M.

    1982-01-01

    The increasing involvement of the IAEA in fusion, together with the growing efforts devoted to this area, are described. The author puts forward the idea that one of the most important aspects of this involvement is in providing a world-wide forum for scientists. The functions of the IFRC (International Fusion Research Council) as an advisory group are outlined, and the role played by IFRC in the definition and objectives of INTOR (International Tokamak Reactor) are briefly described

  9. Conference on Norwegian fusion research

    International Nuclear Information System (INIS)

    The question of instituting a systematic research programme in Norway on aspects of thermonuclear and plasma physics has been raised. The conference here reported was intended to provide basic information on the status of fusion research internationally and to discuss a possible Norwegian programme. The main contributions covered the present status of fusion research, international cooperation, fusion research in small countries and minor laboratories, fusion research in Denmark and Sweden, and a proposed fusion experiment in Bergen. (JIW)

  10. Nuclear fusion research at Tokamak Energy Ltd

    International Nuclear Information System (INIS)

    Windridge, Melanie J.; Gryaznevich, Mikhail; Kingham, David

    2017-01-01

    Tokamak Energy's approach is close to the mainstream of nuclear fusion, and chooses a spherical tokamak, which is an economically developed form of Tokamak reactor design, as research subjects together with a high-temperature superconducting magnet. In the theoretical prediction, it is said that spherical tokamak can make tokamak reactor's scale compact compared with ITER or DEMO. The dependence of fusion energy multiplication factor on reactor size is small. According to model studies, it has been found that the center coil can be protected from heat and radiation damage even if the neutron shielding is optimized to 35 cm instead of 1 m. As a small tokamak with a high-temperature superconducting magnet, ST25 HTS, it demonstrated in 2015 continuous operation for more than 24 hours as a world record. Currently, this company is constructing a slightly larger ST40 type, and it is scheduled to start operation in 2017. ST40 is designed to demonstrate that it can realize a high magnetic field with a compact size and aims at attaining 8-10 keV (reaching the nuclear fusion reaction temperature at about 100 million degrees). This company will verify the startup and heating technology by the coalescence of spherical tokamak expected to have plasma current of 2 MA, and will also use 2 MW of neutral particle beam heating. In parallel with ST40, it is promoting a development program for high-temperature superconducting magnet. (A.O.)

  11. International fusion research

    International Nuclear Information System (INIS)

    Pease, R.S.

    1983-01-01

    Nuclear energy of the light elements deuterium and lithium can be released if the 100 MK degree temperature required for deuterium-tritium thermonuclear fusion reactions can be achieved together with sufficient thermal insulation for a net energy yield. Progress of world-wide research shows good prospect for these physical conditions being achieved by the use of magnetic field confinement and of rapidly developing heating methods. Tokamak systems, alternative magnetic systems and inertial confinement progress are described. International co-operation features a number of bilateral agreements between countries: the Euratom collaboration which includes the Joint European Torus, a joint undertaking of eleven Western European nations of Euratom, established to build and operate a major confinement experiment; the development of co-operative projects within the OECD/IEA framework; the INTOR workshop, a world-wide study under IAEA auspices of the next major step in fusion research which might be built co-operatively; and assessments of the potential of nuclear fusion by the IAEA and the International Fusion Research Council. The INTOR (International Tokamak Reactor) studies have outlined a major plant of the tokamak type to study the engineering and technology of fusion reactor systems, which might be constructed on a world-wide basis to tackle and share the investment risks of the developments which lie ahead. This paper summarizes the recent progress of research on controlled nuclear fusion, featuring those areas where international co-operation has played an important part, and describes the various arrangements by which this international co-operation is facilitated. (author)

  12. Accelerator and fusion research division

    International Nuclear Information System (INIS)

    1992-12-01

    This report contains brief discussions on research topics in the following area: Heavy-Ion Fusion Accelerator Research; Magnetic Fusion Energy; Advanced Light Source; Center for Beam Physics; Superconducting Magnets; and Bevalac Operations

  13. Feasibility of a laser or charged-particle-beam fusion-reactor concept with direct electric generation by magnetic-flux compression

    International Nuclear Information System (INIS)

    Lasche, G.P.

    1983-06-01

    A new concept for an inertial-confinement fusion reactor is described which, because of its fundamentally different approach to blanket geometry and energy conversion, makes possible a unique combination of high efficiency, high power density, and low radioactivity. The conventional blanket is replaced with a liquid-density mass of lithium contiguously surrounding the fusion yield. This compact blanket configuration produces the maximum shock-induced kinetic energy in liquid metal and the maximum neutron absorption per unit mass. The shock-induced kinetic energy of the liquid lithium is converted directly to electricity with high efficiency by work done against a pulsed normal-conducting magnetic field applied to the exterior of the lithium

  14. Cold fusion research

    International Nuclear Information System (INIS)

    1989-11-01

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy

  15. Fusion research activities in China

    International Nuclear Information System (INIS)

    Deng Xiwen

    1998-01-01

    The fusion program in China has been executed in most areas of magnetic confinement fusion for more than 30 years. Basing on the situation of the power supply requirements of China, the fusion program is becoming an important and vital component of the nuclear power program in China. This paper reviews the status of fusion research and next step plans in China. The motivation and goal of the Chinese fusion program is explained. Research and development on tokamak physics and engineering in the southwestern institute of physics (SWIP) and the institute of plasma physics of Academic Sinica (ASIPP) are introduced. A fusion breeder program and a pure fusion reactor design program have been supported by the state science and technology commission (SSTC) and the China national nuclear corporation (CNNC), respectively. Some features and progress of fusion reactor R and D activities are reviewed. Non fusion applications of plasma science are an important part of China fusion research; a brief introduction about this area is given. Finally, an introductional collaboration network on fusion research activities in China is reported. (orig.)

  16. 50 years of fusion research

    Science.gov (United States)

    Meade, Dale

    2010-01-01

    Fusion energy research began in the early 1950s as scientists worked to harness the awesome power of the atom for peaceful purposes. There was early optimism for a quick solution for fusion energy as there had been for fission. However, this was soon tempered by reality as the difficulty of producing and confining fusion fuel at temperatures of 100 million °C in the laboratory was appreciated. Fusion research has followed two main paths—inertial confinement fusion and magnetic confinement fusion. Over the past 50 years, there has been remarkable progress with both approaches, and now each has a solid technical foundation that has led to the construction of major facilities that are aimed at demonstrating fusion energy producing plasmas.

  17. Centroid and Envelope Eynamics of Charged Particle Beams in an Oscillating Wobbler and External Focusing Lattice for Heavy Ion Fusion Applications

    International Nuclear Information System (INIS)

    Davidson, Ronald C.; Logan, B. Grant

    2011-01-01

    Recent heavy ion fusion target studies show that it is possible to achieve ignition with direct drive and energy gain larger than 100 at 1MJ. To realize these advanced, high-gain schemes based on direct drive, it is necessary to develop a reliable beam smoothing technique to mitigate instabilities and facilitate uniform deposition on the target. The dynamics of the beam centroid can be explored as a possible beam smoothing technique to achieve a uniform illumination over a suitably chosen region of the target. The basic idea of this technique is to induce an oscillatory motion of the centroid for each transverse slice of the beam in such a way that the centroids of different slices strike different locations on the target. The centroid dynamics is controlled by a set of biased electrical plates called 'wobblers'. Using a model based on moments of the Vlasov-Maxwell equations, we show that the wobbler deflection force acts only on the centroid motion, and that the envelope dynamics are independent of the wobbler fields. If the conducting wall is far away from the beam, then the envelope dynamics and centroid dynamics are completely decoupled. This is a preferred situation for the beam wobbling technique, because the wobbler system can be designed to generate the desired centroid motion on the target without considering its effects on the envelope and emittance. A conceptual design of the wobbler system for a heavy ion fusion driver is briefly summarized.

  18. The technology benefits of inertial confinement fusion research

    International Nuclear Information System (INIS)

    Powell, H.T.

    1999-01-01

    The development and demonstration of inertial fusion is incredibly challenging because it requires simultaneously controlling and precisely measuring parameters at extreme values in energy, space, and time. The challenges range from building megajoule (10 6 J) drivers that perform with percent-level precision to fabricating targets with submicron specifications to measuring target performance at micron scale (10 -6 m) with picosecond (10 -12 s) time resolution. Over the past 30 years in attempting to meet this challenge, the inertial fusion community around the world has invented new technologies in lasers, particle beams, pulse power drivers, diagnostics, target fabrication, and other areas. These technologies have found applications in diverse fields of industry and science. Moreover, simply assembling the teams with the background, experience, and personal drive to meet the challenging requirements of inertial fusion has led to spin-offs in unexpected directions, for example, in laser isotope separation, extreme ultraviolet lithography for microelectronics, compact and inexpensive radars, advanced laser materials processing, and medical technology. The experience of inertial fusion research and development of spinning off technologies has not been unique to any one laboratory or country but has been similar in main research centers in the US, Europe, and Japan. Strengthening and broadening the inertial fusion effort to focus on creating a new source of electrical power (inertial fusion energy [IFE]) that is economically competitive and environmentally benign will yield rich rewards in technology spin-offs. The additional challenges presented by IFE are to make drivers affordable, efficient, and long-lived while operating at a repetition rate of a few Hertz; to make fusion targets that perform consistently at high-fusion yield; and to create target chambers that can repetitively handle greater than 100-MJ yields while producing minimal radioactive by

  19. Particle beam source development

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Electron beam research directed toward providing improved in-diode pinched beam sources and establishing the efficiency and feasibility for superposition of many beams progressed in three major areas. Focusing stability has been improved from large effective aspect ratio (radius/gap of emitting surface) diodes. Substantial progress toward establishing the feasibility of combining beams guided along ionized current-carrying channels has been made. Two beams have been transported and overlayed on a target. Theoretical and experimental measurements on channel formation have resulted in specifications for the capacitor bank channel initiation system for a 12-beam combination experiment on Proto II. An additional area of beam research has been the development of a small pulsed X-ray source to yield high quality flash X-radiography of pellets. A source yielding approximately 100-μm resolution of objects has been demonstrated and work continues to improve the convenience and reliability of this source. The effort to extend the capability of higher power conventional pulse power generators to accelerate ions (rather than electrons), and assess the feasibility of this technology variation for target experiments and reactors has progressed. Progress toward development of a multistage accelerator for ions with pulse power technology centered on development of a new laboratory facility and design and procurement of hardware for a five-stage test apparatus for the Pulslac concept

  20. Controlled thermonuclear fusion: research on magnetic fusion

    International Nuclear Information System (INIS)

    Paris, P.J.

    1988-12-01

    Recent progress in thermonuclear fusion research indicates that the scientists' schedule for the demonstration of the scientific feasibility will be kept and that break-even will be attained in the course of the next decade. To see the implementation of ignition, however, the generation of future experiments must be awaited. These projects are currently under study. With technological research going on in parallel, they should at the same time contribute to the design of a reactor. Fusion reactors will be quite different from the fission nuclear reactors we know, and the waste of the plants will also be of a different nature. It is still too early to define the precise design of a fusion reactor. On the basis of a toric machine concept like that of the tokamak, we can, however, envisage that the problems with which we are confronted will be solved one after the other. As we have just seen, these will be the objectives of the future experimental installations where ignition will be possible and where the flux of fast neutrons will be so strong that they will allow the study of low-activation materials which will be used in the structure of the reactor. But this is also a task in which from now onwards numerous laboratories in Europe and in the world participate. The works are in fact punctiform, and often the mutual incidences can only be determined by an approach simulated by numerical codes. (author) 19 figs., 6 tabs., 8 refs

  1. Fusion research at Culham site

    International Nuclear Information System (INIS)

    Tolonen, P.; Toppila, T.

    1998-01-01

    One of the many targets on the Finnish Nuclear Society (ATS) excursion to England was the Culham fusion research site. The site has divided into two parts. One of them is UKAEA Fusion with small scale fusion reactors and 200 employees. UKAEA has 3 fusion reactors at Culham site. One of is the START (Small Tight Aspect Ratio Tokamak) which was operational since 1991 but is today already out of operation. UKAEA has been operating a JET-like tokamak fusion reactor COMPASS-D since 1989. The latest of three reactors is MAST (Mega Amp Spherical Tokamak), which is still under construction. The first plasma will take place in the end of 1998. Another part of Culham site is JET (Joint European Torus), an all-European fusion undertaking with 350 employees. 150 of them are from various European countries and the rest 200 are employed by UKAEA. JET is the biggest fusion reactor ever and it represents the latest step in world wide fusion programme. In October 1997 JET achieved a world record in fusion power and energy. JET produced 16,1 MW power for 1 s and totally 21,7 MJ energy. This is the closest attempt to achieve break-even conditions. The next step in world wide fusion programme will be international ITER-reactor. This undertaking has some financial problems, since United States has taken distance to magnetic fusion research and moved closer to inertial fusion with funding of US Department of Defence. The planned reactor, however, is physically twice as big as JET. The step after this phase will be DEMO, which is purposed to produce fusion energy. According to our hosts in Culham this phase is 40 years ahead. (author)

  2. Fusion research at ORNL

    International Nuclear Information System (INIS)

    1982-03-01

    The ORNL Fusion Program includes the experimental and theoretical study of two different classes of magnetic confinement schemes - systems with helical magnetic fields, such as the tokamak and stellarator, and the ELMO Bumpy Torus (EBT) class of toroidally linked mirror systems; the development of technologies, including superconducting magnets, neutral atomic beam and radio frequency (rf) heating systems, fueling systems, materials, and diagnostics; the development of databases for atomic physics and radiation effects; the assessment of the environmental impact of magnetic fusion; and the design of advanced demonstration fusion devices. The program involves wide collaboration, both within ORNL and with other institutions. The elements of this program are shown. This document illustrates the program's scope; and aims by reviewing recent progress

  3. Fusion research at Imperial College

    International Nuclear Information System (INIS)

    Haines, M.G.

    1990-01-01

    The historical roots of fusion research at Imperial College can be traced back to 1946 with the pioneering work of G.P. Thomson. At present research in fusion is carried out in several research groups with interdisciplinary work managed by the Centre for Fusion Studies. The principal research activity will be centred on a newly funded 5 TW pulsed power facility allowing an experimental and theoretical study of radiation collapse and fusion conditions in the dense Z-pinch. Laser-plasma studies relevant to inertial confinement are carried out using the Rutherford-Appleton Laboratory's Central Laser Facility and the new ultra-short pulse (300 fs) laser facility at Imperial College. There is a significant collaboration on the Joint European Torus and the Next European Torus together with a continuation of a long association with Culham Laboratory. Several European collaborations funded by the Comission of the European Communities and other world-wide collaborations form an integral part of this university programme, which is by far the largest in the UK. After a sketch of the historical development of fusion activities, the current and future programme of fusion research at Imperial College is presented in each of the three broad areas: the Z-pinch, laser-driven inertial confinement fusion and tokamak and other conventional magnetic confinement schemes. A summary of the funding and collaborations is outlined. (author)

  4. Research into thermonuclear fusion

    International Nuclear Information System (INIS)

    Schumacher, U.

    1989-01-01

    The experimental and theoretical studies carried out in close international cooperation in the field of thermonuclear fusion by magnetic plasma confinement have achieved such progress towards higher plasma temperatures and densities, longer confinement times and, thus, increased fusion product, that emphasis now begins to be shifted from problems of physics to those of technology as a next major step is being prepared towards a large international project (ITER) to achieve thermonuclear burning. The generation and maintenance of a burning fusion plasma in an experimental physics phase will be followed by a phase of technical materials studies at high fluxes of fusion neutrons. These goals have been pursued since 1983 by an international study group at Garching working on the design of a Next European Torus (NET). Since May 1988, an international study group comprising ten experts each from the USSR, USA, Japan, and the European Community has begun to work on a design draft of ITER (International Thermonuclear Experimental Reactor) in Garching under the auspices of IAEA. (orig.) [de

  5. Fusion research program in Korea

    International Nuclear Information System (INIS)

    Hwang, Y.S.

    1996-01-01

    Fusion research in Korea is still premature, but it is a fast growing program. Groups in several universities and research institutes were working either in small experiments or in theoretical areas. Recently, couple of institutes who have small fusion-related experiments, proposed medium-size tokamak programs to jump into fusion research at the level of international recognition. Last year, Korean government finally approved to construct 'Superconducting Tokamak' as a national fusion program, and industries such as Korea Electric Power Corp. (KEPCO) and Samsung joined to support this program. Korea Basic Science Institute (KBSI) has organized national project teams including universities, research institutes and companies. National project teams are performing design works since this March. (author)

  6. Future directions in fusion research

    International Nuclear Information System (INIS)

    Clarke, J.F.

    1987-01-01

    The author discusses his analysis to quantify the priority of fusion R and D in the United States. The conclusion is that this priority has been essentially constant for 35 years with only two exceptions. He identifies four basic problems that must be solved. These problems are: to improve the scientific understanding of confinement concepts if we are going to have an energy source that can be utilized some day; to understand the physics of burning plasmas; to develop the materials for fusion use to realize the environmental potential of fusion; and to develop fusion nuclear technology. A response to these problems is given, based on the author's argument for international collaboration in fusion research

  7. (Fusion energy research)

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A. (ed.)

    1988-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer.

  8. [Fusion energy research

    International Nuclear Information System (INIS)

    Phillips, C.A.

    1988-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer

  9. The cooling of particle beams

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1994-10-01

    A review is given of the various methods which can be employed for cooling particle beams. These methods include radiation damping, stimulated radiation damping, ionization cooling, stochastic cooling, electron cooling, laser cooling, and laser cooling with beam coupling. Laser Cooling has provided beams of the lowest temperatures, namely 1 mK, but only for ions and only for the longitudinal temperature. Recent theoretical work has suggested how laser cooling, with the coupling of beam motion, can be used to reduce the ion beam temperature in all three directions. The majority of this paper is devoted to describing laser cooling and laser cooling with beam coupling

  10. Status report on fusion research

    International Nuclear Information System (INIS)

    Burkhart, Werner

    2005-01-01

    At the beginning of the twenty-first century mankind is faced with the serious problem of meeting the energy demands of a rapidly industrializing population around the globe. This, against the backdrop of fast diminishing fossil fuel resources (which have been the main source of energy of the last century) and the increasing realization that the use of fossil fuels has started to adversely affect our environment, has greatly intensified the quest for alternative energy sources. In this quest, fusion has the potential to play a very important role and we are today at the threshold of realizing net energy production from controlled fusion experiments. Fusion is, today, one of the most promising of all alternative energy sources because of the vast reserves of fuel, potentially lasting several thousands of years and the possibility of a relatively 'clean' form of energy, as required for use in concentrated urban industrial settings, with minimal long term environmental implications. The last decade and a half has seen unprecedented advances in controlled fusion experiments with the discovery of new regimes of operations in experiments, production of 16 MW of fusion power and operations close to and above the so-called 'break-even' conditions. A great deal of research has also been carried out in analysing various socio-economic aspects of fusion energy. This paper briefly reviews the various aspects and achievements of fusion research all over the world during this period

  11. New trends in fusion research

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    The efforts of the international fusion community aim at demonstrating the scientific feasibility of thermonuclear fusion energy power plants. Understanding the behavior of burning plasmas, i.e. plasmas with strong self-heating, represents a primary scientific challenge for fusion research and a new science frontier. Although integrated studies will only be possible, in new, dedicated experimental facilities, such as the International Tokamak Experimental Reactor (ITER), present devices can address specific issues in regimes relevant to burning plasmas. Among these are an improvement of plasma performance via a reduction of the energy and particle transport, an optimization of the path to ignition or to sustained burn using additional heating and a control of plasma-wall interaction and energy and particle exhaust. These lectures address recent advances in plasma science and technology that are relevant to the development of fusion energy. Mention will be made of the inertial confinement line of research, but...

  12. Nuclear fusion research in Australia

    International Nuclear Information System (INIS)

    Cheetham, A.D.

    1997-01-01

    In this paper the recently formed National Plasma Fusion Research Facility centred around the H-1NF Heliac, located at the Australian National University, the Institute of Advanced Studies is described in the context of the international Stellarator program and the national collaboration with the Australian Fusion Research Group. The objectives of the facility and the planned physics research program over the next five years are discussed and some recent results will be presented. The facility will support investigations in the following research areas: finite pressure equilibrium and stability, transport in high temperature plasmas, plasma heating and formation, instabilities and turbulence, edge plasma physics and advanced diagnostic development

  13. Collaborations in fusion research

    International Nuclear Information System (INIS)

    Barnes, D.; Davis, S.; Roney, P.

    1995-01-01

    This paper reviews current experimental collaborative efforts in the fusion community and extrapolates to operational scenarios for the Tokamak Physics Experiment (TPX) and the International Thermonuclear Experimental Reactor (ITER). Current requirements, available technologies and tools, and problems, issues and concerns are discussed. This paper specifically focuses on the issues that apply to experimental operational collaborations. Special requirements for other types of collaborations, such as theoretical or design and construction efforts, will not be addressed. Our current collaborative efforts have been highly successful, even though the tools in use will be viewed as primitive by tomorrow's standards. An overview of the tools and technologies in today's collaborations can be found in the first section of this paper. The next generation of fusion devices will not be primarily institutionally based, but will be national (TPX) and international (ITER) in funding, management, operation and in ownership of scientific results. The TPX will present the initial challenge of real-time remotely distributed experimental data analysis for a steady state device. The ITER will present new challenges with the possibility of several remote control rooms all participating in the real-time operation of the experimental device. A view to the future of remote collaborations is provided in the second section of this paper

  14. Progress of laser fusion research

    International Nuclear Information System (INIS)

    Yamanaka, Chiyoe

    1988-01-01

    The history of the research on nuclear fusion utilizing laser is described. It started in USSR in 1968, but the full scale start of laser implosion nuclear fusion was in 1972. In Osaka University, nuclear fusion neutrons were detected with a solid deuterium target and the phenomenon of parametric abnormal absorption in laser plasma was found in 1971. The new type target for implosion nuclear fusion ''Canon ball'' was devised in 1975. The phenomenon of the abnormal transmission of laser beam through a thin metal film in a multiple film target was found in 1976, and named ''Osaka effect''. Also the development of lasers has been advanced, and in 1983, a largest glass laser in the world, Gekko 12, with 12 beams, 30 kJ output, 55 TW, was completed. The new target LHART was devised, which enabled the generation of 10 trillion D-T reaction neutrons. Due to the development of high power laser technology, the realization of the new design of fuel pellets, the evaluation of the data by computer simulation, and the realization of new plasma diagnostic method, the research on laser nuclear fusion has developed rapidly, and the attainment of break-even is expected in 1990s. The features of inertial nuclear fusion are enumerated. (Kako, I.)

  15. Fusion program research materials inventory

    International Nuclear Information System (INIS)

    Roche, T.K.; Wiffen, F.W.; Davis, J.W.; Lechtenberg, T.A.

    1984-01-01

    Oak Ridge National Laboratory maintains a central inventory of research materials to provide a common supply of materials for the Fusion Reactor Materials Program. This will minimize unintended material variations and provide for economy in procurement and for centralized record keeping. Initially this inventory is to focus on materials related to first-wall and structural applications and related research, but various special purpose materials may be added in the future. The use of materials from this inventory for research that is coordinated with or otherwise related technically to the Fusion Reactor Materials Program of DOE is encouraged

  16. Focus on nuclear fusion research

    Czech Academy of Sciences Publication Activity Database

    Křenek, Petr; Mlynář, Jan

    2011-01-01

    Roč. 61, - (2011), s. 62-63 ISSN 0375-8842 Institutional research plan: CEZ:AV0Z20430508 Keywords : ITER * COMPASS * fusion energy * tokamak * EURATOM Subject RIV: BL - Plasma and Gas Discharge Physics http://www.ipp.cas.cz/Tokamak/clanky/energetika_COMPASS.pdf

  17. Frontiers of particle beam and high energy density plasma science using pulse power technology

    International Nuclear Information System (INIS)

    Masugata, Katsumi

    2011-04-01

    The papers presented at the symposium on “Frontiers of Particle Beam and High Energy Density Plasma Science using Pulse Power Technology” held in November 20-21, 2009 at National Institute for Fusion Science are collected. The papers reflect the present status and resent progress in the experiment and theoretical works on high power particle beams and high energy density plasmas produced by pulsed power technology. (author)

  18. Coulomb interactions in particle beams

    International Nuclear Information System (INIS)

    Jansen, G.H.

    1988-01-01

    This thesis presents a theoretical description of the Coulomb interaction between identical charged particles (electrons or ions) in focussed beam. The charge-density effects as well as the various statistical interaction effects, known as the Boersch effect and the 'trajectory displacement effect', are treated. An introductory literature survey is presented from which the large differences in theoretical approach appear. Subsequently the methods are investigated which are used in studies of comparable problems in plasma physics and stellar dynamics. These turn out to be applicable to particle beams only for certain extreme conditions. The approach finally chosen in this study is twofold. On the one hand use is made of a semi-analytical model in which the statistical and dynamical aspects of the N-particle problem are reduced to two-particle problem. This model results in a number of explicit equations in the experimental parameters, with ties of the beam can be determined directly. On the other hand use has been made of a purely numerical Monte Carlo model in which the kinematical equations of an ensemble interacting particles with 'at random' chosen starting conditions are solved exactly. This model does not lead to general expressions, but yields a specific numerical prediction for each simulated experimental situation. The results of both models appear to agree well mutually. This yields a consistent theory which complements the existing knowledge of particle optics and which allow the description of systems in which the interaction between particles can not be neglected. The predictions of this theory are qualitatively and quantitatively compared with those from some other models, recently reported in literature. (author). 256 refs.; 114 figs.; 1180 schemes; 5 tabs

  19. Collected abstracts on particle beam diagnostic systems

    International Nuclear Information System (INIS)

    Hickok, R.L.

    1979-01-01

    This report contains a compilation of abstracts on work related to particle beam diagnostics for high temperature plasmas. The abstracts were gathered in early 1978 and represent the status of the various programs as of that date. It is not suggested that this is a comprehensive list of all the work that is going on in the development of particle beam diagnostics, but it does provide a representative view of the work in this field. For example, no abstracts were received from the U.S.S.R. even though they have considerable activity in particle beam diagnostics

  20. Quantum mechanics of charged particle beam optics

    CERN Document Server

    Khan, Sameen Ahmed

    2018-01-01

    Theory of charged particle beam optics is basic to the design and working of charged particle beam devices from electron microscopes to accelerator machines. Traditionally, the optical elements of the devices are designed and operated based on classical mechanics and classical electromagnetism, and only certain specific quantum mechanical aspects are dealt with separately using quantum theory. This book provides a systematic approach to quantum theory of charged particle beam optics, particularly in the high energy cases such as accelerators or high energy electron microscopy.

  1. Inertial fusion research: Annual technical report, 1985

    International Nuclear Information System (INIS)

    Larsen, J.T.; Terry, N.C.

    1986-03-01

    This report describes the inertial confinement fusion (ICF) research activities undertaken at KMS Fusion (KMSF) during 1985. It is organized into three main technical sections; the first covers fusion experiments and theoretical physics, the second is devoted to progress in materials development and target fabrication, and the third describes laser technology research. These three individual sections have been cataloged separately

  2. Magnetic fusion research in developing countries

    International Nuclear Information System (INIS)

    Hassan, M.H.A.

    1990-01-01

    This article is a presentation prepared by the Third World Academy of Sciences on magnetic fusion research activity in the developing countries and its connection with the IAEA's own fusion programme. 6 figs, 1 tab

  3. Recent fusion research in the National Institute for Fusion Science

    International Nuclear Information System (INIS)

    Komori, Akio; Sakakibara, Satoru; Sagara, Akio; Horiuchi, Ritoku; Yamada, Hiroshi; Takeiri, Yasuhiko

    2011-01-01

    The National Institute for Fusion Science (NIFS), which was established in 1989, promotes academic approaches toward the exploration of fusion science for steady-state helical reactor and realizes the establishment of a comprehensive understanding of toroidal plasmas as an inter-university research organization and a key center of worldwide fusion research. The Large Helical Device (LHD) Project, the Numerical Simulation Science Project, and the Fusion Engineering Project are organized for early realization of net current free fusion reactor, and their recent activities are described in this paper. The LHD has been producing high-performance plasmas comparable to those of large tokamaks, and several new findings with regard to plasma physics have been obtained. The numerical simulation science project contributes understanding and systemization of the physical mechanisms of plasma confinement in fusion plasmas and explores complexity science of a plasma for realization of the numerical test reactor. In the fusion engineering project, the design of the helical fusion reactor has progressed based on the development of superconducting coils, the blanket, fusion materials and tritium handling. (author)

  4. Muon-catalyzed fusion: A new direction in fusion research

    International Nuclear Information System (INIS)

    Jones, S.E.

    1986-01-01

    In four years of intensive research, muon-catalyzed fusion has been raised from the level of a scientific curiosity to a potential means of achieving clean fusion energy. This novel approach to fusion is based on the fact that a sub-atomic particle known as a ''muon'' can induce numerous energy-releasing fusion reactions without the need for high temperatures or plasmas. Thus, the muon serves as a catalyst to facilitate production for fusion energy. The success of the research effort stems from the recent discovery of resonances in the reaction cycle which make the muon-induced fusion process extremely efficient. Prior estimates were pessimistic in that only one fusion per muon was expected. In that case energy balance would be impossible since energy must be invested to generate the muons. However, recent work has gone approximately half-way to energy balance and further improvements are being worked on. There has been little time to assess the full implications of these discoveries. However, various ways to use muon-catalyzed fusion for electrical power production are now being explored

  5. Muon-catalyzed fusion: a new direction in fusion research

    International Nuclear Information System (INIS)

    Jones, S.E.

    1986-01-01

    In four years of intensive research, muon-catalyzed fusion has been raised from the level of a scientific curiosity to a potential means of achieving clean fusion energy. This novel approach to fusion is based on the fact that a sub-atomic particle known as a ''muon'' can induce numerous energy-releasing fusion reactions without the need for high temperatures or plasmas. Thus, the muon serves as a catalyst to facilitate production for fusion energy. The success of the research effort stems from the recent discovery of resonances in the reaction cycle which make the muon-induced fusion process extremely efficient. Prior estimates were pessimistic in that only one fusion per muon was expected. In that case energy balance would be impossible since energy must be invested to generate the muons. However, recent work has gone approximately half-way to energy balance and further improvements are being worked on. There has been little time to assess the full implications of these discoveries. However, various ways to use muon-catalyzed fusion for electrical power production are now being explored

  6. Early Career. Harnessing nanotechnology for fusion plasma-material interface research in an in-situ particle-surface interaction facility

    Energy Technology Data Exchange (ETDEWEB)

    Allain, Jean Paul [Univ. of Illinois, Champaign, IL (United States)

    2014-08-08

    This project consisted of fundamental and applied research of advanced in-situ particle-beam interactions with surfaces/interfaces to discover novel materials able to tolerate intense conditions at the plasma-material interface (PMI) in future fusion burning plasma devices. The project established a novel facility that is capable of not only characterizing new fusion nanomaterials but, more importantly probing and manipulating materials at the nanoscale while performing subsequent single-effect in-situ testing of their performance under simulated environments in fusion PMI.

  7. Charged-particle beam: a safety mandate

    International Nuclear Information System (INIS)

    Young, K.C.

    1983-01-01

    The Advanced Test Accelerator (ATA) is a recent development in the field of charged particle beam research at Lawrence Livermore National Laboratory. With this experimental apparatus, researchers will characterize intense pulses of electron beams propagated through air. Inherent with the ATA concept was the potential for exposure to hazards, such as high radiation levels and hostile breathing atmospheres. The need for a comprehensive safety program was mandated; a formal system safety program was implemented during the project's conceptual phase. A project staff position was created for a safety analyst who would act as a liaison between the project staff and the safety department. Additionally, the safety analyst would be responsible for compiling various hazards analyses reports, which formed the basis of th project's Safety Analysis Report. Recommendations for safety features from the hazards analysis reports were incorporated as necessary at appropriate phases in project development rather than adding features afterwards. The safety program established for the ATA project faciliated in controlling losses and in achieving a low-level of acceptable risk

  8. Fusion plasma research and education in Japan

    International Nuclear Information System (INIS)

    Inoue, N.

    1995-01-01

    Japanese fusion plasma research and education is reviewed by focusing on the activities promoted by the Ministry of Education, Science, Culture, and Sports (MOE). University fusion research is pursued by the academic interest and student education. A hierarchical structure of budget and manpower arrangement is observed. The small research groups of universities play the role of recruiting young students into the fusion and plasma society. After graduating the master course, most students are engaged by industries

  9. West European magnetic confinement fusion research

    International Nuclear Information System (INIS)

    McKenney, B.L.; McGrain, M.; Hogan, J.T.; Porkolab, M.; Thomassen, K.I.

    1990-01-01

    This report presents a technical assessment and review of the West European program in magnetic confinement fusion by a panel of US scientists and engineers active in fusion research. Findings are based on the scientific and technical literature, on laboratory reports and preprints, and on the personal experiences and collaborations of the panel members. Concerned primarily with developments during the past 10 years, from 1979 to 1989, the report assesses West European fusion research in seven technical areas: tokamak experiments; magnetic confinement technology and engineering; fusion nuclear technology; alternate concepts; theory; fusion computations; and program organization. The main conclusion emerging from the analysis is that West European fusion research has attained a position of leadership in the international fusion program. This distinction reflects in large measure the remarkable achievements of the Joint European Torus (JET). However, West European fusion prominence extends beyond tokamak experimental physics: the program has demonstrated a breadth of skill in fusion science and technology that is not excelled in the international effort. It is expected that the West European primacy in central areas of confinement physics will be maintained or even increased during the early 1990s. The program's maturity and commitment kindle expectations of dramatic West European advances toward the fusion energy goal. For example, achievement of fusion breakeven is expected first in JET, before 1995

  10. Fusion energy research for ITER and beyond

    International Nuclear Information System (INIS)

    Romanelli, Francesco; Laxaaback, Martin

    2011-01-01

    The achievement in the last two decades of controlled fusion in the laboratory environment is opening the way to the realization of fusion as a source of sustainable, safe and environmentally responsible energy. The next step towards this goal is the construction of the International Thermonuclear Experimental Reactor (ITER), which aims to demonstrate net fusion energy production on the reactor scale. This paper reviews the current status of magnetic confinement fusion research in view of the ITER project and provides an overview of the main remaining challenges on the way towards the realization of commercial fusion energy production in the second half of this century. (orig.)

  11. Intense particle beam and multiple applications

    International Nuclear Information System (INIS)

    Ueda, M.; Machida, M.

    1988-01-01

    The Multiple Application Intense Particle Beam project is an experiment in which an injector of high energy neutral or ionized particles will be used to diagnose high density and high temperature plasmas. The acceleration of the particles will be carried out feeding a diode with a high voltage pulse produced by a Marx generator. Other apllications of intense particle beam generated by this injector that could be explored in the future include: heating and stabilization of compact toroids, treatment of metallic surfaces and ion implantation. (author) [pt

  12. Nuclear Fusion Fuel Cycle Research Perspectives

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Koo, Daeseo; Park, Jongcheol; Kim, Yeanjin; Yun, Sei-Hun

    2015-01-01

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, we at the Korea Atomic Energy Research Institute (KAERI) and our National Fusion Research Institute (NFRI) colleagues are investigating nuclear fusion fuel cycle hardware including a nuclear fusion fuel Storage and Delivery System (SDS). To have a better knowledge of the nuclear fusion fuel cycle, we present our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). To have better knowledge of the nuclear fusion fuel cycle, we presented our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). Our efforts to enhance the tritium confinement will be continued for the development of cleaner nuclear fusion power plants

  13. Research Needs for Magnetic Fusion Energy Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, Hutch

    2009-07-01

    Nuclear fusion — the process that powers the sun — offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITER fusion collaboration, which involves seven parties representing half the world’s population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW’s task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.)

  14. Cold fusion research in Italy

    International Nuclear Information System (INIS)

    Scaramuzzi, F.

    1993-01-01

    This paper summarizes cold fusion (CF) research in Italy. In Italy, many Agencies and Universities are moderately funding research in CF, and the scientists have made a few attempts to coordinate each other, organizing meetings and conferences. However, the activity has been mostly the fruit of the scientists' initiative, and never a coordinated proposal of Agencies and Universities. No position on the scientific validity of the subject has been officially taken and the funds for CF have been rather modest. The investments in Italy on CF, the figure referring to 1992 amounts to about 0.5 million dollars, not including expenses for personnel. A number of about 70 scientists, mostly working part-time, is committed all around the Country in research on CF. The lack of offical commitment and effective support by the Research Agencies and the Universities has not prevented scientists from being quite active in performing research. On the other side, it has to be acknowledged that no formal vetoes have been interposed to the free initiative of scientists in this field: on the contrary, some of the Agencies and Universities have moderately funded such an effort. The quality of the experiments in Italy has been increasingly good, and the results obtained are rather out standing in the general panorama of CF. But it is time to perform a more coordinated effort, keeping in mind that material science aspects, such as the characteristics of the materials used, play a very important role in the development of this topic. Thus, a much more intense effort is required to obtain a more substantial progress in the field. The increasingly convincing results obtained by the whole CF community, and the example of the Japanese Government and Industry, which appear to be determined to promoting CF research, have changed the panorama of CF. These are now signs that also the Italian scientific authorities could consider favouring research in this field in the near future. (J.P.N.)

  15. Heavy-Ion Fusion Accelerator Research, 1991

    International Nuclear Information System (INIS)

    1992-03-01

    This report discusses the following topics: research with multiple- beam experiment MBE-4; induction linac systems experiments; and long- range research and development of heavy-ion fusion accelerators

  16. Microwave and particle beam sources and directed energy concepts

    International Nuclear Information System (INIS)

    Brandt, H.E.

    1989-01-01

    This book containing the proceedings of the SPIE on microwave and particle beam sources and directed energy concepts. Topics covered include: High power microwave sources, Direct energy concepts, Advanced accelerators, and Particle beams

  17. High gradient lens for charged particle beam

    Science.gov (United States)

    Chen, Yu-Jiuan

    2014-04-29

    Methods and devices enable shaping of a charged particle beam. A dynamically adjustable electric lens includes a series of alternating a series of alternating layers of insulators and conductors with a hollow center. The series of alternating layers when stacked together form a high gradient insulator (HGI) tube to allow propagation of the charged particle beam through the hollow center of the HGI tube. A plurality of transmission lines are connected to a plurality of sections of the HGI tube, and one or more voltage sources are provided to supply an adjustable voltage value to each transmission line of the plurality of transmission lines. By changing the voltage values supplied to each section of the HGI tube, any desired electric field can be established across the HGI tube. This way various functionalities including focusing, defocusing, acceleration, deceleration, intensity modulation and others can be effectuated on a time varying basis.

  18. Neutral particle beam distributed data acquisition system

    International Nuclear Information System (INIS)

    Daly, R.T.; Kraimer, M.R.; Novick, A.H.

    1987-01-01

    A distributed data acquisition system has been designed to support experiments at the Argonne Neutral Particle Beam Accelerator. The system uses a host VAXstation II/GPX computer acting as an experimenter's station linked via Ethernet with multiple MicroVAX IIs and rtVAXs dedicated to acquiring data and controlling hardware at remote sites. This paper describes the hardware design of the system, the applications support software on the host and target computers, and the real-time performance

  19. The Particle Beam Optics Interactive Computer Laboratory

    International Nuclear Information System (INIS)

    Gillespie, G.H.; Hill, B.W.; Brown, N.A.; Babcock, R.C.; Martono, H.; Carey, D.C.

    1997-01-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is an educational software concept to aid students and professionals in learning about charged particle beams and particle beam optical systems. The PBO Lab is being developed as a cross-platform application and includes four key elements. The first is a graphic user interface shell that provides for a highly interactive learning session. The second is a knowledge database containing information on electric and magnetic optics transport elements. The knowledge database provides interactive tutorials on the fundamental physics of charged particle optics and on the technology used in particle optics hardware. The third element is a graphical construction kit that provides tools for students to interactively and visually construct optical beamlines. The final element is a set of charged particle optics computational engines that compute trajectories, transport beam envelopes, fit parameters to optical constraints and carry out similar calculations for the student designed beamlines. The primary computational engine is provided by the third-order TRANSPORT code. Augmenting TRANSPORT is the multiple ray tracing program TURTLE and a first-order matrix program that includes a space charge model and support for calculating single particle trajectories in the presence of the beam space charge. This paper describes progress on the development of the PBO Lab. copyright 1997 American Institute of Physics

  20. The Particle Beam Optics Interactive Computer Laboratory

    International Nuclear Information System (INIS)

    Gillespie, George H.; Hill, Barrey W.; Brown, Nathan A.; Babcock, R. Chris; Martono, Hendy; Carey, David C.

    1997-01-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is an educational software concept to aid students and professionals in learning about charged particle beams and particle beam optical systems. The PBO Lab is being developed as a cross-platform application and includes four key elements. The first is a graphic user interface shell that provides for a highly interactive learning session. The second is a knowledge database containing information on electric and magnetic optics transport elements. The knowledge database provides interactive tutorials on the fundamental physics of charged particle optics and on the technology used in particle optics hardware. The third element is a graphical construction kit that provides tools for students to interactively and visually construct optical beamlines. The final element is a set of charged particle optics computational engines that compute trajectories, transport beam envelopes, fit parameters to optical constraints and carry out similar calculations for the student designed beamlines. The primary computational engine is provided by the third-order TRANSPORT code. Augmenting TRANSPORT is the multiple ray tracing program TURTLE and a first-order matrix program that includes a space charge model and support for calculating single particle trajectories in the presence of the beam space charge. This paper describes progress on the development of the PBO Lab

  1. Plasma-parameter measurements using neutral-particle-beam attenuation

    International Nuclear Information System (INIS)

    Foote, J.H.; Molvik, A.W.; Turner, W.C.

    1982-01-01

    Intense and energetic neutral-particle-beam injection used for fueling or heating magnetically confined, controlled-fusion experimental plasmas can also provide diagnostic measurements of the plasmas. The attenuation of an atomic beam (mainly from charge-exchange and ionization interactions) when passing through a plasma gives the plasma line density. Orthogonal arrays of highly collimated detectors of the secondary-electron-emission type have been used in magnetic-mirror experiments to measure neutral-beam attenuation along chords through the plasma volume at different radial and axial positions. The radial array is used to infer the radial plasma-density profile; the axial array, to infer the axial plasma-density profile and the ion angular distribution at the plasma midplane

  2. Erosion tests of materials by energetic particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Schechter, D.E.; Tsai, C.C.; Sluss, F.; Becraft, W.R.; Hoffman, D.J.

    1985-01-01

    The internal components of magnetic fusion devices must withstand erosion from and high heat flux of energetic plasma particles. The selection of materials for the construction of these components is important to minimize contamination of the plasma. In order to study various materials' comparative resistance to erosion by energetic particles and their ability to withstand high heat flux, water-cooled copper swirl tubes coated or armored with various materials were subjected to bombardment by hydrogen and helium particle beams. Materials tested were graphite, titanium carbide (TiC), chromium, nickel, copper, silver, gold, and aluminum. Details of the experimental arrangement and methods of application or attachment of the materials to the copper swirl tubes are presented. Results including survivability and mass losses are discussed.

  3. The development of laser fusion research

    International Nuclear Information System (INIS)

    Mima, Kunioki

    1998-01-01

    Laser fusion research started soon after the invention of laser. In 1972, the research was declassified and nuclear fusion by laser inplosion was proposed by J. Nuckolls. Since then, 26 years has passed and laser implosion experiments demonstrated 1000 times solid density compression. By the demonstration of 1000 times solid density, the mission of the laser fusion research shifted from 'implosion physics' to 'ignition and high gain', namely demonstration of fusion output of 100 times input laser energy. By the recent developments of laser technology, ultra intense laser became available and opened up a new ignition scheme which is called 'Fast Ignition'. The technology for the diode pumped solid state laser (DPSSL) is developed toward a laser driver for reactor. U.S. and France are constructing MJ lasers for demonstrating ignition and burn and Osaka University is investigating the fast ignition and the equivalent plasma of confinement (EPOC) toward high gain. (author)

  4. The development of laser fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Mima, Kunioki [Osaka Univ., Suita (Japan). Inst. of Laser Engineering

    1998-11-01

    Laser fusion research started soon after the invention of laser. In 1972, the research was declassified and nuclear fusion by laser inplosion was proposed by J. Nuckolls. Since then, 26 years has passed and laser implosion experiments demonstrated 1000 times solid density compression. By the demonstration of 1000 times solid density, the mission of the laser fusion research shifted from `implosion physics` to `ignition and high gain`, namely demonstration of fusion output of 100 times input laser energy. By the recent developments of laser technology, ultra intense laser became available and opened up a new ignition scheme which is called `Fast Ignition`. The technology for the diode pumped solid state laser (DPSSL) is developed toward a laser driver for reactor. U.S. and France are constructing MJ lasers for demonstrating ignition and burn and Osaka University is investigating the fast ignition and the equivalent plasma of confinement (EPOC) toward high gain. (author)

  5. The growth of European fusion research

    International Nuclear Information System (INIS)

    Palumbo, D.

    1988-01-01

    The Euratom initial research programme with fusion as a modest element was constituted in 1958. Progress in fusion research mainly in the USA, USSR and UK was reported at the Geneva Conference held in September 1958. A network of national laboratories cooperating in fusion research was constituted under Association Contracts rather than founding a single Euratom laboratory. Emergence of the Tokamak became evident in 1968, and in 1969 a team from Culham travelled to Moscow to measure the electron plasma temperature and confirmed the previous Russian results. Collaboration between Culham and the European Fusion programme developed before the entrance of the UK into the European Community. The JET design team began its work in 1973. The site selected was at Culham and construction of JET commenced in 1978. Subsequent international discussions including the USA and USSR resulted in detailed design studies for a large device known as the INTOR Tokamak which will probably lead to further international cooperation. (U.K.)

  6. Electrostatic plasma lens for focusing negatively charged particle beams.

    Science.gov (United States)

    Goncharov, A A; Dobrovolskiy, A M; Dunets, S M; Litovko, I V; Gushenets, V I; Oks, E M

    2012-02-01

    We describe the current status of ongoing research and development of the electrostatic plasma lens for focusing and manipulating intense negatively charged particle beams, electrons, and negative ions. The physical principle of this kind of plasma lens is based on magnetic isolation electrons providing creation of a dynamical positive space charge cloud in shortly restricted volume propagating beam. Here, the new results of experimental investigations and computer simulations of wide-aperture, intense electron beam focusing by plasma lens with positive space charge cloud produced due to the cylindrical anode layer accelerator creating a positive ion stream towards an axis system is presented.

  7. Stellarator fusion neutronics research in Australia

    International Nuclear Information System (INIS)

    Zimin, S.; Cross, R.C.

    1997-01-01

    The new status of the H-INF Heliac Stellaralor as a National Facility and the signed international Implementing Agreement on 'Collaboration in the Development of the Stellarator Concept' represents a significant encouragement for further fusion research in Australia. In this report the future of fusion research in Australia is discussed with special attention being paid to the importance of Stellarator power plant studies and in particular stellarator fusion neutronics. The main differences between tokamak and stellarator neutronics analyses are identified, namely the neutron wall loading, geometrical modelling and total heating in in-vessel reactor components including toroidal field (TF) coils. Due to the more complicated nature of stellarator neutronics analyses, simplified approaches to fusion neutronics already developed for tokamaks are expected to be even more important and widely used for designing a Conceptual Stellarator Power Plant

  8. Iodine laser for fusion research

    International Nuclear Information System (INIS)

    Dance, B.

    1988-01-01

    The most powerful iodine laser in the world, known as Asterix IV, is being prepared for operation at The Max Plank-Institut fuer Quantenoptik at Garching, near Munich, in West Germany. It is expected to produce 2kJ pulses of 1ns duration. Shorter pulses of about 200 ps duration should be obtainable at power levels of over 5 TW. Pulses of maximum power will be available every 20 minutes; this frequency is expected to be adequate for fusion experiments, although the short rate could be raised if necessary by greater gas circulation and cooling. (Author)

  9. Charged particle beam current monitoring tutorial

    International Nuclear Information System (INIS)

    Webber, R.C.

    1994-10-01

    A tutorial presentation is made on topics related to the measurement of charged particle beam currents. The fundamental physics of electricity and magnetism pertinent to the problem is reviewed. The physics is presented with a stress on its interpretation from an electrical circuit theory point of view. The operation of devices including video pulse current transformers, direct current transformers, and gigahertz bandwidth wall current style transformers is described. Design examples are given for each of these types of devices. Sensitivity, frequency response, and physical environment are typical parameters which influence the design of these instruments in any particular application. Practical engineering considerations, potential pitfalls, and performance limitations are discussed

  10. Moment approach to charged particle beam dynamics

    International Nuclear Information System (INIS)

    Channell, P.J.

    1983-01-01

    We have derived the hierarchy of moment equations that describes the dynamics of charged-particle beams in linear accelerators and can truncate the hierarchy at any level either by discarding higher moments or by a cumulant expansion discarding only correlation functions. We have developed a procedure for relating the density expansion linearly to the moments to any order. The relation of space-charge fields to the density has been derived; and an accurate, systematic, and computationally convenient expansion of the resultant integrals has been developed

  11. Thermonuclear fusion

    International Nuclear Information System (INIS)

    Weisse, J.

    2000-01-01

    This document takes stock of the two ways of thermonuclear fusion research explored today: magnetic confinement fusion and inertial confinement fusion. The basic physical principles are recalled first: fundamental nuclear reactions, high temperatures, elementary properties of plasmas, ignition criterion, magnetic confinement (charged particle in a uniform magnetic field, confinement and Tokamak principle, heating of magnetized plasmas (ohmic, neutral particles, high frequency waves, other heating means), results obtained so far (scale laws and extrapolation of performances, tritium experiments, ITER project), inertial fusion (hot spot ignition, instabilities, results (Centurion-Halite program, laser experiments). The second part presents the fusion reactor and its associated technologies: principle (tritium production, heat source, neutron protection, tritium generation, materials), magnetic fusion (superconducting magnets, divertor (role, principle, realization), inertial fusion (energy vector, laser adaptation, particle beams, reaction chamber, stresses, chamber concepts (dry and wet walls, liquid walls), targets (fabrication, injection and pointing)). The third chapter concerns the socio-economic aspects of thermonuclear fusion: safety (normal operation and accidents, wastes), costs (costs structure and elementary comparison, ecological impact and external costs). (J.S.)

  12. Heavy-ion fusion accelerator research, 1989

    International Nuclear Information System (INIS)

    1990-06-01

    This report discusses the following topics on heavy-ion fusion accelerator research: MBE-4: the induction-linac approach; transverse beam dynamics and current amplification; scaling up the results; through ILSE to a driver; ion-source and injector development; and accelerator component research and development

  13. Trends in fusion reactor safety research

    International Nuclear Information System (INIS)

    Herring, J.S.; Holland, D.F.; Piet, S.J.

    1991-01-01

    Fusion has the potential to be an attractive energy source. From the safety and environmental perspective, fusion must avoid concerns about catastrophic accidents and unsolvable waste disposal. In addition, fusion must achieve an acceptable level of risk from operational accidents that result in public exposure and economic loss. Finally, fusion reactors must control routine radioactive effluent, particularly tritium. Major progress in achieving this potential rests on development of low-activation materials or alternative fuels. The safety and performance of various material choices and fuels for commercial fusion reactors can be investigated relatively inexpensively through reactor design studies. These studies bring together experts in a wide range of backgrounds and force the group to either agree on a reactor design or identify areas for further study. Fusion reactors will be complex with distributed radioactive inventories. The next generation of experiments will be critical in demonstrating that acceptable levels of safe operation can be achieved. These machines will use materials which are available today and for which a large database exists (e.g. for 316 stainless steel). Researchers have developed a good understanding of the risks associated with operation of these devices. Specifically, consequences from coolant system failures, loss of vacuum events, tritium releases, and liquid metal reactions have been studied. Recent studies go beyond next step designs and investigate commercial reactor concerns including tritium release and liquid metal reactions. 18 refs

  14. Magnetic confinement fusion energy research

    International Nuclear Information System (INIS)

    Grad, H.

    1977-03-01

    Controlled Thermonuclear Fusion offers probably the only relatively clean energy solution with completely inexhaustible fuel and unlimited power capacity. The scientific and technological problem consists in magnetically confining a hot, dense plasma (pressure several to hundreds of atmospheres, temperature 10 8 degrees or more) for an appreciable fraction of a second. The scientific and mathematical problem is to describe the behavior, such as confinement, stability, flow, compression, heating, energy transfer and diffusion of this medium in the presence of electromagnetic fields just as we now can for air or steam. Some of the extant theory consists of applications, routine or ingenious, of known mathematical structures in the theory of differential equations and in traditional analysis. Other applications of known mathematical structures offer surprises and new insights: the coordination between sub-supersonic and elliptic-hyperbolic is fractured; supersonic propagation goes upstream; etc. Other completely nonstandard mathematical structures with significant theory are being rapidly uncovered (and somewhat less rapidly understood) such as non-elliptic variational equations and new types of weak solutions. It is these new mathematical structures which one should expect to supply the foundation for the next generation's pure mathematics, if history is a guide. Despite the substantial effort over a period of some twenty years, there are still basic and important scintific and mathematical discoveries to be made, lying just beneath the surface

  15. Computer applications in controlled fusion research

    International Nuclear Information System (INIS)

    Killeen, J.

    1975-02-01

    The role of Nuclear Engineering Education in the application of computers to controlled fusion research can be a very important one. In the near future the use of computers in the numerical modelling of fusion systems should increase substantially. A recent study group has identified five categories of computational models to study the physics of magnetically confined plasmas. A comparable number of types of models for engineering studies are called for. The development and application of computer codes to implement these models is a vital step in reaching the goal of fusion power. In order to meet the needs of the fusion program the National CTR Computer Center has been established at the Lawrence Livermore Laboratory. A large central computing facility is linked to smaller computing centers at each of the major CTR laboratories by a communications network. The crucial element that is needed for success is trained personnel. The number of people with knowledge of plasma science and engineering that are trained in numerical methods and computer science is quite small, and must be increased substantially in the next few years. Nuclear Engineering departments should encourage students to enter this field and provide the necessary courses and research programs in fusion computing. (U.S.)

  16. Progress of laser nuclear fusion research

    International Nuclear Information System (INIS)

    Shiraga, Hiroyuki

    2017-01-01

    This paper describes the principle and features of nuclear fusion using laser, as well as its basic concepts such as high-temperature / high-density implosion system and fast ignition of fuel. At present, researches aiming at nuclear fusion ignition have been developing. As the current state of researches, this paper reviews the situations of FIREX (Fast Ignition Realization Experiment) project of Japan focusing on direct irradiation implosion and fast ignition system, as well as NIF (National Ignition Facility) project of the U.S. aiming at ignition combustion based on indirect irradiation implosion and central ignition system. In collaboration with the National Institute for Fusion Science, Osaka University started FIREX-1 project in 2003. It built a heating laser LFEX of 10 kJ/1 to 10ps, and started an implosion/heating integration experiment in 2009. Currently, it is developing experiment to achieve heating to 5 keV. At NIF, the self-heating of central sparks via energy of α particles generated in the nuclear fusion reaction has been realized. This paper also overviews R and D issues surrounding the lasers for reactors for use in laser nuclear fusion power generators. (A.O.)

  17. Fundamentals of particle beam dynamics and phase space

    International Nuclear Information System (INIS)

    Weng, W.T.; Mane, S.R.

    1991-01-01

    This report discusses the following topics on synchrotron accelerators: Transverse motion---betatron oscillations; machine lattice; representation of a particle beam; and longitudinal motion---synchrotron oscillations

  18. Vacuum engineering for fusion research and fusion reactors

    International Nuclear Information System (INIS)

    Pittenger, L.C.

    1976-01-01

    The following topics are described: (1) surface pumping by cryogenic condensation, (2) operation of large condensing cryopumps, (3) pumping for large fusion experiments, and (4) vacuum technology for fusion reactors

  19. Heavy Particle Beams in Tumor Radiotherapy

    International Nuclear Information System (INIS)

    Ayad, M.

    1999-01-01

    Using heavy particles beam in the tumor radiotherapy is advantageous to the conventional radiation with photons and electrons. One of the advantages of the heavy charged particle is the energy deposition processes which give a well defined range in tissue, a Bragg peak of ionization in the depth-dose distribution and slow scattering, while the dose to the surrounding healthy tissue in the vicinity is minimized. These processes can show the relation between the heavy particle and the conventional radiation is illustrated with respect to the depth dose and the relative dose. The usage of neutrons (Thermal or epithermal) in therapy necessitates implementation of capture material leading to the production of heavy charged particles (a-particles) as a result of the nuclear interaction in between. Experimentally it is found that 80% of the absorbed dose is mainly due to the presence of capture material

  20. Neutral particle beam alternative concept for ITER

    International Nuclear Information System (INIS)

    Sedgley, D.; Brook, J.; Luzzi, T.; Deutsch, L.

    1989-01-01

    An analysis of an ITER neutral particle beam system is presented. The analysis covers the neutralizer, ion dumps, pumping, and geometric aspects. The US beam concept for ITER consists of three or four clusters of beamlines delivering approximately 80 MW total of 1.6-MeV deuterium to three or four reactor ports. Each cluster has three self-contained beamlines featuring plasma neutralizers and electrostatic ion dumps. In this study, each of the beamlines has two source assemblies with separate gas neutralizers and magnetic ion dumps. Deuterium is injected into the gas neutralizers by a separate system. Saddle-shaped copper coils augment the tokamak poloidal field to turn the charged particles into the ion dumps. The gas flow from the source, neutralizer, and ion dump is pumped by regenerable cryopanels. The effect of the port between the TF coils and the beam injection angle on the plasma footprint was studied

  1. Portuguese research program on nuclear fusion

    International Nuclear Information System (INIS)

    Varandas, C.A.F.; Cabral, J.A.C.; Manso, M.E.

    1994-01-01

    The Portuguese research program on nuclear fusion is presented. The experimental activity associated with the tokamak ISTTOK as well as the work carried out in the frame of international collaboration are summarized. The main technological features of ISTTOK are described along with studies on microwave reflectometry. Future plans are briefly described

  2. Plasma physics and nuclear fusion research

    CERN Document Server

    Gill, Richard D

    1981-01-01

    Plasma Physics and Nuclear Fusion Research covers the theoretical and experimental aspects of plasma physics and nuclear fusion. The book starts by providing an overview and survey of plasma physics; the theory of the electrodynamics of deformable media and magnetohydrodynamics; and the particle orbit theory. The text also describes the plasma waves; the kinetic theory; the transport theory; and the MHD stability theory. Advanced theories such as microinstabilities, plasma turbulence, anomalous transport theory, and nonlinear laser plasma interaction theory are also considered. The book furthe

  3. Maryland controlled fusion research program

    International Nuclear Information System (INIS)

    Griem, H.R.; Liu, C.S.

    1992-01-01

    In this paper, we summarize the technical progress in four major areas of tokamak research: (a) L/H transition and edge turbulence and transport; (b) active control of microturbulence and transport; (c) major disruptions; and (d) the sawtooth crash

  4. Current state of nuclear fusion research

    International Nuclear Information System (INIS)

    Naraghi, M.

    1985-01-01

    During the past quarter century, plasma physics and nuclear fusion research have gone through impressive development. Tokamak, is realized to be the number one candidate for nuclear fusion reactor. Two large experiments, one called Joint European Torus (JET) at Culham, England, and the other JT-60 project in Japan have been completed and have reported preliminary results. In JET an average electron density of 4x10 13 pcls/ cm 3 , ion temperatures of 3Kev and energy confinement of 0.8 sec have been achieved. However, the Zeff has been even equal to 10 which unfortunately is a source of plasma energy loss. JT-60 has not offered any appreciable results yet, however, the objectives and initial tests promise long pulse duration, with very high ion and plasma densities. Both experiments have promised to achieve conditions approaching those needed in a fusion reactor. Other important experiments will be discussed and the role of third world countries will be emphasized. (Author)

  5. Belgian research on fusion beryllium waste

    International Nuclear Information System (INIS)

    Druyts, F.; Mallants, D.; Sillen, X.; Iseghem, P. Van

    2004-01-01

    Future fusion power plants will generate important quantities of neutron irradiated beryllium. Although recycling is the preferred management option for this waste, this may not be technically feasible for all of the beryllium, because of its radiological characteristics. Therefore, at SCK·CEN, we initiated a research programme aimed at studying aspects of the disposal of fusion beryllium, including waste characterisation, waste acceptance criteria, conditioning methods, and performance assessment. One of the main issues to be resolved is the development of fusion-specific waste acceptance criteria for surface or deep geological disposal, in particular with regard to the tritium content. In case disposal is the only solution, critical nuclides can be immobilised by conditioning the waste. As a first approach to immobilising beryllium waste, we investigated the vitrification of beryllium. Corrosion tests were performed on both metallic and vitrified beryllium to provide source data for performance assessment. Finally, a first step in performance assessment was undertaken. (author)

  6. Academic Training: New Trends in Fusion Research

    CERN Multimedia

    Françoise Benz

    2004-01-01

    11, 12 and 13 October 2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 11 October from 11.00 to 12.00 hrs, 12 and 13 October from 10.00 to 12.00 hrs - 11 and 12 October in the Main Auditorium, bldg. 500, 13 October in the TH Amphitheatre New Trends in Fusion Research A. FASOLI / EPFL, Lausanne, CH The efforts of the international fusion community aim at demonstrating the scientific feasibility of thermonuclear fusion energy power plants. Understanding the behavior of burning plasmas, i.e. plasmas with strong self-heating, represents a primary scientific challenge for fusion research and a new science frontier. Although integrated studies will only be possible, in new, dedicated experimental facilities, such as the International Tokamak Experimental Reactor (ITER), present devices can address specific issues in regimes relevant to burning plasmas. Among these are an improvement of plasma performance via a reduction of the energy and particle transport, an optimization of the path to ignition or to su...

  7. Academic Training: New Trends in Fusion Research

    CERN Multimedia

    Françoise Benz

    2004-01-01

    11, 12 and 13 October 2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 11 October from 11.00 to 12.00 hrs, 12 and 13 October from 10.00 to 12.00 hrs - 11 and 12 October in the Main Auditorium, bldg. 500, 13 October in the Theory Conference Room, bldg. 4 New Trends in Fusion Research A. FASOLI / EPFL, Lausanne, CH The efforts of the international fusion community aim at demonstrating the scientific feasibility of thermonuclear fusion energy power plants. Understanding the behavior of burning plasmas, i.e. plasmas with strong self-heating, represents a primary scientific challenge for fusion research and a new science frontier. Although integrated studies will only be possible, in new, dedicated experimental facilities, such as the International Tokamak Experimental Reactor (ITER), present devices can address specific issues in regimes relevant to burning plasmas. Among these are an improvement of plasma performance via a reduction of the energy and particle transport, an optimization of the path to i...

  8. Computer applications in controlled fusion research

    International Nuclear Information System (INIS)

    Killeen, J.

    1975-01-01

    The application of computers to controlled thermonuclear research (CTR) is essential. In the near future the use of computers in the numerical modeling of fusion systems should increase substantially. A recent panel has identified five categories of computational models to study the physics of magnetically confined plasmas. A comparable number of types of models for engineering studies is called for. The development and application of computer codes to implement these models is a vital step in reaching the goal of fusion power. To meet the needs of the fusion program the National CTR Computer Center has been established at the Lawrence Livermore Laboratory. A large central computing facility is linked to smaller computing centers at each of the major CTR Laboratories by a communication network. The crucial element needed for success is trained personnel. The number of people with knowledge of plasma science and engineering trained in numerical methods and computer science must be increased substantially in the next few years. Nuclear engineering departments should encourage students to enter this field and provide the necessary courses and research programs in fusion computing

  9. The JET project and the European fusion research programme

    International Nuclear Information System (INIS)

    Wuester, H.-O.

    1984-01-01

    The paper concerns the Joint European Torus (JET) project and the European Fusion Research Programme. Fusion as an energy source and commercial fusion power are briefly discussed. The main features of the JET apparatus and the tokamak magnetic field configuration are given. Also described are the specific aims of JET, and the proposed future fusion reactor programme. (U.K.)

  10. Accelerator Fusion Research Division 1991 summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    Berkner, Klaus H.

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

  11. Accelerator & Fusion Research Division 1991 summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

  12. Accelerator ampersand Fusion Research Division 1991 summary of activities

    International Nuclear Information System (INIS)

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations

  13. Accelerator and fusion research division. 1992 Summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    This report contains brief discussions on research topics in the following area: Heavy-Ion Fusion Accelerator Research; Magnetic Fusion Energy; Advanced Light Source; Center for Beam Physics; Superconducting Magnets; and Bevalac Operations.

  14. Electron-beam-fusion progress report, January--June 1976

    International Nuclear Information System (INIS)

    1976-10-01

    Research progress is reported for the following areas: (1) Proto I, (2) Proto II, (3) EBFA, (4) power flow, (5) contract progress reports, (6) progress in the Sandia program, (7) repetitively operated pulse generator development, (8) electron beam power from inductive storage, (9) fusion target design, (10) beam physics research, (11) power flow, (12) heavy ion fusion, (13) particle beam source development, (14) beam target interaction and target response studies, (15) diagnostic development, and (16) hybrid systems

  15. Literature in focus: Particle beams from theory to practice

    CERN Multimedia

    2003-01-01

    Wednesday 1st October 16 h00 - Central Library CERN's Frank Zimmermann and DESY's Michiko G. Minty had their book 'Measurement and control of charged particle beams' published a few months ago by Springer. Frank Zimmermann, a young but already well established accelerator physicist, was awarded the European Accelerator Prize by the Interdivisional Group on Accelerators of the European Physical Society last year. Mr. Zimmermann was particularly cited for his significant contribution to the understanding of fast ion and electron cloud instabilities. The book is the first comprehensive and systematic review of all methods used for the measurement, correction, and control of the beam dynamics of modern particle accelerators and is intended for graduate students starting research or work in the field of beam physics. Specific techniques and methods for relativistic beams are illustrated by examples from operational accelerators, like CERN, DESY, SLAC, KEK, LBNL, and FNAL. Problems and solutions enhance the book...

  16. Overview of materials research for fusion reactors

    International Nuclear Information System (INIS)

    Muroga, T.; Gasparotto, M.; Zinkle, S.J.

    2002-01-01

    Materials research for fusion reactors is overviewed from Japanese, EU and US perspectives. Emphasis is placed on programs and strategies for developing blanket structural materials, and recent highlights in research and development for reduced activation ferritic martensitic steels, vanadium alloys and SiC/SiC composites, and in mechanistic experimental and modeling studies. The common critical issue for the candidate materials is the effect of irradiation with helium production. For the qualification of materials up to the full lifetime of a DEMO and Power Plant reactors, an intense neutron source with relevant fusion neutron spectra is crucial. Elaborate use of the presently available irradiation devices will facilitate efficient and sound materials development within the required time scale

  17. The history of controlled fusion research

    International Nuclear Information System (INIS)

    Trocheris, M.

    1980-01-01

    The idea of using nuclear reaction between light elements to produce energy for peaceful objectives originated towards the mid-forties. In this work, the author traces the various stages of reserach undertaken in this field from the first fusion experiments to the projects now in course of production. Research scientists have travelled a long, hard road to reach a new development phase during which technological problems will play a prominent part [fr

  18. Accelerator and Fusion Research Division 1989 summary of activities

    International Nuclear Information System (INIS)

    1990-06-01

    This report discusses the research being conducted at Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division. The main topics covered are: heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; high-energy physics technology; and bevalac operations

  19. Accelerator and Fusion Research Division 1989 summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This report discusses the research being conducted at Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division. The main topics covered are: heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; high-energy physics technology; and bevalac operations.

  20. Fusion

    CERN Document Server

    Mahaffey, James A

    2012-01-01

    As energy problems of the world grow, work toward fusion power continues at a greater pace than ever before. The topic of fusion is one that is often met with the most recognition and interest in the nuclear power arena. Written in clear and jargon-free prose, Fusion explores the big bang of creation to the blackout death of worn-out stars. A brief history of fusion research, beginning with the first tentative theories in the early 20th century, is also discussed, as well as the race for fusion power. This brand-new, full-color resource examines the various programs currently being funded or p

  1. Overview of US heavy ion fusion research

    International Nuclear Information System (INIS)

    Logan, G.; Bieniosek, F.; Celata, C.; Henestroza, E.; Kwan, J.; Lee, E.P.; Leitner, M.; Prost, L.; Roy, P.; Seidl, P.A.; Eylon, S.; Vay, J.-L.; Waldron, W.; Yu, S.; Barnard, J.; Callahan, D.; Cohen, R.; Friedman, A.; Grote, D.; Kireeff Covo, M.; Meier, W.R.; Molvik, A.; Lund, S.; Davidson, R.; Efthimion, P.; Gilson, E.; Grisham, L.; Kaganovich, I.; Qin, H.; Startsev, E.; Rose, D.; Welch, D.; Olson, C.; Kishek, R.; O'Shea, P.; Haber, I.

    2005-01-01

    Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high energy density conditions as well as for inertial fusion energy. (author)

  2. Overview of US heavy ion fusion research

    International Nuclear Information System (INIS)

    Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Henestroza, E.; Kwan, J.W.; Lee, E.P.; Leitner, M.; Roy, P.K.; Seidl, P.A.; Eylon, S.; Vay, J-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Callahan, D.A.; Cohen, R.H.; Friedman, A.; Grote, D.P; Covo, Kireeff M.; Meier, W.R.; Molvik, A.W.; Lund, S.M.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham, L.R.; Kaganovich, I.D.; Qin, H.; Startsev, E.A.; Rose, D.V.; Welch, D.R.; Olson, C.L.; Kishek, R.A.; O'Shea, P.; Haber, I.; Prost, L.R.; Prost, L.

    2004-01-01

    Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high energy density conditions as well as for inertial fusion energy

  3. Fusion reactor materials research in China

    International Nuclear Information System (INIS)

    Qian Jiapu

    1994-10-01

    The fusion materials research in China is introduced. Many kinds of structural materials (such as Ti-modified stainless steel, ferritic steel, HT-9, HT-7, oxide dispersion strengthening ferritic steel), tritium breeders (lithium, Li 2 O, γ-LiAlO 2 ) and plasma facing materials (PFMs) (graphite with TiC and SiC coatings) have been developed or being developed. A systematic research activities on irradiation effects, compatibility, plasma materials interaction, thermal shock during disruption, tritium production, release and permeation, neutron multiplication in Be and Pb, etc. have been performed. The research activities are summarized and some experimental results are also given

  4. Advances in 4D treatment planning for scanned particle beam therapy - report of dedicated workshops

    NARCIS (Netherlands)

    Bert, Christoph; Graeff, Christian; Riboldi, Marco; Nill, Simeon; Baroni, Guido; Knopf, Antje-Christin

    2014-01-01

    We report on recent progress in the field of mobile tumor treatment with scanned particle beams, as discussed in the latest editions of the 4D treatment planning workshop. The workshop series started in 2009, with about 20 people from 4 research institutes involved, all actively working on particle

  5. New approaches to the economic evaluation of fusion research

    International Nuclear Information System (INIS)

    Hazelrigg, G.A.; Lietzke, K.R.

    1978-01-01

    The economic evaluation of fusion research to date has focussed on the benefits of essentially unlimited energy for future generations. In this paper it is shown that energy research in general, and fusion research in particular, also provides benefits in the short term, benefitting us today as well as future generations. Short-term benefits are the result of two distinct aspects of fusion research. First, fusion research provides information for decision making on both the continuing fusion research efforts and on other energy research programs. Second, fusion research provides an expectation of a future energy source thereby promoting accelerated consumption of existing fossil fuels today. Both short-term benefits can be quantitatively evaluated and both are quite substantial. Together, these short-term benefits form the primary economic rationale for fusion research

  6. American research programs on controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    At a time when the site of the European JET project has been decided, this study proposes to highlight the American effort in this field over the last five years. The Federal Civil Research and Development budget assigned to Energy has been multiplied by 6.3 and inside this budget the portion allocated to fusion has been multiplied by a factor of 6, in value. Two avenues have been explored; magnetic confinement and inertial confinement but one reaction only has been considered, namely D + T fusion. In magnetic confinement, the first operational reactor is being contemplated for around the year 2012. Three technologies have been explored in inertial confinement: by laser beams, electron beams and ion beams [fr

  7. Maryland controlled fusion research program. Volume I

    International Nuclear Information System (INIS)

    1985-01-01

    This renewal proposal describes the University of Maryland research program on Magnetic Fusion Energy for a three-year period beginning January 1, 1986. This program consists of five tasks: (I) Plasma Theory; (II) Electron Cyclotron Emission Diagnostics for Mirror Machines; (III) Electron Cyclotron Emission Diagnostics on TFTR; (IV) Atomic Physics; and (V) Magnetic Field Measurement by Ion Beams. The four separate tasks of continuing research (Tasks I to IV) and the new experimental task (Task V) are described in detail. The task descriptions contain estimated budgets for CY 86, 87, and 88

  8. Review of fusion research program: historical summary and program projections

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E.S.

    1976-09-01

    This report provides a brief review of the history and current status of fusion research in the United States. It also describes the Federally funded program aimed at the development of fusion reactors for electric power generation.

  9. LLL magnetic fusion research: the first 25 years

    International Nuclear Information System (INIS)

    Post, R.F.

    1978-01-01

    From its inception, the Laboratory has supported research directed at tapping controlled fusion. Our magnetic fusion energy program--now one of the major elements of the national fusion energy research effort--dates back to the Laboratory's founding in 1952. This article reviews the program's beginnings, progress, and present status in terms of its ultimate goal: to demonstrate a practical and economical means of generating power from controlled fusion reactions

  10. Charged particle beam scanning using deformed high gradient insulator

    Science.gov (United States)

    Chen, Yu -Jiuan

    2015-10-06

    Devices and methods are provided to allow rapid deflection of a charged particle beam. The disclosed devices can, for example, be used as part of a hadron therapy system to allow scanning of a target area within a patient's body. The disclosed charged particle beam deflectors include a dielectric wall accelerator (DWA) with a hollow center and a dielectric wall that is substantially parallel to a z-axis that runs through the hollow center. The dielectric wall includes one or more deformed high gradient insulators (HGIs) that are configured to produce an electric field with an component in a direction perpendicular to the z-axis. A control component is also provided to establish the electric field component in the direction perpendicular to the z-axis and to control deflection of a charged particle beam in the direction perpendicular to the z-axis as the charged particle beam travels through the hollow center of the DWA.

  11. Shutter designed to block high-energy particle beams

    International Nuclear Information System (INIS)

    Donnadille, B.

    1976-01-01

    A description is given of a shutter designed for temporarily closing off an opening formed in the wall of an irradiation room for the passage of a particle beam. A cylindrical metal block can rotate about its axis and occupy two stable positions which are 180 0 from one another. A cylindrical cage closed at its two ends by two circular plates is equipped respectively with eccentric holes for the passage of the particle beam. The block is provided with a longitudinal passage through which there can pass the particle beam and a blind hole or ''pit'' disposed symmetrically to the longitudinal passage and which can block the particle beam according to the positioning of the block by respect with the eccentric holes

  12. State of controlled nuclear fusion research

    International Nuclear Information System (INIS)

    Rodrigo, A.B.

    1978-04-01

    The development of a commercial fusion reactor requires an adequate solution to the problems of heating and confinement of the nuclear fuel, as well as a considerable effort in materials technology and reactor engineering. A general discussion is presented of the status of the research connected with the most advanced concepts, indicating in each case the present situation and the main problems that must be solved to meet the requeriments estimated for power reactors. In particular, the laser-inertial concept is reviewed in detail. (author) [es

  13. Physical properties of charged particle beams for use in radiotherapy

    International Nuclear Information System (INIS)

    Knapp, E.A.

    1975-01-01

    The physical properties of the possible charged particle beams used for cancer radiotherapy are reviewed. Each property is discussed for all interesting particles (π, p, α, Ne ion) and the differences are emphasized. This is followed by a short discussion of the several beam delivery systems used in particle therapy today, emphasizing the differences in the problems for the several different radiations, particularly the differences between the accelerated particle beams and those of a secondary nature. Dose calculation techniques are described

  14. Virtual laboratory for fusion research in Japan

    International Nuclear Information System (INIS)

    Tsuda, K.; Nagayama, Y.; Yamamoto, T.; Horiuchi, R.; Ishiguro, S.; Takami, S.

    2008-01-01

    A virtual laboratory system for nuclear fusion research in Japan has been developed using SuperSINET, which is a super high-speed network operated by National Institute of Informatics. Sixteen sites including major Japanese universities, Japan Atomic Energy Agency and National Institute for Fusion Science (NIFS) are mutually connected to SuperSINET with the speed of 1 Gbps by the end of 2006 fiscal year. Collaboration categories in this virtual laboratory are as follows: the large helical device (LHD) remote participation; the remote use of supercomputer system; and the all Japan ST (Spherical Tokamak) research program. This virtual laboratory is a closed network system, and is connected to the Internet through the NIFS firewall in order to keep higher security. Collaborators in a remote station can control their diagnostic devices at LHD and analyze the LHD data as they were at the LHD control room. Researchers in a remote station can use the supercomputer of NIFS in the same environment as NIFS. In this paper, we will describe detail of technologies and the present status of the virtual laboratory. Furthermore, the items that should be developed in the near future are also described

  15. Trends of researches for fusion engineering research facility (FERF)

    International Nuclear Information System (INIS)

    Ozawa, Yasutomo; Enoto, Takeaki

    1975-01-01

    The role of a fusion neutron radiation test facility in the development of a scientific feasibility experimental reactor or demonstration fusion power reactor plant would be analogous to the role of the materials testing and experimental reactors in the development of fission power reactor. While the material testing fission reactor has been developed after successful operation of fission reactors, in the case of fusion reactor development it is desirable to realize the fusion engineering research facility (FERF) in-phase to the development of SFX and/or demonstration fusion power reactor plants. Here so called FERF in near future is the Controlled Thermonuclear Reactor which provides the high-intensity and high-energy neutron and plasma source whether the net power output is produced or not. From the point of direct attainment to SFX, we would like to emphasize that FEFE is the royal road leading to the goal of successful achievement of CTR program and could be useful for the experiment on impurity effects caused by neutron and plasma irradiations onto the wall material for SFX. Further, we rather suppose that hybrid FERF-fission assembly could be fairly and easily realizable in near future. (auth.)

  16. Customizable scientific web portal for fusion research

    International Nuclear Information System (INIS)

    Abla, G.; Kim, E.N.; Schissel, D.P.; Flanagan, S.M.

    2010-01-01

    Web browsers have become a major application interface for participating in scientific experiments such as those in magnetic fusion. The recent advances in web technologies motivated the deployment of interactive web applications with rich features. In the scientific world, web applications have been deployed in portal environments. When used in a scientific research environment, such as fusion experiments, web portals can present diverse sources of information in a unified interface. However, the design and development of a scientific web portal has its own challenges. One such challenge is that a web portal needs to be fast and interactive despite the high volume of information and number of tools it presents. Another challenge is that the visual output of the web portal must not be overwhelming to the end users, despite the high volume of data generated by fusion experiments. Therefore, the applications and information should be customizable depending on the needs of end users. In order to meet these challenges, the design and implementation of a web portal needs to support high interactivity and user customization. A web portal has been designed to support the experimental activities of DIII-D researchers worldwide by providing multiple services, such as real-time experiment status monitoring, diagnostic data access and interactive data visualization. The web portal also supports interactive collaborations by providing a collaborative logbook, shared visualization and online instant messaging services. The portal's design utilizes the multi-tier software architecture and has been implemented utilizing web 2.0 technologies, such as AJAX, Django, and Memcached, to develop a highly interactive and customizable user interface. It offers a customizable interface with personalized page layouts and list of services, which allows users to create a unique, personalized working environment to fit their own needs and interests. This paper describes the software

  17. Customizable scientific web portal for fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Abla, G., E-mail: abla@fusion.gat.co [General Atomics, P.O. Box 85608, San Diego, CA (United States); Kim, E.N.; Schissel, D.P.; Flanagan, S.M. [General Atomics, P.O. Box 85608, San Diego, CA (United States)

    2010-07-15

    Web browsers have become a major application interface for participating in scientific experiments such as those in magnetic fusion. The recent advances in web technologies motivated the deployment of interactive web applications with rich features. In the scientific world, web applications have been deployed in portal environments. When used in a scientific research environment, such as fusion experiments, web portals can present diverse sources of information in a unified interface. However, the design and development of a scientific web portal has its own challenges. One such challenge is that a web portal needs to be fast and interactive despite the high volume of information and number of tools it presents. Another challenge is that the visual output of the web portal must not be overwhelming to the end users, despite the high volume of data generated by fusion experiments. Therefore, the applications and information should be customizable depending on the needs of end users. In order to meet these challenges, the design and implementation of a web portal needs to support high interactivity and user customization. A web portal has been designed to support the experimental activities of DIII-D researchers worldwide by providing multiple services, such as real-time experiment status monitoring, diagnostic data access and interactive data visualization. The web portal also supports interactive collaborations by providing a collaborative logbook, shared visualization and online instant messaging services. The portal's design utilizes the multi-tier software architecture and has been implemented utilizing web 2.0 technologies, such as AJAX, Django, and Memcached, to develop a highly interactive and customizable user interface. It offers a customizable interface with personalized page layouts and list of services, which allows users to create a unique, personalized working environment to fit their own needs and interests. This paper describes the software

  18. Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs

    International Nuclear Information System (INIS)

    1980-08-01

    A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described

  19. Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Ronald C.

    1980-08-01

    A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described. (MOW)

  20. Fusion research in the European Community

    International Nuclear Information System (INIS)

    Wolf, G.H.

    1988-01-01

    Centering around the European joint project Joint European Torus (JET), in the framework of which hot fusion plasmas are already brought close to thermonuclear ignition, the individual research centres in Europe have taken over different special tasks. In Germany research concentrates above all on the development of super-conductive magnets, the stage of plasma-physical fundamentals or the investigation of the interaction between the plasma boundary layer and the material of the vessel wall. On this basis the development stage following JET, the Next European Torus (NET), is planned, with its main aim being the production and maintenance of a thermonuclear burning plasma, i.e. a plasma which maintains its active state from the gain of energy of its own fusion reactions. In the framework of a contractually agreed cooperation between the European Community, Japan, the USSR and the USA, the establishment of an international study group (with seat in Garching) was decided upon, which is to develop the concept of an 'International Thermonuclear Experimental Reactor (ITER)' jointly supported by these countries. The results of the studies presented show that the differences in the design data of ITER and NET are negligible. (orig./DG) [de

  1. IAEA and IEA roles in international fusion energy research

    International Nuclear Information System (INIS)

    Dolan, T.; Nakamura, K.

    2000-01-01

    The article describes the IAEA's and the IEA's complementary roles in facilitating international fusion research cooperation. These roles represent highly desirable contributions to fusion research through pooling of limited human and financial resources. The two Agencies both coordinate research and organize technical meeting, but in different ways. They each have unique strengths and different modes of operation. In order to deal with potential overlaps and serve the fusion research community optimally, they are coordinating their activities

  2. Present status of nuclear fusion research and development

    International Nuclear Information System (INIS)

    Discussions are included on the following topics: (1) plasma confinement theoretical research, (2) torus plasma research, (3) plasma measurement research, (4) technical development of equipment, (5) plasma heating, (6) vacuum wall surface phenomena, (7) critical plasma test equipment design, (8) noncircular cross-sectional torus test equipment design, (9) nuclear fusion reactor design, (10) nuclear fusion reactor engineering, (11) summary of nuclear fusion research in foreign countries, and (12) long range plan in Japan

  3. Induction linacs for heavy ion fusion research

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Avery, R.T.; Brady, V.; Bisognano, J.; Celata, C.; Chupp, W.W.; Faltens, A.; Hartwig, E.C.; Judd, D.L.; Keefe, D.; Kim, C.H.; Laslett, L.J.; Lee, E.P.; Rosenblum, S.S.; Smith, L.; Warwick, A.

    1984-01-01

    The new features of employing an induction linac as a driver for inertial fusion involve (1) transport of high-current low-emittance heavy ion beams. (2) multiple independently-focussed beams threading the same accelerator structure, and (3) synthesis of voltage waveforms to accomplish beam current amplification. A research program is underway at LBL to develop accelerators that test all these features with the final goal of producing an ion beam capable of heating matter to proportional70 eV. This paper presents a discussion of some properties of induction linacs and how they may be used for HIF research. Physics designs of the High Temperature Experiment (HTE) and the Multiple Beam Experiment (MBE) accelerators are presented along with initial concepts of the MBE induction units. (orig.)

  4. Induction linacs for heavy ion fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Fessenden, T.J.

    1984-05-01

    The new features of employing an induction linac as a driver for inertial fusion involve (1) transport of high-current low-emittance heavy ion beams, (2) multiple independently-focussed beams threading the same accelerator structure, and (3) synthesis of voltage waveforms to accomplish beam current amplification. A research program is underway at LBL to develop accelerators that test all these features with the final goal of producing an ion beam capable of heating matter to approx. 70 eV. This paper presents a discussion of some properties of induction linacs and how they may be used for HIF research. Physics designs of the High Temperature Experiment (HTE) and the Multiple Beam Experiment (MBE) accelerators are presented along with initial concepts of the MBE induction units.

  5. Heavy-ion accelerator research for inertial fusion

    International Nuclear Information System (INIS)

    1987-08-01

    Thermonuclear fusion offers a most attractive long-term solution to the problem of future energy supplies: The fuel is virtually inexhaustible and the fusion reaction is notably free of long-lived radioactive by-products. Also, because the fuel is in the form of a plasma, there is no solid fuel core that could melt down. The DOE supports two major fusion research programs to exploit these virtues, one based on magnetic confinement and a second on inertial confinement. One part of the program aimed at inertial fusion is known as Heavy Ion Fusion Accelerator Research, or HIFAR. In this booklet, the aim is to place this effort in the context of fusion research generally, to review the brief history of heavy-ion fusion, and to describe the current status of the HIFAR program

  6. Research on an Agricultural Knowledge Fusion Method for Big Data

    Directory of Open Access Journals (Sweden)

    Nengfu Xie

    2015-05-01

    Full Text Available The object of our research is to develop an ontology-based agricultural knowledge fusion method that can be used as a comprehensive basis on which to solve agricultural information inconsistencies, analyze data, and discover new knowledge. A recent survey has provided a detailed comparison of various fusion methods used with Deep Web data (Li, 2013. In this paper, we propose an effective agricultural ontology-based knowledge fusion method by leveraging recent advances in data fusion, such as the semantic web and big data technologies, that will enhance the identification and fusion of new and existing data sets to make big data analytics more possible. We provide a detailed fusion method that includes agricultural ontology building, fusion rule construction, an evaluation module, etc. Empirical results show that this knowledge fusion method is useful for knowledge discovery.

  7. The Role of the JET Project in Global Fusion Research

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla

    1983-01-01

    The aim of nuclear fusion research is to make fusion energy available as a new energy source. Fusion processes occur naturally in the sun, where hydrogen nuclei release energy by combining to form helium. A fusion reactor on earth will require even higher temperatures than in the interior...... of the sun, and it will be based on deuterium and tritium reactions. JET (Joint European Torus) is a major fusion experiment now under construction near Abingdon in the UK It is aimed at producing conditions approximating those necessary in a fusion reactor. The results expected from JET should permit...... a realistic evaluation of the prospects for fusion power and serve as a basis for the design of the next major fusion experiment....

  8. Operating large controlled thermonuclear fusion research facilities

    International Nuclear Information System (INIS)

    Gaudreau, M.P.J.; Tarrh, J.M.; Post, R.S.; Thomas, P.

    1987-01-01

    The MIT Tara Tandem Mirror is a large, state of the art controlled thermonuclear fusion research facility. Over the six years of its design, implementation, and operation, every effort was made to minimize cost and maximize performance by using the best and latest hardware, software, and scientific and operational techniques. After reviewing all major DOE fusion facilities, an independent DOE review committee concluded that the Tara operation was the most automated and efficient of all DOE facilities. This paper includes a review of the key elements of the Tara design, construction, operation, management, physics milestones, and funding that led to this success. The authors emphasize a chronological description of how the system evolved from the proposal stage to a mature device with an emphasis on the basic philosophies behind the implementation process. This description can serve both as a qualitative and quantitative database for future large experiment planning. It includes actual final costs and manpower spent as well as actual run and maintenance schedules, number of data shots, major system failures, etc. The paper concludes with recommendations for the next generation of facilities

  9. Operating large controlled thermonuclear fusion research facilities

    International Nuclear Information System (INIS)

    Gaudreau, M.P.J.; Tarrh, J.M.; Post, R.S.; Thomas, P.

    1987-10-01

    The MIT Tara Tandem Mirror is a large, state of the art controlled thermonuclear fusion research facility. Over the six years of its design, implementation, and operation, every effort was made to minimize cost and maximize performance by using the best and latest hardware, software, and scientific and operational techniques. After reviewing all major DOE fusion facilities, an independent DOE review committee concluded that the Tara operation was the most automated and efficient of all DOE facilities. This paper includes a review of the key elements of the Tara design, construction, operation, management, physics milestones, and funding that led to this success. We emphasize a chronological description of how the system evolved from the proposal stage to a mature device with an emphasis on the basic philosophies behind the implementation process. This description can serve both as a qualitative and quantitative database for future large experiment planning. It includes actual final costs and manpower spent as well as actual run and maintenance schedules, number of data shots, major system failures, etc. The paper concludes with recommendations for the next generation of facilities. 13 refs., 15 figs., 3 tabs

  10. Software problems in magnetic fusion research

    International Nuclear Information System (INIS)

    Gruber, R.

    1982-01-01

    The main world effort in magnetic fusion research involves studying the plasma in a Tokamak device. Four large Tokamaks are under construction (TFTR in USA, JET in Europe, T15 in USSR and JT60 in Japan). To understand the physical phenomena that occur in these costly devices, it is generally necessary to carry out extensive numerical calculations. These computer simulations make use of sophisticated numerical methods and demand high power computers. As a consequence they represent a substantial investment. To reduce software costs, the computer codes are more and more often exhanged among scientists. Standardization (STANDARD FORTRAN, OLYMPUS system) and good documentation (CPC program library) are proposed to make codes exportable. Centralized computing centers would also help in the exchange of codes and ease communication between the staff at different laboratories. (orig.)

  11. Major achievements and challenges of fusion research

    International Nuclear Information System (INIS)

    Tendler, Michael

    2015-01-01

    The ITER project is truly at the frontier of knowledge, a collective effort to explore the tantalizing future of free, clean and inexhaustible energy offered by nuclear fusion. Where the Large Hadron Collider at CERN pushes the boundaries of physics to find the origins of matter, the ITER Project seeks to give humans an endless stream of power which could have potentially game-changing consequences for the entire planet. Seminal contributions to the general physics knowledge accomplished by the plasma physics research for the benefit of the ITER project will be brought to light. The legacy of Professor H Alfvén within the framework of the ITER project will be described. (invited comment)

  12. Accelerator and Fusion Research Division: Summary of activities, 1986

    International Nuclear Information System (INIS)

    1987-01-01

    This report contains a summary of activities at the Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division for the year 1986. Topics and facilities investigated in individual papers are: 1-2 GeV Synchrotron Radiation Source, the Center for X-Ray Optics, Accelerator Operations, High-Energy Physics Technology, Heavy-Ion Fusion Accelerator Research and Magnetic Fusion Energy. Six individual papers have been indexed separately

  13. Iconic representation of particle beams using personal computers

    International Nuclear Information System (INIS)

    Dasgupta, S.; Sarkar, D.; Mallik, C.

    1992-01-01

    The idea of representing the character of a charged particle beam by means of its emittance ellipses, is essentially a mathematical one. For quick understanding of the beam character in a more user-friendly way, unit beam cells with particles having a uniform nature, have been pictured by suitably shaped 3-D solids. The X and Y direction momenta at particular cell areas of the particle beam combine together to give a proportionate orientation to the solid in the pseudo 3-D world of the graphic screen, creating a physical picture of the particle beam. This is expected to facilitate the comprehension of total characteristics of a beam in cases of online control of transport lines and their designs, when interfaced with various ray-tracing programs. The implementation is done in an IBM-PC environment. (author)

  14. Comparative assessment of world research efforts on magnetic confinement fusion

    International Nuclear Information System (INIS)

    McKenney, B.L.; McGrain, M.; Rutherford, P.H.

    1990-02-01

    This report presents a comparative assessment of the world's four major research efforts on magnetic confinement fusion, including a comparison of the capabilities in the Soviet Union, the European Community (Western Europe), Japan, and the United States. A comparative evaluation is provided in six areas: tokamak confinement; alternate confinement approaches; plasma technology and engineering; and fusion computations. The panel members are involved actively in fusion-related research, and have extensive experience in previous assessments and reviews of the world's four major fusion programs. Although the world's four major fusion efforts are roughly comparable in overall capabilities, two conclusions of this report are inescapable. First, the Soviet fusion effort is presently the weakest of the four programs in most areas of the assessment. Second, if present trends continue, the United States, once unambiguously the world leader in fusion research, will soon lose its position of leadership to the West European and Japanese fusion programs. Indeed, before the middle 1990s, the upgraded large-tokamak facilities, JT-60U (Japan) and JET (Western Europe), are likely to explore plasma conditions and operating regimes well beyond the capabilities of the TFTR tokamak (United States). In addition, if present trends continue in the areas of fusion nuclear technology and materials, and plasma technology and materials, and plasma technology development, the capabilities of Japan and Western Europe in these areas (both with regard to test facilities and fusion-specific industrial capabilities) will surpass those of the United States by a substantial margin before the middle 1990s

  15. Socio-Economic research on fusion SERF 3(2001-2003) External Costs of Fusion

    International Nuclear Information System (INIS)

    Lechon, Y.; Saez, R.; Cabal, H.

    2003-01-01

    Based on SEAFP project (Raeder et al, 1995) findings a preliminary assessment of environmental external costs associated to fusion power was performed under the framework of the first phase of the SERF (Socioeconomic Research on Fusion) project (Saez et al, 1999). This study showed very low external costs of fusion power compared with other traditional and new energy generating technologies. In order to update the assessment of externalities of fusion power, SERF2 project a new plant was included and an analysis of the key variables influencing the external cost was carried out. In the new phase of the SERF project, SERF3, three new additional plant models have been introduced with the aim of assessing the possibilities of silicon carbide to be used as structural material for fusion power plants. Furthermore, comparison of fusion external costs with those of other generation technologies in the state of technology development expected for 2050 has been also performed. (Author)

  16. Plasma focusing and diagnosis of high energy particle beams

    International Nuclear Information System (INIS)

    Chen, Pisin.

    1990-09-01

    Various novel concepts of focusing and diagnosis of high energy charged particle beams, based on the interaction between the relativistic particle beam and the plasma, are reviewed. This includes overdense thin plasma lenses, and (underdense) adiabatic plasma lens, and two beam size monitor concepts. In addition, we introduce another mechanism for measuring flat beams based on the impulse received by heavy ions in an underdense plasma. Theoretical investigations show promise of focusing and diagnosing beams down to sizes where conventional methods are not possible to provide. 21 refs

  17. Nuclear Fusion Research Understanding Plasma-Surface Interactions

    CERN Document Server

    Clark, Robert E.H

    2005-01-01

    It became clear in the early days of fusion research that the effects of the containment vessel (erosion of "impurities") degrade the overall fusion plasma performance. Progress in controlled nuclear fusion research over the last decade has led to magnetically confined plasmas that, in turn, are sufficiently powerful to damage the vessel structures over its lifetime. This book reviews current understanding and concepts to deal with this remaining critical design issue for fusion reactors. It reviews both progress and open questions, largely in terms of available and sought-after plasma-surface interaction data and atomic/molecular data related to these "plasma edge" issues.

  18. International information exchange in fusion research

    International Nuclear Information System (INIS)

    Strickler, C.S.

    1979-01-01

    Formal and informal agreements exist between the US and several other countries, assuring the unrestricted exchange of magnetic fusion information. The Fusion Energy Library at Oak Ridge National Laboratory uses the US Department of Energy standard distribution system and exchange agreements to ensure the receipt of current reports. Selective dissemination of information, computer networks, and exchange programs are additional means for information gathering. The importance of these means as they relate to the fusion program in the US and specifically at ORNL is discussed

  19. Plasma physics and controlled nuclear fusion research

    International Nuclear Information System (INIS)

    1980-01-01

    Full text: During the last decade, growing efforts have been devoted to studying the possible forms an electricity-producing thermonuclear reactor might take and the various technical problems that will have to be overcome. Previous IAEA Conferences took place in Salzburg (1961), Culham (1965), Novosibirsk (1968), Madison (1971), Tokyo (1974), Berchtesgaden (1976) and Innsbruck (1978) The exchange of information that has characterized this series of meetings is an important example of international co-operation and has contributed substantially to progress in controlled fusion research. The results of experiments in major research establishments, as well as the growing scientific insights in the field of plasma physics, give hope that the realization of nuclear fusion will be made possible on a larger scale and beyond the laboratory stage by the end of this century. The increase of the duration of existing tokamak discharges requires solution of the impurity control problem. First results from the new big machines equipped with the poloidal divertor recently came into operation. PDX (USA) and ASDEX (F.R. of Germany) show that various divertor configurations can be established and maintained and that the divertors function in the predicted manner. The reduction of high-Z impurities on these machines by a factor 10 was achieved. As a result of extensive research on radio-frequency (RF) plasma heating on tokamaks: PLT (USA), TFR (France), JFT-2 (Japan), the efficiency of this attractive method of plasma heating comparable to neutral beam heating was demonstrated. It was shown that the density of the input power of about 5-10 kW/cm 2 is achievable and this limit is high enough for application to reactor-like machines. One of the inspiring results reported at the conference was the achievement of value (the ratio of plasma pressure to magnetic field pressure) of ∼ 3% on tokamaks T-11 (USSR) and ISX-B (USA). It is important to note that this value exceeds the

  20. Large power supply facilities for fusion research

    International Nuclear Information System (INIS)

    Miyahara, Akira; Yamamoto, Mitsuyoshi.

    1976-01-01

    The authors had opportunities to manufacture and to operate two power supply facilities, that is, 125MVA computer controlled AC generator with a fly wheel for JIPP-T-2 stellerator in Institute of Plasma Physics, Nagoya University and 3MW trial superconductive homopolar DC generator to the Japan Society for Promotion of Machine Industry. The 125MVA fly-wheel generator can feed both 60MW (6kV x 10kA) DC power for toroidal coils and 20MW (0.5kV x 40kA) DC power for helical coils. The characteristic features are possibility of Bung-Bung control based on Pontrjagin's maximum principle, constant current control or constant voltage control for load coils, and cpu control for routine operation. The 3MW (150V-20000A) homopolar generator is the largest in the world as superconductive one, however, this capacity is not enough for nuclear fusion research. The problems of power supply facilities for large Tokamak devices are discussed

  1. Experiences with remote collaborations in fusion research

    International Nuclear Information System (INIS)

    Wurden, G.A.; Davis, S.; Barnes, D.

    1998-03-01

    The magnetic fusion research community has considerable experience in placing remote collaboration tools in the hands of real user. The ability to remotely view operations and to control selected instrumentation and analysis tasks has been demonstrated. University of Wisconsin scientists making turbulence measurements on TFTR: (1) were provided with a remote control room from which they could operate their diagnostic, while keeping in close contact with their colleagues in Princeton. LLNL has assembled a remote control room in Livermore in support of a large, long term collaboration on the DIII-D tokamak in San Diego. (2) From the same control room, a joint team of MIT and LLNL scientists has conducted full functional operation of the Alcator C-Mod tokamak located 3,000 miles away in Cambridge Massachusetts. (3) These early efforts have been highly successful, but are only the first steps needed to demonstrate the technical feasibility of a complete facilities on line environment. These efforts have provided a proof of principle for the collaboratory concept and they have also pointed out shortcomings in current generation tools and approaches. Current experiences and future directions will be discussed

  2. Fusion Ignition Research Experiment System Integration

    International Nuclear Information System (INIS)

    Brown, T.

    1999-01-01

    The FIRE (Fusion Ignition Research Experiment) configuration has been designed to meet the physics objectives and subsystem requirements in an arrangement that allows remote maintenance of in-vessel components and hands-on maintenance of components outside the TF (toroidal-field) boundary. The general arrangement consists of sixteen wedged-shaped TF coils that surround a free-standing central solenoid (CS), a double-wall vacuum vessel and internal plasma-facing components. A center tie rod is used to help support the vertical magnetic loads and a compression ring is used to maintain wedge pressure in the inboard corners of the TF coils. The magnets are liquid nitrogen cooled and the entire device is surrounded by a thermal enclosure. The double-wall vacuum vessel integrates cooling and shielding in a shape that maximizes shielding of ex-vessel components. The FIRE configuration development and integration process has evolved from an early stage of concept selection to a higher level of machine definition and component details. This paper describes the status of the configuration development and the integration of the major subsystem components

  3. Some peculiarity of element analysis using charged particle beams

    International Nuclear Information System (INIS)

    Kobzev, A.P.; Abu-Alazm, S.M.; Helal, A.I.; Zahran, N.F.

    2002-01-01

    Multilayer structures, SiC -layers at Si substrate, have been analyzed by RBS, NR, ERD and PIXE methods using the charged particle beams from EG-5 Van de Graaff accelerator of JINR. The depth profiles of the based deposited layers were obtained for the multilayer structures

  4. Some implications for mirror research of the coupling between fusion economics and fusion physics

    International Nuclear Information System (INIS)

    Post, R.F.

    1980-01-01

    The thesis is made that physics understanding and innovation represent two of the most important ingredients of any program to develop fusion power. In this context the coupling between these and the econmics of yet-to-be realized fusion power plants is explored. The coupling is two-way: realistic evaluations of the economic (and environmental) requirements for fusion power systems can influence the physics objectives of present-day fusion research programs; physics understanding and innovative ideas can favorably impact the future economics of fusion power systems. Of equal importance is the role that physics/innovation can have on the time scale for the first practical demonstration of fusion power. Given the growing worldwide need for long-term solutions to the problem of energy it is claimed to be crucial that fusion research be carried out on a broad base and in a spirit that both facilitates the growth of physics understanding and fosters innovation. Developing this theme, some examples of mirror-based fusion system concepts are given that illustrate the coupling here described

  5. Radiological safety design considerations for fusion research experiments

    International Nuclear Information System (INIS)

    Crase, K.W.; Singh, M.S.

    1979-01-01

    A wide variety of fusion research experiments are in the planning or construction stages. Two such experiments, the Nova Laser Fusion Facility and the Mirror Fusion Test Facility (MFTF), are currently under construction at Lawrence Livermore Laboratory. Although the plasma chamber vault for MFTF and the Nova target room will have thick concrete walls and roofs, the radiation safety problems are made complex by the numerous requirements for shield wall penetrations. This paper addresses radiation safety considerations for the MFTF and Nova experiments, and the need for integrated safety considerations and safety technology development during the planning stages of fusion experiments

  6. Plasma physics and controlled fusion research during half a century

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Bo

    2001-06-01

    A review is given on the historical development of research on plasma physics and controlled fusion. The potentialities are outlined for fusion of light atomic nuclei, with respect to the available energy resources and the environmental properties. Various approaches in the research on controlled fusion are further described, as well as the present state of investigation and future perspectives, being based on the use of a hot plasma in a fusion reactor. Special reference is given to the part of this work which has been conducted in Sweden, merely to identify its place within the general historical development. Considerable progress has been made in fusion research during the last decades. Temperatures above the limit for ignition of self-sustained fusion reactions, i.e. at more than hundred million degrees, have been reached in large experiments and under conditions where the fusion power generation is comparable to the power losses. An energy producing fusion reactor could in principle be realized already today, but it would not become technically and economically efficient when being based on the present state of art. Future international research has therefore to be conducted along broad lines, with necessary ingredients of basic investigations and new ideas.

  7. Role of supercomputers in magnetic fusion and energy research programs

    International Nuclear Information System (INIS)

    Killeen, J.

    1985-06-01

    The importance of computer modeling in magnetic fusion (MFE) and energy research (ER) programs is discussed. The need for the most advanced supercomputers is described, and the role of the National Magnetic Fusion Energy Computer Center in meeting these needs is explained

  8. Advanced laser fusion target fabrication research and development proposal

    International Nuclear Information System (INIS)

    Stupin, D.M.; Fries, R.J.

    1979-05-01

    A research and development program is described that will enable the fabrication of 10 6 targets/day for a laser fusion prototype power reactor in 2007. We give personnel and cost estimates for a generalized laser fusion target that requires the development of several new technologies. The total cost of the program between 1979 and 2007 is $362 million in today's dollars

  9. Plasma physics and controlled fusion research during half a century

    International Nuclear Information System (INIS)

    Lehnert, Bo

    2001-06-01

    A review is given on the historical development of research on plasma physics and controlled fusion. The potentialities are outlined for fusion of light atomic nuclei, with respect to the available energy resources and the environmental properties. Various approaches in the research on controlled fusion are further described, as well as the present state of investigation and future perspectives, being based on the use of a hot plasma in a fusion reactor. Special reference is given to the part of this work which has been conducted in Sweden, merely to identify its place within the general historical development. Considerable progress has been made in fusion research during the last decades. Temperatures above the limit for ignition of self-sustained fusion reactions, i.e. at more than hundred million degrees, have been reached in large experiments and under conditions where the fusion power generation is comparable to the power losses. An energy producing fusion reactor could in principle be realized already today, but it would not become technically and economically efficient when being based on the present state of art. Future international research has therefore to be conducted along broad lines, with necessary ingredients of basic investigations and new ideas

  10. Customizable Scientific Web Portal for Fusion Research

    Energy Technology Data Exchange (ETDEWEB)

    Abla, G; Kim, E; Schissel, D; Flannagan, S [General Atomics, San Diego (United States)

    2009-07-01

    The Web browser has become one of the major application interfaces for remotely participating in magnetic fusion experiments. Recently in other areas, web portals have begun to be deployed. These portals are used to present very diverse sources of information in a unified way. While a web portal has several benefits over other software interfaces, such as providing single point of access for multiple computational services, and eliminating the need for client software installation, the design and development of a web portal has unique challenges. One of the challenges is that a web portal needs to be fast and interactive despite a high volume of tools and information that it presents. Another challenge is the visual output on the web portal often is overwhelming due to the high volume of data generated by complex scientific instruments and experiments; therefore the applications and information should be customizable depending on the needs of users. An appropriate software architecture and web technologies can meet these problems. A web-portal has been designed to support the experimental activities of DIII-D researchers worldwide. It utilizes a multi-tier software architecture, and web 2.0 technologies, such as AJAX, Django, and Memcached, to develop a highly interactive and customizable user interface. It offers a customizable interface with personalized page layouts and list of services for users to select. The users can create a unique personalized working environment to fit their own needs and interests. Customizable services are: real-time experiment status monitoring, diagnostic data access, interactive data visualization. The web-portal also supports interactive collaborations by providing collaborative logbook, shared visualization and online instant message services. Furthermore, the web portal will provide a mechanism to allow users to create their own applications on the web portal as well as bridging capabilities to external applications such as

  11. Customisable Scientific Web Portal for Fusion Research

    Energy Technology Data Exchange (ETDEWEB)

    Abla, G; Kim, E; Schissel, D; Flannagan, S [General Atomics, San Diego (United States)

    2009-07-01

    The Web browser has become one of the major application interfaces for remotely participating in magnetic fusion. Web portals are used to present very diverse sources of information in a unified way. While a web portal has several benefits over other software interfaces, such as providing single point of access for multiple computational services, and eliminating the need for client software installation, the design and development of a web portal has unique challenges. One of the challenges is that a web portal needs to be fast and interactive despite a high volume of tools and information that it presents. Another challenge is the visual output on the web portal often is overwhelming due to the high volume of data generated by complex scientific instruments and experiments; therefore the applications and information should be customizable depending on the needs of users. An appropriate software architecture and web technologies can meet these problems. A web-portal has been designed to support the experimental activities of DIII-D researchers worldwide. It utilizes a multi-tier software architecture, and web 2.0 technologies, such as AJAX, Django, and Memcached, to develop a highly interactive and customizable user interface. It offers a customizable interface with personalized page layouts and list of services for users to select. Customizable services are: real-time experiment status monitoring, diagnostic data access, interactive data visualization. The web-portal also supports interactive collaborations by providing collaborative logbook, shared visualization and online instant message services. Furthermore, the web portal will provide a mechanism to allow users to create their own applications on the web portal as well as bridging capabilities to external applications such as Twitter and other social networks. In this series of slides, we describe the software architecture of this scientific web portal and our experiences in utilizing web 2.0 technologies. A

  12. Finnish Fusion Research Programme Yearbook 1993-1994

    International Nuclear Information System (INIS)

    Karttunen, S.; Paettikangas, T.

    1995-05-01

    Finnish Fusion Research Programme (FFUSION) is one of the national energy research programmes funded by the Ministry of Trade and Industry and from 1995 by TEKES. National organization for fusion research is necessary for efficient and successful participation in international fusion programmes. FFUSION programme serves well for this purpose and it made possible to establish relations and the dialogue with the European Fusion Programme. The process led to the Finnish Association Euratom-TEKES in early 1995. The first period of the FFUSION programme (1993-1994) was preparation for the association to the Community Programme. The strategy was to emphasize fusion technology parallel with the basic fusion and plasma physics and to activate the related Finnish industry to collaborate and participate in the FFUSION programme and later in the European Fusion Programme. The key element in the strategy is the focusing our fairly small R and D effort to a few topics, which increases possibilities to be competitive in Europe. The physics programme in FFUSION deals mainly with theoretical and computational studies of radio-frequency heating in tokamak plasmas. Technology programme started with prestudies in 1993 and it concentrates into two areas: fusion reactor materials and remote handling systems. (8 figs., 3 tabs.)

  13. New era for fusion research centre

    CERN Multimedia

    Cartlidge, Edwin

    2003-01-01

    The former director general of CERN, Sir Chris Llewellyn Smith, takes over as director of the Culham fusion laboratory in Oxfordshire, UK. Plans for the laboratory include continuing the success of the Joint European Torus (JET) and the Mega Amp Spherical Tokamak (MAST) (1 page)

  14. Accelerator and Fusion Research Division: summary of activities, 1983

    International Nuclear Information System (INIS)

    1984-08-01

    The activities described in this summary of the Accelerator and Fusion Research Division are diverse, yet united by a common theme: it is our purpose to explore technologically advanced techniques for the production, acceleration, or transport of high-energy beams. These beams may be the heavy ions of interest in nuclear science, medical research, and heavy-ion inertial-confinement fusion; they may be beams of deuterium and hydrogen atoms, used to heat and confine plasmas in magnetic fusion experiments; they may be ultrahigh-energy protons for the next high-energy hadron collider; or they may be high-brilliance, highly coherent, picosecond pulses of synchrotron radiation

  15. Fusion research and technology records in INIS database

    International Nuclear Information System (INIS)

    Hillebrand, C.D.

    1998-01-01

    This article is a summary of a survey study ''''A survey on publications in Fusion Research and Technology. Science and Technology Indicators in Fusion R and T'''' by the same author on Fusion R and T records in the International Nuclear Information System (INIS) bibliographic database. In that study, for the first time, all scientometric and bibliometric information contained in a bibliographic database, using INIS records, is analyzed and quantified, specific to a selected field of science and technology. A variety of new science and technology indicators which can be used for evaluating research and development activities is also presented in that study that study

  16. Progress in high gain inertial confinement fusion

    International Nuclear Information System (INIS)

    Sun Jingwen

    2001-01-01

    The author reviews the progress in laboratory high gain inertial confinement fusion (ICF), including ICF capsule physics, high-energy-density science, inertial fusion energy, the National Ignition Facility (NIF) and its design of ignition targets and the peta watt laser breakthrough. High power laser, particle beam, and pulsed power facilities around the world have established the new laboratory field of high-energy- density plasma physics and have furthered development of inertial fusion. New capabilities such as those provided by high-brightness peta watt lasers have enabled the study of matter feasible in conditions previously unachievable on earth. Science and technology developed in inertial fusion research have found near-term commercial use and have enabled steady progress toward the goal of fusion ignition and high gain in the laboratory, and have opened up new fields of study for the 21 st century

  17. Japanese program of materials research for fusion reactors

    International Nuclear Information System (INIS)

    Hasiguti, R.R.

    1982-01-01

    The Japanese program of materials research for fusion reactors is described based on the report to the Nuclear Fusion Council, the project research program of the Ministry of Education, Science and Culture, and other official documents. The alloy development for the first wall and its radiation damage are the main topics discussed in this paper. Materials viewpoints for the Japanese Tokamak facilities and the problems of irradiation facilities are also discussed. (orig.)

  18. Research on Kalman-filter based multisensor data fusion

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Multisensor data fusion has played a significant role in diverse areas ranging from local robot guidance to global military theatre defense etc.Various multisensor data fusion methods have been extensively investigated by researchers,of which Klaman filtering is one of the most important.Kalman filtering is the best-known recursive least mean-square algorithm to optimally estimate the unknown.states of a dynamic system,which has found widespread application in many areas.The scope of the work is restricted to investigate the various data fusion and track fusion techniques based on the Kalman Filter methods.then a new method of state fusion is proposed.Finally the simulation results demonstrate the effectiveness of the introduced method.

  19. The European Fusion Energy Research Programme towards the realization of a fusion demonstration reactor

    International Nuclear Information System (INIS)

    Gasparotto, M.; Laesser, R.

    2006-01-01

    Since its inception, the European Fusion Programme has been orientated towards the establishment of the knowledge base needed for the definition of a reactor to be used for power production. Its ultimate goal is then to demonstrate the scientific and the technological feasibility of fusion power while incorporating the assessment of the safety, environmental, social and economic features of this type of energy source. At present, the JET device, the largest tokamak in the world, and the other medium-sized experimental machines are contributing essentially to the basic scientific phase of this development path. Their successful operation greatly contributed to support the design basis of ITER, the next step in fusion, which will aim to demonstrate the scientific and technical feasibility of fusion power production by achieving extended D-T burning plasma operation. Following ITER, the conception and construction of the DEMO device is planned. DEMO will be a demonstration power plant which will be the first fusion device to generate a significant amount of electrical power from fusion. This paper describes the status of fusion research and the European strategy for achievement of the ultimate goal of construction of a prototype reactor. (author)

  20. High resolution, position sensitive detector for energetic particle beams

    International Nuclear Information System (INIS)

    Marsh, E.P.; Strathman, M.D.; Reed, D.A.; Odom, R.W.; Morse, D.H.; Pontau, A.E.

    1993-01-01

    The performance and design of an imaging position sensitive, particle beam detector will be presented. The detector is minimally invasive, operates a wide dynamic range (>10 10 ), and exhibits high spatial resolution. The secondary electrons produced when a particle beam passes through a thin foil are imaged using stigmatic ion optics onto a two-dimensional imaging detector. Due to the low scattering cross section of the 6 nm carbon foil the detector is a minimal perturbation on the primary beam. A prototype detector with an image resolution of approximately 5 μm for a field of view of 1 mm has been reported. A higher resolution detector for imaging small beams (<50 μm) with an image resolution of better than 0.5 μm has since been developed and its design is presented. (orig.)

  1. High resolution, position sensitive detector for energetic particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, E P [Charles Evans and Associates, Redwood City, CA (United States); Strathman, M D [Charles Evans and Associates, Redwood City, CA (United States); Reed, D A [Charles Evans and Associates, Redwood City, CA (United States); Odom, R W [Charles Evans and Associates, Redwood City, CA (United States); Morse, D H [Sandia National Labs., Livermore, CA (United States); Pontau, A E [Sandia National Labs., Livermore, CA (United States)

    1993-05-01

    The performance and design of an imaging position sensitive, particle beam detector will be presented. The detector is minimally invasive, operates a wide dynamic range (>10[sup 10]), and exhibits high spatial resolution. The secondary electrons produced when a particle beam passes through a thin foil are imaged using stigmatic ion optics onto a two-dimensional imaging detector. Due to the low scattering cross section of the 6 nm carbon foil the detector is a minimal perturbation on the primary beam. A prototype detector with an image resolution of approximately 5 [mu]m for a field of view of 1 mm has been reported. A higher resolution detector for imaging small beams (<50 [mu]m) with an image resolution of better than 0.5 [mu]m has since been developed and its design is presented. (orig.)

  2. Collimation of particle beams from thick accretion discs

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, M [N. Copernicus Astronomical Center, Warszawa (Poland); Wilson, D B [Cambridge Univ. (UK). Inst. of Astronomy

    1981-11-01

    The acceleration and collimation of particle beams in the funnel of thick accretion discs is studied in the approximation that the flow is optically thin. Such flows can be collimated to within approximately 0.1 radians by sufficiently thick discs. The flow cannot convert more than a small fraction of the disc's (super-Eddington) luminosity into the energy flow of a narrow beam without being optically thick.

  3. Particle beam dynamics in a magnetically insulated coaxial diode

    International Nuclear Information System (INIS)

    Korenev, V.G.; Magda, I.I.; Sinitsin, V.G.

    2015-01-01

    The dynamics of charged particle beams emitted from a cathode into a smooth coaxial diode with magnetic insulation is studied with the aid of 3-D PIC simulation. The processes controlling space charge formation and its evolution in the diode are modeled for geometries typical of high-voltage millimeter wave magnetrons that are characterized by very high values of emission currents, hence high space charge densities.

  4. Laser focusing of high-energy charged-particle beams

    International Nuclear Information System (INIS)

    Channell, P.J.

    1986-01-01

    It is shown that laser focusing of high-energy charged-particle beams using the inverse Cherenkov effect is well suited for applications with large linear colliders. Very high gradient (>0.5 MG/cm) lenses result that can be added sequentially without AG cancellation. These lenses are swell understood, have small geometric aberrations, and offer the possibility of correlating phase and energy aberrations to produce an achromatic final focus

  5. 1981 inertial fusion research annual technical report

    International Nuclear Information System (INIS)

    Solomon, D.E.; Wei, J.L.; Greacen, N.T.

    1981-01-01

    This annual report consists of the following two topics: (1) target fabrication technology, and (2) fusion experiments. The first section is reported by the following seven areas: (1) characterization, (2) fuel shell technology, (3) polymer technology, (4) lithium foil development, (5) precision etch technology, (6) analytical instrumentation, and (7) target fabrication. The second area is reported by the following topics: (1) experiments, (2) plasma theory, (3) code development and simulation, and (4) lasers and optics

  6. Spin-off produced by the fusion research and development

    International Nuclear Information System (INIS)

    Koizumi, Koichi; Konishi, T.; Tsuji, Hiroshi

    2001-03-01

    Nuclear fusion devices are constructed by the integration of many frontier technologies and fusion science based on a wide area of science such as physics, electromagnetics, thermodynamics, mechanics, electrical engineering, electronics, material engineering, heat transfer and heat flow, thermal engineering, neutronics, cryogenics, chemical engineering, control engineering, instrumentation engineering, vacuum engineering. For this, the research and development of elementary technology for fusion devices contributes to advance the technology level of each basic field. In addition, the mutual stimulus among various research fields contributes to increase the potential level of whole 'science and technology'. The spin-offs produced by the fusion technology development give much contribution not only to the general industrial technologies such as semiconductor technology, precision machining of large component, but also contribute to the progress of the accelerator technology, application technology of superconductivity, instrumentation and diagnostics, plasma application technology, heat-resistant and heavy radiation-resistant material technology, vacuum technology, and computer simulation technology. The spin-off produced by the fusion technology development expedite the development of frontier technology of other field and give much contribution to the progress of basic science on physics, space science, material science, medical science, communication, and environment. This report describes the current status of the spin-off effects of fusion research and development by focusing on the contribution of technology development for International Thermonuclear Experimental Reactor (ITER) to industrial technology. The possibilities of future application in the future are also included in this report from the view point of researchers working for nuclear fusion development. Although the nuclear fusion research has a characteristic to integrate the frontier technologies of

  7. Magnetic fusion energy research and development

    International Nuclear Information System (INIS)

    1984-02-01

    This report on the Department of Energy's Magnetic Fusion Program was requested by the Secretary of Energy. The Panel finds that substantial progress has been made in the three years since the previous ERAB review, although budget constraints have precluded the engineering initiatives recommended in that review and authorized in the Magnetic Fusion Energy Engineering Act of 1980 (the Act). Recognizing that the goals of the Act cannot now be met, the Panel recommends that the engineering phase be further postponed in favor of a strong base program in physics and technology, including immediate commitment to a major new tokamak-based device for the investigation of an ignited long-pulse plasma designated in this report as the Burning Core Experiment or BCX. Resources to design such a device could be obtained from within the existing program by redirecting work toward to BCX. At this time it is not possible to assess accurately the potential economic viability of fusion power in the future. The Panel strongly recommends expansion of international collaboration, particularly the joint construction and operation of major new unique facilities, such as the proposed BCX

  8. Numerical Studies of Electromagnetic Instabilities in Intense Charged Particle Beams with Large Energy Anisotropy

    CERN Document Server

    Startsev, Edward; Lee, Wei-li

    2005-01-01

    In intense charged particle beams with large energy anisotropy, free energy is available to drive transverse electromagnetic Weibel-type instabilities. Such slow-wave transverse electromagnetic instabilities can be described by the so-called Darwin model, which neglects the fast-wave portion of the displacement current. The Weibel instability may also lead to an increase in the longitudinal velocity spread, which would make the focusing of the beam difficult and impose a limit on the minimum spot size achievable in heavy ion fusion experiments. This paper reports the results of recent numerical studies of the Weibel instability using the Beam Eigenmode And Spectra (bEASt) code for space-charge-dominated, low-emittance beams with large tune depression. To study the nonlinear stage of the instability, the Darwin model is being developed and incorporated into the Beam Equilibrium Stability and Transport(BEST) code.

  9. Methods of economic analysis applied to fusion research. Final report

    International Nuclear Information System (INIS)

    1983-01-01

    In this and previous efforts ECON has provided economic assessment of a fusion research program. This phase of study focused on two tasks, the first concerned with the economics of fusion in an economy that relies heavily upon synthetic fuels, and the second concerned with the overall economic effects of pursuing soft energy technologies instead of hard technologies. This report is organized in two parts, the first entitled An Economic Analysis of Coproduction of Fusion-Electric Energy and Other Products, and the second entitled Arguments Associated with the Choice of Potential Energy Futures

  10. Institute for Fusion Research and Large Helical Device program

    International Nuclear Information System (INIS)

    Iiyoshi, Atsuo

    1989-01-01

    In the research on nuclear fusion, the final objective is to materialize nuclear fusion reactors, and for the purpose, it is necessary to cause nuclear combustion by making the plasma of higher than 100 million deg and confine it for a certain time. So far in various universities, the researches on diversified fusion processes have been advanced, but in February, 1986, the Science Council issued the report 'Nuclear fusion research in universities hereafter'. As the next large scale device, an external conductor system helical device was decided, and it is desirable to found the organization for joint utilization by national universities to promote the project. The researches on the other processes are continued by utilizing the existing facilitie. The reason of selecting a helical device is the data base of the researches carried out so far can be utilized sufficiently, it is sufficiently novel even after 10 years from now, and many researchers can be collected. The place of the research is Toki City, Gifu Prefecture, where the Institute of Plasma Physics, Nagoya University, is to be moved. The basic concept of the superconducting helical device project, the trend of nuclear fusion development in the world, the physical research using a helical system and so on are reported. (Kako, I.)

  11. Progress of research and development of nuclear fusion and development of large nuclear fusion device technology

    International Nuclear Information System (INIS)

    1994-01-01

    In the last several years, the results of tokamak experiments were conspicuous, and the progress of plasma confinement performance, transport mechanism, divertors and impurities, helium transport and exhaust, electric current drive, magnetic field ripple effect and high speed particle transport and DT experiment are reported. The other confinement methods than tokamak, the related theories and reactor technology are described. The conceptual design of ITER was carried out by the cooperation of Japan, USA, EC and the former USSR. The projects of developing nuclear fusion in various countries, the design and the required research and development of ITER, the reconstruction and the required research and development of JT-60, JET and TFTR, the design and the required research and development of large helical device, the state of research and development of laser nuclear fusion and inversion magnetic field pinch nuclear fusion, the activities and roles of industrial circles in large nuclear fusion device technology, and the long term perspective of the technical development of nuclear fusion are described. (K.I.)

  12. Fusion plasma physics research on the H-1 national facility

    International Nuclear Information System (INIS)

    Harris, J.

    1998-01-01

    Full text: Australia has a highly leveraged fusion plasma research program centred on the H-1 National Facility device at the ANU. H-1 is a heliac, a novel helical axis stellarator that was experimentally pioneered in Australia, but has a close correlation with the worldwide research program on toroidal confinement of fusion grade plasma. Experiments are conducted on H-1 by university researchers from the Australian Fusion Research Group (comprising groups from the ANU, the Universities of Sydney, Western Sydney, Canberra, New England, and Central Queensland University) under the aegis of AINSE; the scientists also collaborate with fusion researchers from Japan and the US. Recent experiments on H-1 have focused on improved confinement modes that can be accessed at very low powers in H-1, but allow the study of fundamental physics effects seen on much larger machines at higher powers. H-1 is now being upgraded in magnetic field and heating power, and will be able to confine hotter plasmas beginning in 1999, offering greatly enhanced research opportunities for Australian plasma scientists and engineers, with substantial spillover of ideas from fusion research into other areas of applied physics and engineering

  13. Fusion Research Center, theory program. Progress report

    International Nuclear Information System (INIS)

    1982-01-01

    The Texas FRC theory program is directed primarily toward understanding the initiation, heating, and confinement of tokamak plasmas. It supports and complements the experimental programs on the TEXT and PRETEXT devices, as well as providing information generally applicable to the national tokamak program. A significant fraction of the Center's work has been carried out in collaboration with, or as a part of, the program of the Institute for Fusion Studies (IFS). During the past twelve months, 14 FRC theory reports and 12 IFS reports with partial FRC support have been issued

  14. Heavy Ion Fusion Accelerator Research (HIFAR)

    International Nuclear Information System (INIS)

    1991-04-01

    This report discusses the following topics: emittance variations in current-amplifying ion induction lina; transverse emittance studies of an induction accelerator of heavy ions; drift compression experiments on MBE-4 and related emittance; low emittance uniform- density C s + sources for heavy ion fusion accelerator studies; survey of alignment of MBE-4; time-of-flight dependence on the MBE-4 quadrupole voltage; high order calculation of the multiple content of three dimensional electrostatic geometries; an induction linac injector for scaled experiments; induction accelerator test module for HIF; longitudinal instability in HIF beams; and analysis of resonant longitudinal instability in a heavy ion induction linac

  15. Development and verification of remote research environment based on 'Fusion research grid'

    International Nuclear Information System (INIS)

    Iba, Katsuyuki; Ozeki, Takahisa; Totsuka, Toshiyuki; Suzuki, Yoshio; Oshima, Takayuki; Sakata, Shinya; Sato, Minoru; Suzuki, Mitsuhiro; Hamamatsu, Kiyotaka; Kiyono, Kimihiro

    2008-01-01

    'Fusion research grid' is a concept that unites scientists and let them collaborate effectively against their difference in time zone and location in a nuclear fusion research. Fundamental technologies of 'Fusion research grid' have been developed at JAEA in the VizGrid project under the e-Japan project at the Ministry of Education, Culture, Sports, Science and Technology (MEXT). We are conscious of needs to create new systems that assist researchers with their research activities because remote collaborations have been increasing in international projects. Therefore we have developed prototype remote research environments for experiments, diagnostics, analyses and communications based on 'Fusion research grid'. All users can access these environments from anywhere because 'Fusion research grid' does not require a closed network like Super SINET to maintain security. The prototype systems were verified in experiments at JT-60U and their availability was confirmed

  16. Outline of research project on nuclear fusion, 1985

    International Nuclear Information System (INIS)

    Uchida, Taijiro

    1985-08-01

    When the advance of nuclear fusion research during 10 years hereafter is predicted, the next project should start the research toward nuclear burning, adopt the diversified ways, and develop the research in wide related fields. The central subject such as the containment of plasma is studies with large experimental facilities, but in the related fields, the research subsidies must be utilized positively. The organization to perform the research compries 6 groups, 1) reactor materials and plasma-wall interactions 2) science and engineering of tritium, and influence on living things, 4) development of superconducting magnets, 5) fusion blanket engineering, and 6) design and assessment of thermonuclear reactors. The distribution and management of the scientific research subsidy are explained. All of the subjects of planned and publicly invited research a listed, and the researchers concerned, the amount of subsidy, the objective and the plan of execution in fiscal year 1984 of each research are outlined. (J.P.N.)

  17. Outline of research project on nuclear fusion, 1984

    International Nuclear Information System (INIS)

    Uchida, Taijiro

    1984-08-01

    When the advance of nuclear fusion research during 10 years hereafter is predicted, the next project should start the research toward nuclear burning, adopt the diversified ways, a nd develop the research in wide related fields. The central subject such as the containment of plasma is studies with large experimental facilities, but in the related fields, the research subsidies must be utilized positively. The organization to perform the research compries 6 groups, 1) reactor materials and plasma-wall interaction, 2) science and engineering of tritium and influence on living things, 3) fundamentals of core control, 4) development of superconducting magnets, 5) fusion blanket engineering, and 6) design and assessment of thermonuclear reactors. The distribution and management of the scientific research subsidy are explained. All of the subjects of planned and publicly invited research a listed, and the researchers concerned, the amount of subsidy, the objective and the plan of execution in fiscal 1983 of each research are outlined. (J.P.N.)

  18. Summaries of special research project on nuclear fusion 1980

    International Nuclear Information System (INIS)

    Uchida, Taijiro

    1981-09-01

    This is a report of the research project entitled ''Nuclear fusion'', supported by the grant in aid for fusion research from the Ministry of Education in the fiscal year 1980. The research project was started in April, 1980, and comprises the following seventeen subjects of nuclear fusion research. 1) Heavy irradiation effects, 2) plasma-wall interaction, 3) neutronics, 4) welding engineering, 5) science and technology of tritium, 6) biological effects of tritium, 7) diagnostics of high temperature plasma, 8) new lasers, 9) fundamentals of plasma heating, 10) high efficiency energy conversion, 11) theory and computer simulation, 12) superconducting materials, 13) fundamental phenomena of superconductivity, 14) magnet technology, 15) heat transfer and structural engineering, 16) system design, and 17) resources and assessment of fusion energy. 43 summaries concerning reactor materials and plasma-wall interaction, 29 summaries concerning the science, technology and biological effects of tritium, 41 summaries concerning the fundamentals of reactor plasma control, 15 summaries concerning the technology of superconducting magnets, and 14 summaries concerning the design of fusion reactors and its evaluation are collected in this report, and their results and progress can be known. (Kako, I.)

  19. Interaction for solitary waves in coasting charged particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shi-Wei; Hong, Xue-Ren; Shi, Yu-Ren; Duan, Wen-shan, E-mail: duanws@nwnu.edu.cn [College of Physics and Electronic Engineering and Joint Laboratory of Atomic an Molecular Physics of NWNU and IMPCAS, Northwest Normal University, Lanzhou 730070 (China); Qi, Xin; Yang, Lei, E-mail: lyang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Han, Jiu-Ning [College of Physics and Electromechanical Engineering, Hexi University, Zhangye 734000 (China)

    2014-03-15

    By using the extended Poincare-Lighthill-Kuo perturbation method, the collision of solitary waves in a coasting charged particle beams is studied. The results show that the system admits a solution with two solitary waves, which move in opposite directions and can be described by two Korteweg-deVries equation in small-amplitude limit. The collision of two solitary waves is elastic, and after the interaction they preserve their original properties. Then the weak phase shift in traveling direction of collision between two solitary waves is derived explicitly.

  20. An Expert System For Tuning Particle-Beam Accelerators

    Science.gov (United States)

    Lager, Darrel L.; Brand, Hal R.; Maurer, William J.; Searfus, Robert M.; Hernandez, Jose E.

    1989-03-01

    We have developed a proof-of-concept prototype of an expert system for tuning particle beam accelerators. It is designed to function as an intelligent assistant for an operator. In its present form it implements the strategies and reasoning followed by the operator for steering through the beam transport section of the Advanced Test Accelerator at Lawrence Livermore Laboratory's Site 300. The system is implemented in the language LISP using the Artificial Intelligence concepts of frames, daemons, and a representation we developed called a Monitored Decision Script.

  1. Movement of a charged particle beam in the Earth magnetosphere

    International Nuclear Information System (INIS)

    Veselovskij, I.S.

    1977-01-01

    The motion of a charged particle beam injected into the Earth magnetosphere in a dipole magnetic field was investigated. Examined were the simplest stationary distributions of particles. The evolution of the distribution function after pulse injection of the beam into the magnetosphere was studied. It was shown that the pulse shape depends on its starting duration. A long pulse spreads on the base and narrows on the flat top with the distance away from the point of injection. A short pulse spreads both on the base and along the height. The flat top is not present. An analytical expression for the pulse shape as a time function is given

  2. Transverse-structure electrostatic charged particle beam lens

    Science.gov (United States)

    Moran, M.J.

    1998-10-13

    Electrostatic particle-beam lenses using a concentric co-planar array of independently biased rings can be advantageous for some applications. Traditional electrostatic lenses often consist of axial series of biased rings, apertures, or tubes. The science of lens design has devoted much attention to finding axial arrangements that compensate for the substantial optical aberrations of the individual elements. Thus, as with multi-element lenses for light, a multi-element charged-particle lens can have optical behavior that is far superior to that of the individual elements. Transverse multiple-concentric-ring lenses achieve high performance, while also having advantages in terms of compactness and optical versatility. 7 figs.

  3. Open boundaries for particle beams within fit-simulations

    Energy Technology Data Exchange (ETDEWEB)

    Balk, M.C. [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstr. 8, 64289 Darmstadt (Germany)]. E-mail: balk@temf.tu-darmstadt.de; Schuhmann, R. [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstr. 8, 64289 Darmstadt (Germany); Weiland, T. [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstr. 8, 64289 Darmstadt (Germany)

    2006-03-01

    A method is proposed to simulate open boundary conditions for charged particle beams with v

  4. Open boundaries for particle beams within fit-simulations

    International Nuclear Information System (INIS)

    Balk, M.C.; Schuhmann, R.; Weiland, T.

    2006-01-01

    A method is proposed to simulate open boundary conditions for charged particle beams with v< c in time domain or frequency domain within the Finite Integration Technique (FIT). Inside the calculation domain the moving charged particles are represented by a line current. Further, the simulated field components at the boundary of the calculation domain have to be modified for an undisturbed transmission of the space-charge field. This can be realised by a 'scattered field' formulation. The method is verified by several calculations

  5. Charged particle beam monitoring by means of synchrotron radiation

    International Nuclear Information System (INIS)

    Panasyuk, V.S.; Anevskij, S.I.

    1984-01-01

    Optical methods for monitoring the number of accelerated electrons and electron energy by means of beam synchrotron radiation (SR) as well as peculiarities of SR characteristics of beams with a small radius of the orbit are considered. Optical methods for charged particle beam monitoring are shown to ensure operative and precise monitoring the number of particles and particle energy. SR sources with large axial dimensions of an electron beam have specific spectral angular and polarization characteristics. If electron angular distribution at deflection from the median plane is noticeably wider than angular distribution of SR of a certain electron, relative SR characteristics of these soUrces are calculated with high accuracy

  6. Research and application of pulsed-power technology

    International Nuclear Information System (INIS)

    Yonas, G.

    1980-01-01

    Pulsed-power technology relating to that branch which was stimulated by military applications in the 1960's is addressed. A history of the development and characteristics of some devices producing intense electron and ion beams which resulted in Sandia's particle beam fusion program is presented. These include Hermes II, Aurora, Hydra, and Proto II. Research on inertial confinement fusion ignition is described, and the most critical issue in ICF today still is the demonstration of ignition and efficient burnup of a small amount of thermonuclear fuel. Progress on the Sandia particle beam fusion accelerator (PBFA I and II) is reported, but already plans are underway to further upgrade the device and if these modifications are carried out in 1983, fusion ignition concepts may be tested by 1985. Fusion could possibly provide an inexhaustible supply of energy in the next century

  7. Annual progress report 1993. Work in controlled thermonuclear fusion research performed in the fusion research unit under the contract of association between Euratom and Risoe National Laboratory

    International Nuclear Information System (INIS)

    1994-09-01

    The programme of the Research Unit of the Fusion Association Euratom-Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within (a) studies of nonlinear dynamical processes in magnetized plasmas, (b) development of pellet injectors for fusion experiments, and (c) development of diagnostics for fusion plasmas. The activities in technology cover radiation damage of fusion reactor materials. A summary of the activities in 1993 is presented. (au) (4 tabs., 21 ills., 64 refs.)

  8. Centralized supercomputer support for magnetic fusion energy research

    International Nuclear Information System (INIS)

    Fuss, D.; Tull, G.G.

    1984-01-01

    High-speed computers with large memories are vital to magnetic fusion energy research. Magnetohydrodynamic (MHD), transport, equilibrium, Vlasov, particle, and Fokker-Planck codes that model plasma behavior play an important role in designing experimental hardware and interpreting the resulting data, as well as in advancing plasma theory itself. The size, architecture, and software of supercomputers to run these codes are often the crucial constraints on the benefits such computational modeling can provide. Hence, vector computers such as the CRAY-1 offer a valuable research resource. To meet the computational needs of the fusion program, the National Magnetic Fusion Energy Computer Center (NMFECC) was established in 1974 at the Lawrence Livermore National Laboratory. Supercomputers at the central computing facility are linked to smaller computer centers at each of the major fusion laboratories by a satellite communication network. In addition to providing large-scale computing, the NMFECC environment stimulates collaboration and the sharing of computer codes and data among the many fusion researchers in a cost-effective manner

  9. Accelerator ampersand Fusion Research Division: 1993 Summary of activities

    International Nuclear Information System (INIS)

    Chew, J.

    1994-04-01

    The Accelerator and Fusion Research Division (AFRD) is not only one of the largest scientific divisions at LBL, but also the one of the most diverse. Major efforts include: (1) investigations in both inertial and magnetic fusion energy; (2) operation of the Advanced Light Source, a state-of-the-art synchrotron radiation facility; (3) exploratory investigations of novel radiation sources and colliders; (4) research and development in superconducting magnets for accelerators and other scientific and industrial applications; and (5) ion beam technology development for nuclear physics and for industrial and biomedical applications. Each of these topics is discussed in detail in this book

  10. Accelerator & Fusion Research Division: 1993 Summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    Chew, J.

    1994-04-01

    The Accelerator and Fusion Research Division (AFRD) is not only one of the largest scientific divisions at LBL, but also the one of the most diverse. Major efforts include: (1) investigations in both inertial and magnetic fusion energy; (2) operation of the Advanced Light Source, a state-of-the-art synchrotron radiation facility; (3) exploratory investigations of novel radiation sources and colliders; (4) research and development in superconducting magnets for accelerators and other scientific and industrial applications; and (5) ion beam technology development for nuclear physics and for industrial and biomedical applications. Each of these topics is discussed in detail in this book.

  11. NIFS symposium: toward the research of fusion burning plasmas

    International Nuclear Information System (INIS)

    Itoh, Sanae

    1993-07-01

    NIFS symposium, entitled 'Toward the research of Fusion Burning Plasmas - Present status and Future Strategy' was held at NIFS on July 15th 1992. This NIFS symposium covers various topics related to burning plasma, e.g., JET DT experiment, Plan for DT experiment on TFTR as well as the future trends among researchers. To study the critical issues and trends of future research, a questionnaire was sent to about 100 researchers. This report presents such activities in the NIFS symposium. (author)

  12. Progress in heavy ion fusion research

    International Nuclear Information System (INIS)

    Celata, C.M.; Bieniosek, F.M.; Henestroza, E.; Kwan, J.W.; Lee, E.P.; Logan, G.; Prost, L.; Seidl, P.A.; Vay, J.-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Callahan, D.A.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Lund, S.M.; Molvik, A.; Sharp, W.M.; Westenskow, G.

    2003-01-01

    The U.S. Heavy Ion Fusion program has recently commissioned several new experiments. In the High Current Experiment [P. A. Seidl et al., Laser Part. Beams 20, 435 (2003)], a single low-energy beam with driver-scale charge-per-unit-length and space-charge potential is being used to study the limits to transportable current posed by nonlinear fields and secondary atoms, ions, and electrons. The Neutralized Transport Experiment similarly employs a low-energy beam with driver-scale perveance to study final focus of high perveance beams and neutralization for transport in the target chamber. Other scaled experiments--the University of Maryland Electron Ring [P. G. O'Shea et al., accepted for publication in Laser Part. Beams] and the Paul Trap Simulator Experiment [R. C. Davidson, H. Qin, and G. Shvets, Phys. Plasmas 7, 1020 (2000)]--will provide fundamental physics results on processes with longer scale lengths. An experiment to test a new injector concept is also in the design stage. This paper will describe the goals and status of these experiments, as well as progress in theory and simulation. A proposed future proof-of-principle experiment, the Integrated Beam Experiment, will also be described

  13. Heavy particle beam cancer treatment apparatus, HIMAC, and clinical trial

    International Nuclear Information System (INIS)

    Soga, Fuminori

    1994-01-01

    The clinical trial was begun in June, 1994, on the treatment of cancer patients using heavy particle beam for the first time in Japan in National Institute of Radiological Sciences. It is the result of promoting the construction of Heavy Ion Medical Accelerator in Chiba (HIMAC) with the first period construction cost of 32.6 billion yen as a part of the 10 year general strategy against cancer. This is only one facility of this kind in the world. The features of heavy particle beam as radiation therapy are the excellent concentration of dose distribution, biological effect and so on. The nuclides to be used are those having the atomic number from helium to argon. The acceleration energy of ions was set at 800 MeV per nucleon so as to reach 30 cm in human bodies. The beam intensity is 5 Gy/min to finish irradiation within 1 min. The maximum irradiation field is 22 cm in diameter. The specification of the HIMAC accelerator is summarized. The Penning Ionization Gauge and the electron cyclotron resonance ion sources were installed for the reliability. The radio frequency quadrupole linear accelerator is suitable to accelerate low velocity, high intensity beam. Two synchrotrons of 41 m mean diameter are installed. High energy beam transport system, irradiation equipment, and the clinical trial are reported. (K.I.)

  14. A fast iterative method for computing particle beams penetrating matter

    International Nuclear Information System (INIS)

    Boergers, C.

    1997-01-01

    Beams of microscopic particles penetrating matter are important in several fields. The application motivating our parameter choices in this paper is electron beam cancer therapy. Mathematically, a steady particle beam penetrating matter, or a configuration of several such beams, is modeled by a boundary value problem for a Boltzmann equation. Grid-based discretization of this problem leads to a system of algebraic equations. This system is typically very large because of the large number of independent variables in the Boltzmann equation (six if time independence is the only dimension-reducing assumption). If grid-based methods are to be practical at all, it is therefore necessary to develop fast solvers for the discretized problems. This is the subject of the present paper. For two-dimensional, mono-energetic, linear particle beam problems, we describe an iterative domain decomposition algorithm based on overlapping decompositions of the set of particle directions and computationally demonstrate its rapid, grid independent convergence. There appears to be no fundamental obstacle to generalizing the method to three-dimensional, energy dependent problems. 34 refs., 15 figs., 6 tabs

  15. Particle beam dynamics simulations using the POOMA framework

    International Nuclear Information System (INIS)

    Humphrey, W.; Ryne, R.; Cleland, T.; Cummings, J.; Habib, S.; Mark, G.; Ji Qiang

    1998-01-01

    A program for simulation of the dynamics of high intensity charged particle beams in linear particle accelerators has been developed in C++ using the POOMA Framework, for use on serial and parallel architectures. The code models the trajectories of charged particles through a sequence of different accelerator beamline elements such as drift chambers, quadrupole magnets, or RF cavities. An FFT-based particle-in-cell algorithm is used to solve the Poisson equation that models the Coulomb interactions of the particles. The code employs an object-oriented design with software abstractions for the particle beam, accelerator beamline, and beamline elements, using C++ templates to efficiently support both 2D and 3D capabilities in the same code base. The POOMA Framework, which encapsulates much of the effort required for parallel execution, provides particle and field classes, particle-field interaction capabilities, and parallel FFT algorithms. The performance of this application running serially and in parallel is compared to an existing HPF implementation, with the POOMA version seen to run four times faster than the HPF code

  16. Physics Regimes in the Fusion Ignition Research Experiment (FIRE)

    International Nuclear Information System (INIS)

    D.M. Meade; S.C.Jardin; C.E. Kessel; M.A. Ulrickson; J.H. Schultz; P.H. Rutherford; J.A. Schmidt; J.C. Wesley; K.M. Young; N.A.Uckan; R.J. Thome; P. Heitzenroeder; B.E. Nelson; and C.C.Baker

    2001-01-01

    Burning plasma science is recognized widely as the next frontier in fusion research. The Fusion Ignition Research Experiment (FIRE) is a design study of a next-step burning plasma experiment with the goal of developing a concept for an experimental facility to explore and understand the strong nonlinear coupling among confinement, magnetohydrodynamic (MHD) self-heating, stability, edge physics, and wave-particle interactions that is fundamental to fusion plasma behavior. This will require plasmas dominated by alpha heating (Q greater than or equal to 5) that are sustained for a duration comparable to characteristic plasma timescales (greater than or equal to 10) tau(subscript ''E''), approximately 4 tau(subscript ''He''), approximately 2 tau(subscript ''skin''). The work reported here has been undertaken with the objective of finding the minimum size (cost) device to achieve these physics goals

  17. Status and development plan of nuclear fusion research in the US

    International Nuclear Information System (INIS)

    Kang Weihong

    2012-01-01

    This paper presents the background of nuclear fusion research and current status of major devices with accomplishments in the US, as well as the national fusion plans and budgets for fusion energy development by the US government. As a fusion power in the world, the US has made significant contributions to the development of international fusion research. The strategy of fusion research developments and the accomplishments may exert a subtle influence on international fusion development situation. Withdrawing from the ITER partnership for 2 times, the US rejoined it subsequently. This paper gives a brief introduction of changes in the US fusion research policy, summarizes the implementation of ITER procurement packages undertaken by the US, and the overview of the US inertial confinement fusion re- search. The US future energy development plan is the development of magnetic confinement fusion approach in parallel with inertial confinement fusion approach. (author)

  18. ITER implementation and fusion energy research in China

    International Nuclear Information System (INIS)

    Zhao, Jing; Feng, Zhaoliang; Yang, Changchun

    2015-01-01

    ITER Project is jointly implemented by China, EU, India, Japan, Korea, Russian Federation and USA, under the coordination of Center Team of ITER International Fusion Energy Organization (IO-CT). Chinese fusion research related institutes and industrial enterprises are fully involved in the implementation of China contribution to the project under the leadership of ITER China Domestic Agency (CN-DA), together with IO-CT. The progresses of Procurement Packages (PA) allocated to China and the technical issues, especially on key technology development and schedule, QA/QC issues, are highlighted in this report. The specific enterprises carrying out different PAs are identified in order to make the increasing international manufactures and producers to ITER PAs know each other well for the successful implementation of ITER project. The participation of China to the management of IO-CT is also included, mainly from the governmental aspect and staff recruited from China. On the other hand, the domestic fusion researches, including upgrade of EAST, HL-2A Tokamaks in China, TBM program, the next step design activities for fusion energy power plant, namely, CFETR and training in this area, are also introduced for global cooperation for international fusion community. (author)

  19. Applications of Fusion Energy Sciences Research - Scientific Discoveries and New Technologies Beyond Fusion

    International Nuclear Information System (INIS)

    Wendt, Amy; Callis, Richard; Efthimion, Philip; Foster, John; Keane, Christopher; Onsager, Terry; O'Shea, Patrick

    2015-01-01

    Since the 1950s, scientists and engineers in the U.S. and around the world have worked hard to make an elusive goal to be achieved on Earth: harnessing the reaction that fuels the stars, namely fusion. Practical fusion would be a source of energy that is unlimited, safe, environmentally benign, available to all nations and not dependent on climate or the whims of the weather. Significant resources, most notably from the U.S. Department of Energy (DOE) Office of Fusion Energy Sciences (FES), have been devoted to pursuing that dream, and significant progress is being made in turning it into a reality. However, that is only part of the story. The process of creating a fusion-based energy supply on Earth has led to technological and scientific achievements of far-reaching impact that touch every aspect of our lives. Those largely unanticipated advances, spanning a wide variety of fields in science and technology, are the focus of this report. There are many synergies between research in plasma physics (the study of charged particles and fluids interacting with self-consistent electric and magnetic fields), high-energy physics, and condensed matter physics dating back many decades. For instance, the formulation of a mathematical theory of solitons, solitary waves which are seen in everything from plasmas to water waves to Bose-Einstein Condensates, has led to an equal span of applications, including the fields of optics, fluid mechanics and biophysics. Another example, the development of a precise criterion for transition to chaos in Hamiltonian systems, has offered insights into a range of phenomena including planetary orbits, two-person games and changes in the weather. Seven distinct areas of fusion energy sciences were identified and reviewed which have had a recent impact on fields of science, technology and engineering not directly associated with fusion energy: Basic plasma science; Low temperature plasmas; Space and astrophysical plasmas; High energy density

  20. Applications of Fusion Energy Sciences Research - Scientific Discoveries and New Technologies Beyond Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Amy [Univ. of Wisconsin, Madison, WI (United States); Callis, Richard [General Atomics, San Diego, CA (United States); Efthimion, Philip [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Foster, John [Univ. of Michigan, Ann Arbor, MI (United States); Keane, Christopher [Washington State Univ., Pullman, WA (United States); Onsager, Terry [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States); O' Shea, Patrick [Univ. of Maryland, College Park, MD (United States)

    2015-09-01

    Since the 1950s, scientists and engineers in the U.S. and around the world have worked hard to make an elusive goal to be achieved on Earth: harnessing the reaction that fuels the stars, namely fusion. Practical fusion would be a source of energy that is unlimited, safe, environmentally benign, available to all nations and not dependent on climate or the whims of the weather. Significant resources, most notably from the U.S. Department of Energy (DOE) Office of Fusion Energy Sciences (FES), have been devoted to pursuing that dream, and significant progress is being made in turning it into a reality. However, that is only part of the story. The process of creating a fusion-based energy supply on Earth has led to technological and scientific achievements of far-reaching impact that touch every aspect of our lives. Those largely unanticipated advances, spanning a wide variety of fields in science and technology, are the focus of this report. There are many synergies between research in plasma physics (the study of charged particles and fluids interacting with self-consistent electric and magnetic fields), high-energy physics, and condensed matter physics dating back many decades. For instance, the formulation of a mathematical theory of solitons, solitary waves which are seen in everything from plasmas to water waves to Bose-Einstein Condensates, has led to an equal span of applications, including the fields of optics, fluid mechanics and biophysics. Another example, the development of a precise criterion for transition to chaos in Hamiltonian systems, has offered insights into a range of phenomena including planetary orbits, two-person games and changes in the weather. Seven distinct areas of fusion energy sciences were identified and reviewed which have had a recent impact on fields of science, technology and engineering not directly associated with fusion energy: Basic plasma science; Low temperature plasmas; Space and astrophysical plasmas; High energy density

  1. Fusion research as a subject of parliamentary technology assessment

    International Nuclear Information System (INIS)

    Gruenwald, R.; Grunwald, A.; Oertel, D.

    2004-01-01

    Fusion research is an internationally interlaced precautionary activity in the public interest and with public support. Parliamentary technology assessment serves to consult parliament in upcoming opinion- and decision-making processes.The task in this case is to give a comprehensible account of the status of development, to consider the different impacts and consequences of fusion, and to provide options for actions by parliament. The major methodological challenge consists in dealing with the uncertainty of knowledge in view of the long time scales involved. (orig.)

  2. Remote operations in a Fusion Engineering Research Facility (FERF)

    International Nuclear Information System (INIS)

    Doggett, J.N.

    1975-01-01

    The proposed Fusion Engineering Research Facility (FERF) has been designed for the test and evaluation of materials that will be exposed to the hostile radiation environment created by fusion reactors. Because the FERF itself must create a very hostile radiation environment, extensive remote handling procedures will be required as part of its routine operations as well as for both scheduled and unscheduled maintenance. This report analyzes the remote-handling implications of a vertical- rather than horizontal-orientation of the FERF magnet, describes the specific remote-handling facilities of the proposed FERF installation and compares the FERF remote-handling system with several other existing and proposed facilities. (U.S.)

  3. New heavy-ion-fusion accelerator research program

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1983-05-01

    This paper will briefly summarize the concepts of Heavy Ion Fusion (HIF), especially those aspects that are important to its potential for generating electrical power. It will also note highlights of the various HIF programs throughout the world. Especially significant is that the US Department of Energy (DOE) plans a program, beginning in 1984, aimed at determining the feasibility of using heavy ion accelerators as drivers for Inertial Confinement Fusion (ICF). The new program concentrates on the aspects of accelerator design that are important to ICF, and for this reason is called HIF Accelerator Research

  4. Fusion research and third world countries

    International Nuclear Information System (INIS)

    El Nadi, A.M.

    1987-01-01

    The Egypt experience in the plasma researches, asking the technology transfer between advanced and third world countries is presented. The role of cooperation agreements between developing countries is also discussed. (M.C.K.) [pt

  5. EU socio-economic research on fusion: findings and program

    International Nuclear Information System (INIS)

    Tosato, G.C.

    2002-01-01

    In 1997 the European Commission launched a Socio-Economic Research program to study under which conditions future fusion power plants may become competitive, compatible with the energy supply system and acceptable for the public. The program is developed by independent experts making use of well established international methodologies. It has been shown, among others, that: 1) local communities are ready to support the construction of an experimental fusion facility, if appropriate communication and awareness campaigns are carried out; 2) since the externalities are much lower than for competitors, fusion power plants may become the major producer of base load electricity at the end of the century in Europe, if climate changes have to be mitigated, if the construction of new nuclear fission power plants continues to be constrained and if nuclear fusion power plants become commercially available in 2050. Cooperating with major international organizations, the program for next year aims to demonstrate that the potential global benefits of fusion power plants in the second half of the century largely outdo the RD and D costs borne in the first half to make it available. (author)

  6. EU socio-economic research on fusion: Findings and program

    International Nuclear Information System (INIS)

    Tosato, G.C.

    2003-01-01

    In 1997 the European Commission launched a Socio-Economic Research program to study under which conditions future fusion power plants may become competitive, compatible with the energy supply system and acceptable for the public. It has been shown, among others, that: 1) local communities are ready to support the construction of an experimental fusion facility, if appropriate communication and awareness campaigns are carried out; 2) since the externalities are much lower than for competitors, fusion power plants may become the major producer of base load electricity at the end of the century in Europe, if climate changes have to be mitigated, if the construction of new nuclear fission power plants continues to be constrained and if nuclear fusion power plants become commercially available in 2050. Cooperating with major international organizations, the program for next year aims to demonstrating, through technical economic programming models and global multi-regional energy environmental scenarios, that the potential global benefits of fusion power plants in the second half of the century largely outdo the RD and D costs borne in the first half to make it available. Making the public aware of such benefits through field experiences will be part of the program. (author)

  7. Present status of fusion researches in USA, 4

    International Nuclear Information System (INIS)

    Yoshikawa, Shoichi; Okabayashi, Michio

    1983-01-01

    25 years have elapsed since nuclear fusion was published at the second Geneva conference in 1958. During this period, the Plasma Physics Laboratory of Princeton University has achieved the central role in the research on toroidal system nuclear fusion devices. Also the experiment of the large tokamak TFTR started from December, 1982, recorded the longest containment time of 200 ms as the initial data, and toroidal devices look to approach one step close to the scientific verification experiment (Q = 1) of reactors. In the PPPL, in order to perfect the basis required for the realization of nuclear fusion reactors, the experimental and theoretical developments have been carried out. Plasma containment experiment has been advanced successively from stellarater through internal conductor type to tokamak, and in plasma heating, ion cyclotron heating, fast neutral particle injection heating and low region hybrid heating were successfully carried out. As the experimental apparatuses, that for poloidal divertor experiment, Princeton large torus, tokamak fusion test reactor (TFTR) and S-1 spheromak are described. From the theories developed recently, bean type tokamak, heliac-stellarator and nuclear fusion reaction utilizing μ-mesons and nuclear spin are explained. (Kako, I.)

  8. Massachusetts Institute of Technology, Plasma Fusion Center, technical research programs

    International Nuclear Information System (INIS)

    1982-02-01

    Research programs have produced significant results on four fronts: (1) the basic physics of high-temperature fusion plasmas (plasma theory, RF heating, development of advanced diagnostics and small-scale experiments on the Versator tokamak and Constance mirror devices); (2) major confinement results on the Alcator A and C tokamaks, including pioneering investigations of the equilibrium, stability, transport and radiation properties of fusion plasmas at high densities, temperatures and magnetic fields; (3) development of a new and innovative design for axisymmetric tandem mirrors with inboard thermal barriers, with initial operation of the TARA tandem mirror experimental facility scheduled for 1983; and (4) a broadly based program of fusion technology and engineering development that addresses problems in several critical subsystem areas

  9. Interfacing between concrete and steel construction and fusion research devices

    International Nuclear Information System (INIS)

    Willoughby, E.

    1981-01-01

    In 1976 Giffels Associates, Inc. an architect/engineer organization, was retained by the United States Department of Energy to provide Title I and Title II design services and Title III construction inspection services for the Tokamak Fusion Test Reactor now being installed at the Princeton Plasma Physics Laboratory in Princeton, New Jersey. Construction of the complex required to house and serve the reactor itself, designed by others, now commencing. During building construction several problems occurred with respect to the interface between the building design, construction and the fusion device (reactor). A brief description of some of these problems and related factors is presented, which may be of benefit to those persons active in continuing fusion research and experimental work

  10. Fusion Reactor Safety Research Program annual report, FY-79

    International Nuclear Information System (INIS)

    Crocker, J.G.; Cohen, S.

    1980-08-01

    The objective of the program is the development, coordination, and execution of activities related to magnetic fusion devices and reactors that will: (a) identify and evaluate potential hazards, (b) assess and disclose potential environmental impacts, and (c) develop design standards and criteria that eliminate, mitigate, or reduce those hazards and impacts. The program will provide a sound basis for licensing fusion reactors. Included in this report are portions of four reports from two outside contractors, discussions of the several areas in which EG and G Idaho is conducting research activities, a discussion of proposed program plan development, mention of special tasks, a review of fusion technology program coordination by EG and G with other laboratories, and a brief view of proposed FY-80 activities

  11. Intelligible seminar on fusion reactors. (12) Next step toward the realization of fusion reactors. Future vision of fusion energy research and development

    International Nuclear Information System (INIS)

    Okano, Kunihiko; Kurihara, Kenichi; Tobita, Kenji

    2006-01-01

    In the last session of this seminar the progress of research and development for the realization of fusion reactors and future vision of fusion energy research and development are summarized. The some problems to be solved when the commercial fusion reactors would be realized, (1) production of deuterium as the fuel, (2) why need the thermonuclear reactors, (3) environmental problems, and (4) ITER project, are described. (H. Mase)

  12. Analysis of the dynamic behavior of an intense charged particle beam using the semigroup approach

    International Nuclear Information System (INIS)

    Stafford, M.A.

    1984-01-01

    Dynamic models of a charged particle beam subject to external electromagnetic fields are cast into the abstract Cauchy problem form. Various applications of intense charged particle beams, i.e., beams whose self electromagnetic fields are significant, might require, or be enhanced by, the use of dynamic control constructed from suitably processed measurements of the state of the beam. This research provides a mathematical foundation for future engineering development of estimation and control designs for such beams. Beginning with the Vlasov equation, successively simpler models of intense beams are presented, along with their corresponding assumptions. Expression of a model in abstract Cauchy problem form is useful in determining whether the model is well posed. Solutions of well-posed problems can be expressed in terms of a one-parameter semigroup of linear operators. The semigroup point of view allows the application of the rapidly maturing modern control theory of infinite dimensional system. An appropriate underlying Banach space is identified for a simple, but nontrivial, single degree of freedom model (the electrostatic approximation model), and the associated one-parameter semigroup of linear operators is characterized

  13. Accelerator and Fusion Research Division: 1987 summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    1988-04-01

    An overview of the design and the initial studies for the Advanced Light Source is given. The research efforts for the Center for X-Ray Optics include x-ray imaging, multilayer mirror technology, x-ray sources and detectors, spectroscopy and scattering, and synchrotron radiation projects. The Accelerator Operations highlights include the research by users in nuclear physics, biology and medicine. The upgrade of the Bevalac is also discussed. The High Energy Physics Technology review includes the development of superconducting magnets and superconducting cables. A review of the Heavy-Ion Fusion Accelerator Research is also presented. The Magnetic Fusion Energy research included the development of ion sources, accelerators for negative ions, diagnostics, and theoretical plasma physics. (WRF)

  14. Accelerator and Fusion Research Division: 1987 summary of activities

    International Nuclear Information System (INIS)

    1988-04-01

    An overview of the design and the initial studies for the Advanced Light Source is given. The research efforts for the Center for X-Ray Optics include x-ray imaging, multilayer mirror technology, x-ray sources and detectors, spectroscopy and scattering, and synchrotron radiation projects. The Accelerator Operations highlights include the research by users in nuclear physics, biology and medicine. The upgrade of the Bevalac is also discussed. The High Energy Physics Technology review includes the development of superconducting magnets and superconducting cables. A review of the Heavy-Ion Fusion Accelerator Research is also presented. The Magnetic Fusion Energy research included the development of ion sources, accelerators for negative ions, diagnostics, and theoretical plasma physics

  15. Theoretical and Computational Investigation of Periodically Focused Intense Charged-Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chiping [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center

    2013-06-26

    The purpose of this report is to summarize results of theoretical and computational investigations of periodically focused intense charged-particle beams in parameter regimes relevant to the development of advanced high-brightness, high-power accelerators for high-energy physics research. The breakthroughs and highlights in our research in the period from April 1, 2010 to March 30, 2013 were: a) Theory and simulation of adiabatic thermal Child-Langmuir flow; b) Particle-in-cell simulations of adiabatic thermal beams in periodic solenoidal focusing field; c)Dynamics of charged particles in an adiabatic thermal beam equilibrium in a periodic solenoidal focusing field; d) Training of undergraduate researchers and graduate student in accelerator and beam physics. A brief introduction and summary is presented. Detailed descriptions of research results are provided in an appendix of publications at the end of the report.

  16. Research into controlled fusion in tokamaks

    International Nuclear Information System (INIS)

    Zacek, F.

    1992-01-01

    During the thirty years of tokamak research, physicists have been approaching step by step the reactor breakeven condition defined by the Lawson criterion. JET, the European Community tokamak is probably the first candidate among the world largest tokamaks to reach the ignition threshold and thus to demonstrate the physical feasibility of thermonuclear reaction. The record plasma parameters achieved in JET at H plasma modes due to powerful additional plasma heating and due to substantial reduction of plasma impurities, opened the door to the first experiment with a deuterium-tritium plasma. In the paper, the conditions and results of these tritium experiments are described in detail. The prospects of the world tokamak research and of the participation of Czechoslovak physicists are also discussed. (J.U.) 3 figs., 6 refs

  17. Inertial fusion research. Annual technical report, 1984

    International Nuclear Information System (INIS)

    Larsen, J.T.; Terry, N.C.

    1985-03-01

    This report contains research progress during this period on each of the following 5 areas: (1) parametric instabilities, (2) cryogenic implosion experiments, (3) x-ray laser experiments, (4) XCALIBR, an effective soft x-ray calibration facility, and (5) DELPHI- a new hydrodynamics code, (6) polymer technology, (7) glass shell technology, (8) shell production facility, (9) cryogenic technology, (10) characterization and quality assurance, and (11) coating technology

  18. Systems and methods of varying charged particle beam spot size

    Science.gov (United States)

    Chen, Yu-Jiuan

    2014-09-02

    Methods and devices enable shaping of a charged particle beam. A modified dielectric wall accelerator includes a high gradient lens section and a main section. The high gradient lens section can be dynamically adjusted to establish the desired electric fields to minimize undesirable transverse defocusing fields at the entrance to the dielectric wall accelerator. Once a baseline setting with desirable output beam characteristic is established, the output beam can be dynamically modified to vary the output beam characteristics. The output beam can be modified by slightly adjusting the electric fields established across different sections of the modified dielectric wall accelerator. Additional control over the shape of the output beam can be excreted by introducing intentional timing de-synchronization offsets and producing an injected beam that is not fully matched to the entrance of the modified dielectric accelerator.

  19. Aerosol nucleation induced by a high energy particle beam

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker; Pedersen, Jens Olaf Pepke; Uggerhøj, Ulrik I.

    The effect of ions in aerosol nucleation is a subject where much remains to be discovered. That ions can enhance nucleation has been shown by theory, observations, and experiments. However, the exact mechanism still remains to be determined. One question is if the nature of the ionization affects...... the nucleation. This is an essential question since many experiments have been performed using radioactive sources that ionize differently than the cosmic rays which are responsible for the majority of atmospheric ionization. Here we report on an experimental study of sulphuric acid aerosol nucleation under near...... atmospheric conditions using a 580 MeV electron beam to ionize the volume of the reaction chamber. We find a clear and significant contribution from ion induced nucleation and consider this to be an unambiguous observation of the ion-effect on aerosol nucleation using a particle beam under conditions not far...

  20. Aerosol nucleation induced by a high energy particle beam

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker; Pedersen, Jens Olaf Pepke; Uggerhøj, Ulrik I.

    2011-01-01

    We have studied sulfuric acid aerosol nucleation in an atmospheric pressure reaction chamber using a 580 MeV electron beam to ionize the volume of the reaction chamber. We find a clear contribution from ion-induced nucleation and consider this to be the first unambiguous observation of the ion......-effect on aerosol nucleation using a particle beam under conditions that resemble the Earth's atmosphere. By comparison with ionization using a gamma source we further show that the nature of the ionizing particles is not important for the ion-induced component of the nucleation. This implies that inexpensive...... ionization sources - as opposed to expensive accelerator beams - can be used for investigations of ion-induced nucleation....

  1. Beam profile effects on NPB [neutral particle beam] performance

    International Nuclear Information System (INIS)

    LeClaire, R.J. Jr.

    1988-03-01

    A comparison of neutral particle beam brightness for various neutral beam profiles indicates that the widely used assumption of a Gaussian profile may be misleading for collisional neutralizers. An analysis of available experimental evidence shows that lower peaks and higher tails, compared to a Gaussian beam profile, are observed out of collisional neutralizers, which implies that peak brightness is over estimated, and for a given NPB platform-to-target range, the beam current (power), dwell time or some combination of such engagement parameters would have to be altered to maintain a fixed dose on target. Based on the present analysis, this factor is nominally about 2.4 but may actually be as low as 1.8 or as high as 8. This is an important consideration in estimating NPB constellation performance in SDI engagement contexts. 2 refs., 6 figs

  2. Iron free permanent magnet systems for charged particle beam optics

    International Nuclear Information System (INIS)

    Lund, S.M.; Halbach, K.

    1995-01-01

    The strength and astounding simplicity of certain permanent magnet materials allow a wide variety of simple, compact configurations of high field strength and quality multipole magnets. Here we analyze the important class of iron-free permanent magnet systems for charged particle beam optics. The theory of conventional segmented multipole magnets formed from uniformly magnetized block magnets placed in regular arrays about a circular magnet aperture is reviewed. Practical multipole configurations resulting are presented that are capable of high and intermediate aperture field strengths. A new class of elliptical aperture magnets is presented within a model with continuously varying magnetization angle. Segmented versions of these magnets promise practical high field dipole and quadrupole magnets with an increased range of applicability

  3. Ponderomotive enhancement of charged particle beam limiting current

    International Nuclear Information System (INIS)

    Grebogi, C.; Uhm, H.S.

    1987-01-01

    The space charge limiting current problem is investigated for a magnetized particle beam propagating in a cylindrical drift tube and in presence of a waveguide mode. It is shown that with a proper choice of a waveguide mode, the limiting current can be greatly enhanced due to ponderomotive effects. Physically, this is accomplished by using the ponderomotive energy to reduce the potential depression due to the beam's self space charge field. Formulas for the limiting current as a function of beam energy and waveguide r.f. field for solid and hollow beams are derived. It is found from these formulas that, in appropriate parameter regimes, the space charge limiting current, say, of a 250kV bem can be enhanced by 70%

  4. CAS course on Intensity Limitations in Particle Beams at CERN

    CERN Multimedia

    CERN Accelerator School

    2015-01-01

    The CERN Accelerator School (CAS) recently organised a specialised course on Intensity Limitations in Particle Beams, at CERN from 2 to 11 November, 2015.     Many accelerators and storage rings, whether intended for particle physics experiments, synchrotron light sources or industrial applications, require beams of high brightness and the highest possible intensities. A good understanding of the possible limitations is required to achieve the desired performance. This course covered the interaction of beams with their surroundings and with other beams, as well as further collective effects. The lectures on the effects and possible mitigations were complemented by tutorials. The course was very successful, with 66 students representing 14 nationalities attending. Most participants came from European counties, but also from Armenia, China and Russia. Feedback from the participants was positive, reflecting the standard of the lectures and teaching. In addition to the academic pro...

  5. Anisotropy-Driven Instability in Intense Charged Particle Beams

    CERN Document Server

    Startsev, Edward; Qin, Hong

    2005-01-01

    In electrically neutral plasmas with strongly anisotropic distribution functions, free energy is available to drive different collective instabilities such as the electrostatic Harris instability and the transverse electromagnetic Weibel instability. Such anisotropies develop naturally in particle accelerators and may lead to a detoriation of beam quality. We have generalized the analysis of the classical Harris and Weibel instabilities to the case of a one-component intense charged particle beam with anisotropic temperature including the important effects of finite transverse geometry and beam space-charge. For a long costing beam, the delta-f particle-in-cell code BEST and the eighenmode code bEASt have been used to determine detailed 3D stability properties over a wide range of temperature anisotropy and beam intensity. A theoretical model is developed which describes the essential features of the linear stage of these instabilities. Both, the simulations and analytical theory, clearly show that moderately...

  6. Study of nanoscale structural biology using advanced particle beam microscopy

    Science.gov (United States)

    Boseman, Adam J.

    This work investigates developmental and structural biology at the nanoscale using current advancements in particle beam microscopy. Typically the examination of micro- and nanoscale features is performed using scanning electron microscopy (SEM), but in order to decrease surface charging, and increase resolution, an obscuring conductive layer is applied to the sample surface. As magnification increases, this layer begins to limit the ability to identify nanoscale surface structures. A new technology, Helium Ion Microscopy (HIM), is used to examine uncoated surface structures on the cuticle of wild type and mutant fruit flies. Corneal nanostructures observed with HIM are further investigated by FIB/SEM to provide detailed three dimensional information about internal events occurring during early structural development. These techniques are also used to reconstruct a mosquito germarium in order to characterize unknown events in early oogenesis. Findings from these studies, and many more like them, will soon unravel many of the mysteries surrounding the world of developmental biology.

  7. The Swedish fusion research programme on magnetic confinement 1978

    International Nuclear Information System (INIS)

    Lehnert, B.

    1978-02-01

    A review is given on the activities and plans for research on plasma physics and controlled fusion at the Royal Institute of Technology in Stockholm, with descriptions and motivations of the research lines being conducted. These activities include investigations on plasma-neutral gas interaction, development of special principles for plasma stabilization, magnetic confinement schemes being based mainly on poloidal fields, as well as the generation, heating, and diagnostics of plasmas being ''impermeable'' to neutral gas. (author)

  8. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume I

    International Nuclear Information System (INIS)

    Abdou, M.

    1984-10-01

    The following chapters are included in this study: (1) fusion nuclear issues, (2) survey of experimental needs, (3) requirements of the experiments, (4) non-fusion facilities, (5) fusion facilities for nuclear experiments, and (6) fusion research and development scenarios

  9. Electromagnetic waves for thermonuclear fusion research

    CERN Document Server

    Mazzucato, Ernesto

    2014-01-01

    The science of magnetically confined plasmas covers the entire spectrum of physics from classical and relativistic electrodynamics to quantum mechanics. During the last sixty years of research, our initial primitive understanding of plasma physics has made impressive progress thanks to a variety of experiments - from tabletop devices with plasma temperatures of a few thousands of degrees and confinement times of less than 100 microseconds, to large tokamaks with plasma temperatures of up to five hundred million degrees and confinement times approaching one second. We discovered that plasma con

  10. Atomic data for controlled fusion research

    International Nuclear Information System (INIS)

    Barnett, C.F.; Ray, J.A.; Ricci, E.; Wilker, M.I.; McDaniel, E.W.; Thomas, E.W.; Gilbody, H.B.

    1977-02-01

    Presented is an evaluated graphical and tabular compilation of atomic and molecular cross sections of interest to controlled thermonuclear research. The cross sections are tabulated and graphed as a function of energy for collision processes involving heavy particles, electrons, and photons with atoms and ions. Also included are sections on data for particle penetration through macroscopic matter, particle transport properties, particle interactions with surfaces, and pertinent charged particle nuclear cross sections and reaction rates. In most cases estimates have been made of the data accuracy

  11. Status of cold fusion research in Japan

    International Nuclear Information System (INIS)

    Kitamura, Akira

    2015-01-01

    In Japan, the Condensed Matter Nuclear Science (CMNS) works have been centering around the Japan CF-Research Society (JCFRS) established in 1999. Recently, about 10 research groups were actively working in the CMNS field, and have been exchanging information mainly in the annual meetings of JCFRS in addition to the International ICCF conferences. For many years efforts have been exclusively devoted to clarification of the underlying physics of excess heat phenomenon and isotopic composition change. Recently, however, an entrepreneur group, Clean Planet Inc., has entered into the CMNS field in Japan, and joined Mizuno to form the above-mentioned group and made a presentation at the LANR/CF Colloquium, at MIT in March 2014. In their work they used glow discharge to form surface nanostructures on nickel mesh wires that are to be subjected to deuterium exposure. They claimed excess power on the order of kilowatts with a coefficient of performance of 1.9. Confirmation of their claim by third parties is highly expected

  12. 1978 annual report on laser fusion research

    International Nuclear Information System (INIS)

    Johnson, R.R.

    1978-01-01

    Progress during this period is reported for each of the following topics: (1) spherical shell fuel containers, (2) polymer research, (3) cryogenic technology, (4) fabrication technology, (5) implosion physics, (6) fast ion measurements of laser-produced spherical plasmas, (7) absorbed energy measurements, (8) diagnostics, (9) fast ion energy loss in dense plasmas, (10) electron transport, (11) ionization equation of state, (12) profile modification by pondermotive forces, (13) pondermotive potential effects on Ohm's law, (14) effect of flux-limited thermal transport on critical surface jump conditions, (15) spherical rarefaction shocks, (16) explosively heated Gaussian objects, (17) bandwidth broadening, (18) frequency doubling experiments, (19) advanced laser candidates, (20) glass laser operation, and (21) 2TW laser upgrade

  13. Progress in toroidal confinement and fusion research

    International Nuclear Information System (INIS)

    Furth, H.P.

    1987-10-01

    During the past 30 years, the characteristic T/sub i/n tau/sub E/-value of toroidal-confinement experiments has advanced by more than seven orders of magnitude. Part of this advance has been due to an increase of gross machine parameters. Most of this advance has been due to an increase of gross machine parameters. Most of the advance is associated with improvements in the ''quality of plasma confinement.'' The combined evidence of spherator and tokamak research clarifies the role of magnetic-field geometry in determining confinement and points to the importance of shielding out plasma edge effects. A true physical understanding of anomalous transport remains to be achieved. 39 refs., 11 figs., 1 tab

  14. Heavy-Ion Fusion Accelerator Research, 1992

    International Nuclear Information System (INIS)

    1993-06-01

    The National Energy Strategy calls for a demonstration IFE power plant by the year 2025. The cornerstone of the plan to meet this ambitious goal is research and development for heavy-ion driver technology. A series of successes indicates that the technology being studied by the HIFAR Group -- the induction accelerator -- is a prime candidate for further technology development toward this long-range goal. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions; the understanding of the scaling laws that apply in this hitherto little-explored physics regime; and the validation of new, potentially more economical accelerator strategies. Key specific elements to be addressed include: fundamental physical limits of transverse and longitudinal beam quality; development of induction modules for accelerators, along with multiple-beam hardware, at reasonable cost; acceleration of multiple beams, merging of the beams, and amplification of current without significant dilution of beam quality; final bunching, transport, and focusing onto a small target. In 1992, the HIFAR Program was concerned principally with the next step toward a driver: the design of ILSE, the Induction Linac Systems Experiments. ILSE will address most of the remaining beam-control and beam-manipulation issues at partial driver scale. A few parameters -- most importantly, the line charge density and consequently the size of the ILSE beams -- will be at full driver scale. A theory group closely integrated with the experimental groups continues supporting present-day work and looking ahead toward larger experiments and the eventual driver. Highlights of this long-range, driver-oriented research included continued investigations of longitudinal instability and some new insights into scaled experiments with which the authors might examine hard-to-calculate beam-dynamics phenomena

  15. Methods of economic analysis applied to fusion research. Fifth annual report

    International Nuclear Information System (INIS)

    1981-01-01

    In this and previous efforts, ECON has provided economic assessment of a fusion research program. This phase of study has focused on the future markets for fusion energy and the economics of fusion in those markets. These tasks were performed: (1) fusion market growth, (2) inflation vs. capital investment decisions, and (3) economics of cogeneration

  16. Particle-induced thermonuclear fusion

    International Nuclear Information System (INIS)

    Salisbury, W.W.

    1980-01-01

    A nuclear fusion process for igniting a nuclear fusion pellet in a manner similar to that proposed for laser beams uses, an array of pulsed high energy combined particle beams, focused to bombard the pellet for isentropically compressing it to a Fermi-degenerate state by thermal blow-off and balanced beam momentum transfer. (author)

  17. Progress of nuclear fusion research and review on development of fusion reactors

    International Nuclear Information System (INIS)

    1976-01-01

    Set up in October 1971, the ad hoc Committee on Survey of Nuclear Fusion Reactors has worked on overall fusion reactor aspects and definition of the future problems under four working groups of core, nuclear heat, materials and system. The presect volume is intended to provide reference materials in the field of fusion reactor engineering, prepared by members of the committee. Contents are broadly the following: concept of the nuclear fusion reactor, fusion core engineering, fusion reactor blanket engineering, fusion reactor materials engineering, and system problems in development of fusion reactors. (Mori, K.)

  18. Maryland magnetic fusion research program: MS speromak

    International Nuclear Information System (INIS)

    DeSilva, A.W.; Goldenbaum, G.C.; Griem, H.R.

    1989-07-01

    The main theme of our present experimentation on MS is to prolong the spheromak lifetime. This research has been concerned with such topics as passive MHD stabilization coils, impurity control and increased energy storage. At the present time the longest lived plasmas appear to be line tied to the liner or reversal coils. The natural consequence of having net flux outside the separatrix and a resistive plasma is that the plasma shrinks in time. At some point in time the plasma is far enough from the liner, or stabilization coils, that it becomes unstable. If we increase the bias field so as to move the separatrix further inside the liner, the plasma becomes unstable earlier as the separatrix moves to a smaller radius in a shorter time than if it starts out outside the liner. We have tried to circumvent this behavior with various configurations of passive conductors used as stabilizing elements. In this paper, we detail some of the machine modifications that have been tried in attempts to produce a stable, long-lived plasma

  19. Computing for magnetic fusion energy research: An updated vision

    International Nuclear Information System (INIS)

    Henline, P.; Giarrusso, J.; Davis, S.; Casper, T.

    1993-01-01

    This Fusion Computing Council perspective is written to present the primary of the fusion computing community at the time of publication of the report necessarily as a summary of the information contained in the individual sections. These concerns reflect FCC discussions during final review of contributions from the various working groups and portray our latest information. This report itself should be considered as dynamic, requiring periodic updating in an attempt to track rapid evolution of the computer industry relevant to requirements for magnetic fusion research. The most significant common concern among the Fusion Computing Council working groups is networking capability. All groups see an increasing need for network services due to the use of workstations, distributed computing environments, increased use of graphic services, X-window usage, remote experimental collaborations, remote data access for specific projects and other collaborations. Other areas of concern include support for workstations, enhanced infrastructure to support collaborations, the User Service Centers, NERSC and future massively parallel computers, and FCC sponsored workshops

  20. The preliminary research for biosynthetic engineering by radiation fusion technology

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Chang Hyun; Jung, U Hee; Park, Hae Ran [KAERI, Daejeon (Korea, Republic of)

    2012-01-15

    The purpose of this project is to elucidate the solution to the production of bioactive substance using biotransformation process from core technology of biosynthetic engineering by radiation fusion technology. And, this strategy will provide core technology for development of drugs as new concept and category. Research scopes and contents of project include 1) The development of mutant for biosynthetic engineering by radiation fusion technology 2) The development of host for biosynthetic engineering by radiation fusion technology 3) The preliminary study for biosynthetic engineering of isoflavone by radiation fusion technology. The results are as follows. Isoflavone compounds(daidzein, hydroxylated isoflavone) were analyzed by GC-MS. The study of radiation doses and p-NCA high-throughput screening for mutant development were elucidated. And, it was carried out the study of radiation doses for host development. Furthermore, the study of redox partner and construction of recombinant strain for region-specific hydroxylation(P450, redox partner). In addition, the biological effect of 6,7,4'-trihydroxyisoflavone as an anti-obesity agent was elucidated in this study.

  1. Advances in 4D treatment planning for scanned particle beam therapy - report of dedicated workshops.

    Science.gov (United States)

    Bert, Christoph; Graeff, Christian; Riboldi, Marco; Nill, Simeon; Baroni, Guido; Knopf, Antje-Christin

    2014-12-01

    We report on recent progress in the field of mobile tumor treatment with scanned particle beams, as discussed in the latest editions of the 4D treatment planning workshop. The workshop series started in 2009, with about 20 people from 4 research institutes involved, all actively working on particle therapy delivery and development. The first workshop resulted in a summary of recommendations for the treatment of mobile targets, along with a list of requirements to apply these guidelines clinically. The increased interest in the treatment of mobile tumors led to a continuously growing number of attendees: the 2012 edition counted more than 60 participants from 20 institutions and commercial vendors. The focus of research discussions among workshop participants progressively moved from 4D treatment planning to complete 4D treatments, aiming at effective and safe treatment delivery. Current research perspectives on 4D treatments include all critical aspects of time resolved delivery, such as in-room imaging, motion detection, beam application, and quality assurance techniques. This was motivated by the start of first clinical treatments of hepato cellular tumors with a scanned particle beam, relying on gating or abdominal compression for motion mitigation. Up to date research activities emphasize significant efforts in investigating advanced motion mitigation techniques, with a specific interest in the development of dedicated tools for experimental validation. Potential improvements will be made possible in the near future through 4D optimized treatment plans that require upgrades of the currently established therapy control systems for time resolved delivery. But since also these novel optimization techniques rely on the validity of the 4DCT, research focusing on alternative 4D imaging technique, such as MRI based 4DCT generation will continue.

  2. Heavy-ion fusion accelerator research in the USA

    International Nuclear Information System (INIS)

    Bangerter, R.O.; Godlove, T.D.; Herrmannsfeldt, W.B.; Keefe, D.

    1985-01-01

    In October 1983, a Heavy-Ion Fusion Accelerator Research programme (HIFAR) was established under the Office of Energy Research of the United States Department of Energy. The programme goal over the next several years is to establish a data base in accelerator physics and technology that can allow the potential of heavy ion fusion to be accurately assessed. Three new developments have taken place in the HIFAR programme. First, a decision has been made to concentrate the experimental programme on the development of multiple-beam induction linacs. Second, new beam transport experiments over a large number of quadrupole elements show that stable beam propagation occurs for significantly higher beam currents than had been believed possible a few years ago. Third, design calculations now show that a test accelerator of modest size and cost can come within a factor of three of testing almost all of the physics and technical issues appropriate to a power plant driver. (author)

  3. Overview of FAR-TECH's magnetic fusion energy research

    Science.gov (United States)

    Kim, Jin-Soo; Bogatu, I. N.; Galkin, S. A.; Spencer, J. Andrew; Svidzinski, V. A.; Zhao, L.

    2017-10-01

    FAR-TECH, Inc. has been working on magnetic fusion energy research over two-decades. During the years, we have developed unique approaches to help understanding the physics, and resolving issues in magnetic fusion energy. The specific areas of work have been in modeling RF waves in plasmas, MHD modeling and mode-identification, and nano-particle plasma jet and its application to disruption mitigation. Our research highlights in recent years will be presented with examples, specifically, developments of FullWave (Full Wave RF code), PMARS (Parallelized MARS code), and HEM (Hybrid ElectroMagnetic code). In addition, nano-particle plasma-jet (NPPJ) and its application for disruption mitigation will be presented. Work is supported by the U.S. DOE SBIR program.

  4. Inertial fusion sciences and applications 99: state of the art 1999

    International Nuclear Information System (INIS)

    Labaune, Ch.; Hogan, W.J.; Tanaka, K.A.

    2000-01-01

    This book brings together the texts of the communications presented at the conference 'Inertial fusion sciences and applications' held in Paris in 1999. These proceedings are shared into five sessions: laser fusion physics, fusion with particle beams, fusion with implosions, inertial fusion energy, and experimental applications of inertial fusion. (J.S.)

  5. Development of laser technology in Research Center of Laser Fusion

    International Nuclear Information System (INIS)

    Zheng Wanguo; Deng Ying; Zhou Wei

    2013-01-01

    This paper reviews the progress in the construction of SG-Ⅲ laser facility, integrated Testbed and XG-Ⅲ laser facility and that in the upgrade of the prototype of SG-Ⅲ, and the development in assembling and installing technology, and the achievements in maintaining cleanliness project and metrology in Laser Fusion Research Center, China Academy of Engineering Physics in China in 2012. (authors)

  6. Plasma physics and controlled nuclear fusion research 1990. V. 1

    International Nuclear Information System (INIS)

    1991-01-01

    Volume 1 of the Proceedings of the Thirteenth International Conference on Plasma Physics and Controlled Nuclear Fusion Research contains papers given in two of the sessions: A and E. Session A contains the Artsimovich Memorial Lecture and papers on tokamaks; session E papers on plasma heating and current drive. The titles and authors of each paper are listed in the Contents. Abstracts accompany each paper. Refs, figs and tabs

  7. Trends of plasma physics and nuclear fusion research life cycle and research effort curve

    International Nuclear Information System (INIS)

    Ohe, Takeru; Kanada, Yasumasa; Momota, Hiromu; Ichikawa, Y.H.

    1979-05-01

    This paper presents a quantitative analysis of research trends in the fields of plasma physics and nuclear fusion. This analysis is based on information retrieval from available data bases such as INSPEC tapes. The results indicate that plasma physics research is now in the maturation phase of its life cycle, and that nuclear fusion research is in its growth phase. This paper indicates that there is a correlation between the number of accumulated papers in the fields of plasma physics and nuclear fusion and the experimentally attained values of the plasma ignition parameter ntT. Using this correlation ''research effort curve'', we forecast that the scientific feasibility of controlled fusion using magnetic confinement systems will be proved around 1983. (author)

  8. Nuclear fusion research and plasma application technologies in SWIP (Southwestern Institute of Physics)

    International Nuclear Information System (INIS)

    Deng, X.W.

    1990-01-01

    A brief introduction of nuclear fusion research and plasma application technologies in SWIP is reported in this paper. The SWIP focuses its fusion efforts mainly on Tokamak with mirror as the supplemental experiments and fusion reactor conceptual design as preparation for future application of fusion energy. SWIP is making great efforts on fusion technology spin-off to make contribution towards national economic construction. (Author)

  9. Laser drivers for inertial confinement fusion

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1983-01-01

    Inertial Confinement Fusion (ICF) is the technology that we are developing to access the vast stored energy potential of deuterium fuel located in the world's water supply. This form of fusion is accomplished by compressing and heating small volumes of D-T fuel to very high temperatures (greater than 100M 0 C) and to very high densities (greater than 1000 times the normal liquid density). Under these fuel conditions, a thermonuclear reaction can occur, leading to a net energy release compared to the energy used to heat the fuel initially. To accomplish the condition where fusion reactions begin, effective drivers are required. These are lasers or particle beam accelerators which can provide greater than 10 14 W/cm 2 over millimeter scale targets with an appropriately programmed intensity vs time. At present, we are using research lasers to obtain an understanding of the physics and engineering of fuel compression

  10. Be Bold : An Alternative Plan for Fusion Research

    Energy Technology Data Exchange (ETDEWEB)

    Wurden, Glen Anthony [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-15

    Government sponsored magnetic fusion energy research in the USA has been on downward trajectory since the early 1990’s. The present path is unsustainable. Indeed, our research community and national research facilities are withering from old-age and lack of investment. The present product (tokamak-centric production of electricity) does not yet work, will not be economic, and is clearly not valued or needed by our society. Even if a prototype existed at any cost, DT-based fusion energy would come too late to significantly impact the reduction of CO2 emissions in this century. This white paper outlines what “being bold” could mean with respect to the invention and application of nuclear fusion technologies, and how the USA could once again set a visionary example for the world. I present the discussion in two parts, reflecting on the NAS panel two-part assignment of a plan “with” and “without” ITER.

  11. Fusion research in the UK 1945-1960

    International Nuclear Information System (INIS)

    Hendry, J.; Lawson, J.D.

    1993-01-01

    Two workers, involved in the research programmes themselves, document the developments in fusion research in the United Kingdom from 1945 until 1960. Started as part of the official history of the United Kingdom Atomic Energy Authority, the text is drawn from work by various teams of scientists at laboratories around the United Kingdom. This previewing of the research programmes lead to an inevitable evaluation of their worth, an assessment of their political implications and speculation on whether certain changes might have advanced scientific progress more readily. (U.K.)

  12. Mission and design of the Fusion Ignition Research Experiment (FIRE)

    International Nuclear Information System (INIS)

    Meade, D.M.; Jardin, S.C.; Schmidt, J.

    2001-01-01

    Experiments are needed to test and extend present understanding of confinement, macroscopic stability, alpha-driven instabilities, and particle/power exhaust in plasmas dominated by alpha heating. A key issue is to what extent pressure profile evolution driven by strong alpha heating will act to self-organize advanced configurations with large bootstrap current fractions and internal transport barriers. A design study of a Fusion Ignition Research Experiment (FIRE) is underway to assess near term opportunities for advancing the scientific understanding of self-heated fusion plasmas. The emphasis is on understanding the behavior of fusion plasmas dominated by alpha heating (Q≥5) that are sustained for durations comparable to the characteristic plasma time scales (≥20 τ E and ∼τ skin , where τ skin is the time for the plasma current profile to redistribute at fixed current). The programmatic mission of FIRE is to attain, explore, understand and optimize alpha-dominated plasmas to provide knowledge for the design of attractive magnetic fusion energy systems. The programmatic strategy is to access the alpha-heating-dominated regime with confidence using the present advanced tokamak data base (e.g., Elmy-H-mode, ≤0.75 Greenwald density) while maintaining the flexibility for accessing and exploring other advanced tokamak modes (e. g., reversed shear, pellet enhanced performance) at lower magnetic fields and fusion power for longer durations in later stages of the experimental program. A major goal is to develop a design concept that could meet these physics objectives with a construction cost in the range of $1B. (author)

  13. FFUSION research programme 1993-1998. Final report of the Finnish fusion research programme

    Energy Technology Data Exchange (ETDEWEB)

    Karttunen, S.; Heikkinen, J.; Korhonen, R. [VTT Energy, Espoo (Finland)] [and others

    1998-12-31

    This report summarizes the results of the Fusion Energy Research Programme, FFUSION, during the period 1993-1998. After the planning phase the programme started in 1994, and later in March 1995 the FFUSION Programme was integrated into the EU Fusion Programme and the Association Euratom-Tekes was established. Research areas in the FFUSION Programme are (1) fusion physics and plasma engineering, (2) fusion reactor materials and (3) remote handling systems. In all research areas industry is involved. Recently, a project on environmental aspects of fusion and other future energy systems started as a part of the socio-economic research (SERF) in the Euratom Fusion Programme. A crucial component of the FFUSION programme is the close collaboration between VTT Research Institutes, universities and Finnish industry. This collaboration has guaranteed dynamic and versatile research teams, which are large enough to tackle challenging research and development projects. Regarding industrial fusion R and D activities, the major step was the membership of Imatran Voima Oy in the EFET Consortium (European Fusion Engineering and Technology), which further strengthened the position of industry in the engineering design activities of ITER. The number of FFUSION research projects was 66. In addition, there were 32 industrial R and D projects. The total cost of the FFUSION Programme in 1993-1998 amounted to FIM 54 million in research at VTT and universities and an additional FIM 21 million for R and D in Finnish industry. The main part of the funding was provided by Tekes, 36%. Since 1995, yearly Euratom funding has exceeded 25%. The FFUSION research teams have played an active role in the European Programme, receiving excellent recognition from the European partners. Theoretical and computational fusion physics has been at a high scientific level and the group collaborates with the leading experimental laboratories in Europe. Fusion technology is focused on reactor materials, joining

  14. FFUSION research programme 1993-1998. Final report of the Finnish fusion research programme

    International Nuclear Information System (INIS)

    Karttunen, S.; Heikkinen, J.; Korhonen, R.

    1998-01-01

    This report summarizes the results of the Fusion Energy Research Programme, FFUSION, during the period 1993-1998. After the planning phase the programme started in 1994, and later in March 1995 the FFUSION Programme was integrated into the EU Fusion Programme and the Association Euratom-Tekes was established. Research areas in the FFUSION Programme are (1) fusion physics and plasma engineering, (2) fusion reactor materials and (3) remote handling systems. In all research areas industry is involved. Recently, a project on environmental aspects of fusion and other future energy systems started as a part of the socio-economic research (SERF) in the Euratom Fusion Programme. A crucial component of the FFUSION programme is the close collaboration between VTT Research Institutes, universities and Finnish industry. This collaboration has guaranteed dynamic and versatile research teams, which are large enough to tackle challenging research and development projects. Regarding industrial fusion R and D activities, the major step was the membership of Imatran Voima Oy in the EFET Consortium (European Fusion Engineering and Technology), which further strengthened the position of industry in the engineering design activities of ITER. The number of FFUSION research projects was 66. In addition, there were 32 industrial R and D projects. The total cost of the FFUSION Programme in 1993-1998 amounted to FIM 54 million in research at VTT and universities and an additional FIM 21 million for R and D in Finnish industry. The main part of the funding was provided by Tekes, 36%. Since 1995, yearly Euratom funding has exceeded 25%. The FFUSION research teams have played an active role in the European Programme, receiving excellent recognition from the European partners. Theoretical and computational fusion physics has been at a high scientific level and the group collaborates with the leading experimental laboratories in Europe. Fusion technology is focused on reactor materials, joining

  15. Treatment facilities, human resource development, and future prospect of particle beam therapy

    International Nuclear Information System (INIS)

    Tamaki, Tomoaki; Nakano, Takashi

    2015-01-01

    The number of particle beam therapy facilities is increasing globally. Among the countries practicing particle beam therapy, Japan is one of the leading countries in the field with four operating carbon-ion therapy facilities and ten operating proton therapy facilities. With the increasing number of particle beam therapy facilities, the human resource development is becoming extremely important, and there has been many such efforts including the Gunma University Program for Cultivating Global Leaders in Heavy Ion Therapeutics and Engineering, which aimed to educate and train the radiation oncologists, medical physicists, accelerator engineers, and radiation biologists to become global leaders in the field of particle beam therapy. In the future, the benefit and effectiveness of particle beam therapy should be discussed and elucidated objectively in a framework of comprehensive cancer care. (author)

  16. Intense light-ion beams provide a robust, common-driver path toward ignition, gain, and commercial fusion energy

    International Nuclear Information System (INIS)

    Ramirez, J.J.; Cook, D.L.

    1993-01-01

    Intense light-ion beams are being developed for investigations of inertial confinement fusion (ICF). This effort has concentrated on developing the Particle Beam Fusion Accelerator II (PBFA II) at Sandia as a driver for ICF target experiments, on design concepts for a high-yield, high-gain Laboratory Microfusion Facility (LMF), and on a comprehensive system study of a light-ion beam-driven commercial fusion reactor (LIBRA). Reports are given on the status of design concepts and research in these areas. (author)

  17. Research programme on controlled thermonuclear fusion - Synthesis report 2008

    International Nuclear Information System (INIS)

    Werthmueller, A.

    2009-06-01

    Switzerland is associated to the International Thermonuclear Experimental Reactor (ITER) project carried out in the framework of the European Atomic Energy Community (EURATOM). The current stage includes on-site civil engineering works. The Variable Configuration Tokamak (TCV) of the 'Centre de Recherches en Physique des Plasmas' (CRPP) of the EPFL will remain an important recognized research facility until the start of the ITER operation foreseen in 2018. At the European level, the whole fusion research is coordinated and partly financed by the Joint Undertaking Fusion for Energy (JU F4E). The large flexibility of the TCV design and operation modus allow the creation and control of plasmas of various shapes, what is a very useful option to verify the results of numerical simulations. Besides, the hyper-frequency power density injected into the plasma is the highest ever recorded in the world. Research topics studied with the TCV include the stationary regimes in the tokamaks; a plasma current of more than 70 kA could be maintained, what represents an improvement by a factor of 3 to 4 of the confinement quality. For the first time in the world a configuration of the 'snowflake' type could be created and the power density on the wall of the vacuum chamber could be reduced accordingly. Numerical models allowed the analysis of turbulence and heat transport, of the magneto-hydrodynamic stability of the tokamaks and stellarators as well as the optimization of the magnetic confinement. Results concerning the so-called 'saw teeth' instability were experimentally confirmed on the Joint European Torus (JET). Theoretical researches were carried out on the fluctuations, turbulence and transport phenomena in the magnetized toric plasmas. At the Paul Scherrer Institute (PSI) the effect of the fast neutrons emitted by the fusion reactions on the walls of the fusion reactors was investigated. Irradiation simulations were carried out by means of the Swiss Spallation Neutron Source

  18. EBFA: pulsed power for fusion

    International Nuclear Information System (INIS)

    Martin, T.H.; VanDevender, J.P.; Barr, G.W.; Johnson, D.L.

    1979-01-01

    This paper will describe the EBFA I accelerator under construction for inertial confinement fusion studies with particle beams and will update previous publications concerning particle beam fusion accelerators. Previous information included Proto I, a triggered oil insulated 1 TW accelerator; Proto II, a water insulated 10 TW accelerator; and EBFA I, a 30 TW, 1 MJ accelerator. Some modifications to the original design have occurred. A new pulse-forming-line concept has been developed which increases the flexibility of the accelerator. The major problem of vacuum interface flashover has been solved by the use of long, magnetically-insulated, transmission lines. The first production module of EBFA I has been received, assembled, and is now undergoing extensive testing. The technology is extendable to at least a factor of ten above the projected EBFA capabilities of 30 TW and 1 MJ output. Progress on facilities associated with the Sandia Particle Beam fusion program is reported

  19. Surface study of fusion research in universities linkage organization

    International Nuclear Information System (INIS)

    Miyahara, Akira.

    1980-04-01

    The surface studies for nuclear fusion research consist of the studies on the surface process and the surface damage. The problems with the surface study are different at different research stages. The plasma-wall interaction in the ignition stage is mainly concerned with heating. The impurity control becomes important in the breakeven stage. In the longer burn experiment, the problems of plasma contamination and ash accumulation are serious, and the blistering is also a problem. From the reactor aspect, the reduction of life of wall due to the irradiation of high fluence must be considered. The surface damage due to plasma disruption is a very big problem. The activities concerning the surface studies in university-linked organizations are the surface characterization for fusion reactor materials by low energy ion scattering spectroscopy, the high power ion irradiation test for CTR first wall, data compilation on plasma-wall interaction, the studies of sputtering process and surface coating, and the study on hydrogen isotope permeation through metals for fusion reactors. Other activities such as the sample characterization at many universities using the SUS 304 samples from the same lot, and the collaboration works on JIPP-T-2 plasma wall experiments are introduced. Concerning the surface study, US-Japan or international collaboration are strongly expected. (Kato, T.)

  20. A Multimedia Tutorial for Charged-Particle Beam Dynamics. Final report

    International Nuclear Information System (INIS)

    Silbar, Richard R.

    1999-01-01

    In September 1995 WhistleSoft, Inc., began developing a computer-based multimedia tutorial for charged-particle beam dynamics under Phase II of a Small Business Innovative Research grant from the U.S. Department of Energy. In Phase I of this project (see its Final Report) we had developed several prototype multimedia modules using an authoring system on NeXTStep computers. Such a platform was never our intended target, and when we began Phase II we decided to make the change immediately to develop our tutorial modules for the Windows and Macintosh microcomputer market. This Report details our progress and accomplishments. It also gives a flavor of the look and feel of the presently available and upcoming modules

  1. A Multimedia Tutorial for Charged-Particle Beam Dynamics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Silbar, Richard R.

    1999-07-26

    In September 1995 WhistleSoft, Inc., began developing a computer-based multimedia tutorial for charged-particle beam dynamics under Phase II of a Small Business Innovative Research grant from the U.S. Department of Energy. In Phase I of this project (see its Final Report) we had developed several prototype multimedia modules using an authoring system on NeXTStep computers. Such a platform was never our intended target, and when we began Phase II we decided to make the change immediately to develop our tutorial modules for the Windows and Macintosh microcomputer market. This Report details our progress and accomplishments. It also gives a flavor of the look and feel of the presently available and upcoming modules.

  2. Fusion Energy Postdoctoral Research Program, Professional Development Program: FY 1987 annual report

    International Nuclear Information System (INIS)

    1988-01-01

    In FY 1986, Oak Ridge Associated Universities (ORAU) initiated two programs for the US Department of Energy (DOE), Office of Fusion Energy (OFE): the Fusion Energy Postdoctoral Research Program and the Fusion Energy Professional Development Program. These programs provide opportunities to conduct collaborative research in magnetic fusion energy research and development programs at DOE laboratories and contractor sites. Participants become trained in advanced fusion energy research, interact with outstanding professionals, and become familiar with energy-related national issues while making personal contributions to the search for solutions to scientific problems. Both programs enhance the national fusion energy research and development effort by providing channels for the exchange of scientists and engineers, the diffusion of ideas and knowledge, and the transfer of relevant technologies. These programs, along with the Magnetic Fusion Energy Science and Technology Fellowship Programs, compose the fusion energy manpower development programs administered by ORAU for DOE/OFE

  3. Nonlinear delta f Simulations of Collective Effects in Intense Charged Particle Beams

    CERN Document Server

    Hong Qi

    2003-01-01

    A nonlinear delta(f) particle simulation method based on the Vlasov-Maxwell equations has been recently developed to study collective processes in high-intensity beams, where space-charge and magnetic self-field effects play a critical role in determining the nonlinear beam dynamics. Implemented in the Beam Equilibrium, Stability and Transport (BEST) code [H. Qin, R.C. Davidson, and W.W. Lee, Physical Review -- Special Topics on Accelerator and Beams 3 (2000) 084401; 3 (2000) 109901.], the nonlinear delta(f) method provides a low-noise and self-consistent tool for simulating collective interactions and nonlinear dynamics of high-intensity beams in modern and next-generation accelerators and storage rings, such as the Spallation Neutron Source and heavy ion fusion drivers. A wide range of linear eigenmodes of high-intensity charged-particle beams can be systematically studied using the BEST code. Simulation results for the electron-proton two-stream instability in the Proton Storage Ring experiment [R. Macek, ...

  4. Progress in fusion technology in the U.S. magnetic fusion program

    International Nuclear Information System (INIS)

    Dowling, R.J.; Beard, D.S.; Haas, G.M.; Stone, P.M.; George, T.V.

    1987-01-01

    In this paper the authors discuss the major technological achievements that have taken place during the past few years in the U.S. magnetic fusion program which have contributed to the global efforts. The goal has been to establish the scientific and technological base required for fusion energy. To reach this goal the fusion RandD program is focused on four key technical issues: determine the optimum configuration of magnetic confinement systems; determine the properties of burning plasmas; develop materials for fusion systems; and establish the nuclear technology of fusion systems. The objective of the fusion technology efforts has been to develop advanced technologies and provide the necessary support for research of these four issues. This support is provided in a variety of areas such as: high vacuum technology, large magnetic field generation by superconducting and copper coils, high voltage and high current power supplies, electromagnetic wave and particle beam heating systems, plasma fueling, tritium breeding and handling, remote maintenance, energy recovery. The U.S. Fusion Technology Program provides major support or has the primary responsibility in each of the four key technical issues of fusion, as described in the Magnetic Fusion Program Plan of February 1985. This paper has summarized the Technology Program in terms of its activities and progress since the Proceedings of the SOFT Conference in 1984

  5. Dose calculations algorithm for narrow heavy charged-particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Barna, E A; Kappas, C [Department of Medical Physics, School of Medicine, University of Patras (Greece); Scarlat, F [National Institute for Laser and Plasma Physics, Bucharest (Romania)

    1999-12-31

    The dose distributional advantages of the heavy charged-particles can be fully exploited by using very efficient and accurate dose calculation algorithms, which can generate optimal three-dimensional scanning patterns. An inverse therapy planning algorithm for dynamically scanned, narrow heavy charged-particle beams is presented in this paper. The irradiation `start point` is defined at the distal end of the target volume, right-down, in a beam`s eye view. The peak-dose of the first elementary beam is set to be equal to the prescribed dose in the target volume, and is defined as the reference dose. The weighting factor of any Bragg-peak is determined by the residual dose at the point of irradiation, calculated as the difference between the reference dose and the cumulative dose delivered at that point of irradiation by all the previous Bragg-peaks. The final pattern consists of the weighted Bragg-peaks irradiation density. Dose distributions were computed using two different scanning steps equal to 0.5 mm, and 1 mm respectively. Very accurate and precise localized dose distributions, conform to the target volume, were obtained. (authors) 6 refs., 3 figs.

  6. A magnetic field cloak for charged particle beams

    Science.gov (United States)

    Capobianco-Hogan, K. G.; Cervantes, R.; Deshpande, A.; Feege, N.; Krahulik, T.; LaBounty, J.; Sekelsky, R.; Adhyatman, A.; Arrowsmith-Kron, G.; Coe, B.; Dehmelt, K.; Hemmick, T. K.; Jeffas, S.; LaByer, T.; Mahmud, S.; Oliveira, A.; Quadri, A.; Sharma, K.; Tishelman-Charny, A.

    2018-01-01

    Shielding charged particle beams from transverse magnetic fields is a common challenge for particle accelerators and experiments. We demonstrate that a magnetic field cloak is a viable solution. It allows for the use of dipole magnets in the forward regions of experiments at an Electron Ion Collider (EIC) and other facilities without interfering with the incoming beams. The dipoles can improve the momentum measurements of charged final state particles at angles close to the beam line and therefore increase the physics reach of these experiments. In contrast to other magnetic shielding options (such as active coils), a cloak requires no external powering. We discuss the design parameters, fabrication, and limitations of a magnetic field cloak and demonstrate that cylinders made from 45 layers of YBCO high-temperature superconductor, combined with a ferromagnetic shell made from epoxy and stainless steel powder, shield more than 99% of a transverse magnetic field of up to 0.45 T (95% shielding at 0.5 T) at liquid nitrogen temperature. The ferromagnetic shell reduces field distortions caused by the superconductor alone by 90% at 0.45 T.

  7. Superconducting quantum interference monitor of charged particle beam current

    International Nuclear Information System (INIS)

    Gertsev, K.F.; Mikheev, M.S.

    1981-01-01

    Description and test results of the monitor of charged particle beam current on the base of the high-frequency superconducting quantum interference detector with lead slotted shield are presented. The toroidal superconducting coil, which covers the measured beam has 16 turns wound by the lead belt of 7 mm width with 0.5 mm gaps between the turns. A superconducting low-coupling monitor having two holes and point oxidated niobium contact has been used in the mode of quanta counting of magnetic flux. The lead point shield was 2 mm thick and it had 30 mm aperture. The coefficient of background shielding within 0-200 Hz frequency range constituted more than 10 8 . The threshold current resolution of the monitor had the value less than 01 μA √Hz. The suggested monitor requires helium cooling. The proposed design of the monitor is applicable for mounting on the vacuum chamber when it is surrounded by helium conductor. In other cases mounting of low-powerful autonomic system or cryostat of helium storage up to several weeks is possible [ru

  8. Accelerator and Fusion Research Division. Annual report, October 1977--September 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-01

    Research is reported for the combined groups consisting of the Accelerator Division and the Magnetic Fusion Energy Group. Major topics reported include accelerator operations, magnetic fusion energy, and advanced accelerator development. (GHT)

  9. Utilization of a Network of Small Magnetic Confinement Fusion Devices for Mainstream Fusion Research. Report of a Coordinated Research Project 2011–2016

    International Nuclear Information System (INIS)

    2016-12-01

    The IAEA actively promotes the development of controlled fusion as a source of energy. Through its coordinated research activities, the IAEA helps Member States to exchange and establish scientific and technical knowledge required for the design, construction and operation of a fusion reactor. Due to their compactness, flexibility and low operation costs, small fusion devices are a great resource for supporting and accelerating the development of mainstream fusion research on large fusion devices such as the International Thermonuclear Experimental Reactor. They play an important role in investigating the physics of controlled fusion, developing innovative technologies and diagnostics, testing new materials, training highly qualified personnel for larger fusion facilities, and supporting educational programmes for young scientists. This publication reports on the research work accomplished within the framework of the Coordinated Research Project (CRP) on Utilization of the Network of Small Magnetic Confinement Fusion Devices for Mainstream Fusion Research, organized and conducted by the IAEA in 2011–2016. The CRP has contributed to the coordination of a network of research institutions, thereby enhancing international collaboration through scientific visits, joint experiments and the exchange of information and equipment. A total of 16 institutions and 14 devices from 13 Member States participated in this CRP (Belgium, Bulgaria, Canada, China, Costa Rica, the Czech Republic, the Islamic Republic of Iran, Kazakhstan, Pakistan, Portugal, the Russian Federation, Ukraine and the United Kingdom).

  10. Research and Application of Autodesk Fusion360 in Industrial Design

    Science.gov (United States)

    Song, P. P.; Qi, Y. M.; Cai, D. C.

    2018-05-01

    In 2016, Fusion 360, a productintroduced byAutodesk and integrating industrial design, structural design, mechanical simulation, and CAM, turns out a design platform supportingcollaboration and sharing both cross-platform and via the cloud. In previous products, design and manufacturing use to be isolated. In the course of design, research and development, the communication between designers and engineers used to go on through different software products, tool commands, and even industry terms. Moreover, difficulty also lies with the communication between design thoughts and machining strategies. Naturally, a difficult product design and R & D process would trigger a noticeable gap between the design model and the actual product. A complete product development process tends to cover several major areas, such as industrial design, mechanical design, rendering and animation, computer aided emulation (CAE), and computer aided manufacturing (CAM). Fusion 360, a perfect design solving the technical problems of cross-platform data exchange, realizes the effective control of cross-regional collaboration and presents an overview of collaboration and breaks the barriers between art and manufacturing, andblocks between design and processing. The “Eco-development of Fusion360 Industrial Chain” is both a significant means to and an inevitable trend forthe manufacturers and industrial designers to carry out innovation in China.

  11. Opening and construction of facilities in succession for particle beam therapy of cancer

    International Nuclear Information System (INIS)

    Nakano, Takashi; Yamamoto, Kazutaka; Hishikawa, Yoshio; Totoki, Tadahide; Hoshino, Junichi; Aoki, Takashi; Yoshiyuki, Takeshi; Hirabayashi, Masayuki; Nakamura, Fumito

    2011-01-01

    This feature article describes the current state of practical particle beam therapy of cancer, its future prospect, recent opening/construction of its facilities and manufacturers' view with following 9 topics presented by relevant experts. Gunma University (topic 1) started the carbon ion therapy from Mar., 2010, and has treated more than 100 cancer patients to aim the treatment of about 600 patients/year after several years. Fukui Prefectural Hospital Proton Therapy Center (topic 2) started from this March with proton beams for patients with its therapeutic standard, in cooperation with insurance companies and hotels for patients' convenience. Medipolis Proton Therapy and Research Center (Kagoshima Pref.) (topic 3) started this year with proton beams for 13 patients hitherto with reference protocol of Hyogo Ion Beam Medical Center. A new stereotactic irradiation system of proton beams for breast cancer has been developed. Construction of Saga Heavy Ion Medical Accelerator in Tosu (Saga Pref.) (topic 4) began this year to be completed in 2013. Aizawa Hospital (Nagano Pref.) (topic 5) plans to introduce the small-sized proton accelerator-gantry system (Sumitomo Heavy Ind., Ltd.) aiming the practice in 2013. Association for Nuclear Technology in Medicine (topic 6) reports the trends of current and future construction inside/outside Japan. Manufacturers comment their respective business: high-speed scanning irradiation system, next generation handling system of patient and particle beam therapy information system by Toshiba (topic 7); designation of the whole heavy ion beam therapy system (with NIRS), proton beam (as in topic 5) and system of BNCT (boron neutron-capture therapy) (Kyoto Univ.) by Sumitomo Heavy Ind., Ltd. (topic 8); and small-size proton therapeutic machine with 4D tracing capability for patient's movement (Hokkaido Univ.) and with spot-scanning irradiation technique by Hitachi (topic 9). (author)

  12. Fusion Energy Advisory Committee report on program strategy for US magnetic fusion energy research

    International Nuclear Information System (INIS)

    Conn, R.W.; Berkner, K.H.; Culler, F.L.; Davidson, R.C.; Dreyfus, D.A.; Holdren, J.P.; McCrory, R.L.; Parker, R.R.; Rosenbluth, M.N.; Siemon, R.E.; Staudhammer, P.; Weitzner, H.

    1992-09-01

    The Fusion Energy Advisory Committee (FEAC) was charged by the Department of Energy (DOE) with developing recommendations on how best to pursue the goal of a practical magnetic fusion reactor in the context of several budget scenarios covering the period FY 1994-FY 1998. Four budget scenarios were examined, each anchored to the FY 1993 figure of $337.9 million for fusion energy (less $9 million for inertial fusion energy which is not examined here)

  13. Annual report of Naka Fusion Research Establishment from April 1, 2003 to March 31, 2004

    International Nuclear Information System (INIS)

    Hoshino, Katsumichi; Umeda, Naotaka; Tsuji, Hiroshi; Yoshida, Hidetoshi; Nagami, Masayuki

    2004-11-01

    This annual report provides an overview of research and development (R and D) activities at Naka Fusion Research Establishment, including those performed in collaboration with other research establishments of JAERI, research institutes, and universities, during the period from 1 April, 2003 to 31 March, 2004. The activities in the Naka Fusion Research Establishment are highlighted by researches in JT-60 and JFT-2M, theoretical and analytical plasma researches, research and development of fusion reactor technologies towards ITER and fusion power demonstration plants, and activities in support of ITER design and construction. (J.P.N.)

  14. Theory of using magnetic deflections to combine charged particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Steckbeck, Mackenzie K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Doyle, Barney Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    Several radiation effects projects in the Ion Beam Lab (IBL) have recently required two disparate charged particle beams to simultaneously strike a single sample through a single port of the target chamber. Because these beams have vastly different mass–energy products (MEP), the low-MEP beam requires a large angle of deflection toward the sample by a bending electromagnet. A second electromagnet located further upstream provides a means to compensate for the small angle deflection experienced by the high-MEP beam during its path through the bending magnet. This paper derives the equations used to select the magnetic fields required by these two magnets to achieve uniting both beams at the target sample. A simple result was obtained when the separation of the two magnets was equivalent to the distance from the bending magnet to the sample, and the equation is given by: Bs= 1/2(rc/rs) Bc, where Bs and Bc are the magnetic fields in the steering and bending magnet and rc/rs is the ratio of the radii of the bending magnet to that of the steering magnet. This result is not dependent upon the parameters of the high MEP beam, i.e. energy, mass, charge state. Therefore, once the field of the bending magnet is set for the low-MEP beam, and the field in the steering magnet is set as indicted in the equation, the trajectory path of any high-MEP beam will be directed into the sample.

  15. Physical aspects of heavy charged particle beams for radiotherapy

    International Nuclear Information System (INIS)

    Kawashima, Katsuhiro

    1989-01-01

    Physical properties of heavy ion beams are discussed to improve the physical dose distributions in view of radiotherapy. Preservation of the structural and functional integrity of adjacent normal tissue is required to achieve great probability of tumor control. This will be accomplished with the reduction of irradiated volume of normal tissues and with greater relative biological effectiveness (RBE) on tumor cells than that on surrounding normal cells. This suggests the use of heavy ion beams as new source of radiation that increases the therapeutic ratio. The basis of the improvement in the physical dose distribution by use of heavy charged particles is due to the finite range of the beams and to the less multiple coulomb scattering of the particles having a heavier atomic mass than proton. The depth dose distributions and dose profiles of heavy particle beams are discussed in this article. The lateral sharpness of heavy charged particles is comparable to the penumbra of high energy photon and electron beams and is not of clinical concern due to less coulomb scattering of heavy ions to lateral direction in traversing a medium. The dose gradient at the end of range of primary beam is dependent upon the energy spread and range straggling of the particles. The magnitude of range straggling is nearly proportional to the range and inversely proportional to the inverse square root of the particle mass. Heavy ion beams also undergo nuclear interactions, in which the primary beam may produce lower atomic number particles. Therefore, the dose beyond the Bragg peak is due to those fragments. Fragmentation increases as a function of the atomic mass to the 2/3 power and with the energy of the particles. Thus, the production of fragments diminishes the depth dose advantages of heavy ions. The choice of ion for radiotherapy may depend on evaluation of important parameter for tumor control. (J.P.N.)

  16. Research program. Controlled thermonuclear fusion. Synthesis report 2015

    International Nuclear Information System (INIS)

    Villard, L.; Marot, L.; Soom, P.

    2016-01-01

    In 1961, 3 years after the 2 nd International Conference on Peaceful Use of Nuclear Energy, the Research Centre on Plasma Physics (CRPP) was created as a department of the Federal Institute of Technology (EPFL) in Lausanne (Switzerland). From 1979, CRPP collaborates to the European Program on fusion research in the framework of EURATOM. In 2015 its name was changed to Swiss Plasma Centre (SPC). The advantages of fusion are remarkable: the fuel is available in great quantity all over the world; the reactor is intrinsically safe; the reactor material, activated during operation, loses practically all its activity within about 100 years. But the working up of the controlled fusion necessitates extreme technological conditions. In 1979, the Joint European Torus (JET) began its operation; today it is still the most powerful tokamak in the world, in which an energy yield Q of 0.65 could be obtained. In 2015, the stellarator Wendelstein 7-X (W7X), the largest in the world, was set into operation. The progress realized in the framework of EURATOM has led to the planning of the experimental reactor ITER which is being built at Cadarache (France). ITER is designed to reach a Q-value largely above 1. The future prototype reactor DEMO is foreseen in 2040-2050. It should demonstrate the ability of a fusion reactor to inject permanently electricity into the grid. In 2015, SPC participated in the works on ITER in the framework of the Fusion for Energy (F4E) agency. At EPFL the research concerns the physics of the magnetic confinement with experiments on the tokamak TCV (variable configuration tokamak), the numerical simulations, the plasma heating and the generation of current by hyper frequency radio waves. At the Paul Scherrer Institute (PSI), research is devoted to the superconductivity; at the Basel University the studies get on interactions between the plasma and the tokamak walls. The large flexibility of TCV allows creating and controlling plasmas of different shapes which

  17. Research program. Controlled thermonuclear fusion. Synthesis report 2013

    International Nuclear Information System (INIS)

    Villard, L.; Marot, L.

    2014-01-01

    In 1961, 3 years after the 2 nd International Conference on Peaceful Use of Nuclear Energy, the Research Centre on Plasma Physics (CRPP) was created as a department of the Federal Institute of Technology (EPFL) in Lausanne (Switzerland). From 1979, CRPP collaborates to the European Program on fusion research in the framework of EURATOM. The advantages of fusion are remarkable: the fuel is available in great quantity all over the world; the reactor is intrinsically safe; the reactor material, activated during operation, loses practically all its activity within about 100 years. But the working up of the controlled fusion necessitates extreme technological conditions. The progress realized in the framework of EURATOM has led to the design of the experimental reactor ITER which is being built at Cadarache (France). The future prototype reactor DEMO is foreseen in 2040-2050. In 2013, CRPP participated in the works on ITER in the framework of the Fusion for Energy (F4E) agency. At EPFL the research concerns the physics of the magnetic confinement with experiments on the tokamak TCV (variable configuration tokamak), the numerical simulations, the plasma heating and the generation of current by hyper frequency radio waves. At the Paul Scherrer Institute (PSI), research is devoted to the superconductivity. At the Basel University the studies get on interactions between the plasma and the tokamak walls. A new improved confinement regime, called IN-mode, was discovered on TCV. The theory and numerical simulation group interprets the experimental results and foresees those of futures machines. It requires very high performance computers. The Gyrotron group develops radiofrequency sources in the mm range for heating the TCV plasma as well as for ITER and the Wendelstein-7 stellarator. Concerning superconductivity, tests are conducted at PSI on toroidal cables of ITER. The development of conductors and coils for the DEMO reactor has been pursued. In the context of international

  18. Data management in a fusion energy research experiment

    International Nuclear Information System (INIS)

    Glad, A.; Drobnis, D.; McHarg, B.

    1981-07-01

    Present-day fusion research requires extensive support for the large amount of scientific data generated, bringing about three distinct problems computer systems must solve: (1) the processing of large amounts of data in very small time frames; (2) the archiving, analyzing and managing of the entire data output for the project's lifetime; (3) the standardization of data for the exchange of information between laboratories. The computer system supporting General Atomic's Doublet III tokamak, a project funded by the United States Department of Energy, is the first to encounter and address these problems through a system-wide data base structure

  19. Magnetohydrodynamic research in fusion blanket engineering and metallurgical processing

    International Nuclear Information System (INIS)

    Tokuhiro, A.

    1991-11-01

    A review of recent research activities in liquid metal magnetohydrodynamics (LM-MHDs) is presented in this article. Two major reserach areas are discussed. The first topic involves the thermomechanical design issues in a proposed tokamak fusion reactor. The primary concerns are in the magneto-thermal-hydraulic performance of a self-cooled liquid metal blanket. The second topic involves the application of MHD in material processing in the metallurgical and semiconductor industries. The two representative applications are electromagnetic stirring (EMS) of continuously cast steel and the Czochralski (CZ) method of crystal growth in the presence of a magnetic field. (author) 24 figs., 10 tabs., 136 refs

  20. The heavy ion fusion research program in West Germany

    International Nuclear Information System (INIS)

    Bock, R.

    1984-01-01

    The study on the feasibility of heavy ion beam for inertial confinement fusion was started four years ago, setting the main goal to identify and investigate the key issues of heavy ion fusion concept. The fund for this program has been provided by the Federal Ministry of Research and Technology. In this paper, the outline of the present research is shown, and some recent achievement is summarized. Moreover, the idea about the goal and the new direction of the future program are discussed. In the present program, two activities are distinguished, that is, the expermental and theoretical studies on accelerators, target physics and atomic physics, and the conceptual design study for a heavy ion-driven power plant. A RF linac with storage rings was chosen as the driver concept. In the accelerator research, ion source studies, RFQ development and beam transport measurement have been considered. Two beam transport experiments were carried out. In the conceptual design study, the HIBALL driver concept, the reactor chamber having the first wall protection using Pb-Li eutectic and so on have been studied. An accelerator facility of modest size has been suggested for basic accelerator physics studies. (Kako, I.)

  1. Synthetic report 2012. Research programme on controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Vaucher, C.; Tran, M. Q.; Villard, L.; Marot, L.

    2013-01-01

    Since 1961, Switzerland participates in the research on thermonuclear fusion thanks to the creation of the Research Centre in Plasma Physics. In 1979 it entered into partnership with the European programme on fusion through its adhesion to EURATOM. The thermonuclear fusion is an interesting energy source because the basic fuel is practically inexhaustible and its use does not release any significant CO 2 quantity and very little radioactive residues. But its working up faces enormous physical and technological difficulties. The International Thermonuclear Reactor (ITER), presently in construction, has to demonstrate the technological feasibility of the controlled fusion. Il will be followed by DEMO, foreseen for 2040-2050, which must guarantee the economical rentability. At CRPP the research projects are partitioned onto several sites: at the Swiss Federal Institute of Technology (EPFL) in Lausanne, they concern the physics of the magnetic confinement with the Variable Geometry Tokamak (TCV), the development of theoretical models and the numerical simulation, the plasma heating and the generation of hyper frequency waves; the Paul Scherrer Institute (PSI) studies the superconductivity and the materials; the interactions between the plasma and the Tokamak walls are studied at the Basel University for the structures of ITER. Thanks to its large flexibility, TCV allows the creation and the control of plasmas of very different forms. The injection system of millimetric waves allows orienting the injected power according to specific profiles. By using the asymmetry of the flow in the toroidal sense, the plasma rotation could be measured with a much better accuracy than before. In TCV, by playing on the form of the plasma, it was possible to strongly reduce the energy quantity which is expelled by the Edge Localized Modes (ELM) onto the wall of the vacuum chamber. The ‘snowflake’ configuration created in TCV allows distributing the ELM energy onto several impact

  2. Annual report of the Division of Thermonuclear Fusion Research, JAERI

    International Nuclear Information System (INIS)

    1977-02-01

    The JFT-2 operating regime was extended to higher toroidal field of 18 kG. Plasma confinements were studied on impurities, instabilities, plasma-wall interaction. Properties of a plasma with a separatrix magnetic surface and plasma behaviour in the scrape-off layer were studied in JFT-2a. In the diagnostics, a grazing-incidence vacuum ultra-violet spectrometer for studies on impurities was completed and put into operation. Several minor improvement and remodelling on the JFT-2 and JFT-2a tokamaks were carried out for the convenience of operation. In the plasma heating, constructions of the JFT-2 neutral injection system and the injector test stand ITS-2 for development of the higher energy ion source were started. The design of 200 kW RF power source for the plasma heating in JFT-2 was also made. Research in surface effects in fusion devices started at April 1, 1975. Experimental apparatus was designed and constructed in this fiscal year. A group for superconducting magnet development for fusion device was set up in January, 1976. Theoretical works continued in the analyses on transport processes, plasma heating, and mhd stabilities with an increasing effort on computational studies. A preliminary design of the 100 MW sub(t) tokamak experimental fusion reactor has been started in April, 1975. At the same time a conceptual design of the 2000 MW sub(t) power reactor was further improved. In the development of large tokamak device of next generation, programs on JT-60 and JT-4 are being carried out. Research and development works and detailed design studies on JT-60 are started based on the preliminary design studies made in the previous year. Preliminary design studies on JT-4 are completed. (auth.)

  3. Research programme on controlled thermonuclear fusion. Synthesis report 2011

    International Nuclear Information System (INIS)

    Vaucher, C.; Tran, M. Q.; Villard, L.; Marot, L.

    2012-01-01

    Since 1978, research on thermonuclear fusion in Switzerland is closely related to the research programme of the European Atomic Energy Community (EURATOM). The Swiss projects tackle aspects of plasma physics and fusion technology. Switzerland participates to the construction and operation of the Joint European Torus (JET), which started operation again in 2011. The International Thermonuclear Experimental Reactor (ITER) is the last step before DEMO, a prototype fusion reactor able to deliver electricity and demonstrate the economic viability of fusion energy. The 'Centre de Recherches en Physique des Plasmas' (CRPP) of the EPFL went on with its participation to the scientific and technological programme of EURATOM. Researches are carried out essentially on 2 sites: (i) at EPFL, where topics dealt with include the physics of magnetic confinement studied using the Variable Configuration Tokamak (TCV), the basic experiment TORPEX, theory and numerical modelling, and the technology of plasma heating and current generation by hyper-frequency waves; (ii) at the Paul Scherrer Institute (PSI), where activities are devoted to superconductivity and structure materials. Thanks to the large flexibility of the TCV design and operation modus, plasmas of different shapes can be created and controlled, what is a very useful option to verify numerical simulation results. Besides, the injection of millimetre waves allows directing the injected power according to specific profiles. In the TCV it could be demonstrated for the first time that the injection of Electronic Cyclotronic Heating (ECH) waves is able to double the frequency of so-called 'Edge Localized Modes' (ELM), reducing by a factor of 2 the energy expelled by each ELM. In particular, it was possible to considerably reduce the statistical dispersion of the repetition frequency of ELM, and to avoid the appearance of gigantic ELM that are particularly harmful for reactor operation. The effect of plasma internal relaxation

  4. A view of technology maturity assessment to realize fusion reactor by Japanese young researchers

    International Nuclear Information System (INIS)

    Kasada, Ryuta; Goto, Takuya; Miyazawa, Junichi; Fujioka, Shinsuke; Hiwatari, Ryoji; Oyama, Naoyuki; Tanigawa, Hiroyasu

    2013-01-01

    Japanese young researchers who have interest in realizing fusion reactor have analyzed Technology Readiness Levels (TRL) in Young Scientists Special Interest Group on Fusion Reactor Realization. In this report, brief introduction to TRL assessment and a view of TRL assessment against fusion reactor projects conducting in Japan. (J.P.N.)

  5. Public acceptance of fusion energy and scientific feasibility of a fusion reactor. Spin-off effects of fusion research and development

    International Nuclear Information System (INIS)

    Morino, Nobuyuki; Ogawa, Yuichi

    1998-01-01

    It is observed that new and sophisticated technologies developed through research and development in relation to magnetic confinement fusion have been transferred to other industrial and scientific fields with remarkable spin-off effects. Approximately 10 years ago, the Japan Atomic Industrial Forum (JAIF) has investigated technical transfer and spin-off effects of fusion technologies developed in Japan. The essence of the results of this investigation as well as high technologies developed in the last decade, some of which are in the early stage of technical spin-off, are described. It is additionally explained that independent technical development conducted by our country as well as by engineers themselves is important in achieving effective spin-off. An outline of scientific spin-off effects is also described, including utilization technologies of fusion reactions besides those for energy production purposes, the progress of scientific understanding in the course of fusion research, and scientific information transfer and communication with other fields. (author)

  6. Nonlinear dynamics for charges particle beams with a curved axis in the matrix - recursive model

    Energy Technology Data Exchange (ETDEWEB)

    Dymnikov, A D [University of St Petersburg, (Russian Federation). Institute of Computational Mathematics and Control Process

    1994-12-31

    In this paper a new matrix and recursive approach has been outlined for treating nonlinear optics of charged particle beams. This approach is a new analytical and computational tool for designers of optimal beam control systems. 9 refs.

  7. Nonlinear dynamics for charges particle beams with a curved axis in the matrix - recursive model

    Energy Technology Data Exchange (ETDEWEB)

    Dymnikov, A.D. [University of St Petersburg, (Russian Federation). Institute of Computational Mathematics and Control Process

    1993-12-31

    In this paper a new matrix and recursive approach has been outlined for treating nonlinear optics of charged particle beams. This approach is a new analytical and computational tool for designers of optimal beam control systems. 9 refs.

  8. Method and split cavity oscillator/modulator to generate pulsed particle beams and electromagnetic fields

    Science.gov (United States)

    Clark, M. Collins; Coleman, P. Dale; Marder, Barry M.

    1993-01-01

    A compact device called the split cavity modulator whose self-generated oscillating electromagnetic field converts a steady particle beam into a modulated particle beam. The particle beam experiences both signs of the oscillating electric field during the transit through the split cavity modulator. The modulated particle beam can then be used to generate microwaves at that frequency and through the use of extractors, high efficiency extraction of microwave power is enabled. The modulated beam and the microwave frequency can be varied by the placement of resistive wires at nodes of oscillation within the cavity. The short beam travel length through the cavity permit higher currents because both space charge and pinching limitations are reduced. The need for an applied magnetic field to control the beam has been eliminated.

  9. Remarks on the differential algebraic approach to particle beam optics by M. Berz

    International Nuclear Information System (INIS)

    Garczynski, V.

    1992-01-01

    The underlying mathematical structure of the differential algebraic approach of M. Berz to particle beam optics is isomorphic to the familiar truncated polynomial algebra. Concrete examples of derivations in this algebra, consistent with the truncation operation, are given

  10. Nonlinear dynamics for charges particle beams with a curved axis in the matrix - recursive model

    International Nuclear Information System (INIS)

    Dymnikov, A.D.

    1993-01-01

    In this paper a new matrix and recursive approach has been outlined for treating nonlinear optics of charged particle beams. This approach is a new analytical and computational tool for designers of optimal beam control systems. 9 refs

  11. Dynamics and transport of laser-accelerated particle beams

    International Nuclear Information System (INIS)

    Becker, Stefan

    2010-01-01

    The subject of this thesis is the investigation and optimization of beam transport elements in the context of the steadily growing field of laser-driven particle acceleration. The first topic is the examination of the free vacuum expansion of an electron beam at high current density. It could be shown that particle tracking codes which are commonly used for the calculation of space charge effects will generate substantial artifacts in the regime considered here. The artifacts occurring hitherto predominantly involve insufficient prerequisites for the Lorentz transformation, the application of inadequate initial conditions and non negligible retardation artifacts. A part of this thesis is dedicated to the development of a calculation approach which uses a more adequate ansatz calculating space charge effects for laser-accelerated electron beams. It can also be used to validate further approaches for the calculation of space charge effects. The next elements considered are miniature magnetic quadrupole devices for the focusing of charged particle beams. General problems involved with their miniaturization concern distorting higher order field components. If these distorting components cannot be controlled, the field of applications is very limited. In this thesis a new method for the characterization and compensation of the distorting components was developed, which might become a standard method when assembling these permanent magnet multipole devices. The newly developed characterization method has been validated at the Mainz Microtron (MAMI) electron accelerator. Now that we can ensure optimum performance, the first application of permanent magnet quadrupole devices in conjunction with laser-accelerated ion beams is presented. The experiment was carried out at the Z-Petawatt laser system at Sandia National Laboratories. A promising application for laser-accelerated electron beams is the FEL in a university-scale size. The first discussion of all relevant aspects

  12. Dynamics and transport of laser-accelerated particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Stefan

    2010-04-19

    The subject of this thesis is the investigation and optimization of beam transport elements in the context of the steadily growing field of laser-driven particle acceleration. The first topic is the examination of the free vacuum expansion of an electron beam at high current density. It could be shown that particle tracking codes which are commonly used for the calculation of space charge effects will generate substantial artifacts in the regime considered here. The artifacts occurring hitherto predominantly involve insufficient prerequisites for the Lorentz transformation, the application of inadequate initial conditions and non negligible retardation artifacts. A part of this thesis is dedicated to the development of a calculation approach which uses a more adequate ansatz calculating space charge effects for laser-accelerated electron beams. It can also be used to validate further approaches for the calculation of space charge effects. The next elements considered are miniature magnetic quadrupole devices for the focusing of charged particle beams. General problems involved with their miniaturization concern distorting higher order field components. If these distorting components cannot be controlled, the field of applications is very limited. In this thesis a new method for the characterization and compensation of the distorting components was developed, which might become a standard method when assembling these permanent magnet multipole devices. The newly developed characterization method has been validated at the Mainz Microtron (MAMI) electron accelerator. Now that we can ensure optimum performance, the first application of permanent magnet quadrupole devices in conjunction with laser-accelerated ion beams is presented. The experiment was carried out at the Z-Petawatt laser system at Sandia National Laboratories. A promising application for laser-accelerated electron beams is the FEL in a university-scale size. The first discussion of all relevant aspects

  13. Research program. Controlled thermonuclear fusion. Synthesis report 2014

    International Nuclear Information System (INIS)

    Villard, L.; Marot, L.; Fiocco, D.

    2015-01-01

    In 1961, 3 years after the 2 nd International Conference on Peaceful Use of Nuclear Energy, the Research Centre on Plasma Physics (CRPP) was created as a department of the Federal Institute of Technology (EPFL) in Lausanne (Switzerland). From 1979, CRPP collaborates to the European Program on fusion research in the framework of EURATOM. The advantages of fusion are remarkable: the fuel is available in great quantity all over the world; the reactor is intrinsically safe; the reactor material, activated during operation, loses practically all its activity within about 100 years. But the working up of the controlled fusion necessitates extreme technological conditions. In 1979, the Joint European Torus (JET) began its operation; today it is still the most powerful tokamak in the world; its energy yield Q reached 0.65. The progress realized in the framework of EURATOM has led to the planning of the experimental reactor ITER which is being built at Cadarache (France). ITER is designed to reach a Q-value largely above 1. The future prototype reactor DEMO is foreseen in 2040-2050. It should demonstrate the ability of a fusion reactor to inject electricity into the grid for long term. In 2014, CRPP participated in the works on ITER in the framework of the Fusion for Energy (F4E) agency. At EPFL the research concerns the physics of the magnetic confinement with experiments on the tokamak TCV (variable configuration tokamak), the numerical simulations, the plasma heating and the generation of current by hyper frequency radio waves. At the Paul Scherrer Institute (PSI), research is devoted to the superconductivity. At the Basel University the studies get on interactions between the plasma and the tokamak walls. The large flexibility of TCV allows creating and controlling plasmas of different shapes which are necessary to optimise the core geometry of future reactors. Moreover, the plasma heating by mm radio waves allows guiding the injected power according to specific

  14. Plasma physics and controlled nuclear fusion research 1988. V.3

    International Nuclear Information System (INIS)

    1989-01-01

    Volume 3 of the proceedings of the twelfth international conference on plasma physics and controlled nuclear fusion, held in Nice, France, 12-19 October, 1988, contains papers presented on inertial fusion. Direct and indirect laser implosion experiments, programs of laser construction, computer modelling of implosions and resulting plasmas, and light ion beam fusion experiments are discussed. Refs, figs and tabs

  15. H-1NF: Australian national fusion plasma research facility

    International Nuclear Information System (INIS)

    Blackwell, B.D.; Borg, G.G.; Dewar, R.L.; Howard, J.; Gardner, H.J.; Rudakov, D.L.; Sharp, L.E.; Shats, M.G.; Warr, G.B.

    1997-01-01

    The H-1 heliac is a helical axis stellarator of moderate size and novel, flexible configuration. Since commissioning, H-1 has operated in quasi-continuous mode at low magnetic field. For higher fields ≤1T an ECRH heating system (28GHz, 200kW) has been installed under a collaborative agreement between ANU and NIFS. H-1 has recently been promoted to national facility status (H-1NF), which will include upgrades of the rf and ech heating systems to megawatt powers, and power supply and diagnostic and data system enhancements. This facilitates collaborative research locally (through the Australian Fusion Research Group consortium) and internationally. Results of a number of basic experiments in quasi-continuous mode are presented. (author)

  16. Annual report of Naka Fusion Research Establishment. From April 1, 1995 to March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Michiya; Asakura, Nobuyuki; Moriyama, Shinichi; Yamanishi, Toshihiko; Seki, Masahiro; Takahashi, Ichiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; eds.

    1996-11-01

    This report provides an overview of research and development activities at Naka Fusion Research Establishment, JAERI, during the period from April 1, 1995 to March 31, 1996. The activities in Naka Fusion Research Establishment are highlighted by high-temperature plasma research in JT-60U and JFT-2M, and progress in ITER-EDA, including technology development. (author)

  17. Annual report of Naka Fusion Research Establishment from April 1, 1997 to March 31, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    This report provides an overview of research and development activities at Naka Fusion Research Establishment, JAERI, during the period from April 1, 1997 to March 31, 1998. The activities in Naka Fusion Research Establishment are highlighted by high temperature plasma research in JT-60 and JFT-2M, and progress in ITER-EDA, including technology development. (J.P.N.)

  18. International power supply policy and the globalisation of research: the example of fusion research

    International Nuclear Information System (INIS)

    Bechmann, G.; Gloede, F.; Lessmann, E.

    2001-01-01

    At the present state of our information, we can affirm that fusion research, as far as the necessary financial expenditures and their political justification are concerned, is a matter of politically controversial debate. In the political arenas, projects like controlled nuclear fusion are discussed primarily with regard to the controllability of complex technical systems and the sustainability of our future supply of electric power. The attempt to discuss this problem will have to consider: (i) on the one hand, already established concepts of sustainability; (ii) and on the other, the - according to the present state of our knowledge - foreseeable characteristics of a system of power generation and supply based on fusion reactors. Not only do the goals of global technology projects have to be embedded in patterns of universally accepted legitimisation (sustainability), but the organisation of research and development is also changing into networks acting globally. In this sense, globalisation means not only the worldwide linking of financial markets and the permanent availability of information and communication networks, but above all the creation of global organisations of research and innovation processes. The globalisation of research and development of technology has several dimensions: (i) the recognition and treatment of global problems; (ii) the transformation and evolution of new forms of organisation and cooperation in a global community of researchers; (iii) the constitution of Global Change Research. Fusion is playing a 'pathfinder role' for these processes and is at the same time itself an expression of the globalisation of the production of technology

  19. Socioeconomic Research on Fusion. Serf 1997-98

    International Nuclear Information System (INIS)

    Saez, R.; Lechon, Y.; Cabal, H.; Lomba, L.; Palomino, I.; Recreo, F.; Robles, B.; Suanez, A.; Cancio, D.

    1999-01-01

    Tin this study the environmental externalisation produced in some stages of a hypothetical fusion power plant have been studied. The results are the CIEMAT contribution in the macro task named External costs and benefits of the Socioeconomic Research on Fusion (SERF 1997-98) European project. For the externalisation economical assessment the Externe methodology has been applied. Lauffen, sited in the SW of Germany has been selected as the hypothetical location of the power plant. The technology, for two different models, was described by Max Planck Institute and the externalisation of the materials manufacturing, power plant construction and operation as well as accidents have been monetarily evaluated. The obtained results revealed that for the plant model which uses cooling water, the prevalent cause of external costs were the collective doses produced by the global dispersion of 14C emissions. External costs produced by radiological accidents represent low values, however the preliminary assessment performed for the external impacts caused by the ingestion of contaminated food stuff and water, point out that a more detailed analysis for this stage, is needed. It should be noted that the results presented in this study, are partial values since other potentially important stages such as disposal of radiological waste and decommissioning of the power plant, have not been included. (Author) 30 refs

  20. Status of light ion inertial fusion research at NRL

    International Nuclear Information System (INIS)

    Cooperstein, G.; Barker, R.J.; Colombant, D.G.; Goldstein, S.A.; Meger, R.A.; Mosher, D.; Neri, J.M.; Ottinger, P.F.

    1984-01-01

    This chapter reports on the use of high-brightness proton beams, extracted from axial pinch-reflex diodes mounted on the Naval Research Laboratory (NRL) Gamble II generator, to study light ion inertial fusion. Topics covered include the modular approach, ion beam brightness studies, light-ion beam transport, final focusing, the single diode approach, the inductive storage approach, an energy loss experiment, and future plans. Analysis of a modular inertial confinement fusion (ICF) system using axial pinch-reflex diodes shows that an operational window for transport of light-ion species exists. A proof-of-principle experiment for the required final focusing cell was conducted on Gamble II. Preliminary experiments using vacuum inductive storage and plasma opening switches have demonstrated factorof-three pulse compressions, with corresponding power and voltage multiplications for pulse durations of interest to PBFA II. The stopping power of deuterons in hot plasmas was measured in other experiments. It is demonstrated that about 40% enhancement in stopping power over that in cold targets when the deuteron beam is focused on the target to about .25 MA/cm 2 . Includes 6 diagrams

  1. Socioeconomic Research on Fusion. SERF 1997-98

    Energy Technology Data Exchange (ETDEWEB)

    Saez, R.; Lechon, Y.; Cabal, H.; Lomba, L.; Palomino, I.; Recreo, F.; Robles, B.; Suanez, A.; Cancio, D. [Ciemat. Madrid (Spain)

    1999-09-01

    In this study the environmental externalities produced in some stages of a hypothetical fusion power plant have been studied. The results are the CIEMAT contribution in the macro task named External costs and benefits of the Socioeconomic Research on Fusion (SERF 1997-98) European project. For the externalities economical assessment the Externe methodology has been applied. Lauffen, sited in the SW of Germany has been selected as the hypothetical location of the power plant. The technology, for two different models, was described by Max Planck Institute and the externalities of the materials manufacturing, power plant construction and operation as well as accidents have been monetarily evaluated. The obtained results revealed that for the plant model which uses cooling water, the prevalent cause of external costs were collective doses produced by the global dispersion of 14C emissions. External costs produced by radiological accidents represent low values, however the preliminary assessment performed for the external impacts caused by the ingestion of contaminated foodstuff and water, point out that a more detailed analysis for this stage, is needed. It should be noted that the results presented in this study, are partial values since other potentially important stages such as disposal of radiological waste and decommissioning of the power plant, have not been included. (Author)

  2. [Research progress in hirudin fusion protein--review].

    Science.gov (United States)

    Zhang, Chuan-Ling; Yu, Ai-Ping; Jin, Ji-De; Wu, Chu-Tse

    2007-02-01

    Natural hirudin extracted from the secretion of medical leech salivary gland is a single-chain peptide containing 65 aminoacid residues with molecular weight of 7000 D, and exists in three isomers of HV1, HV2 and HV3. Hirudin possesses three disulfide bridges forming the structure of core cyclic peptides, which binds to the catalytic site of thrombin so as to inhibit the catalysis of thrombin. Its c-terminus rich in acidic aminoacid residues possesses hydrophilicity, and is free on the molecular surface, and can bind with fibrin recognition site of hirudin. The minimal segment of 12 - 16 C-terminal acidic residues keeps the minimal activity of anti-thrombosis. Thus, hirudin, as a potent and specific inhibitor of thrombin, can be used to protect from and to treat clinically thrombosis. As it has some disadvantages such as short half-life, bleeding side-effect and mono-function, and so on, hirudin has been fused with some other functional proteins in recent years. The obtained fusion proteins can prolong the half life of hirudin, or relieve it bleeding side effect, or bring new functions, such as thrombolysis, inhibiting the platelet aggregation, targeting specifically. The research progress in hirudin fusion protein was summarized in this review.

  3. ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT. ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY

    International Nuclear Information System (INIS)

    PROJECT STAFF

    2001-01-01

    OAK A271 ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY. The General Atomics (GA) Advanced Fusion Technology Program seeks to advance the knowledge base needed for next-generation fusion experiments, and ultimately for an economical and environmentally attractive fusion energy source. To achieve this objective, they carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic and applied knowledge about these technologies. GA's Advanced Fusion Technology program derives from, and draws on, the physics and engineering expertise built up by many years of experience in designing, building, and operating plasma physics experiments. The technology development activities take full advantage of the GA DIII-D program, the DIII-D facility and the Inertial Confinement Fusion (ICF) program and the ICF Target Fabrication facility

  4. Superconducting magnet and conductor research activities in the US fusion program

    International Nuclear Information System (INIS)

    Michael, P.C.; Schultz, J.H.; Antaya, T.A.; Ballinger, R.; Chiesa, L.; Feng, J.; Gung, C.-Y.; Harris, D.; Kim, J.-H.; Lee, P.; Martovetsky, N.; Minervini, J.V.; Radovinsky, A.; Salvetti, M.; Takayasu, M.; Titus, P.

    2006-01-01

    Fusion research in the United States is sponsored by the Department of Energy's Office of Fusion Energy Sciences (OFES). The OFES sponsors a wide range of programs to advance fusion science, fusion technology, and basic plasma science. Most experimental devices in the US fusion program are constructed using conventional technologies; however, a small portion of the fusion research program is directed towards large scale commercial power generation, which typically relies on superconductor technology to facilitate steady-state operation with high fusion power gain, Q. The superconductor portion of the US fusion research program is limited to a small number of laboratories including the Plasma Science and Fusion Center at MIT, Lawrence Livermore National Laboratory (LLNL), and the Applied Superconductivity Center at University of Wisconsin, Madison. Although Brookhaven National Laboratory (BNL) and Lawrence Berkeley National Laboratory (LBNL) are primarily sponsored by the US's High Energy Physics program, both have made significant contributions to advance the superconductor technology needed for the US fusion program. This paper summarizes recent superconductor activities in the US fusion program

  5. Research programme on controlled thermonuclear fusion - Synthesis report 2010

    International Nuclear Information System (INIS)

    Vaucher, C.; Tran, M. Q.; Villard, L.; Marot, L.

    2011-01-01

    Since 1978, research on thermonuclear fusion in Switzerland is closely related to the research programme of the European Atomic Energy Community (EURATOM). The Swiss projects tackle aspects of plasma physics and fusion technology. Switzerland participates to the construction and operation of the Joint European Torus (JET). The International Thermonuclear Experimental Reactor (ITER) is being built; the first plasma is expected in 2019. The 'Centre de Recherches en Physique des Plasmas' (CRPP) of the EPFL participates to EURATOM scientific and technological projects in magnetic confinement physics, through an experimental contribution (the Variable Configuration Tokamak, TCV) and theoretical studies. Thanks to the large flexibility of the TCV design and operation modus, plasmas of different shapes can be created and controlled, what is a very useful option to verify numerical simulation results. Besides, the injection of millimetre waves allows directing the injected power according to specific profiles. A configuration of type 'snowflakes' could be created, reducing the power deposition at the edge of the plasma. Theoretical studies on turbulence have improved the plasma stability in the TCV. For the first time in the world, TCV could reach a stable plasma, the plasma current being generated using the so-called 'bootstrap' phenomenon. Besides turbulence, studies were focused on heat and particle transport in tokamaks, on an analysis of the equilibrium and magneto-hydrodynamic stability of tokamaks and stellarators, on the application of radiofrequency waves and on the optimization of new confinement configurations. Experiments in the JET facility confirmed the numerical results of theoretical simulations. The TORPEX facility, which is simpler than TCV, allows high space-temporal resolution measurements for the study of turbulences and plasma threads ('blobs'). At the Paul Scherrer Institute (PSI), research topics include superconductivity and materials. The Fusion

  6. The role of atomic and molecular processes in fusion research

    International Nuclear Information System (INIS)

    Harrison, M.F.A.

    1977-01-01

    This paper considers the relevance of atomic and molecular processes to research into controlled nuclear fusion and in particular their effects upon the magnetically confined plasma in Tokamak experiments and conceptual Tokamak reactors. The relative significance of collective phenomena and of single particle collisions to both plasma heating and loss processes are discussed and the pertinent principles of plasma refuelling and plasma diagnostics are outlined. The methods by which atomic and molecular data are applied to these problems, the contributing effects of surface interactions and the consequent implications upon the accuracy and the type of data needed are described in a qualitative manner. Whilst particular atomic and molecular processes are not discussed in detail, sufficient information is given of the physical environments of Tokamak devices for significant processes to be self evident. (author)

  7. [Research progress of multi-model medical image fusion and recognition].

    Science.gov (United States)

    Zhou, Tao; Lu, Huiling; Chen, Zhiqiang; Ma, Jingxian

    2013-10-01

    Medical image fusion and recognition has a wide range of applications, such as focal location, cancer staging and treatment effect assessment. Multi-model medical image fusion and recognition are analyzed and summarized in this paper. Firstly, the question of multi-model medical image fusion and recognition is discussed, and its advantage and key steps are discussed. Secondly, three fusion strategies are reviewed from the point of algorithm, and four fusion recognition structures are discussed. Thirdly, difficulties, challenges and possible future research direction are discussed.

  8. Survey of tritium wastes and effluents in near-term fusion-research facilities

    International Nuclear Information System (INIS)

    Bickford, W.E.; Dingee, D.A.; Willingham, C.E.

    1981-08-01

    The use of tritium control technology in near-term research facilities has been studied for both the magnetic and inertial confinement fusion programs. This study focused on routine generation of tritium wastes and effluents, with little referene to accidents or facility decommissioning. This report serves as an independent review of the effectiveness of planned control technology and radiological hazards associated with operation. The facilities examined for the magnetic fusion program included Fusion Materials Irradiation Testing Facility (FMIT), Tritium Systems Test Assembly (TSTA), and Tokamak Fusion Test Reactor (TFTR) in the magnetic fusion program, while NOVA and Antares facilities were examined for the inertial confinement program

  9. Accelerator and Fusion Research Division: 1984 summary of activities

    International Nuclear Information System (INIS)

    1985-05-01

    During fiscal 1984, major programmatic activities in AFRD continued in each of five areas: accelerator operations, highlighted by the work of nuclear science users, who produced clear evidence for the formation of compressed nuclear matter during heavy-ion collisions; high-energy physics, increasingly dominated by our participation in the design of the Superconducting Super Collider; heavy-ion fusion accelerator research, which focused on the design of a four-beam experiment as a first step toward assessing the promise of heavy-ion inertial-confinement fusion; and research at the Center for X-Ray Optics, which completed its first year of broadly based activities aimed at the exploitation of x-ray and ultraviolet radiation. At the same time, exploratory studies were under way, aimed at investigating major new programs for the division. During the past year, for example, we took a preliminary look at how we could use the Bevatron as an injector for a pair of colliding-beam rings that might provide the first glimpse of a hitherto unobserved state of matter called the quark-gluon plasma. Together with Livermore scientists, we also conducted pioneering high-gain free-electron laser (FEL) experiments and proposed a new FEL-based scheme (called the two-beam accelerator) for accelerating electrons to very high energies. And we began work on the design of the Coherent XUV Facility (CXF), an advanced electron storage ring for the production of intense coherent radiation from either undulators or free-electron lasers

  10. A schedule for fusion research development and international collaboration

    International Nuclear Information System (INIS)

    Kakihana, H.

    1983-01-01

    In order to reach their goal of commercial fusion power reactors, development must proceed in a series of basic stages. Each step is expected to incur an increased level of cost. The cost-sharing benefits of international collaboration will become increasingly important and attractive with each successive step preceding commercialization. Outstanding examples of implementation of international collaboration in fusion include the JET project and the INTOR workshop which lend encouragement for the prospects for international collaboration in fusion in the future. (author)

  11. Computing for magnetic fusion energy research: The next five years

    International Nuclear Information System (INIS)

    Mann, L.; Glasser, A.; Sauthoff, N.

    1991-01-01

    This report considers computing needs in magnetic fusion for the next five years. It is the result of two and a half years of effort by representatives of all aspects of the magnetic fusion community. The report also factors in the results of a survey that was distributed to the laboratories and universities that support fusion. There are four areas of computing support discussed: theory, experiment, engineering, and systems

  12. Accelerators for heavy ion fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.

    1985-10-01

    Large fusion devices will almost certainly produce net energy. However, a successful commercial fusion energy system must also satisfy important engineering and economic constraints. Inertial confinement fusion power plants driven by multi-stage, heavy-ion accelerators appear capable of meeting these constraints. The reasons behind this promising outlook for heavy-ion fusion are given in this report. This report is based on the transcript of a talk presented at the Symposium on Lasers and Particle Beams for Fusion and Strategic Defense at the University of Rochester on April 17-19, 1985

  13. FFUSION yearbook 1997. Annual report of the Finnish fusion research unit. Association EURATOM-TEKES

    Energy Technology Data Exchange (ETDEWEB)

    Karttunen, S; Paettikangas, T [eds.; VTT Energy, Espoo (Finland)

    1998-02-01

    Finnish fusion programme (FFUSION) is one of the eleven national energy research programmes funded by the Technological Development Centre of Finland (TEKES). The FFUSION programme was fully integrated into European Fusion Programme just after Finland joined the European Union. The contract of Association Euratom and Tekes was signed in 1995 and extends to the end of 1999. Finland became a member of JET Joint Undertaking in 1996, other contracts with Euratom include NET agreement and the Staff Mobility Agreement. FFUSION programme with participating research institutes and universities forms the Fusion Research Unit of the Association Euratom-Tekes. This annual report summarises the research activities of the Finnish Research Unit in 1997. The programme consists of two parts: Physics and Technology. The research areas of the physics are: Fusion plasma engineering, and Radio-frequency heating and Plasma diagnostics. The technology is focused into three areas: Fusion reactor materials (first wall components and joining techniques), Remote handling and viewing systems, and Superconductors

  14. Developments in bone tissue engineering research for spinal fusion

    NARCIS (Netherlands)

    van Gaalen, S.M.

    2010-01-01

    Many orthopaedic procedures require fusion of a bony defect. Sometimes a bone graft is needed for this fusion. Autograft bone is considered the golden standard. The harvesting of this bone is time consuming and may have serious side effects, such as chronic donor site pain. Available alternatives

  15. The scientific benefits of inertially confined fusion research

    International Nuclear Information System (INIS)

    Key, M

    1999-01-01

    A striking feature of 25 years of research into inertially confined fusion (ICF) and inertial fusion energy (IFE) has been its significant impact in other fields of science. Most ICF facilities worldwide are now being used in part to support a wider portfolio of research than simply ICF. Reasons for this trend include the high intrinsic interest of the new science coupled with the relative ease and low marginal cost of adapting the facilities particularly lasers, to carry out experiments with goals other than ICF. The availability at ICF laboratories of sophisticated theory and modeling capability and advanced diagnostics has given added impetus. The expertise of ICF specialists has also triggered more lateral scientific spin-offs leading for example to new types of lasers and to related developments in basic science. In a generic sense, the facilities developed for ICF have made possible study of new regimes of the properties of matter at extremely high-energy density and the interaction of ultraintense light with matter. This general opportunity has been exploited in numerous and diverse specific lines of research. Examples elaborated below include laboratory simulation of astrophysical phenomena; studies of the equation of state (EOS) of matter under conditions relevant to the interior of planets and stars; development of uniquely intense sources of extreme ultraviolet (EUV) to hard x-ray emission, notably the x-ray laser; understanding of the physics of strong field interaction of light and matter; and related new phenomena such as laser-induced nuclear processes and high-field-electron accelerators. Some of these developments have potential themselves for further scientific exploitation such as the scientific use of advanced light sources. There are also avenues for commercial exploitation, for example the use of laser plasma sources in EUV lithography. Past scientific progress is summarized here and projections are made for new science that may flow from the

  16. Plasma Physics and Controlled Nuclear Fusion Research 1971. Vol. III. Proceedings of the Fourth International Conference on Plasma Physics and Controlled Nuclear Fusion Research

    International Nuclear Information System (INIS)

    1971-01-01

    The ultimate goal of controlled nuclear fusion research is to make a new energy source available to mankind, a source that will be virtually unlimited and that gives promise of being environmentally cleaner than the sources currently exploited. This goal has stimulated research in plasma physics over the past two decades, leading to significant advances in the understanding of matter in its most common state as well as to progress in the confinement and heating of plasma. An indication of this progress is that in several countries considerable effort is being devoted to design studies of fusion reactors and to the technological problems that will be encountered in realizing these reactors. This range of research, from plasma physics to fusion reactor engineering, is shown in the present three-volume publication of the Proceedings of the Fourth Conference on Plasma Physics and Controlled Nuclear Fusion Research. The Conference was sponsored by the International Atomic Energy Agency and was held in Madison, Wisconsin, USA from 17 to 23 June 1971. The enthusiastic co-operation of the University of Wisconsin and of the United States Atomic Energy Commission in the organization of the Conference is gratefully acknowledged. The Conference was attended by over 500 scientists from 24 countries and 3 international organizations, and 143 papers were presented. These papers are published here in the original language; English translations of the Russian papers will be published in a Special Supplement to the journal Nuclear Fusion. The series of conferences on Plasma Physics and Controlled Nuclear Fusion Research has become a major international forum for the presentation and discussion of results in this important and challenging field. In addition to sponsoring these conferences, the International Atomic Energy Agency supports controlled nuclear fusion research by publishing the journal Nuclear Fusion, and has recently established an International Fusion Research Council

  17. Support and development for remote collaborations in fusion research

    International Nuclear Information System (INIS)

    Casper, T.A.; Jong, R.A.; Meyer, W.H.; Moller, J.M.

    2000-01-01

    Major fusion experiments and modeling efforts rely on joint research of scientists from several locations around the world. A variety of software tools are in use to provide remote interactive access to facilities and data are routinely available over wide-area-network connections to researchers. Audio and video communications, monitoring of control room information and synchronization of remote sites with experimental operations all enhance participation during experiments. Remote distributed computing capabilities allow utilization of off-site computers that now help support the demands of control room analyses and plasma modeling. A collaborative software development project is currently using object technologies with CORBA-based communications to build a network executable transport code that further demonstrates the ability to utilize geographically dispersed resources. Development to extend these concepts with security and naming services and possible applications to instrumentation systems has been initiated. An Information Technology Initiative is deploying communication systems, ISDN (telephone) and IP (network) audio/video (A/V) and web browser-based, to build the infrastructure needed to support remote physics meetings, seminars and interactive discussions

  18. Support and development for remote collaboration in fusion research

    International Nuclear Information System (INIS)

    Casper, T A; Jong, R A; Meyer, W H; Moller, J M

    1999-01-01

    Major fusion experiments and modeling efforts rely on joint research of scientists from several locations around the world. A variety of software tools are in use to provide remote interactive access to facilities and data are routinely available over wide-area-network connections to researchers. Audio and video communications, monitoring of control room information and synchronization of remote sites with experimental operations all enhance participation during experiments. Remote distributed computing capabilities allow utilization of off-site computers that now help support the demands of control room analyses and plasma modeling. A collaborative software development project is currently using object technologies with CORBA-based communications to build a network executable transport code that further demonstrates the ability to utilize geographically dispersed resources. Development to extend these concepts with security and naming services and possible applications to instrumentation systems has been initiated. An Information Technology Initiative is deploying communication systems, ISDN (telephone) and IP (network) audio/video (A/V) and web browser-based, to build the infrastructure needed to support remote physics meetings, seminars and interactive discussions

  19. Implications of NSTX lithium results for magnetic fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Ono, M., E-mail: mono@pppl.gov [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Bell, M.G.; Bell, R.E.; Kaita, R.; Kugel, H.W.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Canik, J.M.; Diem, S. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Gerhardt, S.P.; Hosea, J.; Kaye, S.; Mansfield, D. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Maingi, R. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Menard, J.; Paul, S.F. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Raman, R. [University of Washington at Seattle, Seattle, WA (United States); Sabbagh, S.A. [Columbia University, New York, NY (United States); Skinner, C.H. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Soukhanovskii, V. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Taylor, G. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States)

    2010-11-15

    Lithium wall coating techniques have been experimentally explored on National Spherical Torus Experiment (NSTX) for the last five years. The lithium experimentation on NSTX started with a few milligrams of lithium injected into the plasma as pellets and it has evolved to a lithium evaporation system which can evaporate up to {approx}100 g of lithium onto the lower divertor plates between lithium re-loadings. The unique feature of the lithium research program on NSTX is that it can investigate the effects of lithium in H-mode divertor plasmas. This lithium evaporation system thus far has produced many intriguing and potentially important results; the latest of these are summarized in a companion paper by H. Kugel. In this paper, we suggest possible implications and applications of the NSTX lithium results on the magnetic fusion research which include electron and global energy confinement improvements, MHD stability enhancement at high beta, edge localized mode (ELM) control, H-mode power threshold reduction, improvements in radio frequency heating and non-inductive plasma start-up performance, innovative divertor solutions and improved operational efficiency.

  20. Implications of NSTX Lithium Results for Magnetic Fusion Research

    International Nuclear Information System (INIS)

    Ono, M.; Bell, M.G.; Bell, R.E.; Kaita, R.; Kugel, H.W.; LeBlanc, B.P.; Canik, J.M.; Diem, S.; Gerhardt, S.P.; Hosea, J.; Kaye, S.; Mansfield, D.; Maingi, R.; Menard, J.; Paul, S.F.; Raman, R.; Sabbagh, S.A.; Skinner, C.H.; Soukhanovskii, V.; Taylor, G.

    2010-01-01

    Lithium wall coating techniques have been experimentally explored on NSTX for the last five years. The lithium experimentation on NSTX started with a few milligrams of lithium injected into the plasma as pellets and it has evolved to a lithium evaporation system which can evaporate up to ∼ 100 g of lithium onto the lower divertor plates between lithium reloadings. The unique feature of the lithium research program on NSTX is that it can investigate the effects of lithium in H-mode divertor plasmas. This lithium evaporation system thus far has produced many intriguing and potentially important results; the latest of these are summarized in a companion paper by H. Kugel. In this paper, we suggest possible implications and applications of the NSTX lithium results on the magnetic fusion research which include electron and global energy confinement improvements, MHD stability enhancement at high beta, ELM control, H-mode power threshold reduction, improvements in radio frequency heating and non-inductive plasma start-up performance, innovative divertor solutions and improved operational efficiency.

  1. Implications of NSTX lithium results for magnetic fusion research

    International Nuclear Information System (INIS)

    Ono, M.; Bell, M.G.; Bell, R.E.; Kaita, R.; Kugel, H.W.; LeBlanc, B.P.; Canik, J.M.; Diem, S.; Gerhardt, S.P.; Hosea, J.; Kaye, S.; Mansfield, D.; Maingi, R.; Menard, J.; Paul, S.F.; Raman, R.; Sabbagh, S.A.; Skinner, C.H.; Soukhanovskii, V.; Taylor, G.

    2010-01-01

    Lithium wall coating techniques have been experimentally explored on National Spherical Torus Experiment (NSTX) for the last five years. The lithium experimentation on NSTX started with a few milligrams of lithium injected into the plasma as pellets and it has evolved to a lithium evaporation system which can evaporate up to ∼100 g of lithium onto the lower divertor plates between lithium re-loadings. The unique feature of the lithium research program on NSTX is that it can investigate the effects of lithium in H-mode divertor plasmas. This lithium evaporation system thus far has produced many intriguing and potentially important results; the latest of these are summarized in a companion paper by H. Kugel. In this paper, we suggest possible implications and applications of the NSTX lithium results on the magnetic fusion research which include electron and global energy confinement improvements, MHD stability enhancement at high beta, edge localized mode (ELM) control, H-mode power threshold reduction, improvements in radio frequency heating and non-inductive plasma start-up performance, innovative divertor solutions and improved operational efficiency.

  2. Charged particles beams measurements in plasma focus discharges

    International Nuclear Information System (INIS)

    Jakubowski, L.; Sadowski, M.; Zebrowski, J.

    2001-01-01

    Experimental studies performed with many Plasma-Focus (PF) facilities have shown that simultaneously with the emission of X-ray pulses and intense relativistic electron beams (REBs) there also appears the emission of pulsed ion streams of a relatively high energy (up to several MeV). Such ions are emitted mainly along the z-axis of the PF discharge, although the ion angular distribution is relatively wide. From PF discharges with deuterium filling fast neutrons produced by nuclear fusion reactions are also emitted. The paper concerns studies of the energetic ion beams and their correlation with the pulsed REBs. Time-integrated measurements were performed with an ion pinhole camera equipped with solid-state nuclear track detectors (SSNTDs), and time-resolved studies were carried out with a scintillation detector, enabling the determination of an ion energy spectrum on the basis of the time-of-flight (TOF) technique. (author)

  3. Proposed particle-beam characterizations for the APS undulator test line

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.; Borland, M.; Milton, S.

    1993-09-01

    A research and development effort is underway at the Advanced Photon Source (APS) to use an rf gun as a low-emittance electron source for injection into the 100- to 650-MeV linac subsystem and subsequently to an undulator test area. This configuration would combine the acceleration capability of the 200-MeV S-band electron linac and the in-line 450-MeV positron linac that normally provide positrons to the positron accumulator ring (PAR). A transport line that bypasses the PAR will bring the electrons to the undulator test area. Characterization techniques will be discussed for the electron beam with a normalized, rms emittance of <10 {pi} mm mrad (1{sigma}) at micropulse charges of up to 350 pC and micropulse durations of {approximately}5 ps (FWHM). Tests proposed include measurement of particle beam transport effects (at one-tenth the storage ring beam rigidity) caused by small undulator field errors as well as operations intended to produce coherent, short wavelength radiation (<200 nm).

  4. Fusion power: massive research program aims at formidable problems, almost limitless potential

    International Nuclear Information System (INIS)

    Dingee, D.A.

    1979-01-01

    This article surveys extensively fusion development under the following topics: US research directions; inertial confinement fusion; foreign fusion efforts; fusion issues; fusion applications; and arguments for fusion development. Dr. Dingee points out that, despite persuasive arguments for development, fusion has as yet attracted no substantial constituency; and that winning greater support for fusion may thus require a considerable technical breakthrough (namely, proof of scientific feasibility or achievement of energy breakeven) - or a new focus on an energy source such as hybrids, which offer a nearer-term payoff than pure fusion. Dr. Dingee says the next major facility for magnetic confinement research (to be built in late 1980s) has not yet been selected, but will probably be an engineering test facility; there are similar plans for inertial confinement. Whichever type is chosen, the first experimental power reactor is scheduled for the first few years of the 2000's, this to be followed by commercial demonstration of fusion power in the 2010 to 2020 time frame. He points out, finally, that the complex technical and institutional issues are being considered in a climate in which the benefits of nuclear energy itself are being questioned; and that there is little doubt that future development is tied to overall decisions the nation will make regarding the value of nuclear energy

  5. Magnetic fusion energy and computers. The role of computing in magnetic fusion energy research and development (second edition)

    International Nuclear Information System (INIS)

    1983-01-01

    This report documents the structure and uses of the MFE Network and presents a compilation of future computing requirements. Its primary emphasis is on the role of supercomputers in fusion research. One of its key findings is that with the introduction of each successive class of supercomputer, qualitatively improved understanding of fusion processes has been gained. At the same time, even the current Class VI machines severely limit the attainable realism of computer models. Many important problems will require the introduction of Class VII or even larger machines before they can be successfully attacked

  6. Annual report of Naka Fusion Research Establishment from April 1, 2001 to March 31, 2002

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Toshiro; Matsumoto, Hiroshi; Moriyama, Shinichi; Tanaka, Fumiya; Tuda, Takashi; Tsuji, Hiroshi (eds.) [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2002-11-01

    This report provides an overview of research and development activities at Naka Fusion Research Establishment, JAERI, including those performed in collaboration with other research establishments of JAERI, during the period from April 1, 2001 to March 31, 2002. The activities in the Naka Fusion Research Establishment are highlighted by high performance plasma researches in JT-60 and JFT-2M, and completion of ITER Engineering Design Activities (EDA) in July 2001, including technology R and D. (J.P.N.)

  7. AFLP analysis of rice transformed with maize DNA by particle beam

    International Nuclear Information System (INIS)

    Ji Shengdong; Chen Peng; Wang Jiachuan; Yuan Zhao; Yue Chunhui; Wang Zhifeng

    2009-01-01

    Many stable heritable rice lines were obtained via five years agricultural selection, which were derived from rice (oryza stative Japonica) Yujing-6 transgened with large fraction DNA of Zhengdan-14 (zea mays L.) by particle beam method. 18 pairs optimum selective primers were got by screening from 64 pairs AFLP selective primers via experiment on two mutant lines, which could amplify many DNA fingerprints and also could amplify polymorphic bands and target bands, both in this two mutant lines. Then the two mutant lines and two controls were analyzed with AFLP, the results showed that many polymorphic bands (such as novel bands, target bands, missing bands) were found in mutant lines. The discrepancy in DNA level indicated that rice, transgened with large fraction DNA of Zhengdan-14 by particle beam, might be inserted maize DNA and inherited steadily in some degree. It also indicated that it was possible to cultivate novel rice variety transformed with wide DNA by particle beam. (authors)

  8. [Fusion research/tokamak]. Final report, 1 May 1988 - 30 April 1994

    International Nuclear Information System (INIS)

    1994-01-01

    The objectives of the Fusion Research Center Program are: (1) to advance /the transport studies of tokamaks, including the development and maintenance of the Magnetic Fusion Energy Database, and (2) to provide theoretical interpretation, modeling and equilibrium and stability studies for the text-upgrade tokamak. Work is described on five basic categories: (1) magnetic fusion energy database; (2) computational support and numerical modeling; (3) support for TEXT-upgrade and diagnostics; (4) transport studies; and (5) Alfven waves

  9. Conceptual design of a mirror reactor for a fusion engineering research facility (FERF)

    International Nuclear Information System (INIS)

    Batzer, T.H.; Burleigh, R.C.; Carlson, G.A.; Dexter, W.L.; Hamilton, G.W.; Harvey, A.R.; Hickman, R.G.; Hoffman, M.A.; Hooper, E.B. Jr.; Moir, R.W.; Nelson, R.L.; Pittenger, L.C.; Smith, B.H.; Taylor, C.E.; Werner, R.W.; Wilcox, T.P.

    1975-01-01

    A conceptual design is presented for a small mirror fusion reactor for a Fusion Engineering Research Facility (FERF). The reactor produces 3.4 MW of fusion power and a useful neutron flux of about 10 14 n.cm -2 .s -1 . Superconducting ''yin-yang'' coils are used, and the plasma is sustained by injection of energetic neutral D 0 and T 0 . Conceptual layouts are given for the reactor, its major components, and supporting facilities. (author)

  10. Advanced methods for the computation of particle beam transport and the computation of electromagnetic fields and beam-cavity interactions

    International Nuclear Information System (INIS)

    Dragt, A.J.; Gluckstern, R.L.

    1992-11-01

    The University of Maryland Dynamical Systems and Accelerator Theory Group carries out research in two broad areas: the computation of charged particle beam transport using Lie algebraic methods and advanced methods for the computation of electromagnetic fields and beam-cavity interactions. Important improvements in the state of the art are believed to be possible in both of these areas. In addition, applications of these methods are made to problems of current interest in accelerator physics including the theoretical performance of present and proposed high energy machines. The Lie algebraic method of computing and analyzing beam transport handles both linear and nonlinear beam elements. Tests show this method to be superior to the earlier matrix or numerical integration methods. It has wide application to many areas including accelerator physics, intense particle beams, ion microprobes, high resolution electron microscopy, and light optics. With regard to the area of electromagnetic fields and beam cavity interactions, work is carried out on the theory of beam breakup in single pulses. Work is also done on the analysis of the high frequency behavior of longitudinal and transverse coupling impedances, including the examination of methods which may be used to measure these impedances. Finally, work is performed on the electromagnetic analysis of coupled cavities and on the coupling of cavities to waveguides

  11. Annual report of Fusion Research and Development Directorate of JAEA

    International Nuclear Information System (INIS)

    Kubo, Hirotaka; Hoshino, Katsumichi; Isei, Nobuaki; Nakamura, Hiroo; Sato, Satoshi; Shimada, Katsuhiro; Sugie, Tatsuo

    2009-01-01

    This annual report provides an overview of major results and progress on research and development (R and D) activities at Fusion Research and Development Directorate of Japan Atomic Energy Agency (JAEA) from April 1, 2007 to March 31, 2008, including those performed in collaboration with other directorates of JAEA, research institutes, and universities. The JT-60U operation regime was extended toward the long sustainment of high normalized beta (β N ) with good confinement (β N =2.6 x 28 s). Effectiveness of real-time control of current profile was demonstrated in high β plasmas. Toroidal momentum diffusivity and the convection velocity were systematically clarified for the first time, and intrinsic rotation due to pressure gradient was discovered. Effects of toroidal rotation and magnetic field ripple on type 1 ELM size and pedestal performance were clarified, and type I ELM control was demonstrated by toroidal rotation control. Variety of inter-machine experiments, such as JT-60U and JET, and domestic collaborations were performed. In theoretical and analytical researches, for the NEXT (Numerical Experiment of Tokamak) project, numerical simulations of a tokamak plasma turbulence progressed and a zonal field generation was investigated. Also, nonlinear MHD simulations found the Alfven resonance effects on the evolution of magnetic islands driven by externally applied perturbations. Integrations of several kinds of element codes progressed in the integrated transport/MHD model, the integrated edge/pedestal model and the integrated SOL/divertor model. In fusion reactor technologies, R and Ds for ITER and fusion DEMO plants have been carried out. For ITER, a steady state operation of the 170GHz gyrotron up to 800 s with 1 MW was demonstrated. Also extracted beam current of the neutral beam injector has been extended to 320 mA at 796 keV. In the ITER Test Blanket Module (TBM), designs and R and Ds on Water and Helium Cooled Solid Breeder TBMs were progressed. For

  12. [A preliminary research on multi-source medical image fusion].

    Science.gov (United States)

    Kang, Yuanyuan; Li, Bin; Tian, Lianfang; Mao, Zongyuan

    2009-04-01

    Multi-modal medical image fusion has important value in clinical diagnosis and treatment. In this paper, the multi-resolution analysis of Daubechies 9/7 Biorthogonal Wavelet Transform is introduced for anatomical and functional image fusion, then a new fusion algorithm with the combination of local standard deviation and energy as texture measurement is presented. At last, a set of quantitative evaluation criteria is given. Experiments show that both anatomical and metabolism information can be obtained effectively, and both the edge and texture features can be reserved successfully. The presented algorithm is more effective than the traditional algorithms.

  13. Performance of magnetically-injected-plasma opening switches on the particle beam fusion accelerator 2

    International Nuclear Information System (INIS)

    Rochau, G.E.; McDaniel, D.H.; Mendel, C.W.; Sweeney, M.A.; Moore, W.B.S.; Mowrer, G.R.; Zagar, D.M.

    1990-01-01

    Plasma opening switch (POS) experiments have been performed on the PBFA II ion beam accelerator to develop a switch which will provide voltage and power gain to an applied-B lithium ion diode. These experiments have successfully coupled power to electron and ion beam diodes using a Magnetically-Injected-Plasma (MIP) POS. Carbon plasma with electron densities of 1 x 10 12 to 2 x 10 13 /cm 3 have been injected from the anode into the 8 cm gap of the 20-ohm Magnetically-Insulated-Transmission Line (MITL) of PBFA II along a B r,z magnetic field. The MIP switch uses the inertia of the plasma to keep the switch closed and the magnetic pressure of B θ from the conduction current to open the switch. The configuration of the injecting magnetic field and the plasma source has a significant effect on the efficiency of coupling power to high impedance loads. Plasma near the center of the injecting magnetic field limits the opening impedance of the switch and subsequently the power delivered to the load. The axial location of the switch with respect to the load has also been identified as a critical parameter in increasing the coupling efficiency. A length of 10 to 20 cm of MITL between the POS and the load has increased the power delivered to the load. Data on switch performance with high impedance loads and factors which improved performance are discussed

  14. Particle beam fusion program. Publications and related reports: a bibliography, January 1971-July 1979

    International Nuclear Information System (INIS)

    Yonas, G.

    1980-03-01

    This bibliography documents the evolution of this program and consolidates its 207 entries into a handy source book. The entries represent documents published by Sandia between January 1, 1971 and July 31, 1979. In order to assist the reader, the reports have been categorized into the general topics of Reviews, Beams and Plasmas, Deposition Physics and Targets, Pulsed Power Technology, and Reactors and Repetitive Pulsed Technology, and arranged in chronological order, with the most recent report in each area presented first. The reports are also cross-indexed by author and by publication number

  15. FY-2013 FES (Fusion Energy Sciences) Joint Research Target Report

    Energy Technology Data Exchange (ETDEWEB)

    Fenstermacher, M. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Garofalo, A. M. [General Atomics, San Diego, CA (United States); Gerhardt, S. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Hubbard, A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Maingi, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Whyte, D. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2013-09-30

    The H-mode confinement regime is characterized by a region of good thermal and particle confinement at the edge of the confined plasma, and has generally been envisioned as the operating regime for ITER and other next step devices. This good confinement is often interrupted, however, by edge-localized instabilities, known as ELMs. On the one hand, these ELMs provide particle and impurity flushing from the plasma core, a beneficial effect facilitating density control and stationary operation. On the other hand, the ELMs result in a substantial fraction of the edge stored energy flowing in bursts to the divertor and first wall; this impulsive thermal loading would result in unacceptable erosion of these material surfaces if it is not arrested. Hence, developing and understanding operating regimes that have the energy confinement of standard H-mode and the stationarity that is provided by ELMs, while at the same time eliminating the impulsive thermal loading of large ELMs, is the focus of the 2013 FES Joint Research Target (JRT): Annual Target: Conduct experiments and analysis on major fusion facilities, to evaluate stationary enhanced confinement regimes without large Edge Localized Modes (ELMs), and to improve understanding of the underlying physical mechanisms that allow acceptable edge particle transport while maintaining a strong thermal transport barrier. Mechanisms to be investigated can include intrinsic continuous edge plasma modes and externally applied 3D fields. Candidate regimes and techniques have been pioneered by each of the three major US facilities (C-Mod, D3D and NSTX). Coordinated experiments, measurements, and analysis will be carried out to assess and understand the operational space for the regimes. Exploiting the complementary parameters and tools of the devices, joint teams will aim to more closely approach key dimensionless parameters of ITER, and to identify correlations between edge fluctuations and transport. The role of rotation will be

  16. Review of the Strategic Plan for International Collaboration on Fusion Science and Technology Research. Fusion Energy Sciences Advisory Committee (FESAC)

    International Nuclear Information System (INIS)

    1998-01-01

    The United States Government has employed international collaborations in magnetic fusion energy research since the program was declassified in 1958. These collaborations have been successful not only in producing high quality scientific results that have contributed to the advancement of fusion science and technology, they have also allowed us to highly leverage our funding. Thus, in the 1980s, when the funding situation made it necessary to reduce the technical breadth of the U.S. domestic program, these highly leveraged collaborations became key strategic elements of the U.S. program, allowing us to maintain some degree of technical breadth. With the recent, nearly complete declassification of inertial confinement fusion, the use of some international collaboration is expected to be introduced in the related inertial fusion energy research activities as well. The United States has been a leader in establishing and fostering collaborations that have involved scientific and technological exchanges, joint planning, and joint work at fusion facilities in the U.S. and worldwide. These collaborative efforts have proven mutually beneficial to the United States and our partners. International collaborations are a tool that allows us to meet fusion program goals in the most effective way possible. Working with highly qualified people from other countries and other cultures provides the collaborators with an opportunity to see problems from new and different perspectives, allows solutions to arise from the diversity of the participants, and promotes both collaboration and friendly competition. In short, it provides an exciting and stimulating environment resulting in a synergistic effect that is good for science and good for the people of the world.

  17. History and status of magnetic fusion research; Evolution et statut des recherches sur la fusion controlee

    Energy Technology Data Exchange (ETDEWEB)

    Jacquinot, J. [CEA Saclay, Cabinet du Haut Commissaire, 91 - Gif-sur-Yvette (France)

    2008-02-15

    Ever since the understanding of the basic process which powers the stars has been elucidated, humanity has been dreaming to master controlled fusion for peaceful purposes. Controlled fusion in a steady state regime must use magnetic confinement of a gas (plasma) heated up to 150 millions degrees. Physics and technology involved in such a state are extremely complex and went through many up and down phases. Nevertheless, the overall progress has been spectacular and a significant amount of energy could be produced in a well controlled manner. On this basis, an international organisation of unprecedented magnitude involving 34 countries has started working in Cadarache for the construction of the ITER project. It aims at the scientific demonstration of controlled fusion at the level of 500 MW and a power gain of 10. (author)

  18. Assessment of contemporary mathematical methods for magnetic fusion research

    International Nuclear Information System (INIS)

    Treve, Y.M.

    1978-03-01

    The mathematical techniques reviewed have been selected on the basis of their relevance to at least four outstanding theoretical problems of magnetic fusion research, namely: (a) ion heating; (b) particle-wave interactions; (c) stability of magnetic surfaces in real tokamaks; and (d) strong plasma turbulence. These problems have a common feature: they all involve chaotic motions in spite of the perfectly deterministic nature of the mathematical models used for their description. In the first section devoted to Hamiltonian systems we briefly review the essentials of the Hamilton-Jacobi theory and discuss the Kolmogorov-Arnold-Moser theorem and its implications. In section 2 we review the difficulties of the problem of turbulence and present the Ruelle-Takens picture. An example of a dynamical system with a strange attractor is constructed and the Hopf bifurcation theory is discussed. Finally we review the properties of the Lorenz model for the convective instability of an atmospheric layer which is known to have a strange attractor for sufficiently high Rayleigh numbers

  19. Proceedings of 1995 the first Taedok international fusion symposium on advanced tokamak researches

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S K; Lee, K W; Hwang, C K; Hong, B G; Hong, G W [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-05-01

    This proceeding is from the First Taeduk International Fusion Symposium on advanced tokamak research, which was held at Korea Atomic Energy Research Institute, Taeduk Science Town, Korea on March 28-29, 1995. (Author) .new.

  20. Proceedings of 1995 the first Taedok international fusion symposium on advanced tokamak researches

    International Nuclear Information System (INIS)

    Kim, S. K.; Lee, K. W.; Hwang, C. K.; Hong, B. G.; Hong, G. W.

    1995-05-01

    This proceeding is from the First Taeduk International Fusion Symposium on advanced tokamak research, which was held at Korea Atomic Energy Research Institute, Taeduk Science Town, Korea on March 28-29, 1995. (Author) .new

  1. System of coefficients for charged-particle beam linear transformation by a magnetic dipole element

    International Nuclear Information System (INIS)

    Tarantin, N.I.

    1979-01-01

    A new technique for consideration of dipole magnet ion-optical effect has been developed to study the problems of commutation and monochromatization of a charged particle beam. In a new form obtained are systematized coefficients of linear transformation (CLT) of the charged particle beam for radial and axial motions in a magnetic dipole element (MDE) including a dipole magnet and two gaps without magnetic field. Given is a method of graphic determination of MDE parameters and main CLT. The new form of coefficients and conditions of the transformations feasibility considerably facilitates the choice and calculation of dipole elements

  2. Summary test results of the particle-beam diagnostics for the Advanced Photon Source (APS) subsystems

    International Nuclear Information System (INIS)

    Lumpkin, A.; Wang, X.; Sellyey, W.; Patterson, D.; Kahana, E.

    1994-01-01

    During the first half of 1994, a number of the diagnostic systems for measurement of the charged-particle beam parameters throughout the subsystems of the Advanced Photon Source (APS) have been installed and tested. The particle beams eventually will involve 450-MeV to 7-GeV positrons and with different pulse formats. The first test and commissionin results for beam profiles, beam position monitors, loss rate monitors, current monitors, and synchrotron radiation photon monitors hve been obtained using 200- to 350-MeV electron beams injected into the subsystems. Data presented are principally from the transport lines and the positron accumulator ring

  3. Study of the one-way speed of light anisotropy with particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Wojtsekhowski, Bogdan B. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-04-01

    Concepts of high precision studies of the one-way speed of light anisotropy are discussed. The high energy particle beam allows measurement of a one-way speed of light anisotropy (SOLA) via analysis of the beam momentum variation with sidereal phase without the use of synchronized clocks. High precision beam position monitors could provide accurate monitoring of the beam orbit and determination of the particle beam momentum with relative accuracy on the level of 10^-10, which corresponds to a limit on SOLA of 10^-18 with existing storage rings. A few additional versions of the experiment are also presented.

  4. ITER: Fusion research at the dawn of a new era

    International Nuclear Information System (INIS)

    Aymar, R.

    2002-01-01

    Given the expected success of on-going negotiations on the Joint Implementing Agreement for ITER construction and operation, a new era is opening in which fusion laboratories will have more dependable external support where they follow programmes supporting fusion as an energy source. The ITER design, cost estimate and safety analysis are supported by a large body of validating physics and technology R and D. The main features of the design, and analysis of its performance, give confidence that it will fulfil its technical objectives and demonstrate the environmental attractiveness of fusion. This paper gives illustrative confirmation of these expectations and an update on the technical preparations for construction, as well as the status of negotiations. These show that ITER is the right next step, integrating the appropriate physics and technology, making the proper technical and financial compromise and being conducted within an international framework, to advance fusion towards the objective of becoming an energy source in the foreseeable future. (author)

  5. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Wiffen, F. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Melton, Stephanie G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the Oak Ridge National Laboratory (ORNL) fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing Department of Energy (DOE) Office of Science fusion energy program while developing materials for fusion power systems. In doing so the program continues to be integrated both with the larger United States (US) and international fusion materials communities, and with the international fusion design and technology communities.This document provides a summary of Fiscal Year (FY) 2015 activities supporting the Office of Science, Office of Fusion Energy Sciences Materials Research for Magnetic Fusion Energy (AT-60-20-10-0) carried out by ORNL. The organization of this report is mainly by material type, with sections on specific technical activities. Four projects selected in the Funding Opportunity Announcement (FOA) solicitation of late 2011 and funded in FY2012-FY2014 are identified by “FOA” in the titles. This report includes the final funded work of these projects, although ORNL plans to continue some of this work within the base program.

  6. Annual report of Naka Fusion Research Establishment from April 1, 1998 to March 31, 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    This report provides an overview of research and development activities at the Naka Fusion Research Establishment, JAERI, during the period from April 1, 1998 to March 31, 1999. The activities in the Naka Fusion Research Establishment are highlighted by high temperature plasma research in JT-60 and JFT-2M as well as DIII-D (US-Japan collaboration), and progress in ITER EDA, including ITER technology R and D. (J.P.N.)

  7. Configuration of the Virtual Laboratory for Fusion Researches in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, T.; Nagayama, Y.; Nakanishi, H.; Ishiguro, S.; Takami, S.; Tsuda, K.; Okamura, S. [National Institute for Fusion Science, National Institutes of Natural Sciences, Toki (Japan)

    2009-07-01

    SNET is a virtual laboratory system for nuclear fusion research in Japan, it has been developed since 2001 with SINET3, which is a national academic network backbone operated by National Institute of Computer sciences. Twenty one sites including major Japanese universities, JAEA and NIFS are mutually connected on SNET with the speed of 1 Gbps in 2008 fiscal year. The SNET is a closed network system based on L2 and L3 VPN and is connected to the web through the firewall at NIFS for security maintenance. Collaboration categories in SNET are as follows: the LHD remote participation; the remote use of supercomputer system; the all Japan ST (Spherical Tokamak) research program. For example, the collaborators of the first category in a remote station can control their diagnostic devices at LHD and analyze the LHD data as if they were at the LHD control room. The detail of the network policy is different from each other because each category has its own particular purpose. In October 2008, the Kyushu University and NIFS were connected by L2 VPN. The site was already connected by L3 VPN, but the data transfer rate was rather low. L2 VPN supports the bulk data transfer which is produced by QUEST, the spherical tokamak device at Kyushu University. The wide-area broadcast test began to distribute to remote stations the video which is presented at the front panel of the LHD control room. ITER activity started in 2007 and 'The ITER Remote Experimentation Centre' will be constructed at the Rokkasho village in Japan under ITER-BA agreement. SNET would be useful for distributing the data of ITER to Japanese universities and institutions. (authors)

  8. International research co-operation in the field of controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Conscience, J.-F.

    2003-01-01

    This final report for the Swiss Federal Office of Education and Science presents a review of activities carried out in 2002 within the framework of the International Experimental Thermonuclear Reactor (ITER) project that involves contributions from Canada, Japan, the Russian Federation and the European Union. Further agreements on the development of a fusion reactor with other countries, including Switzerland, the USA and China, are mentioned. The first chapter describes the current state of research on electricity production using nuclear fusion and discusses feasibility, safety, environmental, fuel supply and economic aspects. A second chapter reviews global efforts in the fusion area, including ITER and EURATOM projects and the activities running under the European Fusion Development Agreement EFDA and the JET Implementing Agreement. Finally, a third chapter deals with fusion research activities in Switzerland and the contributions made to international research by Swiss universities and institutes

  9. Nuclear-fusion research. To bring the sun on the earh

    International Nuclear Information System (INIS)

    Zohm, Hartmut

    2009-01-01

    The course treats first the foundations of nuclear fusion. In the second part the concepts for the realization of nuclear fusion in the laboratory are described. Finally in the last part a survey on the present status of the research as well an outlook on future work is given

  10. Design of MgB{sub 2} superconducting dipole magnet for particle beam transport in accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Abrahamsen, A.B.; Givel, J.C.; Andersen, N.H. [Risoe National Lab., Materials Research Dept., Roskilde (Denmark); Zangenberg, N.; Baurichter, A. [Danfysik A/S, Jyllinge (Denmark)

    2006-11-15

    A comprehensive analysis of the innovation potential of superconductivity at Risoe was performed in February 2004 by the main author of this report. Several suggestions for new products and new markets were formulated by the superconductivity group and examined by the innovation staff at Risoe. The existing markets of superconducting technology is within highly specialized scientific areas such as magnetic confinement in fusion energy, sample environment in neutron scattering and large scale accelerators such as the Large Hadron Collider(LHC) at Cern, or in the nuclear magnetic resonance (NMR) community using MR-imaging scanners in medicine and phase identification in organic chemistry. Only the NMR applications can be categorized as a highly profitable and commercial market today. The superconductivity group of Risoe formulated and presented the gearless superconducting wind turbine multipole generator as the most promising new concept, but further initiatives were stopped due to unclear patent possibilities. The experience of the innovation review was used in the STVF framework program 'New superconductors: mechanisms, processes and products' to identify potential new product for the collaborating company Danfysik A/S, which has a strong tradition in building resistive magnets for particle accelerators. A technology transfer project was formulated at the end of 2005 with the purpose to collect the knowledge about the MgB2 superconductor gained in the STVF program and in the European Framework Program 6 project HIPERMAG. It was presented at the Risoe innovation seminar January 2006, and recently a collaboration between Risoe and Danfysik A/S was initialized. The present report aims to outline a potential superconducting product within the STVF program. The use of the MgB{sub 2} superconductors in a dipole magnet for guiding particle beams in a small scale accelerator is examined with the purpose to build lighter and smaller than the present resistive

  11. Design of MgB2 superconducting dipole magnet for particle beam transport in accelerators

    International Nuclear Information System (INIS)

    Abrahamsen, A.B.; Givel, J.C.; Andersen, N.H.; Zangenberg, N.; Baurichter, A.

    2006-11-01

    A comprehensive analysis of the innovation potential of superconductivity at Risoe was performed in February 2004 by the main author of this report. Several suggestions for new products and new markets were formulated by the superconductivity group and examined by the innovation staff at Risoe. The existing markets of superconducting technology is within highly specialized scientific areas such as magnetic confinement in fusion energy, sample environment in neutron scattering and large scale accelerators such as the Large Hadron Collider(LHC) at Cern, or in the nuclear magnetic resonance (NMR) community using MR-imaging scanners in medicine and phase identification in organic chemistry. Only the NMR applications can be categorized as a highly profitable and commercial market today. The superconductivity group of Risoe formulated and presented the gearless superconducting wind turbine multipole generator as the most promising new concept, but further initiatives were stopped due to unclear patent possibilities. The experience of the innovation review was used in the STVF framework program 'New superconductors: mechanisms, processes and products' to identify potential new product for the collaborating company Danfysik A/S, which has a strong tradition in building resistive magnets for particle accelerators. A technology transfer project was formulated at the end of 2005 with the purpose to collect the knowledge about the MgB2 superconductor gained in the STVF program and in the European Framework Program 6 project HIPERMAG. It was presented at the Risoe innovation seminar January 2006, and recently a collaboration between Risoe and Danfysik A/S was initialized. The present report aims to outline a potential superconducting product within the STVF program. The use of the MgB 2 superconductors in a dipole magnet for guiding particle beams in a small scale accelerator is examined with the purpose to build lighter and smaller than the present resistive magnets. Here the

  12. Physics of Neutralization of Intense Charged Particle Beam Pulses by a Background Plasma

    International Nuclear Information System (INIS)

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.A.; Startsev, E.A.; Sefkow, A.B; Friedman, A.F.; Lee, E.P.

    2009-01-01

    Neutralization and focusing of intense charged particle beam pulses by a background plasma forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self-magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating

  13. Focused transport of intense charged particle beams. Final technical report FY/93

    International Nuclear Information System (INIS)

    1997-01-01

    Many recent developments in accelerator technology have increased the need for a better understanding of the physics of intense-beam transport. Of particular interest to the work described here is the appearance, as beam intensities are increased, of a class of nonlinear phenomena which involve the collective interaction of the beam particles. Beam intensity, used as a measure of the importance of space-charge collective behavior, depends on the ratio of current to emittance. The nonlinear beam dynamics, and any resulting emittance growth, which are characteristic of the intense-beam regime, can therefore occur even at low currents in any accelerator system with sufficiently high intensity, especially in the low beta section. Furthermore, since emittance of a beam is difficult to reduce, the ultimate achievement of necessary beam luminosities requires the consideration of possible causes of longitudinal and transverse emittance growth at every stage of the beam lifetime. The research program described here has addressed the fundamental physics which comes into play during the transport, acceleration and focusing of intense beams. Because of the long term and ongoing nature of the research program discussed here, this report is divided into two sections. The first section constitutes a long term revue of the accomplishments which have resulted from the research effort reported, especially in pioneering the use of particle-in-cell (PIC) computer simulation techniques for simulation of the dynamics of space-charge-dominated beams in particle accelerators. The following section emphasizes, in more detail, the accomplishments of the FY 92/93 period immediately prior to the termination of this particular avenue of support. 41 refs

  14. Materials research and development for fusion energy applications

    International Nuclear Information System (INIS)

    Zinkle, S.J.; Snead, L.L.

    1998-01-01

    Some of the critical issues associated with materials selection for proposed magnetic fusion reactors are reviewed, with a brief overview of refractory alloys (vanadium, tantalum, molybdenum, tungsten) and primary emphasis on ceramic materials. SiC/SiC composites are under consideration for the first wall and blanket structure, and dielectric insulators will be used for the heating, control and diagnostic measurement of the fusion plasma. Key issues for SiC/SiC composites include radiation-induced degradation in the strength and thermal conductivity. Recent work has focused on the development of radiation-resistant fibers and fiber/matrix interfaces (porous SiC, SiC multilayers) which would also produce improved SiC/SiC performance for applications such as heat engines and aerospace components. The key physical parameters for dielectrics include electrical conductivity, dielectric loss tangent and thermal conductivity. Ionizing radiation can increase the electrical conductivity of insulators by many orders of magnitude, and surface leakage currents can compromise the performance of some fusion energy components. Irradiation can cause a pronounced degradation in the loss tangent and thermal conductivity. Fundamental physical parameter measurements on ceramics which are of interest for both fusion and non-fusion applications are discussed

  15. Electron Production and Collective Field Generation in Intense Particle Beams

    International Nuclear Information System (INIS)

    Molvik, A W; Vay, J; Cohen, R; Friedman, A; Lee, E; Verboncoeur, J; Covo, M K

    2006-01-01

    Electron cloud effects (ECEs) are increasingly recognized as important, but incompletely understood, dynamical phenomena, which can severely limit the performance of present electron colliders, the next generation of high-intensity rings, such as PEP-II upgrade, LHC, and the SNS, the SIS 100/200, or future high-intensity heavy ion accelerators such as envisioned in Heavy Ion Inertial Fusion (HIF). Deleterious effects include ion-electron instabilities, emittance growth, particle loss, increase in vacuum pressure, added heat load at the vacuum chamber walls, and interference with certain beam diagnostics. Extrapolation of present experience to significantly higher beam intensities is uncertain given the present level of understanding. With coordinated LDRD projects at LLNL and LBNL, we undertook a comprehensive R and D program including experiments, theory and simulations to better understand the phenomena, establish the essential parameters, and develop mitigating mechanisms. This LDRD project laid the essential groundwork for such a program. We developed insights into the essential processes, modeled the relevant physics, and implemented these models in computational production tools that can be used for self-consistent study of the effect on ion beams. We validated the models and tools through comparison with experimental data, including data from new diagnostics that we developed as part of this work and validated on the High-Current Experiment (HCX) at LBNL. We applied these models to High-Energy Physics (HEP) and other advanced accelerators. This project was highly successful, as evidenced by the two paragraphs above, and six paragraphs following that are taken from our 2003 proposal with minor editing that mostly consisted of changing the tense. Further benchmarks of outstanding performance are: we had 13 publications with 8 of them in refereed journals, our work was recognized by the accelerator and plasma physics communities by 8 invited papers and we have

  16. Fiber optic transmission system delivered to Fusion Research Center of Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Hayashida, Mutsuo; Hiramoto, Kiyoshi; Yamazaki, Kunihiro

    1983-01-01

    In general there are many electromagnetically induced noises in the premises of factories, power plants and substations. Under such electrically bad environments, for the computer data transmission that needs high speed processing and high reliability, the optical fiber cable is superion to the coaxial cable or the flat-type cable in aspects of the inductionlessness and a wide bandwidth. Showa Electric Wire and Cable Co., Ltd. has delivered and installed a computer data transmission system consisting of optical modems and optical fiber cables for connecting every experiment building in the premises of Fusion Research Center of Japan Atomic Energy Research Institute. This paper describes the outline of this system. (author)

  17. Macroscopic Description of Pressure-anisotropy-driven Collective Instability in Intense Charged Particle Beams

    International Nuclear Information System (INIS)

    Strasburg, Sean; Davidson, Ronald C.

    2000-01-01

    The macroscopic warm-fluid model developed by Lund and Davidson [Phys.Plasmas 5, 3028 (1998)] is used in the smooth-focusing approximation to investigate detailed stability properties of an intense charged particle beam with pressure anisotropy, assuming small-amplitude electrostatic perturbations about a waterbag equilibrium

  18. RF fields due to Schottky noise in a coasting particle beam

    CERN Document Server

    Faltin, L

    1977-01-01

    The RF fields inside a rectangular chamber excited by the Schottky noise current inherently present in a coasting particle beam are calculated, using a simple beam model. Vertical betatron oscillations are assumed. The power flow accompanying the beam is given as well as the resulting characteristic impedance. Numerical results are presented.

  19. Cooling and focusing of a relativistic charged particle beam in crossed laser field

    International Nuclear Information System (INIS)

    Li Fuli

    1987-01-01

    A new method to focus a relativistic charged particle beam is suggested and studied. This idea is based on the use of the ponderomotive force which arises when a periodic electromagnetic field is created, as in the case of two crossed laser beams. (author)

  20. Magnetic fusion energy and computers: the role of computing in magnetic fusion energy research and development

    International Nuclear Information System (INIS)

    1979-10-01

    This report examines the role of computing in the Department of Energy magnetic confinement fusion program. The present status of the MFECC and its associated network is described. The third part of this report examines the role of computer models in the main elements of the fusion program and discusses their dependence on the most advanced scientific computers. A review of requirements at the National MFE Computer Center was conducted in the spring of 1976. The results of this review led to the procurement of the CRAY 1, the most advanced scientific computer available, in the spring of 1978. The utilization of this computer in the MFE program has been very successful and is also described in the third part of the report. A new study of computer requirements for the MFE program was conducted during the spring of 1979 and the results of this analysis are presented in the forth part of this report

  1. Research on fusion algorithm of polarization image in tetrolet domain

    Science.gov (United States)

    Zhang, Dexiang; Yuan, BaoHong; Zhang, Jingjing

    2015-12-01

    Tetrolets are Haar-type wavelets whose supports are tetrominoes which are shapes made by connecting four equal-sized squares. A fusion method for polarization images based on tetrolet transform is proposed. Firstly, the magnitude of polarization image and angle of polarization image can be decomposed into low-frequency coefficients and high-frequency coefficients with multi-scales and multi-directions using tetrolet transform. For the low-frequency coefficients, the average fusion method is used. According to edge distribution differences in high frequency sub-band images, for the directional high-frequency coefficients are used to select the better coefficients by region spectrum entropy algorithm for fusion. At last the fused image can be obtained by utilizing inverse transform for fused tetrolet coefficients. Experimental results show that the proposed method can detect image features more effectively and the fused image has better subjective visual effect

  2. Engineering Status of the Fusion Ignition Research Experiment (FIRE)

    International Nuclear Information System (INIS)

    Heitzenroeder, Philip J.; Meade, Dale; Thome, Richard J.

    2000-01-01

    FIRE is a compact, high field tokamak being studied as an option for the next step in the US magnetic fusion energy program. FIRE's programmatic mission is to attain, explore, understand, and optimize alpha-dominated plasmas to provide the knowledge necessary for the design of attractive magnetic fusion energy systems. This study began in 1999 with broad participation of the US fusion community, including several industrial participants. The design under development has a major radius of 2 m, a minor radius of 0.525 m, a field on axis of 10T and capability to operate at 12T with upgrades to power supplies. Toroidal and poloidal field magnets are inertially cooled with liquid nitrogen. An important goal for FIRE is a total project cost in the $1B range. This paper presents an overview of the engineering details which were developed during the FIRE preconceptual design study in FY99 and 00

  3. Advanced fusion technology research and development. Annual report to the U.S. Department of Energy

    International Nuclear Information System (INIS)

    2001-01-01

    OAK-B135 The General Atomics (GA) Advanced Fusion Technology program seeks to advance the knowledge base needed for next-generation fusion experiments, and ultimately for an economical and environmentally attractive fusion energy source. To achieve this objective, they carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic and applied knowledge about these technologies. GA's Advanced Fusion Technology program derives from, and draws on, the physics and engineering expertise built up by many years of experience in designing, building, and operating plasma physics experiments. The technology development activities take full advantage of the GA DIII-D program, the DIII-D facility, the Inertial Confinement Fusion (ICF) program and the ICF Target Fabrication facility. The report summarizes GA's FY00 work in the areas of Fusion Power Plant Studies, Next Step Options, Advanced Liquid Plasma Facing Surfaces, Advanced Power Extraction Study, Plasma Interactive Materials, Radiation Testing of Magnetic Coil, Vanadium Component Demonstration, RF Technology, Inertial Fusion Energy Target Supply System, ARIES Integrated System Studies, and Spin-offs Brochure. The work in these areas continues to address many of the issues that must be resolved for the successful construction and operation of next-generation experiments and, ultimately, the development of safe, reliable, economic fusion power plants

  4. 1983 Annual technical report on inertial fusion research

    International Nuclear Information System (INIS)

    Solomon, D.E.; Monsler, M.J.; Terry, N.C.

    1984-03-01

    An overview of the laser fusion program at KMS Fusion is presented. A two-beam laser (1053 nm and 527 nm) system is used for the implosion physics. Stimulated Raman scattering is used to examine the implosion region for high-energy electrons. Holographic and fringe analysis techniques are also used in the diagnostics of the plasma. Computational techniques based on two-plasmon decay are shock-fitting techniques in Lagrangian hydrocodes are also described. Glass shell technology for laser targets is given. The design of the Chemically Pumped Iodine Laser (CPIL) is also presented. 86 refs., 46 figs., 2 tabs

  5. Research and development plan of fusion technologies in JAERI toward DEMO reactors

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Hayashi, Takumi; Abe, Tetsuya; Akiba, Masato; Isono, Takaaki; Inoue, Takashi; Enoeda, Mikio; Okuno, Kiyoshi; Koizumi, Norikiyo; Sakamoto, Keishi; Sato, Satoshi; Jitsukawa, Shiro; Sugimoto, Masayoshi; Suzuki, Satoshi; Seki, Shogo; Takatsu, Hideyuki; Tanzawa, Sadamitsu; Tsuchiya, Kunihiko; Nishi, Masataka; Hayashi, Kimio; Matsui, Hideki; Yamanishi, Toshihiko; Watanabe, Kazuhiro

    2005-03-01

    In accordance with the 'Third Phase Basic Program on Fusion Research and Development' established by the Fusion Council of the Japan Atomic Energy Commission, research and development (R and D) of fusion technologies aim at realization of two elements: development of ITER key components and their improvement for higher performances; and construction of sound technical basis of fusion nuclear technologies essential for fusion energy utilization. JAERI has been assigned in the Third Phase Basic Program as a responsible institute for developing the above two elements, and accordingly has been implementing technology R and Ds categorized in the following three areas: R and D for ITER construction and operation; R and D for ITER utilization (blanket testing in ITER) and toward DEMO; and R and D on basic fusion technologies. The present report reviews the status and the plan of fusion technology R and Ds in the latter two areas, and presents the technical objectives, technical issues, status of R and D and near-term R and D plans for: breeding blankets; structural materials; the IFMIF program; improvements of the key ITER components for higher performances toward DEMO; and basic fusion technologies. (author)

  6. A survey on publications in fusion research and technology science and technology indicators in fusion R and T

    International Nuclear Information System (INIS)

    Hillebrand, C.D.

    1999-01-01

    Scientific publications disseminate research results and are therefore an interesting subject for science and technology analysis. Bibliographic databases contain scientific publications which are indexed and structured. The paper considers Fusion Research and Technology records which are stored in the International Nuclear Information System (INIS) bibliographic database. For the first time, all scientometric and bibliometric information specific to a selected field of science and technology contained in a bibliographic database, using INIS records, is analysed and quantified. A variety of new science and technology indicators which can be used for assessing research and development activities are also presented. (author)

  7. A survey on publications in fusion research and technology science and technology indicators in fusion R and T

    International Nuclear Information System (INIS)

    Hillebrand, C.-D.

    2001-01-01

    Scientific publications disseminate research results and are therefore an interesting subject for science and technology analysis. Bibliographic databases contain scientific publications which are indexed and structured. The paper considers Fusion Research and Technology records which are stored in the International Nuclear Information System (INIS) bibliographic database. For the first time, all scientometric and bibliometric information specific to a selected field of science and technology contained in a bibliographic database, using INIS records, is analysed and quantified. A variety of new science and technology indicators which can be used for assessing research and development activities are also presented. (author)

  8. Laser development for laser fusion applications research. Progress report, October 1977--March 1978

    International Nuclear Information System (INIS)

    1978-06-01

    Research progress is reported on three laser programs being developed for the commercialization of laser-fusion energy. The lasers include iodine, hydrogen fluoride and Group VI atoms (e.g., O, S, Se, Te)

  9. Accelerator and Fusion Research Division annual report, fiscal year 1980, October 1979-September 1980

    International Nuclear Information System (INIS)

    1981-03-01

    Research during October 1979 to September 1980 is summarized. Areas covered include: accelerator operations; positron-electron project; stochastic beam cooling; high-field superconducting magnets; accelerator theory; neutral beam sources; and heavy ion fusion

  10. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2016

    Energy Technology Data Exchange (ETDEWEB)

    Wiffen, Frederick W [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Melton, Stephanie G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-01

    This document summarizes FY2016 activities supporting the Office of Science, Office of Fusion Energy Sciences Materials Research for MFE carried out by ORNL. The organization of the report is mainly by material type, with sections on specific technical activities.

  11. Tritium inventory in fusion reactors. Summary report of the final research coordination meeting

    International Nuclear Information System (INIS)

    Clark, R.E.H.

    2007-11-01

    Detailed discussions were held during the final Research Coordination Meeting (RCM) at IAEA Headquarters on 25-27 September 2006, with the aim of reviewing the work accomplished by the Coordinated Research Project (CRP) on 'Tritium Inventory in Fusion Reactors'. Participants summarized the specific results obtained during the final phase of the CRP, and considered the impact of the data generated on the design of fusion devices. Conclusions were formulated and several specific recommendations for future fusion machines were agreed. The discussions, conclusions and recommendations of the RCM are briefly described in this report. (author)

  12. Atomic and Molecular Data Activities for Fusion Research in JAEA

    International Nuclear Information System (INIS)

    Nakano, T.

    2011-01-01

    The Japan Atomic Energy Agency (JAEA) has been producing, collecting and compiling cross-section data for atomic and molecular collisions and spectral data relevant to fusion research. In this talk, an overview of our activities since the last meeting in September 2009 will be presented. The state selective charge transfer cross-section data of Be 4+ , C 4+ and C 6+ by collision with H(n=2) in the collision energy range between 62 eV/amu and 6.2 keV/amu have been calculated with a molecular-bases close-coupling method. The calculated charge transfer data of C 4+ was implemented in a collisional-radiative model code for C 3+ , and it is shown that in some cases the charge transfer from C 4+ to H(n=2) populates predominantly C 3+ (n = 6, 7). The cross-section data of dissociative recombination and excitation of HD + , D 2+ , DT + , T 2+ 3 HeH + and 4 HeH + were produced by theoretical calculation. The principal quantum number of dissociated H atom isotopes was also given. The analytical expressions for the cross-section data for 26 processes of He-collision systems were produced in order to facilitate practical use of the data. The compiled data are in preparation for the web site at the URL of http://www-jt60.naka.jaea.go.jp/engish/JEAMDL/. The chemical sputtering yield data of CFC materials with hydrogen isotope collisions have been compiled. The ionization rate of W 44+ and the radiative and the dielectronic recombination rates of W 45+ were calculated with FAC. The ratio of these rates was compared with experimentally measured ratio of W 45+ density to W 44+ density in JT-60U, showing that the calculated ratio of the recombination ratio of W 45+ to the ionization rate of W 44+ is accurate within the experimental uncertainty (∼ 30%). The atomic and molecular data activities in JAEA are pursued in collaboration with Japanese universities, and other department of JAEA. (author)

  13. Research and Realization of Medical Image Fusion Based on Three-Dimensional Reconstruction

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new medical image fusion technique is presented. The method is based on three-dimensional reconstruction. After reconstruction, the three-dimensional volume data is normalized by three-dimensional coordinate conversion in the same way and intercepted through setting up cutting plane including anatomical structure, as a result two images in entire registration on space and geometry are obtained and the images are fused at last.Compared with traditional two-dimensional fusion technique, three-dimensional fusion technique can not only resolve the different problems existed in the two kinds of images, but also avoid the registration error of the two kinds of images when they have different scan and imaging parameter. The research proves this fusion technique is more exact and has no registration, so it is more adapt to arbitrary medical image fusion with different equipments.

  14. Annual report of Naka Fusion Research Establishment from April 1, 2002 to March 31, 2003

    International Nuclear Information System (INIS)

    Tsuji, Hiroshi; Hamamatsu, Kiyotaka; Matsumoto, Hiroshi; Yoshida, Hidetoshi

    2003-11-01

    This annual report provides an overview of research and development (R and D) activities at Naka Fusion Research Establishment, including those performed in collaboration with other research establishments of JAERI, research institutes, and universities, during the period from 1 April, 2002 to 31 March, 2003. The activities in the Naka Fusion Research Establishment are highlighted by high performance plasma researches in JT-60 and JFT-2M, research and development of fusion reactor technologies towards ITER and fusion power demonstration plants, and activities in support of ITER design and construction. JT-60 program has continued to produce fruitful knowledge and understanding necessary to achieve reactor relevant performances of tokamak fusion devices. JFT-2M has made contributions in more basic areas of tokamak plasma research and development in pursuit of high performance plasma. The objectives of JT-60 research have been more shifted to physics R and Ds in support of the International Thermonuclear Experimental Reactor (ITER) and establishment of physics basis for a steady state tokamak fusion reactor like SSTR as a fusion power demonstration plant. In JFT-2M, the advanced material tokamak experiment program has been carried out to test the low activation ferritic steel for development of the structural material for a fusion reactor. In the area of theories and analyses, significant progress has been made in understanding of the ITB, energy confinement scaling in ITB plasmas, MHD equilibrium in the current hole region, asymmetric feature of divertor plasmas and the divertor detachment. In addition, through the project of numerical experiment on tokamak, the mechanism of the ion temperature gradient mode was clarified by particle simulations. The physics of divertor plasma was also studied by particle simulations. R and Ds of fusion reactor technologies have been carried out both to further improve technologies necessary for ITER construction, and to accumulate

  15. Implications of the second law for future directions in controlled fusion research

    International Nuclear Information System (INIS)

    Roth, J.R.; Miley, G.H.

    1980-01-01

    Many existing energy related technologies have developed under the influence of social, economic, or state of the art constraints, and they cannot be viewed as optimum systems according to the second law of thermodynamics. Controlled fusion research presents an opportunity to optimize a nascent technology with respect to second law considerations in order to develop a practical energy source. In its present state of development, fusion research offers several independent approaches that may result in a net power producing fusion reactor. This paper discusses how second law considerations might be used to narrow the range of choices that must be made among various fusion fuel cycles. From a second law point of view, the most desirable fusion reactors are those for which the energy of charged particles can be converted directly into d.c. electrical power, while still allowing the energy that could be recovered by an efficient high-temperature 'blanket' to be transported largely by radiation. Fusion research in all major industrialized countries is developing the deuterium-tritium (D-T) fuel cycle for first-generation fusion power plants. It will be shown that other fuel cycles have significant advantages over the D-T fuel cycle according to second law principles. (author)

  16. Biomedical applications of medium energy particle beams at LAMPF

    International Nuclear Information System (INIS)

    Bradbury, J.N.

    1978-01-01

    At LAMPF an 800-MeV proton accelerator is used to produce intense beams of secondary protons, pi mesons, and muons which are being employed in several areas of biomedical research. The primary proton beam is used to produce short-lived radioisotopes of clinical interest. Carefully tailored secondary proton beams are used to obtain density reconstructions of samples with a dose much less than that required by x-ray CT scanners. The elemental composition of tissue samples is being determined non-destructively with muonic x-ray analysis. Finally, an extensive program, with physical, biological, and clinical components, is underway to evaluate negative pi mesons for use in cancer radiotherapy. The techniques used in these experiments and recent results are described

  17. The Columbia University Sub-micron Charged Particle Beam

    Science.gov (United States)

    Randers-Pehrson, Gerhard; Johnson, Gary W.; Marino, Stephen A.; Xu, Yanping; Dymnikov, Alexander D.; Brenner, David J.

    2009-01-01

    A lens system consisting of two electrostatic quadrupole triplets has been designed and constructed at the Radiological Research Accelerator Facility (RARAF) of Columbia University. The lens system has been used to focus 6-MeV 4He ions to a beam spot in air with a diameter of 0.8 µm. The quadrupole electrodes can withstand voltages high enough to focus 4He ions up to 10 MeV and protons up to 5 MeV. The quadrupole triplet design is novel in that alignment is made through precise construction and the relative strengths of the quadrupoles are accomplished by the lengths of the elements, so that the magnitudes of the voltages required for focusing are nearly identical. The insulating sections between electrodes have had ion implantation to improve the voltage stability of the lens. The lens design employs Russian symmetry for the quadrupole elements. PMID:20161365

  18. The Columbia University sub-micron charged particle beam

    International Nuclear Information System (INIS)

    Randers-Pehrson, Gerhard; Johnson, Gary W.; Marino, Stephen A.; Xu Yanping; Dymnikov, Alexander D.; Brenner, David J.

    2009-01-01

    A lens system consisting of two electrostatic quadrupole triplets has been designed and constructed at the Radiological Research Accelerator Facility (RARAF) of Columbia University. The lens system has been used to focus 6 MeV 4 He ions to a beam spot in air with a diameter of 0.8 μm. The quadrupole electrodes can withstand voltages high enough to focus 4 He ions up to 10 MeV and protons up to 5 MeV. The quadrupole triplet design is novel in that alignment is made through precise construction and the relative strengths of the quadrupoles are accomplished by the lengths of the elements, so that the magnitudes of the voltages required for focusing are nearly identical. The insulating sections between electrodes have had ion implantation to improve the voltage stability of the lens. The lens design employs Russian symmetry for the quadrupole elements.

  19. Tumor radiobiology studies with heavy charged-particle beams

    International Nuclear Information System (INIS)

    Curtis, S.B.; Tenforde, T.S.; Tenforde, S.D.; Parr, S.S.; Flynn, M.J.

    1981-01-01

    The response of tumor-cell systems to irradiation with carbon, neon, and argon beams at various positions in the plateau and extended peak regions of the Bragg ionization (dose versus depth) curve is being evaluated from experiments conducted both in vivo and in vitro. The radiobiological end points being studied include: tumor volume response, cellular survival after tumor irradiation in situ, cell-kinetic parameters measured by flow cytofluorometry and time-lapse cinematography, and survival of oxic and hypoxic cells irradiated in suspension. One focus of the research effort during the past year has been on the combined effect of radiosensitizing drugs and charged-particle irradiation. In this article, the results are presented of studies on combined drug and radiation treatment of a rat rhabdomyosarcoma tumor and a human melanoma tumor growing in athymic (thymus-less) nude mice

  20. Applications of Research Reactors Towards Research on Materials for Nuclear Fusion Technology. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2013-11-01

    Controlled nuclear fusion is widely considered to represent a nearly unlimited source of energy. Recent progress in the quest for fusion energy includes the design and current construction of the International Thermonuclear Experimental Reactor (ITER), for which a licence has recently been obtained as a first of its kind fusion nuclear installation. ITER is designed to demonstrate the scientific and technological feasibility of fusion energy production in excess of 500 MW for several consecutive minutes. ITER, however, will not be able to address all the nuclear fusion technology issues associated with the design, construction and operation of a commercial fusion power plant. The demonstration of an adequate tritium or fuel breeding ratio, as well as the development, characterization and testing of structural and functional materials in an integrated nuclear fusion environment, are examples of issues for which ITER is unable to deliver complete answers. To fill this knowledge gap, several facilities are being discussed, such as the International Fusion Materials Irradiation Facility and, eventually, a fusion demonstration power plant (DEMO). However, for these facilities, a vast body of preliminary research remains to be performed, for instance, concerning the preselection and testing of suitable materials able to withstand the high temperature and pressure, and intense radiation environment of a fusion reactor. Given their capacity for material testing in terms of available intense neutron fluxes, dedicated irradiation facilities and post-irradiation examination laboratories, high flux research reactors or material test reactors (MTRs) will play an indispensable role in the development of fusion technology. Moreover, research reactors have already achieved an esteemed legacy in the understanding of material properties and behaviour, and the knowledge gained from experiments in fission materials in certain cases can be applied to fusion systems, particularly those

  1. A Review of Fusion and Tokamak Research Towards Steady-State Operation: A JAEA Contribution

    Directory of Open Access Journals (Sweden)

    Mitsuru Kikuchi

    2010-11-01

    Full Text Available Providing a historical overview of 50 years of fusion research, a review of the fundamentals and concepts of fusion and research efforts towards the implementation of a steady state tokamak reactor is presented. In 1990, a steady-state tokamak reactor (SSTR best utilizing the bootstrap current was developed. Since then, significant efforts have been made in major tokamaks, including JT-60U, exploring advanced regimes relevant to the steady state operation of tokamaks. In this paper, the fundamentals of fusion and plasma confinement, and the concepts and research on current drive and MHD stability of advanced tokamaks towards realization of a steady-state tokamak reactor are reviewed, with an emphasis on the contributions of the JAEA. Finally, a view of fusion energy utilization in the 21st century is introduced.

  2. Survey of atomic and molecular data needs for fusion

    International Nuclear Information System (INIS)

    Lorenz, A.; Phillips, J.; Schmidt, J.J.; Lemley, J.R.

    1976-01-01

    Atomic and molecular data needs in five areas of plasma research and fusion technology are considered: Injection Systems (plasma heating by neutral particle beam injection and particle cluster beam injection); Plasma-Surface Interaction (sputtering, absorption, adsorption, reflection, evaporation, surface electron emission, interactions of atomic hydrogen isotopes, synchrotron radiation); Plasma Impurities and Cooling (electron impact ionization and excitation, recombination processes, charge exchange, reflection of H from wall surfaces); Plasma Diagnostics (atomic structure and transition probabilities, X-ray wave-length shift for highly ionized metals, electron capture collisions with H + and D + , heavy-ion collision ionization probe, photon scattering, emission spectroscopy); Laser-fusion Compression (microexplosion physics, diagnostics, microtarget design, laser systems requirements, laser development, reactor design needs)

  3. Particle Beam Tests of the Calorimetric Electron Telescope

    CERN Document Server

    Tamura, Tadahisa

    The Calorimetric Electron Telescope (CALET) is a new mission addressing outstanding astrophysics questions including the nature of dark matter, the sources of high-energy particles and photons, and the details of particle acceleration and transport in the galaxy by measuring the high-energy spectra of electrons, nuclei, and gamma-rays. It will launch on HTV-5 (H-II Transfer Vehicle 5) in 2014 for installation on the Japanese Experiment Module–Exposed Facility (JEM-EF) of the International Space Station. The CALET collaboration is led by JAXA and includes researchers from Japan, the U.S. and Italy. The CALET Main Telescope uses a plastic scintillator charge detector followed by a 30 radiation-length (X0) deep particle calorimeter divided into a 3 X0 imaging calorimeter, with scintillating optical fibers interleaved with thin tungsten sheets, and a 27 X0 fully-active total-absorption calorimeter made of lead tungstate scintillators. CALET prototypes were tested at the CERN (European Laboratory for Particle Ph...

  4. Particle-beam accelerators for radiotherapy and radioisotopes

    International Nuclear Information System (INIS)

    Boyd, T.J.; Crandall, K.R.; Hamm, R.W.

    1981-01-01

    The philosophy used in developing the new PIGMI technology was that the parameters chosen for physics research machines are not necessarily the right ones for a dedicated therapy or radioisotope machine. In particular, the beam current and energy can be optimized, and the design should emphasize minimum size, simplicity and reliability of operation, and economy in capital and operating costs. A major part of achieving these goals lay in raising the operating frequency and voltage gradient of the accelerator, which shrinks the diameter and length of the components. Several other technical innovations resulted in major system improvements. One of these is a radically new type of accelerator structure named the radio-frequency quadrupole (RFQ) accelerator. This allowed us to eliminate the large, complicated ion source used in previous ion accelerators, and to achieve a very high quality accelerated beam. Also, by using advanced permanent magnet materials to make the focusing elements, the system becomes much simpler. Other improvements have been made in all of the accelerator components and in the methods for operating them. These will be described, and design and costing information examples given for several possible therapy and radioisotope production machines

  5. LLNL (Lawrence Livermore National Laboratory) research on cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Thomassen, K I; Holzrichter, J F [eds.

    1989-09-14

    With the appearance of reports on Cold Fusion,'' scientists at the Lawrence Livermore National Laboratory (LLNL) began a series of increasingly sophisticated experiments and calculations to explain these phenomena. These experiments can be categorized as follows: (a) simple experiments to replicate the Utah results, (b) more sophisticated experiments to place lower bounds on the generation of heat and production of nuclear products, (c) a collaboration with Texas A M University to analyze electrodes and electrolytes for fusion by-products in a cell producing 10% excess heat (we found no by-products), and (d) attempts to replicate the Frascati experiment that first found neutron bursts when high-pressure deuterium gas in a cylinder with Ti chips was temperature-cycled. We failed in categories (a) and (b) to replicate either the Pons/Fleischmann or the Jones phenomena. We have seen phenomena similar to the Frascati results, (d) but these low-level burst signals may not be coming from neutrons generated in the Ti chips. Summaries of our experiments are described in Section II, as is a theoretical effort based on cosmic ray muons to describe low-level neutron production. Details of the experimental groups' work are contained in the six appendices. At LLNL, independent teams were spontaneously formed in response to the early announcements on cold fusion. This report's format follows this organization.

  6. Engineering design of a fusion test reactor (FTR) and fusion engineering research facility (FERF) based on a toroidal theta pinch

    International Nuclear Information System (INIS)

    Abdou, M.; Burke, R.J.; Dauzvardis, P.V.; Foss, M.; Gerstl, S.A.W.; Maroni, V.A.; Pierce, A.W.; Turner, A.F.; Krakowski, R.A.; Linford, R.K.; Oliphant, T.A.; Ribe, F.L.; Thomassen, K.I.

    1975-01-01

    This paper describes two advanced toroidal theta-pinch devices which are being proposed for future construction. The Fusion Test Reactor (FTR) is being designed to produce thermonuclear energy (at 20 MeV/neutron) equal to the maximum plasma energy (Q=1) and to demonstrate α-particle heating. The Fusion Engineering and Research Facility (FERF) is being designed to test materials in a fusion environment where the average 14-MeV neutron flux from the plasma is greater than or of the order of 5.10 13 n/cm 2 .s over large surface areas. These devices employ the staged theta-pinch principle where the heating is accomplished by rapid (about 0.1 μs) implosion and expansion followed by a slow compression of the plasma. The rapid implosion injects as much heat as possible at as large a plasma radious as possible so that the plasma remains stable even after further compression. The final compression to ignition requires the transfer of a large amount of magnetic energy which implies a long transfer time (about 1 ms) for realistic voltages in the driving circuit. Throughout the heating and burn cycle the plasma must remain in equilibrium and stable to the dominant MHD-modes. A sufficiently large plasma radius guarantees stability against the m = 1 modes. These equilibrium and stability conditions and the requirements on thermonuclear burn determine the design parameters for either machine. The design parameters must also be consistent with economic limitations and technological feasibility of components. In addition to these requirements, the FERF must provide a steady and reliable source of fusion neutrons. (author)

  7. Summaries of FY 1986 research in the Applied Plasma Physics Fusion Theory Program

    International Nuclear Information System (INIS)

    1987-12-01

    The Theory Program is charged with supporting the development of theories and models of plasmas for the fusion research effort. This work ranges from first-principles analysis of elementary plasma processes to empirical simulation of specific experiments. The Theory Program supports research by industrial contractors, US government laboratories, and universities. The university support also helps to fulfill the DOE mission of training scientists for the fusion program. The Theory Program is funded through the Fusion Theory Branch, Division of Applied Plasma Physics in the Office of Fusion Energy. The work is divided among 31 institutions, of which 19 are universities, five are industrial contractors, and seven are US government laboratories; see Table 1 for a complete list. The FY 1986 Theory Program budget was divided among theory types: toroidal, mirror, alternate concept, generic, and atomic. Device modeling is included among the other funding categories, and is not budgeted separately

  8. rf linac approach to heavy ion fusion

    International Nuclear Information System (INIS)

    Swenson, D.A.

    1979-01-01

    The necessary properties of funneling particle beams from multiple accelerators into combined beams having higher current are outlined, and methods are proposed which maximize the efficiency of this process. A heavy ion fusion driver system example is presented which shows the large advantages in system efficiency to be gained by proper funneling

  9. Using the particle beam optics lab. (PBO LABtm) for beamline design and analysis

    International Nuclear Information System (INIS)

    Gillespie, G.H.; Hill, B.W.; Martono, H.; Moore, J.M.; Lampel, M.C.; Brown, N.A.

    1999-01-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) represents a new approach to providing software for particle beam optics modeling. The PBO Lab includes four key elements: a graphic user interface shell; a graphic beamline construction kit for users to interactively and visually construct optical beam lines; a knowledge database on the physics and technology of optical elements, and various charged particle optics computational engines. A first-order matrix code, including a space charge model, can be used to produce scaled images of beamlines together with overlays of single trajectories and beam envelopes. The qualitative results of graphically sliding beamline components, or adjusting bend angles, can be explored interactively. Quantitative computational engines currently include the third-order TRANSPORT code and the multi-particle ray tracing program TURTLE. The use of the PBO Lab for designing and analyzing a second order achromatic bend is illustrated with the Windows 95/NT version of the software. (authors)

  10. Magnet Lattice Design for the Transmission of Power Using Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Marley, Daniel; /North Carolina State U. /SLAC

    2012-08-24

    As the amount of electricity generated by renewable energy sources continues to increase, the current method of power transmission will not serve as an adequate method for transmitting power over very long distances. A new method for transmitting power is proposed using particle beams in a storage ring. Particle beams offer an incredibly energy efficient alternative to transmission lines in transmitting power over very long distances. A thorough investigation of the magnet lattice design for this storage ring is presented. The design demonstrates the ability to design a ring with stable orbits over a 381.733 km circumference. Double bend achromats and FODO cells are implemented to achieve appropriate {beta} functions and dispersion functions for 9-11 GeV electron beams.

  11. Self-modulated dynamics of a relativistic charged particle beam in plasma wake field excitation

    Energy Technology Data Exchange (ETDEWEB)

    Akhter, T.; Fedele, R. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Nicola, S. De [CNR-SPIN and INFN Sezione di Napoli, Napoli (Italy); Tanjia, F. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Jovanović, D. [Institute of Physics, University of Belgrade, Belgrade (Serbia); Mannan, A. [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)

    2016-09-01

    The self-modulated dynamics of a relativistic charged particle beam is provided within the context of the theory of plasma wake field excitation. The self-consistent description of the beam dynamics is provided by coupling the Vlasov equation with a Poisson-type equation relating the plasma wake potential to the beam density. An analysis of the beam envelope self-modulation is then carried out and the criteria for the occurrence of the instability are discussed thereby.

  12. Nonlinear δf Simulation Studies of Intense Charged Particle Beams with Large Temperature Anisotropy

    International Nuclear Information System (INIS)

    Startsev, Edward A.; Davidson, Ronald C.; Qin, Hong

    2002-01-01

    In this paper, a 3-D nonlinear perturbative particle simulation code (BEST) [H. Qin, R.C. Davidson and W.W. Lee, Physical Review Special Topics on Accelerators and Beams 3 (2000) 084401] is used to systematically study the stability properties of intense nonneutral charged particle beams with large temperature anisotropy (T perpendicularb >> T parallelb ). The most unstable modes are identified, and their eigenfrequencies, radial mode structure, and nonlinear dynamics are determined for axisymmetric perturbations with ∂/∂θ = 0

  13. A high luminosity superconducting mini collider for Phi meson production and particle beam physics

    International Nuclear Information System (INIS)

    Pellegrini, C.; Robin, D.; Cline, D.; Kolonko, J.; Anderson, C.; Barletta, W.; Chargin, A.; Cornacchia, M.; Dalbacka, G.; Halbach, K.; Lueng, E.; Kimball, F.; Madura, D.; Patterson, L.

    1991-01-01

    A 510MeV electron-positron collider has been proposed at UCLA to study particle beam physics and Phi-Meson physics, at luminosities larger than 10 32 cm -2 s -1 . The collider consists of a single compact superconducting storage ring (SMC), with bending field of 4 T and a current larger than 1 A. The authors discuss the main characteristics of this system and its major technical components: superconducting dipoles, RF, vacuum, injection

  14. Characteristics of particle beam acceleration on KUMS tandem electrostatic accelerator 5SDH-2

    OpenAIRE

    谷池, 晃; 古山, 雄一; 北村, 晃

    2006-01-01

    The KUMS tandem electrostatic accelerator, 5SDH-2, was installed in 1996. Ten years have passed since it installed and we obtain some data for accelerator operations. We report the particle beam characteristics such as relation between beam species and switcher magnet current, and dependence of ion charge fraction on stripper gas thickness. We also try to generate nitrogen ion beams, and low energy ion beams.

  15. The recent progress of laser fusion research and future scope

    International Nuclear Information System (INIS)

    Yamanaka, C.

    1986-01-01

    The plasma compression of spherical fuel pellets is performed by irradiation laser beams on the surface of targets. The short wavelength laser or Xray is effective to get high coupling of laser and plasmas without preheating. The implosion uniformity is essentially important to attain the high compression. As for the direct implosion, the multibeam irradiation is necessary to keep a good uniformity of illumination. Extremely high aspect ratio targets are successfully imploded withy neutron yield 10/sup 12/ or more. The shock wave multiplexing is introduced by tailored laser pulses synchronizing with the compression stagnation. Implosion instability seems to be prevented by this scheme. Energy recovering by nuclear fusion is about 10/sup -3/ of the incident laser beam. The indirect implosion using the Cannonball target is very effective to keep the high absorption and the implosion uniformity. However the suprathermal electrons are increased especially at the region of the beam inlet holes. The larger cavity irradiated by the shorter wavelength laser indicates the better results. The Xray conversion by laser is intensively studied using metal targets. Magnetically Insulated Inetially Confined Fusion (MICF) is tested by using CO/sub 2/ lasers. The basic structure of the MICF target is a double shell structure. The irradiation of laser beams through holes of the outer shell produces a toroidal magnetic field due to the current loop produced by the ejected hot electrons. Self organized magnetic field is expected to confine the plasma energy. Plasmas are preserved by the inertial confinement scheme. The experimental results are very interesting to design a hybrid fusion device

  16. Progress in inertial fusion research at Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Perkins, R.B.

    1981-01-01

    The Los Alamos Scientific Laboratory Inertial Confinement Fusion Program is reviewed. Experiments using the Helios CO 2 laser system delivering up to 6kJ on target are described. Because breakeven energy estimates for laser drivers of 1 μm and above have risen and there is a need for CO 2 experiments in the tens-of-kJ regime as soon as practical, a first phase of Antares construction is now directed toward completion of two of the six original modules in 1983. These modules are designed to deliver 40kJ of CO 2 laser light on target. (author)

  17. Laser-fusion research progress report, January--June 1976

    International Nuclear Information System (INIS)

    1976-08-01

    Three prototypical laser systems; iodine, and HF, are being developed. The iodine laser program is designed to delineate possible problem areas in the development of higher-power iodine lasers and to improve its efficiency to where net energy gain is possible using complex targets or hybrid, fusion-fission reactors. To provide data for the oxygen laser, studies are under way on excited-state production efficiencies, electron-beam device development, and low-pressure gain phenomena. In the HF-laser program, technology is being developed applicable to high-power, high-gain laser systems

  18. Fusion research at the Royal Institute of Technology in Stockholm 1978

    International Nuclear Information System (INIS)

    Lehnert, B.

    1978-01-01

    Summaries are given on the research activities in plasma physics and controlled fusion during 1977, and on the plans for research in 1978. The research programme includes investigations on plasma-neutral gas interaction and stability, magnetic confinement being mainly produced by poloidal fields, plasma heating, and reactor technology. (author)

  19. A Multi-Disciplinary University Research Initiative in Hard and Soft Information Fusion: Overview, Research Strategies and Initial Results

    Science.gov (United States)

    2010-07-01

    Multisource Information Fusion ( CMIF ) along with a team including the Pennsylvania State University (PSU), Iona College (Iona), and Tennessee State...License. 14. ABSTRACT The University at Buffalo (UB) Center for Multisource Information Fusion ( CMIF ) along with a team including the Pennsylvania...of CMIF current research on methods for Test and Evaluation ([7], [8]) involving for example large- factor-space experimental design techniques ([9

  20. Some fundamental aspects of fluctuations and coherence in charged-particle beams in storage rings

    International Nuclear Information System (INIS)

    Chattopadhyay, S.

    1984-01-01

    A conceptual survey and exposition is presented of some fundamental aspects of fluctuations and coherence, as well as the interplay between the two, in coasting charged-particle beams - both continuous and bunched - in storage rings. A detailed study is given of the spectral properties of the incoherent phase-space Schottky fluctuations, their propagation as waves in the beam, and the analytic complex coherent beam electromagnetic response or transfer function. The modification or distortion of these by collective interactions is examined in terms of simple regeneration mechanisms. Collective or coherent forces in the beam-storage-ring system are described by defining suitable impedance functions or propagators, and a brief discussion of the coherent collective modes and their stability is provided, including a general and rigorous description of the Nyquist stability criterion. The nature of the critical fluctuations near an instability threshold is explored. The concept of Landau damping and its connection with phase-mixing within the beam is outlined. The important connection between the incoherent fluctuations and the beam response, namely the Fluctuation-Dissipation relation, is revealed. A brief discussion is given of the information degrees of freedom, and effective temperature of the fluctuation signals. Appendices provide a short resume of some general aspects of various interactions in a charged-particle beam-environment system in a storage ring and a general introduction to kinetic theory as applied to particle beams. (orig.)

  1. The European fusion research and development programme and the ITER Project

    International Nuclear Information System (INIS)

    Green, B.J.

    2004-01-01

    The EURATOM fusion R and D programme is a well integrated and co-ordinated programme a good example of a European Research Area. Its goal is 'the joint creation of prototype reactors for power stations to meet the needs of society: operational safety, environmental compatibility, economic viability'. The programme is focussed on the magnetic confinement approach to fusion energy and supports 21 associated laboratories and a range of experimental and fusion technology facilities. The paper will briefly describe this programme and how it is organised and implemented. Its success and that of other national programmes has defined the international ITER Project, which is the next logical step in fusion R and D. The paper will describe ITER, its aims, its design, and the supporting manufacture of prototype components. The European contribution to ITER, as well as the exploitation of the Joint European Torus (JET) and long-term fusion reactor technology R and D are carried out under the European Fusion Development Agreement (EFDA). Finally, the potential advantages of fusion as an energy source will be presented. (author)

  2. Progress in light ion beam fusion research on PBFA II

    International Nuclear Information System (INIS)

    Cook, D.L.; Allshouse, G.O.; Bailey, J.

    1986-01-01

    PBFA II is a 100 TW pulsed power accelerator constructed at Sandia National Laboratories for use in the Light Ion Fusion Program. The objective of PBFA II is to accelerate and focus upon an inertial confinement fusion (ICF) target a lithium beam with sufficient energy, power, and power density to perform ignition scaling experiments. The technologies used in PBFA II include: (1) primary energy storage and compression with 6 MV, low-inductance Marx generators, (2) pulse forming in water-insulated, water-dielectric lines with self-closing water switches, (4) voltage addition in vacuum using self-magnetically-insulated biconic transmission lines, (5) inductive energy storage and pulse compression using a fast-opening plasma erosion switch, (6) beam formation using a magnetically-insulated ion diode, and (7) space-charge and current-neutralized beam propagation to the target in a gas-filled cell. The first multimodule shot was on December 11, 1985. The plans for PBFA II include development and demonstration of the pulse-shaping techniques which are necessary for high-gain target compressions. Following a modification of the accelerator which will probably include an ''extraction'' ion diode, a 4- to 5-meter plasma channel for beam bunching during propagation, and a target chamber located beneath the accelerator, temporally-shaped ion beam pulses will be available for pulse-shaped target experiments. (author)

  3. Heavy-ion fusion driver research at Berkeley and Livermore

    International Nuclear Information System (INIS)

    Seidl, P.; Bangerter, R.; Celata, C.M.

    1996-08-01

    The Department of Energy is restructuring the U.S. fusion program to place a greater emphasis on science. As a result, we will not build the ILSE or Elise heavy ion fusion (HIF) facilities described in 1992 and 1994 conferences. Instead we are performing smaller experiments to address important scientific questions. Accelerator technology for HIF is similar to that for other applications such as high energy physics and nuclear physics. The beam physics, however, differs from the physics encountered in most accelerators, where the pressure arising from the beam temperature (emittance) is the dominant factor determining beam size and focusing system design. In HIF, space charge is the dominant feature, leading us into a parameter regime where.the beam plasma frequency becomes comparable to the betatron frequency. Our experiments address the physics of non-neutral plasmas in this novel regime. Because the beam plasma frequency is low, Particle-in-cell (PIC) simulations provide a good description of most of our experiments. Accelerators for HIF consist of several subsystems: ion sources, injectors, matching sections, combiners, acceleration sections with electric and magnetic focusing, beam compression and bending sections, and a system to focus the beams onto the target. We are currently assembling or performing experiments to address the physics of all these subsystems. This paper will discuss experiments in injection, combining, and bending

  4. Report of the summative evaluation by the advisory committee on fusion research and development

    International Nuclear Information System (INIS)

    2005-03-01

    The Research Evaluation Committee of the Japan Atomic Energy Research Institute (JAERI) set up an Advisory Committee on Fusion Research and Development in accordance with the 'Fundamental Guideline for the Evaluation of Research and Development (R and D) at JAERI' and its subsidiary regulations. The Advisory Committee on Fusion Research and Development evaluated the adequacy of the plans of fusion research and development to be succeeded from JAERI to a new research institute which will be established by integration of JAERI and the Japan Nuclear Cycle Development Institute (JNC). The Advisory Committee consisted of eight specialists from outside the JAERI conducted its activities from June 2004 to August 2004. The evaluation was performed on the basis of the materials submitted in advance and of the oral presentations made at the Advisory Committee meeting which was held on July 23, 2004, in line with the items, viewpoints, and criteria for the evaluation specified by the Research Evaluation Committee. The result of the evaluation by the Advisory Committee was submitted to the Research Evaluation Committee, and was judged to be appropriate at its meeting held on December 1, 2004. This report describes the result of the evaluation by the Advisory Committee on Fusion Research and Development. (author)

  5. International research co-operation in the field of controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    2004-01-01

    This 26th report by the Swiss Federal Office for Education and Science presents a review of work done in Swiss institutes in 2003 as part of international research into thermonuclear fusion. A broad outline of the project and of its significance within the wider field of thermonuclear fusion research is given. This is followed by a review of the significant events in the world of fusion research, with emphasis placed on ITER and on the EURATOM fusion programme. A further chapter summarises events in Switzerland in 2003 and the report closes with a list of contacts for more information. Three annexes provide information on the current situation in fusion research, as well as scientific and technical highlights of the work performed in 2003 at the Plasma Physics Research Centre CRPP at the Federal Institute of Technology EPFL in Lausanne, Switzerland. Annex 3 reports on results obtained at the Physics Institute of the University of Basle. The annexes are for the benefit of the technically and scientifically versed reader, and brief summaries of them are given in the main body of the report

  6. Report on the research and development work of 1984 in the project atomic fusion

    International Nuclear Information System (INIS)

    Finken, D.

    1985-02-01

    The work done by the Nuclear Research Centre in Karlsruhe on fusion under magnetic influence is compiled in the project atomic fusion and put in the programme for European Fusion Technology. The work is supported by an association contract between KfK and Euratom via the European Commission. Some of the work exceeds the volume defined in the E.E.C's technology programme. Using these papers, mostly studies, connections are established between the various fields of work and new tasks prepared. This is taking place in the light of the expected extension of the technology programme in the coming year and the plans for NET. The reports compiled here are the 1984 papers from the KfK institute. The appendix contains a compilation of the tasks undertaken by KfK from the EEC's fusion technology programme. (orig./GG) [de

  7. Teaching and research in fusion plasmas and technology at the University of Illinois

    International Nuclear Information System (INIS)

    Miley, G.H.; Southworth, F.H.

    1975-01-01

    Teaching in fusion at the University of Illinois is an integrated part of the nuclear engineering curriculum. Through the use of two key courses, ''Introduction to Fusion'' and ''Fusion Systems,'' basic preparation for those wishing to specialize in fusion is provided. These courses are primarily directed to plasma aspects of fusion, but materials and other engineering aspects have been integrated into the curriculum through a broadened coverage in such existing courses as nuclear materials, shielding, and reactor physics. Research is primarily focused at the PhD level, although some MS studies are in progress. While current theses involve a wide variety of topics, one major area being pursued is the study of advanced fuel (non-deuterium-tritium) reactors based on two-component fusion and other concepts. This effort consists of a series of loosely knit subtasks related to such problems as cyclotron emission and direct energy conversion. Also, various research involving charge-exchange losses during neutral-beam injection, vacuum-wall sputtering, and related topics has developed as a direct outgrowth of the PROMETHEUS project, which involved the conceptual design of a power-consuming mirror-type reactor for materials and engineering tests

  8. Research programme on controlled thermonuclear fusion. Synthesis report 2011; Programme de recherche Fusion thermonucleaire controlee. Rapport de synthese 2011

    Energy Technology Data Exchange (ETDEWEB)

    Vaucher, C. [Secretariat d' Etat a l' education et a la recherche, Berne (Switzerland); Tran, M. Q.; Villard, L. [Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland); Marot, L. [University of Basel, Basel (Switzerland)

    2012-07-01

    Since 1978, research on thermonuclear fusion in Switzerland is closely related to the research programme of the European Atomic Energy Community (EURATOM). The Swiss projects tackle aspects of plasma physics and fusion technology. Switzerland participates to the construction and operation of the Joint European Torus (JET), which started operation again in 2011. The International Thermonuclear Experimental Reactor (ITER) is the last step before DEMO, a prototype fusion reactor able to deliver electricity and demonstrate the economic viability of fusion energy. The 'Centre de Recherches en Physique des Plasmas' (CRPP) of the EPFL went on with its participation to the scientific and technological programme of EURATOM. Researches are carried out essentially on 2 sites: (i) at EPFL, where topics dealt with include the physics of magnetic confinement studied using the Variable Configuration Tokamak (TCV), the basic experiment TORPEX, theory and numerical modelling, and the technology of plasma heating and current generation by hyper-frequency waves; (ii) at the Paul Scherrer Institute (PSI), where activities are devoted to superconductivity and structure materials. Thanks to the large flexibility of the TCV design and operation modus, plasmas of different shapes can be created and controlled, what is a very useful option to verify numerical simulation results. Besides, the injection of millimetre waves allows directing the injected power according to specific profiles. In the TCV it could be demonstrated for the first time that the injection of Electronic Cyclotronic Heating (ECH) waves is able to double the frequency of so-called 'Edge Localized Modes' (ELM), reducing by a factor of 2 the energy expelled by each ELM. In particular, it was possible to considerably reduce the statistical dispersion of the repetition frequency of ELM, and to avoid the appearance of gigantic ELM that are particularly harmful for reactor operation. The effect of plasma

  9. Fusion Reactor Safety Research program. Annual report, FY-80

    International Nuclear Information System (INIS)

    Crocker, J.G.; Cohen, S.

    1981-06-01

    The report is in three sections. Outside contracts includes a report of newly-started study at the General Atomic Company to consider safety implications of low-activation materials, portions of two papers from ongoing work at PNL and ANL, reports of the lithium spill work at HEDL, the LITFIRE code development at MIT, and risk assessment at MIT, all of which are an expansion of FY-79 outside contracts. EG and G Activities includes adaptations of four papers of ongoing work in transient code development, tritium system risk assessment, heat transfer and fluid flow analysis, and fusion safety data base. Program Plan Development includes the Executive Summary of the Plan, which was completed in FY-80, and is accompanied by a list of publications and a brief outline of proposed FY-81 activities to be based on the Program Plan

  10. ITER: Fusion research at the dawn of a new era

    International Nuclear Information System (INIS)

    Aymar, R.; Chuyanov, V.; Shimomura, Y.; Huguet, M.

    2003-01-01

    Given the expected success of on-going negotiations on the Joint Implementing Agreement for ITER construction and operation, a new era is opening for experimentation with reactor-relevant physics integrated with key reactor technologies in a licensed nuclear environment. The ITER design, cost estimate and safety analysis are supported by a large body of validating physics and technology R and D. The main features of the design, and analysis of its performance, give confidence that it will fulfil its technical objectives and demonstrate the environmental attractiveness of fusion. This paper gives illustrative confirmation of these expectations and an update on the technical preparations for construction, as well as the status of negotiations. (author)

  11. First IAEA research co-ordination meeting on 'Tritium inventory in fusion reactors'. Summary report

    International Nuclear Information System (INIS)

    Clark, R.E.H.

    2003-02-01

    The proceedings and conclusions of the first Research Co-ordination Meeting on 'Tritium Inventory in Fusion Reactors', held on November 4-6, 2002 at the IAEA Headquarters in Vienna are briefly described. This report includes a summary of the presentations made by the meeting participants and the specific goals set by the participants of the Co-ordinated Research Project (CRP). (author)

  12. Forty years of inertial confinement fusion research in the Shanghai Institute of Optics and Fine Mechanics

    International Nuclear Information System (INIS)

    Chen Chongbin; Wang Letian

    2010-01-01

    On the basis of China's own technology and industry, the 'Shenguang' inertial confinement fusion (ICF) research devices were built, and a series of world-class results achieved. In this paper, the history of ICF research in the Shanghai Institute of Optics and Fine Mechanics is reviewed. (authors)

  13. Methods of economic analysis applied to fusion research. Fourth annual report

    International Nuclear Information System (INIS)

    Hazelrigg, G.A. Jr.

    1980-01-01

    The current study reported here has involved three separate tasks. The first task deals with the development of expected utility analysis techniques for economic evaluation of fusion research. A decision analytic model is developed for the incorporation of market uncertainties, as well as technological uncertainties in an economic evaluation of long-range energy research. The model is applied to the case of fusion research. The second task deals with the potential effects of long-range energy RD and D on fossil fuel prices. ECON's previous fossil fuel price model is extended to incorporate a dynamic demand function. The dynamic demand function supports price fluctuations such as those observed in the marketplace. The third task examines alternative uses of fusion technologies, specifically superconducting technologies and first wall materials to determine the potential for alternative, nonfusion use of these technologies. In both cases, numerous alternative uses are found

  14. IAEA workshop on 'Atomic and molecular data for fusion energy research'. Summary report

    International Nuclear Information System (INIS)

    Clark, R.E.H.

    2004-05-01

    On September 8-12 a workshop on Atomic and Molecular (A+M) Data for Fusion Energy Research was hosted by the International Centre for Theoretical Physics in Trieste Italy. The workshop was attended by twelve students representing eleven Member States. A total of five lecturers, including four external to the Agency, made presentations to the workshop. All lecturers provided advance copies of the lecture materials and all provided written assignments for the students, to provide practical examples of applications of data issues to actual problems related to fusion energy research. All materials were collected on CDs, which were distributed to the students by the conclusion of the workshop. During the course of the workshop the students were given the opportunity to describe their backgrounds and research interests. The workshop did arouse interest in A+M processes related to fusion. The workshop was viewed as successful by the students. (author)

  15. Summary report of IAEA workshop on atomic and molecular data for fusion energy research

    International Nuclear Information System (INIS)

    Clark, R.E.H.

    2007-02-01

    A workshop on Atomic and Molecular (A+M) Data for Fusion Energy Research was held at the International Centre for Theoretical Physics (ICTP) in Trieste, Italy, from 28 August until 8 September 2006. The workshop was attended by fourteen students and three ICTP associates representing eleven Member States. A total of eight lecturers, including six external to the Agency, made presentations to the workshop. All lecturers provided advance copies of the lecture materials, and provided written assignments for the students to provide practical examples of applications of data issues to actual problems related to fusion energy research. All materials were collected on CDs, which were distributed to the students at the conclusion of the workshop. During the course of the workshop, the students were given the opportunity to describe their background and research interests. The workshop did arouse interest in A+M processes related to fusion, and was viewed as successful by both the students and lecturers. (author)

  16. Second Symposium on ''Current trends in international fusion research: review and assessment''. Chairman's summary of session

    International Nuclear Information System (INIS)

    Post, R.F.

    1998-01-01

    This session began with a keynote speech by B. Coppi of M.I.T., entitled: ''Physics of Fusion Burning Plasmas, Ignition, and Relevant Technology Issues.'' It continued with a second paper on the tokamak approach to fusion, presented by E. Mazzucato of the Princeton Plasma Physics Laboratory, entitled ''High Confinement Plasma Confinement Regime in TFTR Configurations with Reversed Magnetic Shear.'' The session continued with three talks discussing various aspects of the so-called ''Field Reversed Configuration'' (FRC), and concluded with a talk on a more general topic. The first of the three FRC papers, presented by J. Slough of the University of Washington, was entitled ''FRC Reactor for Deep Space Propulsion.'' This paper was followed by a paper by S. Goto of the Plasma Physics Laboratory of Osaka University in Japan, entitled ''Experimental Initiation of Field-Reversed Configuration (FRC) Toward Helium-3 Fusion.'' The third of the FRC papers, authored by H. Mimoto and Y. Tomito of the National Institute for Fusion Science, Nagoya, Japan, and presented by Y. Tomita was entitled ''Helium-3 Fusion Based on a Field-Reversed Configuration.'' The session was concluded with a paper presented by D. Ryutov of the Lawrence Livermore National Laboratory entitled: ''A User Facility for Research on Fusion Systems with Dense Plasmas.''

  17. Inertial confinement fusion research and development studies. Final report, October 1979-August 1980

    International Nuclear Information System (INIS)

    Bullis, R.; Finkelman, M.; Leng, J.; Luzzi, T.; Ojalvo, I.; Powell, E.; Sedgley, D.

    1980-08-01

    These Inertial Confinement Fusion (ICF) research and development studies were selected for structural, thermal, and vacuum pumping analyses in support of the High Yield Lithium Injection Fusion Energy (HYLIFE) concept development. An additional task provided an outlined program plan for an ICF Engineering Test Facility, using the HYLIFE concept as a model, although the plan is generally applicable to other ICF concepts. The HYLIFE is one promising type of ICF concept which features a falling array of liquid lithium jets. These jets surround the fusion reaction to protect the first structural wall (FSW) of the vacuum chamber by absorbing the fusion energy, and to act as the tritium breeder. The fusion energy source is a deuterium-tritium pellet injected into the chamber every second and driven by laser or heavy ion beams. The studies performed by Grumman have considered the capabilities of specific HYLIFE features to meet life requirements and the requirement to recover to preshot conditions prior to each subsequent shot. The components under investigation were the FSW which restrains the outward motion of the liquid lithium, the nozzle plate which forms the falling jet array, the graphite shield which is in direct top view of the fusion pellet, and the vacuum pumping system. The FSW studies included structural analysis, and definition of an experimental program to validate computer codes describing lithium motion and the resulting impact on the wall

  18. Summary report of second IAEA research coordination meeting on tritium inventory in fusion reactors

    International Nuclear Information System (INIS)

    Clark, R.E.H.

    2006-03-01

    Detailed discussions were held during an RCM at IAEA Headquarters on 18-19 October 2004 to review the progress made in the CRP on 'Tritium Inventory in Fusion Reactors'. Participants summarized the specific results obtained during the initial phase of the Coordinated Research Project (CRP), and considered the impact of the data generated on the design of fusion devices. Areas with further research needs were identified, and a set of outstanding objectives was formulated for the continuation of the CRP. The discussions, conclusions and recommendations of the RCM are briefly described in this report. (author)

  19. Italy, EURATOM and Early Research on Controlled Thermonuclear Fusion (1957-1962)

    International Nuclear Information System (INIS)

    Curli, Barbara

    2017-01-01

    This chapter traces the early origins of European collaboration in controlled thermonuclear fusion research, within the larger picture of Cold War nuclear policy in the late 1950s-early 1960s, and as a consequence of the signing of the EURATOM treaty in 1957. It then presents some preliminary findings on the Association contract which was signed in 1960 between EURATOM and Italy, in order to carry out research in controlled thermonuclear fusion at the then newly created 'Laboratori nazionali di Frascati', near Rome, within the framework of the Comitato Nazionale Energia Nucleare (CNEN), the Italian civilian nuclear energy agency.

  20. Controlled Nuclear Fusion Research, September 1965: Review Of Experimental Results

    Energy Technology Data Exchange (ETDEWEB)

    Spitzer, Lyman Jr. [Princeton University, Princeton, NJ (United States)

    1966-04-15

    To my way of thinking the most significant milestone of the present meeting is the substantial body of evidence that has been presented on the hydromagnetic stabilization of open-ended systems. The success of minimum magnetic-field ('minimum-B') configurations in stabilizing a plasma marks one more area where theory and experiment in the field of plasma physics have been brought together with gratifying results. Let me go back a little into history and discuss the gradual growth of our information on hydromagnetic instabilities generally. Many of you will remember that hydromagnetic theory was applied to the self-pinched discharge in the early years of the controUed fusion programme. The predictions of this theory were very shortly fulfilled by the observations; the effects were so unmistakable that it was not difficult to compare the theory with the observations. On the streak pictures of the linear or toroidal discharges that were obtained in those early years one saw clearly the diffuse plasma column, which first contracted to a narrow filament and then started to distort and kink until finally it hit the wall. Under some conditions the plasma was observed to break up into a series of blobs like a string of sausages. Since the behaviour was exactly what the theory had predicted, it took no very great experimental wisdom to conclude that observations had confirmed theory.

  1. Fusion power

    International Nuclear Information System (INIS)

    Hancox, R.

    1981-01-01

    The principles of fusion power, and its advantages and disadvantages, are outlined. Present research programmes and future plans directed towards the development of a fusion power reactor, are summarized. (U.K.)

  2. Present status of design, research and development of nuclear fusion reactors and problems

    International Nuclear Information System (INIS)

    1983-04-01

    Seven years have elapsed since the publication of ''Progress of nuclear fusion research and perspective toward the development of power reactors'' by the Atomic Energy Society of Japan in August, 1976. During this period, the research and development of nuclear fusion have changed from plasma physics to reactor technology, being conscious of the realization of fusion reactors. There are the R project in the Institute of Plasma Physics, Nagoya University, and the design and construction of JT-60 in Japan Atomic Energy Research Institute, to put it concretely. Now the research and development taking the economical efficiency into account are adopted. However, the type of fusion reactors is not reduced to tokamak type, accordingly the research and development to meet the diverse possibilities are forwarded. The progress of tokamak reactor research, core plasma design, nuclear design and shielding design, thermal structure design, the design of superconducting magnets, disassembling and repair, safety, economical efficiency, the conceptual design of other types than tokamak and others are reported. (Kako, I.)

  3. Fusion: introduction

    International Nuclear Information System (INIS)

    Decreton, M.

    2006-01-01

    The article gives an overview and introduction to the activities of SCK-CEN's research programme on fusion. The decision to construct the ITER international nuclear fusion experiment in Cadarache is highlighted. A summary of the Belgian contributions to fusion research is given with particular emphasis on studies of radiation effects on diagnostics systems, radiation effects on remote handling sensing systems, fusion waste management and socio-economic studies

  4. Electromagnetic Weible Instability in Intense Charged Particle Beams with Large Energy Anisotropy

    International Nuclear Information System (INIS)

    Startsev, Edward A.; Davidson, Ronald C.

    2003-01-01

    In plasmas with strongly anisotropic distribution functions, collective instabilities may develop if there is sufficient coupling between the transverse and longitudinal degrees of freedom. Our previous numerical and theoretical studies of intense charged particle beams with large temperature anisotropy [E. A. Startsev, R. C. Davidson and H. Qin, PRSTAB, 6, 084401 (2003); Phys. Plasmas 9, 3138 (2002)] demonstrated that a fast, electrostatic, Harris-like instability develops, and saturates nonlinearly, for sufficiently large temperature anisotropy (T perpendi c ular b /T parallelb >> 1). The total distribution function after saturation, however, is still far from equipartitioned. In this paper the linearized Vlasov-Maxwell equations are used to investigate detailed properties of the transverse electromagnetic Weibel-type instability for a long charge bunch propagating through a cylindrical pipe of radius r w . The kinetic stability analysis is carried out for azimuthally symmetric perturbations about a two-temperature thermal equilibrium distribution in the smooth-focusing approximation. The most unstable modes are identified, and their eigenfrequencies, radial mode structure and instability thresholds are determined. The stability analysis shows that, although there is free energy available to drive the electromagnetic Weibel instability, the finite transverse geometry of the charged particle beam introduces a large threshold value for the temperature anisotropy ((T perpendi c ularb /T parallelb ) Weibel >> (T perpendi c ularb /T parallelb ) Harris ) below which the instability is absent. Hence, unlike the case of an electrically neutral plasma, the Weibel instability is not expected to play as significant a role in the process of energy isotropization of intense unneutralized charged particle beams as the electrostatic Harris-type instability

  5. Automated detection and analysis of particle beams in laser-plasma accelerator simulations

    International Nuclear Information System (INIS)

    Ushizima, Daniela Mayumi; Geddes, C.G.; Cormier-Michel, E.; Bethel, E. Wes; Jacobsen, J.; Prabhat; Ruebel, O.; Weber, G.; Hamann, B.

    2010-01-01

    scientific data mining is increasingly considered. In plasma simulations, Bagherjeiran et al. presented a comprehensive report on applying graph-based techniques for orbit classification. They used the KAM classifier to label points and components in single and multiple orbits. Love et al. conducted an image space analysis of coherent structures in plasma simulations. They used a number of segmentation and region-growing techniques to isolate regions of interest in orbit plots. Both approaches analyzed particle accelerator data, targeting the system dynamics in terms of particle orbits. However, they did not address particle dynamics as a function of time or inspected the behavior of bunches of particles. Ruebel et al. addressed the visual analysis of massive laser wakefield acceleration (LWFA) simulation data using interactive procedures to query the data. Sophisticated visualization tools were provided to inspect the data manually. Ruebel et al. have integrated these tools to the visualization and analysis system VisIt, in addition to utilizing efficient data management based on HDF5, H5Part, and the index/query tool FastBit. In Ruebel et al. proposed automatic beam path analysis using a suite of methods to classify particles in simulation data and to analyze their temporal evolution. To enable researchers to accurately define particle beams, the method computes a set of measures based on the path of particles relative to the distance of the particles to a beam. To achieve good performance, this framework uses an analysis pipeline designed to quickly reduce the amount of data that needs to be considered in the actual path distance computation. As part of this process, region-growing methods are utilized to detect particle bunches at single time steps. Efficient data reduction is essential to enable automated analysis of large data sets as described in the next section, where data reduction methods are steered to the particular requirements of our clustering analysis

  6. Thermonuclear fusion: from fundamental research to energy production? Science and technology report No. 26

    International Nuclear Information System (INIS)

    Laval, Guy; Blanzat, Bernard; Aspect, Alain; Aymar, Robert; Bielak, Bogdan; Decroisette, Michel; Martin, Georges; Andre, Michel; Schirmann, Daniel; Garbet, Xavier; Jacquinot, Jean; Laviron, Clement; Migus, Arnold; Moreau, Rene; Pironneau, Olivier; Quere, Yves; Vallee, Alain; Dercourt, Jean; Bayer, Charles; Juraszek, Denis; Deutsch, Claude; Le Garrec, Bruno; Hennequin, Pascale; Peysson, Yves; Rax, Jean-Marcel; Pesme, Denis; Bauche, Jacques; Monier-Garbet, Pascale; Stamm, Roland; Zerah, Gilles; Ghendrih, Philippe; Layet, Roland; Grosman, Andre; Alamo, Ana; Giancarli, Luciano; Poitevin, Yves; Rigal, Emmanuel; Chieze, Jean-Pierre

    2007-01-01

    This work has been commissioned by the French ministry of Education, Sciences and Research, its aim is to provide a reliable account of the state of development of thermonuclear fusion. This report makes a point on the scientific knowledge accumulated on the topic and highlights the research programs that are necessary to overcome the technological difficulties and draws the necessary steps before an industrial application to electricity production. This report is divided into 10 chapters: 1) tokamak technology and ITER, 2) inertial fusion, 3) magnetized hot plasmas, 4) laser-plasma interaction and peta-watt lasers, 5) atomic physics and fusion, 6) computer simulation, 7) plasma-wall interaction, 8) materials for fusion reactors, 9) safety analysis, and 10) inertial fusion and astrophysics. This report has been written by a large panel of experts gathered by the French Academy of Sciences. The comments on the issue by the 3 French organizations: Cea, Cnrs and SFP (French Society of Physics) follow the last chapter

  7. Test of the photon detection system for the LHCb RICH Upgrade in a charged particle beam

    CERN Document Server

    Baszczyk, M.K.

    2017-01-16

    The LHCb detector will be upgraded to make more efficient use of the available luminosity at the LHC in Run III and extend its potential for discovery. The Ring Imaging Cherenkov detectors are key components of the LHCb detector for particle identification. In this paper we describe the setup and the results of tests in a charged particle beam, carried out to assess prototypes of the upgraded opto-electronic chain from the Multi-Anode PMT photosensor to the readout and data acquisition system.

  8. Particle beam experiments for the analysis of reactive sputtering processes in metals and polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Corbella, Carles; Grosse-Kreul, Simon; Kreiter, Oliver; Arcos, Teresa de los; Benedikt, Jan; Keudell, Achim von [RD Plasmas with Complex Interactions, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum (Germany)

    2013-10-15

    A beam experiment is presented to study heterogeneous reactions relevant to plasma-surface interactions in reactive sputtering applications. Atom and ion sources are focused onto the sample to expose it to quantified beams of oxygen, nitrogen, hydrogen, noble gas ions, and metal vapor. The heterogeneous surface processes are monitored in situ by means of a quartz crystal microbalance and Fourier transform infrared spectroscopy. Two examples illustrate the capabilities of the particle beam setup: oxidation and nitriding of aluminum as a model of target poisoning during reactive magnetron sputtering, and plasma pre-treatment of polymers (PET, PP)

  9. Optical method for mapping the transverse phase space of a charged particle beam

    International Nuclear Information System (INIS)

    Fiorito, R.B.; Shkvarunets, A.G.; O'Shea, P.G.

    2002-01-01

    We are developing an all optical method to map the transverse phase space map of a charged particle beam. Our technique employs OTR interferometry (OTRI) in combination with a scanning pinhole to make local orthogonal (x,y) divergence and trajectory angle measurements as function of position within the transverse profile of the beam. The localized data allows a reconstruction of the horizontal and vertical phase spaces of the beam. We have also demonstrated how single and multiple pinholes can in principle be used to make such measurements simultaneously

  10. Design of focussing and guide structures for charged particle beams using rare earth cobalt permanent magnets

    International Nuclear Information System (INIS)

    Halbach, K.

    1981-06-01

    A number of different methods can be used to describe the magnetic properties of oriented Rare Earth Cobalt (REC) material. It will be shown how these different methods of description lead to different ways to think about, and to execute, the design of magnets that are useful for focusing and guiding charged particle beams. It will also be domonstrated that in some of these magnets, the REC material is used in a somewhat unusual way, requiring magnetics properties of the material that are usually not considered to be of great practical importance

  11. Suppression of tilting instability of a compact torus by energetic particle beams

    International Nuclear Information System (INIS)

    Nomura, Yasuyuki.

    1984-11-01

    It is shown that the tilting instability of a compact torus can be suppressed by toroidally circulating energetic particle beams. The stabilizing mechanism is based on the properties of the forced oscillation in the motion of beam particles in a plasma ring. The required beam current for the stabilization is estimated to be sufficiently small compared to the plasma current in the case that the angular velocity of beam particles is close to the betatron frequency. This stabilizing method is applied to a field reversed configuration. Effects of the plasma surface current and beam divergences are also examined. (author)

  12. Annual report of Naka Fusion Research Establishment. From April 1, 1996 to March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Masatsugu; Ide, Shunsuke; Matsukawa, Makoto; Kurihara, Ryoichi; Koizumi, Koichi; Takahashi, Ichiro [eds.] [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1997-10-01

    This report provides an overview of research and development activities at Naka Fusion Research Establishment, JAERI, during the period from April 1, 1996 to March 31, 1997. The activities in Naka Fusion Research Establishment are highlighted by high temperature plasma research in JT-60 and JFT-2M, and progress in ITER-EDA, including technology development. The objectives of the JT-60 project are to contribute to the ITER physics R and D and to establish the physics basis for a steady state tokamak fusion reactor like SSTR. Objectives of the JFT-2M program are (1) advanced and basic researches for the development of high-performance plasmas for nuclear fusion and (2) contribution to the physics R and D for ITER, with a merit of flexibility of a medium-size device. The Detailed Design Report (DDR) of ITER was issued by the Director in November 1996, as the basis of the Final Design Report (FDR). After the formal review by the Technical Advisory Committee (TAC), the DDR was officially accepted by the ITER Council at its 11th Meeting held in December 1996. The DDR is composed of various technical documents on the detailed design of plasma parameters, tokamak components, plant system and tokamak building. The major results of safety analyses described in the Non-site Specific Safety Report (NSSR)-1 was also included in the DDR. The FDR will be prepared by the end of 1997 for presentation at the ITER Council. (J.P.N.)

  13. Research programme on controlled thermonuclear fusion - Synthesis report 2010; Programme de recherche Fusion thermonucleaire controlee. Rapport de synthese 2010

    Energy Technology Data Exchange (ETDEWEB)

    Vaucher, C. [Secretariat d' Etat a l' education et a la recherche, Berne (Switzerland); Tran, M. Q.; Villard, L. [Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland); Marot, L. [University of Basel, Basel (Switzerland)

    2011-07-01

    Since 1978, research on thermonuclear fusion in Switzerland is closely related to the research programme of the European Atomic Energy Community (EURATOM). The Swiss projects tackle aspects of plasma physics and fusion technology. Switzerland participates to the construction and operation of the Joint European Torus (JET). The International Thermonuclear Experimental Reactor (ITER) is being built; the first plasma is expected in 2019. The 'Centre de Recherches en Physique des Plasmas' (CRPP) of the EPFL participates to EURATOM scientific and technological projects in magnetic confinement physics, through an experimental contribution (the Variable Configuration Tokamak, TCV) and theoretical studies. Thanks to the large flexibility of the TCV design and operation modus, plasmas of different shapes can be created and controlled, what is a very useful option to verify numerical simulation results. Besides, the injection of millimetre waves allows directing the injected power according to specific profiles. A configuration of type 'snowflakes' could be created, reducing the power deposition at the edge of the plasma. Theoretical studies on turbulence have improved the plasma stability in the TCV. For the first time in the world, TCV could reach a stable plasma, the plasma current being generated using the so-called 'bootstrap' phenomenon. Besides turbulence, studies were focused on heat and particle transport in tokamaks, on an analysis of the equilibrium and magneto-hydrodynamic stability of tokamaks and stellarators, on the application of radiofrequency waves and on the optimization of new confinement configurations. Experiments in the JET facility confirmed the numerical results of theoretical simulations. The TORPEX facility, which is simpler than TCV, allows high space-temporal resolution measurements for the study of turbulences and plasma threads ('blobs'). At the Paul Scherrer Institute (PSI), research topics include

  14. The laser thermonuclear fusion

    International Nuclear Information System (INIS)

    Coutant, J.; Dautray, R.; Decroisette, M.; Watteau, J.P.

    1987-01-01

    Principle of the thermonuclear fusion by inertial confinement: required characteristics of the deuterium-tritium plasma and of the high power lasers to be used Development of high power lasers: active media used; amplifiers; frequency conversion; beam quality; pulse conditioning; existing large systems. The laser-matter interaction: collision and collective interaction of the laser radiation with matter; transport of the absorbed energy; heating and compression of deuterium-tritium; diagnoses and their comparison with the numerical simulation of the experiment; performances. Conclusions: difficulties to overcome; megajoule lasers; other energy source: particles beams [fr

  15. Pulsed-power-supply development for fusion applications: special research support agreement

    International Nuclear Information System (INIS)

    1980-01-01

    This is a final summary describing research and development work carried out by the Center for Electromechanics at The University of Texas at Austin (CEM-UT) for the Department of Energy during calendar years 1978, 1979, and 1980. The general purpose of this special research support program was to conduct research on pulsed power supply development for fusion applications in the areas of homopolar generators (HPGs), tokamak ohmic heating stuides, switching, and pulse compression technology

  16. Recent developments in IFE safety and tritium research and considerations for future nuclear fusion facilities

    International Nuclear Information System (INIS)

    Reyes, Susana; Anklam, Tom; Meier, Wayne; Campbell, Patrick; Babineau, Dave; Becnel, James; Taylor, Craig; Coons, Jim

    2016-01-01

    Highlights: • The safety characteristics and at risk inventories in an IFE facility are discussed. • The primary nuclear hazard is the potential exposure of workers and/or the public to tritium and/or neutronically activated products. • Recent technology developments in tritium processing are key for minimization of inventories. • Initial safety studies indicate that hazards associated to the use of liquid lithium can be appropriately managed. • Simulation of worst-case scenarios indicate that the accident consequences are limited and below the limit for public evacuation. - Abstract: Over the past five years, the fusion energy group at Lawrence Livermore National Laboratory (LLNL) has made significant progress in the area of safety and tritium research for Inertial Fusion Energy (IFE). Focus has been driven towards the minimization of inventories, accident safety, development of safety guidelines and licensing considerations. Recent technology developments in tritium processing and target fill have had a major impact on reduction of tritium inventories in the facility. A safety advantage of inertial fusion energy using indirect-drive targets is that the structural materials surrounding the fusion reactions can be protected from target emissions by a low-pressure chamber fill gas, therefore eliminating plasma-material erosion as a source of activated dust production. An important inherent safety advantage of IFE when compared to other magnetic fusion energy (MFE) concepts that have been proposed to-date (including ITER), is that loss of plasma control events with the potential to damage the first wall, such as disruptions, are non-conceivable, therefore eliminating a number of potential accident initiators and radioactive in-vessel source term generation. In this paper, we present an overview of the safety assessments performed to-date, comparing results to the US DOE Fusion Safety Standards guidelines and the recent lessons-learnt from ITER safety and

  17. Recent developments in IFE safety and tritium research and considerations for future nuclear fusion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Susana, E-mail: reyes20@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA (United States); Anklam, Tom; Meier, Wayne; Campbell, Patrick [Lawrence Livermore National Laboratory, Livermore, CA (United States); Babineau, Dave; Becnel, James [Savannah River National Laboratory, Aiken, SC (United States); Taylor, Craig; Coons, Jim [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2016-11-01

    Highlights: • The safety characteristics and at risk inventories in an IFE facility are discussed. • The primary nuclear hazard is the potential exposure of workers and/or the public to tritium and/or neutronically activated products. • Recent technology developments in tritium processing are key for minimization of inventories. • Initial safety studies indicate that hazards associated to the use of liquid lithium can be appropriately managed. • Simulation of worst-case scenarios indicate that the accident consequences are limited and below the limit for public evacuation. - Abstract: Over the past five years, the fusion energy group at Lawrence Livermore National Laboratory (LLNL) has made significant progress in the area of safety and tritium research for Inertial Fusion Energy (IFE). Focus has been driven towards the minimization of inventories, accident safety, development of safety guidelines and licensing considerations. Recent technology developments in tritium processing and target fill have had a major impact on reduction of tritium inventories in the facility. A safety advantage of inertial fusion energy using indirect-drive targets is that the structural materials surrounding the fusion reactions can be protected from target emissions by a low-pressure chamber fill gas, therefore eliminating plasma-material erosion as a source of activated dust production. An important inherent safety advantage of IFE when compared to other magnetic fusion energy (MFE) concepts that have been proposed to-date (including ITER), is that loss of plasma control events with the potential to damage the first wall, such as disruptions, are non-conceivable, therefore eliminating a number of potential accident initiators and radioactive in-vessel source term generation. In this paper, we present an overview of the safety assessments performed to-date, comparing results to the US DOE Fusion Safety Standards guidelines and the recent lessons-learnt from ITER safety and

  18. Polarization plasma spectroscopy (PPS) viewed from plasma physics and fusion research

    International Nuclear Information System (INIS)

    Ida, Katsumi

    1998-01-01

    Recently the measurements of poloidal magnetic field become important in plasma physics and nuclear fusion research, since an improved confinement mode associating with a negative magnetic shear has been found. The polarization plasma spectroscopy is recognized to be a useful tool to measure poloidal magnetic field and pitch angle of magnetic field. (author)

  19. IAEA technical committee meeting on research using small fusion devices (abstracts)

    International Nuclear Information System (INIS)

    1999-12-01

    The thirteenth IAEA technical committee meeting on research using small fusion devices are held in Chengdu, P. R. China on 18-20 Oct. , 1999. 41 articles are received and the content includes toroidal systems, helical systems, plasma focus, diagnostic systems, theory and modeling, improving confinement, numerical simulation, innovative concepts and others

  20. Plasma physics and controlled nuclear fusion research 1994. V. 3. Proceedings of the fifteenth international conference

    International Nuclear Information System (INIS)

    1996-01-01

    This is the third volume of the proceedings of the 15th International Atomic Energy Agency Conference on Plasma Physics and Controlled Nuclear Fusion Research held in Seville, Spain, from 26 September - 1 October 1994. Contained in it are 29 papers on inertial confinement and 46 papers on magnetic confinement. Refs, figs, tabs

  1. Fusion energy research, the tokamak of CRPP-EPFL, electrotechnical equipment

    International Nuclear Information System (INIS)

    1993-01-01

    The topics of this information meeting were: fusion energy research at CRPP, the TCV tokamak, an alternating current generator which does not stress the grid, AC/DC multi-megawatt converters, stabilisation of the plasma, a fast and modular power AC/DC converter. figs., tabs., refs

  2. High-power pulsed light ion beams for applications in fusion- and matter research

    International Nuclear Information System (INIS)

    Bluhm, H.; Karow, H.U.; Rusch, D.; Zieher, K.W.

    1982-01-01

    The foundations of ultrahigh-power pulse techniques are described together with the two pulse generators KALIF (Karlsruhe Light lion Facility) and Pollux of the INR. The physical principles and diagnostics of ion beam production are discussed as well as possible applications in the field of fusion research. (orig./HT) [de

  3. Preparation of processed nuclear data libraries for thermal, fast and fusion research and power reactor applications

    International Nuclear Information System (INIS)

    Ganesan, S.

    1994-03-01

    A Consultants Meeting on ''Preparation of Processed Nuclear Data Libraries for Thermal, Fast and Fusion Research and Power Reactor Applications'' was convened by the International Atomic Energy Agency and held during December 13-16, 1993 December 8-10, 1993 at the IAEA Headquarters, Vienna. The detailed agenda, the complete list of participants and the recommendations are presented in this report. (author)

  4. Post-doctoral research work developed at the National Institute for Fusion Science - Japan

    International Nuclear Information System (INIS)

    Ueda, M.

    1992-05-01

    This is a research report report on the work developed at the National Institute for Fusion Science - Japan, involving study of Beam Emission Spectroscopy. It describes the use of a fast neutral lithium beam (8 KeV) to measure the density profile in a Compact Helical Device. (A.C.A.S.)

  5. The tritium monitoring requirements of fusion and the status of research

    International Nuclear Information System (INIS)

    Nickerson, S.B.; Gerdingh, R.F.; Penfold, K.

    1982-10-01

    This report is a summary of an investigation into the tritium monitoring requirements of tritium laboratories, D-T burning ignition experiments, and fusion reactors. There is also a summary of the status of research into tritium monitoring and a survey of commercially available tritium monitors

  6. Pacific Northwest Laboratory report on fusion energy research, April 1977 - June 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-07-01

    The development of economic data for fusion power plants continued in a study estimating the potential impact of a shortage of materials important in fusion plant construction. In studies developing heat transfer and fluid flow design tools for fusion reactor blankets, preconceptual design studies were initiated to identify the potential design limits of water cooling in the first wall of Tokamak Next Step (TNS) concepts. In surface effects research clean gold samples were irradiated in the University of California (D,Be) neutron source for a neutron sputtering experiment. Light ion and neutron irradiation experiments have continued in studies of the effects of radiation on mechanical properties. The hardening response of 14 MeV neutron-irradiated nickel changed at high particle fluences (10/sup 16/ to 10/sup 17/ particles/cm/sup 2/) while the hardening response of 16 MeV proton-irradiated nickel did not, which may have been due to a difference in irradiation hardening mechanisms. The flux dependence of the damage microstructure and irradiation hardening of materials needs further study to clarify uncertainty about light ion and fusion neutron damage processes. Neutron irradiations of Ni, 316SS, and Nb wires and foils were completed. Work has continued in studies developing acoustic emission (AE) techniques for determining the prebreakdown behavior and failure mechanisms in electric insulators with potential applications in fusion reactors. Scoping experiments with the high-vacuum dielectric breakdown apparatus were conducted.

  7. Overview of Heavy Ion Fusion Accelerator Research in the U. S.

    Science.gov (United States)

    Friedman, Alex

    2002-12-01

    This article provides an overview of current U.S. research on accelerators for Heavy Ion Fusion, that is, inertial fusion driven by intense beams of heavy ions with the goal of energy production. The concept, beam requirements, approach, and major issues are introduced. An overview of a number of new experiments is presented. These include: the High Current Experiment now underway at Lawrence Berkeley National Laboratory; studies of advanced injectors (and in particular an approach based on the merging of multiple beamlets), being investigated experimentally at Lawrence Livermore National Laboratory); the Neutralized (chamber) Transport Experiment being assembled at Lawrence Berkeley National Laboratory; and smaller experiments at the University of Maryland and at Princeton Plasma Physics Laboratory. The comprehensive program of beam simulations and theory is outlined. Finally, prospects and plans for further development of this promising approach to fusion energy are discussed.

  8. The European fusion program and the role of the research reactors

    International Nuclear Information System (INIS)

    Laesser, R.; Andreani, R.; Diegele, E.

    2005-01-01

    The main objectives of the European long-term Fusion Technology Program are i) investigation of DEMO breeding blankets options, ii) development of low activation materials resistant to high neutron fluence, iii) construction of IFMIF for validation of DEMO materials, and iv) promotion of modelling efforts for the understanding of radiation damage. A large effort is required for the development and performance verification of the materials subjected to the intense neutron irradiation encountered in fusion reactors. In the absence of a strong 14.1 MeV neutron source fission materials research reactors are used. Elaborate in-pile and post-irradiation examinations are performed. In addition, the modelling effort is increased to predict the damage by a 'true' fusion spectrum in the future. Even assuming that a positive decision for IFMIF construction can be reached, the operation of a limited number of materials test reactors is needed to perform irradiation studies on large samples and for screening. (author)

  9. Overview of heavy ion fusion accelerator research in the U.S

    International Nuclear Information System (INIS)

    Friedman, Alex

    2002-01-01

    This article provides an overview of current U.S. research on accelerators for Heavy Ion Fusion, that is, inertial fusion driven by intense beams of heavy ions with the goal of energy production. The concept, beam requirements, approach, and major issues are introduced. An overview of a number of new experiments is presented. These include: the High Current Experiment now underway at Lawrence Berkeley National Laboratory; studies of advanced injectors (and in particular an approach based on the merging of multiple beamlets), being investigated experimentally at Lawrence Livermore National Laboratory); the Neutralized (chamber) Transport Experiment being assembled at Lawrence Berkeley National Laboratory; and smaller experiments at the University of Maryland and at Princeton Plasma Physics Laboratory. The comprehensive program of beam simulations and theory is outlined. Finally, prospects and plans for further development of this promising approach to fusion energy are discussed

  10. Overview of Heavy Ion Fusion Accelerator Research in the U.S

    International Nuclear Information System (INIS)

    Friedman, A

    2002-01-01

    This article provides an overview of current U.S. research on accelerators for Heavy Ion Fusion, that is, inertial fusion driven by intense beams of heavy ions with the goal of energy production. The concept, beam requirements, approach, and major issues are introduced. An overview of a number of new experiments is presented. These include: the High Current Experiment now underway at Lawrence Berkeley National Laboratory; studies of advanced injectors (and in particular an approach based on the merging of multiple beamlets), being investigated experimentally at Lawrence Livermore National Laboratory; the Neutralized (chamber) Transport Experiment being assembled at Lawrence Berkeley National Laboratory; and smaller experiments at the University of Maryland and at Princeton Plasma Physics Laboratory. The comprehensive program of beam simulations and theory is outlined. Finally, prospects and plans for further development of this promising approach to fusion energy are discussed

  11. Discourse, Power, and Knowledge in the Management of "Big Science": The Production of Consensus in a Nuclear Fusion Research Laboratory.

    Science.gov (United States)

    Kinsella, William J.

    1999-01-01

    Extends a Foucauldian view of power/knowledge to the archetypical knowledge-intensive organization, the scientific research laboratory. Describes the discursive production of power/knowledge at the "big science" laboratory conducting nuclear fusion research and illuminates a critical incident in which the fusion research…

  12. A new method of measurement of trace elements by using particle beams

    International Nuclear Information System (INIS)

    Matsumoto, Shinji

    1982-01-01

    A new method of measurement of light elements by using the particle beam from an accelerator was developed. This paper reports on the results of analyses of N-15 and O-18. The tandem accelerator of University of Tokyo was used to accelerate proton beam. The energy of protons was determined from the excitation curves of elastic scattering by N-15, O-18 and O-16. The scattering by O-16 was background count. Therefore, The measurement was made at the energy of small background and large true counting. Biological samples were examined. The linearity of counts with the concentration of N-15 and O-18 was confirmed. The cells which contain glycine (O-18, 71.8 percent) and methionine (N-15, 95 percent) were analyzed. The peaks of N-15 and O-18 were well separated from teh peaks by N-14 and O-16. The natural amounts of N-15 in adenine and O-18 in glucose were also measured. The resonance reaction method of measurement by using particle beam was developed. (Kato, T.)

  13. Charged-particle beam diagnostics for the Advanced Photon Source (APS)

    International Nuclear Information System (INIS)

    Lumpkin, A.H.; Decker, G.; Kahana, E.; Patterson, D.; Sellyey, W.; Wang, X.; Chung, Y.

    1992-01-01

    Plans, prototypes, and initial test results for the charged-particle beam (e - , e + ) diagnostic systems on the injector rings, their transport lines, and the storage ring for the Advanced Photon Source (APS) are presented. The APS will be a synchrotron radiation user facility with one of the world's brightest x-ray sources in the 10-keV to 100-keV regime. Its 200-MeV electron linac, 450-MeV positron linac, positron accumulator ring, 7-GeV booster synchrotron, 7-GeV storage ring, and undulator test lines will also demand the development and demonstration of key particle-beam characterization techniques over a wide range of parameter space. Some of these parameter values overlap or approach those projected for fourth generation light sources (linac-driven FELs and high brightness storage rings) as described at a recent workshop. Initial results from the diagnostics prototypes on the linac test stand operating at 45-MeV include current monitor data, beam loss monitor data, and video digitization using VME architecture

  14. Design study of beam position monitors for measuring second-order moments of charged particle beams

    Science.gov (United States)

    Yanagida, Kenichi; Suzuki, Shinsuke; Hanaki, Hirofumi

    2012-01-01

    This paper presents a theoretical investigation on the multipole moments of charged particle beams in two-dimensional polar coordinates. The theoretical description of multipole moments is based on a single-particle system that is expanded to a multiparticle system by superposition, i.e., summing over all single-particle results. This paper also presents an analysis and design method for a beam position monitor (BPM) that detects higher-order (multipole) moments of a charged particle beam. To calculate the electric fields, a numerical analysis based on the finite difference method was created and carried out. Validity of the numerical analysis was proven by comparing the numerical with the analytical results for a BPM with circular cross section. Six-electrode BPMs with circular and elliptical cross sections were designed for the SPring-8 linac. The results of the numerical calculations show that the second-order moment can be detected for beam sizes ≧420μm (circular) and ≧550μm (elliptical).

  15. Design study of beam position monitors for measuring second-order moments of charged particle beams

    Directory of Open Access Journals (Sweden)

    Kenichi Yanagida

    2012-01-01

    Full Text Available This paper presents a theoretical investigation on the multipole moments of charged particle beams in two-dimensional polar coordinates. The theoretical description of multipole moments is based on a single-particle system that is expanded to a multiparticle system by superposition, i.e., summing over all single-particle results. This paper also presents an analysis and design method for a beam position monitor (BPM that detects higher-order (multipole moments of a charged particle beam. To calculate the electric fields, a numerical analysis based on the finite difference method was created and carried out. Validity of the numerical analysis was proven by comparing the numerical with the analytical results for a BPM with circular cross section. Six-electrode BPMs with circular and elliptical cross sections were designed for the SPring-8 linac. The results of the numerical calculations show that the second-order moment can be detected for beam sizes ≧420  μm (circular and ≧550  μm (elliptical.

  16. Data management, code deployment, and scientific visualization to enhance scientific discovery in fusion research through advanced computing

    International Nuclear Information System (INIS)

    Schissel, D.P.; Finkelstein, A.; Foster, I.T.; Fredian, T.W.; Greenwald, M.J.; Hansen, C.D.; Johnson, C.R.; Keahey, K.; Klasky, S.A.; Li, K.; McCune, D.C.; Peng, Q.; Stevens, R.; Thompson, M.R.

    2002-01-01

    The long-term vision of the Fusion Collaboratory described in this paper is to transform fusion research and accelerate scientific understanding and innovation so as to revolutionize the design of a fusion energy source. The Collaboratory will create and deploy collaborative software tools that will enable more efficient utilization of existing experimental facilities and more effective integration of experiment, theory, and modeling. The computer science research necessary to create the Collaboratory is centered on three activities: security, remote and distributed computing, and scientific visualization. It is anticipated that the presently envisioned Fusion Collaboratory software tools will require 3 years to complete

  17. Pathways to Energy from Inertial Fusion. An Integrated Approach. Report of a Coordinated Research Project 2006-2010

    International Nuclear Information System (INIS)

    2013-04-01

    The IAEA has continuously demonstrated its commitment to supporting the development of safe and environmentally clean nuclear fusion energy. Statistics show that at the current rate of energy consumption, fusion energy would remain an inexhaustible energy source for humankind for millions of years. Furthermore, some of the existing and foreseen risks - such as nuclear waste disposal and rising greenhouse gas emissions from the use of fossil fuels - can also be reduced. In the quest for fusion energy, two main lines of research and development are currently being pursued worldwide, namely the inertial and the magnetic confinement fusion concepts. For both approaches, the IAEA has conducted coordinated research activities focusing on specific physics and technological issues relevant the establishment of the knowledge base and foundation for the design and construction of fusion power plants. This report describes the recent research and technological developments and challenges in inertial fusion energy within the framework of such a coordinated research effort. The coordinated research project on Pathways to Energy from Inertial Fusion: An Integrated Approach was initiated in 2006 and concluded in 2010. The project involved experts and institutions from 16 Member States, addressing issues relevant to advancing inertial fusion energy research and development in its practical applications. The key topics addressed include: (i) high repetition rate, low cost, high efficiency ignition drivers; (ii) beam-matter/beam-plasma interaction related to inertial fusion target physics; (iii) target fusion chamber coupling and interface; and (iv) integrated inertial fusion power plant design. Participants in this coordinated research project have contributed 17 detailed research and technology progress reports of work performed at national and international levels. This report compiles all these reports while highlighting the various achievements.

  18. Atomic and molecular physics of controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Joachain, C.J.; Post, D.E.

    1983-01-01

    This book attempts to provide a comprehensive introduction to the atomic and molecular physics of controlled thermonuclear fusion, and also a self-contained source from which to start a systematic study of the field. Presents an overview of fusion energy research, general principles of magnetic confinement, and general principles of inertial confinement. Discusses the calculation and measurement of atomic and molecular processes relevant to fusion, and the atomic and molecular physics of controlled thermonuclear research devices. Topics include recent progress in theoretical methods for atomic collisions; current theoretical techniques for electron-atom and electronion scattering; experimental aspects of electron impact ionization and excitation of positive ions; the theory of charge exchange and ionization by heavy particles; experiments on electron capture and ionization by multiply charged ions; Rydberg states; atomic and molecular processes in high temperature, low-density magnetically confined plasmas; atomic processes in high-density plasmas; the plasma boundary region and the role of atomic and molecular processes; neutral particle beam production and injection; spectroscopic plasma diagnostics; and particle diagnostics for magnetic fusion experiments

  19. Contribution to fusion research from IAEA coordinated research projects and joint experiments

    Czech Academy of Sciences Publication Activity Database

    Gryaznevich, M.; Van Oost, G.; Stöckel, Jan; Kamendje, R.; Kuteev, B.N.; Melnikov, A.; Popov, T.; Svoboda, V.

    2015-01-01

    Roč. 55, č. 10 (2015), s. 104019-104019 ISSN 0029-5515. [Fusion Energy Conference 2014 (FEC) /25./. St Petersburg, 13.10.2014-18.10.2014] Institutional support: RVO:61389021 Keywords : IAEA CRP * IAEA JE * small tokamaks * fusion neutron source Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.040, year: 2015 http://iopscience.iop.org/0029-5515/55/10/104019

  20. An exploration for a feasible fusion energy research strategy in Korea

    International Nuclear Information System (INIS)

    Kim, Sung Kyu; Park, Jong Kyun; Yang, Maeng Ho

    2005-01-01

    Recently, the fierce competition between European Union (EU) and Japan to host the International Thermo-nuclear Experimental Reactor (ITER) has aroused in Korea renewed interests in fusion research and its pros-pect for commercial fusion power generation. Korea has committed itself in 2003 to the construction and operation of ITER which spans three decades. This 30-years-long commitment to ITER surely is longer than any other scientific and/or technological venture that has ever been taken up after its birth in 1948. ITER poses both as a great opportunity for Korea, allegedly but not convincingly enough, and as a potential 'black hole' sucking in all resources for future energy researches, to the domestic technical communities and industries. However, ITER and fusion research is not just a technico-industrial issue but may as well be a politico-security issue, like many other apparent technology issues such as recent participation in the Galileo project. In this article, the authors will explore this situation with an emphasis on domestic and foreign constraints and propose a realistic and verifiable strategy to address these issues and to develop fusion energy in Korea