WorldWideScience

Sample records for particle physics revision

  1. SLAC Library - Online Particle Physics Information

    Science.gov (United States)

    Online Particle Physics Information Compiled by Revised: April, 201 7 This annotated list provides a highly selective set of online resources that are useful to the particle physics community. It & Reports Particle Physics Journals & Reviews Online Journals and Tables of Contents Journal

  2. Review of Particle Physics, 2014-2015

    CERN Document Server

    Olive, K A; Amsler, C; Antonelli, M; Arguin, J-F; Asner, D M; Baer, H; Band, H R; Barnett, R M; Basaglia, T; Bauer, C W; Beatty, J J; Belousov, V I; Beringer, J; Bernardi, G; Bethke, S; Bichsel, H; Biebel, O; Blucher, E; Blusk, S; Brooijmans, G; Buchmueller, O; Burkert, V; Bychkov, M A; Cahn, R N; Carena, M; Ceccucci, A; Cerri, A; Chakraborty, D; Chen, M-C; Chivukula, R S; Copic, K; Cowan, G; Dahl, O; D'Ambrosio, G; Damour, T; de Florian, D; de Gouvea, A; DeGrand, T; de Jong, P; Dissertori, G; Dobrescu, B A; Doser, M; Drees, M; Dreiner, H K; Edwards, D A; Eidelman, S; Erler, J; Ezhela, V V; Fetscher, W; Fields, B D; Foster, B; Freitas, A; Gaisser, T K; Gallagher, H; Garren, L; Gerber, H-J; Gerbier, G; Gershon, T; Gherghetta, T; Golwala, S; Goodman, M; Grab, C; Gritsan, A V; Grojen, C; Groom, D E; Grunewald, M; Gurtu, A; Gutsche, T; Haber, H E; Hagiwara, K; Hanhart, C; Hashimoto, S; Hayato, Y; Hayes, K G; Heffner, M; Heltsley, B; Hernandez-Rey, J J; Hikasa, K; Hocker, A; Holder, J; Holtkamp, A; Huston, J; Jackson, J D; Johnson, K F; Junk, T; Kado, M; Karlen, D; Katz, U F; Klein, S R; Klempt, E; Kowalewski, R V; Krauss, F; Kreps, M; Krusche, B; Kuyanov, Yu V; Kwon, Y; Lahav, O; Laiho, J; Langacker, P; Liddle, A; Ligeti, Z; Lin, C-J; Liss, T M; Littenberg, L; Lugovsky, K S; Lugovsky, S B; Maltoni, F; Mannel, T; Manohar, A V; Marciano, W J; Martin, A D; Masoni, A; Matthews, J; Milstead, D; Molaro, P; Munig, K; Moortgat, F; Mortonson, M J; Murayama, H; Nakamura, K; Narain, M; Nason, P; Navas, S; Neubert, M; Nevski, P; Nir, Y; Pape, L; Parsons, J; Patrignani, C; Peacock, J A; Pennington, M; Petcov, S T; Piepke, A; Pomarol, A; Quadt, A; Raby, S; Rademacker, J; Raffelt, G; Ratcliff, B N; Richardson, P; Ringwald, A; Roesler, S; Rolli, S; Romaniouk, A; Rosenberg, L J; Rosner, J L; Rybka, G; Sachrajda, C T; Sakai, Y; Salam, G P; Sarkar, S; Sauli, F; Schneider, O; Scholberg, K; Scott, D; Sharma, V; Sharpe, S R; Silari, M; Sjostrand, T; Skands, P; Smith, J G; Smoot, G F; Spanier, S; Spieler, H; Spiering, C; Stahl, A; Stanev, T; Stone, S L; Sumiyoshi, T; Syphers, M J; Takahashi, F; Tanabashi, M; Terning, J; Tiator, L; Titov, M; Tkachenko, N P; Tornqvist, N A; Tovey, D; Valencia, G; Venanzoni, G; Vincter, M G; Vogel, P; Vogt, A; Wakely, S P; Walkowiak, W; Walter, C W; Ward, D R; Weiglein, G; Weinberg, D H; Weinberg, E J; White, M; Wiencke, L R; Wohl, C G; Wolfenstein, L; Womersley, J; Woody, C L; Workman, R L; Yamamoto, A; Yao, W-M; Zeller, G P; Zenin, O V; Zhang, J; Zhu, R-Y; Zimmermann, F; Zyla, P A; Harper, G; Lugovsky, V.S; Schaffner, P

    2014-01-01

    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,283 new measurements from 899 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as heavy neutrinos, supersymmetric and technicolor particles, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Supersymmetry, Extra Dimensions, Particle Detectors, Probability, and Statistics. Among the 112 reviews are many that are new or heavily revised including those on: Dark Energy, Higgs Boson Physics, Electroweak Model, Neutrino Cross Section Measurements, Monte Carlo Neutrino Generators, Top Quark, Dark Matter, Dynamical Electroweak Symmetry Breaking, Accelerator Physics of Colliders, High-Energy Collider Parameters, Big Bang Nucleosyn...

  3. Current experiments in elementary particle physics. Revised

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H. [Stanford Univ., CA (United States). Stanford Linear Accelerator Center; Wohl, C.G.; Armstrong, B. [Lawrence Berkeley Lab., CA (United States); Dodder, D.C. [Los Alamos National Lab., NM (United States); Klyukhin, V.I.; Ryabov, Yu.G. [Inst. for High Energy Physics, Serpukhov (Russian Federation); Illarionova, N.S. [Inst. of Theoretical and Experimental Physics, Moscow (Russian Federation); Lehar, F. [CEN Saclay, Gif-sur-Yvette (France); Oyanagi, Y. [Univ. of Tokyo (Japan). Faculty of Sciences; Olin, A. [TRIUMF, Vancouver, BC (Canada); Frosch, R. [Paul Scherrer Inst., Villigen (Switzerland)

    1992-06-01

    This report contains summaries of 584 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1986 are excluded. Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, KEK, LAMPF, Novosibirsk, Paul Scherrer Institut (PSI), Saclay, Serpukhov, SLAC, SSCL, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  4. Revision of the DELFIC Particle Activity Module

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, David A [ORNL; Jodoin, Vincent J [ORNL

    2010-09-01

    The Defense Land Fallout Interpretive Code (DELFIC) was originally released in 1968 as a tool for modeling fallout patterns and for predicting exposure rates. Despite the continual advancement of knowledge of fission yields, decay behavior of fission products, and biological dosimetry, the decay data and logic of DELFIC have remained mostly unchanged since inception. Additionally, previous code revisions caused a loss of conservation of radioactive nuclides. In this report, a new revision of the decay database and the Particle Activity Module is introduced and explained. The database upgrades discussed are replacement of the fission yields with ENDF/B-VII data as formatted in the Oak Ridge Isotope Generation (ORIGEN) code, revised decay constants, revised exposure rate multipliers, revised decay modes and branching ratios, and revised boiling point data. Included decay logic upgrades represent a correction of a flaw in the treatment of the fission yields, extension of the logic to include more complex decay modes, conservation of nuclides (including stable nuclides) at all times, and conversion of key variables to double precision for nuclide conservation. Finally, recommended future work is discussed with an emphasis on completion of the overall radiation physics upgrade, particularly for dosimetry, induced activity, decay of the actinides, and fractionation.

  5. Current experiments in elementary particle physics. Revision

    International Nuclear Information System (INIS)

    Galic, H.; Armstrong, F.E.; von Przewoski, B.

    1994-08-01

    This report contains summaries of 568 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1988 are excluded. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, INS (Tokyo), ITEP (Moscow), IUCF (Bloomington), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries

  6. Current experiments in elementary particle physics. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Armstrong, F.E. [Lawrence Berkeley Lab., CA (United States); von Przewoski, B. [Indiana Univ. Cyclotron Facility, Bloomington, IN (United States)] [and others

    1994-08-01

    This report contains summaries of 568 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1988 are excluded. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, INS (Tokyo), ITEP (Moscow), IUCF (Bloomington), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  7. Current experiments in elementary particle physics. Revision 1-85

    International Nuclear Information System (INIS)

    Wohl, C.G.; Armstrong, F.E.; Rittenberg, A.

    1985-01-01

    This report contains summaries of 551 approved experiments in elementary particle physics (experiments that finished taking data before 1 January 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Properties of the fixed-target beams at most of the laboratories are summarized. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries

  8. Fermilab | Science | Particle Physics | Benefits of Particle Physics

    Science.gov (United States)

    Photos and videos Latest news For the media Particle Physics Neutrinos Fermilab and the LHC Dark matter initiatives Research and development Key discoveries Benefits of particle physics Particle Accelerators society Particle Physics 101 Science of matter, energy, space and time How particle physics discovery

  9. Review of Particle Physics, 2012-2013

    CERN Document Server

    Beringer, J; Barnett, R M; Copic, K; Dahl, O; Groom, D E; Lin, C J; Lys, J; Murayama, H; Wohl, C G; Yao, W M; Zyla, P A; Amsler, C; Antonelli, M; Asner, D M; Baer, H; Band, H R; Basaglia, T; Bauer, C W; Beatty, J J; Belousov, V I; Bergren, E; Bernardi, G; Bertl, W; Bethke, S; Bichsel, H; Biebel, O; Blucher, E; Blusk, S; Brooijmans, G; Buchmueller, O; Cahn, R N; Carena, M; Ceccucci, A; Chakraborty, D; Chen, M C; Chivukula, R S; Cowan, G; D'Ambrosio, G; Damour, T; de Florian, D; de Gouvea, A; DeGrand, T; de Jong, P; Dissertori, G; Dobrescu, B; Doser, M; Drees, M; Edwards, D A; Eidelman, S; Erler, J; Ezhela, V V; Fetscher, W; Fields, B D; Foster, B; Gaisser, T K; Garren, L; Gerber, H J; Gerbier, G; Gherghetta, T; Golwala, S; Goodman, M; Grab, C; Gritsan, A V; Grivaz, J F; Grunewald, M; Gurtu, A; Gutsche, T; Haber, H E; Hagiwara, K; Hagmann, C; Hanhart, C; Hashimoto, S; Hayes, K G; Heffner, M; Heltsley, B; Hernandez-Rey, J J; Hikasa, K; Hocker, A; Holder, J; Holtkamp, A; Huston, J; Jackson, J D; Johnson, K F; Junk, T; Karlen, D; Kirkby, D; Klein, S R; Klempt, E; Kowalewski, R V; Krauss, F; Kreps, M; Krusche, B; Kuyanov, Yu.V; Kwon, Y; Lahav, O; Laiho, J; Langacker, P; Liddle, A; Ligeti, Z; Liss, T M; Littenberg, L; Lugovsky, K S; Lugovsky, S B; Mannel, T; Manohar, A V; Marciano, W J; Martin, A D; Masoni, A; Matthews, J; Milstead, D; Miquel, R; Monig, K; Moortgat, F; Nakamura, K; Narain, M; Nason, P; Navas, S; Neubert, M; Nevski, P; Nir, Y; Olive, K A; Pape, L; Parsons, J; Patrignani, C; Peacock, J A; Petcov, S T; Piepke, A; Pomarol, A; Punzi, G; Quadt, A; Raby, S; Raffelt, G; Ratcliff, B N; Richardson, P; Roesler, S; Rolli, S; Romaniouk, A; Rosenberg, L J; Rosner, J L; Sachrajda, C T; Sakai, Y; Salam, G P; Sarkar, S; Sauli, F; Schneider, O; Scholberg, K; Scott, D; Seligman, W G; Shaevitz, M H; Sharpe, S R; Silari, M; Sjostrand, T; Skands, P; Smith, J G; Smoot, G F; Spanier, S; Spieler, H; Stahl, A; Stanev, T; Stone, S L; Sumiyoshi, T; Syphers, M J; Takahashi, F; Tanabashi, M; Terning, J; Titov, M; Tkachenko, N P; Tornqvist, N A; Tovey, D; Valencia, G; van Bibber, K; Venanzoni, G; Vincter, M G; Vogel, P; Vogt, A; Walkowiak, W; Walter, C W; Ward, D R; Watari, T; Weiglein, G; Weinberg, E J; Wiencke, L R; Wolfenstein, L; Womersley, J; Woody, C L; Workman, R L; Yamamoto, A; Zeller, G P; Zenin, O V; Zhang, J; Zhu, R Y; Harper, G; Lugovsky, V S; Schaffner, P

    2012-01-01

    This biennial Review summarizes much of particle physics. Using data from previous editions, plus 2658 new measurements from 644 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. Among the 112 reviews are many that are new or heavily revised including those on Heavy-Quark and Soft-Collinear Effective Theory, Neutrino Cross Section Measurements, Monte Carlo Event Generators, Lattice QCD, Heavy Quarkonium Spectroscopy, Top Quark, Dark Matter, Vcb & Vub, Quantum Chromodynamics, High-Energy Collider Parameters, Astrophysical Constants, Cosmological Parameters, and Dark Matter.

  10. A guide to experimental elementary particle physics literature, 1988--1992. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, S.I.; Ezhela, V.V.; Filimonov, B.B. [Institute for High Energy Physics, Protvino, Moscow Region (Russian Federation)] [and others

    1993-09-01

    We present an indexed guide to the literature experimental particle physics for the years 1988--1992. About 4,000 papers are indexed by Beam/Target/Momentum, Reaction Momentum (including the final state), Final State Particle, and Accelerator/Detector/Experiment. All indices are cross-referenced to the paper`s title and reference in the ID/Reference/Title Index. The information in this guide is also publicly available from a regularly updated computer database.

  11. Recasting particle physics by entangling physics, history and philosophy

    International Nuclear Information System (INIS)

    Bertozzi, Eugenio; Levrini, Olivia

    2015-01-01

    The paper presents the design process we followed to recast particle physics so as to make it conceptually relevant for secondary school students. In this design process, the concept of symmetry was assumed as core-idea because of its structural and foundational role in particle physics, its crosscutting character and its epistemological and philosophical value. The first draft of the materials was tested in a pilot-study which involved 19 students of a regular class (grade 13) of an Italian school. The data analysis showed that the students were in their 'regime of competence' for grasping subtle nuances of the materials and for providing important hints for revising them. In particular, students’ reactions brought into light the need of clarifying the 'foundational' character that symmetry attained in twentieth-century physics. The delicate step of re-thinking the materials required the researchers to articulate the complex relationship between researches on physics teaching, history and philosophy of physics. This analytic phase resulted in a version of the materials which implies the students to be guided to grasp the meaning of symmetry as normative principle in twentieth-century physics, throughout the exploration of the different meanings assumed by symmetry over time. The whole process led also to the production of an essential, on-line version, of the materials targeted to a wider audience.

  12. Particles and Nuclei An Introduction to the Physical Concepts

    CERN Document Server

    Povh, Bogdan; Scholz, Christoph; Zetsche, Frank

    2006-01-01

    This well-known introductory textbook gives a uniform presentation of nuclear and particle physics from an experimental point of view. The new edition has been extensively revised and updated. The first part, Analysis, is devoted to disentangling the substructure of matter. This part shows that experiments designed to uncover the substructures of nuclei and nucleons have a similar conceptual basis, and lead to the present picture of all matter being constructed from a small number of elementary building blocks and a small number of fundamental interactions. The second part, Synthesis, shows how the elementary particles may be combined to build hadrons and nuclei. The fundamental interactions, which are responsible for the forces in all systems, become less and less evident in increasingly complex systems. Such systems are in fact dominated by many-body phenomena. A section on neutrino oscillations and one on nuclear matter at high temperatures bridge the field of "nuclear and particle physics" and "modern ast...

  13. Fermilab | Science | Particle Physics

    Science.gov (United States)

    Photos and videos Latest news For the media Particle Physics Neutrinos Fermilab and the LHC Dark matter initiatives Research and development Key discoveries Benefits of particle physics Particle Accelerators society Particle Physics 101 Science of matter, energy, space and time How particle physics discovery

  14. Particle physics

    International Nuclear Information System (INIS)

    Kamal, Anwar

    2014-01-01

    Provides step-by-step derivations. Contains numerous tables and diagrams. Supports learning and teaching with numerous worked examples, questions and problems with answers. Sketches also the historical development of the subject. This textbook teaches particle physics very didactically. It supports learning and teaching with numerous worked examples, questions and problems with answers. Numerous tables and diagrams lead to a better understanding of the explanations. The content of the book covers all important topics of particle physics: Elementary particles are classified from the point of view of the four fundamental interactions. The nomenclature used in particle physics is explained. The discoveries and properties of known elementary particles and resonances are given. The particles considered are positrons, muon, pions, anti-protons, strange particles, neutrino and hadrons. The conservation laws governing the interactions of elementary particles are given. The concepts of parity, spin, charge conjugation, time reversal and gauge invariance are explained. The quark theory is introduced to explain the hadron structure and strong interactions. The solar neutrino problem is considered. Weak interactions are classified into various types, and the selection rules are stated. Non-conservation of parity and the universality of the weak interactions are discussed. Neutral and charged currents, discovery of W and Z bosons and the early universe form important topics of the electroweak interactions. The principles of high energy accelerators including colliders are elaborately explained. Additionally, in the book detectors used in nuclear and particle physics are described. This book is on the upper undergraduate level.

  15. Fermilab | Particle Physics Division

    Science.gov (United States)

    Diversity Education Safety Sustainability and Environment Contact Science Science Particle Physics Neutrinos Scientific Computing Research & Development Key Discoveries Benefits of Particle Physics Particle Superconducting Test Accelerator LHC and Future Accelerators Accelerators for Science and Society Particle Physics

  16. Particle physics

    CERN Document Server

    Martin, Brian R

    2017-01-01

    An accessible and carefully structured introduction to Particle Physics, including important coverage of the Higgs Boson and recent progress in neutrino physics. Fourth edition of this successful title in the Manchester Physics series. Includes information on recent key discoveries including : An account of the discovery of exotic hadrons, beyond the simple quark model; Expanded treatments of neutrino physics and CP violation in B-decays; An updated account of ‘physics beyond the standard model’, including the interaction of particle physics with cosmology; Additional problems in all chapters, with solutions to selected problems available on the book’s website; Advanced material appears in optional starred sections.

  17. TEACHING PHYSICS: Teaching particle physics

    Science.gov (United States)

    Hanley, Phil

    2000-09-01

    Particle physics attracts many students who hear of news from CERN or elsewhere in the media. This article examines which current A-level syllabuses include which bits of particle physics and surveys the many different types of resource available to teachers and students.

  18. Modern particle physics

    CERN Document Server

    AUTHOR|(CDS)2079874

    2013-01-01

    Unique in its coverage of all aspects of modern particle physics, this textbook provides a clear connection between the theory and recent experimental results, including the discovery of the Higgs boson at CERN. It provides a comprehensive and self-contained description of the Standard Model of particle physics suitable for upper-level undergraduate students and graduate students studying experimental particle physics. Physical theory is introduced in a straightforward manner with full mathematical derivations throughout. Fully-worked examples enable students to link the mathematical theory to results from modern particle physics experiments. End-of-chapter exercises, graded by difficulty, provide students with a deeper understanding of the subject. Online resources available at www.cambridge.org/MPP feature password-protected fully-worked solutions to problems for instructors, numerical solutions and hints to the problems for students and PowerPoint slides and JPEGs of figures from the book

  19. Particle Physics Education Sites

    Science.gov (United States)

    back to home page Particle Physics Education Sites quick reference Education and Information - National Laboratory Education Programs - Women and Minorities in Physics - Other Physics Sites - Physics Alliance - Accelerators at National Laboratories icon Particle Physics Education and Information sites: top

  20. Higgs-Like Particle due to Revised Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2013-07-01

    Full Text Available A Higgs-like particle having zero net electric charge, zero spin, and a nonzero rest mass can be deduced from an earlier elaborated revised quantum electrodynamical theory which is based on linear symmetry breaking through a nonzero electric field divergence in the vacuum state. This special particle is obtained from a composite longitudinal solution based on a zero magnetic field strength and on a nonzero divergence but a vanishing curl of the electric field strength. The present theory further differs from that of the nonlinear spontaneously broken symmetry by Higgs, in which elementary particles obtain their masses through an interaction with the Higgs field. An experimental proof of the basic features of a Higgs-like particle thus supports the present theory, but does not for certain confirm the process which would generate massive particles through a Higgs field

  1. Particle physics in your pocket!

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    CERN physicists, take out your smartphones! Two new particle physics applications for Android phones have been developed by a physicist from the University of Bern: “Particle Properties” and “Particle Physics Booklet 2010”.   “When I'm on shift, I enjoy looking at the online event displays,” says Igor Kreslo from the Laboratory for High Energy Physics at the University of Bern, the physicist who has developed the two particle physics applications for Android. “Sometimes very beautiful events appear, with many different particles. I like to discuss these displays with my students, just to develop their ability to identify particles. We try to find out which particle is which and how it might decay… I think that's the best way to teach students the phenomenology of particle physics.” When scientists study particle physics, they require some vital information, such as the decay branching ...

  2. Teaching particle physics

    CERN Document Server

    Hanley, P

    2000-01-01

    Particle physics attracts many students who hear of news from CERN or elsewhere in the media. This article examines which current A-level syllabuses include which bits of particle physics and surveys the many different types of resource available to teachers and students. (0 refs).

  3. Astro-particle-physics

    International Nuclear Information System (INIS)

    Salam, A.

    1985-09-01

    Opening remarks at the Fourth Marcel Grossman Meeting, 17-21 June 1985, in Rome, Italy, are reported. The meeting was concerned with the symbiosis of cosmology and particle physics. Numerous connections between work in particle physics and cosmology, in both experimental and theoretical areas, are pointed out

  4. Cosmology and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Steigman, G [California Univ., Santa Barbara (USA). Inst. for Theoretical Physics; Bartol Research Foundation, Newark, Delaware (USA))

    1982-01-29

    The cosmic connections between physics on the very largest and very smallest scales are reviewed with an emphasis on the symbiotic relation between elementary particle physics and cosmology. After a review of the early Universe as a cosmic accelerator, various cosmological and astrophysical constraints on models of particle physics are outlined. To illustrate this approach to particle physics via cosmology, reference is made to several areas of current research: baryon non-conservation and baryon asymmetry; free quarks, heavy hadrons and other exotic relics; primordial nucleosynthesis and neutrino masses.

  5. Particle accelerator physics

    CERN Document Server

    Wiedemann, Helmut

    2015-01-01

    This book by Helmut Wiedemann is a well-established, classic text, providing an in-depth and comprehensive introduction to the field of high-energy particle acceleration and beam dynamics. The present 4th edition has been significantly revised, updated and expanded. The newly conceived Part I is an elementary introduction to the subject matter for undergraduate students. Part II gathers the basic tools in preparation of a more advanced treatment, summarizing the essentials of electrostatics and electrodynamics as well as of particle dynamics in electromagnetic fields. Part III is an extensive primer in beam dynamics, followed, in Part IV, by an introduction and description of the main beam parameters and including a new chapter on beam emittance and lattice design. Part V is devoted to the treatment of perturbations in beam dynamics. Part VI then discusses the details of charged particle acceleration. Parts VII and VIII introduce the more advanced topics of coupled beam dynamics and describe very intense bea...

  6. CERN Library | Ted Wilson presents "Engines of discovery: a century of particle accelerators" (revised and expanded edition) | 22 July

    CERN Multimedia

    2014-01-01

    Particle accelerators exploit the cutting edge of every aspect of today's technology and have themselves contributed to many of these technologies. The largest accelerators have been constructed as research tools for nuclear and high energy physics and there is no doubt that it is this field that has sustained their development culminating in the Large Hadron Collider.   Engines of discovery: a century of particle accelerators (revised and expanded edition), by Andrew Sessler and Ted Wilson, World Scientific, 2014, ISBN 9789814417198. An earlier book by the same authors, Engines of Discovery: A Century of Particle Accelerators, chronicled the development of these large accelerators and colliders, emphasising the critical discoveries in applied physics and engineering that drove the field. Particular attention was given to the key individuals who contributed, the methods they used to arrive at their particular discoveries and inventions, often recalling how their human strengths and attit...

  7. Online Particle Physics Information - Education Sites

    Science.gov (United States)

    SLAC Online Particle Physics Information Particle Data Group Particle Physics Education Sites General Sites Background Knowledge Physics Lessons & Activities Astronomy Lessons & Activities Ask -A-Scientist Experiments, Demos and Fun Physics History & Diversity Art in Physics General Sites

  8. Aspects of experimental particle physics

    International Nuclear Information System (INIS)

    McCubbin, N.A.

    1986-11-01

    The paper contains three lectures on Experimental Particle Physics which were given at the 16th British Universities Summer School for Theoretical and Elementary Particle Physics, Durham, 1986. The first lecture briefly reviews the physics which underpins all particle detectors, and the second lecture describes how this physics influences a modern detector. The last lecture is concerned with the topics of beams and computers, and includes the physics of stochastic cooling and the Halting theorem. (U.K.)

  9. Physics through the 1990s: Elementary-particle physics

    International Nuclear Information System (INIS)

    Kirk, W.T.

    1986-01-01

    This report on elementary-particle physics is part of an overall survey of physics carried out for the National Academy of Sciences by the National Research Council. The panel that wrote this report had three goals. The first goal was to explain the nature of elementary-particle physics and to describe how research is carried out in this field. The second goal was to summarize our present knowledge of the elementary particles and the fundamental forces. The third goal was to consider the future course of elementary-particle physics research and to propose a program for this research in the United States. All of these goals are covered in this report

  10. Revision Vodcast Influence on Assessment Scores and Study Processes in Secondary Physics

    Science.gov (United States)

    Marencik, Joseph J.

    A quasi-experimental switching replications design with matched participants was employed to determine the influence of revision vodcasts, or video podcasts, on students' assessment scores and study processes in secondary physics. This study satisfied a need for quantitative results in the area of vodcast influence on students' learning processes. Thirty-eight physics students in an urban Ohio public high school participated in the study. The students in one Physics class were paired with students in another Physics class through the matching characteristics of current student cumulative test score mean and baseline study process as measured by the Study Process Questionnaire (SPQ). Students in both classes were given identical pedagogic treatment and access to traditional revision tools except for the supplemental revision vodcasts given to the experimental group. After students in the experimental group viewed the revision vodcast for a particular topic, the assessment scores of the students in the experimental group were compared to the assessment scores of the control group through the direct-difference, D, test to determine any difference between the assessment score means of each group. The SPQ was given at the beginning of the experiment and after each physics assessment. The direct-difference method was again used to determine any difference between the SPQ deep approach scores of each group. The SPQ was also used to determine any correlative effects between study process and revision vodcast use on students' assessment scores through descriptive statistics and an analysis of variance (ANOVA) test. Analysis indicated that revision vodcast use significantly increased students' assessment scores (p.05). There were no significant correlative effects of revision vodcast use and study processes on students' assessment scores (p>.05). This study offers educators the empirical support to devote the necessary effort, time, and resources into developing successful

  11. Concepts of particle physics

    International Nuclear Information System (INIS)

    Gottfried, K.; Weisskopf, V.F.

    1984-01-01

    This volume elucidates basic and well-established concepts of particle physics for the autodidact who is curious about recent developments in fundamental physics. Elementary quantum mechanics is a background must. Contents, abridged: The evolution of the particle concept before the advent of quantum mechanics. Nonrelativistic quantum mechanics and atomic physics. Relativistic quantum theory. Nuclear phenomena. Subnuclear phenomena. Index

  12. Particle physics and cosmology

    International Nuclear Information System (INIS)

    Kolb, E.W.

    1986-10-01

    This series of lectures is about the role of particle physics in physical processes that occurred in the very early stages of the bug gang. Of particular interest is the role of particle physics in determining the evolution of the early Universe, and the effect of particle physics on the present structure of the Universe. The use of the big bang as a laboratory for placing limits on new particle physics theories will also be discussed. Section 1 reviews the standard cosmology, including primordial nucleosynthesis. Section 2 reviews the decoupling of weakly interacting particles in the early Universe, and discusses neutrino cosmology and the resulting limits that may be placed on the mass and lifetime of massive neutrinos. Section 3 discusses the evolution of the vacuum through phase transitions in the early Universe and the formation of topological defects in the transitions. Section 4 covers recent work on the generation of the baryon asymmetry by baryon-number violating reactions in Grand Unified Theories, and mentions some recent work on baryon number violation effects at the electroweak transition. Section 5 is devoted to theories of cosmic inflation. Finally, Section 6 is a discussion of the role of extra spatial dimensions in the evolution of the early Universe. 78 refs., 32 figs., 6 tabs

  13. Elementary particle physics in early physics education

    CERN Document Server

    Wiener, Gerfried

    2017-01-01

    Current physics education research is faced with the important question of how best to introduce elementary particle physics in the classroom early on. Therefore, a learning unit on the subatomic structure of matter was developed, which aims to introduce 12-year-olds to elementary particles and fundamental interactions. This unit was iteratively evaluated and developed by means of a design-based research project with grade-6 students. In addition, dedicated professional development programmes were set up to instruct high school teachers about the learning unit and enable them to investigate its didactical feasibility. Overall, the doctoral research project led to successful results and showed the topic of elementary particle physics to be a viable candidate for introducing modern physics in the classroom. Furthermore, thanks to the design-based research methodology, the respective findings have implications for both physics education and physics education research, which will be presented during the PhD defen...

  14. Introduction to particle and astroparticle physics multimessenger astronomy and its particle physics foundations

    CERN Document Server

    De Angelis, Alessandro

    2018-01-01

    This book introduces particle physics, astrophysics and cosmology. Starting from an experimental perspective, it provides a unified view of these fields that reflects the very rapid advances being made. This new edition has a number of improvements and has been updated to describe the recent discovery of gravitational waves and astrophysical neutrinos, which started the new era of multimessenger astrophysics; it also includes new results on the Higgs particle. Astroparticle and particle physics share a common problem: we still don’t have a description of the main ingredients of the Universe from the point of view of its energy budget. Addressing these fascinating issues, and offering a balanced introduction to particle and astroparticle physics that requires only a basic understanding of quantum and classical physics, this book is a valuable resource, particularly for advanced undergraduate students and for those embarking on graduate courses. It includes exercises that offer readers practical insights. It ...

  15. History of Particle Physics

    Science.gov (United States)

    back to history page Back Particle Physics Timeline For over two thousand years people have thought the Standard Model. We invite you to explore this history of particle physics with a focus on the : Quantum Theory 1964 - Present: The Modern View (the Standard Model) back to history page Back Sections of

  16. Particles, imaging and nuclei

    International Nuclear Information System (INIS)

    Harris, J.

    1986-01-01

    The book on particles, imaging and nuclei is one of the Background Readers for the Revised Nuffield Advanced Physics course. The contents contain five educational articles, which extend concepts covered in the course and examine recent developments in physics. Four of the articles on:- particles and the forces of nature, radioisotopes, lasers probe the atomic nucleus, and nuclear history, are indexed separately. (UK)

  17. What's Next for Particle Physics?

    Science.gov (United States)

    White, Martin

    2017-10-01

    Following the discovery of the Higgs boson in 2012, particle physics has entered its most exciting and crucial period for over 50 years. In this book, I first summarise our current understanding of particle physics, and why this knowledge is almost certainly incomplete. We will then see that the Large Hadron Collider provides the means to search for the next theory of particle physics by performing precise measurements of the Higgs boson, and by looking directly for particles that can solve current cosmic mysteries such as the nature of dark matter. Finally, I will anticipate the next decade of particle physics by placing the Large Hadron Collider within the wider context of other experiments. The results expected over the next ten years promise to transform our understanding of what the Universe is made of and how it came to be.

  18. Experimental techniques in nuclear and particle physics

    CERN Document Server

    Tavernier, Stefaan

    2009-01-01

    The book is based on a course in nuclear and particle physics that the author has taught over many years to physics students, students in nuclear engineering and students in biomedical engineering. It provides the basic understanding that any student or researcher using such instruments and techniques should have about the subject. After an introduction to the structure of matter at the subatomic scale, it covers the experimental aspects of nuclear and particle physics. Ideally complementing a theoretically-oriented textbook on nuclear physics and/or particle physics, it introduces the reader to the different techniques used in nuclear and particle physics to accelerate particles and to measurement techniques (detectors) in nuclear and particle physics. The main subjects treated are: interactions of subatomic particles in matter; particle accelerators; basics of different types of detectors; and nuclear electronics. The book will be of interest to undergraduates, graduates and researchers in both particle and...

  19. "Strong interaction" for particle physics laboratories

    CERN Multimedia

    2003-01-01

    A new Web site pooling the communications resources of particle physics centres all over the world has just been launched. The official launching of the new particle physics website Interactions.org during the Lepton-Proton 2003 Conference at the American laboratory Fermilab was accompanied by music and a flurry of balloons. On the initiative of Fermilab, the site was created by a collaboration of communication teams from over fifteen of the world's particle physics laboratories, including KEK, SLAC, INFN, JINR and, of course, CERN, who pooled their efforts to develop the new tool. The spectacular launching of the new particle physics website Interactions.org at Fermilab on 12 August 2003. A real gateway to particle physics, the site not only contains all the latest news from the laboratories but also offers images, graphics and a video/animation link. In addition, it provides information about scientific policies, links to the universities, a very useful detailed glossary of particle physics and astrophysic...

  20. Experimental techniques in nuclear and particle physics

    International Nuclear Information System (INIS)

    Tavernier, Stefaan

    2010-01-01

    The book is based on a course in nuclear and particle physics that the author has taught over many years to physics students, students in nuclear engineering and students in biomedical engineering. It provides the basic understanding that any student or researcher using such instruments and techniques should have about the subject. After an introduction to the structure of matter at the subatomic scale, it covers the experimental aspects of nuclear and particle physics. Ideally complementing a theoretically-oriented textbook on nuclear physics and/or particle physics, it introduces the reader to the different techniques used in nuclear and particle physics to accelerate particles and to measurement techniques (detectors) in nuclear and particle physics. The main subjects treated are: interactions of subatomic particles in matter; particle accelerators; basics of different types of detectors; and nuclear electronics. The book will be of interest to undergraduates, graduates and researchers in both particle and nuclear physics. For the physicists it is a good introduction to all experimental aspects of nuclear and particle physics. Nuclear engineers will appreciate the nuclear measurement techniques, while biomedical engineers can learn about measuring ionising radiation, the use of accelerators for radiotherapy. What's more, worked examples, end-of-chapter exercises, and appendices with key constants, properties and relationships supplement the textual material. (orig.)

  1. Particles and nuclei. An introduction to the physical concepts. 7. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Povh, Bogdan; Rodejohann, Werner [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Scholz, Christoph [SAP AG, Walldorf (Germany); Rith, Klaus [Erlangen-Nuernberg Univ., Erlangen (Germany). Dept. Physik; Zetsche, Frank [DFS Deutsche Flugsicherung GmbH, Langen (Germany)

    2015-09-01

    This well-known introductory textbook gives a uniform presentation of nuclear and particle physics from an experimental point of view. The first part, Analysis, is devoted to disentangling the substructure of matter. This part shows that experiments designed to uncover the substructures of nuclei and nucleons have a similar conceptual basis, and lead to the present picture of all matter being constructed from a small number of elementary building blocks and a small number of fundamental interactions. The second part, Synthesis, shows how the elementary particles may be combined to build hadrons and nuclei. The fundamental interactions, which are responsible for the forces in all systems, become less and less evident in increasingly complex systems. Such systems are in fact dominated by many-body phenomena. A section on neutrino oscillations and one on nuclear matter at high temperatures bridge the field of ''nuclear and particle physics'' and ''modem astrophysics and cosmology. The seventh revised and extended edition includes new material, in particular the experimental verification of the Higgs particle at the LHC, recent results in neutrino physics, the violation of CP-symmetry in the decay of neutral B-mesons, the experimental investigations of the nucleon's spin structure and outstanding results of the HERA experiments in deep-inelastic electron- and positron-proton scattering. The concise text is based on lectures held at the University of Heidelberg and includes numerous exercises with worked answers. It has been translated into several languages and has become a standard reference for advanced undergraduate and graduate courses.

  2. Nuclear and particle physics 1993

    International Nuclear Information System (INIS)

    MacGregor, I.J.D.; Doyle, A.T.

    1993-01-01

    This item documents the International Conference on Nuclear and Particle Physics held at the University of Glasgow, UK, from 30th March to 1st April 1993. It was organised by the Department of Physics and Astronomy at Glasgow University on behalf of the Nuclear and Particle Physics Division of the Institute of Physics. The scientific programme covered many areas of current interest in nuclear and particle physics. Particle physics topics included up to the minute reports on the physics currently coming from CERN'S Low Energy Antiproton Ring (LEAR), Hadron-Elektron-Ring Analage (HERA) and Large Electron-Positron Storage Rings (LEP), and reviews of quantum chromodynamics (QCD) lattice gauge theory. Looking to the future the programme covered the search for the Higgs boson and a review of physics experiments planned for the new generation of accelerators at Large Hadron Collider (LHC) and Superconducting Supercollider (SSC). The conference coincided with the final closure of the world class Nuclear Structure Facility at Daresbury and marked the transition of United Kingdom (UK) nuclear physics research into a new era of international collaboration. Several talks described new international collaborative research programmes in nuclear physics initiated by UK scientists. The conference also heard of new areas of nuclear physics which will in future be opened up by high energy continuous beam electron accelerators and by radioactive ion beam accelerators. (author)

  3. Notes on elementary particle physics

    CERN Document Server

    Muirhead, William Hugh

    1972-01-01

    Notes of Elementary Particle Physics is a seven-chapter text that conveys the ideas on the state of elementary particle physics. This book emerged from an introductory course of 30 lectures on the subject given to first-year graduate students at the University of Liverpool. The opening chapter deals with pertinent terminologies in elementary particle physics. The succeeding three chapters cover the concepts of transition amplitudes, probabilities, relativistic wave equations and fields, and the interaction amplitude. The discussion then shifts to tests of electromagnetic interactions, particul

  4. Particle physics and cosmology, Task C

    International Nuclear Information System (INIS)

    Turner, M.S.

    1993-05-01

    The research has spanned many topics at the boundary of particle physics and cosmology. The major focus has been in the general areas of inflationary cosmology, cosmological phase transitions, astrophysical constraints to particle physics theories, and dark matter/structure formation as it relates to particle physics. Some attention is given to axion physics. Narrative summaries of the research of the individual group members are given, followed by a list of publications

  5. Particle Physics and the Universe

    CERN Document Server

    Wess, Julius; 9th Adriatic Meeting

    2005-01-01

    The focus of the contributions contained in this proceedings is the interplay between cosmology, astroparticle physics and particle physics, both from the theoretical and experimental point of view. The Adriatic Meetings have traditionally been one of the very few physics conferences devoted to the most advanced status of science while aiming at a very broad participation of both young and experienced researchers with diverse backgrounds in particle physics.

  6. The revised APTA code of ethics for the physical therapist and standards of ethical conduct for the physical therapist assistant: theory, purpose, process, and significance.

    Science.gov (United States)

    Swisher, Laura Lee; Hiller, Peggy

    2010-05-01

    In June 2009, the House of Delegates (HOD) of the American Physical Therapy Association (APTA) passed a major revision of the APTA Code of Ethics for physical therapists and the Standards of Ethical Conduct for the Physical Therapist Assistant. The revised documents will be effective July 1, 2010. The purposes of this article are: (1) to provide a historical, professional, and theoretical context for this important revision; (2) to describe the 4-year revision process; (3) to examine major features of the documents; and (4) to discuss the significance of the revisions from the perspective of the maturation of physical therapy as a doctoring profession. PROCESS OF REVISION: The process for revision is delineated within the context of history and the Bylaws of APTA. FORMAT, STRUCTURE, AND CONTENT OF REVISED CORE ETHICS DOCUMENTS: The revised documents represent a significant change in format, level of detail, and scope of application. Previous APTA Codes of Ethics and Standards of Ethical Conduct for the Physical Therapist Assistant have delineated very broad general principles, with specific obligations spelled out in the Ethics and Judicial Committee's Guide for Professional Conduct and Guide for Conduct of the Physical Therapist Assistant. In contrast to the current documents, the revised documents address all 5 roles of the physical therapist, delineate ethical obligations in organizational and business contexts, and align with the tenets of Vision 2020. The significance of this revision is discussed within historical parameters, the implications for physical therapists and physical therapist assistants, the maturation of the profession, societal accountability and moral community, potential regulatory implications, and the inclusive and deliberative process of moral dialogue by which changes were developed, revised, and approved.

  7. Blind Analysis in Particle Physics

    International Nuclear Information System (INIS)

    Roodman, A

    2003-01-01

    A review of the blind analysis technique, as used in particle physics measurements, is presented. The history of blind analyses in physics is briefly discussed. Next the dangers of and the advantages of a blind analysis are described. Three distinct kinds of blind analysis in particle physics are presented in detail. Finally, the BABAR collaboration's experience with the blind analysis technique is discussed

  8. Particle physics and gauge theories

    International Nuclear Information System (INIS)

    Morel, A.

    1985-01-01

    These notes are intended to help readers not familiar with particle physics in entering the domain of gauge field theory applied to the so-called standard model of strong and electroweak interactions. The introduction is considerably enlarged in order to give non specialists a general overview of present days ''elementary'' particle physics. The Glashow-Salam-Weinberg model is then treated, with the details which its unquestioned successes deserve, most probably for a long time. Finally SU(5) is presented as a prototype of these developments of particle physics which aim at a unification of all forces. Although its intrinsic theoretical difficulties and the non-observation of a sizable proton decay rate do not qualify this model as a realistic one, it has many of the properties expected from a ''good'' unified theory. In particular, it allows one to study interesting connections between particle physics and cosmology. 35 refs.

  9. Particle physics and cosmology

    International Nuclear Information System (INIS)

    Turner, M.S.; Schramm, D.N.

    1985-01-01

    During the past year, the research of the members of our group has spanned virtually all the topics at the interface of cosmology and particle physics: inflationary Universe scenarios, astrophysical and cosmological constraints on particle properties, ultra-high energy cosmic ray physics, quantum field theory in curved space-time, cosmology with extra dimensions, superstring cosmology, neutrino astronomy with large, underground detectors, and the formation of structure in the Universe

  10. From Particle Physics to Medical Applications

    Science.gov (United States)

    Dosanjh, Manjit

    2017-06-01

    CERN is the world's largest particle physics research laboratory. Since it was established in 1954, it has made an outstanding contribution to our understanding of the fundamental particles and their interactions, and also to the technologies needed to analyse their properties and behaviour. The experimental challenges have pushed the performance of particle accelerators and detectors to the limits of our technical capabilities, and these groundbreaking technologies can also have a significant impact in applications beyond particle physics. In particular, the detectors developed for particle physics have led to improved techniques for medical imaging, while accelerator technologies lie at the heart of the irradiation methods that are widely used for treating cancer. Indeed, many important diagnostic and therapeutic techniques used by healthcare professionals are based either on basic physics principles or the technologies developed to carry out physics research. Ever since the discovery of x-rays by Roentgen in 1895, physics has been instrumental in the development of technologies in the biomedical domain, including the use of ionizing radiation for medical imaging and therapy. Some key examples that are explored in detail in this book include scanners based on positron emission tomography, as well as radiation therapy for cancer treatment. Even the collaborative model of particle physics is proving to be effective in catalysing multidisciplinary research for medical applications, ensuring that pioneering physics research is exploited for the benefit of all.

  11. From particle physics to medical applications

    CERN Document Server

    Dosanjh, Manjit

    2017-01-01

    CERN is the world's largest particle physics research laboratory. Since it was established in 1954, it has made an outstanding contribution to our understanding of the fundamental particles and their interactions, and also to the technologies needed to analyse their properties and behaviour. The experimental challenges have pushed the performance of particle accelerators and detectors to the limits of our technical capabilities, and these groundbreaking technologies can also have a significant impact in applications beyond particle physics. In particular, the detectors developed for particle physics have led to improved techniques for medical imaging, while accelerator technologies lie at the heart of the irradiation methods that are widely used for treating cancer. Indeed, many important diagnostic and therapeutic techniques used by healthcare professionals are based either on basic physics principles or the technologies developed to carry out physics research. Ever since the discovery of x-rays by Roentgen...

  12. News from the Library: Online particle physics information: a unique compilation of information resources in particle physics

    CERN Multimedia

    CERN Library

    2012-01-01

    Are you looking for some specific information in particle physics? For example, the main literature databases, data repositories or laboratories...   Just go to the Libary's Online Particle Physics Information page. There you'll find a wide selection of relevant information, as well as resources in particle physics and related areas. The collection covers all aspects of the discipline - in addition to traditional scientific information resources you can find, for example, a selection of relevant blogs and art websites. This webpage is an extended and regularly updated version of the chapter on Online Particle Physics Information in the Review of Particle Properties. It is maintained by the CERN Library team which welcomes suggestions for additions and updates: library.desk@cern.ch.  

  13. Dark matter and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Masiero, A [SISSA-ISAS, Trieste (Italy) and INFN, Sezione di Trieste (Italy); Pascoli, S [SISSA-ISAS, Trieste (Italy) and INFN, Sezione di Trieste (Italy)

    2001-11-15

    Dark matter constitutes a key-problem at the interface between Particle Physics, Astrophysics and Cosmology. Indeed, the observational facts which have been accumulated in the last years on dark matter point to the existence of an amount of non-baryonic dark matter. Since the Standard Model of Particle Physics does not possess any candidate for such non-baryonic dark matter, this problem constitutes a major indication for new Physics beyond the Standard Model. We analyze the most important candidates for non-baryonic dark matter in the context of extensions of the Standard Model (in particular supersymmetric models). The recent hints for the presence of a large amount of unclustered 'vacuum' energy (cosmological constant?) is discussed from the Astrophysical and Particle Physics perspective. (author)

  14. Physical Origin of Elementary Particle Masses

    OpenAIRE

    Hansson, Johan

    2014-01-01

    In contemporary particle physics, the masses of fundamental particles are incalculable constants, being supplied by experimental values. Inspired by observation of the empirical particle mass spectrum, and their corresponding physical interaction couplings, we propose that the masses of elementary particles arise solely due to the self-interaction of the fields associated with the charges of a particle. A first application of this idea is seen to yield correct order of magnitude predictions f...

  15. Final Report: Particle Physics Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Karchin, Paul E. [Wayne State Univ., Detroit, MI (United States). Department of Physics and Astronomy; Harr, Robert F. [Wayne State Univ., Detroit, MI (United States). Department of Physics and Astronomy; Mattson, Mark. E. [Wayne State Univ., Detroit, MI (United States). Department of Physics and Astronomy

    2011-09-01

    We describe recent progress in accelerator-based experiments in high-energy particle physics and progress in theoretical investigations in particle physics. We also describe future plans in these areas.

  16. Particle Physics Committee annual report 1976-77, particle physics grants and laboratory agreements

    International Nuclear Information System (INIS)

    1977-01-01

    The Annual Report for the period 1 August 1976 to 31 July 1977 of the Particel Physics Committee of the Nuclear Physics Board, under the (United Kingdom) Science Research Council, is presented. Details are given of particle physics grants and laboratory agreements. (U.K.)

  17. Particle physics 2012. Highlights and annual report

    International Nuclear Information System (INIS)

    Fleischer, Manfred; Kasemann, Matthias; Medinnis, Michael

    2013-01-01

    The following topics are dealt with: Particle physics at DESY, the work of the Helmholtz alliance concerning the LHC and the ILC, bringing particle physics into people's mind, research at HERA, LHC, and the linear accelerators, plasma wakefield acceleration, astroparticle physics, theory of elementary particles, research projects and scientific infrastructure. (HSI)

  18. High energy particle physics in the United Kingdom

    International Nuclear Information System (INIS)

    1985-06-01

    The paper reviews the U.K. participation in High Energy Particle Physics (HEPP) research. The funding of science in Higher Education and the Research Councils; high energy particle physics; relevance of particle physics to science and technology; particle physics in the U.K.; CERN; and the opportunity cost of HEPP within the science budget; are all discussed. (U.K.)

  19. Superconducting magnets advanced in particle physics

    International Nuclear Information System (INIS)

    Yamamoto, Akira

    2000-01-01

    Superconducting magnet technology for particle detectors has been advanced to provide large-scale magnetic fields in particle physics experiments. The technology has been progressed to meet physics goals and the detector requirement of having maximum magnetic field with minimum material and space. This paper includes an overview of the advances of particle detector magnets and discusses key technologies

  20. Particle physics in the LHC era

    CERN Document Server

    Barr, Giles; Walczak, Roman; Weidberg, Tony

    2016-01-01

    This text gives an introduction to particle physics at a level accessible to advanced undergraduate students. It is based on lectures given to 4th year physics students over a number of years, and reflects the feedback from the students. The aim is to explain the theoretical and experimental basis of the Standard Model (SM) of Particle Physics with the simplest mathematical treatment possible. All the experimental discoveries that led to the understanding of the SM relied on particle detectors and most of them required advanced particle accelerators. A unique feature of this book is that it gives a serious introduction to the fundamental accelerator and detector physics, which is currently only available in advanced graduate textbooks. The mathematical tools that are required such as group theory are covered in one chapter. A modern treatment of the Dirac equation is given in which the free particle Dirac equation is seen as being equivalent to the Lorentz transformation. The idea of generating the SM interac...

  1. A research Program in Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Sobel, Henry; Molzon, William; Lankford, Andrew; Taffard, Anyes; Whiteson, Daniel; Kirkby, David

    2013-07-25

    Work is reported in: Neutrino Physics, Cosmic Rays and Elementary Particles; Particle Physics and Charged Lepton Flavor Violation; Research in Collider Physics; Dark Energy Studies with BOSS and LSST.

  2. Astro particle physics view on supersymmetry

    International Nuclear Information System (INIS)

    Fornengo, N.

    2010-01-01

    The particle physics interpretation of the missing-mass, or dark-matter, problem of cosmological and astrophysical nature is going to be posed under deep scrutiny in the next years. From the particle physics side, accelerator physics will deeply test theoretical ideas of new physics beyond the Standard Model, where a particle physics candidate to dark matter is often naturally obtained. From the astrophysical side, many probes are already providing a great deal of independent information on the signals which can be produced by the galactic or extra-galactic dark matter. The ultimate hope is in fact to be able to disentangle a dark matter signal from the various sources of backgrounds and to extract a coherent picture of new physics from the accelerator physics, astrophysics and cosmology side. A very ambitious and far-reaching project, indeed.

  3. Introduction to Particle Physics course

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    These lectures are an introduction to the ideas of particle physics, aimed at students and teachers with little or on knowledge of the subject. They form a broad basis that will be developed in more detail by the subsequent lecturers in the school. These four lectures are meant to present an overview of particle physics based on its historical evolution over the past century. It will be shown how concepts have evolved following progress in instrumentation and in theoretical ideas, from atoms to the elementary particles and their interactions, as they are known today.

  4. Hard sell for particle physics?

    International Nuclear Information System (INIS)

    Brown, Julian.

    1994-01-01

    With particle physics experimental research becoming ever more expensive, the author considers whether the cost of such research is worthwhile. As costs escalated on the Superconducting Supercollider, the project has now been terminated. Particle physicists must now look for commercial imperatives to justify their work. Many of the important spin-offs from particle physics research are described in order to justify the subject's continued funding, albeit at very high levels, where funds might otherwise be directed to more mundane but very necessary causes such as health care or education. (UK)

  5. Research in Particle Physics at the Santa Cruz Institute for Particle Physics, 2000-2003

    International Nuclear Information System (INIS)

    Abraham Seiden

    2003-01-01

    The Santa Cruz Institute for Particle Physics is an Organized Research Unit within the University of California system. This is a special structure allowing a focused emphasis on research and includes special commitments for space and personnel from the Santa Cruz campus. The Institute serves to consolidate the research in experimental and theoretical particle physics on campus. This report covers four separate experimental projects. The projects are the BaBar experiment, the ATLAS experiment, the GLAST space satellite, and work toward a Linear Collider and its detector. Research in High Energy Physics (last final report for period 1996-2000)

  6. Two decades of Mexican particle physics at Fermilab

    International Nuclear Information System (INIS)

    Roy Rubinstein

    2002-01-01

    This report is a view from Fermilab of Mexican particle physics at the Laboratory since about 1980; it is not intended to be a history of Mexican particle physics: that topic is outside the expertise of the writer. The period 1980 to the present coincides with the growth of Mexican experimental particle physics from essentially no activity to its current state where Mexican groups take part in experiments at several of the world's major laboratories. Soon after becoming Fermilab director in 1979, Leon Lederman initiated a program to encourage experimental physics, especially experimental particle physics, in Latin America. At the time, Mexico had significant theoretical particle physics activity, but none in experiment. Following a visit by Lederman to UNAM in 1981, a conference ''Panamerican Symposium on Particle Physics and Technology'' was held in January 1982 at Cocoyoc, Mexico, with about 50 attendees from Europe, North America, and Latin America; these included Lederman, M. Moshinsky, J. Flores, S. Glashow, J. Bjorken, and G. Charpak. Among the conference outcomes were four subsequent similar symposia over the next decade, and a formal Fermilab program to aid Latin American physics (particularly particle physics); it also influenced a decision by Mexican physicist Clicerio Avilez to switch from theoretical to experimental particle physics. The first physics collaboration between Fermilab and Mexico was in particle theory. Post-docs Rodrigo Huerta and Jose Luis Lucio spent 1-2 years at Fermilab starting in 1981, and other theorists (including Augusto Garcia, Arnulfo Zepeda, Matias Moreno and Miguel Angel Perez) also spent time at the Laboratory in the 1980s

  7. Summary of the particle physics and technology working group

    International Nuclear Information System (INIS)

    Stephan Lammel et al. email = crathbun@fnal.gov

    2002-01-01

    Progress in particle physics has been tightly related to technological advances during the past half century. Progress in technologies has been driven in many cases by the needs of particle physics. Often, these advances have benefited fields beyond particle physics: other scientific fields, medicine, industrial development, and even found commercial applications. The particle physics and technology working group of Snowmass 2001 reviewed leading-edge technologies recently developed or in the need of development for particle physics. The group has identified key areas where technological advances are vital for progress in the field, areas of opportunities where particle physics may play a principle role in fostering progress, and areas where advances in other fields may directly benefit particle physics. The group has also surveyed the technologies specifically developed or enhanced by research in particle physics that benefit other fields and/or society at large

  8. Some problems of high-energy elementary particle physics

    International Nuclear Information System (INIS)

    Isaev, P.S.

    1995-01-01

    The problems of high-energy elementary particle physics are discussed. It is pointed out that the modern theory of elementary-particle physics has no solutions of some large physical problems: origin of the mass, electric charge, identity of particle masses, change of the mass of elementary particles in time and others. 7 refs

  9. Particle physics experiments

    International Nuclear Information System (INIS)

    Stuart, G.W.

    1986-01-01

    The report of the Rutherford Appleton Laboratory describes the work carried out in 1985 on experiments approved by the Particle Physics Experiments Selection Panel. The contents consist of unedited contributions from each experiment. (author)

  10. Mark Thomson presents the book "Modern Particle Physics"

    CERN Multimedia

    2013-01-01

    Tuesday 5 November 2013 at 4 p.m. in the Library, Bldg. 52 1-052 This new textbook covers all the main aspects of modern particle physics, providing a clear connection between the theory and recent experimental results, including the recent discovery of a Higgs boson and the most recent developments in neutrino physics. It provides a comprehensive and self-contained description of the Standard Model of particle physics suitable for upper-level undergraduate students and graduate students studying experimental particle physics. Physical theory is introduced in a relatively straightforward manner with step-by-step mathematical derivations. In each chapter, fully worked examples link the theory to central experimental results in contemporary particle physics. Modern Particle Physics, by Mark Thomson, Cambridge University Press, 2013, ISBN 9781107034266. *Coffee will be served from 3.30 p.m.*

  11. Research in particle physics

    International Nuclear Information System (INIS)

    1993-08-01

    This proposal presents the research accomplishments and ongoing activities of Boston University researchers in high energy physics. Some changes have been made in the structure of the program from the previous arrangement of tasks. Task B, Accelerator Design Physics, is being submitted as a separate proposal for an independent grant; this will be consistent with the nature of the research and the source of funding. We are active in seven principal areas which will be discussed in this report: Colliding Beams - physics of e + e - and bar pp collisions; MACRO Experiment - search for magnetic monopoles and study of cosmic rays; Proton Decay - search for nucleon instability and study of neutrino interactions; Particle Theory - theoretical high energy particle physics, including two Outstanding Junior Investigator awards; Muon G-2 - measurement of the anomalous magnetic moment of the muon; SSCintcal - calorimetry for the GEM Experiment; and Muon detectors for the GEM Experiment

  12. arXiv Particle Physics Instrumentation

    CERN Document Server

    Wingerter-Seez, I.

    This reports summarizes the three lectures on particle physics instrumentation given during the AEPSHEP school in November 2014 at Puri-India. The lectures were intended to give an overview of the interaction of particles with matter and basic particle detection principles in the context of large detector systems like the Large Hadron Collider.

  13. Annual report of the Particle Physics Committee

    International Nuclear Information System (INIS)

    1977-01-01

    The Annual Report for the period 1 August 1975 to 31 July 1976 of the Particle Physics Committee of the Nuclear Physics Board, under the (United Kingdom) Science Research Council, is presented. Details are given of particle physics grants and laboratory agreements. (U.K.)

  14. Reminiscences a journey through particle physics

    CERN Document Server

    Melissinos, Adrian

    2013-01-01

    A personal recount in areas of particle physics and related fields as a research physicist for over 50 years, Adrian Melissinos' insights into the ways that general research was carried out, as well as the evolution of particle physics from 1958 to 2008 will prove valuable to science history enthusiasts, as well as particle physicists. Be it conventional accelerator experiments, the use of microwave techniques in search of cosmic axions, or taking advantage of high power lasers to observe light-by-light scattering, the excitement of searching for something new in the face of failures and then successes is enriching, and the collaboration with gifted and outstanding colleagues and students proves insightful. A hybrid of personal reminiscences and a professional journey, readers get to relive the joy and excitement of researching and teaching in small groups during those early years while gaining a partial historical perspective of particle physics since 1958 - all in "Reminiscences: A Journey through Particle ...

  15. Introduction to particle physics

    International Nuclear Information System (INIS)

    Zitoun, R.

    2000-01-01

    This book proposes an introduction to particle physics that requires only a high-school level mathematical knowledge. Elementary particles (leptons, quarks, bosons) are presented according to a modern view taking into account of their symmetries and interactions. The author shows how physicists have elaborated the standard model and what are its implications in cosmology. (J.S.)

  16. Research in elementary particle physics

    International Nuclear Information System (INIS)

    Bland, R.W.; Greensite, J.

    1992-01-01

    Task A of this contract supports research in elementary particle physics using cryogenic particle detectors. We have developed superconducting aluminum tunnel-junction detectors sensitive to a variety of particle signals, and with potential application to a number of particle-physics problems. We have extended our range of technologies through a collaboration with Simon Labov, on niobium tri-layer junctions, and Jean-Paul Maneval, on high-T c superconducting bolometers. We have new data on response to low-energy X-rays and to alpha-particle signals from large-volume detectors. The theoretical work under this contract (Task B) is a continued investigation of nonperturbative aspects of quantum gravity. A Monte Carlo calculation is proposed for Euclidian quantum gravity, based on the ''fifth-time action'' stabilization procedure. Results from the last year include a set of seven papers, summarized below, addressing various aspects of nonperturbative quantum gravity and QCD. Among the issues- addressed is the so-called ''problem of time'' in canonical quantum gravity

  17. Particle Physics, 2nd Edition

    Science.gov (United States)

    Martin, B. R.; Shaw, G.

    1998-01-01

    Particle Physics, Second Edition is a concise and lucid account of the fundamental constituents of matter. The standard model of particle physics is developed carefully and systematically, without heavy mathematical formalism, to make this stimulating subject accessible to undergraduate students. Throughout, the emphasis is on the interpretation of experimental data in terms of the basic properties of quarks and leptons, and extensive use is made of symmetry principles and Feynman diagrams, which are introduced early in the book. The Second Edition brings the book fully up to date, including the discovery of the top quark and the search for the Higgs boson. A final short chapter is devoted to the continuing search for new physics beyond the standard model. Particle Physics, Second Edition features: * A carefully structured and written text to help students understand this exciting and demanding subject. * Many worked examples and problems to aid student learning. Hints for solving the problems are given in an Appendix. * Optional "starred" sections and appendices, containing more specialised and advanced material for the more ambitious reader.

  18. The transformation of elementary particle physics into many-body physics

    International Nuclear Information System (INIS)

    Hove, L. van

    1986-01-01

    The author illustrates the domains of particle physics where the theoretical problems and methods have much in common with many-body and condensed-matter physics. The multitude of diverse physical systems accessible to experimentation in condensed-matter physics, and the numerous concepts developed for their theoretical understanding provide a rich store of ideas and analogies to the particle physicist. This can help him to overcome the great handicap that in his own discipline the experimental facts are very hard to come by and are often extremely incomplete. On the other hand, particle physics brought us such truly fundamental advances as non-Abelian gauge theories, electroweak unification with the heavy weak bosons, and quantum chromodynamics with the confinement principle for the field quanta. As our understanding of these novel schemes deepens, possibly with further progress toward unification, one can expect that they will slowly have an impact on the rest of physics, just as the concepts and techniques of Abelian field theories have gradually invaded most of condensed-matter physics. (Auth.)

  19. Geneva University - Particle Physics Seminars

    CERN Multimedia

    Université de Genève

    2010-01-01

    GENEVA UNIVERSITY École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 GENÈVE 4 Tél. (022) 379 62 73 Fax: (022) 379 69 92 Wednesday 13 October 2010 PARTICLE PHYSICS SEMINAR at 17.00 hrs – Stückelberg Auditorium Exotic hadrons, Light Higgs and Dark Forces at BABAR Dr. Bertrand Echenard / California Institute of Technology From spectroscopy to search new physics, B-factories have explored many exciting topics besides establishing CP-violation in B decays. We will review recent results on spectroscopy, exotic hadrons and search for light Higgs. Current searches for dark forces and GeV-scale dark matter particles will also be discussed. Information : http://dpnc.unige.ch/seminaire/annonce.html Organizer : G. Pasztor Wednesday 20 October 2010 PARTICLE PHYSICS SEMINAR at 17.00 hrs – Stückelberg Auditorium The MINOS Experiment, Results and Future Plans Pro...

  20. RESEARCH IN PARTICLE PHYSICS

    Energy Technology Data Exchange (ETDEWEB)

    Kearns, Edward [Boston Universiy

    2013-07-12

    This is the final report for the Department of Energy Grant to Principal Investigators in Experimental and Theoretical Particle Physics at Boston University. The research performed was in the Energy Frontier at the LHC, the Intensity Frontier at Super-Kamiokande and T2K, the Cosmic Frontier and detector R&D in dark matter detector development, and in particle theory.

  1. Quarked!--Adventures in Particle Physics Education

    Science.gov (United States)

    MacDonald, Teresa; Bean, Alice

    2009-01-01

    Particle physics is a subject that can send shivers down the spines of students and educators alike--with visions of long mathematical equations and inscrutable ideas. This perception, along with a full curriculum, often leaves this topic the road less traveled until the latter years of school. Particle physics, including quarks, is typically not…

  2. Constraints on particle physics from cosmology

    International Nuclear Information System (INIS)

    Schramm, D.N.; Charlton, J.C.

    1986-01-01

    Cosmology and particle physics have become symbiotic in their relationship. In the past, developments in physics have been used to explain astrophysics problems. Recently, cosmology also has been able to place constraints on particle properties and these constraints can be tested by experiment. Thus, the flow of information at the interface of particle physics and cosmology is no longer just one-way. (Astronomy is no longer a parasite of physics.) Many examples of the interchange are described in this review. The timeline of cosmology is rapidly filling in as later events find their explanations in earlier events. In this review, the authors mention what is known about each epoch and show how it might constrain the particle models. Since a great deal of effort is devoted currently to the study of the dark matter problem, special emphasis will be placed on this issue. This study of dark matter and galaxy formation will allow us to draw upon much of what was discussed in earlier epochs. This review draws heavily on a previous review by the authors

  3. Particle physics and cosmology

    International Nuclear Information System (INIS)

    Srednicki, M.

    1990-01-01

    At least eighty percent of the mass of the universe consists of some material which, unlike ordinary matter, neither emits nor absorbs light. This book collects key papers related to the discovery of this astonishing fact and its profound implications for astrophysics, cosmology, and the physics of elementary particles. The book focusses on the likely possibility that the dark matter is composed of an as yet undiscovered elementary particle, and examines the boundaries of our present knowledge of the properties such a particle must possess. (author). refs.; figs.; tabs

  4. Dark matter and particle physics

    International Nuclear Information System (INIS)

    Peskin, Michael E.

    2007-01-01

    Astrophysicists now know that 80% of the matter in the universe is 'dark matter', composed of neutral and weakly interacting elementary particles that are not part of the Standard Model of particle physics. I will summarize the evidence for dark matter. I will explain why I expect dark matter particles to be produced at the CERN LHC. We will then need to characterize the new weakly interacting particles and demonstrate that they the same particles that are found in the cosmos. I will describe how this might be done. (author)

  5. Particle Physics in the LHC Era

    CERN Document Server

    Bunk, Don

    During the past 100 years experimental particle physicists have collected an impressive amount of data. Theorists have also come to understand this data extremely well. It was in the first half of the 20th century the efforts of the early pioneers of quantum mechanics laid the ground work for this understanding: quantum field theory. Through the tireless efforts of researchers during the later half of the 20th century many ideas came together to form what we now call the Standard Model (SM) of particle physics. Finally, it was through the ideas of the renormalization group and effective field theory that the understanding of how the SM fits into a larger framework of particle physics was crystallized. In the past four years the Large Hadron Collider (LHC) has made more precise measurements than ever before. Currently the SM of particle physics is known to have excellent agreement with these measurements. As a result of this agreement with data, the SM continues to play such a central role in modern particle p...

  6. Meetings on Particle Physics - Abstracts and Slides

    International Nuclear Information System (INIS)

    Hirsch, M.; Machado, P.; Bertuzzo, E.; Villanova del Moral, A.; Wingerter, A.; Lellouch, L.; Garron, N.; Portelli, A.; Vulvert, G.; Zerwas, D.; Djouadi, A.; Drieu la Rochelle, G.; Fairbairn, M.; Le Boulc'h, Q.; Dumont, B.; Da Silva, J.; Brax, P.; Weiland, C.; Gelis, F.; Mehtar-Tani, Y.; Epelbaum, T.; Meunier, E.; Dudas, E.; Jezo, T.; Urbano, A.; Smith, C.; Machet, B.; Nezri, E.; Salam, G.; Kosnik, N.; Greynat, D.; Petrov, K.

    2014-01-01

    RPP (Meetings on Particle Physics) annual meetings are aimed at gathering the theoretical particle physicists' community, providing the participants with the opportunity not only to present their research topics, but also to make contact with the latest developments in adjacent fields. RPP-2012 will have a few review talks on topics such as flavors, Higgs bosons, astro-particle physics and cosmology, heavy ions, physics beyond the standard model, and quantum chromodynamics. This document gathers the slides of the presentations, a few presentations are accompanied by an abstract.

  7. Particle physics experiments 1986

    International Nuclear Information System (INIS)

    Stuart, G.W.

    1987-01-01

    The paper presents research work carried out in 1986 on 52 elementary particle experiments approved by the Particle Physics Experiments Selection Panel. Most of the experiments were collaborative and involved research groups from different countries. About half of the experiments were conducted at CERN, the remaining experiments employed the accelerators: LAMPT, LEP, PETRA, SLAC, and HERA. The contents consist of unedited contributions from each experiment. (U.K.)

  8. The dialogue between particle physics and cosmology

    International Nuclear Information System (INIS)

    Sadoulet, B.

    1988-04-01

    In the last decade, a very close relationship has developed between particle physics and cosmology. The purpose of these lectures is to introduce particle physicists to the many scientific connections between the two fields. Before entering into the discussion of specific topics, it will first be shown that particle physics and cosmology are completely interdependent. 173 refs., 35 figs., 5 tabs

  9. The dialogue between particle physics and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Sadoulet, B.

    1988-04-01

    In the last decade, a very close relationship has developed between particle physics and cosmology. The purpose of these lectures is to introduce particle physicists to the many scientific connections between the two fields. Before entering into the discussion of specific topics, it will first be shown that particle physics and cosmology are completely interdependent. 173 refs., 35 figs., 5 tabs.

  10. Black Holes from Particle Physics Perspective (1/2)

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    We review physics of black holes, both large and small, from a particle physicist's perspective, using particle physics tools for describing concepts such as entropy, temperature and quantum information processing. We also discuss microscopic picture of black hole formation in high energy particle scattering, potentially relevant for high energy accelerator experiments, and some differences and similarities with the signatures of other BSM physics.

  11. Black Holes from Particle Physics Perspective (2/2)

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    We review physics of black holes, both large and small, from a particle physicist's perspective, using particle physics tools for describing concepts such as entropy, temperature and quantum information processing. We also discuss microscopic picture of black hole formation in high energy particle scattering, potentially relevant for high energy accelerator experiments, and some differences and similarities with the signatures of other BSM physics.

  12. Elementary particles physics

    International Nuclear Information System (INIS)

    1990-01-01

    It is discussed the physics in Brazil in the next decade with regard to elementary particles and field theories. The situation of brazilian research institutes as well as its personnel is also presented. Some recommendations and financing of new projects are also considered. (A.C.A.S.)

  13. Particle physics experiments 1983

    International Nuclear Information System (INIS)

    Stuart, G.W.

    1983-01-01

    The report describes work carried out in 1983 on experiments approved by the Particle Physics Experiments Selection Panel. The contents consist of unedited contributions from each experiment. (author)

  14. Particle Physics & Astrophysics (PPA)

    Data.gov (United States)

    Federal Laboratory Consortium — Scientists at SLAC's Particle Physics and Astrophysics develop and utilize unique instruments from underground to outer space to explore the ultimate laws of nature...

  15. International Conference on Particle Physics and Astrophysics

    CERN Document Server

    2015-01-01

    The International Conference on Particle Physics and Astrophysics (ICPPA-2015) will be held in Moscow, Russia, from October 5 to 10, 2015. The conference is organized by Center of Basic Research and Particle Physics of National Research Nuclear University “MEPhI”. The aim of the Conference is to promote contacts between scientists and development of new ideas in fundamental research. Therefore we will bring together experts and young scientists working on experimental and theoretical aspects of nuclear, particle, astroparticle physics and cosmology. ICPPA-2015, aims to present the most recent results in astrophysics and collider physics and reports from the main experiments currently taking data. The working languages of the conference are English and Russian.

  16. Nuclear physics with polarized particles

    CERN Document Server

    Paetz gen Schieck, Hans

    2012-01-01

    The measurement of spin-polarization observables in reactions of nuclei and particles is of great utility and advantage when the effects of single-spin sub-states are to be investigated. Indeed, the unpolarized differential cross-section encompasses the averaging over the spin states of the particles, and thus loses details of the interaction process. This introductory text combines, in a single volume, course-based lecture notes on spin physics and on polarized-ion sources with the aim of providing a concise yet self-contained starting point for newcomers to the field, as well as for lecturers in search of suitable material for their courses and seminars. A significant part of the book is devoted to introducing the formal theory-a description of polarization and of nuclear reactions with polarized particles. The remainder of the text describes the physical basis of methods and devices necessary to perform experiments with polarized particles and to measure polarization and polarization effects in nuclear rea...

  17. Particle physics experiments 1984

    International Nuclear Information System (INIS)

    Stuart, G.

    1985-01-01

    The Rutherford Appleton laboratory report describes work carried out in 1984 on experiments approved by the Particle Physics selection panel. The contents consist of unedited contributions from each experiment. (author)

  18. Particle physics experiments 1987

    International Nuclear Information System (INIS)

    Stuart, G.W.

    1988-01-01

    This report describes work carried out in 1987 on experiments approved by the Particle Physics Experiments Selection Panel (United Kingdom). The contents consist of unedited contributions from each experiment. (author)

  19. 2001 Summer school on particle physics

    International Nuclear Information System (INIS)

    Masiero, A.; Senjanovic, G.; Smirnov, A.Yu.; Thompson, G.

    2002-01-01

    The aim of this school was to give a panoramic view on the field of particle physics with its achievements and problems, successes and failures. The standard model of the electroweak and strong interactions is in perfect shape. Physics of the standard model and its precision tests have been extensively discussed during the school. What is next? Do we have a 'standard model' of physics beyond the standard model? In this connection the status of low scale supersymmetry, supersymmetric Grand Unification and various flavor symmetries has been presented. Discovery of neutrino masses and mixing is probably the first experimental manifestation of new physics. Do we have a viable alternative of the (TeV scale) SUSY and GUT? Models with large, or infinite, or wrapped extra dimensions, the bulk-brane scenarios (widely discussed in series of lectures) may give some answers to this question. Is non-commutative field theory relevant for particle physics? Are the tools we have at hand enough to solve problems of particle physics? Is something fundamentally important missed in our approaches? These, and many other questions, were among the hot topics of the school. In this volume we publish four courses of lectures given by leading experts in the fields which represent two main areas of the research mentioned above: Physics of the standard model and Physics beyond the standard model. Both basic and advanced topics are presented in the lectures on nonperturbative QCD and quark-gluon plasma. First results from heavy ion collider RHIC are discussed. Important recent progress in particle physics is related to operation of the B-factories. This subject is covered in lectures on B-physics and CP-violation. Physics beyond the standard model is represented by lectures on Grand Unification with emphasis on explanation of fermion masses, in particular neutrino masses and mixing, and on predictions for proton decay. Another course is devoted to the fascinating subject: physics of non

  20. 2001 Summer school on particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Masiero, A [SISSA, International School for Advanced Studies, Trieste (Italy); Senjanovic, G; Smirnov, A Yu; Thompson, G [Abdus Salam ICTP, Trieste (Italy)

    2002-09-15

    The aim of this school was to give a panoramic view on the field of particle physics with its achievements and problems, successes and failures. The standard model of the electroweak and strong interactions is in perfect shape. Physics of the standard model and its precision tests have been extensively discussed during the school. What is next? Do we have a 'standard model' of physics beyond the standard model? In this connection the status of low scale supersymmetry, supersymmetric Grand Unification and various flavor symmetries has been presented. Discovery of neutrino masses and mixing is probably the first experimental manifestation of new physics. Do we have a viable alternative of the (TeV scale) SUSY and GUT? Models with large, or infinite, or wrapped extra dimensions, the bulk-brane scenarios (widely discussed in series of lectures) may give some answers to this question. Is non-commutative field theory relevant for particle physics? Are the tools we have at hand enough to solve problems of particle physics? Is something fundamentally important missed in our approaches? These, and many other questions, were among the hot topics of the school. In this volume we publish four courses of lectures given by leading experts in the fields which represent two main areas of the research mentioned above: Physics of the standard model and Physics beyond the standard model. Both basic and advanced topics are presented in the lectures on nonperturbative QCD and quark-gluon plasma. First results from heavy ion collider RHIC are discussed. Important recent progress in particle physics is related to operation of the B-factories. This subject is covered in lectures on B-physics and CP-violation. Physics beyond the standard model is represented by lectures on Grand Unification with emphasis on explanation of fermion masses, in particular neutrino masses and mixing, and on predictions for proton decay. Another course is devoted to the fascinating subject: physics of non

  1. Elementary particle physics at the University of Florida

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses research in the following areas: theoretical elementary particle physics; experimental elementary particle physics; axion project; SSC detector development; and computer acquisition. (LSP)

  2. Elementary particle physics at the University of Florida

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    This report discusses research in the following areas: theoretical elementary particle physics; experimental elementary particle physics; axion project; SSC detector development; and computer acquisition. (LSP).

  3. Foundations of nuclear and particle physics

    CERN Document Server

    Donnelly, T William; Holstein, Barry R; Milner, Richard G; Surrow, Bernd

    2017-01-01

    This textbook brings together nuclear and particle physics, presenting a balanced overview of both fields as well as the interplay between the two. The theoretical as well as the experimental foundations are covered, providing students with a deep understanding of the subject. In-chapter exercises ranging from basic experimental to sophisticated theoretical questions provide an important tool for students to solidify their knowledge. Suitable for upper undergraduate courses in nuclear and particle physics as well as more advanced courses, the book includes road maps guiding instructors on tailoring the content to their course. Online resources including color figures, tables, and a solutions manual complete the teaching package. This textbook will be essential for students preparing for further study or a career in the field who require a solid grasp of both nuclear and particle physics.

  4. Nuclear and Particle Physics, Astrophysics and Cosmology : T-2 : LANL

    Science.gov (United States)

    linked in Search T-2, Nuclear and Particle Physics, Astrophysics and Cosmology T-2 Home T Division Focus Areas Nuclear Information Service Nuclear Physics Particle Physics Astrophysics Cosmology CONTACTS Group fundamental and applied theoretical research in applied and fundamental nuclear physics, particle physics

  5. Particle physics experiments 1989

    International Nuclear Information System (INIS)

    Bairstow, R.

    1990-01-01

    This report describes work carried out in 1989 on experiments approved by the Particle Physics Experiments Selection Panel of Rutherford Appleton Laboratory. The contents consist of unedited contributions from each experiment. (author)

  6. Intersections between particle and nuclear physics

    International Nuclear Information System (INIS)

    Bunce, G.M.

    1988-01-01

    This report contains papers from an AIP conference on the intersections between particle and nuclear physics. Some of the general topics covered are: Accelerator physics; Antiproton physics; Electron and muon physics; Hadron scattering; Hadron spectroscopy; Meson and lepton decays; Neutrino physics; Nonaccelerator and astrophysics; Relativistic heavy-ion physics; and Spin physics. There are 166 papers that will be processed separately

  7. Ultraviolet extensions of particle physics

    DEFF Research Database (Denmark)

    Berthier, Laure Gaëlle

    The discovery of the Higgs boson in 2012 at the Large Hadron Collider completed the Standard Model field content. Many questions though remain unanswered by the Standard Model triggering a search for new physics. New physics could manifest itself at the Large Hadron Collider by the discovery of new...... particles. However, the lack of new resonances might suggest that these new particles are still out of reach which leaves us with few options. Two possibilities are explored in this thesis. The first is to study precision measurements which might indicate new physics as small deviations from the Standard...... are expressed as power series with missing higher order terms. We also show how to connect ultraviolet models of new physics to the Standard Model effective field theory and calculate bounds on them using the Standard Model effective field theory fit results. Finally, we study a nonrelativistic ultraviolet...

  8. Two Decades of Mexican Particle Physics at Fermilab

    International Nuclear Information System (INIS)

    Rubinstein, R.

    2003-01-01

    This report is a view from Fermilab of Mexican particle physics at the Laboratory since about 1980; it is not intended to be a history of Mexican particle physics: that topic is outside the expertise of the writer. The period 1980 to the present coincides with the growth of Mexican experimental particle physics from essentially no activity to its current state where Mexican groups take part in experiments at several of the world's major laboratories

  9. University Physics, Study Guide, Revised Edition

    Science.gov (United States)

    Benson, Harris

    1996-01-01

    Partial table of contents: Vectors. One-Dimensional Kinematics. Particle Dynamics II. Work and Energy. Linear Momentum. Systems of Particles. Angular Momentum and Statics. Gravitation. Solids and Fluids. Oscillations. Mechanical Waves. Sound. First Law of Thermodynamics. Kinetic Theory. Entropy and the Second Law of Thermodynamics. Electrostatics. The Electric Field. Gauss's Law. Electric Potential. Current and Resistance. The Magnetic Field. Sources of the Magnetic Field. Electromagnetic Induction. Light: Reflection and Refraction. Lenses and Optical Instruments. Wave Optics I. Special Relativity. Early Quantum Theory. Nuclear Physics. Appendices. Answers to Odd-Numbered Exercises and Problems. Index.

  10. The ABCs of particle physics

    CERN Document Server

    Biron, Lauren

    2016-01-01

    For lovers of rhymes and anthropomorphic Higgs bosons, Symmetry presents its first published board book, The ABCs of Particle Physics. Use it as an illustrated guide to basic particle- and astrophysics terms, or read it to your infant at bedtime, if you don’t mind their first word being “quark.”

  11. Cosmology and particle physics

    International Nuclear Information System (INIS)

    Barrow, J.D.

    1982-01-01

    A brief overview is given of recent work that integrates cosmology and particle physics. The observational data regarding the abundance of matter and radiation in the Universe is described. The manner in which the cosmological survival density of stable massive particles can be calculated is discussed along with the process of cosmological nucleosynthesis. Several applications of these general arguments are given with reference to the survival density of nucleons, neutrinos and unconfined fractionally charge particles. The use of nucleosynthesis to limit the number of lepton generations is described together with the implications of a small neutrino mass for the origin of galaxies and clusters. (Auth.)

  12. Facts and mysteries in elementary particle physics

    CERN Document Server

    Veltman, Martinus J G

    2018-01-01

    This book provides a comprehensive overview of modern particle physics accessible to anyone with a true passion for wanting to know how the universe works. We are introduced to the known particles of the world we live in. An elegant explanation of quantum mechanics and relativity paves the way for an understanding of the laws that govern particle physics. These laws are put into action in the world of accelerators, colliders and detectors found at institutions such as CERN and Fermilab that are in the forefront of technical innovation. Real world and theory meet using Feynman diagrams to solve the problems of infinities and deduce the need for the Higgs boson. Facts and Mysteries in Elementary Particle Physics offers an incredible insight from an eyewitness and participant in some of the greatest discoveries in 20th century science. From Einstein's theory of relativity to the spectacular discovery of the Higgs particle, this book will fascinate and educate anyone interested in the world of quarks, leptons an...

  13. Introducing particle physics a graphic guide

    CERN Document Server

    AUTHOR|(CDS)2071677

    2013-01-01

    What really happens at the most fundamental levels of nature? Introducing Particle Physics explores the very frontiers of our knowledge, even showing how particle physicists are now using theory and experiment to probe our very concept of what is real. From the earliest history of the atomic theory through to supersymmetry, micro-black holes, dark matter, the Higgs boson, and the possibly mythical graviton, practising physicist and CERN contributor Tom Whyntie gives us a mind-expanding tour of cutting-edge science. Featuring brilliant illustrations from Oliver Pugh, Introducing Particle Physics is a unique tour through the most astonishing and challenging science being undertaken today.

  14. Particle physics after the Higgs discovery: Philosophical perspectives

    Science.gov (United States)

    Friederich, Simon; Lehmkuhl, Dennis

    2015-08-01

    The recent discovery at the LHC of a particle with properties matching those expected of the Higgs boson is a decisive event in the history of particle physics. The present special section combines three contributions that approach conceptual and methodological challenges related to this event and the current situation in particle physics from different angles. One contribution studies the experimental practices of contemporary particle physics by investigating the role of computer simulations in these practices; in particular, it focuses on the status of simulations as compared to experiments that in some circumstances have analogous functions. One contribution investigates the status of the controversial naturalness problem that many physicists see as the most severe shortcoming of the Standard Model of elementary particle physics. Finally, a third contribution critically assesses the impact of suggested no-go theorems concerning the interpretability of rigorous algebraic quantum field theory in terms of particles at the phenomenological level. In what follows we present a short overview of these contributions, highlighting some of their central ideas and arguments and putting them into context.

  15. Summer School on Particle Physics

    CERN Document Server

    2015-01-01

    The goal of the school is to give a detailed overview of particle physics and cover the most important areas where significant progress has been achieved recently. This year the school will cover both the energy and the intensity frontiers, with lectures covering the physics relevant for the next LHC run, future hadron colliders, direct and indirect probes of dark sectors and early universe physics.

  16. Summer School on Particle Physics

    CERN Document Server

    2013-01-01

    The goal of the school is to give a detailed overview of particle physics and cover the most important and perspective areas where significant progress has been achieved recently. In 2013, the main focus will be on the LHC results, their interpretation and implications for Physics Beyond the Standard model. Lectures will also cover progress in neutrino physics, dark matter searches and the study of cosmic radiation.

  17. Overview of particle physics

    International Nuclear Information System (INIS)

    Salam, A.

    1993-01-01

    This article presents an overview of the situation in particle physics and a prognosis of its future: ideas which have been tested or will soon be tested (standard model and the light Higgs particle), ideas whose time has not yet come (supersymmetry, supersymmetry and N=1 supergravity, right-left symmetry and preons, unification of gravity with other forces, anomaly-free supergravities, supersymmetry strings, string theory as the ''Theory of Everything'' (T.O.E.); passive and non accelerator experiments. 6 figs., 2 tabs

  18. New HEPAP report outlines revolution in particle physics

    CERN Multimedia

    2004-01-01

    "The most compelling questions facing contemporary particle physics research and a program to address them have been distilled into a new report “Quantum Universe: The Revolution in 21st-Century Particle Physics,” adopted today by the Department of Energy/National Science Foundation High Energy Physics Advisory Panel (HEPAP)" (1 page)

  19. Forecasting report. Particle physics

    International Nuclear Information System (INIS)

    The present status of particle and antiparticle physics is examined. As for electromagnetic interactions, the quantum electrodynamics theory is briefly reviewed and the various types of hadronic electromagnetic interactions classified. The theoretical approaches of strong interactions are outlined with hadron spectroscopy. Dynamical models and high energy phenomena are presented. The theoretical problems of weak interaction physics are examined with some experimental aspects. Experimental investigations of the hadron internal structure are briefly surveyed [fr

  20. Introduction to the elementary particle physics

    International Nuclear Information System (INIS)

    Shellard, R.C.

    1982-03-01

    An introduction is given to the subject of elementary particle physics. Several particle properties are discussed and some models are shown. This introduction covers the theoretical as well as the experimental aspects including a topic on detectors. (L.C.) [pt

  1. Physics through the 1990s: Elementary-particle physics

    Science.gov (United States)

    The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the field is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.

  2. Physics through the 1990s: Elementary-particle physics

    Science.gov (United States)

    1986-01-01

    The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the field is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.

  3. Resource Letter HEPP-1: History of elementary-particle physics

    International Nuclear Information System (INIS)

    Hovis, R.C.; Kragh, H.

    1991-01-01

    This Resource Letter provides a guide to literature on the history of modern elementary-particle physics. Histories that treat developments from the 1930s through the 1980s are focused on and a sampling is included of the historiography covering the period c. 1890--1930, the prehistory of elementary-particle physics as a discipline. Also included are collections of scientific papers, which might be especially valuable to individuals who wish to undertake historical research on particular scientists or subfields of elementary-particle physics. The introduction presents some statistical data and associated references for elementary-particle physics and surveys historiographical approaches and issues that are represented in historical accounts in the bibliography. All references are assigned a rating of E (Elementary), I (Intermediate), or A (Advanced) based on their technical or conceptual difficulty or their appropriateness for a person attempting a graduated study of the history of modern particle physics. That is, items labeled E are suitable for the layman or would be fundamental to a beginning exploration of the history of particle physics, whereas items labeled A are technically demanding (mathematically, historiographically, or philosophically) or would be most appropriate for specialized or advanced examinations of various topics

  4. Wanted: Moderators for International Masterclasses in Particle Physics

    CERN Multimedia

    2015-01-01

    The International Masterclasses in Particle Physics give high school students from around the world the opportunity to become particle physicists for a day. CERN physicists are invited to participate in next year’s Masterclass programme, to be held from 11 February to 23 March 2016.   The International Masterclasses in Particle Physics conclude with a video conference, where students from different countries connect with moderators at CERN to discuss their results.   During a Masterclass, high-school students work with recent data from the LHC experiments under the supervision of physicists. For example, students can rediscover the Z boson or the structure of the proton, reconstruct strange particles or measure the lifetime of the D0 particle. “Students get a taste of how modern physics research works by working directly with particle physicists and using real LHC data,” says Uta Bilow from TU Dresden, coordinator of the International Mas...

  5. Particle physics experiments 1982

    International Nuclear Information System (INIS)

    Rousseau, M.D.; Stuart, G.

    1983-01-01

    Work carried out in 1982 on 52 experiments approved by the Particle Physics Experiments Selection Panel is described. Each experiment is listed under title, collaboration, technique, accelerator, year of running, status and spokesman. Unedited contributions are given from each experiment. (U.K.)

  6. Non-accelerator particle physics

    International Nuclear Information System (INIS)

    Steinberg, R.I.

    1990-01-01

    The goals of this research are the experimental testing of fundamental theories of physics such as grand unification and the exploration of cosmic phenomena through the techniques of particle physics. We are currently engaged in construction of the MACRO detector, an Italian-American collaborative research instrument with a total particle acceptance of 10,000 m 2 sr, which will perform a sensitive search for magnetic monopoles using excitation-ionization methods. Other major objective of the MACRO experiment are to search for astrophysical high energy neutrinos expected to be emitted by such objects as Vela X-1, LMC X-4 and SN-1987A and to search for low energy neutrino bursts from gravitational stellar collapse. We are also working on BOREX, a liquid scintillation solar neutrino experiment and GRANDE, a proposed very large area surface detector for astrophysical neutrinos, and on the development of new techniques for liquid scintillation detection

  7. PHYSICS, SCIENCE POLICY CERN's seven-point strategy for future particle physics

    CERN Multimedia

    2004-01-01

    Better coordinated particle accelerator research, with more powerful technology, are major priorities on the seven-point "to do list" revealed last week by CERN, the world's largest particle physics laboratory

  8. Particle Physics at the LHC Start

    CERN Document Server

    Altarelli, Guido

    2011-01-01

    I present a concise review of the major issues and challenges in particle physics at the start of the LHC era. After a brief overview of the Standard Model and of QCD, I will focus on the electroweak symmetry breaking problem which plays a central role in particle physics today. The Higgs sector of the minimal Standard Model is so far just a mere conjecture that needs to be verified or discarded by the LHC. Probably the reality is more complicated. I will summarize the motivation for new physics that should accompany or even replace the Higgs discovery and a number of its possible forms that could be revealed by the LHC.

  9. [High energy particle physics at Purdue, 1990--1991

    International Nuclear Information System (INIS)

    Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Shipsey, I.P.

    1991-05-01

    Progress made in the experimental and theoretical high energy physics program is reviewed. The CLEO experiment, particle astrophysics, dynamical symmetry breaking in gauge theories, the Collider Detector at Fermilab, the TOPAZ Experiment, and elementary particle physics beyond the standard model are included

  10. Centre for Particle Physics of Marseille. 1994-1995 Activity report

    International Nuclear Information System (INIS)

    1996-01-01

    The Center for particle physics of Marseilles (CPPM) is one of the laboratories of the National Institute of Nuclear Physics and Particle Physics of the CNRS which gathers the means of the particle physics studies. The laboratory is a mixed research unit which concerns at the same time the CNRS/IN2P3 and the Aix-Marseille University. The principal role of the laboratory is fundamental research in particle physics which deals with the elementary components of the matter and their interactions; astro-particles physics i.e. observation of the elementary particles in the Universe and in observational cosmology to understand the universe behaviour through the observation and study of supernovas. This document is the 1994-1995 Activity report of the CPPM. It presents the experiments in which the CPPM is involved (Aleph, Atlas, Bugey, CPLear, Delphi, H1, Particle astrophysics), the training, teaching, industrial relations/valorisation and technical activities (electronics, computers and information technology, mechanics), and the list of publications (seminars, conference papers, journal articles, dissertations) of the Centre. A list of the CPPM staff is attached to the document

  11. Matter and Interactions: a particle physics perspective

    OpenAIRE

    Organtini, Giovanni

    2011-01-01

    In classical mechanics matter and fields are completely separated. Matter interacts with fields. For particle physicists this is not the case. Both matter and fields are represented by particles. Fundamental interactions are mediated by particles exchanged between matter particles. In this paper we explain why particle physicists believe in such a picture, introducing the technique of Feynman diagrams starting from very basic and popular analogies with classical mechanics, making the physics ...

  12. Future directions in nuclear and particle physics

    International Nuclear Information System (INIS)

    Vogt, E.

    1988-09-01

    With the advent of the standard model of quarks, leptons and unified forces one has achieved an understanding of the wealth of data in particle physics and provided a new basis for the understanding of nuclei and hadrons. In particle physics one now seeks to improve the standard model and to go beyond it. In nuclear physics one enquires about the role of quarks and gluons in the dynamics of strongly interacting systems. To answer these new questions an impressive network of large accelerator facilities, including CEBAF, is under construction or in the proposal stage. A global view of this network and its physics is given. (Author) (3 figs.)

  13. Event generators in particle physics

    International Nuclear Information System (INIS)

    Sjostrand, Torbjorn

    1994-01-01

    This presentation gives an introduction to the topic of event generators in particle physics . The emphasis is on the physics aspects that have to be considered in the construction of a generator, and what lessons we have learned from comparisons with data. A brief survey of existing generators is also included. As illustration, a few topics of current interest are covered in a bit more detail: QCD uncertainties in W mass determinations and γp/γγ physics. (author)

  14. The Multiverse and Particle Physics

    Science.gov (United States)

    Donoghue, John F.

    2016-10-01

    The possibility of fundamental theories with very many ground states, each with different physical parameters, changes the way that we approach the major questions of particle physics. Most importantly, it raises the possibility that these different parameters could be realized in different domains in the larger universe. In this review, I survey the motivations for the multiverse and the impact of the idea of the multiverse on the search for new physics beyond the Standard Model.

  15. Geneva University - Particle Physics seminar

    CERN Multimedia

    Université de Genève

    2011-01-01

    UNIVERSITE DE GENEVE Ecole de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Geneva 4 Tel. (022) 379 62 73 Fax (022) 379 69 92 Wednesday 8 June 2011 PARTICLE PHYSICS SEMINAR at 17.00 hrs – Stückelberg Auditorium A Novel Experiment for the Search muon -> eee Prof. Andre Schoening, University of Heidelberg The absence of lepton-flavor changing processes, like the non-observation of the radiative decay mu -> e gamma, has been a miracle since the dawn of the Standard Model of Particle Physics and lead to the introduction of the concept of lepton family numbers. Several experiments in the last decade have shown clear evidence for neutrino oscillations. The neutrino mixing angles measured are known to be large. However, the discovery of lepton flavor violating (LFV) effects in the charged lepton sector is yet owing. After motivating the search for LFV in general I will discuss the physics potential of a search m...

  16. Lectures in particle physics

    CERN Document Server

    Green, Dan

    1994-01-01

    The aim of this book on particle physics is to present the theory in a simple way. The style and organization of the material is unique in that intuition is employed, not formal theory or the Monte Carlo method. This volume attempts to be more physical and less abstract than other texts without degenerating into a presentation of data without interpretation.This book is based on four courses of lectures conducted at Fermilab. It should prove very useful to advanced undergraduates and graduate students.

  17. Particle physics: a valuable driver of innovation in medicine… and physics

    CERN Multimedia

    2012-01-01

    This year marks the 10th anniversary of the European Network for Light Ion Therapy (ENLIGHT), which is a good occasion a look back over the important contributions particle physics has made to medicine over the years. It’s hard to know exactly where to start, but since this year also marks the 20th anniversary of Georges Charpak’s Nobel Prize, that seems as good a place as any.   Charpak’s prize was a long time coming. It was awarded for “his invention and development of particle detectors, in particular the multiwire proportional chamber” in 1968. Over the following years, these devices transformed particle physics, allowing particle collisions to be recorded electronically instead of optically, and they led to a wide range of electronic particle detection techniques in use today. All this was duly noted by the Nobel committee, which also pointed out Charpak’s energy in applying the technology to medicine. Today, Charpak-like detec...

  18. The low-energy frontier of particle physics

    International Nuclear Information System (INIS)

    Jaeckel, Joerg

    2010-02-01

    Most embeddings of the Standard Model into a more unified theory, in particular the ones based on supergravity or superstrings, predict the existence of a hidden sector of particles which have only very weak interactions with the visible sector Standard Model particles. Some of these exotic particle candidates (such as e.g. ''axions'', ''axion-like particles'' and ''hidden U(1) gauge bosons'') may be very light, with masses in the sub-eV range, and have very weak interactions with photons. Correspondingly, these very weakly interacting sub-eV particles (WISPs) may lead to observable effects in experiments (as well as in astrophysical and cosmological observations) searching for light shining through a wall, for changes in laser polarisation, for non-linear processes in large electromagnetic fields and for deviations from Coulomb's law. We present the physics case and a status report of this emerging low-energy frontier of fundamental physics. (orig.)

  19. Centre for Particle Physics of Marseille. 1996-1997 Activity report

    International Nuclear Information System (INIS)

    1998-01-01

    The Center for particle physics of Marseilles (CPPM) is one of the laboratories of the National Institute of Nuclear Physics and Particle Physics of the CNRS which gathers the means of the particle physics studies. The laboratory is a mixed research unit which concerns at the same time the CNRS/IN2P3 and the Aix-Marseille University. The principal role of the laboratory is fundamental research in particle physics which deals with the elementary components of the matter and their interactions; astro-particles physics i.e. observation of the elementary particles in the Universe and in observational cosmology to understand the universe behaviour through the observation and study of supernovas. This document is the 1996-1997 Activity report of the CPPM. It presents the experiments in which the CPPM is involved (Aleph, Antares, Atlas, CPLear, H1), the training, teaching and technical activities (electronics, computers and information technology, mechanics), and the list of publications (seminars, conference papers, journal articles, dissertations) of the Centre. A list of the CPPM staff is attached to the document

  20. Centre for Particle Physics of Marseille. 1989-1991 Activity report

    International Nuclear Information System (INIS)

    1992-01-01

    The Center for particle physics of Marseilles (CPPM) is one of the laboratories of the National Institute of Nuclear Physics and Particle Physics of the CNRS which gathers the means of the particle physics studies. The laboratory is a mixed research unit which concerns at the same time the CNRS/IN2P3 and the Aix-Marseille University. The principal role of the laboratory is fundamental research in particle physics which deals with the elementary components of the matter and their interactions; astro-particles physics i.e. observation of the elementary particles in the Universe and in observational cosmology to understand the universe behaviour through the observation and study of supernovas. This document is the 1989-1991 Activity report of the CPPM. It presents the experiments in which the CPPM is involved (Aleph, Bugey, CPLear, Delphi, LHC), the teaching and technical activities (electronics, computers and information technology, mechanics), and the list of publications (seminars, conference papers, journal articles, dissertations) of the Centre. A list of the CPPM staff is attached to the document

  1. Centre for Particle Physics of Marseille. 1992-1993 Activity report

    International Nuclear Information System (INIS)

    1994-01-01

    The Center for particle physics of Marseilles (CPPM) is one of the laboratories of the National Institute of Nuclear Physics and Particle Physics of the CNRS which gathers the means of the particle physics studies. The laboratory is a mixed research unit which concerns at the same time the CNRS/IN2P3 and the Aix-Marseille University. The principal role of the laboratory is fundamental research in particle physics which deals with the elementary components of the matter and their interactions; astro-particles physics i.e. observation of the elementary particles in the Universe and in observational cosmology to understand the universe behaviour through the observation and study of supernovas. This document is the 1992-1993 Activity report of the CPPM. It presents the experiments in which the CPPM is involved (Aleph, Atlas, Bugey, CPLear, Delphi), the training, teaching, industrial relations/valorisation and technical activities (electronics, computers and information technology, mechanics), and the list of publications (seminars, conference papers, journal articles, dissertations) of the Centre. A list of internal seminars and of the CPPM staff is attached to the document

  2. Updating Europe’s strategy for particle physics

    CERN Multimedia

    2012-01-01

    These have been an important two weeks for particle physics in Europe and at CERN. From 10-12 September, some 500 physicists went to Krakow to discuss their wishes for the future of the field as input to the CERN Council’s strategy group.   The strategy group is tasked with updating the European Strategy for Particle Physics adopted by Council in 2006, taking into account developments in the field over the last six years. Discussions were wide ranging, and included input from the Americas and Asia. These were particularly important, since it’s vital for the field that Europe’s strategy is in synch with what’s happening elsewhere in the world. I hardly need to tell you that the years since 2006 have seen monumental changes in particle physics, notably the discovery by ATLAS and CMS of a particle consistent with the Higgs boson. But it’s not only the high-energy frontier of the LHC that has provided new results. There have been important advanc...

  3. Experimental Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfeld, Carl [Univ of South Carolina; Mishra, Sanjib R. [Univ of South Carolina; Petti, Roberto [Univ of South Carolina; Purohit, Milind V. [Univ of South Carolina

    2014-08-31

    The high energy physics group at the University of South Carolina, under the leadership of Profs. S.R. Mishra, R. Petti, M.V. Purohit, J.R. Wilson (co-PI's), and C. Rosenfeld (PI), engaged in studies in "Experimental Particle Physics." The group collaborated with similar groups at other universities and at national laboratories to conduct experimental studies of elementary particle properties. We utilized the particle accelerators at the Fermi National Accelerator Laboratory (Fermilab) in Illinois, the Stanford Linear Accelerator Center (SLAC) in California, and the European Center for Nuclear Research (CERN) in Switzerland. Mishra, Rosenfeld, and Petti worked predominantly on neutrino experiments. Experiments conducted in the last fifteen years that used cosmic rays and the core of the sun as a source of neutrinos showed conclusively that, contrary to the former conventional wisdom, the "flavor" of a neutrino is not immutable. A neutrino of flavor "e," "mu," or "tau," as determined from its provenance, may swap its identity with one of the other flavors -- in our jargon, they "oscillate." The oscillation phenomenon is extraordinarily difficult to study because neutrino interactions with our instruments are exceedingly rare -- they travel through the earth mostly unimpeded -- and because they must travel great distances before a substantial proportion have made the identity swap. Three of the experiments that we worked on, MINOS, NOvA, and LBNE utilize a beam of neutrinos from an accelerator at Fermilab to determine the parameters governing the oscillation. Two other experiments that we worked on, NOMAD and MIPP, provide measurements supportive of the oscillation experiments. Good measurements of the neutrino oscillation parameters may constitute a "low energy window" on related phenomena that are otherwise unobservable because they would occur only at energies way above the reach of conceivable accelerators. Purohit and Wilson participated in the Ba

  4. Particle and nuclear physics

    International Nuclear Information System (INIS)

    Ning, H.; Chong-shi, W.

    1986-01-01

    This book contains the proceedings of the September symposium. There are two parts to this book divided according to particle physics and nuclear physics. Some of the titles of the papers are as follows: Bifurcation and Dynamical Symmetry Breaking, Negative Binomial Distribution for the Multiplicity Distributions in e/sup +/e/sup -/ Annihilation, Variational Study of Lattice QCD, Rescaling for Kaon Structure Function, SDG Boson Model and its Application, The Pair-Aligned Intrinsic Wave Function in Single-j Configuration, and The Short Range Effective Interaction and the Spectra of Calcium Isotopes in (f-p) Space

  5. The low-energy frontier of particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Jaeckel, Joerg [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-02-15

    Most embeddings of the Standard Model into a more unified theory, in particular the ones based on supergravity or superstrings, predict the existence of a hidden sector of particles which have only very weak interactions with the visible sector Standard Model particles. Some of these exotic particle candidates (such as e.g. ''axions'', ''axion-like particles'' and ''hidden U(1) gauge bosons'') may be very light, with masses in the sub-eV range, and have very weak interactions with photons. Correspondingly, these very weakly interacting sub-eV particles (WISPs) may lead to observable effects in experiments (as well as in astrophysical and cosmological observations) searching for light shining through a wall, for changes in laser polarisation, for non-linear processes in large electromagnetic fields and for deviations from Coulomb's law. We present the physics case and a status report of this emerging low-energy frontier of fundamental physics. (orig.)

  6. Particle physics: a new course for schools and colleges

    International Nuclear Information System (INIS)

    Swinbank, Elizabeth

    1992-01-01

    Some questions relating to the introduction of particle physics into post-GCSE courses are considered. A new project that is producing teacher and student materials to support teaching particle physics at this level is described. (author)

  7. USA lays out strategic vision for particle physics

    CERN Multimedia

    2014-01-01

    Yesterday saw the publication of the latest P5 report in the United States. Shorthand for Particle Physics Project Prioritisation Panel, the P5 report is the US equivalent of the European Strategy update that was published last year, and it’s good to see that the two reports present a common vision of the direction our field should take over the coming years.   P5 was charged with developing a 10-year plan for US particle physics, identifying compelling scientific opportunities. Its approach was similar to the European one, based on a broad consultation among the particle physics community. For the energy frontier, the report is clear. The LHC will be the focus for the US particle physics community for the immediate and short-term future. The report goes on to lay out a bold vision for development of a unique world-class neutrino programme in the US, with the long-term focus being a reformulated Long Baseline Neutrino Facility (LBNF) hosted at Fermilab. This is a very positive deve...

  8. Particle physics. Themes and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, C. [Fermi National Accelerator Laboratory, Batavia, IL (United States)

    1996-12-31

    It is an introductory talk to the Second Rencontres du Vietnam. This lecture is devoted to seven themes that express the essence of our understanding - and our possibilities on particle physics. (K.A.) 19 refs.

  9. Introduction to particle and astroparticle physics questions to the Universe

    CERN Document Server

    De Angelis, Alessandro

    2015-01-01

    This book, written by researchers who had been professionals in accelerator physics before becoming leaders of groups in astroparticle physics, introduces both fields in a balanced and elementary way, requiring only a basic knowledge of quantum mechanics on the part of the reader. The early history of particle physics cannot be distinguished from the history of cosmic rays. With the advent of accelerators, however, the importance of cosmic rays in particle physics was lost. This situation persisted until the 1990s, when novel techniques allowed breakthrough discoveries, and exploration of new physics scales now requires returning to cosmic rays. The new profile of scientists in fundamental physics ideally involves the merging of knowledge in astroparticle and particle physics, but the duration of modern experiments is such that people cannot simultaneously be practitioners in both. Introduction to Particle and Astroparticle Physics is designed to bridge the gap between the fields. It can be used...

  10. Current status of elementary particle physics

    International Nuclear Information System (INIS)

    Okun', L.B.

    1998-01-01

    A brief review is given of the state-of-the art in elementary particle physics based on the talk of the same title given on January 22, 1998, at the seminar marking the 90th birth anniversary of L.D. Landau. (The seminar was hosted by the P.L. Kapitza Institute for Physical Problems in cooperation with the L.D. Landau Institute for Theoretical Physics)

  11. Research in theoretical particle physics

    International Nuclear Information System (INIS)

    McKay, D.W.; Munczek, H.; Ralston, J.

    1992-05-01

    This report discusses the following topics in high energy physics: dynamical symmetry breaking and Schwinger-Dyson equation; consistency bound on the minimal model Higgs mass; tests of physics beyond the standard model; particle astrophysics; the interface between perturbative and non-perturbative QCD; cosmology; anisotropy in quantum networks and integer quantum hall behavior; anomalous color transparency; quantum treatment of solitons; color transparency; quantum stabilization of skyrmions; and casimir effect

  12. Particle Physics and Programming Languages

    OpenAIRE

    Watts, Gordon

    2017-01-01

    A SeaLang meetup - a presentation discussing various programming languages used in particle physics, from pushing common modern languages a bit past where they should be pushed, to an embedded DSL, to some full blown ones written.

  13. Higher physics for CFE with answers

    CERN Document Server

    Chambers, Paul; Moore, Ian

    2013-01-01

    The only new textbook appropriate for all new Higher Physics syllabus requirements from 2012 onwards Higher Physics for CfE provides complete coverage of the latest SQA syllabus for the Revised Higher (for examination 2012 onwards), and is also tailored specifically to the extended requirements, teaching approaches and syllabus outlines detailed in the Higher revisions for Curriculum for Excellence. Each section of the book matches a unit of the CfE syllabus; each chapter corresponds to a content area. The text is composed of three units: Our Dynamic Universe, Particles and Waves, and Electric

  14. Particle physics and cosmology

    International Nuclear Information System (INIS)

    Ellis, J.; Nanopoulos, D.

    1983-01-01

    The authors describe the connection between cosmology and particle physics in an introductory way. In this connection the big bang theory and unified gauge models of strong, electromagnetic, and weak interactions are considered. Furthermore cosmological nucleosynthesis is discussed in this framework, and the problem of cosmic neutrinos is considered with special regards to its rest mass. (HSI).

  15. PARTICLE PHYSICS: CERN Collider Glimpses Supersymmetry--Maybe.

    Science.gov (United States)

    Seife, C

    2000-07-14

    Last week, particle physicists at the CERN laboratory in Switzerland announced that by smashing together matter and antimatter in four experiments, they detected an unexpected effect in the sprays of particles that ensued. The anomaly is subtle, and physicists caution that it might still be a statistical fluke. If confirmed, however, it could mark the long-sought discovery of a whole zoo of new particles--and the end of a long-standing model of particle physics.

  16. Some questions on the research in particle physics

    International Nuclear Information System (INIS)

    Kiss, D.

    1978-01-01

    Some new developments in elementary particle physics and interaction processes are reviewed. Recent advances in the field of particle physics including the observation of an anomalous behaviour of interaction cross section at high energy levels, the deep inelastic scattering of electrons from protons, the existence of neutral currents and the relative frequency of events with high transverse pulses are pointed out. A special development is the discovery and identification of a number of new particles and processes. New advances in understanding of the structure of subelementary particles, and the combination of electromagnetic and weak interactions are described. After a discussion of the technical and instrumental requirements and possibilities in the field of elementary particle research, the role and achievements of Hungarian scientists in high-energy facilities of the Soviet Union are emphasized. (P.J.)

  17. The development for the particle physics experiments platform in university

    International Nuclear Information System (INIS)

    Liang Futian; Yao Yuan; Wang Zhaoqi; Liu Yuzhe; Sang Ziru; Chen Lian; Wen Fei; Jin Ge; Liu Hongbin

    2012-01-01

    Nuclear science and particle physics is an important subject in physics, and it is important to launch particle physics experiments in university to training students. We design an experiments platform based on particle physics experiments in university. By employing digitalization and reconfiguration techniques in our design, we achieve all kinds of device functions with only one device. With the customized software for particular experiments and a website for teaching assistance, the platform is easy to be employed in universities. Students can accomplish a classical particle physics experiment in a modern way with the help of the platform, and they can also try new ideals. The experiments platform is ready to be used, and some of the lab sessions in USTC have already begin to use our experiments platform. (authors)

  18. Electroweak properties of particle physics. Volume 2

    International Nuclear Information System (INIS)

    Aleksan, R.; Ellis, N.; Falvard, A.; Fayard, L.; Frere, J.M.; Kuehn, J.H.; Le Yaouanc, A.; Roudeau, P.; Wormser, G.

    1991-01-01

    The 23th GIf school was held at Ecole Polytechnique, Palaiseau, France from 16 to 20 September 1991. The subject was large: Electroweak properties of heavy quarks. The second part has been devoted to B physics at hadron machines, search for Top, Charm particle physics and Quarkonium physics

  19. An introductory course of particle physics

    CERN Document Server

    Pal, Palash B

    2014-01-01

    For graduate students unfamiliar with particle physics, this text teaches the basic techniques and fundamental theories related to the subject. It gives them the competence to work out various properties of fundamental particles, such as scattering cross-section and lifetime. The book also gives a lucid summary of the main ideas involved. Figure slides are available upon qualifying course adoption.

  20. New particles and two-photon physics

    International Nuclear Information System (INIS)

    Schrempp, F.

    1985-01-01

    In a first part, I review the general theoretical arguments leading to new physics and new particles beyond the Standard Model, either in terms of supersymmetry or compositeness. Speculations about new particles expected within these schemes are then discussed in the light of recent anomalous events from the panti p collider and from PETRA. In a second part, I specifically try to evaluate the potential of γγ and epsilonγ collisions at PETRA/PEP and LEP energies with respect to new particle searches. Some interesting possibilities, including searches for spinless composite bosons, non-standard enhanced Higgs particles, scalar electrons (e) and γγ ->'nothing' emerge. (orig.)

  1. Research accomplishments and future goals in particle physics

    International Nuclear Information System (INIS)

    1991-12-01

    This report presents the research accomplishments and ongoing activities of Boston University researchers in high energy physics. We are active in eight principal areas which are discussed in this report: Colliding Beams - physics of electron-positron annihilation; Accelerator Design Physics - advanced accelerator design; Monopole/ Neutrino - searchers for magnetic monopoles and for neutrino oscillations; Proton Decay - search for nucleon instability and study of nonaccelarator physics; Particle Theory - theoretical high energy particles physics; Muon G-2 - an experiment to measure the anomalous magnetic moment of the muon with a factor of 20 better precision than currently achieved; SSSintcal - scintillating fiber calorimetry for the SSC; and SSC Muon Detectors - development of muon detectors for the GEM Experiment at the SSC

  2. Particle physics experiments 1992

    International Nuclear Information System (INIS)

    Roberts, B.A.

    1993-03-01

    The research programs described here were carried out in 1992 at Rutherford Appleton Laboratory and funded by the United Kingdom Science and Engineering Research Council. The area covered in these experiments is particle physics. Unedited contributions from over forty experimental programs are included. Experiments are listed according to their current status, the accelerator used and its years of operation. (UK)

  3. Prospects of particle physics

    International Nuclear Information System (INIS)

    Meyer-Berkhout, U.

    1986-01-01

    Remarkable progress has been achieved in the last two decades in the field of particle physics. From the insight gained by the many experimental data, physicists derive a framework picture of matter on the sub-nuclear level, consisting of fundamental components which interact with each other in a defined and quantitatively detectable manner. The data now available allowed a quantum field theory of strong interactions to be set up for the first time, and a unified theory of electromagnetic and weak interaction. Particle physicists today take particular interest in the problem of whether the strong interaction might fit into an extended unified theory. Such a grand unified theory would have a far-reaching impact on the conceptual models both of the cosmic and sub-nuclear dimensions, and possibly lead to observable effects in domains of energy and mass which will be opened up for experiments by the new accelerator generation underway. Current activities throughout the world for constructing or projecting the new high-energy particle accelerators are outlined in the article, together with the prospects expected by particle physicists, and a look back on the history and achievements of this field of science. (orig.) [de

  4. Space- and ground-based particle physics meet at CERN

    CERN Multimedia

    CERN Bulletin

    2012-01-01

    The fourth international conference on Particle and Fundamental Physics in Space (SpacePart12) will take place at CERN from 5 to 7 November. The conference will bring together scientists working on particle and fundamental physics in space and on ground, as well as space policy makers from around the world.   One hundred years after Victor Hess discovered cosmic rays using hot air balloons, the experimental study of particle and fundamental physics is still being pursued today with extremely sophisticated techniques: on the ground, with state-of-the-art accelerators like the LHC; and in space, with powerful observatories that probe, with amazing accuracy, the various forms of cosmic radiation, charged and neutral, which are messengers of the most extreme conditions of matter and energy. SpacePart12 will be the opportunity for participants to exchange views on the progress of space-related science and technology programmes in the field of particle and fundamental physics in space. SpacePar...

  5. Symmetry and the Standard Model mathematics and particle physics

    CERN Document Server

    Robinson, Matthew

    2011-01-01

    While elementary particle physics is an extraordinarily fascinating field, the huge amount of knowledge necessary to perform cutting-edge research poses a formidable challenge for students. The leap from the material contained in the standard graduate course sequence to the frontiers of M-theory, for example, is tremendous. To make substantial contributions to the field, students must first confront a long reading list of texts on quantum field theory, general relativity, gauge theory, particle interactions, conformal field theory, and string theory. Moreover, waves of new mathematics are required at each stage, spanning a broad set of topics including algebra, geometry, topology, and analysis. Symmetry and the Standard Model: Mathematics and Particle Physics, by Matthew Robinson, is the first volume of a series intended to teach math in a way that is catered to physicists. Following a brief review of classical physics at the undergraduate level and a preview of particle physics from an experimentalist's per...

  6. Rationale of beings: Recent developments in particle, nuclear and general physics

    International Nuclear Information System (INIS)

    Ishikawa, K.; Kawazoc, Y.; Matsuzaki, H.; Takahashi, K.

    1986-01-01

    This book presents papers on particle physics and nuclear physics. The chapters are on gravity, particles and fields, quantum theories, field theories, nuclei and atoms and general physics. Recent developments in various fields of physics in general are discussed

  7. Beacons of discovery the worldwide science of particle physics

    CERN Document Server

    International Committee for Future Accelerators (ICFA)

    2011-01-01

    To discover what our world is made of and how it works at the most fundamental level is the challenge of particle physics. The tools of particle physics—experiments at particle accelerators and underground laboratories, together with observations of space—bring opportunities for discovery never before within reach. Thousands of scientists from universities and laboratories around the world collaborate to design, build and use unique detectors and accelerators to explore the fundamental physics of matter, energy, space and time. Together, in a common world-wide program of discovery, they provide a deep understanding of the world around us and countless benefits to society. Beacons of Discovery presents a vision of the global science of particle physics at the dawn of a new light on the mystery and beauty of the universe.

  8. Cosmology and particle physics

    International Nuclear Information System (INIS)

    Salati, P.

    1986-01-01

    If the hot Big Bang model is correct, the very early universe provides us with a good laboratory to test our ideas on particle physics. The temperature and the density at that time are so high that each known particle must exist in chemical and in thermal equilibrium with the others. When the universe cools, the particles freeze out, leaving us today with a cosmic background. Such a kind of relic is of great interest because we can probe the Big Bang Model by studying the fossilized gas of a known particle. Conversely we can use that model to derive information about a hypothetical particle. Basically the freezing of a gas occurs a temperature T o and may be thermal or chemical. Studying the decoupling of a stable neutrino brings information on its mass: if the mass M ν lies in the forbidden range, the neutrino has to be unstable and its lifetime is constrained by cosmology. As for the G.U.T. Monopole, cosmology tells us that its present mass density is either to big or to small (1 monopole/observable universe) owing to a predicted flux far from the Parker Limit. Finally, the super red-giant star life time constrains the axion or the Higgs to be more massive than .2 MeV [fr

  9. Experiences in automatic keywording of particle physics literature

    CERN Document Server

    Montejo Ráez, Arturo

    2001-01-01

    Attributing keywords can assist in the classification and retrieval of documents in the particle physics literature. As information services face a future with less available manpower and more and more documents being written, the possibility of keyword attribution being assisted by automatic classification software is explored. A project being carried out at CERN (the European Laboratory for Particle Physics) for the development and integration of automatic keywording is described.

  10. Studies in theoretical particle physics

    International Nuclear Information System (INIS)

    Kaplan, D.B.

    1992-01-01

    This report focuses on research on three distinct areas of particle physics: Chiral Fermions on the Lattice; Weak Scale Baryogenesis; analysis of parity violating nuclear forces, and other an attempt to render the electric dipole moment of the neutron immune from quantum gravity corrections

  11. Particle physics using nuclear targets

    International Nuclear Information System (INIS)

    Ferbel, T.

    1978-01-01

    The use of nuclear targets in particle physics is discussed and some recent results obtained in studies of hadronic interactions on nuclei summarized. In particular experimental findings on inclusive production and on coherent dissociation of mesons and baryons at high energies are presented. 41 references

  12. Research in elementary particle physics

    International Nuclear Information System (INIS)

    1992-01-01

    Experimental and theoretical work on high energy physics is reviewed. Included are preparations to study high-energy electron-proton interactions at HERA, light-cone QCD, decays of charm and beauty particles, neutrino oscillation, electron-positron interactions at CLEO II, detector development, and astrophysics and cosmology

  13. Tests of the particle physics-physical cosmology interface

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1993-01-01

    Three interrelated interfaces of particle physics and physical cosmology are discussed: (1) inflation and other phase transitions; (2) Big Bang Nucleosynthesis (and also the quark-hadron transition); and (3) structure formation (including dark matter). Recent observations that affect each of these topics are discussed. Topic number 1 is shown to be consistent with the COBE observations but not proven and it may be having problems with some age-expansion data. Topic number 2 has now been well-tested and is an established ''pillar'' of the Big Bang. Topic number 3 is the prime arena of current physical cosmological activity. Experiments to resolve the current exciting, but still ambiguous, situation following the COBE results are discussed

  14. Current Experiments in Particle Physics (September 1996)

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H.; Lehar, F.; Klyukhin, V.I.; Ryabov, Yu.G.; Bilak, S.V.; Illarionova, N.S.; Khachaturov, B.A.; Strokovsky, E.A.; Hoffman, C.M.; Kettle, P.-R.; Olin, A.; Armstrong, F.E.

    1996-09-01

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries. This report contains full summaries of 180 approved current and recent experiments in elementary particle physics. The focus of the report is on selected experiments which directly contribute to our better understanding of elementary particles and their properties such as masses, widths or lifetimes, and branching fractions.

  15. Semiconductor detectors in nuclear and particle physics

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.

    1995-01-01

    Semiconductor detectors for elementary particle physics and nuclear physics in the energy range above 1 GeV are briefly reviewed. In these two fields semiconductor detectors are used mainly for the precise position sensing. In a typical experiment, the position of a fast charged particle crossing a relatively thin semiconductor detector is measured. The position resolution achievable by semiconductor detectors is compared with the resolution achievable by gas filled position sensing detectors. Semiconductor detectors are divided into two groups; (i) classical semiconductor diode detectors and (ii) semiconductor memory detectors. Principles of the signal formation and the signal read-out for both groups of detectors are described. New developments of silicon detectors of both groups are reported. copyright 1995 American Institute of Physics

  16. Particle physics experiments 1988

    International Nuclear Information System (INIS)

    Bairstow, R.

    1989-01-01

    This report describes work carried out in 1988 on experiments approved by the Particle Physics Experiments Selection Panel. The contents consist of unedited contributions from each experiment. More than forty projects at different accelerators (SPS, ISIS, PETRA, LAMPF, LEP, HERA, BNL, ILL, LEAR) are listed. Different organisations collaborate on different projects. A brief progress report is given. References to published articles are given. (author)

  17. Charting the Course for Elementary Particle Physics

    Science.gov (United States)

    Richter, B.

    2007-02-16

    "It was the best of times; it was the worst of times" is the way Dickens begins the Tale of Two Cities. The line is appropriate to our time in particle physics. It is the best of times because we are in the midst of a revolution in understanding, the third to occur during my career. It is the worst of times because accelerator facilities are shutting down before new ones are opening, restricting the opportunity for experiments, and because of great uncertainty about future funding. My task today is to give you a view of the most important opportunities for our field under a scenario that is constrained by a tight budget. It is a time when we cannot afford the merely good, but must give first priority to the really important. The defining theme of particle physics is to learn what the universe is made of and how it all works. This definition spans the full range of size from the largest things to the smallest things. This particle physics revolution has its origins in experiments that look at both.

  18. Charting the Course for Elementary Particle Physics

    International Nuclear Information System (INIS)

    Richter, Burton

    2007-01-01

    ''It was the best of times; it was the worst of times'' is the way Dickens begins the Tale of Two Cities. The line is appropriate to our time in particle physics. It is the best of times because we are in the midst of a revolution in understanding, the third to occur during my career. It is the worst of times because accelerator facilities are shutting down before new ones are opening, restricting the opportunity for experiments, and because of great uncertainty about future funding. My task today is to give you a view of the most important opportunities for our field under a scenario that is constrained by a tight budget. It is a time when we cannot afford the merely good, but must give first priority to the really important. The defining theme of particle physics is to learn what the universe is made of and how it all works. This definition spans the full range of size from the largest things to the smallest things. This particle physics revolution has its origins in experiments that look at both

  19. Industrial impact of particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-11-15

    The aim of particle physics is to advance Man's knowledge of the structure of the Universe around him. However attention is turning increasingly to links between the Laboratory and the growth area of high technology. What is the natural timescale for 'spinoff'? Can it be accelerated?.

  20. Topics in elementary particle physics

    International Nuclear Information System (INIS)

    Dugan, M.J.

    1985-01-01

    Topics in elementary particle physics are discussed. Models with N = 2 supersymmetry are constructed. The CP violation properties of a class of N = 1 supergravity models are analyzed. The structure of a composite Higgs model is investigated. The implications of a 17 keV neutrino are considered

  1. Advances in magnetospheric physics, 1971--1974: energetic particles

    International Nuclear Information System (INIS)

    West, H.I. Jr.

    1974-12-01

    An account is given of energetic particle research in magnetospheric physics for the time period 1971--1974. Emphasis is on relating the various aspects of energetic particles to magnetospheric processes. 458 refs. (U.S.)

  2. Electronic Instrumentations for High Energy Particle Physics and Neutrino Physics

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00452332

    The present dissertation describes design, qualification and operation of several electronic instrumentations for High Energy Particle Physics experiments (LHCb) and Neutrino Physics experiments (CUORE and CUPID). Starting from 2019, the LHCb experiment at the LHC accelerator will be upgraded to operate at higher luminosity and several of its detectors will be redesigned. The RICH detector will require a completely new optoelectronic readout system. The development of such system has already reached an advanced phase, and several tests at particle beam facilities allowed to qualify the performance of the entire system. In order to achieve a higher stability and a better power supply regulation for the front-end chip, a rad-hard low dropout linear regulator, named ALDO, has been developed. Design strategies, performance tests and results from the irradiation campaign are presented. In the Neutrino Physics field, large-scale bolometric detectors, like those adopted by CUORE and its future upgrade CUPID, offer u...

  3. Pixel Detectors for Particle Physics and Imaging Applications

    CERN Document Server

    Wermes, N

    2003-01-01

    Semiconductor pixel detectors offer features for the detection of radiation which are interesting for particle physics detectors as well as for imaging e.g. in biomedical applications (radiography, autoradiography, protein crystallography) or in Xray astronomy. At the present time hybrid pixel detectors are technologically mastered to a large extent and large scale particle detectors are being built. Although the physical requirements are often quite different, imaging applications are emerging and interesting prototype results are available. Monolithic detectors, however, offer interesting features for both fields in future applications. The state of development of hybrid and monolithic pixel detectors, excluding CCDs, and their different suitability for particle detection and imaging, is reviewed.

  4. Research accomplishments and future goals in particle physics

    International Nuclear Information System (INIS)

    Whitaker, J.S.

    1990-01-01

    This document presents our proposal to continue the activities of Boston University researchers in eight projects in high energy physics research: Colliding Beams Physics; Accelerator Design Physics; MACRO Project; Proton Decay Project; Theoretical Particle Physics; Muon G-2 Project; and Hadron Collider Physics. The scope of each of these projects is presented in detail in this paper

  5. World's particle physics laboratories join to create new communication resource

    CERN Multimedia

    2003-01-01

    "The worldwide particle physics community today (August 12) launched Interactions.org, a new global, Web-based resource developed to provide news, high-quality imagery, video and other tools for communicating the science of particle physics" (1 page).

  6. The interface of mathematics and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Quillen, D.G.; Segal, G.B.; Tsousheung Tsun (Oxford Univ. (UK). Mathematical Inst.) (eds.)

    1990-01-01

    This collection of papers is based on the proceedings of a conference organized by the Institute of Mathematics and its Applications on the Interface of Mathematics and Particle Physics held at Oxford University in September 1988. There are twenty-five papers, all of which are indexed separately. Many contribute to the search for an understanding of how gravity can be unified with other interactions in one field theory. String and twistor theories are important in this search and many of the papers refer to strings, superstrings or twistor. All the papers seek a physical interpretation of theories and elementary particles. (author).

  7. The Future of Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bjorken, James

    2000-06-15

    After a very brief review of twentieth century elementary particle physics, prospects for the next century are discussed. First and most important are technological limits of opportunities; next, the future experimental program, and finally the status of the theory, in particular its limitations as well as its opportunities.

  8. Experimental particle physics

    International Nuclear Information System (INIS)

    Steinberg, R.I.; Lane, C.E.

    1992-09-01

    The goals of this research are the experimental testing of fundamental theories of physics beyond the standard model and the exploration of cosmic phenomena through the techniques of particle physics. We are working on the MACRO experiment, which employs a large-area underground detector to search fore grand unification magnetic monopoles and dark matter candidates and to study cosmic ray muons as well as low- and high-energy neutrinos; the Chooz experiment to search for reactor neutrino oscillations at a distance of 1 km from the source; a new proposal (the Perry experiment) to construct a one-kiloton liquid scintillator in the Fairport, Ohio underground facility IMB to study neutrino oscillations with a 13 km baseline; and development of technology for improved liquid scintillators and for very-low-background materials in support of the MACRO and Perry experiments and for new solar neutrino experiments

  9. Research accomplishments and future goals in particle physics

    International Nuclear Information System (INIS)

    1987-01-01

    This document presents a report of the research accomplishments of Boston University researchers in six projects in high energy physics research: Study of high energy electron-positron annihilation, using the ASP and SLD detectors at SLAC; Search for proton decay and neutrinos from point astrophysical sources, as well as the study of cosmic ray muons and neutrinos in the IMB detector; Development of a new underground detector facility in the Gran Sasso Laboratory in Italy for magnetic monopoles and to study astrophysical muons and neutrinos; Preparation of an experiment to measure the anomalous magnetic moment of the muon in a new superconducting storage ring and detector system at BNL; Development of new concepts for particle accelerator components, including design and prototyping of high-precision electrostatic and magnetic elements; and Study of theoretical particle physics, including lattice gauge theories, string theories, phenomenology of the Standard Model and its extensions, and application of particle physics concepts to the early universe, cosmology and astrophysics, as well as the extension of these techniques into computational physics

  10. Symmetry and conservation laws in particle physics in the fifties

    International Nuclear Information System (INIS)

    Michel, L.

    1989-01-01

    This paper puzzles over why symmetry, so central to particle physics today, was so little attended to in the 1950s when the need for it was becoming profound, with the notion of parity violation and other break-downs in conservation laws, such as angular momentum and charge conjugation. Group theory, including Lie groups, would also have helped understanding of the particle physics discoveries of the 1950s such as strange particles, resonances, and associated production. They were adopted ten years too late by the physics community. (UK)

  11. On some common problems in particle physics and nuclei physics

    International Nuclear Information System (INIS)

    Vinh Mau, R.

    1976-01-01

    Results of recent studies on the use of a nuclear potential derived from the present knowledge in particle physics, in nuclei and systems composed by nucleon-antinucleon pairs, are presented and discussed

  12. Elementary particle physics at the University of Florida. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    This report discusses research in the following areas: theoretical elementary particle physics; experimental elementary particle physics; axion project; SSC detector development; and computer acquisition. (LSP).

  13. Hopf algebra structures in particle physics

    International Nuclear Information System (INIS)

    Weinzierl, Stefan

    2004-01-01

    In the recent years, Hopf algebras have been introduced to describe certain combinatorial properties of quantum field theories. I give a basic introduction to these algebras and review some occurrences in particle physics. (orig.)

  14. Particle Physics at the Cosmic, Intensity, and Energy Frontiers

    Energy Technology Data Exchange (ETDEWEB)

    Essig, Rouven

    2018-04-06

    Major efforts at the Intensity, Cosmic, and Energy frontiers of particle physics are rapidly furthering our understanding of the fundamental constituents of Nature and their interactions. The overall objectives of this research project are (1) to interpret and develop the theoretical implications of the data collected at these frontiers and (2) to provide the theoretical motivation, basis, and ideas for new experiments and for new analyses of experimental data. Within the Intensity Frontier, an experimental search for a new force mediated by a GeV-scale gauge boson will be carried out with the $A'$ Experiment (APEX) and the Heavy Photon Search (HPS), both at Jefferson Laboratory. Within the Cosmic Frontier, contributions are planned to the search for dark matter particles with the Fermi Gamma-ray Space Telescope and other instruments. A detailed exploration will also be performed of new direct detection strategies for dark matter particles with sub-GeV masses to facilitate the development of new experiments. In addition, the theoretical implications of existing and future dark matter-related anomalies will be examined. Within the Energy Frontier, the implications of the data from the Large Hadron Collider will be investigated. Novel search strategies will be developed to aid the search for new phenomena not described by the Standard Model of particle physics. By combining insights from all three particle physics frontiers, this research aims to increase our understanding of fundamental particle physics.

  15. 77 FR 33253 - Regulatory Guide 8.24, Revision 2, Health Physics Surveys During Enriched Uranium-235 Processing...

    Science.gov (United States)

    2012-06-05

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0115] Regulatory Guide 8.24, Revision 2, Health Physics..., ``Health Physics Surveys During Enriched Uranium-235 Processing and Fuel Fabrication'' was issued with a... specifically with the following aspects of an acceptable occupational health physics program that are closely...

  16. Current experiments in elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Armstrong, F.E., Oyanagi, Y.; Dodder, D.C.; Ryabov, Yu.G.; Frosch, R.; Olin, A.; Lehar, F.; Moskalev, A.N.; Barkov, B.P.

    1987-03-01

    This report contains summaries of 720 recent and current experiments in elementary particle physics (experiments that finished taking data before 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.

  17. Current experiments in elementary particle physics

    International Nuclear Information System (INIS)

    Wohl, C.G.; Armstrong, F.E.; Oyanagi, Y.; Dodder, D.C.; Ryabov, Yu.G.; Frosch, R.; Olin, A.; Lehar, F.; Moskalev, A.N.; Barkov, B.P.

    1987-03-01

    This report contains summaries of 720 recent and current experiments in elementary particle physics (experiments that finished taking data before 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized

  18. Particle Physics Outreach to Secondary Education

    International Nuclear Information System (INIS)

    Bardeen, Marjorie G.; Johansson, K. Erik; Young, M. Jean

    2011-01-01

    This review summarizes exemplary secondary education and outreach programs of the particle physics community. We examine programs from the following areas: research experiences, high-energy physics data for students, informal learning for students, instructional resources, and professional development. We report findings about these programs' impact on students and teachers and provide suggestions for practices that create effective programs from those findings. We also include some methods for assessing programs.

  19. Particle Physics Outreach to Secondary Education

    Energy Technology Data Exchange (ETDEWEB)

    Bardeen, Marjorie G.; /Fermilab; Johansson, K.Erik; /Stockholm U.; Young, M.Jean

    2011-11-21

    This review summarizes exemplary secondary education and outreach programs of the particle physics community. We examine programs from the following areas: research experiences, high-energy physics data for students, informal learning for students, instructional resources, and professional development. We report findings about these programs' impact on students and teachers and provide suggestions for practices that create effective programs from those findings. We also include some methods for assessing programs.

  20. The 2nd International Conference on Particle Physics and Astrophysics

    CERN Document Server

    Soldatov, Evgeny; ICPPA 2016

    2016-01-01

    The 2nd International Conference on Particle Physics and Astrophysics (ICPPA-2016) will be held in Moscow, Russia, (from the 10th to 14th of October). The conference is organized by the National Research Nuclear University “MEPhI”. The aim of the Conference is to promote contacts between scientists and to develop new ideas in fundamental research. Therefore we will bring together experts and young scientists working in experimental and theoretical aspects of nuclear physics, particle physics (including astroparticle physics), and cosmology. ICPPA-2016 aims to present the most recent results in astrophysics and collider physics from the main experiments actively taking data as well as any upgrades for the methods of experimental particle physics. Furthermore, one special workshop will be held within the framework of this conference: «SiPM development and application». The working language of the conference is English

  1. Open Access Publishing in Particle Physics

    CERN Document Server

    2007-01-01

    Particle Physics, often referred to as High Energy Physics (HEP), spearheaded the Open Access dissemination of scientific results with the mass mailing of preprints in the pre-Web era and with the launch of the arXiv preprint system at the dawn of the '90s. The HEP community is now ready for a further push to Open Access while retaining all the advantages of the peerreview system and, at the same time, bring the spiralling cost of journal subscriptions under control. I will present a plan for the conversion to Open Access of HEP peer-reviewed journals, through a consortium of HEP funding agencies, laboratories and libraries: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics). SCOAP3 will engage with scientific publishers towards building a sustainable model for Open Access publishing, which is as transparent as possible for HEP authors. The current system in which journals income comes from subscription fees is replaced with a scheme where SCOAP3 compensates publishers for the costs...

  2. Selected exercises in particle and nuclear physics

    CERN Document Server

    Bianchini, Lorenzo

    2018-01-01

    This book presents more than 300 exercises, with guided solutions, on topics that span both the experimental and the theoretical aspects of particle physics. The exercises are organized by subject, covering kinematics, interactions of particles with matter, particle detectors, hadrons and resonances, electroweak interactions and flavor physics, statistics and data analysis, and accelerators and beam dynamics. Some 200 of the exercises, including 50 in multiple-choice format, derive from exams set by the Italian National Institute for Nuclear Research (INFN) over the past decade to select its scientific staff of experimental researchers. The remainder comprise problems taken from the undergraduate classes at ETH Zurich or inspired by classic textbooks. Whenever appropriate, in-depth information is provided on the source of the problem, and readers will also benefit from the inclusion of bibliographic details and short dissertations on particular topics. This book is an ideal complement to textbooks on experime...

  3. Probing the frontiers of particle physics with tabletop-scale experiments.

    Science.gov (United States)

    DeMille, David; Doyle, John M; Sushkov, Alexander O

    2017-09-08

    The field of particle physics is in a peculiar state. The standard model of particle theory successfully describes every fundamental particle and force observed in laboratories, yet fails to explain properties of the universe such as the existence of dark matter, the amount of dark energy, and the preponderance of matter over antimatter. Huge experiments, of increasing scale and cost, continue to search for new particles and forces that might explain these phenomena. However, these frontiers also are explored in certain smaller, laboratory-scale "tabletop" experiments. This approach uses precision measurement techniques and devices from atomic, quantum, and condensed-matter physics to detect tiny signals due to new particles or forces. Discoveries in fundamental physics may well come first from small-scale experiments of this type. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. Concepts in particle physics a concise introduction to the standard model

    CERN Document Server

    Nair, V Parameswaran

    2018-01-01

    The 2013 discovery of the Higgs boson posed a challenge to both physics undergraduates and their instructors. Since particle physics is seldom taught at the undergraduate level, the question "what is the Higgs and why does its discovery matter?" is a common question among undergraduates. Equally, answering this question is a problem for physics instructors. This book is an attempt to put the key concepts of particle physics together in an appealing way, and yet give enough extra tidbits for students seriously considering graduate studies in particle physics. It starts with some recapitulation of relativity and quantum mechanics, and then builds on it to give both conceptual ideas regarding the Standard Model of particle physics as well as technical details. It is presented in an informal lecture style, and includes "remarks" sections where extra material, history, or technical details are presented for the interested student. The last lecture presents an assessment of the open questions, and where the future...

  5. Research in particle physics

    International Nuclear Information System (INIS)

    1992-09-01

    Research accomplishments and current activities of Boston University researchers in high energy physics are presented. Principal areas of activity include the following: detectors for studies of electron endash positron annihilation in colliding beams; advanced accelerator component design, including the superconducting beam inflector, electrostatic quadrupoles, and the ''electrostatic muon kicker''; the detector for the MACRO (Monopole, Astrophysics, and Cosmic Ray Observatory) experiment; neutrino astrophysics and the search for proton decay; theoretical particle physics (electroweak and flavor symmetry breaking, hadron collider phenomenology, cosmology and astrophysics, new field-theoretic models, nonperturbative investigations of quantum field theories, electroweak interactions); measurement of the anomalous magnetic moment of the muon; calorimetry for the GEM experiment; and muon detectors for the GEM experiment at the Superconducting Super Collider

  6. [Medium energy particle physics

    International Nuclear Information System (INIS)

    Nefkens, B.M.K.

    1985-10-01

    Investigations currently carried out by the UCLA Particle Physics Research Group can be arranged into four programs: Pion-Nucleon Scattering; Tests of Charge Symmetry and Isospin Invariance; Light Nuclei (Strong Form Factors of 3 H, 3 He, 4 He; Detailed Balance in pd right reversible γ 3 H; Interaction Dynamics); and Search for the Rare Decay Μ + → e + + γ (MEGA). The general considerations which led to the choice of physics problems investigated by our group are given in the next section. We also outline the scope of the research being done which includes over a dozen experiments. The main body of this report details the research carried out in the past year, the status of various experiments, and new projects

  7. Particle physics-astrophysics working group

    International Nuclear Information System (INIS)

    Cronin, J.W.; Kolb, E.W.

    1989-01-01

    The working group met each afternoon and listened to mini-symposia on a broad range of subjects covering all aspects of particle physics---astrophysics both theoretical and experimental. This paper reports that as a result, a number of papers which follow were commissioned to reflect the present status and future prospects of the field

  8. UCLA Particle Physics Research Group annual progress report

    International Nuclear Information System (INIS)

    Nefkens, B.M.K.

    1981-08-01

    The objectives, basic research programs, recent results and continuing activities of the UCLA Particle Physics Research Group are presented. The objectives of the research are to discover, to formulate, and to elucidate the physics laws that govern the elementary constituents of matter and to determine basic properties of particles. A synopsis of research carried out last year is given. The main body of this report is the account of the techniques used in our investigations, the results obtained, and the plans for continuing and new research

  9. Research accomplishments and future goals in particle physics

    International Nuclear Information System (INIS)

    1989-01-01

    This document reports the past year's achievements and the present directions of the activities of Boston University researchers in seven projects in high energy physics research: study of high energy electron-positron annihilation, using the SLD detector at SLAC; search for proton decay and neutrinos from point astrophysical sources, as well as the study of cosmic ray muons and neutrinos in the IMB detector; development of a new underground detector facility in the Gran Sasso Laboratory in Italy for magnetic monopoles and to study astrophysical muons and neutrinos; preparation of an experiment to measure the anomalous magnetic moment of the muon in a new superconducting storage ring detector system at BNL; development of new concepts for particle accelerator components, including design and prototyping of high-precision electrostatic and magnetic elements; study of proton-antiproton collisions using the UA1 detector at CERN; and study of theoretical particle physics, including lattice gauge theories, string theories, phenomenology of the Standard Model and its extensions, and application of particle physics concepts to the early universe, cosmology and astrophysics, as well as the extension of these techniques into computational physics

  10. Elementary particle physics at the University of Florida. Annual progress report

    International Nuclear Information System (INIS)

    1996-01-01

    This report discusses the following topics: Task A: theoretical elementary particle physics; Task B: experimental elementary particle physics; Task C: axion project; Task G: experimental research in collider physics; and Task S: computer acquisition. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  11. The unknowns in particles physics

    International Nuclear Information System (INIS)

    Spiro, M.

    1996-01-01

    The author presents the historical quest of particles since Democrite's time. Some particles are very difficult to identify as for instance neutrinos and antiparticles. Nine anti-hydrogen atoms have just being manufactured in the CERN. This successful result is the last episode of a long history. This achievement is the first step in the elaboration of antimatter too. The enigma of the antimatter created at the universe dawn is perennial. Why is the universe made of matter and not of antimatter? Is there any slight difference in the physical law of antimatter and matter? That's why the study of antimatter is so important. The question of the missing mass of our galaxy leads to another quest: the Higgs's particles. The graviton is another target. That could lead to the unification theory, may be another proof of the unreasonable efficiency of mathematics. (O.M.). 2 figs

  12. FPGA fault tolerance in particle physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gebelein, Jano; Engel, Heiko; Kebschull, Udo [Kirchhoff-Institute for Physics, Heidelberg University (Germany)

    2010-07-01

    The behavior of matter in physically extreme conditions is in focus of many high-energy-physics experiments. For this purpose, high energy charged particles (ions) are collided with each other and energy- or baryon densities are created similar to those at the beginning of the universe or to those which can be found in the center of neutron stars. In both cases a plasma of quarks and gluons (QGP) is present, which immediately decomposes to hadrons within a short period of time. At this process, particles are formed, which allow statements about the beginning of the universe when captured by large detectors, but which also lead to the massive occurance of hardware failures within the detector's electronic devices. This contribution is about methods to mitigate radiation susceptibility for Field Programmable Gate Arrays (FPGA), enabling them to be used within particle detector systems to directly gain valid data in the readout chain or to be used as detector-control-system.

  13. Instrumentation in elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Fabjan, C W [European Organization for Nuclear Research, Geneva (Switzerland); Pilcher, J E [Chicago Univ., IL (United States); eds.

    1988-01-01

    The first International Committee for Future Accelerators Instrumentation School was held at the International Centre for Theoretical Physics, Trieste, Italy from 8 to 19 June 1987. The School was attended by 74 students of whom 45 were from developing countries, 10 lecturers and 9 laboratory instructors. The next generation of elementary particle physics experiments would depend vitally on new ideas in instrumentation. This is a field where creativity and imagination play a major role and large budgets are not a prerequisite. One of the unique features was the presentation of four laboratory experiments using modern techniques and instrumentation. Refs, figs and tabs.

  14. Instrumentation in elementary particle physics

    International Nuclear Information System (INIS)

    Fabjan, C.W.; Pilcher, J.E.

    1988-01-01

    The first International Committee for Future Accelerators Instrumentation School was held at the International Centre for Theoretical Physics, Trieste, Italy from 8 to 19 June 1987. The School was attended by 74 students of whom 45 were from developing countries, 10 lecturers and 9 laboratory instructors. The next generation of elementary particle physics experiments would depend vitally on new ideas in instrumentation. This is a field where creativity and imagination play a major role and large budgets are not a prerequisite. One of the unique features was the presentation of four laboratory experiments using modern techniques and instrumentation. Refs, figs and tabs

  15. Data acquisition in nuclear and particle physics

    International Nuclear Information System (INIS)

    Renk, B.

    1993-01-01

    An introduction to the methodics of the measurement data acquisition in nuclear and particle physics for students of physics as well as experimental physicists and engineers in research and industry. The contents are: Obtaining of measurement data, digitizing and triggers, memories and microprocessors, bus systems, communication and networks, and examples for data acquisition systems

  16. Semiconductor detectors in nuclear and particle physics

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.

    1992-01-01

    Semiconductor detectors for elementary particle physics and nuclear physics in the energy range above 1 GeV are briefly reviewed. In these two fields semiconductor detectors are used mainly for the precise position sensing. In a typical experiment, the position of a fast charged particle crossing a relatively thin semiconductor detector is measured. The position resolution achievable by semiconductor detectors is compared with the resolution achievable by gas filled position sensing detectors. Semiconductor detectors are divided into two groups: Classical semiconductor diode detectors and semiconductor memory detectors. Principles of the signal formation and the signal read-out for both groups of detectors are described. New developments of silicon detectors of both groups are reported

  17. Quarks and gluons in nuclear and particle physics

    International Nuclear Information System (INIS)

    Van Hove, L.

    1988-01-01

    This paper provides a broad overview of strong interactions, or nuclear forces, as ones understanding has expanded over the past 25 years. The major particles and models are briefly touched upon. The author expands upon the field theories which have evolved to explain the experimental work, and the present model of quarks and gluons which form the components of hadrons. The standard model has been very successful in explaining much of the newly acquired experimental data. But the property of confinement, where the partons, (quarks and gluons), are not observed seperately has precluded observation of these particles. He touches on the manifestation of these particles in high energy physics, where they model the observed particles and resonances, and are responsible for the production of hadronic jets. However in nuclear physics, one does not need to postulate the existance of these particles to explain the properties of nuclei, until one deals with interaction energies in the range of GeV. The author then touches on the area of ultra-relativistic nuclear physics, where the partons must play a role in the effects which are observed. In particular he discusses deep inelastic lepton scattering on nuclei, the Drell-Yan process in nuclei, and ultra-relativistic nuclear collisions. Finally he gives a brief discussion of the quark-gluon plasma, which is postulated to form during very high energy collisions, manifesting itself as a brief deconfinement of the partons into an equilibrium plasma

  18. Summer School on Particle Physics

    CERN Document Server

    2017-01-01

    The goal of the school is to give a detailed overview of particle physics from the basics of Standard Model phenomenology to the most important areas where significant progress has been achieved recently. This year the school will cover both the energy and the intensity frontiers, including lectures on experimental techniques for small scale experiments and on formal developments in quantum field theory.

  19. Cryogenic detectors for particle physics

    International Nuclear Information System (INIS)

    Gonzalez-Mestres, L.; Perret-Gallix, D.

    1988-11-01

    A comprehensive introduction to cryogenic detector developments for particle physics is presented, covering conventional detectors cooled to low temperature (scintillators and semiconductors), superconductive and thermal sensitive devices, as well as the basics of cold electronics. After giving a critical overview of current work, we elaborate on possible new ways for further improvements and briefly evaluate the feasibility of the main proposed applications

  20. Recent advances in elementary particle physics

    International Nuclear Information System (INIS)

    Zepeda, D.A.

    1985-01-01

    A brief review of recent successful results in elementary particle physics, as well as of those problems which may be dealt with in the present of near future is presented. A description of elementary particles and their interactions as they are presently conceived is given. The standard model of electroweak interactions is discussed in detail and the relevance of the recent discovery of the intermediate bosons W + and Z is analized. Finally, the weak features of the standard model and the theories which solve these problems are pointed out. (author)

  1. Scattering from Model Nonspherical Particles Theory and Applications to Environmental Physics

    CERN Document Server

    Borghese, Ferdinando; Saija, Rosalba

    2007-01-01

    The scattering of electromagnetic radiation by nonspherical particles has become an increasingly important research topic over the past 20 years. Instead of handling anisotropic particles of arbitrary shape, the authors consider the more amenable problem of aggregates of spherical particles. This is often a very satisfactory approach as the optical response of nonspherical particles depends more on their general symmetry and the quantity of refractive material than on the precise details of their shape. The book addresses a wide spectrum of applications, ranging from scattering properties of water droplets containing pollutants, atmospheric aerosols and ice crystals to the modeling of cosmic dust grains as aggregates. In this extended second edition the authors have encompassed all the new topics arising from their recent studies of cosmic dust grains. Thus many chapters were deeply revised and new chapters were added. The new material spans The description of the state of polarization of electromagnetic wave...

  2. 6th International Conference on Trapped Charged Particles and Fundamental Physics

    CERN Document Server

    Schury, Peter; Ichikawa, Yuichi

    2017-01-01

    This volume presents the proceedings of the International Conference on Trapped Charged Particles and Fundamental Physics (TCP 14). It presents recent developments in the theoretical and experimental research on trapped charged particles and related fundamental physics and applications. The content has been divided topic-wise covering basic questions of Fundamental Physics, Quantum and QED Effects, Plasmas and Collective Behavior and Anti-Hydrogen. More technical issues include Storage Ring Physics, Precision Spectroscopy and Frequency Standards, Highly Charged Ions in Traps, Traps for Radioactive Isotopes and New Techniques and Facilities. An applied aspect of ion trapping is discussed in section devoted to Applications of Particle Trapping including Quantum Information and Processing. Each topic has a more general introduction, but also more detailed contributions are included. A selection of contributions exemplifies the interdisciplinary nature of the research on trapped charged particles worldwide. Repri...

  3. There’s more to particle physics at CERN than colliders

    CERN Multimedia

    2016-01-01

    CERN’s scientific programme must be compelling, unique, diverse, and integrated into the global landscape of particle physics. One of the Laboratory’s primary goals is to provide a diverse range of excellent physics opportunities and to put its unique facilities to optimum use, maximising the scientific return.   In this spirit, we have recently established a Physics Beyond Colliders study group with a mandate to explore the unique opportunities offered by the CERN accelerator complex to address some of today’s outstanding questions in particle physics through projects complementary to high-energy colliders and other initiatives in the world. The study group will provide input to the next update of the European Strategy for Particle Physics. The process kicked off with a two-day workshop at CERN on 6 and 7 September, organised by the study group conveners: Joerg Jaeckel (Heidelberg), Mike Lamont (CERN) and Claude Vallée (CPPM Marseille and DESY). Its purpo...

  4. Particle physics data system at IHEP

    International Nuclear Information System (INIS)

    Alekhin, S.I.; Grudtsin, S.N.; Demidov, N.G.; Ezhela, V.V.

    1981-01-01

    This note presents the description of information search and retrieval facilities supplied by the Berkeley Database Management System - BDMS V2.2 implemented for ICL-1906A computers at IHEP. The system is used for creation and maintenance of archieve Particle Physics Data Bases [ru

  5. Particle physics and the LEP project

    International Nuclear Information System (INIS)

    Roussarie, A.

    1985-01-01

    A very didactic chronological account of the last 20 years of elementary particle physics is presented. After some recall on matter constituents and interactions between these constituents, some details are given on researches which will be made in LEP, the e + -e - collider [fr

  6. The CMS Masterclass and Particle Physics Outreach

    Energy Technology Data Exchange (ETDEWEB)

    Cecire, Kenneth [Notre Dame U.; Bardeen, Marjorie [Fermilab; McCauley, Thomas [Notre Dame U.

    2014-01-01

    The CMS Masterclass enables high school students to analyse authentic CMS data. Students can draw conclusions on key ratios and particle masses by combining their analyses. In particular, they can use the ratio of W^+ to W^- candidates to probe the structure of the proton, they can find the mass of the Z boson, and they can identify additional particles including, tentatively, the Higgs boson. In the United States, masterclasses are part of QuarkNet, a long-term program that enables students and teachers to use cosmic ray and particle physics data for learning with an emphasis on data from CMS.

  7. Scintillating plastic optical fiber radiation detectors in high energy particle physics

    International Nuclear Information System (INIS)

    Bross, A.D.

    1991-01-01

    We describe the application of scintillating optical fiber in instrumentation for high energy particle physics. The basic physics of the scintillation process in polymers is discussed first and then we outline the fundamentals of scintillating fiber technology. Fiber performance, optimization, and characterization measurements are given. Detector applications in the areas of particle tracking and particle energy determination are then described. 13 refs., 12 figs

  8. Quantum Optics, Diffraction Theory, and Elementary Particle Physics

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    Physical optics has expanded greatly in recent years. Though it remains part of the ancestry of elementary particle physics, there are once again lessons to be learned from it. I shall discuss several of these, including some that have emerged at CERN and Brookhaven.

  9. SOFTWARE REVIEW: Oxford Personal Revision Guides: A-level Physics 1999/2000 Syllabus GCSE Physics 1999/2000 Syllabus

    Science.gov (United States)

    Parker, Kerry

    2000-09-01

    ! Both CDs begin with an introductory section which guides the student into the Revision Plan Wizard. The authors have suggested how much time each section requires, so depending upon what topics the students needs to work at, and the date of their exam, they can design a revision timetable. The student is simply told how long they have to revise each day, and then in the main physics section they are told what they have to study each week. Both packages also feature an equation handler: `a piece of software that allows different manipulations on a predefined equation and is aimed at bettering one's arithmetical skills.' (I think the language gives away the fact that this software is not designed for lower ability GCSE candidates!) The GCSE physics content is divided into seven `chapters' - Making things happen, Heat, Forces at work, Waves, Electrical and magnetic phenomena, Properties of materials and The cosmic onion. There is also a comprehensive introduction, an equation handler, some exam board questions, tests and reports. The physics is well written and is taught in colourful images, many of which are animated and have a brief commentary. There are plenty of brief six-minute tests, interspersed with the revision materials, to keep the students on their toes, but I was disappointed with the interactivity in the physics content pages. To progress, the student only has to keep clicking `I've read this page'. The A-level material is subdivided into Foundations, Key topics, Further topics and Physical data. Foundations involves motion, work, electricity, magnetism and waves, while Key topics looks at dimensions, vectors, moments, circular motion and other material from the core syllabus. Further topics cover most of the material required by the options from different boards, like many revision books. The text is clearly written and the graphics are colourful, but most of the content is still a slightly animated electronic textbook. I was disappointed, for example, that

  10. Current experiments in particle physics - particle data group

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H. [Stanford Univ., CA (United States). Stanford Linear Accelerator Center; Lehar, F. [Centre d`Etudes Nucleaires de Saclay, Gif-sur-Yvette (France); Kettle, P.R. [Paul Scherrer Institute, Villigen (Switzerland)] [and others

    1996-09-01

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries.

  11. Current experiments in particle physics - particle data group

    International Nuclear Information System (INIS)

    Galic, H.; Kettle, P.R.

    1996-09-01

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries

  12. Particle physics 2009: licence to smile

    CERN Multimedia

    2009-01-01

    Julie Peasley is the keeper of a very unusual zoo, a colourful set of hand-made plushies that represent the particles of the Standard Model and beyond. Her passion for physics and her art degree combine to give particles their personalities. She visited CERN on 25 May and met the CERNois in the library. Scientists consider that they have ‘seen’ a particle when their detectors send an electronic signal and a spot appears on their computer screen. The American artist Julie Peasley has gone much further than that and has started sewing toys so that we can not just ‘see’ what particles look like but even play with them! "When I started," says Julie, "my plushies weren’t smiling, they were just a face. Later on, I realised that I wanted them to all be happy and to appear like they are having fun. Except for the neutron, which insists on remaining ne...

  13. The influence of human physical activity and contaminated clothing type on particle resuspension

    International Nuclear Information System (INIS)

    McDonagh, A.; Byrne, M.A.

    2014-01-01

    A study was conducted to experimentally quantify the influence of three variables on the level of resuspension of hazardous aerosol particles from clothing. Variables investigated include physical activity level (two levels, low and high), surface type (four different clothing material types), and time i.e. the rate at which particles resuspend. A mixture of three monodisperse tracer-labelled powders, with median diameters of 3, 5, and 10 microns, was used to “contaminate” the samples, and the resuspended particles were analysed in real-time using an Aerodynamic Particle Sizer (APS), and also by Neutron Activation Analysis (NAA). The overall finding was that physical activity resulted in up to 67% of the contamination deposited on clothing being resuspended back into the air. A detailed examination of the influence of physical activity level on resuspension, from NAA, revealed that the average resuspended fraction (RF) of particles at low physical activity was 28 ± 8%, and at high physical activity was 30 ± 7%, while the APS data revealed a tenfold increase in the cumulative mass of airborne particles during high physical activity in comparison to that during low physical activity. The results also suggest that it is not the contaminated clothing's fibre type which influences particle resuspension, but the material's weave pattern (and hence the material's surface texture). Investigation of the time variation in resuspended particle concentrations indicated that the data were separable into two distinct regimes: the first (occurring within the first 1.5 min) having a high, positive rate of change of airborne particle concentration relative to the second regime. The second regime revealed a slower rate of change of particle concentration and remained relatively unchanged for the remainder of each resuspension event. -- Highlights: • Experimental investigation of the resuspension of hazardous particles from clothing. • Influence of human physical activity

  14. Geneva University - Next Particle Physics Seminars

    CERN Multimedia

    Université de Genève

    2010-01-01

    GENEVA UNIVERSITY École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 GENEVA 4 Tel. (022) 379 62 73 Fax (022) 379 69 92 Wednesday 17 November 2010 PARTICLE PHYSICS SEMINAR at 17-00 hrs – Stückelberg Auditorium Results on CP-Violation in The B_s and B_d systems at the Tevatron Dr. Iain Bertram, Lancaster Results will be presented from the investigation of CP-violation in B mesons at the Tevatron. The evidence for an anomalous likes-sign dimuon charge asymmetry will be presented, along with the latest results on CP violation in the Bs -> J/Psi Phi system. The implications of these results and the possibility of confirming them in the future will also be discussed. Information : http://dpnc.unige.ch/seminaire/annonce.html Organizer : G. Pasztor Wednesday 1st December 2010 PARTICLE PHYSICS SEMINAR at 17-00 hrs – Stückelberg Auditorium PAMELA - A COSMIC RAY OBSERVATO...

  15. Martinus Veltman, the Electroweak Theory, and Elementary Particle Physics

    Science.gov (United States)

    Particle Physics Resources with Additional Information Martinus Veltman Courtesy University of Michigan Martinus J.G. Veltman, the John D. MacArthur Professor Emeritus of Physics at the University of Michigan , was awarded the 1999 Nobel Prize in physics "for elucidating the quantum structure of electroweak

  16. The cosmology/particle physics interface

    International Nuclear Information System (INIS)

    Olive, K.A.; Schramm, D.N.

    1985-01-01

    The paper reviews the interface between elementary particle physics and cosmology; and concentrates on inflation and the dark matter problem. Inflationary models of the Universe are examined, including phase transitions and supergravity. The three classes of dark matter problems discussed are: dynamical halos, galaxy formation and clustering, and the Ω=1 of inflation. Possible solutions to the cosmological dark matter problems are considered. (U.K.)

  17. Non-accelerator particle physics

    International Nuclear Information System (INIS)

    Steinberg, R.I.; Lane, C.E.

    1991-08-01

    The goals of this research were the experimental testing of fundamental theories of physics such as grand unification and the exploration of cosmic phenomena through the techniques of particle physics. We have worked on the MACRO experiment, which is employing a large area underground detector to search for grand unification magnetic monopoles and dark matter candidates and to study cosmic ray muons as well as low and high energy neutrinos; the νIMB project, which seeks to refurbish and upgrade the IMB water Cerenkov detector to perform an improved proton decay search together with a long baseline reactor neutrino oscillation experiments using a one kiloton liquid scintillator (the Perry experiment); and development of technology for improved liquid scintillators and for very low background materials in support of the MACRO and Perry experiments and for new solar neutrino experiments

  18. Non-accelerator particle physics

    International Nuclear Information System (INIS)

    Steinberg, R.I.; Lane, C.E.

    1991-09-01

    The goals of this research are the experimental testing of fundamental theories of physics such as grand unification and the exploration of cosmic phenomena through the techniques of particle physics. We are working on the MACRO experiment, which employs a large area underground detector to search for grand unification magnetic monopoles and dark matter candidates and to study cosmic ray muons as well as low and high energy neutrinos: the νIMB project, which seeks to refurbish and upgrade the IMB water Cerenkov detector to perform an improved proton decay search together with a long baseline reactor neutrino oscillation experiment using a kiloton liquid scintillator (the Perry experiment); and development of technology for improved liquid scintillators and for very low background materials in support of the MACRO and Perry experiments and for new solar neutrino experiments. 21 refs., 19 figs., 6 tabs

  19. Particle Physics in High School: A Diagnose Study.

    Directory of Open Access Journals (Sweden)

    Paula Tuzón

    Full Text Available The science learning process improves when the contents are connected to students' lives. Particle physics has had a great impact in our society in the last years and has changed the theoretical picture about matter fundamental dynamics. Thus, we think that academic contents about matter components and interactions should be updated. With this study we aim to characterize the level of knowledge of high school students about this topic. We built a test with questions about classical atomic models, particle physics, recent discoveries, social implications and students opinions about it. Contrary to our first suspicion, students' answers show a high variability. They have new physics ideas and show a great interest towards modern concepts. We suggest including an updated view of this topic as part of the curriculum.

  20. Particle Physics in High School: A Diagnose Study.

    Science.gov (United States)

    Tuzón, Paula; Solbes, Jordi

    2016-01-01

    The science learning process improves when the contents are connected to students' lives. Particle physics has had a great impact in our society in the last years and has changed the theoretical picture about matter fundamental dynamics. Thus, we think that academic contents about matter components and interactions should be updated. With this study we aim to characterize the level of knowledge of high school students about this topic. We built a test with questions about classical atomic models, particle physics, recent discoveries, social implications and students opinions about it. Contrary to our first suspicion, students' answers show a high variability. They have new physics ideas and show a great interest towards modern concepts. We suggest including an updated view of this topic as part of the curriculum.

  1. Applications of Particle Accelerators in Medical Physics

    OpenAIRE

    Cuttone, G

    2008-01-01

    Particle accelerators are often associated to high energy or nuclear physics. As well pointed out in literature [1] if we kindly analyse the number of installation worldwide we can easily note that about 50% is mainly devoted to medical applications (radiotherapy, medical radioisotopes production, biomedical research). Particle accelerators are also playing an important indirect role considering the improvement of the technical features of medical diagnostic. In fact the use of radionuclide f...

  2. Modern Elementary Particle Physics

    Science.gov (United States)

    Kane, Gordon

    2017-02-01

    1. Introduction; 2. Relativistic notation, Lagrangians, and interactions; 3. Gauge invariance; 4. Non-abelian gauge theories; 5. Dirac notation for spin; 6. The Standard Model Lagrangian; 7. The electroweak theory and quantum chromodynamics; 8. Masses and the Higgs mechanism; 9. Cross sections, decay widths, and lifetimes: W and Z decays; 10. Production and properties of W± and Zᴼ; 11. Measurement of electroweak and QCD parameters: the muon lifetime; 12. Accelerators - present and future; 13. Experiments and detectors; 14. Low energy and non-accelerator experiments; 15. Observation of the Higgs boson at the CERN LHC: is it the Higgs boson?; 16. Colliders and tests of the Standard Model: particles are pointlike; 17. Quarks and gluons, confinement and jets; 18. Hadrons, heavy quarks, and strong isospin invariance; 19. Coupling strengths depend on momentum transfer and on virtual particles; 20. Quark (and lepton) mixing angles; 21. CP violation; 22. Overview of physics beyond the Standard Model; 23. Grand unification; 24. Neutrino masses; 25. Dark matter; 26. Supersymmetry.

  3. Elementary particle physics: Experimental

    International Nuclear Information System (INIS)

    Lord, J.J.; Burnett, T.H.; Wilkes, R.J.

    1989-01-01

    We are carrying out a research program in high energy experimental particle physics. Studies of high energy hadronic interactions and leptoproduction processes continue using several experimental techniques. Progress has been made on the study of multiparticle production processes in nuclei. Ultra-high energy cosmic ray nucleus-nucleus interactions have been investigated by the Japanese American Cosmic Emulsion Experiment (JACEE) using balloon-borne emulsion chamber detectors. In the area of particle astrophysics, our studies of cosmic ray nuclear interactions have enabled use to make the world's most accurate determination of the comparison of the cosmic rays above 10 13 eV. We have only the detector that can observe interaction vertices and identify particles at energies up to 10**15 eV. Our observations are getting close to placing limits on the acceleration mechanisms postulated for pulsars in which the spin and magnetic moment axes are at different angles. In June, 1989 approval was given by NASA for our participation in the Space Station program. The SCINATT experiment will make use of emulsion chamber detectors, similar to the planned JACEE hybrid balloon flight detectors. These detector will permit precise determination of secondary particle charges, momenta and rapidities, and the accumulation of data will be at least a factor of 10 to 100 greater than in balloon experiments. Emulsion chamber techniques ate also employed in an experiment using accelerator heavy ion beams at CERN and Brookhaven National Laboratory to investigate particle production processes in central collisions of nuclei in the energy range 15 -- 200A GeV. Our study of hadroproduction in lepton interactions is continuing with approval of another 8 months run for deep inelastic muon scattering experiment E665 at Fermilab

  4. Physical characterization of diesel exhaust nucleation mode particles

    Energy Technology Data Exchange (ETDEWEB)

    Lahde, T.

    2013-11-01

    An increasing concern of the adverse health effects of aerosol particles is forcing the combustion engine industry to develop engines with lower particle emissions. The industry has put most of their efforts into soot control and has achieved a significant reduction in diesel exhaust particle mass. Nevertheless, it is not clear that the large particles, dominating the mass, cause the harmfulness of the exhaust particles in the biological interaction. Nowadays, the harmful potential of diesel exhaust particles often connects with the particle surface area, and the view has turned to particle number below 100 nm size range. Unfortunately, the achieved low exhaust particle mass does not necessarily imply a low particle number. This text focuses on the physical characteristics of diesel exhaust nucleation model particles. The volatility characteristics and the electrical charge state of the particles are studied first. Second, the relation between the nonvolatile nucleation mode emissions and the soot, the nitrogen oxide (NO{sub x}) emissions and the engine parameters are covered. The nucleation mode particles had distinctively different physical characteristics with different after-treatment systems. The nucleation mode was volatile and electrically neutral with a diesel particle filter after-treatment system. Without an after-treatment system or with an after-treatment system with low particle removal efficiency, the nucleation mode was partly nonvolatile and included an electrical charge. The difference suggests different formation routes for the nucleation particles with different after-treatment systems. The existence of the nonvolatile nucleation mode particles also affected the soot mode charge state. The soot charge state was positively biased when the nonvolatile nucleation mode was detected but slightly negatively biased when the nonvolatile nucleation mode was absent. The nonvolatile nucleation mode was always negatively biased. This electrical charge

  5. Proposal for the Award of Two Contracts for the Technical Services for Work on Components of CERN Particle Accelerators and High Energy Physics Experiments

    CERN Document Server

    2003-01-01

    This document concerns the award of two contracts for the technical services for work on components of CERN particle accelerators and high energy physics experiments. Following a market survey carried out among 73 firms in fourteen Member States, a call for tenders (IT-3156/SPL) was sent on 4 November 2002 to three consortia in four Member States. By the closing date, CERN had received tenders from the three consortia. The Finance Committee is invited to agree to the negotiation of two contracts with: 1) the consortium SERCO FACILITIES MANAGEMENT (NL) - GERARD PERRIER INDUSTRIE (FR) - INEO ALPES (FR), the lowest bidder, for approximately 55% of the technical services for work on components of CERN particle accelerators and high energy physics experiments, for an initial period of five years and for a total amount not exceeding 37 435 270 euros (54 902 500 Swiss francs), subject to revision for inflation from 1 January 2005. The contract will include options for two one-year extensions beyond the initial five-...

  6. Current experiments in elementary particle physics

    International Nuclear Information System (INIS)

    Galic, H.; Dodder, D.C.; Klyukhin, V.I.; Ryabov, Yu.G.; Illarionova, N.S.; Lehar, F.; Oyanagi, Y.; Frosch, R.

    1992-06-01

    This report contains summaries of 584 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1986 are excluded. Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, KEK, LAMPF, Novosibirsk, Paul Scherrer Institut (PSI), Saclay, Serpukhov, SLAC, SSCL, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries

  7. 175th International School of Physics "Enrico Fermi" : Radiation and Particle Detectors

    CERN Document Server

    Bottigli, U; Oliva, P

    2010-01-01

    High energy physics (HEP) has a crucial role in the context of fundamental physics. HEP experiments make use of a massive array of sophisticated detectors to analyze the particles produced in high-energy scattering events. This book contains the papers from the workshop 'Radiation and Particle Detectors', organized by the International School of Physics, and held in Varenna in July 2009. Its subject is the use of detectors for research in fundamental physics, astro-particle physics and applied physics. Subjects covered include the measurement of: the position and length of ionization trails, time of flight velocity, radius of curvature after bending the paths of charged particles with magnetic fields, coherent transition radiation, synchrotron radiation, electro-magnetic showers produced by calorimetric methods and nuclear cascades produced by hadrons in massive steel detectors using calorimetry. Detecting muons and the detection of Cherenkov radiation are also covered, as is the detection of neutrinos by ste...

  8. Theoretical Studies in Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Collins, John C.; Roiban, Radu S

    2013-04-01

    This final report summarizes work at Penn State University from June 1, 1990 to April 30, 2012. The work was in theoretical elementary particle physics. Many new results in perturbative QCD, in string theory, and in related areas were obtained, with a substantial impact on the experimental program.

  9. REDUCE system in elementary particle physics

    International Nuclear Information System (INIS)

    Grozin, A.G.

    1990-01-01

    This preprint is the first part of the problem book on using REDUCE for calculations of cross sections and decay probabilities in elementary particle physics. It contains the review of the necessary formulae and examples of using REDUCE for calculations with vectors and Dirac matrices. 5 refs.; 11 figs

  10. The priority of internal symmetries in particle physics

    Science.gov (United States)

    Kantorovich, Aharon

    2003-12-01

    In this paper, I try to decipher the role of internal symmetries in the ontological maze of particle physics. The relationship between internal symmetries and laws of nature is discussed within the framework of ;Platonic realism.; The notion of physical ;structure; is introduced as representing a deeper ontological layer behind the observable world. I argue that an internal symmetry is a structure encompassing laws of nature. The application of internal symmetry groups to particle physics came about in two revolutionary steps. The first was the introduction of the internal symmetries of hadrons in the early 1960s. These global and approximate symmetries served as means of bypassing the dynamics. I argue that the realist could interpret these symmetries as ontologically prior to the hadrons. The second step was the gauge revolution in the 1970s, where symmetries became local and exact and were integrated with the dynamics. I argue that the symmetries of the second generation are fundamental in the following two respects: (1) According to the so-called ;gauge argument,; gauge symmetry dictates the existence of gauge bosons, which determine the nature of the forces. This view, which has been recently criticized by some philosophers, is widely accepted in particle physics at least as a heuristic principle. (2) In view of grand unified theories, the new symmetries can be interpreted as ontologically prior to baryon matter.

  11. A word from the DG: The European strategy for particle physics

    CERN Multimedia

    2006-01-01

    The CERN Council took the bold and important decision of unanimously approving a European strategy for particle physics at a dedicated meeting held in Lisbon on 14 July. The consequences for particle physics and for this Laboratory are profound. The full strategy statement is available through the CERN Council web pages at the address http://www.cern.ch/council-strategygroup, but I would like to underline some of the key points here. In endorsing the strategy, the Council has agreed to act as a council for European particle physics, and not only as a council for CERN. The Council has accepted the considerable responsibility of defining and updating Europe's strategy for particle physics, and of representing Europe on the world stage. The general issues of the strategy recognize Europe's strength and depth in the field, at strong national institutes, at universities and laboratories, and at CERN. The scientific issues place the LHC firmly on top of the list, both in terms of its initial exploitation and possi...

  12. Annual report 1977, Particle physics, Institute of Physics, University of Stockholm

    International Nuclear Information System (INIS)

    1978-01-01

    The research in the field of elementary particle physics concerns hadronic processes at high energies, using the facilities offered by CERN and Fermilab, USA. The teams carrying out experiments with bubble chambers are mainly working at the institute, whereas the tems utilizing counter techniques spend long periods at CERN. Experiments at CERN SPS and Fermilab are in progress. The equipment for bubble chamber physics at the institute consists of five scanning tables, one manual measuring machine and the Spiral Reader measuring machine. A computer CD 6400 is available at the institute. The research program comprises study of 100 GeV/c antiproton-deuterium reactions, 12 GeV/c antiproton-deuterium reactions, 9 and 12 GeV/c antiproton-proton reactions studying all annihilation and non-annihilation processes, a detailed study of amplitudes in 4 GeV/c π - p reactions with strange particles, strange particle production in 19 GeV/c pp and study of 19 GeV/c pd. The main emphasis in the future will be on experiments with the European Hybrid Spectrometer system and the Big European Bubble Chamber at SPS. The group participates in the design work and planning for the physics experiments. Research physicists from the group participate in counter experiments at SPS studying elastic scattering at high transverse momenta, elastic scattering of π, K and p sup(+-) at PS energies and study of line reversal invariance in πp and Kp reactions. (author)

  13. Particle accelerator physics and technology for high energy density physics research

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, D.H.H.; Blazevic, A.; Rosmej, O.N.; Spiller, P.; Tahir, N.A.; Weyrich, K. [Gesellschaft fur Schwerionenforschung, GSI-Darmstadt, Plasmaphysik, Darmstadt (Germany); Hoffmann, D.H.H.; Dafni, T.; Kuster, M.; Ni, P.; Roth, M.; Udrea, S.; Varentsov, D. [Darmstadt Univ., Institut fur Kernphysik, Technische Schlobgartenstr. 9 (Germany); Jacoby, J. [Frankfurt Univ., Institut fur Angewandte Physik (Germany); Kain, V.; Schmidt, R.; Zioutas, K. [European Organization for Nuclear Research (CERN), Geneve (Switzerland); Zioutas, K. [Patras Univ., Dept. of Physics (Greece); Mintsev, V.; Fortov, V.E. [Russian Academy of Sciences, Institute of Problems of Chemical Physics, Chernogolovka (Russian Federation); Sharkov, B.Y. [Institut for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)

    2007-08-15

    Interaction phenomena of intense ion- and laser radiation with matter have a large range of application in different fields of science, extending from basic research of plasma properties to applications in energy science, especially in inertial fusion. The heavy ion synchrotron at GSI now routinely delivers intense uranium beams that deposit about 1 kJ/g of specific energy in solid matter, e.g. solid lead. Our simulations show that the new accelerator complex FAIR (Facility for Antiproton and Ion Research) at GSI as well as beams from the CERN large hadron collider (LHC) will vastly extend the accessible parameter range for high energy density states. A natural example of hot dense plasma is provided by our neighbouring star the sun, and allows a deep insight into the physics of fusion, the properties of matter at high energy density, and is moreover an excellent laboratory for astro-particle physics. As such the sun's interior plasma can even be used to probe the existence of novel particles and dark matter candidates. We present an overview on recent results and developments of dense plasma physics addressed with heavy ion and laser beams combined with accelerator- and nuclear physics technology. (authors)

  14. REDUCE in elementary particle physics. Quantum electrodynamics

    International Nuclear Information System (INIS)

    Grozin, A.G.

    1990-01-01

    This preprint is the second part of the problem book on using REDUCE for calculations of cross sections and decay probabilities in elementary particle physics. It contains examples of calculations in quantum electrodynamics. 5 refs

  15. Physics and engineering of radiation detection

    CERN Document Server

    Ahmed, Syed Naeem

    2015-01-01

    Physics and Engineering of Radiation Detection presents an overview of the physics of radiation detection and its applications. It covers the origins and properties of different kinds of ionizing radiation, their detection and measurement, and the procedures used to protect people and the environment from their potentially harmful effects. The second edition is fully revised and provides the latest developments in detector technology and analyses software. Also, more material related to measurements in particle physics and a complete solutions manual have been added.

  16. Particle Physics Aspects of Antihydrogen Studies with ALPHA at CERN

    CERN Document Server

    Fujiwara, M.C.; Bertsche, W.; Bowe, P.D.; Bray, C.C.; Butler, E.; Cesar, C.L.; Chapman, S.; Charlton, M.; Fajans, J.; Funakoshi, R.; Gill, D.R.; Hangst, J.S.; Hardy, W.N.; Hayano, R.S.; Hayden, M.E.; Humphries, A.J.; Hydomako, R.; Jenkins, M.J.; Jorgensen, L.V.; Kurchaninov, L.; Lai, W.; Lambo, R.; Madsen, N.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Seif El Nasr, S.; Silveira, D.M.; Storey, J.W.; Thompson, R.I.; van der Werf, D.P.; Wasilenko, L.; Wurtele, J.S.; Yamazaki, Y.

    2008-01-01

    We discuss aspects of antihydrogen studies, that relate to particle physics ideas and techniques, within the context of the ALPHA experiment at CERN's Antiproton Decelerator facility. We review the fundamental physics motivations for antihydrogen studies, and their potential physics reach. We argue that initial spectroscopy measurements, once antihydrogen is trapped, could provide competitive tests of CPT, possibly probing physics at the Planck Scale. We discuss some of the particle detection techniques used in ALPHA. Preliminary results from commissioning studies of a partial system of the ALPHA Si vertex detector are presented, the results of which highlight the power of annihilation vertex detection capability in antihydrogen studies.

  17. Elementary particle physics in a nutshell

    CERN Document Server

    Tully, Christopher C

    2011-01-01

    The new experiments underway at the Large Hadron Collider at CERN in Switzerland may significantly change our understanding of elementary particle physics and, indeed, the universe. This textbook provides a cutting-edge introduction to the field, preparing first-year graduate students and advanced undergraduates to understand and work in LHC physics at the dawn of what promises to be an era of experimental and theoretical breakthroughs. Christopher Tully, an active participant in the work at the LHC, explains some of the most recent experiments in the field. But this book, which emerged fr

  18. Explanatory Coherence and Belief Revision in Naive Physics

    Science.gov (United States)

    1988-07-01

    continental drift (Thagard & Nowak, 1988), and debates about why the dinosaurs became extinct . Application of ECHO to the belief revisions in Pat and Hal...rewono of nocuamy Idid 4onoly by bodck number) Students of reasoning have long tried to understand how people revise systems of beliefs. We maintain...Princeton University Students of reasoning have long tried to understand how people revise systems of beliefs (see Wertheimer, 1945, for example). We will

  19. The influence of human physical activity and contaminated clothing type on particle resuspension.

    Science.gov (United States)

    McDonagh, A; Byrne, M A

    2014-01-01

    A study was conducted to experimentally quantify the influence of three variables on the level of resuspension of hazardous aerosol particles from clothing. Variables investigated include physical activity level (two levels, low and high), surface type (four different clothing material types), and time i.e. the rate at which particles resuspend. A mixture of three monodisperse tracer-labelled powders, with median diameters of 3, 5, and 10 microns, was used to "contaminate" the samples, and the resuspended particles were analysed in real-time using an Aerodynamic Particle Sizer (APS), and also by Neutron Activation Analysis (NAA). The overall finding was that physical activity resulted in up to 67% of the contamination deposited on clothing being resuspended back into the air. A detailed examination of the influence of physical activity level on resuspension, from NAA, revealed that the average resuspended fraction (RF) of particles at low physical activity was 28 ± 8%, and at high physical activity was 30 ± 7%, while the APS data revealed a tenfold increase in the cumulative mass of airborne particles during high physical activity in comparison to that during low physical activity. The results also suggest that it is not the contaminated clothing's fibre type which influences particle resuspension, but the material's weave pattern (and hence the material's surface texture). Investigation of the time variation in resuspended particle concentrations indicated that the data were separable into two distinct regimes: the first (occurring within the first 1.5 min) having a high, positive rate of change of airborne particle concentration relative to the second regime. The second regime revealed a slower rate of change of particle concentration and remained relatively unchanged for the remainder of each resuspension event. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Particle physics with cold neutrons

    International Nuclear Information System (INIS)

    Dubbers, D.

    1991-01-01

    Slow neutrons are used in a large number of experiments to study the physics of particles and their fundamental interactions. Some of these experiments search for manifestations of ''new physics'' like baryon- or lepton-number nonconservation, time reversal nonconservation, new particles, right-handed currents, nonzero neutron charge, nonlinear terms in the Schrodinger equation, exotic e + e - states, and others. Other slow neutron experiments test the present Standard Model. The parity nonconserving weak neutron-nucleon interaction is studied in a variety of experiments. Free neutron beta decay gives precise values for the weak vector and axialvector coupling constants, which allow precise tests of basic symmetries like the conservation of the weak vector current, the unitarity of the weak quark mixing matrix, SU(3) flavour symmetry, and right-handed currents. Neutron beta decay data are further needed to calculate weak cross-sections, for applications, in big bang cosmology, in astrophysics, in solar physics and the solar neutrino problem, and in such mundane things as neutrino detection efficiencies in neutrino oscillation or proton decay experiments. Neutron-nucleon, neutron-nucleus and neutron-electron scattering lengths are determined in high precision experiments, which use methods like neutron interferometry or neutron gravity spectrometry. The experiments give information on quantities like the neutron charge radius or the neutron electric polarizability. Precision measurements of other fundamental constants lead to a better, model-independent value of the fine structure constant. Finally, the fundamental experiments on quantum mechanics, like spinor 4π -rotation, Berry's phase, dressed neutrons, Aharanov - Casher effect, or gravitational effects on the neutron's phase will be briefly discussed. (author)

  1. Academic Training Lectures | Black Holes from a Particle Physics Perspective | 18-19 November

    CERN Multimedia

    2014-01-01

    Black Holes from a Particle Physics Perspective by Georgi Dvali   Tuesday 18 and Wednesday 19 November 2014 from 11 am to 12 noon at CERN ( 40-S2-A01 - Salle Anderson ) Description: We will review the physics of black holes, both large and small, from a particle physicist's perspective, using particle physics tools for describing concepts such as entropy, temperature and quantum information processing. We will also discuss microscopic pictures of black hole formation in high energy particle scattering, potentially relevant for high-energy accelerator experiments, and some differences and similarities with the signatures of other BSM physics. See the Indico page here.

  2. Research in elementary particle physics at the University of Florida: Annual progress report

    International Nuclear Information System (INIS)

    1988-01-01

    This is a progress report on the Elementary Particle Physics program at the University of Florida. The program has five tasks covering a broad range of topics in theoretical and experimental high energy physics: Theoretical Elementary Particle Physics, Experimental High Energy Physics, Axion Search, Detector Development, and Computer Requisition

  3. Electron cooling and elementary particle physics

    International Nuclear Information System (INIS)

    Budker, G.I.; Skrinskij, A.N.

    1978-01-01

    This review is devoted to a new method in experimental physics - the electron cooling. This method opens possibilities in storing the intense and highly monochromatic beams of heavy particles and allows to carry out a wide series of experiments of a high luminocity and resolution. The method is based on the beam cooling by an accompanying flux of electrons. The cooling is due to Coulomb collisions of the beam particles with electrons. In the first part the theoretical aspects of the method are considered shortly. The layout of the NAP-M installation with electron cooling and results of successful experiments on cooling the proton beam are given. In the second part the new possibilities are discussed which appear due to application of electron cooling: storing the intense antiproton beams and realization of the proton - antiproton colliding beams, carrying out experiments with the super fine targets in storage rings, experiments with particles and antiparticles at ultimately low energies, storing the polarized antiprotons and other particles, production of antiatoms, antideuton storing, experiments with ion beams

  4. Particle physics today, tomorrow and beyond

    Science.gov (United States)

    Ellis, John

    2018-01-01

    The most important discovery in particle physics in recent years was that of the Higgs boson, and much effort is continuing to measure its properties, which agree obstinately with the Standard Model, so far. However, there are many reasons to expect physics beyond the Standard Model, motivated by the stability of the electroweak vacuum, the existence of dark matter and the origin of the visible matter in the Universe, neutrino physics, the hierarchy of mass scales in physics, cosmological inflation and the need for a quantum theory for gravity. Most of these issues are being addressed by the experiments during Run 2 of the LHC, and supersymmetry could help resolve many of them. In addition to the prospects for the LHC, I also review briefly those for direct searches for dark matter and possible future colliders.

  5. An historian's interest in particle physics

    International Nuclear Information System (INIS)

    Heilbron, J.L.

    1989-01-01

    This paper considers the sociological and historical implications of early particle physics. The author explains the nature of historical research and its application to scientific developments and the limitations of personal recollections as research tools. Taking the Bevatron as an example, the paper asks a number of questions about the reasons it was built and why and who benefitted from its use. The article finishes by questioning the relevance of prizes to scientific research and considers the language that particle physicists have adopted in their work from the Greek derivations to the quark types, asking whether physicists' view of themselves has changed and been reflected in their use of language. (UK)

  6. Elementary particles and physics interaction unification

    International Nuclear Information System (INIS)

    Leite-Lopes, J.

    1985-01-01

    Quantum theory and relativity theory are fundamental of relativistic quantum mechanics, quantum field theory, which is the base of elementary particle physics, gauge field theory and basic force unification models. After a short introduction of relativistic equations of the main fields, the free scalar field, the free vector field, the free electromagnetic field and the free spinor field, and of elementary particles and basic interactions, gauge invariance and electromagnetic gauge field are detailed. Then the presentation of internal degrees of freedom, especially isospin, introduces gauge field theory of Yang-Mills. At last weak interactions and strong interactions are presented and lead to grand unification theory in conclusion [fr

  7. Applications of Particle Accelerators in Medical Physics

    CERN Document Server

    Cuttone, G

    2008-01-01

    Particle accelerators are often associated to high energy or nuclear physics. As well pointed out in literature [1] if we kindly analyse the number of installation worldwide we can easily note that about 50% is mainly devoted to medical applications (radiotherapy, medical radioisotopes production, biomedical research). Particle accelerators are also playing an important indirect role considering the improvement of the technical features of medical diagnostic. In fact the use of radionuclide for advanced medical imaging is strongly increasing either in conventional radiography (CT and MRI) and also in nuclear medicine for Spect an PET imaging. In this paper role of particle accelerators for medical applications will be presented together with the main solutions applied.

  8. Nuclear and particle physics, astrophysics and cosmology (NPAC) capability review

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Antonio [Los Alamos National Laboratory

    2010-01-01

    The present document represents a summary self-assessment of the status of the Nuclear and Particle Physics, Astrophysics and Cosmology (NPAC) capability across Los Alamos National Laboratory (LANL). For the purpose of this review, we have divided the capability into four theme areas: Nuclear Physics, Particle Physics, Astrophysics and Cosmology, and Applied Physics. For each theme area we have given a general but brief description of the activities under the area, a list of the Laboratory divisions involved in the work, connections to the goals and mission of the Laboratory, a brief description of progress over the last three years, our opinion of the overall status of the theme area, and challenges and issues.

  9. Online Particle Physics Information

    Energy Technology Data Exchange (ETDEWEB)

    Kreitz, Patricia A

    2003-04-24

    This list describes a broad set of online resources that are of value to the particle physics community. It is prescreened and highly selective. It describes the scope, size, and organization of the resources so that efficient choices can be made amongst many sites which may appear similar. A resource is excluded if it provides information primarily of interest to only one institution. Because this list must be fixed in print, it is important to consult the updated version of this compilation which includes newly added resources and hypertext links to more complete information at: http://www.slac.stanford.edu/library/pdg/.

  10. Online Particle Physics Information

    International Nuclear Information System (INIS)

    Kreitz, Patricia A

    2003-01-01

    This list describes a broad set of online resources that are of value to the particle physics community. It is prescreened and highly selective. It describes the scope, size, and organization of the resources so that efficient choices can be made amongst many sites which may appear similar. A resource is excluded if it provides information primarily of interest to only one institution. Because this list must be fixed in print, it is important to consult the updated version of this compilation which includes newly added resources and hypertext links to more complete information at: http://www.slac.stanford.edu/library/pdg/

  11. Research accomplishments and future goals in particle physics

    International Nuclear Information System (INIS)

    1990-01-01

    This document presents our proposal to continue the activities of Boston University researchers in eight projects in high energy physics research: study of high energy electron-positron annihilation, using SLD detector at SLAC. Development of integrated transition radiation detection and tracking for an SSC detector; Development of new concepts for particle accelerator components, including design and prototyping of high-precision electrostatic and magnetic elements; Development of a new underground detector facility in the Gran Saso Laboratory in Italy to search for magnetic monopoles and to study astrophysical muons and neutrinos; Search for proton decay and neutrinos from point astrophysical sources, and the study of cosmic ray muons and neutrinos in the IMB detector; Study of theoretical particle physics, including lattice gauge theories, string theories, phenomenology of the Standard Model and its extensions, and application of particle physics concepts to the early universe, cosmology and astrophysics, as well as the extension of these techniques into computational physics; Preparation of an experiment to measure the anomalous magnetic moment of the muon in a new superconducting storage ring and detector system at BNL; Fabrication (with M.I.T. and Princeton) of the BGO endcaps and associated tracking chambers for the L3 detector at LEP. Development of a central tracker for the SSC; and This new tasks requests support for research, development, and beam testing of a prototype SSC calorimeter featuring a tower geometry and composed of lead alloy and scintillating fibers

  12. National Institute of Nuclear and Particle Physics - IN2P3. 2001-2003 activity report

    International Nuclear Information System (INIS)

    Spiro, Michel; Armand, Dominique

    2005-12-01

    The CNRS National Institute of Nuclear and Particle Physics (IN2P3) acts as national leader and coordinator in the fields of nuclear, particle and astro-particle physics, technological advances and their related applications, especially in the health and energy sectors. This research aims to explore particle and nuclear physics, fundamental interactions, and the links between the infinitely small and the infinitely large. Scientific fields include: Particle physics and hadronic physics, Nuclear physics, Astro-particles and cosmology, Neutrinos, Instrumentation, Computing and data, Research and development of accelerators, Back-end of the nuclear fuel cycle and nuclear energy, Medical applications. This document is IN2P3's activity report for the 2001-2003 period. It presents the strategic priorities of the Institute, the highlights and projects of the period

  13. Calorimetry energy measurement in particle physics

    CERN Document Server

    Wigmans, Richard

    2017-01-01

    Particle physics is the science that pursues the age-old quest for the innermost structure of matter and the fundamental interactions between its constituents. Modern experiments in this field rely increasingly on calorimetry, a detection technique in which the particles of interest are absorbed in the detector. Calorimeters are very intricate instruments. Their performance characteristics depend on subtle, sometimes counter-intuitive design details. This book, written by one of the world's foremost experts, is the first comprehensive text on this topic. It provides a fundamental and systematic introduction to calorimetry. It describes the state of the art in terms of both the fundamental understanding of calorimetric particle detection, and the actual detectors that have been or are being built and operated in experiments. The last chapter discusses landmark scientific discoveries in which calorimetry has played an important role. This book summarizes and puts into perspective the work described in some 900...

  14. Concepts and models in particle physics

    International Nuclear Information System (INIS)

    Paty, M.

    1977-01-01

    The knowledge of Elementary Particle Physics is characterized by an object and a purpose which are both highly theoretical. This assessment is shown and analysed by some examples taken in recent achievements in the field. It is also tried to attempt an enonciation of some criteria of the reality for concepts and objects in this matter [fr

  15. Elementary particle physics and cosmology: current status and prospects

    International Nuclear Information System (INIS)

    Rubakov, Valerii A

    1999-01-01

    The current status of elementary particle physics can be briefly summarized as follows: the Standard Model of elementary particles is perfectly (at the level of radiation effects!) adequate in describing all the available experimental data except for the recent indications of neutrino oscillations. At the same time, much (and possibly most) of today's cosmology is not encompassed by the Standard Model - a fact which, together with intrinsic theoretical difficulties and the neutrino oscillation challenge, strongly indicates that the Standard Model is incomplete. It is expected that in the current decade a 'new physics', i.e. particles and interactions beyond the Standard Model, will emerge. Major advances in cosmology, both in terms of qualitatively improved observations and theoretical analysis of the structure and evolution of the Universe, are expected as well. (special issue)

  16. Accelerating science and innovation societal benefits of European research in Particle Physics

    CERN Multimedia

    Radford, Tim; Jakobsson, Camilla; Marsollier, Arnaud; Mexner, Vanessa; O'Connor, Terry

    2013-01-01

    The story so far. Collaborative research in particle physics. The lesson for Europe: co-operation pays. Medicine and life sciences. The body of knowledge: particles harnessed for health. Energy and the environment. Think big: save energy and clean up the planet. Communication and new technologies. The powerhouse of invention. Society and skills. Power to the people. The European Strategy for Particle Physics. Update 2013.

  17. Physical aspects of heavy charged particle beams for radiotherapy

    International Nuclear Information System (INIS)

    Kawashima, Katsuhiro

    1989-01-01

    Physical properties of heavy ion beams are discussed to improve the physical dose distributions in view of radiotherapy. Preservation of the structural and functional integrity of adjacent normal tissue is required to achieve great probability of tumor control. This will be accomplished with the reduction of irradiated volume of normal tissues and with greater relative biological effectiveness (RBE) on tumor cells than that on surrounding normal cells. This suggests the use of heavy ion beams as new source of radiation that increases the therapeutic ratio. The basis of the improvement in the physical dose distribution by use of heavy charged particles is due to the finite range of the beams and to the less multiple coulomb scattering of the particles having a heavier atomic mass than proton. The depth dose distributions and dose profiles of heavy particle beams are discussed in this article. The lateral sharpness of heavy charged particles is comparable to the penumbra of high energy photon and electron beams and is not of clinical concern due to less coulomb scattering of heavy ions to lateral direction in traversing a medium. The dose gradient at the end of range of primary beam is dependent upon the energy spread and range straggling of the particles. The magnitude of range straggling is nearly proportional to the range and inversely proportional to the inverse square root of the particle mass. Heavy ion beams also undergo nuclear interactions, in which the primary beam may produce lower atomic number particles. Therefore, the dose beyond the Bragg peak is due to those fragments. Fragmentation increases as a function of the atomic mass to the 2/3 power and with the energy of the particles. Thus, the production of fragments diminishes the depth dose advantages of heavy ions. The choice of ion for radiotherapy may depend on evaluation of important parameter for tumor control. (J.P.N.)

  18. Current experiments in elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Armstrong, F.E.; Trippe, T.G.; Yost, G.P. (Lawrence Berkeley Lab., CA (USA)); Oyanagi, Y. (Tsukuba Univ., Ibaraki (Japan)); Dodder, D.C. (Los Alamos National Lab., NM (USA)); Ryabov, Yu.G.; Slabospitsky, S.R. (Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Serpukhov (USSR). Inst. Fiziki Vysokikh Ehnergij); Frosch, R. (Swiss Inst. for Nuclear Research, Villigen (Switzerla

    1989-09-01

    This report contains summaries of 736 current and recent experiments in elementary particle physics (experiments that finished taking data before 1982 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, Joint Institute for Nuclear Research (Dubna), KEK, LAMPF, Novosibirsk, PSI/SIN, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground experiments. Also given are instructions for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.

  19. Current experiments in elementary particle physics

    International Nuclear Information System (INIS)

    Wohl, C.G.; Armstrong, F.E.; Trippe, T.G.; Yost, G.P.; Oyanagi, Y.; Dodder, D.C.; Ryabov, Yu.G.; Slabospitsky, S.R.; Olin, A.; Klumov, I.A.

    1989-09-01

    This report contains summaries of 736 current and recent experiments in elementary particle physics (experiments that finished taking data before 1982 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, Joint Institute for Nuclear Research (Dubna), KEK, LAMPF, Novosibirsk, PSI/SIN, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground experiments. Also given are instructions for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized

  20. Physicists purchase materials testing machine in support of pioneering particle physics experiments

    CERN Multimedia

    Sharpe, Suzanne

    2007-01-01

    "The particle physics group at Liverpool University has purchased an LRXPlus singlecolumn materials testing machine from Lloyd Instruments, which will be used to help characterise the carbon-fibre support frames for detectors used for state-of-the-art particle physics experiments." (1 page)

  1. Bookshelf (Conceptual Foundations of Modern Particle Physics, by Robert E. Marshak)

    International Nuclear Information System (INIS)

    Fritzsch, Harald

    1994-01-01

    Particle physics really began as an independent scientific discipline after the Second World War. Robert Marshak was one of its pioneers on the theoretical front, starting out his career with important contributions on meson theory (together with Hans Bethe). The life of Marshak, who died in December 1992, was intimately interwoven with the post-war development of particle physics. His work on weak interaction theory was an important step towards the formulation of the V-A theory, the main pillar on which the modern electroweak theory rests erected. He is also remembered as the founder of the biennial 'Rochester' conference series (March 1993, page 24). Just before his death Robert Marshak finished writing his book on the concepts of particle physics. The book starts out with an historical account of the development of the field. He divides it into the startup period (1945-60) - the period of meson physics, the physics of strange particles, parity violation etc; the heroic period (1960-1975) when the Standard Model of the electroweak and strong interactions was developed; and finally the period of consolidation and speculation (since 1975). Marshak's recollection of the development of particle physics represents a personal view, worth reading by young researchers, although it does not attempt to provide a complete picture. After the historical chapter Marshak introduces the reader to the basics of quantum field theory (space-time symmetries, global internal symmetries and their breaking, gauge symmetries). Later he turns to a description of QCD and the gauge theory of the electroweak interactions. A whole chapter is devoted to the problems related to anomalies. In the last part of the book Marshak discusses various hypotheses of unifying the strong and electroweak interactions, especially the various facets of the SO(10) theory, followed by a long discussion of the fermion generation problem and of preon models. The book concludes with an extensive

  2. Energetic particle physics with applications in fusion and space plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1997-01-01

    Energetic particle physics is the study of the effects of energetic particles on collective electromagnetic (EM) instabilities and energetic particle transport in plasmas. Anomalously large energetic particle transport is often caused by low frequency MHD instabilities, which are driven by these energetic particles in the presence of a much denser background of thermal particles. The theory of collective energetic particle phenomena studies complex wave-particle interactions in which particle kinetic physics involving small spatial and fast temporal scales can strongly affect the MHD structure and long-time behavior of plasmas. The difficulty of modeling kinetic-MHD multiscale coupling processes stems from the disparate scales which are traditionally analyzed separately: the macroscale MHD phenomena are studied using the fluid MHD framework, while microscale kinetic phenomena are best described by complicated kinetic theories. The authors have developed a kinetic-MHD model that properly incorporates major particle kinetic effects into the MHD fluid description. For tokamak plasmas a nonvariational kinetic-MHD stability code, the NOVA-K code, has been successfully developed and applied to study problems such as the excitation of fishbone and Toroidal Alfven Eigenmodes (TAE) and the sawtooth stabilization by energetic ions in tokamaks. In space plasmas the authors have employed the kinetic-MHD model to study the energetic particle effects on the ballooning-mirror instability which explains the multisatellite observation of the stability and field-aligned structure of compressional Pc 5 waves in the magnetospheric ring current plasma

  3. Particle physics prospects for the KAON factory

    International Nuclear Information System (INIS)

    Bryman, D.

    1989-05-01

    The Kaon Factory at TRIUMF will produce beams of kaons, antiprotons, neutrinos and other particles with a hundred-fold increase in intensity over existing machines in the 30 GeV region. This will make possible new high precision experiments designed to test current ideas as well as high sensitivity measurements which could potentially reveal new effects. A sample of particle physics experiments involving rare kaon decays, CP and T violation studies, neutrino properties and reactions and light quark spectroscopy which might take advantage of the new opportunities presented by the Kaon Factory is discussed

  4. Particle physics - Recent successes and future prospects

    International Nuclear Information System (INIS)

    Wojcicki, S.

    1985-01-01

    The situation in particle physics today is highly analogous to that which existed in chemistry towards the end of the 19th century. During the preceding two centuries, remarkable progress has been achieved in that discipline, progress that culminated in the periodic table of Mendeleyev. This paper summarized not only the realization that the everyday matter is composed of basic building blocks, called elements, but also that these different elements had certain similarities which could be used to properly arrange them in the periodic table. Thus the inert gases (helium, neon, argon, etc.) had very similar chemical properties, namely chemical inertness; the halogens (chlorine, iodine, florine) on the other hand were highly reactive. Other similarities were seen among the rare earth group of elements, alkaline earths, and alkali metals. In this paper the author attempts to summarize briefly the historical background that led us to the present level of understanding, or more specifically to the ''standard model'' of particle physics. He also describes several difficulties with this picture, continues with some possible indications of new physics, and finally end with the discussion of the prospects for the future

  5. Social aspects of Japanese particle physics in the 1950s

    International Nuclear Information System (INIS)

    Konuma, Michiji

    1989-01-01

    Military and social restrictions imposed on Japanese scientific research following the second world war made nuclear or particle physics experiments almost impossible. However, the (Japanese) theoretical achievements of the 1940s considerably buoyed this group, namely two-meson theory, super-many-time theory and covariant renormalization theory. Economic conditions were also difficult with high inflation throughout the 1950s. Printing and distribution problems and paper shortages reduced the circulation of scientific journals, but theoretical work progressed well even in isolation. Within Japan, a circular called Soyrushiron Kenkyu (elementary particle theory research) became a valuable medium for exchange of new ideas and information. A Research Institute for Fundamental Physics, the first of several Japanese research institutes, was opened at Kyoto University in 1953, when a major international conference was held there. The second half of the 1950s was a time of expansion and consolidation for particle physics in Japan. (UK)

  6. Impact of storage rings on elementary particle physics

    International Nuclear Information System (INIS)

    Trilling, G.H.

    1979-03-01

    It is well known that new experimental discoveries often closely follow the development of new technology. There is hardly a better example of this than the close coupling between new discoveries in the frontiers of elementary particle physics and the development of the art and science of making high-energy accelerators. It is almost twenty-five years since the construction of the Bevatron made possible the discovery of the antiproton; and, since that time, knowledge and understanding of particle physics has made enormous strides in step with new developments in both the accelerator and the detector arts. An attempt is made to document how intimately many of the recent advances have been tied to the success in the development of storage rings and colliding beams

  7. UCLA Particle Physics Research Group annual progress report

    International Nuclear Information System (INIS)

    Nefkens, B.M.K.

    1983-11-01

    The objectives, basic research programs, recent results, and continuing activities of the UCLA Particle Physics Research Group are presented. The objectives of the research are to discover, to formulate, and to elucidate the physics laws that govern the elementary constituents of matter and to determine basic properties of particles. The research carried out by the Group last year may be divided into three separate programs: (1) baryon spectroscopy, (2) investigations of charge symmetry and isospin invariance, and (3) tests of time reversal invariance. The main body of this report is the account of the techniques used in our investigations, the results obtained, and the plans for continuing and new research. An update of the group bibliography is given at the end

  8. Particle physics, one hundred years of dicoveries an annotated chronological bibliography

    CERN Document Server

    Ezhela, Vladimir V; Lugovsky, S B; Polishchuk, B V; Striganov, S I; Stroganov, Y G; Armstrong, Betty; Barnett, Richard Michael; Groom, D E; Gee, P S; Trippe, Thomas G; Wohl, Charles G; Jackson, John David

    1996-01-01

    Several years before the official start of the 20th century, a series of milestone physics experiments pioneered the science which eventually became to be known as particle physics. A new book by several authors from the COMPAS group at the Institute for High Energy Physics, Protvino, near Moscow, and from the Particle Data Group effort at the Lawrence Berkeley Laboratory, reinforced by J.D. Jackson, has compiled a useful summary and bibliography of more than 500 key papers marking the development of particle physics from 1895 to the discovery of the top quark in 1995. Some 70 percent of the listed papers are post World War 2. The book is comprehensively indexed, including members of large collaborations and providing a useful benchmark. However actual entries confusingly use the first listed member of the collaboborations, even if a Nobel Prize was subsequently awarded to another member of the team.

  9. The 5th Generation model of Particle Physics

    Science.gov (United States)

    Lach, Theodore

    2009-05-01

    The Standard model of Particle Physics is able to account for all known HEP phenomenon, yet it is not able to predict the masses of the quarks or leptons nor can it explain why they have their respective values. The Checker Board Model (CBM) predicts that there are 5 generation of quarks and leptons and shows a pattern to those masses, namely each three quarks or leptons (within adjacent generations or within a generation) are related to each other by a geometric mean relationship. A 2D structure of the nucleus can be imaged as 2D plate spinning on its axis, it would for all practical circumstances appear to be a 3D object. The masses of the hypothesized ``up'' and ``dn'' quarks determined by the CBM are 237.31 MeV and 42.392 MeV respectively. These new quarks in addition to a lepton of 7.4 MeV make up one of the missing generations. The details of this new particle physics model can be found at the web site: checkerboard.dnsalias.net. The only areas were this theory conflicts with existing dogma is in the value of the mass of the Top quark. The particle found at Fermi Lab must be some sort of composite particle containing Top quarks.

  10. Electrodynamic metaphors: communicating particle physics with Feynman diagrams

    Directory of Open Access Journals (Sweden)

    Pietroni Massimo

    2002-03-01

    Full Text Available The aim of this project is to communicate the basic laws of particle physics with Feynman diagrams - visual tools which represent elementary particle processes. They were originally developed as a code to be used by physicists and are still used today for calculations and elaborations of theoretical nature. The technical and mathematical rules of Feynman diagrams are obviously the exclusive concern of physicists, but on a pictorial level they can help to popularize many concepts, ranging from matter and the antimatter; the creation, destruction and transformation of particles; the role of ‘virtual’ particles in interactions; the conservation laws, symmetries, etc. Unlike the metaphors often used to describe the microcosm, these graphic representations provide an unequivocal translation of the physical content of the underlying quantum theory. As such they are perfect metaphors, not misleading constructions. A brief introduction on Feynman diagrams will be followed by the practical realization of this project, which will be carried out with the help of an experiment based on three-dimensional manipulable objects. The Feynman rules are expressed in terms of mechanical constraints on the possible conjuctions among the various elements of the experiment. The final part of the project will present the results of this experiment, which has been conducted among high-school students.

  11. Use of new computer technologies in elementary particle physics

    International Nuclear Information System (INIS)

    Gaines, I.; Nash, T.

    1987-01-01

    Elementary particle physics and computers have progressed together for as long as anyone can remember. The symbiosis is surprising considering the dissimilar objectives of these fields, but physics understanding cannot be had simply by detecting the passage of particles. It requires a selection of interesting events and their analysis in comparison with quantitative theoretical predictions. The extraordinary reach made by experimentalists into realms always further removed from everyday observation frequently encountered technology constraints. Pushing away such barriers has been an essential activity of the physicist since long before Rossi developed the first practical electronic AND gates as coincidence circuits in 1930. This article describes the latest episode of this history, the development of new computer technologies to meet the various and increasing appetite for computing of experimental (and theoretical) high energy physics

  12. A survey of research in elementary particle physics

    International Nuclear Information System (INIS)

    Baton, J.P.; Cohen-Tannoudji, G.

    1986-05-01

    These notes are devoted to the current trends in elementary particle physics. They are not intended for the training of experts in the field. After a brief historical survey, one discusses the difficulties which have made necessary to move from classical physics to relativistic quantum physics. The main concepts of this new theory are rapidly presented. The experimental methods are discussed within a few typical experiments, already performed or scheduled. The main questions which are still unsolved are rapidly mentioned [fr

  13. A survey of research in elementary particle physics

    International Nuclear Information System (INIS)

    Baton, J.P.; Cohen-Tannoudji, G.

    1986-10-01

    These notes are devoted to the current trends in elementary particle physics. They are not intended for the training of experts in the field. After a brief historical survey, one discusses the difficulties which have made necessary to move from classical physics to relativistic quantum physics. The main concepts of this new theory are rapidly presented. The experimental methods are discussed within a few typical experiments, already performed or scheduled. The main questions which are still unsolved are rapidly mentioned [fr

  14. Supersymmetry in Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, Michael E.; /SLAC

    2008-02-05

    These lectures give a general introduction to supersymmetry, emphasizing its application to models of elementary particle physics at the 100 GeV energy scale. I discuss the following topics: the construction of supersymmetric Lagrangians with scalars, fermions, and gauge bosons, the structure and mass spectrum of the Minimal Supersymmetric Standard Model (MSSM), the measurement of the parameters of the MSSM at high-energy colliders, and the solutions that the MSSM gives to the problems of electroweak symmetry breaking and dark matter.

  15. Research in Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    White, Andrew Paul [Univ. of Texas, Arlington, TX (United States); De, Kaushik [Univ. of Texas, Arlington, TX (United States); Brandt, Andrew [Univ. of Texas, Arlington, TX (United States); Yu, Jaehoon [Univ. of Texas, Arlington, TX (United States); Farbin, Amir [Univ. of Texas, Arlington, TX (United States)

    2015-02-02

    This report details the accomplishments and research results for the High Energy Physics Group at the University of Texas at Arlington at the Energy and Intensity Frontiers. For the Energy Frontier we have made fundamental contributions in the search for supersymmetric particles, proposed to explain the stabilization of the mass of the Higgs Boson – the agent giving mass to all known particles. We have also made major contributions to the search for additional Higgs Bosons and to the planning for future searches. This work has been carried out in the context of the ATLAS Experiment at CERN (European Nuclear Research Laboratory) and for which we have made major contributions to computing and data distribution and processing, and have worked to calibrate the detector and prepare upgraded electronics for the future. Our other contribution to the Energy Frontier has been to the International Linear Collider (ILC) project, potentially hosted by Japan, and to the Silicon Detector Concept (SiD) in particular. We have lead the development of the SiD Concept and have worked on a new form of precise energy measurement for particles from the high energy collisions of electrons and positrons at the ILC. For the Intensity Frontier, we have worked to develop the concept of Long Baseline Neutrino Experiment(s) (LBNE) at the Fermi National Accelerator Laboratory. Our contributions to detector development, neutrino beam studies, particle identification, software development will facilitate future studies of the oscillation of one type of neutrino into other type(s), establish the order of the neutrino masses, and, through an innovative new idea, allow us to create a beam of dark matter particles.

  16. Cosmology, physics of particles and nuclei

    International Nuclear Information System (INIS)

    2003-01-01

    A recent trend, already noted in the previous activity report, is the cross-fertilization between cosmology and high-energy physics, with some twenty research articles at this interface in the last 2 years. Results are presented along 3 main directions. 1) Cosmology and astro-particle physics. One may quote among others: the idea that dark matter may not be as weakly interacting as previously thought; a general study of the growth of small perturbations in the context of higher-dimensional theories; a possible explanation of the smallness of the cosmological constant through violation of Lorentz invariance in the gravity sector. In the field of observational cosmology, a 3-point correlation has been detected for the first time using gravitational lensing experiments. 2) Particle physics beyond the standard model. New developments in this field are triggered by progress on both experimental and theoretical sides. The first unambiguous observation of neutrino oscillations implies that neutrinos have non-zero masses. The constraints imposed by existing data on models based on the seesaw mechanism have been studied. The 'de-construction' of supersymmetric theories, inspired by recent advances in higher-dimensional theories, leads to a parameter-free prediction for the mass of the Higgs boson. 3) Strong interactions. Experiments at Hera have triggered new studies of hadronic interactions in the regime of high parton densities, which is also the high-energy limit for QCD: the phenomenon of 'parton saturation' is expected to occur. QCD calculations have been applied to various observables: jet physics, diffractive processes at Hera and in collider experiments, and multiplicity correlations in phase space. (A.C.)

  17. Cosmology, physics of particles and nuclei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    A recent trend, already noted in the previous activity report, is the cross-fertilization between cosmology and high-energy physics, with some twenty research articles at this interface in the last 2 years. Results are presented along 3 main directions. 1) Cosmology and astro-particle physics. One may quote among others: the idea that dark matter may not be as weakly interacting as previously thought; a general study of the growth of small perturbations in the context of higher-dimensional theories; a possible explanation of the smallness of the cosmological constant through violation of Lorentz invariance in the gravity sector. In the field of observational cosmology, a 3-point correlation has been detected for the first time using gravitational lensing experiments. 2) Particle physics beyond the standard model. New developments in this field are triggered by progress on both experimental and theoretical sides. The first unambiguous observation of neutrino oscillations implies that neutrinos have non-zero masses. The constraints imposed by existing data on models based on the seesaw mechanism have been studied. The 'de-construction' of supersymmetric theories, inspired by recent advances in higher-dimensional theories, leads to a parameter-free prediction for the mass of the Higgs boson. 3) Strong interactions. Experiments at Hera have triggered new studies of hadronic interactions in the regime of high parton densities, which is also the high-energy limit for QCD: the phenomenon of 'parton saturation' is expected to occur. QCD calculations have been applied to various observables: jet physics, diffractive processes at Hera and in collider experiments, and multiplicity correlations in phase space. (A.C.)

  18. Fundamental physics in particle traps

    International Nuclear Information System (INIS)

    Quint, Wolfgang; Vogel, Manuel

    2014-01-01

    The individual topics are covered by leading experts in the respective fields of research. Provides readers with present theory and experiments in this field. A useful reference for researchers. This volume provides detailed insight into the field of precision spectroscopy and fundamental physics with particles confined in traps. It comprises experiments with electrons and positrons, protons and antiprotons, antimatter and highly charged ions, together with corresponding theoretical background. Such investigations represent stringent tests of quantum electrodynamics and the Standard model, antiparticle and antimatter research, test of fundamental symmetries, constants, and their possible variations with time and space. They are key to various aspects within metrology such as mass measurements and time standards, as well as promising to further developments in quantum information processing. The reader obtains a valuable source of information suited for beginners and experts with an interest in fundamental studies using particle traps.

  19. Position sensitive photon detectors for nuclear physics, particle physics and healthcare applications

    International Nuclear Information System (INIS)

    Seitz, B

    2012-01-01

    Modern experiments in hadronic physics require detector systems capable of identifying and reconstructing all final-state particles and their momentum vectors. Imaging Cherenkov counters (RICH and DIRC) are frequently employed in nuclear and particle physics experiments. These detectors require high-rate, single-photon capable light detection system with sufficient granularity and position resolution. Several candidate systems are available, ranging from multi-anode photomultiplier tubes to micro-channel plate systems to silicon photomultipliers. Each of these detection solutions has particular advantages and disadvantages. Detailed studies of rate dependence, cross-talk, time-resolution and position resolution for a range of available photon detection solutions are presented. These properties make these photon detection systems ideal for radionuclide imaging applications. Cherenkov radiation can also be used for medical imaging applications. Two different applications using the Cherenkov effect for radionuclide imaging will be reviewed.

  20. Research in particle physics. [Dept. of Physics, Boston Univ

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, Scott J.

    1992-09-01

    Research accomplishments and current activities of Boston University researchers in high energy physics are presented. Principal areas of activity include the following: detectors for studies of electron[endash]positron annihilation in colliding beams; advanced accelerator component design, including the superconducting beam inflector, electrostatic quadrupoles, and the electrostatic muon kicker''; the detector for the MACRO (Monopole, Astrophysics, and Cosmic Ray Observatory) experiment; neutrino astrophysics and the search for proton decay; theoretical particle physics (electroweak and flavor symmetry breaking, hadron collider phenomenology, cosmology and astrophysics, new field-theoretic models, nonperturbative investigations of quantum field theories, electroweak interactions); measurement of the anomalous magnetic moment of the muon; calorimetry for the GEM experiment; and muon detectors for the GEM experiment at the Superconducting Super Collider.

  1. Advanced analysis methods in particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Pushpalatha C.; /Fermilab

    2010-10-01

    Each generation of high energy physics experiments is grander in scale than the previous - more powerful, more complex and more demanding in terms of data handling and analysis. The spectacular performance of the Tevatron and the beginning of operations of the Large Hadron Collider, have placed us at the threshold of a new era in particle physics. The discovery of the Higgs boson or another agent of electroweak symmetry breaking and evidence of new physics may be just around the corner. The greatest challenge in these pursuits is to extract the extremely rare signals, if any, from huge backgrounds arising from known physics processes. The use of advanced analysis techniques is crucial in achieving this goal. In this review, I discuss the concepts of optimal analysis, some important advanced analysis methods and a few examples. The judicious use of these advanced methods should enable new discoveries and produce results with better precision, robustness and clarity.

  2. Phenomenal result for Durham in particle physics

    CERN Multimedia

    2000-01-01

    The University of Durham has beaten ten rivals to house a new 12 million pound institute for particle physics phenomenology. The institute will be supported for a minimum of ten years by PPARC and the university. Its first director will be Professor James Stirling (2 paragraphs).

  3. Interfaces between particle physics and cosmology

    International Nuclear Information System (INIS)

    Riazuddin

    1984-01-01

    Among the physicists' attempts to understand the fundamental structure of matter have been the attempts to: (i) find the ultimate constituents of matter; and (ii) to attain a unification of the forces responsible for the interactions among them. Recent progress in these attempts has led to energy scales which can not conceivably be attained in laboratory experiments, but which would not only be present, but would play an important role in the earliest stages of the big bang model of the Universe. We are talking here of an energy scale E about 10 15 GeV, the corresponding temperature, T, being about 10 28 K relevant to times t about 10 -35 sec. after the big bang. Also, many of the ideas of contemporary particle physics lead to dramatic consequences when applied to the very early universe. It is such interfaces between particle physics and cosmology which are reviewed in this lecture. I shall discuss three such interfaces: (i) the generation of the baryon number of the Universe; (ii) a limit on the number of kinds of neutrinos and therefore on the number of quarklepton generations (if we believe in quark-lepton symmetry); and (iii) the neutrino mass

  4. Fast Inference of Deep Neural Networks in FPGAs for Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Javier [Fermilab; Han, Song [MIT; Harris, Philip [MIT; Jindariani, Sergo [Fermilab; Kreinar, Edward [EIS Intl., Herndon; Kreis, Benjamin [Fermilab; Ngadiuba, Jennifer [CERN; Pierini, Maurizio [CERN; Rivera, Ryan [Fermilab; Tran, Nhan [Fermilab; Wu, Zhenbin [Illinois U., Chicago

    2018-04-16

    Recent results at the Large Hadron Collider (LHC) have pointed to enhanced physics capabilities through the improvement of the real-time event processing techniques. Machine learning methods are ubiquitous and have proven to be very powerful in LHC physics, and particle physics as a whole. However, exploration of the use of such techniques in low-latency, low-power FPGA hardware has only just begun. FPGA-based trigger and data acquisition (DAQ) systems have extremely low, sub-microsecond latency requirements that are unique to particle physics. We present a case study for neural network inference in FPGAs focusing on a classifier for jet substructure which would enable, among many other physics scenarios, searches for new dark sector particles and novel measurements of the Higgs boson. While we focus on a specific example, the lessons are far-reaching. We develop a package based on High-Level Synthesis (HLS) called hls4ml to build machine learning models in FPGAs. The use of HLS increases accessibility across a broad user community and allows for a drastic decrease in firmware development time. We map out FPGA resource usage and latency versus neural network hyperparameters to identify the problems in particle physics that would benefit from performing neural network inference with FPGAs. For our example jet substructure model, we fit well within the available resources of modern FPGAs with a latency on the scale of 100 ns.

  5. Curating the collider: using place to engage museum visitors with particle physics

    OpenAIRE

    Alison Boyle; Dr Harry Cliff

    2014-01-01

    CERN’s Large Hadron Collider, the world’s largest particle physics facility, provides museological opportunities and challenges. Visitor interest in cutting-edge physics, with its high media profile, is tempered by anxiety about understanding complex content. The topic does not readily lend itself to traditional museum showcase-dominated displays: the technology of modern particle physics is overwhelmingly large, while the phenomena under investigation are invisible. For Collider, a major tem...

  6. Theoretical Studies of Alfven Waves and Energetic Particle Physics in Fusion Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liu [Univ. of California, Irvine, CA (United States)

    2017-12-20

    This report summarizes major theoretical findings in the linear as well as nonlinear physics of Alfvén waves and energetic particles in magnetically confined fusion plasmas. On the linear physics, a variational formulation, based on the separation of singular and regular spatial scales, for drift-Alfvén instabilities excited by energetic particles is established. This variational formulation is then applied to derive the general fishbone-like dispersion relations corresponding to the various Alfvén eigenmodes and energetic-particle modes. It is further employed to explore in depth the low-frequency Alfvén eigenmodes and demonstrate the non-perturbative nature of the energetic particles. On the nonlinear physics, new novel findings are obtained on both the nonlinear wave-wave interactions and nonlinear wave-energetic particle interactions. It is demonstrated that both the energetic particles and the fine radial mode structures could qualitatively affect the nonlinear evolution of Alfvén eigenmodes. Meanwhile, a theoretical approach based on the Dyson equation is developed to treat self-consistently the nonlinear interactions between Alfvén waves and energetic particles, and is then applied to explain simulation results of energetic-particle modes. Relevant list of journal publications on the above findings is also included.

  7. Hot spots in nuclear and particle physics

    International Nuclear Information System (INIS)

    Stelte, N.

    1981-01-01

    The aim of the present thesis was the study of the phenomenon of the pre-equilibrium process in nuclear and particle physics in the framework of the HS picture. From the comparison of the HS model with inclusive experiments of nuclear physics it could be concluded, that HS's can have an important portion of the pre-equilibrium spectrum. In reactions of hadrons and lighter nuclei with heavy target nuclei the dependence of the HS-induced spectrum from the target mass, the detector angle, the kinetic energy, and as far as data were available, from the kind of the emitted particle as function of the drift parameter, the maximal temperature, and the velocity could be indicated. For forward angles a qualitative to quantitative agreement with the studied data could by shown. For backward angles a quantitative agreement resulted which suggests the conclusion that this angular range is determined by the HS effect even about three orders of magnitude of the incident energy. (orig./HSI) [de

  8. On the golden road : Open access publishing in particle physics

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    The particle physics community has over the last 15 years achieved so-called full green open access through the wide dissemination ofpreprints via arXiv, a central subject repository managed by Cornell University. However, green open access does not alleviate the economical difficulties of libraries as these still are expected to offer access to versions of record of the peer-reviewed literature. For this reason the particle physics community is now addressing the issue of gold open access by converting a set of the existing core journals to open access. A working party works now to bring together funding agencies, laboratories and libraries into a single consortium, called SCOAP3 (Sponsoring Consortium for Open access Publishing in Particle Physics). This consortium will engage with publishers towards building a sustainable model for open access publishing. In this model, subscription fees from multiple institutions are replaced with contracts with publishers of open access journals where the SCOAP3 consort...

  9. On the golden road Open access publishing in particle physics

    CERN Document Server

    CERN. Geneva; Yeomans, Joanne

    2007-01-01

    The particle physics community has over the last 15 years achieved so-called full green open access through the wide dissemination ofpreprints via arXiv, a central subject repository managed by Cornell University. However, green open access does not alleviate the economical difficulties of libraries as these still are expected to offer access to versions of record of the peer-reviewed literature. For this reason the particle physics community is now addressing the issue of gold open access by converting a set of the existing core journals to open access. A working party works now to bring together funding agencies, laboratories and libraries into a single consortium, called SCOAP3 (Sponsoring Consortium for Open access Publishing in Particle Physics). This consortium will engage with publishers towards building a sustainable model for open access publishing. In this model, subscription fees from multiple institutions are replaced with contracts with publishers of open access journals where the SCOAP3 consorti...

  10. Scientific realism in particle physics a causal approach

    CERN Document Server

    Egg, Matthias

    2014-01-01

    Does particle physics really describe the basic constituents of the material world or is it just a useful tool for deriving empirical predictions? This book proposes a novel answer to that question, emphasizing the importance of causal reasoning for the justification of scientific claims. It thereby responds to general worries about scientific realism as well as to more specific challenges stemming from the interpretation of quantum physics.

  11. Impact of detector simulation in particle physics collider experiments

    Science.gov (United States)

    Daniel Elvira, V.

    2017-06-01

    Through the last three decades, accurate simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics (HEP) experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detector simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the precision of the physics results and publication turnaround, from data-taking to submission. It also presents estimates of the cost and economic impact of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data with increasingly complex detectors, taxing heavily the performance of simulation and reconstruction software. Consequently, exploring solutions to speed up simulation and reconstruction software to satisfy the growing demand of computing resources in a time of flat budgets is a matter that deserves immediate attention. The article ends with a short discussion on the potential solutions that are being considered, based on leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering HEP code for concurrency and parallel computing.

  12. DETECTORS USED IN PARTICLE PHYSICS RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Melissines, A. C.

    1963-10-15

    Detectors used in particle physics are discussed, and their specific properties are compared. With the pictorial'' devices are included nuclear emulsions, cloud and bubble chambers, and spark chambers. Included in the digital'' devices are counters, e.g., the Geiger counter, scintillation counters, solid-state detectors, Cherenkov counters, and spark counters. Sensitivity, resolving power, time resolutions, saturation level, and energy detection are discussed. (R.E.U.)

  13. When cosmology and particle physics met

    International Nuclear Information System (INIS)

    Kaiser, D.

    2007-01-01

    Primordial cosmology describes the first moments of the universe when the interactions of elementary particles with one another determined its evolution. The mutual ignorance between the community of cosmologists with that of elementary physicists is well illustrated by the fact that both communities conceived distinct concepts of mass that 10 years later were found similar: Brans-Dicke gravitation and Higgs field. Now the collaboration between cosmology and particle physics appears necessary since the great unification theory that imposes the 3 basic forces: weak interaction, electromagnetic interaction and strong interaction to merge in a unique force at an energy scale of 10 24 eV, is supposed to have occurred just after the big-bang when the universe was dense and hot. (A.C.)

  14. Particle physics---Experimental

    International Nuclear Information System (INIS)

    Lord, J.J.; Boynton, P.E.; Burnett, T.H.; Wilkes, R.J.

    1991-01-01

    We are continuing a research program in particle astrophysics and high energy experimental particle physics. We have joined the DUMAND Collaboration, which is constructing a deep undersea astrophysical neutrino detector near Hawaii. Studies of high energy hadronic interactions using emulsion chamber techniques were also continued, using balloon flight exposures to ultra-high cosmic ray nuclei (JACEE) and accelerator beams. As members of the DUMAND Collaboration, we have responsibility for development a construction of critical components for the deep undersea neutrino detector facility. We have designed and developed the acoustical positioning system required to permit reconstruction of muon tracks with sufficient precision to meet the astrophysical goals of the experiment. In addition, we are making significant contributions to the design of the database and triggering system to be used. Work has been continuing in other aspects of the study of multiparticle production processes in nuclei. We are participants in a joint US/Japan program to study nuclear interactions at energies two orders of magnitude greater than those of existing accelerators, using balloon-borne emulsion chambers. On one of the flights we found two nuclear interactions of multiplicity over 1000 -- one with a multiplicity of over 2000 and pseudorapidity density ∼ 800 in the central region. At the statistical level of the JACEE experiment, the frequency of occurrence of such events is orders of magnitude too large. We have continued our ongoing program to study hadronic interactions in emulsions exposed to high energy accelerator beams

  15. Academic Training Lecture: Statistical Methods for Particle Physics

    CERN Multimedia

    PH Department

    2012-01-01

    2, 3, 4 and 5 April 2012 Academic Training Lecture  Regular Programme from 11:00 to 12:00 -  Bldg. 222-R-001 - Filtration Plant Statistical Methods for Particle Physics by Glen Cowan (Royal Holloway) The series of four lectures will introduce some of the important statistical methods used in Particle Physics, and should be particularly relevant to those involved in the analysis of LHC data. The lectures will include an introduction to statistical tests, parameter estimation, and the application of these tools to searches for new phenomena.  Both frequentist and Bayesian methods will be described, with particular emphasis on treatment of systematic uncertainties.  The lectures will also cover unfolding, that is, estimation of a distribution in binned form where the variable in question is subject to measurement errors.

  16. Particle identification methods in High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Va' Vra, J.

    2000-01-27

    This paper deals with two major particle identification methods: dE/dx and Cherenkov detection. In the first method, the authors systematically compare existing dE/dx data with various predictions available in the literature, such as the Particle Data group recommendation, and judge the overall consistency. To my knowledge, such comparison was not done yet in a published form for the gaseous detectors used in High-Energy physics. As far as the second method, there are two major Cherenkov light detection techniques: the threshold and the Ring imaging methods. The authors discuss the recent trend in these techniques.

  17. Physical properties of charged particle beams for use in radiotherapy

    International Nuclear Information System (INIS)

    Knapp, E.A.

    1975-01-01

    The physical properties of the possible charged particle beams used for cancer radiotherapy are reviewed. Each property is discussed for all interesting particles (π, p, α, Ne ion) and the differences are emphasized. This is followed by a short discussion of the several beam delivery systems used in particle therapy today, emphasizing the differences in the problems for the several different radiations, particularly the differences between the accelerated particle beams and those of a secondary nature. Dose calculation techniques are described

  18. Physical and chemical characteristics of interplanetary dust particles

    International Nuclear Information System (INIS)

    Gruen, E.

    1981-01-01

    For the first time, the micrometeoroid experiment on board of Helios allowed the measurement of physical and chemical characteristics of interplanetary dust particles between 0.3AU and 1AU solar distance. During the first 10 orbits of Helios 1,235 impacts of micrometeoroids have been detected. 83 particles have been registered by the ecliptic sensor and 152 by the south sensor. Most of the particles detected by the ecliptic sensor had masses 10 -13 g -10 g and impacted the sensor from the apex direction. The particles observed by the south sensor had masses 10 -15 g -9 g and impacted the sensor from all directions with a slightly enhanced flux from solar direction. The average impact speed of particles with masses 10 -13 g -10 g was 15km/s. From 1AU to.3AU, the observed paritcle flux increased by a factor 5-10. The orbits of the registered particles are highly eccentric, e approx. >= 0.6, and some are hyperbolic. The mass spectra measured upon impact allow the classification of chondritic and iron-rich particles. Approx. 20% of the particles had low densities rho 3 . On 4 particles, a positive electric charge has been observed. (orig.) [de

  19. Modern particle physics event generation with WHIZARD

    International Nuclear Information System (INIS)

    Reuter, J.; Bach, F.; Chokoufe, B.; Kilian, W.; Sekulla, M.; Ohl, T.; Weiss, C.; Siegen Univ.

    2014-01-01

    We describe the multi-purpose Monte-Carlo event generator WHIZARD for the simulation of high-energy particle physics experiments. Besides the presentation of the general features of the program like SM physics, BSM physics, and QCD effects, special emphasis is given to the support of the most accurate simulation of the collider environments at hadron colliders and especially at future linear lepton colliders. On the more technical side, the very recent code refactoring towards a completely object-oriented software package to improve maintainability, flexibility and code development are discussed. Finally, we present ongoing work and future plans regarding higher-order corrections, more general model support including the setup to search for new physics in vector boson scattering at the LHC, as well as several lines of performance improvements.

  20. Modern Particle Physics Event Generation with WHIZARD

    Science.gov (United States)

    Reuter, J.; Bach, F.; Chokoufé, B.; Kilian, W.; Ohl, T.; Sekulla, M.; Weiss, C.

    2015-05-01

    We describe the multi-purpose Monte-Carlo event generator WHIZARD for the simulation of high-energy particle physics experiments. Besides the presentation of the general features of the program like SM physics, BSM physics, and QCD effects, special emphasis will be given to the support of the most accurate simulation of the collider environments at hadron colliders and especially at future linear lepton colliders. On the more technical side, the very recent code refactoring towards a completely object-oriented software package to improve maintainability, flexibility and code development will be discussed. Finally, we present ongoing work and future plans regarding higher-order corrections, more general model support including the setup to search for new physics in vector boson scattering at the LHC, as well as several lines of performance improvements.

  1. Modern Particle Physics Event Generation with WHIZARD

    International Nuclear Information System (INIS)

    Reuter, J; Bach, F; Chokoufé, B; Weiss, C; Kilian, W; Sekulla, M; Ohl, T

    2015-01-01

    We describe the multi-purpose Monte-Carlo event generator WHIZARD for the simulation of high-energy particle physics experiments. Besides the presentation of the general features of the program like SM physics, BSM physics, and QCD effects, special emphasis will be given to the support of the most accurate simulation of the collider environments at hadron colliders and especially at future linear lepton colliders. On the more technical side, the very recent code refactoring towards a completely object-oriented software package to improve maintainability, flexibility and code development will be discussed. Finally, we present ongoing work and future plans regarding higher-order corrections, more general model support including the setup to search for new physics in vector boson scattering at the LHC, as well as several lines of performance improvements. (paper)

  2. The Particle Physics Data Grid. Final Report

    International Nuclear Information System (INIS)

    Livny, Miron

    2002-01-01

    The main objective of the Particle Physics Data Grid (PPDG) project has been to implement and evaluate distributed (Grid-enabled) data access and management technology for current and future particle and nuclear physics experiments. The specific goals of PPDG have been to design, implement, and deploy a Grid-based software infrastructure capable of supporting the data generation, processing and analysis needs common to the physics experiments represented by the participants, and to adapt experiment-specific software to operate in the Grid environment and to exploit this infrastructure. To accomplish these goals, the PPDG focused on the implementation and deployment of several critical services: reliable and efficient file replication service, high-speed data transfer services, multisite file caching and staging service, and reliable and recoverable job management services. The focus of the activity was the job management services and the interplay between these services and distributed data access in a Grid environment. Software was developed to study the interaction between HENP applications and distributed data storage fabric. One key conclusion was the need for a reliable and recoverable tool for managing large collections of interdependent jobs. An attached document provides an overview of the current status of the Directed Acyclic Graph Manager (DAGMan) with its main features and capabilities

  3. PSI nuclear and particle physics newsletter 1990

    International Nuclear Information System (INIS)

    Frosch, R.; Furrer, F.

    1991-01-01

    This newsletter contains reports on nuclear and particle physics supported by the F1 division of PSI. Groups were invited to present new preliminary or final results obtained in 1990. As ususal, the contributions were not referred. They should be quoted after consultation with the authors only. (author) figs., tabs., refs

  4. Inflation, large scale structure and particle physics

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences ... Hybrid inflation; Higgs scalar field; structure formation; curvation. ... We then discuss a particle physics model of supersymmetric hybrid inflation at the intermediate scale in which ... May 2018. Home · Volumes & Issues · Special Issues · Forthcoming Articles · Search · Editorial Board ...

  5. A Vision of Nuclear and Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, Hugh E. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-08-01

    This paper will consist of a selected, personal view of some of the issues associated with the intersections of nuclear and particle physics. As well as touching on the recent developments we will attempt to look at how those aspects of the subject might evolve over the next few years.

  6. Some current experimental challenges in elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Cline, D.B. (California Univ., Los Angeles (USA). Dept. of Physics)

    1990-06-01

    We describe three experimental challenges for experimental elementary particle physics: (1) the ongoing search for flavor changing weak neutral currents, including future prospect for a anti BB factory, (2) the status of the tests of the standard model in the W, Z and t quark sectors and (3) some current search for physics beyond the standard model, to include the possibility of searching for CPT violation using a {Phi} factory. (orig.).

  7. Advances of dense plasma physics with particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, D.H.H.; Blazevic, A.; Rosmej, O.N.; Spiller, P.; Tahir, N.A.; Weyrich, K. [Gesellschaft fur Schwerionenforschung, GSI-Darmstadt, Plasmaphysik, Darmstadt (Germany); Hoffmann, D.H.H.; Dafni, T.; Kuster, M.; Roth, M.; Udrea, S.; Varentsov, D. [DarmstadtTechnische Univ., Institut fur Kernphysik (Germany); Jacoby, J. [Frankfurt Univ., Institut fur Angewandte Physik (Germany); Zioutas, K. [European Organization for Nuclear Research (CERN), Geneve (Switzerland); Patras Univ., Dept. of Physics (Greece); Sharkov, B.Y. [Institut for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)

    2006-06-15

    High intensity particle beams from accelerators induce high energy density states in bulk matter. The SIS-18 heavy ion synchrotron at GSI (Darmstadt, Germany) now routinely delivers intense Uranium beams that deposit about 1 kJ/g of specific energy in solid matter, e.g. solid lead. Due to the specific nature of the ion-matter interaction a volume of matter is heated uniformly with low gradients of temperature and pressure in the initial phase, depending on the pulse structure of the beam with respect to space and time. The new accelerator complex FAIR (Facility for Antiproton and ion Research) at GSI as well as beams from the CERN large hadron collider (LHC) will vastly extend the accessible parameter range for high energy density states. One special piece of accelerator equipment a superconducting high field dipole magnet, developed for the LHC at CERN is now serving as a key instrument to diagnose the dense plasma of the sun interior plasma, thus providing an extremely interesting combination of accelerator physics, plasma physics and particle physics. (authors)

  8. Advances of dense plasma physics with particle accelerators

    International Nuclear Information System (INIS)

    Hoffmann, D.H.H.; Blazevic, A.; Rosmej, O.N.; Spiller, P.; Tahir, N.A.; Weyrich, K.; Hoffmann, D.H.H.; Dafni, T.; Kuster, M.; Roth, M.; Udrea, S.; Varentsov, D.; Jacoby, J.; Zioutas, K.; Sharkov, B.Y.

    2006-01-01

    High intensity particle beams from accelerators induce high energy density states in bulk matter. The SIS-18 heavy ion synchrotron at GSI (Darmstadt, Germany) now routinely delivers intense Uranium beams that deposit about 1 kJ/g of specific energy in solid matter, e.g. solid lead. Due to the specific nature of the ion-matter interaction a volume of matter is heated uniformly with low gradients of temperature and pressure in the initial phase, depending on the pulse structure of the beam with respect to space and time. The new accelerator complex FAIR (Facility for Antiproton and ion Research) at GSI as well as beams from the CERN large hadron collider (LHC) will vastly extend the accessible parameter range for high energy density states. One special piece of accelerator equipment a superconducting high field dipole magnet, developed for the LHC at CERN is now serving as a key instrument to diagnose the dense plasma of the sun interior plasma, thus providing an extremely interesting combination of accelerator physics, plasma physics and particle physics. (authors)

  9. Overview of particle physics

    International Nuclear Information System (INIS)

    Salam, A.

    1986-02-01

    An overview of the situation of particle physics at the end of 1985 is given. It includes the following topics: ideas which have been tested or will soon be tested such as the standard model based on the symmetry group SUsub(C)(3)xSUsub(L)(2)xU(1), light Higgs and preons; theoretical ideas whose time has not yet come (basically because no accelerators are being constructed to test them) such as N=1 supersymmetry and N=1 supergravity right-handed weak currents, extended supergravities and superstring models; ideas for which non-accelerator and passive experiments have been mounted such as proton decay, nn-bar oscillations, neutrino masses and oscillations, monopoles and dark matter

  10. Solar, Stellar and Galactic Connections between Particle Physics and Astrophysics

    CERN Document Server

    Carraminana, Alberto

    2007-01-01

    This book collects extended and specialized reviews on topics linking astrophysics and particle physics at a level intermediate between a graduate student and a young researcher. The book includes also three reviews on observational techniques used in forefront astrophysics and short articles on research performed in Latin America. The reviews, updated and written by specialized researchers, describe the state of the art in the related research topics. This book is a valuable complement not only for research but also for lecturers in specialized course of high energy astrophysics, cosmic ray astrophysics and particle physics.

  11. Learning about a Level Physics Students' Understandings of Particle Physics Using Concept Mapping

    Science.gov (United States)

    Gourlay, H.

    2017-01-01

    This paper describes a small-scale piece of research using concept mapping to elicit A level students' understandings of particle physics. Fifty-nine year 12 (16- and 17 year-old) students from two London schools participated. The exercise took place during school physics lessons. Students were instructed how to make a concept map and were…

  12. On the ontology of the elementary particles. A philosophical analysis of the actual elementary-particle physics

    International Nuclear Information System (INIS)

    Brueckner, Thomas Christian

    2015-01-01

    After a description of the standard model of elementary-particle physics the author describes structuralistic reconstructions. Then the problem of the theoretical terms is discussed. Therafter the reconstruction of the standard-model elementary particles is described. Finally the ontology of leptons, quarks and both free and in atoms bound protons is considered.

  13. Elementary particles and the laws of physics: The 1986 Dirac Memorial Lectures

    International Nuclear Information System (INIS)

    Feynman, R.P.; Weinberg, S.

    1987-01-01

    Elementary Particles and the Laws of Physics contains transcriptions of the two lectures given in Cambridge, England, in 1986 by Nobel Laureates Richard P. Feynman and Steven Weinberg to commemorate the famous British physicist Paul Dirac. The talks focus on the fundamental problems of physics and the present state of our knowledge. Professor Feynman discusses how the laws of physics require the existence of antiparticles; Professor Weinberg examines the development of the fundamental laws of elementary particle intersection

  14. Probability and statistics in particle physics

    International Nuclear Information System (INIS)

    Frodesen, A.G.; Skjeggestad, O.

    1979-01-01

    Probability theory is entered into at an elementary level and given a simple and detailed exposition. The material on statistics has been organised with an eye to the experimental physicist's practical need, which is likely to be statistical methods for estimation or decision-making. The book is intended for graduate students and research workers in experimental high energy and elementary particle physics, and numerous examples from these fields are presented. (JIW)

  15. The ideas of particle physics. 2. ed.

    International Nuclear Information System (INIS)

    Coughlan, G.D.; Dodd, J.E.

    1991-01-01

    Our main concern in writing this book has been to communicate the central ideas and concepts of elementary particle physics. We have attempted to present a comprehensive overview of the subject at a level which carries the reader beyond the simplifications and generalisations necessary in popular science books. Matter consists of just two types of elementary particles: quarks and leptons. These are the fundamental building blocks of the material world. The theory describing the microscopic behaviour of these particles has, over the past decade or so, become known as the 'standard model', providing as it does an accurate account of the force of electromagnetism, the weak nuclear force (responsible for radioactive decay), and the strong nuclear force (which holds atomic nuclei together). The standard model has been remarkably successful; all experimental tests have verified the detailed predictions of the theory. (author)

  16. Physics of high energy particle accelerators. AIP conference proceedings No. 127

    International Nuclear Information System (INIS)

    Month, M.; Dahl, P.F.; Dienes, M.

    1985-01-01

    Topics covered in this workshop include accelerator physics, particle physics, and new acceleration methods. Eighteen lectures were presented. Individual abstracts were prepared separately for the data base

  17. Search for long lived particles at the LHC (SUSY+exotics physics scenarios)

    CERN Document Server

    Romanowska-Rybinska, Katarzyna

    2012-01-01

    Many models of physics Beyond the Standard Model (BSM) predict the existence of new heavy particles with long lifetimes. These particles come in many different types, but have one thing in common, they have very unique signatures at LHC experiments, which makes them easily distinguishable from Standard Model (SM) particles. Finding the signal of any of them would be a clear sign of BSM physics. In this paper we present search strategies and results of seven searches for long-lived exotic particles of different types, both charged and neutral, performed by the ATLAS and CMS experiments with 2011 pp collision data taken at LHC energy $\\sqrt{s}$ = 7 TeV.

  18. Theoretical and Experimental Studies of Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Harold G [Indiana University; Kostelecky, V Alan [Indiana University; Musser, James A [Indiana University

    2013-07-29

    The elementary particle physics research program at Indiana University spans a broad range of the most interesting topics in this fundamental field, including important contributions to each of the frontiers identified in the recent report of HEPAP's Particle Physics Prioritization Panel: the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. Experimentally, we contribute to knowledge at the Energy Frontier through our work on the D0 and ATLAS collaborations. We work at the Intensity Frontier on the MINOS and NOvA experiments and participate in R&D for LBNE. We are also very active on the theoretical side of each of these areas with internationally recognized efforts in phenomenology both in and beyond the Standard Model and in lattice QCD. Finally, although not part of this grant, members of the Indiana University particle physics group have strong involvement in several astrophysics projects at the Cosmic Frontier. Our research efforts are divided into three task areas. The Task A group works on D0 and ATLAS; Task B is our theory group; and Task C contains our MINOS, NOvA, and LBNE (LArTPC) research. Each task includes contributions from faculty, senior scientists, postdocs, graduate and undergraduate students, engineers, technicians, and administrative personnel. This work was supported by DOE Grant DE-FG02-91ER40661. In the following, we describe progress made in the research of each task during the final period of the grant, from November 1, 2009 to April 30, 2013.

  19. Particles and Nuclei an introduction to the physical concepts

    CERN Document Server

    Povh, B; Scholz, C; Zetsche, F

    2008-01-01

    This well-established textbook gives a uniform and unique presentation of both nuclear and particle physics. Analysis, Part 1, is devoted to disentangling the substructure of matter. This part shows that experiments designed to uncover the substructures of nuclei and nucleons have a similar conceptual basis, and lead to the present picture of all matter being built out of a small number of elementary building blocks and a small number of fundamental interactions. Synthesis, Part 2, shows how the elementary particles may be combined to build hadrons and nuclei. The fundamental interactions responsible for the forces in all systems become less and less evident in increasingly complex systems. A section on neutrino oscillations and one on nuclear matter at high temperatures bridge the field of "nuclear and particle physics" and "modern astrophysics and cosmology". The new edition incorporates a large amount of new experimental results on deep inelastic scattering (obtained at the Electron-Proton Collider HERA at...

  20. Strange Particles and Heavy Ion Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bassalleck, Bernd [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy; Fields, Douglas [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy

    2016-04-28

    This very long-running grant has supported many experiments in nuclear and particle physics by a group from the University of New Mexico. The gamut of these experiments runs from many aspects of Strangeness Nuclear Physics, to rare Kaon decays, to searches for exotic Hadrons such as Pentaquark or H-Dibaryon, and finally to Spin Physics within the PHENIX collaboration at RHIC. These experiments were performed at a number of laboratories worldwide: first and foremost at Brookhaven National Lab (BNL), but also at CERN, KEK, and most recently at J-PARC. In this Final Technical Report we summarize progress and achievements for this award since our last Progress Report, i.e. for the period of fall 2013 until the award’s termination on November 30, 2015. The report consists of two parts, representing our two most recent experimental efforts, participation in the Nucleon Spin Physics program of the PHENIX experiment at RHIC, the Relativistic Heavy Ion Collider at BNL – Task 1, led by Douglas Fields; and participation in several Strangeness Nuclear Physics experiments at J-PARC, the Japan Proton Accelerator Research Center in Tokai-mura, Japan – Task 2, led by Bernd Bassalleck.

  1. Research accomplishments and future goals in particle physics

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-30

    This document presents our proposal to continue the activities of Boston University researchers in high energy physics research. We have a broad program of participation in both non-accelerator and accelerator-based efforts. High energy research at Boston University has a special focus on the physics program of the Superconducting Supercollider. We are active in research and development for detector subsystems, in the design of experiments, and in study of the phenomenology of the very high energy interactions to be observed at the SSC. The particular areas discussed in this paper are: colliding beams physics; accelerator design physics; MACRO project; proton decay project; theoretical particle physics; muon G-2 project; fast liquid scintillators; SSCINTCAL project; TRD project; massively parallel processing for the SSC; and physics analysis and vertex detector upgrade at L3.

  2. Bridging the Particle Physics and Big Data Worlds

    Science.gov (United States)

    Pivarski, James

    2017-09-01

    For decades, particle physicists have developed custom software because the scale and complexity of our problems were unique. In recent years, however, the ``big data'' industry has begun to tackle similar problems, and has developed some novel solutions. Incorporating scientific Python libraries, Spark, TensorFlow, and machine learning tools into the physics software stack can improve abstraction, reliability, and in some cases performance. Perhaps more importantly, it can free physicists to concentrate on domain-specific problems. Building bridges isn't always easy, however. Physics software and open-source software from industry differ in many incidental ways and a few fundamental ways. I will show work from the DIANA-HEP project to streamline data flow from ROOT to Numpy and Spark, to incorporate ideas of functional programming into histogram aggregation, and to develop real-time, query-style manipulations of particle data.

  3. Alpha particle physics experiments in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Zweben, S.J.; Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Stratton, B.C.; Synakowski, E.J.; Taylor, G.

    2000-01-01

    Alpha particle physics experiments were done on TFTR during its DT run from 1993 to 1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single particle confinement model in MHD quiescent discharges. The alpha loss due to toroidal field ripple was identified in some cases, and the low radial diffusivity inferred for high energy alphas was consistent with orbit averaging over small scale turbulence. Finally, the observed alpha particle interactions with sawteeth, toroidal Alfven eigenmodes and ICRF waves were approximately consistent with theoretical modelling. What was learned is reviewed and what remains to be understood is identified. (author)

  4. Nuclear and Particle Physics Simulations: The Consortium of Upper-Level Physics Software

    Science.gov (United States)

    Bigelow, Roberta; Moloney, Michael J.; Philpott, John; Rothberg, Joseph

    1995-06-01

    The Consortium for Upper Level Physics Software (CUPS) has developed a comprehensive series of Nine Book/Software packages that Wiley will publish in FY `95 and `96. CUPS is an international group of 27 physicists, all with extensive backgrounds in the research, teaching, and development of instructional software. The project is being supported by the National Science Foundation (PHY-9014548), and it has received other support from the IBM Corp., Apple Computer Corp., and George Mason University. The Simulations being developed are: Astrophysics, Classical Mechanics, Electricity & Magnetism, Modern Physics, Nuclear and Particle Physics, Quantum Mechanics, Solid State, Thermal and Statistical, and Wave and Optics.

  5. Engineering physics

    CERN Document Server

    Mukherji, Uma

    2015-01-01

    ENGINEERING PHYSICS is designed as a textbook for first year engineering students of a two semester course in Applied Physics according to new revised syllabus. However the scope of this book is not only limited to undergraduate engineering students and science students, it can also serve as a reference book for practicing scientists.Advanced technological topics like LCD, Squid, Maglev system, Electron microscopes, MRI, Photonics - Photonic fibre, Nano-particles, CNT, Quantum computing etc., are explained with basic underlying principles of Physics.This text explained following topics with numerous solved, unsolved problems and questions from different angles. Part-I contains crystal structure, Liquid crystal, Thermo-electric effect, Thermionic emission, Ultrasonic, Acoustics, semiconductor and magnetic materials. Whereas Part-2 contains Optics, X-rays, Electron optics, Dielectric materials, Quantum Physics and Schrodinger wave equation, Laser, Fibre-optics and Holography, Radio-activity, Super-conductivity,...

  6. 2011.2 Revision of the Evaluated Nuclear Data Library (ENDL2011.2)

    Energy Technology Data Exchange (ETDEWEB)

    Beck, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Descalles, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mattoon, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jurgenson, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thompson, I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-22

    LLNL's Computational Nuclear Physics Group and Nuclear Theory and Modeling Group have col- laborated to create the 2011.2 revised release of the Evaluated Nuclear Data Library (ENDL2011.2). ENDL2011.2 is designed to support LLNL's current and future nuclear data needs and will be em- ployed in nuclear reactor, nuclear security and stockpile stewardship simulations with ASC codes. This database is currently the most complete nuclear database for Monte Carlo and deterministic transport of neutrons and charged particles. This library was assembled with strong support from the ASC PEM and Attribution programs, leveraged with support from Campaign 4 and the DOE/O ce of Science's US Nuclear Data Program. This document lists the revisions made in ENDL2011.2 compared with the data existing in the original ENDL2011.0 release and the ENDL2011.1-rc4 re- lease candidate of April 2015. These changes are made in parallel with some similar revisions for ENDL2009.2.

  7. Cosmology and Particle Physics beyond Standard Models Ten Years of the SEENET-MTP Network

    CERN Document Server

    Álvarez-Gaumé, Luis; Stojkovic, Dejan

    2014-01-01

    This publication - "Cosmology and Particle Physics beyond Standard Models" - is dedicated to the celebration of the tenth anniversary of the Southeastern European Network in Mathematical and Theoretical Physics (SEENET-MTP). As a Theme Collection, rather than a Monograph or Proceedings, this volume presents a number of reports and overviews, a few research papers and a short note. However, some of them are excellent examples of a nowadays increasingly deep interplay between particle physics and cosmology. Contributions span a wide range of topics in cosmology, particle physics, but also gravity, including the interface of these fields. The presented work is of both theoretical and experimental/ observational nature. The contributions represent recent progress in their respective fields: inflation, dark matter, neutrino physics, supersymmetry, collider physics, string theory, quantum gravity, black hole physics and massive gravity.

  8. The role of supersymmetry phenomenology in particle physics

    International Nuclear Information System (INIS)

    Wells, James D.

    2000-01-01

    Supersymmetry phenomenology is an important component of particle physics today. I provide a definition of supersymmetry phenomenology, outline the scope of its activity, and argue its legitimacy. This essay derives from a presentation given at the 2000 SLAC Summer Institute

  9. The role of supersymmetry phenomenology in particle physics

    OpenAIRE

    Wells, James D.

    2000-01-01

    Supersymmetry phenomenology is an important component of particle physics today. I provide a definition of supersymmetry phenomenology, outline the scope of its activity, and argue its legitimacy. This essay derives from a presentation given at the 2000 SLAC Summer Institute.

  10. Philosophical and methodological analyses in Japanese particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Bardos, G. (Kossuth Lajos Tudomanyegyetem, Debrecen (Hungary). Elmeleti Fizikai Tanszek)

    1984-01-01

    The history and philosophy of the Japanese school of dialectical materialism and its influence on nuclear and particle physicists are discussed. The ideas of main characters of this philosophical school are summerized. Parallel physical and philosophical works of Sakata are analyzed.

  11. Shifting standards experiments in particle physics in the twentieth century

    CERN Document Server

    Franklin, Allan

    2013-01-01

    In Shifting Standards, Allan Franklin provides an overview of notable experiments in particle physics. Using papers published in Physical Review, the journal of the American Physical Society, as his basis, Franklin details the experiments themselves, their data collection, the events witnessed, and the interpretation of results. From these papers, he distills the dramatic changes to particle physics experimentation from 1894 through 2009.Franklin develops a framework for his analysis, viewing each example according to exclusion and selection of data; possible experimenter bias; details of the experimental apparatus; size of the data set, apparatus, and number of authors; rates of data taking along with analysis and reduction; distinction between ideal and actual experiments; historical accounts of previous experiments; and personal comments and style.From Millikan’s tabletop oil-drop experiment to the Compact Muon Solenoid apparatus measuring approximately 4,000 cubic meters (not including accelerators) and...

  12. Canonical quantization of spinning relativistic particle in external backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.P. [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil); Gitman, D.M. [Sao Paulo Univ. (USP), SP (Brazil). Inst. de Fisica

    2000-07-01

    Full text follows: We revise the problem of the quantization of spinning relativistic particle pseudoclassical model, using a modified consistent canonical scheme. It allows one not only to include arbitrary electromagnetic and gravitational backgrounds in the consideration but to get in course of the quantization a consistent relativistic quantum mechanics, which reproduces literally the behavior of the one-particle sector of quantized spinor field. In particular, in a physical sector of the Hilbert space a complete positive spectrum of energies of relativistic particles and antiparticles is reproduced. Requirement to maintain all classical symmetries under the coordinate transformations and under U(1) transformations allows one to realize operator algebra without any ambiguities. (author)

  13. Energetic Particle Physics In Fusion Research In Preparation For Burning Plasma Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gorelenkov, Nikolai N [PPPL

    2013-06-01

    The area of energetic particle (EP) physics of fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by W.W. Heidbrink and G.J. Sadler [1]. That review coincided with the start of deuterium-tritium (DT) experiments on Tokamak Fusion Test reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the "sea" of Alfven eigenmodes (AE) in particular by the toroidicityinduced AEs (TAE) modes and reversed shear Alfven (RSAE). In present paper we attempt a broad review of EP physics progress in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus) including helical/stellarator devices. Introductory discussions on basic ingredients of EP physics, i.e. particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others are given to help understanding the advanced topics of EP physics. At the end we cover important and interesting physics issues toward the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor).

  14. Elementary particle physics with atoms

    International Nuclear Information System (INIS)

    Wieman, C.E.

    1993-01-01

    One of the unique aspects of atomic physics is the capacity to make measurements with extraordinarily high precision. In suitably chosen systems, precision measurements can reveal information about fundamental interactions in nature that is not available from other sources. Although elementary particle physics is often perceived as synonymous with open-quotes high energyclose quotes and open-quotes high cost,close quotes atomic physics has played, and can continue to play, a significant role in this area. A few illustrative examples of this include (1) the measurement of the Lamb shift in hydrogen and its, influence on the modern development of quantum field theory, (2) the severe limits placed on possible time reversal violating interactions by atomic (and neutron) searches for electric dipole moments, and (3) the measurement (and closely related atomic theory) of parity, nonconservation in atoms. This latter work has provides a precise confirmation of the Standard Model of the weak, electromagnetic, and strong interactions, and is a uniquely sensitive test for the validity of a variety of alternative models that have been put forth. I will also discuss some of the joys and frustrations of doggedly pursuing the open-quotes ultimateclose quotes measurement of ridiculously tiny effects

  15. Physical approach to quantum networks with massive particles

    Science.gov (United States)

    Andersen, Molte Emil Strange; Zinner, Nikolaj Thomas

    2018-04-01

    Assembling large-scale quantum networks is a key goal of modern physics research with applications in quantum information and computation. Quantum wires and waveguides in which massive particles propagate in tailored confinement is one promising platform for realizing a quantum network. In the literature, such networks are often treated as quantum graphs, that is, the wave functions are taken to live on graphs of one-dimensional edges meeting in vertices. Hitherto, it has been unclear what boundary conditions on the vertices produce the physical states one finds in nature. This paper treats a quantum network from a physical approach, explicitly finds the physical eigenstates and compares them to the quantum-graph description. The basic building block of a quantum network is an X-shaped potential well made by crossing two quantum wires, and we consider a massive particle in such an X well. The system is analyzed using a variational method based on an expansion into modes with fast convergence and it provides a very clear intuition for the physics of the problem. The particle is found to have a ground state that is exponentially localized to the center of the X well, and the other symmetric solutions are formed so to be orthogonal to the ground state. This is in contrast to the predictions of the conventionally used so-called Kirchoff boundary conditions in quantum graph theory that predict a different sequence of symmetric solutions that cannot be physically realized. Numerical methods have previously been the only source of information on the ground-state wave function and our results provide a different perspective with strong analytical insights. The ground-state wave function has a spatial profile that looks very similar to the shape of a solitonic solution to a nonlinear Schrödinger equation, enabling an analytical prediction of the wave number. When combining multiple X wells into a network or grid, each site supports a solitonlike localized state. These

  16. LHCb in the International Particle Physics Masterclasses

    CERN Document Server

    Couturier, Ben

    2016-01-01

    The Large Hadron Collider Beauty (LHCb) Experiment joined the International Particle Physics Masterclass programme in 2013. The experiment proposed the measurement of the D0 meson lifetime, using real data gathered at the Large Hadron Collider in 2012. We describe the exercise as well as the lessons learned during this first participation in the International Masterclass programme.

  17. Visions: The coming revolutions in particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Chris Quigg

    2002-04-11

    Wonderful opportunities await particle physics over the next decade, with the coming of the Large Hadron Collider to explore the 1-TeV scale (extending efforts at LEP and the Tevatron to unravel the nature of electroweak symmetry breaking) and many initiatives to develop the understanding of the problem of identity and the dimensionality of spacetime.

  18. Fusion plasma physics

    CERN Document Server

    Stacey, Weston M

    2012-01-01

    This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics. The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral ...

  19. Proceedings of the Third Nuclear and Particle Physics Conference (NUPPAC-2001)

    Energy Technology Data Exchange (ETDEWEB)

    Comsan, M N.H.; Hanna, K M [Egyptian Nuclear Physics Association, Cairo (Egypt)

    2002-09-15

    The publication's has been set up as a book of the conference of nuclear and particle physics, it consists of the following chapters (1) high energy physics; (2) nuclear scattering and reaction; (3) nuclear models and spectroscopy; (3) neutron and reactor physics; (4) applied nuclear physics; (5) computer codes; (6) selected topics; (7) radiation sciences.

  20. Proceedings of the Third Nuclear and Particle Physics Conference (NUPPAC-2001)

    International Nuclear Information System (INIS)

    Comsan, M.N.H.; Hanna, K.M.

    2002-09-01

    The publication's has been set up as a book of the conference of nuclear and particle physics, it consists of the following chapters (1) high energy physics; (2) nuclear scattering and reaction; (3) nuclear models and spectroscopy; (3) neutron and reactor physics; (4) applied nuclear physics; (5) computer codes; (6) selected topics; (7) radiation sciences

  1. Silicon Detectors-Tools for Discovery in Particle Physics

    International Nuclear Information System (INIS)

    Krammer, Manfred

    2009-01-01

    Since the first application of Silicon strip detectors in high energy physics in the early 1980ies these detectors have enabled the experiments to perform new challenging measurements. With these devices it became possible to determine the decay lengths of heavy quarks, for example in the fixed target experiment NA11 at CERN. In this experiment Silicon tracking detectors were used for the identification of particles containing a c-quark. Later on, the experiments at the Large Electron Positron collider at CERN used already larger and sophisticated assemblies of Silicon detectors to identify and study particles containing the b-quark. A very important contribution to the discovery of the last of the six quarks, the top quark, has been made by even larger Silicon vertex detectors inside the experiments CDF and D0 at Fermilab. Nowadays a mature detector technology, the use of Silicon detectors is no longer restricted to the vertex regions of collider experiments. The two multipurpose experiments ATLAS and CMS at the Large Hadron Collider at CERN contain large tracking detectors made of Silicon. The largest is the CMS Inner Tracker consisting of 200 m 2 of Silicon sensor area. These detectors will be very important for a possible discovery of the Higgs boson or of Super Symmetric particles. This paper explains the first applications of Silicon sensors in particle physics and describes the continuous development of this technology up to the construction of the state of the art Silicon detector of CMS.

  2. Few body problems in nuclear and particle physics

    International Nuclear Information System (INIS)

    Slobodrian, R.J.; Cujec, B.; Ramavataram, K.

    1975-01-01

    Nucleon-nucleon interactions at all energies, meson-nucleon and meson-deuteron interactions, nuclear bremsstrahlung, on-shell and off-shell interactions, final-state interactions, bound and scattering states, few-body forces, polarization phenomena, short range correlations, quasi-free scattering, composite hadron models, subnucleon structure, multiparticle and coherent production processes, break-up reactions, electrodisintegration, relativistic effects and future resources in nuclear and particle physics are discussed in relation to the state of few-body physics in 1974. (B.F.G.)

  3. Particle physics software aids space and medicine

    CERN Document Server

    Pia, M G

    2002-01-01

    Geant4 is a showcase example of technology transfer from particle physics to other fields such as space and medical science. Geant4 was first used for space applications by ESA in 1999, when ESA and NASA each launched an X-ray telescope. Geant4's extended set of physics models, which handle both electromagnetic and hadronic interactions, can be used to address a range of medical applications from conventional photon-beam radiotherapy to brachytherapy (using radioactive sources), hadron therapy and boron neutron capture therapy. The tools for describing geometries, materials and electromagnetic fields can precisely model diverse real-life configurations.

  4. Gauge theories in particle physics a practical introduction

    CERN Document Server

    Aitchison, Ian J R

    2013-01-01

    The fourth edition of this well-established, highly regarded two-volume set continues to provide a fundamental introduction to advanced particle physics while incorporating substantial new experimental results, especially in the areas of CP violation and neutrino oscillations. It offers an accessible and practical introduction to the three gauge theories included in the Standard Model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the Glashow-Salam-Weinberg (GSW) electroweak theory. In the first volume, a new chapter on Lorentz transformations and discrete symmetries presents a simple treatment of Lorentz transformations of Dirac spinors. Along with updating experimental results, this edition also introduces Majorana fermions at an early stage, making the material suitable for a first course in relativistic quantum mechanics. Covering much of the experimental progress made in the last ten years, the second volume remains focused on the two non-Abelian quantum gauge field...

  5. Proceedings of the nuclear and particle physics on the light cone workshop

    International Nuclear Information System (INIS)

    Johnson, M.B.; Kisslinger, L.

    1988-01-01

    This book deals with phenomena in nuclear and particle physics that occur at high energy and at high momentum transfer. At high energy, particles move near the light cone, and the topics covered deal with the physics from this perspective. The light-cone description is familiar in particle physics, but until recently it has not been used in nuclear physics. In view of the fact that nuclear physicists are increasingly looking to questions that can be answered only by experiments in the range of energy where the light-cone description seems to be of advantage, and that the ideas involved are new to many people in the nuclear physics community, efforts were made to ensure that each main speaker would give an introduction to the subject as well as present recent developments. The book should, therefore, be valuable to those who want to learn about light-cone approaches, in particular experimentalists and students, as well as to specialists. The volume is divided into eight chapters. The first chapter is an overview of the meeting and an introduction to the subject of light-cone physics. The remaining chapters encompass various applications and current topics in nuclear and particle physics where use of light-cone methods leads to understanding of high-energy phenomena and their connection to the quark and mesonic substructure of the nucleus. These include the main talks containing the introductory material, as well as shorter papers on the more specialized topics of current interest in both experimental and theoretical aspects of the subject. 38 papers have been cataloged separately

  6. Non-European facilities for elementary particle physics research

    International Nuclear Information System (INIS)

    Mann, A.K.

    1983-01-01

    The facilities we now employ in high energy physics cover a broad spectrum of particle energies and intensities and provide therefore a multiplicity of probes with which to study the behavior of elementary particles. In general, the goal has been to achieve ever higher particle energies and intensities, with emphasis on energy, and to develop more versatile and more sensitive detectors with which to study the resultant particle-particle interactions. Most energy regimes that have been explored have yielded new, fundamental information which often becomes clearer and more easily developed when particle energies are further increased. In this talk I shall try to delineate the nature of those facilities in Canada, Japan and the U.S.A. It is useful, I believe, to begin with a brief discussion of the funding and management of facilities in those countries and a short summary of recent history. The main body of the talk concentrates on the present, planned and contemplated facilities of the major non-European accelerator laboratories, and address briefly the status of accelerator development. The concluding section will summarize the salient features of the discussion. (author)

  7. Microbiology and atmospheric processes: biological, physical and chemical characterization of aerosol particles

    Directory of Open Access Journals (Sweden)

    D. G. Georgakopoulos

    2009-04-01

    Full Text Available The interest in bioaerosols has traditionally been linked to health hazards for humans, animals and plants. However, several components of bioaerosols exhibit physical properties of great significance for cloud processes, such as ice nucleation and cloud condensation. To gain a better understanding of their influence on climate, it is therefore important to determine the composition, concentration, seasonal fluctuation, regional diversity and evolution of bioaerosols. In this paper, we will review briefly the existing techniques for detection, quantification, physical and chemical analysis of biological particles, attempting to bridge physical, chemical and biological methods for analysis of biological particles and integrate them with aerosol sampling techniques. We will also explore some emerging spectroscopy techniques for bulk and single-particle analysis that have potential for in-situ physical and chemical analysis. Lastly, we will outline open questions and further desired capabilities (e.g., in-situ, sensitive, both broad and selective, on-line, time-resolved, rapid, versatile, cost-effective techniques required prior to comprehensive understanding of chemical and physical characterization of bioaerosols.

  8. Ultrahigh energy cosmic rays and new particle physics

    CERN Document Server

    Kachelriess, M.

    2001-02-28

    The current status of the ultrahigh energy cosmic ray (UHE CR) enigma and several proposed solutions involving particle physics beyond the standard model are discussed. Emphasis is given to top--down models, and as a main example, supermassive dark matter as galactic source for UHE CR and the status of its experimental signatures (galactic anisotropy, chemical composition and clustering) is reviewed. Then different approaches to calculate fragmentation spectra of supermassive particles are discussed. Finally, it is argued that UHE neutrinos cannot be - neither directly or indirectly - responsible for the observed vertical air showers.

  9. U.C. Davis high energy particle physics research: Technical progress report -- 1990

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-12-31

    Summaries of progress made for this period is given for each of the following areas: (1) Task A--Experiment, H1 detector at DESY; (2) Task C--Experiment, AMY detector at KEK; (3) Task D--Experiment, fixed target detectors at Fermilab; (4) Task F--Experiment, PEP detector at SLAC and pixel detector; (5) Task B--Theory, particle physics; and (6) Task E--Theory, particle physics.

  10. Tachyons: may they have a role in elementary particle physics

    International Nuclear Information System (INIS)

    Recami, E.; Rodrigues, W. A.

    1985-01-01

    The possible role of space like objects in elementary particle physics (and in quantum mechanics) is reviewed and discussed, mainly by exploiting the explicit consequences of the peculiar relativistic mechanics of tachyons. Particular attention is paid : 1) to tachyons as the possible carriers of interactions (''internal lines''); e.g., to the links between ''virtual particles'' and superluminal objects; 2) to the possibility of ''vacuum decays'' at the classical level; 3) to a Lorentz-invariant bootstrap model; 4) to the apparent shape of the tachyonic elementary particles (''elementary tachyons'') and its possible connection with the de Broglie wave-particle dualism

  11. Tachyons: may they have a role in elementary particle physics

    International Nuclear Information System (INIS)

    Recami, E.; Rodrigues Junior, W.A.

    1985-01-01

    The possible role of space-like objects in elementary particle physics (and in quantum mechanics) is reviewed and discussed, mainly by exploiting the explicit consequences of the peculiar relativistic mechanics of Tachyons. Particular attention is paid: (i) to tachyons as the possible carriers of interactions ('internal lines'); e.g., to the links between 'virtual particles' and superluminal objects; (ii) to the possibility of 'vacuum decays' at the classical level; (iii) to a Lorentz-invariant bootstrap model; (iv) to the apparent shape of the tachyonic elementary particles ('elementary tachyons') and its possible connection with the de Broglie wave-particle dualism. (Author) [pt

  12. Current experiments in elementary-particle physics

    International Nuclear Information System (INIS)

    Wohl, C.G.; Armstrong, F.E.; Rittenberg, A.

    1983-03-01

    Microfiche are included which contain summaries of 479 experiments in elementary particle physics. Experiments are included at the following laboratories: Brookhaven (BNL); CERN; CESR; DESY; Fermilab (FNAL); Institute for Nuclear Studies (INS); KEK; LAMPF; Serpukhov (SERP); SIN; SLAC; and TRIUMF. Also, summaries of proton decay experiments are included. A list of experiments and titles is included; and a beam-target-momentum index and a spokesperson index are given. Properties of beams at the facilities are tabulated

  13. In situ real-time measurement of physical characteristics of airborne bacterial particles

    Science.gov (United States)

    Jung, Jae Hee; Lee, Jung Eun

    2013-12-01

    Bioaerosols, including aerosolized bacteria, viruses, and fungi, are associated with public health and environmental problems. One promising control method to reduce the harmful effects of bioaerosols is thermal inactivation via a continuous-flow high-temperature short-time (HTST) system. However, variations in bioaerosol physical characteristics - for example, the particle size and shape - during the continuous-flow inactivation process can change the transport properties in the air, which can affect particle deposition in the human respiratory system or the filtration efficiency of ventilation systems. Real-time particle monitoring techniques are a desirable alternative to the time-consuming process of microscopic analysis that is conventionally used in sampling and particle characterization. Here, we report in situ real-time optical scattering measurements of the physical characteristics of airborne bacteria particles following an HTST process in a continuous-flow system. Our results demonstrate that the aerodynamic diameter of bacterial aerosols decreases when exposed to a high-temperature environment, and that the shape of the bacterial cells is significantly altered. These variations in physical characteristics using optical scattering measurements were found to be in agreement with the results of scanning electron microscopy analysis.

  14. Search for signals of new physics in particle physics and cosmology

    International Nuclear Information System (INIS)

    Virey, J.M.

    2007-12-01

    The author reviews his contributions in particle physics and cosmology. The first part is dedicated to the study of non standard signals collected in particle collisions. It is shown that a pure hadronic interaction, weak compared with QCD, can stay un-observed and be detected only by studying spin asymmetries. He has also studied important and unique information carried by these spin asymmetries on the chiral structure and scalar structure of new interactions. The models describing this new physics appear as low energy applications of more general models concerning sub-structures or great unification, or more specific models in supersymmetry or string theory. As an illustration he presents a study of the features of supersymmetry in cases where the R-parity is broken. The second part is dedicated to the study of cosmological parameters and particularly of the properties of black energy. It is shown that assumptions on the characteristics of the black energy have a great impact on the determination of other parameters when interpreting experimental data. Another point is the determination of constraints on the black energy from the analysis of observation data

  15. Proceedings of the 14. national meeting on particle physics and fields

    International Nuclear Information System (INIS)

    1994-01-01

    This publication contains the papers presented during the 14. national meeting on particle physics and fields. Works on the areas of gravitation, cosmology, quantum mechanics, string models; symmetry, current algebras, interaction models; particle decays and theory of fields were proposed and discussed

  16. 4th International Conference on Trapped Charged Particles and Fundamental Physics

    CERN Document Server

    Comyn, M; Thomson, J; Gwinner, G; TCP'06; TCP 2006

    2007-01-01

    The TCP06 conference in Parksville on Vancouver Island showcased the impressive progress in the study of fundamental physics using trapped charged particles. Atom and ion trapping has revolutionized atomic physics and related fields. It has proven to be particularly useful for fundamental physics experiments, as the tight control over the particles' degrees of freedom leads to increased precision and efficient use of exotic species such as radioactive atoms or anti-matter. The topics of the meeting included fundamental interactions and symmetries, quantum electrodynamics, quantum state manipulation and quantum information, precision spectroscopy and frequency standards, storage ring physics, highly charged ions in traps, traps for radioactive isotopes, plasmas and collective behaviour, and anti-hydrogen. Highlights from related fields such as fundamental physics studies with neutral, trapped atoms were also presented. The combination of overview articles by leaders in the field and detailed reports on recent ...

  17. 5th International Heidelberg Conference on Dark Matter in Astro- and Particle Physics

    CERN Document Server

    Arnowitt, Richard; DARK 2004; Dark Matter in Astro- and Particle Physics

    2006-01-01

    The search for dark matter in the universe has established itself as one of the most exciting and central fields of astrophysics, particle physics and cosmology. The lectures and talks in this book emphasize the experimental and theoretical status and future perspectives, stressing in particular the interplay between astro- and particle physics.

  18. On the coupling of fields and particles in accelerator and plasma physics

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2016-10-01

    In accelerator and plasma physics it is generally accepted that there is no need to solve the dynamical equations for particles motion in manifestly covariant form, that is by using the coordinate-independent proper time to parameterize particle world-lines in space-time. In other words, in order to describe the dynamical processes in the laboratory frame there is no need to use the laws of relativistic kinematics. It is sufficient to take into account the relativistic dependence of the particles momentum on the velocity in the second Newton's law. Therefore, the coupling of fields and particles is based, on the one hand, on the use of result from particle dynamics treated according to Newton's laws in terms of the relativistic three-momentum and, on the other hand, on the use of Maxwell's equations in standard form. In previous papers we argued that this is a misconception. The purpose of this paper is to describe in detail how to calculate the coupling between fields and particles in a correct way and how to develop a new algorithm for a particle tracking code in agreement with the use of Maxwell's equations in their standard form. Advanced textbooks on classical electrodynamics correctly tell us that Maxwell's equations in standard form in the laboratory frame and charged particles are coupled by introducing particles trajectories as projections of particles world-lines onto coordinates of the laboratory frame and by subsequently using the laboratory time to parameterize the trajectory curves. For the first time we showed a difference between conventional and covariant particle tracking results in the laboratory frame. This essential point has never received attention in the physical community. Only the solution of the dynamical equations in covariant form gives the correct coupling between field equations in standard form and particles trajectories in the laboratory frame. We conclude that previous theoretical and simulation results in accelerator and plasma

  19. On the coupling of fields and particles in accelerator and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2016-10-15

    In accelerator and plasma physics it is generally accepted that there is no need to solve the dynamical equations for particles motion in manifestly covariant form, that is by using the coordinate-independent proper time to parameterize particle world-lines in space-time. In other words, in order to describe the dynamical processes in the laboratory frame there is no need to use the laws of relativistic kinematics. It is sufficient to take into account the relativistic dependence of the particles momentum on the velocity in the second Newton's law. Therefore, the coupling of fields and particles is based, on the one hand, on the use of result from particle dynamics treated according to Newton's laws in terms of the relativistic three-momentum and, on the other hand, on the use of Maxwell's equations in standard form. In previous papers we argued that this is a misconception. The purpose of this paper is to describe in detail how to calculate the coupling between fields and particles in a correct way and how to develop a new algorithm for a particle tracking code in agreement with the use of Maxwell's equations in their standard form. Advanced textbooks on classical electrodynamics correctly tell us that Maxwell's equations in standard form in the laboratory frame and charged particles are coupled by introducing particles trajectories as projections of particles world-lines onto coordinates of the laboratory frame and by subsequently using the laboratory time to parameterize the trajectory curves. For the first time we showed a difference between conventional and covariant particle tracking results in the laboratory frame. This essential point has never received attention in the physical community. Only the solution of the dynamical equations in covariant form gives the correct coupling between field equations in standard form and particles trajectories in the laboratory frame. We conclude that previous theoretical and simulation results in

  20. Nuclear Security Recommendations on Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225/Revision 5): Recommendations

    International Nuclear Information System (INIS)

    2011-01-01

    This publication, Revision 5 of Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225), is intended to provide guidance to States and their competent authorities on how to develop or enhance, implement and maintain a physical protection regime for nuclear material and nuclear facilities, through the establishment or improvement of their capabilities to implement legislative and regulatory programmes. The recommendations presented in this publication reflect a broad consensus among IAEA Member States on the requirements which should be met for the physical protection of nuclear materials and nuclear facilities.

  1. Center for Theoretical Underground Physics and Related Fields. CETUP2015/ Particle Physics and Cosmology Conference. PPC2015)

    Energy Technology Data Exchange (ETDEWEB)

    Szczerbinska, Barbara [Dakota State Univ., Madison, SD (United States)

    2016-02-22

    For last five years Center for Theoretical Underground Physics and Related Areas (CETUP*) serves as a collaboration point for scientists from around the world interested in theoretical and experimental aspects of underground science. The mission of CETUP* is to promote an organized research in physics, astrophysics, geoscience, geomicrobiology and other fields related to the underground science and provide a stimulating environment for creative thinking and open communication between researches of varying ages and nationalities in dynamic atmosphere of intense scientific interactions. Scientists invited to participate in the program will not only provide theoretical support to the underground science, but they will also examine core questions of the 21st century including: What is dark matter? How well do we know the neutrino parameters?, How have neutrinos shaped the evolution of the universe?, How were the heavy elements made?, What are the fundamental underlying symmetries of the Universe? Is there a Grand Unified Theory of the Universe? How do supernovae explode? Studies of Neutrino Physics and Dark Matter are of high interest to particle and nuclear physicists, astrophysicists and cosmologists. Ongoing and proposed Neutrino and Dark Matter experiments are expected to unveil the answers to fundamental questions about the Universe. This year summer program was focused exactly on these subjects bringing together experts in dark matter, neutrino physics, particle physics, nuclear physics and astrophysics and cosmology. CETUP*2015 consisted of 5 week long program (June 14 – July 18, 2015) covering various theoretical and experimental aspects in these research areas. The two week long session on Dark Matter physics (June 14 – June 26) was followed by two week long program on Neutrino physics (July 6 – July 18). The international conference entitled IXth International Conference on Interconnection Between Particle Physics and Cosmology (PPC) was hosted at CETUP

  2. Proceeding of the seventh Nuclear and Particle Physics Conference (NUPPAC-2009)

    International Nuclear Information System (INIS)

    Comsan, M.N.H.

    2009-11-01

    The publication has been set up as proceedings of the Nuclear and Particle physics conference. the conference consists Nuclear Scattering and Reactions; High Energy Physics; Nuclear Structure and Spectroscopy; Neutron and Reactor Physics; Relativistic and Quantum Physics; Modeling, Codes and Simulation; Nuclear Analytical Techniques; Accelerator and Reactor Utilization; Detectors and Instrumentation; Radiation and Radioactivity. This conference consists of 662 p., figs., tabs., refs.

  3. Proceeding of the Sixth Nuclear and Particle Physics Conference (NUPPAC-2007)

    International Nuclear Information System (INIS)

    2008-11-01

    The publication has been set up as proceedings of the Nuclear and Particle Physics conference, the conference contains of the following subjects: High Energy Physics; Nuclear Scattering and Reactions; Nuclear Structure and Spectroscopy; Nuclear and Reactor Physics; Relativistic and Quantum Physics; Plasma and magneto hydro Dynamics; Computation and Simulation and Radiation Measurement and Dosimetry. This conference consists of 642 pages., figs., tabs., refs

  4. Parallelization and scheduling of data intensive particle physics analysis jobs on clusters of PCs

    CERN Document Server

    Ponce, S

    2004-01-01

    Summary form only given. Scheduling policies are proposed for parallelizing data intensive particle physics analysis applications on computer clusters. Particle physics analysis jobs require the analysis of tens of thousands of particle collision events, each event requiring typically 200ms processing time and 600KB of data. Many jobs are launched concurrently by a large number of physicists. At a first view, particle physics jobs seem to be easy to parallelize, since particle collision events can be processed independently one from another. However, since large amounts of data need to be accessed, the real challenge resides in making an efficient use of the underlying computing resources. We propose several job parallelization and scheduling policies aiming at reducing job processing times and at increasing the sustainable load of a cluster server. Since particle collision events are usually reused by several jobs, cache based job splitting strategies considerably increase cluster utilization and reduce job ...

  5. Proceedings of the 12. National Meeting on Particle Physics and Fields

    International Nuclear Information System (INIS)

    Santos, A.L.; Simoes, J.A.M.; Chinellato, J.A.; Pleitez, V.

    1993-01-01

    This publication contains the Proceedings presented during the 12. National Meeting on Particle Physics and Fields. Works on the areas of gravitation, quantum mechanics, string models; symmetry, current algebras, interaction models; particle decays, and theory of fields were proposed and discussed. (M.C.K.)

  6. Proceedings of the Fifth Nuclear and Particle Physics Conference (NUPPAC-2005)

    International Nuclear Information System (INIS)

    Comsan, M.N.H.; Hanna, K.M.

    2006-08-01

    The publication's has been set up as a book of the conference of nuclear and particle physics, it consists of the following chapters (1) Plenary, Invited, Keynote Talks; (2) high energy physics; (3) nuclear scattering and reaction; (4) Relativistic and Quantum Physics; (5) neutron and reactor physics; (6) Nuclear Structure and Spectroscopy; (7) Detectors and Instrumentation; (8) computer codes and Simulation; (9) Radiation Measurements and Dosimetry; (10) Plasma and Fusion Physics

  7. Cosmology and particle physics

    International Nuclear Information System (INIS)

    Turner, M.S.

    1986-01-01

    Progress in cosmology has become linked to progress in elementary particle physics. In these six lectures, the author illustrates the two-way nature of the interplay between these fields by focusing on a few selected topics. In the next section the author reviews the standard cosmology, especially concentrating on primordial nucleosynthesis and discusses how the standard cosmology has been used to place constraints on the properties of various particles. Grand Unification makes two striking predictions: (i) B non-conservation; (ii) the existence of stable, superheavy magnetic monopoles. Both have had great cosmological impact. In the following section the author discusses baryogenesis, the very attractive scenario in which the B,C,CP violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and the present baryon-to-photon ratio. Monopoles are a cosmological disaster and an astrophysicist's delight. In Section 4 discusses monopoles, cosmology, and astrophysics. In the fourth lecture the author discusses how a very early (t≤10/sup -34/ sec) phase transition associated with spontaneous symmetry breaking (SSB) has the potential to explain a handful of very fundamental cosmological facts, facts which can be accommodated by the standard cosmology, but which are not ''explained'' by it. The fifth lecture is devoted to a discussion of structure formation in the universe

  8. Aspects of string phenomenology in particle physics and cosmology

    Directory of Open Access Journals (Sweden)

    Antoniadis I.

    2017-01-01

    Full Text Available I discuss possible connections between several scales in particle physics and cosmology, such the the electroweak, inflation, dark energy and Planck scales. In particular, I discuss the physics of extra dimensions and low scale gravity that are motivated from the problem of mass hierarchy, providing an alternative to low energy supersymmetry. I describe their realization in type I string theory with D-branes and I present the main experimental predictions in particle accelerators and their implications in cosmology. I also show that low-mass-scale string compactifications, with a generic D-brane configuration that realizes the Standard Model by open strings, can explain the relatively broad peak in the diphoton invariant mass spectrum at 750 GeV recently reported by the ATLAS and CMS collaborations.

  9. Tachyons: may they have a role in elementary particle physics

    International Nuclear Information System (INIS)

    Recami, Erasmo

    1985-01-01

    The possible role of space-like objects in elementary particle physics (and in quantum mechanics) is reviewed and discussed, mainly by exploiting the explicit consequences of the peculiar relativistic mechanics of Tachyons. Particular attention is paid: (i) to tachyons as the possible carriers of interactions; (ii) to the possibility of ''vacuum decays'' at the classical level; (iii) to a Lorentz-invariant bootstrap model; (iv) to the apparent shape of the tachyonic elementary particles and its possible connection with the de Broglie wave-particle dualism. (author)

  10. New concepts in particle physics from solution of an old problem

    International Nuclear Information System (INIS)

    Schroer, Bert

    1999-11-01

    Recent ideas on modular localization in local quantum physics are used to clarify the relation between on off-shell quantities in particle physics: in particular the relation between on-shell crossing symmetry and off-shell Einstein causality. Among the collateral results of this new nonperturbative approach are profound relations between crossing symmetry of particle physics and Hawking-Unruh like thermal aspects (KMS property, entropy attached to horizons) of quantum matter behind causal horizons which hitherto were related with Killing horizons in curved spacetime than with localization aspects in Minkowski particle physics. The scope of this framework is wide and ranges from providing a conceptual basis for the d=1+1 bootstrap-form factor program for factorable d=1+1 models to a decomposition theory of QFT's in terms of a finite collection of unitarily equivalent chiral conformal theories placed a specified relative position within a common Hilbert spacetime than with localization aspects in Minkowski space particle physics. The scope of this framework is wide and ranges from providing a conceptual basis for the d= 1+1 bootstrap-form factor program for factorable d=1+1 models to a decomposition theory of QFT's in terms of a finite collection of unitarily equivalent chiral conformal theories placed a specified relative position within a common Hilbert space (in d=1+1 a holographic relation and in higher dimensions more like a scanning). Although different from string theory, some of its concepts originated as string theory in the aftermath of the ill-fated S-matrix bootstrap of the 60 ies . Some remarks on the relation to string theory can be found at the end. (author)

  11. New concepts in particle physics from solution of an old problem

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, Bert [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1999-11-01

    Recent ideas on modular localization in local quantum physics are used to clarify the relation between on off-shell quantities in particle physics: in particular the relation between on-shell crossing symmetry and off-shell Einstein causality. Among the collateral results of this new nonperturbative approach are profound relations between crossing symmetry of particle physics and Hawking-Unruh like thermal aspects (KMS property, entropy attached to horizons) of quantum matter behind causal horizons which hitherto were related with Killing horizons in curved spacetime than with localization aspects in Minkowski particle physics. The scope of this framework is wide and ranges from providing a conceptual basis for the d=1+1 bootstrap-form factor program for factorable d=1+1 models to a decomposition theory of QFT's in terms of a finite collection of unitarily equivalent chiral conformal theories placed a specified relative position within a common Hilbert spacetime than with localization aspects in Minkowski space particle physics. The scope of this framework is wide and ranges from providing a conceptual basis for the d= 1+1 bootstrap-form factor program for factorable d=1+1 models to a decomposition theory of QFT's in terms of a finite collection of unitarily equivalent chiral conformal theories placed a specified relative position within a common Hilbert space (in d=1+1 a holographic relation and in higher dimensions more like a scanning). Although different from string theory, some of its concepts originated as string theory in the aftermath of the ill-fated S-matrix bootstrap of the 60{sup ies}. Some remarks on the relation to string theory can be found at the end. (author)

  12. Proceedings of the Second Conference on Nuclear and Particle Physics (NUPPAC-99)

    Energy Technology Data Exchange (ETDEWEB)

    Comsan, M N.H.; Hanna, K M [Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    2000-11-15

    The publication's has been set up as a book of the conference of nuclear and particle physics, it consists of the following chapters (1) high energy physics; (2) nuclear scattering and reaction; (3) nuclear models and spectroscopy; (3) neutron and reactor physics; (4) plasma and fusion physics; (5) applied nuclear physics; (6) related topics.

  13. Proceedings of the Second Conference on Nuclear and Particle Physics (NUPPAC-99)

    International Nuclear Information System (INIS)

    Comsan, M.N.H.; Hanna, K.M.

    2000-11-01

    The publication's has been set up as a book of the conference of nuclear and particle physics, it consists of the following chapters (1) high energy physics; (2) nuclear scattering and reaction; (3) nuclear models and spectroscopy; (3) neutron and reactor physics; (4) plasma and fusion physics; (5) applied nuclear physics; (6) related topics

  14. Physical properties of elongated magnetic particles: magnetization and friction coefficient anisotropies.

    Science.gov (United States)

    Vereda, Fernando; de Vicente, Juan; Hidalgo-Alvarez, Roque

    2009-06-02

    Anisotropy counts: A brief review of the main physical properties of elongated magnetic particles (EMPs) is presented. The most important characteristic of an EMP is the additional contribution of shape anisotropy to the total anisotropy energy of the particle, when compared to spherical magnetic particles. The electron micrograph shows Ni-ferrite microrods fabricated by the authors.We present an overview of the main physical properties of elongated magnetic particles (EMPs), including some of their more relevant properties in suspension. When compared to a spherical magnetic particle, the most important characteristic of an EMP is an additional contribution of shape anisotropy to the total anisotropy energy of the particle. Increasing aspect ratios also lead to an increase in both the critical single-domain size of a magnetic particle and its resistance to thermally activated spontaneous reversal of the magnetization. For single-domain EMPs, magnetization reversal occurs primarily by one of two modes, coherent rotation or curling, the latter being facilitated by larger aspect ratios. When EMPs are used to prepare colloidal suspensions, other physical properties come into play, such as their anisotropic friction coefficient and the consequent enhanced torque they experience in a shear flow, their tendency to align in the direction of an external field, to form less dense sediments and to entangle into more intricate aggregates. From a more practical point of view, EMPs are discussed in connection with two interesting types of magnetic colloids: magnetorheological fluids and suspensions for magnetic hyperthermia. Advances reported in the literature regarding the use of EMPs in these two systems are included. In the final section, we present a summary of the most relevant methods documented in the literature for the fabrication of EMPs, together with a list of the most common ferromagnetic materials that have been synthesized in the form of EMPs.

  15. Particle physics brick by brick atomic and subatomic physics explained... in LEGO

    CERN Document Server

    Still, Ben

    2017-01-01

    Using LEGO (R) blocks to create a uniquely visual and clear depiction of the way our universe is put together. This is the perfect introduction to the enigmatic and fascinating world of Quantum Physics.Our story starts with the Big Bang, and along the way, the constructs and interactions within and among atoms and sub-atomic particles, and the forces that play upon them, are clearly explained, with each LEGO (R) block representing a different atomic or sub-atomic particle. The different colours and size denote what that particle is and its relationship with the other 'building blocks'.Each chapter is presented in digestible chunks, using toy building blocks to illustrate the ideas and experiments that have led to some of the biggest discoveries of the past 150 years.Soon you'll be able to construct every element in the Universe using a box of LEGO (R) and this book!

  16. Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 8: Instrumentation Frontier

    Energy Technology Data Exchange (ETDEWEB)

    Demarteau, M; Lipton, R; Nicholson, H; Shipsey, I; Akerib, D; Albayrak-Yetkin, A; Alexander, J; Anderson, J; Artuso, M; Asner, D; Ball, R; Battaglia, M; Bebek, C; Beene, J; Benhammou, Y; Bentefour, E; Bergevin, M; Bernstein, A; Bilki, B; Blucher, E; Bolla, G; Bortoletto, D; Bowden, N; Brooijmans, G; Byrum, K; Cabrera, B; Cancelo, G; Carlstrom, J; Casey, B; Chang, C; Chapman, J; Chen, CH; Childres, I; Christian, D; Convery, M; Corso, WCJ; Cumalat, J; Cushman, P; Via, CD; Dazeley, S; Debbins, P; Deptuch, G; Dhawan, S; Benedetto, VD; DiGiovene, B; Djurcic, Z; Dye, S; Elagin, A; Estrada, J; Evans, H; Etzion, E; Fast, J; Ferretti, C; Fisher, P; Fleming, B; Francis, K; Friedman, P; Frisch, H; Garcia-Sciveres, M; Gatto, C; Geronim, G; Gilchriese, G; Golwala, S; Grant, C; Grillo, A; Grünendahl, E; Gorham, P; Guan, L; Gutierrez, G; Haber, C; Hall, J; Haller, G; Hast, C; Heintz, U; Hemmick, T; Hitlin, DG; Hogan, C; Hohlmann, M; Hoppe, E; Hsu, L; Huffer, M; Irwin, K; Izraelevitch, F; Jennings, G; Johnson, M; Jung, A; Kagan, H; Kenney, C; Kettell, S; Khanna, R; Khristenko, V; Krennrich, F; Kuehn, K; Kutschke, R; Learned, J; Lee, AT; Levin, D; Liu, T; Liu, ATK; Lissauer, D; Love, J; Lynn, D; MacFarlane, D; Magill, S; Majewski, S; Mans, J; Maricic, J; Marleau, P; Mazzacane, A; McKinsey, D; Mehl, J; Mestvirisvilli, A; Meyer, S; Mokhov, N; Moshe, M; Mukherjee, A; Murat, P; Nahn, S; Narain, M; Nadel-Turonski, P; Newcomer, M; Nishimura, K; Nygren, D; Oberla, E; Onel, Y; Oreglia, M; Orrell, J; Paley, J; Para, A; Parker, S; Polychronakos, V; Pordes, S; Privitera, P; Prosser, A; Pyle, M; Raaf, J; Ramberg, E; Rameika, R; Rebel, B; Repond, J; Reyna, D; Ristori, L; Rivera, R; Ronzhin, A; Rusack, R; Russ, J; Ryd, A; Sadrozinski, H; Sahoo, H; Sanchez, MC; Sanzeni, C; Schnetzer, S; Seidel, S; Seiden, A; Schmidt, I; Shenai, A; Shutt, T; Silver, Y; Smith, W; Snowden-Ifft, D; Sonnenschein, A; Southwick, D; Spiegel, L; Stanitzki, M; Striganov, S; Su, D; Sumner, R; Svoboda, R; Sweany, M; Talaga, R; Tayloe, R; Tentindo, S; Terentiev, N; Thom-Levy, J; Thorn, C; Tiffenberg, J; Trischuk, W; Tschirhart, R; Turner, M; Underwood, D; Uplegger, L; Urheim, J; Vagins, M; Bibber, KV; Varner, G; Varner, R; Va' vra, J; Lippe, HVD; Wagner, R; Wagner, S; Weaverdyck, C; Wenzel, H; Weinstein, A; Wetstein, M; White, A; Wigman, R; Wilson, P; Winn, D; Winter, P; Woody, C; Xia, L; Xie, JQ; Ye, Z; Yeh, MF; Yetkin, T; Yoo, JH; Yu, J; Yu, JM; Zeller, S; Zhang, JL; Zhu, JJ; Zhou, B; Zhu, RY; Zitzer, B

    2014-01-23

    These reports present the results of the 2013 Community Summer Study of the APS Division of Particles and Fields ("Snowmass 2013") on the future program of particle physics in the U.S. Chapter 8, on the Instrumentation Frontier, discusses the instrumentation needs of future experiments in the Energy, Intensity, and Cosmic Frontiers, promising new technologies for particle physics research, and issues of gathering resources for long-term research in this area.

  17. New physics beyond the standard model of particle physics and parallel universes

    Energy Technology Data Exchange (ETDEWEB)

    Plaga, R. [Franzstr. 40, 53111 Bonn (Germany)]. E-mail: rainer.plaga@gmx.de

    2006-03-09

    It is shown that if-and only if-'parallel universes' exist, an electroweak vacuum that is expected to have decayed since the big bang with a high probability might exist. It would neither necessarily render our existence unlikely nor could it be observed. In this special case the observation of certain combinations of Higgs-boson and top-quark masses-for which the standard model predicts such a decay-cannot be interpreted as evidence for new physics at low energy scales. The question of whether parallel universes exist is of interest to our understanding of the standard model of particle physics.

  18. Topics in particle physics and cosmology

    International Nuclear Information System (INIS)

    Hsu, S.D.H.

    1991-01-01

    The Standard Model of particle physics, together with the Big Bang model of the early universe, constitute a framework which encompasses our current understanding of fundamental laws and beginning of our universe. Despite recent speculative trends, quantum field theory remains the theoretical tool of choice for investigating new physics either at high energy colliders, or in the early universe. In this dissertation, several field theoretic phenomena relevant to cosmology or particle physics are explored. A common theme in these explorations is the structure of the vacuum state in quantum field theory. First, we discuss first-order phase transitions in the early universe, in which the effective vacuum state of the universe shifts discontinuously as the temperature drops below some critical point. We find that the dynamics of a certain type of first-order phase transition can lead to production of primordial black holes, which could constitute the dark matter of our universe. Alternatively, supercooled first-order phase transitions may be the cause of an extended inflationary epoch in the early universe, which is generally regarded as necessary to solve several cosmological puzzles. We derive limits on such scenarios based on nearly model-independent percolation properties of the transition. We also study some nonperturbative aspects of the field theory vacuum. We show that non-topological solitons of a single fermion and Higgs fields can only exist in strongly coupled theories. In particular, we find that at the lowest fermionic excitations in the Standard Model are single fermions, and not bound states of fermion plugs Higgs. Finally, we investigate the intriguing behavior of instanton-induced cross sections. We discover Higgs-Higgs cross sections which increase exponentially with center of mass energy due to the presence of instanton solutions related to vacuum instability

  19. Physics, mathematics and numerics of particle adsorption on fluid interfaces

    Science.gov (United States)

    Schmuck, Markus; Pavliotis, Grigorios A.; Kalliadasis, Serafim

    2012-11-01

    We study two arbitrary immiscible fuids where one phase contains small particles of the size of the interface and smaller. We primarily focus on charge-free particles with wetting characteristics described by the contact angle formed at the interface between the two phases and the particles. Based on the experimental observation that particles are adsorbed on the interface to reduce the interfacial energy and hence the surface tension as well, we formulate a free-energy functional that accounts for these physical effects. Using elements from calculus of variations and formal gradient flow theory, we derive partial differential equations describing the location of the interface and the density of the particles in the fluid phases. Via numerical experiments we analyse the time evolution of the surface tension, the particle concentration, and the free energy over time and reflect basic experimentally observed phenomena.

  20. EDITORIAL: Focus on Dark Matter and Particle Physics

    Science.gov (United States)

    Aprile, Elena; Profumo, Stefano

    2009-10-01

    The quest for the nature of dark matter has reached a historical point in time, with several different and complementary experiments on the verge of conclusively exploring large portions of the parameter space of the most theoretically compelling particle dark matter models. This focus issue on dark matter and particle physics brings together a broad selection of invited articles from the leading experimental and theoretical groups in the field. The leitmotif of the collection is the need for a multi-faceted search strategy that includes complementary experimental and theoretical techniques with the common goal of a sound understanding of the fundamental particle physical nature of dark matter. These include theoretical modelling, high-energy colliders and direct and indirect searches. We are confident that the works collected here present the state of the art of this rapidly changing field and will be of interest to both experts in the topic of dark matter as well as to those new to this exciting field. Focus on Dark Matter and Particle Physics Contents DARK MATTER AND ASTROPHYSICS Scintillator-based detectors for dark matter searches I S K Kim, H J Kim and Y D Kim Cosmology: small-scale issues Joel R Primack Big Bang nucleosynthesis and particle dark matter Karsten Jedamzik and Maxim Pospelov Particle models and the small-scale structure of dark matter Torsten Bringmann DARK MATTER AND COLLIDERS Dark matter in the MSSM R C Cotta, J S Gainer, J L Hewett and T G Rizzo The role of an e+e- linear collider in the study of cosmic dark matter M Battaglia Collider, direct and indirect detection of supersymmetric dark matter Howard Baer, Eun-Kyung Park and Xerxes Tata INDIRECT PARTICLE DARK MATTER SEARCHES:EXPERIMENTS PAMELA and indirect dark matter searches M Boezio et al An indirect search for dark matter using antideuterons: the GAPS experiment C J Hailey Perspectives for indirect dark matter search with AMS-2 using cosmic-ray electrons and positrons B Beischer, P von

  1. Deep inelastic scaling in nuclear and particle physics

    International Nuclear Information System (INIS)

    West, G.B.

    1988-01-01

    These lectures are intended to be a pedagogical introduction to some of the ideas and concepts concerning scaling phenomena which arise in nuclear and particle physics. Topics discussed are: classical scaling and dimensional analysis; non-relativistic treatment; dynamics and scaling; y-scaling; and relativistic treatment (QCD). 22 refs., 16 figs

  2. New Physics requirements and technological challenges to be confronted by calorimeters in particle physics

    International Nuclear Information System (INIS)

    Cavallari, Francesca

    2015-01-01

    The seminar presents an introduction to calorimetry in particle physics. Initially the purpose of electromagnetic and hadronic calorimeters in particle physics is shown. Then the paper focusses on electromagnetic calorimeters and it describes the microscopic phenomena that drive the formation of electromagnetic showers. Homogeneous and sampling calorimeters are presented and the energy resolution of both is analyzed. A few examples of past and present electromagnetic calorimeters at particle colliders are presented, with particular attention to the ones employed in the Atlas and CMS experiments at the LHC, their design constraints, challenges and adopted choices. Both these calorimeters were designed to operate for a minimum of ten years at the LHC, with an instantaneous luminosity of 1· 10 34 /cm 2 /s and for an integrated luminosity of 500/fb. From 2023 a new program will start: the high luminosity LHC (HL-LHC), which is expected to provide an instantaneous luminosity of around 5· 10 34 /cm 2 /s and integrate a total luminosity of around 3000/fb in ten years of data taking. The evolution of the CMS and Atlas calorimeters is assessed and needed upgrades are presented

  3. New Physics requirements and technological challenges to be confronted by calorimeters in particle physics

    Science.gov (United States)

    Cavallari, Francesca

    2015-09-01

    The seminar presents an introduction to calorimetry in particle physics. Initially the purpose of electromagnetic and hadronic calorimeters in particle physics is shown. Then the paper focusses on electromagnetic calorimeters and it describes the microscopic phenomena that drive the formation of electromagnetic showers. Homogeneous and sampling calorimeters are presented and the energy resolution of both is analyzed. A few examples of past and present electromagnetic calorimeters at particle colliders are presented, with particular attention to the ones employed in the Atlas and CMS experiments at the LHC, their design constraints, challenges and adopted choices. Both these calorimeters were designed to operate for a minimum of ten years at the LHC, with an instantaneous luminosity of 1· 1034/cm2/s and for an integrated luminosity of 500/fb. From 2023 a new program will start: the high luminosity LHC (HL-LHC), which is expected to provide an instantaneous luminosity of around 5· 1034/cm2/s and integrate a total luminosity of around 3000/fb in ten years of data taking. The evolution of the CMS and Atlas calorimeters is assessed and needed upgrades are presented.

  4. Fifty years of particle physics at the CEA

    International Nuclear Information System (INIS)

    Turlay, R.

    1997-01-01

    A historical review of researches at the CEA (and more particularly at Saclay) in particle physics, is presented. Contributions in themes such as polarized targets, bubble chambers, classic and superconductive magnets, etc. resulted in cooperation to the design of various machines such as Van de Graaff accelerator, cyclotron, Saturne, etc. Collaborations between CEA and CERN had led to numerous experiments in high energy physics, such as electronic experiments with the SPS accelerator. CEA was also involved in the intermediate boson discovery on the SppS collision apparatus, and is participating in two CERN's programs, neutrino physics (NOMAD) and CP violation (NA48). CEA is also collaborating with Russian, German and American laboratories in these domains

  5. A guide to experimental particle physics literature, 1991-1996

    International Nuclear Information System (INIS)

    Ezhela, V.V.; Filimonov, B.B.; Lugovsky, S.B.

    1996-10-01

    We present an indexed guide to experimental particle physics literature for the years 1991 - 1996. Approximately 4200 papers are indexed by (1) Beam/Target/Momentum (2) Reaction/Momentum/Data-Descriptor (including the final state) (3) Particle/Decay (4) Accelerator/Experiment/Detector. All indices are cross-referenced to the paper''s title and references in the ID/Reference/Title index. The information presented in this guide is also publicly available on a regularly-updated DATAGUIDE database from the World Wide Web

  6. A guide to experimental particle physics literature, 1991-1996

    Energy Technology Data Exchange (ETDEWEB)

    Ezhela, V.V.; Filimonov, B.B.; Lugovsky, S.B. [Inst. for High Energy Physics, Moscow (Russian Federation)] [and others

    1996-10-01

    We present an indexed guide to experimental particle physics literature for the years 1991 - 1996. Approximately 4200 papers are indexed by (1) Beam/Target/Momentum (2) Reaction/Momentum/Data-Descriptor (including the final state) (3) Particle/Decay (4) Accelerator/Experiment/Detector. All indices are cross-referenced to the paper`s title and references in the ID/Reference/Title index. The information presented in this guide is also publicly available on a regularly-updated DATAGUIDE database from the World Wide Web.

  7. Physical sputtering of metallic systems by charged-particle impact

    International Nuclear Information System (INIS)

    Lam, N.Q.

    1989-12-01

    The present paper provides a brief overview of our current understanding of physical sputtering by charged-particle impact, with the emphasis on sputtering of metals and alloys under bombardment with particles that produce knock-on collisions. Fundamental aspects of ion-solid interactions, and recent developments in the study of sputtering of elemental targets and preferential sputtering in multicomponent materials are reviewed. We concentrate only on a few specific topics of sputter emission, including the various properties of the sputtered flux and depth of origin, and on connections between sputtering and other radiation-induced and -enhanced phenomena that modify the near-surface composition of the target. The synergistic effects of these diverse processes in changing the composition of the integrated sputtered-atom flux is described in simple physical terms, using selected examples of recent important progress. 325 refs., 27 figs

  8. Integrated circuits for particle physics experiments

    CERN Document Server

    Snoeys, W; Campbell, M; Cantatore, E; Faccio, F; Heijne, Erik H M; Jarron, Pierre; Kloukinas, Kostas C; Marchioro, A; Moreira, P; Toifl, Thomas H; Wyllie, Ken H

    2000-01-01

    High energy particle physics experiments investigate the nature of matter through the identification of subatomic particles produced in collisions of protons, electrons, or heavy ions which have been accelerated to very high energies. Future experiments will have hundreds of millions of detector channels to observe the interaction region where collisions take place at a 40 MHz rate. This paper gives an overview of the electronics requirements for such experiments and explains how data reduction, timing distribution, and radiation tolerance in commercial CMOS circuits are achieved for these big systems. As a detailed example, the electronics for the innermost layers of the future tracking detector, the pixel vertex detector, is discussed with special attention to system aspects. A small-scale prototype (130 channels) implemented in standard 0.25 mu m CMOS remains fully functional after a 30 Mrad(SiO/sub 2/) irradiation. A full-scale pixel readout chip containing 8000 readout channels in a 14 by 16 mm/sup 2/ ar...

  9. Techniques for nuclear and particle physics experiments. 2. rev. ed.

    International Nuclear Information System (INIS)

    Leo, W.R.

    1992-01-01

    This book is an outgrowth of an advanced laboratory course in experimental nuclear and particle physics the author gave to physics majors at the University of Geneva during the years 1978- 1983. The course was offered to third and fourth year students, the latter of which had, at this point in their studies, chosen to specialize in experimental nuclear or particle physics. This implied that they would go on to do a 'diplome' thesis with one of the high- or intermediate-energy research groups in the physics department. The format of the course was such that the students were required to concentrate on only one experiment during the trimester, rather than perform a series of experiments as is more typical of a traditional course of this type. Their tasks thus included planning the experiment, learning the relevant techniques, setting up and troubleshooting the measuring apparatus, calibration, data-taking and analysis, as well as responsibility for maintaining their equipment, i.e., tasks resembling those in a real experiment. This more intensive involvement provided the students with a better understanding of the experimental problems encountered in a professional experiment and helped instill a certain independence and confidence which would prepare them for entry into a research group in the department. Teaching assistants were presented to help the students during the trimester and a series of weekly lectures was also given on various topics in experimental nuclear and particle physics. This included general information on detectors, nuclear electronics, statistics, the interaction of radiation in matter, etc., and a good deal of practical information for actually doing experiments. (orig.) With 254 figs

  10. Particle physics in intense electromagnetic fields

    International Nuclear Information System (INIS)

    Kurilin, A.V.

    1999-01-01

    The quantum field theory in the presence of classical background electromagnetic field is reviewed giving a pedagogical introduction to the Feynman-Furry method of describing non-perturbative interactions with very strong electromagnetic fields. A particular emphasis is given to the case of the plane-wave electromagnetic field for which the charged particles' wave functions and propagators are presented. Some general features of quantum processes proceeding in the intense electromagnetic background are argued. The possibilities of searching new physics through the investigations of quantum phenomena induced by a strong electromagnetic environment are also discussed

  11. Winter School on Physics with Trapped Charged Particles - Abstracts and slides

    International Nuclear Information System (INIS)

    Pedersen, T.S.; Thompson, R.C.; Madsen, N.; Champenois, C.; Anderegg, F.; Fajans, J.; Knoop, M.; Scott Hangst, J.; Hilico, L.; Ulmer, S.; Blaum, K.; Drewsen, M.; Roos, C.; Schmidt, P.

    2016-01-01

    This winter school covered various topics of the physics of trapped charged particles. Lectures covered basic trap physics and recent developments in Penning traps, Paul traps..., collective behavior and non-neutral plasmas, as well as applications for fundamental physics, laser cooling, precision spectroscopy and quantum information. This document gathers a booklet of abstracts and the available slides of the presentations

  12. An introduction to particle physics and the standard model

    CERN Document Server

    Mann, Robert

    2010-01-01

    … thoroughly recommended for a final-year specialist or first-year postgraduate study level especially for those engaged in experimental high energy physics research. The author has performed an excellent service in making accessible the language and results of field theory applied to elementary particle physics.-John J. Quenby, Contemporary Physics, 52, 2011The first chapter shows how clearly the author can write and even though the subject matter gets more complex through the book, the clarity continues. … giv[es] readers greater insights into how the maths and the reality match (or don't ma

  13. Information retrieval in particle physics

    International Nuclear Information System (INIS)

    Oyanagi, Yoshio

    1983-01-01

    Various information retrieval systems for elementary particle physics are introduced. Scientific information has been distributed in the form of books, periodicals or preprints. Some periodicals include the abstracts of information only. Recently, computer systems, by which the information retrieval can be easily done, have been developed. The construction of networks connecting various computer systems is in progress. It is possible to call the data base of Rutherford Laboratory from a telephone terminal of Laurence Berkeley Laboratory. The access to the Network by British Science Research Council can be made from DESY or CERN. The examples of on-line information retrieval in Japan are presented. Some of the periodicals of secondary information and data books are also introduced. (Kato, T.)

  14. Gauge evolution of elementary particles physics during the last fifty years

    International Nuclear Information System (INIS)

    Khodjaev, L.Sh

    2002-01-01

    Gauge evolution of the elementary particle physics has been remarked by outstanding and exiting discoveries during the last fifty years of X X century. We review a new tendency in the development of the modern elementary particle physics. The phenomenological basis for the formulation of Standard Model has been reviewed. The Standard Model based on the fundamental postulates has been formulated. The concept of the fundamental symmetries has been introduced to look for not fundamental particles but fundamental symmetries. The Standard Model is renormalizable and therefore potentially consistent in all energy scales. The Standard Model in principle can describe the properties of the Universe beginning at 10 -43 sec. after Big Bang. In searching of more general theory obvious program is to searching the first of all global symmetries and then learn consequences connected with the localization of these global symmetries

  15. Landmarks in particle physics at Brookhaven National Laboratory: Brookhaven Lecture Series, Number 238

    International Nuclear Information System (INIS)

    Adair, R.K.

    1987-01-01

    Robert Adair's lecture on Landmarks in Particle Physics at Brookhaven National Laboratory (BNL) is a commemoration of the 40th Anniversary of Brookhaven National Laboratory. Adair describes ten researches in elementary particle physics at Brookhaven that had a revolutionary impact on the understanding of elementary particles. Two of the discoveries were made in 1952 and 1956 at the Cosmotron, BNL's first proton accelerator. Four were made in 1962 and 1964 at the Alternating Gradient Synchrotron, the Cosmotron's replacement. Two other discoveries in 1954 and 1956 were theoretical, and strong focusing (1952) is the only technical discovery. One discovery (1958) happened in an old barrack. Four of the discoveries were awarded the Nobel prize in Physics. Adair believes that all of the discoveries are worthy of the Nobel prize. 14 figs

  16. Wear Particle Atlas. Revised

    Science.gov (United States)

    1982-06-28

    Superintendent NOTICE Reproduction of this document in any form by other than naval activities is/Jotbvlhorized except isys^iedcil approval of the SecretarWof...constant. •.■, -1 "if -w \\ SÄNPLlWi V» IVf Figure 3.1.1.1 Simplified Oil Path Ref 21 Scott. D, McCullagh. PJ and Campbell GW Condition Monitoring...Wear Particles in Human Synovial Fluid Arthritis and Rheumatism, 24 (1981) 912-918 30 Evans. C H .andTew W P isolationof Biological Materials

  17. A Word from the DG: Preparing the strategy for European particle physics

    CERN Multimedia

    2006-01-01

    Particle physics is an increasingly globalized field, with the LHC marking the turning point from regional to world-wide organization. Although still a European-led project, the LHC is the first accelerator that CERN has built with help from non-Member States, and its experiments are the most international collaboration that particle physics has ever known. For Europe to engage in this process of globalization for future projects, and to maintain a leading position in the field, we need a European strategy. The European Commission is considering introducing basic research in possible actions during its R&D framework programme (2007-2013). It is with this in mind that the CERN Council established a strategy group in 2005. The group was asked to define and prioritize technical options in preparing a long-term vision for European particle physics for presentation to Council at a special meeting in Lisbon on 14 July this year. CERN Council's decision to establish the strategy group recognizes the distinctio...

  18. Asymmetry in Nature-Discrete Symmetries in Particle Physics and ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 3. Asymmetry in Nature - Discrete Symmetries in Particle Physics and their Violation - Background and ... Theoretical Studies, Indian Institute of Science, Bangalore 560012, India. Indian Institute of Technology, Chennai. Aligarh Muslim University.

  19. 1975 annual report of the Elementary Particle Physics Department

    International Nuclear Information System (INIS)

    1976-03-01

    The annual report gives a short summary of experiments in progress and of approved proposals of experiments to be performed at CERN by the Elementary Particle Physics Department of Saclay, and also publication lists and informations about the Department activities during 1975 [fr

  20. Particle Physics Catalysis of Thermal Big Bang Nucleosynthesis

    International Nuclear Information System (INIS)

    Pospelov, Maxim

    2007-01-01

    We point out that the existence of metastable, τ>10 3 s, negatively charged electroweak-scale particles (X - ) alters the predictions for lithium and other primordial elemental abundances for A>4 via the formation of bound states with nuclei during big bang nucleosynthesis. In particular, we show that the bound states of X - with helium, formed at temperatures of about T=10 8 K, lead to the catalytic enhancement of 6 Li production, which is 8 orders of magnitude more efficient than the standard channel. In particle physics models where subsequent decay of X - does not lead to large nonthermal big bang nucleosynthesis effects, this directly translates to the level of sensitivity to the number density of long-lived X - particles (τ>10 5 s) relative to entropy of n X - /s -17 , which is one of the most stringent probes of electroweak scale remnants known to date

  1. A particular view of particle physics in the fifties

    International Nuclear Information System (INIS)

    Steinberger, J.

    1989-01-01

    The author describes his contribution to the field of particle physics in the 1950s. In his doctoral thesis work, be managed to observe a four-fermion interaction of a muon decaying into an electron and two other light, neutral particles, possibly neutrinos. He later worked on the 330 MeV electron-synchrotron looking at mesons, and made the first precise measurement of pion lifetimes. He later observed the decay of a neutral meson for the first time, which had surprisingly high velocity. In 1950, at Columbia, be determined the spins and parities of charged and neutral pions and studied the nuclear interaction of the charged particles on its 380 MeV cyclotron. The author then reviews early experiments and results for work on strange particles, and hyperons, showing parity violation. Collaborative work between Columbia and Brookhaven on neutrino beams is also described. (UK)

  2. My 50 years of research in particle physics

    International Nuclear Information System (INIS)

    Sugawara, Hirotaka

    2010-01-01

    Some of my work of the last 50 years in the field of theoretical particle physics is described with particular emphasis on the motivation, the process of investigation, relationship to the work of others, and its impact. My judgment is unavoidably subjective, although I do present the comments of other researchers as much as possible. (author)

  3. PSI nuclear and particle physics newsletter 1988

    International Nuclear Information System (INIS)

    Frosch, R.; Furrer, F.

    1989-01-01

    The present Newsletter contains reports on nuclear and particle physics supported by the F1 division of PSI. Groups were invited to present new preliminary or final results obtained in 1989. As usual there has been no refereeing. The contributions must not be quoted without previous consultation with the authors. Spokespersons are indicated by superscripts 'S' following their names in the headings of the contributions. (author) 65 figs., 9 tabs., 189 refs

  4. Refined holonomic summation algorithms in particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Round, Mark; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC)

    2017-06-15

    An improved multi-summation approach is introduced and discussed that enables one to simultaneously handle indefinite nested sums and products in the setting of difference rings and holonomic sequences. Relevant mathematics is reviewed and the underlying advanced difference ring machinery is elaborated upon. The flexibility of this new toolbox contributed substantially to evaluating complicated multi-sums coming from particle physics. Illustrative examples of the functionality of the new software package RhoSum are given.

  5. PSI nuclear and particle physics newsletter 1989

    International Nuclear Information System (INIS)

    Frosch, R.; Furrer, F.

    1990-01-01

    The present newsletter contains reports on nuclear and particle physics supported by the F1 division of PSI. Groups were invited to present new preliminary or final results obtained in 1989. As usual there has been no refereeing. The contributions must not be quoted without previous consultation with the authors. Spokespersons are indicated by superscripts 'S' following their names in the headings of the contributions. (author) 85 figs., 10 tabs., 307 refs

  6. Particle physics experiments at high energy colliders

    International Nuclear Information System (INIS)

    Hauptman, John

    2011-01-01

    Written by one of the detector developers for the International Linear Collider, this is the first textbook for graduate students dedicated to the complexities and the simplicities of high energy collider detectors. It is intended as a specialized reference for a standard course in particle physics, and as a principal text for a special topics course focused on large collider experiments. Equally useful as a general guide for physicists designing big detectors. (orig.)

  7. Refined holonomic summation algorithms in particle physics

    International Nuclear Information System (INIS)

    Bluemlein, Johannes; Round, Mark; Schneider, Carsten

    2017-06-01

    An improved multi-summation approach is introduced and discussed that enables one to simultaneously handle indefinite nested sums and products in the setting of difference rings and holonomic sequences. Relevant mathematics is reviewed and the underlying advanced difference ring machinery is elaborated upon. The flexibility of this new toolbox contributed substantially to evaluating complicated multi-sums coming from particle physics. Illustrative examples of the functionality of the new software package RhoSum are given.

  8. The rising sun of particle physics

    International Nuclear Information System (INIS)

    Fraser, G.

    1985-01-01

    A new entrant is set to join the select league of big-time high energy Laboratories. Thanks to imaginative planning and hard work, the Japanese KEK (Ko Enerugi butsurigaku Kenkyusho) National Laboratory will soon become a new world focus for particle physics research. KEK's original research programme was (and still is) based on a modest 12 GeV Proton Synchrotron which began regular operation in 1977. But even before this got underway, plans were being prepared for a big new machine which would push the Laboratory to the forefront of physics. The TRISTAN project as initially proposed forsaw a variety of colliding beam options, hence the name 'TRi-ring Intersecting STorage Accelerators in Nippon'. Subsequent thinking focused on the electron-positron option, leaving other possibilities for the future. Hence the Tri-ring in the original name has been modified to 'TRansposable Ring'. (orig./HSI).

  9. The Cosmological Standard Model and Its Implications for Beyond the Standard Model of Particle Physics

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    While the cosmological standard model has many notable successes, it assumes 95% of the mass-energy density of the universe is dark and of unknown nature, and there was an early stage of inflationary expansion driven by physics far beyond the range of the particle physics standard model. In the colloquium I will discuss potential particle-physics implications of the standard cosmological model.

  10. Pions to quarks: particle physics in the 1950s

    International Nuclear Information System (INIS)

    Brown, L.M.

    1989-01-01

    This chapter charts particle physics discoveries between 1947 and 1963, starting with the theory of the Yukawa meson, the pion and the first strange particles and ending with the discovery of two neutrinos, new pseudoscalar and vector mesons and charge-parity violations. Technically, this change from cosmic rays to accelerators as sources for high-energy experiments was significant, and detectors developed rapidly into large bubble chambers, scintillation counters and spark chambers, while computers were becoming more common for data analysis. In the post-war boom, large amounts of government funds were provided. (UK)

  11. IViPP: A Tool for Visualization in Particle Physics

    Science.gov (United States)

    Tran, Hieu; Skiba, Elizabeth; Baldwin, Doug

    2011-10-01

    Experiments and simulations in physics generate a lot of data; visualization is helpful to prepare that data for analysis. IViPP (Interactive Visualizations in Particle Physics) is an interactive computer program that visualizes results of particle physics simulations or experiments. IViPP can handle data from different simulators, such as SRIM or MCNP. It can display relevant geometry and measured scalar data; it can do simple selection from the visualized data. In order to be an effective visualization tool, IViPP must have a software architecture that can flexibly adapt to new data sources and display styles. It must be able to display complicated geometry and measured data with a high dynamic range. We therefore organize it in a highly modular structure, we develop libraries to describe geometry algorithmically, use rendering algorithms running on the powerful GPU to display 3-D geometry at interactive rates, and we represent scalar values in a visual form of scientific notation that shows both mantissa and exponent. This work was supported in part by the US Department of Energy through the Laboratory for Laser Energetics (LLE), with special thanks to Craig Sangster at LLE.

  12. A system for designing and simulating particle physics experiments

    International Nuclear Information System (INIS)

    Zelazny, R.; Strzalkowski, P.

    1987-01-01

    In view of the rapid development of experimental facilities and their costs, the systematic design and preparation of particle physics experiments have become crucial. A software system is proposed as an aid for the experimental designer, mainly for experimental geometry analysis and experimental simulation. The following model is adopted: the description of an experiment is formulated in a language (here called XL) and put by its processor in a data base. The language is based on the entity-relationship-attribute approach. The information contained in the data base can be reported and analysed by an analyser (called XA) and modifications can be made at any time. In particular, the Monte Carlo methods can be used in experiment simulation for both physical phenomena in experimental set-up and detection analysis. The general idea of the system is based on the design concept of ISDOS project information systems. The characteristics of the simulation module are similar to those of the CERN Geant system, but some extensions are proposed. The system could be treated as a component of greater, integrated software environment for the design of particle physics experiments, their monitoring and data processing. (orig.)

  13. Physical characterization of aerosol particles during the Chinese New Year’s firework events

    Science.gov (United States)

    Zhang, Min; Wang, Xuemei; Chen, Jianmin; Cheng, Tiantao; Wang, Tao; Yang, Xin; Gong, Youguo; Geng, Fuhai; Chen, Changhong

    2010-12-01

    Measurements for particles 10 nm to 10 μm were taken using a Wide-range Particle Spectrometer during the Chinese New Year (CNY) celebrations in 2009 in Shanghai, China. These celebrations provided an opportunity to study the number concentration and size distribution of particles in an especial atmospheric pollution situation due to firework displays. The firework activities had a clear contribution to the number concentration of small accumulation mode particles (100-500 nm) and PM 1 mass concentration, with a maximum total number concentration of 3.8 × 10 4 cm -3. A clear shift of particles from nucleation and Aitken mode to small accumulation mode was observed at the peak of the CNY firework event, which can be explained by reduced atmospheric lifetimes of smaller particles via the concept of the coagulation sink. High particle density (2.7 g cm -3) was identified as being particularly characteristic of the firework aerosols. Recalculated fine particles PM 1 exhibited on average above 150 μg m -3 for more than 12 hours, which was a health risk to susceptible individuals. Integral physical parameters of firework aerosols were calculated for understanding their physical properties and further model simulation.

  14. Proceedings of the Fourth Conference on Nuclear and Particle Physics (NUPPAC-2003)

    Energy Technology Data Exchange (ETDEWEB)

    Comsan, M N.H.; Hanna, K M [Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    2004-08-15

    The publication's has been set up as a book of the conference of nuclear and particle physics, it consists of the following chapters (1) high energy physics; (2) nuclear scattering and reaction; (3) nuclear models and spectroscopy; (3) neutron and reactor physics; (4) applied nuclear physics; (5) Detectors and Instrumentations; (6) computer codes and stimulation; (7) radiation measurement and dosimetry; (8) selected topics.

  15. Proceedings of the Fourth Conference on Nuclear and Particle Physics (NUPPAC-2003)

    International Nuclear Information System (INIS)

    Comsan, M.N.H.; Hanna, K.M.

    2004-08-01

    The publication's has been set up as a book of the conference of nuclear and particle physics, it consists of the following chapters (1) high energy physics; (2) nuclear scattering and reaction; (3) nuclear models and spectroscopy; (3) neutron and reactor physics; (4) applied nuclear physics; (5) Detectors and Instrumentations; (6) computer codes and stimulation; (7) radiation measurement and dosimetry; (8) selected topics

  16. Atom land guided tour through the strange (and impossibly small) world of particle physics

    CERN Document Server

    Butterworth, Jon

    2018-01-01

    For fans of Seven Brief Lessons on Physics and Astrophysics for People in a Hurry: a richly conjured world, in map and metaphor, of particle physics. Atom Land brings the impossibly small world of particle physics to life, taking readers on a guided journey through the subatomic world. Readers will sail the subatomic seas in search of electron ports, boson continents, and hadron islands. The sea itself is the quantum field, complete with quantum waves. Beware dark energy and extra dimensions, embodied by fantastical sea creatures prowling the far edges of the known world. Your tour guide through this whimsical—and highly instructive— world is Jon Butterworth, leading physicist at CERN (the epicenter of today’s greatest findings in physics). Over a series of journeys, he shows how everything fits together, and how a grasp of particle physics is key to unlocking a deeper understanding of many of the most profound mysteries—and science’s possible answers—in the known universe.

  17. Curating the collider: using place to engage museum visitors with particle physics

    Directory of Open Access Journals (Sweden)

    Alison Boyle

    2014-10-01

    Full Text Available CERN’s Large Hadron Collider, the world’s largest particle physics facility, provides museological opportunities and challenges. Visitor interest in cutting-edge physics, with its high media profile, is tempered by anxiety about understanding complex content. The topic does not readily lend itself to traditional museum showcase-dominated displays: the technology of modern particle physics is overwhelmingly large, while the phenomena under investigation are invisible. For Collider, a major temporary exhibition, the Science Museum adopted a ‘visit to CERN’ approach, recreating several of the laboratory’s spaces. We explore the effectiveness of this approach, at a time when historical studies of scientific laboratories and museum reconstructions of spaces are subject to renewed interest.

  18. Superheated superconducting granules: a detector for particle physics and astrophysics

    International Nuclear Information System (INIS)

    Gonzalez-Mestres, L.; Perret-Gallix, D.

    1987-01-01

    A general introduction to superheated superconducting granules (SSG) detectors is given and some recent results on their basic properties are presented. Granules recently made by industrial producers exhibit good metastability properties and show sensitivity, better than naively expected, to photons and ionizing particles. The behaviour of SSG detectors at very low temperatures is also discussed. We finally sketch a critical review of proposed applications to the cross-disciplinary frontier between particle physics and astrophysics

  19. LAPP - Annecy le Vieux Particle Physics Laboratory. Activity report 2002-2003

    International Nuclear Information System (INIS)

    Colas, Jacques; Minard, Marie-Noelle; Decamp, Daniel; Marion, Frederique; Drancourt, Cyril; Riva, Vanessa; Berger, Nicole; Bombar, Claudine; Dromby, Gerard

    2004-01-01

    LAPP is a high energy physics laboratory founded in 1976 and is one of the 19 laboratories of IN2P3 (National Institute of Nuclear and particle physics), institute of CNRS (National Centre for Scientific Research). LAPP is joint research facility of the University Savoie Mont Blanc (USMB) and the CNRS. Research carried out at LAPP aims at understanding the elementary particles and the fundamental interactions between them as well as exploring the connections between the infinitesimally small and the unbelievably big. Among other subjects LAPP teams try to understand the origin of the mass of the particles, the mystery of dark matter and what happened to the anti-matter that was present in the early universe. LAPP researchers work in close contact with phenomenologist teams from LAPTh, a theory laboratory hosted in the same building. LAPP teams also work since several decades at understanding the neutrinos, those elementary almost massless particles with amazing transformation properties. They took part in the design and realization of several experiments. Other LAPP teams collaborate in experiments studying signals from the cosmos. This document presents the activities of the laboratory during the years 2002-2003: 1 - Presentation of LAPP; 2 - Experimental programs: Standard model and its extensions (accurate measurements and search for new particles, The end of ALEPH and L3 LEP experiments, ATLAS experiment at LHC, CMS experiment at LHC); CP violation (BaBar experiment on PEPII collider at SLAC, LHCb experiment); Neutrino physics (OPERA experiment on CERN's CNGS neutrino beam); Astro-particles (AMS experiment, EUSO project on the Columbus module of the International Space Station); Search for gravitational waves - Virgo experiment; 3 - Laboratory's know-how: Skills, Technical departments (Electronics, Computers, Mechanics); R and D - CLIC and Positrons; Valorisation and industrial relations; 4 - Laboratory operation: Administration and general services; Laboratory

  20. System of data bases on particle physics at IHEP

    International Nuclear Information System (INIS)

    Alekhin, S.I.; Bazeeva, V.V.; Ezhela, V.V.

    1987-01-01

    Up-to-date status of the IHEP DOCUMENTS and EXPERIMENTS Data Bases are described. Now these data bases are the most complete computerized catalogues of experimental particle physics publications. BDMS and PPDL provide extended possibilities for any user in searching and retrieving desired information

  1. Research in elementary particle physics. [Ohio State Univ. , Columbus

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Experimental and theoretical work on high energy physics is reviewed. Included are preparations to study high-energy electron-proton interactions at HERA, light-cone QCD, decays of charm and beauty particles, neutrino oscillation, electron-positron interactions at CLEO II, detector development, and astrophysics and cosmology.

  2. (Medium energy particle physics): Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Nefkens, B.M.K.

    1985-10-01

    Investigations currently carried out by the UCLA Particle Physics Research Group can be arranged into four programs: Pion-Nucleon Scattering; Tests of Charge Symmetry and Isospin Invariance; Light Nuclei (Strong Form Factors of /sup 3/H, /sup 3/He, /sup 4/He; Detailed Balance in pd /r reversible/ /gamma//sup 3/H; Interaction Dynamics); and Search for the Rare Decay /Mu//sup +/ /yields/ e/sup +/ + /gamma/ (MEGA). The general considerations which led to the choice of physics problems investigated by our group are given in the next section. We also outline the scope of the research being done which includes over a dozen experiments. The main body of this report details the research carried out in the past year, the status of various experiments, and new projects.

  3. The Effects of the Revised CPPNM on Legislative Framework

    International Nuclear Information System (INIS)

    Kwak, Sung-Woo; Yoo, Ho-Sik; Shim, Hye-Won; Chang, Sun-Young; Lee, Jong-Uk

    2006-01-01

    A Diplomatic Conference was held last July at Vienna of Austria and adopted an important Convention in physical protection field. The Convention is the revised Convention on Physical Protection of Nuclear Material. A State Party to the revised CPPNM has obligation to meet the Convention. Since the Amendment to CPPNM is expected to enter into force in near future, there is an urgent need to prepare for implementing the international obligation. Thus, it is important to assess the effect of the revised Convention on national legislative and regulatory framework to govern physical protection of domestic nuclear material and facilities. The objective of this paper is to perform comparative assessment between new provisions of the revised Convention and national law in order to prepare for the implementation of the international norm

  4. Future directions in particle and nuclear physics at multi-GeV hadron beam facilities

    International Nuclear Information System (INIS)

    Geesaman, D.F.

    1993-01-01

    This report contains papers on the following topics in particle and nuclear physics: hadron dynamics; lepton physics; spin physics; hadron and nuclear spectroscopy; hadronic weak interactions; and Eta physics. These papers have been indexed separately elsewhere

  5. Future directions in particle and nuclear physics at multi-GeV hadron beam facilities

    Energy Technology Data Exchange (ETDEWEB)

    Geesaman, D.F. [Argonne National Lab., IL (United States)] [ed.

    1993-11-01

    This report contains papers on the following topics in particle and nuclear physics: hadron dynamics; lepton physics; spin physics; hadron and nuclear spectroscopy; hadronic weak interactions; and Eta physics. These papers have been indexed separately elsewhere.

  6. Mathematical gauge theory with applications to the standard model of particle physics

    CERN Document Server

    Hamilton, Mark J D

    2017-01-01

    The Standard Model is the foundation of modern particle and high energy physics. This book explains the mathematical background behind the Standard Model, translating ideas from physics into a mathematical language and vice versa. The first part of the book covers the mathematical theory of Lie groups and Lie algebras, fibre bundles, connections, curvature and spinors. The second part then gives a detailed exposition of how these concepts are applied in physics, concerning topics such as the Lagrangians of gauge and matter fields, spontaneous symmetry breaking, the Higgs boson and mass generation of gauge bosons and fermions. The book also contains a chapter on advanced and modern topics in particle physics, such as neutrino masses, CP violation and Grand Unification. This carefully written textbook is aimed at graduate students of mathematics and physics. It contains numerous examples and more than 150 exercises, making it suitable for self-study and use alongside lecture courses. Only a basic knowledge of d...

  7. Particle physics catalysis of thermal big bang nucleosynthesis.

    Science.gov (United States)

    Pospelov, Maxim

    2007-06-08

    We point out that the existence of metastable, tau>10(3) s, negatively charged electroweak-scale particles (X-) alters the predictions for lithium and other primordial elemental abundances for A>4 via the formation of bound states with nuclei during big bang nucleosynthesis. In particular, we show that the bound states of X- with helium, formed at temperatures of about T=10(8) K, lead to the catalytic enhancement of 6Li production, which is 8 orders of magnitude more efficient than the standard channel. In particle physics models where subsequent decay of X- does not lead to large nonthermal big bang nucleosynthesis effects, this directly translates to the level of sensitivity to the number density of long-lived X- particles (tau>10(5) s) relative to entropy of nX-/s less, approximately <3x10(-17), which is one of the most stringent probes of electroweak scale remnants known to date.

  8. Nuclear, particle and many body physics

    CERN Document Server

    Morse, Philip M; Feshbach, Herman

    2013-01-01

    Nuclear, Particle and Many Body Physics, Volume II, is the second of two volumes dedicated to the memory of physicist Amos de-Shalit. The contributions in this volume are a testament to the respect he earned as a physicist and of the warm and rich affection he commanded as a personal friend. The book contains 41 chapters and begins with a study on the renormalization of rational Lagrangians. Separate chapters cover the scattering of high energy protons by light nuclei; approximation of the dynamics of proton-neutron systems; the scattering amplitude for the Gaussian potential; Coulomb excitati

  9. A facility to Search for Hidden Particles at the CERN SPS: the SHiP physics case

    CERN Document Server

    Alekhin, Sergey; Asaka, Takehiko; Batell, Brian; Bezrukov, Fedor; Bondarenko, Kyrylo; Boyarsky, Alexey; Choi, Ki-Young; Corral, Cristobal; Craig, Nathaniel; Curtin, David; Davidson, Sacha; de Gouvea, Andre; Dell'Oro, Stefano; deNiverville, Patrick; Bhupal Dev, P.S.; Dreiner, Herbi; Drewes, Marco; Eijima, Shintaro; Essig, Rouven; Fradette, Anthony; Garbrecht, Bjorn; Gavela, Belen; Giudice, Gian F.; Goodsell, Mark D.; Gorbunov, Dmitry; Gori, Stefania; Grojean, Christophe; Guffanti, Alberto; Hambye, Thomas; Hansen, Steen H.; Helo, Juan Carlos; Hernandez, Pilar; Ibarra, Alejandro; Ivashko, Artem; Izaguirre, Eder; Jaeckel, Joerg; Jeong, Yu Seon; Kahlhoefer, Felix; Kahn, Yonatan; Katz, Andrey; Kim, Choong Sun; Kovalenko, Sergey; Krnjaic, Gordan; Lyubovitskij, Valery E.; Marcocci, Simone; Mccullough, Matthew; McKeen, David; Mitselmakher, Guenakh; Moch, Sven-Olaf; Mohapatra, Rabindra N.; Morrissey, David E.; Ovchynnikov, Maksym; Paschos, Emmanuel; Pilaftsis, Apostolos; Pospelov, Maxim; Reno, Mary Hall; Ringwald, Andreas; Ritz, Adam; Roszkowski, Leszek; Rubakov, Valery; Ruchayskiy, Oleg; Schienbein, Ingo; Schmeier, Daniel; Schmidt-Hoberg, Kai; Schwaller, Pedro; Senjanovic, Goran; Seto, Osamu; Shaposhnikov, Mikhail; Shchutska, Lesya; Shelton, Jessie; Shrock, Robert; Shuve, Brian; Spannowsky, Michael; Spray, Andy; Staub, Florian; Stolarski, Daniel; Strassler, Matt; Tello, Vladimir; Tramontano, Francesco; Tripathi, Anurag; Tulin, Sean; Vissani, Francesco; Winkler, Martin W.; Zurek, Kathryn M.; CERN. Geneva. SPS and PS Experiments Committee; SPSC

    2016-10-24

    This paper describes the physics case for a new fixed target facility at CERN SPS. The SHiP (Search for Hidden Particles) experiment is intended to hunt for new physics in the largely unexplored domain of very weakly interacting particles with masses below the Fermi scale, inaccessible to the LHC experiments, and to study tau neutrino physics. The same proton beam setup can be used later to look for decays of tau-leptons with lepton flavour number non-conservation, $\\tau\\to 3\\mu$ and to search for weakly-interacting sub-GeV dark matter candidates. We discuss the evidence for physics beyond the Standard Model and describe interactions between new particles and four different portals - scalars, vectors, fermions or axion-like particles. We discuss motivations for different models, manifesting themselves via these interactions, and how they can be probed with the SHiP experiment and present several case studies. The prospects to search for relatively light SUSY and composite particles at SHiP are also discussed....

  10. XML-based analysis interface for particle physics data analysis

    International Nuclear Information System (INIS)

    Hu Jifeng; Lu Xiaorui; Zhang Yangheng

    2011-01-01

    The letter emphasizes on an XML-based interface and its framework for particle physics data analysis. The interface uses a concise XML syntax to describe, in data analysis, the basic tasks: event-selection, kinematic fitting, particle identification, etc. and a basic processing logic: the next step goes on if and only if this step succeeds. The framework can perform an analysis without compiling by loading the XML-interface file, setting p in run-time and running dynamically. An analysis coding in XML instead of C++, easy-to-understood arid use, effectively reduces the work load, and enables users to carry out their analyses quickly. The framework has been developed on the BESⅢ offline software system (BOSS) with the object-oriented C++ programming. These functions, required by the regular tasks and the basic processing logic, are implemented with both standard modules or inherited from the modules in BOSS. The interface and its framework have been tested to perform physics analysis. (authors)

  11. Combining theory and observations. A sample study of the interplay between cosmology and particle physics

    International Nuclear Information System (INIS)

    Kulkarni, Suchita C.

    2011-01-01

    We look at various methods of exploring the connection between particle physics and cosmology. We focus on various aspects of dark matter analysis. We begin with the smallest scales and look at collider phenomenology first. We discuss how the analysis of CP-properties of particles within Supersymmetry, one of the most accepted theories giving us a dark matter candidate. For this matter we take a specific case of the CP-violation in the super-partner of the tau lepton, the stau. Going slightly more towards astroparticle physics, we next study can the dark matter in the Universe be semi-relativistic. Thus, we use our prior knowledge of the cosmic scale properties of dark matter to draw implications for particle physics. In the next step, we look at large scales and examine the evolution of relationship between dark matter haloes and the background dark matter density fields. We use methods similar to field theory techniques of particle physics to understand this evolution of mapping. (orig.)

  12. Combining theory and observations. A sample study of the interplay between cosmology and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, Suchita C.

    2011-08-08

    We look at various methods of exploring the connection between particle physics and cosmology. We focus on various aspects of dark matter analysis. We begin with the smallest scales and look at collider phenomenology first. We discuss how the analysis of CP-properties of particles within Supersymmetry, one of the most accepted theories giving us a dark matter candidate. For this matter we take a specific case of the CP-violation in the super-partner of the tau lepton, the stau. Going slightly more towards astroparticle physics, we next study can the dark matter in the Universe be semi-relativistic. Thus, we use our prior knowledge of the cosmic scale properties of dark matter to draw implications for particle physics. In the next step, we look at large scales and examine the evolution of relationship between dark matter haloes and the background dark matter density fields. We use methods similar to field theory techniques of particle physics to understand this evolution of mapping. (orig.)

  13. Particle physics explanations for ultra-high energy cosmic ray events

    Indian Academy of Sciences (India)

    this talk I briefly summarize several proposed particle physics explanations: a breakdown ... as primaries, and magnetic monopoles with mass below 1010 GeV as primaries. .... these monopoles would be the ultimate test of this explanation.

  14. Classical mechanics systems of particles and Hamiltonian dynamics

    CERN Document Server

    Greiner, Walter

    2010-01-01

    This textbook Classical Mechanics provides a complete survey on all aspects of classical mechanics in theoretical physics. An enormous number of worked examples and problems show students how to apply the abstract principles to realistic problems. The textbook covers Newtonian mechanics in rotating coordinate systems, mechanics of systems of point particles, vibrating systems and mechanics of rigid bodies. It thoroughly introduces and explains the Lagrange and Hamilton equations and the Hamilton-Jacobi theory. A large section on nonlinear dynamics and chaotic behavior of systems takes Classical Mechanics to newest development in physics. The new edition is completely revised and updated. New exercises and new sections in canonical transformation and Hamiltonian theory have been added.

  15. XXXII International Meeting on Fundamental physics. Selected Topics in Particle and Astroparticle Physics. Alicante, Spain, March 1-5, 2004

    International Nuclear Information System (INIS)

    Hernandez Rey, J. J.; Zuniga Roman, J.

    2005-01-01

    The XXXII International Winter Meeting on Fundamental Physics took place in Alicante, Spain, from March 1st to 5th, 2004. The lectures covered a wide range of topics on Experimental and theoretical Particle and Astroparticle Physics, such as Neutrino Oscillations and Mixing, LHC Physics, Grid Computing, Flavour Physics, CP violation, Cosmology, Cosmic ray, Gamma and Neutrino Astrophysics and on the Technology, Detectors and Physics of the Linear Collider. (Author)

  16. 9th International Conference on Interconnections between Particle Physics and Cosmology

    CERN Document Server

    2015-01-01

    Recent advances in observational astronomy and the discovery of 125-GeV Higgs boson have brought paradigm shifts on the potential connections between new fundamental particles and our understanding of their impact on the early universe and its evolution. With the content of the universe well known from astrophysical observations, a key aspect is that 27% of the universe appears to consist of dark matter. If current theories are correct, the particle physics candidate for this matter may well be observed in ongoing direct and/or indirect dark matter detection experiments or at the LHC. In addition, about 69% of the universe, the dark energy, still remains a significant mystery that major theoretical attempts are trying to understand. The objectives of PPC 2015 are to analyze the connection between dark matter and particle physics models, discuss the connections among dark matter, grand unification models and recent neutrino results, explore predictions for ongoing and forthcoming experiments, develop a theore...

  17. 8th International Conference on Interconnections between Particle Physics and Cosmology

    CERN Document Server

    PPC 2014

    2014-01-01

    Advances in observational astronomy have brought a new focus on the potential connections between new fundamental particles and our understanding of their impact on the early universe and its evolution. With the content of the universe well known from astrophysical observations, a key aspect is that 23% of the universe appears to consist of dark matter. If current theories are correct, the particle physics candidate for this matter may well be observed in ongoing direct and/or indirect dark matter detection experiments or at the Large Hadron Collider (LHC). In addition, about 70% of the universe, the dark energy, still remains a significant mystery that major theoretical attempts are trying to understand. Today, we have very exciting experiments such as LHC, LUX, PLANCK, FERMI. They are motivations behind organizing this workshop on particle physics and cosmology. In this workshop, we discussed various issues related to the realization of the well-motivated connection between these two areas. Since the mo...

  18. Point-counterpoint in physics: theoretical prediction and experimental discovery of elementary particles

    International Nuclear Information System (INIS)

    Leite Lopes, J.

    1984-01-01

    A report is given on the theoretical prediction and the experimental discovery of elementary particles from the electron to the weak intermediate vector bosons. The work of Lattes, Occhialini and Powell which put in evidence the pions predicted by Yukawa was the starting point of the modern experimental particle physics

  19. A bird's eye view of particle physics

    CERN Document Server

    De Groot, E H

    1977-01-01

    Reviews recent discoveries in the field of particle physics and places them in a theoretical framework. Then shows what is to be expected from the CERN SPS, and from the Fermi laboratory in America where a machine analogous to the SPS is already in service. Better secondary beams should improve our knowledge of lepton-hadron scattering processes, thus providing information about hadron structure and also, with v-scattering, on weak interactions. More should also be learned about proton-proton scattering. (0 refs).

  20. Current Experiments in Particle Physics. 1996 Edition.

    Energy Technology Data Exchange (ETDEWEB)

    Galic, Hrvoje

    2003-06-27

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries.

  1. Obituaries: Oreste Piccioni, 86, a leader in particle physics field

    CERN Multimedia

    2002-01-01

    Oreste Piccioni, a leading scientist in the field of elementary particle physics and emeritus professor at the University of California, San Diego, USA, has died of complications from diabetes and lung cancer. He was 86 (1 page).

  2. Particle physics instrumentation

    International Nuclear Information System (INIS)

    Riegler, W.

    2011-01-01

    This report summarizes a series of three lectures aimed at giving an overview of basic particle detection principles, the interaction of particles with matter, the application of these principles in modern detector systems, as well techniques to read out detector signals in high-rate experiments. (author)

  3. Application of artificial neural networks in particle physics

    International Nuclear Information System (INIS)

    Kolanoski, H.

    1995-04-01

    The application of Artificial Neural Networks in Particle Physics is reviewed. Most common is the use of feed-forward nets for event classification and function approximation. This network type is best suited for a hardware implementation and special VLSI chips are available which are used in fast trigger processors. Also discussed are fully connected networks of the Hopfield type for pattern recognition in tracking detectors. (orig.)

  4. Astrophysical dark matter: candidates from particle physics and detection possibilities

    International Nuclear Information System (INIS)

    Freese, K.

    1989-01-01

    In this talk, I will discuss the arguments that 50% to 90% of the matter in galaxies, including our own, is made of an unknown type of dark matter. I will review the reason why cosmologists believe Ω = 1 and illustrate the contrast with the limits on the amount of baryonic matter from element abundances in Big Bang Nucleosynthesis. Other arguments for nonbaryonic dark matter will also be discussed. Candidates for the dark matter from particle physics will be presented. I will focus on cold dark matter candidates known as WIMPs, weakly interacting massive (O(GeV)) particles. I will try to illustrate why these particles are interesting for astrophysics and outline ideas for cornering them. Detection possibilities for these particles include indirect detection, which takes advantage of the annihilation products of these particles in the galactic halo, the sun, or the earth. Direct detection via newly proposed cryogenic detectors must be sensitive to <∼ keV energy deposits. Annual modulation of the dark matter signal can be used as a signature for these halo particles. I hope to motivate the interest in these particles and discuss ideas for finding them

  5. LAPP - Annecy le Vieux Particle Physics Laboratory. Activity report 1996-1997

    International Nuclear Information System (INIS)

    Colas, Jacques; Minard, Marie-Noelle; Decamp, Daniel; Marion, Frederique; Drancourt, Cyril; Riva, Vanessa; Berger, Nicole; Bombar, Claudine; Dromby, Gerard

    2004-01-01

    LAPP is a high energy physics laboratory founded in 1976 and is one of the 19 laboratories of IN2P3 (National Institute of Nuclear and particle physics), institute of CNRS (National Centre for Scientific Research). LAPP is joint research facility of the University Savoie Mont Blanc (USMB) and the CNRS. Research carried out at LAPP aims at understanding the elementary particles and the fundamental interactions between them as well as exploring the connections between the infinitesimally small and the unbelievably big. Among other subjects LAPP teams try to understand the origin of the mass of the particles, the mystery of dark matter and what happened to the anti-matter that was present in the early universe. LAPP researchers work in close contact with phenomenologist teams from LAPTh, a theory laboratory hosted in the same building. LAPP teams also work since several decades at understanding the neutrinos, those elementary almost massless particles with amazing transformation properties. They took part in the design and realization of several experiments. Other LAPP teams collaborate in experiments studying signals from the cosmos. This document presents the activities of the laboratory during the years 1996-1997: 1 - Presentation of LAPP; 2 - Data acquisition experiments: e"+e"- annihilations at LEP (standard model and beyond the standard model - ALEPH, Study of hadronic final state events and Search for supersymmetric particles at L3 detector); Neutrino experiments (neutrino oscillation search at 1 km of the Chooz reactors, search for neutrino oscillations at the CERN Wide Band neutrino beam - NOMAD); Quarks-Gluons plasma; Hadronic spectroscopy; 3 - Experiments under preparation (CP violation study - BABAR, Anti Matter Spectrometer in Space - AMS, Search for gravitational waves - VIRGO, Search for the Higgs boson - ATLAS and CMS); 4 - Technical departments; 5 - Theoretical physics; 6 - Other activities

  6. Particle dark matter from physics beyond the standard model

    International Nuclear Information System (INIS)

    Matchev, Konstantin

    2004-01-01

    In this talk I contrast three different particle dark matter candidates, all motivated by new physics beyond the Standard Model: supersymmetric dark matter, Kaluza-Klein dark matter, and scalar dark matter. I then discuss the prospects for their discovery and identification in both direct detection as well as collider experiments

  7. Development of students' interest in particle physics as effect of participating in a Masterclass

    International Nuclear Information System (INIS)

    Gedigk, Kerstin; Pospiech, Gesche

    2015-01-01

    The International Hands On Particle Physics Masterclasses are enjoying increasing popularity worldwide every year. In Germany a national program was brought to live in 2010, which offers these appreciated events to whole classes or courses of high school students all over the year. These events were evaluated concerning the issues of students’ interest in particle physics and their perception of the events. How several interest variables interact with each other and the perception of the events is answered by structural equation modelling (sect. 5 . 2). The results give information about the events’ effects on the students’ interest development in particle physics, show which event features are important (e.g. the authenticity) and give information about practical approaches to improve the effects of the Masterclasses. Section 5 . 3 deals with a group of participants which have a high interest in particle physics 6–8 weeks after the participation. The number of these students is remarkable large, with 26% of all participants. The investigation of this group shows that the Masterclass participation has the same positive effect on both sexes and all levels of physics education.

  8. Introduction to the study of particle accelerators. Atomic, nuclear and high energy physics for engineers

    International Nuclear Information System (INIS)

    Warnecke, R.R.

    1975-01-01

    This book is destined for engineers taking part in the design building and running of nuclear physics and high-energy physics particle accelerators. It starts with some notions on the theory of relativity, analytical and statistical mechanics and quantum mechanics. An outline of the properties of atomic nuclei, the collision theory and the elements of gaseous plasma physics is followed by a discussion on elementary particles: characteristic parameters, properties, interactions, classification [fr

  9. Recipients of 2013 EPS High Energy & Particle Physics Prize

    CERN Multimedia

    ATLAS, Experiment

    2014-01-01

    (From left) Joe Incandela, Peter Higgs, Francois Englert, Tejinder Virdee, Dave Charlton, and Peter Jenni. Higgs and Englert gave the prizes to the recipients of the 2013 European Physical Society's High Energy and Particle Physics Prize, for an outstanding contribution to high energy physics. "For the discovery of a Higgs boson, as predicted by the Brout-Englert-Higgs mechanism," the prize was awarded to the ATLAS and CMS collaborations. Spokesperson for CMS, Incandela, and Spokesperson for ATLAS, Charlton, accepted the awards on their collaborations' behalf. "For their pioneering and outstanding leadership roles in the making of the ATLAS and CMS experiments," the prize was awarded to Jenni, Virdee, and Michel Della Negra (not present). Image: ATLAS

  10. Proceedings of Summer Institute on Particle Physics: the weak interaction

    International Nuclear Information System (INIS)

    Mosher, A.

    1981-01-01

    The SLAC Summer Institute on Particle Physics held its eighth session on July 28-August 8, 1980, and the focus of the meeting was The Weak Interaction. Following the now traditional format, the first seven days of the Institute were spent with the mornings given to pedagogic lectures on the experimental and theoretical foundations of the topic. This year included a very stimulating and successful series on the physics of particle detectors. In the afternoons were seminars on the various experimental tools being designed or constructed to further probe the Weak Interaction, followed by lively discussion of the morning's lectures. Again, following the usual format, the school led into a three-day topical conference at which the most recent theoretical and experimental results were presented and discussed. Abstracts of twenty-seven items from the Institute were prepared separately for the data base

  11. Statistical physics

    CERN Document Server

    Guénault, Tony

    2007-01-01

    In this revised and enlarged second edition of an established text Tony Guénault provides a clear and refreshingly readable introduction to statistical physics, an essential component of any first degree in physics. The treatment itself is self-contained and concentrates on an understanding of the physical ideas, without requiring a high level of mathematical sophistication. A straightforward quantum approach to statistical averaging is adopted from the outset (easier, the author believes, than the classical approach). The initial part of the book is geared towards explaining the equilibrium properties of a simple isolated assembly of particles. Thus, several important topics, for example an ideal spin-½ solid, can be discussed at an early stage. The treatment of gases gives full coverage to Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein statistics. Towards the end of the book the student is introduced to a wider viewpoint and new chapters are included on chemical thermodynamics, interactions in, for exam...

  12. Point-counterpoint in physics: theoretical prediction and experimental discovery of elementary particles

    International Nuclear Information System (INIS)

    Lopes, J.L.

    1984-01-01

    A report is given on the theoretical prediction and the experimental discovery of elementary particles from the electron to the weak intermediate vector bosons. The work of Lattes, Occhialini and Powell which put in evidence the pions predicted by Yukawa was the starting point of the modern experimental particle physics. (Author) [pt

  13. Nuclei and particles. An introduction to nuclear and subnuclear physics

    International Nuclear Information System (INIS)

    Serge, E.

    1977-01-01

    A broad introduction is given to nuclear and subnuclear physics. Major divisions of the book include radiation and tools for studying the nucleus, elements of the structure, properties, and reactions of nuclei, and a semiphenomenological approach to elementary particles

  14. Early nucleosynthesis, particle physics and the quark-lithium connection

    International Nuclear Information System (INIS)

    Reeves, H.; Audouze, J.; Delbourgo-Salvador, P.; Salati, P.; California Univ., Berkeley

    1987-01-01

    Three questions relevant to the primordial nucleosynthesis of the very light elements are discussed in this contribution: 1. It is argued that the ''standard'' Big Bang nucleosynthesis models are strenghtened if D is destroyed thoroughly during the galactic history. This can be achieved by specific models of chemical evolution of galaxies like those assuming a rate of star formation varying with time. 2. The existence of non baryonic particles such as massive neutrinos or supersymetric particles (gravitinos, photinos ...) might affect this early nucleosynthesis. If they are massive (≥ 500 MeV) and long lived enough (≥ 10 5 sec) the energetic photons released by their possible decay might affect the relative abundances of the light elements. In the case of the photinos, which are the supersymetric particles and which might be experimentally detectable in a near future, this possible effect can be used as to constrain the predictions on their physical properties (mass, lifetime...). 3. The early nucleosynthesis can be affected by the inhomogeneities triggered by the quark-hadron phase transition. It is argued that the primordial abundance of 7 Li limits very severely this possibility. As in the case of photinos the relation between the early synthesis of 7 Li and the characteristics of this quark-hadron phase transition may provide interesting constraints on some important physical parameters such as the constant B of the quark-bag model

  15. The experimental foundations of particle physics

    International Nuclear Information System (INIS)

    Cahn, R.N.; Goldhaber, G.

    1987-01-01

    This book describes the development of modern particle physics, emphasizing the role and significance of crucial experiments. This description is supported by a selection of reprints of notable experimental papers. Beginning at the turn of the century with the discovery of radioactivity, x-rays, and the Thomson model of the atom, the authors take the reader through the great developments of the twentieth century, culminating in a description of the electroweak theory and the discovery of the W and Z vector bosons. The bulk of this book is written in non-technical language, although more technical passages are included and extensive references to review articles and books are given

  16. Large extra dimensions a new arena for particle physics

    CERN Multimedia

    Arkani-Hamed, N; Savas-Divali, G

    2002-01-01

    "This article examines the information accumulated so far and the impact of forthcoming new advances in particle physics research on the current supersymmetric standard model. The new premise is that there is no desert at all and that the electroweak unification energy is the only fundamental energy scale in nature" (2 pages).

  17. What could we learn about high energy particle physics from cosmological observations at largest spatial scales ?

    Directory of Open Access Journals (Sweden)

    Gorbunov Dmitry

    2017-01-01

    Full Text Available The very well known example of cosmology testing particle physics is the number of relativistic particles (photons and three active neutrinos within the Standard Model at primordial nucleosynthesis. These days the earliest moment we can hope to probe with present cosmological data is the early time inflation. The particle physics conditions there and now are different because of different energy scales and different values of the scalar fields, that usually prohibits a reliable connection between the particle physics parameters at the two interesting epochs. The physics at the highest energy scales may be probed with observations at the largest spatial scales (just somewhat smaller than the size of the visible Universe. However, we are not (yet ready to make the tests realistic, because of lack of a self-consistent theoretical description of the presently favorite cosmological models to be valid right after inflation.

  18. A Brief Note on "Un-Particle" Physics

    Directory of Open Access Journals (Sweden)

    Goldfain E.

    2008-07-01

    Full Text Available The possibility of a hidden sector of particle physics that lies beyond the energy range of the Standard Model has been recently advocated by many authors. A bizarre implication of this conjecture is the emergence of a continuous spectrum of massless fields with non-integral scaling dimensions called “un-particles”. The purpose of this Letter is to show that the idea of “un-particles” was considered in at least two previous independent publications, prior to its first claimed disclosure.

  19. Revised data taking schedule with ion beams

    CERN Document Server

    Gazdzicki, Marek; Aduszkiewicz, A; Andrieu, B; Anticic, T; Antoniou, N; Argyriades, J; Asryan, A G; Baatar, B; Blondel, A; Blumer, J; Boldizsar, L; Bravar, A; Brzychczyk, J; Bubak, A; Bunyatov, S A; Choi, K U; Christakoglou, P; Chung, P; Cleymans, J; Derkach, D A; Diakonos, F; Dominik, W; Dumarchez, J; Engel, R; Ereditato, A; Feofilov, G A; Fodor, Z; Ferrero, A; Gazdzicki, M; Golubeva, M; Grebieszkow, K; Grzeszczuk, A; Guber, F; Hasegawa, T; Haungs, A; Igolkin, S; Ivanov, A S; Ivashkin, A; Kadija, K; Katrynska, N; Kielczewska, D; Kikola, D; Kisiel, J; Kobayashi, T; Kolesnikov, V I; Kolev, D; Kolevatov, R S; Kondratiev, V P; Kowalski, S; Kurepin, A; Lacey, R; Laszlo, A; Lyubushkin, V V; Majka, Z; I Malakhov, A; Marchionni, A; Marcinek, A; Maris, I; Matveev, V; Melkumov, G L; Meregaglia, A; Messina, M; Mijakowski, P; Mitrovski, M; Montaruli, T; Mrówczynski, St; Murphy, S; Nakadaira, T; Naumenko, P A; Nikolic, V; Nishikawa, K; Palczewski, T; Pálla, G; Panagiotou, A D; Peryt, W; Planeta, R; Pluta, J; Popov, B A; Posiadala, M; Przewlocki, P; Rauch, W; Ravonel, M; Renfordt, R; Röhrich, D; Rondio, E; Rossi, B; Roth, M; Rubbia, A; Rybczynski, M; Sadovskii, A; Sakashita, K; Schuster, T; Sekiguchi, T; Seyboth, P; Shibata, M; Sissakian, A N; Skrzypczak, E; Slodkowski, M; Sorin, A S; Staszel, P; Stefanek, G; Stepaniak, J; Strabel, C; Ströbele, H; Susa, T; Szentpétery, I; Szuba, M; Tada, M; Taranenko, A; Tsenov, R; Ulrich, R; Unger, M; Vassiliou, M; Vechernin, V V; Vesztergombi, G; Wlodarczyk, Z; Wojtaszek, A; Zipper, W; CERN. Geneva. SPS and PS Experiments Committee; SPSC

    2009-01-01

    This document presents the revised data taking schedule of NA61 with ion beams. The revision takes into account limitations due to the new LHC schedule as well as final results concerning the physics performance with secondary ion beams. It is proposed to take data with primary Ar and Xe beams in 2012 and 2014, respectively, and to test and use for physics a secondary B beam from primary Pb beam fragmentation in 2010, 2011 and 2013.

  20. Gauge bosons and heavy quarks: Proceedings of Summer Institute on Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, J.F. (ed.)

    1991-01-01

    This report contains papers on the following topics: Z decays and tests of the standard model; future possibilities for LEP; studies of the interactions of electroweak gauge bosons; top quark topics; the next linear collider; electroweak processes in hadron colliders; theoretical topics in B-physics; experimental aspects of B-physics; B-factory storage ring design; rare kaon decays; CP violation in K{sup 0} decays at CERN; recent K{sup 0} decay results from Fermilab E-731; results from LEP on heavy quark physics; review of recent results on heavy flavor production; weak matrix elements and the determination of the weak mixing angles; recent results from CLEO I and a glance at CLEO II data; recent results from ARGUS; neutrino lepton physics with the CHARM 2 detector; recent results from the three TRISTAN experiments; baryon number violation at high energy in the standard model: fact or fiction New particle searches at LEP; review of QCD at LEP; electroweak interactions at LEP; recent results on W physics from the UA2 experiment at the CERN {rho}{bar {rho}} collider; B physics at CDF; and review of particle astrophysics.

  1. Gauge bosons and heavy quarks: Proceedings of Summer Institute on Particle Physics

    International Nuclear Information System (INIS)

    Hawthorne, J.F.

    1991-01-01

    This report contains papers on the following topics: Z decays and tests of the standard model; future possibilities for LEP; studies of the interactions of electroweak gauge bosons; top quark topics; the next linear collider; electroweak processes in hadron colliders; theoretical topics in B-physics; experimental aspects of B-physics; B-factory storage ring design; rare kaon decays; CP violation in K 0 decays at CERN; recent K 0 decay results from Fermilab E-731; results from LEP on heavy quark physics; review of recent results on heavy flavor production; weak matrix elements and the determination of the weak mixing angles; recent results from CLEO I and a glance at CLEO II data; recent results from ARGUS; neutrino lepton physics with the CHARM 2 detector; recent results from the three TRISTAN experiments; baryon number violation at high energy in the standard model: fact or fiction? New particle searches at LEP; review of QCD at LEP; electroweak interactions at LEP; recent results on W physics from the UA2 experiment at the CERN ρ bar ρ collider; B physics at CDF; and review of particle astrophysics

  2. A physics-motivated Centroidal Voronoi Particle domain decomposition method

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Lin, E-mail: lin.fu@tum.de; Hu, Xiangyu Y., E-mail: xiangyu.hu@tum.de; Adams, Nikolaus A., E-mail: nikolaus.adams@tum.de

    2017-04-15

    In this paper, we propose a novel domain decomposition method for large-scale simulations in continuum mechanics by merging the concepts of Centroidal Voronoi Tessellation (CVT) and Voronoi Particle dynamics (VP). The CVT is introduced to achieve a high-level compactness of the partitioning subdomains by the Lloyd algorithm which monotonically decreases the CVT energy. The number of computational elements between neighboring partitioning subdomains, which scales the communication effort for parallel simulations, is optimized implicitly as the generated partitioning subdomains are convex and simply connected with small aspect-ratios. Moreover, Voronoi Particle dynamics employing physical analogy with a tailored equation of state is developed, which relaxes the particle system towards the target partition with good load balance. Since the equilibrium is computed by an iterative approach, the partitioning subdomains exhibit locality and the incremental property. Numerical experiments reveal that the proposed Centroidal Voronoi Particle (CVP) based algorithm produces high-quality partitioning with high efficiency, independently of computational-element types. Thus it can be used for a wide range of applications in computational science and engineering.

  3. Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 10: Communication, Education, and Outreach

    OpenAIRE

    Bardeen, M.; Cronin-Hennessy, D.; Barnett, R. M.; Bhat, P.; Cecire, K.; Cranmer, K.; Jordan, T.; Karliner, I.; Lykken, J.; Norris, P.; White, H.; Yurkewicz, K.

    2014-01-01

    These reports present the results of the 2013 Community Summer Study of the APS Division of Particles and Fields ("Snowmass 2013") on the future program of particle physics in the U.S. Chapter 10, on Communication, Education, and Outreach, discusses the resources and issues for the communication of information about particle physics to teachers and students, to scientists in other fields, to policy makers, and to the general public.

  4. Astro-particle physics in Europe: present and future

    International Nuclear Information System (INIS)

    Bourquin, M.

    2014-01-01

    One hundred years ago physicist Victor Hess discovered cosmic rays during balloon flights. This discovery can be considered as the birth of a new field of research: astro-particle physics. This article gives an overview of the main lines of experimental and theoretical research and future plans in the domains of dark matter, dark energy, high-energy cosmic messengers, gravitational waves, proton decay and the properties of neutrinos. (author)

  5. Research in elementary particle physics. Progress report, March 1, 1994--February 28, 1995

    International Nuclear Information System (INIS)

    Chan, Lai-Him; Haymaker, R.; Imlay, R.; McNeil, R.; Metcalf, W.; Svoboda, R.

    1994-01-01

    This report discusses the following topics: Low-energy particle dynamics; QCD dynamics on the lattice; lattice QCD Vacuum; phenomenology ampersand cosmology; the ZEUS Experiment at HERA; neutrino physics at LAMPF; non-accelerator physics; and SSC activity

  6. A facility to search for hidden particles at the CERN SPS: the SHiP physics case.

    Science.gov (United States)

    Alekhin, Sergey; Altmannshofer, Wolfgang; Asaka, Takehiko; Batell, Brian; Bezrukov, Fedor; Bondarenko, Kyrylo; Boyarsky, Alexey; Choi, Ki-Young; Corral, Cristóbal; Craig, Nathaniel; Curtin, David; Davidson, Sacha; de Gouvêa, André; Dell'Oro, Stefano; deNiverville, Patrick; Bhupal Dev, P S; Dreiner, Herbi; Drewes, Marco; Eijima, Shintaro; Essig, Rouven; Fradette, Anthony; Garbrecht, Björn; Gavela, Belen; Giudice, Gian F; Goodsell, Mark D; Gorbunov, Dmitry; Gori, Stefania; Grojean, Christophe; Guffanti, Alberto; Hambye, Thomas; Hansen, Steen H; Helo, Juan Carlos; Hernandez, Pilar; Ibarra, Alejandro; Ivashko, Artem; Izaguirre, Eder; Jaeckel, Joerg; Jeong, Yu Seon; Kahlhoefer, Felix; Kahn, Yonatan; Katz, Andrey; Kim, Choong Sun; Kovalenko, Sergey; Krnjaic, Gordan; Lyubovitskij, Valery E; Marcocci, Simone; Mccullough, Matthew; McKeen, David; Mitselmakher, Guenakh; Moch, Sven-Olaf; Mohapatra, Rabindra N; Morrissey, David E; Ovchynnikov, Maksym; Paschos, Emmanuel; Pilaftsis, Apostolos; Pospelov, Maxim; Reno, Mary Hall; Ringwald, Andreas; Ritz, Adam; Roszkowski, Leszek; Rubakov, Valery; Ruchayskiy, Oleg; Schienbein, Ingo; Schmeier, Daniel; Schmidt-Hoberg, Kai; Schwaller, Pedro; Senjanovic, Goran; Seto, Osamu; Shaposhnikov, Mikhail; Shchutska, Lesya; Shelton, Jessie; Shrock, Robert; Shuve, Brian; Spannowsky, Michael; Spray, Andy; Staub, Florian; Stolarski, Daniel; Strassler, Matt; Tello, Vladimir; Tramontano, Francesco; Tripathi, Anurag; Tulin, Sean; Vissani, Francesco; Winkler, Martin W; Zurek, Kathryn M

    2016-12-01

    This paper describes the physics case for a new fixed target facility at CERN SPS. The SHiP (search for hidden particles) experiment is intended to hunt for new physics in the largely unexplored domain of very weakly interacting particles with masses below the Fermi scale, inaccessible to the LHC experiments, and to study tau neutrino physics. The same proton beam setup can be used later to look for decays of tau-leptons with lepton flavour number non-conservation, [Formula: see text] and to search for weakly-interacting sub-GeV dark matter candidates. We discuss the evidence for physics beyond the standard model and describe interactions between new particles and four different portals-scalars, vectors, fermions or axion-like particles. We discuss motivations for different models, manifesting themselves via these interactions, and how they can be probed with the SHiP experiment and present several case studies. The prospects to search for relatively light SUSY and composite particles at SHiP are also discussed. We demonstrate that the SHiP experiment has a unique potential to discover new physics and can directly probe a number of solutions of beyond the standard model puzzles, such as neutrino masses, baryon asymmetry of the Universe, dark matter, and inflation.

  7. Nobel physics prize to Charpak for inventing particle detectors

    International Nuclear Information System (INIS)

    Schwarzschild, B.

    1993-01-01

    This article describes the work of Georges Charpak of France leading to his receipt of the 1992 Nobel Prize in Physics. The Nobel Prize was awarded to Charpak open-quotes for his invention and development of particle detectors, in particular the multiwire proportional chamber.close quotes Historical aspects of Charpak's life and research are given

  8. 75 FR 6413 - Office of New Reactors; Proposed Revision to Standard Review Plan, Section 14.3.12 on Physical...

    Science.gov (United States)

    2010-02-09

    ... Standard Review Plan, Section 14.3.12 on Physical Security Hardware Inspections, Tests, Analyses, and.... SUMMARY: The NRC is soliciting public comment on NUREG-0800, ``Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants,'' on a proposed Revision 1 to Standard Review Plan (SRP...

  9. Selecting relevant and feasible measurement instruments for the revised Dutch clinical practice guideline for physical therapy in patients after stroke

    NARCIS (Netherlands)

    Otterman, Nicoline; Veerbeek, Janne; Schiemanck, Sven; van der Wees, Philip; Nollet, Frans; Kwakkel, Gert

    2017-01-01

    Purpose: To select relevant and feasible instruments for the revision of the Dutch clinical practice guideline for physical therapy in patients with stroke. Methods: In this implementation study a comprehensive proposal for ICF categories and matching instruments was developed, based on reliability

  10. Selecting relevant and feasible measurement instruments for the revised Dutch clinical practice guideline for physical therapy in patients after stroke

    NARCIS (Netherlands)

    Otterman, N.; Veerbeek, J.; Schiemanck, S.; Wees, P.J. van der; Nollet, F.; Kwakkel, G.

    2017-01-01

    PURPOSE: To select relevant and feasible instruments for the revision of the Dutch clinical practice guideline for physical therapy in patients with stroke. METHODS: In this implementation study a comprehensive proposal for ICF categories and matching instruments was developed, based on reliability

  11. Particle physics and cosmology

    International Nuclear Information System (INIS)

    Schramm, D.N.; Turner, M.S.

    1982-06-01

    work is described in these areas: cosmological baryon production; cosmological production of free quarks and other exotic particle species; the quark-hadron transition in the early universe; astrophysical and cosmological constraints on particle properties; massive neutrinos; phase transitions in the early universe; and astrophysical implications of an axion-like particle

  12. Proceedings of the 5. Jorge Andre Swieca Summer School Field Theory and Particle Physics

    International Nuclear Information System (INIS)

    Eboli, O.J.P.; Gomes, M.; Santoro, A.

    1989-01-01

    Lectures on quantum field theories and particle physics are presented. The part of quantum field theories contains: constrained dynamics; Schroedinger representation in field theory; application of this representation to quantum fields in a Robertson-Walker space-time; Berry connection; problem of construction and classification of conformal field theories; lattice models; two-dimensional S matrices and conformal field theory for unifying perspective of Yang-Baxter algebras; parasupersymmetric quantum mechanics; introduction to string field theory; three dimensional gravity and two-dimensional parafermionic model. The part of particle physics contains: collider physics; strong interactions and use of strings in strong interactions. (M.C.K.)

  13. Extreme fluxes in solar energetic particle events: Methodological and physical limitations

    International Nuclear Information System (INIS)

    Miroshnichenko, L.I.; Nymmik, R.A.

    2014-01-01

    In this study, all available data on the largest solar proton events (SPEs), or extreme solar energetic particle (SEP) events, for the period from 1561 up to now are analyzed. Under consideration are the observational, methodological and physical problems of energy-spectrum presentation for SEP fluxes (fluences) near the Earth's orbit. Special attention is paid to the study of the distribution function for extreme fluences of SEPs by their sizes. The authors present advances in at least three aspects: 1) a form of the distribution function that was previously obtained from the data for three cycles of solar activity has been completely confirmed by the data for 41 solar cycles; 2) early estimates of extremely large fluences in the past have been critically revised, and their values were found to be overestimated; and 3) extremely large SEP fluxes are shown to obey a probabilistic distribution, so the concept of an “upper limit flux” does not carry any strict physical sense although it serves as an important empirical restriction. SEP fluxes may only be characterized by the relative probabilities of their appearance, and there is a sharp break in the spectrum in the range of large fluences (or low probabilities). It is emphasized that modern observational data and methods of investigation do not allow, for the present, the precise resolution of the problem of the spectrum break or the estimation of the maximum potentialities of solar accelerator(s). This limitation considerably restricts the extrapolation of the obtained results to the past and future for application to the epochs with different levels of solar activity. - Highlights: • All available data on the largest solar proton events (SPEs) are analyzed. • Distribution function obtained for 3 last cycles is confirmed for 41 solar cycles. • Estimates of extremely large fluences in the past are found to be overestimated. • Extremely large SEP fluxes are shown to obey a probabilistic distribution.

  14. Fundamental Particles and Interaction, Frontiers in Contemporary Physics: An International Lecture and Workshop Series at Vanderbilt University. Proceedings

    International Nuclear Information System (INIS)

    Panvini, R.S.; Weiler, T.J.

    1998-01-01

    These proceedings are based on papers given in the plenary sessions, lectures, and oral presentations at the Frontiers in Contemporary Physics: Fundamental Particles and Interactions Conference held in May, 1997 at Vanderbilt University in Tennessee, USA. The papers included in these proceedings cover wide ranging topics in particle physics, including hadron collider physics, electroweak physics, flavor physics, particle astrophysics, quantum chromodynamics and other particle theories etc. The Conference was widely attended. More than 130 participants took part in it; many came from non-US institutions. The full program of the talks can be found in the FCP97 web page at: http:backslash backslash fcp97.vanderbilt.edu backslash-fcp97. There were 19 papers in the proceedings, out of these, 10 have been abstracted for the Energy Science and Technology database

  15. Statistical Methods for Particle Physics (4/4)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The series of four lectures will introduce some of the important statistical methods used in Particle Physics, and should be particularly relevant to those involved in the analysis of LHC data. The lectures will include an introduction to statistical tests, parameter estimation, and the application of these tools to searches for new phenomena. Both frequentist and Bayesian methods will be described, with particular emphasis on treatment of systematic uncertainties. The lectures will also cover unfolding, that is, estimation of a distribution in binned form where the variable in question is subject to measurement errors.

  16. Statistical Methods for Particle Physics (1/4)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The series of four lectures will introduce some of the important statistical methods used in Particle Physics, and should be particularly relevant to those involved in the analysis of LHC data. The lectures will include an introduction to statistical tests, parameter estimation, and the application of these tools to searches for new phenomena. Both frequentist and Bayesian methods will be described, with particular emphasis on treatment of systematic uncertainties. The lectures will also cover unfolding, that is, estimation of a distribution in binned form where the variable in question is subject to measurement errors.

  17. Statistical Methods for Particle Physics (2/4)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The series of four lectures will introduce some of the important statistical methods used in Particle Physics, and should be particularly relevant to those involved in the analysis of LHC data. The lectures will include an introduction to statistical tests, parameter estimation, and the application of these tools to searches for new phenomena. Both frequentist and Bayesian methods will be described, with particular emphasis on treatment of systematic uncertainties. The lectures will also cover unfolding, that is, estimation of a distribution in binned form where the variable in question is subject to measurement errors.

  18. Statistical Methods for Particle Physics (3/4)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The series of four lectures will introduce some of the important statistical methods used in Particle Physics, and should be particularly relevant to those involved in the analysis of LHC data. The lectures will include an introduction to statistical tests, parameter estimation, and the application of these tools to searches for new phenomena. Both frequentist and Bayesian methods will be described, with particular emphasis on treatment of systematic uncertainties. The lectures will also cover unfolding, that is, estimation of a distribution in binned form where the variable in question is subject to measurement errors.

  19. UCLA Particle and Nuclear Physics Research Group, 1993 progress report

    International Nuclear Information System (INIS)

    Nefkens, B.M.K.; Clajus, M.; Price, J.W.; Tippens, W.B.; White, D.B.

    1993-09-01

    The research programs of the UCLA Particle and Nuclear Physics Research Group, the research objectives, results of experiments, the continuing activities and new initiatives are presented. The primary goal of the research is to test the symmetries and invariances of particle/nuclear physics with special emphasis on investigating charge symmetry, isospin invariance, charge conjugation, and CP. Another important part of our work is baryon spectroscopy, which is the determination of the properties (mass, width, decay modes, etc.) of particles and resonances. We also measure some basic properties of light nuclei, for example the hadronic radii of 3 H and 3 He. Special attention is given to the eta meson, its production using photons, electrons, π ± , and protons, and its rare and not-so-rare decays. In Section 1, the physics motivation of our research is outlined. Section 2 provides a summary of the research projects. The status of each program is given in Section 3. We discuss the various experimental techniques used, the results obtained, and we outline the plans for the continuing and the new research. Details are presented of new research that is made possible by the use of the Crystal Ball Detector, a highly segmented NaI calorimeter and spectrometer with nearly 4π acceptance (it was built and used at SLAC and is to be moved to BNL). The appendix contains an update of the bibliography, conference participation, and group memos; it also indicates our share in the organization of conferences, and gives a listing of the colloquia and seminars presented by us

  20. Worlds largest particle physics laboratory selects Proxim Wireless Mesh

    CERN Multimedia

    2007-01-01

    "Proxim Wireless has announced that the European Organization for Nuclear Research (CERN), the world's largest particle physics laboratory and the birthplace of the World Wide Web, is using it's ORiNOCO AP-4000 mesh access points to extend the range of the laboratory's Wi-Fi network and to provide continuous monitoring of the lab's calorimeters" (1/2 page)