WorldWideScience

Sample records for particle therapy current

  1. Current and future accelerator technologies for charged particle therapy

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Hywel, E-mail: hywel.owen@manchester.ac.uk [School of Physics and Astronomy, University of Manchester (United Kingdom); Cockcroft Institute for Accelerator Science and Technology, Daresbury Science and Innovation Campus, Warrington WA4 4AD (United Kingdom); Lomax, Antony [Paul Scherrer Institute, Villigen (Switzerland); Department of Physics, ETH Zurich (Switzerland); Jolly, Simon [Department of Physics and Astronomy, University College London (United Kingdom)

    2016-02-11

    The past few years have seen significant developments both of the technologies available for proton and other charged particle therapies, and of the number and spread of therapy centres. In this review we give an overview of these technology developments, and outline the principal challenges and opportunities we see as important in the next decade. Notable amongst these is the ever-increasing use of superconductivity both in particle sources and for treatment delivery, which is likely to greatly increase the accessibility of charged particle therapy treatments to hospital centres worldwide.

  2. Particle therapy

    Energy Technology Data Exchange (ETDEWEB)

    Raju, M.R.

    1993-09-01

    Particle therapy has a long history. The experimentation with particles for their therapeutic application got started soon after they were produced in the laboratory. Physicists played a major role in proposing the potential applications in radiotherapy as well as in the development of particle therapy. A brief review of the current status of particle radiotherapy with some historical perspective is presented and specific contributions made by physicists will be pointed out wherever appropriate. The rationale of using particles in cancer treatment is to reduce the treatment volume to the target volume by using precise dose distributions in three dimensions by using particles such as protons and to improve the differential effects on tumors compared to normal tissues by using high-LET radiations such as neutrons. Pions and heavy ions combine the above two characteristics.

  3. Particle therapy

    International Nuclear Information System (INIS)

    Raju, M.R.

    1993-01-01

    Particle therapy has a long history. The experimentation with particles for their therapeutic application got started soon after they were produced in the laboratory. Physicists played a major role in proposing the potential applications in radiotherapy as well as in the development of particle therapy. A brief review of the current status of particle radiotherapy with some historical perspective is presented and specific contributions made by physicists will be pointed out wherever appropriate. The rationale of using particles in cancer treatment is to reduce the treatment volume to the target volume by using precise dose distributions in three dimensions by using particles such as protons and to improve the differential effects on tumors compared to normal tissues by using high-LET radiations such as neutrons. Pions and heavy ions combine the above two characteristics

  4. Cost-effectiveness of particle therapy: Current evidence and future needs

    International Nuclear Information System (INIS)

    Pijls-Johannesma, Madelon; Pommier, Pascal; Lievens, Yolande

    2008-01-01

    Purpose: Questions are being raised regarding the cost of particle therapy (PT), and with them criticism that PT is too expensive to allow the expected gain in effectiveness. This paper aims to get more insight in the cost and cost-effectiveness of particle therapy and to discuss a future strategy that allows for critical assessment of this health technology. Material and methods: A systematic literature review based on an earlier published comprehensive review was performed and updated until June 1st 2008. Besides, current business plans of PT projects were examined. Additionally, results retrieved from a cost-simulation tool developed under auspice of the ENLIGHT were discussed. Results: The current literature on cost-effectiveness of PT is scarce, non-comparable, and largely not performed according to standard health technology assessment criteria. Besides, different perspectives for cost evaluations have been used, making it difficult to compare and to determine the relative impact in terms of costs for this new treatment modality. Conclusions: Evidence on the cost-effectiveness of PT is scarce. Adequate reimbursement is necessary to support such innovative yet costly treatments. For now, model-based economic evaluations performed at least from a health care perspective may help us to gain evidence-based insight into cost-effectiveness

  5. Particle therapy for noncancer diseases

    Energy Technology Data Exchange (ETDEWEB)

    Bert, Christoph; Engenhart-Cabillic, Rita; Durante, Marco [GSI Helmholtzzentrum fuer Schwerionenforschung, Biophysics Department, Planckstrasse 1, 64291 Darmstadt (Germany); Philipps-University Marburg, Center for Radiology, Department of Radiation Therapy, Baldinger Strasse, 35043 Marburg (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Biophysics Department, Planckstrasse 1, 64291 Darmstadt (Germany); Technische Universitaet Darmstadt, Institut fuer Festkoerperphysik, Hochschulstrasse 3, 64289 Darmstadt (Germany) and Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe University, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany)

    2012-04-15

    Radiation therapy using high-energy charged particles is generally acknowledged as a powerful new technique in cancer treatment. However, particle therapy in oncology is still controversial, specifically because it is unclear whether the putative clinical advantages justify the high additional costs. However, particle therapy can find important applications in the management of noncancer diseases, especially in radiosurgery. Extension to other diseases and targets (both cranial and extracranial) may widen the applications of the technique and decrease the cost/benefit ratio of the accelerator facilities. Future challenges in this field include the use of different particles and energies, motion management in particle body radiotherapy and extension to new targets currently treated by catheter ablation (atrial fibrillation and renal denervation) or stereotactic radiation therapy (trigeminal neuralgia, epilepsy, and macular degeneration). Particle body radiosurgery could be a future key application of accelerator-based particle therapy facilities in 10 years from today.

  6. Cost-effectiveness of particle therapy : Current evidence and future needs

    NARCIS (Netherlands)

    Pijls-Johannesma, Madelon; Pommier, Pascal; Lievens, Yolande

    2008-01-01

    Purpose: Questions are being raised regarding the cost of particle therapy (PT), and with them criticism that PT is too expensive to allow the expected gain in effectiveness. This paper aims to get more insight in the cost and cost-effectiveness of particle therapy and to discuss a future strategy

  7. Cost-effectiveness of particle therapy : Current evidence and future needs

    NARCIS (Netherlands)

    Pijls-Johannesma, Madelon; Pommier, Pascal; Lievens, Yolande

    Purpose: Questions are being raised regarding the cost of particle therapy (PT), and with them criticism that PT is too expensive to allow the expected gain in effectiveness. This paper aims to get more insight in the cost and cost-effectiveness of particle therapy and to discuss a future strategy

  8. The Current Status and Future Directions of Heavy Charged Particle Therapy in Medicine

    Science.gov (United States)

    Levy, Richard P.; Blakely, Eleanor A.; Chu, William T.; Coutrakon, George B.; Hug, Eugen B.; Kraft, Gerhard; Tsujii, Hirohiko

    2009-03-01

    will require: (1) sophisticated target delineation that integrates CT, MRI and PET imaging; (2) reliable RBE modeling algorithms; (3) efficient beam-scanning technology that compensates for organ movements; (4) online beam control proximal to and within the patient; and (5) better understanding of dose-fractionation parameters. The current status and the anticipated future directions of the role of particle therapy in medicine is a complex subject that involves a very intimate interplay of radiobiology, accelerator physics and radiation oncology. The intention of this relatively brief manuscript is to describe the underlying principles, present the historical developments, highlight the clinical results, focus on the technical advances, and suggest likely future directions. We have also attempted to present a balanced, consensus view of the past achievements and current strategies in particle therapy, in a manner of interest both to long-term experts and to educated newcomers to this field.

  9. Magnetic particle hyperthermia—a promising tumour therapy?

    International Nuclear Information System (INIS)

    Dutz, Silvio; Hergt, Rudolf

    2014-01-01

    We present a critical review of the state of the art of magnetic particle hyperthermia (MPH) as a minimal invasive tumour therapy. Magnetic principles of heating mechanisms are discussed with respect to the optimum choice of nanoparticle properties. In particular, the relation between superparamagnetic and ferrimagnetic single domain nanoparticles is clarified in order to choose the appropriate particle size distribution and the role of particle mobility for the relaxation path is discussed. Knowledge of the effect of particle properties for achieving high specific heating power provides necessary guidelines for development of nanoparticles tailored for tumour therapy. Nanoscale heat transfer processes are discussed with respect to the achievable temperature increase in cancer cells. The need to realize a well-controlled temperature distribution in tumour tissue represents the most serious problem of MPH, at present. Visionary concepts of particle administration, in particular by means of antibody targeting, are far from clinical practice, yet. On the basis of current knowledge of treating cancer by thermal damaging, this article elucidates possibilities, prospects, and challenges for establishment of MPH as a standard medical procedure. (topical review)

  10. TU-G-BRB-00: Clinical Trials in Proton and Particle Therapy

    International Nuclear Information System (INIS)

    2015-01-01

    Proton therapy, in particular, and ion therapy, just beginning, are becoming an increasing focus of attention in clinical radiation oncology and medical physics. Both modalities have been criticized of lacking convincing evidence from randomized trials proving their efficacy, justifying the higher costs involved in these therapies. This session will provide an overview of the current status of clinical trials in proton therapy, including recent developments in ion therapy. As alluded to in the introductory talk by Dr. Schulte, opinions are diverging widely as to the usefulness and need for clinical trials in particle therapy and the challenge of equipoise. The lectures will highlight some of the challenges that surround clinical trials in particle therapy. One, presented by Dr. Choy from UT Southwestern, is that new technology and even different types of particles such as helium and carbon ions are introduced into this environment, increasing the phase space of clinical variables. The other is the issue of medical physics quality assurance with physical phantoms, presented by Mrs. Taylor from IROC Houston, which is more challenging because 3D and 4D image guidance and active delivery techniques are in relatively early stages of development. The role of digital phantoms in developing clinical treatment planning protocols and as a QA tool will also be highlighted by Dr. Lee from NCI. The symposium will be rounded off by a panel discussion among the Symposium speakers, arguing pro or con the need and readiness for clinical trials in proton and ion therapy. Learning Objectives: To get an update on the current status of clinical trials allowing or mandating proton therapy. Learn about the status of planned clinical trials in the U.S. and worldwide involving ion therapy. Discuss the challenges in the design and QA of clinical trials in particle therapy. Learn about existing and future physical and computational anthropomorphic phantoms for charged particle clinical trial

  11. TU-G-BRB-04: Digital Phantoms for Developing Protocols in Particle Therapy

    International Nuclear Information System (INIS)

    Lee, C.

    2015-01-01

    Proton therapy, in particular, and ion therapy, just beginning, are becoming an increasing focus of attention in clinical radiation oncology and medical physics. Both modalities have been criticized of lacking convincing evidence from randomized trials proving their efficacy, justifying the higher costs involved in these therapies. This session will provide an overview of the current status of clinical trials in proton therapy, including recent developments in ion therapy. As alluded to in the introductory talk by Dr. Schulte, opinions are diverging widely as to the usefulness and need for clinical trials in particle therapy and the challenge of equipoise. The lectures will highlight some of the challenges that surround clinical trials in particle therapy. One, presented by Dr. Choy from UT Southwestern, is that new technology and even different types of particles such as helium and carbon ions are introduced into this environment, increasing the phase space of clinical variables. The other is the issue of medical physics quality assurance with physical phantoms, presented by Mrs. Taylor from IROC Houston, which is more challenging because 3D and 4D image guidance and active delivery techniques are in relatively early stages of development. The role of digital phantoms in developing clinical treatment planning protocols and as a QA tool will also be highlighted by Dr. Lee from NCI. The symposium will be rounded off by a panel discussion among the Symposium speakers, arguing pro or con the need and readiness for clinical trials in proton and ion therapy. Learning Objectives: To get an update on the current status of clinical trials allowing or mandating proton therapy. Learn about the status of planned clinical trials in the U.S. and worldwide involving ion therapy. Discuss the challenges in the design and QA of clinical trials in particle therapy. Learn about existing and future physical and computational anthropomorphic phantoms for charged particle clinical trial

  12. Academic Training Lecture Regular Programme: Particle Therapy

    CERN Multimedia

    2012-01-01

    Particle Therapy using Proton and Ion Beams - From Basic Principles to Daily Operations and Future Concepts by Andreas Peter (Head of Accelerator Operations, Heidelberg Ion Beam Theraps Centre (HIT), Germany) Part I: Tuesday, September 11, 2012 from 11:00 to 12:00 (Europe/Zurich) at CERN ( 222-R-001 - Filtration Plant ) • An introduction about the historical developments of accelerators and their use for medical applications: tumour treatment from X-rays to particle therapy • Description of the underlying physics and biology of particle therapy; implications on the requirements for the needed beam parameters (energy, intensity, focus, beam structure) • Accelerator technology used for particle therapy so far: cyclotrons and synchrotrons • Particle therapy facilities worldwide: an overview and some examples in detail: PSI/Switzerland, Loma Linda/USA, HIMAC/Japan, HIT/Heidelberg, CNAO/Italy Part II: Wednesday, September 12, 2012 from 11:00 to 12:00 (Europe/Zurich) at CER...

  13. PEREGRINE: An all-particle Monte Carlo code for radiation therapy

    International Nuclear Information System (INIS)

    Hartmann Siantar, C.L.; Chandler, W.P.; Rathkopf, J.A.; Svatos, M.M.; White, R.M.

    1994-09-01

    The goal of radiation therapy is to deliver a lethal dose to the tumor while minimizing the dose to normal tissues. To carry out this task, it is critical to calculate correctly the distribution of dose delivered. Monte Carlo transport methods have the potential to provide more accurate prediction of dose distributions than currently-used methods. PEREGRINE is a new Monte Carlo transport code developed at Lawrence Livermore National Laboratory for the specific purpose of modeling the effects of radiation therapy. PEREGRINE transports neutrons, photons, electrons, positrons, and heavy charged-particles, including protons, deuterons, tritons, helium-3, and alpha particles. This paper describes the PEREGRINE transport code and some preliminary results for clinically relevant materials and radiation sources

  14. WE-FG-BRB-00: The Challenges of Predicting RBE Effects in Particle Therapy and Opportunities for Improving Cancer Therapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    The physical pattern of energy deposition and the enhanced relative biological effectiveness (RBE) of protons and carbon ions compared to photons offer unique and not fully understood or exploited opportunities to improve the efficacy of radiation therapy. Variations in RBE within a pristine or spread out Bragg peak and between particle types may be exploited to enhance cell killing in target regions without a corresponding increase in damage to normal tissue structures. In addition, the decreased sensitivity of hypoxic tumors to photon-based therapies may be partially overcome through the use of more densely ionizing radiations. These and other differences between particle and photon beams may be used to generate biologically optimized treatments that reduce normal tissue complications. In this symposium, speakers will examine the impact of the RBE of charged particles on measurable biological endpoints, treatment plan optimization, and the prediction or retrospective assessment of treatment outcomes. In particular, an AAPM task group was formed to critically examine the evidence for a spatially-variant RBE in proton therapy. Current knowledge of proton RBE variation with respect to dose, biological endpoint, and physics parameters will be reviewed. Further, the clinical relevance of these variations will be discussed. Recent work focused on improving simulations of radiation physics and biological response in proton and carbon ion therapy will also be presented. Finally, relevant biology research and areas of research needs will be highlighted, including the dependence of RBE on genetic factors including status of DNA repair pathways, the sensitivity of cancer stem-like cells to charged particles, the role of charged particles in hypoxic tumors, and the importance of fractionation effects. In addition to the physical advantages of protons and more massive ions over photons, the future application of biologically optimized treatment plans and their potential to

  15. The 1st symposium of Research Center for Charged Particle Therapy on fundamental development of the charged particle therapy

    International Nuclear Information System (INIS)

    Soga, Fuminori

    2002-06-01

    This issue is the collection of the paper presented at the 1st Symposium of Research Center for Charged Particle Therapy on fundamental development of the charged particle therapy. The 31 of the presented papers are indexed individually. (J.P.N.)

  16. Netherlands in the spotlight at the ENLIGHT meeting on particle therapy

    CERN Multimedia

    Virginia Greco (CERN) and Manjit Dosanjh (ENLIGHT co-coordinator)

    2016-01-01

    The annual meeting of ENLIGHT, which focuses on particle therapy for cancer treatment, was held in the Netherlands.   Participants of the annual meeting of ENLIGHT, held in the Netherlands from 15-17 September 2016. The annual meeting of ENLIGHT (European Network for Light Hadron Therapy), which gathers experts working worldwide in centres and research institutions for particle therapy for cancer treatment, was hosted this year by the Dutch National Institute for Subatomic Physics (Nikhef) and the University of Utrecht, in the Netherlands, from 15-17 September. Chaired by the co-coordinator of ENLIGHT, Manjit Dosanjh, and the local organisers, Els Koffeman and Jan Visser from Nikhef, the meeting was attended by almost 100 participants from 15 countries. The Netherlands took centre stage at the ENLIGHT meeting: four brand new centres for proton therapy in the Netherlands are currently at various phases of completion as a consequence of the recent approval by the Dutch government of a plan for mak...

  17. 21 CFR 892.5050 - Medical charged-particle radiation therapy system.

    Science.gov (United States)

    2010-04-01

    ...-particle radiation therapy system. (a) Identification. A medical charged-particle radiation therapy system... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical charged-particle radiation therapy system... equipment, patient and equipment supports, treatment planning computer programs, component parts, and...

  18. Particle therapy for non-small cell lung tumors: where do we stand?A systematic review of the literature

    Directory of Open Access Journals (Sweden)

    Krista eWink

    2014-10-01

    Full Text Available This review article provides a systematic overview of the currently available evidence on the clinical effectiveness of particle therapy for the treatment of NSCLC and summarizes findings of in silico comparative planning studies. Furthermore, technical issues and dosimetric uncertainties with respect to thoracic particle therapy are discussed.

  19. WE-FG-BRB-03: Challenges and Opportunities for Implementing Biological Optimization in Particle Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, D. [Yale University School of Medicine (United States)

    2016-06-15

    The physical pattern of energy deposition and the enhanced relative biological effectiveness (RBE) of protons and carbon ions compared to photons offer unique and not fully understood or exploited opportunities to improve the efficacy of radiation therapy. Variations in RBE within a pristine or spread out Bragg peak and between particle types may be exploited to enhance cell killing in target regions without a corresponding increase in damage to normal tissue structures. In addition, the decreased sensitivity of hypoxic tumors to photon-based therapies may be partially overcome through the use of more densely ionizing radiations. These and other differences between particle and photon beams may be used to generate biologically optimized treatments that reduce normal tissue complications. In this symposium, speakers will examine the impact of the RBE of charged particles on measurable biological endpoints, treatment plan optimization, and the prediction or retrospective assessment of treatment outcomes. In particular, an AAPM task group was formed to critically examine the evidence for a spatially-variant RBE in proton therapy. Current knowledge of proton RBE variation with respect to dose, biological endpoint, and physics parameters will be reviewed. Further, the clinical relevance of these variations will be discussed. Recent work focused on improving simulations of radiation physics and biological response in proton and carbon ion therapy will also be presented. Finally, relevant biology research and areas of research needs will be highlighted, including the dependence of RBE on genetic factors including status of DNA repair pathways, the sensitivity of cancer stem-like cells to charged particles, the role of charged particles in hypoxic tumors, and the importance of fractionation effects. In addition to the physical advantages of protons and more massive ions over photons, the future application of biologically optimized treatment plans and their potential to

  20. Comparison of particle-radiation-therapy modalities

    International Nuclear Information System (INIS)

    Fairchild, R.G.; Bond, V.P.

    1981-01-01

    The characteristics of dose distribution, beam alignment, and radiobiological advantages accorded to high LET radiation were reviewed and compared for various particle beam radiotherapeutic modalities (neutron, Auger electrons, p, π - , He, C, Ne, and Ar ions). Merit factors were evaluated on the basis of effective dose to tumor relative to normal tissue, linear energy transfer (LET), and dose localization, at depths of 1, 4, and 10 cm. In general, it was found that neutron capture therapy using an epithermal neutron beam provided the best merit factors available for depths up to 8 cm. The position of fast neutron therapy on the Merit Factor Tables was consistently lower than that of other particle modalities, and above only 60 Co. The largest body of clinical data exists for fast neutron therapy; results are considered by some to be encouraging. It then follows that if benefits with fast neutron therapy are real, additional gains are within reach with other modalities

  1. Microscopic Gold Particle-Based Fiducial Markers for Proton Therapy of Prostate Cancer

    International Nuclear Information System (INIS)

    Lim, Young Kyung; Kwak, Jungwon; Kim, Dong Wook; Shin, Dongho; Yoon, Myonggeun; Park, Soah; Kim, Jin Sung; Ahn, Sung Hwan; Shin, Jungwook; Lee, Se Byeong; Park, Sung Yong; Pyo, Hong Ryeol; Kim, Dae Yong M.D.; Cho, Kwan Ho

    2009-01-01

    Purpose: We examined the feasibility of using fiducial markers composed of microscopic gold particles and human-compatible polymers as a means to overcome current problems with conventional macroscopic gold fiducial markers, such as dose reduction and artifact generation, in proton therapy for prostate cancer. Methods and Materials: We examined two types of gold particle fiducial marker interactions: that with diagnostic X-rays and with a therapeutic proton beam. That is, we qualitatively and quantitatively compared the radiographic visibility of conventional gold and gold particle fiducial markers and the CT artifacts and dose reduction associated with their use. Results: The gold particle fiducials could be easily distinguished from high-density structures, such as the pelvic bone, in diagnostic X-rays but were nearly transparent to a proton beam. The proton dose distribution was distorted <5% by the gold particle fiducials with a 4.9% normalized gold density; this was the case even in the worst configuration (i.e., parallel alignment with a single-direction proton beam). In addition, CT artifacts were dramatically reduced for the gold particle mixture. Conclusion: Mixtures of microscopic gold particles and human-compatible polymers have excellent potential as fiducial markers for proton therapy for prostate cancer. These include good radiographic visibility, low distortion of the depth-dose distribution, and few CT artifacts.

  2. Current fluctuations of interacting active Brownian particles

    OpenAIRE

    Pre, Trevor Grand; Limmer, David T.

    2018-01-01

    We derive the distribution function for particle currents for a system of interacting active Brownian particles in the long time limit using large deviation theory and a weighted many body expansion. We find the distribution is non-Gaussian, except in the limit of passive particles. The non-Gaussian fluctuations can be understood from the effective potential the particles experience when conditioned on a given current. This potential suppresses fluctuations of the particle's orientation, and ...

  3. Treatment facilities, human resource development, and future prospect of particle beam therapy

    International Nuclear Information System (INIS)

    Tamaki, Tomoaki; Nakano, Takashi

    2015-01-01

    The number of particle beam therapy facilities is increasing globally. Among the countries practicing particle beam therapy, Japan is one of the leading countries in the field with four operating carbon-ion therapy facilities and ten operating proton therapy facilities. With the increasing number of particle beam therapy facilities, the human resource development is becoming extremely important, and there has been many such efforts including the Gunma University Program for Cultivating Global Leaders in Heavy Ion Therapeutics and Engineering, which aimed to educate and train the radiation oncologists, medical physicists, accelerator engineers, and radiation biologists to become global leaders in the field of particle beam therapy. In the future, the benefit and effectiveness of particle beam therapy should be discussed and elucidated objectively in a framework of comprehensive cancer care. (author)

  4. Workshop on the accelerator for particle therapy

    International Nuclear Information System (INIS)

    Inoue, M.; Ujeno, Y.

    1991-02-01

    A two-day workshop on the accelerator for particle therapy was held on August 22-23, 1990, with the aim of mutual understanding of medical accelerators among investigators. The state-of-the-art facilities in Japan and medical proton accelerators in Japan and other countries were introduced. This is a compilation of papers presented at the workshop: (1) particle radiotherapy at the National Institute of Radiological Sciences (NIRS); (2) proton therapy; (3) treatment planning, especially for photon and electron therapies; (4) heavy ion synchrotron project at the NIRS; (5) medical proton accelerator project of Tsukuba University and recent status of Loma Linda University Medical Center Proton Beam Facility; (6) inspection report on the Loma Linda University Medical Center Proton Beam Facility; (7) accelerator project of Kyoto University; (8) actual conditions of the 7 MeV proton linear accelerator; (9) design study of superconducting compact cyclotron prototype model; (10) medical superconducting prototype cyclotron; (11) RCNP cyclotron cascade project; (12) beam extraction from synchrotron; (13) radiation safety design in high energy particle accelerator facilities. (N.K.)

  5. Overview of research and therapy facilities for radiobiological experimental work in particle therapy. Report from the European Particle Therapy Network radiobiology group.

    Science.gov (United States)

    Dosanjh, Manjit; Jones, Bleddyn; Pawelke, Jörg; Pruschy, Martin; Sørensen, Brita Singers

    2018-04-24

    Particle therapy (PT) as cancer treatment, using protons or heavier ions, can provide a more favorable dose distribution compared to X-rays. While the physical characteristics of particle radiation have been the aim of intense research, less focus has been placed on the actual biological responses arising from particle irradiation. One of the biggest challenges for proton radiobiology is the RBE, with an increasing concern that the clinically-applied generic RBE-value of 1.1 is an approximation, as RBE is a complex quantity, depending on both biological and physical parameters, such as dose, LET, cellular and tissue radiobiological characteristics, as well as the endpoints being studied. Most of the available RBE data derive from in vitro experiments, with very limited in vivo data available, especially in late-reacting tissues, which provide the main constraints and influence the quality of life endpoints in radiotherapy. There is a need for systematic, large-scale studies to thoroughly establish the biology of particle radiation in a number of different experimental models in order to refine biophysical mathematical models that can potentially be used to guide PT. The overall objective of the European Particle Therapy Network (EPTN) WP6 is to form a network of research and therapy facilities in order to coordinate and standardize the radiobiological experiments, to obtain more accurate predictive parameters than in the past. Coordinated research is required in order to obtain the most appropriate experimental data. The aim in this paper is to describe the available radiobiology infrastructure of the centers involved in EPTN WP6. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Opening and construction of facilities in succession for particle beam therapy of cancer

    International Nuclear Information System (INIS)

    Nakano, Takashi; Yamamoto, Kazutaka; Hishikawa, Yoshio; Totoki, Tadahide; Hoshino, Junichi; Aoki, Takashi; Yoshiyuki, Takeshi; Hirabayashi, Masayuki; Nakamura, Fumito

    2011-01-01

    This feature article describes the current state of practical particle beam therapy of cancer, its future prospect, recent opening/construction of its facilities and manufacturers' view with following 9 topics presented by relevant experts. Gunma University (topic 1) started the carbon ion therapy from Mar., 2010, and has treated more than 100 cancer patients to aim the treatment of about 600 patients/year after several years. Fukui Prefectural Hospital Proton Therapy Center (topic 2) started from this March with proton beams for patients with its therapeutic standard, in cooperation with insurance companies and hotels for patients' convenience. Medipolis Proton Therapy and Research Center (Kagoshima Pref.) (topic 3) started this year with proton beams for 13 patients hitherto with reference protocol of Hyogo Ion Beam Medical Center. A new stereotactic irradiation system of proton beams for breast cancer has been developed. Construction of Saga Heavy Ion Medical Accelerator in Tosu (Saga Pref.) (topic 4) began this year to be completed in 2013. Aizawa Hospital (Nagano Pref.) (topic 5) plans to introduce the small-sized proton accelerator-gantry system (Sumitomo Heavy Ind., Ltd.) aiming the practice in 2013. Association for Nuclear Technology in Medicine (topic 6) reports the trends of current and future construction inside/outside Japan. Manufacturers comment their respective business: high-speed scanning irradiation system, next generation handling system of patient and particle beam therapy information system by Toshiba (topic 7); designation of the whole heavy ion beam therapy system (with NIRS), proton beam (as in topic 5) and system of BNCT (boron neutron-capture therapy) (Kyoto Univ.) by Sumitomo Heavy Ind., Ltd. (topic 8); and small-size proton therapeutic machine with 4D tracing capability for patient's movement (Hokkaido Univ.) and with spot-scanning irradiation technique by Hitachi (topic 9). (author)

  7. Prediction model of critical weight loss in cancer patients during particle therapy.

    Science.gov (United States)

    Zhang, Zhihong; Zhu, Yu; Zhang, Lijuan; Wang, Ziying; Wan, Hongwei

    2018-01-01

    The objective of this study is to investigate the predictors of critical weight loss in cancer patients receiving particle therapy, and build a prediction model based on its predictive factors. Patients receiving particle therapy were enroled between June 2015 and June 2016. Body weight was measured at the start and end of particle therapy. Association between critical weight loss (defined as >5%) during particle therapy and patients' demographic, clinical characteristic, pre-therapeutic nutrition risk screening (NRS 2002) and BMI were evaluated by logistic regression and decision tree analysis. Finally, 375 cancer patients receiving particle therapy were included. Mean weight loss was 0.55 kg, and 11.5% of patients experienced critical weight loss during particle therapy. The main predictors of critical weight loss during particle therapy were head and neck tumour location, total radiation dose ≥70 Gy on the primary tumour, and without post-surgery, as indicated by both logistic regression and decision tree analysis. Prediction model that includes tumour locations, total radiation dose and post-surgery had a good predictive ability, with the area under receiver operating characteristic curve 0.79 (95% CI: 0.71-0.88) and 0.78 (95% CI: 0.69-0.86) for decision tree and logistic regression model, respectively. Cancer patients with head and neck tumour location, total radiation dose ≥70 Gy and without post-surgery were at higher risk of critical weight loss during particle therapy, and early intensive nutrition counselling or intervention should be target at this population. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes

    KAUST Repository

    Li, Yiyang; El Gabaly, Farid; Ferguson, Todd R.; Smith, Raymond B.; Bartelt, Norman C.; Sugar, Joshua D.; Fenton, Kyle R.; Cogswell, Daniel A.; Kilcoyne, A. L. David; Tyliszczak, Tolek; Bazant, Martin Z.; Chueh, William C.

    2014-01-01

    ©2014 Macmillan Publishers Limited. All rights reserved. Many battery electrodes contain ensembles of nanoparticles that phase-separate on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current hotspots. Reports of the active particle population in the phase-separating electrode lithium iron phosphate (LiFePO 4; LFP) vary widely, ranging from near 0% (particle-by-particle) to 100% (concurrent intercalation). Using synchrotron-based X-ray microscopy, we probed the individual state-of-charge for over 3,000 LFP particles. We observed that the active population depends strongly on the cycling current, exhibiting particle-by-particle-like behaviour at low rates and increasingly concurrent behaviour at high rates, consistent with our phase-field porous electrode simulations. Contrary to intuition, the current density, or current per active internal surface area, is nearly invariant with the global electrode cycling rate. Rather, the electrode accommodates higher current by increasing the active particle population. This behaviour results from thermodynamic transformation barriers in LFP, and such a phenomenon probably extends to other phase-separating battery materials. We propose that modifying the transformation barrier and exchange current density can increase the active population and thus the current homogeneity. This could introduce new paradigms to enhance the cycle life of phase-separating battery electrodes.

  9. Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes.

    Science.gov (United States)

    Li, Yiyang; El Gabaly, Farid; Ferguson, Todd R; Smith, Raymond B; Bartelt, Norman C; Sugar, Joshua D; Fenton, Kyle R; Cogswell, Daniel A; Kilcoyne, A L David; Tyliszczak, Tolek; Bazant, Martin Z; Chueh, William C

    2014-12-01

    Many battery electrodes contain ensembles of nanoparticles that phase-separate on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current hotspots. Reports of the active particle population in the phase-separating electrode lithium iron phosphate (LiFePO4; LFP) vary widely, ranging from near 0% (particle-by-particle) to 100% (concurrent intercalation). Using synchrotron-based X-ray microscopy, we probed the individual state-of-charge for over 3,000 LFP particles. We observed that the active population depends strongly on the cycling current, exhibiting particle-by-particle-like behaviour at low rates and increasingly concurrent behaviour at high rates, consistent with our phase-field porous electrode simulations. Contrary to intuition, the current density, or current per active internal surface area, is nearly invariant with the global electrode cycling rate. Rather, the electrode accommodates higher current by increasing the active particle population. This behaviour results from thermodynamic transformation barriers in LFP, and such a phenomenon probably extends to other phase-separating battery materials. We propose that modifying the transformation barrier and exchange current density can increase the active population and thus the current homogeneity. This could introduce new paradigms to enhance the cycle life of phase-separating battery electrodes.

  10. Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes

    KAUST Repository

    Li, Yiyang

    2014-09-14

    ©2014 Macmillan Publishers Limited. All rights reserved. Many battery electrodes contain ensembles of nanoparticles that phase-separate on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current hotspots. Reports of the active particle population in the phase-separating electrode lithium iron phosphate (LiFePO 4; LFP) vary widely, ranging from near 0% (particle-by-particle) to 100% (concurrent intercalation). Using synchrotron-based X-ray microscopy, we probed the individual state-of-charge for over 3,000 LFP particles. We observed that the active population depends strongly on the cycling current, exhibiting particle-by-particle-like behaviour at low rates and increasingly concurrent behaviour at high rates, consistent with our phase-field porous electrode simulations. Contrary to intuition, the current density, or current per active internal surface area, is nearly invariant with the global electrode cycling rate. Rather, the electrode accommodates higher current by increasing the active particle population. This behaviour results from thermodynamic transformation barriers in LFP, and such a phenomenon probably extends to other phase-separating battery materials. We propose that modifying the transformation barrier and exchange current density can increase the active population and thus the current homogeneity. This could introduce new paradigms to enhance the cycle life of phase-separating battery electrodes.

  11. Particle-bearing currents in uniform density and two-layer fluids

    Science.gov (United States)

    Sutherland, Bruce R.; Gingras, Murray K.; Knudson, Calla; Steverango, Luke; Surma, Christopher

    2018-02-01

    Lock-release gravity current experiments are performed to examine the evolution of a particle bearing flow that propagates either in a uniform-density fluid or in a two-layer fluid. In all cases, the current is composed of fresh water plus micrometer-scale particles, the ambient fluid is saline, and the current advances initially either over the surface as a hypopycnal current or at the interface of the two-layer fluid as a mesopycnal current. In most cases the tank is tilted so that the ambient fluid becomes deeper with distance from the lock. For hypopycnal currents advancing in a uniform density fluid, the current typically slows as particles rain out of the current. While the loss of particles alone from the current should increase the current's buoyancy and speed, in practice the current's speed decreases because the particles carry with them interstitial fluid from the current. Meanwhile, rather than settling on the sloping bottom of the tank, the particles form a hyperpycnal (turbidity) current that advances until enough particles rain out that the relatively less dense interstitial fluid returns to the surface, carrying some particles back upward. When a hypopycnal current runs over the surface of a two-layer fluid, the particles that rain out temporarily halt their descent as they reach the interface, eventually passing through it and again forming a hyperpycnal current. Dramatically, a mesopycnal current in a two-layer fluid first advances along the interface and then reverses direction as particles rain out below and fresh interstitial fluid rises above.

  12. Current heavy particle medical accelerator programs in Japan

    International Nuclear Information System (INIS)

    Kawachi, K.

    1987-01-01

    The first clinical trial of proton radiotherapy in Japan started at National Institute of Radiological Sciences (NIRS) in 1979. The proton which is provided from the NIRS medical cyclotron, has an energy of 70 MeV, and has been used for only superficial or short range tumor therapy. Recently, the cyclotron has been raised the energy up to 90 MeV and a vertical treatment line of protons has been completed in the basement of the cyclotron building. In 1983, Particle Radiation Medical Science Center (PARMS) of the University of Tsukuba started to treat patients with 250 MeV proton beam. The Institute of Physical and Chemical Research (IPCR) has a plan to construct a heavy ion biomedical irradiation facility in the Ring (Separate Sector) Cyclotron building. The facility will be completed in 1989 and will be used for proton and helium ion therapy. Recently, several hospitals have proposed to construct the dedicated proton therapy facilities. The National Cancer Center of Japan, and the PARMS of the University of Tsukuba have taken active parts in such projects. At present time, there is a step to make a decision of the type of accelerators. Another program is a construction of the NIRS Heavy Particle Medical Accelerator which is possible to provide Helium to Argon ions for therapy. The paper describes the accelerators for proton therapy and for heavy ion therapy in some detail

  13. A systematic review of publications on charged particle therapy for hepatocellular carcinoma.

    Science.gov (United States)

    Igaki, Hiroshi; Mizumoto, Masashi; Okumura, Toshiyuki; Hasegawa, Kiyoshi; Kokudo, Norihiro; Sakurai, Hideyuki

    2018-06-01

    Charged particle therapy (proton beam therapy and carbon ion therapy) is a form of radiotherapy which has the unique characteristic of superior depth dose distribution, and has been used for the treatment of hepatocellular carcinoma (HCC) in a limited number of patients, especially in Japan. We undertook a systematic review to define the clinical utility of charged particle therapy for patients with HCC. We searched the MEDLINE database from 1983 to June 2016 to identify clinical studies on charged particle therapy for HCC. Primary outcomes of interest were local control, overall survival, and late radiation morbidities. A total of 13 cohorts from 11 papers were selected from an initial dataset of 78 papers. They included a randomized controlled trial comparing proton beam therapy with transarterial chemoembolization, 9 phase I or II trials and 2 retrospective studies. The reported actuarial local control rates ranged from 71.4-95% at 3 years, and the overall survival rates ranged from 25-42.3% at 5 years. Late severe radiation morbidities were uncommon, and a total of 18 patients with grade ≥3 late adverse events were reported among the 787 patients included in this analysis. Charged particle therapy for HCC was associated with good local control with limited probability of severe morbidities. The cost-effectiveness and the distinctive clinical advantages of charged particle therapies should be clarified in order to become a socially accepted treatment modality for HCC.

  14. Proceedings of the international heavy particle therapy workshop (PTCOG/EORTC/ECNEU)

    International Nuclear Information System (INIS)

    Blattmann, H.

    1990-07-01

    The International Heavy Particle Therapy Workshop at PSI was an experiment in several ways. For the PTCOG it was the first meeting outside the American continent. It was also the first meeting of PRCOG in conjunction with the EORTC Heavy Particle Therapy Group, which up to now has been dominated by discussion on neutron therapy. A common goal for radiotherapy as well as neutron therapy are all aiming at this goal by improved dose distribution and/or higher biological effectiveness. The meeting at Villigen was an attempt to stimulate discussion between the different groups and to strengthen international collaboration. The large number of proffered oral papers and posters was certainly a sign that the meeting served a need and that particle radiotherapy enjoys growing interest worldwide. 89 tabs., 164 figs., 441 refs

  15. Current Fragmentation and Particle Acceleration in Solar Flares

    Science.gov (United States)

    Cargill, P. J.; Vlahos, L.; Baumann, G.; Drake, J. F.; Nordlund, Å.

    2012-11-01

    Particle acceleration in solar flares remains an outstanding problem in plasma physics and space science. While the observed particle energies and timescales can perhaps be understood in terms of acceleration at a simple current sheet or turbulence site, the vast number of accelerated particles, and the fraction of flare energy in them, defies any simple explanation. The nature of energy storage and dissipation in the global coronal magnetic field is essential for understanding flare acceleration. Scenarios where the coronal field is stressed by complex photospheric motions lead to the formation of multiple current sheets, rather than the single monolithic current sheet proposed by some. The currents sheets in turn can fragment into multiple, smaller dissipation sites. MHD, kinetic and cellular automata models are used to demonstrate this feature. Particle acceleration in this environment thus involves interaction with many distributed accelerators. A series of examples demonstrate how acceleration works in such an environment. As required, acceleration is fast, and relativistic energies are readily attained. It is also shown that accelerated particles do indeed interact with multiple acceleration sites. Test particle models also demonstrate that a large number of particles can be accelerated, with a significant fraction of the flare energy associated with them. However, in the absence of feedback, and with limited numerical resolution, these results need to be viewed with caution. Particle in cell models can incorporate feedback and in one scenario suggest that acceleration can be limited by the energetic particles reaching the condition for firehose marginal stability. Contemporary issues such as footpoint particle acceleration are also discussed. It is also noted that the idea of a "standard flare model" is ill-conceived when the entire distribution of flare energies is considered.

  16. Electron beam ion sources for use in second generation synchrotrons for medical particle therapy

    Science.gov (United States)

    Zschornack, G.; Ritter, E.; Schmidt, M.; Schwan, A.

    2014-02-01

    Cyclotrons and first generation synchrotrons are the commonly applied accelerators in medical particle therapy nowadays. Next generation accelerators such as Rapid Cycling Medical Synchrotrons (RCMS), direct drive accelerators, or dielectric wall accelerators have the potential to improve the existing accelerator techniques in this field. Innovative accelerator concepts for medical particle therapy can benefit from ion sources which meet their special requirements. In the present paper we report on measurements with a superconducting Electron Beam Ion Source, the Dresden EBIS-SC, under the aspect of application in combination with RCMS as a well proven technology. The measurements indicate that this ion source can offer significant advantages for medical particle therapy. We show that a superconducting EBIS can deliver ion pulses of medically relevant ions such as protons, C4 + and C6 + ions with intensities and frequencies required for RCMS [S. Peggs and T. Satogata, "A survey of Hadron therapy accelerator technology," in Proceedings of PAC07, BNL-79826- 2008-CP, Albuquerque, New Mexico, USA, 2007; A. Garonna, U. Amaldi et al., "Cyclinac medical accelerators using pulsed C6 +/H+_2 ion sources," in Proceedings of EBIST 2010, Stockholm, Sweden, July 2010]. Ion extraction spectra as well as individual ion pulses have been measured. For example, we report on the generation of proton pulses with up to 3 × 109 protons per pulse and with frequencies of up to 1000 Hz at electron beam currents of 600 mA.

  17. Current perspectives of radiation therapy. History of radiation therapy

    International Nuclear Information System (INIS)

    Itami, Jun

    2011-01-01

    More than 100 years have passed since the discovery of X-Strahlen by Roentgen. The history of radiation therapy has evolved under mutual stimulating relationships of the external beam radiation therapy by X-ray tubes and accelerators, and the internal radiation therapy employing radium and other radionuclides. The currently employed technologies in radiation therapy have its origin already till nineteen sixties and the development of physics and engineering have realized the original concept. (author)

  18. Advances in particle therapy a multidisciplinary approach

    CERN Document Server

    Bernier, Jacques

    2018-01-01

    Hadron therapy is a groundbreaking new method of treating cancer. Boasting greater precision than other therapies, this therapy is now utilised in many clinical settings and the field is growing. More than 50 medical facilities currently perform (or are planned to perform) this treatment, with this number set to double by 2020. This new text covers the most recent advances in hadron therapy, exploring the physics, technology, biology, diagnosis, clinical applications, and economics behind the therapy. Providing essential and up-to-date information on recent developments in the field, this book will be of interest to current and aspiring specialists from a wide range of backgrounds.

  19. The Current State of Music Therapy Theory?

    DEFF Research Database (Denmark)

    Bonde, Lars Ole

    2015-01-01

    An essay on themes from Ken Aigen (2014): "The Study of Music Therapy. Current Issues and Concepts"......An essay on themes from Ken Aigen (2014): "The Study of Music Therapy. Current Issues and Concepts"...

  20. Target volume delineation and treatment planning for particle therapy a practical guide

    CERN Document Server

    Leeman, Jonathan E; Cahlon, Oren; Sine, Kevin; Jiang, Guoliang; Lu, Jiade J; Both, Stefan

    2018-01-01

    This handbook is designed to enable radiation oncologists to treat patients appropriately and confidently by means of particle therapy. The orientation and purpose are entirely practical, in that the focus is on the physics essentials of delivery and treatment planning , illustration of the clinical target volume (CTV) and associated treatment planning for each major malignancy when using particle therapy, proton therapy in particular. Disease-specific chapters provide guidelines and concise knowledge on CTV selection and delineation and identify aspects that require the exercise of caution during treatment planning. The treatment planning techniques unique to proton therapy for each disease site are clearly described, covering beam orientation, matching/patching field techniques, robustness planning, robustness plan evaluation, etc. The published data on the use of particle therapy for a given disease site are also concisely reported. In addition to fully meeting the needs of radiation oncologists, this "kn...

  1. Alternating current long range alpha particle detector

    International Nuclear Information System (INIS)

    MacArthur, D.W.; McAtee, J.L.

    1993-01-01

    An alpha particle detector, utilizing alternating currents, which is capable of detecting alpha particles from distinct sources. The use of alternating currents allows use of simpler ac circuits which, in turn, are not susceptible to dc error components. It also allows the benefit of gas gain, if desired. In the invention, a voltage source creates an electric field between two conductive grids, and between the grids and a conductive enclosure. Air containing air ions created by collision with alpha particles is drawn into the enclosure and detected. In some embodiments, the air flow into the enclosure is interrupted, creating an alternating flow of ions. In another embodiment, a modulated voltage is applied to the grid, also modulating the detection of ions

  2. Measurement of secondary particle production induced by particle therapy ion beams impinging on a PMMA target

    Directory of Open Access Journals (Sweden)

    Toppi M.

    2016-01-01

    Full Text Available Particle therapy is a technique that uses accelerated charged ions for cancer treatment and combines a high irradiation precision with a high biological effectiveness in killing tumor cells [1]. Informations about the secondary particles emitted in the interaction of an ion beam with the patient during a treatment can be of great interest in order to monitor the dose deposition. For this purpose an experiment at the HIT (Heidelberg Ion-Beam Therapy Center beam facility has been performed in order to measure fluxes and emission profiles of secondary particles produced in the interaction of therapeutic beams with a PMMA target. In this contribution some preliminary results about the emission profiles and the energy spectra of the detected secondaries will be presented.

  3. Current Experiments in Particle Physics (September 1996)

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H.; Lehar, F.; Klyukhin, V.I.; Ryabov, Yu.G.; Bilak, S.V.; Illarionova, N.S.; Khachaturov, B.A.; Strokovsky, E.A.; Hoffman, C.M.; Kettle, P.-R.; Olin, A.; Armstrong, F.E.

    1996-09-01

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries. This report contains full summaries of 180 approved current and recent experiments in elementary particle physics. The focus of the report is on selected experiments which directly contribute to our better understanding of elementary particles and their properties such as masses, widths or lifetimes, and branching fractions.

  4. New particles and new currents

    International Nuclear Information System (INIS)

    Cashmore, R.J.

    1979-01-01

    In this report I want to review the impact of an ep machine on our present ideas and then speculate in what ways such an accelerator could investigate physics beyond our present framework. This speculation will lead to some criteria for the major parameters of such an accelerator, in particular the luminosity, energy and polarization of the electron beams. We will conclude that its principal advantages are: (i) The investigation of charged currents to mass scales beyond those accessible at LEP, (ii) the observation of new currents (charged or neutral) of either chirality coupling to leptons and quarks, (iii) the observation of new particles associated with such currents. (orig.)

  5. Current-voltage relationship in the auroral particle acceleration region

    Directory of Open Access Journals (Sweden)

    M. Morooka

    2004-11-01

    Full Text Available The current-voltage relationship in the auroral particle acceleration region has been studied statistically by the Akebono (EXOS-D satellite in terms of the charge carriers of the upward field-aligned current. The Akebono satellite often observed field-aligned currents which were significantly larger than the model value predicted by Knight (1973. We compared the upward field-aligned current estimated by three different methods, and found that low-energy electrons often play an important role as additional current carriers, together with the high-energy primary electrons which are expected from Knight's relation. Such additional currents have been observed especially at high and middle altitudes of the particle acceleration region. Some particular features of electron distribution functions, such as "cylindrical distribution functions" and "electron conics", have often been observed coinciding with the additional currents. They indicated time variability of the particle acceleration region. Therefore, we have concluded that the low-energy electrons within the "forbidden" region of electron phase space in the stationary model often contribute to charge carriers of the current because of the rapid time variability of the particle acceleration region. "Cylindrical distribution functions" are expected to be found below the time-varying potential difference. We statistically examined the locations of "cylindrical distribution function", and found that their altitudes are related to the location where the additional currents have been observed. This result is consistent with the idea that the low-energy electrons can also carry significant current when the acceleration region changes in time.

  6. Potential for heavy particle radiation therapy

    International Nuclear Information System (INIS)

    Raju, M.R.; Phillips, T.L.

    1977-03-01

    Radiation therapy remains one of the major forms of cancer treatment. When x rays are used in radiotherapy, there are large variations in radiation sensitivity among tumors because of the possible differences in the presence of hypoxic but viable tumor cells, differences in reoxygenation during treatment, differences in distribution of the tumor cells in their cell cycle, and differences in repair of sublethal damage. When high-LET particles are used, depending upon the LET distribution, these differences are reduced considerably. Because of these differences between x rays and high-LET particle effects, the high-LET particles may be more effective on tumor cells for a given effect on normal cells. Heavy particles have potential application in improving radiotherapy because of improved dose localization and possible advantages of high-LET particles due to their radiobiological characteristics. Protons, because of their defined range, Bragg peak, and small effects of scattering, have good dose localization characteristics. The use of protons in radiotherapy minimizes the morbidity of radiotherapy treatment and is very effective in treating deep tumors located near vital structures. Fast neutrons have no physical advantages over 60 Co gamma rays but, because of their high-LET component, could be very effective in treating tumors that are resistant to conventional radiations. Negative pions and heavy ions combine some of the advantages of protons and fast neutrons

  7. Magnetic Particle inspection by DC and AC magnetization current

    International Nuclear Information System (INIS)

    Lim, Zhong Soo; Kim, Goo Hwa

    1996-01-01

    Dry magnetic particle inspection was performed to detect the surface defects of the steel billets. The detectability was evaluated according to magnetizing current, temperature, and amount of the magnetic particles on material. We selected a certain set of steel compositions for target materials. Their magnetic properties are measured with B-H hysteresis graph. Results of the magnetic particle inspection(MPI) by direct magnetizing current was compared with results of the finite element method calculations, which were verified by measurement of the magnetic leakage flux above the surface of material. For square rod materials, the magnetic flux density at the corner was about 30% of that at the face center with sufficiently large direct magnetizing current, while it is about 70% with alternating magnetizing current. Alternating magnetizing current generates rather uniform magnetic flux density running from the center to the corner except for the region of about 10 mm extending from the corner.

  8. Charged particle beam current monitoring tutorial

    International Nuclear Information System (INIS)

    Webber, R.C.

    1994-10-01

    A tutorial presentation is made on topics related to the measurement of charged particle beam currents. The fundamental physics of electricity and magnetism pertinent to the problem is reviewed. The physics is presented with a stress on its interpretation from an electrical circuit theory point of view. The operation of devices including video pulse current transformers, direct current transformers, and gigahertz bandwidth wall current style transformers is described. Design examples are given for each of these types of devices. Sensitivity, frequency response, and physical environment are typical parameters which influence the design of these instruments in any particular application. Practical engineering considerations, potential pitfalls, and performance limitations are discussed

  9. A simple method to increase the current range of the TERA chip in charged particle therapy applications

    Energy Technology Data Exchange (ETDEWEB)

    Cirio, R. [Istituto Nazionale di Fisica Nucleare, sez. di Torino, via P. Giuria,1, 10125 Torino (Italy); Dipartimento di Fisica dell' Università di Torino, via P. Giuria,1, 10125 Torino (Italy); Fausti, F. [Istituto Nazionale di Fisica Nucleare, sez. di Torino, via P. Giuria,1, 10125 Torino (Italy); Dipartimento di Elettronica e Telecomunicazioni del Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino (Italy); Fanola Guarachi, L. [Istituto Nazionale di Fisica Nucleare, sez. di Torino, via P. Giuria,1, 10125 Torino (Italy); Dipartimento di Fisica dell' Università di Torino, via P. Giuria,1, 10125 Torino (Italy); Giordanengo, S., E-mail: Simona.Giordanengo@to.infn.it [Istituto Nazionale di Fisica Nucleare, sez. di Torino, via P. Giuria,1, 10125 Torino (Italy); Marchetto, F.; Mazza, G. [Istituto Nazionale di Fisica Nucleare, sez. di Torino, via P. Giuria,1, 10125 Torino (Italy); Monaco, V.; Sacchi, R. [Istituto Nazionale di Fisica Nucleare, sez. di Torino, via P. Giuria,1, 10125 Torino (Italy); Dipartimento di Fisica dell' Università di Torino, via P. Giuria,1, 10125 Torino (Italy); Talpacci, E. [Dipartimento di Fisica dell' Università di Torino, via P. Giuria,1, 10125 Torino (Italy); Varasteh Anvar, M. [Istituto Nazionale di Fisica Nucleare, sez. di Torino, via P. Giuria,1, 10125 Torino (Italy); Dipartimento di Fisica dell' Università di Torino, via P. Giuria,1, 10125 Torino (Italy); Vignati, A. [Istituto Nazionale di Fisica Nucleare, sez. di Torino, via P. Giuria,1, 10125 Torino (Italy)

    2015-10-21

    The development of the next generation of accelerators for charged particle radiotherapy aims to reduce dimensions and operational complexity of the machines by engineering pulsed beams accelerators. The drawback is the increased difficulty to monitor the beam delivery. Within each pulse, instantaneous currents larger by two to three orders of magnitude than present applications are expected, which would saturate the readout of the monitor chambers. In this paper, we report of a simple method to increase by almost two orders of magnitude the current range of an Application Specific Integrated Circuit chip previously developed by our group to read out monitor ionization chambers.

  10. Current experiments in particle physics - particle data group

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H. [Stanford Univ., CA (United States). Stanford Linear Accelerator Center; Lehar, F. [Centre d`Etudes Nucleaires de Saclay, Gif-sur-Yvette (France); Kettle, P.R. [Paul Scherrer Institute, Villigen (Switzerland)] [and others

    1996-09-01

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries.

  11. Current experiments in particle physics - particle data group

    International Nuclear Information System (INIS)

    Galic, H.; Kettle, P.R.

    1996-09-01

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries

  12. Towards clinical evidence in particle therapy: ENLIGHT, PARTNER, ULICE and beyond

    CERN Document Server

    Combs, Stephanie E; Pötter, Richad; Orrechia, Roberto; Haberer, Thomas; Durante, Marco; Fossati, Piero; Parodi, Katia; Balosso, Jacques; Amaldi, Ugo; Baumann, Michael; Debus, Jürgen

    2013-01-01

    Since the middle of the 20th century, particle therapy has been in focus for patient treatments. In 1946, Robert Wilson proposed the use of charged particles for tumor therapy, and since then, the clinical use of protons and heavier ions, mainly carbon ions, has become more widespread. The first clinical evidence was obtained in Berkeley, treating radiation-resistant targets with various ion species. The main advantage of particle beams derive from their physical properties: through an inverted dose profile, regions within the entry channel of the beam can be spared of dose, while a steep dose deposition can be directed in an energydependent manner into the defined treatment volume (Bragg Peak). The following dose fall-off spares tissue behind the target volume, thus reducing integral dose significantly compared to when using photons. Heavier charged particles, such as carbon ions or oxygen, are additionally associated with an increased relative biological effectiveness (RBE), while the RBE of protons is comm...

  13. Electroconvulsive Therapy: A Current Review

    Directory of Open Access Journals (Sweden)

    Gokben Hizli Sayar

    2014-06-01

    Full Text Available Most of the electroconvulsive therapy guidelines state that severe major depression with psychotic features, manic delirium, or catatonia are conditions where there is a clear consensus favoring early electroconvulsive therapy. The decision to administer electroconvulsive therapy is based on an evaluation of the risks and benefits for the individual patient and involves a combination of factors, including psychiatric diagnosis, type and severity of symptoms, prior treatment history and response, identification of possible alternative treatment options, and consumer preference. In this review history, mechanisms of action, side effects that have been referenced in the literature and clinical experience are discussed. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2014; 6(2.000: 107-125

  14. An experimental study of particle-driven gravity currents on steep slopes with entrainment of particles

    Directory of Open Access Journals (Sweden)

    M. Rastello

    2002-01-01

    Full Text Available Results of laboratory experiments are presented in which a finite suspension of sawdust particles was released instantaneously into a rectangular channel immersed in a water tank. Two kinds of gravity currents were studied: currents with or without entrainment of particles from the bed. Experiments were repeated for two slopes: 30° and 45°. We observed that the velocity of the front was significantly in-creased as particle entrainment occurred. In addition, our experiments showed that the front kept a quasi-constant velocity for both runs. This might suggest that the flow regime corresponded to the "slumping regime" or "adjustment phase" described earlier by Huppert and Simpson (1980.

  15. Influence of lavage therapy on the distribution patterns of inhaled, relatively insoluble particles in the lung

    International Nuclear Information System (INIS)

    Snipes, M.B.; Runkle, G.E.; Muggenburg, B.A.

    1977-01-01

    Four Beagle dogs were exposed by inhalation to a polydisperse fused aluminosilicate aerosol labeled with 147 Pm and 169 Yb. The left or right lung of each dog was lavaged one or five times to remove a portion of the lung burden. Autoradiographic and computer techniques were combined to determine the dispersion pattern of radioactive particles still in the lung after lavage therapy. For all four dogs the dispersion pattern of particles in the lung was the same for the lavaged and non-lavaged lung lobes. Examination of the autoradiograms indicated that lavage therapy did not preferentially remove particles from some areas of the lung. The similarity of particle dispersion patterns suggests that a minimal relocation of particles in lung results from lavage therapy

  16. Changes in lipids and lipoprotein particle concentrations after interruption of antiretroviral therapy

    DEFF Research Database (Denmark)

    Lampe, Fiona C; Duprez, Daniel A; Kuller, Lewis H

    2010-01-01

    The effect of interruption of antiretroviral therapy (ART) on lipoprotein particle subclasses has not been studied. We examined short-term changes in lipids and lipoprotein particles among 332 HIV-infected individuals randomized to interrupt or continue ART in the "Strategies for Management...

  17. Stability of large orbit, high-current particle rings

    International Nuclear Information System (INIS)

    Lovelace, R.V.E.

    1994-01-01

    A review is made of theory of the low-frequency stability of large orbit, high-current particle rings which continue to be of interest for compact fusion systems. The precession mode was the first mode predicted by Furth and observed by Christofilos to be unstable under certain conditions. Subsequently, many detailed studies have been made of the stability of particle rings- different modes, different ring geometries, systems with/without a toroidal B field, and sytems with/without a current carrying plasma component. The possibly dangerous modes are still thought to include the precession mode, the tilting mode, and the low order kink modes. copyright American Institute of Physics

  18. Present status and future trends of heavy particle radiotherapy

    International Nuclear Information System (INIS)

    Jones, D.T.L.

    1999-01-01

    Fast neutron therapy began as long ago as 1938 and subsequently proton, alpha particle, heavy ion, pion and neutron capture therapy have been used. To date it is estimated that in excess of 45000 people have undergone some form of particle therapy. In the future it is expected that fast neutron therapy will be used for selected tumour types for which neutrons are known to show improved cure rates. The future trends in charged particle therapy will be driven by increasing commercialization. The future of neutron capture therapy will depend on current clinical trials with epithermal neutron beams and the development of new tumour-seeking drugs. (author)

  19. WE-FG-BRB-04: RBEs for Human Lung Cancer Cells Exposed to Protons and Heavier Ions: Implications for Clinical Use of Charged Particles in Cancer Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Held, K. [Massachusetts General Hospital (United States)

    2016-06-15

    The physical pattern of energy deposition and the enhanced relative biological effectiveness (RBE) of protons and carbon ions compared to photons offer unique and not fully understood or exploited opportunities to improve the efficacy of radiation therapy. Variations in RBE within a pristine or spread out Bragg peak and between particle types may be exploited to enhance cell killing in target regions without a corresponding increase in damage to normal tissue structures. In addition, the decreased sensitivity of hypoxic tumors to photon-based therapies may be partially overcome through the use of more densely ionizing radiations. These and other differences between particle and photon beams may be used to generate biologically optimized treatments that reduce normal tissue complications. In this symposium, speakers will examine the impact of the RBE of charged particles on measurable biological endpoints, treatment plan optimization, and the prediction or retrospective assessment of treatment outcomes. In particular, an AAPM task group was formed to critically examine the evidence for a spatially-variant RBE in proton therapy. Current knowledge of proton RBE variation with respect to dose, biological endpoint, and physics parameters will be reviewed. Further, the clinical relevance of these variations will be discussed. Recent work focused on improving simulations of radiation physics and biological response in proton and carbon ion therapy will also be presented. Finally, relevant biology research and areas of research needs will be highlighted, including the dependence of RBE on genetic factors including status of DNA repair pathways, the sensitivity of cancer stem-like cells to charged particles, the role of charged particles in hypoxic tumors, and the importance of fractionation effects. In addition to the physical advantages of protons and more massive ions over photons, the future application of biologically optimized treatment plans and their potential to

  20. Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers

    Science.gov (United States)

    Danby, Gordon T.; Jackson, John W.

    1991-01-01

    A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations in the particle beam.

  1. Charged particle therapy with mini-segmented beams

    Directory of Open Access Journals (Sweden)

    F. Avraham eDilmanian

    2015-12-01

    Full Text Available One of the fundamental attributes of proton therapy and carbon ion therapy is the ability of these charged particles to spare tissue distal to the targeted tumor. This significantly reduces normal tissue toxicity and has the potential to translate to a wider therapeutic index. Although, in general, particle therapy also reduces dose to the proximal tissues, particularly in the vicinity of the target, dose to the skin and to other very superficial tissues tends to be higher than that of megavoltage x-rays. The methods presented here, namely Interleaved carbon minibeams and Radiosurgery with arrays of proton and light ion minibeams, both utilize beams segmented into arrays of parallel minibeams of about 0.3 mm incident beam size. These minibeam arrays spare tissues, as demonstrated by synchrotron x-ray experiments. An additional feature of particle minibeams is their gradual broadening due to multiple Coulomb scattering as they penetrate tissues. In the case of interleaved carbon minibeams, which do not broaden much, two arrays of planar carbon minibeams that remain parallel at target depth, are aimed at the target from 90º angles and made to interleave at the target to produce a solid radiation field within the target. As a result the surrounding tissues are exposed only to individual carbon minibeam arrays and are therefore spared. The method was used in four-directional geometry at the NASA Space Radiation Laboratory to ablate a 6.5-mm target in a rabbit brain at a single exposure with 40 Gy physical absorbed dose. Contrast-enhanced magnetic resonance imaging and histology six month later showed very focal target necrosis with nearly no damage to the surrounding brain. As for minibeams of protons and light ions, for which the minibeam broadening is substantial, measurements at MD Anderson Cancer Center in Houston, Texas, and Monte Carlo simulations showed that the broadening minibeams will merge with their neighbors at a certain tissue depth

  2. Advanced cell therapies: targeting, tracking and actuation of cells with magnetic particles.

    Science.gov (United States)

    Connell, John J; Patrick, P Stephen; Yu, Yichao; Lythgoe, Mark F; Kalber, Tammy L

    2015-01-01

    Regenerative medicine would greatly benefit from a new platform technology that enabled measurable, controllable and targeting of stem cells to a site of disease or injury in the body. Superparamagnetic iron-oxide nanoparticles offer attractive possibilities in biomedicine and can be incorporated into cells, affording a safe and reliable means of tagging. This review describes three current and emerging methods to enhance regenerative medicine using magnetic particles to guide therapeutic cells to a target organ; track the cells using MRI and assess their spatial localization with high precision and influence the behavior of the cell using magnetic actuation. This approach is complementary to the systemic injection of cell therapies, thus expanding the horizon of stem cell therapeutics.

  3. Elementary particle physics and cosmology: current status and prospects

    International Nuclear Information System (INIS)

    Rubakov, Valerii A

    1999-01-01

    The current status of elementary particle physics can be briefly summarized as follows: the Standard Model of elementary particles is perfectly (at the level of radiation effects!) adequate in describing all the available experimental data except for the recent indications of neutrino oscillations. At the same time, much (and possibly most) of today's cosmology is not encompassed by the Standard Model - a fact which, together with intrinsic theoretical difficulties and the neutrino oscillation challenge, strongly indicates that the Standard Model is incomplete. It is expected that in the current decade a 'new physics', i.e. particles and interactions beyond the Standard Model, will emerge. Major advances in cosmology, both in terms of qualitatively improved observations and theoretical analysis of the structure and evolution of the Universe, are expected as well. (special issue)

  4. Use of the NASA Space Radiation Laboratory at Brookhaven National Laboratory to Conduct Charged Particle Radiobiology Studies Relevant to Ion Therapy.

    Science.gov (United States)

    Held, Kathryn D; Blakely, Eleanor A; Story, Michael D; Lowenstein, Derek I

    2016-06-01

    Although clinical studies with carbon ions have been conducted successfully in Japan and Europe, the limited radiobiological information about charged particles that are heavier than protons remains a significant impediment to exploiting the full potential of particle therapy. There is growing interest in the U.S. to build a cancer treatment facility that utilizes charged particles heavier than protons. Therefore, it is essential that additional radiobiological knowledge be obtained using state-of-the-art technologies and biological models and end points relevant to clinical outcome. Currently, most such ion radiotherapy-related research is being conducted outside the U.S. This article addresses the substantial contributions to that research that are possible at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), which is the only facility in the U.S. at this time where heavy-ion radiobiology research with the ion species and energies of interest for therapy can be done. Here, we briefly discuss the relevant facilities at NSRL and how selected charged particle biology research gaps could be addressed using those facilities.

  5. Advances in 4D treatment planning for scanned particle beam therapy - report of dedicated workshops.

    Science.gov (United States)

    Bert, Christoph; Graeff, Christian; Riboldi, Marco; Nill, Simeon; Baroni, Guido; Knopf, Antje-Christin

    2014-12-01

    We report on recent progress in the field of mobile tumor treatment with scanned particle beams, as discussed in the latest editions of the 4D treatment planning workshop. The workshop series started in 2009, with about 20 people from 4 research institutes involved, all actively working on particle therapy delivery and development. The first workshop resulted in a summary of recommendations for the treatment of mobile targets, along with a list of requirements to apply these guidelines clinically. The increased interest in the treatment of mobile tumors led to a continuously growing number of attendees: the 2012 edition counted more than 60 participants from 20 institutions and commercial vendors. The focus of research discussions among workshop participants progressively moved from 4D treatment planning to complete 4D treatments, aiming at effective and safe treatment delivery. Current research perspectives on 4D treatments include all critical aspects of time resolved delivery, such as in-room imaging, motion detection, beam application, and quality assurance techniques. This was motivated by the start of first clinical treatments of hepato cellular tumors with a scanned particle beam, relying on gating or abdominal compression for motion mitigation. Up to date research activities emphasize significant efforts in investigating advanced motion mitigation techniques, with a specific interest in the development of dedicated tools for experimental validation. Potential improvements will be made possible in the near future through 4D optimized treatment plans that require upgrades of the currently established therapy control systems for time resolved delivery. But since also these novel optimization techniques rely on the validity of the 4DCT, research focusing on alternative 4D imaging technique, such as MRI based 4DCT generation will continue.

  6. Music therapy in palliative care: current perspectives.

    Science.gov (United States)

    O'Kelly, Julian

    2002-03-01

    As the music therapy profession has developed internationally over the last 25 years, so has its role in palliative care. Music is a highly versatile and dynamic therapeutic modality, lending itself to a variety of music therapy techniques used to benefit both those living with life-threatening illnesses and their family members and caregivers. This article will give a broad overview of the historical roots of music therapy and introduce the techniques that are employed in current practice. By combining a review of mainstream music therapy practice involving musical improvisation, song-writing and receptive/recreational techniques with case material from my own experience, this article aims to highlight the potential music therapy holds as an effective holistic practice for palliative care, whatever the care setting.

  7. Alpha particle emitters in cancer therapy: establishing the rationale and overcoming the difficulties

    International Nuclear Information System (INIS)

    Sgouros, G.

    1996-01-01

    Full text: Once a tumor has metastasized, the possibility of cure is significantly diminished, if not excluded. Since metastatic spread arises due to the release of single tumor cells or tumor cell clusters, treatment regimens following an overt metastasis must include agents that eradicate individual tumor cells and cell clusters or that prevent their dissemination. Alpha particles may be highly effective in eradicating rapidly accessible disease. The effectiveness of alpha particles arises because the amount of energy deposited per unit distance traveled (linear energy transfer or LET) is approximately 400 times greater than that of beta particles (80 keV/μm vs. 0.2 keV/μm). Each traversal of an alpha particle through a cell nucleus results in a very highly ionizing track. Cell survival studies have shown that alpha-particle killing is independent of oxygenation state or cell-cycle during irradiation and that as few as 1 to 6 tracks across the nucleus may result in cell death. Most studies with alpha-particle emitting radionuclides for therapy have examined either bismuth-212 or astatine-211. Both radionuclides are short-lived with 61 minute and 7.2 hour half-lives, respectively, yielding intermediates with 3-minute and 32 year half-lives, respectively. Both emit alpha particles whose range is 40 to 80 μm. Alpha-particle emitting radionuclides have been attached to antibodies against tumor cell associated antigen. Antibodies have been the most widely used vehicle for delivery of alpha particles due to their specificity. Bismuth-212 has demonstrated a significant curative potential with minimal toxicity. In an ascites tumor mouse model, specific targeting and 80% cure following injection of Bi-212-labeled antibody has been observed (Macklis RM et al, Science, 240:1024-1026, 1988). It is important to define the realm of applicability for alpha particle emitting radionuclides. The short half-life of most currently available radionuclides, limits their use to

  8. Reducing the uncertainties in particle therapy

    Energy Technology Data Exchange (ETDEWEB)

    Oancea, C., E-mail: oancea@jinr.ru [Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, 6 Joliot-Curie Street, 141980, Dubna, Moscow Region, Russia and Faculty of Physics, University of Bucharest, Atomistilor Street 405, 077125 Bucharest-Magurele, Ilfov Region (Romania); Shipulin, K. N.; Mytsin, G. V.; Luchin, Y. I. [Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, 6 Joliot-Curie Street, 141980, Dubna, Moscow Region (Russian Federation)

    2015-02-24

    The use of fundamental Nuclear Physics in Nuclear Medicine has a significant impact in the fight against cancer. Hadrontherapy is an innovative cancer radiotherapy method using nuclear particles (protons, neutrons and ions) for the treatment of early and advanced tumors. The main goal of proton therapy is to deliver high radiation doses to the tumor volume with minimal damage to healthy tissues and organs. The purpose of this work was to investigate the dosimetric errors in clinical proton therapy dose calculation due to the presence of metallic implants in the treatment plan, and to determine the impact of the errors. The results indicate that the errors introduced by the treatment planning systems are higher than 10% in the prediction of the dose at isocenter when the proton beam is passing directly through a metallic titanium alloy implant. In conclusion, we recommend that pencil-beam algorithms not be used when planning treatment for patients with titanium alloy implants, and to consider implementing methods to mitigate the effects of the implants.

  9. Preclinical investigations towards the first spacer gel application in prostate cancer treatment during particle therapy at HIT

    International Nuclear Information System (INIS)

    Ruciński, Antoni; Parodi, Katia; Jäkel, Oliver; Haberer, Thomas; Bauer, Julia; Campbell, Patrick; Brons, Stephan; Unholtz, Daniel; Habl, Gregor; Herfarth, Klaus; Debus, Jürgen; Bert, Christoph

    2013-01-01

    The application of spacer gel represents a promising approach to reliably spare the rectal frontal wall during particle therapy (IJROBP 76:1251-1258, 2010). In order to qualify the spacer gel for the clinical use in particle therapy, a variety of measurements were performed in order to ensure the biological compatibility of the gel, its physical stability during and after the irradiation, and a proper definition of the gel in terms of the Hounsfield Unit (HU) values for the treatment planning system. The potential for the use of the spacer gel for particle therapy monitoring with off-line Positron Emission Tomography (PET) was also investigated. The spacer gel implanted to the prostate patient in direct neighbourhood to the clinical target volume does not interfere with the particle therapy treatment planning procedure applied at Heidelberg Ion Beam Therapy Centre (HIT). The performed measurements show that Bragg-peak position of the particles can be properly predicted on the basis of computed tomography imaging with the treatment planning system used at HIT (measured water equivalent path length of 1.011 ±0.011 (2σ), measured Hounsfield Unit of 28.9 ±6.1 (2σ)). The spacer gel samples remain physically unchanged after irradiation with a dose exceeding the therapeutic dose level. The independently measured Bragg-Peak position does not change within the time interval of 10 weeks. As a result of the presented experiments, the first clinical application of spacer gel implant during prostate cancer treatment with carbon ions and protons was possible at HIT in 2012. The reported pre-clinical investigations demonstrate that use of spacer gel is safe in particle therapy in presence of therapy target motion and patient positioning induced particle range variations. The spacer gel injected between prostate and rectum enlarge the distance between both organs, which is expected to clinically significantly decrease the undesirable exposure of the most critical organ at risk

  10. Electric current-driven migration of electrically neutral particles in liquids

    International Nuclear Information System (INIS)

    Zhang, Xinfang; Qin, Rongshan

    2014-01-01

    We design and experimentally demonstrate a migration of electrically neutral particles in liquids driven by electric current according to the discrepancies of their electrical conductivities. A force from electric current to electrically neutral particles has been identified to drive the particles toward the lateral surface from the centre of suspension via three distinguishable zones, namely, pushing, trapping, and expelling zones. The driving force can overtake gravity in practical cases. The property of the force is found neither similar to that of the force in electromagnetophoresis nor similar to that of the electromigration force in terms of direction and magnitude. An expression for the force at the pushing zone has been developed based on the numerical calculation of the thermodynamics of suspension fluids. The excellent agreement between numerical calculations and experimental data demonstrates that our calculation provides fundamental and predictive insight into particles separation from the liquids. Therefore, it is possible to use the force in many engineering applications such as separation of particles according to the differences of their electrical conductivities

  11. Spatially Localized Particle Energization by Landau Damping in Current Sheets

    Science.gov (United States)

    Howes, G. G.; Klein, K. G.; McCubbin, A. J.

    2017-12-01

    Understanding the mechanisms of particle energization through the removal of energy from turbulent fluctuations in heliospheric plasmas is a grand challenge problem in heliophysics. Under the weakly collisional conditions typical of heliospheric plasma, kinetic mechanisms must be responsible for this energization, but the nature of those mechanisms remains elusive. In recent years, the spatial localization of plasma heating near current sheets in the solar wind and numerical simulations has gained much attention. Here we show, using the innovative and new field-particle correlation technique, that the spatially localized particle energization occurring in a nonlinear gyrokinetic simulation has the velocity space signature of Landau damping, suggesting that this well-known collisionless damping mechanism indeed actively leads to spatially localized heating in the vicinity of current sheets.

  12. Optimization and verification of image reconstruction for a Compton camera towards application as an on-line monitor for particle therapy

    Science.gov (United States)

    Taya, T.; Kataoka, J.; Kishimoto, A.; Tagawa, L.; Mochizuki, S.; Toshito, T.; Kimura, M.; Nagao, Y.; Kurita, K.; Yamaguchi, M.; Kawachi, N.

    2017-07-01

    Particle therapy is an advanced cancer therapy that uses a feature known as the Bragg peak, in which particle beams suddenly lose their energy near the end of their range. The Bragg peak enables particle beams to damage tumors effectively. To achieve precise therapy, the demand for accurate and quantitative imaging of the beam irradiation region or dosage during therapy has increased. The most common method of particle range verification is imaging of annihilation gamma rays by positron emission tomography. Not only 511-keV gamma rays but also prompt gamma rays are generated during therapy; therefore, the Compton camera is expected to be used as an on-line monitor for particle therapy, as it can image these gamma rays in real time. Proton therapy, one of the most common particle therapies, uses a proton beam of approximately 200 MeV, which has a range of ~ 25 cm in water. As gamma rays are emitted along the path of the proton beam, quantitative evaluation of the reconstructed images of diffuse sources becomes crucial, but it is far from being fully developed for Compton camera imaging at present. In this study, we first quantitatively evaluated reconstructed Compton camera images of uniformly distributed diffuse sources, and then confirmed that our Compton camera obtained 3 %(1 σ) and 5 %(1 σ) uniformity for line and plane sources, respectively. Based on this quantitative study, we demonstrated on-line gamma imaging during proton irradiation. Through these studies, we show that the Compton camera is suitable for future use as an on-line monitor for particle therapy.

  13. Novel Therapies Focused on the High-Density Lipoprotein Particle

    NARCIS (Netherlands)

    van Capelleveen, Julian C.; Brewer, H. Bryan; Kastelein, John J. P.; Hovingh, G. Kees

    2014-01-01

    Cardiovascular disease (CVD) remains a major burden for morbidity and mortality in the general population, despite current efficacious low-density lipoprotein-cholesterol-lowering therapies. Consequently, novel therapies are required to reduce this residual risk. Prospective epidemiological studies

  14. Angina pectoris: current therapy and future treatment options.

    Science.gov (United States)

    Parikh, Raj; Kadowitz, Philip J

    2014-02-01

    Angina pectoris is the consequence of an inequality between the demand and supply of blood to the heart. Angina manifests itself as chest pain or discomfort and is a common complaint of patients in the hospital and in the clinic. There are, in fact, roughly half a million new cases of angina per year. Chest pain, while having many etiologies, is generally considered to be most lethal when related to a cardiac cause. In this review, the authors outline the current medical and surgical therapies that are used in the management of angina. Highlights of the various clinical trials that have assisted in the investigation of these therapies are summarized also. Then, the authors provide a focused review of the novel therapy options for angina that are currently being explored. From new medical treatments to revised surgical techniques to the discovery of stem cell therapy, many innovative options are being investigated for the treatment of angina.

  15. Ratchet Transport of Chiral Particles Caused by the Transversal Asymmetry: Current Reversals and Particle Separation

    Science.gov (United States)

    Liu, Jian-li; Lu, Shi-cai; Ai, Bao-quan

    2018-06-01

    Due to the chirality of active particles, the transversal asymmetry can induce the the longitudinal directed transport. The transport of chiral active particles in a periodic channel is investigated in the presence of two types of the transversal asymmetry, the transverse force and the transverse rigid half-circle obstacles. For all cases, the counterclockwise and clockwise particles move to the opposite directions. For the case of the only transverse force, the chiral active particles can reverse their directions when increasing the transverse force. When the transverse rigid half-circle obstacles are introduced, the transport behavior of particles becomes more complex and multiple current reversals occur. The direction of the transport is determined by the competition between two types of the transversal asymmetry. For a given chirality, by suitably tailoring parameters, particles with different self-propulsion speed can move in different directions and can be separated.

  16. Limiting diffusion current at rotating disk electrode with dense particle layer.

    Science.gov (United States)

    Weroński, P; Nosek, M; Batys, P

    2013-09-28

    Exploiting the concept of diffusion permeability of multilayer gel membrane and porous multilayer we have derived a simple analytical equation for the limiting diffusion current at rotating disk electrode (RDE) covered by a thin layer with variable tortuosity and porosity, under the assumption of negligible convection in the porous film. The variation of limiting diffusion current with the porosity and tortuosity of the film can be described in terms of the equivalent thickness of stagnant solution layer, i.e., the average ratio of squared tortuosity to porosity. In case of monolayer of monodisperse spherical particles, the equivalent layer thickness is an algebraic function of the surface coverage. Thus, by means of cyclic voltammetry of RDE with a deposited particle monolayer we can determine the monolayer surface coverage. The effect of particle layer adsorbed on the surface of RDE increases non-linearly with surface coverage. We have tested our theoretical results experimentally by means of cyclic voltammetry measurements of limiting diffusion current at the glassy carbon RDE covered with a monolayer of 3 μm silica particles. The theoretical and experimental results are in a good agreement at the surface coverage higher than 0.7. This result suggests that convection in a monolayer of 3 μm monodisperse spherical particles is negligibly small, in the context of the coverage determination, in the range of very dense particle layers.

  17. Some current experimental challenges in elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Cline, D.B. (California Univ., Los Angeles (USA). Dept. of Physics)

    1990-06-01

    We describe three experimental challenges for experimental elementary particle physics: (1) the ongoing search for flavor changing weak neutral currents, including future prospect for a anti BB factory, (2) the status of the tests of the standard model in the W, Z and t quark sectors and (3) some current search for physics beyond the standard model, to include the possibility of searching for CPT violation using a {Phi} factory. (orig.).

  18. Current status of neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    There are about 6000 new glioblastoma multiform brain tumours diagnosed each year in the United States of America alone. This cancer is usually fatal within six months of diagnosis even with current standard treatments. Research on boron neutron capture therapy (BNCT) has been considered as a method of potentially curing such cancers. There is a great interest at under-utilised research reactors institutions to identify new medical utilization, attractive to the general public. Neutron capture therapy is a true multidisciplinary topic with a large variety of individuals involved. This publication attempts to provide current information for all those thinking about being involved with NCT, based on the knowledge and experience of those who have pioneered the treatment. It covers the whole range of NCT from designing reactor conversions or new facilities, through to clinical trials and their effectiveness. However, since most work has been done with boron capture therapy for brain tumours using modified thermal research reactors, this tends to be the focus of the report. One of the factors which need to be addressed at the beginning is the timing of the further development of NCT facilities. It should be emphasised that all current work is still at the research stage. Many of those now involved believe that there is little need for many more research facilities until such time as the treatment shows more promising results. For this and other reasons discussed in the report, very serious consideration should be given by research reactor owners and operators before spending large sums of money converting their facilities for NCT.

  19. Current status of neutron capture therapy

    International Nuclear Information System (INIS)

    2001-05-01

    There are about 6000 new glioblastoma multiform brain tumours diagnosed each year in the United States of America alone. This cancer is usually fatal within six months of diagnosis even with current standard treatments. Research on boron neutron capture therapy (BNCT) has been considered as a method of potentially curing such cancers. There is a great interest at under-utilised research reactors institutions to identify new medical utilization, attractive to the general public. Neutron capture therapy is a true multidisciplinary topic with a large variety of individuals involved. This publication attempts to provide current information for all those thinking about being involved with NCT, based on the knowledge and experience of those who have pioneered the treatment. It covers the whole range of NCT from designing reactor conversions or new facilities, through to clinical trials and their effectiveness. However, since most work has been done with boron capture therapy for brain tumours using modified thermal research reactors, this tends to be the focus of the report. One of the factors which need to be addressed at the beginning is the timing of the further development of NCT facilities. It should be emphasised that all current work is still at the research stage. Many of those now involved believe that there is little need for many more research facilities until such time as the treatment shows more promising results. For this and other reasons discussed in the report, very serious consideration should be given by research reactor owners and operators before spending large sums of money converting their facilities for NCT

  20. Stability, energetic particles, waves, and current drive summary

    International Nuclear Information System (INIS)

    Stambaugh, R.D.

    2005-01-01

    This is the summary paper for the subjects of plasma stability, energetic particles, waves, and current drive for the 20th IAEA Fusion Energy Conference, 1-6 November 2004, Vilamoura, Portugal. Material summarized herein was drawn from 65 contributed papers and 21 overview papers. The distribution of contributed papers by subjects is shown. Significant advances were reported on the principal instabilities in magnetically confined plasmas, even looking forward to the burning plasma state. Wave-plasma physics is maturing and novel methods of current drive and noninductive current generation are being developed. (author)

  1. The Role of Nuclear Fragmentation in Particle Therapy and Space Radiation Protection.

    Science.gov (United States)

    Zeitlin, Cary; La Tessa, Chiara

    2016-01-01

    The transport of the so-called HZE particles (those having high charge, Z, and energy, E) through matter is crucially important both in space radiation protection and in the clinical setting where heavy ions are used for cancer treatment. HZE particles are usually considered those having Z > 1, though sometimes Z > 2 is meant. Transport physics is governed by two types of interactions, electromagnetic (ionization energy loss) and nuclear. Models of transport, such as those used in treatment planning and space mission planning must account for both effects in detail. The theory of electromagnetic interactions is well developed, but nucleus-nucleus collisions are so complex that no fundamental physical theory currently describes them. Instead, interaction models are generally anchored to experimental data, which in some areas are far from complete. The lack of fundamental physics knowledge introduces uncertainties in the calculations of exposures and their associated risks. These uncertainties are greatly compounded by the much larger uncertainties in biological response to HZE particles. In this article, we discuss the role of nucleus-nucleus interactions in heavy charged particle therapy and in deep space, where astronauts will receive a chronic low dose from galactic cosmic rays (GCRs) and potentially higher short-term doses from sporadic, unpredictable solar energetic particles (SEPs). GCRs include HZE particles; SEPs typically do not and we, therefore, exclude them from consideration in this article. Nucleus-nucleus collisions can result in the breakup of heavy ions into lighter ions. In space, this is generally beneficial because dose and dose equivalent are, on the whole, reduced in the process. The GCRs can be considered a radiation field with a significant high-LET component; when they pass through matter, the high-LET component is attenuated, at the cost of a slight increase in the low-LET component. Not only are the standard measures of risk

  2. Digital Signal Processing and Generation for a DC Current Transformer for Particle Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Zorzetti, Silvia [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-01-01

    The thesis topic, digital signal processing and generation for a DC current transformer, focuses on the most fundamental beam diagnostics in the field of particle accelerators, the measurement of the beam intensity, or beam current. The technology of a DC current transformer (DCCT) is well known, and used in many areas, including particle accelerator beam instrumentation, as non-invasive (shunt-free) method to monitor the DC current in a conducting wire, or in our case, the current of charged particles travelling inside an evacuated metal pipe. So far, custom and commercial DCCTs are entirely based on analog technologies and signal processing, which makes them inflexible, sensitive to component aging, and difficult to maintain and calibrate.

  3. Current generation by alpha particles interacting with lower hybrid waves in TOKAMAKS

    International Nuclear Information System (INIS)

    Belikov, V.S.; Kolesnichenko, Ya.I.; Lisak, M.; Anderson, D.

    1990-01-01

    The problem of the influence of fusion generated alpha particles on lower-hybrid-wave current drive is examined. Analysis is based on a new equation for the LH-wave-fast ion interaction which is derived by taking into consideration the non-zero value of the longitudinal wave number. The steady-state velocity distribution function for high energy alpha particles is found. The alpha current driven by LH-waves as well as the RF-power absorbed by alpha particle are calculated. (authors)

  4. Hadron Therapy: Past, Present and Perspectives

    International Nuclear Information System (INIS)

    Jones, D.T.L

    1999-01-01

    Fast neutron therapy began as long ago as 1938 and subsequently proton, alpha particle, heavy ion, pion and neutron capture therapy have been used. To date it is estimated that in excess of 45000 people have undergone some form of hadron therapy. In the future it is expected that fast neutron therapy will be used for selected tumour types for which neutron are known to show improved cure rates. The future trends in charged particle therapy will be driven by increasing commercialization. The future of neutron capture therapy will depend on current clinical trials with epithermal neutron beams and the development of new tumour-seeking drugs

  5. Connection of European particle therapy centers and generation of a common particle database system within the European ULICE-framework

    International Nuclear Information System (INIS)

    Kessel, Kerstin A; Pötter, Richard; Dosanjh, Manjit; Debus, Jürgen; Combs, Stephanie E; Bougatf, Nina; Bohn, Christian; Habermehl, Daniel; Oetzel, Dieter; Bendl, Rolf; Engelmann, Uwe; Orecchia, Roberto; Fossati, Piero

    2012-01-01

    To establish a common database on particle therapy for the evaluation of clinical studies integrating a large variety of voluminous datasets, different documentation styles, and various information systems, especially in the field of radiation oncology. We developed a web-based documentation system for transnational and multicenter clinical studies in particle therapy. 560 patients have been treated from November 2009 to September 2011. Protons, carbon ions or a combination of both, as well as a combination with photons were applied. To date, 12 studies have been initiated and more are in preparation. It is possible to immediately access all patient information and exchange, store, process, and visualize text data, any DICOM images and multimedia data. Accessing the system and submitting clinical data is possible for internal and external users. Integrated into the hospital environment, data is imported both manually and automatically. Security and privacy protection as well as data validation and verification are ensured. Studies can be designed to fit individual needs. The described database provides a basis for documentation of large patient groups with specific and specialized questions to be answered. Having recently begun electronic documentation, it has become apparent that the benefits lie in the user-friendly and timely workflow for documentation. The ultimate goal is a simplification of research work, better study analyses quality and eventually, the improvement of treatment concepts by evaluating the effectiveness of particle therapy

  6. Proposal for a program in particle-beam radiation therapy in the United States. A report from the Committee for Radiation Oncology Studies (CROS) and its particle subcommittee

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The Program for Particle Therapy proposes utilization of hospital-based particle generators in a nationwide program to evaluate, through meaningful clinical trials, article radiation therapy and the impact its utilization can have in cancer care. The scientific rationale for use of particle therapy compared to conventional radiation in the effort to achieve uncomplicated local control of cancer, to heal, cure and palliate the patient, indicates the advantages of particle therapy consist of either or both (a) enhanced biological effect and (b) physical properties leading to improvement in dose distribution. Any new modality enabling the therapist to increase dose to tumor, while sparing critical normal tissue, can enhance local control and benefit systemic therapy. Limited clinical trials to date warrant further definitive clinical study of particle beams. Physical and biologic considerations of fast-neutron beams have been essentially completed; equipment design, availability, and predicted reliability are good; and the medical community has indicated support of further study. A major clinical investigation can be implemented to provide the scientific basis for judging clinical merit of use of high LET radiations. Concurrently, the first phase of work can be started with protons, negative pions, and heavy ions. It is anticipated that clinical results will accrue much more rapidly with hospital-based facilities in two phases, over a 10-year period

  7. Solar Energetic Particle Transport Near a Heliospheric Current Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Battarbee, Markus; Dalla, Silvia [Jeremiah Horrocks Institute, University of Central Lancashire, PR1 2HE (United Kingdom); Marsh, Mike S., E-mail: mbattarbee@uclan.ac.uk [Met Office, Exeter, EX1 3 PB (United Kingdom)

    2017-02-10

    Solar energetic particles (SEPs), a major component of space weather, propagate through the interplanetary medium strongly guided by the interplanetary magnetic field (IMF). In this work, we analyze the implications that a flat Heliospheric Current Sheet (HCS) has on proton propagation from SEP release sites to the Earth. We simulate proton propagation by integrating fully 3D trajectories near an analytically defined flat current sheet, collecting comprehensive statistics into histograms, fluence maps, and virtual observer time profiles within an energy range of 1–800 MeV. We show that protons experience significant current sheet drift to distant longitudes, causing time profiles to exhibit multiple components, which are a potential source of confusing interpretations of observations. We find that variation of the current sheet thickness within a realistic parameter range has little effect on particle propagation. We show that the IMF configuration strongly affects the deceleration of protons. We show that in our model, the presence of a flat equatorial HCS in the inner heliosphere limits the crossing of protons into the opposite hemisphere.

  8. Polydisperse particle-driven gravity currents in non-rectangular cross section channels

    Science.gov (United States)

    Zemach, T.

    2018-01-01

    We consider a high-Reynolds-number gravity current generated by polydisperse suspension of n types of particles distributed in a fluid of density ρi. Each class of particles in suspension has a different settling velocity. The current propagates along a channel of non-rectangular cross section into an ambient fluid of constant density ρa. The bottom and top of the channel are at z = 0, H, and the cross section is given by the quite general form -f1(z) ≤ y ≤ f2(z) for 0 ≤ z ≤ H. The flow is modeled by the one-layer shallow-water equations obtained for the time-dependent motion. We solve the problem by a finite-difference numerical code to present typical height h, velocity u, and mass fractions of particle (concentrations) (ϕ( j), j = 1, …, n) profiles. The runout length of suspensions in channels of power-law cross sections is analytically predicted using a simplified depth-averaged "box" model. We demonstrate that any degree of polydispersivity adds to the runout length of the currents, relative to that of equivalent monodisperse currents with an average settling velocity. The theoretical predictions are supported by the available experimental data. The present approach is a significant generalization of the particle-driven gravity current problem: on the one hand, now the monodisperse current in non-rectangular channels is a particular case of n = 1. On the other hand, the classical formulation of polydisperse currents for a rectangular channel is now just a particular case, f(z) = const., in the wide domain of cross sections covered by this new model.

  9. Additional acceleration of solar-wind particles in current sheets of the heliosphere

    Directory of Open Access Journals (Sweden)

    V. Zharkova

    2015-04-01

    Full Text Available Particles of fast solar wind in the vicinity of the heliospheric current sheet (HCS or in a front of interplanetary coronal mass ejections (ICMEs often reveal very peculiar energy or velocity profiles, density distributions with double or triple peaks, and well-defined streams of electrons occurring around or far away from these events. In order to interpret the parameters of energetic particles (both ions and electrons measured by the WIND spacecraft during the HCS crossings, a comparison of the data was carried out with 3-D particle-in-cell (PIC simulations for the relevant magnetic topology (Zharkova and Khabarova, 2012. The simulations showed that all the observed particle-energy distributions, densities, ion peak velocities, electron pitch angles and directivities can be fitted with the same model if the heliospheric current sheet is in a status of continuous magnetic reconnection. In this paper we present further observations of the solar-wind particles being accelerated to rather higher energies while passing through the HCS and the evidence that this acceleration happens well before the appearance of the corotating interacting region (CIR, which passes through the spacecraft position hours later. We show that the measured particle characteristics (ion velocity, electron pitch angles and the distance at which electrons are turned from the HCS are in agreement with the simulations of additional particle acceleration in a reconnecting HCS with a strong guiding field as measured by WIND. A few examples are also presented showing additional acceleration of solar-wind particles during their passage through current sheets formed in a front of ICMEs. This additional acceleration at the ICME current sheets can explain the anticorrelation of ion and electron fluxes frequently observed around the ICME's leading front. Furthermore, it may provide a plausible explanation of the appearance of bidirectional "strahls" (field-aligned most energetic

  10. Effect of quasi-particle injection on retrapping current of Josephson junction

    OpenAIRE

    Utsunomiya, K.; Yagi, Ryuta

    2006-01-01

    We report that the energy dissipation of Josephson junction can be controlled by quasi-particle injection. We fabricated two Josephson junctions on the narrow aluminum wire and controlled the energy dissipation of one junction by quasi-particle injection from the other. We observed the retrapping current increased as the quasi-particles were injected. We also studied the heating effect of our measurement.

  11. Heavy charged particle radiobiology: using enhanced biological effectiveness and improved beam focusing to advance cancer therapy.

    Science.gov (United States)

    Allen, Christopher; Borak, Thomas B; Tsujii, Hirohiko; Nickoloff, Jac A

    2011-06-03

    Ionizing radiation causes many types of DNA damage, including base damage and single- and double-strand breaks. Photons, including X-rays and γ-rays, are the most widely used type of ionizing radiation in radiobiology experiments, and in radiation cancer therapy. Charged particles, including protons and carbon ions, are seeing increased use as an alternative therapeutic modality. Although the facilities needed to produce high energy charged particle beams are more costly than photon facilities, particle therapy has shown improved cancer survival rates, reflecting more highly focused dose distributions and more severe DNA damage to tumor cells. Despite early successes of charged particle radiotherapy, there is room for further improvement, and much remains to be learned about normal and cancer cell responses to charged particle radiation. 2011 Elsevier B.V. All rights reserved.

  12. Current therapy for Parkinson's disease

    Directory of Open Access Journals (Sweden)

    A. V. Obukhova

    2014-01-01

    Full Text Available The main goal of therapy for Parkinson's disease (PD is to correct dopamine deficiency in the nigrostriatal system. Levodopa preparations and dopamine receptor agonists (DRAs that are prescribed with regards to patient age and disease severity are mainly used now. Notwithstanding the fact that levodopa preparations are the gold standard of therapy, their long-term use gives rise to complications as motor fluctuations and drug-induced dyskinesias. The currently available DRAs are the drugs of choice for the therapy of early-stage PD as they are as effective as levodopa preparations. In extensive-stage PD, DRAs are used to enhance the therapy and correction of developed motor fluctuations and dyskinesias. Pramipexole is one of the most commonly used representatives of non-ergoline DRAs. The paper analyzes the efficacy of the medication used as both monotherapy and part of combined therapy, its effect on tremor and depression in PD. A novel extended-release formulation of pramipexole is considered separately. Both immediate- and extended-release pramipexole formulations contain the same active ingredient and have the same dopamine-receptor interaction profile, but differ in the tablet release rate of the active ingredient. The advantages of the novel formulation are its more steady-state plasma concentration and 24-hour action, which ensures continuous dopaminergic stimulation ofpostsynaptic receptors to prevent and treat already developed motor complications. The once-daily extended-release formulation of the drug makes its treatment regimen easier and patient compliance higher.

  13. Current experiments in elementary particle physics

    International Nuclear Information System (INIS)

    Galic, H.; Dodder, D.C.; Klyukhin, V.I.; Ryabov, Yu.G.; Illarionova, N.S.; Lehar, F.; Oyanagi, Y.; Frosch, R.

    1992-06-01

    This report contains summaries of 584 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1986 are excluded. Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, KEK, LAMPF, Novosibirsk, Paul Scherrer Institut (PSI), Saclay, Serpukhov, SLAC, SSCL, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries

  14. Special report: workshop on 4D-treatment planning in actively scanned particle therapy--recommendations, technical challenges, and future research directions.

    Science.gov (United States)

    Knopf, Antje; Bert, Christoph; Heath, Emily; Nill, Simeon; Kraus, Kim; Richter, Daniel; Hug, Eugen; Pedroni, Eros; Safai, Sairos; Albertini, Francesca; Zenklusen, Silvan; Boye, Dirk; Söhn, Matthias; Soukup, Martin; Sobotta, Benjamin; Lomax, Antony

    2010-09-01

    This article reports on a 4D-treatment planning workshop (4DTPW), held on 7-8 December 2009 at the Paul Scherrer Institut (PSI) in Villigen, Switzerland. The participants were all members of institutions actively involved in particle therapy delivery and research. The purpose of the 4DTPW was to discuss current approaches, challenges, and future research directions in 4D-treatment planning in the context of actively scanned particle radiotherapy. Key aspects were addressed in plenary sessions, in which leaders of the field summarized the state-of-the-art. Each plenary session was followed by an extensive discussion. As a result, this article presents a summary of recommendations for the treatment of mobile targets (intrafractional changes) with actively scanned particles and a list of requirements to elaborate and apply these guidelines clinically.

  15. Self-consistent neutral point current and fields from single particle dynamics

    International Nuclear Information System (INIS)

    Martin, R.F. Jr.

    1988-01-01

    In order to begin to build a global model of the magnetotail-auroral region interaction, it is of interest to understand the role of neutral points as potential centers of particle energization in the tail. In this paper, the single particle current is calculated near a magnetic neutral point with magnetotail properties. This is balanced with the Ampere's law current producing the magnetic field to obtain the self-consistent electric field for the problem. Also calculated is the current-electric field relationship and, in the regime where this relation is linear, an effective conductivity. Results for these macroscopic quantities are surprisingly similar to the values calculated for a constant normal field current sheet geometry. Application to magnetotail modeling is discussed. 11 references

  16. Connection of European particle therapy centers and generation of a common particle database system within the European ULICE-framework

    Directory of Open Access Journals (Sweden)

    Kessel Kerstin A

    2012-07-01

    Full Text Available Abstract Background To establish a common database on particle therapy for the evaluation of clinical studies integrating a large variety of voluminous datasets, different documentation styles, and various information systems, especially in the field of radiation oncology. Methods We developed a web-based documentation system for transnational and multicenter clinical studies in particle therapy. 560 patients have been treated from November 2009 to September 2011. Protons, carbon ions or a combination of both, as well as a combination with photons were applied. To date, 12 studies have been initiated and more are in preparation. Results It is possible to immediately access all patient information and exchange, store, process, and visualize text data, any DICOM images and multimedia data. Accessing the system and submitting clinical data is possible for internal and external users. Integrated into the hospital environment, data is imported both manually and automatically. Security and privacy protection as well as data validation and verification are ensured. Studies can be designed to fit individual needs. Conclusions The described database provides a basis for documentation of large patient groups with specific and specialized questions to be answered. Having recently begun electronic documentation, it has become apparent that the benefits lie in the user-friendly and timely workflow for documentation. The ultimate goal is a simplification of research work, better study analyses quality and eventually, the improvement of treatment concepts by evaluating the effectiveness of particle therapy.

  17. NanOx, a new model to predict cell survival in the context of particle therapy

    Science.gov (United States)

    Cunha, M.; Monini, C.; Testa, E.; Beuve, M.

    2017-02-01

    Particle therapy is increasingly attractive for the treatment of tumors and the number of facilities offering it is rising worldwide. Due to the well-known enhanced effectiveness of ions, it is of utmost importance to plan treatments with great care to ensure tumor killing and healthy tissues sparing. Hence, the accurate quantification of the relative biological effectiveness (RBE) of ions, used in the calculation of the biological dose, is critical. Nevertheless, the RBE is a complex function of many parameters and its determination requires modeling. The approaches currently used have allowed particle therapy to thrive, but still show some shortcomings. We present herein a short description of a new theoretical framework, NanOx, to calculate cell survival in the context of particle therapy. It gathers principles from existing approaches, while addressing some of their weaknesses. NanOx is a multiscale model that takes the stochastic nature of radiation at nanometric and micrometric scales fully into account, integrating also the chemical aspects of radiation-matter interaction. The latter are included in the model by means of a chemical specific energy, determined from the production of reactive chemical species induced by irradiation. Such a production represents the accumulation of oxidative stress and sublethal damage in the cell, potentially generating non-local lethal events in NanOx. The complementary local lethal events occur in a very localized region and can, alone, lead to cell death. Both these classes of events contribute to cell death. The comparison between experimental data and model predictions for the V79 cell line show a good agreement. In particular, the dependence of the typical shoulders of cell survival curves on linear energy transfer are well described, but also the effectiveness of different ions, including the overkill effect. These results required the adjustment of a number of parameters compatible with the application of the model in

  18. Current experiments in elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Armstrong, F.E., Oyanagi, Y.; Dodder, D.C.; Ryabov, Yu.G.; Frosch, R.; Olin, A.; Lehar, F.; Moskalev, A.N.; Barkov, B.P.

    1987-03-01

    This report contains summaries of 720 recent and current experiments in elementary particle physics (experiments that finished taking data before 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.

  19. Current experiments in elementary particle physics

    International Nuclear Information System (INIS)

    Wohl, C.G.; Armstrong, F.E.; Oyanagi, Y.; Dodder, D.C.; Ryabov, Yu.G.; Frosch, R.; Olin, A.; Lehar, F.; Moskalev, A.N.; Barkov, B.P.

    1987-03-01

    This report contains summaries of 720 recent and current experiments in elementary particle physics (experiments that finished taking data before 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized

  20. Particle simulation of intense electron cyclotron heating and beat-wave current drive

    International Nuclear Information System (INIS)

    Cohen, B.I.

    1987-01-01

    High-power free-electron lasers make new methods possible for heating plasmas and driving current in toroidal plasmas with electromagnetic waves. We have undertaken particle simulation studies with one and two dimensional, relativistic particle simulation codes of intense pulsed electron cyclotron heating and beat-wave current drive. The particle simulation methods here are conventional: the algorithms are time-centered, second-order-accurate, explicit, leap-frog difference schemes. The use of conventional methods restricts the range of space and time scales to be relatively compact in the problems addressed. Nevertheless, experimentally relevant simulations have been performed. 10 refs., 2 figs

  1. Ponderomotive enhancement of charged particle beam limiting current

    International Nuclear Information System (INIS)

    Grebogi, C.; Uhm, H.S.

    1987-01-01

    The space charge limiting current problem is investigated for a magnetized particle beam propagating in a cylindrical drift tube and in presence of a waveguide mode. It is shown that with a proper choice of a waveguide mode, the limiting current can be greatly enhanced due to ponderomotive effects. Physically, this is accomplished by using the ponderomotive energy to reduce the potential depression due to the beam's self space charge field. Formulas for the limiting current as a function of beam energy and waveguide r.f. field for solid and hollow beams are derived. It is found from these formulas that, in appropriate parameter regimes, the space charge limiting current, say, of a 250kV bem can be enhanced by 70%

  2. Plasma current sustained by fusion charged particles in a field reversed configuration

    International Nuclear Information System (INIS)

    Berk, H.L.; Momota, H.; Tajima, T.

    1987-04-01

    The distribution of energetic charged particles generated by thermonuclear fusion reactions in a field reversed configuration (FRC) are studied analytically and numerically. A fraction of the charged fusion products escapes directly while the others are trapped to form a directed particle flow parallel to the plasma current. It is shown that the resultant current density produced by these fusion charged particles can be comparable to background plasma current density that produces the original field reversed configuration in a D- 3 He reactor. Self-consistent equilibria arising from the currents of the background plasma and proton fusion products are constructed where the Larmor radius of the fusion product is of arbitrary size. Reactor relevant parameters are examined, such as how the fusion reactivity rate varies as a result of supporting the pressure associated with the fusion products. We also model the synchrotron emission from various pressure profiles and quantitatively show how synchrotron losses vary with different pressure profiles in an FRC configuration

  3. Access of energetic particles to storm time ring current through enhanced radial diffusion

    International Nuclear Information System (INIS)

    Lyons, L.R.; Schulz, M.

    1989-01-01

    Magnetic storms are distinguishable from other periods of geomagnetic activity by the injection of trapped electrons and ions to the 2 approx-lt L approx-lt 4 region. It has been proposed previously that this injection results from an inward displacement of the preexisting trapped-particle population by enhanced storm time electric fields. However, high-energy (approx-gt 40 keV) ring-current particles have drift periods that are typically shorter than the time of the main-phase development, and so the direct radial transport of these particles is restricted. The authors propose here that the transport of approx-gt 40 keV particles into the storm time ring current can result from enhanced stochastic radial transport driven by fluctuating electric fields during a storm's main phase. They estimate the effects of such electric fields by applying radial-diffusion theory, assuming a preexisting trapped-particle population as the initial conditions, and they demonstrate the feasibility of explaining observed flux increases of approx-gt 40-keV particles at L approx-lt 4 by enhanced radial diffusion. It is necessary that new particles be injected near the outer boundary of the trapping region so as to maintain the fluxes there as an outer boundary condition, and they estimate that the approx-gt 40-keV portion of the storm time ring current at L ∼ 3 consists of about 50% preexisting and about 50% new particles. They thus find that formation of the storm time ring current may be explainable via a combination of direct radial transport at energies approx-lt 40 keV and diffusive radial transport at higher energies

  4. Nonequilibrium Microscopic Distribution of Thermal Current in Particle Systems

    KAUST Repository

    Yukawa, Satoshi

    2009-02-15

    A nonequilibrium distribution function of microscopic thermal current is studied by a direct numerical simulation in a thermal conducting steady state of particle systems. Two characteristic temperatures of the thermal current are investigated on the basis of the distribution. It is confirmed that the temperature depends on the current direction; Parallel temperature to the heat-flux is higher than antiparallel one. The difference between the parallel temperature and the antiparallel one is proportional to a macroscopic temperature gradient. ©2009 The Physical Society of Japan.

  5. Nonequilibrium Microscopic Distribution of Thermal Current in Particle Systems

    KAUST Repository

    Yukawa, Satoshi; Shimada, Takashi; Ogushi, Fumiko; Ito, Nobuyasu

    2009-01-01

    A nonequilibrium distribution function of microscopic thermal current is studied by a direct numerical simulation in a thermal conducting steady state of particle systems. Two characteristic temperatures of the thermal current are investigated on the basis of the distribution. It is confirmed that the temperature depends on the current direction; Parallel temperature to the heat-flux is higher than antiparallel one. The difference between the parallel temperature and the antiparallel one is proportional to a macroscopic temperature gradient. ©2009 The Physical Society of Japan.

  6. Current experiments in elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Armstrong, F.E.; Trippe, T.G.; Yost, G.P. (Lawrence Berkeley Lab., CA (USA)); Oyanagi, Y. (Tsukuba Univ., Ibaraki (Japan)); Dodder, D.C. (Los Alamos National Lab., NM (USA)); Ryabov, Yu.G.; Slabospitsky, S.R. (Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Serpukhov (USSR). Inst. Fiziki Vysokikh Ehnergij); Frosch, R. (Swiss Inst. for Nuclear Research, Villigen (Switzerla

    1989-09-01

    This report contains summaries of 736 current and recent experiments in elementary particle physics (experiments that finished taking data before 1982 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, Joint Institute for Nuclear Research (Dubna), KEK, LAMPF, Novosibirsk, PSI/SIN, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground experiments. Also given are instructions for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.

  7. Current experiments in elementary particle physics

    International Nuclear Information System (INIS)

    Wohl, C.G.; Armstrong, F.E.; Trippe, T.G.; Yost, G.P.; Oyanagi, Y.; Dodder, D.C.; Ryabov, Yu.G.; Slabospitsky, S.R.; Olin, A.; Klumov, I.A.

    1989-09-01

    This report contains summaries of 736 current and recent experiments in elementary particle physics (experiments that finished taking data before 1982 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, Joint Institute for Nuclear Research (Dubna), KEK, LAMPF, Novosibirsk, PSI/SIN, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground experiments. Also given are instructions for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized

  8. Second class current and structure of elementary particles

    Energy Technology Data Exchange (ETDEWEB)

    Senju, H [Nagoya Municipal Women' s Junior Coll. (Japan); Matsushima, T

    1976-10-01

    We examine what is required for the structure of elementary particles by the second class nucleonic currents which was recently discovered by Sugimoto et al. The experiment strongly suggests that the quark has a radius of a few tenth of fermi and the partons are constituents of quarks. We discuss briefly a possible internal structure of the quark.

  9. Stability, current drive and heating, energetic particles

    International Nuclear Information System (INIS)

    Razumova, K.

    2001-01-01

    The paper summarizes the results presented at the conference Fusion Energy 2000 (FEC 2000) in relation to the following subjects: 1. The possibility of realizing plasma parameters for ITER needs, advanced regimes in tokamaks and stellarators. 2. Stability of plasmas with an appreciable component of fast particles. 3. Low aspect ratio tokamaks. 4. New results with auxiliary heating and current drive methods. 5. β limit and neoclassical tearing mode (NTM) stabilization. 6. Internal transport barriers. (author)

  10. Manual Therapy: The Historical, Current, and Future Role in the Treatment of Pain

    Directory of Open Access Journals (Sweden)

    A. Russell Smith

    2007-01-01

    Full Text Available Manual therapy has been an approach in the management of patients with various disorders dating back to ancient times and continues to play a significant role in current health care. The future role of manual therapy in health care is an important area of research. This paper reviews the history of manual therapy, examines the current literature related to the use of manual techniques (including manipulation, massage, and nerve manipulation, and discusses future research topics. The literature related to manual therapy has historically been anecdotal and theoretical, and current research tends to have a generic approach with broad definitions of manual therapy and inconsistencies in the classification of specific disorders. Systematic reviews of various types of manual therapy have differed on their conclusions regarding the effectiveness of this treatment modality. The current demand in health care for evidence-based practice necessitates a movement towards more specificity in the research of the effectiveness of manual therapy, with emphasis on specific patient signs and symptoms and specific manual techniques that result in effective care.

  11. Manual Therapy: The Historical, Current, and Future Role in the Treatment of Pain

    Science.gov (United States)

    Smith, A. Russell

    2007-01-01

    Manual therapy has been an approach in the management of patients with various disorders dating back to ancient times and continues to play a significant role in current health care. The future role of manual therapy in health care is an important area of research. This paper reviews the history of manual therapy, examines the current literature related to the use of manual techniques (including manipulation, massage, and nerve manipulation), and discusses future research topics. The literature related to manual therapy has historically been anecdotal and theoretical, and current research tends to have a generic approach with broad definitions of manual therapy and inconsistencies in the classification of specific disorders. Systematic reviews of various types of manual therapy have differed on their conclusions regarding the effectiveness of this treatment modality. The current demand in health care for evidence-based practice necessitates a movement towards more specificity in the research of the effectiveness of manual therapy, with emphasis on specific patient signs and symptoms and specific manual techniques that result in effective care. PMID:17334604

  12. High performance current controller for particle accelerator magnets supply

    DEFF Research Database (Denmark)

    Maheshwari, Ram Krishan; Bidoggia, Benoit; Munk-Nielsen, Stig

    2013-01-01

    The electromagnets in modern particle accelerators require high performance power supply whose output is required to track the current reference with a very high accuracy (down to 50 ppm). This demands very high bandwidth controller design. A converter based on buck converter topology is used...

  13. Combination of chemotherapy and heavy-ion particle therapy for pancreas cancer

    International Nuclear Information System (INIS)

    Yamada, Shigeru; Ando, Koichi

    2003-01-01

    The purpose of this study is to investigate the combination of chemotherapy and heavy-ion particle therapy for pancreas cancer. We measured surviving fractions in four culture pancreas cancer cells. The cell killing of heavy-ion irradiation is more effective compared to that of X ray irradiation. Gemcitabine induced radiosensitization for pancreas cancer cells. (author)

  14. Combination of chemotherapy and heavy-ion particle therapy for pancreas cancer

    International Nuclear Information System (INIS)

    Yamada, Shigeru; Ando, Koichi

    2004-01-01

    The purpose of this study is to investigate the combination of chemotherapy and heavy-ion particle therapy for pancreas cancer. We measured surviving fractions in four culture pancreas cancer cells. The cell killing of heavy-ion irradiation is more effective compared to that of X ray irradiation. Gemcitabine induced radiosensitization for pancreas cancer cells. (author)

  15. Occupational Therapy in Preschools: A Synthesis of Current Knowledge

    Science.gov (United States)

    Jasmin, Emmanuelle; Gauthier, Anne; Julien, Marjorie; Hui, Caroline

    2018-01-01

    This paper presents a synthesis of current knowledge about occupational therapy in preschools (for 3-6 year olds) in order to provide a better understanding of this field of practice and to guide the implementation or programming of this service. In the literature, occupational therapy in preschools has been documented mainly in the USA. Results…

  16. Current experiments in elementary particle physics. Revision

    International Nuclear Information System (INIS)

    Galic, H.; Armstrong, F.E.; von Przewoski, B.

    1994-08-01

    This report contains summaries of 568 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1988 are excluded. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, INS (Tokyo), ITEP (Moscow), IUCF (Bloomington), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries

  17. Current Experiments in Particle Physics. 1996 Edition.

    Energy Technology Data Exchange (ETDEWEB)

    Galic, Hrvoje

    2003-06-27

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries.

  18. Current experiments in elementary particle physics. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Armstrong, F.E. [Lawrence Berkeley Lab., CA (United States); von Przewoski, B. [Indiana Univ. Cyclotron Facility, Bloomington, IN (United States)] [and others

    1994-08-01

    This report contains summaries of 568 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1988 are excluded. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, INS (Tokyo), ITEP (Moscow), IUCF (Bloomington), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  19. Particles that fight cancer: the use of protons and carbon ions in cancer therapy

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Particles that fight cancer: the use of protons and carbon ions in cancer therapy Cancer is a major societal issue. A key challenge for cancer therapy is the complex and multifaceted nature of the disease, which calls for personalised treatment. Radiotherapy has been used to treat tumours for more than a century, and is still a staple in oncology: today, 50 % of cancer patients receive radiotherapy, half of them with curative intent. Hadrontherapy is one of the most technologically advanced methods of delivering radiation dose to the tumour while protecting surrounding healthy tissues. In addition, hadrontherapy can reach otherwise difficult to access deep-seated tumours and can be used for radio resistant tumours as in hypoxia. This year marks 60 years since the first patient was treated with protons in the US and 20 years since the use of carbon ions in Japan. Join us in learning about the journey of particle therapy in Japan and Europe, its challenges, clinical results and future prospects. Thursday 2...

  20. Radiation therapy with laser-driven accelerated particle beams: physical dosimetry and spatial dose distribution

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Sabine; Assmann, Walter [Ludwig-Maximilians Universitaet Muenchen (Germany); Kneschaurek, Peter; Wilkens, Jan [MRI, Technische Universitaet Muenchen (Germany)

    2011-07-01

    One of the main goals of the Munich Centre for Advanced Photonics (MAP) is the application of laser driven accelerated (LDA) particle beams for radiation therapy. Due to the unique acceleration process ultrashort particle pulses of high intensity (> 10{sup 7} particles /cm{sup 2}/ns) are generated, which makes online detection an ambitious task. So far, state of the art detection of laser accelerated ion pulses are non-electronic detectors like radiochromic films (RCF), imaging plates (IP) or nuclear track detectors (e.g. CR39). All these kind of detectors are offline detectors requiring several hours of processing time. For this reason they are not qualified for an application in radiation therapy where quantitative real time detection of the beam is an essential prerequisite. Therefore we are investigating pixel detectors for real time monitoring of LDA particle pulses. First tests of commercially available systems with 8-20 MeV protons are presented. For radiobiological experiments second generation Gafchromic films (EBT2) have been calibrated with protons of 12 and 20 MeV for a dose range of 0.3-10 Gy. Dose verification in proton irradiation of subcutaneous tumours in mice was successfully accomplished using these films.

  1. Particle transport analysis in lower hybrid current drive discharges of JT-60U

    International Nuclear Information System (INIS)

    Nagashima, K.; Ide, S.; Naito, O.

    1996-01-01

    Particle transport is modified in lower hybrid current drive discharges of JT-60U. The density profile becomes broad during the lower hybrid wave injection and the profile change depends on the injected wave spectrum. Particle transport coefficients (diffusion coefficient and profile peaking factor) were evaluated using gas-puff modulation experiments. The diffusion coefficient in the current drive discharges is about three times larger than in the ohmic discharges. The profile peaking factor decreases in the current drive discharges and the evaluated values are consistent with the measured density profiles. (author)

  2. Scaling of the space-time correlation function of particle currents in a suspension of hard-sphere-like particles: exposing when the motion of particles is Brownian.

    Science.gov (United States)

    van Megen, W; Martinez, V A; Bryant, G

    2009-12-18

    The current correlation function is determined from dynamic light scattering measurements of a suspension of particles with hard spherelike interactions. For suspensions in thermodynamic equilibrium we find scaling of the space and time variables of the current correlation function. This finding supports the notion that the movement of suspended particles can be described in terms of uncorrelated Brownian encounters. However, in the metastable fluid, at volume fractions above freezing, this scaling fails.

  3. Current experiments in elementary particle physics. Revised

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H. [Stanford Univ., CA (United States). Stanford Linear Accelerator Center; Wohl, C.G.; Armstrong, B. [Lawrence Berkeley Lab., CA (United States); Dodder, D.C. [Los Alamos National Lab., NM (United States); Klyukhin, V.I.; Ryabov, Yu.G. [Inst. for High Energy Physics, Serpukhov (Russian Federation); Illarionova, N.S. [Inst. of Theoretical and Experimental Physics, Moscow (Russian Federation); Lehar, F. [CEN Saclay, Gif-sur-Yvette (France); Oyanagi, Y. [Univ. of Tokyo (Japan). Faculty of Sciences; Olin, A. [TRIUMF, Vancouver, BC (Canada); Frosch, R. [Paul Scherrer Inst., Villigen (Switzerland)

    1992-06-01

    This report contains summaries of 584 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1986 are excluded. Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, KEK, LAMPF, Novosibirsk, Paul Scherrer Institut (PSI), Saclay, Serpukhov, SLAC, SSCL, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  4. An improved Monte Carlo (MC) dose simulation for charged particle cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ying, C. K. [Advanced Medical and Dental Institute, AMDI, Universiti Sains Malaysia, Penang, Malaysia and School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu (Malaysia); Kamil, W. A. [Advanced Medical and Dental Institute, AMDI, Universiti Sains Malaysia, Penang, Malaysia and Radiology Department, Hospital USM, Kota Bharu (Malaysia); Shuaib, I. L. [Advanced Medical and Dental Institute, AMDI, Universiti Sains Malaysia, Penang (Malaysia); Matsufuji, Naruhiro [Research Centre of Charged Particle Therapy, National Institute of Radiological Sciences, NIRS, Chiba (Japan)

    2014-02-12

    Heavy-particle therapy such as carbon ion therapy are more popular nowadays because of the nature characteristics of charged particle and almost no side effect to patients. An effective treatment is achieved with high precision of dose calculation, in this research work, Geant4 based Monte Carlo simulation method has been used to calculate the radiation transport and dose distribution. The simulation have the same setting with the treatment room in Heavy Ion Medical Accelerator, HIMAC. The carbon ion beam at the isocentric gantry nozzle for the therapeutic energy of 290 MeV/u was simulated, experimental work was carried out in National Institute of Radiological Sciences, NIRS, Chiba, Japan by using the HIMAC to confirm the accuracy and qualities dose distribution by MC methods. The Geant4 based simulated dose distribution were verified with measurements for Bragg peak and spread out Bragg peak (SOBP) respectively. The verification of results shows that the Bragg peak depth-dose and SOBP distributions in simulation has good agreement with measurements. In overall, the study showed that Geant4 based can be fully applied in the heavy-ion therapy field for simulation, further works need to be carry on to refine and improve the Geant4 MC simulations.

  5. An improved Monte Carlo (MC) dose simulation for charged particle cancer therapy

    International Nuclear Information System (INIS)

    Ying, C. K.; Kamil, W. A.; Shuaib, I. L.; Matsufuji, Naruhiro

    2014-01-01

    Heavy-particle therapy such as carbon ion therapy are more popular nowadays because of the nature characteristics of charged particle and almost no side effect to patients. An effective treatment is achieved with high precision of dose calculation, in this research work, Geant4 based Monte Carlo simulation method has been used to calculate the radiation transport and dose distribution. The simulation have the same setting with the treatment room in Heavy Ion Medical Accelerator, HIMAC. The carbon ion beam at the isocentric gantry nozzle for the therapeutic energy of 290 MeV/u was simulated, experimental work was carried out in National Institute of Radiological Sciences, NIRS, Chiba, Japan by using the HIMAC to confirm the accuracy and qualities dose distribution by MC methods. The Geant4 based simulated dose distribution were verified with measurements for Bragg peak and spread out Bragg peak (SOBP) respectively. The verification of results shows that the Bragg peak depth-dose and SOBP distributions in simulation has good agreement with measurements. In overall, the study showed that Geant4 based can be fully applied in the heavy-ion therapy field for simulation, further works need to be carry on to refine and improve the Geant4 MC simulations

  6. An improved Monte Carlo (MC) dose simulation for charged particle cancer therapy

    International Nuclear Information System (INIS)

    Ying, C.K.; Kamil, W.A.; Shuaib, I.L.; Ying, C.K.; Kamil, W.A.

    2013-01-01

    Full-text: Heavy-particle therapy such as carbon ion therapy are more popular nowadays because of the nature characteristics of charged particle and almost no side effect to patients. An effective treatment is achieved with high precision of dose calculation, in this research work, Geant4 based Monte Carlo simulation method has been used to calculate the radiation transport and dose distribution. The simulation have the same setting with the treatment room in Heavy Ion Medical Accelerator, HIMAC. The carbon ion beam at the isocentric gantry nozzle for the therapeutic energy of 290 MeV/u was simulated, experimental work was carried out in National Institute of Radiological Sciences, NIRS, Chiba, Japan by using the HIMAC to confirm the accuracy and qualities dose distribution by MC methods. The Geant4 based simulated dose distribution were verified with measurements for Bragg peak and spread out Bragg peak (SOBP) respectively. The verification of results shows that the Bragg peak depth-dose and SOBP distributions in simulation has good agreement with measurements. In overall, the study showed that Geant4 based can be fully applied in the heavy ion therapy field for simulation, further works need to be carry on to refine and improve the Geant4 MC simulations. (author)

  7. Targeted alpha therapy: Applications and current status

    International Nuclear Information System (INIS)

    Bruchertseifer, Frank

    2017-01-01

    Full text: The field of targeted alpha therapy has been developed rapidly in the last decade. Besides 223 Ra, 211 At and 212 Pb/ 212 Bi the alpha emitters 225 Ac and 213 Bi are promising therapeutic radionuclides for application in targeted alpha therapy of cancer and infectious diseases. The presentation will give a short overview about the current clinical treatments with alpha emitting radionuclides and will place an emphasis on the most promising clinical testing of peptides and antibodies labelled with 225 Ac and 213 Bi for treatment of metastatic castration-resistant prostate cancer patients with glioma and glioblastoma multiform, PSMA-positive tumor phenotype and bladder carcinoma in situ. (author)

  8. Treatment of pediatric patients and young adults with particle therapy at the Heidelberg Ion Therapy Center (HIT: establishment of workflow and initial clinical data

    Directory of Open Access Journals (Sweden)

    Combs Stephanie E

    2012-10-01

    Full Text Available Abstract Background To report on establishment of workflow and clinical results of particle therapy at the Heidelberg Ion Therapy Center. Materials and methods We treated 36 pediatric patients (aged 21 or younger with particle therapy at HIT. Median age was 12 years (range 2-21 years, five patients (14% were younger than 5 years of age. Indications included pilocytic astrocytoma, parameningeal and orbital rhabdomyosarcoma, skull base and cervical chordoma, osteosarcoma and adenoid-cystic carcinoma (ACC, as well as one patient with an angiofibroma of the nasopharynx. For the treatment of small children, an anesthesia unit at HIT was established in cooperation with the Department of Anesthesiology. Results Treatment concepts depended on tumor type, staging, age of the patient, as well as availability of specific study protocols. In all patients, particle radiotherapy was well tolerated and no interruptions due to toxicity had to be undertaken. During follow-up, only mild toxicites were observed. Only one patient died of tumor progression: Carbon ion radiotherapy was performed as an individual treatment approach in a child with a skull base recurrence of the previously irradiated rhabdomyosarcoma. Besides this patient, tumor recurrence was observed in two additional patients. Conclusion Clinical protocols have been generated to evaluate the real potential of particle therapy, also with respect to carbon ions in distinct pediatric patient populations. The strong cooperation between the pediatric department and the department of radiation oncology enable an interdisciplinary treatment and stream-lined workflow and acceptance of the treatment for the patients and their parents.

  9. Current sheet particle acceleration - theory and observations for the geomagnetic tail

    International Nuclear Information System (INIS)

    Speiser, T.W.

    1984-01-01

    It has been found that the current sheet in the geomagnetic tail is a source of plasma and energetic particles for the magnetospheric ring current and radiation belts. It is also a seat for instabilities and magnetospheric substorms. Theoretical studies related to the geomagnetic tail are discussed, taking into account Dungey's (1953) original ideas concerning neutral point acceleration, and studies of particle motion in current sheets conducted by many authors. A description of observations concerning the geomagnetic tail is also provided, taking into account plasma sheet populations, and the plasma sheet boundary layer. Some remaining problems are partly related to the location and the behavior of the distant source, the nature of the relative (time-dependent) ionospheric versus solar wind contributions, and the role of the solar wind in the initiation of distant or near-earth neutral lines. 56 references

  10. Metallothionein bioconjugates as delivery vehicles for bismuth-212 alpha particle therapy

    International Nuclear Information System (INIS)

    Macklis, R.M.; Morris, C.; Humm, J.; Hines, J.; Atcher, R.

    1991-01-01

    Metallothioneins (MTHs) are small cysteine-rich polypeptides that binds cationic metals at physiologic pH ranges through noncovalent -SH ligand interactions. Some leucine-rich renal MTHs have a particular avidity for bismuth. The authors have examined the ability of MTHs to selectively incorporate Bi-212, a short-lived high-energy alpha particle emitter currently under exploration as a potential therapeutic radiolabel for use in molecularly targeted cancer therapy. They find that under physiologic conditions, MTH will selectively incorporate Bi-212 after incubation with an equilibrium mixture of its upstream and downstream parents. The MTH moieties may be linked to tumor-binding macromolecules such as antibodies via thiolation reactions using SPDP, and the resultant Bismuth-avid molecules may be used either as primary delivery vehicles for the Bi-212 or as part of a 2-step release-and-catch isotope localization system in which the MTH-antibody conjugate is pre-localized at the tumor site and the radiometal is then administered and chelated in situ. They present the chemistry, dosimetry and potential clinical applications of this system

  11. Particle pinch with fully noninductive lower hybrid current drive in Tore Supra.

    Science.gov (United States)

    Hoang, G T; Bourdelle, C; Pégourié, B; Schunke, B; Artaud, J F; Bucalossi, J; Clairet, F; Fenzi-Bonizec, C; Garbet, X; Gil, C; Guirlet, R; Imbeaux, F; Lasalle, J; Loarer, T; Lowry, C; Travère, J M; Tsitrone, E

    2003-04-18

    Recently, plasmas exceeding 4 min have been obtained with lower hybrid current drive (LHCD) in Tore Supra. These LHCD plasmas extend for over 80 times the resistive current diffusion time with zero loop voltage. Under such unique conditions the neoclassical particle pinch driven by the toroidal electric field vanishes. Nevertheless, the density profile remains peaked for more than 4 min. For the first time, the existence of an inward particle pinch in steady-state plasma without toroidal electric field, much larger than the value predicted by the collisional neoclassical theory, is experimentally demonstrated.

  12. Immuno-vectorization of radioelements emitters of alpha particles: a new therapy in cancerology

    International Nuclear Information System (INIS)

    Bourgeois, M.

    2007-05-01

    The radio-immunotherapy is an anti cancerous therapy which consists in vectorising with immuno-specific agents very radio toxic radioelements on tumors or in their environment to destroy them. The first part of this report presents the different characteristics of antibodies as well as their means of production under monoclonal shapes specifically steered against a tumoral antigen of interest. The second part of this report replaces the importance of the immunological vectors in the context of the nuclear medicine. It is notably described that the different methods which allow to radio-label the vector, as well as the different ways of optimization which were envisaged to improve the targeting of radioelements on a tumor. These different developments allow to define the potential place of the alpha radio-immunotherapy in treatments and so re-place the interest of the experimental part. If the radio-immunotherapy, using beta emitters isotopes as the 131 iodine or the 90 yttrium, is today current in anti cancerous therapy, it finds limits because of the disintegration characteristics of the isotopes it uses. Indeed, compared with alpha particles, the beta particles deposit less energy by unit of length in the crossed material.The experimental part of this report aims at studying the feasibility of the coupling between an immunological vector and an alpha emitter isotope.The different tests led on the bismuth 213, the bismuth 212, the lead 212 and the astatine 211 demonstrated that the fixation of these radionuclides was possible. This research theme is strengthened by the construction in Nantes of a cyclotron with high energy ( A.R.R.O.N.A.X.) and the optimization of the obtained promising results should allow a therapeutic use in oncology of the alpha radio-immunotherapy. (N.C.)

  13. Surrogate-driven deformable motion model for organ motion tracking in particle radiation therapy

    Science.gov (United States)

    Fassi, Aurora; Seregni, Matteo; Riboldi, Marco; Cerveri, Pietro; Sarrut, David; Battista Ivaldi, Giovanni; Tabarelli de Fatis, Paola; Liotta, Marco; Baroni, Guido

    2015-02-01

    The aim of this study is the development and experimental testing of a tumor tracking method for particle radiation therapy, providing the daily respiratory dynamics of the patient’s thoraco-abdominal anatomy as a function of an external surface surrogate combined with an a priori motion model. The proposed tracking approach is based on a patient-specific breathing motion model, estimated from the four-dimensional (4D) planning computed tomography (CT) through deformable image registration. The model is adapted to the interfraction baseline variations in the patient’s anatomical configuration. The driving amplitude and phase parameters are obtained intrafractionally from a respiratory surrogate signal derived from the external surface displacement. The developed technique was assessed on a dataset of seven lung cancer patients, who underwent two repeated 4D CT scans. The first 4D CT was used to build the respiratory motion model, which was tested on the second scan. The geometric accuracy in localizing lung lesions, mediated over all breathing phases, ranged between 0.6 and 1.7 mm across all patients. Errors in tracking the surrounding organs at risk, such as lungs, trachea and esophagus, were lower than 1.3 mm on average. The median absolute variation in water equivalent path length (WEL) within the target volume did not exceed 1.9 mm-WEL for simulated particle beams. A significant improvement was achieved compared with error compensation based on standard rigid alignment. The present work can be regarded as a feasibility study for the potential extension of tumor tracking techniques in particle treatments. Differently from current tracking methods applied in conventional radiotherapy, the proposed approach allows for the dynamic localization of all anatomical structures scanned in the planning CT, thus providing complete information on density and WEL variations required for particle beam range adaptation.

  14. Algorithms for the optimization of RBE-weighted dose in particle therapy.

    Science.gov (United States)

    Horcicka, M; Meyer, C; Buschbacher, A; Durante, M; Krämer, M

    2013-01-21

    We report on various algorithms used for the nonlinear optimization of RBE-weighted dose in particle therapy. Concerning the dose calculation carbon ions are considered and biological effects are calculated by the Local Effect Model. Taking biological effects fully into account requires iterative methods to solve the optimization problem. We implemented several additional algorithms into GSI's treatment planning system TRiP98, like the BFGS-algorithm and the method of conjugated gradients, in order to investigate their computational performance. We modified textbook iteration procedures to improve the convergence speed. The performance of the algorithms is presented by convergence in terms of iterations and computation time. We found that the Fletcher-Reeves variant of the method of conjugated gradients is the algorithm with the best computational performance. With this algorithm we could speed up computation times by a factor of 4 compared to the method of steepest descent, which was used before. With our new methods it is possible to optimize complex treatment plans in a few minutes leading to good dose distributions. At the end we discuss future goals concerning dose optimization issues in particle therapy which might benefit from fast optimization solvers.

  15. Modeling Solar Energetic Particle Transport near a Wavy Heliospheric Current Sheet

    Science.gov (United States)

    Battarbee, Markus; Dalla, Silvia; Marsh, Mike S.

    2018-02-01

    Understanding the transport of solar energetic particles (SEPs) from acceleration sites at the Sun into interplanetary space and to the Earth is an important question for forecasting space weather. The interplanetary magnetic field (IMF), with two distinct polarities and a complex structure, governs energetic particle transport and drifts. We analyze for the first time the effect of a wavy heliospheric current sheet (HCS) on the propagation of SEPs. We inject protons close to the Sun and propagate them by integrating fully 3D trajectories within the inner heliosphere in the presence of weak scattering. We model the HCS position using fits based on neutral lines of magnetic field source surface maps (SSMs). We map 1 au proton crossings, which show efficient transport in longitude via HCS, depending on the location of the injection region with respect to the HCS. For HCS tilt angles around 30°–40°, we find significant qualitative differences between A+ and A‑ configurations of the IMF, with stronger fluences along the HCS in the former case but with a distribution of particles across a wider range of longitudes and latitudes in the latter. We show how a wavy current sheet leads to longitudinally periodic enhancements in particle fluence. We show that for an A+ IMF configuration, a wavy HCS allows for more proton deceleration than a flat HCS. We find that A‑ IMF configurations result in larger average fluences than A+ IMF configurations, due to a radial drift component at the current sheet.

  16. Targeted alpha therapy: Applications and current status

    Energy Technology Data Exchange (ETDEWEB)

    Bruchertseifer, Frank, E-mail: frank.bruchertseifer@ec.europa.eu [European Commission, Joint Research Centre, Karlsruhe (Germany)

    2017-07-01

    Full text: The field of targeted alpha therapy has been developed rapidly in the last decade. Besides {sup 223}Ra, {sup 211}At and {sup 212}Pb/{sup 212}Bi the alpha emitters {sup 225}Ac and {sup 213}Bi are promising therapeutic radionuclides for application in targeted alpha therapy of cancer and infectious diseases. The presentation will give a short overview about the current clinical treatments with alpha emitting radionuclides and will place an emphasis on the most promising clinical testing of peptides and antibodies labelled with {sup 225}Ac and {sup 213}Bi for treatment of metastatic castration-resistant prostate cancer patients with glioma and glioblastoma multiform, PSMA-positive tumor phenotype and bladder carcinoma in situ. (author)

  17. Relationship between Birkeland current regions, particle precipitation, and electric fields

    International Nuclear Information System (INIS)

    Beaujardiere, O. de la; Watermann, J.; Newell, P.; Rich, F.

    1993-01-01

    The authors study relationships between particle precipitation, currents, and convection, using data from DMSP observations and observations of the Sondrestrom radar. They adopt the classification of Newell et al., who defined five different classes of particle populations observed in satellite crossings of auroral regions. Observations were limited to prenoon local times. The advantage of the DMSP data is that it is part of a consistent 10 year observation mission which provides a broad replicated data set. It is difficult to specify with certainty the polar cap boundary from DMSP data alone

  18. The current of a particle along a microtubule in microscopic plasma

    International Nuclear Information System (INIS)

    Li Wei; Chen Junfang; Wang Teng; Lai Xiuqiong

    2008-01-01

    Transport of a particle along the axis of a microtubule in a plasma-enhanced chemical vapor deposition (PECVD) system is investigated. The current, respectively, as a function of the temperature, the magnetic field and the external force is obtained. The value and direction of the current may be controlled by changing the above parameters

  19. Combination of chemotherapy and heavy-ion particle therapy for gastrointestinal cancer

    International Nuclear Information System (INIS)

    Yamada, Shigeru; Kitabayashi, Hiroyuki; Furusawa, Yoshiya; Ando, Koichi

    2005-01-01

    The purpose of this study is to investigate the combination of chemotherapy and heavy-ion particle therapy for pancreas and esophageal cancer. We measured surviving fractions in four culture pancreas and esophageal cancer cells. The cell killing of heavy-ion irradiation is more effective compared to that of X ray irradiation. Gemcitabine induced radiosensitization for pancreas cancer cells and also taxotel for esophageal cancer. (author)

  20. Rational design and optimization of downstream processes of virus particles for biopharmaceutical applications: current advances.

    Science.gov (United States)

    Vicente, Tiago; Mota, José P B; Peixoto, Cristina; Alves, Paula M; Carrondo, Manuel J T

    2011-01-01

    The advent of advanced therapies in the pharmaceutical industry has moved the spotlight into virus-like particles and viral vectors produced in cell culture holding great promise in a myriad of clinical targets, including cancer prophylaxis and treatment. Even though a couple of cases have reached the clinic, these products have yet to overcome a number of biological and technological challenges before broad utilization. Concerning the manufacturing processes, there is significant research focusing on the optimization of current cell culture systems and, more recently, on developing scalable downstream processes to generate material for pre-clinical and clinical trials. We review the current options for downstream processing of these complex biopharmaceuticals and underline current advances on knowledge-based toolboxes proposed for rational optimization of their processing. Rational tools developed to increase the yet scarce knowledge on the purification processes of complex biologicals are discussed as alternative to empirical, "black-boxed" based strategies classically used for process development. Innovative methodologies based on surface plasmon resonance, dynamic light scattering, scale-down high-throughput screening and mathematical modeling for supporting ion-exchange chromatography show great potential for a more efficient and cost-effective process design, optimization and equipment prototyping. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Current and future trends in radiation therapy: towards making it more precise

    International Nuclear Information System (INIS)

    Swaroop, Rashmi

    2012-01-01

    Advent of computers and researches during the few last decades contributed various new techniques to radiotherapy. These techniques are to be used in correct proportion for an effective and complete treatment. The intent of prescribing radiation and extent of combining it with other modalities is different in each case. Today the store holds techniques like CT based computerized treatment planning. Advanced dose planning techniques, Immobilization techniques, External photon beam radiation therapy, IGRT, IMRT, BART, Brachytherapy, Systemic Radiation Therapy and still developing Particle beam radiotherapy. Radiations have similar effect on malignant and non-malignant cells. Moreover, different types of tumors respond differently to XRT. High precision radiotherapy requires most effectiveness on cancerous cells and negligible side effects on normal tissues. Development of such a targeted XRT demands proper study and evaluation of each technique and their post treatment effects with respect to tumor type and patient condition. A multidisciplinary and multimodality based approach is required. The study is based on secondary data. It evaluates the mechanisms and draws light over the controversies arising out of XRT. Evaluation of secondary data shows that cure rates have been significantly increased with use of targeted radiotherapy. It increases the absorbed dose by tumor and decreases the side effects. Particle radiotherapy reduces damage to healthy tissue between the charged particle radiation source and the tumor and sets a finite range for tissue damage after the tumor has been reached. There are rigorous procedures in place to minimize the risk of accidental over exposure of radiation therapy to patients. It concludes that radiotherapy is well established and newer techniques can be utilized successfully keeping in mind the cancer type and patient condition. (author)

  2. The Role of Nuclear Fragmentation in Particle Therapy and Space Radiation Protection

    Directory of Open Access Journals (Sweden)

    Cary eZeitlin

    2016-03-01

    Full Text Available The transport of so-called HZE particles (those having high charge, Z, and energy, E through matter is crucially important both in space radiation protection and in the clinical setting where heavy ions are used for cancer treatment. Transport physics is governed by two types of interactions, electromagnetic (ionization energy loss and nuclear. Models of transport such as those used in treatment planning and space mission planning must account for both effects in detail. The theory of electromagnetic interactions is well developed, but nucleus-nucleus collisions are so complex that no fundamental physical theory currently describes them. Instead, interaction models are generally anchored to experimental data, which in some areas are far from complete. The lack of fundamental physics knowledge introduces uncertainties in the calculations of exposures and their associated risks. These uncertainties are greatly compounded by the much larger uncertainties in biological response to HZE particles. In this article, we discuss the role of nucleus-nucleus interactions in heavy charged particle therapy and in deep space, where astronauts will receive a chronic low dose from Galactic Cosmic Rays (GCRs and potentially higher short-term doses from sporadic, unpredictable Solar Energetic Particles (SEPs. GCRs include HZE particles; SEPs typically do not and we therefore exclude them from consideration in this article. Nucleus-nucleus collisions can result in the breakup of heavy ions into lighter ions. In space, this is generally beneficial because dose and dose equivalent are, on the whole, reduced in the process. The GCRs can be considered a radiation field with a significant high-LET component; when they pass through matter, the high-LET component is attenuated, at the cost of a slight increase in the low-LET component. Not only are the standard measures of risk reduced by fragmentation, but it can be argued that fragmentation also reduces the

  3. Space Weather Effects Produced by the Ring Current Particles

    Science.gov (United States)

    Ganushkina, Natalia; Jaynes, Allison; Liemohn, Michael

    2017-11-01

    One of the definitions of space weather describes it as the time-varying space environment that may be hazardous to technological systems in space and/or on the ground and/or endanger human health or life. The ring current has its contributions to space weather effects, both in terms of particles, ions and electrons, which constitute it, and magnetic and electric fields produced and modified by it at the ground and in space. We address the main aspects of the space weather effects from the ring current starting with brief review of ring current discovery and physical processes and the Dst-index and predictions of the ring current and storm occurrence based on it. Special attention is paid to the effects on satellites produced by the ring current electrons. The ring current is responsible for several processes in the other inner magnetosphere populations, such as the plasmasphere and radiation belts which is also described. Finally, we discuss the ring current influence on the ionosphere and the generation of geomagnetically induced currents (GIC).

  4. Determination of effective treatment duration of interferential current therapy using electromyography

    OpenAIRE

    Youn, Jong-In; Lee, Ho Sub; Lee, Sangkwan

    2016-01-01

    [Purpose] This study used electromyography to measure the effective treatment duration of interferential current therapy for muscle fatigue. [Subjects and Methods] Fifteen healthy adult men volunteered to participate in the study (age: 24.2 ? 1.3?years; weight: 67.6 ? 4.92?kg; height: 176.4 ? 4.92?cm). All subjects performed 5?min of isometric back extension exercise to produce muscle fatigue, and were then treated with interferential current therapy for 15?min, with electromyography monitori...

  5. DROPOUTS IN SOLAR ENERGETIC PARTICLES: ASSOCIATED WITH LOCAL TRAPPING BOUNDARIES OR CURRENT SHEETS?

    International Nuclear Information System (INIS)

    Seripienlert, A.; Ruffolo, D.; Matthaeus, W. H.; Chuychai, P.

    2010-01-01

    In recent observations by the Advanced Composition Explorer, the intensity of solar energetic particles exhibits sudden, large changes known as dropouts. These have been explained in terms of turbulence or a flux tube structure in the solar wind. Dropouts are believed to indicate filamentary magnetic connection to a localized particle source near the solar surface, and computer simulations of a random-phase model of magnetic turbulence have indicated a spatial association between dropout features and local trapping boundaries (LTBs) defined for a two-dimensional (2D) + slab model of turbulence. Previous observations have shown that dropout features are not well associated with sharp magnetic field changes, as might be expected in the flux tube model. Random-phase turbulence models do not properly treat sharp changes in the magnetic field, such as current sheets, and thus cannot be tested in this way. Here, we explore the properties of a more realistic magnetohydrodynamic (MHD) turbulence model (2D MHD), in which current sheets develop and the current and magnetic field have characteristic non-Gaussian statistical properties. For this model, computer simulations that trace field lines to determine magnetic connection from a localized particle source indicate that sharp particle gradients should frequently be associated with LTBs, sometimes with strong 2D magnetic fluctuations, and infrequently with current sheets. Thus, the 2D MHD + slab model of turbulent fluctuations includes some realistic features of the flux tube view and is consistent with the lack of an observed association between dropouts and intense magnetic fields or currents.

  6. Averaged currents induced by alpha particles in an InSb compound semiconductor detector

    International Nuclear Information System (INIS)

    Kanno, Ikuo; Hishiki, Shigeomi; Kogetsu, Yoshitaka; Nakamura, Tatsuya; Katagiri, Masaki

    2008-01-01

    Very fast pulses due to alpha particle incidence were observed by an undoped-type InSb Schottky detector. This InSb detector was operated without applying bias voltage and its depletion layer thickness was less than the range of alpha particles. The averaged current induced by alpha particles was analyzed as a function of operating temperature and was shown to be proportional to the Hall mobility of InSb. (author)

  7. Physics and radiobiology of heavy charged particles in relation to the use of ion beams for therapy

    International Nuclear Information System (INIS)

    Kraft, G.; Haberer, T.; Schardt, D.; Scholz, M.

    1993-07-01

    Heavy charged particles are the most advanced tool of an external subcutane radiotherapy of deep seated tumors. Small angular- and lateral-scattering and the increase of the energy deposition with penetration depth are the physical basis for a more efficient tumor targeting. High biological efficiency in the tumor is the prerequisite for a successful treatment of tumors radioresistant against sparsely ionizing radiation. The possibility to perform target conform irradiation and to control the achieved/actual distribution using PET techniques guarantees that biological highly efficient stepping particles can be restricted to the tumor volume only. Although the physical and radiobiological properties of ion beams are very favourable for therapy, the necessity to produce these particles in an accelerator restricts a general application of heavy ions up to now. Presently the heavy ion accelerator SIS at GSI is the only source of heavy ion beams, sufficient in energy and intensity for therapy. A therapy unit is in preparation at GSI, the status of this project is given at the end of the paper. (orig.)

  8. Neutral strange particle production in antineutrino-neon charged current interactions

    Science.gov (United States)

    Willocq, S.; Marage, P.; Aderholz, M.; Allport, P.; Baton, J. P.; Berggren, M.; Clayton, E. F.; Cooper-Sarkar, A. M.; Erriquez, O.; Faulkner, P. J. W.; Guy, J.; Hulth, P. O.; Jones, G. T.; Mobayyen, M. M.; Morrison, D. R. O.; Neveu, M.; O'Neale, S.; Sacton, J.; Sansum, R. A.; Varvell, K.; Venus, W.; Wells, J.; Wittek, W.

    1992-06-01

    Neutral strange particle production inbar v Ne charged current interactions is studied using the bubble chamber BEBC, exposed to the CERN SPS antineutrino wide band beam. From a sample of 1191 neutral strange particles, the inclusive production rates are determined to be (15.7±0.8)% for K 0 mesons, (8.2±0.5)% for Λ, (0.4±0.2)% forbar Λ and (0.6±0.3)% for Σ0 hyperons. The inclusive production properties of K 0 mesons and Λ hyperons are investigated. The Λ hyperons are found to be polarized in the production plane.

  9. Maternal and Congenital Toxoplasmosis, Currently Available and Novel Therapies in Horizon

    Directory of Open Access Journals (Sweden)

    Helieh S Oz

    2014-07-01

    Full Text Available Over one billion people worldwide are predicted to harbor Toxoplasma infection frequently with unknown lifelong health consequences. Toxoplasmosis is an important cause of foodborne, inflammatory illnesses, as well as congenital abnormalities. Ubiquitous Toxoplasma has a unique tropism for central nervous system with a mind bugging effect and is transmitted sexually through semen. Current available therapies are ineffective for persistent chronic disease and congenital toxoplasmosis or have severe side effects which may result in life threatening complications. There is an urgent need for safe and effective therapies to eliminate or treat this cosmopolitan infectious and inflammatory disease. This investigation will discuss pathogenesis of maternal and congenital toxoplasmosis, the current available therapies in practice, and the experimental therapeutic modalities for promising future trials.

  10. CERN celebrates the discovery of neutral currents and W and Z particles

    CERN Multimedia

    2003-01-01

    A symposium on 16 September will celebrate the double anniversary of the observation of neutral currents in 1973 and the discovery of W and Z bosons in 1983. The symposium will also provide an opportunity to discuss future discoveries at CERN. Twenty years ago, in 1983, CERN announced the discovery of particles known as W and Z, a discovery that brought the laboratory its first Nobel Prize in 1984. The charged W and neutral Z particles carry the weak force, which causes one form of radioactivity and enables stars to shine. These discoveries provided convincing evidence for the so-called electroweak theory, which unifies the weak force with the electromagnetic force, and which is a cornerstone of the modern Standard Model of particles and forces. An important step towards confirming electroweak unification came already in 1973, when the late André Lagarrigue and colleagues working with the Gargamelle bubble chamber at CERN observed for the first time neutral currents - the neutral manifestation of ...

  11. WE-D-BRB-03: Current State of Volumetric Image Guidance for Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hua, C. [St. Jude Children’s Research Hospital (United States)

    2016-06-15

    The goal of this session is to review the physics of proton therapy, treatment planning techniques, and the use of volumetric imaging in proton therapy. The course material covers the physics of proton interaction with matter and physical characteristics of clinical proton beams. It will provide information on proton delivery systems and beam delivery techniques for double scattering (DS), uniform scanning (US), and pencil beam scanning (PBS). The session covers the treatment planning strategies used in DS, US, and PBS for various anatomical sites, methods to address uncertainties in proton therapy and uncertainty mitigation to generate robust treatment plans. It introduces the audience to the current status of image guided proton therapy and clinical applications of CBCT for proton therapy. It outlines the importance of volumetric imaging in proton therapy. Learning Objectives: Gain knowledge in proton therapy physics, and treatment planning for proton therapy including intensity modulated proton therapy. The current state of volumetric image guidance equipment in proton therapy. Clinical applications of CBCT and its advantage over orthogonal imaging for proton therapy. B. Teo, B.K Teo had received travel funds from IBA in 2015.

  12. WE-D-BRB-03: Current State of Volumetric Image Guidance for Proton Therapy

    International Nuclear Information System (INIS)

    Hua, C.

    2016-01-01

    The goal of this session is to review the physics of proton therapy, treatment planning techniques, and the use of volumetric imaging in proton therapy. The course material covers the physics of proton interaction with matter and physical characteristics of clinical proton beams. It will provide information on proton delivery systems and beam delivery techniques for double scattering (DS), uniform scanning (US), and pencil beam scanning (PBS). The session covers the treatment planning strategies used in DS, US, and PBS for various anatomical sites, methods to address uncertainties in proton therapy and uncertainty mitigation to generate robust treatment plans. It introduces the audience to the current status of image guided proton therapy and clinical applications of CBCT for proton therapy. It outlines the importance of volumetric imaging in proton therapy. Learning Objectives: Gain knowledge in proton therapy physics, and treatment planning for proton therapy including intensity modulated proton therapy. The current state of volumetric image guidance equipment in proton therapy. Clinical applications of CBCT and its advantage over orthogonal imaging for proton therapy. B. Teo, B.K Teo had received travel funds from IBA in 2015.

  13. Soft-tissue sarcomas. Current aspects of diagnosis and therapy

    International Nuclear Information System (INIS)

    Hohenberger, P.

    1996-01-01

    The decisive factor for promising therapy of soft-tissue sarcomas is primary therapy provided in an experienced tumour unit. This centre must offer the entire spectrum of surgery (vascular, reconstruction and orthopaedic surgery) leading into an interdisciplinary treatment regimen. Initially, MRI would appear to be sufficient for diagnosis. On the other hand, the presence of an experienced pathologist conversant with all means of cytogenetic tumour classification is essential. For interdisciplinary therapy, a radiotherapist with hyperthermia equipment, nuclear medicine specialists and medical oncologists are indispensable. All personnel must be familiar with the special problems associated with sarcomas. The current trend is indeed toward a select number of centres where such skills are focused. (orig.) [de

  14. Education and training in medical imaging for conventional and particle radiation therapy through the EC funded envision and entervision

    CERN Document Server

    Cirilli, M

    2014-01-01

    A key challenge in particle therapy today is quality assurance during treatment, which needs advanced medical imaging techniques. This issue is tackled by the EC funded project ENVISION, an R\\&D consortium of sixteen leading European research centres and one industrial partner, co-ordinated by CERN. ENVISION covers developments in Time Of Flight in-beam PET, in-beam single particle tomography, organ motion monitoring techniques, simulation, and treatment planning. Additionally, ENVISION serves as a training platform for the ENTERVISION project, a Marie-Curie Initial Training Network aimed at educating young researchers in online 3D digital imaging for hadron therapy. ENTERVISION brings together ten academic institutes and research centres of excellence and a leading European company in particle therapy, and is coordinated by CERN. Its multi-disciplinary training programme of ENTERVISION includes a diversified portfolio of scientific courses, complemented by specific courses aimed at developing soft skills...

  15. Current Experimental Studies of Gene Therapy in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Jing-ya Lin

    2017-05-01

    Full Text Available Parkinson's disease (PD was characterized by late-onset, progressive dopamine neuron loss and movement disorders. The progresses of PD affected the neural function and integrity. To date, most researches had largely addressed the dopamine replacement therapies, but the appearance of L-dopa-induced dyskinesia hampered the use of the drug. And the mechanism of PD is so complicated that it's hard to solve the problem by just add drugs. Researchers began to focus on the genetic underpinnings of Parkinson's disease, searching for new method that may affect the neurodegeneration processes in it. In this paper, we reviewed current delivery methods used in gene therapies for PD, we also summarized the primary target of the gene therapy in the treatment of PD, such like neurotrophic factor (for regeneration, the synthesis of neurotransmitter (for prolong the duration of L-dopa, and the potential proteins that might be a target to modulate via gene therapy. Finally, we discussed RNA interference therapies used in Parkinson's disease, it might act as a new class of drug. We mainly focus on the efficiency and tooling features of different gene therapies in the treatment of PD.

  16. MONDO: A tracker for the characterization of secondary fast and ultrafast neutrons emitted in particle therapy

    Science.gov (United States)

    Mirabelli, R.; Battistoni, G.; Giacometti, V.; Patera, V.; Pinci, D.; Sarti, A.; Sciubba, A.; Traini, G.; Marafini, M.

    2018-01-01

    In Particle Therapy (PT) accelerated charged particles and light ions are used for treating tumors. One of the main limitation to the precision of PT is the emission of secondary particles due to the beam interaction with the patient: secondary emitted neutrons can release a significant dose far from the tumor. Therefore, a precise characterization of their flux, production energy and angle distribution is eagerly needed in order to improve the Treatment Planning Systems (TPS) codes. The principal aim of the MONDO (MOnitor for Neutron Dose in hadrOntherapy) project is the development of a tracking device optimized for the detection of fast and ultra-fast secondary neutrons emitted in PT. The detector consists of a matrix of scintillating square fibres coupled with a CMOS-based readout. Here, we present the characterization of the detector tracker prototype and CMOS-based digital SPAD (Single Photon Avalanche Diode) array sensor tested with protons at the Beam Test Facility (Frascati, Italy) and at the Proton Therapy Centre (Trento, Italy), respectively.

  17. Surgery in current therapy for infective endocarditis

    Science.gov (United States)

    Head, Stuart J; Mokhles, M Mostafa; Osnabrugge, Ruben LJ; Bogers, Ad JJC; Kappetein, A Pieter

    2011-01-01

    The introduction of the Duke criteria and transesophageal echocardiography has improved early recognition of infective endocarditis but patients are still at high risk for severe morbidity or death. Whether an exclusively antibiotic regimen is superior to surgical intervention is subject to ongoing debate. Current guidelines indicate when surgery is the preferred treatment, but decisions are often based on physician preferences. Surgery has shown to decrease the risk of short-term mortality in patients who present with specific symptoms or microorganisms; nevertheless even then it often remains unclear when surgery should be performed. In this review we i) systematically reviewed the current literature comparing medical to surgical therapy to evaluate if surgery is the preferred option, ii) performed a meta-analysis of studies reporting propensity matched analyses, and iii), briefly summarized the current indications for surgery. PMID:21603594

  18. Hospital-based proton linear accelerator for particle therapy and radioisotope production

    Science.gov (United States)

    Lennox, Arlene J.

    1991-05-01

    Taking advantage of recent advances in linear accelerator technology, it is possible for a hospital to use a 70 MeV proton linac for fast neutron therapy, boron neutron capture therapy, proton therapy for ocular melanomas, and production of radiopharmaceuticals. The linac can also inject protons into a synchrotron for proton therapy of deep-seated tumors. With 180 μA average current, a single linac can support all these applications. This paper presents a conceptual design for a medical proton linac, switchyard, treatment rooms, and isotope production rooms. Special requirements for each application are outlined and a layout for sharing beam among the applications is suggested.

  19. Development of a real-time internal and external marker tracking system for particle therapy: a phantom study using patient tumor trajectory data.

    Science.gov (United States)

    Cho, Junsang; Cheon, Wonjoong; Ahn, Sanghee; Jung, Hyunuk; Sheen, Heesoon; Park, Hee Chul; Han, Youngyih

    2017-09-01

    Target motion-induced uncertainty in particle therapy is more complicated than that in X-ray therapy, requiring more accurate motion management. Therefore, a hybrid motion-tracking system that can track internal tumor motion and as well as an external surrogate of tumor motion was developed. Recently, many correlation tests between internal and external markers in X-ray therapy have been developed; however, the accuracy of such internal/external marker tracking systems, especially in particle therapy, has not yet been sufficiently tested. In this article, the process of installing an in-house hybrid internal/external motion-tracking system is described and the accuracy level of tracking system was acquired. Our results demonstrated that the developed in-house external/internal combined tracking system has submillimeter accuracy, and can be clinically used as a particle therapy system as well as a simulation system for moving tumor treatment. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  20. Current Controversies in Newer Therapies to Treat Birth Asphyxia

    Directory of Open Access Journals (Sweden)

    Pia Wintermark

    2011-01-01

    Full Text Available Despite major advances in monitoring technology and knowledge of fetal and neonatal pathophysiology, neonatal hypoxic-ischemic encephalopathy (HIE remains one of the main causes of severe adverse neurological outcome in children. Until recently, there were no therapies other than supportive measures. Over the past several years, mild hypothermia has been proven to be safe to treat HIE. Unfortunately, this neuroprotective strategy seems efficient in preventing brain injury in some asphyxiated newborns, but not in all of them. Thus, there is increasing interest to rapidly understand how to refine hypothermia therapy and add neuroprotective or neurorestorative strategies. Several promising newer treatments to treat birth asphyxia and prevent its devastating neurological consequences are currently being tested. In this paper, the physiopathology behind HIE, the currently available treatment, the potential alternatives, and the next steps before implementation of these other treatments are reviewed.

  1. Individualized Low-Amplitude Seizure Therapy: Minimizing Current for Electroconvulsive Therapy and Magnetic Seizure Therapy

    Science.gov (United States)

    Peterchev, Angel V; Krystal, Andrew D; Rosa, Moacyr A; Lisanby, Sarah H

    2015-01-01

    Electroconvulsive therapy (ECT) at conventional current amplitudes (800–900 mA) is highly effective but carries the risk of cognitive side effects. Lowering and individualizing the current amplitude may reduce side effects by virtue of a less intense and more focal electric field exposure in the brain, but this aspect of ECT dosing is largely unexplored. Magnetic seizure therapy (MST) induces a weaker and more focal electric field than ECT; however, the pulse amplitude is not individualized and the minimum amplitude required to induce a seizure is unknown. We titrated the amplitude of long stimulus trains (500 pulses) as a means of determining the minimum current amplitude required to induce a seizure with ECT (bilateral, right unilateral, bifrontal, and frontomedial electrode placements) and MST (round coil on vertex) in nonhuman primates. Furthermore, we investigated a novel method of predicting this amplitude-titrated seizure threshold (ST) by a non-convulsive measurement of motor threshold (MT) using single pulses delivered through the ECT electrodes or MST coil. Average STs were substantially lower than conventional pulse amplitudes (112–174 mA for ECT and 37.4% of maximum device amplitude for MST). ST was more variable in ECT than in MST. MT explained 63% of the ST variance and is hence the strongest known predictor of ST. These results indicate that seizures can be induced with less intense electric fields than conventional ECT that may be safer; efficacy and side effects should be evaluated in clinical studies. MT measurement could be a faster and safer alternative to empirical ST titration for ECT and MST. PMID:25920013

  2. Magnetic particle imaging: current developments and future directions

    Directory of Open Access Journals (Sweden)

    Panagiotopoulos N

    2015-04-01

    Full Text Available Nikolaos Panagiotopoulos,1 Robert L Duschka,1 Mandy Ahlborg,2 Gael Bringout,2 Christina Debbeler,2 Matthias Graeser,2 Christian Kaethner,2 Kerstin Lüdtke-Buzug,2 Hanne Medimagh,2 Jan Stelzner,2 Thorsten M Buzug,2 Jörg Barkhausen,1 Florian M Vogt,1 Julian Haegele1 1Clinic for Radiology and Nuclear Medicine, University Hospital Schleswig Holstein, Campus Lübeck, 2Institute of Medical Engineering, University of Lübeck, Lübeck, Germany Abstract: Magnetic particle imaging (MPI is a novel imaging method that was first proposed by Gleich and Weizenecker in 2005. Applying static and dynamic magnetic fields, MPI exploits the unique characteristics of superparamagnetic iron oxide nanoparticles (SPIONs. The SPIONs’ response allows a three-dimensional visualization of their distribution in space with a superb contrast, a very high temporal and good spatial resolution. Essentially, it is the SPIONs’ superparamagnetic characteristics, the fact that they are magnetically saturable, and the harmonic composition of the SPIONs’ response that make MPI possible at all. As SPIONs are the essential element of MPI, the development of customized nanoparticles is pursued with the greatest effort by many groups. Their objective is the creation of a SPION or a conglomerate of particles that will feature a much higher MPI performance than nanoparticles currently available commercially. A particle’s MPI performance and suitability is characterized by parameters such as the strength of its MPI signal, its biocompatibility, or its pharmacokinetics. Some of the most important adjuster bolts to tune them are the particles’ iron core and hydrodynamic diameter, their anisotropy, the composition of the particles’ suspension, and their coating. As a three-dimensional, real-time imaging modality that is free of ionizing radiation, MPI appears ideally suited for applications such as vascular imaging and interventions as well as cellular and targeted imaging. A number

  3. Weak neutral currents discovery: a giant step for particle physics

    International Nuclear Information System (INIS)

    Pullia, A.; Vialle, J.P.

    2010-01-01

    Subatomic particles interact with different kinds of forces (strong, electromagnetic, weak and gravitational). In case of the weak force, the interaction is due to the exchange of intermediate charged (W +,- ) and neutral (Z 0 ) bosons. These cases are referred as 'charged currents' and 'neutral currents', respectively. The evidence for such weak neutral currents appeared in the Gargamelle international collaboration whose aim was to study in-depth neutrino interactions (and thus weak interactions) through the use of a giant heavy liquid bubble chamber at CERN. In a collaboration meeting in March 1972, the Milan team showed the first hints of neutral currents in neutrino interactions with at least one pion outgoing. In 1974, 2 new leptonic neutral current candidate events were found in Gargamelle films and the Fermilab team confirmed the result a few months later. (A.C.)

  4. Current and emerging therapies for Addison's disease.

    Science.gov (United States)

    Napier, Catherine; Pearce, Simon H S

    2014-06-01

    The purpose of this article is to review the current therapy of Addison's disease and to highlight recent developments in this field. Conventional steroid replacement for Addison's disease consists of twice or three-times daily oral hydrocortisone and once-daily fludrocortisone; however, new treatment modalities such as modified-released hydrocortisone and continuous subcutaneous hydrocortisone infusion have recently been developed. These offer the potential for closer simulation of the physiological serum cortisol rhythm. Two studies have also looked at modifying the natural history of adrenal failure using adrenocorticotropic hormone (ACTH) stimulation and immunomodulatory therapies, leading to the concept of residual adrenal function in some Addison's disease patients. Following more than 60 years with no significant innovation in the management of Addison's disease, these new approaches hold promise for improved patient health and better quality of life in the future.

  5. Pharmacotherapy for uveitis: current management and emerging therapy

    Science.gov (United States)

    Barry, Robert J; Nguyen, Quan Dong; Lee, Richard W; Murray, Philip I; Denniston, Alastair K

    2014-01-01

    Uveitis, a group of conditions characterized by intraocular inflammation, is a major cause of sight loss in the working population. Most uveitis seen in Western countries is noninfectious and appears to be autoimmune or autoinflammatory in nature, requiring treatment with immunosuppressive and/or anti-inflammatory drugs. In this educational review, we outline the ideal characteristics of drugs for uveitis and review the data to support the use of current and emerging therapies in this context. It is crucial that we continue to develop new therapies for use in uveitis that aim to suppress disease activity, prevent accumulation of damage, and preserve visual function for patients with the minimum possible side effects. PMID:25284976

  6. The current status of proton therapy in the world, the European Union and Slovakia

    International Nuclear Information System (INIS)

    Ruzicka, J.

    2011-01-01

    Proton therapy is considered to be very promising cancer treatment modality, and therefore many countries of the world are trying to (regardless of the high investment costs) to build their own atomic centre (or other proton centres if they operate already some). Proton therapy allows better control of therapeutic doses of radiation to which the patient is exposed. Proton irradiation of the tumor can kill more cancer cells while minimizing damage of healthy tissue. Currently there is about 33 facilities in operation in the world where proton therapy can be carried out. Proton therapy complex with new, highly sophisticated equipment is also being constructed in Slovakia - in The Central Military Hospital in Ruzomberok. The project is in its final stage of implementation. The paper describes the current status of proton therapy in the world, the European Union (EU) and Slovakia. In conclusion principally new Proton therapy unit complex built in Slovakia with similar facilities currently existing in EU countries (old 15 member states) is compared (especially from technical and medical aspects). (author)

  7. Geometric universality of currents in an open network of interacting particles

    International Nuclear Information System (INIS)

    Sinitsyn, Nikolai A.; Chernyak, Vladimir Y.; Chertkov, Michael

    2010-01-01

    We discuss a non-equilibrium statistical system on a graph or network. Identical particles are injected, interact with each other, traverse, and leave the graph in a stochastic manner described in terms of Poisson rates, possibly dependent on time and instantaneous occupation numbers at the nodes of the graph. We show that under the assumption of the relative rates constancy, the system demonstrates a profound statistical symmetry, resulting in geometric universality of the particle currents statistics. The phenomenon applies broadly to many man-made and natural open stochastic systems, such as queuing of packages over internet, transport of electrons and quasi-particles in mesoscopic systems, and chains of reactions in bio-chemical networks. We illustrate the utility of the general approach using two enabling examples from the two latter disciplines.

  8. Helicobacter pylori eradication therapy: A review of current trends.

    Science.gov (United States)

    Olokoba, A B; Obateru, O A; Bojuwoye, M O

    2013-01-01

    Helicobacter pylori has been implicated in the formation of chronic gastritis, peptic ulcer disease, mucosa-associated lymphoid tissue lymphoma and gastric cancer. Eradication of H. Pylori has been recommended as treatment and prevention for these complications. This review is based on a search of Medline, the Cochrane Database of Systemic Reviews, and citation lists of relevant publications. Subject heading and key words used include H. Pylori, current treatment and emerging therapy. Only articles in English were included. There has been a substantial decline in the H. pylori eradication rates over the years, despite the use of proton pump inhibitor and bismuth salts for triple and quadruple therapies respectively. The reasons for eradication failure are diverse, among them, antibiotic resistance is an important factor in the treatment failure. Primary resistance to clarithromycin or metronidazole significantly affects the efficacy of eradication therapy. This has led to the introduction of second line, third line "rescue," and sequential therapies for resistant cases. Subsequently, new antibiotic combinations with proton-pump inhibitors and bismuth salts are being studied in the last decade, to find out the antibiotics that are capable of increasing the eradication rates. Some of these antibiotics include Levofloxacin, Doxycycline, Rifaximin, Rifampicin, Furazolidone based therapies. Studies are ongoing to determine the efficacy of Lactoferrin based therapy.

  9. Maximizing Ion Current by Space Charge Neutralization using Negative Ions and Dust Particles

    International Nuclear Information System (INIS)

    Smirnov, A.; Raitses, Y.; Fisch, N.J.

    2005-01-01

    Ion current extracted from an ion source (ion thruster) can be increased above the Child-Langmuir limit if the ion space charge is neutralized. Similarly, the limiting kinetic energy density of the plasma flow in a Hall thruster might be exceeded if additional mechanisms of space charge neutralization are introduced. Space charge neutralization with high-mass negative ions or negatively charged dust particles seems, in principle, promising for the development of a high current or high energy density source of positive light ions. Several space charge neutralization schemes that employ heavy negatively charged particles are considered. It is shown that the proposed neutralization schemes can lead, at best, only to a moderate but nonetheless possibly important increase of the ion current in the ion thruster and the thrust density in the Hall thruster

  10. Antitumor bystander effect induced by radiation-inducible target gene therapy combined with α particle irradiation

    International Nuclear Information System (INIS)

    Liu Hui; Jin Chufeng; Wu Yican; Ge Shenfang; Wu Lijun; FDS Team

    2012-01-01

    In this work, we investigated the bystander effect of the tumor and normal cells surrounding the target region caused by radiation-inducible target gene therapy combined with α-particle irradiation. The receptor tumor cell A549 and normal cell MRC-5 were co-cultured with the donor cells irradiated to 0.5 Gy or the non-irradiated donor cells, and their survival and apoptosis fractions were evaluated. The results showed that the combined treatment of Ad-ET and particle irradiation could induce synergistic antitumor effect on A549 tumor cell, and the survival fraction of receptor cells co-cultured with the irradiated cells decreased by 6%, compared with receptor cells co-cultured with non-irradiated cells, and the apoptosis fraction increased in the same circumstance, but no difference was observed with the normal cells. This study demonstrates that Ad-ET combined with α-particle irradiation can significantly cause the bystander effect on neighboring tumor cells by inhibiting cell growth and inducing apoptosis, without obvious toxicity to normal cells. This suggests that combining radiation-inducible TRAIL gene therapy and irradiation may improve tumor treatment efficacy by specifically targeting tumor cells and even involving the neighboring tumor cells. (authors)

  11. Particle therapy for mucosal melanoma of the head and neck. A single-institution retrospective comparison of proton and carbon ion therapy

    Energy Technology Data Exchange (ETDEWEB)

    Demizu, Y.; Fujii, O.; Terashima, K.; Mima, M.; Hashimoto, N.; Fuwa, N. [Hyogo Ion Beam Medical Center, Department of Radiology, Tatsuno, Hyogo (Japan); Niwa, Y. [Hyogo College of Medicine, Department of Radiology, Nishinomiya, Hyogo (Japan); Akagi, T. [Hyogo Ion Beam Medical Center, Department of Radiation Physics, Tatsuno, Hyogo (Japan); Daimon, T. [Hyogo College of Medicine, Department of Biostatistics, Nishinomiya, Hyogo (Japan); Murakami, M. [Dokkyo Medical University, Center for Radiation Oncology, Shimotsuga-gun, Tochigi (Japan)

    2014-02-15

    To retrospectively analyze treatment outcomes after particle therapy using protons or carbon ions for mucosal melanoma of the head and neck (HNMM) at the Hyogo Ion Beam Medical Center, as well as to compare proton therapy (PT) and carbon ion therapy (CIT). Data from 62 HNMM patients without metastasis, treated with PT or CIT between October 2003 and April 2011 were analyzed. Median patient age was 70.5 years (range 33-89 years). Of the total patients, 33 (53 %) had received PT and 29 (47 %) had undergone CIT. Protocols for 65 or 70.2 GyE in 26 fractions were used for both ion types. Median follow-up was 18.0 months (range 5.2-82.7 months). The 1-/2-year overall survival (OS) and local control (LC) rates were 93 %/61 % and 93 %/78 % for all patients, 91 %/44 % and 92 %/71 % for the PT patients and 96 %/62 % and 95 %/59 % for the CIT patients, respectively. No significant differences were observed between PT and CIT. Local recurrence was observed in 8 patients (PT: 5, CIT: 3) and 29 (PT: 18, CIT: 11) experienced distant metastases. Acute reactions were acceptable and all patients completed the planned radiotherapy. Regarding late toxicity, grade 3 or greater events were observed in 5 patients (PT: 3, CIT: 2), but no significant difference was observed between PT and CIT. Our single-institution retrospective analysis demonstrated that particle therapy for HNMM achieved good LC, but OS was unsatisfactory. There were no significant differences between PT and CIT in terms of either efficacy or toxicity. (orig.)

  12. The single- and double-particle properties and the current reversal of coupled Brownian motors

    International Nuclear Information System (INIS)

    Li, Chen-Pu; Chen, Hong-Bin; Zheng, Zhi-Gang; Fan, Hong; Shen, Wen-Mei

    2017-01-01

    In this paper, we investigate the directed transport of coupled Brownian motors composed of two identical particles which is individually subject to a time-symmetric rocking force in spatially-symmetric periodic potentials. We find that both the coupling free length and the coupling strength can induce the reversed motion of the coupled Brownian motors, the essence of which is the coupled Brownian motors can exhibit completely different single- or double-particle properties under certain conditions. Namely, the current reversal is the result of the mutual conversion between the single- and double-particle properties of the coupled Brownian motors. Moreover, the directed current of coupled Brownian motors can be optimized and manipulated by adjusting the strength, the period, the phase difference of the rocking forces, and the noise intensity. (paper)

  13. Boron analysis for neutron capture therapy using particle-induced gamma-ray emission

    International Nuclear Information System (INIS)

    Nakai, Kei; Yamamoto, Yohei; Okamoto, Emiko; Yamamoto, Tetsuya; Yoshida, Fumiyo; Matsumura, Akira; Yamada, Naoto; Kitamura, Akane; Koka, Masashi; Satoh, Takahiro

    2015-01-01

    The neutron source of BNCT is currently changing from reactor to accelerator, but peripheral facilities such as a dose-planning system and blood boron analysis have still not been established. To evaluate the potential application of particle-induced gamma-ray emission (PIGE) for boron measurement in clinical boron neutron capture therapy, boronophenylalanine dissolved within a cell culture medium was measured using PIGE. PIGE detected 18 μgB/mL f-BPA in the culture medium, and all measurements of any given sample were taken within 20 min. Two hours of f-BPA exposure was required to create a boron distribution image. However, even though boron remained in the cells, the boron on the cell membrane could not be distinguished from the boron in the cytoplasm. - Highlights: • PIGE was evaluated for measuring blood boron concentration during clinical BNCT. • PIGE detected 18 μgB/mL f-BPA in culture medium. • All measurements of any given sample were taken within 20 min. • Two hours of f-BPA exposure is required to create boron distribution image by PIGE. • Boron on the cell membrane could not be distinguished from boron in the cytoplasm.

  14. Steady-state configuration and tension calculations of marine cables under complex currents via separated particle swarm optimization

    Science.gov (United States)

    Xu, Xue-song

    2014-12-01

    Under complex currents, the motion governing equations of marine cables are complex and nonlinear, and the calculations of cable configuration and tension become difficult compared with those under the uniform or simple currents. To obtain the numerical results, the usual Newton-Raphson iteration is often adopted, but its stability depends on the initial guessed solution to the governing equations. To improve the stability of numerical calculation, this paper proposed separated the particle swarm optimization, in which the variables are separated into several groups, and the dimension of search space is reduced to facilitate the particle swarm optimization. Via the separated particle swarm optimization, these governing nonlinear equations can be solved successfully with any initial solution, and the process of numerical calculation is very stable. For the calculations of cable configuration and tension of marine cables under complex currents, the proposed separated swarm particle optimization is more effective than the other particle swarm optimizations.

  15. Biological dose estimation for charged-particle therapy using an improved PHITS code coupled with a microdosimetric kinetic model

    International Nuclear Information System (INIS)

    Sato, Tatsuhiko; Watanabe, Ritsuko; Kase, Yuki; Niita, Koji; Sihver, Lembit

    2009-01-01

    High-energy heavy ions (HZE particles) have become widely used for radiotherapy of tumors owing to their high biological effectiveness. In the treatment planning of such charged-particle therapy, it is necessary to estimate not only physical but also biological dose, which is the product of physical dose and relative biological effectiveness (RBE). In the Heavy-ion Medical Accelerator in Chiba (HIMAC), the biological dose is estimated by a method proposed by Kanai et al., which is based on the linear-quadratic (LQ) model with its parameters α and β determined by the dose distribution in terms of the unrestricted linear energy transfer (LET). Thus, RBE is simply expressed as a function of LET in their model. However, RBE of HZE particles cannot be uniquely determined from their LET because of their large cross sections for high-energy δ-ray production. Hence, development of a biological dose estimation model that can explicitly consider the track structure of δ-rays around the trajectory of HZE particles is urgently needed. Microdosimetric quantities such as lineal energy y are better indexes for representing RBE of HZE particles in comparison to LET, since they can express the decrease of ionization densities around their trajectories due to the production of δ-rays. The difference of the concept between LET and y is illustrated in Figure 1. However, the use of microdosimetric quantities in computational dosimetry was severely limited because of the difficulty in calculating their probability densities (PDs) in macroscopic matter. We therefore improved the 3-dimensional particle transport simulation code PHITS, providing it with the capability of estimating the microdosimetric PDs in a macroscopic framework by incorporating a mathematical function that can instantaneously calculate the PDs around the trajectory of HZE particles with precision equivalent to a microscopic track-structure simulation. A new method for estimating biological dose from charged-particle

  16. Charged Particle Radiation Therapy for Uveal Melanoma: A Systematic Review and Meta-Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhen, E-mail: Wang.Zhen@mayo.edu [Mayo Clinic, Rochester, Minnesota (United States); Nabhan, Mohammed [Mayo Clinic, Rochester, Minnesota (United States); Schild, Steven E. [Mayo Clinic, Scottsdale, Arizona (United States); Stafford, Scott L.; Petersen, Ivy A.; Foote, Robert L.; Murad, M. Hassan [Mayo Clinic, Rochester, Minnesota (United States)

    2013-05-01

    Charged particle therapy (CPT) delivered with either protons, helium ions, or carbon ions, has been used to treat uveal melanoma. The present analysis was performed to systematically evaluate the efficacy and adverse effects of CPT for uveal melanoma. We searched EMBASE, MEDLINE, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, and SciVerse Scopus and cross-referenced recent systematic reviews through January 2012. Two independent reviewers identified clinical trials and observational studies of CPT (protons, helium ions, and carbon ions). These reviewers extracted data and assessed study quality. Twenty-seven studies enrolling 8809 uveal melanoma patients met inclusion criteria. The rate of local recurrence was significantly less with CPT than with brachytherapy (odds ratio [OR] = 0.22, 95% confidence interval [CI], 0.21-0.23). There were no significant differences in mortality or enucleation rates. Results were robust in multiple sensitivity analyses. CPT was also associated with lower retinopathy and cataract formation rates. Data suggest better outcomes may be possible with charged particle therapy with respect to local recurrence, retinopathy, and cataract formation rates. The overall quality of the evidence is low, and higher quality comparative effectiveness studies are needed to provide better evidence.

  17. Charged Particle Radiation Therapy for Uveal Melanoma: A Systematic Review and Meta-Analysis

    International Nuclear Information System (INIS)

    Wang, Zhen; Nabhan, Mohammed; Schild, Steven E.; Stafford, Scott L.; Petersen, Ivy A.; Foote, Robert L.; Murad, M. Hassan

    2013-01-01

    Charged particle therapy (CPT) delivered with either protons, helium ions, or carbon ions, has been used to treat uveal melanoma. The present analysis was performed to systematically evaluate the efficacy and adverse effects of CPT for uveal melanoma. We searched EMBASE, MEDLINE, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, and SciVerse Scopus and cross-referenced recent systematic reviews through January 2012. Two independent reviewers identified clinical trials and observational studies of CPT (protons, helium ions, and carbon ions). These reviewers extracted data and assessed study quality. Twenty-seven studies enrolling 8809 uveal melanoma patients met inclusion criteria. The rate of local recurrence was significantly less with CPT than with brachytherapy (odds ratio [OR] = 0.22, 95% confidence interval [CI], 0.21-0.23). There were no significant differences in mortality or enucleation rates. Results were robust in multiple sensitivity analyses. CPT was also associated with lower retinopathy and cataract formation rates. Data suggest better outcomes may be possible with charged particle therapy with respect to local recurrence, retinopathy, and cataract formation rates. The overall quality of the evidence is low, and higher quality comparative effectiveness studies are needed to provide better evidence

  18. Current reversals and metastable states in the infinite Bose-Hubbard chain with local particle loss

    Science.gov (United States)

    Kiefer-Emmanouilidis, M.; Sirker, J.

    2017-12-01

    We present an algorithm which combines the quantum trajectory approach to open quantum systems with a density-matrix renormalization-group scheme for infinite one-dimensional lattice systems. We apply this method to investigate the long-time dynamics in the Bose-Hubbard model with local particle loss starting from a Mott-insulating initial state with one boson per site. While the short-time dynamics can be described even quantitatively by an equation of motion (EOM) approach at the mean-field level, many-body interactions lead to unexpected effects at intermediate and long times: local particle currents far away from the dissipative site start to reverse direction ultimately leading to a metastable state with a total particle current pointing away from the lossy site. An alternative EOM approach based on an effective fermion model shows that the reversal of currents can be understood qualitatively by the creation of holon-doublon pairs at the edge of the region of reduced particle density. The doublons are then able to escape while the holes move towards the dissipative site, a process reminiscent—in a loose sense—of Hawking radiation.

  19. Study of strange particle production by neutral currents induced by 1 and 12 GeV neutrinos and antineutrinos

    International Nuclear Information System (INIS)

    Francois, T.L.B.

    1977-01-01

    Strange particles production by weak neutral currents was experimentally studied. The first result is a direct confirmation that neutral currents conserve strangeness (by an upper limit on ΔS=-1 production). The two other results, production rate of strange neutral particles and ratio of strange particles production for antineutrinos and neutrinos, prove that these particles are mainly produced in the final hadronic state rather than on strange sea-quarks and give an upper limit on the rate of this type of quark in the nucleon [fr

  20. Mechanisms of Current Transfer in Electrodeposited Layers of Submicron Semiconductor Particles

    Science.gov (United States)

    Zhukov, N. D.; Mosiyash, D. S.; Sinev, I. V.; Khazanov, A. A.; Smirnov, A. V.; Lapshin, I. V.

    2017-12-01

    Current-voltage ( I- V) characteristics of conductance in multigrain layers of submicron particles of silicon, gallium arsenide, indium arsenide, and indium antimonide have been studied. Nanoparticles of all semiconductors were obtained by processing initial single crystals in a ball mill and applied after sedimentation onto substrates by means of electrodeposition. Detailed analysis of the I- V curves of electrodeposited layers shows that their behavior is determined by the mechanism of intergranular tunneling emission from near-surface electron states of submicron particles. Parameters of this emission process have been determined. The proposed multigrain semiconductor structures can be used in gas sensors, optical detectors, IR imagers, etc.

  1. WE-FG-BRB-02: Spatial Mapping of the RBE of Scanned Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Grosshans, D. [The University of Texas MD Anderson Cancer Center (United States)

    2016-06-15

    The physical pattern of energy deposition and the enhanced relative biological effectiveness (RBE) of protons and carbon ions compared to photons offer unique and not fully understood or exploited opportunities to improve the efficacy of radiation therapy. Variations in RBE within a pristine or spread out Bragg peak and between particle types may be exploited to enhance cell killing in target regions without a corresponding increase in damage to normal tissue structures. In addition, the decreased sensitivity of hypoxic tumors to photon-based therapies may be partially overcome through the use of more densely ionizing radiations. These and other differences between particle and photon beams may be used to generate biologically optimized treatments that reduce normal tissue complications. In this symposium, speakers will examine the impact of the RBE of charged particles on measurable biological endpoints, treatment plan optimization, and the prediction or retrospective assessment of treatment outcomes. In particular, an AAPM task group was formed to critically examine the evidence for a spatially-variant RBE in proton therapy. Current knowledge of proton RBE variation with respect to dose, biological endpoint, and physics parameters will be reviewed. Further, the clinical relevance of these variations will be discussed. Recent work focused on improving simulations of radiation physics and biological response in proton and carbon ion therapy will also be presented. Finally, relevant biology research and areas of research needs will be highlighted, including the dependence of RBE on genetic factors including status of DNA repair pathways, the sensitivity of cancer stem-like cells to charged particles, the role of charged particles in hypoxic tumors, and the importance of fractionation effects. In addition to the physical advantages of protons and more massive ions over photons, the future application of biologically optimized treatment plans and their potential to

  2. Particle therapy planning

    International Nuclear Information System (INIS)

    Zink, S.

    1987-01-01

    The Radiation Research Program (RRP) supports a variety of research through grants and contracts. During the last few years, considerable effort has been devoted to treatment planning evaluation in particle, photon and electron radiotherapy. In 1981, RRP issued a request for proposals (RFP) for the evaluation of treatment planning with particle beam radiotherapy - to include protons, heavy ions and neutrons. Contracts were subsequently awarded to four institutions: Massachusetts General Hospital (MGH), University of Texas and M.D. Anderson Hospital (MDAH), the heavy ion project at Lawrence Berkeley Laboratory (LBL) and University of Pennsylvania (UPa). These contracts reached completion December 31, 1986. The work for the contracts was carried out at the individual institutions and guided through a Working Group made up of the Project Officer and Principal Investigators and primary physicians and physicists at each of the participating institutions. This report summarizes the findings of the Working Group and makes recommendations for further research

  3. Electromagnetic particle in cell modeling of the plasma focus: Current sheath formation and lift off

    International Nuclear Information System (INIS)

    Seng, Y. S.; Lee, P.; Rawat, R. S.

    2014-01-01

    The shaping and formation of the current sheath takes place in the breakdown phase of a plasma focus device and critically controls the device performance. Electrostatic particle in cell codes, with magnetic effects ignored, have been used to model the breakdown phase. This Letter reports the successful development and implementation of an electromagnetic particle in cell (EMPIC) code, including magnetic effects self-consistently, to simulate the breakdown phase; from the ionization, localization and gliding discharge along the insulator to the time instant of current sheath lift off. The magnetic field was found to be appreciable from the time the current sheath came into contact with the anode with increased local current, initiating the voltage breakdown of the device as a result

  4. Reynolds number and settling velocity influence for finite-release particle-laden gravity currents in a basin

    Science.gov (United States)

    Francisco, E. P.; Espath, L. F. R.; Laizet, S.; Silvestrini, J. H.

    2018-01-01

    Three-dimensional highly resolved Direct Numerical Simulations (DNS) of particle-laden gravity currents are presented for the lock-exchange problem in an original basin configuration, similar to delta formation in lakes. For this numerical study, we focus on gravity currents over a flat bed for which density differences are small enough for the Boussinesq approximation to be valid. The concentration of particles is described in an Eulerian fashion by using a transport equation combined with the incompressible Navier-Stokes equations, with the possibility of particles deposition but no erosion nor re-suspension. The focus of this study is on the influence of the Reynolds number and settling velocity on the development of the current which can freely evolve in the streamwise and spanwise direction. It is shown that the settling velocity has a strong influence on the spatial extent of the current, the sedimentation rate, the suspended mass and the shape of the lobe-and-cleft structures while the Reynolds number is mainly affecting the size and number of vortical structures at the front of the current, and the energy budget.

  5. Particle image velocimetry measurements and numerical modeling of a saline density current

    CSIR Research Space (South Africa)

    Gerber, G

    2011-03-01

    Full Text Available Particle image velocimetry scalar measurements were carried out on the body of a stably stratified density current with an inlet Reynolds number of 2,300 and bulk Richardson number of 0.1. These measurements allowed the mass and momentum transport...

  6. Current Sheets in Pulsar Magnetospheres and Winds: Particle Acceleration and Pulsed Gamma Ray Emission

    Science.gov (United States)

    Arons, Jonathan

    The research proposed addresses understanding of the origin of non-thermal energy in the Universe, a subject beginning with the discovery of Cosmic Rays and continues, including the study of relativistic compact objects - neutron stars and black holes. Observed Rotation Powered Pulsars (RPPs) have rotational energy loss implying they have TeraGauss magnetic fields and electric potentials as large as 40 PetaVolts. The rotational energy lost is reprocessed into particles which manifest themselves in high energy gamma ray photon emission (GeV to TeV). Observations of pulsars from the FERMI Gamma Ray Observatory, launched into orbit in 2008, have revealed 130 of these stars (and still counting), thus demonstrating the presence of efficient cosmic accelerators within the strongly magnetized regions surrounding the rotating neutron stars. Understanding the physics of these and other Cosmic Accelerators is a major goal of astrophysical research. A new model for particle acceleration in the current sheets separating the closed and open field line regions of pulsars' magnetospheres, and separating regions of opposite magnetization in the relativistic winds emerging from those magnetopsheres, will be developed. The currents established in recent global models of the magnetosphere will be used as input to a magnetic field aligned acceleration model that takes account of the current carrying particles' inertia, generalizing models of the terrestrial aurora to the relativistic regime. The results will be applied to the spectacular new results from the FERMI gamma ray observatory on gamma ray pulsars, to probe the physics of the generation of the relativistic wind that carries rotational energy away from the compact stars, illuminating the whole problem of how compact objects can energize their surroundings. The work to be performed if this proposal is funded involves extending and developing concepts from plasma physics on dissipation of magnetic energy in thin sheets of

  7. Neutral strange particle production in neutrino and antineutrino charged-current interactions on neon

    Science.gov (United States)

    Deprospo, D.; Kalelkar, M.; Aderholz, M.; Akbari, H.; Allport, P. P.; Ammosov, V. V.; Andryakov, A.; Asratyan, A.; Badyal, S. K.; Ballagh, H. C.; Baton, J.-P.; Barth, M.; Bingham, H. H.; Brucker, E. B.; Burnstein, R. A.; Cence, R. J.; Chatterjee, T. K.; Clayton, E. F.; Corrigan, G.; Coutures, C.; Devanand; de Wolf, E.; Ermolov, P.; Erofeeva, I.; Faulkner, P. J.; Foeth, H.; Fretter, W. B.; Gapienko, G.; Gupta, V. K.; Hanlon, J.; Harigel, G.; Harris, F. A.; Ivanilov, A.; Jabiol, M.; Jacques, P.; Jain, V.; Jones, G. T.; Jones, M. D.; Kafka, T.; Kaftanov, V.; Kasper, P.; Kobrin, V.; Kohli, J. M.; Koller, E. L.; Korablev, V.; Kubantsev, M.; Lauko, M.; Lukina, O.; Lys, J. E.; Lyutov, S.; Marage, P.; Milburn, R. H.; Mittra, I. S.; Mobayyen, M. M.; Moreels, J.; Morrison, D. R.; Moskalev, V.; Murzin, V.; Myatt, G.; Nailor, P.; Naon, R.; Napier, A.; Neveu, M.; Passmore, D.; Peters, M. W.; Peterson, V. Z.; Plano, R.; Rao, N. K.; Rubin, H. A.; Ryasakov, S.; Sacton, J.; Sambyal, S. S.; Schmitz, N.; Schneps, J.; Singh, J. B.; Singh, S.; Sivoklokov, S.; Smart, W.; Smirnova, L.; Stamer, P.; Varvell, K. E.; Verluyten, L.; Wachsmuth, H.; Wainstein, S.; Willocq, S.; Yost, G. P.

    1994-12-01

    A study has been made of neutral strange particle production in νμNe and ν¯μNe charged-current interactions at a higher energy than any previous study. The experiment was done at the Fermilab Tevatron using the 15-ft. bubble chamber, and the data sample consists of 814(154) observed neutral strange particles from 6263(1115) ν(ν¯) charged-current events. For the ν beam (average event energy =150 GeV), the average multiplicities per charged-current event have been measured to be 0.408+/-0.048 for K0, 0.127+/-0.014 for Λ, and 0.015+/-0.005 for Λ¯, which are significantly greater than for lower-energy experiments. The dependence of rates on kinematical variables has been measured, and shows that both K0 and Λ production increase strongly with Eν, W2, Q2, and yB. Compared to lower-energy experiments, single-particle distributions indicate that there is much more K0 production for xF>-0.2, and the enhanced Λ production spans most of the kinematic region. Λ¯ production is mostly in the region ||xF||-0.2 there is a significant excess of Λ production over the model's prediction. The Λ hyperons are found to be polarized in the production plane.

  8. Particle currents on a CP violating Higgs background and the spontaneous baryogenesis mechanism

    International Nuclear Information System (INIS)

    Comelli, D.; Riotto, A.

    1995-04-01

    We compute the particle currents induced on a bubble wall background at finite temperature in a model with CP violation in the Higgs sector. Using a field theory approach we show that fermionic currents arise at one loop, so that a suppression factor OMIKRON (h t φ/πT) 2 with respect to previous computations is found. The contributions to the Higgs currents are also derived and their relevancy for the spontaneous baryogenesis mechanism is discussed. (orig.)

  9. Energetic Particles of keV–MeV Energies Observed near Reconnecting Current Sheets at 1 au

    Energy Technology Data Exchange (ETDEWEB)

    Khabarova, Olga V. [Heliophysical Laboratory, Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN), Moscow (Russian Federation); Zank, Gary P. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35805 (United States)

    2017-07-01

    We provide evidence for particle acceleration up to ∼5 MeV at reconnecting current sheets in the solar wind based on both case studies and a statistical analysis of the energetic ion and electron flux data from the five Advanced Composition Explorer Electron, Proton, and Alpha Monitor (EPAM) detectors. The case study of a typical reconnection exhaust event reveals (i) a small-scale peak of the energetic ion flux observed in the vicinity of the reconnection exhaust and (ii) a long-timescale atypical energetic particle event (AEPE) encompassing the reconnection exhaust. AEPEs associated with reconnecting strong current sheets last for many hours, even days, as confirmed by statistical studies. The case study shows that time-intensity profiles of the ion flux may vary significantly from one EPAM detector to another partially because of the local topology of magnetic fields, but mainly because of the impact of upstream magnetospheric events; therefore, the occurrence of particle acceleration can be hidden. The finding of significant particle energization within a time interval of ±30 hr around reconnection exhausts is supported by a superposed epoch analysis of 126 reconnection exhaust events. We suggest that energetic particles initially accelerated via prolonged magnetic reconnection are trapped and reaccelerated in small- or medium-scale magnetic islands surrounding the reconnecting current sheet, as predicted by the transport theory of Zank et al. Other mechanisms of initial particle acceleration can contribute also.

  10. Current trends in immunosuppressive therapies for renal transplant recipients.

    Science.gov (United States)

    Lee, Ruth-Ann; Gabardi, Steven

    2012-11-15

    Current trends in immunosuppressive therapies for renal transplant recipients are reviewed. The common premise for immunosuppressive therapies in renal transplantation is to use multiple agents to work on different immunologic targets. The use of a multidrug regimen allows for pharmacologic activity at several key steps in the T-cell replication process and lower dosages of each individual agent, thereby producing fewer drug-related toxicities. In general, there are three stages of clinical immunosuppression: induction therapy, maintenance therapy, and treatment of an established acute rejection episode. Only immunosuppressive therapies used for maintenance therapy are discussed in detail in this review. The most common maintenance immunosuppressive agents can be divided into five classes: (1) the calcineurin inhibitors (CNIs) (cyclosporine and tacrolimus), (2) costimulation blockers (belatacept), (3) mammalian target of rapamycin inhibitors (sirolimus and everolimus), (4) antiproliferatives (azathioprine and mycophenolic acid derivatives), and (5) corticosteroids. Immunosuppressive regimens vary among transplantation centers but most often include a CNI and an adjuvant agent, with or without corticosteroids. Selection of appropriate immunosuppressive regimens should be patient specific, taking into account the medications' pharmacologic properties, adverse-event profile, and potential drug-drug interactions, as well as the patient's preexisting diseases, risk of rejection, and medication regimen. Advancements in transplant immunosuppression have resulted in a significant reduction in acute cellular rejection and a modest increase in long-term patient and graft survival. Because the optimal immunosuppression regimen is still unknown, immunosuppressant use should be influenced by institutional preference and tailored to the immunologic risk of the patient and adverse-effect profile of the drug.

  11. Pharmacotherapies for Obesity: Past, Current, and Future Therapies

    Directory of Open Access Journals (Sweden)

    Lisa L. Ioannides-Demos

    2011-01-01

    Full Text Available Past therapies for the treatment of obesity have typically involved pharmacological agents usually in combination with a calorie-controlled diet. This paper reviews the efficacy and safety of pharmacotherapies for obesity focusing on drugs approved for long-term therapy (orlistat, drugs approved for short-term use (amfepramone [diethylpropion], phentermine, recently withdrawn therapies (rimonabant, sibutamine and drugs evaluated in Phase III studies (taranabant, pramlintide, lorcaserin and tesofensine and combination therapies of topiramate plus phentermine, bupropion plus naltrexone, and bupropion plus zonisamide. No current pharmacotherapy possesses the efficacy needed to produce substantial weight loss in morbidly obese patients. Meta-analyses support a significant though modest loss in bodyweight with a mean weight difference of 4.7 kg (95% CI 4.1 to 5.3 kg for rimonabant, 4.2 kg (95% CI 3.6 to 4.8 kg for sibutramine and 2.9 kg (95% CI 2.5 to 3.2 kg for orlistat compared to placebo at ≥12 months. Of the Phase III pharmacotherapies, lorcaserin, taranabant, topiramate and bupropion with naltrexone have demonstrated significant weight loss compared to placebo at ≥12 months. Some pharmacotherapies have also demonstrated clinical benefits. Further studies are required in some populations such as younger and older people whilst the long term safety continues to be a major consideration and has led to the withdrawal of several drugs.

  12. Current signal of silicon detectors facing charged particles and heavy ions

    International Nuclear Information System (INIS)

    Hamrita, H.

    2005-07-01

    This work consisted in collecting and studying for the first time the shapes of current signals obtained from charged particles or heavy ions produced by silicon detectors. The document is divided into two main parts. The first consisted in reducing the experimental data obtained with charged particles as well as with heavy ions. These experiments were performed at the Orsay Tandem and at GANIL using LISE. These two experiments enabled us to create a data base formed of current signals with various shapes and various times of collection. The second part consisted in carrying out a simulation of the current signals obtained from the various ions. To obtain this simulation we propose a new model describing the formation of the signal. We used the data base of the signals obtained in experiments in order to constrain the three parameters of our model. In this model, the charge carriers created are regarded as dipoles and their density is related to the dielectric polarization in the silicon detector. This phenomenon induces an increase in permittivity throughout the range of the incident ion and consequently the electric field between the electrodes of the detector is decreased inside the trace. We coupled with this phenomenon a dissociation and extraction mode of the charge carriers so that they can be moved in the electric field. (author)

  13. Current role of antibody therapy in patients with metastatic colorectal cancer

    DEFF Research Database (Denmark)

    Pfeiffer, P; Qvortrup, C; Eriksen, Jesper Grau

    2007-01-01

    progressive disease and unfortunately in patients with disease resistant to 5-fluorouracil/folinic acid, irinotecan and oxaliplatin, no effective cytotoxic therapy is known. The rapidly expanding knowledge in tumor biology has encouraged optimism for the possibility to find and target tumor...... arsenal in CRC to a great extent, but they will also add to the complexity of treatment of CRC. In this review, we summarize the current status of antibody therapy in patients with CRC. Udgivelsesdato: 2007-May-28...

  14. Pesticides in the atmosphere: a comparison of gas-particle partitioning and particle size distribution of legacy and current-use pesticides

    Science.gov (United States)

    Degrendele, C.; Okonski, K.; Melymuk, L.; Landlová, L.; Kukučka, P.; Audy, O.; Kohoutek, J.; Čupr, P.; Klánová, J.

    2016-02-01

    This study presents a comparison of seasonal variation, gas-particle partitioning, and particle-phase size distribution of organochlorine pesticides (OCPs) and current-use pesticides (CUPs) in air. Two years (2012/2013) of weekly air samples were collected at a background site in the Czech Republic using a high-volume air sampler. To study the particle-phase size distribution, air samples were also collected at an urban and rural site in the area of Brno, Czech Republic, using a cascade impactor separating atmospheric particulates according to six size fractions. Major differences were found in the atmospheric distribution of OCPs and CUPs. The atmospheric concentrations of CUPs were driven by agricultural activities while secondary sources such as volatilization from surfaces governed the atmospheric concentrations of OCPs. Moreover, clear differences were observed in gas-particle partitioning; CUP partitioning was influenced by adsorption onto mineral surfaces while OCPs were mainly partitioning to aerosols through absorption. A predictive method for estimating the gas-particle partitioning has been derived and is proposed for polar and non-polar pesticides. Finally, while OCPs and the majority of CUPs were largely found on fine particles, four CUPs (carbendazim, isoproturon, prochloraz, and terbuthylazine) had higher concentrations on coarse particles ( > 3.0 µm), which may be related to the pesticide application technique. This finding is particularly important and should be further investigated given that large particles result in lower risks from inhalation (regardless the toxicity of the pesticide) and lower potential for long-range atmospheric transport.

  15. Oscillation and decay of particle current due to a quench and dephasing in an interacting fermionic system

    OpenAIRE

    Choo, Kenny; Bissbort, Ulf; Poletti, Dario

    2017-01-01

    We study the response of a particle current to dissipative dephasing in an interacting, few-body fermionic lattice system. The particles are prepared in the ground state in presence of an artificial magnetic gauge field, which is subsequently quenched to zero. The initial current decays non-trivially in the dissipative environment and we explore the emerging dynamics and its dependence on various system parameters.

  16. Rapid appearance of transient secondary adrenocortical insufficiency after alpha-particle radiation therapy for Cushing's disease

    International Nuclear Information System (INIS)

    Cook, D.M.; Jordan, R.M.; Kendall, J.W.; Linfoot, J.A.

    1976-01-01

    A 17-year-old woman received 12,000 rads of alpha-particle radiation for the treatment of Cushing's disease. One day after the completion of therapy, the patient developed nausea, vomiting, headache, and postural hypotension. Laboratory evaluation demonstrated a marked fall of the previously elevated urinary 17-hydroxycorticosteroids (17-OHCS) and undetectable plasma cortisols. The urinary 17-OHCS transiently returned to supranormal levels but over a 2 1 / 2 -week period decreased and then remained low. The patient also demonstrated a subnormal urinary aldosterone excretion in relation to plasma renin activity (PRA) during 10 mEq/24 h sodium restriction. The remainder of the endocrine evaluation was normal, suggesting that pituitary function otherwise remained intact. One and one-half years after alpha-particle therapy, the patient's urinary 17-OHCS were normal and responded normally to metyrapone. The relationship between urinary aldosterone excretion and PRA also was normal. It is postulated that there was an infarction of an ACTH secreting pituitary tumor leaving the remainder of the pituitary intact. A chronically elevated circulating level of ACTH with sudden loss of ACTH secretion appeared to have been responsible for the initial low urinary aldosterone as well as the low urinary 17-OHCS. This is the first reported case of a presumed pituitary tumor infarction in association with alpha-particle pituitary radiation

  17. Psychological Therapies for Auditory Hallucinations (Voices): Current Status and Key Directions for Future Research

    NARCIS (Netherlands)

    Thomas, N.; Hayward, M.; Peters, E; van der Gaag, M.; Bentall, R.P.; Jenner, J.; Strauss, C.; Sommer, I.E.; Johns, L.C.; Varese, F.; Gracia-Montes, J.M.; Waters, F.; Dodgson, G.; McCarthy-Jones, S.

    2014-01-01

    This report from the International Consortium on Hallucinations Research considers the current status and future directions in research on psychological therapies targeting auditory hallucinations (hearing voices). Therapy approaches have evolved from behavioral and coping-focused interventions,

  18. SU-F-T-128: Dose-Volume Constraints for Particle Therapy Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, R; Smith, W; Hendrickson, K; Meyer, J; Cao, N; Lee, E; Gopan, O; Sandison, G; Parvathaneni, U; Laramore, G [University of Washington, Seattle, WA (United States)

    2016-06-15

    Purpose: Determine equivalent Organ at Risk (OAR) tolerance dose (TD) constraints for MV x-rays and particle therapy. Methods: Equivalent TD estimates for MV x-rays are determined from an isoeffect, regression-analysis of published and in-house constraints for various fractionation schedules (n fractions). The analysis yields an estimate of (α/β) for an OAR. To determine equivalent particle therapy constraints, the MV x-ray TD(n) values are divided by the RBE for DSB induction (RBE{sub DSB}) or cell survival (RBE{sub S}). Estimates of (RBE{sub DSB}) are computed using the Monte Carlo Damage Simulation, and estimates of RBES are computed using the Repair-Misrepair-Fixation (RMF) model. A research build of the RayStation™ treatment planning system implementing the above model is used to estimate (RBE{sub DSB}) for OARs of interest in 16 proton therapy patient plans (head and neck, thorax, prostate and brain). Results: The analysis gives an (α/β) estimate of about 20 Gy for the trachea and heart and 2–4 Gy for the esophagus, spine, and brachial plexus. Extrapolation of MV x-ray constraints (n = 1) to fast neutrons using RBE{sub DSB} = 2.7 are in excellent agreement with clinical experience (n = 10 to 20). When conventional (n > 30) x-ray treatments are used as the reference radiation, fast neutron RBE increased to a maximum of 6. For comparison to a constant RBE of 1.1, the RayStation™ analysis gave estimates of proton RBE{sub DSB} from 1.03 to 1.33 for OARs of interest. Conclusion: The presented system of models is a convenient formalism to synthesize from multiple sources of information a set of self-consistent plan constraints for MV x-ray and hadron therapy treatments. Estimates of RBE{sub DSB} from the RayStation™ analysis differ substantially from 1.1 and vary among patients and treatment sites. A treatment planning system that incorporates patient and anatomy-specific corrections in proton RBE would create opportunities to increase the therapeutic

  19. Measurement of current density fluctuations and ambipolar particle flux due to magnetic fluctuations in MST

    International Nuclear Information System (INIS)

    Shen, Weimin.

    1992-08-01

    Studies of magnetic fluctuation induced particle transport on Reversed Field Pinch plasmas were done on the Madison Symmetric Torus. Plasma current density and current density fluctuations were measured using a multi-coil magnetic probes. The low frequency (f parallel B r >. The result of zero net charged particle loss was obtained, meaning the flux is ambipolar. The ambipolarity of low frequency global tearing modes is satisfied through the phase relations determined by tearing instabilities. The ambipolarity of high frequency localized modes could be partially explained by the simple model of Waltz based on the radial average of small scale turbulence

  20. Current-drive by lower hybrid waves in the presence of energetic alpha-particles

    Energy Technology Data Exchange (ETDEWEB)

    Fisch, N.J.; Rax, J.M.

    1991-10-01

    Many experiments have now proved the effectiveness of lower hybrid waves for driving toroidal current in tokamaks. The use of these waves, however, to provide all the current in a reactor is thought to be uncertain because the waves may not penetrate the center of the more energetic reactor plasma, and, if they did, the wave power may be absorbed by alpha particles rather than by electrons. This paper explores the conditions under which lower-hybrid waves might actually drive all the current. 26 refs.

  1. Particle-driven gravity currents in non-rectangular cross section channels

    International Nuclear Information System (INIS)

    Zemach, T.

    2015-01-01

    We consider a high-Reynolds-number gravity current generated by suspension of heavier particles in fluid of density ρ i , propagating along a channel into an ambient fluid of the density ρ a . The bottom and top of the channel are at z = 0, H, and the cross section is given by the quite general −f 1 (z) ≤ y ≤ f 2 (z) for 0 ≤ z ≤ H. The flow is modeled by the one-layer shallow-water equations obtained for the time-dependent motion which is produced by release from rest of a fixed volume of mixture from a lock. We solve the problem by the finite-difference numerical code to present typical height h(x, t), velocity u(x, t), and volume fraction of particles (concentration) ϕ(x, t) profiles. The methodology is illustrated for flow in typical geometries: power-law (f(z) = z α and f(z) = (H − z) α , where α is positive constant), trapezoidal, and circle. In general, the speed of propagation of the flows driven by suspensions decreases compared with those driven by a reduced gravity in homogeneous currents. However, the details depend on the geometry of the cross section. The runout length of suspensions in channels of power-law cross sections is analytically predicted using a simplified depth-averaged “box” model. The present approach is a significant generalization of the classical gravity current problem. The classical formulation for a rectangular channel is now just a particular case, f(z) = const., in the wide domain of cross sections covered by this new model

  2. Abstract ID: 240 A probabilistic-based nuclear reaction model for Monte Carlo ion transport in particle therapy.

    Science.gov (United States)

    Maria Jose, Gonzalez Torres; Jürgen, Henniger

    2018-01-01

    In order to expand the Monte Carlo transport program AMOS to particle therapy applications, the ion module is being developed in the radiation physics group (ASP) at the TU Dresden. This module simulates the three main interactions of ions in matter for the therapy energy range: elastic scattering, inelastic collisions and nuclear reactions. The simulation of the elastic scattering is based on the Binary Collision Approximation and the inelastic collisions on the Bethe-Bloch theory. The nuclear reactions, which are the focus of the module, are implemented according to a probabilistic-based model developed in the group. The developed model uses probability density functions to sample the occurrence of a nuclear reaction given the initial energy of the projectile particle as well as the energy at which this reaction will take place. The particle is transported until the reaction energy is reached and then the nuclear reaction is simulated. This approach allows a fast evaluation of the nuclear reactions. The theory and application of the proposed model will be addressed in this presentation. The results of the simulation of a proton beam colliding with tissue will also be presented. Copyright © 2017.

  3. [Why proton therapy? And how?

    Science.gov (United States)

    Thariat, Juliette; Habrand, Jean Louis; Lesueur, Paul; Chaikh, Abdulhamid; Kammerer, Emmanuel; Lecomte, Delphine; Batalla, Alain; Balosso, Jacques; Tessonnier, Thomas

    2018-03-01

    Proton therapy is a radiotherapy, based on the use of protons, charged subatomic particles that stop at a given depth depending on their initial energy (pristine Bragg peak), avoiding any output beam, unlike the photons used in most of the other modalities of radiotherapy. Proton therapy has been used for 60 years, but has only become ubiquitous in the last decade because of recent major advances in particle accelerator technology. This article reviews the history of clinical implementation of protons, the nature of the technological advances that now allows its expansion at a lower cost. It also addresses the technical and physical specificities of proton therapy and the clinical situations for which proton therapy may be relevant but requires evidence. Different proton therapy techniques are possible. These are explained in terms of their clinical potential by explaining the current terminology (such as cyclotrons, synchrotrons or synchrocyclotrons, using superconducting magnets, fixed line or arm rotary with passive diffusion delivery or active by scanning) in basic words. The requirements associated with proton therapy are increased due to the precision of the depth dose deposit. The learning curve of proton therapy requires that clinical indications be prioritized according to their associated uncertainties (such as range uncertainties and movement in lung tumors). Many clinical indications potentially fall under proton therapy ultimately. Clinical strategies are explained in a paralleled manuscript. Copyright © 2018 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  4. Understanding the molecular target therapy and it's approved synchronous use with radiation therapy in current Indian oncology practice

    International Nuclear Information System (INIS)

    Gupta, Puneet; Dohhen, Umesh Kumar; Romana; Srivastava, Priyanka

    2012-01-01

    The molecular targeted drugs (MTD) are of two types; large and small. The large molecular targeted drugs (LMTD) cannot cross the cancer cell membrane whereas those that cross the cancer cell membrane are nicknamed small molecular target drugs (SMTD). India has availability of almost all MTD originals approved by USA Food and Drug administration. However a few LMTD like inj vectibix, inj Zevalin, Inj Bexar etc.; and SMTD like cap Tipifarnib approved for AML, are not available in India currently although approved and available in USA. The MTD may he used alone as singlet; along with chemotherapy as doublet or triplet; or along with radiation and chemotherapy combo (nicknamed chemo-radiation-bio therapy). The molecular target therapy approved by USA and/or European FDA and currently available in India and used along with radiation therapy with or without chemotherapy, indication wise are; Brain Tumor Inj Nimotuzumab (LMTD) and Inj bevacizumab (LMTD) in Glioblasoma Multiforme; for Carcinoma Head and neck Inj Cetuximab and Inj Nimotuzumab (LMTT), Tab Geftinib (SMTD). (author)

  5. Pesticides in the atmosphere: a comparison of gas-particle partitioning and particle size distribution of legacy and current-use pesticides

    Directory of Open Access Journals (Sweden)

    C. Degrendele

    2016-02-01

    Full Text Available This study presents a comparison of seasonal variation, gas-particle partitioning, and particle-phase size distribution of organochlorine pesticides (OCPs and current-use pesticides (CUPs in air. Two years (2012/2013 of weekly air samples were collected at a background site in the Czech Republic using a high-volume air sampler. To study the particle-phase size distribution, air samples were also collected at an urban and rural site in the area of Brno, Czech Republic, using a cascade impactor separating atmospheric particulates according to six size fractions. Major differences were found in the atmospheric distribution of OCPs and CUPs. The atmospheric concentrations of CUPs were driven by agricultural activities while secondary sources such as volatilization from surfaces governed the atmospheric concentrations of OCPs. Moreover, clear differences were observed in gas-particle partitioning; CUP partitioning was influenced by adsorption onto mineral surfaces while OCPs were mainly partitioning to aerosols through absorption. A predictive method for estimating the gas-particle partitioning has been derived and is proposed for polar and non-polar pesticides. Finally, while OCPs and the majority of CUPs were largely found on fine particles, four CUPs (carbendazim, isoproturon, prochloraz, and terbuthylazine had higher concentrations on coarse particles ( >  3.0 µm, which may be related to the pesticide application technique. This finding is particularly important and should be further investigated given that large particles result in lower risks from inhalation (regardless the toxicity of the pesticide and lower potential for long-range atmospheric transport.

  6. Particle filtering with path sampling and an application to a bimodal ocean current model

    International Nuclear Information System (INIS)

    Weare, Jonathan

    2009-01-01

    This paper introduces a recursive particle filtering algorithm designed to filter high dimensional systems with complicated non-linear and non-Gaussian effects. The method incorporates a parallel marginalization (PMMC) step in conjunction with the hybrid Monte Carlo (HMC) scheme to improve samples generated by standard particle filters. Parallel marginalization is an efficient Markov chain Monte Carlo (MCMC) strategy that uses lower dimensional approximate marginal distributions of the target distribution to accelerate equilibration. As a validation the algorithm is tested on a 2516 dimensional, bimodal, stochastic model motivated by the Kuroshio current that runs along the Japanese coast. The results of this test indicate that the method is an attractive alternative for problems that require the generality of a particle filter but have been inaccessible due to the limitations of standard particle filtering strategies.

  7. Ionospheric storm effects in the nighttime E region caused by neutralized ring current particles

    Directory of Open Access Journals (Sweden)

    R. Bauske

    1997-03-01

    Full Text Available During magnetic storms an anomalous increase in the ionization density of the nighttime E region is observed at low and middle latitudes. It has been suggested that this effect is caused by the precipitation of neutralized ring current particles. Here a coupled ring current decay-ionosphere model is used to confirm the validity of this explanation.

  8. [Gene Therapy for Inherited RETINAL AND OPTIC NERVE Disorders: Current Knowledge].

    Science.gov (United States)

    Ďuďáková, Ľ; Kousal, B; Kolářová, H; Hlavatá, L; Lišková, P

    The aim of this review is to provide a comprehensive summary of current gene therapy clinical trials for monogenic and optic nerve disorders.The number of genes for which gene-based therapies are being developed is growing. At the time of writing this review gene-based clinical trials have been registered for Leber congenital amaurosis 2 (LCA2), retinitis pigmentosa 38, Usher syndrome 1B, Stargardt disease, choroideremia, achromatopsia, Leber hereditary optic neuropathy (LHON) and X-linked retinoschisis. Apart from RPE65 gene therapy for LCA2 and MT-ND4 for LHON which has reached phase III, all other trials are in investigation phase I and II, i.e. testing the efficacy and safety.Because of the relatively easy accessibility of the retina and its ease of visualization which allows monitoring of efficacy, gene-based therapies for inherited retinal disorders represent a very promising treatment option. With the development of novel therapeutic approaches, the importance of establishing not only clinical but also molecular genetic diagnosis is obvious.Key words: gene therapy, monogenic retinal diseases, optic nerve atrophy, mitochondrial disease.

  9. Integrative Therapies and Pediatric Inflammatory Bowel Disease: The Current Evidence.

    Science.gov (United States)

    Misra, Sanghamitra M

    2014-08-25

    Inflammatory bowel disease (IBD) primarily describes two distinct chronic conditions with unknown etiology, ulcerative colitis (UC) and Crohn's disease (CD). UC is limited to the colon, while CD may involve any portion of the gastrointestinal tract from mouth to anus. These diseases exhibit a pattern of relapse and remission, and the disease processes are often painful and debilitating. Due to the chronic nature of IBD and the negative side effects of many of the conventional therapies, many patients and their families turn to complementary and alternative medicine (CAM) for symptom relief. This article focuses on the current available evidence behind CAM/integrative therapies for IBD.

  10. WE-FG-BRB-01: Clinical Significance of RBE Variations in Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Paganetti, H. [Massachusetts General Hospital (United States)

    2016-06-15

    The physical pattern of energy deposition and the enhanced relative biological effectiveness (RBE) of protons and carbon ions compared to photons offer unique and not fully understood or exploited opportunities to improve the efficacy of radiation therapy. Variations in RBE within a pristine or spread out Bragg peak and between particle types may be exploited to enhance cell killing in target regions without a corresponding increase in damage to normal tissue structures. In addition, the decreased sensitivity of hypoxic tumors to photon-based therapies may be partially overcome through the use of more densely ionizing radiations. These and other differences between particle and photon beams may be used to generate biologically optimized treatments that reduce normal tissue complications. In this symposium, speakers will examine the impact of the RBE of charged particles on measurable biological endpoints, treatment plan optimization, and the prediction or retrospective assessment of treatment outcomes. In particular, an AAPM task group was formed to critically examine the evidence for a spatially-variant RBE in proton therapy. Current knowledge of proton RBE variation with respect to dose, biological endpoint, and physics parameters will be reviewed. Further, the clinical relevance of these variations will be discussed. Recent work focused on improving simulations of radiation physics and biological response in proton and carbon ion therapy will also be presented. Finally, relevant biology research and areas of research needs will be highlighted, including the dependence of RBE on genetic factors including status of DNA repair pathways, the sensitivity of cancer stem-like cells to charged particles, the role of charged particles in hypoxic tumors, and the importance of fractionation effects. In addition to the physical advantages of protons and more massive ions over photons, the future application of biologically optimized treatment plans and their potential to

  11. Antiretroviral therapy: current drugs.

    Science.gov (United States)

    Pau, Alice K; George, Jomy M

    2014-09-01

    The rapid advances in drug discovery and the development of antiretroviral therapy is unprecedented in the history of modern medicine. The administration of chronic combination antiretroviral therapy targeting different stages of the human immunodeficiency virus' replicative life cycle allows for durable and maximal suppression of plasma viremia. This suppression has resulted in dramatic improvement of patient survival. This article reviews the history of antiretroviral drug development and discusses the clinical pharmacology, efficacy, and toxicities of the antiretroviral agents most commonly used in clinical practice to date. Published by Elsevier Inc.

  12. DIABETIC POLYNEUROPATHY: CURRENT APPROACHES TO DIAGNOSIS AND PATHOGENETIC THERAPY

    Directory of Open Access Journals (Sweden)

    O. S. Levin

    2014-07-01

    Full Text Available The paper considers the current views of the prevalence, clinical picture, approaches to the diagnosis and treatment of one of the most commonneurological complications of diabetes mellitus – diabetic polyneuropathy, and both its somatic and autonomous manifestations. Neuropathy ismost common in diabetic patients and its clinical forms reflect the severe course of diabetes mellitus and serve as an unfavorable prognostic signthat is associated with an approximately 5-fold increase in mortality. At the same time, the timely detection and adequate correction of the manifestations of neuropathy may substantially improve quality of life in the patients. The possibilities of pathogenetic therapy for diabetic polyneuropathy associated mainly with the use of benfotiamine and alpha-lipoic acid, as well as symptomatic therapy for its individual manifestationsare considered.

  13. DIABETIC POLYNEUROPATHY: CURRENT APPROACHES TO DIAGNOSIS AND PATHOGENETIC THERAPY

    Directory of Open Access Journals (Sweden)

    O. S. Levin

    2013-01-01

    Full Text Available The paper considers the current views of the prevalence, clinical picture, approaches to the diagnosis and treatment of one of the most commonneurological complications of diabetes mellitus – diabetic polyneuropathy, and both its somatic and autonomous manifestations. Neuropathy ismost common in diabetic patients and its clinical forms reflect the severe course of diabetes mellitus and serve as an unfavorable prognostic signthat is associated with an approximately 5-fold increase in mortality. At the same time, the timely detection and adequate correction of the manifestations of neuropathy may substantially improve quality of life in the patients. The possibilities of pathogenetic therapy for diabetic polyneuropathy associated mainly with the use of benfotiamine and alpha-lipoic acid, as well as symptomatic therapy for its individual manifestationsare considered.

  14. Big Bang Day: 5 Particles - 1. The Electron

    CERN Multimedia

    Simon Singh

    2008-01-01

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 1. The Electron Just over a century ago, British physicist J.J. Thompson experimenting with electric currents and charged particles inside empty glass tubes, showed that atoms are divisible into indivisible elementary particles. But how could atoms be built up of these so called "corpuscles"? An exciting 30 year race ensued, to grasp the planetary model of the atom with its orbiting electrons, and the view inside the atom was born. Whilst the number of electrons around the nucleus of an atom determines their the chemistry of all elements, the power of electrons themselves have been harnessed for everyday use: electron beams for welding,cathode ray tubes and radiation therapy.

  15. Hydrodynamically enforced entropic current of Brownian particles with a transverse gravitational force

    Science.gov (United States)

    Li, Feng-guo; Ai, Bao-quan

    2014-04-01

    Transport of overdamped Brownian particles in a periodic hydrodynamical channel is investigated in the presence of an asymmetric unbiased force, a transverse gravitational force, and a pressure-driven flow. With the help of the generalized Fick-Jacobs approach, we obtain an analytical expression for the directed current and the generalized potential of mean force. It is found that, when the transverse gravitational force is larger than a certain value, the current is suppressed. Moreover, when the temporal asymmetry parameter of the unbiased force is negative, the current is always negative. However, when the temporal asymmetry parameter is positive, the transverse gravitational force and the pressure drop not only determine the direction of the current but also affect its amplitude. In particular, the competition between the asymmetric unbiased force and the pressure drop can result in multiple current reversals.

  16. Hydrodynamically enforced entropic current of Brownian particles with a transverse gravitational force

    International Nuclear Information System (INIS)

    Li, Feng-guo; Ai, Bao-quan

    2014-01-01

    Transport of overdamped Brownian particles in a periodic hydrodynamical channel is investigated in the presence of an asymmetric unbiased force, a transverse gravitational force, and a pressure-driven flow. With the help of the generalized Fick–Jacobs approach, we obtain an analytical expression for the directed current and the generalized potential of mean force. It is found that, when the transverse gravitational force is larger than a certain value, the current is suppressed. Moreover, when the temporal asymmetry parameter of the unbiased force is negative, the current is always negative. However, when the temporal asymmetry parameter is positive, the transverse gravitational force and the pressure drop not only determine the direction of the current but also affect its amplitude. In particular, the competition between the asymmetric unbiased force and the pressure drop can result in multiple current reversals. (paper)

  17. Recent Developments in Hadron Therapy Accelerators

    CERN Document Server

    Klein, Hans-Udo

    2005-01-01

    In the last decade interest and investments in Hadron Therapy Systems have been steadily increasing resulting in a substantial number of projects currently under construction or entering detailed planning stage. Main routes are pure proton therapy systems and Carbon ion therapy systems which can also run on protons. While the basic accelerator concept for hadron therapy systems is well established there are many considerations on the type and layout of the particle delivery system including the accelerator, an energy selection system, either a fixed beam set up or a rotating gantry, the "nozzle" containing either a scattering or a scanning system, the patient positioner, and all associated control systems. The requirements for the accelerator include most stable beams to match the demand of modern fast scanning systems as well as fast switching between treatment rooms. Currently an ion/proton synchrotron, a pure proton synchrotron, a normalconducting proton cyclotron and a newly developed compact superconduct...

  18. TU-G-BRB-05: Panel Discussion: Clinical Trials in Proton and Ion Therapy - Are We Ready?

    International Nuclear Information System (INIS)

    Schulte, R.

    2015-01-01

    Proton therapy, in particular, and ion therapy, just beginning, are becoming an increasing focus of attention in clinical radiation oncology and medical physics. Both modalities have been criticized of lacking convincing evidence from randomized trials proving their efficacy, justifying the higher costs involved in these therapies. This session will provide an overview of the current status of clinical trials in proton therapy, including recent developments in ion therapy. As alluded to in the introductory talk by Dr. Schulte, opinions are diverging widely as to the usefulness and need for clinical trials in particle therapy and the challenge of equipoise. The lectures will highlight some of the challenges that surround clinical trials in particle therapy. One, presented by Dr. Choy from UT Southwestern, is that new technology and even different types of particles such as helium and carbon ions are introduced into this environment, increasing the phase space of clinical variables. The other is the issue of medical physics quality assurance with physical phantoms, presented by Mrs. Taylor from IROC Houston, which is more challenging because 3D and 4D image guidance and active delivery techniques are in relatively early stages of development. The role of digital phantoms in developing clinical treatment planning protocols and as a QA tool will also be highlighted by Dr. Lee from NCI. The symposium will be rounded off by a panel discussion among the Symposium speakers, arguing pro or con the need and readiness for clinical trials in proton and ion therapy. Learning Objectives: To get an update on the current status of clinical trials allowing or mandating proton therapy. Learn about the status of planned clinical trials in the U.S. and worldwide involving ion therapy. Discuss the challenges in the design and QA of clinical trials in particle therapy. Learn about existing and future physical and computational anthropomorphic phantoms for charged particle clinical trial

  19. Effects of particle migration on the features of their transport by tidal currents in a region of freshwater influence

    Science.gov (United States)

    Korotenko, K. A.; Sentchev, A. V.

    2008-10-01

    Using a combined model that couples a three-dimensional ocean circulation model, a model for tidal currents, and a model for particle transport, the structure of the velocity field of the tidal current and the transport of particles migrating over the vertical were studied in the zone of the influence of the riverine runoff in the eastern part of the English Channel. It was found that the interaction between the tidal current and the baroclinic flow formed by the riverine runoff off the northeastern coast of France generates a steady-state intensive (˜0.3 m/s) residual current in the zone of the effect of the riverine runoff. In order to assess the influence of different types of particle migration (which simulate ichthyoplankton) on the processes of their transport in the region under consideration, we performed numerical experiments with particle clusters, for which parameterization of their migration was implemented on the basis of the field observations over the proper vertical movements of different types of ichthyoplankton. The experiments showed that the distribution of the fields of the particle concentrations and the velocities of their movements depend not only on the background hydrophysical conditions but also on the character of the vertical migration of the particles. In this paper, a comparison between the results of the modeling and those of the field observations in the region under consideration are presented.

  20. Treatment of Hypogonadism: Current and Future Therapies [version 1; referees: 2 approved

    OpenAIRE

    Arthi Thirumalai; Kathryn E. Berkseth; John K. Amory

    2017-01-01

    The treatment of hypogonadism in men is of great interest to both patients and providers. There are a number of testosterone formulations currently available and several additional formulations under development. In addition, there are some lesser-used alternative therapies for the management of male hypogonadism, which may have advantages for certain patient groups. The future of hypogonadism therapy may lie in the development of selective androgen receptor modulators that allow the benefits...

  1. Current and emerging treatment options for nasopharyngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Spratt DE

    2012-10-01

    Full Text Available Daniel E Spratt, Nancy LeeDepartment of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, USAAbstract: In this article, we focus on the current and emerging treatments in nasopharyngeal cancer (NPC. A detailed evolution of the current standard of care, and new techniques and treatment options will be reviewed. Intergroup 0099 established the role for chemoradiotherapy (chemo-RT in the treatment of nasopharyngeal carcinoma. Multiple randomized Phase III trials have shown the benefit of chemo-RT; however, none of these studies utilized modern radiotherapy (RT techniques of intensity-modulated radiation therapy (IMRT. IMRT has the ability to deliver high doses of radiation to the target structures while sparing adjacent bystander healthy tissues, and has now become the preferred RT treatment modality. Chemotherapy also has had a shifting paradigm of induction and/or adjuvant chemotherapy combined with RT alone, to the investigation with concurrent chemo-RT. New treatment options including targeted monoclonal antibodies and small molecule tyrosine kinase inhibitors are being studied in NPC. These new biologic therapies have promising in vitro activity for NPC, and emerging clinical studies are beginning to define their role. RT continues to expand its capabilities, and since IMRT and particle therapy, specifically intensity-modulated proton therapy (IMPT, has reports of impressive dosimetric efficacy in-silica. Adaptive RT is attempting to reduce toxicity while maintaining treatment efficacy, and the clinical results are still in their youth. Lastly, Epstein–Barr virus (EBV DNA has recently been studied for prediction of tumor response and its use as a biomarker is increasingly promising to aid in early detection as well as supplementing the current staging system. RT with or without chemotherapy remains the standard of care for nasopharyngeal carcinoma. Advances in RT technique, timing of chemotherapy, biologically

  2. Inflammation: A novel target of current therapies for hepatic encephalopathy in liver cirrhosis.

    Science.gov (United States)

    Luo, Ming; Guo, Jian-Yang; Cao, Wu-Kui

    2015-11-07

    Hepatic encephalopathy (HE) is a severe neuropsychiatric syndrome that most commonly occurs in decompensated liver cirrhosis and incorporates a spectrum of manifestations that ranges from mild cognitive impairment to coma. Although the etiology of HE is not completely understood, it is believed that multiple underlying mechanisms are involved in the pathogenesis of HE, and one of the main factors is thought to be ammonia; however, the ammonia hypothesis in the pathogenesis of HE is incomplete. Recently, it has been increasingly demonstrated that inflammation, including systemic inflammation, neuroinflammation and endotoxemia, acts in concert with ammonia in the pathogenesis of HE in cirrhotic patients. Meanwhile, a good number of studies have found that current therapies for HE, such as lactulose, rifaximin, probiotics and the molecular adsorbent recirculating system, could inhibit different types of inflammation, thereby improving the neuropsychiatric manifestations and preventing the progression of HE in cirrhotic patients. The anti-inflammatory effects of these current therapies provide a novel therapeutic approach for cirrhotic patients with HE. The purpose of this review is to describe the inflammatory mechanisms behind the etiology of HE in cirrhosis and discuss the current therapies that target the inflammatory pathogenesis of HE.

  3. Post-arc current simulation based on measurement in vacuum circuit breaker with a one-dimensional particle-in-cell model

    Science.gov (United States)

    Jia, Shenli; Mo, Yongpeng; Shi, Zongqian; Li, Junliang; Wang, Lijun

    2017-10-01

    The post-arc dielectric recovery process has a decisive effect on the current interruption performance in a vacuum circuit breaker. The dissipation of residual plasma at the moment of current zero under the transient recovery voltage, which is the first stage of the post-arc dielectric recovery process and forms the post-arc current, has attracted many concerns. A one-dimensional particle-in-cell model is developed to simulate the measured post-arc current in the vacuum circuit breaker in this paper. At first, the parameters of the residual plasma are estimated roughly by the waveform of the post-arc current which is taken from measurements. After that, different components of the post-arc current, which are formed by the movement of charged particles in the residual plasma, are discussed. Then, the residual plasma density is adjusted according to the proportion of electrons and ions absorbed by the post-arc anode derived from the particle-in-cell simulation. After this adjustment, the post-arc current waveform obtained from the simulation is closer to that obtained from measurements.

  4. Niacin extended-release/simvastatin combination therapy produces larger favorable changes in high-density lipoprotein particles than atorvastatin monotherapy

    Directory of Open Access Journals (Sweden)

    Toth PP

    2012-01-01

    Full Text Available Peter P Toth1, Kamlesh M Thakker2, Ping Jiang2, Robert J Padley21University of Illinois College of Medicine, Peoria, and CGH Medical Center, Sterling, 2Abbott, Abbott Park, IL, USABackground: The purpose of this research was to compare the effects of niacin extended-release in combination with simvastatin (NER/S versus atorvastatin monotherapy on high-density lipoprotein (HDL particle number and size in patients with hyperlipidemia or dyslipidemia from the SUPREME study.Methods: This was a post hoc analysis of patients (n = 137 who completed the SUPREME study and who had lipid particle number and size measurements at both baseline and at week 12 by nuclear magnetic resonance spectroscopy. Following ≥4 weeks without lipid-modifying therapy (washout period, the patients received NER/S 1000/40 mg/day for 4 weeks followed by NER/S 2000/40 mg/day for 8 weeks, or atorvastatin 40 mg/day for 12 weeks. Median percent changes in HDL particle number and size from baseline to week 12 were compared between the NER/S and atorvastatin treatment groups using the Wilcoxon rank-sum test. Distribution of HDL particle subclasses at week 12 was compared between the treatment groups using the Cochran–Mantel–Haenszel test.Results: Treatment with NER/S resulted in a significantly greater percent reduction in small HDL particle number at week 12 compared with atorvastatin monotherapy (-1.8% versus 4.2%, P = 0.014, and a numerically greater percent increase in large HDL particle number (102.4% versus 39.2%, P = 0.078 compared with atorvastatin monotherapy. A significantly greater percent increase in HDL particle size from baseline at week 12 was observed with NER/S compared with atorvastatin (6.0% versus 1.3%, P < 0.001. NER/S treatment also resulted in a significant shift in HDL particle size from small and medium at baseline to large at week 12 (P < 0.0001.Conclusion: Treatment with NER/S resulted in larger favorable changes in number and size of HDL particle

  5. Eddy Current, Magnetic Particle and Hardness Testing, Aviation Quality Control (Advanced): 9227.04.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This unit of instruction includes the principles of eddy current, magnetic particle and hardness testing; standards used for analyzing test results; techniques of operating equipment; interpretation of indications; advantages and limitations of these methods of testing; care and calibration of equipment; and safety and work precautions. Motion…

  6. Review of Current Immunologic Therapies for Hidradenitis Suppurativa

    Directory of Open Access Journals (Sweden)

    Victoria K. Shanmugam

    2017-01-01

    Full Text Available Hidradenitis suppurativa (HS is a chronic, recurrent, inflammatory disease of apocrine gland-bearing skin which affects approximately 1–4% of the population. The disease is more common in women and patients of African American descent and approximately one-third of patients report a family history. Obesity and smoking are known risk factors, but associations with other immune disorders, especially inflammatory bowel disease, are also recognized. The pathogenesis of HS is poorly understood and host innate or adaptive immune response, defective keratinocyte function, and the microbial environment in the hair follicle and apocrine gland have all been postulated to play a role in disease activity. While surgical interventions can be helpful to reduce disease burden, there is a high recurrence rate. Increasingly, data supports targeted immune therapy for HS, and longitudinal studies suggest benefit from these agents, both when used alone and as an adjunct to surgical treatments. The purpose of this review is to outline the current data supporting use of targeted immune therapy in HS management.

  7. Current of interacting particles inside a channel of exponential cavities: Application of a modified Fick-Jacobs equation.

    Science.gov (United States)

    Suárez, G; Hoyuelos, M; Mártin, H

    2016-06-01

    Recently a nonlinear Fick-Jacobs equation has been proposed for the description of transport and diffusion of particles interacting through a hard-core potential in tubes or channels of varying cross section [Suárez et al., Phys. Rev. E 91, 012135 (2015)]PLEEE81539-375510.1103/PhysRevE.91.012135. Here we focus on the analysis of the current and mobility when the channel is composed by a chain of asymmetric cavities and a force is applied in one or the opposite direction, for both interacting and noninteracting particles, and compare analytical and Monte Carlo simulation results. We consider a cavity with a shape given by exponential functions; the linear Fick-Jacobs equation for noninteracting particles can be exactly solved in this case. The results of the current difference (when a force is applied in opposite directions) are more accurate for the modified Fick-Jacobs equation for particles with hard-core interaction than for noninteracting ones.

  8. Treatment of Hypogonadism: Current and Future Therapies [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Arthi Thirumalai

    2017-01-01

    Full Text Available The treatment of hypogonadism in men is of great interest to both patients and providers. There are a number of testosterone formulations currently available and several additional formulations under development. In addition, there are some lesser-used alternative therapies for the management of male hypogonadism, which may have advantages for certain patient groups. The future of hypogonadism therapy may lie in the development of selective androgen receptor modulators that allow the benefits of androgens whilst minimizing unwanted side effects.

  9. Superconducting quantum interference monitor of charged particle beam current

    International Nuclear Information System (INIS)

    Gertsev, K.F.; Mikheev, M.S.

    1981-01-01

    Description and test results of the monitor of charged particle beam current on the base of the high-frequency superconducting quantum interference detector with lead slotted shield are presented. The toroidal superconducting coil, which covers the measured beam has 16 turns wound by the lead belt of 7 mm width with 0.5 mm gaps between the turns. A superconducting low-coupling monitor having two holes and point oxidated niobium contact has been used in the mode of quanta counting of magnetic flux. The lead point shield was 2 mm thick and it had 30 mm aperture. The coefficient of background shielding within 0-200 Hz frequency range constituted more than 10 8 . The threshold current resolution of the monitor had the value less than 01 μA √Hz. The suggested monitor requires helium cooling. The proposed design of the monitor is applicable for mounting on the vacuum chamber when it is surrounded by helium conductor. In other cases mounting of low-powerful autonomic system or cryostat of helium storage up to several weeks is possible [ru

  10. A Compton Imaging Prototype for Range Verification in Particle Therapy

    International Nuclear Information System (INIS)

    Golnik, C.; Hueso Gonzalez, F.; Kormoll, T.; Pausch, G.; Rohling, H.; Fiedler, F.; Heidel, K.; Schoene, S.; Sobiella, M.; Wagner, A.; Enghardt, W.

    2013-06-01

    During the 2012 AAPM Annual Meeting 33 percent of the delegates considered the range uncertainty in proton therapy as the main obstacle of becoming a mainstream treatment modality. Utilizing prompt gamma emission, a side product of particle tissue interaction, opens the possibility of in-beam dose verification, due to the direct correlation between prompt gamma emission and particle dose deposition. Compton imaging has proven to be a technique to measure three dimensional gamma emission profiles and opens the possibility of adaptive dose monitoring and treatment correction. We successfully built a Compton Imaging prototype, characterized the detectors and showed the imaging capability of the complete device. The major advantage of CZT detectors is the high energy resolution and the high spatial resolution, which are key parameters for Compton Imaging. However, our measurements at the proton beam accelerator facility KVI in Groningen (Netherlands) disclosed a spectrum of prompt gamma rays under proton irradiation up to 4.4 MeV. As CZT detectors of 5 mm thickness do not efficiently absorb photons in such energy ranges, another absorption, based on a Siemens LSO block detector is added behind CZT1. This setup provides a higher absorption probability of high energy photons. With a size of 5.2 cm x 5.2 cm x 2.0 cm, this scintillation detector further increases the angular acceptance of Compton scattered photons due to geometric size. (authors)

  11. Chemical Speciation of Sulfur in Marine Cloud Droplets and Particles: Analysis of Individual Particles from Marine Boundary Layer over the California Current

    Energy Technology Data Exchange (ETDEWEB)

    William R. Wiley Environmental Sciences Laboratory, Pacific Northwest National Laboratory; Gilles, Mary K; Hopkins, Rebecca J.; Desyaterik, Yury; Tivanski, Alexei V.; Zaveri, Rahul A.; Berkowitz, Carl M.; Tyliszczak, Tolek; Gilles, Mary K.; Laskin, Alexander

    2008-03-12

    Detailed chemical speciation of the dry residue particles from individual cloud droplets and interstitial aerosol collected during the Marine Stratus Experiment (MASE) was performed using a combination of complementary microanalysis techniques. Techniques include computer controlled scanning electron microscopy with energy dispersed analysis of X-rays (CCSEM/EDX), time-of-flight secondary ionization mass spectrometry (TOF-SIMS), and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Samples were collected at the ground site located in Point Reyes National Seashore, approximately 1 km from the coast. This manuscript focuses on the analysis of individual particles sampled from air masses that originated over the open ocean and then passed through the area of the California current located along the northern California coast. Based on composition, morphology, and chemical bonding information, two externally mixed, distinct classes of sulfur containing particles were identified: chemically modified (aged) sea salt particles and secondary formed sulfate particles. The results indicate substantial heterogeneous replacement of chloride by methanesulfonate (CH3SO3-) and non-sea salt sulfate (nss-SO42-) in sea-salt particles with characteristic ratios of nss-S/Na>0.10 and CH3SO3-/nss-SO42->0.6.

  12. Autoradiography Imaging in Targeted Alpha Therapy with Timepix Detector

    Directory of Open Access Journals (Sweden)

    Ruqaya AL Darwish

    2015-01-01

    Full Text Available There is a lack of data related to activity uptake and particle track distribution in targeted alpha therapy. These data are required to estimate the absorbed dose on a cellular level as alpha particles have a limited range and traverse only a few cells. Tracking of individual alpha particles is possible using the Timepix semiconductor radiation detector. We investigated the feasibility of imaging alpha particle emissions in tumour sections from mice treated with Thorium-227 (using APOMAB, with and without prior chemotherapy and Timepix detector. Additionally, the sensitivity of the Timepix detector to monitor variations in tumour uptake based on the necrotic tissue volume was also studied. Compartmental analysis model was used, based on the obtained imaging data, to assess the Th-227 uptake. Results show that alpha particle, photon, electron, and muon tracks were detected and resolved by Timepix detector. The current study demonstrated that individual alpha particle emissions, resulting from targeted alpha therapy, can be visualised and quantified using Timepix detector. Furthermore, the variations in the uptake based on the tumour necrotic volume have been observed with four times higher uptake for tumours pretreated with chemotherapy than for those without chemotherapy.

  13. Experimental investigation of irregular motion impact on 4D PET-based particle therapy monitoring

    International Nuclear Information System (INIS)

    Tian, Y; Stützer, K; Enghardt, W; Priegnitz, M; Helmbrecht, S; Fiedler, F; Bert, C

    2016-01-01

    Particle therapy positron emission tomography (PT-PET) is an in vivo and non-invasive imaging technique to monitor treatment delivery in particle therapy. The inevitable patient respiratory motion during irradiation causes artefacts and inaccurate activity distribution in PET images. Four-dimensional (4D) maximum likelihood expectation maximisation (4D MLEM) allows for a compensation of these effects, but has up to now been restricted to regular motion for PT-PET investigations. However, intra-fractional motion during treatment might differ from that during acquisition of the 4D-planning CT (e.g. amplitude variation, baseline drift) and therefore might induce inaccurate 4D PET reconstruction results. This study investigates the impact of different irregular analytical one-dimensional (1D) motion patterns on PT-PET imaging by means of experiments with a radioactive source and irradiated moving phantoms. Three sorting methods, namely phase sorting, equal amplitude sorting and event-based amplitude sorting, were applied to manage the PET list-mode data. The influence of these sorting methods on the motion compensating algorithm has been analysed. The event-based amplitude sorting showed a superior performance and it is applicable for irregular motions with  ⩽4 mm amplitude elongation and drift. For motion with 10 mm baseline drift, the normalised root mean square error was as high as 10.5% and a 10 mm range deviation was observed. (note)

  14. Experimental investigation of irregular motion impact on 4D PET-based particle therapy monitoring

    Science.gov (United States)

    Tian, Y.; Stützer, K.; Enghardt, W.; Priegnitz, M.; Helmbrecht, S.; Bert, C.; Fiedler, F.

    2016-01-01

    Particle therapy positron emission tomography (PT-PET) is an in vivo and non-invasive imaging technique to monitor treatment delivery in particle therapy. The inevitable patient respiratory motion during irradiation causes artefacts and inaccurate activity distribution in PET images. Four-dimensional (4D) maximum likelihood expectation maximisation (4D MLEM) allows for a compensation of these effects, but has up to now been restricted to regular motion for PT-PET investigations. However, intra-fractional motion during treatment might differ from that during acquisition of the 4D-planning CT (e.g. amplitude variation, baseline drift) and therefore might induce inaccurate 4D PET reconstruction results. This study investigates the impact of different irregular analytical one-dimensional (1D) motion patterns on PT-PET imaging by means of experiments with a radioactive source and irradiated moving phantoms. Three sorting methods, namely phase sorting, equal amplitude sorting and event-based amplitude sorting, were applied to manage the PET list-mode data. The influence of these sorting methods on the motion compensating algorithm has been analysed. The event-based amplitude sorting showed a superior performance and it is applicable for irregular motions with  ⩽4 mm amplitude elongation and drift. For motion with 10 mm baseline drift, the normalised root mean square error was as high as 10.5% and a 10 mm range deviation was observed.

  15. Vascular Complications and Diabetes: Current Therapies and Future Challenges

    Directory of Open Access Journals (Sweden)

    Abbott L. Willard

    2012-01-01

    Full Text Available Diabetic retinal complications, including macular edema (DME and proliferative diabetic retinopathy (PDR, are the leading cause of new cases of blindness among adults aged 20–74. Chronic hyperglycemia, considered the underlying cause of diabetic retinopathy, is thought to act first through violation of the pericyte-endothelial coupling. Disruption of microvascular integrity leads to pathologic consequences including hypoxia-induced imbalance in vascular endothelial growth factor (VEGF signaling. Several anti-VEGF medications are in clinical trials for use in arresting retinal angiogenesis arising from DME and PDR. Although a review of current clinical trials shows promising results, the lack of large prospective studies, head-to-head therapeutic comparisons, and potential long-term and systemic adverse events give cause for optimistic caution. Alternative therapies including targeting pathogenic specific angiogenesis and mural-cell-based therapeutics may offer innovative solutions for currently intractable clinical problems. This paper describes the mechanisms behind diabetic retinal complications, current research supporting anti-VEGF medications, and future therapeutic directions.

  16. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy.

    Science.gov (United States)

    Ganesan, Palanivel; Choi, Dong-Kug

    2016-01-01

    Phytocompounds have been used in cosmeceuticals for decades and have shown potential for beauty applications, including sunscreen, moisturizing and antiaging, and skin-based therapy. The major concerns in the usage of phyto-based cosmeceuticals are lower penetration and high compound instability of various cosmetic products for sustained and enhanced compound delivery to the beauty-based skin therapy. To overcome these disadvantages, nanosized delivery technologies are currently in use for sustained and enhanced delivery of phyto-derived bioactive compounds in cosmeceutical sectors and products. Nanosizing of phytocompounds enhances the aseptic feel in various cosmeceutical products with sustained delivery and enhanced skin protecting activities. Solid lipid nanoparticles, transfersomes, ethosomes, nanostructured lipid carriers, fullerenes, and carbon nanotubes are some of the emerging nanotechnologies currently in use for their enhanced delivery of phytocompounds in skin care. Aloe vera, curcumin, resveratrol, quercetin, vitamins C and E, genistein, and green tea catechins were successfully nanosized using various delivery technologies and incorporated in various gels, lotions, and creams for skin, lip, and hair care for their sustained effects. However, certain delivery agents such as carbon nanotubes need to be studied for their roles in toxicity. This review broadly focuses on the usage of phytocompounds in various cosmeceutical products, nanodelivery technologies used in the delivery of phytocompounds to various cosmeceuticals, and various nanosized phytocompounds used in the development of novel nanocosmeceuticals to enhance skin-based therapy.

  17. Current Perspectives on Therapy Dog Welfare in Animal-Assisted Interventions.

    Science.gov (United States)

    Glenk, Lisa Maria

    2017-02-01

    Research into the effects of animal-assisted interventions (AAIs) has primarily addressed human health outcomes. In contrast, only few publications deal with the therapy dog experience of AAIs. This paper provides an overview on potential welfare threats that therapy dogs may encounter and presents the results of a review of available studies on welfare indicators for therapy dogs during AAIs. Previous investigations used physiological and behavioral welfare indicators and dog handler surveys to identify work-related stress. Research outcomes are discussed in the light of strengths and weaknesses of the methods used. Study results suggest that frequency and duration of AAI sessions, novelty of the environment, controllability, age and familiarity of recipients modulate animal welfare indicators. However, this review reveals that currently, clear conclusions on how the well-being of dogs is influenced by the performance in AAIs are lacking due to the heterogeneity of programs, recipient and session characteristics, small dog sample sizes and methodological limitations. This paper further aimed to identify unresolved difficulties in previous research to pave the way for future investigations supporting the applicability of scientific findings in practice.

  18. Embolization therapy of uterine fibroids by using pingyangmycin lipiodol emulsion or polyvinyl alcohol particles: a clinical comparative study

    International Nuclear Information System (INIS)

    Zhang Dazhong; Yin Jianlin; Liu Hairi; Zhang Fuqiang; Huang Hai; Gu Youmei

    2010-01-01

    Objective: To evaluate the efficacy and safety of embolization of uterine fibroids by using pingyangmycin lipiodol emulsion or polyvinyl alcohol particles as embolismic materials. Methods: Seventy-three patients with uterine fibroids were divided into two groups. Patients in group A (29 cases) were treated with pingyangmycin lipiodol emulsion as embolismic materials, while patients in group B (44 cases) with polyvinyl alcohol particles (with a diameter of 300-700 μm) as embolismic materials. Embolization therapy of uterine fibroids was performed in all patients. The uterus volume, the size of uterine fibroid and sex hormone level both before and after the treatment were estimated and the results were compared between two groups. The occurrence of complications was observed. Results: The technical success of catheterization and embolization was 100% in both groups. After the therapy,both the uterus volume and the uterine fibroid size decreased significantly, but no significant difference in the size reduction existed between the two groups (P>0.05). The clinical symptoms showed a marked improvement in all patients, while the sex hormone level showed no obvious changes. No serious complications occurred. Conclusion: In treating uterine fibroids with embolization technique, both pingyangmycin lipiodol emulsion and polyvinyl alcohol particles are safe and effective embolismic materials. However, use of polyvinyl alcohol particles may be safer than pingyangmycin, as pingyangmycin is a kind of chemotherapeutic drugs, which might potentially cause some short-term or long-term complications. (authors)

  19. Particle multiplicity in jets and subjets with jet axis from color current

    International Nuclear Information System (INIS)

    Ochs, Wolfgang; Ramos, Redamy Perez

    2008-01-01

    We study the particle multiplicity in a jet or subjet as derived from an energy-multiplicity 2-particle correlation. This definition avoids the notion of a globally fixed jet axis and allows for the study of smaller jet cone openings in a more stable way. The results are sensitive to the mean color current A 0 in the jet from primary parton A 0 , which takes into account intermediate partonic processes in the subjet production where C F A 0 c at high energies. We generalize previous calculations in the leading logarithmic approximation (LLA). The size of the effects related to this jet axis definition is computed for multiplicities in subjets with different opening angles and energies by including contributions from the modified LLA and next-to-modified LLA to the leading order QCD results.

  20. Proposed parameters for a circular particle accelerator for proton beam therapy obtained by genetic algorithm

    International Nuclear Information System (INIS)

    Campos, Gustavo L.; Campos, Tarcísio P.R.

    2017-01-01

    This paper brings to light optimized proposal for a circular particle accelerator for proton beam therapy purposes (named as ACPT). The methodology applied is based on computational metaheuristics based on genetic algorithms (GA) were used to obtain optimized parameters of the equipment. Some fundamental concepts in the metaheuristics developed in Matlab® software will be presented. Four parameters were considered for the proposed modeling for the equipment, being: potential difference, magnetic field, length and radius of the resonant cavity. As result, this article showed optimized parameters for two ACPT, one of them used for ocular radiation therapy, as well some parameters that will allow teletherapy, called in order ACPT - 65 and ACPT - 250, obtained through metaheuristics based in GA. (author)

  1. Proposed parameters for a circular particle accelerator for proton beam therapy obtained by genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Gustavo L.; Campos, Tarcísio P.R., E-mail: gustavo.lobato@ifmg.edu.br, E-mail: tprcampos@pq.cnpq.br, E-mail: gustavo.lobato@ifmg.edu.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    This paper brings to light optimized proposal for a circular particle accelerator for proton beam therapy purposes (named as ACPT). The methodology applied is based on computational metaheuristics based on genetic algorithms (GA) were used to obtain optimized parameters of the equipment. Some fundamental concepts in the metaheuristics developed in Matlab® software will be presented. Four parameters were considered for the proposed modeling for the equipment, being: potential difference, magnetic field, length and radius of the resonant cavity. As result, this article showed optimized parameters for two ACPT, one of them used for ocular radiation therapy, as well some parameters that will allow teletherapy, called in order ACPT - 65 and ACPT - 250, obtained through metaheuristics based in GA. (author)

  2. Particle Therapy Using Protons or Carbon Ions for Unresectable or Incompletely Resected Bone and Soft Tissue Sarcomas of the Pelvis

    Energy Technology Data Exchange (ETDEWEB)

    Demizu, Yusuke, E-mail: y_demizu@nifty.com [Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Hyogo (Japan); Jin, Dongcun; Sulaiman, Nor Shazrina; Nagano, Fumiko; Terashima, Kazuki; Tokumaru, Sunao [Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Hyogo (Japan); Akagi, Takashi [Department of Radiation Physics, Hyogo Ion Beam Medical Center, Tatsuno, Hyogo (Japan); Fujii, Osamu [Department of Radiation Oncology, Hakodate Goryokaku Hospital, Hakodate, Hokkaido (Japan); Daimon, Takashi [Department of Biostatistics, Hyogo College of Medicine, Nishinomiya, Hyogo (Japan); Sasaki, Ryohei [Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Fuwa, Nobukazu [Department of Radiation Oncology, Ise Red Cross Hospital, Ise, Mie (Japan); Okimoto, Tomoaki [Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Hyogo (Japan)

    2017-06-01

    Purpose: To retrospectively analyze the treatment outcomes of particle therapy using protons or carbon ions for unresectable or incompletely resected bone and soft tissue sarcomas (BSTSs) of the pelvis. Methods and Materials: From May 2005 to December 2014, 91 patients with nonmetastatic histologically proven unresectable or incompletely resected pelvic BSTSs underwent particle therapy with curative intent. The particle therapy used protons (52 patients) or carbon ions (39 patients). All patients received a dose of 70.4 Gy (relative biologic effectiveness) in 32 fractions (55 patients) or 16 fractions (36 patients). Results: The median patient age was 67 years (range 18-87). The median planning target volume (PTV) was 455 cm{sup 3} (range 108-1984). The histologic type was chordoma in 53 patients, chondrosarcoma in 14, osteosarcoma in 10, malignant fibrous histiocytoma/undifferentiated pleomorphic sarcoma in 5, and other in 9 patients. Of the 91 patients, 82 had a primary tumor and 9 a recurrent tumor. The median follow-up period was 32 months (range 3-112). The 3-year rate of overall survival (OS), progression-free survival (PFS), and local control was 83%, 72%, and 92%, respectively. A Cox proportional hazards model revealed that chordoma histologic features and a PTV of ≤500 cm{sup 3} were significantly associated with better OS, and a primary tumor and PTV of ≤500 cm{sup 3} were significantly associated with better PFS. Ion type and number of fractions were not significantly associated with OS, PFS, or local control. Late grade ≥3 toxicities were observed in 23 patients. Compared with the 32-fraction protocol, the 16-fraction protocol was associated with significantly more frequent late grade ≥3 toxicities (18 of 36 vs 5 of 55; P<.001). Conclusions: Particle therapy using protons or carbon ions was effective for unresectable or incompletely resected pelvic BSTS, and the 32-fraction protocol was effective and relatively less toxic. Nevertheless, a

  3. Are small-scale field-aligned currents and magneto sheath-like particle precipitation signatures of the same low-altitude cusp?

    DEFF Research Database (Denmark)

    Watermann, J.; Stauning, P.; Luhr, H.

    2009-01-01

    We examined some 75 observations from the low-altitude Earth orbiting DMSP, Orsted and CHAMP satellites which were taken in the region of the nominal cusp. Our objective was to determine whether the actually observed cusp locations as inferred from magnetosheath-like particle precipitation...... ("particle cusp") and intense small-scale magnetic field variations ("current cusp"), respectively, were identical and were consistent with the statistically expected latitude of the cusp derived from a huge number of charged particle spectrograms ("statistical cusp"). The geocentric coordinates...... of the satellites were converted into AACGM coordinates, and the geomagnetic latitude of the cusp boundaries (as indicated by precipitating particles and small-scale field-aligned currents) set in relation to the IMF-B-z dependent latitude of the equatorward boundary of the statistical cusp. We find...

  4. Current status of personnel monitoring for beta particles

    International Nuclear Information System (INIS)

    Plato, P.; Miklos, J.

    1983-01-01

    From 1975 to 1982, a concerted effort was made to develop a uniform procedure to test the performance of personnel dosimetry processors throughout the United States. The heart of this effort is a standard developed by the Health Physics Society Standards Committee (HPSSC) and adopted by the American National Standards Institute (ANSI) as ANSI N13.11-1982. The US Nuclear Regulatory Commission (NRC) sponsored a five year pilot study of this Standard which included three trial tests in which approximately 80 dosimetry processors participated. The Standard has made several contributions to the art and science of personnel monitoring for beta particles. First, the Standard defines test categories for beta particles and mixtures of beta particles plus gamma rays in addition to test categories for other types of radiation. Second, it defines a reference beta-particle source for test purposes. Third, it provides test criteria which are used to determine acceptable performance by a processor. The pilot study provided information on the state of the art of personnel monitoring within the bounds of the Standard. In addition, since the pilot study was advertised as the forerunner of a future mandatory certification program for dosimetry processors throughout the United States, considerable attention was given to personnel monitoring in general, and beta particles in particular. This paper discusses specific contibutions of the HPSSC/ANSI Standard and the pilot study to beta-particle dosimetry. The results of the three tests of the pilot study are summarized. The paper also amplifies on the needs to define the monitoring particle sources clearly

  5. New Molecular Targets of Anticancer Therapy - Current Status and Perspectives.

    Science.gov (United States)

    Zajac, Marianna; Muszalska, Izabela; Jelinska, Anna

    2016-01-01

    Molecularly targeted anticancer therapy involves the use of drugs or other substances affecting specific molecular targets that play a part in the development, progression and spread of a given neoplasm. By contrast, the majority of classical chemotherapeutics act on all rapidly proliferating cells, both healthy and cancerous ones. Target anticancer drugs are designed to achieve a particular aim and they usually act cytostatically, not cytotoxically like classical chemotherapeutics. At present, more than 300 biological molecular targets have been identified. The proteins involved in cellular metabolism include (among others) receptor proteins, signal transduction proteins, mRNA thread matrix synthesis proteins participating in neoplastic transformation, cell cycle control proteins, functional and structural proteins. The receptor proteins that are targeted by currently used anticancer drugs comprise the epithelial growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR) and vascular endothelial growth factor receptor(VEGFR). Target anticancer drugs may affect extracellular receptor domains (antibodies) or intracellular receptor domains (tyrosine kinase inhibitors). The blocking of the mRNA thread containing information about the structure of oncogenes (signal transduction proteins) is another molecular target of anticancer drugs. That type of treatment, referred to as antisense therapy, is in clinical trials. When the synthesis of genetic material is disturbed, in most cases the passage to the next cycle phase is blocked. The key proteins responsible for the blockage are cyclines and cycline- dependent kinases (CDK). Clinical trials are focused on natural and synthetic substances capable of blocking various CDKs. The paper discusses the molecular targets and chemical structure of target anticancer drugs that have been approved for and currently applied in antineoplastic therapy together with indications and contraindications for their

  6. The Investigation of Separability of Particles Smaller Than 5 mm by Eddy Current Separation Technology. Part I : Rotating Type Eddy Current Separators

    NARCIS (Netherlands)

    Zhang, S.; Rem, P.C.; Forssberg, E.

    1999-01-01

    Owing to the growing emergence of the end-of-life electrical and electronic products with complex material structures and an ever-diminishing particle size of the valuable metals involved, development of eddy current separators (ECS) has been targeting selective separation of small non-ferrous metal

  7. SU-F-J-197: A Novel Intra-Beam Range Detection and Adaptation Strategy for Particle Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, M; Jiang, S; Shao, Y; Lu, W [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: In-vivo range detection/verification is crucial in particle therapy for effective and safe delivery. The state-of-art techniques are not sufficient for in-vivo on-line range verification due to conflicts among patient dose, signal statistics and imaging time. We propose a novel intra-beam range detection and adaptation strategy for particle therapy. Methods: This strategy uses the planned mid-range spots as probing beams without adding extra radiation to patients. Such choice of probing beams ensures the Bragg peaks to remain inside the tumor even with significant range variation from the plan. It offers sufficient signal statistics for in-beam positron emission tomography (PET) due to high positron activity of therapeutic dose. The probing beam signal can be acquired and reconstructed using in-beam PET that allows for delineation of the Bragg peaks and detection of range shift with ease of detection enabled by single-layered spots. If the detected range shift is within a pre-defined tolerance, the remaining spots will be delivered as the original plan. Otherwise, a fast re-optimization using range-shifted beamlets and accounting for the probing beam dose is applied to consider the tradeoffs posed by the online anatomy. Simulated planning and delivery studies were used to demonstrate the effectiveness of the proposed techniques. Results: Simulations with online range variations due to shifts of various foreign objects into the beam path showed successful delineation of the Bragg peaks as a result of delivering probing beams. Without on-line delivery adaptation, dose distribution was significantly distorted. In contrast, delivery adaptation incorporating detected range shift recovered well the planned dose. Conclusion: The proposed intra-beam range detection and adaptation utilizing the planned mid-range spots as probing beams, which illuminate the beam range with strong and accurate PET signals, is a safe, practical, yet effective approach to address range

  8. Systemic sclerosis and localized scleroderma--current concepts and novel targets for therapy.

    Science.gov (United States)

    Distler, Oliver; Cozzio, Antonio

    2016-01-01

    Systemic sclerosis (SSc) is a chronic autoimmune disease with a high morbidity and mortality. Skin and organ fibrosis are key manifestations of SSc, for which no generally accepted therapy is available. Thus, there is a high unmet need for novel anti-fibrotic therapeutic strategies in SSc. At the same time, important progress has been made in the identification and characterization of potential molecular targets in fibrotic diseases over the recent years. In this review, we have selected four targeted therapies, which are tested in clinical trials in SSc, for in depths discussion of their preclinical characterization. Soluble guanylate cyclase (sGC) stimulators such as riociguat might target both vascular remodeling and tissue fibrosis. Blockade of interleukin-6 might be particularly promising for early inflammatory stages of SSc. Inhibition of serotonin receptor 2b signaling links platelet activation to tissue fibrosis. Targeting simultaneously multiple key molecules with the multityrosine kinase-inhibitor nintedanib might be a promising approach in complex fibrotic diseases such as SSc, in which many partially independent pathways are activated. Herein, we also give a state of the art overview of the current classification, clinical presentation, diagnostic approach, and treatment options of localized scleroderma. Finally, we discuss whether the novel targeted therapies currently tested in SSc could be used for localized scleroderma.

  9. Current technology of particle physics detectors

    International Nuclear Information System (INIS)

    Ludlam, T.W.

    1986-01-01

    A brief discussion is given of the characteristics required of new accelerator facilities, leading into a discussion of the required detectors, including position sensitive detectors, particle identification, and calorimeters

  10. SU-F-J-202: Secondary Radiation Measurements for Charged Particle Therapy Monitoring: Fragmentation of Therapeutic He, C and O Ion Beams Impinging On a PMMA Target

    Energy Technology Data Exchange (ETDEWEB)

    Rucinski, A; Mancini-Terracciano, C; Paramatti, R; Pinci, D; Russomando, A; Voena, C [Istituto Nazionale di Fisica Nucleare - Sezione di Roma, Rome, Rome (Italy); Battistoni, G; Muraro, S [Istituto Nazionale di Fisica Nucleare - Sezione di Milano, Milano, Milano (Italy); Collamati, F; Faccini, R; Camillocci, E Solfaroli [Istituto Nazionale di Fisica Nucleare - Sezione di Roma, Italy, Dipartiment, Rome, Rome (Italy); Collini, F [Istituto Nazionale di Fisica Nucleare - Sezione di Pisa, Pisa, Pisa (Italy); De Lucia, E; Piersanti, L; Toppi, M [Laboratori Nazionali di Frascati, Frascati (rome), Rome (Italy); Frallicciardi, P [Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, Rome, Rome (Italy); Marafini, M [Istituto Nazionale di Fisica Nucleare - Sezione di Roma, Museo Storico dell, Rome, Rome (Italy); Patera, V; Sciubba, A; Traini, G [Istituto Nazionale di Fisica Nucleare - Sezione di Roma, Dipartimento di Sc, Rome, Rome (Italy); and others

    2016-06-15

    Purpose: In Charged Particle Therapy (CPT), besides protons, there has been recently a growing interest in 4He, 12C and 16O beams. The secondary radiation produced in the interaction of those beams with a patient could be potentially used for on-line monitoring of range uncertainties in order to fully exploit the advantages of those light ions resulting from increased Radio Biological Effectiveness, reduced multiple scattering and Oxygen Enhancement Ratio. The study and precise characterization of secondary radiation (beta+, prompt gamma, charged fragments) is the cornerstone of any R&D activity aiming for online monitoring development and purpose of the analysis presented here. Methods: We present the measurements of the secondary radiation generated by He, C and O beams impinging on a beam stopping PMMA target. The data has been collected at the Heidelberg Ionbeam Therapy center (HIT), where several millions of collisions were recorded at different energies, relevant for therapeutical applications. Results: The experimental setup, as well as the analysis strategies will be reviewed. The detected particle fluxes as a function of the primary beam energy and the emission angle with respect to the beam direction will be presented and compared to the results of other available measurements. In addition, the energy spectra and emission shapes of charged secondary particles will be shown and discussed in the context of the primary beam range monitoring technique that is being developed by the ARPG collaboration, within the INSIDE project funded by the Italian research ministry. The implications for dose monitoring applications will be discussed, in the context of the current (or planned) state-of- the-art detector solutions. Conclusion: The characterization of the radiation produced by 12C, 4He and 16O beams fully supports the feasibility of on-line range monitoring in the clinical practice of CPT by means of secondary particles detection.

  11. SU-F-J-202: Secondary Radiation Measurements for Charged Particle Therapy Monitoring: Fragmentation of Therapeutic He, C and O Ion Beams Impinging On a PMMA Target

    International Nuclear Information System (INIS)

    Rucinski, A; Mancini-Terracciano, C; Paramatti, R; Pinci, D; Russomando, A; Voena, C; Battistoni, G; Muraro, S; Collamati, F; Faccini, R; Camillocci, E Solfaroli; Collini, F; De Lucia, E; Piersanti, L; Toppi, M; Frallicciardi, P; Marafini, M; Patera, V; Sciubba, A; Traini, G

    2016-01-01

    Purpose: In Charged Particle Therapy (CPT), besides protons, there has been recently a growing interest in 4He, 12C and 16O beams. The secondary radiation produced in the interaction of those beams with a patient could be potentially used for on-line monitoring of range uncertainties in order to fully exploit the advantages of those light ions resulting from increased Radio Biological Effectiveness, reduced multiple scattering and Oxygen Enhancement Ratio. The study and precise characterization of secondary radiation (beta+, prompt gamma, charged fragments) is the cornerstone of any R&D activity aiming for online monitoring development and purpose of the analysis presented here. Methods: We present the measurements of the secondary radiation generated by He, C and O beams impinging on a beam stopping PMMA target. The data has been collected at the Heidelberg Ionbeam Therapy center (HIT), where several millions of collisions were recorded at different energies, relevant for therapeutical applications. Results: The experimental setup, as well as the analysis strategies will be reviewed. The detected particle fluxes as a function of the primary beam energy and the emission angle with respect to the beam direction will be presented and compared to the results of other available measurements. In addition, the energy spectra and emission shapes of charged secondary particles will be shown and discussed in the context of the primary beam range monitoring technique that is being developed by the ARPG collaboration, within the INSIDE project funded by the Italian research ministry. The implications for dose monitoring applications will be discussed, in the context of the current (or planned) state-of- the-art detector solutions. Conclusion: The characterization of the radiation produced by 12C, 4He and 16O beams fully supports the feasibility of on-line range monitoring in the clinical practice of CPT by means of secondary particles detection.

  12. Tunnel current through virus particles between columnar structures in mesoporous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Vashpanov, Yuriy; Jung, Jae-Il; Dal Kwack, Kae [Electrical Engineering and Computer Science Division of Hanyang Institute of Technology, Hanyang University, 17 Haengdang-dong, Seongdong-gu, 133-791 Seoul (Korea, Republic of)

    2011-07-15

    Earlier we reported on a tunnel charge transport mechanism in mesoporous silicon with columnar structures under adsorption of plant nematode-transmitted polyhedral (NEPO) viruses at room temperature. Additional experiments are performed in this paper to establish that this observed tunnel current is connected to a conduction path through virus particles. The plant NEPO viruses have an orbicular shape with a diameter of around 25-30 nm. This size is matched well to the porous size distribution in manufactured samples. The tunnel charge transport in semiconductor structures was not observed on loading protein macromolecules of smaller sizes. A physical mechanism of the observed phenomena can be interpreted to be the result of a shunting effect through virus particles between the two closely located columnar silicon structures. This effect is likely to result from double points at virus adsorption under the condition of matching of pore and virus sizes. The magnitudes of the tunnel barrier heights depend on the type of loaded plant viruses. The investigated columnar structures of mesoporous silicon can be used for research on the electrical properties of different viruses with corresponding sizes in the range of 20-30 nm. The existence of a tunnel current between columnar structures in mesoporous silicon under virus adsorption can be used as a simple method for their detection in the environment. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Current situation and problems of cancer-reproductive therapy from the standpoint of male reproductive therapy

    International Nuclear Information System (INIS)

    Shin, Takeshi; Tanaka, Takashi; Nishio, Koujiro; Arai, Manabu; Okada, Horoshi; Nozaki, Miwako; Kaji, Yasushi

    2017-01-01

    This paper reviewed the current situation and problems of cancer - reproductive therapy from the standpoint of male reproductive therapy. Common causes for male infertility include spermatogenic dysfunction, seminal duct dysfunction, and sexual dysfunction. Causes of male infertility in cancer patients include the presence of cancer itself, as well as pathological conditions due to surgery, radiation therapy, or chemotherapy for cancer, namely spermatogenic dysfunction, seminal duct dysfunction, and sexual dysfunction. The American Society of Clinical Oncology (ASCO) presents the risk classification of infertility due to anti-cancer drugs or radiotherapy. Cancer treating physicians evaluate infertility risk associated with treatment according to this risk classification and provide patients with information. If a patient wishes to preserve fertility, it is recommended in ASCO's fertility preservation guidelines to introduce the facilities that can store frozen sperm. Questionnaire surveys on sperm cryopreservation to blood physician show that the description of sperm cryopreservation is made at only about two-thirds of facilities and there is a problem that the systemization of cryopreservation has not progressed. The only way to acquire a baby in a patient who has undergone cancer treatment without cryopreservation and became permanent azoospermia is microscopic testis sperm collection and microinsemination. (A.O.)

  14. Sum rules for the real parts of nonforward current-particle scattering amplitudes

    International Nuclear Information System (INIS)

    Abdel-Rahman, A.M.M.

    1976-01-01

    Extending previous work, using Taha's refined infinite-momentum method, new sum rules for the real parts of nonforward current-particle scattering amplitudes are derived. The sum rules are based on covariance, casuality, scaling, equal-time algebra and unsubtracted dispersion relations for the amplitudes. A comparison with the corresponding light-cone approach is made, and it is shown that the light-cone sum rules would also follow from the assumptions underlying the present work

  15. An accurate low current measurement circuit for heavy iron beam current monitor

    International Nuclear Information System (INIS)

    Zhou Chaoyang; Su Hong; Mao Ruishi; Dong Chengfu; Qian Yi; Kong Jie

    2012-01-01

    Heavy-ion beams at 10 6 particles per second have been applied to the treatment of deep-seated inoperable tumors in the therapy terminal of the Heavy Ion Research Facility in Lanzhou (HIRFL) which is located at the Institute of Modern Physics, Chinese Academy of Sciences (IMP, CAS). An accurate low current measurement circuit following a Faraday cup was developed to monitor the beam current at pA range. The circuit consisted of a picoammeter with a bandwidth of 1 kHz and a gated integrator (GI). A low input bias current precision amplifier and new guarding and shielding techniques were used in the picoammeter circuit which allowed as to measure current less than 1 pA with a current gain of 0.22 V/pA and noise less than 10 fA. This paper will also describe a novel compensation approach which reduced the charge injection from switches in the GI to 10 −18 C, and a T-switch configuration which was used to eliminate leakage current in the reset switch.

  16. Phytochemicals for breast cancer therapy: current status and future implications.

    Science.gov (United States)

    Siddiqui, Jawed Akhtar; Singh, Aru; Chagtoo, Megha; Singh, Nidhi; Godbole, Madan Madhav; Chakravarti, Bandana

    2015-01-01

    Breast cancer is one of the most common malignancies among women, representing nearly 30% of newly diagnosed cancers every year. Till date, various therapeutic interventions, including surgery, chemotherapy, hormonal therapy, and radiotherapy are available and are known to cause a significant decline in the overall mortality rate. However, therapeutic resistance, recurrence and lack of treatment in metastasis are the major challenges that need to be addressed. Increasing evidence suggests the presence of cancer stem cells (CSCs) in heterogeneous population of breast tumors capable of selfrenewal and differentiation and is considered to be responsible for drug resistance and recurrence. Therefore, compound that can target both differentiated cancer cells, as well as CSCs, may provide a better treatment strategy. Due to safe nature of dietary agents and health products, investigators are introducing them into clinical trials in place of chemotherapeutic agents.This current review focuses on phytochemicals, mainly flavonoids that are in use for breast cancer therapy in preclinical phase. As phytochemicals have several advantages in breast cancer and cancer stem cells, new synthetic series for breast cancer therapy from analogues of most potent natural molecule can be developed via rational drug design approach.

  17. Current Perspectives on Therapy Dog Welfare in Animal-Assisted Interventions

    Directory of Open Access Journals (Sweden)

    Lisa Maria Glenk

    2017-02-01

    Full Text Available Research into the effects of animal-assisted interventions (AAIs has primarily addressed human health outcomes. In contrast, only few publications deal with the therapy dog experience of AAIs. This paper provides an overview on potential welfare threats that therapy dogs may encounter and presents the results of a review of available studies on welfare indicators for therapy dogs during AAIs. Previous investigations used physiological and behavioral welfare indicators and dog handler surveys to identify work-related stress. Research outcomes are discussed in the light of strengths and weaknesses of the methods used. Study results suggest that frequency and duration of AAI sessions, novelty of the environment, controllability, age and familiarity of recipients modulate animal welfare indicators. However, this review reveals that currently, clear conclusions on how the well-being of dogs is influenced by the performance in AAIs are lacking due to the heterogeneity of programs, recipient and session characteristics, small dog sample sizes and methodological limitations. This paper further aimed to identify unresolved difficulties in previous research to pave the way for future investigations supporting the applicability of scientific findings in practice.

  18. Charged Particle Dynamics in the Magnetic Field of a Long Straight Current-Carrying Wire

    Science.gov (United States)

    Prentice, A.; Fatuzzo, M.; Toepker, T.

    2015-01-01

    By describing the motion of a charged particle in the well-known nonuniform field of a current-carrying long straight wire, a variety of teaching/learning opportunities are described: 1) Brief review of a standard problem; 2) Vector analysis; 3) Dimensionless variables; 4) Coupled differential equations; 5) Numerical solutions.

  19. Mild cognitive impairment in Parkinson's disease is improved by transcranial direct current stimulation combined with physical therapy.

    Science.gov (United States)

    Manenti, Rosa; Brambilla, Michela; Benussi, Alberto; Rosini, Sandra; Cobelli, Chiara; Ferrari, Clarissa; Petesi, Michela; Orizio, Italo; Padovani, Alessandro; Borroni, Barbara; Cotelli, Maria

    2016-05-01

    Parkinson's disease (PD) is characterized by both motor and cognitive deficits. In PD, physical exercise has been found to improve physical functioning. Recent studies demonstrated that repeated sessions of transcranial direct current stimulation led to an increased performance in cognitive and motor tasks in patients with PD. The present study investigated the effects of anodal transcranial direct current stimulation applied over the dorsolateral prefrontal cortex and combined with physical therapy in PD patients. A total of 20 patients with PD were assigned to 1 of 2 study groups: group 1, anodal transcranial direct current stimulation plus physical therapy (n = 10) or group 2, placebo transcranial direct current stimulation plus physical therapy (n = 10). The 2 weeks of treatment consisted of daily direct current stimulation application for 25 minutes during physical therapy. Long-term effects of treatment were evaluated on clinical, neuropsychological, and motor task performance at 3-month follow-up. An improvement in motor abilities and a reduction of depressive symptoms were observed in both groups after the end of treatment and at 3-month follow-up. The Parkinson's Disease Cognitive Rating Scale and verbal fluency test performances increased only in the anodal direct current stimulation group with a stable effect at follow-up. The application of anodal transcranial direct current stimulation may be a relevant tool to improve cognitive abilities in PD and might be a novel therapeutic strategy for PD patients with mild cognitive impairment. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  20. Production of charmed particles in nuN collisions due to neutral weak currents

    International Nuclear Information System (INIS)

    Rekalo, M.P.

    1980-01-01

    A study is made of associated production of charmed particles in neutrino-nucleon interactions due to neutral weak currents. The angular distribution of the jets of charmed hadrons in nN interactions is determined in the lowest approximation in the quark-gluon coupling constant, according to which a charmed quark and antiquark are produced in an annihilation of a vector gluon and a virtual Z boson. It is shown that only a P-even dependence on the azimuthal angle v occurs in the studied approximation, the P-odd dependence which is possible in the general case being equal to zero. The total cross section for charmed-particle production in neutrino-nucleon interactions is calculated, and the origin of the violation of scale invariance is demonstrated

  1. Nano-sized calcium phosphate particles for periodontal gene therapy.

    Science.gov (United States)

    Elangovan, Satheesh; Jain, Shardool; Tsai, Pei-Chin; Margolis, Henry C; Amiji, Mansoor

    2013-01-01

    Growth factors such as platelet-derived growth factor (PDGF) have significantly enhanced periodontal therapy outcomes with a high degree of variability, mostly due to the lack of continual supply for a required period of time. One method to overcome this barrier is gene therapy. The aim of this in vitro study is to evaluate PDGF-B gene delivery in fibroblasts using nano-sized calcium phosphate particles (NCaPP) as vectors. NCaPP incorporating green fluorescent protein (NCaPP-GFP) and PDGF-B (NCaPP-PDGF-B) plasmids were synthesized using an established precipitation system and characterized using transmission electron microscopy and 1.2% agarose gel electrophoresis. Biocompatibility and transfection of the nanoplexes in fibroblasts were evaluated using cytotoxicity assay and florescence microscopy, respectively. Polymerase chain reaction and enzyme-linked immunosorbent assay were performed to evaluate PDGF-B transfection after different time points of treatments, and the functionality of PDGF-B transfection was evaluated using the cell proliferation assay. Synthesized NCaPP nanoplexes incorporating the genes of GFP and PDGF-B were spherical in shape and measured about 30 to 50 nm in diameter. Gel electrophoresis confirmed DNA incorporation and stability within the nanoplexes, and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium reagent assay demonstrated their biocompatibility in fibroblasts. In vitro transfection studies revealed a higher and longer lasting transfection after NCaPP-PDGF-B treatment, which lasted up to 96 hours. Significantly enhanced fibroblast proliferation observed in NCaPP-PDGF-B-treated cells confirmed the functionality of these nanoplexes. NCaPP demonstrated higher levels of biocompatibility and efficiently transfected PDGF plasmids into fibroblasts under described in vitro conditions.

  2. Management of Pediatric Migraine: Current Therapies.

    Science.gov (United States)

    Khrizman, Marina; Pakalnis, Ann

    2018-02-01

    Migraine is one of the most common neurologic conditions in pediatrics. It can be a significant stressor, causing absences from school and interruption of parents' work and family schedules. The mainstay of treatment remains educating patients about healthy lifestyle practices and the influences of sleep, stressors, and hydration on triggering migraine attacks. Psychological therapies such as biofeedback or cognitive-behavioral therapy may be beneficial in some patients, especially those with prominent psychological comorbidities. New advances in the pathophysiology of migraine and additional pediatric approval of abortive therapy with triptans have led to significant advances in the management of migraine in children. Some challenges to preventive therapy were recently noted with the negative results obtained in the Childhood and Adolescent Migraine Prevention Study, which compared prescription drugs to placebo. Inherent differences between adult and pediatric headaches, with shorter duration of pediatric migraine and prominent placebo effect, present recurring challenges for clinicians. [Pediatr Ann. 2018;47(2):e55-e60.]. Copyright 2018, SLACK Incorporated.

  3. Current Reversals of an Underdamped Brownian Particle in an Asymmetric Deformable Potential

    Science.gov (United States)

    Cai, Chun-Chun; Liu, Jian-Li; Chen, Hao; Li, Feng-Guo

    2018-03-01

    Transport of an underdamped Brownian particle in a one-dimensional asymmetric deformable potential is investigated in the presence of both an ac force and a static force, respectively. From numerical simulations, we obtain the current average velocity. The current reversals and the absolute negative mobility are presented. The increasing of the deformation of the potential can cause the absolute negative mobility to be suppressed and even disappear. When the static force is small, the increase of the potential deformation suppresses the absolute negative mobility. When the force is large, the absolute negative mobility disappears. In particular, when the potential deformation is equal to 0.015, the two current reversals present with the increasing of the force. Remarkably, when the potential deformation is small, there are three current reversals with the increasing of the friction coefficient and the average velocity presents a oscillation behavior. Supported in part by the National Natural Science Foundation of China under Grant Nos. 11575064 and 11175067, and the Natural Science Foundation of Guangdong Province under Grant No. 2016A030313433

  4. The importance of an external circuit in a particle-in-cell/Monte Carlo collisions model for a direct current planar magnetron

    International Nuclear Information System (INIS)

    Bultinck, E.; Kolev, I.; Bogaerts, A.; Depla, D.

    2008-01-01

    In modeling direct current (dc) discharges, such as dc magnetrons, a current-limiting device is often neglected. In this study, it is shown that an external circuit consisting of a voltage source and a resistor is inevitable in calculating the correct cathode current. Avoiding the external circuit can cause the current to converge (if at all) to a wrong volt-ampere regime. The importance of this external circuit is studied by comparing the results with those of a model without current-limiting device. For this purpose, a 2d3v particle-in-cell/Monte Carlo collisions model was applied to calculate discharge characteristics, such as cathode potential and current, particle fluxes and densities, and potential distribution in the plasma. It is shown that the calculated cathode current is several orders of magnitude lower when an external circuit is omitted, leading to lower charged particle fluxes and densities, and a wider plasma sheath. Also, it was shown, that only simulations with external circuit can bring the cathode current into a certain plasma regime, which has its own typical properties. In this work, the normal and abnormal regimes were studied

  5. Current therapy for chronic cerebrovascular attack

    Directory of Open Access Journals (Sweden)

    A. A. Shmonin

    2015-01-01

    Full Text Available Chronic cerebrovascular attack (CCVA is a brain lesion caused by vascular factors. CCVA appears as cognitive impairments (CIs, affective (emotional disorders and focal syndromes. Treatment for CCVA requires a comprehensive approach. Effective combination therapy for CCVA involves secondary prevention of stroke and CIs; treatment of CIs; treatment of depression and other affective disorders; and neuroprotective therapy. Basic therapy for CCVA includes modification of risk factors, antihypertensive, hypolipidemic, and antithrombotic therapies. Central acetylcholinesterase inhibitors (galantamine, rivastigmine, donepezil and a reversible NMDA receptor blocker (memantine are symptomatically used at a stage of vascular and mixed dementia. There are no unique guidelines for the therapy of mild and moderate vascular nondementia-related CIs. Drug use, based on the neurochemical mechanisms underlying the development of vascular CIs, is substantiated. When choosing psychotropic agents, it is necessary to take into account the causes and clinical manifestations of neuromediator deficiency. Antidepressants are used as essential drugs. Neuroleptics and tranquilizers are additionally administered in complex-pattern syndromes, such as depression with marked anxiety. Prescription of neuroprotectors may be effective in treating both stroke and CCVA. These medicaments are most effective when a damaging factor acts, i.e. neuroprotectors should be given in a risk situation and to reduce damage. Citicoline is one of the most test drugs in a group of neuroprotectors. 

  6. Photothermal cancer therapy using graphitic carbon–coated magnetic particles prepared by one-pot synthesis

    Directory of Open Access Journals (Sweden)

    Lee HJ

    2014-12-01

    Full Text Available Hyo-Jeong Lee,1 Jakkid Sanetuntikul,2 Eun-Sook Choi,1 Bo Ram Lee,1 Jung-Hee Kim,1 Eunjoo Kim,1 Sangaraju Shanmugam2 1Nano and Bio Research Division, 2Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea Abstract: We describe here a simple synthetic strategy for the fabrication of carbon-coated Fe3O4 (Fe3O4@C particles using a single-component precursor, iron (III diethylenetriaminepentaacetic acid complex. Physicochemical analyses revealed that the core of the synthesized particles consists of ferromagnetic Fe3O4 material ranging several hundred nanometers, embedded in nitrogen-doped graphitic carbon with a thickness of ~120 nm. Because of their photothermal activity (absorption of near-infrared [NIR] light, the Fe3O4@C particles have been investigated for photothermal therapeutic applications. An example of one such application would be the use of Fe3O4@C particles in human adenocarcinoma A549 cells by means of NIR-triggered cell death. In this system, the Fe3O4@C can rapidly generate heat, causing >98% cell death within 10 minutes under 808 nm NIR laser irradiation (2.3 W cm-2. These Fe3O4@C particles provided a superior photothermal therapeutic effect by intratumoral delivery and NIR irradiation of tumor xenografts. These results demonstrate that one-pot synthesis of carbon-coated magnetic particles could provide promising materials for future clinical applications and encourage further investigation of this simple method. Keywords: graphitic carbon–encapsulated magnetic nanoparticles, iron oxide, one-pot synthesis, photothermal cancer therapy

  7. ENLIGHT: European network for Light ion hadron therapy.

    Science.gov (United States)

    Dosanjh, Manjit; Amaldi, Ugo; Mayer, Ramona; Poetter, Richard

    2018-04-03

    The European Network for Light Ion Hadron Therapy (ENLIGHT) was established in 2002 following various European particle therapy network initiatives during the 1980s and 1990s (e.g. EORTC task group, EULIMA/PIMMS accelerator design). ENLIGHT started its work on major topics related to hadron therapy (HT), such as patient selection, clinical trials, technology, radiobiology, imaging and health economics. It was initiated through CERN and ESTRO and dealt with various disciplines such as (medical) physics and engineering, radiation biology and radiation oncology. ENLIGHT was funded until 2005 through the EC FP5 programme. A regular annual meeting structure was started in 2002 and continues until today bringing together the various disciplines and projects and institutions in the field of HT at different European places for regular exchange of information on best practices and research and development. Starting in 2006 ENLIGHT coordination was continued through CERN in collaboration with ESTRO and other partners involved in HT. Major projects within the EC FP7 programme (2008-2014) were launched for R&D and transnational access (ULICE, ENVISION) and education and training networks (Marie Curie ITNs: PARTNER, ENTERVISION). These projects were instrumental for the strengthening of the field of hadron therapy. With the start of 4 European carbon ion and proton centres and the upcoming numerous European proton therapy centres, the future scope of ENLIGHT will focus on strengthening current and developing European particle therapy research, multidisciplinary education and training and general R&D in technology and biology with annual meetings and a continuously strong CERN support. Collaboration with the European Particle Therapy Network (EPTN) and other similar networks will be pursued. Copyright © 2018 CERN. Published by Elsevier B.V. All rights reserved.

  8. Current Perspectives on Therapy Dog Welfare in Animal-Assisted Interventions

    Science.gov (United States)

    Glenk, Lisa Maria

    2017-01-01

    Simple Summary In animal-assisted interventions (AAIs) animals are used as adjuncts to therapy to positively affect human health. The practice of implementing dogs into therapeutic environments is emerging and as a result, there has been a growing scientific interest on human health outcomes over the past decades. Research efforts into the canine perspective of AAIs have been scarce. Accordingly, there is little consensus on the impact of such interventions on the animals involved. This paper aimed to contribute to the limited body of knowledge by reviewing available studies on therapy dogs’ welfare during AAIs. Moreover, discussion of theoretical and methodological issues, implications for practice and suggestions for future research are provided. Abstract Research into the effects of animal-assisted interventions (AAIs) has primarily addressed human health outcomes. In contrast, only few publications deal with the therapy dog experience of AAIs. This paper provides an overview on potential welfare threats that therapy dogs may encounter and presents the results of a review of available studies on welfare indicators for therapy dogs during AAIs. Previous investigations used physiological and behavioral welfare indicators and dog handler surveys to identify work-related stress. Research outcomes are discussed in the light of strengths and weaknesses of the methods used. Study results suggest that frequency and duration of AAI sessions, novelty of the environment, controllability, age and familiarity of recipients modulate animal welfare indicators. However, this review reveals that currently, clear conclusions on how the well-being of dogs is influenced by the performance in AAIs are lacking due to the heterogeneity of programs, recipient and session characteristics, small dog sample sizes and methodological limitations. This paper further aimed to identify unresolved difficulties in previous research to pave the way for future investigations supporting the

  9. Current status of personnel monitoring for β particles

    International Nuclear Information System (INIS)

    Plato, P.; Miklos, J.

    1984-01-01

    From 1975 to 1982, a concerted effort was made to develop a uniform procedure to test the performance of personnel dosimetry processors throughout the United States. The heart of this effort is a standard developed by the Health Physics Society Standards Committee (HPSSC) and adopted by the American National Standards Institute (ANSI) as ANSI N13.11-1982. The US Nuclear Regulatory Commission (NRC) sponsored a five year pilot study of this Standard which included three trial tests in which approximately 80 dosimetry processors participated. This paper addresses two major questions. First, what have the HPSSC/ANSI Standard and the NRC-sponsored pilot study contributed toward improvements in personnel monitoring for β particles. Second, what additional improvements are necessary. The Standard defines test categories for β particles and mixtures of β particles plus γ rays in addition to test categories for other types of radiation. It also defines a reference β-particle source for test purposes. Third, it provides test criteria which are used to determine acceptable performance by a processor. The pilot study provided information on the state of the art of personnel monitoring within the bounds of the Standard. In addition, since the pilot study was advertised as the forerunner of a future mandatory certification program for dosimetry processors throughout the United States, considerable attention was given to personnel monitoring in general, and β particles in particular, that otherwise would have been given to other squeaky wheels. The results of the three tests of the pilot study are summarized. The paper also amplifies on the needs to define the monitoring problems of the work place and to define appropriate β-particle sources clearly

  10. Current therapies and mortality in acromegaly.

    Science.gov (United States)

    Găloiu, S; Poiană, C

    2015-01-01

    Acromegaly is a rare disease most frequently due to a GH secreting pituitary adenoma. Without an appropriate therapy, life of patients with acromegaly can be shortened with ten years. Pituitary surgery is usually the first line therapy for GH secreting pituitary adenomas. A meta-analysis proved that mortality is much lower in operated patients, even uncured, than the entire group of patients and is similar with the general population in patients with GH30% utilization of SRAs reported a lower mortality ratio than studies with lower percentages of SRA administration. Although therapy with DA has long been used in patients with acromegaly, there are no studies reporting its effect on mortality, but its efficacy is limited by the low remission rate obtained. The use of conventional external radiotherapy, although with good remission rate in time, was linked with increased mortality, mostly due to cerebrovascular diseases. Mortality in acromegaly can be reduced to expected levels from general population by using modern therapies either in monotherapy or by using multimodal approaches in experienced centers.

  11. The effect of concentration of glycerol and electric current on the morphology and particle size of electrodeposited cadmium powder

    Directory of Open Access Journals (Sweden)

    S. G. Viswanath

    2013-06-01

    Full Text Available Cadmium powder was obtained by electrodeposition of cadmium from glycerol and sulphuric acid. The morphology and particle size of these powders were studied. Broken dendrites, intermingled with spongy and irregular particles were observed in the powder. Around 60% of particles were below 100 µm. XRD studies showed that particles with sizes between 212.2 and 303.2 nm were present in the powder. The apparent density of cadmium powder decreased with increase in concentration of glycerol. The stability of the powder and current efficiency were also studied

  12. Landscape of current and emerging cell therapy clinical trials in the UK: current status, comparison to global trends and future perspectives.

    Science.gov (United States)

    Bisson, Isabelle; Green, Emma; Sharpe, Michaela; Herbert, Chris; Hyllner, Johan; Mount, Natalie

    2015-01-01

    Cell Therapy Clinical Trial and Preclinical Research databases have been established by the Cell Therapy Catapult to document current and future cell therapy clinical trials in the UK. We identified 41 ongoing trials in April 2014, an increase of seven trials from April 2013. In addition, we identified 45 late-stage preclinical research projects. The majority of the clinical trials are early phase, primarily led by academic groups. The leading therapeutic areas are cancer, cardiology and neurology. The trends in the UK are also seen globally. As the field matures, more later phase and commercial studies will emerge and the challenges will likely evolve into how to manufacture sufficient cell quantities, manage complex logistics for multi-center trials and control cost.

  13. Diabetic Macular Edema: Current Understanding, Pharmacologic Treatment Options, and Developing Therapies.

    Science.gov (United States)

    Miller, Kevin; Fortun, Jorge A

    2018-01-01

    Diabetic retinopathy and diabetic macular edema comprise a major source of visual disability throughout the developed world. The etiology and pathogenesis of macular edema is intricate and multifactorial, in which the hyperglycemic state in diabetes induces a microangiopathy. Through several inflammatory and vasogenic mediators, including vascular endothelial growth factor (VEGF) upregulation and inflammatory cytokines and chemokines, pathologic changes are induced in the vascular endothelium triggering breakdown of the blood retinal barrier, causing extravasation of fluid into the extracellular space and manifesting clinically as macular edema, resulting in visual loss. The advent of medications targeting the VEGF pathway has led to great clinical improvements compared with the previous standard of care of laser therapy alone, as shown in studies such as RISE, RIDE, VIVID, VISTA, and DRCR. However, analyses have shown that many patients have inadequate response or are nonresponders to anti-VEGF therapy, demonstrating the need for additional therapies to more comprehensively treat this disease. Although corticosteroid treatments and implants have demonstrated some efficacy in adjunctive and supplemental treatment, the need to more adequately treat macular edema remains. Our knowledge of diabetic macular edema continues to grow, leading to new currently available and emerging pharmacotherapies to further enhance our treatment and restore vision in those affected by diabetic macular edema. This review will discuss the pathogenesis of diabetic macular edema and the pharmacologic therapies available for its treatment, including anti-VEGF, steroids, and newer therapies still in development, such as angiopoietin antagonists, Tie2 agonists, kallikrein inhibitors, interleukin inhibitors, and others. Copyright 2018 Asia-Pacific Academy of Ophthalmology.

  14. HEATHER - HElium Ion Accelerator for RadioTHERapy

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Jordan [Huddersfield U.; Edgecock, Thomas [Huddersfield U.; Green, Stuart [Birmingham U.; Johnstone, Carol [Fermilab

    2017-05-01

    A non-scaling fixed field alternating gradient (nsFFAG) accelerator is being designed for helium ion therapy. This facility will consist of 2 superconducting rings, treating with helium ions (He²⁺ ) and image with hydrogen ions (H + 2 ). Currently only carbon ions are used to treat cancer, yet there is an increasing interest in the use of lighter ions for therapy. Lighter ions have reduced dose tail beyond the tumour compared to carbon, caused by low Z secondary particles produced via inelastic nuclear reactions. An FFAG approach for helium therapy has never been previously considered. Having demonstrated isochronous acceleration from 0.5 MeV to 900 MeV, we now demonstrate the survival of a realistic beam across both stages.

  15. Current-Sheet Formation and Reconnection at a Magnetic X Line in Particle-in-Cell Simulations

    Science.gov (United States)

    Black, C.; Antiochos, S. K.; Hesse, M.; Karpen, J. T.; Kuznetsova, M. M.; Zenitani, S.

    2011-01-01

    The integration of kinetic effects into macroscopic numerical models is currently of great interest to the heliophysics community, particularly in the context of magnetic reconnection. Reconnection governs the large-scale energy release and topological rearrangement of magnetic fields in a wide variety of laboratory, heliophysical, and astrophysical systems. We are examining the formation and reconnection of current sheets in a simple, two-dimensional X-line configuration using high-resolution particle-in-cell (PIC) simulations. The initial minimum-energy, potential magnetic field is perturbed by excess thermal pressure introduced into the particle distribution function far from the X line. Subsequently, the relaxation of this added stress leads self-consistently to the development of a current sheet that reconnects for imposed stress of sufficient strength. We compare the time-dependent evolution and final state of our PIC simulations with macroscopic magnetohydrodynamic simulations assuming both uniform and localized electrical resistivities (C. R. DeVore et al., this meeting), as well as with force-free magnetic-field equilibria in which the amount of reconnection across the X line can be constrained to be zero (ideal evolution) or optimal (minimum final magnetic energy). We will discuss implications of our results for understanding magnetic-reconnection onset and cessation at kinetic scales in dynamically formed current sheets, such as those occurring in the solar corona and terrestrial magnetotail.

  16. Magnetic particles in medical research - a review

    International Nuclear Information System (INIS)

    Sajid, K.M.

    2001-01-01

    Magnetic (or magnetizable) particles have assumed increasing importance in medical and biological research since 1966 when the effect of a magnetic field on the movement of suspended particles was initially studied. In fields like haematology, cell biology, microbiology, biochemistry and immunoassays, they currently provide the basis for separation techniques, which previously relied on gravitational forces. The body cells (e.g., blood cells) can be made magnetic by incubating them in a medium containing several Fe/sub 3/O/sub 4/ particles, which are adsorbed to the membrane surfaces. Some bacteria (also called magnetostatic bacteria) respond to externally applied magnetic lines of force due to their intracellular magnetic particles. These properties are useful in the isolation of these cells/bacteria. In biochemistry magnetic particles are used to immobilize enzymes without any loss of enzyme activity. The immobilized enzymes can facilitate the separation of end products without extensive instrumentation. In immunoassays the antibodies are covalently linked to polymer coated iron oxide particles. An electromagnet is used to sediment these particles after reaction. This excludes the use of centrifuge to separate antigen-antibody complexes. In pharmacy and pharmacology the magnetic particles are important in drug transport. In techniques like ferrography, nuclear magnetic resonance imaging (NMRI), spectroscopic studies and magnetic resonance imaging (MRI) the magnetic particles serve as contrast agents and give clinically important spatial resolution. Magnetic particles also find extensive applications in cancer therapy, genetic engineering, pneumology, nuclear medicine, radiology and many other fields. This article reviews these applications. (author)

  17. Cancer therapy with particle accelerators

    CERN Document Server

    Amaldi, Ugo

    1999-01-01

    This review paper is devoted to conventional radiotherapy and to hadron therapy. In this therapeutical modality, proposed by R. R. Wilson in 1946, the physical selectivity of proton and light ion beams is used to irradiate tissues very close to organs at risk, which cannot be irradiated (the brain and the spinal cord for instance). Also fast neutrons are employed, but they are not suitable for a truly conformal irradiation. Carbon ions have the added advantage, with respect to protons, of the high density of ionization at the end of the range in matter. This property is very valuable for the control of tumours which are radioresistant to both X-rays and protons. After clarifying the general principles, a review is presented of the world hadron therapy centres which are running or are in the design and construction stage. (33 refs).

  18. An "Off-the-Shelf" System for Intraprocedural Electrical Current Evaluation and Monitoring of Irreversible Electroporation Therapy.

    Science.gov (United States)

    Neal, Robert E; Kavnoudias, Helen; Thomson, Kenneth R

    2015-06-01

    Irreversible electroporation (IRE) ablation uses a series of brief electric pulses to create nanoscale defects in cell membranes, killing the cells. It has shown promise in numerous soft-tissue tumor applications. Larger voltages between electrodes will increase ablation volume, but exceeding electrical limits may risk damage to the patient, cause ineffective therapy delivery, or require generator restart. Monitoring electrical current for these conditions in real-time enables managing these risks. This capacity is not presently available in clinical IRE generators. We describe a system using a Tektronix TCP305 AC/DC Current Probe connected to a TCPA300 AC/DC Current Probe Amplifier, which is read on a computer using a Protek DSO-2090 USB computer-interfacing oscilloscope. Accuracy of the system was tested with a resistor circuit and by comparing measured currents with final outputs from the NanoKnife clinical electroporation pulse generator. Accuracy of measured currents was 1.64 ± 2.4 % relative to calculations for the resistor circuit and averaged 0.371 ± 0.977 % deviation from the NanoKnife. During clinical pulse delivery, the system offers real-time evaluation of IRE procedure progress and enables a number of methods for identifying approaching issues from electrical behavior of therapy delivery, facilitating protocol changes before encountering therapy delivery issues. This system can monitor electrical currents in real-time without altering the electric pulses or modifying the pulse generator. This facilitates delivering electric pulse protocols that remain within the optimal range of electrical currents-sufficient strength for clinically relevant ablation volumes, without the risk of exceeding safe electric currents or causing inadequate ablation.

  19. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy

    Directory of Open Access Journals (Sweden)

    Ganesan P

    2016-05-01

    Full Text Available Palanivel Ganesan,1,2 Dong-Kug Choi1,2 1Department of Applied Life Science, Nanotechnology Research Center, 2Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea Abstract: Phytocompounds have been used in cosmeceuticals for decades and have shown potential for beauty applications, including sunscreen, moisturizing and antiaging, and skin-based therapy. The major concerns in the usage of phyto-based cosmeceuticals are lower penetration and high compound instability of various cosmetic products for sustained and enhanced compound delivery to the beauty-based skin therapy. To overcome these disadvantages, nanosized delivery technologies are currently in use for sustained and enhanced delivery of phyto-derived bioactive compounds in cosmeceutical sectors and products. Nanosizing of phytocompounds enhances the aseptic feel in various cosmeceutical products with sustained delivery and enhanced skin protecting activities. Solid lipid nanoparticles, transfersomes, ethosomes, nanostructured lipid carriers, fullerenes, and carbon nanotubes are some of the emerging nanotechnologies currently in use for their enhanced delivery of phytocompounds in skin care. Aloe vera, curcumin, resveratrol, quercetin, vitamins C and E, genistein, and green tea catechins were successfully nanosized using various delivery technologies and incorporated in various gels, lotions, and creams for skin, lip, and hair care for their sustained effects. However, certain delivery agents such as carbon nanotubes need to be studied for their roles in toxicity. This review broadly focuses on the usage of phytocompounds in various cosmeceutical products, nanodelivery technologies used in the delivery of phytocompounds to various cosmeceuticals, and various nanosized phytocompounds used in the development of novel nanocosmeceuticals to enhance skin-based therapy. Keywords: nanodelivery technologies, skincare

  20. Current and future alternative therapies for beta-thalassemia major

    Directory of Open Access Journals (Sweden)

    Edouard de Dreuzy

    2016-02-01

    Full Text Available Beta-thalassemia is a group of frequent genetic disorders resulting in the synthesis of little or no β-globin chains. Novel approaches are being developed to correct the resulting α/β-globin chain imbalance, in an effort to move beyond the palliative management of this disease and the complications of its treatment (e.g. life-long red blood cell transfusion, iron chelation, splenectomy, which impose high costs on healthcare systems. Three approaches are envisaged: fetal globin gene reactivation by pharmacological compounds injected into patients throughout their lives, allogeneic hematopoietic stem cell transplantation (HSCT, and gene therapy. HSCT is currently the only treatment shown to provide an effective, definitive cure for β-thalassemia. However, this procedure remains risky and histocompatible donors are identified for only a small fraction of patients. New pharmacological compounds are being tested, but none has yet made it into common clinical practice for the treatment of beta-thalassemia major. Gene therapy is in the experimental phase. It is emerging as a powerful approach without the immunological complications of HSCT, but with other possible drawbacks. Rapid progress is being made in this field, and long-term efficacy and safety studies are underway.

  1. Three-dimensional current flow and particle precipitation in a westward travelling surge (observed during the barium-GEOS rocket experiment)

    International Nuclear Information System (INIS)

    Opgenoorth, H.J.; Pellinen, R.J.; Baumjohann, W.; Nielsen, E.; Marklund, G.; Eliasson, L.

    1983-01-01

    During the Barium-GEOS rocket experiment on September 24, 1979 the passage of a westward travelling surge (WTS) was observed over Scandinavia. Extended instrument networks in that area, viz., the Scandinavian Magnetometer Array, the STARE radars, all-sky cameras, and riometers, allowed simultaneous observation of the two-dimensional character of magnetic and electric field disturbances and particle precipitation associated with the auroral feature. By combination of the different datasets and additional information from particle and electric field measurements aboard the Barium-GEOS rocket it was possible to derive the two-dimensional distribution of ionospheric electric fields and conductivities and to model the three-dimensional current flow in the vicinity of the westward travelling surge. The main feature of the resulting model current system is the presence of a localized upward field-aligned current directed out of the head of the surge and fed by a westward electrojet, which is composed of both Hall and Pedersen currents. Secondary ionospheric currents, e.g. a counterclockwise loop of mainly Hall currents around the leading edge of the surge, are found to be responsible for most of the transient effects observed by ground-based magnetometers as the WTS passed overhead. The most energetic particle precipitation as inferred from cosmic noise absorption measurements and triangulation of auroral arc altitudes is found to be confined to the leading part and central regions of the surge and to travel westward with the visual auroral form

  2. Study of a Particle Based Films Cure Process by High-Frequency Eddy Current Spectroscopy

    Directory of Open Access Journals (Sweden)

    Iryna Patsora

    2016-12-01

    Full Text Available Particle-based films are today an important part of various designs and they are implemented in structures as conductive parts, i.e., conductive paste printing in the manufacture of Li-ion batteries, solar cells or resistive paste printing in IC. Recently, particle based films were also implemented in the 3D printing technique, and are particularly important for use in aircraft, wind power, and the automotive industry when incorporated onto the surface of composite structures for protection against damages caused by a lightning strike. A crucial issue for the lightning protection area is to realize films with high homogeneity of electrical resistance where an in-situ noninvasive method has to be elaborated for quality monitoring to avoid undesirable financial and time costs. In this work the drying process of particle based films was investigated by high-frequency eddy current (HFEC spectroscopy in order to work out an automated in-situ quality monitoring method with a focus on the electrical resistance of the films. Different types of particle based films deposited on dielectric and carbon fiber reinforced plastic substrates were investigated in the present study and results show that the HFEC method offers a good opportunity to monitor the overall drying process of particle based films. Based on that, an algorithm was developed, allowing prediction of the final electrical resistance of the particle based films throughout the drying process, and was successfully implemented in a prototype system based on the EddyCus® HFEC device platform presented in this work. This prototype is the first solution for a portable system allowing HFEC measurement on huge and uneven surfaces.

  3. 4-13 kA DC current transducers enabling accurate in-situ calibration for a new particle accelerator project, LHC

    CERN Document Server

    Hudson, G

    2005-01-01

    CERN's next generation particle accelerator, the large hadron collider (LHC) requires accurate current measurement up to 13 kA to enable current tracking between individual power converters. DC current transducers (DCCTs) have been developed to allow in-situ calibrations to 10/sup -6/ uncertainty. This paper describes the principle, design and initial evaluations.

  4. Incretin-based therapies in prediabetes: Current evidence and future perspectives

    Science.gov (United States)

    Papaetis, Georgios S

    2014-01-01

    The prevalence of type 2 diabetes (T2D) is evolving globally at an alarming rate. Prediabetes is an intermediate state of glucose metabolism that exists between normal glucose tolerance (NGT) and the clinical entity of T2D. Relentless β-cell decline and failure is responsible for the progression from NGT to prediabetes and eventually T2D. The huge burden resulting from the complications of T2D created the need of therapeutic strategies in an effort to prevent or delay its development. The beneficial effects of incretin-based therapies, dipeptidyl peptidase-4 inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists, on β-cell function in patients with T2D, together with their strictly glucose-depended mechanism of action, suggested their possible use in individuals with prediabetes when greater β-cell mass and function are preserved and the possibility of β-cell salvage is higher. The present paper summarizes the main molecular intracellular mechanisms through which GLP-1 exerts its activity on β-cells. It also explores the current evidence of incretin based therapies when administered in a prediabetic state, both in animal models and in humans. Finally it discusses the safety of incretin-based therapies as well as their possible role in order to delay or prevent T2D. PMID:25512784

  5. Psychological Therapies for Auditory Hallucinations (Voices): Current Status and Key Directions for Future Research

    Science.gov (United States)

    Thomas, Neil; Hayward, Mark; Peters, Emmanuelle; van der Gaag, Mark; Bentall, Richard P.; Jenner, Jack; Strauss, Clara; Sommer, Iris E.; Johns, Louise C.; Varese, Filippo; García-Montes, José Manuel; Waters, Flavie; Dodgson, Guy; McCarthy-Jones, Simon

    2014-01-01

    This report from the International Consortium on Hallucinations Research considers the current status and future directions in research on psychological therapies targeting auditory hallucinations (hearing voices). Therapy approaches have evolved from behavioral and coping-focused interventions, through formulation-driven interventions using methods from cognitive therapy, to a number of contemporary developments. Recent developments include the application of acceptance- and mindfulness-based approaches, and consolidation of methods for working with connections between voices and views of self, others, relationships and personal history. In this article, we discuss the development of therapies for voices and review the empirical findings. This review shows that psychological therapies are broadly effective for people with positive symptoms, but that more research is required to understand the specific application of therapies to voices. Six key research directions are identified: (1) moving beyond the focus on overall efficacy to understand specific therapeutic processes targeting voices, (2) better targeting psychological processes associated with voices such as trauma, cognitive mechanisms, and personal recovery, (3) more focused measurement of the intended outcomes of therapy, (4) understanding individual differences among voice hearers, (5) extending beyond a focus on voices and schizophrenia into other populations and sensory modalities, and (6) shaping interventions for service implementation. PMID:24936081

  6. Recent progress in particle accelerators

    International Nuclear Information System (INIS)

    Cole, F.T.; Mills, F.E.

    1988-01-01

    Many accelerators have also been built for medical radiography and therapy. Electron accelerators for this application are available commercially, using the electrons directly or bremsstrahlung photons. Neutrons produced by accelerator beams have also been used for therapy with considerable success, and several proton accelerators built for physics research have been adapted for direct therapy with protons. The first proton accelerator specifically for therapy is now being built. Separate from what might be called conventional accelerator technology, an entirely new field utilizing very highly pulsed power has been developed, and beams of short pulses of thousands or millions of amperes peak current in the MeV energy range are now available. These beams have important applications in high-energy particle acceleration, controlled fusion, industrial treatment of materials, and possibly in food preservation. All of these accelerators make use of external fields of acceleration. There is also vigorous research into new methods of acceleration, in many schemes making use of the intense accelerating fields, generated by laser beams or by plasma states of matter. This research has not as yet made traditional kinds of accelerators outmoded, but many workers hope that early in the next century there will be practical new acceleration methods making use of these very high fields. These developments are discussed in detail

  7. Special report : Workshop on 4D-treatment planning in actively scanned particle therapy-Recommendations, technical challenges, and future research directions

    NARCIS (Netherlands)

    Knopf, Antje; Bert, Christoph; Heath, Emily; Nill, Simeon; Kraus, Kim; Richter, Daniel; Hug, Eugen B.; Pedroni, Eros; Safai, Sairos; Albertini, Francesca; Zenklusen, Silvan; Boye, Dirk; Söhn, Matthias; Soukup, Martin; Sobotta, Benjamin; Lomax, Antony

    This article reports on a 4D-treatment planning workshop (4DTPW), held on 7-8 December 2009 at the Paul Scherrer Institut (PSI) in Villigen, Switzerland. The participants were all members of institutions actively involved in particle therapy delivery and research. The purpose of the 4DTPW was to

  8. Long-term Results of the UCSF-LBNL Randomized Trial: Charged Particle With Helium Ion Versus Iodine-125 Plaque Therapy for Choroidal and Ciliary Body Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Kavita K., E-mail: Kavita.mishra@ucsf.edu [Department of Radiation Oncology, University of California-San Francisco, San Francisco, California (United States); Quivey, Jeanne M.; Daftari, Inder K. [Department of Radiation Oncology, University of California-San Francisco, San Francisco, California (United States); Lawrence Berkeley National Laboratory, Berkeley, California (United States); Weinberg, Vivian [Department of Radiation Oncology, University of California-San Francisco, San Francisco, California (United States); Cole, Tia B. [The Tumori Foundation, San Francisco, California (United States); Patel, Kishan [Department of Radiation Oncology, University of California-San Francisco, San Francisco, California (United States); Castro, Joseph R.; Phillips, Theodore L. [Department of Radiation Oncology, University of California-San Francisco, San Francisco, California (United States); Lawrence Berkeley National Laboratory, Berkeley, California (United States); Char, Devron H. [The Tumori Foundation, San Francisco, California (United States); Department of Ophthalmology, University of California-San Francisco, San Francisco, California (United States); Department of Ophthalmology, Stanford University, Palo Alto, California (United States)

    2015-06-01

    Purpose: Relevant clinical data are needed given the increasing national interest in charged particle radiation therapy (CPT) programs. Here we report long-term outcomes from the only randomized, stratified trial comparing CPT with iodine-125 plaque therapy for choroidal and ciliary body melanoma. Methods and Materials: From 1985 to 1991, 184 patients met eligibility criteria and were randomized to receive particle (86 patients) or plaque therapy (98 patients). Patients were stratified by tumor diameter, thickness, distance to disc/fovea, anterior extension, and visual acuity. Tumors close to the optic disc were included. Local tumor control, as well as eye preservation, metastases due to melanoma, and survival were evaluated. Results: Median follow-up times for particle and plaque arm patients were 14.6 years and 12.3 years, respectively (P=.22), and for those alive at last follow-up, 18.5 and 16.5 years, respectively (P=.81). Local control (LC) for particle versus plaque treatment was 100% versus 84% at 5 years, and 98% versus 79% at 12 years, respectively (log rank: P=.0006). If patients with tumors close to the disc (<2 mm) were excluded, CPT still resulted in significantly improved LC: 100% versus 90% at 5 years and 98% versus 86% at 12 years, respectively (log rank: P=.048). Enucleation rate was lower after CPT: 11% versus 22% at 5 years and 17% versus 37% at 12 years, respectively (log rank: P=.01). Using Cox regression model, likelihood ratio test, treatment was the most important predictor of LC (P=.0002) and eye preservation (P=.01). CPT was a significant predictor of prolonged disease-free survival (log rank: P=.001). Conclusions: Particle therapy resulted in significantly improved local control, eye preservation, and disease-free survival as confirmed by long-term outcomes from the only randomized study available to date comparing radiation modalities in choroidal and ciliary body melanoma.

  9. Opportunity of interventional radiology: advantages and application of interventional technique in biological target therapy

    International Nuclear Information System (INIS)

    Teng Gaojun; Lu Qin

    2007-01-01

    Interventional techniques not only provide opportunity of treatment for many diseases, but also alter the traditional therapeutic pattern. With the new century of wide application of biological therapies, interventional technique also shows extensive roles. The current biological therapy, including gene therapy, cell transplantation therapy, immunobiologic molecule therapy containing cell factors, tumor antibody or vaccine, recombined proteins, radioactive-particles and targeting materials therapy, can be locally administrated by interventional techniques. The combination of targeting biological therapies and high-targeted interventional technique holds advantages of minimal invasion, accurate delivery, vigorous local effect, and less systemic adverse reactions. Authors believe that the biological therapy may arise a great opportunity for interventional radiology, therefore interventional colleagues should grasp firmly and promptly for the development and extension in this field. (authors)

  10. Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Breeman, W.A.P.; Jong, M. de; Kwekkeboom, D.J.; Valkema, R.; Bakker, W.H.; Kooij, P.P.M. [Dept. of Nuclear Medicine, Erasmus Medical Centre Rotterdam (Netherlands); Visser, T.J. [Dept. of Internal Medicine, Erasmus Medical Centre Rotterdam (Netherlands); Krenning, E.P. [Dept. of Nuclear Medicine, Erasmus Medical Centre Rotterdam (Netherlands); Dept. of Internal Medicine, Erasmus Medical Centre Rotterdam (Netherlands)

    2001-09-01

    In vivo somatostatin receptor-mediated scintigraphy has proven to be a valuable method for the visualisation of neuroendocrine tumours and their metastases. A new application is the use of radiolabelled analogues for somatostatin receptor-mediated therapy. This paper presents a review on the basic science, historical background and current knowledge of somatostatin receptor subtypes and their expression in neuroendocrine tumours. New somatostatin analogues, new chelators, ''new'' radionuclides and combinations thereof are also discussed. Due attention is given to limitations and future perspectives of somatostatin receptor-mediated imaging and therapy. (orig.)

  11. Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives

    International Nuclear Information System (INIS)

    Breeman, W.A.P.; Jong, M. de; Kwekkeboom, D.J.; Valkema, R.; Bakker, W.H.; Kooij, P.P.M.; Visser, T.J.; Krenning, E.P.

    2001-01-01

    In vivo somatostatin receptor-mediated scintigraphy has proven to be a valuable method for the visualisation of neuroendocrine tumours and their metastases. A new application is the use of radiolabelled analogues for somatostatin receptor-mediated therapy. This paper presents a review on the basic science, historical background and current knowledge of somatostatin receptor subtypes and their expression in neuroendocrine tumours. New somatostatin analogues, new chelators, ''new'' radionuclides and combinations thereof are also discussed. Due attention is given to limitations and future perspectives of somatostatin receptor-mediated imaging and therapy. (orig.)

  12. Monoclonal antibody therapy for neuromyelitis optica spectrum disorder: current and future.

    Science.gov (United States)

    Lin, Jie; Xue, Binbin; Li, Xiang; Xia, Junhui

    2017-08-01

    Monoclonal-antibody has been used for patients with autoimmune disorders for several years, and efficacy and safety were appreciated for these patients. Neuromyelitis optica specturm disorder (NMOSD) has been defined as an autoimmune demyelination disorder of the central nervous system (CNS) with a course of relapse-remission. Treatment of prevention is important for patients with NMOSD because of the increased disability after several attacks. Multiple factors were involved in the pathogenesis of NMOSD. Currently, targeting specific factor was favored in the research into the treatment for NMOSD. Previous studies reported the efficacy and tolerance in NMOSD for drugs such as rituximab, tocilizumab, and eculizumab. The aim of this article is to review the current monoclonal therapies for NMOSD patients, and also future alternative options.

  13. Particle currents in a space-time dependent and CP-violating Higgs background: a field theory approach

    International Nuclear Information System (INIS)

    Comelli, D.; Riotto, A.

    1995-06-01

    Motivated by cosmological applications like electroweak baryogenesis, we develop a field theoretic approach to the computation of particle currents on a space-time dependent and CP-violating Higgs background. We consider the Standard Model model with two Higgs doublets and CP violation in the scalar sector, and compute both fermionic and Higgs currents by means of an expansion in the background fields. We discuss the gauge dependence of the results and the renormalization of the current operators, showing that in the limit of local equilibrium, no extra renormalization conditions are needed in order to specify the system completely. (orig.)

  14. Renal denervation therapy for hypertension: Current and future perspectives

    Directory of Open Access Journals (Sweden)

    Mohd Aslam Khan

    2016-01-01

    Full Text Available Hypertension (HTN is the most common chronic cardiovascular disease with increasing prevalence and morbidity in India as well as worldwide. Despite the availability of different effective subgroups of antihypertensive drugs, few patients may not respond and causes significant morbidity. Resistant HTN is defined as blood pressure above target goals in patients using three different antihypertensive drugs in maximum tolerated doses, including a diuretic. Prevalence of resistant HTN varies from 8% to 18% of all hypertensives. Increased sympathetic nervous system activity has been identified as one potential cause for resistant HTN. Catheter-based renal denervation (RDN has been studied in different subgroups of patients for the treatment of resistant HTN. Clinical data for usefulness of RDN till date show mixed results, and overall indications for procedure are unclear. Different observational studies and randomized, controlled trials (Symplicity HTN-2, Prague-15, RSD-LEIPZIG, and DENERHTN support both safety and efficacy of procedure, whereas some smaller studies and large Symplicity HTN-3 trial failed to show the superiority of RDN when compared to medical therapy alone. The aim of the present review is to provide an overview of RDN therapy in the treatment of HTN and current status of this procedure in management of such patients.

  15. Current perspectives on the use of ancillary materials for the manufacture of cellular therapies.

    Science.gov (United States)

    Solomon, Jennifer; Csontos, Lynn; Clarke, Dominic; Bonyhadi, Mark; Zylberberg, Claudia; McNiece, Ian; Kurtzberg, Joanne; Bell, Rosemarie; Deans, Robert

    2016-01-01

    Continued growth in the cell therapy industry and commercialization of cell therapies that successfully advance through clinical trials has led to increased awareness around the need for specialized and complex materials utilized in their manufacture. Ancillary materials (AMs) are components or reagents used during the manufacture of cell therapy products but are not intended to be part of the final products. Commonly, there are limitations in the availability of clinical-grade reagents used as AMs. Furthermore, AMs may affect the efficacy of the cell product and subsequent safety of the cell therapy for the patient. As such, AMs must be carefully selected and appropriately qualified during the cell therapy development process. However, the ongoing evolution of cell therapy research, limited number of clinical trials and registered cell therapy products results in the current absence of specific regulations governing the composition, compliance, and qualification of AMs often leads to confusion by suppliers and users in this field. Here we provide an overview and interpretation of the existing global framework surrounding AM use and investigate some common misunderstandings within the industry, with the aim of facilitating the appropriate selection and qualification of AMs. The key message we wish to emphasize is that in order to most effectively mitigate risk around cell therapy development and patient safety, users must work with their suppliers and regulators to qualify each AM to assess source, purity, identity, safety, and suitability in a given application. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  16. A Medical Application of Nuclear Physics: Particle Radiotherapy with Protons

    Science.gov (United States)

    Farr, Jonathan B.

    2006-10-01

    Since the discovery of radiation, applications have been made to medicine. The advent of higher energy particle accelerators in the second half of the twentieth century enabled modern tele-therapy using relatively high energy x-rays and particles. Today mega-voltage (MV) x-rays are the most common modality of delivering high doses of potentially life saving radiation to a wide variety of disease, mostly malignant cancers. However, the maximum radiation dose that can be delivered is always limited by the effects to critical surrounding biologic structures. In many cases, due to their physical properties, ``heavy'' particle radiotherapy with protons and light ions may provide an advantage in this respect over MV x-rays allowing either a higher dose of radiation to be delivered to the volume or, for the same dose, reducing the concomitant damage to critical structures. This motivation, together with recent advances in particle therapy systems that are making the technology more readily available, is serving to grow the field of particle therapy. In particular, treatment with fast protons is becoming more widespread with over 20 facilities operating worldwide and more under construction. This presentation will provide an introduction to heavy particle therapy and additional details specifically on proton therapy.

  17. Influence of contrast-enhanced CT and MRI with or without SPIO particles on therapy and therapy costs for patients with focal liver disease

    International Nuclear Information System (INIS)

    Helmberger, T.; Gregor, M.; Holzknecht, N.; Scheidler, J.; Reiser, M.; Rau, H.

    2000-01-01

    Purpose: Evaluation of the diagnostic efficacy and cost-benefit of contrast enhanced CT (CT) and MRI pre- and post-SPIO-particles in focal hepatic disease with consideration of therapeutic outcome. Results: In 34/52 (65.4%) of the cases the correct diagnosis was primarily stated by CT (sensitivity [se.] 85.2%, specificity [sp.] 44.0%). In additional 10/52 of the cases unenhanced MRI (se. 91.4%, sp. 75.0%) enabled correct diagnoses, and in another 6 cases the diagnosis was established only by SPIO-MRI (se. 100%, sp. 86.7%). Considering the possible therapeutic recommendation arising from each modality, CT would have induced needless therapy costs of 191,042 DM, unenhanced MRI of 171,035 DM, and SPIO-MRI of 7,311 DM. In comparison to the real therapy costs of 221,873 DM, this would have corresponded to an unnecessary increase of therapy costs of 86.1%, 77.1%, and 3.3%, respectively. In two cases (91 hemangioma, 1 regenerative nodule) all modalities failed, causing unnecessary surgery in one patient. Discussion: In this problem-oriented scenario unenhanced and SPIO-enhanced MRI proved to be superior to CT regarding diagnostic efficacy. The cost-benefit resulted mainly due to preserving patients from unnecessary surgical procedures. (orig./AJ) [de

  18. Clinical proteomics-driven precision medicine for targeted cancer therapy: current overview and future perspectives.

    Science.gov (United States)

    Zhou, Li; Wang, Kui; Li, Qifu; Nice, Edouard C; Zhang, Haiyuan; Huang, Canhua

    2016-01-01

    Cancer is a common disease that is a leading cause of death worldwide. Currently, early detection and novel therapeutic strategies are urgently needed for more effective management of cancer. Importantly, protein profiling using clinical proteomic strategies, with spectacular sensitivity and precision, offer excellent promise for the identification of potential biomarkers that would direct the development of targeted therapeutic anticancer drugs for precision medicine. In particular, clinical sample sources, including tumor tissues and body fluids (blood, feces, urine and saliva), have been widely investigated using modern high-throughput mass spectrometry-based proteomic approaches combined with bioinformatic analysis, to pursue the possibilities of precision medicine for targeted cancer therapy. Discussed in this review are the current advantages and limitations of clinical proteomics, the available strategies of clinical proteomics for the management of precision medicine, as well as the challenges and future perspectives of clinical proteomics-driven precision medicine for targeted cancer therapy.

  19. Current status of elementary particle physics

    International Nuclear Information System (INIS)

    Okun', L.B.

    1998-01-01

    A brief review is given of the state-of-the art in elementary particle physics based on the talk of the same title given on January 22, 1998, at the seminar marking the 90th birth anniversary of L.D. Landau. (The seminar was hosted by the P.L. Kapitza Institute for Physical Problems in cooperation with the L.D. Landau Institute for Theoretical Physics)

  20. Childhood central nervous system leukemia: historical perspectives, current therapy, and acute neurological sequelae

    Energy Technology Data Exchange (ETDEWEB)

    Laningham, Fred H. [St. Jude Children' s Research Hospital, Division of Diagnostic Imaging, Department of Radiological Sciences, Memphis, TN (United States); University of Tennessee Health Sciences Center, Memphis, TN (United States); Kun, Larry E. [St. Jude Children' s Research Hospital, Division of Radiation Oncology, Department of Radiological Sciences, Memphis, TN (United States); University of Tennessee Health Sciences Center, Memphis, TN (United States); Reddick, Wilburn E.; Ogg, Robert J. [St. Jude Children' s Research Hospital, Division of Translational Imaging Research, Department of Radiological Sciences, Memphis, TN (United States); Morris, E.B. [St. Jude Children' s Research Hospital, Department of Oncology, Memphis, TN (United States); Pui, Ching-Hon [St. Jude Children' s Research Hospital, Department of Oncology, Memphis, TN (United States); University of Tennessee Health Sciences Center, Memphis, TN (United States)

    2007-11-15

    During the past three decades, improvements in the treatment of childhood leukemia have resulted in high cure rates, particularly for acute lymphoblastic leukemia (ALL). Unfortunately, successful therapy has come with a price, as significant morbidity can result from neurological affects which harm the brain and spinal cord. The expectation and hope is that chemotherapy, as a primary means of CNS therapy, will result in acceptable disease control with less CNS morbidity than has been observed with combinations of chemotherapy and radiotherapy over the past several decades. In this review we discuss the poignant, historical aspects of CNS leukemia therapy, outline current methods of systemic and CNS leukemia therapy, and present imaging findings we have encountered in childhood leukemia patients with a variety of acute neurological conditions. A major objective of our research is to understand the neuroimaging correlates of acute and chronic effects of cancer and therapy. Specific features related to CNS leukemia and associated short-term toxicities, both disease- and therapy-related, are emphasized in this review with the specific neuroimaging findings. Specific CNS findings are similarly important when treating acute myelogenous leukemia (AML), and details of leukemic involvement and toxicities are also presented in this entity. Despite contemporary treatment approaches which favor the use of chemotherapy (including intrathecal therapy) over radiotherapy in the treatment of CNS leukemia, children still occasionally experience morbid neurotoxicity. Standard neuroimaging is sufficient to identify a variety of neurotoxic sequelae in children, and often suggest specific etiologies. Specific neuroimaging findings frequently indicate a need to alter antileukemia therapy. It is important to appreciate that intrathecal and high doses of systemic chemotherapy are not innocuous and are associated with acute, specific, recognizable, and often serious neurological

  1. Childhood central nervous system leukemia: historical perspectives, current therapy, and acute neurological sequelae

    International Nuclear Information System (INIS)

    Laningham, Fred H.; Kun, Larry E.; Reddick, Wilburn E.; Ogg, Robert J.; Morris, E.B.; Pui, Ching-Hon

    2007-01-01

    During the past three decades, improvements in the treatment of childhood leukemia have resulted in high cure rates, particularly for acute lymphoblastic leukemia (ALL). Unfortunately, successful therapy has come with a price, as significant morbidity can result from neurological affects which harm the brain and spinal cord. The expectation and hope is that chemotherapy, as a primary means of CNS therapy, will result in acceptable disease control with less CNS morbidity than has been observed with combinations of chemotherapy and radiotherapy over the past several decades. In this review we discuss the poignant, historical aspects of CNS leukemia therapy, outline current methods of systemic and CNS leukemia therapy, and present imaging findings we have encountered in childhood leukemia patients with a variety of acute neurological conditions. A major objective of our research is to understand the neuroimaging correlates of acute and chronic effects of cancer and therapy. Specific features related to CNS leukemia and associated short-term toxicities, both disease- and therapy-related, are emphasized in this review with the specific neuroimaging findings. Specific CNS findings are similarly important when treating acute myelogenous leukemia (AML), and details of leukemic involvement and toxicities are also presented in this entity. Despite contemporary treatment approaches which favor the use of chemotherapy (including intrathecal therapy) over radiotherapy in the treatment of CNS leukemia, children still occasionally experience morbid neurotoxicity. Standard neuroimaging is sufficient to identify a variety of neurotoxic sequelae in children, and often suggest specific etiologies. Specific neuroimaging findings frequently indicate a need to alter antileukemia therapy. It is important to appreciate that intrathecal and high doses of systemic chemotherapy are not innocuous and are associated with acute, specific, recognizable, and often serious neurological

  2. Approach to magnetic neutron capture therapy

    International Nuclear Information System (INIS)

    Kuznetsov, Anatoly A.; Podoynitsyn, Sergey N.; Filippov, Victor I.; Komissarova, Lubov Kh.; Kuznetsov, Oleg A.

    2005-01-01

    Purpose: The method of magnetic neutron capture therapy can be described as a combination of two methods: magnetic localization of drugs using magnetically targeted carriers and neutron capture therapy itself. Methods and Materials: In this work, we produced and tested two types of particles for such therapy. Composite ultradispersed ferro-carbon (Fe-C) and iron-boron (Fe-B) particles were formed from vapors of respective materials. Results: Two-component ultradispersed particles, containing Fe and C, were tested as magnetic adsorbent of L-boronophenylalanine and borax and were shown that borax sorption could be effective for creation of high concentration of boron atoms in the area of tumor. Kinetics of boron release into the physiologic solution demonstrate that ultradispersed Fe-B (10%) could be applied for an effective magnetic neutron capture therapy. Conclusion: Both types of the particles have high magnetization and magnetic homogeneity, allow to form stable magnetic suspensions, and have low toxicity

  3. Particle-in-cell simulations of electron beam control using an inductive current divider

    Energy Technology Data Exchange (ETDEWEB)

    Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.; Ottinger, P. F.; Richardson, A. S.; Schumer, J. W.; Weber, B. V. [Plasma Physics Division, Naval Research Laboratory, Washington, District of Columbia 20375 (United States)

    2015-11-15

    Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam's return current. The current divider concept was proposed and studied theoretically in a previous publication [Swanekamp et al., Phys. Plasmas 22, 023107 (2015)]. A central post carries a portion of the return current (I{sub 1}), while the outer conductor carries the remainder (I{sub 2}) with the injected beam current given by I{sub b} = I{sub 1} + I{sub 2}. The simulations are in agreement with the theory which predicts that the total force on the beam trajectory is proportional to (I{sub 2}−I{sub 1}) and the force on the beam envelope is proportional to I{sub b}. Independent control over both the current density and the beam angle at the target is possible by choosing the appropriate current-divider geometry. The root-mean-square (RMS) beam emittance (ε{sub RMS}) varies as the beam propagates through the current divider to the target. For applications where control of the beam trajectory is desired and the current density at the target is similar to the current density at the entrance foil, there is a modest 20% increase in ε{sub RMS} at the target. For other applications where the beam is pinched to a current density ∼5 times larger at the target, ε{sub RMS} is 2–3 times larger at the target.

  4. On the interaction between fluid turbulence and particle loading: numerical simulation of turbidity currents and prediction of deep-sea arenites

    Science.gov (United States)

    Doronzo, D. M.; Dufek, J.

    2012-04-01

    Turbidity currents are water-particle flows able to move large distance over the seafloor, and the deep-sea arenitic facies of their deposits often represents an important class of hydrocarbon reservoirs. Coupling flow behavior and the resulting deposits may thus help finding new reservoirs, as well as reconstructing the sediment transport mechanisms from the continental shelf to the abyssal plain. There is a broad literature of turbidity currents, which includes field, theoretical, experimental, and numerical studies on flow dynamics and associated deposits. Generally, the field and theoretical approaches focus on the scale of actual deposits and currents, respectively, whereas experimental and numerical approaches are often restricted to the laboratory scale and relatively low-Reynolds number, respectively. Fully resolved simulations that incorporate complex bathymetry, large-scale flow, multiphase and 3D effects, are computationally expensive and require closure schemes. Here, a 2D numerical model of turbidity current is proposed, which is based on the Euler-Lagrange formulation of multiphase physics, and on the Reynolds-averaged Navier-Stokes closure of turbulence. This strategy has been recently used in volcanology to simulate the gas-particle flow of pyroclastic density currents, in order to predict their deposits. The incompressible conservation equations of mass and momentum are solved for the water, and the equation of particle motion is solved for the sediment, which for this example, has an initial concentration of 1 % of 0.5 mm sand particles. The equations are solved numerically with the finite-volume method of Ansys Fluent software, and particle and fluid motion are two-way coupled during calculation, which means that the particles are tracked on the basis of water solution, then are allowed to affect the liquid turbulence through a momentum exchange. The Reynolds (turbulent) stresses, which dominate over the viscous ones in the turbidity current, are

  5. Current drive in a tokamak reactor during the heating of fast α particles

    International Nuclear Information System (INIS)

    Krasheninnikov, S.I.; Soboleva, T.K.

    1987-01-01

    Expressions are derived for the efficiency of the current drive in the approximation of a straight magnetic field through a solution of the kinetic equation for the distribution function of α particles as they are heated by rf waves. Three mechanisms for the absorption of the rf power in plasma are examined: cyclotron absorption at the fundamental frequency, Landau damping, and magnetic Landau damping. The efficiency of this method is shown to be at worst no lower than the efficiencies of methods involving electron heating

  6. Proton and heavy ion beam (charged particle therapy)

    International Nuclear Information System (INIS)

    Kanai, Tatsuaki

    2003-01-01

    There are distinguished therapeutic irradiation facilities of proton and heavy ion beam in Japan. The beam, due to its physical properties, is advantageous for focusing on the lesion in the body and for reducing the exposure dose to normal tissues, relative to X-ray. This makes it possible to irradiate the target lesion with the higher dose. The present review describes physical properties of the beam, equipments for the therapeutic irradiation, the respiratory-gated irradiation system, the layer-stacking irradiation system, therapy planning, and future prospect of the therapy. More than 1,400 patients have received the therapy in National Institute of Radiological Sciences (NIRS) and given a good clinical outcome. The targets are cancers of the head and neck, lung, liver, uterine and prostate, and osteosarcoma. The therapy of osteosarcoma is particularly important, which bringing about the high cure rate. Severe adverse effects are not seen with exception for the digestive tract ulcer. Many attempts like the respiratory-gated and layer-stacking systems and to shorten the therapy period to within 1 week are in progress. (N.I.)

  7. An “Off-the-Shelf” System for Intraprocedural Electrical Current Evaluation and Monitoring of Irreversible Electroporation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Neal, Robert E., E-mail: Robert.Neal@alfred.org.au; Kavnoudias, Helen; Thomson, Kenneth R. [The Alfred Hospital, Radiology Research Unit, Department of Radiology (Australia)

    2015-06-15

    IntroductionIrreversible electroporation (IRE) ablation uses a series of brief electric pulses to create nanoscale defects in cell membranes, killing the cells. It has shown promise in numerous soft-tissue tumor applications. Larger voltages between electrodes will increase ablation volume, but exceeding electrical limits may risk damage to the patient, cause ineffective therapy delivery, or require generator restart. Monitoring electrical current for these conditions in real-time enables managing these risks. This capacity is not presently available in clinical IRE generators.MethodsWe describe a system using a Tektronix TCP305 AC/DC Current Probe connected to a TCPA300 AC/DC Current Probe Amplifier, which is read on a computer using a Protek DSO-2090 USB computer-interfacing oscilloscope. Accuracy of the system was tested with a resistor circuit and by comparing measured currents with final outputs from the NanoKnife clinical electroporation pulse generator.ResultsAccuracy of measured currents was 1.64 ± 2.4 % relative to calculations for the resistor circuit and averaged 0.371 ± 0.977 % deviation from the NanoKnife. During clinical pulse delivery, the system offers real-time evaluation of IRE procedure progress and enables a number of methods for identifying approaching issues from electrical behavior of therapy delivery, facilitating protocol changes before encountering therapy delivery issues.ConclusionsThis system can monitor electrical currents in real-time without altering the electric pulses or modifying the pulse generator. This facilitates delivering electric pulse protocols that remain within the optimal range of electrical currents—sufficient strength for clinically relevant ablation volumes, without the risk of exceeding safe electric currents or causing inadequate ablation.

  8. Quantum Dots in the Therapy: Current Trends and Perspectives.

    Science.gov (United States)

    Pohanka, Miroslav

    2017-01-01

    Quantum dots are an emerging nanomaterial with broad use in technical disciplines; however, their application in the field of biomedicine becomes also relevant and significant possibilities have appeared since the discovery in 1980s. The current review is focused on the therapeutic applications of quantum dots which become an emerging use of the particles. They are introduced as potent carriers of drugs and as a material well suited for the diagnosis of disparate pathologies like visualization of cancer cells or pathogenic microorganisms. Quantum dots toxicity and modifications for the toxicity reduction are discussed here as well. Survey of actual papers and patents in the field of quantum dots use in the biomedicine is provided. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Current oscillations in avalanche particle detectors with PNIPN-structure

    International Nuclear Information System (INIS)

    Lukin, K.A.

    1995-08-01

    The model of an avalanche high energy particle detector consisting of two pn-junctions, connected through an intrinsic semiconductor with a reverse biased voltage applied. This detector is able to generate the oscillatory response on the single particle passage through the structure. The possibility of oscillations leading to chaotic behaviour is pointed out

  10. Characterization of complete particles (VSV-G/SIN-GFP) and empty particles (VSV-G/EMPTY) in human immunodeficiency virus type 1-based lentiviral products for gene therapy: potential applications for improvement of product quality and safety.

    Science.gov (United States)

    Zhao, Yuan; Keating, Kenneth; Dolman, Carl; Thorpe, Robin

    2008-05-01

    Lentiviral vectors persist in the host and are therefore ideally suited for long-term gene therapy. To advance the use of lentiviral vectors in humans, improvement of their production, purification, and characterization has become increasingly important and challenging. In addition to cellular contaminants derived from packaging cells, empty particles without therapeutic function are the major impurities that compromise product safety and efficacy. Removal of empty particles is difficult because of their innate similarity in particle size and protein composition to the complete particles. We propose that comparison of the properties of lentiviral products with those of purposely expressed empty particles may reveal potential differences between empty and complete particles. For this, three forms of recombinant lentiviral samples, that is, recombinant vesicular stomatitis virus glycoprotein (VSV-G) proteins, empty particles (VSV-G/Empty), and complete particles (VSV-G/SIN-GFP) carrying viral RNA, were purified by size-exclusion chromatography (SEC). The SEC-purified samples were further analyzed by immunoblotting with six antibodies to examine viral and cellular proteins associated with the particles. This study has demonstrated, for the first time, important differences between VSV-G/Empty particles and complete VSV-G/SIN-GFP particles. Differences include the processing of Gag protein and the inclusion of cellular proteins in the particles. Our findings support the development of improved production, purification, and characterization methods for lentiviral products.

  11. Evaluation of low level laser and interferential current in the therapy of complex regional pain syndrome by infrared thermographic camera

    Directory of Open Access Journals (Sweden)

    Kocić Mirjana

    2010-01-01

    Full Text Available Background/Aim. Complex regional pain syndrome type I (CRPS I is characterized by continuous regional pain, disproportional according to duration and intensity and to the sort of trauma or other lesion it was caused by. The aim of the study was to evaluate and compare, by using thermovison, the effects of low level laser therapy and therapy with interferential current in treatment of CRPS I. Methods. The prospective randomized controlled clinical study included 45 patients with unilateral CRPS I, after a fracture of the distal end of the radius, of the tibia and/or the fibula, treated in the Clinical Centre in Nis from 2004 to 2007. The group A consisted of 20 patients treated by low level laser therapy and kinesy-therapy, while the patients in the group B (n = 25 were treated by interferential current and kinesy-therapy. The regions of interest were filmed by a thermovision camera on both sides, before and after the 20 therapeutic procedures had been applied. Afterwards, the quantitative analysis and the comparing of thermograms taken before and after the applied therapy were performed. Results. There was statistically significant decrease of the mean maximum temperature difference between the injured and the contralateral extremity after the therapy in comparison to the status before the therapy, with the patients of the group A (p < 0.001 as well as those of the group B (p < 0.001. The decrease was statistically significantly higher in the group A than in the group B (p < 0.05. Conclusions. By the use of the infrared thermovision we showed that in the treatment of CRPS I both physical medicine methods were effective, but the effectiveness of laser therapy was statistically significantly higher compared to that of the interferential current therapy.

  12. Salvage therapies in relapsed and/or refractory myeloma: what is current and what is the future?

    Directory of Open Access Journals (Sweden)

    Thumallapally N

    2016-08-01

    Full Text Available Nishitha Thumallapally,1 Hana Yu,1 Divya Asti,1 Adarsh Vennepureddy,1 Terenig Terjanian2 1Department of Internal Medicine, 2Division of Hematology and Oncology, Staten Island University Hospital, New York, NY, USA Abstract: The treatment landscape for multiple myeloma (MM is evolving with our understanding of its pathophysiology. However, given the inevitable cohort heterogeneity in salvage therapy, response to treatment and overall prognoses tend to vary widely, making meaningful conclusions about treatment efficacy difficult to derive. Despite the hurdles in current research, progress is underway toward more targeted therapeutic approaches. Several new drugs with novel mechanism of action and less toxic profile have been developed in the past decade, with the potential for use as single agents or in synergy with other treatment modalities in MM therapy. As our discovery of these emerging therapies progresses, so too does our need to reshape our knowledge on knowing how to apply them. This review highlights some of the recent landmark changes in MM management with specific emphasis on salvage drugs available for relapsed and refractory MM and also discusses some of the upcoming cutting-edge therapies that are currently in various stages of clinical development. Keywords: multiple myeloma, novel drugs, relapsed and refractory myeloma, salvage chemotherapy 

  13. Current Status and Future Directions of Targeted Peptide Radionuclide Therapy

    International Nuclear Information System (INIS)

    Valkema, R.

    2009-01-01

    Current status: Peptide receptor radionuclide therapy (PRRT) is currently almost exclusively targeted at the somatostatin receptor (sst). Of the 5 receptor subtypes, sst2 is frequently very highly expressed at the cell surface of neuroendocrine tumors (NET). Octreotide is a small and stable derivative of native somatostatin, which can be very well labeled with therapeutic radionuclides such as the beta-emitters ''9''0Y, ''1''7''7Lu or the Auger emitter ''1''1''1In, chelated in DTPA or DOTA, linked to the peptide. All current therapeutic octreotide derivatives are agonists that are internalized in the cell. The affinity for the sst2 receptor is better for [DOTA,Tyr''3]octreotate than for [DOTA,Tyr''3]octreotide or [DTPA]octreotide. ''9''0Y is a pure beta-emitter, with a half-life of 2.7 days, a high energy of 2.270 MeV, and a maximum penetration in tissue of 12mm. ''1''7''7Lu with a half-life of 6.7 days emits a low abundance of gamma photons as well as beta particles of 497 keV, with a maximum tissue penetration of 2 mm. ''1''7''7Lu-[DOTA,Tyr''3]octreotate (Lu-DOTATE), ''9''0Y-[DOTA,Tyr''3]octreotate (Y-DOTATATE) and ''9''0Y-[DOTA,Tyr''3]octreotide (Y-DOTATOC) are today the most frequently used therapeutic radiopeptides. Main inclusion criteria: inoperable and/or metastatic NET, receptor-positivity in all known lesions demonstrated by sufficient uptake on ''1''1''1In-octreotide scintigraphy (intensity > liver parenchyma), life expectancy at least 3-6 months, sufficient bone marrow reserve (hemoglobin (HGB) ≥ 5 mmol/L, white blood cells (WBC) ≥ 2*10 9 /L, platelets (PLT) ≥ 75*10 12 /L), sufficient renal function (serum creatinine 40 mL/min), sufficient hepatic and cardiac reserve. Karnofski score ≥50. Efficacy: several groups have reported objective response rates (RECIST or WHO/SWOG; CT or MRI based). Complete remission (CR) is rarely seen, partial remission (PR; >50% shrinkage SWOG) in 7% - 37%, minor remission (MR, 25% - 50% shrinkage) in 13% - 17

  14. Current Molecular Targeted Therapies for Bone and Soft Tissue Sarcomas

    Directory of Open Access Journals (Sweden)

    Kenji Nakano

    2018-03-01

    Full Text Available Systemic treatment options for bone and soft tissue sarcomas remained unchanged until the 2000s. These cancers presented challenges in new drug development partly because of their rarity and heterogeneity. Many new molecular targeting drugs have been tried in the 2010s, and some were approved for bone and soft tissue sarcoma. As one of the first molecular targeted drugs approved for solid malignant tumors, imatinib’s approval as a treatment for gastrointestinal stromal tumors (GISTs has been a great achievement. Following imatinib, other tyrosine kinase inhibitors (TKIs have been approved for GISTs such as sunitinib and regorafenib, and pazopanib was approved for non-GIST soft tissue sarcomas. Olaratumab, the monoclonal antibody that targets platelet-derived growth factor receptor (PDGFR-α, was shown to extend the overall survival of soft tissue sarcoma patients and was approved in 2016 in the U.S. as a breakthrough therapy. For bone tumors, new drugs are limited to denosumab, a receptor activator of nuclear factor κB ligand (RANKL inhibitor, for treating giant cell tumors of bone. In this review, we explain and summarize the current molecular targeting therapies approved and in development for bone and soft tissue sarcomas.

  15. Advanced therapy medicinal products: current and future perspectives.

    Science.gov (United States)

    Hanna, Eve; Rémuzat, Cécile; Auquier, Pascal; Toumi, Mondher

    2016-01-01

    Advanced therapy medicinal products (ATMPs) are innovative therapies that encompass gene therapy, somatic cell therapy, and tissue-engineered products. These therapies are expected to bring important health benefits, but also to substantially impact the pharmaceuticals budget. The aim of this study was to characterise the ATMPs in development and discuss future implications in terms of market access. Clinical trials were searched in the following databases: EudraCT (EU Drug Regulating Authorities Clinical Trials), ClinicalTrials.gov, and ICTRP (International Clinical Trials Registry Platform of the World Health Organization). Trials were classified by category of ATMP as defined by European regulation EC No. 1394/2007, as well as by development phase and disease area. The database search identified 939 clinical trials investigating ATMPs (85% ongoing, 15% completed). The majority of trials were in the early stages (Phase I, I/II: 64.3%, Phase II, II/III: 27.9%, Phase 3: 6.9%). Per category of ATMP, we identified 53.6% of trials for somatic cell therapies, 22.8% for tissue-engineered products, 22.4% for gene therapies, and 1.2% for combined products (incorporating a medical device). Disease areas included cancer (24.8%), cardiovascular diseases (19.4%), musculoskeletal (10.5%), immune system and inflammation (11.5%), neurology (9.1%), and others. Of the trials, 47.2% enrolled fewer than 25 patients. Due to the complexity and specificity of ATMPs, new clinical trial methodologies are being considered (e.g., small sample size, non-randomised trials, single-arm trials, surrogate endpoints, integrated protocols, and adaptive designs). Evidence generation post-launch will become unavoidable to address payers' expectations. ATMPs represent a fast-growing field of interest. Although most of the products are in an early development phase, the combined trial phase and the potential to cure severe chronic conditions suggest that ATMPs may reach the market earlier than

  16. On Current Drive and Wave Induced Bootstrap Current in Toroidal Plasmas

    International Nuclear Information System (INIS)

    Hellsten, T.; Johnson, T.

    2008-01-01

    A comprehensive treatment of wave-particle interactions in toroidal plasmas including collisional relaxation, applicable to heating or anomalous wave induced transport, has been obtained by using Monte Carlo operators satisfying quasi-neutrality. This approach enables a self-consistent treatment of wave-particle interactions applicable to the banana regime in the neoclassical theory. It allows an extension into a regime with large temperature and density gradients, losses and transport of particles by wave-particle interactions making the method applicable to transport barriers. It is found that at large gradients the relationship between radial electric field, parallel velocity, temperature and density gradient in the neoclassical theory is modified such that coefficient in front of the logarithmic ion temperature gradient, which in the standard neoclassical theory is small and counteracts the electric field caused by the density gradient, now changes sign and contributes to the built up of the radial electric field. The possibility to drive current by absorbing the waves on trapped particles has been studied and how the wave-particle interactions affect the bootstrap current. Two new current drive mechanisms are studied: current drive by wave induced bootstrap current and selective detrapping into passing orbits by directed waves.

  17. Current approaches to antithrombotic therapy in patients with cardioembolic stroke

    Directory of Open Access Journals (Sweden)

    Oleg Ivanovich Vinogradov

    2013-01-01

    Full Text Available The rate of cardiogenic embolism among all ischemic strokes is as high as 38%. Cardioembolic strokes are characterized by the higher magnitude of neurological deficit, the high risk of recurrent acute stroke, and a lethal outcome. This review deals with the etiopathogenesis of thrombus formation in the heart chambers, with current criteria for the verification of cardioembolic strokes, with the results of trials of new oral anticoagulants, and latest guidelines for antithrombotic therapy to prevent stroke. Special focus is given to secondary stroke prevention in patients with nonvalvular atrial fibrillation since it is atrial fibrillation that is the most common cause of cardioembolic stroke.

  18. Current experiments in elementary-particle physics

    International Nuclear Information System (INIS)

    Wohl, C.G.; Armstrong, F.E.; Rittenberg, A.

    1983-03-01

    Microfiche are included which contain summaries of 479 experiments in elementary particle physics. Experiments are included at the following laboratories: Brookhaven (BNL); CERN; CESR; DESY; Fermilab (FNAL); Institute for Nuclear Studies (INS); KEK; LAMPF; Serpukhov (SERP); SIN; SLAC; and TRIUMF. Also, summaries of proton decay experiments are included. A list of experiments and titles is included; and a beam-target-momentum index and a spokesperson index are given. Properties of beams at the facilities are tabulated

  19. Construction of the radiation oncology teaching files system for charged particle radiotherapy.

    Science.gov (United States)

    Masami, Mukai; Yutaka, Ando; Yasuo, Okuda; Naoto, Takahashi; Yoshihisa, Yoda; Hiroshi, Tsuji; Tadashi, Kamada

    2013-01-01

    Our hospital started the charged particle therapy since 1996. New institutions for charged particle therapy are planned in the world. Our hospital are accepting many visitors from those newly planned medical institutions and having many opportunities to provide with the training to them. Based upon our experiences, we have developed the radiation oncology teaching files system for charged particle therapy. We adopted the PowerPoint of Microsoft as a basic framework of our teaching files system. By using our export function of the viewer any physician can create teaching files easily and effectively. Now our teaching file system has 33 cases for clinical and physics contents. We expect that we can improve the safety and accuracy of charged particle therapy by using our teaching files system substantially.

  20. The NHLBI REVIVE-IT study: Understanding its discontinuation in the context of current left ventricular assist device therapy.

    Science.gov (United States)

    Pagani, Francis D; Aaronson, Keith D; Kormos, Robert; Mann, Douglas L; Spino, Cathie; Jeffries, Neal; Taddei-Peters, Wendy C; Mancini, Donna M; McNamara, Dennis M; Grady, Kathleen L; Gorcsan, John; Petrucci, Ralph; Anderson, Allen S; Glick, Henry A; Acker, Michael A; Eduardo Rame, J; Goldstein, Daniel J; Pamboukian, Salpy V; Miller, Marissa A; Timothy Baldwin, J

    2016-11-01

    The National Institutes of Health National Heart, Lung, and Blood Institute convened a working group in March 2008 to discuss how therapies for heart failure (HF) might be best advanced using clinical trials involving left ventricular assist devices (LVAD). This group opined that the field was ready for a trial to assess the use of long-term ventricular assist device therapy in patients who are less ill than patients currently eligible for destination therapy, which resulted in the Randomized Evaluation of VAD InterVEntion before Inotropic Therapy (REVIVE-IT) pilot study. The specific objective of REVIVE-IT was to compare LVAD therapy with optimal medical management in patients with less advanced HF than current LVAD indications to determine if wider application of permanent LVAD use to less ill patients would be associated with improved survival, quality of life, or functional capacity. REVIVE-IT represented an extraordinary effort to provide data from a randomized clinical trial to inform clinicians, scientists, industry, and regulatory agencies about the efficacy and safety of LVAD therapy in a population with less advanced HF. Despite significant support from the medical community, industry, and governmental agencies, REVIVE-IT failed to accomplish its goal. The reasons for its failure are instructive, and the lessons learned from the REVIVE-IT experience are likely to be relevant to any future study of LVAD therapy in a population with less advanced HF. Copyright © 2016 International Society for Heart and Lung Transplantation. All rights reserved.

  1. Cutaneous Scar Prevention and Management; Overview of current therapies

    Directory of Open Access Journals (Sweden)

    Sultan Al-Shaqsi

    2016-02-01

    Full Text Available Cutaneous scarring is common after trauma, surgery and infection and occurs when normal skin tissue is replaced by fibroblastic tissue during the healing process. The pathophysiology of scar formation is not yet fully understood, although the degree of tension across the wound edges and the speed of cell growth are believed to play central roles. Prevention of scars is essential and can be achieved by attention to surgical techniques and the use of measures to reduce cell growth. Grading and classifying scars is important to determine available treatment strategies. This article presents an overview of the current therapies available for the prevention and treatment of scars. It is intended to be a practical guide for surgeons and other health professionals involved with and interested in scar management.

  2. Particle swarm optimizer for weighting factor selection in intensity-modulated radiation therapy optimization algorithms.

    Science.gov (United States)

    Yang, Jie; Zhang, Pengcheng; Zhang, Liyuan; Shu, Huazhong; Li, Baosheng; Gui, Zhiguo

    2017-01-01

    In inverse treatment planning of intensity-modulated radiation therapy (IMRT), the objective function is typically the sum of the weighted sub-scores, where the weights indicate the importance of the sub-scores. To obtain a high-quality treatment plan, the planner manually adjusts the objective weights using a trial-and-error procedure until an acceptable plan is reached. In this work, a new particle swarm optimization (PSO) method which can adjust the weighting factors automatically was investigated to overcome the requirement of manual adjustment, thereby reducing the workload of the human planner and contributing to the development of a fully automated planning process. The proposed optimization method consists of three steps. (i) First, a swarm of weighting factors (i.e., particles) is initialized randomly in the search space, where each particle corresponds to a global objective function. (ii) Then, a plan optimization solver is employed to obtain the optimal solution for each particle, and the values of the evaluation functions used to determine the particle's location and the population global location for the PSO are calculated based on these results. (iii) Next, the weighting factors are updated based on the particle's location and the population global location. Step (ii) is performed alternately with step (iii) until the termination condition is reached. In this method, the evaluation function is a combination of several key points on the dose volume histograms. Furthermore, a perturbation strategy - the crossover and mutation operator hybrid approach - is employed to enhance the population diversity, and two arguments are applied to the evaluation function to improve the flexibility of the algorithm. In this study, the proposed method was used to develop IMRT treatment plans involving five unequally spaced 6MV photon beams for 10 prostate cancer cases. The proposed optimization algorithm yielded high-quality plans for all of the cases, without human

  3. Current state of total artificial heart therapy and introduction of the most important total artificial heart systems.

    Science.gov (United States)

    Spiliopoulos, Sotirios; Hergesell, Vera; Wasler, Andrae; Dapunt, Otto

    2018-06-14

    Due to the declining instances of organ donation, total artificial heart (TAH) therapy is of increasing importance for the management of end-stage biventricular heart failure. We introduce the currently most important established and novel TAH systems (SynCardia, CARMAT, ReinHeart, BiVACOR), report clinical outcomes and discuss technical requirements for the successful implementation of TAH therapy as an alternative to cardiac transplantation.

  4. Preparation of Janus Particles and Alternating Current Electrokinetic Measurements with a Rapidly Fabricated Indium Tin Oxide Electrode Array.

    Science.gov (United States)

    Chen, Yu-Liang; Jiang, Hong-Ren

    2017-06-23

    This article provides a simple method to prepare partially or fully coated metallic particles and to perform the rapid fabrication of electrode arrays, which can facilitate electrical experiments in microfluidic devices. Janus particles are asymmetric particles that contain two different surface properties on their two sides. To prepare Janus particles, a monolayer of silica particles is prepared by a drying process. Gold (Au) is deposited on one side of each particle using a sputtering device. The fully coated metallic particles are completed after the second coating process. To analyze the electrical surface properties of Janus particles, alternating current (AC) electrokinetic measurements, such as dielectrophoresis (DEP) and electrorotation (EROT)- which require specifically designed electrode arrays in the experimental device- are performed. However, traditional methods to fabricate electrode arrays, such as the photolithographic technique, require a series of complicated procedures. Here, we introduce a flexible method to fabricate a designed electrode array. An indium tin oxide (ITO) glass is patterned by a fiber laser marking machine (1,064 nm, 20 W, 90 to 120 ns pulse-width, and 20 to 80 kHz pulse repetition frequency) to create a four-phase electrode array. To generate the four-phase electric field, the electrodes are connected to a 2-channel function generator and to two invertors. The phase shift between the adjacent electrodes is set at either 90° (for EROT) or 180° (for DEP). Representative results of AC electrokinetic measurements with a four-phase ITO electrode array are presented.

  5. New superconducting cyclotron driven scanning proton therapy systems

    International Nuclear Information System (INIS)

    Klein, Hans-Udo; Baumgarten, Christian; Geisler, Andreas; Heese, Juergen; Hobl, Achim; Krischel, Detlef; Schillo, Michael; Schmidt, Stefan; Timmer, Jan

    2005-01-01

    Since one and a half decades ACCEL is investing in development and engineering of state of the art particle-therapy systems. A new medical superconducting 250 MeV proton cyclotron with special focus on the present and future beam requirements of fast scanning treatment systems has been designed. The first new ACCEL medical proton cyclotron is under commissioning at PSI for their PROSCAN proton therapy facility having undergone successful factory tests especially of the closed loop cryomagnetic system. The second cyclotron is part of ACCEL's integrated proton therapy system for Europe's first clinical center, RPTC in Munich. The cyclotron, the energy selection system, the beamline as well as the four gantries and patient positioners have been installed. The scanning system and major parts of the control software have already been tested. We will report on the concept of ACCEL's superconducting cyclotron driven scanning proton therapy systems and the current status of the commissioning work at PSI and RPTC

  6. Current guidelines for high-density lipoprotein cholesterol in therapy and future directions

    Directory of Open Access Journals (Sweden)

    Subedi BH

    2014-04-01

    Full Text Available Bishnu H Subedi,1,2 Parag H Joshi,1 Steven R Jones,1 Seth S Martin,1 Michael J Blaha,1 Erin D Michos1 1Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, 2Greater Baltimore Medical Center, Baltimore, MD, USA Abstract: Many studies have suggested that a significant risk factor for atherosclerotic cardiovascular disease (ASCVD is low high-density lipoprotein cholesterol (HDL-C. Therefore, increasing HDL-C with therapeutic agents has been considered an attractive strategy. In the prestatin era, fibrates and niacin monotherapy, which cause modest increases in HDL-C, reduced ASCVD events. Since their introduction, statins have become the cornerstone of lipoprotein therapy, the benefits of which are primarily attributed to decrease in low-density lipoprotein cholesterol. Findings from several randomized trials involving niacin or cholesteryl ester transfer protein inhibitors have challenged the concept that a quantitative elevation of plasma HDL-C will uniformly translate into ASCVD benefits. Consequently, the HDL, or more correctly, HDL-C hypothesis has become more controversial. There are no clear guidelines thus far for targeting HDL-C or HDL due to lack of solid outcomes data for HDL specific therapies. HDL-C levels are only one marker of HDL out of its several structural or functional properties. Novel approaches are ongoing in developing and assessing agents that closely mimic the structure of natural HDL or replicate its various functions, for example, reverse cholesterol transport, vasodilation, anti-inflammation, or inhibition of platelet aggregation. Potential new approaches like HDL infusions, delipidated HDL, liver X receptor agonists, Apo A-I upregulators, Apo A mimetics, and gene therapy are in early phase trials. This review will outline current therapies and describe future directions for HDL therapeutics. Keywords: high-density lipoprotein, lipids, cholesterol, atherosclerosis, cardiovascular disease, therapy

  7. Big Bang Day: 5 Particles - 5. The Next Particle

    CERN Multimedia

    Franck Close

    2008-01-01

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 5. The Next Particle The "sparticle" - a super symmetric partner to all the known particles could be the answer to uniting all the known particles and their interactions under one grand theoretical pattern of activity. But how do researchers know where to look for such phenomena and how do they know if they find them? Simon Singh reviews the next particle that physicists would like to find if the current particle theories are to ring true.

  8. [Diagnosis and therapy of particle disease in total hip arthroplasty].

    Science.gov (United States)

    Müller, M; Wassilew, G; Perka, C

    2015-04-01

    Particle disease is caused by periarticular accumulation of attrition particles and the inflammatory reaction of the body's tissue. This process may result in osteolysis or soft tissue transformation which presents itself symptomless in the beginning and can proceed to aseptic implant loosening, fracture, implant breaking as a result of the inappropriate osseous support and to algetic and destructive soft tissue reactions as well. Attrition particles originate from tribological pairing, and the extent of the attrition or the particle concentration depend on different factors as there are the tribological pairing's material, the head size, the patient's level of activity, and the implant position. Attrition particles can also be found in the range of any modular connection. Particle disease and its resulting morphological alterations of the tribological pairing is one of the most frequent reasons for re-operation in hip endoprosthetics. Georg Thieme Verlag KG Stuttgart · New York.

  9. Thyrotoxicosis. Results and risks of current therapy

    Energy Technology Data Exchange (ETDEWEB)

    de los Santos, E.T.; Mazzaferri, E.L. (Ohio State Univ. College of Medicine, Columbus (USA))

    1990-04-01

    Effective therapy for thyrotoxicosis hinges on prompt recognition of the syndrome. When the diagnosis is suspected clinically but is not certain, the free thyroxine index is the most cost-effective test to order initially. The thyroidal radioactive iodine ({sup 123}I) uptake is measured to differentiate Graves' disease from thyroiditis and other forms of thyrotoxicosis. Definitive therapy includes antithyroid drugs, iodine 131, and surgery. Patient preference has a large role in the final therapeutic choice. 20 references.

  10. Nuclear medicine therapy: current status and future prospects

    International Nuclear Information System (INIS)

    Sharma, S.M.

    1990-01-01

    Radioisotope therapy began in 1942 with the use of 131 I for Graves disease and 32 P for polycythemia vera. Local therapy with radioisotopes includes radiocolloids for malignant pleural and peritoneal effusions, intra-articular radiocolloids for chronic synovitis, intra-arterial radioactive microspheres for liver metastases, and intralymphatic administration for malignancies of the lymphatic system. The most widely practised use of radioisotopes for therapy is for the management of hyperthyroidism by 131 I. 131 is also being used effectively for thyroid cancer, particularly at the Radiation Medicine Centre, BARC. There is hope that a new generation of radiolabelled compounds is round the corner for therapy. Radiolabelled monoclonal antibodies aimed against specific tumor antigens have already shown great promise. Another area of interest is the use of minute lipid spheroids (vesicles) enclosing the radioactive drug which can be targeted to the tumor. (author). 19 refs

  11. Synergistic effects of Combined Therapy: nonfocused ultrasound plus Aussie current for noninvasive body contouring.

    Science.gov (United States)

    Canela, Vivianne Carvalho; Crivelaro, Cinthia Nicoletti; Ferla, Luciane Zacchi; Pelozo, Gisele Marques; Azevedo, Juliana; Liebano, Richard Eloin; Nogueira, Caroline; Guidi, Renata Michelini; Grecco, Clóvis; Sant'Ana, Estela

    2018-01-01

    Nowadays, there are several noninvasive technologies being used for improving of body contouring. The objectives of this pilot study were to verify the effectiveness of the Heccus ® device, emphasizing the synergism between nonfocused ultrasound plus Aussie current in the improvement of body contour, and to determine if the association of this therapy with whole-body vibration exercises can have additional positive effects in the results of the treatments. Twenty healthy women aged 20-40 years participated in the study. Ten patients received Combined Therapy treatment (G1) and the other 10 participants received Combined Therapy with additional vibratory platform treatment (G2). Anthropometric and standardized photography analysis, ultrasonography, cutometry and self-adminestered questionnaires of tolerance and satisfaction levels with the treatment were used. Compared with baseline values, reduction of fat thickness was observed by ultrasonography in the posterior thigh area in the G1 group ( P <0.05) and in the buttocks ( P <0.05) and the posterior thigh areas ( P <0.05) in the G2. All the treated areas in both groups showed reduction in cellulite degree in the buttocks, G1 ( P <0.05) and G2 ( P <0.05), and in posterior thigh areas, G1 ( P <0.05) and G2 ( P <0.05). Optimal improvement of skin firmness (G1, P <0.0001; G2, P =0.0034) in the treated areas was observed in both groups. We conclude that the synergistic effects of the Combined Therapy (nonfocused ultrasound plus Aussie current) might be a good option with noninvasive body contouring treatment for improving the aspect of the cellulite, skin firmness and localized fat. If used in association with the whole-body vibratory platform, the results can be better, especially in the treatment of localized fat. Further studies with larger sample size should be performed to confirm these results.

  12. Elementary particles and particle interactions

    International Nuclear Information System (INIS)

    Bethge, K.; Schroeder, U.E.

    1986-01-01

    This book is a textbook for an introductory course of elementary particle physics. After a general introduction the symmetry principles governing the interactions of elementary particles are discussed. Then the phenomenology of the electroweak and strong interactions are described together with a short introduction to the Weinberg-Salam theory respectively to quantum chromodynamics. Finally a short outlook is given to grand unification with special regards to SU(5) and cosmology in the framework of the current understanding of the fundamental principles of nature. In the appendix is a table of particle properties and physical constants. (HSI) [de

  13. Washing of gel particles in wet chemical manufacture of reactor fuel particles

    International Nuclear Information System (INIS)

    Ringel, H.

    1980-07-01

    In the manufacture of HTR fuel particles and particles of fertile material by wet chemical methods, the ammonium nitrate formed during the precipitation reaction must be washed out of the gel particles. This washing process has been investigated theoretically and experimentally. A counter-current washer has been developed which in particular takes account of the aspects of refabrication - such as compact construction and minimum waste. A counter-current washing column of 17 mm internal diameter and 640 mm length gives to gel particle throughput of 0.65 1/h. The volume ratio of wash water to gel particles is 5, and the residual nitrate concentration in the particles is 7 x 10 -3 mols of NO - 3 /1. (orig.) [de

  14. SU-E-T-590: Optimizing Magnetic Field Strengths with Matlab for An Ion-Optic System in Particle Therapy Consisting of Two Quadrupole Magnets for Subsequent Simulations with the Monte-Carlo Code FLUKA

    International Nuclear Information System (INIS)

    Baumann, K; Weber, U; Simeonov, Y; Zink, K

    2015-01-01

    Purpose: Aim of this study was to optimize the magnetic field strengths of two quadrupole magnets in a particle therapy facility in order to obtain a beam quality suitable for spot beam scanning. Methods: The particle transport through an ion-optic system of a particle therapy facility consisting of the beam tube, two quadrupole magnets and a beam monitor system was calculated with the help of Matlab by using matrices that solve the equation of motion of a charged particle in a magnetic field and field-free region, respectively. The magnetic field strengths were optimized in order to obtain a circular and thin beam spot at the iso-center of the therapy facility. These optimized field strengths were subsequently transferred to the Monte-Carlo code FLUKA and the transport of 80 MeV/u C12-ions through this ion-optic system was calculated by using a user-routine to implement magnetic fields. The fluence along the beam-axis and at the iso-center was evaluated. Results: The magnetic field strengths could be optimized by using Matlab and transferred to the Monte-Carlo code FLUKA. The implementation via a user-routine was successful. Analyzing the fluence-pattern along the beam-axis the characteristic focusing and de-focusing effects of the quadrupole magnets could be reproduced. Furthermore the beam spot at the iso-center was circular and significantly thinner compared to an unfocused beam. Conclusion: In this study a Matlab tool was developed to optimize magnetic field strengths for an ion-optic system consisting of two quadrupole magnets as part of a particle therapy facility. These magnetic field strengths could subsequently be transferred to and implemented in the Monte-Carlo code FLUKA to simulate the particle transport through this optimized ion-optic system

  15. Electrochemical Method of Making Porous Particles Using a Constant Current Density

    Science.gov (United States)

    Ferrari, Mauro (Inventor); Liu, Xuewu (Inventor); Cheng, Ming-Cheng (Inventor)

    2014-01-01

    Provided is a particle that includes a first porous region and a second porous region that differs from the first porous region. Also provided is a particle that has a wet etched porous region and that does have a nucleation layer associated with wet etching. Methods of making porous particles are also provided.

  16. Benefit of particle therapy in re-irradiation of head and neck patients. Results of a multicentric in silico ROCOCO trial.

    Science.gov (United States)

    Eekers, Daniëlle B P; Roelofs, Erik; Jelen, Urszula; Kirk, Maura; Granzier, Marlies; Ammazzalorso, Filippo; Ahn, Peter H; Janssens, Geert O R J; Hoebers, Frank J P; Friedmann, Tobias; Solberg, Timothy; Walsh, Sean; Troost, Esther G C; Kaanders, Johannes H A M; Lambin, Philippe

    2016-12-01

    In this multicentric in silico trial we compared photon, proton, and carbon-ion radiotherapy plans for re-irradiation of patients with squamous cell carcinoma of the head and neck (HNSCC) regarding dose to tumour and doses to surrounding organs at risk (OARs). Twenty-five HNSCC patients with a second new or recurrent cancer after previous irradiation (70Gy) were included. Intensity-modulated proton therapy (IMPT) and ion therapy (IMIT) re-irradiation plans to a second subsequent dose of 70Gy were compared to photon therapy delivered with volumetric modulated arc therapy (VMAT). When comparing IMIT and IMPT to VMAT, the mean dose to all investigated 22 OARs was significantly reduced for IMIT and to 15 out of 22 OARs (68%) using IMPT. The maximum dose to 2% volume (D 2 ) of the brainstem and spinal cord were significantly reduced using IMPT and IMIT compared to VMAT. The data are available on www.cancerdata.org. In this ROCOCO in silico trial, a reduction in mean dose to OARs was achieved using particle therapy compared to photons in the re-irradiation of HNSCC. There was a dosimetric benefit favouring carbon-ions above proton therapy. These dose reductions may potentially translate into lower severe complication rates related to the re-irradiation. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  17. Evaluation of current trends and recent development in insulin therapy for management of diabetes mellitus.

    Science.gov (United States)

    Nawaz, Muhammad Sarfraz; Shah, Kifayat Ullah; Khan, Tahir Mehmood; Rehman, Asim Ur; Rashid, Haroon Ur; Mahmood, Sajid; Khan, Shahzeb; Farrukh, Muhammad Junaid

    2017-12-01

    Diabetes mellitus is a major health problem in developing countries. There are various insulin therapies to manage diabetes mellitus. This systematic review evaluates various insulin therapies for management of diabetes mellitus worldwide. This review also focuses on recent developments being explored for better management of diabetes mellitus. We reviewed a number of published articles from 2002 to 2016 to find out the appropriate management of diabetes mellitus. The paramount parameters of the selected studies include the insulin type & its dose, type of diabetes, duration and comparison of different insulin protocols. In addition, various newly developed approaches for insulin delivery with potential output have also been evaluated. A great variability was observed in managing diabetes mellitus through insulin therapy and the important controlling factors found for this therapy include; dose titration, duration of insulin use, type of insulin used and combination therapy of different insulin. A range of research articles on current trends and recent advances in insulin has been summarized, which led us to the conclusion that multiple daily insulin injections or continuous subcutaneous insulin infusion (insulin pump) is the best method to manage diabetes mellitus. In future perspectives, development of the oral and inhalant insulin would be a tremendous breakthrough in Insulin therapy. Copyright © 2017 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  18. Heating, current drive and energetic particles studies on JET in preparation of ITER operation

    International Nuclear Information System (INIS)

    Noterdaeme, J.-M.; Budny, R.; Cardinali, A.

    2003-01-01

    This paper summarizes the recent work on JET in the three areas of heating, current drive and energetic particles. The achievements have extended the possibilities of JET, have a direct connection to ITER operation and provide new and interesting physics. Toroidal rotation profiles of plasmas heated far off axis with little or no refueling or momentum input are hollow with only small differences on whether the power deposition is located on the low field side or on the high field side. With LH current drive the magnetic shear was varied from slightly positive to negative. The improved coupling (through the use of plasma shaping and CD 4 ) allowed up to 3.4 MW of P LH in ITB plasmas with more than 15MW of combined NBI and ICRF heating. The q profile with negative magnetic shear and the ITB could be maintained for the duration of the high heating pulse (8s). Fast ions have been produced in JET with ICRF to simulate alpha particles: by using third harmonic 4 He heating, beam injected 4 He at 120 kV were accelerated to energies above 2 MeV, taking advantage of the unique capability of JET to use NBI with 4 He and to confine MeV class ions. ICRF heating was used to replicate the dynamics of alpha heating and the control of an equivalent Q=10 'burn' was simulated. (author)

  19. New estimation of secondary particle multiplicity of nuclear interactions in proton therapy using multicollisional plus evaporation Monte Carlo calculations

    International Nuclear Information System (INIS)

    Mesa, J.; Rodrigues, T. E.; Garcia-Trapaga, C. E.; Arruda-Neto, J. D. T.; Shtejer, K. . Email. jmesa@ibb.unesp.br

    2007-01-01

    Secondary particles contribute to dose deposition in critical organs outside the irradiated target volume. However, the literature regarding specifically to neutron dose and other secondary particles from proton therapy is limited. This issue is of special relevance for young patients, particularly when life expectancy is long, fundamentally if we consider that the art of cancer treatment is finding the right balance between tumor control and injury to normal tissues. In this work we have obtained spectra and multiplicities for neutrons and other secondary particles emitted in the reactions of protons: p+ 12 C, p+ 16 O, p+ 40 Ca and p+ 14 N, for proton energies from 100 to 200 MeV. In this sense, we have used a quite sophisticate multicollisional Monte Carlo code (MCMC) for pre-equilibrium emission, plus de-excitation of residual nucleus by two ways: evaporation of particles (mainly nucleons, but also composites) and possibly fission in the case of heavy residues. The code was developed in our group, with very recently improvements that take into account Pauli-blocking effects in a novel and more precise way, as well as a more rigorous energy balance, an energy stopping time criterion for pre-equilibrium emission, and the inclusion of deuteron, triton and 3 He emissions in the evaporation step

  20. Simulation studies for the in-vivo dose verification of particle therapy

    International Nuclear Information System (INIS)

    Rohling, Heide

    2015-01-01

    An increasing number of cancer patients is treated with proton beams or other light ion beams which allow to deliver dose precisely to the tumor. However, the depth dose distribution of these particles, which enables this precision, is sensitive to deviations from the treatment plan, as e.g. anatomical changes. Thus, to assure the quality of the treatment, a non-invasive in-vivo dose verification is highly desired. This monitoring of particle therapy relies on the detection of secondary radiation which is produced by interactions between the beam particles and the nuclei of the patient's tissue. Up to now, the only clinically applied method for in-vivo dosimetry is Positron Emission Tomography which makes use of the β + -activity produced during the irradiation (PT-PET). Since from a PT-PET measurement the applied dose cannot be directly deduced, the simulated distribution of β + -emitting nuclei is used as a basis for the analysis of the measured PT-PET data. Therefore, the reliable modeling of the production rates and the spatial distribution of the β + -emitters is required. PT-PET applied during instead of after the treatment is referred to as in-beam PET. A challenge concerning in-beam PET is the design of the PET camera, because a standard full-ring scanner is not feasible. Thus, for in-beam PET and PGI dedicated detection systems and, moreover, profound knowledge about the corresponding radiation fields are required. Using various simulation codes, this thesis contributes to the modelling of the β + -emitters and photons produced during particle irradiation, as well as to the evaluation and optimization of hardware for both techniques. Concerning the modeling of the production of the relevant β + -emitters, the abilities of the Monte Carlo simulation code PHITS and of the deterministic, one-dimensional code HIBRAC were assessed. HIBRAC was substantially extended to enable the modeling of the depth-dependent yields of specific nuclides. For proton

  1. [Surgical intensive care medicine. Current therapy concepts for septic diseases].

    Science.gov (United States)

    Niederbichler, A D; Ipaktchi, K; Jokuszies, A; Hirsch, T; Altintas, M A; Handschin, A E; Busch, K H; Gellert, M; Steinau, H-U; Vogt, P M; Steinsträsser, L

    2009-10-01

    The clinical appearance of septic disorders is characterized by an enormous dynamic. The sepsis-induced dysbalance of the immune system necessitates immediate and aggressive therapeutic interventions to prevent further damage progression of the disease to septic shock and multiple organ failure. This includes supportive therapy to normalize and maintain organ and tissue perfusion as well as the identification of the infection focus. In cases where an infectious focus is identified, surgical source control frequently is a key element of the treatment strategy besides pharmacologic and supportive measures. The integrative approach of the management of septic patients requires rapid communication between the involved medical disciplines and the nursing personnel. Therefore, this article outlines current therapeutic concepts of septic diseases as well as central nursing aspects.

  2. Current status of lectin-based cancer diagnosis and therapy

    Directory of Open Access Journals (Sweden)

    Fohona S. Coulibaly

    2017-01-01

    Full Text Available Lectins are carbohydrate recognizing proteins originating from diverse origins in nature, including animals, plants, viruses, bacteria and fungus. Due to their exceptional glycan recognition property, they have found many applications in analytical chemistry, biotechnology and surface chemistry. This manuscript explores the current use of lectins for cancer diagnosis and therapy. Moreover, novel drug delivery strategies aiming at improving lectin’s stability, reducing their undesired toxicity and controlling their non-specific binding interactions are discussed. We also explore the nanotechnology application of lectins for cancer targeting and imaging. Although many investigations are being conducted in the field of lectinology, there is still a limited clinical translation of the major findings reported due to lectins stability and toxicity concerns. Therefore, new investigations of safe and effective drug delivery system strategies for lectins are warranted in order to take full advantage of these proteins.

  3. Current Treatment Limitations in Age-Related Macular Degeneration and Future Approaches Based on Cell Therapy and Tissue Engineering

    Science.gov (United States)

    Fernández-Robredo, P.; Sancho, A.; Johnen, S.; Recalde, S.; Gama, N.; Thumann, G.; Groll, J.; García-Layana, A.

    2014-01-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in the Western world. With an ageing population, it is anticipated that the number of AMD cases will increase dramatically, making a solution to this debilitating disease an urgent requirement for the socioeconomic future of the European Union and worldwide. The present paper reviews the limitations of the current therapies as well as the socioeconomic impact of the AMD. There is currently no cure available for AMD, and even palliative treatments are rare. Treatment options show several side effects, are of high cost, and only treat the consequence, not the cause of the pathology. For that reason, many options involving cell therapy mainly based on retinal and iris pigment epithelium cells as well as stem cells are being tested. Moreover, tissue engineering strategies to design and manufacture scaffolds to mimic Bruch's membrane are very diverse and under investigation. Both alternative therapies are aimed to prevent and/or cure AMD and are reviewed herein. PMID:24672707

  4. Current trends in local antibacterial therapy of periprosthetic infection and osteomyelitis

    Directory of Open Access Journals (Sweden)

    S. A. Bozhkova

    2015-01-01

    Full Text Available The rational use of antibiotics in the treatment of orthopedic infection still presents a significant problem. Local antibiotic delivery systems enable to achieve effective concentrations of drugs in the focus of bone infection without the development of toxicity. It is the important accompaniment to systemic antibiotics in the treatment of periprosthetic infection and osteomyelitis. The data collected through the PubMed and eLIBRARY databases (http://www.ncbi.nlm. nih.gov/pubmed, 1995-2015; http://elibrary.ru, 2005-2015 years present the information about bone substitutes used for local antibiotic therapy in scientific investigations and in clinical practice. The information is submitted in accordance with the groups of materials: cements based on polymethylmethacrylate, bone grafts, demineralized bone matrix, bioceramics, natural and synthetic polymers, combined antibiotic delivery systems. The majority of these materials have only been studied experimentally and only a limited range of them is registered for use in clinical practice. Informing orthopedic surgeons about current methods of local antibiotic use is the key to the development of a modern integrated approach to the therapy of infectious complications after orthopedic surgery.

  5. A Variable Energy CW Compact Accelerator for Ion Cancer Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, Carol J. [Fermilab; Taylor, J. [Huddersfield U.; Edgecock, R. [Huddersfield U.; Schulte, R. [Loma Linda U.

    2016-03-10

    Cancer is the second-largest cause of death in the U.S. and approximately two-thirds of all cancer patients will receive radiation therapy with the majority of the radiation treatments performed using x-rays produced by electron linacs. Charged particle beam radiation therapy, both protons and light ions, however, offers advantageous physical-dose distributions over conventional photon radiotherapy, and, for particles heavier than protons, a significant biological advantage. Despite recognition of potential advantages, there is almost no research activity in this field in the U.S. due to the lack of clinical accelerator facilities offering light ion therapy in the States. In January, 2013, a joint DOE/NCI workshop was convened to address the challenges of light ion therapy [1], inviting more than 60 experts from diverse fields related to radiation therapy. This paper reports on the conclusions of the workshop, then translates the clinical requirements into accelerat or and beam-delivery technical specifications. A comparison of available or feasible accelerator technologies is compared, including a new concept for a compact, CW, and variable energy light ion accelerator currently under development. This new light ion accelerator is based on advances in nonscaling Fixed-Field Alternating gradient (FFAG) accelerator design. The new design concepts combine isochronous orbits with long (up to 4m) straight sections in a compact racetrack format allowing inner circulating orbits to be energy selected for low-loss, CW extraction, effectively eliminating the high-loss energy degrader in conventional CW cyclotron designs.

  6. Tin Oxide Nanoparticles: Synthesis, Characterization and Study their Particle Size at Different Current Density

    Directory of Open Access Journals (Sweden)

    Karzan A. Omar

    2013-11-01

    Full Text Available Tin oxide nanoparticles are prepared by electrochemical reduction method using tetrapropylammonium bromide (TPAB and tetrabutylammonium bromide (TBAB as structure directing agent in an organic medium viz. tetrahydrofuran (THF and acetonitrile (ACN in 4:1 ratio by optimizing current density and molar concentration of the ligand. The reduction process takes place under an inert atmosphere of nitrogen over a period of 2 h. Such nanoparticles are prepared by using a simple electrolysis cell in which the sacrificial anode as a commercially available in tin metal sheet and platinum (inert sheet act as a cathode. The parameters such as current density, solvent polarity, distance between electrodes and concentration of stabilizers are used to control the size of nanoparticles. The synthesized tin oxide nanoparticles are characterized by using UV–Visible, FT-IR and SEM–EDS analysis techniques. UV-Visible spectroscopy has revealed the optical band gap to be 4.13, 4.16 and 4.24 ev for (8, 10 and 12 mA/cm2 and the effect of current density on theirs particle size, respectively.

  7. Current Issues of Antipyretic Therapy in Children with Acute Respiratory Infections

    Directory of Open Access Journals (Sweden)

    E. I. Novikova

    2013-01-01

    Full Text Available This article discusses the current issues in the pediatric practice of seasonal incidence of children with acute respiratory infections. The basic etiological aspects of this pathology, specific clinical symptoms typical for different pathogens, causes of bursts of disease in certain periods are described. Special attention is paid to the tactics of antipyretic therapy in different groups of children with fever and acute respiratory diseases, understand the typical errors in its appointment. The author discusses the domestic and foreign results of using ibuprofen to relieve fever in children with this pathology, comparative efficacy and safety data of ibuprofen with other analgesics-antipyretics.

  8. Gene Therapy for Human Lung Adenocarcinoma Using a Suicide Gene Driven by a Lung-Specific Promoter Delivered by JC Virus-Like Particles.

    Directory of Open Access Journals (Sweden)

    Chun-Nun Chao

    Full Text Available Lung adenocarcinoma, the most commonly diagnosed type of lung cancer, has a poor prognosis even with combined surgery, chemotherapy, or molecular targeted therapies. Most patients are diagnosed with an in-operable advanced or metastatic disease, both pointing to the necessity of developing effective therapies for lung adenocarcinoma. Surfactant protein B (SP-B has been found to be overexpressed in lung adenocarcinoma. In addition, it has also been demonstrated that human lung adenocarcinoma cells are susceptible to the JC polyomavirus (JCPyV infection. Therefore, we designed that the JCPyV virus-like particle (VLP packaged with an SP-B promoter-driven thymidine kinase suicide gene (pSPB-tk for possible gene therapy of human lung adenocarcinoma. Plasmids expressing the GFP (pSPB-gfp or thymidine kinase gene (pSPB-tk under the control of the human SP-B promoter were constructed. The promoter's tissue specificity was tested by transfection of pSPB-gfp into A549, CH27, and H460 human lung carcinoma cells and non-lung cells. The JCPyV VLP's gene transfer efficiency and the selective cytotoxicity of pSPB-tk combined with ganciclovir (GCV were tested in vitro and in a xenograft mouse model. In the current study, we found that SP-B promoter-driven GFP was specifically expressed in human lung adenocarcinoma (A549 and large cell carcinoma (H460 cells. JCPyV VLPs were able to deliver a GFP reporter gene into A549 cells for expression. Selective cytotoxicity was observed in A549 but not non-lung cells that were transfected with pSPB-tk or infected with pSPB-tk-carrying JCPyV VLPs. In mice injected with pSPB-tk-carrying JCPyV VLPs through the tail vein and treated with ganciclovir (GCV, a potent 80% inhibition of growth of human lung adenocarcinoma nodules resulted. The JCPyV VLPs combined with the use of SP-B promoter demonstrates effectiveness as a potential gene therapy against human lung adenocarcinoma.

  9. Gene Therapy for Human Lung Adenocarcinoma Using a Suicide Gene Driven by a Lung-Specific Promoter Delivered by JC Virus-Like Particles.

    Science.gov (United States)

    Chao, Chun-Nun; Lin, Mien-Chun; Fang, Chiung-Yao; Chen, Pei-Lain; Chang, Deching; Shen, Cheng-Huang; Wang, Meilin

    2016-01-01

    Lung adenocarcinoma, the most commonly diagnosed type of lung cancer, has a poor prognosis even with combined surgery, chemotherapy, or molecular targeted therapies. Most patients are diagnosed with an in-operable advanced or metastatic disease, both pointing to the necessity of developing effective therapies for lung adenocarcinoma. Surfactant protein B (SP-B) has been found to be overexpressed in lung adenocarcinoma. In addition, it has also been demonstrated that human lung adenocarcinoma cells are susceptible to the JC polyomavirus (JCPyV) infection. Therefore, we designed that the JCPyV virus-like particle (VLP) packaged with an SP-B promoter-driven thymidine kinase suicide gene (pSPB-tk) for possible gene therapy of human lung adenocarcinoma. Plasmids expressing the GFP (pSPB-gfp) or thymidine kinase gene (pSPB-tk) under the control of the human SP-B promoter were constructed. The promoter's tissue specificity was tested by transfection of pSPB-gfp into A549, CH27, and H460 human lung carcinoma cells and non-lung cells. The JCPyV VLP's gene transfer efficiency and the selective cytotoxicity of pSPB-tk combined with ganciclovir (GCV) were tested in vitro and in a xenograft mouse model. In the current study, we found that SP-B promoter-driven GFP was specifically expressed in human lung adenocarcinoma (A549) and large cell carcinoma (H460) cells. JCPyV VLPs were able to deliver a GFP reporter gene into A549 cells for expression. Selective cytotoxicity was observed in A549 but not non-lung cells that were transfected with pSPB-tk or infected with pSPB-tk-carrying JCPyV VLPs. In mice injected with pSPB-tk-carrying JCPyV VLPs through the tail vein and treated with ganciclovir (GCV), a potent 80% inhibition of growth of human lung adenocarcinoma nodules resulted. The JCPyV VLPs combined with the use of SP-B promoter demonstrates effectiveness as a potential gene therapy against human lung adenocarcinoma.

  10. Current and future challenges in therapy for antibody-mediated rejection.

    Science.gov (United States)

    Nair, Nandini; Ball, Timothy; Uber, Patricia A; Mehra, Mandeep R

    2011-06-01

    Antibody-mediated rejection (AMR) continues to present a challenge for the survival of the cardiac allograft. AMR appears to be on the rise, likely secondary to changing trends in clinical practice, including selection of patients for transplantation on mechanical circulatory support and development of more effective combinations of immunosuppressive drugs against acute cellular rejection. Most current strategies are aimed at treating acute AMR, but the treatment of chronic AMR is still not well defined. Clinically, AMR can often be more severe than cellular rejection and more difficult to treat, often not responding to typical protocols of increased immunosuppression. Complex steps involved in the antibody response allows for several potential targets for therapeutic intervention, including suppression of T and B cells, elimination of circulating antibodies, and inhibition of residual antibodies. Existing evidence suggests a multiregimen approach is the best option. Sustenance of accommodation and induction of tolerance could be viewed as viable options if adequate immune surveillance can be achieved in this setting. This review discusses the challenges in treating AMR and provides a critical analysis of current and possible future therapies. Copyright © 2011 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  11. Microfluidic-Based Synthesis of Hydrogel Particles for Cell Microencapsulation and Cell-Based Drug Delivery

    Directory of Open Access Journals (Sweden)

    Jiandi Wan

    2012-04-01

    Full Text Available Encapsulation of cells in hydrogel particles has been demonstrated as an effective approach to deliver therapeutic agents. The properties of hydrogel particles, such as the chemical composition, size, porosity, and number of cells per particle, affect cellular functions and consequently play important roles for the cell-based drug delivery. Microfluidics has shown unparalleled advantages for the synthesis of polymer particles and been utilized to produce hydrogel particles with a well-defined size, shape and morphology. Most importantly, during the encapsulation process, microfluidics can control the number of cells per particle and the overall encapsulation efficiency. Therefore, microfluidics is becoming the powerful approach for cell microencapsulation and construction of cell-based drug delivery systems. In this article, I summarize and discuss microfluidic approaches that have been developed recently for the synthesis of hydrogel particles and encapsulation of cells. I will start by classifying different types of hydrogel material, including natural biopolymers and synthetic polymers that are used for cell encapsulation, and then focus on the current status and challenges of microfluidic-based approaches. Finally, applications of cell-containing hydrogel particles for cell-based drug delivery, particularly for cancer therapy, are discussed.

  12. Eletroconvulsoterapia na depressão maior: aspectos atuais Electroconvulsive therapy in major depression: current aspects

    Directory of Open Access Journals (Sweden)

    Paula Barros Antunes

    2009-05-01

    Full Text Available OBJETIVO: A eficácia da eletroconvulsoterapia em tratar sintomas depressivos está estabelecida por meio de inúmeros estudos desenvolvidos durante as últimas décadas. A eletroconvulsoterapia é o tratamento biológico mais efetivo para depressão atualmente disponível. O objetivo deste estudo foi demonstrar o papel da eletroconvulsoterapia no tratamento da depressão e destacar aspectos atuais relativos à sua prática. MÉTODO: Foram revisados na literatura estudos de eficácia, remissão de sintomas, fatores preditores de resposta, assim como aspectos atuais acerca da qualidade de vida, percepção dos pacientes, mecanismo de ação, técnica e prejuízo cognitivos. RESULTADOS: Os principais achados desta revisão foram: 1 a eletroconvulsoterapia é mais efetiva do que qualquer medicação antidepressiva; 2 a remissão da depressão com a eletroconvulsoterapia varia, em geral, de 50 a 80%; 3 Ainda é controverso o efeito da eletroconvulsoterapia nos níveis de fator neurotrófico derivado do cérebro (acho que aqui pode colocar entre parenteses o "BNDF"; 4 a eletroconvulsoterapia tem efeito positivo na melhora da qualidade de vida; 5 os pacientes submetidos à eletroconvulsoterapia, em geral, têm uma percepção positiva do tratamento. CONCLUSÃO: A eletroconvulsoterapia permanece sendo um tratamento altamente eficaz em pacientes com depressão resistente. Com o avanço da sua técnica, a eletroconvulsoterapia tornou-se um procedimento ainda mais seguro e útil tanto para a fase aguda, quanto para a prevenção de novos episódios depressivos.OBJECTIVE: The efficacy of electroconvulsive therapy in treating depressive symptoms has been established by means of innumerable studies developed along the last decades. Electroconvulsive therapy is the most effective biological treatment for depression currently available. The objective of this study was to demonstrate the role of electroconvulsive therapy in the treatment of depression and

  13. Concept for individualized patient allocation: ReCompare—remote comparison of particle and photon treatment plans

    International Nuclear Information System (INIS)

    Lühr, Armin; Baumann, Michael; Löck, Steffen; Roth, Klaus; Helmbrecht, Stephan; Jakobi, Annika; Petersen, Jørgen B; Just, Uwe; Krause, Mechthild; Enghardt, Wolfgang

    2014-01-01

    Identifying those patients who have a higher chance to be cured with fewer side effects by particle beam therapy than by state-of-the-art photon therapy is essential to guarantee a fair and sufficient access to specialized radiotherapy. The individualized identification requires initiatives by particle as well as non-particle radiotherapy centers to form networks, to establish procedures for the decision process, and to implement means for the remote exchange of relevant patient information. In this work, we want to contribute a practical concept that addresses these requirements. We proposed a concept for individualized patient allocation to photon or particle beam therapy at a non-particle radiotherapy institution that bases on remote treatment plan comparison. We translated this concept into the web-based software tool ReCompare (REmote COMparison of PARticlE and photon treatment plans). We substantiated the feasibility of the proposed concept by demonstrating remote exchange of treatment plans between radiotherapy institutions and the direct comparison of photon and particle treatment plans in photon treatment planning systems. ReCompare worked with several tested standard treatment planning systems, ensured patient data protection, and integrated in the clinical workflow. Our concept supports non-particle radiotherapy institutions with the patient-specific treatment decision on the optimal irradiation modality by providing expertise from a particle therapy center. The software tool ReCompare may help to improve and standardize this personalized treatment decision. It will be available from our website when proton therapy is operational at our facility

  14. Current and future therapies for gout.

    Science.gov (United States)

    Pascart, Tristan; Richette, Pascal

    2017-08-01

    Gout is a common disease responsible for recurrent flares triggered by the deposition of monosodium urate crystals secondary to longstanding hyperuricaemia. The management of gout implies both the treatment of flares and the treatment of hyperuricaemia itself. Recent improvement in the understanding of the disease led to the development of new drugs. Areas covered: This review covers data related to 'old' treatments of flares and hyperuricaemia, evidence on the recently approved drugs and emerging therapies in development. Expert opinion: Recent data provide a good grasp of the optimal use of colchicine, corticosteroids and NSAIDs for the treatment of flares. Interleukin-1 blocking therapies have an increasing role in the management of difficult-to-treat gout. Sub-optimal use of allopurinol is common and its potency to reduce serum uric acid (SUA) levels is underestimated. Febuxostat effectively reduces SUA levels. New uricosurics, notably lesinurad and arhalofenate, in combination with xanthine oxidase inhibitors, offer promising perspectives to help a greater number of patients achieve sufficient SUA reduction.

  15. [Pediatric ependymomas: Current diagnosis and therapy].

    Science.gov (United States)

    Frappaz, Didier; Vasiljevic, Alexandre; Beuriat, Pierre-Aurelien; Alapetite, Claire; Grill, Jacques; Szathmari, Alexandru; Faure-Conter, Cécile

    2016-10-01

    Ependymomas represent 10% of pediatric brain tumors. In the recent WHO 2016 classification, pathology is enriched by localization and molecular biology. Whatever the age, total removal by one or several looks when required remains a major prognostic factor. In children, focal radiation remains a standard, while the role of chemotherapy is matter of randomized studies. In infants, front line chemotherapy is the standard. Inclusion in the SIOP ependymoma II protocol is encouraged. In case of relapse, further surgery and radiation are advised, while inclusion in innovative trials including re-irradiation, and phase I-II should be encouraged. A better understanding of underlying mechanisms of ependymoma cell will provide in the close future, the key to use targeted therapies at time of relapse, and very soon as first line therapy for some subgroups of patients. Copyright © 2016 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  16. Current Status of Immunomodulatory and Cellular Therapies in Preclinical and Clinical Islet Transplantation

    Directory of Open Access Journals (Sweden)

    Preeti Chhabra

    2011-01-01

    Full Text Available Clinical islet transplantation is a -cell replacement strategy that represents a possible definitive intervention for patients with type 1 diabetes, offering substantial benefits in terms of lowering daily insulin requirements and reducing incidences of debilitating hypoglycemic episodes and unawareness. Despite impressive advances in this field, a limiting supply of islets, inadequate means for preventing islet rejection, and the deleterious diabetogenic and nephrotoxic side effects associated with chronic immunosuppressive therapy preclude its wide-spread applicability. Islet transplantation however allows a window of opportunity for attempting various therapeutic manipulations of islets prior to transplantation aimed at achieving superior transplant outcomes. In this paper, we will focus on the current status of various immunosuppressive and cellular therapies that promote graft function and survival in preclinical and clinical islet transplantation with special emphasis on the tolerance-inducing capacity of regulatory T cells as well as the -cells regenerative capacity of stem cells.

  17. Chromatic energy filter and characterization of laser-accelerated proton beams for particle therapy

    Science.gov (United States)

    Hofmann, Ingo; Meyer-ter-Vehn, Jürgen; Yan, Xueqing; Al-Omari, Husam

    2012-07-01

    The application of laser accelerated protons or ions for particle therapy has to cope with relatively large energy and angular spreads as well as possibly significant random fluctuations. We suggest a method for combined focusing and energy selection, which is an effective alternative to the commonly considered dispersive energy selection by magnetic dipoles. Our method is based on the chromatic effect of a magnetic solenoid (or any other energy dependent focusing device) in combination with an aperture to select a certain energy width defined by the aperture radius. It is applied to an initial 6D phase space distribution of protons following the simulation output from a Radiation Pressure Acceleration model. Analytical formula for the selection aperture and chromatic emittance are confirmed by simulation results using the TRACEWIN code. The energy selection is supported by properly placed scattering targets to remove the imprint of the chromatic effect on the beam and to enable well-controlled and shot-to-shot reproducible energy and transverse density profiles.

  18. Chromatic energy filter and characterization of laser-accelerated proton beams for particle therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Ingo, E-mail: i.hofmann@gsi.de [Helmholtz-Institut Jena, Helmholtzweg 4, 07743 Jena (Germany); Gesellschaft fuer Schwerionenforschung (GSI), Planckstr. 1, 64291 Darmstadt (Germany); Meyer-ter-Vehn, Juergen [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching (Germany); Yan, Xueqing [State Key Laboratory of Nuclear Physics and Technology, CAPT, Peking University, Beijing 100871 (China); Key Lab of High Energy Density Physics Simulation, CAPT, Peking University, Beijing 100871 (China); Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching (Germany); Al-Omari, Husam [Institute for Applied Physics, Goethe University Frankfurt, Max-von-Laue str. 1, 60438 Frankfurt (Germany); Gesellschaft fuer Schwerionenforschung (GSI), Planckstr. 1, 64291 Darmstadt (Germany)

    2012-07-21

    The application of laser accelerated protons or ions for particle therapy has to cope with relatively large energy and angular spreads as well as possibly significant random fluctuations. We suggest a method for combined focusing and energy selection, which is an effective alternative to the commonly considered dispersive energy selection by magnetic dipoles. Our method is based on the chromatic effect of a magnetic solenoid (or any other energy dependent focusing device) in combination with an aperture to select a certain energy width defined by the aperture radius. It is applied to an initial 6D phase space distribution of protons following the simulation output from a Radiation Pressure Acceleration model. Analytical formula for the selection aperture and chromatic emittance are confirmed by simulation results using the TRACEWIN code. The energy selection is supported by properly placed scattering targets to remove the imprint of the chromatic effect on the beam and to enable well-controlled and shot-to-shot reproducible energy and transverse density profiles.

  19. A nephron-based model of the kidneys for macro-to-micro α-particle dosimetry

    Science.gov (United States)

    Hobbs, Robert F.; Song, Hong; Huso, David L.; Sundel, Margaret H.; Sgouros, George

    2012-07-01

    Targeted α-particle therapy is a promising treatment modality for cancer. Due to the short path-length of α-particles, the potential efficacy and toxicity of these agents is best evaluated by microscale dosimetry calculations instead of whole-organ, absorbed fraction-based dosimetry. Yet time-integrated activity (TIA), the necessary input for dosimetry, can still only be quantified reliably at the organ or macroscopic level. We describe a nephron- and cellular-based kidney dosimetry model for α-particle radiopharmaceutical therapy, more suited to the short range and high linear energy transfer of α-particle emitters, which takes as input kidney or cortex TIA and through a macro to micro model-based methodology assigns TIA to micro-level kidney substructures. We apply a geometrical model to provide nephron-level S-values for a range of isotopes allowing for pre-clinical and clinical applications according to the medical internal radiation dosimetry (MIRD) schema. We assume that the relationship between whole-organ TIA and TIA apportioned to microscale substructures as measured in an appropriate pre-clinical mammalian model also applies to the human. In both, the pre-clinical and the human model, microscale substructures are described as a collection of simple geometrical shapes akin to those used in the Cristy-Eckerman phantoms for normal organs. Anatomical parameters are taken from the literature for a human model, while murine parameters are measured ex vivo. The murine histological slides also provide the data for volume of occupancy of the different compartments of the nephron in the kidney: glomerulus versus proximal tubule versus distal tubule. Monte Carlo simulations are run with activity placed in the different nephron compartments for several α-particle emitters currently under investigation in radiopharmaceutical therapy. The S-values were calculated for the α-emitters and their descendants between the different nephron compartments for both the

  20. A nephron-based model of the kidneys for macro-to-micro α-particle dosimetry

    International Nuclear Information System (INIS)

    Hobbs, Robert F; Song Hong; H Sundel, Margaret; Sgouros, George; Huso, David L

    2012-01-01

    Targeted α-particle therapy is a promising treatment modality for cancer. Due to the short path-length of α-particles, the potential efficacy and toxicity of these agents is best evaluated by microscale dosimetry calculations instead of whole-organ, absorbed fraction-based dosimetry. Yet time-integrated activity (TIA), the necessary input for dosimetry, can still only be quantified reliably at the organ or macroscopic level. We describe a nephron- and cellular-based kidney dosimetry model for α-particle radiopharmaceutical therapy, more suited to the short range and high linear energy transfer of α-particle emitters, which takes as input kidney or cortex TIA and through a macro to micro model-based methodology assigns TIA to micro-level kidney substructures. We apply a geometrical model to provide nephron-level S-values for a range of isotopes allowing for pre-clinical and clinical applications according to the medical internal radiation dosimetry (MIRD) schema. We assume that the relationship between whole-organ TIA and TIA apportioned to microscale substructures as measured in an appropriate pre-clinical mammalian model also applies to the human. In both, the pre-clinical and the human model, microscale substructures are described as a collection of simple geometrical shapes akin to those used in the Cristy–Eckerman phantoms for normal organs. Anatomical parameters are taken from the literature for a human model, while murine parameters are measured ex vivo. The murine histological slides also provide the data for volume of occupancy of the different compartments of the nephron in the kidney: glomerulus versus proximal tubule versus distal tubule. Monte Carlo simulations are run with activity placed in the different nephron compartments for several α-particle emitters currently under investigation in radiopharmaceutical therapy. The S-values were calculated for the α-emitters and their descendants between the different nephron compartments for both the

  1. Current Status and Perspectives of Hyperthermia in Cancer Therapy

    Science.gov (United States)

    Hiraoka, Masahiro; Nagata, Yasushi; Mitsumori, Michihide; Sakamoto, Masashi; Masunaga, Shin-ichiro

    2004-08-01

    Clinical trials of hyperthermia in combination with radiation therapy or chemotherapy undertaken over the past decades in Japan have been reviewed. Originally developed heating devices were mostly used for these trials, which include RF (radiofrequency) capacitive heating devices, a microwave heating device with a lens applicator, an RF intracavitary heating device, an RF current interstitial heating device, and ferromagnetic implant heating device. Non-randomized trials for various cancers, demonstrated higher response rate in thermoradiotherapy than in radiotherapy alone. Randomized trials undertaken for esophageal cancers also demonstrated improved local response with the combined use of hyperthermia. Furthermore, the complications associated with treatment were not generally serious. These clinical results indicate the benefit of combined treatment of hyperthermia and radiotherapy for various malignancies. On the other hand, the presently available heating devices are not satisfactory from the clinical viewpoints. With the advancement of heating and thermometry technologies, hyperthermia will be more widely and safely used in the treatment of cancers.

  2. Characteristics of airflow and particle deposition in COPD current smokers

    Science.gov (United States)

    Zou, Chunrui; Choi, Jiwoong; Haghighi, Babak; Choi, Sanghun; Hoffman, Eric A.; Lin, Ching-Long

    2017-11-01

    A recent imaging-based cluster analysis of computed tomography (CT) lung images in a chronic obstructive pulmonary disease (COPD) cohort identified four clusters, viz. disease sub-populations. Cluster 1 had relatively normal airway structures; Cluster 2 had wall thickening; Cluster 3 exhibited decreased wall thickness and luminal narrowing; Cluster 4 had a significant decrease of luminal diameter and a significant reduction of lung deformation, thus having relatively low pulmonary functions. To better understand the characteristics of airflow and particle deposition in these clusters, we performed computational fluid and particle dynamics analyses on representative cluster patients and healthy controls using CT-based airway models and subject-specific 3D-1D coupled boundary conditions. The results show that particle deposition in central airways of cluster 4 patients was noticeably increased especially with increasing particle size despite reduced vital capacity as compared to other clusters and healthy controls. This may be attributable in part to significant airway constriction in cluster 4. This study demonstrates the potential application of cluster-guided CFD analysis in disease populations. NIH Grants U01HL114494 and S10-RR022421, and FDA Grant U01FD005837.

  3. Atypical Teratoid Rhabdoid Tumor: Current Therapy and Future Directions

    Energy Technology Data Exchange (ETDEWEB)

    Ginn, Kevin F.; Gajjar, Amar, E-mail: amar.gajjar@stjude.org [Division of Neuro-Oncology, St. Jude Children’s Research Hospital, Memphis, TN (United States)

    2012-09-12

    Atypical teratoid rhabdoid tumors (ATRTs) are rare central nervous system tumors that comprise approximately 1–2% of all pediatric brain tumors; however, in patients less than 3 years of age this tumor accounts for up to 20% of cases. ATRT is characterized by loss of the long arm of chromosome 22 which results in loss of the hSNF5/INI-1 gene. INI1, a member of the SWI/SNF chromatin remodeling complex, is important in maintenance of the mitotic spindle and cell cycle control. Overall survival in ATRT is poor with median survival around 17 months. Radiation is an effective component of therapy but is avoided in patients younger than 3 years of age due to long term neurocognitive sequelae. Most long term survivors undergo radiation therapy as a part of their upfront or salvage therapy, and there is a suggestion that sequencing the radiation earlier in therapy may improve outcome. There is no standard curative chemotherapeutic regimen, but anecdotal reports advocate the use of intensive therapy with alkylating agents, high-dose methotrexate, or therapy that includes high-dose chemotherapy with stem cell rescue. Due to the rarity of this tumor and the lack of randomized controlled trials it has been challenging to define optimal therapy and advance treatment. Recent laboratory investigations have identified aberrant function and/or regulation of cyclin D1, aurora kinase, and insulin-like growth factor pathways in ATRT. There has been significant interest in identifying and testing therapeutic agents that target these pathways.

  4. Combined treatment of adenoid cystic carcinoma with cetuximab and IMRT plus C12 heavy ion boost: ACCEPT [ACC, Erbitux® and particle therapy

    Directory of Open Access Journals (Sweden)

    Hinke Axel

    2011-02-01

    Full Text Available Abstract Background Local control in adjuvant/definitive RT of adenoid cystic carcinoma (ACC is largely dose-dependent leading to the establishment of particle therapy in this indication. However, even modern techniques leave space for improvement of local control by intensification of local treatment. Radiation sensitization by exploitation of high EGFR-expression in ACC with the EGFR receptor antibody cetuximab seems promising. Methods/design The ACCEPT trial is a prospective, mono-centric, phase I/II trial evaluating toxicity (primary endpoint: acute and late effects and efficacy (secondary endpoint: local control, distant control, disease-free survival, overall survival of the combined treatment with IMRT/carbon ion boost and weekly cetuximab in 49 patients with histologically proven (≥R1-resected, inoperable or Pn+ ACC. Patients receive 18 GyE carbon ions (6 fractions and 54 Gy IMRT (2.0 Gy/fraction in combination with weekly cetuximab throughout radiotherapy. Discussion The primary objective of ACCEPT is to evaluate toxicity and feasibility of cetuximab and particle therapy in adenoid cystic carcinoma. Trial Registration Clinical Trial Identifier: NCT 01192087 EudraCT number: 2010 - 022425 - 15

  5. Combined treatment of adenoid cystic carcinoma with cetuximab and IMRT plus C12 heavy ion boost: ACCEPT [ACC, Erbitux® and particle therapy

    International Nuclear Information System (INIS)

    Jensen, Alexandra D; Nikoghosyan, Anna; Hinke, Axel; Debus, Jürgen; Münter, Marc W

    2011-01-01

    Local control in adjuvant/definitive RT of adenoid cystic carcinoma (ACC) is largely dose-dependent leading to the establishment of particle therapy in this indication. However, even modern techniques leave space for improvement of local control by intensification of local treatment. Radiation sensitization by exploitation of high EGFR-expression in ACC with the EGFR receptor antibody cetuximab seems promising. The ACCEPT trial is a prospective, mono-centric, phase I/II trial evaluating toxicity (primary endpoint: acute and late effects) and efficacy (secondary endpoint: local control, distant control, disease-free survival, overall survival) of the combined treatment with IMRT/carbon ion boost and weekly cetuximab in 49 patients with histologically proven (≥R1-resected, inoperable or Pn+) ACC. Patients receive 18 GyE carbon ions (6 fractions) and 54 Gy IMRT (2.0 Gy/fraction) in combination with weekly cetuximab throughout radiotherapy. The primary objective of ACCEPT is to evaluate toxicity and feasibility of cetuximab and particle therapy in adenoid cystic carcinoma. Clinical Trial Identifier: http://www.clinicaltrials.gov/ct2/show/NCT01192087 EudraCT number: 2010 - 022425 - 15

  6. Getting Ready for Ion-Beam Therapy Research in Austria - Building-up Research in Parallel with a Facility

    International Nuclear Information System (INIS)

    Georg, Dietmar; Knaeusl; Kuess, Peter; Fuchs, Hermann; Poetter, Richard; Schreiner, Thomas

    2015-01-01

    With participation in ion-beam projects funded nationally or by the European Commission (EC), ion-beam research activities were started at the Medical University of Vienna in parallel with the design and construction of the ion-beam center MedAustron in Wiener Neustadt, 50 km from the Austrian capital. The current medical radiation physics research activities that will be presented comprise: (1) Dose calculation and optimization: ion-beam centers focus mostly on proton and carbon-ion therapy. However, there are other ion species with great potential for clinical applications. Helium ions are currently under investigation from a theoretical physics and biology perspective. (2) Image guided and adaptive ion-beam therapy: organ motion and anatomic changes have a severe influence in ion-beam therapy since variations in heterogeneity along the beam path have a significant impact on the particle range. Ongoing research focuses on possibilities to account for temporal variations of the anatomy during radiotherapy. Both during and between fractions also considering temporal variations in tumor biology. Furthermore, research focuses on particle therapy positron emission tomography (PT-PET) verification and the detection of prompt gammas for on-line verification of ion-beam delivery. (3) Basic and applied dosimetry: an end-to-end procedure was designed and successfully tested in both scanned proton and carbon-ion beams, which may also serve as a dosimetric credentialing procedure for clinical trials in the future. (Author)

  7. Characterization of Particles in Protein Solutions: Reaching the Limits of Current Technologies

    OpenAIRE

    Demeule, Barth?lemy; Messick, Steven; Shire, Steven J.; Liu, Jun

    2010-01-01

    Recent publications have emphasized the lack of characterization methods available for protein particles in a size range comprised between 0.1 and 10??m and the potential risk of immunogenicity associated with such particles. In the present paper, we have investigated the performance of light obscuration, flow microscopy, and Coulter counter instruments for particle counting and sizing in protein formulations. We focused on particles 2?10??m in diameter and studied the effect of silicon oil d...

  8. Combination therapies for the treatment of HER2-positive breast cancer: current and future prospects.

    Science.gov (United States)

    Brandão, Mariana; Pondé, Noam F; Poggio, Francesca; Kotecki, Nuria; Salis, Mauren; Lambertini, Matteo; de Azambuja, Evandro

    2018-05-24

    HER2-positive disease is an aggressive subtype of breast cancer that has been revolutionized by anti-HER2 directed therapies. Multiple drugs have been developed and are currently in clinical use, including trastuzumab, lapatinib, pertuzumab, T-DM1, and neratinib, alone or combined in 'dual HER2-blockade' regimens. Areas covered: A comprehensive literature review was performed regarding the current state and the future of combination regimens containing anti-HER2 agents, focusing on their efficacy, toxicity, and cost-effectiveness. Expert commentary: The combination of trastuzumab/pertuzumab is approved in all disease settings, while trastuzumab/neratinib is approved in the adjuvant setting and trastuzumab/lapatinib in metastatic disease. Meanwhile, as breast cancer biology and resistance mechanisms become clearer, combinations with drugs like PI3K/Akt/mTOR inhibitors, CDK4/6 inhibitors, anti-PD(L)1 antibodies, endocrine therapy, and new anti-HER2 agents (panHER and HER2 tyrosine kinase inhibitors, bispecific antibodies, anti-HER3 antibodies, and antibody-drug conjugates) are being extensively tested in clinical trials. More specific strategies for the 'triple-positive' (estrogen receptor-positive/HER2-positive) disease are also being explored. However, there is an urgent need for the development of predictive biomarkers for a better tailoring of anti-HER2 directed therapy. This is the only way to further improve clinical outcomes and quality of life and to decrease costs and toxicities of unnecessary treatments.

  9. Numerical Study of Particle Interaction in Gas-Particle and Liquid-Particle Flows: Part I Analysis and Validation

    Directory of Open Access Journals (Sweden)

    K. Mohanarangam

    2009-09-01

    Full Text Available A detailed study into the turbulent behaviour of dilute particulate flow under the influence of two carrier phases namely gas and liquid has been carried out behind a sudden expansion geometry. The major endeavour of the study is to ascertain the response of the particles within the carrier (gas or liquid phase. The main aim prompting the current study is the density difference between the carrier and the dispersed phases. While the ratio is quite high in terms of the dispersed phase for the gas-particle flows, the ratio is far more less in terms of the liquid-particle flows. Numerical simulations were carried out for both these classes of flows using an Eulerian two-fluid model with RNG based k-emodel as the turbulent closure. An additional kinetic energy equation to better represent the combined fluid-particle behaviour is also employed in the current set of simulations. In the first part of this two part series, experimental results of Fessler and Eaton (1995 for Gas-Particle (GP flow and that of Founti and Klipfel (1998 for Liquid-Particle (LP flow have been compared and analysed. This forms the basis of the current study which aims to look at the particulate behaviour under the influence of two carrier phases. Further numerical simulations were carried out to test whether the current numerical formulation can used to simulate these varied type of flows and the same were validated against the experimental data of both GP as well LP flow. Qualitative results have been obtained for both these classes of flows with their respective experimental data both at the mean as well as at the turbulence level for carrier as well as the dispersed phases.

  10. Proton Therapy Expansion Under Current United States Reimbursement Models

    Energy Technology Data Exchange (ETDEWEB)

    Kerstiens, John [Indiana University Health Proton Therapy Center, Bloomington, Indiana (United States); Johnstone, Peter A.S., E-mail: pajohnst@iupui.edu [Indiana University Health Proton Therapy Center, Bloomington, Indiana (United States); Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana (United States)

    2014-06-01

    Purpose: To determine whether all the existing and planned proton beam therapy (PBT) centers in the United States can survive on a local patient mix that is dictated by insurers, not by number of patients. Methods and Materials: We determined current and projected cancer rates for 10 major US metropolitan areas. Using published utilization rates, we calculated patient percentages who are candidates for PBT. Then, on the basis of current published insurer coverage policies, we applied our experience of what would be covered to determine the net number of patients for whom reimbursement is expected. Having determined the net number of covered patients, we applied our average beam delivery times to determine the total number of minutes needed to treat that patient over the course of their treatment. We then calculated our expected annual patient capacity per treatment room to determine the appropriate number of treatment rooms for the area. Results: The population of patients who will be both PBT candidates and will have treatments reimbursed by insurance is significantly smaller than the population who should receive PBT. Coverage decisions made by insurers reduce the number of PBT rooms that are economically viable. Conclusions: The expansion of PBT centers in the US is not sustainable under the current reimbursement model. Viability of new centers will be limited to those operating in larger regional metropolitan areas, and few metropolitan areas in the US can support multiple centers. In general, 1-room centers require captive (non–PBT-served) populations of approximately 1,000,000 lives to be economically viable, and a large center will require a population of >4,000,000 lives. In areas with smaller populations or where or a PBT center already exists, new centers require subsidy.

  11. From Particle Physics to Medical Applications

    Science.gov (United States)

    Dosanjh, Manjit

    2017-06-01

    CERN is the world's largest particle physics research laboratory. Since it was established in 1954, it has made an outstanding contribution to our understanding of the fundamental particles and their interactions, and also to the technologies needed to analyse their properties and behaviour. The experimental challenges have pushed the performance of particle accelerators and detectors to the limits of our technical capabilities, and these groundbreaking technologies can also have a significant impact in applications beyond particle physics. In particular, the detectors developed for particle physics have led to improved techniques for medical imaging, while accelerator technologies lie at the heart of the irradiation methods that are widely used for treating cancer. Indeed, many important diagnostic and therapeutic techniques used by healthcare professionals are based either on basic physics principles or the technologies developed to carry out physics research. Ever since the discovery of x-rays by Roentgen in 1895, physics has been instrumental in the development of technologies in the biomedical domain, including the use of ionizing radiation for medical imaging and therapy. Some key examples that are explored in detail in this book include scanners based on positron emission tomography, as well as radiation therapy for cancer treatment. Even the collaborative model of particle physics is proving to be effective in catalysing multidisciplinary research for medical applications, ensuring that pioneering physics research is exploited for the benefit of all.

  12. Hormones and tumour therapy: current clinical status and future developments in endocrine therapy of breast cancer

    International Nuclear Information System (INIS)

    Szepesi, T.; Schratter-Sehn, A.U.

    1982-01-01

    Postoperative adjuvant hormone therapy and hormone therapy in disseminated breast cancer will be discussed systematically. The classical ablative and additive endocrine therapeutic measures - with the exception of ovarectomy and gestagen therapy - are increasinlgy being replaced by antagonists. Individual chapters discuss recent experience with combined hormone-radiotherapy or hormone-chemotherapy. In addition, a successful therapy scheme for the treatment of disseminated breast cancer will be presented. (Author)

  13. Image-guided surgery and therapy: current status and future directions

    Science.gov (United States)

    Peters, Terence M.

    2001-05-01

    Image-guided surgery and therapy is assuming an increasingly important role, particularly considering the current emphasis on minimally-invasive surgical procedures. Volumetric CT and MR images have been used now for some time in conjunction with stereotactic frames, to guide many neurosurgical procedures. With the development of systems that permit surgical instruments to be tracked in space, image-guided surgery now includes the use of frame-less procedures, and the application of the technology has spread beyond neurosurgery to include orthopedic applications and therapy of various soft-tissue organs such as the breast, prostate and heart. Since tracking systems allow image- guided surgery to be undertaken without frames, a great deal of effort has been spent on image-to-image and image-to- patient registration techniques, and upon the means of combining real-time intra-operative images with images acquired pre-operatively. As image-guided surgery systems have become increasingly sophisticated, the greatest challenges to their successful adoption in the operating room of the future relate to the interface between the user and the system. To date, little effort has been expended to ensure that the human factors issues relating to the use of such equipment in the operating room have been adequately addressed. Such systems will only be employed routinely in the OR when they are designed to be intuitive, unobtrusive, and provide simple access to the source of the images.

  14. ENLIGHT and other EU-funded projects in hadron therapy

    CERN Document Server

    Dosanjh, M; Meyer, R

    2010-01-01

    Following impressive results from early phase trials in Japan and Germany, there is a current expansion in European hadron therapy. This article summarises present European Union-funded projects for research and co-ordination of hadron therapy across Europe. Our primary focus will be on the research questions associated with carbon ion treatment of cancer, but these considerations are also applicable to treatments using proton beams and other light ions. The challenges inherent in this new form of radiotherapy require maximum interdisciplinary co-ordination. On the basis of its successful track record in particle and accelerator physics, the internationally funded CERN laboratories (otherwise known as the European Organisation for Nuclear Research) have been instrumental in promoting collaborations for research purposes in this area of radiation oncology. There will soon be increased opportunities for referral of patients across Europe for hadron therapy. Oncologists should be aware of these developments, whi...

  15. Current Status of Immunomodulatory and Cellular Therapies in Preclinical and Clinical Islet Transplantation

    Science.gov (United States)

    Chhabra, Preeti; Brayman, Kenneth L.

    2011-01-01

    Clinical islet transplantation is a β-cell replacement strategy that represents a possible definitive intervention for patients with type 1 diabetes, offering substantial benefits in terms of lowering daily insulin requirements and reducing incidences of debilitating hypoglycemic episodes and unawareness. Despite impressive advances in this field, a limiting supply of islets, inadequate means for preventing islet rejection, and the deleterious diabetogenic and nephrotoxic side effects associated with chronic immunosuppressive therapy preclude its wide-spread applicability. Islet transplantation however allows a window of opportunity for attempting various therapeutic manipulations of islets prior to transplantation aimed at achieving superior transplant outcomes. In this paper, we will focus on the current status of various immunosuppressive and cellular therapies that promote graft function and survival in preclinical and clinical islet transplantation with special emphasis on the tolerance-inducing capacity of regulatory T cells as well as the β-cells regenerative capacity of stem cells. PMID:22046502

  16. Measuring the critical current in superconducting samples made of NT-50 under pulse irradiation by high-energy particles

    International Nuclear Information System (INIS)

    Vasilev, P.G.; Vladimirova, N.M.; Volkov, V.I.; Goncharov, I.N.; Zajtsev, L.N.; Zel'dich, B.D.; Ivanov, V.I.; Kleshchenko, E.D.; Khvostov, V.B.

    1981-01-01

    The results of tests of superconducting samples of an uninsulated wire of the 0.5 mm diameter, containing 1045 superconducting filaments of the 10 μm diameter made of NT-50 superconductor in a copper matrix, are given. The upper part of the sample (''closed'') is placed between two glass-cloth-base laminate plates of the 50 mm length, and the lower part (''open'') of the 45 mm length is immerged into liquid helium. The sample is located perpendicular to the magnetic field of a superconducting solenoid and it is irradiated by charged particle beams at the energy of several GeV. The measurement results of permissible energy release in the sample depending on subcriticality (I/Isub(c) where I is an operating current through the sample, and Isub(c) is a critical current for lack of the beam) and the particle flux density, as well as of the maximum permissible fluence depending on subcriticality. In case of the ''closed'' sample irradiated by short pulses (approximately 1 ms) for I/Isub(c) [ru

  17. A new concept for the modeling of the positron emitter production for the particle therapy

    International Nuclear Information System (INIS)

    Priegnitz, Marlen

    2012-01-01

    One of the three main tumour treatment forms is radiation therapy. Here, the application of ion beams, in particular protons and carbon ions, is of growing importance. This high precision therapy requires a consequent monitoring of the dose delivery since the induced dose deposition is very sensitive to density changes in the irradiated tissue. Up to now, positron emission tomography (PET) is the only in vivo method in clinical use for monitoring the dose deposition in ion beam therapy. It allows for the verification of the particle range as well as the position of the irradiation field. The distribution of activity measured by means of PET cannot be compared directly to the planned dose distribution. Thus, a calculation of the expected activity distribution is required which then can be compared to the measurement. Simulation of the expected activity distribution requires the exact knowledge of various cross sections. Only a few of them have been measured in the required energy range so far. Therefore, in Monte Carlo simulations often intrinsic nuclear models or semi-empirical parametrization are used which often exhibit insufficient accuray. Among experts the question on the optimum ion species for tumour therapy is still open. Especially lithium ions exhibit a great potential due to their favourable physical and radiobiological properties. Also for these ions a PET monitoring is highly desirable. The presented work shows the feasibility of range verification by means of PET for lithium irradiation. Furthermore, a concept for modeling positron emitter distributions without the knowledge of cross sections is developed. This prediction is based on depth-dependent positron emitter yields measured in reference materials (water, graphite and polyethylene). With these data the positron emitter distribution in any material of known stoichiometry can be calculated by means of an appropriate linear combination. The feasibility of the yield concept is shown for lithium and

  18. Heavy ion therapy: Bevalac epoch

    International Nuclear Information System (INIS)

    Castro, J.R.

    1993-10-01

    An overview of heavy ion therapy at the Bevelac complex (SuperHILac linear accelerator + Bevatron) is given. Treatment planning, clinical results with helium ions on the skull base and uveal melanoma, clinical results with high-LET charged particles, neon radiotherapy of prostate cancer, heavy charged particle irradiation for unfavorable soft tissue sarcoma, preliminary results in heavy charged particle irradiation of bone sarcoma, and irradiation of bile duct carcinoma with charged particles and-or photons are all covered

  19. Trends in spread of the particle therapy of cancers to areal bases

    International Nuclear Information System (INIS)

    Abe, Mitsuyuki; Aoki, Takashi; Tsujii, Hirohiko

    2009-01-01

    In Japan, the rate of cancer death accounts for 30%, now there are 8 facilities having the cancer particle therapy (PT) which is promising due to its highly effective, short term, non-surgical, not always expensive treatment, and local areas have tended to construct such facility for their people. This special article describes trends in the title concerning the areal intention for setting up the therapeutic bases, global trend of PT, research and development in manufacturers of PT equipments, and response of health insurer to the trend. The article contains following 15 topics presented by 15 authors or groups of the academia, official and company institutes, prefectural officers, manufacturers and an insurer, and by Editorial. Topics are: Significance and future view of PT in cancer treatment; Present state of construction of PT facilities in various areas; Fifteen year-results of PT in near-infrared spectroscopy (NIRS) and its effort to spread the therapy; Gumma University's 21st century program COE (Center of Excellence), Medical and Biological Studies with Accelerator Technology; Project for constructing Fukui Prefectural Proton PT Center; The role of Proton PT Center in southern Tohoku area as the first private facility; PT center by Foundation of Medipolis Medical Research Institute in southern Kyushu area; Global trend of PT; Spread of PT and the role of health insurance in it/Mitsui-Sumitomo's health insurance, Kirameki, the contribution to general public; Mitsubishi Electric Corp.'s effort to spread PT equipments; Toshiba's effort; Hitachi's effort; Sumitomo Heavy Industries' effort; Effort by Chiyoda Technol Corp. and Still River Systems to develop the next generation superconducting PT equipment; and Overview by Editorial/Complicated trend in invitation and construction of PT facilities. (K.T.)

  20. Design and study of parallel computing environment of Monte Carlo simulation for particle therapy planning using a public cloud-computing infrastructure

    International Nuclear Information System (INIS)

    Yokohama, Noriya

    2013-01-01

    This report was aimed at structuring the design of architectures and studying performance measurement of a parallel computing environment using a Monte Carlo simulation for particle therapy using a high performance computing (HPC) instance within a public cloud-computing infrastructure. Performance measurements showed an approximately 28 times faster speed than seen with single-thread architecture, combined with improved stability. A study of methods of optimizing the system operations also indicated lower cost. (author)

  1. The current status of oncolytic viral therapy for head and neck cancer

    Directory of Open Access Journals (Sweden)

    Matthew O. Old

    2016-06-01

    Full Text Available Objective: Cancer affects the head and neck region frequently and leads to significant morbidity and mortality. Oncolytic viral therapy has the potential to make a big impact in cancers that affect the head and neck. We intend to review the current state of oncolytic viruses in the treatment of cancers that affect the head and neck region. Method: Data sources are from National clinical trials database, literature, and current research. Results: There are many past and active trials for oncolytic viruses that show promise for treating cancers of the head and neck. The first oncolytic virus was approved by the FDA October 2015 (T-VEC, Amgen for the treatment of melanoma. Active translational research continues for this and many other oncolytic viruses. Conclusion: The evolving field of oncolytic viruses is impacting the treatment of head and neck cancer and further trials and agents are moving forward in the coming years. Keywords: Head and neck squamous cell carcinoma, Oncolytic viruses, Clinical trials, Novel therapeutics

  2. Combined transcranial direct current stimulation and home-based occupational therapy for upper limb motor impairment following intracerebral hemorrhage

    DEFF Research Database (Denmark)

    Mortensen, Jesper; Figlewski, Krystian; Andersen, Henning

    2016-01-01

    PURPOSE: To investigate the combined effect of transcranial direct current stimulation (tDCS) and home-based occupational therapy on activities of daily living (ADL) and grip strength, in patients with upper limb motor impairment following intracerebral hemorrhage (ICH). METHODS: A double......-blind randomized controlled trial with one-week follow-up. Patients received five consecutive days of occupational therapy at home, combined with either anodal (n = 8) or sham (n = 7) tDCS. The primary outcome was ADL performance, which was assessed with the Jebsen-Taylor test (JTT). RESULTS: Both groups improved...... with the sham group, from baseline to post-assessment (p = 0.158). CONCLUSIONS: Five consecutive days of tDCS combined with occupational therapy provided greater improvements in grip strength compared with occupational therapy alone. tDCS is a promising add-on intervention regarding training of upper limb motor...

  3. SMALL-SCALE MAGNETIC ISLANDS IN THE SOLAR WIND AND THEIR ROLE IN PARTICLE ACCELERATION. I. DYNAMICS OF MAGNETIC ISLANDS NEAR THE HELIOSPHERIC CURRENT SHEET

    Energy Technology Data Exchange (ETDEWEB)

    Khabarova, O. [Heliophysical Laboratory, Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation RAS (IZMIRAN), Troitsk, Moscow 142190 (Russian Federation); Zank, G. P.; Li, G.; Roux, J. A. le; Webb, G. M.; Dosch, A. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Malandraki, O. E. [IAASARS, National Observatory of Athens, GR-15236 Penteli (Greece)

    2015-08-01

    Increases of ion fluxes in the keV–MeV range are sometimes observed near the heliospheric current sheet (HCS) during periods when other sources are absent. These resemble solar energetic particle events, but the events are weaker and apparently local. Conventional explanations based on either shock acceleration of charged particles or particle acceleration due to magnetic reconnection at interplanetary current sheets (CSs) are not persuasive. We suggest instead that recurrent magnetic reconnection occurs at the HCS and smaller CSs in the solar wind, a consequence of which is particle energization by the dynamically evolving secondary CSs and magnetic islands. The effectiveness of the trapping and acceleration process associated with magnetic islands depends in part on the topology of the HCS. We show that the HCS possesses ripples superimposed on the large-scale flat or wavy structure. We conjecture that the ripples can efficiently confine plasma and provide tokamak-like conditions that are favorable for the appearance of small-scale magnetic islands that merge and/or contract. Particles trapped in the vicinity of merging islands and experiencing multiple small-scale reconnection events are accelerated by the induced electric field and experience first-order Fermi acceleration in contracting magnetic islands according to the transport theory of Zank et al. We present multi-spacecraft observations of magnetic island merging and particle energization in the absence of other sources, providing support for theory and simulations that show particle energization by reconnection related processes of magnetic island merging and contraction.

  4. In Vitro Polyvinylformaldehyde Particle Compatibility with Chemotherapeutic Drugs Used for Chemoembolization Therapy

    International Nuclear Information System (INIS)

    Vallee, Jean-Noel; Guillevin, Remy; Lo, Daouda; Adem, Carmen; Benois, Florence; Chiras, Jacques

    2003-01-01

    Purpose: Because the effects of pirarubicin and carboplatin on the physical structure of particles made from polyvinylformaldehyde are not well known, we describe an experiment to test the in vitro polyvinylformaldehyde particle compatibility with these drugs used for chemoembolization of bone metastases. Materials and Methods: Polyvinylformaldehydeparticles (Ultra-Drivalon) were mixed in vitro with either pirarubicinor carboplatin as experimental samples, and with distilled water as control samples, and left for 24 h at 37 o C. The particles used measured 150-250 μm and 600-1000 μm in diameter. Particle morphology, including appearance, overall shape, and surface characteristics were examined using a microscope equipped with a videocamera. Particle size was measured by granulometry. Qualitative and quantitative variables were analyzed using, respectively, the two-sided Fisher's exact test and the Wilcoxon signed-rank rank test for paired values, with a significance level of 0.05. Results: No broken particles or microscopic degradations in the appearance, overall shape, or surface characteristics of any particles were observed. The particle size distribution was not significantly different between the experimental samples containing pirarubicin or carboplatin and the control sample of particles with diameters in the same range. Conclusion: Particles made from polyvinylformaldehyde can be mixed with pirarubicin or carboplatin without any risk of damaging their physical properties

  5. Laboratory investigation of physical mechanisms of auroral charged particle acceleration in the field-aligned currents layers

    Science.gov (United States)

    Gavrilov, B.; Zetzer, J.; Sobyanin, D.; Podgorny, I.

    One of the major topics of space weather research is to understand auroral structure and the processes that guide, accelerate, and otherwise control particle precipitation and produce auroral substorms. Navigation, communications and radars in the high latitude regions are severely affected through the effects on the ionosphere. It has long been recognized that the direct cause of the aurora is the precipitation of energetic electrons and ions into the atmosphere leading to excitation of the ambient atmospheric gases. Observations of the ionospheric ionization profiles and auroral precipitation characteristics have shown that field-aligned potential drops are formed to create this effect. The problem is that it is not clear the structure of the regions of magnetic field-aligned electric fields and how they are supported in the magnetospheric plasma. The objective of this research is to study the physical mechanisms of these phenomena in a laboratory experiment. It should be achieved by simulating the charged particle acceleration due to field-aligned electrical field generation in all totality of the interconnected events: generation of a plasma flow, its evolution in the magnetic field, polarization of plasma, generation of the field-aligned currents, development of instabilities in the plasma and current layers, double layers or anomalous resistance regions appearance, electrons acceleration. Parameters of the laboratory simulation and preliminary results of the experiment are discussed.

  6. HIV cure strategies: how good must they be to improve on current antiretroviral therapy?

    Directory of Open Access Journals (Sweden)

    Paul E Sax

    Full Text Available We examined efficacy, toxicity, relapse, cost, and quality-of-life thresholds of hypothetical HIV cure interventions that would make them cost-effective compared to life-long antiretroviral therapy (ART.We used a computer simulation model to assess three HIV cure strategies: Gene Therapy, Chemotherapy, and Stem Cell Transplantation (SCT, each compared to ART. Efficacy and cost parameters were varied widely in sensitivity analysis. Outcomes included quality-adjusted life expectancy, lifetime cost, and cost-effectiveness in dollars/quality-adjusted life year ($/QALY gained. Strategies were deemed cost-effective with incremental cost-effectiveness ratios <$100,000/QALY.For patients on ART, discounted quality-adjusted life expectancy was 16.4 years and lifetime costs were $591,400. Gene Therapy was cost-effective with efficacy of 10%, relapse rate 0.5%/month, and cost $54,000. Chemotherapy was cost-effective with efficacy of 88%, relapse rate 0.5%/month, and cost $12,400/month for 24 months. At $150,000/procedure, SCT was cost-effective with efficacy of 79% and relapse rate 0.5%/month. Moderate efficacy increases and cost reductions made Gene Therapy cost-saving, but substantial efficacy/cost changes were needed to make Chemotherapy or SCT cost-saving.Depending on efficacy, relapse rate, and cost, cure strategies could be cost-effective compared to current ART and potentially cost-saving. These results may help provide performance targets for developing cure strategies for HIV.

  7. A Nine Decade Femtoampere Current to Frequency Converter

    CERN Document Server

    Voulgari, Evgenia; Szoncso, Friedrich

    2017-10-13

    Various applications require ultra-low current sensing. Some of these applications are related to ionizing radiation detection. Radiation monitoring is important in particle physics experiments, nuclear facilities, hadron therapy institutes and hospitals. In these cases the detectors used are mostly gas-filled detectors like ionization chambers. The output of these detectors is a current that is normally proportional to the energy deposited by the incident radiation. The European Organization for Nuclear Research (CERN) has a legal obligation to comply with the legislation in matters of radiation protection in order to avoid any unjustified dose to people or pollution of the environment. According to the existing detectors, the current output varies from a few femtoamperes up to the microampere range. The scope of this thesis is the design of a microelectronic integrated wide dynamic range front-end for radiation monitoring. Firstly, the state of the art has been investigated and different technologies have...

  8. Present developments in reaching an international consensus for a model-based approach to particle beam therapy.

    Science.gov (United States)

    Prayongrat, Anussara; Umegaki, Kikuo; van der Schaaf, Arjen; Koong, Albert C; Lin, Steven H; Whitaker, Thomas; McNutt, Todd; Matsufuji, Naruhiro; Graves, Edward; Mizuta, Masahiko; Ogawa, Kazuhiko; Date, Hiroyuki; Moriwaki, Kensuke; Ito, Yoichi M; Kobashi, Keiji; Dekura, Yasuhiro; Shimizu, Shinichi; Shirato, Hiroki

    2018-03-01

    Particle beam therapy (PBT), including proton and carbon ion therapy, is an emerging innovative treatment for cancer patients. Due to the high cost of and limited access to treatment, meticulous selection of patients who would benefit most from PBT, when compared with standard X-ray therapy (XRT), is necessary. Due to the cost and labor involved in randomized controlled trials, the model-based approach (MBA) is used as an alternative means of establishing scientific evidence in medicine, and it can be improved continuously. Good databases and reasonable models are crucial for the reliability of this approach. The tumor control probability and normal tissue complication probability models are good illustrations of the advantages of PBT, but pre-existing NTCP models have been derived from historical patient treatments from the XRT era. This highlights the necessity of prospectively analyzing specific treatment-related toxicities in order to develop PBT-compatible models. An international consensus has been reached at the Global Institution for Collaborative Research and Education (GI-CoRE) joint symposium, concluding that a systematically developed model is required for model accuracy and performance. Six important steps that need to be observed in these considerations include patient selection, treatment planning, beam delivery, dose verification, response assessment, and data analysis. Advanced technologies in radiotherapy and computer science can be integrated to improve the efficacy of a treatment. Model validation and appropriately defined thresholds in a cost-effectiveness centered manner, together with quality assurance in the treatment planning, have to be achieved prior to clinical implementation.

  9. Play Therapy: A Review

    Science.gov (United States)

    Porter, Maggie L.; Hernandez-Reif, Maria; Jessee, Peggy

    2009-01-01

    This article discusses the current issues in play therapy and its implications for play therapists. A brief history of play therapy is provided along with the current play therapy approaches and techniques. This article also touches on current issues or problems that play therapists may face, such as interpreting children's play, implementing…

  10. In-situ characterisation of the dynamics of a growing dust particle cloud in a direct-current argon glow discharge

    International Nuclear Information System (INIS)

    Barbosa, S; Onofri, F R A; Couëdel, L; Arnas, C; Kumar, K Kishor; Pardanaud, C

    2016-01-01

    The growth and the dynamics of a tungsten nanoparticle cloud were investigated in a direct-current low pressure argon glow discharge. Real-time analyses of the dust particle size and number concentration were performed in-situ by light extinction spectrometry, while spatial dynamics of the cloud was investigated with the laser light-sheet scattering method. Additional off-line electron microscopy and Raman spectroscopy measurements were also performed for comparison purpose. This experimental work reveals the existence of an agglomeration phase followed by the appearance of a new dust particle generation. While growing, the dust cloud is pushed towards the anode and the discharge edge. Afterwards, a new dust particle generation can grow in the space freed by the first generation of nanoparticles. The continuous growth, below the light extinction spectrometry scanning positions, explains the apparent dissimilarities observed between the in-line optical and the off-line electron microscopy analyses. (paper)

  11. Clinical results in heavy particle radiotherapy

    International Nuclear Information System (INIS)

    Castro, J.R.; Quivey, J.M.; Saunders, W.M.; Woodruff, K.H.; Chen, G.T.Y.; Lyman, J.T.; Pitluck, S.; Tobias, C.A.; Walton, R.E.; Peters, T.C.

    1980-01-01

    The chapter presents an overview of the use of heavy particles in human cancer radiotherapy. The biophysical characteristics and rationale for using heavy charged particle therapy are explored. The clinical experience with carbon, neon, argon and helium are summarized for various types of tumors including carcinomas of the uterine cervix and lung, skin melanomas and metastatic sarcomas. No obvious normal tissue complications have appeared

  12. On the stability conditions of flexible current conductor tightened in a magnetic field for charged particle trajectory tracing

    International Nuclear Information System (INIS)

    Kozodaev, M.S.

    1974-01-01

    Conditions of equilibrium stability in three-dimensional space for a stretched flexible current conductor, while tracing the trajectories of charged particles moving in a magnetic field, have been determined using variational principles. Formulas suitable for engineering calculations have been obtained that allow to determine the stability regions and to estimate errors in tracing due to the conductor weight and elasticity

  13. Selection of patients for heart transplantation in the current era of heart failure therapy.

    Science.gov (United States)

    Butler, Javed; Khadim, Ghazanfar; Paul, Kimberly M; Davis, Stacy F; Kronenberg, Marvin W; Chomsky, Don B; Pierson, Richard N; Wilson, John R

    2004-03-03

    We sought to assess the relationship between survival, peak exercise oxygen consumption (VO(2)), and heart failure survival score (HFSS) in the current era of heart failure (HF) therapy. Based on predicted survival, HF patients with peak VO(2) 14 ml/min/kg (p = 0.04). Of the patients with peak VO(2) of 10 to 14 ml/min/kg, 55% had low-risk HFSS and exhibited 88% one-year event-free survival. One-year survival after transplantation was 88%, which is similar to the 85% rate reported by the United Network for Organ Sharing for 1999 to 2000. Survival for HF patients in the current era has improved significantly, necessitating re-evaluation of the listing criteria for heart transplantation.

  14. Music therapy in cardiac health care: current issues in research.

    Science.gov (United States)

    Hanser, Suzanne B

    2014-01-01

    Music therapy is a service that has become more prevalent as an adjunct to medical practice-as its evidence base expands and music therapists begin to join the cardiology team in every phase of care, from the most serious cases to those maintaining good heart health. Although applications of music medicine, primarily listening to short segments of music, are capable of stabilizing vital signs and managing symptoms in the short-term, music therapy interventions by a qualified practitioner are showing promise in establishing deeper and more lasting impact. On the basis of mind-body approaches, stress/coping models, the neuromatrix theory of pain, and entrainment, music therapy capitalizes on the ability of music to affect the autonomic nervous system. Although only a limited number of randomized controlled trials pinpoint the efficacy of specific music therapy interventions, qualitative research reveals some profound outcomes in certain individuals. A depth of understanding related to the experience of living with a cardiovascular disease can be gained through music therapy approaches such as nonverbal music psychotherapy and guided imagery and music. The multifaceted nature of musical responsiveness contributes to strong individual variability and must be taken into account in the development of research protocols for future music therapy and music medicine interventions. The extant research provides a foundation for exploring the many potential psychosocial, physiological, and spiritual outcomes of a music therapy service for cardiology patients.

  15. Measurement of charged particle yields from therapeutic beams in view of the design of an innovative hadrontherapy dose monitor

    CERN Document Server

    Battistoni, G; Bini, F; Collamati, F; Collini, F; De Lucia, E; Durante, M; Faccini, R; Ferroni, F; Frallicciardi, P M; La Tessa, C; Marafini, M; Mattei, I; Miraglia, F; Morganti, S; Ortega, P G; Patera, V; Piersanti, L; Pinci, D; Russomando, A; Sarti, A; Schuy, C; Sciubba, A; Senzacqua, M; Solfaroli Camillocci, E; Vanstalle, M; Voena, C

    2015-01-01

    Particle Therapy (PT) is an emerging technique, which makes use of charged particles to efficiently cure different kinds of solid tumors. The high precision in the hadrons dose deposition requires an accurate monitoring to prevent the risk of under-dosage of the cancer region or of over-dosage of healthy tissues. Monitoring techniques are currently being developed and are based on the detection of particles produced by the beam interaction into the target, in particular: charged particles, result of target and/or projectile fragmentation, prompt photons coming from nucleus de-excitation and back-to-back γ s, produced in the positron annihilation from β + emitters created in the beam interaction with the target. It has been showed that the hadron beam dose release peak can be spatially correlated with the emission pattern of these secondary particles. Here we report about secondary particles production (charged fragments and prompt γ s) performed at different beam and energies that have a particular relevan...

  16. SU-E-T-66: Characterization of Radiation Dose Associated with Dark Currents During Beam Hold for Respiratory-Gated Electron Therapy

    International Nuclear Information System (INIS)

    Hessler, J; Gupta, N; Rong, Y; Weldon, M

    2014-01-01

    Purpose: The main objective of this study was to estimate the radiation dose contributed by dark currents associated with the respiratory-gated electron therapy during beam hold. The secondary aim was to determine clinical benefits of using respiratory-gated electron therapy for left-sided breast cancer patients with positive internal mammary nodes (IMN). Methods: Measurements of the dark current-induced dose in all electron modes were performed on multiple Siemens and Varian linear accelerators by manually simulating beam-hold during respiratory gating. Dose was quantified at the machine isocenter by comparing the collected charge to the known output for all energies ranging from 6 to 18 MeV for a 10cm × 10cm field at 100 SSD with appropriate solid-water buildup. Using the Eclipse treatment planning system, we compared the additional dose associated with dark current using gated electron fields to the dose uncertainties associated with matching gated photon fields and ungated electron fields. Dose uncertainties were seen as hot and cold spots along the match line of the fields. Results: The magnitude of the dose associated with dark current is highly correlated to the energy of the beam and the amount of time the beam is on hold. For lower energies (6–12 MeV), there was minimal dark current dose (0.1–1.3 cGy/min). Higher energies (15–18 MeV) showed measurable amount of doses. The dark current associated with the electron beam-hold varied between linear accelerator vendors and depended on dark current suppression and the age of the linear accelerator. Conclusion: For energies up to 12 MeV, the dose associated with the dark current for respiratorygated electron therapy was shown to be negligible, and therefore should be considered an option for treating IMN positive left-sided breast cancer patients. However, at higher energies the benefit of respiratory gating may be outweighed by dose due to the dark current

  17. Compact accelerator for medical therapy

    Science.gov (United States)

    Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.

    2010-05-04

    A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.

  18. Gene therapy for human glioblastoma using neurotropic JC virus-like particles as a gene delivery vector.

    Science.gov (United States)

    Chao, Chun-Nun; Yang, Yu-Hsuan; Wu, Mu-Sheng; Chou, Ming-Chieh; Fang, Chiung-Yao; Lin, Mien-Chun; Tai, Chien-Kuo; Shen, Cheng-Huang; Chen, Pei-Lain; Chang, Deching; Wang, Meilin

    2018-02-02

    Glioblastoma multiforme (GBM), the most common malignant brain tumor, has a short period of survival even with recent multimodality treatment. The neurotropic JC polyomavirus (JCPyV) infects glial cells and oligodendrocytes and causes fatal progressive multifocal leukoencephalopathy in patients with AIDS. In this study, a possible gene therapy strategy for GBM using JCPyV virus-like particles (VLPs) as a gene delivery vector was investigated. We found that JCPyV VLPs were able to deliver the GFP reporter gene into tumor cells (U87-MG) for expression. In an orthotopic xenograft model, nude mice implanted with U87 cells expressing the near-infrared fluorescent protein and then treated by intratumoral injection of JCPyV VLPs carrying the thymidine kinase suicide gene, combined with ganciclovir administration, exhibited significantly prolonged survival and less tumor fluorescence during the experiment compared with controls. Furthermore, JCPyV VLPs were able to protect and deliver a suicide gene to distal subcutaneously implanted U87 cells in nude mice via blood circulation and inhibit tumor growth. These findings show that metastatic brain tumors can be targeted by JCPyV VLPs carrying a therapeutic gene, thus demonstrating the potential of JCPyV VLPs to serve as a gene therapy vector for the far highly treatment-refractory GBM.

  19. The current status of prophylactic replacement therapy in children and adults with haemophilia.

    Science.gov (United States)

    Ljung, Rolf; Gretenkort Andersson, Nadine

    2015-06-01

    Initiating prophylactic treatment at an early age is considered to be the optimal form of therapy for a child with haemophilia A or B. The pioneering long term experiences of prophylactic treatment from Sweden and The Netherlands demonstrated the benefit of prophylaxis in retrospective and observational studies. Decades later, these benefits were confirmed in a randomized controlled study in USA. We review the current status of prophylactic replacement therapy of haemophilia in children, adolescents, adults and the elderly. Prophylaxis should begin at an early age and there are arguments for continuing it into adulthood. The dose of prophylaxis is dependent on the goal of treatment, economic resources and venous access and should be tailored individually. Starting the first exposures to clotting factor concentrates as prophylactic treatment, instead of on-demand in response to a bleed, may decrease the frequency of inhibitors in patients with haemophilia A. Novel longer-acting products are being introduced that could be helpful for patients with difficult venous access and enable higher trough levels. © 2015 John Wiley & Sons Ltd.

  20. First multimodal embolization particles visible on x-ray/computed tomography and magnetic resonance imaging.

    Science.gov (United States)

    Bartling, Soenke H; Budjan, Johannes; Aviv, Hagit; Haneder, Stefan; Kraenzlin, Bettina; Michaely, Henrik; Margel, Shlomo; Diehl, Steffen; Semmler, Wolfhard; Gretz, Norbert; Schönberg, Stefan O; Sadick, Maliha

    2011-03-01

    Embolization therapy is gaining importance in the treatment of malignant lesions, and even more in benign lesions. Current embolization materials are not visible in imaging modalities. However, it is assumed that directly visible embolization material may provide several advantages over current embolization agents, ranging from particle shunt and reflux prevention to improved therapy control and follow-up assessment. X-ray- as well as magnetic resonance imaging (MRI)-visible embolization materials have been demonstrated in experiments. In this study, we present an embolization material with the property of being visible in more than one imaging modality, namely MRI and x-ray/computed tomography (CT). Characterization and testing of the substance in animal models was performed. To reduce the chance of adverse reactions and to facilitate clinical approval, materials have been applied that are similar to those that are approved and being used on a routine basis in diagnostic imaging. Therefore, x-ray-visible Iodine was combined with MRI-visible Iron (Fe3O4) in a macroparticle (diameter, 40-200 μm). Its core, consisting of a copolymerized monomer MAOETIB (2-methacryloyloxyethyl [2,3,5-triiodobenzoate]), was coated with ultra-small paramagnetic iron oxide nanoparticles (150 nm). After in vitro testing, including signal to noise measurements in CT and MRI (n = 5), its ability to embolize tissue was tested in an established tumor embolization model in rabbits (n = 6). Digital subtraction angiography (DSA) (Integris, Philips), CT (Definition, Siemens Healthcare Section, Forchheim, Germany), and MRI (3 Tesla Magnetom Tim Trio MRI, Siemens Healthcare Section, Forchheim, Germany) were performed before, during, and after embolization. Imaging signal changes that could be attributed to embolization particles were assessed by visual inspection and rated on an ordinal scale by 3 radiologists, from 1 to 3. Histologic analysis of organs was performed. Particles provided a

  1. Current status of gene therapy for motor neuron disease

    Institute of Scientific and Technical Information of China (English)

    Xingkai An; Rong Peng; Shanshan Zhao

    2006-01-01

    OBJECTIVE: Although the etiology and pathogenesis of motor neuron disease is still unknown, there are many hypotheses on motor neuron mitochondrion, cytoskeleton structure and functional injuries. Thus, gene therapy of motor neuron disease has become a hot topic to apply in viral vector, gene delivery and basic gene techniques.DATA SOURCES: The related articles published between January 2000 and October 2006 were searched in Medline database and ISl database by computer using the keywords "motor neuron disease, gene therapy", and the language is limited to English. Meanwhile, the related references of review were also searched by handiwork. STUDY SELECTION: Original articles and referred articles in review were chosen after first hearing, then the full text which had new ideas were found, and when refer to the similar study in the recent years were considered first.DATA EXTRACTION: Among the 92 related articles, 40 ones were accepted, and 52 were excluded because of repetitive study or reviews.DATA SYNTHESIS: The viral vectors of gene therapy for motor neuron disease include adenoviral, adeno-associated viral vectors, herpes simplex virus type 1 vectors and lentiviral vectors. The delivery of them can be achieved by direct injection into the brain, or by remote delivery after injection vectors into muscle or peripheral nerves, or by ex vivo gene transfer. The viral vectors of gene therapy for motor neuron disease have been successfully developed, but the gene delivery of them is hampered by some difficulties. The RNA interference and neuroprotection are the main technologies for gene-based therapy in motor neuron disease. CONCLUSION : The RNA interference for motor neuron disease has succeeded in animal models, and the neuroprotection also does. But, there are still a lot of questions for gene therapy in the clinical treatment of motor neuron disease.

  2. Synergistic effects of Combined Therapy: nonfocused ultrasound plus Aussie current for noninvasive body contouring

    Science.gov (United States)

    Canela, Vivianne Carvalho; Crivelaro, Cinthia Nicoletti; Ferla, Luciane Zacchi; Pelozo, Gisele Marques; Azevedo, Juliana; Liebano, Richard Eloin; Nogueira, Caroline; Guidi, Renata Michelini; Grecco, Clóvis; Sant’Ana, Estela

    2018-01-01

    Background and objectives Nowadays, there are several noninvasive technologies being used for improving of body contouring. The objectives of this pilot study were to verify the effectiveness of the Heccus® device, emphasizing the synergism between nonfocused ultrasound plus Aussie current in the improvement of body contour, and to determine if the association of this therapy with whole-body vibration exercises can have additional positive effects in the results of the treatments. Subjects and methods Twenty healthy women aged 20–40 years participated in the study. Ten patients received Combined Therapy treatment (G1) and the other 10 participants received Combined Therapy with additional vibratory platform treatment (G2). Anthropometric and standardized photography analysis, ultrasonography, cutometry and self-adminestered questionnaires of tolerance and satisfaction levels with the treatment were used. Results Compared with baseline values, reduction of fat thickness was observed by ultrasonography in the posterior thigh area in the G1 group (Pcellulite degree in the buttocks, G1 (Ptreatment for improving the aspect of the cellulite, skin firmness and localized fat. If used in association with the whole-body vibratory platform, the results can be better, especially in the treatment of localized fat. Further studies with larger sample size should be performed to confirm these results. PMID:29731654

  3. Teaching particle physics

    CERN Document Server

    Hanley, P

    2000-01-01

    Particle physics attracts many students who hear of news from CERN or elsewhere in the media. This article examines which current A-level syllabuses include which bits of particle physics and surveys the many different types of resource available to teachers and students. (0 refs).

  4. Proton therapy project at PSI

    International Nuclear Information System (INIS)

    Nakagawa, K.; Akanuma, A.; Karasawa, K.

    1990-01-01

    Particle radiation which might present steeper dose distribution has received much attention as the third particle facility at the Paul Scherrer Institute (PSI), Switzerland. Proton conformation with sharp fall-off is considered to be the radiation beam suitable for confining high doses to a target volume without complications and for verifying which factor out of high RBE or physical dose distribution is more essential for local control in malignant tumors. This paper discusses the current status of the spot scanning method, which allows three dimensional conformation radiotherapy, and preliminary results. Preliminary dose distribution with proton conformation technique was acquired by modifying a computer program for treatment planning in pion treatment. In a patient with prostate carcinoma receiving both proton and pion radiation therapy, proton conformation was found to confine high doses to the target area and spare both the bladder and rectum well; and pion therapy was found to deliver non-homogeneous radiation to these organs. Although there are some obstacles in the proton project at PSI, experimental investigations are encouraging. The dynamic spot scanning method with combination of the kicker magnet, wobbler magnet, range shifter, patient transporter, and position sensitive monitor provides highly confined dose distribution, making it possible to increase total doses and thus to improve local control rate. Proton confirmation is considered to be useful for verifying possible biological effectiveness of negative pion treatment of PSI as well. (N.K.)

  5. Prospective evaluation of early treatment outcome in patients with meningiomas treated with particle therapy based on target volume definition with MRI and {sup 68}Ga-DOTATOC-PET

    Energy Technology Data Exchange (ETDEWEB)

    Combs, Stephanie E.; Welzel, Thomas; Habermehl, Daniel; Rieken, Stefan; Dittmar, Jan-Oliver; Kessel, Kerstin; Debus, Juergen [Univ. Hospital of Heidelberg, Dept. of Radiation Oncology, Heidelberg (Germany)], e-mail: Stephanie.Combs@med.uni-heidelberg.de; Jaekel, Oliver [Heidelberg Ion Therapy Center (HIT), Heidelberg (Germany); Haberkorn, Uwe [Univ. Hospital of Heidelberg, Dept. of Nuclear Medicine, Heidelberg (Germany)

    2013-04-15

    Purpose: To evaluate early treatment results and toxicity in patients with meningiomas treated with particle therapy. Material and methods: Seventy patients with meningiomas were treated with protons (n = 38) or carbon ion radiotherapy (n = 26). Median age was 49 years. Median age at treatment was 55 years, 24 were male (34%), and 46 were female (66%). Histology was benign meningioma in 26 patients (37%), atypical in 23 patients (33%) and anaplastic in four patients (6%). In 17 patients (24%) with skull base meningiomas diagnosis was based on the typical appearance of a meningioma. For benign meningiomas, total doses of 52.2-57.6 GyE were applied with protons. For high-grade lesions, the boost volume was 18 GyE carbon ions, with a median dose of 50 GyE applied as highly conformal radiation therapy. Nineteen patients were treated as re-irradiation. Treatment planning with MRI and 68-Ga-DOTATOC-PET was evaluated. Results: Very low rates of side effects developed, including headaches, nausea and dizziness. No severe treatment-related toxicity was observed. Local control for benign meningiomas was 100%. Five of 27 patients (19%) developed tumor recurrence during follow-up. Of these, four patients had been treated as re-irradiation for recurrent high-risk meningiomas. Actuarial local control after re-irradiation of high-risk meningiomas was therefore 67% at six and 12 months. In patients treated with primary radiotherapy, only one of 13 patients (8%) developed tumor recurrence 17 months after radiation therapy (photon and carbon ion boost). Conclusion: Continuous prospective follow-up and development of novel study concepts are required to fully exploit the long-term clinical data after particle therapy for meningiomas. To date, it may be concluded that when proton therapy is available, meningioma patients can be offered a treatment at least comparable to high-end photon therapy.

  6. Synergistic effects of Combined Therapy: nonfocused ultrasound plus Aussie current for noninvasive body contouring

    Directory of Open Access Journals (Sweden)

    Canela VC

    2018-04-01

    Full Text Available Vivianne Carvalho Canela,1 Cinthia Nicoletti Crivelaro,1 Luciane Zacchi Ferla,1 Gisele Marques Pelozo,1 Juliana Azevedo,2 Richard Eloin Liebano,3 Caroline Nogueira,4,5 Renata Michelini Guidi,4,5 Clóvis Grecco,4 Estela Sant’Ana4 1Ibramed Center for Education and Advanced Training (CEFAI, Amparo, SP, Brazil; 2CDE Medical Imaging Department, Brazilian College of Radiology (CBR, Amparo, SP, Brazil; 3Department of Physiotherapy, Federal University of São Carlos (UFSCar, São Carlos, SP, Brazil; 4Research, Development and Innovation Department, Ibramed Research Group (IRG, IBRAMED, Amparo, SP, Brazil; 5Biomedical Engineering Department, Faculty of Electrical Engineering and Computing, University of Campinas (UNICAMP, Campinas, SP, Brazil Background and objectives: Nowadays, there are several noninvasive technologies being used for improving of body contouring. The objectives of this pilot study were to verify the effectiveness of the Heccus® device, emphasizing the synergism between nonfocused ultrasound plus Aussie current in the improvement of body contour, and to determine if the association of this therapy with whole-body vibration exercises can have additional positive effects in the results of the treatments.Subjects and methods: Twenty healthy women aged 20–40 years participated in the study. Ten patients received Combined Therapy treatment (G1 and the other 10 participants received Combined Therapy with additional vibratory platform treatment (G2. Anthropometric and standardized photography analysis, ultrasonography, cutometry and self-adminestered questionnaires of tolerance and satisfaction levels with the treatment were used.Results: Compared with baseline values, reduction of fat thickness was observed by ultrasonography in the posterior thigh area in the G1 group (P<0.05 and in the buttocks (P<0.05 and the posterior thigh areas (P<0.05 in the G2. All the treated areas in both groups showed reduction in cellulite degree in the

  7. Current status of intratumoral therapy for glioblastoma.

    Science.gov (United States)

    Mehta, Ankit I; Linninger, Andreas; Lesniak, Maciej S; Engelhard, Herbert H

    2015-10-01

    With emerging drug delivery technologies becoming accessible, more options are expected to become available to patients with glioblastoma (GBM) in the near future. It is important for clinicians to be familiar with the underlying mechanisms and limitations of intratumoral drug delivery, and direction of recent research efforts. Tumor-adjacent brain is an extremely complex living matrix that creates challenges with normal tissue intertwining with tumor cells. For convection-enhanced delivery (CED), the role of tissue anisotropy for better predicting the biodistribution of the infusate has recently been studied. Computational predictive methods are now available to better plan CED therapy. Catheter design and placement—in addition to the agent being used—are critical components of any protocol. This paper overviews intratumoral therapies for GBM, highlighting key anatomic and physiologic perspectives, selected agents (especially immunotoxins), and some new developments such as the description of the glymphatic system.

  8. Lanthanide bearing radioactive particles for cancer therapy and multimodality imaging

    NARCIS (Netherlands)

    Zielhuis, S.W.

    2006-01-01

    Local radionuclide therapy using radioactive microspheres is a promising therapy for patients suffering from liver malignancies. In contrast to normal liver tissue, which receives most of its blood flow from the portal vein, liver malignancies are almost exclusively dependent on arterial blood

  9. Electrodeposition of nickel particles and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, G. T. [Centro de Investigacion en Quimica Aplicada, Laboratorio de Microscopia. Blvd. Enrique Reyna No. 140, Saltillo 25253, Coahuila (Mexico); Zavala, G.; Videa, M. [ITESM, Campus Monterrey, Depto. de Fisica, Av. Garza Sada 2501 Sur, Monterrey 64849, N. L. (Mexico)], e-mail: gtadeo@ciqa.mx

    2009-07-01

    Electrodeposition of nickel particles on ITO substrates is achieved by current pulse reduction. A comparison between potential pulse and current pulse experiments presents differences in particle size and particle size distribution. The latter shows smaller particle size dispersion than what is found with potential pulses. Characterization of the particles carried out by Atomic Force Microscopy shows particles with average sizes between 100 to 300 nm. Magnetic characterization by Magnetic Force Microscopy and SQUID shows that particles of {approx} 300 nm were ferromagnetic with a coercive field of 200 Oe and a saturation magnetization of 40 x 10{sup -6} emu at 300 K. (Author)

  10. Axisymmetrical particle-in-cell/Monte Carlo simulation of narrow gap planar magnetron plasmas. I. Direct current-driven discharge

    International Nuclear Information System (INIS)

    Kondo, Shuji; Nanbu, Kenichi

    2001-01-01

    An axisymmetrical particle-in-cell/Monte Carlo simulation is performed for modeling direct current-driven planar magnetron discharge. The axisymmetrical structure of plasma parameters such as plasma density, electric field, and electron and ion energy is examined in detail. The effects of applied voltage and magnetic field strength on the discharge are also clarified. The model apparatus has a narrow target-anode gap of 20 mm to make the computational time manageable. This resulted in the current densities which are very low compared to actual experimental results for a wider target-anode gap. The current-voltage characteristics show a negative slope in contrast with many experimental results. However, this is understandable from Gu and Lieberman's similarity equation. The negative slope appears to be due to the narrow gap

  11. Current External Beam Radiation Therapy Quality Assurance Guidance: Does It Meet the Challenges of Emerging Image-Guided Technologies?

    International Nuclear Information System (INIS)

    Palta, Jatinder R.; Liu, Chihray; Li, Jonathan G.

    2008-01-01

    The traditional prescriptive quality assurance (QA) programs that attempt to ensure the safety and reliability of traditional external beam radiation therapy are limited in their applicability to such advanced radiation therapy techniques as three-dimensional conformal radiation therapy, intensity-modulated radiation therapy, inverse treatment planning, stereotactic radiosurgery/radiotherapy, and image-guided radiation therapy. The conventional QA paradigm, illustrated by the American Association of Physicists in Medicine Radiation Therapy Committee Task Group 40 (TG-40) report, consists of developing a consensus menu of tests and device performance specifications from a generic process model that is assumed to apply to all clinical applications of the device. The complexity, variation in practice patterns, and level of automation of high-technology radiotherapy renders this 'one-size-fits-all' prescriptive QA paradigm ineffective or cost prohibitive if the high-probability error pathways of all possible clinical applications of the device are to be covered. The current approaches to developing comprehensive prescriptive QA protocols can be prohibitively time consuming and cost ineffective and may sometimes fail to adequately safeguard patients. It therefore is important to evaluate more formal error mitigation and process analysis methods of industrial engineering to more optimally focus available QA resources on process components that have a significant likelihood of compromising patient safety or treatment outcomes

  12. Dosimetric characterization of radionuclides for systemic tumor therapy: Influence of particle range, photon emission, and subcellular distribution

    International Nuclear Information System (INIS)

    Uusijaervi, Helena; Bernhardt, Peter; Ericsson, Thomas; Forssell-Aronsson, Eva

    2006-01-01

    Various radionuclides have been proposed for systemic tumor therapy. However, in most dosimetric analysis of proposed radionuclides the charged particles are taken into consideration while the potential photons are ignored. The photons will cause undesirable irradiation of normal tissue, and increase the probability of toxicity in, e.g., the bone marrow. The aim of this study was to investigate the dosimetric properties according to particle range, photon emission, and subcellular radionuclide distribution, of a selection of radionuclides used or proposed for radionuclide therapy, and to investigate the possibility of dividing radionuclides into groups according to their dosimetric properties. The absorbed dose rate to the tumors divided by the absorbed dose rate to the normal tissue (TND) was estimated for different tumor sizes in a mathematical model of the human body. The body was simulated as a 70-kg ellipsoid and the tumors as spheres of different sizes (1 ng-100 g). The radionuclides were either assumed to be uniformly distributed throughout the entire tumor and normal tissue, or located in the nucleus or the cytoplasm of the tumor cells and on the cell membrane of the normal cells. Fifty-nine radionuclides were studied together with monoenergetic electrons, positrons, and alpha particles. The tumor and normal tissue were assumed to be of water density. The activity concentration ratio between the tumor and normal tissue was assumed to be 25. The radionuclides emitting low-energy electrons combined with a low photon contribution, and the alpha emitters showed high TND values for most tumor sizes. Electrons with higher energy gave reduced TND values for small tumors, while a higher photon contribution reduced the TND values for large tumors. Radionuclides with high photon contributions showed low TND value for all tumor sizes studied. The radionuclides studied could be divided into four main groups according to their TND values: beta emitters, Auger electron

  13. Ohm's law for a current sheet

    Science.gov (United States)

    Lyons, L. R.; Speiser, T. W.

    1985-01-01

    The paper derives an Ohm's law for single-particle motion in a current sheet, where the magnetic field reverses in direction across the sheet. The result is considerably different from the resistive Ohm's law often used in MHD studies of the geomagnetic tail. Single-particle analysis is extended to obtain a self-consistency relation for a current sheet which agrees with previous results. The results are applicable to the concept of reconnection in that the electric field parallel to the current is obtained for a one-dimensional current sheet with constant normal magnetic field. Dissipated energy goes directly into accelerating particles within the current sheet.

  14. The perfect marriage: Solution-focused therapy and motivational interviewing in medical family therapy

    Directory of Open Access Journals (Sweden)

    Gage Stermensky

    2014-01-01

    Full Text Available Medical family therapy has many potential uses in behavioral medicine and primary care. Current research was reviewed to determine the most advantageous way to apply solution-focused therapy and motivational interviewing as a perfect marriage in medical family therapy. An extensive literature review was done in the following databases for medical family therapy: Proquest, EBSCO, Medline, and PsychInfo. The search resulted in 86 relevant articles, of which 46 of the most recent were selected for review. Medical family therapy lacks current research that supports solution-focused therapy or motivational interviewing. However, evidence supports the use of solution-focused therapy as a brief format, as well as the closely related intervention, motivational interviewing. While medical family therapy presents many hopeful possibilities in the fields of behavioral medicine, psychology, and marriage and family therapy, little evidence currently exists for the most effective implementation. This review found evidence supporting solution-focused therapy and motivational interviewing as the perfect marriage of the collaborative team approaches for the future implementation and use of specific interventions in medical family therapy.

  15. Nanoparticle-mediated photothermal therapy: a comparative study of heating for different particle types.

    Science.gov (United States)

    Pattani, Varun P; Tunnell, James W

    2012-10-01

    Near-infrared (NIR) absorbing plasmonic nanoparticles enhance photothermal therapy of tumors. In this procedure, systemically delivered gold nanoparticles preferentially accumulate at the tumor site and when irradiated using laser light, produce localized heat sufficient to damage tumor cells. Gold nanoshells and nanorods have been widely studied for this purpose, and while both exhibit strong NIR absorption, their overall absorption and scattering properties differ widely due to their geometry. In this paper, we compared the photothermal response of both nanoparticle types including the heat generation and photothermal efficiency. Tissue simulating phantoms, with varying concentrations of gold nanoparticles, were irradiated with a near-infrared diode laser while concurrently monitoring the surface temperature with an infrared camera. We calculated nanoshell and nanorod optical properties using the Mie solution and the discrete dipole approximation, respectively. In addition, we measured the heat generation of nanoshells and nanorods at the same optical density to determine the photothermal transduction efficiency for both nanoparticle types. We found that the gold nanoshells produced more heat than gold nanorods at equivalent number densities (# of nanoparticles/ml), whereas the nanorods generated more heat than nanoshells at equivalent extinction values at the irradiance wavelength. To reach an equivalent heat generation, we found that it was necessary to have ∼36× more nanorods than nanoshells. However, the gold nanorods were found to have two times the photothermal transduction efficiency than the gold nanoshells. For the nanoparticles tested, the nanoshells generated more heat, per nanoparticle, than nanorods, primarily due to their overall larger geometric cross-section. Conversely, we found that the gold nanorods had a higher photothermal efficiency than the gold nanoshells. In conclusion, the ideal choice of plasmonic nanoparticle requires not only per

  16. High-LET charged particle radiotherapy

    International Nuclear Information System (INIS)

    Castro, J.R.; California Univ., San Francisco, CA

    1991-07-01

    The Department of Radiation Oncology at UCSF Medical Center and the Radiation Oncology Department at UC Lawrence Berkeley Laboratory have been evaluating the use of high LET charged particle radiotherapy in a Phase 1--2 research trial ongoing since 1979. In this clinical trail, 239 patients have received at least 10 Gy (physical) minimum tumor dose with neon ions, meaning that at least one-half of their total treatment was given with high-LET charged particle therapy. Ninety-one patients received all of their therapy with neon ions. Of the 239 patients irradiated, target sites included lesions in the skin, subcutaneous tissues, head and neck such as paranasal sinuses, nasopharynx and salivary glands (major and minor), skull base and juxtaspinal area, GI tract including esophagus, pancreas and biliary tract, prostate, lung, soft tissue and bone. Analysis of these patients has been carried out with a minimum followup period of 2 years

  17. Position statement on ethics, equipoise and research on charged particle radiation therapy.

    Science.gov (United States)

    Sheehan, Mark; Timlin, Claire; Peach, Ken; Binik, Ariella; Puthenparampil, Wilson; Lodge, Mark; Kehoe, Sean; Brada, Michael; Burnet, Neil; Clarke, Steve; Crellin, Adrian; Dunn, Michael; Fossati, Piero; Harris, Steve; Hocken, Michael; Hope, Tony; Ives, Jonathan; Kamada, Tadashi; London, Alex John; Miller, Robert; Parker, Michael; Pijls-Johannesma, Madelon; Savulescu, Julian; Short, Susan; Skene, Loane; Tsujii, Hirohiko; Tuan, Jeffrey; Weijer, Charles

    2014-08-01

    The use of charged-particle radiation therapy (CPRT) is an increasingly important development in the treatment of cancer. One of the most pressing controversies about the use of this technology is whether randomised controlled trials are required before this form of treatment can be considered to be the treatment of choice for a wide range of indications. Equipoise is the key ethical concept in determining which research studies are justified. However, there is a good deal of disagreement about how this concept is best understood and applied in the specific case of CPRT. This report is a position statement on these controversies that arises out of a workshop held at Wolfson College, Oxford in August 2011. The workshop brought together international leaders in the relevant fields (radiation oncology, medical physics, radiobiology, research ethics and methodology), including proponents on both sides of the debate, in order to make significant progress on the ethical issues associated with CPRT research. This position statement provides an ethical platform for future research and should enable further work to be done in developing international coordinated programmes of research. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer

    Directory of Open Access Journals (Sweden)

    Barth Rolf F

    2012-08-01

    Full Text Available Abstract Boron neutron capture therapy (BNCT is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high grade gliomas, recurrent cancers of the head and neck region and either primary or metastatic melanoma. Neutron sources for BNCT currently have been limited to specially modified nuclear reactors, which are or until the recent Japanese natural disaster, were available in Japan, United States, Finland and several other European countries, Argentina and Taiwan. Accelerators producing epithermal neutron beams also could be used for BNCT and these are being developed in several countries. It is anticipated that the first Japanese accelerator will be available for therapeutic use in 2013. The major hurdle for the design and synthesis of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations in the range of 20 μg/g. This would be sufficient to deliver therapeutic doses of radiation with minimal normal tissue toxicity. Two boron drugs have been used clinically, a dihydroxyboryl derivative of phenylalanine, referred to as boronophenylalanine or “BPA”, and sodium borocaptate or “BSH” (Na2B12H11SH. In this report we will provide an overview of other boron delivery agents that currently are under evaluation, neutron sources in use or under development for BNCT, clinical dosimetry, treatment planning, and finally a summary of previous and on-going clinical studies for high grade gliomas and recurrent tumors of the head and neck region. Promising results have been obtained with both groups of patients but these outcomes must be more rigorously evaluated in larger

  19. Current resistance issues in antimicrobial therapy | Senekal ...

    African Journals Online (AJOL)

    The human gut contains 1013 - 1014 bacteria that are exposed to selection pressure whenever antibiotics are administered.1 The same selection pressure applies to respiratory flora, which is one of the reasons why antimicrobial therapy prescribed for the treatment of respiratory tract infection should aim to eradicate ...

  20. Neutral strange particle production in high energy charged current neutrino deuterium interactions

    International Nuclear Information System (INIS)

    Son, D.

    1982-01-01

    In an exposure of the Fermilab 15-foot deuterium filled bubble chamber to a single horn focused wide band neutrino beam with energies between 10 and 250 GeV, 311 K/sub s/, 219 lambda and 7 Anti lambda are observed. These correspond to K 0 anti(K 0 ), lambda(Σ 0 ) and anti lambda production rates per charged current interaction of 0.170 +/- 0.010, 0.060 +/- 0.004, and 0.002 +/- 0.001, respectively, in 18.9 +/- 0.09% V 0 events of total charged current events. The inclusive lambda rate in nun interactions is significantly higher than that in nup interactions. The multiplicity of K 0 increases (or decreases) with increasing E/sub nu/, W, and Q 2 (or x/sub BETA), while that of lambda shows no significant variations. From a detailed study of lambda, lambda K 0 ], lambda K/sup */ +0 systems, the production rate of lambda from the charm quark decay is found to be (2.1 +/- 1.0)% of the total charged current, which leads to a small cross section for charmed baryon quasielastic production -40 cm 2 (90% CL) and a small semileptonic branching ratio of lambda/sub c/ + decay, B(lambda/sub c/ + → e + lambda x + , K 0 p, lambda π + π + π - , and antiK 0 pπ + π - decay modes of lambda/sub c/ + are studied and found consistent with our previous results. The gross probability that an (ss) pair is produced in lambda S = 0 neutrino reactions is estimated to be 0.19 +/- 0.06, which agrees well with that in hadronic experiments. The inclusive x/sub F/ and p/sub T 2 / distributions and their average values are very similar to those in hadronic experiments, which suggest that the majority of neutral strange particles are produced in neutrino reactions via the associated production mechanism

  1. Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions.

    Science.gov (United States)

    Sanganalmath, Santosh K; Bolli, Roberto

    2013-08-30

    Despite significant therapeutic advances, the prognosis of patients with heart failure (HF) remains poor, and current therapeutic approaches are palliative in the sense that they do not address the underlying problem of the loss of cardiac tissue. Stem cell-based therapies have the potential to fundamentally transform the treatment of HF by achieving what would have been unthinkable only a few years ago-myocardial regeneration. For the first time since cardiac transplantation, a therapy is being developed to eliminate the underlying cause of HF, not just to achieve damage control. Since the initial report of cell therapy (skeletal myoblasts) in HF in 1998, research has proceeded at lightning speed, and numerous preclinical and clinical studies have been performed that support the ability of various stem cell populations to improve cardiac function and reduce infarct size in both ischemic and nonischemic cardiomyopathy. Nevertheless, we are still at the dawn of this therapeutic revolution. Many important issues (eg, mechanism(s) of action of stem cells, long-term engraftment, optimal cell type(s), and dose, route, and frequency of cell administration) remain to be resolved, and no cell therapy has been conclusively shown to be effective. The purpose of this article is to critically review the large body of work performed with respect to the use of stem/progenitor cells in HF, both at the experimental and clinical levels, and to discuss current controversies, unresolved issues, challenges, and future directions. The review focuses specifically on chronic HF; other settings (eg, acute myocardial infarction, refractory angina) are not discussed.

  2. [Play therapy in hospital].

    Science.gov (United States)

    Gold, Katharina; Grothues, Dirk; Leitzmann, Michael; Gruber, Hans; Melter, Michael

    2012-01-01

    The following article presents an overview of current research studies on play therapy in the hospital. It highlights individual diagnoses for which play therapy has shown reasonable success. The aim of this review is to describe the current status of the scientific debate on play therapy for sick children in order to allow conclusions regarding the indications for which play therapy is or might be useful.

  3. Particle Acceleration and Heating by Turbulent Reconnection

    Science.gov (United States)

    Vlahos, Loukas; Pisokas, Theophilos; Isliker, Heinz; Tsiolis, Vassilis; Anastasiadis, Anastasios

    2016-08-01

    Turbulent flows in the solar wind, large-scale current sheets, multiple current sheets, and shock waves lead to the formation of environments in which a dense network of current sheets is established and sustains “turbulent reconnection.” We constructed a 2D grid on which a number of randomly chosen grid points are acting as scatterers (I.e., magnetic clouds or current sheets). Our goal is to examine how test particles respond inside this large-scale collection of scatterers. We study the energy gain of individual particles, the evolution of their energy distribution, and their escape time distribution. We have developed a new method to estimate the transport coefficients from the dynamics of the interaction of the particles with the scatterers. Replacing the “magnetic clouds” with current sheets, we have proven that the energization processes can be more efficient depending on the strength of the effective electric fields inside the current sheets and their statistical properties. Using the estimated transport coefficients and solving the Fokker-Planck (FP) equation, we can recover the energy distribution of the particles only for the stochastic Fermi process. We have shown that the evolution of the particles inside a turbulent reconnecting volume is not a solution of the FP equation, since the interaction of the particles with the current sheets is “anomalous,” in contrast to the case of the second-order Fermi process.

  4. PARTICLE ACCELERATION AND HEATING BY TURBULENT RECONNECTION

    International Nuclear Information System (INIS)

    Vlahos, Loukas; Pisokas, Theophilos; Isliker, Heinz; Tsiolis, Vassilis; Anastasiadis, Anastasios

    2016-01-01

    Turbulent flows in the solar wind, large-scale current sheets, multiple current sheets, and shock waves lead to the formation of environments in which a dense network of current sheets is established and sustains “turbulent reconnection.” We constructed a 2D grid on which a number of randomly chosen grid points are acting as scatterers (i.e., magnetic clouds or current sheets). Our goal is to examine how test particles respond inside this large-scale collection of scatterers. We study the energy gain of individual particles, the evolution of their energy distribution, and their escape time distribution. We have developed a new method to estimate the transport coefficients from the dynamics of the interaction of the particles with the scatterers. Replacing the “magnetic clouds” with current sheets, we have proven that the energization processes can be more efficient depending on the strength of the effective electric fields inside the current sheets and their statistical properties. Using the estimated transport coefficients and solving the Fokker–Planck (FP) equation, we can recover the energy distribution of the particles only for the stochastic Fermi process. We have shown that the evolution of the particles inside a turbulent reconnecting volume is not a solution of the FP equation, since the interaction of the particles with the current sheets is “anomalous,” in contrast to the case of the second-order Fermi process.

  5. PARTICLE ACCELERATION AND HEATING BY TURBULENT RECONNECTION

    Energy Technology Data Exchange (ETDEWEB)

    Vlahos, Loukas; Pisokas, Theophilos; Isliker, Heinz; Tsiolis, Vassilis [Department of Physics, Aristotle University of Thessaloniki, GR-52124 Thessaloniki (Greece); Anastasiadis, Anastasios [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, GR-15236 Penteli (Greece)

    2016-08-10

    Turbulent flows in the solar wind, large-scale current sheets, multiple current sheets, and shock waves lead to the formation of environments in which a dense network of current sheets is established and sustains “turbulent reconnection.” We constructed a 2D grid on which a number of randomly chosen grid points are acting as scatterers (i.e., magnetic clouds or current sheets). Our goal is to examine how test particles respond inside this large-scale collection of scatterers. We study the energy gain of individual particles, the evolution of their energy distribution, and their escape time distribution. We have developed a new method to estimate the transport coefficients from the dynamics of the interaction of the particles with the scatterers. Replacing the “magnetic clouds” with current sheets, we have proven that the energization processes can be more efficient depending on the strength of the effective electric fields inside the current sheets and their statistical properties. Using the estimated transport coefficients and solving the Fokker–Planck (FP) equation, we can recover the energy distribution of the particles only for the stochastic Fermi process. We have shown that the evolution of the particles inside a turbulent reconnecting volume is not a solution of the FP equation, since the interaction of the particles with the current sheets is “anomalous,” in contrast to the case of the second-order Fermi process.

  6. Late effects from hadron therapy

    Energy Technology Data Exchange (ETDEWEB)

    Blakely, Eleanor A.; Chang, Polly Y.

    2004-06-01

    Successful cancer patient survival and local tumor control from hadron radiotherapy warrant a discussion of potential secondary late effects from the radiation. The study of late-appearing clinical effects from particle beams of protons, carbon, or heavier ions is a relatively new field with few data. However, new clinical information is available from pioneer hadron radiotherapy programs in the USA, Japan, Germany and Switzerland. This paper will review available data on late tissue effects from particle radiation exposures, and discuss its importance to the future of hadron therapy. Potential late radiation effects are associated with irradiated normal tissue volumes at risk that in many cases can be reduced with hadron therapy. However, normal tissues present within hadron treatment volumes can demonstrate enhanced responses compared to conventional modes of therapy. Late endpoints of concern include induction of secondary cancers, cataract, fibrosis, neurodegeneration, vascular damage, and immunological, endocrine and hereditary effects. Low-dose tissue effects at tumor margins need further study, and there is need for more acute molecular studies underlying late effects of hadron therapy.

  7. Noninductive current drive in tokamaks

    International Nuclear Information System (INIS)

    Uckan, N.A.

    1985-01-01

    Various current drive mechanisms may be grouped into four classes: (1) injection of energetic particle beams; (2) launching of rf waves; (3) hybrid schemes, which are combinations of various rf schemes (rf plus beams, rf and/or beam plus ohmic heating, etc.); and (4) other schemes, some of which are specific to reactor plasma conditions requiring the presence of alpha particle or intense synchrotron radiation. Particle injection schemes include current drive by neutral beams and relativistic electron beams. The rf schemes include current drive by the lower hybrid (LH) waves, the electron waves, the waves in the ion cyclotron range of frequencies, etc. Only a few of these approaches, however, have been tested experimentally, with the broadest data base available for LH waves. Included in this report are (1) efficiency criteria for current drive, (2) current drive by neutral beam injection, (3) LH current drive, (4) electron cyclotron current drive, (5) current drive by ion cyclotron waves - minority species heating, and (6) current drive by other schemes (such as hybrids and low frequency waves)

  8. GEANT4 simulation and evaluation of a time-of-flight spectrometer for nuclear cross section measurements in particle therapy

    International Nuclear Information System (INIS)

    Gruenwald, Oxana

    2011-01-01

    In 2007 a new project has been launched in a cooperation between the RWTH Aachen Physics Department, the University Hospital Aachen and the Philips Research Laboratories. The project aim is to validate and improve GEANT4 nuclear interaction models for use in proton and ion therapy. The method chosen here is the measurement of nuclear reaction cross sections which will not only provide a comparison to the simulation but will also allow to improve some of the parameters in the nuclear models. In the first phase of the project 200 MeV protons are used as a projectile in combination with a thin graphite target. For use in particle therapy the excitation functions of the most frequently produced isotopes need to be measured with an accuracy of 10% or less. For this purpose a dedicated detector system has been designed and implemented in GEANT4. The detection of target fragments produced by protons in graphite is achieved via time-of-flight spectrometry. In the setup presented here the primary beam first hits the Start detector and initiates the time-of-flight measurement before it passes through the apertures of two Veto detectors and impinges on the target. Successively, the secondary particles emanating from the target travel a short distance of 70/80 cm through vacuum (0.1 mbar) before they hit one of the 20 Stop detectors which end the time-of-flight measurement and record the energy deposited by the particle. The dissertation at hand describes the underlying detector concept and presents a detailed GEANT4 simulation of the setup which allows to evaluate the detector performance with respect to target fragment identification at a projectile energy of 200 MeV. At first, correlations of time-of-flight and energy deposition are built from simulated data and are subsequently used to reconstruct mass spectra of the detected fragments. Such influences on the detection performance as the target thickness, the residual pressure within the detector chamber, the Veto system

  9. GEANT4 simulation and evaluation of a time-of-flight spectrometer for nuclear cross section measurements in particle therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gruenwald, Oxana

    2011-06-08

    In 2007 a new project has been launched in a cooperation between the RWTH Aachen Physics Department, the University Hospital Aachen and the Philips Research Laboratories. The project aim is to validate and improve GEANT4 nuclear interaction models for use in proton and ion therapy. The method chosen here is the measurement of nuclear reaction cross sections which will not only provide a comparison to the simulation but will also allow to improve some of the parameters in the nuclear models. In the first phase of the project 200 MeV protons are used as a projectile in combination with a thin graphite target. For use in particle therapy the excitation functions of the most frequently produced isotopes need to be measured with an accuracy of 10% or less. For this purpose a dedicated detector system has been designed and implemented in GEANT4. The detection of target fragments produced by protons in graphite is achieved via time-of-flight spectrometry. In the setup presented here the primary beam first hits the Start detector and initiates the time-of-flight measurement before it passes through the apertures of two Veto detectors and impinges on the target. Successively, the secondary particles emanating from the target travel a short distance of 70/80 cm through vacuum (0.1 mbar) before they hit one of the 20 Stop detectors which end the time-of-flight measurement and record the energy deposited by the particle. The dissertation at hand describes the underlying detector concept and presents a detailed GEANT4 simulation of the setup which allows to evaluate the detector performance with respect to target fragment identification at a projectile energy of 200 MeV. At first, correlations of time-of-flight and energy deposition are built from simulated data and are subsequently used to reconstruct mass spectra of the detected fragments. Such influences on the detection performance as the target thickness, the residual pressure within the detector chamber, the Veto system

  10. Evolution of the ring current during two geomagnetic storms

    International Nuclear Information System (INIS)

    Lui, A.T.Y.; McEntire, R.W.; Krimigis, S.M.

    1987-01-01

    The progressive developments in the radial profiles of the particle pressure, plasma beta, and electric currents of the storm time ring current are investigated with data from the medium energy particle analyzer on the AMPTE Charged Particle Explorer spacecraft. Measurements of ions from 25 keV to 1 MeV, which carry 70--85% of the energy density of the entire ring current population, are used in this work. Two geomagnetic storms in September of 1984 are selected and four traversals of the equatorial ring current region during the course of each storm are studied. It is shown that enhancements in the particle pressure occur initially in the outer region and reach the inner region in the late phase of the storm. Structures suggestive of multiple particle injections are seen in the pressure profile. The leading and trailing edges of the particle injection structures are associated, respectively, with the depressions and enhancements of the westward current densities of the ring current. Plasma beta occasionally increases to values of the order of 1 in some regions of the ring current from prestorm values of the order of 0.1 or less. It is also found that the location of the maximum ring current particle pressure can be several earth radii from where the most intense westward ring current flows. This is a consequence of the dominance of pressure gradient current over the current associated with the magnetic field line curvature and particle anisotropy. copyright American Geophysical Union 1987

  11. Technical Note: Radiation properties of tissue- and water-equivalent materials formulated using the stoichiometric analysis method in charged particle therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yohannes, Indra; Vasiliniuc, Stefan [Radiation Oncology, University Hospital Erlangen, Erlangen 91054 (Germany); Hild, Sebastian [Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany and Department of Biophysics, GSI - Helmholtz Centre for Heavy Ion Research, Darmstadt 64291 (Germany); Langner, Oliver [QRM - Quality Assurance in Radiology and Medicine GmbH, Möhrendorf 91096 (Germany); Graeff, Christian [Department of Biophysics, GSI - Helmholtz Centre for Heavy Ion Research, Darmstadt 64291 (Germany); Bert, Christoph, E-mail: christoph.bert@uk-erlangen.de [Radiation Oncology, University Hospital Erlangen, Erlangen 91054 (Germany); Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054 (Germany); Department of Biophysics, GSI - Helmholtz Centre for Heavy Ion Research, Darmstadt 64291 (Germany)

    2016-01-15

    Purpose: Five tissue- and water-equivalent materials (TEMs) mimicking ICRU real tissues have been formulated using a previously established stoichiometric analysis method (SAM) to be applied in charged particle therapy. The purpose of this study was an experimental verification of the TEMs-SAM against charged particle beam measurements and for different computed tomography (CT) scanners. The potential of the TEMs-SAM to be employed in the dosimetry was also investigated. Methods: Experimental verification with three CT scanners was carried out to validate the calculated Hounsfield units (HUs) of the TEMs. Water-equivalent path lengths (WEPLs) of the TEMs for proton (106.8 MeV/u), helium (107.93 MeV/u), and carbon (200.3 MeV/u) ions were measured to be compared with the computed relative stopping powers. HU calibration curves were also generated. Results: Differences between the measured HUs of the TEMs and the calculated HUs of the ICRU real tissues for all CT scanners were smaller than 4 HU except for the skeletal tissues which deviated up to 21 HU. The measured WEPLs verified the calculated WEPLs of the TEMs (maximum deviation was 0.17 mm) and were in good agreement with the calculated WEPLs of the ICRU real tissues (maximum deviation was 0.23 mm). Moreover, the relative stopping powers converted from the measured WEPLs differed less than 0.8% and 1.3% from the calculated values of the SAM and the ICRU, respectively. Regarding the relative nonelastic cross section per unit of volume for 200 MeV protons, the ICRU real tissues were generally well represented by the TEMs except for adipose which differed 3.8%. Further, the HU calibration curves yielded the mean and the standard deviation of the errors not larger than 0.5% and 1.9%, respectively. Conclusions: The results of this investigation implied the potential of the TEMs formulated using the SAM to be employed for both, beam dosimetry and HU calibration in charged particle therapy.

  12. Technical Note: Radiation properties of tissue- and water-equivalent materials formulated using the stoichiometric analysis method in charged particle therapy

    International Nuclear Information System (INIS)

    Yohannes, Indra; Vasiliniuc, Stefan; Hild, Sebastian; Langner, Oliver; Graeff, Christian; Bert, Christoph

    2016-01-01

    Purpose: Five tissue- and water-equivalent materials (TEMs) mimicking ICRU real tissues have been formulated using a previously established stoichiometric analysis method (SAM) to be applied in charged particle therapy. The purpose of this study was an experimental verification of the TEMs-SAM against charged particle beam measurements and for different computed tomography (CT) scanners. The potential of the TEMs-SAM to be employed in the dosimetry was also investigated. Methods: Experimental verification with three CT scanners was carried out to validate the calculated Hounsfield units (HUs) of the TEMs. Water-equivalent path lengths (WEPLs) of the TEMs for proton (106.8 MeV/u), helium (107.93 MeV/u), and carbon (200.3 MeV/u) ions were measured to be compared with the computed relative stopping powers. HU calibration curves were also generated. Results: Differences between the measured HUs of the TEMs and the calculated HUs of the ICRU real tissues for all CT scanners were smaller than 4 HU except for the skeletal tissues which deviated up to 21 HU. The measured WEPLs verified the calculated WEPLs of the TEMs (maximum deviation was 0.17 mm) and were in good agreement with the calculated WEPLs of the ICRU real tissues (maximum deviation was 0.23 mm). Moreover, the relative stopping powers converted from the measured WEPLs differed less than 0.8% and 1.3% from the calculated values of the SAM and the ICRU, respectively. Regarding the relative nonelastic cross section per unit of volume for 200 MeV protons, the ICRU real tissues were generally well represented by the TEMs except for adipose which differed 3.8%. Further, the HU calibration curves yielded the mean and the standard deviation of the errors not larger than 0.5% and 1.9%, respectively. Conclusions: The results of this investigation implied the potential of the TEMs formulated using the SAM to be employed for both, beam dosimetry and HU calibration in charged particle therapy

  13. Technical Note: Radiation properties of tissue- and water-equivalent materials formulated using the stoichiometric analysis method in charged particle therapy.

    Science.gov (United States)

    Yohannes, Indra; Hild, Sebastian; Vasiliniuc, Stefan; Langner, Oliver; Graeff, Christian; Bert, Christoph

    2016-01-01

    Five tissue- and water-equivalent materials (TEMs) mimicking ICRU real tissues have been formulated using a previously established stoichiometric analysis method (SAM) to be applied in charged particle therapy. The purpose of this study was an experimental verification of the TEMs-SAM against charged particle beam measurements and for different computed tomography (CT) scanners. The potential of the TEMs-SAM to be employed in the dosimetry was also investigated. Experimental verification with three CT scanners was carried out to validate the calculated Hounsfield units (HUs) of the TEMs. Water-equivalent path lengths (WEPLs) of the TEMs for proton (106.8 MeV/u), helium (107.93 MeV/u), and carbon (200.3 MeV/u) ions were measured to be compared with the computed relative stopping powers. HU calibration curves were also generated. Differences between the measured HUs of the TEMs and the calculated HUs of the ICRU real tissues for all CT scanners were smaller than 4 HU except for the skeletal tissues which deviated up to 21 HU. The measured WEPLs verified the calculated WEPLs of the TEMs (maximum deviation was 0.17 mm) and were in good agreement with the calculated WEPLs of the ICRU real tissues (maximum deviation was 0.23 mm). Moreover, the relative stopping powers converted from the measured WEPLs differed less than 0.8% and 1.3% from the calculated values of the SAM and the ICRU, respectively. Regarding the relative nonelastic cross section per unit of volume for 200 MeV protons, the ICRU real tissues were generally well represented by the TEMs except for adipose which differed 3.8%. Further, the HU calibration curves yielded the mean and the standard deviation of the errors not larger than 0.5% and 1.9%, respectively. The results of this investigation implied the potential of the TEMs formulated using the SAM to be employed for both, beam dosimetry and HU calibration in charged particle therapy.

  14. SU-G-JeP1-13: Innovative Tracking Detector for Dose Monitoring in Hadron Therapy: Realization and Monte Carlo Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Rucinski, A; Mancini-Terracciano, C; Paramatti, R; Pinci, D; Russomando, A; Voena, C; Rucinski, A [Istituto Nazionale di Fisica Nucleare - Sezione di Roma, Rome, Rome (Italy); Battistoni, G; Muraro, S [Istituto Nazionale di Fisica Nucleare - Sezione di Milano, Milano, Milano (Italy); Collamati, F; Faccini, R; Camillocci, E Solfaroli [Istituto Nazionale di Fisica Nucleare - Sezione di Roma, Italy, Dipartiment, Rome, Rome (Italy); Collini, F [Istituto Nazionale di Fisica Nucleare - Sezione di Pisa, Pisa, Pisa (Italy); De Lucia, E; Piersanti, L; Toppi, M [Laboratori Nazionali di Frascati, Frascati (rome), Rome (Italy); Frallicciardi, P [Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, Rome, Rome (Italy); Marafini, M [Istituto Nazionale di Fisica Nucleare - Sezione di Roma, Museo Storico dell, Rome, Rome (Italy); Patera, V; Sciubba, A [Istituto Nazionale di Fisica Nucleare - Sezione di Roma, Dipartimento di Sc, Rome, Rome (Italy); and others

    2016-06-15

    Purpose: Development of strategies to monitor range uncertainties is necessary to improve treatment planning in Charged Particle Therapy (CPT) and fully exploit the advantages of ion beams. Our group developed (within the framework of the INSIDE project funded by the Italian research ministry) and is currently building a compact detector Dose Profiler (DP) able to backtrack charged secondary particles produced in the patient during the irradiation. Furthermore we are studying monitoring strategy exploiting charged secondary emission profiles to control the range of the ion beam. Methods: This contribution reports on the DP detector design and construction status. The detector consists of a charged secondary tracker composed of scintillating fiber layers and a LYSO calorimeter for particles energy measurement.The detector layout has been optimized using the FLUKA Monte Carlo (MC) simulation software. The simulation of a 220 MeV Carbon beam impinging on a PMMA target has been performed to study the detector response, exploiting previous secondary radiation measurements performed by our group. The emission profile of charged secondary particles was reconstructed backtracking the particles to their generation point to benchmark the DP performances. Results: The DP construction status, including the technological details will be presented. The feasibility of range monitoring with DP will be demonstrated by means of MC studies. The correlation of the charged secondary particles emission shape with the position of the Bragg peak (BP) will be shown, as well as the spatial resolution achievable on the BP position estimation (less than 3 mm) in the clinical like conditions. Conclusion: The simulation studies supported the feasibility of an accurate range monitoring technique exploiting the use of charged secondary fragments emitted during the particle therapy treatment. The DP experimental tests are foreseen in 2016, at CNAO particle therapy center in Pavia.

  15. SU-G-JeP1-13: Innovative Tracking Detector for Dose Monitoring in Hadron Therapy: Realization and Monte Carlo Simulations

    International Nuclear Information System (INIS)

    Rucinski, A; Mancini-Terracciano, C; Paramatti, R; Pinci, D; Russomando, A; Voena, C; Rucinski, A; Battistoni, G; Muraro, S; Collamati, F; Faccini, R; Camillocci, E Solfaroli; Collini, F; De Lucia, E; Piersanti, L; Toppi, M; Frallicciardi, P; Marafini, M; Patera, V; Sciubba, A

    2016-01-01

    Purpose: Development of strategies to monitor range uncertainties is necessary to improve treatment planning in Charged Particle Therapy (CPT) and fully exploit the advantages of ion beams. Our group developed (within the framework of the INSIDE project funded by the Italian research ministry) and is currently building a compact detector Dose Profiler (DP) able to backtrack charged secondary particles produced in the patient during the irradiation. Furthermore we are studying monitoring strategy exploiting charged secondary emission profiles to control the range of the ion beam. Methods: This contribution reports on the DP detector design and construction status. The detector consists of a charged secondary tracker composed of scintillating fiber layers and a LYSO calorimeter for particles energy measurement.The detector layout has been optimized using the FLUKA Monte Carlo (MC) simulation software. The simulation of a 220 MeV Carbon beam impinging on a PMMA target has been performed to study the detector response, exploiting previous secondary radiation measurements performed by our group. The emission profile of charged secondary particles was reconstructed backtracking the particles to their generation point to benchmark the DP performances. Results: The DP construction status, including the technological details will be presented. The feasibility of range monitoring with DP will be demonstrated by means of MC studies. The correlation of the charged secondary particles emission shape with the position of the Bragg peak (BP) will be shown, as well as the spatial resolution achievable on the BP position estimation (less than 3 mm) in the clinical like conditions. Conclusion: The simulation studies supported the feasibility of an accurate range monitoring technique exploiting the use of charged secondary fragments emitted during the particle therapy treatment. The DP experimental tests are foreseen in 2016, at CNAO particle therapy center in Pavia.

  16. Particle platforms for cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Serda RE

    2013-04-01

    Full Text Available Rita Elena Serda Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, TX, USA Abstract: Elevated understanding and respect for the relevance of the immune system in cancer development and therapy has led to increased development of immunotherapeutic regimens that target existing cancer cells and provide long-term immune surveillance and protection from cancer recurrence. This review discusses using particles as immune adjuvants to create vaccines and to augment the anticancer effects of conventional chemotherapeutics. Several particle prototypes are presented, including liposomes, polymer nanoparticles, and porous silicon microparticles, the latter existing as either single- or multiparticle platforms. The benefits of using particles include immune-cell targeting, codelivery of antigens and immunomodulatory agents, and sustained release of the therapeutic payload. Nanotherapeutic-based activation of the immune system is dependent on both intrinsic particle characteristics and on the immunomodulatory cargo, which may include danger signals known as pathogen-associated molecular patterns and cytokines for effector-cell activation. Keywords: adjuvant, particle, immunotherapy, dendritic cell, cancer, vaccine

  17. [The significance of fenofibrate in the therapy of atherogenic dyslipoproteinaemia].

    Science.gov (United States)

    Kucera, M; Oravec, S; Ocadlík, I

    2010-08-01

    There are accepted the lipid levels goals in all world, which are needed to achievement in primary and secondary prevention. Despite efficacy of current standards of care (including achievement of LDL-C, blood pressure and blood sugar goals), patients with atherogenic dyslipidemia (DLP) (high TG levels, low HDL-C, high apolipoprotein B and small dense LDL-particles), which is common in patients with diabetes melitus (DM), metabolic syndrome or cardiovascular diseases (KVD), remain exposed to a high residual risk of major cardiovascular events and microvascular complications. Statin therapy does not adequately address vascular risk asociated with elevated triglycerides (TG) and low HDL-C levels. As ACCORD lipid trial last time shows, the addition of lipid-modifying activity of fenofibrate to statin therapy benefited only certain subgroups of patients at increased cardiometabolic risk.

  18. Hyperbaric oxygen therapy in the treatment of osteonecrosis of the femoral head: a review of the current literature.

    Science.gov (United States)

    Uzun, Gunalp; Mutluoglu, Mesut; Ersen, Omer; Yildiz, Senol

    2016-01-01

    To review the current literature on the use of hyperbaric oxygen (HBO₂) therapy in the treatment of osteonecrosis of the femoral head (ONFH). We searched PubMed, Directory of Open Access Journals (DOAJ), EMBASE, Web of Science, Academic Search Complete, CINAHL and MEDLINE through April 2015. We hand-searched relevant textbooks, conference proceedings and the reference lists of review articles and clinical studies Randomized controlled trials (RCT) and observational studies (cohort study, case-control study, case series) that reported the outcome of patients who received HBO₂therapy for ONFH were included. Only English-language articles were included. Study quality was not used as an exclusion criterion. Two authors independently assessed trials for inclusion, extracted data and presented to other authors. Disagreements were resolved by consensus. We identified eight clinical studies; two randomized controlled trials (RCTs); one historically controlled study; and five case series. The majority of the studies were small-scale, heterogeneous and methodologically weak. In four of the studies HBO₂therapy was combined with other treatment modalities, making it impossible to draw firm conclusions on the specific effects of HBO₂therapy. Hip survivorship in studies wherein HBO₂therapy was used alone was 95.5% in Steinberg Stage I lesions, 89% in Steinberg Stage II lesions and 100% in Ficat Stage II lesions. There is a room for HBO₂therapy in the management ONFH. Further RCTs, however, are required to better elucidate the role of HBO₂therapy in the treatment of ONFH.

  19. Current and emerging therapies for the treatment of age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    M Vaughn Emerson

    2008-06-01

    neurotrophic factor is currently being studied for the inhibition of progression of geographic atrophy. Combination therapy has been investigated, and may prove to be more effective in the management of AMD-associated CNV. Ongoing and future studies will be crucial for optimizing the treatment of patients with AMD.Keywords: age related macular degeneration, macular degeneration, VEGF, VEGF antagonist, anti-VEGF, choroidal neovascularization

  20. What's Next for Particle Physics?

    Science.gov (United States)

    White, Martin

    2017-10-01

    Following the discovery of the Higgs boson in 2012, particle physics has entered its most exciting and crucial period for over 50 years. In this book, I first summarise our current understanding of particle physics, and why this knowledge is almost certainly incomplete. We will then see that the Large Hadron Collider provides the means to search for the next theory of particle physics by performing precise measurements of the Higgs boson, and by looking directly for particles that can solve current cosmic mysteries such as the nature of dark matter. Finally, I will anticipate the next decade of particle physics by placing the Large Hadron Collider within the wider context of other experiments. The results expected over the next ten years promise to transform our understanding of what the Universe is made of and how it came to be.

  1. Current status of intensity-modulated radiation therapy (IMRT)

    International Nuclear Information System (INIS)

    Hatano, Kazuo; Araki, Hitoshi; Sakai, Mitsuhiro

    2007-01-01

    External-beam radiation therapy has been one of the treatment options for prostate cancer. The dose response has been observed for a dose range of 64.8-81 Gy. The problem of external-beam radiotherapy (RT) for prostate cancer is that as the dose increases, adverse effects also increase. Three-dimensional conformal radiation therapy (3D-CRT) has enabled us to treat patients with up to 72-76 Gy to the prostate, with a relatively acceptable risk of late rectal bleeding. Recently, intensity-modulated radiation therapy (IMRT) has been shown to deliver a higher dose to the target with acceptable low rates of rectal and bladder complications. The most important things to keep in mind when using an IMRT technique are that there is a significant trade-off between coverage of the target, avoidance of adjacent critical structures, and the inhomogeneity of the dose within the target. Lastly, even with IMRT, it should be kept in mind that a ''perfect'' plan that creates completely homogeneous coverage of the target volume and zero or small dose to the adjacent organs at risk is not always obtained. Participating in many treatment planning sessions and arranging the beams and beam weights create the best approach to the best IMRT plan. (author)

  2. Current status of gene therapy for breast cancer: progress and challenges

    Directory of Open Access Journals (Sweden)

    McCrudden CM

    2014-11-01

    Full Text Available Cian M McCrudden, Helen O McCarthySchool of Pharmacy, Queen’s University Belfast, Belfast, UKAbstract: Breast cancer is characterized by a series of genetic mutations and is therefore ideally placed for gene therapy intervention. The aim of gene therapy is to deliver a nucleic acid-based drug to either correct or destroy the cells harboring the genetic aberration. More recently, cancer gene therapy has evolved to also encompass delivery of RNA interference technologies, as well as cancer DNA vaccines. However, the bottleneck in creating such nucleic acid pharmaceuticals lies in the delivery. Deliverability of DNA is limited as it is prone to circulating nucleases; therefore, numerous strategies have been employed to aid with biological transport. This review will discuss some of the viral and nonviral approaches to breast cancer gene therapy, and present the findings of clinical trials of these therapies in breast cancer patients. Also detailed are some of the most recent developments in nonviral approaches to targeting in breast cancer gene therapy, including transcriptional control, and the development of recombinant, multifunctional bio-inspired systems. Lastly, DNA vaccines for breast cancer are documented, with comment on requirements for successful pharmaceutical product development.Keywords: breast cancer, gene therapy, nonviral, clinical trial

  3. Physical measurements for ion range verification in charged particle therapy

    International Nuclear Information System (INIS)

    Testa, M.

    2010-10-01

    This PhD thesis reports on the experimental investigation of the prompt photons created during the fragmentation of the carbon beam used in particle therapy. Two series of experiments have been performed at the GANIL and GSI facilities with 95 MeV/u and 305 MeV/u 12 C 6+ ion beams stopped in PMMA and water phantoms. In both experiments a clear correlation was obtained between the C-ion range and the prompt photon profile. A major issue of these measurements is the discrimination between the prompt photon signal (which is correlated with the ion path) and a vast neutron background uncorrelated with the Bragg-Peak position. Two techniques are employed to allow for this photon-neutron discrimination: the time-of-flight (TOF) and the pulse-shape-discrimination (PSD). The TOF technique allowed demonstrating the correlation of the prompt photon production and the primary ion path while the PSD technique brought great insights to better understand the photon and neutron contribution in TOF spectra. In this work we demonstrated that a collimated set-up detecting prompt photons by means of TOF measurements, could allow real-time control of the longitudinal position of the Bragg-peak under clinical conditions. In the second part of the PhD thesis a simulation study was performed with Geant4 Monte Carlo code to assess the influence of the main design parameters on the efficiency and spatial resolution achievable with a multidetector and multi-collimated Prompt Gamma Camera. Several geometrical configurations for both collimators and stack of detectors have been systematically studied and the considerations on the main design constraints are reported. (author)

  4. Proton therapy of tumours and possibilities of its implementation in the Slovak Republic

    International Nuclear Information System (INIS)

    Hanula, M.; Ruzicka, J.; Combor, I.; Cesakova, H.

    2008-01-01

    Besides other modalities irradiation of tumours with a beam of ionizing particles is applied in the treatment of cancer. Currently treatment with photon and electron beams is a standard worldwide and in Slovakia as well. These particles exhibit exponential fall off in tissues. This results in the irradiation of large volume of healthy tissues, which are located in the beam's path. Radiotoxicity of normal tissues is the limiting factor in radiotherapy. Protons are characterized by loosing the most of their energy at the end of their path. The range of protons can be controlled by the proper selection of their initial energy. These properties of protons make it possible to achieve lower doses to the healthy tissues thereby allowing escalation of dose to the tumour. Higher doses to the tumour result in higher efficiency of the treatment. Proton therapy represents a modern and highly effective tool in the struggle against cancer. The present clinical outcomes have proved the benefit of the proton therapy for the improvement of the treatment success-fullness. Slovakia has created conditions allowing implementation of the depth proton therapy within the frame of the Cyclotron centre of the SR project in a relatively short period of time. (author)

  5. Physics of the magnetotail current sheet

    International Nuclear Information System (INIS)

    Chen, J.

    1993-01-01

    The Earth's magnetotail plays an important role in the solar-wind--magnetosphere coupling. At the midplane of the magnetotail is a current sheet where the dominant magnetic field component reverses sign. The charged particle motion in and near the current sheet is collisionless and nonintegrable, exhibiting chaotic scattering. The current understanding of the dynamical properties of the charged particle motion is discussed. In particular, the relationships between particle dynamics and global attributes of the system are elucidated. Geometrical properties of the phase space determine important physical observables on both micro- and macroscales

  6. Gene therapy and radionuclides targeting therapy in mammary carcinoma

    International Nuclear Information System (INIS)

    Song Jinhua

    2003-01-01

    Breast carcinoma's gene therapy is a hotspot in study of the tumor's therapy in the recent years. Currently the major therapy methods that in the experimentative and primary clinical application phases include immunological gene therapy, multidrug resistance gene therapy, antisense oligonucleotide therapy and suicide gene therapy. The gene targeting brachytherapy, which is combined with gene therapy and radiotherapy has enhanced the killer effects of the suicide gene and nuclide in tumor cells. That has break a new path in tumor's gene therapy. The further study in this field will step up it's space to the clinical application

  7. Transistor-based particle detection systems and methods

    Science.gov (United States)

    Jain, Ankit; Nair, Pradeep R.; Alam, Muhammad Ashraful

    2015-06-09

    Transistor-based particle detection systems and methods may be configured to detect charged and non-charged particles. Such systems may include a supporting structure contacting a gate of a transistor and separating the gate from a dielectric of the transistor, and the transistor may have a near pull-in bias and a sub-threshold region bias to facilitate particle detection. The transistor may be configured to change current flow through the transistor in response to a change in stiffness of the gate caused by securing of a particle to the gate, and the transistor-based particle detection system may configured to detect the non-charged particle at least from the change in current flow.

  8. Usefulness of intra-arterial embolization method using gelfoam particles in effective gene transduction of adenoviral vector for liver-directed gene therapy: an preliminary animal study in dogs

    International Nuclear Information System (INIS)

    Lee, Jin Hwa; Park, Byeong Ho; Kim, Chan Sung

    2003-01-01

    Liver-directed gene therapy is being actively pursued and developed as a method of treating various liver diseases. A number of aspects, including gene intervention, an efficient gene delivery system, and stable transgene expression are key to the success of the chosen strategy, and to overcome problems in these areas, several tactics can be used. In this study, we assess the utility of transarterial embolization using gelfoam particles soaked in an adenovirus vector as a gene-delivery method. Using the angiographic approach, three dogs each weighing 9.5-11kg were superselectively catheterized at the left hepatic artery using a 3-F microcatheter and the coaxial method. Two of the dogs were embolized at the left hepatic artery using 3x2x2-mm and 2x1x1-mm gelfoam particles soaked in 2x10 11 particles/kg of recombinant adv. CMV.LacZ(LacZ-adv). The left hepatic artery of the remaining animal, used as a control, was infused with the same dose of lacZ-adv in the same way as before but without embolization of the left hepatic artery. Three days after embolization or the infusion of LacZ-adv, the dogs were sacrificed prior to harvest of the entire liver for the evaluation of gene transduction. X-gal staining of the liver tissue obtained was positive for hepatocytes, but the pattern and degree of gene transduction differed according to gelfoam particle size. Where this was 3x2x2 mm, gene transduction along the liver hilum varied, but where 2x1x1-mm particles were used, transduction was more even. No pathologic hepatic tissue injury or inflammation was apparent, and control liver tissue was not stained by X-gal. Serum SGOT and SGPT levels were slightly higher one day after the procedure, but had normalized by day 3. Intrahepatic transarterial embolization using gelfoam particles soaked in LacZ-adv appears to be a good method for effective liver-targed gene therapy

  9. Usefulness of intra-arterial embolization method using gelfoam particles in effective gene transduction of adenoviral vector for liver-directed gene therapy: an preliminary animal study in dogs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Hwa; Park, Byeong Ho; Kim, Chan Sung [Dong-A University College of Medicine, Pusan (Korea, Republic of)

    2003-02-01

    Liver-directed gene therapy is being actively pursued and developed as a method of treating various liver diseases. A number of aspects, including gene intervention, an efficient gene delivery system, and stable transgene expression are key to the success of the chosen strategy, and to overcome problems in these areas, several tactics can be used. In this study, we assess the utility of transarterial embolization using gelfoam particles soaked in an adenovirus vector as a gene-delivery method. Using the angiographic approach, three dogs each weighing 9.5-11kg were superselectively catheterized at the left hepatic artery using a 3-F microcatheter and the coaxial method. Two of the dogs were embolized at the left hepatic artery using 3x2x2-mm and 2x1x1-mm gelfoam particles soaked in 2x10{sup 11} particles/kg of recombinant adv. CMV.LacZ(LacZ-adv). The left hepatic artery of the remaining animal, used as a control, was infused with the same dose of lacZ-adv in the same way as before but without embolization of the left hepatic artery. Three days after embolization or the infusion of LacZ-adv, the dogs were sacrificed prior to harvest of the entire liver for the evaluation of gene transduction. X-gal staining of the liver tissue obtained was positive for hepatocytes, but the pattern and degree of gene transduction differed according to gelfoam particle size. Where this was 3x2x2 mm, gene transduction along the liver hilum varied, but where 2x1x1-mm particles were used, transduction was more even. No pathologic hepatic tissue injury or inflammation was apparent, and control liver tissue was not stained by X-gal. Serum SGOT and SGPT levels were slightly higher one day after the procedure, but had normalized by day 3. Intrahepatic transarterial embolization using gelfoam particles soaked in LacZ-adv appears to be a good method for effective liver-targed gene therapy.

  10. Study of particle swarm optimization particle trajectories

    CSIR Research Space (South Africa)

    Van den Bergh, F

    2006-01-01

    Full Text Available . These theoretical studies concentrate mainly on simplified PSO systems. This paper overviews current theoretical studies, and extend these studies to investigate particle trajectories for general swarms to include the influence of the inertia term. The paper also...

  11. Endoluminal weight loss and metabolic therapies: current and future techniques.

    Science.gov (United States)

    Hill, Christine; Khashab, Mouen A; Kalloo, Anthony N; Kumbhari, Vivek

    2018-01-01

    Obesity is a public health epidemic associated with a number of comorbidities, most notably type 2 diabetes and hypertension, as well as elevated all-cause mortality. The treatment for obesity and its associated comorbidities has most recently expanded into the field of bariatric endoscopy. This field bridges a gap between lifestyle counseling with or without pharmaceutical treatment and the most effective treatment of obesity, bariatric surgery. Because of its minimally invasive nature, bariatric endoscopic therapy has the potential to appeal to the large sector of the obese population that resists surgery, as well as those early in the onset of obesity. To date, five endoscopic devices have been approved by the U.S. Food and Drug Administration for the treatment of obesity, and many more are in development, undergoing clinical trials, or being used around the world. Here, we present the current state of the field, highlight recent developments, and describe the clinical outcomes of these minimally invasive procedures in terms of weight loss, improvement in metabolic profile, and reduction in comorbidities. © 2017 New York Academy of Sciences.

  12. Psychotherapy: a profile of current occupational therapy practice in Ontario.

    Science.gov (United States)

    Moll, Sandra E; Tryssenaar, Joyce; Good, Colleen R; Detwiler, Lisa M

    2013-12-01

    Psychotherapy can be an important part of psychosocial occupational therapy practice; however, it requires specialized training to achieve and maintain competence. Regulation varies by province, and in Ontario, occupational therapists were recently authorized to perform psychotherapy. The purpose of this study was to explore the psychotherapy practice, training, and support needs of Ontario occupational therapists. An online survey was sent to occupational therapists who had clients with mental health or chronic pain issues, asking about their expertise and support needs in relation to nine psychotherapy approaches. Of the 331 therapists who responded, there were variations in the nature and frequency of psychotherapy practice. Experienced therapists in outpatient settings were more likely to practice psychotherapy, and cognitive-behaviour therapy, motivational interviewing, and mindfulness were the most common approaches. Supervision and training varied, with many therapists interested in occupational therapy-specific training. Recommendations for a framework of support include education about the nature of psychotherapy, training and supervision guidelines, and advocacy for occupational therapy and psychotherapy.

  13. Improved nano-particle tracking analysis

    International Nuclear Information System (INIS)

    Walker, John G

    2012-01-01

    Nano-particle tracking is a method to estimate a particle size distribution by tracking the movements of individual particles, using multiple images of particles moving under Brownian motion. A novel method to recover a particle size distribution from nano-particle tracking data is described. Unlike a simple histogram-based method, the method described is able to account for the finite number of steps in each particle track and consequently for the measurement uncertainty in the step-length data. Computer simulation and experimental results are presented to demonstrate the performance of the approach compared with the current method. (paper)

  14. Plasma current profile during current reversal in a tokamak

    International Nuclear Information System (INIS)

    Huang Jianguo; Yang Xuanzong; Zheng Shaobai; Feng Chunhua; Zhang Houxian; Wang Long

    1999-01-01

    Alternating current operation with one full cycle and a current level of 2.5 kA have been achieved in the CT-6B tokamak. The poloidal magnetic field in the plasma is measured with two internal magnetic probes in repeated discharges. The current distribution is reconstructed with an inversion algorithm. The inverse current first appears on the weak field side. The existence of magnetic surfaces and rotational transform provide particle confinement in the current reversal phase

  15. Cognitive-behavior therapy for problem gambling: a critique of current treatments and proposed new unified approach.

    Science.gov (United States)

    Tolchard, Barry

    2017-06-01

    There is evidence supporting the use of cognitive-behavioral therapy (CBT) in the treatment of problem gambling. Despite this, little is known about how CBT works and which particular approach is most effective. This paper aims to synthesize the evidence for current CBT and propose a more unified approach to treatment. A literature review and narrative synthesis of the current research evidence of CBT for the treatment of problem gambling was conducted, focusing on the underlying mechanisms within the treatment approach. Several CBT approaches were critiqued. These can be divided into forms of exposure therapy (including aversion techniques, systematic desensitization and other behavioral experiments) those focusing on cognitive restructuring techniques (such as reinforcement of nongambling activity, use of diaries, motivational enhancement and audio-playback techniques and third wave techniques including mindfulness. Findings, in relation to the treatment actions, from this synthesis are reported. The debate surrounding the treatment of problem gambling has been conducted as an either/or rather than a both/and discourse. This paper proposes a new, unified approach to the treatment of problem gambling that incorporates the best elements of both exposure and cognitive restructuring techniques, alongside the use of techniques borrowed from mindfulness and other CBT approaches.

  16. Heavy Particle Beams in Tumor Radiotherapy

    International Nuclear Information System (INIS)

    Ayad, M.

    1999-01-01

    Using heavy particles beam in the tumor radiotherapy is advantageous to the conventional radiation with photons and electrons. One of the advantages of the heavy charged particle is the energy deposition processes which give a well defined range in tissue, a Bragg peak of ionization in the depth-dose distribution and slow scattering, while the dose to the surrounding healthy tissue in the vicinity is minimized. These processes can show the relation between the heavy particle and the conventional radiation is illustrated with respect to the depth dose and the relative dose. The usage of neutrons (Thermal or epithermal) in therapy necessitates implementation of capture material leading to the production of heavy charged particles (a-particles) as a result of the nuclear interaction in between. Experimentally it is found that 80% of the absorbed dose is mainly due to the presence of capture material

  17. New challenges in high-energy particle radiobiology

    Science.gov (United States)

    2014-01-01

    Densely ionizing radiation has always been a main topic in radiobiology. In fact, α-particles and neutrons are sources of radiation exposure for the general population and workers in nuclear power plants. More recently, high-energy protons and heavy ions attracted a large interest for two applications: hadrontherapy in oncology and space radiation protection in manned space missions. For many years, studies concentrated on measurements of the relative biological effectiveness (RBE) of the energetic particles for different end points, especially cell killing (for radiotherapy) and carcinogenesis (for late effects). Although more recently, it has been shown that densely ionizing radiation elicits signalling pathways quite distinct from those involved in the cell and tissue response to photons. The response of the microenvironment to charged particles is therefore under scrutiny, and both the damage in the target and non-target tissues are relevant. The role of individual susceptibility in therapy and risk is obviously a major topic in radiation research in general, and for ion radiobiology as well. Particle radiobiology is therefore now entering into a new phase, where beyond RBE, the tissue response is considered. These results may open new applications for both cancer therapy and protection in deep space. PMID:24198199

  18. Dosimetric consequences of pencil beam width variations in scanned beam particle therapy

    International Nuclear Information System (INIS)

    Chanrion, M A; Ammazzalorso, F; Wittig, A; Engenhart-Cabillic, R; Jelen, U

    2013-01-01

    Scanned ion beam delivery enables the highest degree of target dose conformation attainable in external beam radiotherapy. Nominal pencil beam widths (spot sizes) are recorded during treatment planning system commissioning. Due to changes in the beam-line optics, the actual spot sizes may differ from these commissioning values, leading to differences between planned and delivered dose. The purpose of this study was to analyse the dosimetric consequences of spot size variations in particle therapy treatment plans. For 12 patients with skull base tumours and 12 patients with prostate carcinoma, scanned-beam carbon ion and proton treatment plans were prepared and recomputed simulating spot size changes of (1) ±10% to simulate the typical magnitude of fluctuations, (2) ±25% representing the worst-case scenario and (3) ±50% as a part of a risk analysis in case of fault conditions. The primary effect of the spot size variation was a dose deterioration affecting the target edge: loss of target coverage and broadening of the lateral penumbra (increased spot size) or overdosage and contraction of the lateral penumbra (reduced spot size). For changes ⩽25%, the resulting planning target volume mean 95%-isodose line coverage (CI-95%) deterioration was ranging from negligible to moderate. In some cases changes in the dose to adjoining critical structures were observed. (paper)

  19. Particle Dark Matter (1/4)

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    I review the phenomenology of particle dark matter, including the process of thermal freeze-out in the early universe, and the direct and indirect detection of WIMPs. I also describe some of the most popular particle candidates for dark matter and summarize the current status of the quest to discover dark matter's particle identity.

  20. Hadron and photon production of J particles and the origin of J particles

    International Nuclear Information System (INIS)

    Ting, S.C.C.

    1975-01-01

    Discovery of the J particles (psi-3105 and psi-3695) is detailed. A few experiments on the production of J particles are described, emphasizing photoproduction of J's by photons and hadrons. Finally, current theoretical attempts at explaining their origin are outlined. (29 figures) (U.S.)

  1. Physical properties of charged particle beams for use in radiotherapy

    International Nuclear Information System (INIS)

    Knapp, E.A.

    1975-01-01

    The physical properties of the possible charged particle beams used for cancer radiotherapy are reviewed. Each property is discussed for all interesting particles (π, p, α, Ne ion) and the differences are emphasized. This is followed by a short discussion of the several beam delivery systems used in particle therapy today, emphasizing the differences in the problems for the several different radiations, particularly the differences between the accelerated particle beams and those of a secondary nature. Dose calculation techniques are described

  2. Current status of first-line therapy for elderly patients with proatate cancer in Kyushu and Okinawa areas. A questionnaire study

    International Nuclear Information System (INIS)

    Nishiyama, Kenryu; Nakagawa, Masayuki; Koga, Hirofumi

    2005-01-01

    A survey based on a questionnaire to urologists in Kyushu and Okinawa areas was carried out to assess the current status of first-line therapy for elderly patients with prostate cancer. Ninety-three urologists from 93 institutes answered the questionnaire. Endocrine therapy is widely performed as first-line therapy for elderly patients with prostate cancer. They mostly receive immediate-continuous therapy regardless of their clinical factors. Only 8 (9%) and 7 (8%) institutes have the options of deferred and intermittent therapy, respectively. LH-RH analogue and non-steroidal anti-androgens are commonly used. Chemoendocrine therapy is performed in 33 (35%) institutes for selected patients. Estramustine and 5-fluorouracil (5-FU) derivatives are commonly used as chemotherapeutic agents. Sixty (65%) institutes do not have this modality as a treatment option. Risks arising from the treatment and quality of life (QOL) disturbance are the main reasons for this. Radiation therapy and radical prostatectomy are performed in 53 (57%) and 47 (51%) institutes, respectively, for selected patients with loco-regional disease. However, 22 (24%) institutes do not have these definitive therapies as treatment options. QOL and risks arising from the treatments are the main factors for selecting definitive or non-definitive therapy. In elderly patients with prostate cancer, cancer control is not always the goal of treatment. QOL within a relatively shorter life expectancy is an important factor for decision making in the management of these patients. (authors)

  3. Neutral strange particle production in neutrino and antineutrino charged current interactions on protons

    Science.gov (United States)

    Jones, G. T.; Jones, R. W. L.; Kennedy, B. W.; O'Neale, S. W.; Villalobos-Baillie, O.; Klein, H.; Morrison, D. R. O.; Schmid, P.; Wachsmuth, H.; Miller, D. B.; Mobayyen, M. M.; Wainstein, S.; Aderholz, M.; Hantke, D.; Katz, U. F.; Kern, J.; Schmitz, N.; Wittek, W.; Borner, H. P.; Myatt, G.; Radojicic, D.; Bullock, F. W.; Burke, S.

    1993-06-01

    The production of the neutral strange particles K 0, Λ andbar Λ in vp andbar vp charged current interactions is studied in an experiment with the Big European Bubble Chamber. Mean multiplicities are measured as a function of the event variables E v, W 2 and Q 2 and of the hadron variables x F, z and p {T/2}. K *± (892) and ∑ *± (1385) signals are observed, whereas there is no evidence for ∑ *- (1385) production in vp scattering. Forward, backward and total mean multiplicities are found to compare well with the predictions of an empirical model for deep-inelastic reactions in the case of the strange mesons K 0 and K *± (892) but less so for the strange baryons Λ,bar Λ and ∑ *± (1385). The strange baryon multiplicities are used to obtain the decuplet to octet baryon production ratio and to assess the probabilities of a uu or ud system to break up.

  4. Neutral strange particle production in neutrino and antineutrino charged current interactions on protons

    International Nuclear Information System (INIS)

    Jones, G.T.; Jones, R.W.L.; Kennedy, B.W.; O'Neale, S.W.; Villalobos-Baillie, O.; Klein, H.; Morrison, D.R.O.; Schmid, P.; Wachsmuth, H.; Miller, D.B.; Mobayyen, M.M.; Wainstein, S.; Aderholz, M.; Hantke, D.; Katz, U.F.; Kern, J.; Schmitz, N.; Wittek, W.; Borner, H.P.; Myatt, G.; Radojicic, D.; Bullock, F.W.; Burke, S.

    1992-08-01

    The production of the neutral strange particles K 0 , Λ and anti Λ in νp and anti νp charged current interactions is studied in an experiment with the Big European Bubble Chamber. Mean multiplicities are measured as a function of the event variables. E ν , W 2 and Q 2 and of the hadron variables χ F , z and p T 2 . K* ± (892) and Σ* ± (1385) signals are observed, whereas there is no evidence for Σ* - (1385) production in νp scattering. Forward, backward and total mean multiplicities are found to compare well with the predictions of an empirical model for deep-inelastic reactions in the case of the strange mesons K 0 and K* ± (892) but less so for the strange baryons Λ, anti Λ and Σ* ± (1385). The strange baryon multiplicities are used to obtain the decuplet to octet baryon production ratio and to assess the probabilities of a uu or ud system to break up. (orig.)

  5. Neutral strange particle production in neutrino and antineutrino charged current interactions on protons

    International Nuclear Information System (INIS)

    Jones, G.T.; Jones, R.W.L.; Kennedy, B.W.; O'Neale, S.W.; Villalobos-Baillie, O.; Klein, H.; Morrison, D.R.O.; Schmid, P.; Wachsmuth, H.; Miller, D.B.; Mobayyen, M.M.; Wainstein, S.; Borner, H.P.; Myatt, G.; Radojicic, D.; Bullock, F.W.; Burke, S.

    1993-01-01

    The production of the neutral strange particles K 0 , Λ and anti Λ in νp and anti νp charged current interactions is studied in an experiment with the Big European Bubble Chamber. Mean multiplicities are measured as a function of the event variables E ν , W 2 and Q 2 and of the hadron variables x F , z and p T 2 . K* ± (892) and Σ* ± (1385) signals are observed, whereas there is no evidence for Σ* - (1385) production in νp scattering. Forward, backward and total mean multiplicities are found to compare well with the predictions of an empirical model for deep-inelastic reactions in the case of the strange mesons K 0 and K* ± (892) but less so for the strange baryons Λ, anti Λ and Σ* ± (1385). The strange baryon multiplicites are used to obtain the decuplet to octet baryon production ratio and to assess the probabilities of a uu or ud system to break up. (orig.)

  6. WE-A-207-02: Electron Beam Therapy - Current Status and Future Directions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q. [Duke University Medical Center (United States)

    2015-06-15

    In memory of the significant contribution of Dr. Jacques Ovadia to electron beam techniques, this session will review recent, advanced techniques which are reinvigorating the science of electron beam radiation therapy. Recent research efforts in improving both the applicability and quality of the electron beam therapy will be discussed, including modulated electron beam radiotherapy (MERT) and dynamic electron arc radiotherapy (DEAR). Learning Objectives: To learn about recent advances in electron beam therapy, including modulated electron beam therapy and dynamic electron arc therapy (DEAR). Put recent advances in the context of work that Dr. Ovadia pursued during his career in medical physics.

  7. WE-A-207-02: Electron Beam Therapy - Current Status and Future Directions

    International Nuclear Information System (INIS)

    Wu, Q.

    2015-01-01

    In memory of the significant contribution of Dr. Jacques Ovadia to electron beam techniques, this session will review recent, advanced techniques which are reinvigorating the science of electron beam radiation therapy. Recent research efforts in improving both the applicability and quality of the electron beam therapy will be discussed, including modulated electron beam radiotherapy (MERT) and dynamic electron arc radiotherapy (DEAR). Learning Objectives: To learn about recent advances in electron beam therapy, including modulated electron beam therapy and dynamic electron arc therapy (DEAR). Put recent advances in the context of work that Dr. Ovadia pursued during his career in medical physics

  8. Polar conic current sheets as sources and channels of energetic particles in the high-latitude heliosphere

    Science.gov (United States)

    Khabarova, Olga; Malova, Helmi; Kislov, Roman; Zelenyi, Lev; Obridko, Vladimir; Kharshiladze, Alexander; Tokumaru, Munetoshi; Sokół, Justyna; Grzedzielski, Stan; Fujiki, Ken'ichi; Malandraki, Olga

    2017-04-01

    The existence of a large-scale magnetically separated conic region inside the polar coronal hole has been predicted by the Fisk-Parker hybrid heliospheric magnetic field model in the modification of Burger and co-workers (Burger et al., ApJ, 2008). Recently, long-lived conic (or cylindrical) current sheets (CCSs) have been found from Ulysses observations at high heliolatitudes (Khabarova et al., ApJ, 2017). The characteristic scale of these structures is several times lesser than the typical width of coronal holes, and the CCSs can be observed at 2-3 AU for several months. CCS crossings in 1994 and 2007 are characterized by sharp decreases in the solar wind speed and plasma beta typical for predicted profiles of CCSs. In 2007, a CCS was detected directly over the South Pole and strongly highlighted by the interaction with comet McNaught. The finding is confirmed by restorations of solar coronal magnetic field lines that reveal the occurrence of conic-like magnetic separators over the solar poles both in 1994 and 2007. Interplanetary scintillation data analysis also confirms the existence of long-lived low-speed regions surrounded by the typical polar high-speed solar wind in solar minima. The occurrence of long-lived CCSs in the high-latitude solar wind could shed light on how energetic particles reach high latitudes. Energetic particle enhancements up to tens MeV were observed by Ulysses at edges of CCSs both in 1994 and 2007. In 1994 this effect was clearer, probably due to technical reasons. Accelerated particles could be produced either by magnetic reconnection at the edges of a CCS in the solar corona or in the solar wind. We discuss the role of high-latitude CCSs in propagation of energetic particles in the heliosphere and revisit previous studies of energetic particle enhancements at high heliolatitudes. We also suggest that the existence of a CCS can modify the distribution of the solar wind as a function of heliolatitude and consequently impact ionization

  9. Heavy charged particle therapy

    International Nuclear Information System (INIS)

    Mizoe, Jun-etsu

    1995-01-01

    A pilot study of heavy charged particles with heavy ion medical accelerator in Chiba (HIMAC) for advanced H and N cancer has been carried out from June 1994 at National Institute of Radiological Sciences (NIRS). As of the beginning of August 1994, three patients were treated by 290 MeV carbon ions. The patients had adenocarcinoma of the cheek mucosa, squamous cell carcinoma of the ethmoid sinus and adenoid cystic carcinoma of the sublingual gland. Patients were immobilized by individual head coach and thermosplint facial shell. Individual collimators and bolus were also prepared for each ports. Dose fractionation for the initial pilot study group was 16.2 GyE/18 fractions/6 weeks, which would be equivalent to standard fractionation of 60.0 Gy/30 fractions/6 weeks with photons. This dose fractionation was considered to be 20% lesser than 75 GyE/37.5 fractions/7.5 weeks, which is estimated to be maximum tolerance dose for advanced H and N cancers. HIMAC worked well and there was no major trouble causing any treatment delay. Acute skin reactions of 3 patients were 2 cases of bright erythema with patchy moist desquamation and one of dull erythema, which were evaluated as equivalent reaction with irradiated dose. Acute mucosa reactions appeared to have lesser reaction than predicted mucositis. Tumor reactions of three patients were partial reaction (PR) at the end of treatment and nearly complete remission (CR) after 6 months of treatment. From October 1994, we started to treat patients with advanced H and N cancer with 10% high dose than previous dose. And new candidates of pilot study with non small cell lung cancer, brain tumor and carcinoma of the tongue were entered into pilot study. At the end of February 1995, a total of 21 patients were treated by carbon ions. (J.P.N.)

  10. Distribution patterns of inhaled polydisperse 147Pm fused clay particles in the beagle dog thorax with and without lavage therapy

    International Nuclear Information System (INIS)

    Snipes, M.B.; Runkle, G.E.; Muggenburg, B.A.; Hulbert, A.J.

    1974-01-01

    An experiment was designed to examine dispersion and retention patterns for polydisperse aerosols of fused montmorillonite clay particles labeled with 147 Pm. Fourteen dogs were exposed and scheduled for serial sacrifice at 0, 8, 64, and 365 days post-exposure. Experimental procedures included producing a series of slices through the thorax at approximately 1 cm intervals and obtaining a series of autoradiograms and 35 mm color transparencies for each set of thorax slices to define (1) the average doses to lung, lung lobes, and other tissues of interest, (2) the number of hot spots of activity per unit volume in the lung, and (3) a size distribution for these hot spots. Comparable data will be analyzed for 4 additional dogs subjected to lavage therapy to remove a portion of the burden from either the left or right lung using 1 or 5 treatments. Totals of 31 to 71 percent of the initial left or right lung burden were removed by the lavage therapy but only preliminary observations are completed on the autoradiography data. (U.S.)

  11. Physical therapy and occupational therapy in Parkinson's disease

    NARCIS (Netherlands)

    Radder, D.L.M.; Sturkenboom, I.H.W.M.; Nimwegen, M. van; Keus, S.H.; Bloem, B.R.; Vries, N.M. de

    2017-01-01

    Current medical management is only partially effective in controlling the symptoms of Parkinson's disease. As part of comprehensive multidisciplinary care, physical therapy and occupational therapy aim to support people with Parkinson's disease in dealing with the consequences of their disease in

  12. [Focused ultrasound therapy: current status and potential applications in neurosurgery].

    Science.gov (United States)

    Dervishi, E; Aubry, J-F; Delattre, J-Y; Boch, A-L

    2013-12-01

    High Intensity Focused Ultrasound (HIFU) therapy is an innovative approach for tissue ablation, based on high intensity focused ultrasound beams. At the focus, HIFU induces a temperature elevation and the tissue can be thermally destroyed. In fact, this approach has been tested in a number of clinical studies for the treatment of several tumors, primarily the prostate, uterine, breast, bone, liver, kidney and pancreas. For transcranial brain therapy, the skull bone is a major limitation, however, new adaptive techniques of phase correction for focusing ultrasound through the skull have recently been implemented by research systems, paving the way for HIFU therapy to become an interesting alternative to brain surgery and radiotherapy. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  13. Particle radiotherapy for patients with H and N malignant tumor

    International Nuclear Information System (INIS)

    Murakami, Masao; Demizu, Yusuke; Niwa, Yasue; Terashima, Kazuki; Fujii, Osamu; Mima, Masayuki; Hashimoto, Naoki; Jin, Dongcun

    2011-01-01

    Particle beams have a characteristic called the Bragg peak, which is a peak formed at a fixed depth in the body depending on the acceleration energy. Utilizing this property, a high dose can be concentrated in the target tumor while minimizing damage to surrounding normal tissues. Proton and carbon ion beams have a higher linear energy transfer (LET) than X-rays. The relative biological effectiveness of proton and carbon ion beams compared with X-rays (=1) is estimated to be 1.1 and 3.0, respectively. Therefore, we can expect particle radiotherapy to be effective for patients with radio-resistant tumors such as malignant melanoma, adenoidcystic carcinoma and adenocarcinoma. As of the end of July 2011, there were 9 particle institutes operating in Japan; the Hyogo Ion Beam Medical Center was established in May 2001 as a leading project of the ''Hyogo Cancer Strategy''. One major characteristic is that the Center can generate both proton and carbon ion beams. Locally advanced nasal, paranasal or salivary gland cell tumors are good candidates for particle radiotherapy. Downsizing of the accelerator, price reduction of the machine, broad use of particle therapy in the field of clinical oncology, and intensity modulated particle therapy are future challenges. (author)

  14. Towards the directed evolution of virus-like particles derived from polyomaviruses

    NARCIS (Netherlands)

    Teunissen, E.A.

    2014-01-01

    Virus-like particles (VLPs) are assemblies of viral structural proteins. These particles resemble the native viral capsid in structure, tropism, and transduction efficiency, but do not contain any viral genetic material. This makes them a safer alternative to viral vectors for gene therapy, and

  15. Method of using triaxial magnetic fields for making particle structures

    Science.gov (United States)

    Martin, James E.; Anderson, Robert A.; Williamson, Rodney L.

    2005-01-18

    A method of producing three-dimensional particle structures with enhanced magnetic susceptibility in three dimensions by applying a triaxial energetic field to a magnetic particle suspension and subsequently stabilizing said particle structure. Combinations of direct current and alternating current fields in three dimensions produce particle gel structures, honeycomb structures, and foam-like structures.

  16. Radio frequency induction of intracellular ferromagnetic particles: Potential for therapy

    International Nuclear Information System (INIS)

    Lerch, I.A.; Pizzarello, D.J.

    1986-01-01

    The authors have been studying the therapeutic potential of ferromagnetic or paramagnetic particles as mediators for depositing tumoricidal doses of radio frequency (RF) energy. Ferric oxide suspended in dextrose or polyvinylpyrrolidone was administered to retired female rat breeders with spontaneous mammary tumors. The rats were then exposed to an intense 100-kHz RF field. Tumor doubling times were increased from 23 days for controls to 62 days for rats irradiated 6 days after the administration of the particle suspensions. There was no conclusive evidence of organ damage caused by treatment. They conclude that the treatment modality merits further investigation

  17. Particle physics

    International Nuclear Information System (INIS)

    Kamal, Anwar

    2014-01-01

    Provides step-by-step derivations. Contains numerous tables and diagrams. Supports learning and teaching with numerous worked examples, questions and problems with answers. Sketches also the historical development of the subject. This textbook teaches particle physics very didactically. It supports learning and teaching with numerous worked examples, questions and problems with answers. Numerous tables and diagrams lead to a better understanding of the explanations. The content of the book covers all important topics of particle physics: Elementary particles are classified from the point of view of the four fundamental interactions. The nomenclature used in particle physics is explained. The discoveries and properties of known elementary particles and resonances are given. The particles considered are positrons, muon, pions, anti-protons, strange particles, neutrino and hadrons. The conservation laws governing the interactions of elementary particles are given. The concepts of parity, spin, charge conjugation, time reversal and gauge invariance are explained. The quark theory is introduced to explain the hadron structure and strong interactions. The solar neutrino problem is considered. Weak interactions are classified into various types, and the selection rules are stated. Non-conservation of parity and the universality of the weak interactions are discussed. Neutral and charged currents, discovery of W and Z bosons and the early universe form important topics of the electroweak interactions. The principles of high energy accelerators including colliders are elaborately explained. Additionally, in the book detectors used in nuclear and particle physics are described. This book is on the upper undergraduate level.

  18. Analysis of particle kinematics in spheronization via particle image velocimetry.

    Science.gov (United States)

    Koester, Martin; Thommes, Markus

    2013-02-01

    Spheronization is a wide spread technique in pellet production for many pharmaceutical applications. Pellets produced by spheronization are characterized by a particularly spherical shape and narrow size distribution. The particle kinematic during spheronization is currently not well-understood. Therefore, particle image velocimetry (PIV) was implemented in the spheronization process to visualize the particle movement and to identify flow patterns, in order to explain the influence of various process parameters. The spheronization process of a common formulation was recorded with a high-speed camera, and the images were processed using particle image velocimetry software. A crosscorrelation approach was chosen to determine the particle velocity at the surface of the pellet bulk. Formulation and process parameters were varied systematically, and their influence on the particle velocity was investigated. The particle stream shows a torus-like shape with a twisted rope-like motion. It is remarkable that the overall particle velocity is approximately 10-fold lower than the tip speed of the friction plate. The velocity of the particle stream can be correlated to the water content of the pellets and the load of the spheronizer, while the rotation speed was not relevant. In conclusion, PIV was successfully applied to the spheronization process, and new insights into the particle velocity were obtained. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Particle radiotherapy emerging technology for treatment of cancer

    CERN Document Server

    Sahoo, Narayan

    2016-01-01

    The results of decades of research and development are providing compelling evidence about the efficacy of radiation therapy with proton and carbon ion beams to achieve superior complication free tumor control leading to a world-wide rapid growth in their clinical use. This book contains comprehensive reviews of the state of the art of the technology and physics of heavy charge particle therapy by the experts from the leading cancer centers of world that will be valuable as a practical guide for radiation therapy professionals interested in these modalities.

  20. Proton therapy for head and neck cancer: Rationale, potential indications, practical considerations, and current clinical evidence

    International Nuclear Information System (INIS)

    Mendenhall, Nancy P.; Malyapa, Robert S.; Su, Zhong; Yeung, Daniel; Mendenhall, William M.; Li, Zuofeng

    2011-01-01

    There is a strong rationale for potential benefits from proton therapy (PT) for selected cancers of the head and neck because of the opportunity to improve the therapeutic ratio by improving radiation dose distributions and because of the significant differences in radiation dose distribution achievable with x-ray-based radiation therapy (RT) and PT. Comparisons of dose distributions between x-ray-based and PT plans in selected cases show specific benefits in dose distribution likely to translate into improved clinical outcomes. However, the use of PT in head and neck cancers requires special considerations in the simulation and treatment planning process, and currently available PT technology may not permit realization of the maximum potential benefits of PT. To date, few clinical data are available, but early clinical experiences in sinonasal tumors in particular suggest significant improvements in both disease control and radiation-related toxicity

  1. Proton therapy for head and neck cancer: Rationale, potential indications, practical considerations, and current clinical evidence

    Energy Technology Data Exchange (ETDEWEB)

    Mendenhall, Nancy P.; Malyapa, Robert S.; Su, Zhong; Yeung, Daniel; Mendenhall, William M.; Li, Zuofeng (Univ. of Florida Proton Therapy Inst., Jacksonville, Florida (United States)), e-mail: menden@shands.ufl.edu

    2011-08-15

    There is a strong rationale for potential benefits from proton therapy (PT) for selected cancers of the head and neck because of the opportunity to improve the therapeutic ratio by improving radiation dose distributions and because of the significant differences in radiation dose distribution achievable with x-ray-based radiation therapy (RT) and PT. Comparisons of dose distributions between x-ray-based and PT plans in selected cases show specific benefits in dose distribution likely to translate into improved clinical outcomes. However, the use of PT in head and neck cancers requires special considerations in the simulation and treatment planning process, and currently available PT technology may not permit realization of the maximum potential benefits of PT. To date, few clinical data are available, but early clinical experiences in sinonasal tumors in particular suggest significant improvements in both disease control and radiation-related toxicity

  2. Current perspectives on Internet delivered cognitive behavioral therapy for adults with anxiety and related disorders

    Directory of Open Access Journals (Sweden)

    Mewton L

    2014-01-01

    Full Text Available Louise Mewton, Jessica Smith, Pieter Rossouw, Gavin Andrews Clinical Research Unit for Anxiety and Depression, St Vincent’s Hospital, Sydney, NSW, Australia Abstract: The aim of the current review is to provide a summary of research into Internet-delivered cognitive behavioral therapy (iCBT for anxiety disorders. We include 37 randomized controlled trials that examined the efficacy of iCBT programs in adults (aged over 18 years, as compared with waiting list or active control. The included studies were identified from Medline searches and from reference lists, and only published data were included. Several trials of iCBT for generalized anxiety disorder, panic disorder, and social phobia were identified. Two trials of iCBT for obsessive-compulsive disorder were identified, whilst one trial each was identified for hypochondriasis, specific phobia (spiders, and post-traumatic stress disorder. Finally, there were five trials that focused on transdiagnostic therapy for either a range of comorbid anxiety disorders or comorbid anxiety and depression. Between-group effect sizes were moderate to large for all disorders, and ranged from 0.30 to 2.53. iCBT was found to be commensurate with face-to-face cognitive behavioral therapy whether delivered individually or in group format. Guidance may not be necessary for iCBT to be effective for immediate gains, but may be more important in longer-term maintenance of symptom improvement and maximizing patient adherence. The clinical experience of the individual providing guidance does not appear to impact treatment outcomes. Future research needs to focus on the optimal level of guidance required to generate maximum patient benefits, whilst balancing the efficient use of clinician time and resources. Evidence-based contraindications to iCBT should also be developed so that the choice of treatment modality accurately reflects patients’ needs. Further research should be conducted into the effective elements of

  3. Additional Effect of Static Ultrasound and Diadynamic Currents on Myofascial Trigger Points in a Manual Therapy Program for Patients With Chronic Neck Pain: A Randomized Clinical Trial.

    Science.gov (United States)

    Dibai-Filho, Almir Vieira; de Oliveira, Alessandra Kelly; Girasol, Carlos Eduardo; Dias, Fabiana Rodrigues Cancio; Guirro, Rinaldo Roberto de Jesus

    2017-04-01

    To assess the additional effect of static ultrasound and diadynamic currents on myofascial trigger points in a manual therapy program to treat individuals with chronic neck pain. A single-blind randomized trial was conducted. Both men and women, between ages 18 and 45, with chronic neck pain and active myofascial trigger points in the upper trapezius were included in the study. Subjects were assigned to 3 different groups: group 1 (n = 20) was treated with manual therapy; group 2 (n = 20) was treated with manual therapy and static ultrasound; group 3 (n = 20) was treated with manual therapy and diadynamic currents. Individuals were assessed before the first treatment session, 48 hours after the first treatment session, 48 hours after the tenth treatment session, and 4 weeks after the last session. There was no group-versus-time interaction for Numeric Rating Scale, Neck Disability Index, Pain-Related Self-Statement Scale, pressure pain threshold, cervical range of motion, and skin temperature (F-value range, 0.089-1.961; P-value range, 0.106-0.977). Moreover, we found no differences between groups regarding electromyographic activity (P > 0.05). The use of static ultrasound or diadynamic currents on myofascial trigger points in upper trapezius associated with a manual therapy program did not generate greater benefits than manual therapy alone.

  4. Fuel particles in the Chernobyl cooling pond: current state and prediction for remediation options

    International Nuclear Information System (INIS)

    Bulgakov, A.; Konoplev, A.; Smith, J.; Laptev, G.; Voitsekhovich, O.

    2009-01-01

    During the coming years, a management and remediation strategy for the Chernobyl cooling pond (CP) will be implemented. Remediation options include a controlled reduction in surface water level of the cooling pond and stabilisation of exposed sediments. In terrestrial soils, fuel particles deposited during the Chernobyl accident have now almost completely disintegrated. However, in the CP sediments the majority of 90 Sr activity is still in the form of fuel particles. Due to the low dissolved oxygen concentration and high pH, dissolution of fuel particles in the CP sediments is significantly slower than in soils. After the planned cessation of water pumping from the Pripyat River to the Pond, significant areas of sediments will be drained and exposed to the air. This will significantly enhance the dissolution rate and, correspondingly, the mobility and bioavailability of radionuclides will increase with time. The rate of acidification of exposed bottom sediments was predicted on the basis of acidification of similar soils after liming. Using empirical equations relating the fuel particle dissolution rate to soil and sediment pH allowed prediction of fuel particle dissolution and 90 Sr mobilisation for different remediation scenarios. It is shown that in exposed sediments, fuel particles will be almost completely dissolved in 15-25 years, while in parts of the cooling pond which remain flooded, fuel particle dissolution will take about a century

  5. Totally asymmetric exclusion processes with particles of arbitrary size

    CERN Document Server

    Lakatos, G

    2003-01-01

    The steady-state currents and densities of a one-dimensional totally asymmetric exclusion process (TASEP) with particles that occlude an integer number (d) of lattice sites are computed using various mean-field approximations and Monte Carlo simulations. TASEPs featuring particles of arbitrary size are relevant for modelling systems such as mRNA translation, vesicle locomotion along microtubules and protein sliding along DNA. We conjecture that the nonequilibrium steady-state properties separate into low-density, high-density, and maximal current phases similar to those of the standard (d = 1) TASEP. A simple mean-field approximation for steady-state particle currents and densities is found to be inaccurate. However, we find local equilibrium particle distributions derived from a discrete Tonks gas partition function yield apparently exact currents within the maximal current phase. For the boundary-limited phases, the equilibrium Tonks gas distribution cannot be used to predict currents, phase boundaries, or ...

  6. Current status of accelerator-based boron neutron capture therapy

    International Nuclear Information System (INIS)

    Kreiner, A. J.; Bergueiro, J.; Di Paolo, H.; Castell, W.; Vento, V. Thatar; Cartelli, D.; Kesque, J.M.; Valda, A.A.; Ilardo, J.C.; Baldo, M.; Erhardt, J.; Debray, M.E.; Somacal, H.R.; Estrada, L.; Sandin, J.C. Suarez; Igarzabal, M.; Huck, H.; Padulo, J.; Minsky, D.M.

    2011-01-01

    The direct use of proton and heavy ion beams for radiotherapy is a well established cancer treatment modality, which is becoming increasingly widespread due to its clear advantages over conventional photon-based treatments. This strategy is suitable when the tumor is spatially well localized. Also the use of neutrons has a long tradition. Here Boron Neutron Capture Therapy (BNCT) stands out, though on a much smaller scale, being a second-generation promising alternative for tumors which are diffuse and infiltrating. On this sector, so far only nuclear reactors have been used as neutron sources. In this paper we describe the current situation worldwide as far as the use of accelerator-based neutron sources for BNCT is concerned (so-called Accelerator-Based (AB)-BNCT). In particular we discuss the present status of an ongoing project to develop a folded Tandem-ElectroStatic-Quadrupole (TESQ) accelerator at the Atomic Energy Commission of Argentina. The project goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p,n) 7 Be reaction. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams to perform BNCT for deep-seated tumors in less than an hour. (author)

  7. A theoretical perspective on particle acceleration by interplanetary shocks and the Solar Energetic Particle problem

    Energy Technology Data Exchange (ETDEWEB)

    Verkhoglyadova, Olga P. [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL35899 (United States); Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA91109 (United States); Zank, Gary P.; Li, Gang [Department of Space Science, UAH, Huntsville, AL35899 (United States); Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL35899 (United States)

    2015-02-12

    Understanding the physics of Solar Energetic Particle (SEP) events is of importance to the general question of particle energization throughout the cosmos as well as playing a role in the technologically critical impact of space weather on society. The largest, and often most damaging, events are the so-called gradual SEP events, generally associated with shock waves driven by coronal mass ejections (CMEs). We review the current state of knowledge about particle acceleration at evolving interplanetary shocks with application to SEP events that occur in the inner heliosphere. Starting with a brief outline of recent theoretical progress in the field, we focus on current observational evidence that challenges conventional models of SEP events, including complex particle energy spectra, the blurring of the distinction between gradual and impulsive events, and the difference inherent in particle acceleration at quasi-parallel and quasi-perpendicular shocks. We also review the important problem of the seed particle population and its injection into particle acceleration at a shock. We begin by discussing the properties and characteristics of non-relativistic interplanetary shocks, from their formation close to the Sun to subsequent evolution through the inner heliosphere. The association of gradual SEP events with shocks is discussed. Several approaches to the energization of particles have been proposed, including shock drift acceleration, diffusive shock acceleration (DSA), acceleration by large-scale compression regions, acceleration by random velocity fluctuations (sometimes known as the “pump mechanism”), and others. We review these various mechanisms briefly and focus on the DSA mechanism. Much of our emphasis will be on our current understanding of the parallel and perpendicular diffusion coefficients for energetic particles and models of plasma turbulence in the vicinity of the shock. Because of its importance both to the DSA mechanism itself and to the

  8. Compressible Flow Phenomena at Inception of Lateral Density Currents Fed by Collapsing Gas-Particle Mixtures

    Science.gov (United States)

    Valentine, Greg A.; Sweeney, Matthew R.

    2018-02-01

    Many geological flows are sourced by falling gas-particle mixtures, such as during collapse of lava domes, and impulsive eruptive jets, and sustained columns, and rock falls. The transition from vertical to lateral flow is complex due to the range of coupling between particles of different sizes and densities and the carrier gas, and due to the potential for compressible flow phenomena. We use multiphase modeling to explore these dynamics. In mixtures with small particles, and with subsonic speeds, particles follow the gas such that outgoing lateral flows have similar particle concentration and speed as the vertical flows. Large particles concentrate immediately upon impact and move laterally away as granular flows overridden by a high-speed jet of expelled gas. When a falling flow is supersonic, a bow shock develops above the impact zone, and this produces a zone of high pressure from which lateral flows emerge as overpressured wall jets. The jets form complex structures as the mixtures expand and accelerate and then recompress through a recompression zone that mimics a Mach disk shock in ideal gas jets. In mixtures with moderate to high ratios of fine to coarse particles, the latter tend to follow fine particles through the expansion-recompression flow fields because of particle-particle drag. Expansion within the flow fields can lead to locally reduced gas pressure that could enhance substrate erosion in natural flows. The recompression zones form at distances, and have peak pressures, that are roughly proportional to the Mach numbers of impacting flows.

  9. Hyperthermia generated by Foucault currents for oncological treatments with COMSOL

    International Nuclear Information System (INIS)

    Romero C, R. L.; Cordova F, T.; Basurto I, G.; Guzman C, R.; Castro L, J.

    2017-10-01

    The hyperthermia generated by variable magnetic fields is a promising power method for oncological therapy, because apoptosis is induced in tumor cells at temperatures between 42 and 45 degrees Celsius. It is known that an alternating magnetic field on the FeO 4 magnetite particles produces heat through three paths: is generated by parasitic currents, lost in hysteresis cycles and losses by magnetization relaxation; taking advantage of the energy losses through the joule effect and the transformation into heat, a simulation is shown in COMSOL about the temporal distribution of temperature in transformed biological systems, to have an estimate of the properties and behavior of the temperature gradient when magnetic hyperthermia is generated in human transformed tissue. (Author)

  10. TEACHING PHYSICS: Teaching particle physics

    Science.gov (United States)

    Hanley, Phil

    2000-09-01

    Particle physics attracts many students who hear of news from CERN or elsewhere in the media. This article examines which current A-level syllabuses include which bits of particle physics and surveys the many different types of resource available to teachers and students.

  11. Current applications and future prospects of nanomaterials in tumor therapy

    Directory of Open Access Journals (Sweden)

    Huang Y

    2017-03-01

    Full Text Available Yu Huang,1 Chao-Qiang Fan,1 Hui Dong,1 Su-Min Wang,1 Xiao-Chao Yang,2 Shi-Ming Yang1 1Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China; 2Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, People’s Republic of China Abstract: Tumors are one of the most serious human diseases and cause numerous global deaths per year. In spite of many strategies applied in tumor therapy, such as radiation therapy, chemotherapy, surgery, and a combination of these treatments, tumors are still the foremost killer worldwide among human diseases, due to their specific limitations, such as multidrug resistance and side effects. Therefore, it is urgent and necessary to develop new strategies for tumor therapy. Recently, the fast development of nanoscience has paved the way for designing new strategies to treat tumors. Nanomaterials have shown great potential in tumor therapy, due to their unique properties, including passive targeting, hyperthermia effects, and tumor-specific inhibition. This review summarizes the recent progress using the innate antitumor properties of metallic and nonmetallic nanomaterials to treat tumors, and related challenges and prospects are discussed. Keywords: tumor, nanomaterials, nanoparticles, nanotechnology

  12. Computational Modelling of Gas-Particle Flows with Different Particle Morphology in the Human Nasal Cavity

    Directory of Open Access Journals (Sweden)

    Kiao Inthavong

    2009-01-01

    Full Text Available This paper summarises current studies related to numerical gas-particle flows in the human nasal cavity. Of interest are the numerical modelling requirements to consider the effects of particle morphology for a variety of particle shapes and sizes such as very small particles sizes (nanoparticles, elongated shapes (asbestos fibres, rough shapes (pollen, and porous light density particles (drug particles are considered. It was shown that important physical phenomena needed to be addressed for different particle characteristics. This included the Brownian diffusion for submicron particles. Computational results for the nasal capture efficiency for nano-particles and various breathing rates in the laminar regime were found to correlate well with the ratio of particle diffusivity to the breathing rate. For micron particles, particle inertia is the most significant property and the need to use sufficient drag laws is important. Drag correlations for fibrous and rough surfaced particles were investigated to enable particle tracking. Based on the simulated results, semi-empirical correlations for particle deposition were fitted in terms of Peclet number and inertial parameter for nanoparticles and micron particles respectively.

  13. Anti EGFR therapy in the treatment of non-metastatic head and neck squamous cell carcinoma: The current evidence

    Directory of Open Access Journals (Sweden)

    Rony Benson

    2016-09-01

    Full Text Available Head and neck squamous cell carcinoma (HNSCC accounts for a large oncologic burden in the developing countries. In patients with locally advanced head and neck cancer multimodality treatment is warranted. Radiation therapy with concurrent chemotherapy has long been considered the standard for patients with disease involving the oropharynx, larynx and hypopharynx. However, addition of chemotherapy to radiotherapy increases treatment related toxicity by many folds and compliance rates decrease. In this context a systemic therapy, which when used concurrent with radiation with favorable toxicity profile is of great importance for improving disease control in locally advanced HNSCC. Anti-epithelial growth factor receptor targeted therapy emerged as a potential treatment option. In recent years many trials were conducted to find the optimum treatment option with the combination of these targeted agents. The initial trials showed excellent results with minimal morbidity and led to great enthusiasm across the globe to incorporate these regimens as a standard of care. However, subsequently many trials failed to maintain such results and now there is little agreement to the initial results achieved with these drugs. Based on the current evidence we cannot recommend the replacement of cisplatin with targeted therapy in concurrent setting. It may be considered in patients with altered renal parameters, hypersensitivity or intolerance to cisplatin. The addition of targeted therapy in addition to chemotherapy in the concurrent setting can’t also be recommended as the benefit is doubtful and is associated with a significant increase in toxicity.

  14. Heat generation by eddy currents in a shell of superconducting bus-bars for SIS100 particle accelerator at FAIR

    Directory of Open Access Journals (Sweden)

    Tomków Łukasz

    2017-12-01

    Full Text Available Superconducting magnets in the SIS100 particle accelerator require the supply of liquid helium and electric current. Both are transported with by-pass lines designed at Wrocław University of Technology. Bus-bars used to transfer an electric current between the sections of the accelerator will be encased in a steel shell. Eddy currents are expected to appear in the shell during fast-ramp operation of magnets. Heat generation, which should be limited in any cryogenic system, will appear in the shell. In this work the amount of heat generated is assessed depending on the geometry of an assembly of the bus-bars and the shell. Numerical and analytical calculations are described. It was found that heat generation in the shell is relatively small when compared to other sources present in the accelerator and its value strongly depends on the geometry of the shell. The distribution of eddy currents and generated heat for different geometrical options are presented. Based on the results of the calculations the optimal design is proposed.

  15. Asthma-Related Outcomes in Patients Initiating Extrafine Ciclesonide or Fine-Particle Inhaled Corticosteroids

    Science.gov (United States)

    Postma, Dirkje S.; Dekhuijzen, Richard; van der Molen, Thys; Martin, Richard J.; van Aalderen, Wim; Roche, Nicolas; Guilbert, Theresa W.; Israel, Elliot; van Eickels, Daniela; Khalid, Javaria Mona; Herings, Ron M.C.; Overbeek, Jetty A.; Miglio, Cristiana; Thomas, Victoria; Hutton, Catherine; Hillyer, Elizabeth V.

    2017-01-01

    Purpose Extrafine-particle inhaled corticosteroids (ICS) have greater small airway deposition than standard fine-particle ICS. We sought to compare asthma-related outcomes after patients initiated extrafine-particle ciclesonide or fine-particle ICS (fluticasone propionate or non-extrafine beclomethasone). Methods This historical, matched cohort study included patients aged 12-60 years prescribed their first ICS as ciclesonide or fine-particle ICS. The 2 cohorts were matched 1:1 for key demographic and clinical characteristics over the baseline year. Co-primary endpoints were 1-year severe exacerbation rates, risk-domain asthma control, and overall asthma control; secondary endpoints included therapy change. Results Each cohort included 1,244 patients (median age 45 years; 65% women). Patients in the ciclesonide cohort were comparable to those in the fine-particle ICS cohort apart from higher baseline prevalence of hospitalization, gastroesophageal reflux disease, and rhinitis. Median (interquartile range) prescribed doses of ciclesonide and fine-particle ICS were 160 (160-160) µg/day and 500 (250-500) µg/day, respectively (P<0.001). During the outcome year, patients prescribed ciclesonide experienced lower severe exacerbation rates (adjusted rate ratio [95% CI], 0.69 [0.53-0.89]), and higher odds of risk-domain asthma control (adjusted odds ratio [95% CI], 1.62 [1.27-2.06]) and of overall asthma control (2.08 [1.68-2.57]) than those prescribed fine-particle ICS. The odds of therapy change were 0.70 (0.59-0.83) with ciclesonide. Conclusions In this matched cohort analysis, we observed that initiation of ICS with ciclesonide was associated with better 1-year asthma outcomes and fewer changes to therapy, despite data suggesting more difficult-to-control asthma. The median prescribed dose of ciclesonide was one-third that of fine-particle ICS. PMID:28102056

  16. Current state of orthodontic patients under Bisphosphonate therapy

    Science.gov (United States)

    2013-01-01

    Background Bisphosphonates are a common medication for the prevention and therapy of osteoporosis, but are also applied for tumor diseases. They affect bone metabolism, and therefore also orthodontic treatments, but how it does has yet not been definitively clarified. Therefore, the aim of this research was to evaluate and demonstrate the reported effects and the current state of scientific research regarding orthodontic treatment and bisphosphonate medication exclusively in humans. Material and methods A systematic research of the literature for selected keywords in the Medline database (Pubmed) as well as a manual search was conducted. The following search terms were used: ‘Bisphosphonate’ in combination with: orthodontic, orthodontic treatment, tooth movement. Findings To date, only nine reported patients (case reports/series) and one original article (retrospective cohort study) regarding orthodontic treatment under bisphosphonate medication in humans have been published. Decelerated tooth movement with increased side effects (especially in high-risk patients) and longer treatment duration was reported in some articles. Patients with initial spacing or extraction cases had a higher risk of incomplete space closure and poor root parallelism. Conclusions Orthodontic tooth movement under bisphosphonate medication is possible, especially in low-risk patients (low dose and short period of intake). But the treatment is still not predictable, especially in high-risk patients. Therefore, the altered bone metabolism and higher extent of side effects should be considered in treatment planning, especially in extraction cases or high-risk patients. Regardless, longer treatment duration, decelerated tooth movement, and more side effects, e.g., incomplete space closure and poor root parallelism, should be expected, especially in extraction cases or space closure. PMID:23556517

  17. Technical advances in radiation therapy

    International Nuclear Information System (INIS)

    Sause, W.T.

    1986-01-01

    Substantial advances have been made in radiation therapy. Many of these advances can be applied in most radiation therapy departments without expensive improvements in equipment. Changes in radiation fractionation, chemotherapeutic sensitization, intraoperative radiation, and interstitial implants can be performed with experience and improved physician training in most medium-sized departments. Advances that require investments in expensive equipment such as particle radiation and hyperthermia will need to be evaluated at designated treatment centers. 106 references

  18. Measurement of fragmentation properties of charmed particle production in charged-current neutrino interactions

    CERN Document Server

    Onengüt, G; De Jong, M; Konijn, J; Melzer, O; Oldeman, R G C; Pesen, E; Van der Poel, C A F J; Visschers, J L; Güler, M; Köse, U; Serin-Zeyrek, M; Kama, S; Sever, R; Tolun,, P; Zeyrek, M T; Catanesi, M G; De Serio, M; Ieva, M; Muciaccia, M T; Radicioni, E; Simone, S; Bülte, A; Winter, Klaus; Van de Vyver, B; Vilain, P; Wilquet, G; Saitta, B; Di Capua, E; Ogawa, S; Shibuya, H; Artamonov, A V; Brunner, J; Chizhov, M; Cussans, D G; Doucet, M; Fabre, Jean-Paul; Hristova, I R; Kawamura, T; Kolev, D; Litmaath, M; Meinhard, H; Panman, J; Papadopoulos, I M; Ricciardi, S; Rozanov, A; Saltzberg, D; Tsenov, R V; Uiterwijk, J W E; Zucchelli, P; Goldberg, J; Chikawa, M; Arik, E; Song, J S; Yoon, C S; Kodama, K; Ushida, N; Aoki, S; Hara, T; Delbar, T; Favart, D; Grégoire, G; Kalinin, S; Makhlyoueva, I V; Gorbunov, P; Khovanskii, V D; Shamanov, V V; Tsukerman, I; Bruski, N; Frekers, D; Rondeshagen, D; Wolff, T; Hoshino, K; Kawada, J; Komatsu, M; Miyanishi, M; Nakamura, M; Nakano, T; Narita, K; Niu, K; Niwa, K; Nonaka, N; Sato, O; Toshito, T; Buontempo, S; Cocco, A G; D'Ambrosio, N; De Lellis, G; De Rosa, G; Di Capua, F; Ereditato, A; Fiorillo, G; Marotta, A; Messina, M; Migliozzi, P; Pistillo, C; Santorelli, R; Scotto-Lavina, L; Strolin, P; Tioukov, V; Nakamura, K; Okusawa, T; Dore, U; FLoverre, P; Ludovici, L; Maslennikov, A L; Righini, P; Rosa, G; Santacesaria, R; Satta, A; Spada, F R; Barbuto, E; Bozza, C; Grella, G; Romano, G; Sirignano, C; Sorrentino, S; Sato, Y; Tezuka, I

    2004-01-01

    During the years 1994-97, the emulsion target of the CHORUS detector was exposed to the wideband neutrino beam of the CERN SPS. In total about 100 000 charged-current neutrino interactions were located in the nuclear emulsion target and fully reconstructed. From this sample of events which was based on the data acquired by new automatic scanning systems, 1048 D0 events were selected by a pattern recognition program. They were confirmed as neutral-particle decays through visual inspection. Fragmentation properties of deep-inelastic charm production were measured using these events. Distributions of the D0 momentum, Feynman x(x_F), z and tan thetaôut, the transverse angle out of the leptonic plane defined by the muon and the neutrino, are presented. The mean value of z was measured to be (z) = 0.63 +- 0.03(stat) +- 0.01(syst). From fits to the z distribution, values for the Peterson parameter epsilon_p = 0.108 +- 0.017(stat) +- 0.013(syst) and the Collins-Spiller parameter epsilon_CS = 0.21^+0.05_-0.04(stat) +...

  19. Low Reynolds number suspension gravity currents.

    Science.gov (United States)

    Saha, Sandeep; Salin, Dominique; Talon, Laurent

    2013-08-01

    The extension of a gravity current in a lock-exchange problem, proceeds as square root of time in the viscous-buoyancy phase, where there is a balance between gravitational and viscous forces. In the presence of particles however, this scenario is drastically altered, because sedimentation reduces the motive gravitational force and introduces a finite distance and time at which the gravity current halts. We investigate the spreading of low Reynolds number suspension gravity currents using a novel approach based on the Lattice-Boltzmann (LB) method. The suspension is modeled as a continuous medium with a concentration-dependent viscosity. The settling of particles is simulated using a drift flux function approach that enables us to capture sudden discontinuities in particle concentration that travel as kinematic shock waves. Thereafter a numerical investigation of lock-exchange flows between pure fluids of unequal viscosity, reveals the existence of wall layers which reduce the spreading rate substantially compared to the lubrication theory prediction. In suspension gravity currents, we observe that the settling of particles leads to the formation of two additional fronts: a horizontal front near the top that descends vertically and a sediment layer at the bottom which aggrandises due to deposition of particles. Three phases are identified in the spreading process: the final corresponding to the mutual approach of the two horizontal fronts while the laterally advancing front halts indicating that the suspension current stops even before all the particles have settled. The first two regimes represent a constant and a decreasing spreading rate respectively. Finally we conduct experiments to substantiate the conclusions of our numerical and theoretical investigation.

  20. Enhancing Photodynamyc Therapy Efficacy by Combination Therapy: Dated, Current and Oncoming Strategies

    International Nuclear Information System (INIS)

    Postiglione, Ilaria; Chiaviello, Angela; Palumbo, Giuseppe

    2011-01-01

    Combination therapy is a common practice in many medical disciplines. It is defined as the use of more than one drug to treat the same disease. Sometimes this expression describes the simultaneous use of therapeutic approaches that target different cellular/molecular pathways, increasing the chances of killing the diseased cell. This short review is concerned with therapeutic combinations in which PDT (Photodynamyc Therapy) is the core therapeutic partner. Besides the description of the principal methods used to assess the efficacy attained by combinations in respect to monotherapy, this review describes experimental results in which PDT was combined with conventional drugs in different experimental conditions. This inventory is far from exhaustive, as the number of photosensitizers used in combination with different drugs is very large. Reports cited in this work have been selected because considered representative. The combinations we have reviewed include the association of PDT with anti-oxidants, chemotherapeutics, drugs targeting topoisomerases I and II, antimetabolites and others. Some paragraphs are dedicated to PDT and immuno-modulation, others to associations of PDT with angiogenesis inhibitors, receptor inhibitors, radiotherapy and more. Finally, a look is dedicated to combinations involving the use of natural compounds and, as new entries, drugs that act as proteasome inhibitors