WorldWideScience

Sample records for particle physics experiments

  1. Particle physics experiments 1983

    International Nuclear Information System (INIS)

    Stuart, G.W.

    1983-01-01

    The report describes work carried out in 1983 on experiments approved by the Particle Physics Experiments Selection Panel. The contents consist of unedited contributions from each experiment. (author)

  2. Particle physics experiments 1989

    International Nuclear Information System (INIS)

    Bairstow, R.

    1990-01-01

    This report describes work carried out in 1989 on experiments approved by the Particle Physics Experiments Selection Panel of Rutherford Appleton Laboratory. The contents consist of unedited contributions from each experiment. (author)

  3. Particle physics experiments 1987

    International Nuclear Information System (INIS)

    Stuart, G.W.

    1988-01-01

    This report describes work carried out in 1987 on experiments approved by the Particle Physics Experiments Selection Panel (United Kingdom). The contents consist of unedited contributions from each experiment. (author)

  4. Particle physics experiments

    International Nuclear Information System (INIS)

    Stuart, G.W.

    1986-01-01

    The report of the Rutherford Appleton Laboratory describes the work carried out in 1985 on experiments approved by the Particle Physics Experiments Selection Panel. The contents consist of unedited contributions from each experiment. (author)

  5. Particle physics experiments 1984

    International Nuclear Information System (INIS)

    Stuart, G.

    1985-01-01

    The Rutherford Appleton laboratory report describes work carried out in 1984 on experiments approved by the Particle Physics selection panel. The contents consist of unedited contributions from each experiment. (author)

  6. Particle physics experiments 1986

    International Nuclear Information System (INIS)

    Stuart, G.W.

    1987-01-01

    The paper presents research work carried out in 1986 on 52 elementary particle experiments approved by the Particle Physics Experiments Selection Panel. Most of the experiments were collaborative and involved research groups from different countries. About half of the experiments were conducted at CERN, the remaining experiments employed the accelerators: LAMPT, LEP, PETRA, SLAC, and HERA. The contents consist of unedited contributions from each experiment. (U.K.)

  7. Particle physics experiments 1982

    International Nuclear Information System (INIS)

    Rousseau, M.D.; Stuart, G.

    1983-01-01

    Work carried out in 1982 on 52 experiments approved by the Particle Physics Experiments Selection Panel is described. Each experiment is listed under title, collaboration, technique, accelerator, year of running, status and spokesman. Unedited contributions are given from each experiment. (U.K.)

  8. Particle physics experiments 1988

    International Nuclear Information System (INIS)

    Bairstow, R.

    1989-01-01

    This report describes work carried out in 1988 on experiments approved by the Particle Physics Experiments Selection Panel. The contents consist of unedited contributions from each experiment. More than forty projects at different accelerators (SPS, ISIS, PETRA, LAMPF, LEP, HERA, BNL, ILL, LEAR) are listed. Different organisations collaborate on different projects. A brief progress report is given. References to published articles are given. (author)

  9. Particle physics experiments 1992

    International Nuclear Information System (INIS)

    Roberts, B.A.

    1993-03-01

    The research programs described here were carried out in 1992 at Rutherford Appleton Laboratory and funded by the United Kingdom Science and Engineering Research Council. The area covered in these experiments is particle physics. Unedited contributions from over forty experimental programs are included. Experiments are listed according to their current status, the accelerator used and its years of operation. (UK)

  10. Particle physics experiments, 1991

    International Nuclear Information System (INIS)

    Roberts, B.A.

    1992-01-01

    Data taking for this experiment was completed in December 1983. The samples include approximately 19,000 (ν) and 11,000 (ν-bar) charged current events. These constitute the largest data set of interactions on free protons. Work published to date includes studies of inclusive structure functions and final state properties, exclusive final states, neutral current cross sections and production of strange and charmed particles. During the past year results have been published on the production of f 2 (1270) and ν 0 (770) mesons in ρp and ρ-barp charged current interactions. In the case of the f 2 this represents the first observation of such production. It is found that the multiplicities are 0.047±0.017 in ρp and 0.17±0.018 in ρ-barp. The f 2 mesons are mostly produced at large hadronic invariant mass W and in the forward hemisphere. The production of ν 0 mesons can be observed with high statistics in both ρp and ρ-barp interactions and the differential cross section studied. The observations are compared with LUND Monte Carlo predictions, which are generally found to be too high. However qualitative features of the data are reproduced. Work continues on a precise determination of the neutral current/charged current ratio, on the study of charged and neutral current structure functions and on the production of strange particles. (author)

  11. Current Experiments in Particle Physics (September 1996)

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H.; Lehar, F.; Klyukhin, V.I.; Ryabov, Yu.G.; Bilak, S.V.; Illarionova, N.S.; Khachaturov, B.A.; Strokovsky, E.A.; Hoffman, C.M.; Kettle, P.-R.; Olin, A.; Armstrong, F.E.

    1996-09-01

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries. This report contains full summaries of 180 approved current and recent experiments in elementary particle physics. The focus of the report is on selected experiments which directly contribute to our better understanding of elementary particles and their properties such as masses, widths or lifetimes, and branching fractions.

  12. Current experiments in elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Armstrong, F.E., Oyanagi, Y.; Dodder, D.C.; Ryabov, Yu.G.; Frosch, R.; Olin, A.; Lehar, F.; Moskalev, A.N.; Barkov, B.P.

    1987-03-01

    This report contains summaries of 720 recent and current experiments in elementary particle physics (experiments that finished taking data before 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.

  13. Current experiments in elementary particle physics

    International Nuclear Information System (INIS)

    Wohl, C.G.; Armstrong, F.E.; Oyanagi, Y.; Dodder, D.C.; Ryabov, Yu.G.; Frosch, R.; Olin, A.; Lehar, F.; Moskalev, A.N.; Barkov, B.P.

    1987-03-01

    This report contains summaries of 720 recent and current experiments in elementary particle physics (experiments that finished taking data before 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized

  14. Current experiments in elementary particle physics. Revision

    International Nuclear Information System (INIS)

    Galic, H.; Armstrong, F.E.; von Przewoski, B.

    1994-08-01

    This report contains summaries of 568 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1988 are excluded. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, INS (Tokyo), ITEP (Moscow), IUCF (Bloomington), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries

  15. Current experiments in elementary-particle physics

    International Nuclear Information System (INIS)

    Wohl, C.G.; Armstrong, F.E.; Rittenberg, A.

    1983-03-01

    Microfiche are included which contain summaries of 479 experiments in elementary particle physics. Experiments are included at the following laboratories: Brookhaven (BNL); CERN; CESR; DESY; Fermilab (FNAL); Institute for Nuclear Studies (INS); KEK; LAMPF; Serpukhov (SERP); SIN; SLAC; and TRIUMF. Also, summaries of proton decay experiments are included. A list of experiments and titles is included; and a beam-target-momentum index and a spokesperson index are given. Properties of beams at the facilities are tabulated

  16. Current experiments in elementary particle physics. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Armstrong, F.E. [Lawrence Berkeley Lab., CA (United States); von Przewoski, B. [Indiana Univ. Cyclotron Facility, Bloomington, IN (United States)] [and others

    1994-08-01

    This report contains summaries of 568 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1988 are excluded. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, INS (Tokyo), ITEP (Moscow), IUCF (Bloomington), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  17. Current experiments in elementary particle physics. Revised

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H. [Stanford Univ., CA (United States). Stanford Linear Accelerator Center; Wohl, C.G.; Armstrong, B. [Lawrence Berkeley Lab., CA (United States); Dodder, D.C. [Los Alamos National Lab., NM (United States); Klyukhin, V.I.; Ryabov, Yu.G. [Inst. for High Energy Physics, Serpukhov (Russian Federation); Illarionova, N.S. [Inst. of Theoretical and Experimental Physics, Moscow (Russian Federation); Lehar, F. [CEN Saclay, Gif-sur-Yvette (France); Oyanagi, Y. [Univ. of Tokyo (Japan). Faculty of Sciences; Olin, A. [TRIUMF, Vancouver, BC (Canada); Frosch, R. [Paul Scherrer Inst., Villigen (Switzerland)

    1992-06-01

    This report contains summaries of 584 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1986 are excluded. Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, KEK, LAMPF, Novosibirsk, Paul Scherrer Institut (PSI), Saclay, Serpukhov, SLAC, SSCL, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  18. Current experiments in elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Armstrong, F.E.; Trippe, T.G.; Yost, G.P. (Lawrence Berkeley Lab., CA (USA)); Oyanagi, Y. (Tsukuba Univ., Ibaraki (Japan)); Dodder, D.C. (Los Alamos National Lab., NM (USA)); Ryabov, Yu.G.; Slabospitsky, S.R. (Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Serpukhov (USSR). Inst. Fiziki Vysokikh Ehnergij); Frosch, R. (Swiss Inst. for Nuclear Research, Villigen (Switzerla

    1989-09-01

    This report contains summaries of 736 current and recent experiments in elementary particle physics (experiments that finished taking data before 1982 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, Joint Institute for Nuclear Research (Dubna), KEK, LAMPF, Novosibirsk, PSI/SIN, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground experiments. Also given are instructions for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.

  19. Current experiments in elementary particle physics

    International Nuclear Information System (INIS)

    Wohl, C.G.; Armstrong, F.E.; Trippe, T.G.; Yost, G.P.; Oyanagi, Y.; Dodder, D.C.; Ryabov, Yu.G.; Slabospitsky, S.R.; Olin, A.; Klumov, I.A.

    1989-09-01

    This report contains summaries of 736 current and recent experiments in elementary particle physics (experiments that finished taking data before 1982 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, Joint Institute for Nuclear Research (Dubna), KEK, LAMPF, Novosibirsk, PSI/SIN, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground experiments. Also given are instructions for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized

  20. Current experiments in elementary particle physics

    International Nuclear Information System (INIS)

    Galic, H.; Dodder, D.C.; Klyukhin, V.I.; Ryabov, Yu.G.; Illarionova, N.S.; Lehar, F.; Oyanagi, Y.; Frosch, R.

    1992-06-01

    This report contains summaries of 584 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1986 are excluded. Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, KEK, LAMPF, Novosibirsk, Paul Scherrer Institut (PSI), Saclay, Serpukhov, SLAC, SSCL, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries

  1. Current Experiments in Particle Physics. 1996 Edition.

    Energy Technology Data Exchange (ETDEWEB)

    Galic, Hrvoje

    2003-06-27

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries.

  2. Particle physics experiments at high energy colliders

    International Nuclear Information System (INIS)

    Hauptman, John

    2011-01-01

    Written by one of the detector developers for the International Linear Collider, this is the first textbook for graduate students dedicated to the complexities and the simplicities of high energy collider detectors. It is intended as a specialized reference for a standard course in particle physics, and as a principal text for a special topics course focused on large collider experiments. Equally useful as a general guide for physicists designing big detectors. (orig.)

  3. DIRAC in Large Particle Physics Experiments

    Science.gov (United States)

    Stagni, F.; Tsaregorodtsev, A.; Arrabito, L.; Sailer, A.; Hara, T.; Zhang, X.; Consortium, DIRAC

    2017-10-01

    The DIRAC project is developing interware to build and operate distributed computing systems. It provides a development framework and a rich set of services for both Workload and Data Management tasks of large scientific communities. A number of High Energy Physics and Astrophysics collaborations have adopted DIRAC as the base for their computing models. DIRAC was initially developed for the LHCb experiment at LHC, CERN. Later, the Belle II, BES III and CTA experiments as well as the linear collider detector collaborations started using DIRAC for their computing systems. Some of the experiments built their DIRAC-based systems from scratch, others migrated from previous solutions, ad-hoc or based on different middlewares. Adaptation of DIRAC for a particular experiment was enabled through the creation of extensions to meet their specific requirements. Each experiment has a heterogeneous set of computing and storage resources at their disposal that were aggregated through DIRAC into a coherent pool. Users from different experiments can interact with the system in different ways depending on their specific tasks, expertise level and previous experience using command line tools, python APIs or Web Portals. In this contribution we will summarize the experience of using DIRAC in particle physics collaborations. The problems of migration to DIRAC from previous systems and their solutions will be presented. An overview of specific DIRAC extensions will be given. We hope that this review will be useful for experiments considering an update, or for those designing their computing models.

  4. Current experiments in particle physics - particle data group

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H. [Stanford Univ., CA (United States). Stanford Linear Accelerator Center; Lehar, F. [Centre d`Etudes Nucleaires de Saclay, Gif-sur-Yvette (France); Kettle, P.R. [Paul Scherrer Institute, Villigen (Switzerland)] [and others

    1996-09-01

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries.

  5. Current experiments in particle physics - particle data group

    International Nuclear Information System (INIS)

    Galic, H.; Kettle, P.R.

    1996-09-01

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries

  6. FPGA fault tolerance in particle physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gebelein, Jano; Engel, Heiko; Kebschull, Udo [Kirchhoff-Institute for Physics, Heidelberg University (Germany)

    2010-07-01

    The behavior of matter in physically extreme conditions is in focus of many high-energy-physics experiments. For this purpose, high energy charged particles (ions) are collided with each other and energy- or baryon densities are created similar to those at the beginning of the universe or to those which can be found in the center of neutron stars. In both cases a plasma of quarks and gluons (QGP) is present, which immediately decomposes to hadrons within a short period of time. At this process, particles are formed, which allow statements about the beginning of the universe when captured by large detectors, but which also lead to the massive occurance of hardware failures within the detector's electronic devices. This contribution is about methods to mitigate radiation susceptibility for Field Programmable Gate Arrays (FPGA), enabling them to be used within particle detector systems to directly gain valid data in the readout chain or to be used as detector-control-system.

  7. Integrated circuits for particle physics experiments

    CERN Document Server

    Snoeys, W; Campbell, M; Cantatore, E; Faccio, F; Heijne, Erik H M; Jarron, Pierre; Kloukinas, Kostas C; Marchioro, A; Moreira, P; Toifl, Thomas H; Wyllie, Ken H

    2000-01-01

    High energy particle physics experiments investigate the nature of matter through the identification of subatomic particles produced in collisions of protons, electrons, or heavy ions which have been accelerated to very high energies. Future experiments will have hundreds of millions of detector channels to observe the interaction region where collisions take place at a 40 MHz rate. This paper gives an overview of the electronics requirements for such experiments and explains how data reduction, timing distribution, and radiation tolerance in commercial CMOS circuits are achieved for these big systems. As a detailed example, the electronics for the innermost layers of the future tracking detector, the pixel vertex detector, is discussed with special attention to system aspects. A small-scale prototype (130 channels) implemented in standard 0.25 mu m CMOS remains fully functional after a 30 Mrad(SiO/sub 2/) irradiation. A full-scale pixel readout chip containing 8000 readout channels in a 14 by 16 mm/sup 2/ ar...

  8. The development for the particle physics experiments platform in university

    International Nuclear Information System (INIS)

    Liang Futian; Yao Yuan; Wang Zhaoqi; Liu Yuzhe; Sang Ziru; Chen Lian; Wen Fei; Jin Ge; Liu Hongbin

    2012-01-01

    Nuclear science and particle physics is an important subject in physics, and it is important to launch particle physics experiments in university to training students. We design an experiments platform based on particle physics experiments in university. By employing digitalization and reconfiguration techniques in our design, we achieve all kinds of device functions with only one device. With the customized software for particular experiments and a website for teaching assistance, the platform is easy to be employed in universities. Students can accomplish a classical particle physics experiment in a modern way with the help of the platform, and they can also try new ideals. The experiments platform is ready to be used, and some of the lab sessions in USTC have already begin to use our experiments platform. (authors)

  9. Alpha particle physics experiments in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Zweben, S.J.; Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Stratton, B.C.; Synakowski, E.J.; Taylor, G.

    2000-01-01

    Alpha particle physics experiments were done on TFTR during its DT run from 1993 to 1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single particle confinement model in MHD quiescent discharges. The alpha loss due to toroidal field ripple was identified in some cases, and the low radial diffusivity inferred for high energy alphas was consistent with orbit averaging over small scale turbulence. Finally, the observed alpha particle interactions with sawteeth, toroidal Alfven eigenmodes and ICRF waves were approximately consistent with theoretical modelling. What was learned is reviewed and what remains to be understood is identified. (author)

  10. Shifting standards experiments in particle physics in the twentieth century

    CERN Document Server

    Franklin, Allan

    2013-01-01

    In Shifting Standards, Allan Franklin provides an overview of notable experiments in particle physics. Using papers published in Physical Review, the journal of the American Physical Society, as his basis, Franklin details the experiments themselves, their data collection, the events witnessed, and the interpretation of results. From these papers, he distills the dramatic changes to particle physics experimentation from 1894 through 2009.Franklin develops a framework for his analysis, viewing each example according to exclusion and selection of data; possible experimenter bias; details of the experimental apparatus; size of the data set, apparatus, and number of authors; rates of data taking along with analysis and reduction; distinction between ideal and actual experiments; historical accounts of previous experiments; and personal comments and style.From Millikan’s tabletop oil-drop experiment to the Compact Muon Solenoid apparatus measuring approximately 4,000 cubic meters (not including accelerators) and...

  11. Current experiments in elementary particle physics. Revision 1-85

    International Nuclear Information System (INIS)

    Wohl, C.G.; Armstrong, F.E.; Rittenberg, A.

    1985-01-01

    This report contains summaries of 551 approved experiments in elementary particle physics (experiments that finished taking data before 1 January 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Properties of the fixed-target beams at most of the laboratories are summarized. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries

  12. Impact of detector simulation in particle physics collider experiments

    Science.gov (United States)

    Daniel Elvira, V.

    2017-06-01

    Through the last three decades, accurate simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics (HEP) experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detector simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the precision of the physics results and publication turnaround, from data-taking to submission. It also presents estimates of the cost and economic impact of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data with increasingly complex detectors, taxing heavily the performance of simulation and reconstruction software. Consequently, exploring solutions to speed up simulation and reconstruction software to satisfy the growing demand of computing resources in a time of flat budgets is a matter that deserves immediate attention. The article ends with a short discussion on the potential solutions that are being considered, based on leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering HEP code for concurrency and parallel computing.

  13. Techniques for nuclear and particle physics experiments. 2. rev. ed.

    International Nuclear Information System (INIS)

    Leo, W.R.

    1992-01-01

    This book is an outgrowth of an advanced laboratory course in experimental nuclear and particle physics the author gave to physics majors at the University of Geneva during the years 1978- 1983. The course was offered to third and fourth year students, the latter of which had, at this point in their studies, chosen to specialize in experimental nuclear or particle physics. This implied that they would go on to do a 'diplome' thesis with one of the high- or intermediate-energy research groups in the physics department. The format of the course was such that the students were required to concentrate on only one experiment during the trimester, rather than perform a series of experiments as is more typical of a traditional course of this type. Their tasks thus included planning the experiment, learning the relevant techniques, setting up and troubleshooting the measuring apparatus, calibration, data-taking and analysis, as well as responsibility for maintaining their equipment, i.e., tasks resembling those in a real experiment. This more intensive involvement provided the students with a better understanding of the experimental problems encountered in a professional experiment and helped instill a certain independence and confidence which would prepare them for entry into a research group in the department. Teaching assistants were presented to help the students during the trimester and a series of weekly lectures was also given on various topics in experimental nuclear and particle physics. This included general information on detectors, nuclear electronics, statistics, the interaction of radiation in matter, etc., and a good deal of practical information for actually doing experiments. (orig.) With 254 figs

  14. A system for designing and simulating particle physics experiments

    International Nuclear Information System (INIS)

    Zelazny, R.; Strzalkowski, P.

    1987-01-01

    In view of the rapid development of experimental facilities and their costs, the systematic design and preparation of particle physics experiments have become crucial. A software system is proposed as an aid for the experimental designer, mainly for experimental geometry analysis and experimental simulation. The following model is adopted: the description of an experiment is formulated in a language (here called XL) and put by its processor in a data base. The language is based on the entity-relationship-attribute approach. The information contained in the data base can be reported and analysed by an analyser (called XA) and modifications can be made at any time. In particular, the Monte Carlo methods can be used in experiment simulation for both physical phenomena in experimental set-up and detection analysis. The general idea of the system is based on the design concept of ISDOS project information systems. The characteristics of the simulation module are similar to those of the CERN Geant system, but some extensions are proposed. The system could be treated as a component of greater, integrated software environment for the design of particle physics experiments, their monitoring and data processing. (orig.)

  15. A Summer Research Experience in Particle Physics Using Skype

    Science.gov (United States)

    Johnston, Curran; Alexander, Steven; Mahmood, A. K.

    2012-10-01

    This last summer I did research in particle physics as part of a ``remote REU.'' This poster will describe that experience and the results of my project which was to experimentally verify the mass ranges of the Z' boson. Data from the LHC's Atlas detector was filtered by computers to select for likely Z boson decays; my work was in noting all instances of Z or Z' boson decays in one thousand events and their masses, separating the Z from Z' bosons, and generating histograms of the masses.

  16. MESA. An ERL project for particle physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hug, Florian [Institut fuer Kernphysik, Universitaet Mainz (Germany)

    2016-07-01

    The Mainz Energy-recovering Superconducting Accelerator (MESA) will be constructed at the Institut fuer Kernphysik of the Johannes Gutenberg University of Mainz. The accelerator is a low energy continuous wave (CW) recirculating electron linac for particle physics experiments. MESA will be operated in two different modes serving mainly two experiments: the first is the external beam (EB) mode, where the beam is dumped after being used with the external fixed target experiment P2, whose goal is the measurement of the weak mixing angle with highest accuracy. The required beam current for P2 is 150 μA with polarized electrons at 155 MeV. In the second operation mode MESA will be run as an energy recovery linac (ERL). In an ERL the energy of the electrons is recovered after their experimental use by decelerating them in the superconducting acceleration cavities. The experiment served in this mode is a (pseudo) internal fixed target experiment named MAGIX. It demands an unpolarized beam of 1 mA at 105 MeV. In a later construction stage of MESA the achievable beam current in ERL-mode shall be upgraded to 10 mA. Within this talk an overview of the MESA project will be given highlighting the challenges of operation with high density internal gas targets and the (*new*) physics applications.

  17. Trends in integrated circuit design for particle physics experiments

    International Nuclear Information System (INIS)

    Atkin, E V

    2017-01-01

    Integrated circuits are one of the key complex units available to designers of multichannel detector setups. A whole number of factors makes Application Specific Integrated Circuits (ASICs) valuable for Particle Physics and Astrophysics experiments. Among them the most important ones are: integration scale, low power dissipation, radiation tolerance. In order to make possible future experiments in the intensity, cosmic, and energy frontiers today ASICs should provide new level of functionality at a new set of constraints and trade-offs, like low-noise high-dynamic range amplification and pulse shaping, high-speed waveform sampling, low power digitization, fast digital data processing, serialization and data transmission. All integrated circuits, necessary for physical instrumentation, should be radiation tolerant at an earlier not reached level (hundreds of Mrad) of total ionizing dose and allow minute almost 3D assemblies. The paper is based on literary source analysis and presents an overview of the state of the art and trends in nowadays chip design, using partially own ASIC lab experience. That shows a next stage of ising micro- and nanoelectronics in physical instrumentation. (paper)

  18. Experiences in automatic keywording of particle physics literature

    CERN Document Server

    Montejo Ráez, Arturo

    2001-01-01

    Attributing keywords can assist in the classification and retrieval of documents in the particle physics literature. As information services face a future with less available manpower and more and more documents being written, the possibility of keyword attribution being assisted by automatic classification software is explored. A project being carried out at CERN (the European Laboratory for Particle Physics) for the development and integration of automatic keywording is described.

  19. Particle physics

    CERN Document Server

    Martin, Brian R

    2017-01-01

    An accessible and carefully structured introduction to Particle Physics, including important coverage of the Higgs Boson and recent progress in neutrino physics. Fourth edition of this successful title in the Manchester Physics series. Includes information on recent key discoveries including : An account of the discovery of exotic hadrons, beyond the simple quark model; Expanded treatments of neutrino physics and CP violation in B-decays; An updated account of ‘physics beyond the standard model’, including the interaction of particle physics with cosmology; Additional problems in all chapters, with solutions to selected problems available on the book’s website; Advanced material appears in optional starred sections.

  20. Particle physics

    International Nuclear Information System (INIS)

    Kamal, Anwar

    2014-01-01

    Provides step-by-step derivations. Contains numerous tables and diagrams. Supports learning and teaching with numerous worked examples, questions and problems with answers. Sketches also the historical development of the subject. This textbook teaches particle physics very didactically. It supports learning and teaching with numerous worked examples, questions and problems with answers. Numerous tables and diagrams lead to a better understanding of the explanations. The content of the book covers all important topics of particle physics: Elementary particles are classified from the point of view of the four fundamental interactions. The nomenclature used in particle physics is explained. The discoveries and properties of known elementary particles and resonances are given. The particles considered are positrons, muon, pions, anti-protons, strange particles, neutrino and hadrons. The conservation laws governing the interactions of elementary particles are given. The concepts of parity, spin, charge conjugation, time reversal and gauge invariance are explained. The quark theory is introduced to explain the hadron structure and strong interactions. The solar neutrino problem is considered. Weak interactions are classified into various types, and the selection rules are stated. Non-conservation of parity and the universality of the weak interactions are discussed. Neutral and charged currents, discovery of W and Z bosons and the early universe form important topics of the electroweak interactions. The principles of high energy accelerators including colliders are elaborately explained. Additionally, in the book detectors used in nuclear and particle physics are described. This book is on the upper undergraduate level.

  1. Elementary Particle Physics Experiment at the University of Massachusetts, Amherst

    Energy Technology Data Exchange (ETDEWEB)

    Brau, Benjamin; Dallapiccola, Carlo; Willocq, Stephane

    2013-07-30

    In this progress report we summarize the activities of the University of Massachusetts- Amherst group for the three years of this research project. We are fully engaged in research at the energy frontier with the ATLAS experiment at the CERN Large Hadron Collider. We have made leading contributions in software development and performance studies for the ATLAS Muon Spectrometer, as well as on physics analysis with an emphasis on Standard Model measurements and searches for physics beyond the Standard Model. In addition, we have increased our contributions to the Muon Spectrometer New Small Wheel upgrade project.

  2. Physicists purchase materials testing machine in support of pioneering particle physics experiments

    CERN Multimedia

    Sharpe, Suzanne

    2007-01-01

    "The particle physics group at Liverpool University has purchased an LRXPlus singlecolumn materials testing machine from Lloyd Instruments, which will be used to help characterise the carbon-fibre support frames for detectors used for state-of-the-art particle physics experiments." (1 page)

  3. Probing the frontiers of particle physics with tabletop-scale experiments.

    Science.gov (United States)

    DeMille, David; Doyle, John M; Sushkov, Alexander O

    2017-09-08

    The field of particle physics is in a peculiar state. The standard model of particle theory successfully describes every fundamental particle and force observed in laboratories, yet fails to explain properties of the universe such as the existence of dark matter, the amount of dark energy, and the preponderance of matter over antimatter. Huge experiments, of increasing scale and cost, continue to search for new particles and forces that might explain these phenomena. However, these frontiers also are explored in certain smaller, laboratory-scale "tabletop" experiments. This approach uses precision measurement techniques and devices from atomic, quantum, and condensed-matter physics to detect tiny signals due to new particles or forces. Discoveries in fundamental physics may well come first from small-scale experiments of this type. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. Experiment and theory in particle physics: Reflections on the discovery of the tau lepton

    Energy Technology Data Exchange (ETDEWEB)

    Perl, M.L.

    1996-08-01

    This article is thoughts from the author on particle physics work from his perspective. It is not a summary of his work on the tau lepton, but rather a look at what makes good science, experimental and theoretical, from his experiences in the field. The section titles give a good summary on the topics the author chooses to touch upon. They are: the state of elementary particle physics; getting good ideas in experimental science; a difficult field; experiments and experimenting; 10% of the money and 30% of the time; the dictatorship of theory; technological dreams; last words.

  5. Experiment and theory in particle physics: Reflections on the discovery of the tau lepton

    International Nuclear Information System (INIS)

    Perl, M.L.

    1996-08-01

    This article is thoughts from the author on particle physics work from his perspective. It is not a summary of his work on the tau lepton, but rather a look at what makes good science, experimental and theoretical, from his experiences in the field. The section titles give a good summary on the topics the author chooses to touch upon. They are: the state of elementary particle physics; getting good ideas in experimental science; a difficult field; experiments and experimenting; 10% of the money and 30% of the time; the dictatorship of theory; technological dreams; last words

  6. Energetic Particle Physics In Fusion Research In Preparation For Burning Plasma Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gorelenkov, Nikolai N [PPPL

    2013-06-01

    The area of energetic particle (EP) physics of fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by W.W. Heidbrink and G.J. Sadler [1]. That review coincided with the start of deuterium-tritium (DT) experiments on Tokamak Fusion Test reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the "sea" of Alfven eigenmodes (AE) in particular by the toroidicityinduced AEs (TAE) modes and reversed shear Alfven (RSAE). In present paper we attempt a broad review of EP physics progress in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus) including helical/stellarator devices. Introductory discussions on basic ingredients of EP physics, i.e. particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others are given to help understanding the advanced topics of EP physics. At the end we cover important and interesting physics issues toward the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor).

  7. Fermilab | Particle Physics Division

    Science.gov (United States)

    Diversity Education Safety Sustainability and Environment Contact Science Science Particle Physics Neutrinos Scientific Computing Research & Development Key Discoveries Benefits of Particle Physics Particle Superconducting Test Accelerator LHC and Future Accelerators Accelerators for Science and Society Particle Physics

  8. Online Particle Physics Information - Education Sites

    Science.gov (United States)

    SLAC Online Particle Physics Information Particle Data Group Particle Physics Education Sites General Sites Background Knowledge Physics Lessons & Activities Astronomy Lessons & Activities Ask -A-Scientist Experiments, Demos and Fun Physics History & Diversity Art in Physics General Sites

  9. Modern particle physics

    CERN Document Server

    AUTHOR|(CDS)2079874

    2013-01-01

    Unique in its coverage of all aspects of modern particle physics, this textbook provides a clear connection between the theory and recent experimental results, including the discovery of the Higgs boson at CERN. It provides a comprehensive and self-contained description of the Standard Model of particle physics suitable for upper-level undergraduate students and graduate students studying experimental particle physics. Physical theory is introduced in a straightforward manner with full mathematical derivations throughout. Fully-worked examples enable students to link the mathematical theory to results from modern particle physics experiments. End-of-chapter exercises, graded by difficulty, provide students with a deeper understanding of the subject. Online resources available at www.cambridge.org/MPP feature password-protected fully-worked solutions to problems for instructors, numerical solutions and hints to the problems for students and PowerPoint slides and JPEGs of figures from the book

  10. Particle Physics

    CERN Multimedia

    2005-01-01

    While biomedicine and geoscience use grids to bring together many different sub-disciplines, particle physicists use grid computing to increase computing power and storage resources, and to access and analyze vast amounts of data collected from detectors at the world's most powerful accelerators (1 page)

  11. Particle Physics Education Sites

    Science.gov (United States)

    back to home page Particle Physics Education Sites quick reference Education and Information - National Laboratory Education Programs - Women and Minorities in Physics - Other Physics Sites - Physics Alliance - Accelerators at National Laboratories icon Particle Physics Education and Information sites: top

  12. Fermilab | Science | Particle Physics

    Science.gov (United States)

    Photos and videos Latest news For the media Particle Physics Neutrinos Fermilab and the LHC Dark matter initiatives Research and development Key discoveries Benefits of particle physics Particle Accelerators society Particle Physics 101 Science of matter, energy, space and time How particle physics discovery

  13. Research in particle physics

    International Nuclear Information System (INIS)

    1993-08-01

    This proposal presents the research accomplishments and ongoing activities of Boston University researchers in high energy physics. Some changes have been made in the structure of the program from the previous arrangement of tasks. Task B, Accelerator Design Physics, is being submitted as a separate proposal for an independent grant; this will be consistent with the nature of the research and the source of funding. We are active in seven principal areas which will be discussed in this report: Colliding Beams - physics of e + e - and bar pp collisions; MACRO Experiment - search for magnetic monopoles and study of cosmic rays; Proton Decay - search for nucleon instability and study of neutrino interactions; Particle Theory - theoretical high energy particle physics, including two Outstanding Junior Investigator awards; Muon G-2 - measurement of the anomalous magnetic moment of the muon; SSCintcal - calorimetry for the GEM Experiment; and Muon detectors for the GEM Experiment

  14. DQM4HEP - A Generic Online Monitor for Particle Physics Experiments

    CERN Document Server

    Coates, Tom; Salvatore, Fabrizio; Cussans, David; Ete, Remi; Irles, Adrian; Mirabito, Lauren; Pingault, Antoine; Wing, Matthew

    2018-01-01

    Currently there is a lot of activity in R&D for future colliders. Multiple detector prototypes are being tested, each with different requirements for data acquisition and monitoring, which has generated different ad-hoc software solutions. We present DQM4HEP, a generic C++11 framework for online monitoring for particle physics experiments, and results obtained at several testbeams with detector prototypes using the framework as it was developed. We also present the currently ongoing work to integrate DQM4HEP and EUDAQ, which will allow these to work together as a complete and generic DAQ and monitoring system for any detector test, as part of AIDA-2020.

  15. Blind Analysis in Particle Physics

    International Nuclear Information System (INIS)

    Roodman, A

    2003-01-01

    A review of the blind analysis technique, as used in particle physics measurements, is presented. The history of blind analyses in physics is briefly discussed. Next the dangers of and the advantages of a blind analysis are described. Three distinct kinds of blind analysis in particle physics are presented in detail. Finally, the BABAR collaboration's experience with the blind analysis technique is discussed

  16. Experimental particle physics

    International Nuclear Information System (INIS)

    Steinberg, R.I.; Lane, C.E.

    1992-09-01

    The goals of this research are the experimental testing of fundamental theories of physics beyond the standard model and the exploration of cosmic phenomena through the techniques of particle physics. We are working on the MACRO experiment, which employs a large-area underground detector to search fore grand unification magnetic monopoles and dark matter candidates and to study cosmic ray muons as well as low- and high-energy neutrinos; the Chooz experiment to search for reactor neutrino oscillations at a distance of 1 km from the source; a new proposal (the Perry experiment) to construct a one-kiloton liquid scintillator in the Fairport, Ohio underground facility IMB to study neutrino oscillations with a 13 km baseline; and development of technology for improved liquid scintillators and for very-low-background materials in support of the MACRO and Perry experiments and for new solar neutrino experiments

  17. Overview of particle physics

    International Nuclear Information System (INIS)

    Salam, A.

    1993-01-01

    This article presents an overview of the situation in particle physics and a prognosis of its future: ideas which have been tested or will soon be tested (standard model and the light Higgs particle), ideas whose time has not yet come (supersymmetry, supersymmetry and N=1 supergravity, right-left symmetry and preons, unification of gravity with other forces, anomaly-free supergravities, supersymmetry strings, string theory as the ''Theory of Everything'' (T.O.E.); passive and non accelerator experiments. 6 figs., 2 tabs

  18. Possibility of simulation experiments for fast particle physics in the large helical device (LHD)

    International Nuclear Information System (INIS)

    Sato, K.N.; Murakami, S.; Nakajima, N.; Itoh, K.

    1995-01-01

    The confinement of fusion produced or high energy particles is one of the most important issues to be studied in the helical confinement system. A preliminary study has been carried out on the possibility of developing techniques for simulation experiments for the study of high energy particle physics in the Large Helical Device (LHD) project. Candidate methods have been considered as follows: (a) a high energy (∼ 3.5 MeV) He 0 beam injection method; (b) a medium energy (∼ 200 keV) H 0 beam injection method; (c) a method involving high energy tail production by an ICRF wave and/or a method of reaction rate enhancement by an ICRF wave; and (d) a method involving the combination of neutral beam injection and ICRF wave. Various features of each method have been considered. Although the high energy He 0 beam injection method has some advantages, the technique for production of this beam is extremely difficult because of the difficulties of the production of both negative helium and ground state neutral helium by neutralization. It is pointed out, on the other hand, that a wide range of simulation experiments for fast particle physics may be carried out even by the medium energy beam method, because the typical orbit deviation (e.g. equivalent super-banana size in a classical sense) can be largely controlled by controlling the magnetic field configuration in the case of a helical system, for example by shifting the magnetic axis. This is one of the unique features of a helical system in contrast to an axisymmetric system. (author). 12 refs, 6 figs, 2 tabs

  19. TEACHING PHYSICS: Teaching particle physics

    Science.gov (United States)

    Hanley, Phil

    2000-09-01

    Particle physics attracts many students who hear of news from CERN or elsewhere in the media. This article examines which current A-level syllabuses include which bits of particle physics and surveys the many different types of resource available to teachers and students.

  20. TSV last for hybrid pixel detectors: Application to particle physics and imaging experiments

    CERN Document Server

    Henry, D; Berthelot, A; Cuchet, R; Chantre, C; Campbell, M

    Hybrid pixel detectors are now widely used in particle physics experiments and at synchrotron light sources. They have also stimulated growing interest in other fields and, in particular, in medical imaging. Through the continuous pursuit of miniaturization in CMOS it has been possible to increase the functionality per pixel while maintaining or even shrinking pixel dimensions. The main constraint on the more extensive use of the technology in all fields is the cost of module building and the difficulty of covering large areas seamlessly [1]. On another hand, in the field of electronic component integration, a new approach has been developed in the last years, called 3D Integration. This concept, based on using the vertical axis for component integration, allows improving the global performance of complex systems. Thanks to this technology, the cost and the form factor of components could be decreased and the performance of the global system could be enhanced. In the field of radiation imaging detectors the a...

  1. Research in particle physics

    International Nuclear Information System (INIS)

    1992-09-01

    Research accomplishments and current activities of Boston University researchers in high energy physics are presented. Principal areas of activity include the following: detectors for studies of electron endash positron annihilation in colliding beams; advanced accelerator component design, including the superconducting beam inflector, electrostatic quadrupoles, and the ''electrostatic muon kicker''; the detector for the MACRO (Monopole, Astrophysics, and Cosmic Ray Observatory) experiment; neutrino astrophysics and the search for proton decay; theoretical particle physics (electroweak and flavor symmetry breaking, hadron collider phenomenology, cosmology and astrophysics, new field-theoretic models, nonperturbative investigations of quantum field theories, electroweak interactions); measurement of the anomalous magnetic moment of the muon; calorimetry for the GEM experiment; and muon detectors for the GEM experiment at the Superconducting Super Collider

  2. Experimental Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfeld, Carl [Univ of South Carolina; Mishra, Sanjib R. [Univ of South Carolina; Petti, Roberto [Univ of South Carolina; Purohit, Milind V. [Univ of South Carolina

    2014-08-31

    The high energy physics group at the University of South Carolina, under the leadership of Profs. S.R. Mishra, R. Petti, M.V. Purohit, J.R. Wilson (co-PI's), and C. Rosenfeld (PI), engaged in studies in "Experimental Particle Physics." The group collaborated with similar groups at other universities and at national laboratories to conduct experimental studies of elementary particle properties. We utilized the particle accelerators at the Fermi National Accelerator Laboratory (Fermilab) in Illinois, the Stanford Linear Accelerator Center (SLAC) in California, and the European Center for Nuclear Research (CERN) in Switzerland. Mishra, Rosenfeld, and Petti worked predominantly on neutrino experiments. Experiments conducted in the last fifteen years that used cosmic rays and the core of the sun as a source of neutrinos showed conclusively that, contrary to the former conventional wisdom, the "flavor" of a neutrino is not immutable. A neutrino of flavor "e," "mu," or "tau," as determined from its provenance, may swap its identity with one of the other flavors -- in our jargon, they "oscillate." The oscillation phenomenon is extraordinarily difficult to study because neutrino interactions with our instruments are exceedingly rare -- they travel through the earth mostly unimpeded -- and because they must travel great distances before a substantial proportion have made the identity swap. Three of the experiments that we worked on, MINOS, NOvA, and LBNE utilize a beam of neutrinos from an accelerator at Fermilab to determine the parameters governing the oscillation. Two other experiments that we worked on, NOMAD and MIPP, provide measurements supportive of the oscillation experiments. Good measurements of the neutrino oscillation parameters may constitute a "low energy window" on related phenomena that are otherwise unobservable because they would occur only at energies way above the reach of conceivable accelerators. Purohit and Wilson participated in the Ba

  3. Elementary particle physics: Experimental

    International Nuclear Information System (INIS)

    Lord, J.J.; Burnett, T.H.; Wilkes, R.J.

    1989-01-01

    We are carrying out a research program in high energy experimental particle physics. Studies of high energy hadronic interactions and leptoproduction processes continue using several experimental techniques. Progress has been made on the study of multiparticle production processes in nuclei. Ultra-high energy cosmic ray nucleus-nucleus interactions have been investigated by the Japanese American Cosmic Emulsion Experiment (JACEE) using balloon-borne emulsion chamber detectors. In the area of particle astrophysics, our studies of cosmic ray nuclear interactions have enabled use to make the world's most accurate determination of the comparison of the cosmic rays above 10 13 eV. We have only the detector that can observe interaction vertices and identify particles at energies up to 10**15 eV. Our observations are getting close to placing limits on the acceleration mechanisms postulated for pulsars in which the spin and magnetic moment axes are at different angles. In June, 1989 approval was given by NASA for our participation in the Space Station program. The SCINATT experiment will make use of emulsion chamber detectors, similar to the planned JACEE hybrid balloon flight detectors. These detector will permit precise determination of secondary particle charges, momenta and rapidities, and the accumulation of data will be at least a factor of 10 to 100 greater than in balloon experiments. Emulsion chamber techniques ate also employed in an experiment using accelerator heavy ion beams at CERN and Brookhaven National Laboratory to investigate particle production processes in central collisions of nuclei in the energy range 15 -- 200A GeV. Our study of hadroproduction in lepton interactions is continuing with approval of another 8 months run for deep inelastic muon scattering experiment E665 at Fermilab

  4. DQM4HEP - A Generic Online Monitor for Particle Physics Experiments

    CERN Document Server

    Irles, Adrián; Coates, Tom; Salvatore, Fabrizio; Cussans, David; Éte, Remi; Mirabito, Laurent; Pingault, Antoine; Wing, Matthew

    2017-01-01

    There is currently a lot of activity in R&D for future collider experiments. Multiple detector prototypes are being tested, each one with slightly different requirements regarding the format of the data to be analysed. This has generated a variety of ad-hoc solutions for data acquisition and online data monitoring. We present a generic C++11 online monitoring framework called DQM4HEP, which is designed for use as a generic online monitor for particle physics experiments, ranging from small tabletop experiments to large multi-detector testbeams, such as those currently ongoing/planned at the DESY2 or CERN SPS beamlines. We present results obtained using DQM4HEP at several testbeams where the CALICE AHCAL, SDHCAL and SiWECAL detector prototypes have been tested. During these testbeams, online analysis using DQM4HEP's framework has been developed and used. We also present the currently ongoing work to integrate DQM4HEP within the EUDAQ tool. EUDAQ is a tool for common and generic data acquisition within the ...

  5. Concepts of particle physics

    International Nuclear Information System (INIS)

    Gottfried, K.; Weisskopf, V.F.

    1984-01-01

    This volume elucidates basic and well-established concepts of particle physics for the autodidact who is curious about recent developments in fundamental physics. Elementary quantum mechanics is a background must. Contents, abridged: The evolution of the particle concept before the advent of quantum mechanics. Nonrelativistic quantum mechanics and atomic physics. Relativistic quantum theory. Nuclear phenomena. Subnuclear phenomena. Index

  6. [Medium energy particle physics

    International Nuclear Information System (INIS)

    Nefkens, B.M.K.

    1985-10-01

    Investigations currently carried out by the UCLA Particle Physics Research Group can be arranged into four programs: Pion-Nucleon Scattering; Tests of Charge Symmetry and Isospin Invariance; Light Nuclei (Strong Form Factors of 3 H, 3 He, 4 He; Detailed Balance in pd right reversible γ 3 H; Interaction Dynamics); and Search for the Rare Decay Μ + → e + + γ (MEGA). The general considerations which led to the choice of physics problems investigated by our group are given in the next section. We also outline the scope of the research being done which includes over a dozen experiments. The main body of this report details the research carried out in the past year, the status of various experiments, and new projects

  7. Particle Physics & Astrophysics (PPA)

    Data.gov (United States)

    Federal Laboratory Consortium — Scientists at SLAC's Particle Physics and Astrophysics develop and utilize unique instruments from underground to outer space to explore the ultimate laws of nature...

  8. Getting the astrophysics and particle physics of dark matter out of next-generation direct detection experiments

    International Nuclear Information System (INIS)

    Peter, Annika H. G.

    2010-01-01

    The next decade will bring massive new data sets from experiments of the direct detection of weakly interacting massive particle dark matter. Mapping the data sets to the particle-physics properties of dark matter is complicated not only by the considerable uncertainties in the dark-matter model, but by its poorly constrained local distribution function (the 'astrophysics' of dark matter). I propose a shift in how to think about direct-detection data analysis. I show that by treating the astrophysical and particle-physics uncertainties of dark matter on equal footing, and by incorporating a combination of data sets into the analysis, one may recover both the particle physics and astrophysics of dark matter. Not only does such an approach yield more accurate estimates of dark-matter properties, but it may illuminate how dark matter coevolves with galaxies.

  9. Prospects of particle physics

    International Nuclear Information System (INIS)

    Meyer-Berkhout, U.

    1986-01-01

    Remarkable progress has been achieved in the last two decades in the field of particle physics. From the insight gained by the many experimental data, physicists derive a framework picture of matter on the sub-nuclear level, consisting of fundamental components which interact with each other in a defined and quantitatively detectable manner. The data now available allowed a quantum field theory of strong interactions to be set up for the first time, and a unified theory of electromagnetic and weak interaction. Particle physicists today take particular interest in the problem of whether the strong interaction might fit into an extended unified theory. Such a grand unified theory would have a far-reaching impact on the conceptual models both of the cosmic and sub-nuclear dimensions, and possibly lead to observable effects in domains of energy and mass which will be opened up for experiments by the new accelerator generation underway. Current activities throughout the world for constructing or projecting the new high-energy particle accelerators are outlined in the article, together with the prospects expected by particle physicists, and a look back on the history and achievements of this field of science. (orig.) [de

  10. History of Particle Physics

    Science.gov (United States)

    back to history page Back Particle Physics Timeline For over two thousand years people have thought the Standard Model. We invite you to explore this history of particle physics with a focus on the : Quantum Theory 1964 - Present: The Modern View (the Standard Model) back to history page Back Sections of

  11. Astro-particle-physics

    International Nuclear Information System (INIS)

    Salam, A.

    1985-09-01

    Opening remarks at the Fourth Marcel Grossman Meeting, 17-21 June 1985, in Rome, Italy, are reported. The meeting was concerned with the symbiosis of cosmology and particle physics. Numerous connections between work in particle physics and cosmology, in both experimental and theoretical areas, are pointed out

  12. Teaching particle physics

    CERN Document Server

    Hanley, P

    2000-01-01

    Particle physics attracts many students who hear of news from CERN or elsewhere in the media. This article examines which current A-level syllabuses include which bits of particle physics and surveys the many different types of resource available to teachers and students. (0 refs).

  13. MICE: the Muon Ionization Cooling Experiment. Step I: First Measurement of Emittance with Particle Physics Detectors

    CERN Document Server

    Bravar, U; Karadzhov, Y; Kolev, D; Russinov, I; Tsenov, R; Wang, L; Xu, F Y; Zheng, S X; Bertoni, R; Bonesini, M; Mazza, R; Palladino, V; Cecchet, G; de Bari, A; Capponi, M; Iaciofano, A; Orestano, D; Pastore, F; Tortora, L; Ishimoto, S; Suzuki, S; Yoshimura, K; Mori, Y; Kuno, Y; Sakamoto, H; Sato, A; Yano, T; Yoshida, M; Filthaut, F; Vretenar, M; Ramberger, S; Blondel, A; Cadoux, F; Masciocchi, F; Graulich, J S; Verguilov, V; Wisting, H; Petitjean, C; Seviour, R; Ellis, M; Kyberd, P; Littlefield, M; Nebrensky, J J; Forrest, D; Soler, F J P; Walaron, K; Cooke, P; Gamet, R; Alecou, A; Apollonio, M; Barber, G; Dobbs, A; Dornan, P; Fish, A; Hare, R; Jamdagni, A; Kasey, V; Khaleeq, M; Long, K; Pasternak, J; Sakamoto, H; Sashalmi, T; Blackmore, V; Cobb, J; Lau, W; Rayner, M; Tunnell, C D; Witte, H; Yang, S; Alexander, J; Charnley, G; Griffiths, S; Martlew, B; Moss, A; Mullacrane, I; Oats, A; York, S; Apsimon, R; Alexander, R J; Barclay, P; Baynham, D E; Bradshaw, T W; Courthold, M; Hayler, R Edgecock T; Hills, M; Jones, T; McNubbin, N; Murray, W J; Nelson, C; Nicholls, A; Norton, P R; Prior, C; Rochford, J H; Rogers, C; Spensley, W; Tilley, K; Booth, C N; Hodgson, P; Nicholson, R; Overton, E; Robinson, M; Smith, P; Adey, D; Back, J; Boyd, S; Harrison, P; Norem, J; Bross, A D; Geer, S; Moretti, A; Neuffer, D; Popovic, M; Qian, Z; Raja, R; Stefanski, R; Cummings, M A C; Roberts, T J; DeMello, A; Green, M A; Li, D; Sessler, A M; Virostek, S; Zisman, M S; Freemire, B; Hanlet, P; Huang, D; Kafka, G; Kaplan, D M; Snopok, P; Torun, Y; Onel, Y; Cline, D; Lee, K; Fukui, Y; Yang, X; Rimmer, R A; Cremaldi, L M; Hart, T L; Summers, D J; Coney, L; Fletcher, R; Hanson, G G; Heidt, C; Gallardo, J; Kahn, S; Kirk, H; Palmer, R B; C11-08-09

    2011-01-01

    The Muon Ionization Cooling Experiment (MICE) is a strategic R&D project intended to demonstrate the only practical solution to providing high brilliance beams necessary for a neutrino factory or muon collider. MICE is under development at the Rutherford Appleton Laboratory (RAL) in the United Kingdom. It comprises a dedicated beamline to generate a range of input muon emittances and momenta, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. The emittance of the incoming beam will be measured in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in Liquid Hydrogen (LH2) absorbers to RF cavity acceleration. A second spectrometer, identical to the first, and a second muon identification system will measure the outgoing emittance. In the 2010 run at RAL the muon beamline and most detectors were fully commissioned and a first measurement of the emittance of the muon beam with particle physics (time-of-flight) de...

  14. Cosmology and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Steigman, G [California Univ., Santa Barbara (USA). Inst. for Theoretical Physics; Bartol Research Foundation, Newark, Delaware (USA))

    1982-01-29

    The cosmic connections between physics on the very largest and very smallest scales are reviewed with an emphasis on the symbiotic relation between elementary particle physics and cosmology. After a review of the early Universe as a cosmic accelerator, various cosmological and astrophysical constraints on models of particle physics are outlined. To illustrate this approach to particle physics via cosmology, reference is made to several areas of current research: baryon non-conservation and baryon asymmetry; free quarks, heavy hadrons and other exotic relics; primordial nucleosynthesis and neutrino masses.

  15. What's Next for Particle Physics?

    Science.gov (United States)

    White, Martin

    2017-10-01

    Following the discovery of the Higgs boson in 2012, particle physics has entered its most exciting and crucial period for over 50 years. In this book, I first summarise our current understanding of particle physics, and why this knowledge is almost certainly incomplete. We will then see that the Large Hadron Collider provides the means to search for the next theory of particle physics by performing precise measurements of the Higgs boson, and by looking directly for particles that can solve current cosmic mysteries such as the nature of dark matter. Finally, I will anticipate the next decade of particle physics by placing the Large Hadron Collider within the wider context of other experiments. The results expected over the next ten years promise to transform our understanding of what the Universe is made of and how it came to be.

  16. Final Report: Particle Physics Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Karchin, Paul E. [Wayne State Univ., Detroit, MI (United States). Department of Physics and Astronomy; Harr, Robert F. [Wayne State Univ., Detroit, MI (United States). Department of Physics and Astronomy; Mattson, Mark. E. [Wayne State Univ., Detroit, MI (United States). Department of Physics and Astronomy

    2011-09-01

    We describe recent progress in accelerator-based experiments in high-energy particle physics and progress in theoretical investigations in particle physics. We also describe future plans in these areas.

  17. Particle physics---Experimental

    International Nuclear Information System (INIS)

    Lord, J.J.; Boynton, P.E.; Burnett, T.H.; Wilkes, R.J.

    1991-01-01

    We are continuing a research program in particle astrophysics and high energy experimental particle physics. We have joined the DUMAND Collaboration, which is constructing a deep undersea astrophysical neutrino detector near Hawaii. Studies of high energy hadronic interactions using emulsion chamber techniques were also continued, using balloon flight exposures to ultra-high cosmic ray nuclei (JACEE) and accelerator beams. As members of the DUMAND Collaboration, we have responsibility for development a construction of critical components for the deep undersea neutrino detector facility. We have designed and developed the acoustical positioning system required to permit reconstruction of muon tracks with sufficient precision to meet the astrophysical goals of the experiment. In addition, we are making significant contributions to the design of the database and triggering system to be used. Work has been continuing in other aspects of the study of multiparticle production processes in nuclei. We are participants in a joint US/Japan program to study nuclear interactions at energies two orders of magnitude greater than those of existing accelerators, using balloon-borne emulsion chambers. On one of the flights we found two nuclear interactions of multiplicity over 1000 -- one with a multiplicity of over 2000 and pseudorapidity density ∼ 800 in the central region. At the statistical level of the JACEE experiment, the frequency of occurrence of such events is orders of magnitude too large. We have continued our ongoing program to study hadronic interactions in emulsions exposed to high energy accelerator beams

  18. Modern Elementary Particle Physics

    Science.gov (United States)

    Kane, Gordon

    2017-02-01

    1. Introduction; 2. Relativistic notation, Lagrangians, and interactions; 3. Gauge invariance; 4. Non-abelian gauge theories; 5. Dirac notation for spin; 6. The Standard Model Lagrangian; 7. The electroweak theory and quantum chromodynamics; 8. Masses and the Higgs mechanism; 9. Cross sections, decay widths, and lifetimes: W and Z decays; 10. Production and properties of W± and Zᴼ; 11. Measurement of electroweak and QCD parameters: the muon lifetime; 12. Accelerators - present and future; 13. Experiments and detectors; 14. Low energy and non-accelerator experiments; 15. Observation of the Higgs boson at the CERN LHC: is it the Higgs boson?; 16. Colliders and tests of the Standard Model: particles are pointlike; 17. Quarks and gluons, confinement and jets; 18. Hadrons, heavy quarks, and strong isospin invariance; 19. Coupling strengths depend on momentum transfer and on virtual particles; 20. Quark (and lepton) mixing angles; 21. CP violation; 22. Overview of physics beyond the Standard Model; 23. Grand unification; 24. Neutrino masses; 25. Dark matter; 26. Supersymmetry.

  19. Overview of particle physics

    International Nuclear Information System (INIS)

    Salam, A.

    1986-02-01

    An overview of the situation of particle physics at the end of 1985 is given. It includes the following topics: ideas which have been tested or will soon be tested such as the standard model based on the symmetry group SUsub(C)(3)xSUsub(L)(2)xU(1), light Higgs and preons; theoretical ideas whose time has not yet come (basically because no accelerators are being constructed to test them) such as N=1 supersymmetry and N=1 supergravity right-handed weak currents, extended supergravities and superstring models; ideas for which non-accelerator and passive experiments have been mounted such as proton decay, nn-bar oscillations, neutrino masses and oscillations, monopoles and dark matter

  20. RESEARCH IN PARTICLE PHYSICS

    Energy Technology Data Exchange (ETDEWEB)

    Kearns, Edward [Boston Universiy

    2013-07-12

    This is the final report for the Department of Energy Grant to Principal Investigators in Experimental and Theoretical Particle Physics at Boston University. The research performed was in the Energy Frontier at the LHC, the Intensity Frontier at Super-Kamiokande and T2K, the Cosmic Frontier and detector R&D in dark matter detector development, and in particle theory.

  1. Introduction to particle physics

    International Nuclear Information System (INIS)

    Zitoun, R.

    2000-01-01

    This book proposes an introduction to particle physics that requires only a high-school level mathematical knowledge. Elementary particles (leptons, quarks, bosons) are presented according to a modern view taking into account of their symmetries and interactions. The author shows how physicists have elaborated the standard model and what are its implications in cosmology. (J.S.)

  2. Particle physics and cosmology

    International Nuclear Information System (INIS)

    Turner, M.S.; Schramm, D.N.

    1985-01-01

    During the past year, the research of the members of our group has spanned virtually all the topics at the interface of cosmology and particle physics: inflationary Universe scenarios, astrophysical and cosmological constraints on particle properties, ultra-high energy cosmic ray physics, quantum field theory in curved space-time, cosmology with extra dimensions, superstring cosmology, neutrino astronomy with large, underground detectors, and the formation of structure in the Universe

  3. Fermilab | Science | Particle Physics | Benefits of Particle Physics

    Science.gov (United States)

    Photos and videos Latest news For the media Particle Physics Neutrinos Fermilab and the LHC Dark matter initiatives Research and development Key discoveries Benefits of particle physics Particle Accelerators society Particle Physics 101 Science of matter, energy, space and time How particle physics discovery

  4. Nuclear and particle physics 1993

    International Nuclear Information System (INIS)

    MacGregor, I.J.D.; Doyle, A.T.

    1993-01-01

    This item documents the International Conference on Nuclear and Particle Physics held at the University of Glasgow, UK, from 30th March to 1st April 1993. It was organised by the Department of Physics and Astronomy at Glasgow University on behalf of the Nuclear and Particle Physics Division of the Institute of Physics. The scientific programme covered many areas of current interest in nuclear and particle physics. Particle physics topics included up to the minute reports on the physics currently coming from CERN'S Low Energy Antiproton Ring (LEAR), Hadron-Elektron-Ring Analage (HERA) and Large Electron-Positron Storage Rings (LEP), and reviews of quantum chromodynamics (QCD) lattice gauge theory. Looking to the future the programme covered the search for the Higgs boson and a review of physics experiments planned for the new generation of accelerators at Large Hadron Collider (LHC) and Superconducting Supercollider (SSC). The conference coincided with the final closure of the world class Nuclear Structure Facility at Daresbury and marked the transition of United Kingdom (UK) nuclear physics research into a new era of international collaboration. Several talks described new international collaborative research programmes in nuclear physics initiated by UK scientists. The conference also heard of new areas of nuclear physics which will in future be opened up by high energy continuous beam electron accelerators and by radioactive ion beam accelerators. (author)

  5. 3D integration technology for hybrid pixel detectors designed for particle physics and imaging experiments

    International Nuclear Information System (INIS)

    Henry, D.; Berthelot, A.; Cuchet, R.; Chantre, C.; Campbell, M.; Tick, T.

    2012-01-01

    Hybrid pixel detectors are now widely used in particle physics experiments and are becoming established at synchrotron light sources. They have also stimulated growing interest in other fields and, in particular, in medical imaging. Through the continuous pursuit of miniaturization in CMOS it has been possible to increase the functionality per pixel while maintaining or even shrinking pixel dimensions. The main constraint on the more extensive use of the technology in all fields is the cost of module building and the difficulty of covering large areas seamlessly. On another hand, in the field of electronic component integration, a new approach has been developed in the last years, called 3D Integration. This concept, based on using the vertical axis for component integration, allows improving the global performance of complex systems. Thanks to this technology, the cost and the form factor of components could be decreased and the performance of the global system could be enhanced. In the field of radiation imaging detectors the advantages of 3D Integration come from reduced inter chip dead area even on large surfaces and from improved detector construction yield resulting from the use of single chip 4-side buttable tiles. For many years, numerous R and centres and companies have put a lot of effort into developing 3D integration technologies and today, some mature technologies are ready for prototyping and production. The core technology of the 3D integration is the TSV (Through Silicon Via) and for many years, LETI has developed those technologies for various types of applications. In this paper we present how one of the TSV approaches developed by LETI, called TSV last, has been applied to a readout wafer containing readout chips intended for a hybrid pixel detector assembly. In the first part of this paper, the 3D design adapted to the read-out chip will be described. Then the complete process flow will be explained and, finally, the test strategy adopted and

  6. Particle physics instrumentation

    International Nuclear Information System (INIS)

    Riegler, W.

    2011-01-01

    This report summarizes a series of three lectures aimed at giving an overview of basic particle detection principles, the interaction of particles with matter, the application of these principles in modern detector systems, as well techniques to read out detector signals in high-rate experiments. (author)

  7. Particle physics and cosmology

    International Nuclear Information System (INIS)

    Kolb, E.W.

    1986-10-01

    This series of lectures is about the role of particle physics in physical processes that occurred in the very early stages of the bug gang. Of particular interest is the role of particle physics in determining the evolution of the early Universe, and the effect of particle physics on the present structure of the Universe. The use of the big bang as a laboratory for placing limits on new particle physics theories will also be discussed. Section 1 reviews the standard cosmology, including primordial nucleosynthesis. Section 2 reviews the decoupling of weakly interacting particles in the early Universe, and discusses neutrino cosmology and the resulting limits that may be placed on the mass and lifetime of massive neutrinos. Section 3 discusses the evolution of the vacuum through phase transitions in the early Universe and the formation of topological defects in the transitions. Section 4 covers recent work on the generation of the baryon asymmetry by baryon-number violating reactions in Grand Unified Theories, and mentions some recent work on baryon number violation effects at the electroweak transition. Section 5 is devoted to theories of cosmic inflation. Finally, Section 6 is a discussion of the role of extra spatial dimensions in the evolution of the early Universe. 78 refs., 32 figs., 6 tabs

  8. [High energy particle physics]: Task A, High energy physics program: Experiment and theory; Task B, High energy physics program: Numerical simulation of quantum field theories

    International Nuclear Information System (INIS)

    Lannutti, J.E.

    1991-01-01

    This report discusses the following research: fixed target experiments; collider experiments; computing, networking and VAX upgrade; SSC preparation, detector development and detector construction; solid argon calorimetry; absorption of CAD system geometries into GEANT for SSC; and particle theory programs

  9. Cosmology and particle physics

    International Nuclear Information System (INIS)

    Barrow, J.D.

    1982-01-01

    A brief overview is given of recent work that integrates cosmology and particle physics. The observational data regarding the abundance of matter and radiation in the Universe is described. The manner in which the cosmological survival density of stable massive particles can be calculated is discussed along with the process of cosmological nucleosynthesis. Several applications of these general arguments are given with reference to the survival density of nucleons, neutrinos and unconfined fractionally charge particles. The use of nucleosynthesis to limit the number of lepton generations is described together with the implications of a small neutrino mass for the origin of galaxies and clusters. (Auth.)

  10. Particle physics and cosmology

    International Nuclear Information System (INIS)

    Srednicki, M.

    1990-01-01

    At least eighty percent of the mass of the universe consists of some material which, unlike ordinary matter, neither emits nor absorbs light. This book collects key papers related to the discovery of this astonishing fact and its profound implications for astrophysics, cosmology, and the physics of elementary particles. The book focusses on the likely possibility that the dark matter is composed of an as yet undiscovered elementary particle, and examines the boundaries of our present knowledge of the properties such a particle must possess. (author). refs.; figs.; tabs

  11. Forecasting report. Particle physics

    International Nuclear Information System (INIS)

    The present status of particle and antiparticle physics is examined. As for electromagnetic interactions, the quantum electrodynamics theory is briefly reviewed and the various types of hadronic electromagnetic interactions classified. The theoretical approaches of strong interactions are outlined with hadron spectroscopy. Dynamical models and high energy phenomena are presented. The theoretical problems of weak interaction physics are examined with some experimental aspects. Experimental investigations of the hadron internal structure are briefly surveyed [fr

  12. Summer School on Particle Physics

    CERN Document Server

    2017-01-01

    The goal of the school is to give a detailed overview of particle physics from the basics of Standard Model phenomenology to the most important areas where significant progress has been achieved recently. This year the school will cover both the energy and the intensity frontiers, including lectures on experimental techniques for small scale experiments and on formal developments in quantum field theory.

  13. Particle physics and cosmology

    International Nuclear Information System (INIS)

    Ellis, J.; Nanopoulos, D.

    1983-01-01

    The authors describe the connection between cosmology and particle physics in an introductory way. In this connection the big bang theory and unified gauge models of strong, electromagnetic, and weak interactions are considered. Furthermore cosmological nucleosynthesis is discussed in this framework, and the problem of cosmic neutrinos is considered with special regards to its rest mass. (HSI).

  14. Elementary particles physics

    International Nuclear Information System (INIS)

    1990-01-01

    It is discussed the physics in Brazil in the next decade with regard to elementary particles and field theories. The situation of brazilian research institutes as well as its personnel is also presented. Some recommendations and financing of new projects are also considered. (A.C.A.S.)

  15. Expert system strategies for the diagnostic in a particle physics experiment

    International Nuclear Information System (INIS)

    D'Antone, I.; Mandrioli, G.; Matteuzzi, P.

    1990-01-01

    The maintenance of a particle detector functionality requires the knowledge of more experts: physicists and engineers for the detector and the electronic system. The integration of different knowledges and experiences can be easily done using an Expert System. A real-time Expert System allows us to diagnose the detector and data acquisition system anomalies; it makes an on-line diagnosis and, if an abnormal condition is identified, takes the appropriate action to reduce the unavailability of the apparatus. A method based on structural and behavioral reasoning is considered. Reasoning on the structure and on the functionality of the apparatus all the possible failures that can explain the sensor readings are searched. The behaviour of the apparatus components are described in qualitative terms to write the rules for the expert system

  16. Electronic properties of single crystal CVD diamond and its suitability for particle detection in hadron physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pomorski, Michal

    2008-08-07

    This work presents the study on the suitability of single-crystal CVD diamond for particle-detection systems in present and future hadron physics experiments. Different characterization methods of the electrical and the structural properties were applied to gain a deeper understanding of the crystal quality and the charge transport properties of this novel semiconductor material. First measurements regarding the radiation tolerance of diamond were performed with sensors heavily irradiated with protons and neutrons. Finally, detector prototypes were fabricated and successfully tested in various experiments as time detectors for minimum ionizing particles as well as for spectroscopy of heavy ions at the energy ranges available at the SIS and the UNILAC facilities of GSI. (orig.)

  17. Electronic properties of single crystal CVD diamond and its suitability for particle detection in hadron physics experiments

    International Nuclear Information System (INIS)

    Pomorski, Michal

    2008-01-01

    This work presents the study on the suitability of single-crystal CVD diamond for particle-detection systems in present and future hadron physics experiments. Different characterization methods of the electrical and the structural properties were applied to gain a deeper understanding of the crystal quality and the charge transport properties of this novel semiconductor material. First measurements regarding the radiation tolerance of diamond were performed with sensors heavily irradiated with protons and neutrons. Finally, detector prototypes were fabricated and successfully tested in various experiments as time detectors for minimum ionizing particles as well as for spectroscopy of heavy ions at the energy ranges available at the SIS and the UNILAC facilities of GSI. (orig.)

  18. Superconducting magnets advanced in particle physics

    International Nuclear Information System (INIS)

    Yamamoto, Akira

    2000-01-01

    Superconducting magnet technology for particle detectors has been advanced to provide large-scale magnetic fields in particle physics experiments. The technology has been progressed to meet physics goals and the detector requirement of having maximum magnetic field with minimum material and space. This paper includes an overview of the advances of particle detector magnets and discusses key technologies

  19. Particle and nuclear physics

    International Nuclear Information System (INIS)

    Ning, H.; Chong-shi, W.

    1986-01-01

    This book contains the proceedings of the September symposium. There are two parts to this book divided according to particle physics and nuclear physics. Some of the titles of the papers are as follows: Bifurcation and Dynamical Symmetry Breaking, Negative Binomial Distribution for the Multiplicity Distributions in e/sup +/e/sup -/ Annihilation, Variational Study of Lattice QCD, Rescaling for Kaon Structure Function, SDG Boson Model and its Application, The Pair-Aligned Intrinsic Wave Function in Single-j Configuration, and The Short Range Effective Interaction and the Spectra of Calcium Isotopes in (f-p) Space

  20. Lectures in particle physics

    CERN Document Server

    Green, Dan

    1994-01-01

    The aim of this book on particle physics is to present the theory in a simple way. The style and organization of the material is unique in that intuition is employed, not formal theory or the Monte Carlo method. This volume attempts to be more physical and less abstract than other texts without degenerating into a presentation of data without interpretation.This book is based on four courses of lectures conducted at Fermilab. It should prove very useful to advanced undergraduates and graduate students.

  1. Cosmology and particle physics

    International Nuclear Information System (INIS)

    Salati, P.

    1986-01-01

    If the hot Big Bang model is correct, the very early universe provides us with a good laboratory to test our ideas on particle physics. The temperature and the density at that time are so high that each known particle must exist in chemical and in thermal equilibrium with the others. When the universe cools, the particles freeze out, leaving us today with a cosmic background. Such a kind of relic is of great interest because we can probe the Big Bang Model by studying the fossilized gas of a known particle. Conversely we can use that model to derive information about a hypothetical particle. Basically the freezing of a gas occurs a temperature T o and may be thermal or chemical. Studying the decoupling of a stable neutrino brings information on its mass: if the mass M ν lies in the forbidden range, the neutrino has to be unstable and its lifetime is constrained by cosmology. As for the G.U.T. Monopole, cosmology tells us that its present mass density is either to big or to small (1 monopole/observable universe) owing to a predicted flux far from the Parker Limit. Finally, the super red-giant star life time constrains the axion or the Higgs to be more massive than .2 MeV [fr

  2. Instrumentation in elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Fabjan, C W [European Organization for Nuclear Research, Geneva (Switzerland); Pilcher, J E [Chicago Univ., IL (United States); eds.

    1988-01-01

    The first International Committee for Future Accelerators Instrumentation School was held at the International Centre for Theoretical Physics, Trieste, Italy from 8 to 19 June 1987. The School was attended by 74 students of whom 45 were from developing countries, 10 lecturers and 9 laboratory instructors. The next generation of elementary particle physics experiments would depend vitally on new ideas in instrumentation. This is a field where creativity and imagination play a major role and large budgets are not a prerequisite. One of the unique features was the presentation of four laboratory experiments using modern techniques and instrumentation. Refs, figs and tabs.

  3. Instrumentation in elementary particle physics

    International Nuclear Information System (INIS)

    Fabjan, C.W.; Pilcher, J.E.

    1988-01-01

    The first International Committee for Future Accelerators Instrumentation School was held at the International Centre for Theoretical Physics, Trieste, Italy from 8 to 19 June 1987. The School was attended by 74 students of whom 45 were from developing countries, 10 lecturers and 9 laboratory instructors. The next generation of elementary particle physics experiments would depend vitally on new ideas in instrumentation. This is a field where creativity and imagination play a major role and large budgets are not a prerequisite. One of the unique features was the presentation of four laboratory experiments using modern techniques and instrumentation. Refs, figs and tabs

  4. Non-accelerator particle physics

    International Nuclear Information System (INIS)

    Steinberg, R.I.; Lane, C.E.

    1991-08-01

    The goals of this research were the experimental testing of fundamental theories of physics such as grand unification and the exploration of cosmic phenomena through the techniques of particle physics. We have worked on the MACRO experiment, which is employing a large area underground detector to search for grand unification magnetic monopoles and dark matter candidates and to study cosmic ray muons as well as low and high energy neutrinos; the νIMB project, which seeks to refurbish and upgrade the IMB water Cerenkov detector to perform an improved proton decay search together with a long baseline reactor neutrino oscillation experiments using a one kiloton liquid scintillator (the Perry experiment); and development of technology for improved liquid scintillators and for very low background materials in support of the MACRO and Perry experiments and for new solar neutrino experiments

  5. Non-accelerator particle physics

    International Nuclear Information System (INIS)

    Steinberg, R.I.; Lane, C.E.

    1991-09-01

    The goals of this research are the experimental testing of fundamental theories of physics such as grand unification and the exploration of cosmic phenomena through the techniques of particle physics. We are working on the MACRO experiment, which employs a large area underground detector to search for grand unification magnetic monopoles and dark matter candidates and to study cosmic ray muons as well as low and high energy neutrinos: the νIMB project, which seeks to refurbish and upgrade the IMB water Cerenkov detector to perform an improved proton decay search together with a long baseline reactor neutrino oscillation experiment using a kiloton liquid scintillator (the Perry experiment); and development of technology for improved liquid scintillators and for very low background materials in support of the MACRO and Perry experiments and for new solar neutrino experiments. 21 refs., 19 figs., 6 tabs

  6. Experimental constraints on light scalar field models in cosmology and particle physics (SNLS and CMS experiments)

    International Nuclear Information System (INIS)

    Neveu, Jeremy

    2014-01-01

    The nature of dark energy and dark matter is still unknown today. Light scalar field models have been proposed to explain the late-time accelerated expansion of the Universe and the apparent abundance of non-baryonic matter. In the first part of this thesis, the Galileon theory, a well-posed modified gravity theory preserving the local gravitation thanks to the Vainshtein screening effect, is accurately tested against recent cosmological data. Observational constraints are derived on the model parameters using cosmological distance and growth rate of structure measurements. A good agreement is observed between data and theory predictions. The Galileon theory appears therefore as a promising alternative to the cosmological constant scenario. In the second part, the dark matter question is explored through an extra-dimension theory containing massive and stable scalar fields called Branons. Branon production is searched for in the proton-proton collisions that were collected by the Compact Muon Solenoid experiment in 2012 at the Large Hadron Collider. Events with a single photon and transverse missing energy are selected in this data set and compared to the Standard Model and instrumental background estimates. No signature of new physics is observed, so experimental limits on the Branon model parameters are derived. This thesis concludes with some ideas to reach an unified description of both models in the frame of extra-dimension theories. (author) [fr

  7. Non-accelerator particle physics

    International Nuclear Information System (INIS)

    Steinberg, R.I.

    1990-01-01

    The goals of this research are the experimental testing of fundamental theories of physics such as grand unification and the exploration of cosmic phenomena through the techniques of particle physics. We are currently engaged in construction of the MACRO detector, an Italian-American collaborative research instrument with a total particle acceptance of 10,000 m 2 sr, which will perform a sensitive search for magnetic monopoles using excitation-ionization methods. Other major objective of the MACRO experiment are to search for astrophysical high energy neutrinos expected to be emitted by such objects as Vela X-1, LMC X-4 and SN-1987A and to search for low energy neutrino bursts from gravitational stellar collapse. We are also working on BOREX, a liquid scintillation solar neutrino experiment and GRANDE, a proposed very large area surface detector for astrophysical neutrinos, and on the development of new techniques for liquid scintillation detection

  8. Online Particle Physics Information

    International Nuclear Information System (INIS)

    Kreitz, Patricia A

    2003-01-01

    This list describes a broad set of online resources that are of value to the particle physics community. It is prescreened and highly selective. It describes the scope, size, and organization of the resources so that efficient choices can be made amongst many sites which may appear similar. A resource is excluded if it provides information primarily of interest to only one institution. Because this list must be fixed in print, it is important to consult the updated version of this compilation which includes newly added resources and hypertext links to more complete information at: http://www.slac.stanford.edu/library/pdg/

  9. Online Particle Physics Information

    Energy Technology Data Exchange (ETDEWEB)

    Kreitz, Patricia A

    2003-04-24

    This list describes a broad set of online resources that are of value to the particle physics community. It is prescreened and highly selective. It describes the scope, size, and organization of the resources so that efficient choices can be made amongst many sites which may appear similar. A resource is excluded if it provides information primarily of interest to only one institution. Because this list must be fixed in print, it is important to consult the updated version of this compilation which includes newly added resources and hypertext links to more complete information at: http://www.slac.stanford.edu/library/pdg/.

  10. Particle physics in your pocket!

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    CERN physicists, take out your smartphones! Two new particle physics applications for Android phones have been developed by a physicist from the University of Bern: “Particle Properties” and “Particle Physics Booklet 2010”.   “When I'm on shift, I enjoy looking at the online event displays,” says Igor Kreslo from the Laboratory for High Energy Physics at the University of Bern, the physicist who has developed the two particle physics applications for Android. “Sometimes very beautiful events appear, with many different particles. I like to discuss these displays with my students, just to develop their ability to identify particles. We try to find out which particle is which and how it might decay… I think that's the best way to teach students the phenomenology of particle physics.” When scientists study particle physics, they require some vital information, such as the decay branching ...

  11. Aspects of experimental particle physics

    International Nuclear Information System (INIS)

    McCubbin, N.A.

    1986-11-01

    The paper contains three lectures on Experimental Particle Physics which were given at the 16th British Universities Summer School for Theoretical and Elementary Particle Physics, Durham, 1986. The first lecture briefly reviews the physics which underpins all particle detectors, and the second lecture describes how this physics influences a modern detector. The last lecture is concerned with the topics of beams and computers, and includes the physics of stochastic cooling and the Halting theorem. (U.K.)

  12. SPS experiments with light particles

    CERN Document Server

    Tenner, A G

    1977-01-01

    High energy physics during the last 20 years has utilized proton accelerators like the CERN PS. Now, however, fundamental questions can only be answered through experiments using beams of electrons, muons or neutrinos for the study of collisions between light particles or between light and heavy particles. The detection of light particles as the end products of interactions is also of great interest. The super protosynchrotron experimental programme which started in January 1977 is discussed with particular reference to the Big European Bubble Chamber (BEBC). (2 refs).

  13. First experience with particle-in-cell plasma physics code on ARM-based HPC systems

    Science.gov (United States)

    Sáez, Xavier; Soba, Alejandro; Sánchez, Edilberto; Mantsinen, Mervi; Mateo, Sergi; Cela, José M.; Castejón, Francisco

    2015-09-01

    In this work, we will explore the feasibility of porting a Particle-in-cell code (EUTERPE) to an ARM multi-core platform from the Mont-Blanc project. The used prototype is based on a system-on-chip Samsung Exynos 5 with an integrated GPU. It is the first prototype that could be used for High-Performance Computing (HPC), since it supports double precision and parallel programming languages.

  14. Particle physics with cold neutrons

    International Nuclear Information System (INIS)

    Dubbers, D.

    1991-01-01

    Slow neutrons are used in a large number of experiments to study the physics of particles and their fundamental interactions. Some of these experiments search for manifestations of ''new physics'' like baryon- or lepton-number nonconservation, time reversal nonconservation, new particles, right-handed currents, nonzero neutron charge, nonlinear terms in the Schrodinger equation, exotic e + e - states, and others. Other slow neutron experiments test the present Standard Model. The parity nonconserving weak neutron-nucleon interaction is studied in a variety of experiments. Free neutron beta decay gives precise values for the weak vector and axialvector coupling constants, which allow precise tests of basic symmetries like the conservation of the weak vector current, the unitarity of the weak quark mixing matrix, SU(3) flavour symmetry, and right-handed currents. Neutron beta decay data are further needed to calculate weak cross-sections, for applications, in big bang cosmology, in astrophysics, in solar physics and the solar neutrino problem, and in such mundane things as neutrino detection efficiencies in neutrino oscillation or proton decay experiments. Neutron-nucleon, neutron-nucleus and neutron-electron scattering lengths are determined in high precision experiments, which use methods like neutron interferometry or neutron gravity spectrometry. The experiments give information on quantities like the neutron charge radius or the neutron electric polarizability. Precision measurements of other fundamental constants lead to a better, model-independent value of the fine structure constant. Finally, the fundamental experiments on quantum mechanics, like spinor 4π -rotation, Berry's phase, dressed neutrons, Aharanov - Casher effect, or gravitational effects on the neutron's phase will be briefly discussed. (author)

  15. First experience with particle-in-cell plasma physics code on ARM-based HPC systems

    OpenAIRE

    Sáez, Xavier; Soba, Alejandro; Sánchez, Edilberto; Mantsinen, Mervi; Mateo, Sergio; Cela, José M.; Castejón, Francisco

    2015-01-01

    In this work, we will explore the feasibility of porting a Particle-in-cell code (EUTERPE) to an ARM multi-core platform from the Mont-Blanc project. The used prototype is based on a system-on-chip Samsung Exynos 5 with an integrated GPU. It is the first prototype that could be used for High-Performance Computing (HPC), since it supports double precision and parallel programming languages. The research leading to these results has received funding from the European Com- munity's Seventh...

  16. Cosmology and particle physics

    International Nuclear Information System (INIS)

    Turner, M.S.

    1986-01-01

    Progress in cosmology has become linked to progress in elementary particle physics. In these six lectures, the author illustrates the two-way nature of the interplay between these fields by focusing on a few selected topics. In the next section the author reviews the standard cosmology, especially concentrating on primordial nucleosynthesis and discusses how the standard cosmology has been used to place constraints on the properties of various particles. Grand Unification makes two striking predictions: (i) B non-conservation; (ii) the existence of stable, superheavy magnetic monopoles. Both have had great cosmological impact. In the following section the author discusses baryogenesis, the very attractive scenario in which the B,C,CP violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and the present baryon-to-photon ratio. Monopoles are a cosmological disaster and an astrophysicist's delight. In Section 4 discusses monopoles, cosmology, and astrophysics. In the fourth lecture the author discusses how a very early (t≤10/sup -34/ sec) phase transition associated with spontaneous symmetry breaking (SSB) has the potential to explain a handful of very fundamental cosmological facts, facts which can be accommodated by the standard cosmology, but which are not ''explained'' by it. The fifth lecture is devoted to a discussion of structure formation in the universe

  17. Fundamental physics in particle traps

    International Nuclear Information System (INIS)

    Quint, Wolfgang; Vogel, Manuel

    2014-01-01

    The individual topics are covered by leading experts in the respective fields of research. Provides readers with present theory and experiments in this field. A useful reference for researchers. This volume provides detailed insight into the field of precision spectroscopy and fundamental physics with particles confined in traps. It comprises experiments with electrons and positrons, protons and antiprotons, antimatter and highly charged ions, together with corresponding theoretical background. Such investigations represent stringent tests of quantum electrodynamics and the Standard model, antiparticle and antimatter research, test of fundamental symmetries, constants, and their possible variations with time and space. They are key to various aspects within metrology such as mass measurements and time standards, as well as promising to further developments in quantum information processing. The reader obtains a valuable source of information suited for beginners and experts with an interest in fundamental studies using particle traps.

  18. Adaptation of multiwire chambers to some recent experiments in elementary particle physics

    International Nuclear Information System (INIS)

    Comby, G.

    1977-01-01

    Three realizations of gas multiplication detectors are presented in the field of multiwire chambers. Le 'NEUTRINO' experiment is intended for investigating neutrino interactions at energies as high as possible with using drift chambers. The 'LEZARD' experiment is intended for investigating lepton and hadron production at high transverse momentum in hadron-nucleon collisions up to the higher energies attainable at SPS (use of a multiwire proportional chamber), the apparatus has the performance of a spectrometer. A spark chamber equipped with memories has been developed for controlling bubble chamber experiments. Emphasis is put on the evolution towards detectors associated with 'another thing' to obtain a more specific operation: such as the plasma memory and spark chamber association, some possible association with function gaps is pointed out (delay function, homothetic function) [fr

  19. Nuclear physics with polarized particles

    CERN Document Server

    Paetz gen Schieck, Hans

    2012-01-01

    The measurement of spin-polarization observables in reactions of nuclei and particles is of great utility and advantage when the effects of single-spin sub-states are to be investigated. Indeed, the unpolarized differential cross-section encompasses the averaging over the spin states of the particles, and thus loses details of the interaction process. This introductory text combines, in a single volume, course-based lecture notes on spin physics and on polarized-ion sources with the aim of providing a concise yet self-contained starting point for newcomers to the field, as well as for lecturers in search of suitable material for their courses and seminars. A significant part of the book is devoted to introducing the formal theory-a description of polarization and of nuclear reactions with polarized particles. The remainder of the text describes the physical basis of methods and devices necessary to perform experiments with polarized particles and to measure polarization and polarization effects in nuclear rea...

  20. Particle identification for beauty physics

    International Nuclear Information System (INIS)

    Ludlam, T.

    1987-01-01

    We look briefly at the requirements for particle identification for possible beauty experiments at the Tevatron, both in the fixed target and the collider mode. Techniques presently in use in high energy physics experiments, and under development, should make sensitive experiments feasible. However, in all cases the present state of the art must be advanced to meet the necessary requirements for segmentation andor rate capability. The most fundamentally difficult challenges appear to be the efficient tagging of soft electrons (for the collider experiment) and the need to handle interaction rates up to /approximately/ 10 9 HZ in the fixed target mode. In both cases we can find ''in principle'' demonstrations that the requirements can be met. We have considered only the most basic prooperties of detectors, however, and the real answers will come from careful studies of details. 20 refs., 10 figs

  1. Geneva University - Particle Physics Seminars

    CERN Multimedia

    Université de Genève

    2010-01-01

    GENEVA UNIVERSITY École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 GENÈVE 4 Tél. (022) 379 62 73 Fax: (022) 379 69 92 Wednesday 13 October 2010 PARTICLE PHYSICS SEMINAR at 17.00 hrs – Stückelberg Auditorium Exotic hadrons, Light Higgs and Dark Forces at BABAR Dr. Bertrand Echenard / California Institute of Technology From spectroscopy to search new physics, B-factories have explored many exciting topics besides establishing CP-violation in B decays. We will review recent results on spectroscopy, exotic hadrons and search for light Higgs. Current searches for dark forces and GeV-scale dark matter particles will also be discussed. Information : http://dpnc.unige.ch/seminaire/annonce.html Organizer : G. Pasztor Wednesday 20 October 2010 PARTICLE PHYSICS SEMINAR at 17.00 hrs – Stückelberg Auditorium The MINOS Experiment, Results and Future Plans Pro...

  2. Geneva University - Particle Physics seminar

    CERN Multimedia

    Université de Genève

    2011-01-01

    UNIVERSITE DE GENEVE Ecole de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Geneva 4 Tel. (022) 379 62 73 Fax (022) 379 69 92 Wednesday 8 June 2011 PARTICLE PHYSICS SEMINAR at 17.00 hrs – Stückelberg Auditorium A Novel Experiment for the Search muon -> eee Prof. Andre Schoening, University of Heidelberg The absence of lepton-flavor changing processes, like the non-observation of the radiative decay mu -> e gamma, has been a miracle since the dawn of the Standard Model of Particle Physics and lead to the introduction of the concept of lepton family numbers. Several experiments in the last decade have shown clear evidence for neutrino oscillations. The neutrino mixing angles measured are known to be large. However, the discovery of lepton flavor violating (LFV) effects in the charged lepton sector is yet owing. After motivating the search for LFV in general I will discuss the physics potential of a search m...

  3. Research in Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    White, Andrew Paul [Univ. of Texas, Arlington, TX (United States); De, Kaushik [Univ. of Texas, Arlington, TX (United States); Brandt, Andrew [Univ. of Texas, Arlington, TX (United States); Yu, Jaehoon [Univ. of Texas, Arlington, TX (United States); Farbin, Amir [Univ. of Texas, Arlington, TX (United States)

    2015-02-02

    This report details the accomplishments and research results for the High Energy Physics Group at the University of Texas at Arlington at the Energy and Intensity Frontiers. For the Energy Frontier we have made fundamental contributions in the search for supersymmetric particles, proposed to explain the stabilization of the mass of the Higgs Boson – the agent giving mass to all known particles. We have also made major contributions to the search for additional Higgs Bosons and to the planning for future searches. This work has been carried out in the context of the ATLAS Experiment at CERN (European Nuclear Research Laboratory) and for which we have made major contributions to computing and data distribution and processing, and have worked to calibrate the detector and prepare upgraded electronics for the future. Our other contribution to the Energy Frontier has been to the International Linear Collider (ILC) project, potentially hosted by Japan, and to the Silicon Detector Concept (SiD) in particular. We have lead the development of the SiD Concept and have worked on a new form of precise energy measurement for particles from the high energy collisions of electrons and positrons at the ILC. For the Intensity Frontier, we have worked to develop the concept of Long Baseline Neutrino Experiment(s) (LBNE) at the Fermi National Accelerator Laboratory. Our contributions to detector development, neutrino beam studies, particle identification, software development will facilitate future studies of the oscillation of one type of neutrino into other type(s), establish the order of the neutrino masses, and, through an innovative new idea, allow us to create a beam of dark matter particles.

  4. Particle physics and cosmology

    International Nuclear Information System (INIS)

    Schramm, D.N.; Turner, M.S.

    1982-06-01

    work is described in these areas: cosmological baryon production; cosmological production of free quarks and other exotic particle species; the quark-hadron transition in the early universe; astrophysical and cosmological constraints on particle properties; massive neutrinos; phase transitions in the early universe; and astrophysical implications of an axion-like particle

  5. Applications of High Speed Configurable Logic Devices in Modern Particle Physics Experiments

    CERN Document Server

    Giorgi, Filippo Maria

    Several activities were conducted during my PhD activity. For the NEMO experiment a collaboration between the INFN/University groups of Catania and Bologna led to the development and production of a mixed signal acquisition board for the Nemo Km3 telescope. The research concerned the feasibility study for a different acquisition technique quite far from that adopted in the NEMO Phase 1 telescope. The DAQ board that we realized exploits the LIRA06 front-end chip for the analog acquisition of anodic an dynodic sources of a PMT (Photo-Multiplier Tube). The low-power analog acquisition allows to sample contemporaneously multiple channels of the PMT at different gain factors in order to increase the signal response linearity over a wider dynamic range. Also the auto triggering and self-event-classification features help to improve the acquisition performance and the knowledge on the neutrino event. A fully functional interface towards the first level data concentrator, the Floor Control Module, has been integrated...

  6. Particle Physics and the Universe

    CERN Document Server

    Wess, Julius; 9th Adriatic Meeting

    2005-01-01

    The focus of the contributions contained in this proceedings is the interplay between cosmology, astroparticle physics and particle physics, both from the theoretical and experimental point of view. The Adriatic Meetings have traditionally been one of the very few physics conferences devoted to the most advanced status of science while aiming at a very broad participation of both young and experienced researchers with diverse backgrounds in particle physics.

  7. Experiments in Fundamental Neutron Physics

    OpenAIRE

    Nico, J. S.; Snow, W. M.

    2006-01-01

    Experiments using slow neutrons address a growing range of scientific issues spanning nuclear physics, particle physics, astrophysics, and cosmology. The field of fundamental physics using neutrons has experienced a significant increase in activity over the last two decades. This review summarizes some of the recent developments in the field and outlines some of the prospects for future research.

  8. Elementary particle physics in early physics education

    CERN Document Server

    Wiener, Gerfried

    2017-01-01

    Current physics education research is faced with the important question of how best to introduce elementary particle physics in the classroom early on. Therefore, a learning unit on the subatomic structure of matter was developed, which aims to introduce 12-year-olds to elementary particles and fundamental interactions. This unit was iteratively evaluated and developed by means of a design-based research project with grade-6 students. In addition, dedicated professional development programmes were set up to instruct high school teachers about the learning unit and enable them to investigate its didactical feasibility. Overall, the doctoral research project led to successful results and showed the topic of elementary particle physics to be a viable candidate for introducing modern physics in the classroom. Furthermore, thanks to the design-based research methodology, the respective findings have implications for both physics education and physics education research, which will be presented during the PhD defen...

  9. Experiments in high energy elementary particle physics and processing of photographically filed data with the aid of a measuring and evaluating system

    Energy Technology Data Exchange (ETDEWEB)

    Kirst, H [Akademie der Wissenschaften der DDR, Berlin-Zeuthen. Inst. fuer Hochenergiephysik

    1977-01-01

    The measuring and evaluating system includes pattern recognition and measuring instruments as well as a processor for data evaluation and checking procedures. The program chart and the application to evaluating photographs of particle tracks from high energy physics experiments are mentioned. The time-sharing effect of such systems in data evaluation is emphasized.

  10. Notes on elementary particle physics

    CERN Document Server

    Muirhead, William Hugh

    1972-01-01

    Notes of Elementary Particle Physics is a seven-chapter text that conveys the ideas on the state of elementary particle physics. This book emerged from an introductory course of 30 lectures on the subject given to first-year graduate students at the University of Liverpool. The opening chapter deals with pertinent terminologies in elementary particle physics. The succeeding three chapters cover the concepts of transition amplitudes, probabilities, relativistic wave equations and fields, and the interaction amplitude. The discussion then shifts to tests of electromagnetic interactions, particul

  11. Particle accelerator physics

    CERN Document Server

    Wiedemann, Helmut

    2015-01-01

    This book by Helmut Wiedemann is a well-established, classic text, providing an in-depth and comprehensive introduction to the field of high-energy particle acceleration and beam dynamics. The present 4th edition has been significantly revised, updated and expanded. The newly conceived Part I is an elementary introduction to the subject matter for undergraduate students. Part II gathers the basic tools in preparation of a more advanced treatment, summarizing the essentials of electrostatics and electrodynamics as well as of particle dynamics in electromagnetic fields. Part III is an extensive primer in beam dynamics, followed, in Part IV, by an introduction and description of the main beam parameters and including a new chapter on beam emittance and lattice design. Part V is devoted to the treatment of perturbations in beam dynamics. Part VI then discusses the details of charged particle acceleration. Parts VII and VIII introduce the more advanced topics of coupled beam dynamics and describe very intense bea...

  12. Dark matter and particle physics

    International Nuclear Information System (INIS)

    Peskin, Michael E.

    2007-01-01

    Astrophysicists now know that 80% of the matter in the universe is 'dark matter', composed of neutral and weakly interacting elementary particles that are not part of the Standard Model of particle physics. I will summarize the evidence for dark matter. I will explain why I expect dark matter particles to be produced at the CERN LHC. We will then need to characterize the new weakly interacting particles and demonstrate that they the same particles that are found in the cosmos. I will describe how this might be done. (author)

  13. Experimental studies of particle acceleration with ultra-intense lasers - Applications to nuclear physics experiments involving laser-produced plasmas

    International Nuclear Information System (INIS)

    Plaisir, C.

    2010-11-01

    For the last ten years, the Ultra High Intensity Lasers offer the opportunity to produce accelerated particle beams which contain more than 10 12 electrons, protons accelerated into a few ps. We have simulated and developed some diagnostics based on nuclear activation to characterize both the angular and the energy distributions of the particle beams produced with intense lasers. The characterization methods which are presented are illustrated by means of results obtained in different experiments. We would use the particle beams produced to excite nuclear state in a plasma environment. It can modify intrinsic characteristics of the nuclei such as the half-life of some isomeric states. To prepare this kind of experiments, we have measured the nuclear reaction cross section (gamma,n) to produce the isomeric state of the 84 Rb, which has an excitation energy of 463 keV, with the electron accelerator ELSA of CEA/DIF in Bruyeres-le-Chatel (France). (author)

  14. Particle Physics and Programming Languages

    OpenAIRE

    Watts, Gordon

    2017-01-01

    A SeaLang meetup - a presentation discussing various programming languages used in particle physics, from pushing common modern languages a bit past where they should be pushed, to an embedded DSL, to some full blown ones written.

  15. Particle physics. Themes and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, C. [Fermi National Accelerator Laboratory, Batavia, IL (United States)

    1996-12-31

    It is an introductory talk to the Second Rencontres du Vietnam. This lecture is devoted to seven themes that express the essence of our understanding - and our possibilities on particle physics. (K.A.) 19 refs.

  16. Particle physics and gauge theories

    International Nuclear Information System (INIS)

    Morel, A.

    1985-01-01

    These notes are intended to help readers not familiar with particle physics in entering the domain of gauge field theory applied to the so-called standard model of strong and electroweak interactions. The introduction is considerably enlarged in order to give non specialists a general overview of present days ''elementary'' particle physics. The Glashow-Salam-Weinberg model is then treated, with the details which its unquestioned successes deserve, most probably for a long time. Finally SU(5) is presented as a prototype of these developments of particle physics which aim at a unification of all forces. Although its intrinsic theoretical difficulties and the non-observation of a sizable proton decay rate do not qualify this model as a realistic one, it has many of the properties expected from a ''good'' unified theory. In particular, it allows one to study interesting connections between particle physics and cosmology. 35 refs.

  17. The ABCs of particle physics

    CERN Document Server

    Biron, Lauren

    2016-01-01

    For lovers of rhymes and anthropomorphic Higgs bosons, Symmetry presents its first published board book, The ABCs of Particle Physics. Use it as an illustrated guide to basic particle- and astrophysics terms, or read it to your infant at bedtime, if you don’t mind their first word being “quark.”

  18. Forecasting report. Particle physics

    International Nuclear Information System (INIS)

    The present status of nuclear physics is examined. The various nuclear models, and theories for nuclear structure, nuclear reactions and nucleon-nucleon forces between free nucleons and nucleon inside nuclei are briefly presented. A new future towards exotic and superheavy nuclei is outlined, with nuclear macrophysics, and complex excitations. Nuclear physics connections with other fields and society are also examined and the tools of the physicists briefly surveyed [fr

  19. Reminiscences a journey through particle physics

    CERN Document Server

    Melissinos, Adrian

    2013-01-01

    A personal recount in areas of particle physics and related fields as a research physicist for over 50 years, Adrian Melissinos' insights into the ways that general research was carried out, as well as the evolution of particle physics from 1958 to 2008 will prove valuable to science history enthusiasts, as well as particle physicists. Be it conventional accelerator experiments, the use of microwave techniques in search of cosmic axions, or taking advantage of high power lasers to observe light-by-light scattering, the excitement of searching for something new in the face of failures and then successes is enriching, and the collaboration with gifted and outstanding colleagues and students proves insightful. A hybrid of personal reminiscences and a professional journey, readers get to relive the joy and excitement of researching and teaching in small groups during those early years while gaining a partial historical perspective of particle physics since 1958 - all in "Reminiscences: A Journey through Particle ...

  20. LHCb in the International Particle Physics Masterclasses

    CERN Document Server

    Couturier, Ben

    2016-01-01

    The Large Hadron Collider Beauty (LHCb) Experiment joined the International Particle Physics Masterclass programme in 2013. The experiment proposed the measurement of the D0 meson lifetime, using real data gathered at the Large Hadron Collider in 2012. We describe the exercise as well as the lessons learned during this first participation in the International Masterclass programme.

  1. Introduction to Particle Physics course

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    These lectures are an introduction to the ideas of particle physics, aimed at students and teachers with little or on knowledge of the subject. They form a broad basis that will be developed in more detail by the subsequent lecturers in the school. These four lectures are meant to present an overview of particle physics based on its historical evolution over the past century. It will be shown how concepts have evolved following progress in instrumentation and in theoretical ideas, from atoms to the elementary particles and their interactions, as they are known today.

  2. Hard sell for particle physics?

    International Nuclear Information System (INIS)

    Brown, Julian.

    1994-01-01

    With particle physics experimental research becoming ever more expensive, the author considers whether the cost of such research is worthwhile. As costs escalated on the Superconducting Supercollider, the project has now been terminated. Particle physicists must now look for commercial imperatives to justify their work. Many of the important spin-offs from particle physics research are described in order to justify the subject's continued funding, albeit at very high levels, where funds might otherwise be directed to more mundane but very necessary causes such as health care or education. (UK)

  3. Cosmology and particle physics

    International Nuclear Information System (INIS)

    Turner, M.S.

    1985-01-01

    The author reviews the standard cosmology, focusing on primordial nucleosynthesis, and discusses how the standard cosmology has been used to place constraints on the properties of various particles. Baryogenesis is examined in which the B, C, CP violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and the present baryon-to-baryon ratio. Monoposes, cosmology and astrophysics are reviewed. The author also discusses supersymmetry/supergravity and cosmology, superstrings and cosmology in extra dimensions, and axions, astrophics, and cosmology

  4. Theoretical particle physics

    International Nuclear Information System (INIS)

    1993-01-01

    This report discusses the following topics: Heavy Quark Physics; Chiral Perturbation Theory; Skyrmions; Large-N Limit; Weak Scale Baryogenesis; Supersymmetry; Rare Decays; Technicolor; Chiral Lattice Fermions; Pauli-Villars Regulator and the Higgs Mass Bound; Higgs and Yukawa Interactions; Gauge Fixing; and Quantum Beables

  5. Particle Physics Outreach

    CERN Document Server

    Goldfarb, Steven; The ATLAS collaboration

    2018-01-01

    Outreach activities by the LHC experiments are reported. The importance of public support for the LHC programme is highlighted, and possibilities for scientists to be actively involved in outreach and educational programmes are presented.

  6. Elementary particle physics---Experimental

    International Nuclear Information System (INIS)

    Lord, J.J.; Burnett, T.H.; Wilkes, R.J.

    1990-01-01

    We are continuing a research program in high energy experimental particle physics and particle astrophysics. Studies of high energy hadronic interactions were performed using several techniques, in addition, a high energy leptoproduction experiment was continued at the Fermi National Accelerator Laboratory. We are participants in a joint US/Japan program to study nuclear interactions at energies two orders of magnitude greater than those of existing accelerators. The data are being collected with ballon-borne emulsion chambers. The properties of nuclear interactions at these high energies will reveal whether new production mechanisms come into play due to the high nuclear densities and temperatures obtained. We carried out closely related studies of hadronic interactions in emulsions exposed to high energy accelerator beams. We are members of a large international collaboration which has exposed emulsion chamber detectors to beams of 32 S and 16 O with energy 60 and 200 GeV/n at CERN and 15 GeV/n at Brookhaven National Laboratory. The primary objectives of this program are to determine the existence and properties of the hypothesized quark-gluon phase of matter, and its possible relation to a variety of anomalous observations. Studies of leptoproduction processes at high energies involve two separate experiments, one using the Tevatron 500 GeV muon beam and the other exploring the >TeV regime. We are participants in Fermilab experiment E665 employing a comprehensive counter/streamer chamber detector system. During the past year we joined the DUMAND Collaboration, and have been assigned responsibility for development and construction of critical components for the deep undersea neutrino detector facility, to be deployed in 1991. In addition, we are making significant contributions to the design of the triggering system to be used

  7. Introducing particle physics a graphic guide

    CERN Document Server

    AUTHOR|(CDS)2071677

    2013-01-01

    What really happens at the most fundamental levels of nature? Introducing Particle Physics explores the very frontiers of our knowledge, even showing how particle physicists are now using theory and experiment to probe our very concept of what is real. From the earliest history of the atomic theory through to supersymmetry, micro-black holes, dark matter, the Higgs boson, and the possibly mythical graviton, practising physicist and CERN contributor Tom Whyntie gives us a mind-expanding tour of cutting-edge science. Featuring brilliant illustrations from Oliver Pugh, Introducing Particle Physics is a unique tour through the most astonishing and challenging science being undertaken today.

  8. Theoretical particle physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses the following topics: heavy quark physics; Chiral Perturbation theory; Skyrmions; quarkonia and nuclear matter; parity violating nuclear matrix elements; how precisely can one determine M U /M D ; weak scale baryogenesis; constraints of baryogenesis form neutrino masses; majorons, double beta decay, supernova 1987A; rare decays; chiral lattice fermions; Pauli-Villars regulator and the Higgs mass bound; and Higgs and Yukawa interactions

  9. Physical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1-3

    Science.gov (United States)

    Kinsey, John S.; Dong, Yuanji; Williams, D. Craig; Logan, Russell

    2010-06-01

    The fine particulate matter (PM) emissions from nine commercial aircraft engine models were determined by plume sampling during the three field campaigns of the Aircraft Particle Emissions Experiment (APEX). Ground-based measurements were made primarily at 30 m behind the engine for PM mass and number concentration, particle size distribution, and total volatile matter using both time-integrated and continuous sampling techniques. The experimental results showed a PM mass emission index (EI) ranging from 10 to 550 mg kg -1 fuel depending on engine type and test parameters as well as a characteristic U-shaped curve of the mass EI with increasing fuel flow for the turbofan engines tested. Also, the Teflon filter sampling indicated that ˜40-80% of the total PM mass on a test-average basis was comprised of volatile matter (sulfur and organics) for most engines sampled. The number EIs, on the other hand, varied from ˜10 15 to 10 17 particles kg -1 fuel with the turbofan engines exhibiting a logarithmic decay with increasing fuel flow. Finally, the particle size distributions of the emissions exhibited a single primary mode that were lognormally distributed with a minor accumulation mode also observed at higher powers for all engines tested. The geometric (number) mean particle diameter ranged from 9.4 to 37 nm and the geometric standard deviation ranged from 1.3 to 2.3 depending on engine type, fuel flow, and test conditions.

  10. Dark matter and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Masiero, A [SISSA-ISAS, Trieste (Italy) and INFN, Sezione di Trieste (Italy); Pascoli, S [SISSA-ISAS, Trieste (Italy) and INFN, Sezione di Trieste (Italy)

    2001-11-15

    Dark matter constitutes a key-problem at the interface between Particle Physics, Astrophysics and Cosmology. Indeed, the observational facts which have been accumulated in the last years on dark matter point to the existence of an amount of non-baryonic dark matter. Since the Standard Model of Particle Physics does not possess any candidate for such non-baryonic dark matter, this problem constitutes a major indication for new Physics beyond the Standard Model. We analyze the most important candidates for non-baryonic dark matter in the context of extensions of the Standard Model (in particular supersymmetric models). The recent hints for the presence of a large amount of unclustered 'vacuum' energy (cosmological constant?) is discussed from the Astrophysical and Particle Physics perspective. (author)

  11. Event generators in particle physics

    International Nuclear Information System (INIS)

    Sjostrand, Torbjorn

    1994-01-01

    This presentation gives an introduction to the topic of event generators in particle physics . The emphasis is on the physics aspects that have to be considered in the construction of a generator, and what lessons we have learned from comparisons with data. A brief survey of existing generators is also included. As illustration, a few topics of current interest are covered in a bit more detail: QCD uncertainties in W mass determinations and γp/γγ physics. (author)

  12. Summer School on Particle Physics

    CERN Document Server

    2015-01-01

    The goal of the school is to give a detailed overview of particle physics and cover the most important areas where significant progress has been achieved recently. This year the school will cover both the energy and the intensity frontiers, with lectures covering the physics relevant for the next LHC run, future hadron colliders, direct and indirect probes of dark sectors and early universe physics.

  13. Summer School on Particle Physics

    CERN Document Server

    2013-01-01

    The goal of the school is to give a detailed overview of particle physics and cover the most important and perspective areas where significant progress has been achieved recently. In 2013, the main focus will be on the LHC results, their interpretation and implications for Physics Beyond the Standard model. Lectures will also cover progress in neutrino physics, dark matter searches and the study of cosmic radiation.

  14. The Multiverse and Particle Physics

    Science.gov (United States)

    Donoghue, John F.

    2016-10-01

    The possibility of fundamental theories with very many ground states, each with different physical parameters, changes the way that we approach the major questions of particle physics. Most importantly, it raises the possibility that these different parameters could be realized in different domains in the larger universe. In this review, I survey the motivations for the multiverse and the impact of the idea of the multiverse on the search for new physics beyond the Standard Model.

  15. Elementary particle physics

    International Nuclear Information System (INIS)

    Izen, J.M.

    1994-01-01

    Much of the work was connected with experimental measurements made at the Beijing Spectrometer operating at √s = 4.03 GeV. The effort has now moved to investigating the physics derived from the √s = 4.03 GeV data, including D s production, absolute D s branching fractions (hadronic, leptonic, and inclusive semileptonic), D*D and D*D* production, absolute D hadronic branching fractions, D* branching fractions, and an upper limit on the ν τ mass. 2 figs., 11 refs

  16. Elementary particle physics

    International Nuclear Information System (INIS)

    Kenyon, I.R.

    1987-01-01

    Intended for undergraduate and postgraduate students the book concentrates on the 'standard model' and the gauge symmetries. Leptons, quarks and forces are introduced at the beginning, followed by experimental techniques which have found them. Gauge theories are dealt with in order of increasing complexity - quantum electrodynamics and the gauge principle, symmetries and conservation laws, colour and quantum chromodynamics, the V - A theory of weak interactions and electroweak unification. Attention is then focussed on the hadrons. Deep inelastic scattering of hadrons is explained first, then hadron spectroscopy and then hadron interactions. Current developments beyond the Standard model - grand unification, supersymmetry, cosmology and gravitation -are discussed in the final chapter. The appendices cover kinematic, cross-section and decay-rate formulae, Breit-Wigner resonances, some Clebsch-Gordan coefficient tables, a table of particle properties, exercises and answers, and the Dirac equation. There is also an appendix on calculating scattering amplitudes for fermion + fermion going to fermion + fermion. A list of references is given. (U.K.)

  17. Black Holes from Particle Physics Perspective (1/2)

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    We review physics of black holes, both large and small, from a particle physicist's perspective, using particle physics tools for describing concepts such as entropy, temperature and quantum information processing. We also discuss microscopic picture of black hole formation in high energy particle scattering, potentially relevant for high energy accelerator experiments, and some differences and similarities with the signatures of other BSM physics.

  18. Black Holes from Particle Physics Perspective (2/2)

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    We review physics of black holes, both large and small, from a particle physicist's perspective, using particle physics tools for describing concepts such as entropy, temperature and quantum information processing. We also discuss microscopic picture of black hole formation in high energy particle scattering, potentially relevant for high energy accelerator experiments, and some differences and similarities with the signatures of other BSM physics.

  19. International Conference on Particle Physics and Astrophysics

    CERN Document Server

    2015-01-01

    The International Conference on Particle Physics and Astrophysics (ICPPA-2015) will be held in Moscow, Russia, from October 5 to 10, 2015. The conference is organized by Center of Basic Research and Particle Physics of National Research Nuclear University “MEPhI”. The aim of the Conference is to promote contacts between scientists and development of new ideas in fundamental research. Therefore we will bring together experts and young scientists working on experimental and theoretical aspects of nuclear, particle, astroparticle physics and cosmology. ICPPA-2015, aims to present the most recent results in astrophysics and collider physics and reports from the main experiments currently taking data. The working languages of the conference are English and Russian.

  20. Ultraviolet extensions of particle physics

    DEFF Research Database (Denmark)

    Berthier, Laure Gaëlle

    The discovery of the Higgs boson in 2012 at the Large Hadron Collider completed the Standard Model field content. Many questions though remain unanswered by the Standard Model triggering a search for new physics. New physics could manifest itself at the Large Hadron Collider by the discovery of new...... particles. However, the lack of new resonances might suggest that these new particles are still out of reach which leaves us with few options. Two possibilities are explored in this thesis. The first is to study precision measurements which might indicate new physics as small deviations from the Standard...... are expressed as power series with missing higher order terms. We also show how to connect ultraviolet models of new physics to the Standard Model effective field theory and calculate bounds on them using the Standard Model effective field theory fit results. Finally, we study a nonrelativistic ultraviolet...

  1. Research in theoretical particle physics

    International Nuclear Information System (INIS)

    McKay, D.W.; Munczek, H.; Ralston, J.

    1992-05-01

    This report discusses the following topics in high energy physics: dynamical symmetry breaking and Schwinger-Dyson equation; consistency bound on the minimal model Higgs mass; tests of physics beyond the standard model; particle astrophysics; the interface between perturbative and non-perturbative QCD; cosmology; anisotropy in quantum networks and integer quantum hall behavior; anomalous color transparency; quantum treatment of solitons; color transparency; quantum stabilization of skyrmions; and casimir effect

  2. Particle physics using nuclear targets

    International Nuclear Information System (INIS)

    Ferbel, T.

    1978-01-01

    The use of nuclear targets in particle physics is discussed and some recent results obtained in studies of hadronic interactions on nuclei summarized. In particular experimental findings on inclusive production and on coherent dissociation of mesons and baryons at high energies are presented. 41 references

  3. Research in elementary particle physics

    International Nuclear Information System (INIS)

    1992-01-01

    Experimental and theoretical work on high energy physics is reviewed. Included are preparations to study high-energy electron-proton interactions at HERA, light-cone QCD, decays of charm and beauty particles, neutrino oscillation, electron-positron interactions at CLEO II, detector development, and astrophysics and cosmology

  4. Topics in elementary particle physics

    International Nuclear Information System (INIS)

    Dugan, M.J.

    1985-01-01

    Topics in elementary particle physics are discussed. Models with N = 2 supersymmetry are constructed. The CP violation properties of a class of N = 1 supergravity models are analyzed. The structure of a composite Higgs model is investigated. The implications of a 17 keV neutrino are considered

  5. The Future of Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bjorken, James

    2000-06-15

    After a very brief review of twentieth century elementary particle physics, prospects for the next century are discussed. First and most important are technological limits of opportunities; next, the future experimental program, and finally the status of the theory, in particular its limitations as well as its opportunities.

  6. Studies in theoretical particle physics

    International Nuclear Information System (INIS)

    Kaplan, D.B.

    1992-01-01

    This report focuses on research on three distinct areas of particle physics: Chiral Fermions on the Lattice; Weak Scale Baryogenesis; analysis of parity violating nuclear forces, and other an attempt to render the electric dipole moment of the neutron immune from quantum gravity corrections

  7. Industrial impact of particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-11-15

    The aim of particle physics is to advance Man's knowledge of the structure of the Universe around him. However attention is turning increasingly to links between the Laboratory and the growth area of high technology. What is the natural timescale for 'spinoff'? Can it be accelerated?.

  8. Cryogenic detectors for particle physics

    International Nuclear Information System (INIS)

    Gonzalez-Mestres, L.; Perret-Gallix, D.

    1988-11-01

    A comprehensive introduction to cryogenic detector developments for particle physics is presented, covering conventional detectors cooled to low temperature (scintillators and semiconductors), superconductive and thermal sensitive devices, as well as the basics of cold electronics. After giving a critical overview of current work, we elaborate on possible new ways for further improvements and briefly evaluate the feasibility of the main proposed applications

  9. Pop-up particle physics

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    You may remember noticing a pop-up Big Bang on your way to Restaurant No. 1 last November, as part of the Library’s book fair. This was just one page from a rather original project to make a pop-up book about particle physics. The book – Voyage to the Heart of Matter, the ATLAS experiment at CERN - will be launched in the USA and Canada, in a new silver edition.   The book proved a popular Christmas gift in the UK when it was released last November - copies on sale there sold out in under two months. The new print run will go on sale in Australia and the UK, in addition to Canada and the US. It will be launched to the press during the week of the New York book fair and will befollowed by a public event at the New York Academy of Sciences on 25 May. You can purchase a copy at the ATLAS secretariat, the Library or the Building 33 shop for 30CHF. For more information about the launch event, see http://www.nyas.org/ATLAS.

  10. Particle Physics Outreach to Secondary Education

    Energy Technology Data Exchange (ETDEWEB)

    Bardeen, Marjorie G.; /Fermilab; Johansson, K.Erik; /Stockholm U.; Young, M.Jean

    2011-11-21

    This review summarizes exemplary secondary education and outreach programs of the particle physics community. We examine programs from the following areas: research experiences, high-energy physics data for students, informal learning for students, instructional resources, and professional development. We report findings about these programs' impact on students and teachers and provide suggestions for practices that create effective programs from those findings. We also include some methods for assessing programs.

  11. Particle Physics Outreach to Secondary Education

    International Nuclear Information System (INIS)

    Bardeen, Marjorie G.; Johansson, K. Erik; Young, M. Jean

    2011-01-01

    This review summarizes exemplary secondary education and outreach programs of the particle physics community. We examine programs from the following areas: research experiences, high-energy physics data for students, informal learning for students, instructional resources, and professional development. We report findings about these programs' impact on students and teachers and provide suggestions for practices that create effective programs from those findings. We also include some methods for assessing programs.

  12. A research Program in Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Sobel, Henry; Molzon, William; Lankford, Andrew; Taffard, Anyes; Whiteson, Daniel; Kirkby, David

    2013-07-25

    Work is reported in: Neutrino Physics, Cosmic Rays and Elementary Particles; Particle Physics and Charged Lepton Flavor Violation; Research in Collider Physics; Dark Energy Studies with BOSS and LSST.

  13. Research in elementary particle physics

    International Nuclear Information System (INIS)

    Bland, R.W.; Greensite, J.

    1992-01-01

    Task A of this contract supports research in elementary particle physics using cryogenic particle detectors. We have developed superconducting aluminum tunnel-junction detectors sensitive to a variety of particle signals, and with potential application to a number of particle-physics problems. We have extended our range of technologies through a collaboration with Simon Labov, on niobium tri-layer junctions, and Jean-Paul Maneval, on high-T c superconducting bolometers. We have new data on response to low-energy X-rays and to alpha-particle signals from large-volume detectors. The theoretical work under this contract (Task B) is a continued investigation of nonperturbative aspects of quantum gravity. A Monte Carlo calculation is proposed for Euclidian quantum gravity, based on the ''fifth-time action'' stabilization procedure. Results from the last year include a set of seven papers, summarized below, addressing various aspects of nonperturbative quantum gravity and QCD. Among the issues- addressed is the so-called ''problem of time'' in canonical quantum gravity

  14. Research in Particle Physics at the Santa Cruz Institute for Particle Physics, 2000-2003

    International Nuclear Information System (INIS)

    Abraham Seiden

    2003-01-01

    The Santa Cruz Institute for Particle Physics is an Organized Research Unit within the University of California system. This is a special structure allowing a focused emphasis on research and includes special commitments for space and personnel from the Santa Cruz campus. The Institute serves to consolidate the research in experimental and theoretical particle physics on campus. This report covers four separate experimental projects. The projects are the BaBar experiment, the ATLAS experiment, the GLAST space satellite, and work toward a Linear Collider and its detector. Research in High Energy Physics (last final report for period 1996-2000)

  15. Particle physics prospects for the KAON factory

    International Nuclear Information System (INIS)

    Bryman, D.

    1989-05-01

    The Kaon Factory at TRIUMF will produce beams of kaons, antiprotons, neutrinos and other particles with a hundred-fold increase in intensity over existing machines in the 30 GeV region. This will make possible new high precision experiments designed to test current ideas as well as high sensitivity measurements which could potentially reveal new effects. A sample of particle physics experiments involving rare kaon decays, CP and T violation studies, neutrino properties and reactions and light quark spectroscopy which might take advantage of the new opportunities presented by the Kaon Factory is discussed

  16. Particle Physics, 2nd Edition

    Science.gov (United States)

    Martin, B. R.; Shaw, G.

    1998-01-01

    Particle Physics, Second Edition is a concise and lucid account of the fundamental constituents of matter. The standard model of particle physics is developed carefully and systematically, without heavy mathematical formalism, to make this stimulating subject accessible to undergraduate students. Throughout, the emphasis is on the interpretation of experimental data in terms of the basic properties of quarks and leptons, and extensive use is made of symmetry principles and Feynman diagrams, which are introduced early in the book. The Second Edition brings the book fully up to date, including the discovery of the top quark and the search for the Higgs boson. A final short chapter is devoted to the continuing search for new physics beyond the standard model. Particle Physics, Second Edition features: * A carefully structured and written text to help students understand this exciting and demanding subject. * Many worked examples and problems to aid student learning. Hints for solving the problems are given in an Appendix. * Optional "starred" sections and appendices, containing more specialised and advanced material for the more ambitious reader.

  17. Electronic Instrumentations for High Energy Particle Physics and Neutrino Physics

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00452332

    The present dissertation describes design, qualification and operation of several electronic instrumentations for High Energy Particle Physics experiments (LHCb) and Neutrino Physics experiments (CUORE and CUPID). Starting from 2019, the LHCb experiment at the LHC accelerator will be upgraded to operate at higher luminosity and several of its detectors will be redesigned. The RICH detector will require a completely new optoelectronic readout system. The development of such system has already reached an advanced phase, and several tests at particle beam facilities allowed to qualify the performance of the entire system. In order to achieve a higher stability and a better power supply regulation for the front-end chip, a rad-hard low dropout linear regulator, named ALDO, has been developed. Design strategies, performance tests and results from the irradiation campaign are presented. In the Neutrino Physics field, large-scale bolometric detectors, like those adopted by CUORE and its future upgrade CUPID, offer u...

  18. The unknowns in particles physics

    International Nuclear Information System (INIS)

    Spiro, M.

    1996-01-01

    The author presents the historical quest of particles since Democrite's time. Some particles are very difficult to identify as for instance neutrinos and antiparticles. Nine anti-hydrogen atoms have just being manufactured in the CERN. This successful result is the last episode of a long history. This achievement is the first step in the elaboration of antimatter too. The enigma of the antimatter created at the universe dawn is perennial. Why is the universe made of matter and not of antimatter? Is there any slight difference in the physical law of antimatter and matter? That's why the study of antimatter is so important. The question of the missing mass of our galaxy leads to another quest: the Higgs's particles. The graviton is another target. That could lead to the unification theory, may be another proof of the unreasonable efficiency of mathematics. (O.M.). 2 figs

  19. Plasma physics via particle simulation

    International Nuclear Information System (INIS)

    Birdsall, C.K.

    1981-01-01

    Plasmas are studied by following the motion of many particles in applied and self fields, analytically, experimentally and computationally. Plasmas for magnetic fusion energy devices are very hot, nearly collisionless and magnetized, with scale lengths of many ion gyroradii and Debye lengths. The analytic studies of such plasmas are very difficult as the plasma is nonuniform, anisotropic and nonlinear. The experimental studies have become very expensive in time and money, as the size, density and temperature approach fusion reactor values. Computational studies using many particles and/or fluids have complemented both theories and experiments for many years and have progressed to fully three dimensional electromagnetic models, albeit with hours of running times on the fastest largest computers. Particle simulation methods are presented in some detail, showing particle advance from acceleration to velocity to position, followed by calculation of the fields from charge and current densities and then further particle advance, and so on. Limitations due to the time stepping and use of a spatial grid are given, to avoid inaccuracies and instabilities. Examples are given for an electrostatic program in one dimension of an orbit averaging program, and for a three dimensional electromagnetic program. Applications of particle simulations of plasmas in magnetic and inertial fusion devices continue to grow, as well as to plasmas and beams in peripheral devices, such as sources, accelerators, and converters. (orig.)

  20. Supersymmetry in Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, Michael E.; /SLAC

    2008-02-05

    These lectures give a general introduction to supersymmetry, emphasizing its application to models of elementary particle physics at the 100 GeV energy scale. I discuss the following topics: the construction of supersymmetric Lagrangians with scalars, fermions, and gauge bosons, the structure and mass spectrum of the Minimal Supersymmetric Standard Model (MSSM), the measurement of the parameters of the MSSM at high-energy colliders, and the solutions that the MSSM gives to the problems of electroweak symmetry breaking and dark matter.

  1. Research on elementary particle physics

    International Nuclear Information System (INIS)

    Holloway, L.E.; O'Halloran, T.A.

    1992-05-01

    This report describes the activities of the University of Illinois Experimental High Energy Physics Group. The physicists in the University of Illinois High Energy Physics Group are engaged in a wide variety of experiments at current and future accelerator laboratories. These include: (1) The CDF experiment at the Fermilab Tevetron p bar p collider. (2) Design and developmental work for the SDC group at SSCL. (3) Experiments at the wide band photon beam at Fermilab. (4) The SLD experiment at SLAC and design studies for a τ-charm factor. (5) CP violation experiments at Fermilab. (6) The HiRes cosmic ray experiment at Dugway Proving Grounds, Utah. (7) Computational facilities. (8) Electronics systems development

  2. Elementary particle physics in a nutshell

    CERN Document Server

    Tully, Christopher C

    2011-01-01

    The new experiments underway at the Large Hadron Collider at CERN in Switzerland may significantly change our understanding of elementary particle physics and, indeed, the universe. This textbook provides a cutting-edge introduction to the field, preparing first-year graduate students and advanced undergraduates to understand and work in LHC physics at the dawn of what promises to be an era of experimental and theoretical breakthroughs. Christopher Tully, an active participant in the work at the LHC, explains some of the most recent experiments in the field. But this book, which emerged fr

  3. [High energy particle physics at Purdue, 1990--1991

    International Nuclear Information System (INIS)

    Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Shipsey, I.P.

    1991-05-01

    Progress made in the experimental and theoretical high energy physics program is reviewed. The CLEO experiment, particle astrophysics, dynamical symmetry breaking in gauge theories, the Collider Detector at Fermilab, the TOPAZ Experiment, and elementary particle physics beyond the standard model are included

  4. Experiments in physical chemistry

    CERN Document Server

    Wilson, J M; Denaro, A R

    1968-01-01

    Experiments in Physical Chemistry, Second Edition provides a compilation of experiments concerning physical chemistry. This book illustrates the link between the theory and practice of physical chemistry. Organized into three parts, this edition begins with an overview of those experiments that generally have a simple theoretical background. Part II contains experiments that are associated with more advanced theory or more developed techniques, or which require a greater degree of experimental skill. Part III consists of experiments that are in the nature of investigations wherein these invest

  5. Particle Identification with the Cherenkov imaging technique using MPGD based Photon Detectors for Physics at COMPASS Experiment at CERN

    CERN Document Server

    AUTHOR|(CDS)2070220; Martin, Anna

    A novel technology for the detection of single photons has been developed and implemented in 2016 in the Ring Imaging Cherenkov (RICH) detector of the COMPASS Experiment at CERN SPS. Some basic knowledge in the field of particle identification and RICH counters, Micro Pattern Gaseous Detectors (MPGDs) in general and their development for photon detection applications are provided. The characteristics of the COMPASS setup are summarized and the COMPAS RICH-1 detector is described and shown to provide hadron identification in the momentum range between 3 and 55 GeV/c. The THGEM technology is discussed illustrating their characterization as gas multipliers and as reflective photocathodes: large gains and efficient photodetection collections are achieved when using optimized parameters and conditions (hole diameter = THGEM thickness = 0.4 mm; hole pitch = 0.8 mm and no rim; CH4-rich gas mixtures and electric field values > 1 kV/cm at the CsI surface). The intense R\\&D program leading to the choice of a hybrid...

  6. Experimental techniques in nuclear and particle physics

    CERN Document Server

    Tavernier, Stefaan

    2009-01-01

    The book is based on a course in nuclear and particle physics that the author has taught over many years to physics students, students in nuclear engineering and students in biomedical engineering. It provides the basic understanding that any student or researcher using such instruments and techniques should have about the subject. After an introduction to the structure of matter at the subatomic scale, it covers the experimental aspects of nuclear and particle physics. Ideally complementing a theoretically-oriented textbook on nuclear physics and/or particle physics, it introduces the reader to the different techniques used in nuclear and particle physics to accelerate particles and to measurement techniques (detectors) in nuclear and particle physics. The main subjects treated are: interactions of subatomic particles in matter; particle accelerators; basics of different types of detectors; and nuclear electronics. The book will be of interest to undergraduates, graduates and researchers in both particle and...

  7. Calorimetry energy measurement in particle physics

    CERN Document Server

    Wigmans, Richard

    2017-01-01

    Particle physics is the science that pursues the age-old quest for the innermost structure of matter and the fundamental interactions between its constituents. Modern experiments in this field rely increasingly on calorimetry, a detection technique in which the particles of interest are absorbed in the detector. Calorimeters are very intricate instruments. Their performance characteristics depend on subtle, sometimes counter-intuitive design details. This book, written by one of the world's foremost experts, is the first comprehensive text on this topic. It provides a fundamental and systematic introduction to calorimetry. It describes the state of the art in terms of both the fundamental understanding of calorimetric particle detection, and the actual detectors that have been or are being built and operated in experiments. The last chapter discusses landmark scientific discoveries in which calorimetry has played an important role. This book summarizes and puts into perspective the work described in some 900...

  8. Semiconductor detectors in nuclear and particle physics

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.

    1995-01-01

    Semiconductor detectors for elementary particle physics and nuclear physics in the energy range above 1 GeV are briefly reviewed. In these two fields semiconductor detectors are used mainly for the precise position sensing. In a typical experiment, the position of a fast charged particle crossing a relatively thin semiconductor detector is measured. The position resolution achievable by semiconductor detectors is compared with the resolution achievable by gas filled position sensing detectors. Semiconductor detectors are divided into two groups; (i) classical semiconductor diode detectors and (ii) semiconductor memory detectors. Principles of the signal formation and the signal read-out for both groups of detectors are described. New developments of silicon detectors of both groups are reported. copyright 1995 American Institute of Physics

  9. Constraints on particle physics from cosmology

    International Nuclear Information System (INIS)

    Schramm, D.N.; Charlton, J.C.

    1986-01-01

    Cosmology and particle physics have become symbiotic in their relationship. In the past, developments in physics have been used to explain astrophysics problems. Recently, cosmology also has been able to place constraints on particle properties and these constraints can be tested by experiment. Thus, the flow of information at the interface of particle physics and cosmology is no longer just one-way. (Astronomy is no longer a parasite of physics.) Many examples of the interchange are described in this review. The timeline of cosmology is rapidly filling in as later events find their explanations in earlier events. In this review, the authors mention what is known about each epoch and show how it might constrain the particle models. Since a great deal of effort is devoted currently to the study of the dark matter problem, special emphasis will be placed on this issue. This study of dark matter and galaxy formation will allow us to draw upon much of what was discussed in earlier epochs. This review draws heavily on a previous review by the authors

  10. Electron cooling and elementary particle physics

    International Nuclear Information System (INIS)

    Budker, G.I.; Skrinskij, A.N.

    1978-01-01

    This review is devoted to a new method in experimental physics - the electron cooling. This method opens possibilities in storing the intense and highly monochromatic beams of heavy particles and allows to carry out a wide series of experiments of a high luminocity and resolution. The method is based on the beam cooling by an accompanying flux of electrons. The cooling is due to Coulomb collisions of the beam particles with electrons. In the first part the theoretical aspects of the method are considered shortly. The layout of the NAP-M installation with electron cooling and results of successful experiments on cooling the proton beam are given. In the second part the new possibilities are discussed which appear due to application of electron cooling: storing the intense antiproton beams and realization of the proton - antiproton colliding beams, carrying out experiments with the super fine targets in storage rings, experiments with particles and antiparticles at ultimately low energies, storing the polarized antiprotons and other particles, production of antiatoms, antideuton storing, experiments with ion beams

  11. SLAC Library - Online Particle Physics Information

    Science.gov (United States)

    Online Particle Physics Information Compiled by Revised: April, 201 7 This annotated list provides a highly selective set of online resources that are useful to the particle physics community. It & Reports Particle Physics Journals & Reviews Online Journals and Tables of Contents Journal

  12. Particle physics 2012. Highlights and annual report

    International Nuclear Information System (INIS)

    Fleischer, Manfred; Kasemann, Matthias; Medinnis, Michael

    2013-01-01

    The following topics are dealt with: Particle physics at DESY, the work of the Helmholtz alliance concerning the LHC and the ILC, bringing particle physics into people's mind, research at HERA, LHC, and the linear accelerators, plasma wakefield acceleration, astroparticle physics, theory of elementary particles, research projects and scientific infrastructure. (HSI)

  13. Two Decades of Mexican Particle Physics at Fermilab

    International Nuclear Information System (INIS)

    Rubinstein, R.

    2003-01-01

    This report is a view from Fermilab of Mexican particle physics at the Laboratory since about 1980; it is not intended to be a history of Mexican particle physics: that topic is outside the expertise of the writer. The period 1980 to the present coincides with the growth of Mexican experimental particle physics from essentially no activity to its current state where Mexican groups take part in experiments at several of the world's major laboratories

  14. Proposal for the Award of Two Contracts for the Technical Services for Work on Components of CERN Particle Accelerators and High Energy Physics Experiments

    CERN Document Server

    2003-01-01

    This document concerns the award of two contracts for the technical services for work on components of CERN particle accelerators and high energy physics experiments. Following a market survey carried out among 73 firms in fourteen Member States, a call for tenders (IT-3156/SPL) was sent on 4 November 2002 to three consortia in four Member States. By the closing date, CERN had received tenders from the three consortia. The Finance Committee is invited to agree to the negotiation of two contracts with: 1) the consortium SERCO FACILITIES MANAGEMENT (NL) - GERARD PERRIER INDUSTRIE (FR) - INEO ALPES (FR), the lowest bidder, for approximately 55% of the technical services for work on components of CERN particle accelerators and high energy physics experiments, for an initial period of five years and for a total amount not exceeding 37 435 270 euros (54 902 500 Swiss francs), subject to revision for inflation from 1 January 2005. The contract will include options for two one-year extensions beyond the initial five-...

  15. Intersections between particle and nuclear physics

    International Nuclear Information System (INIS)

    Bunce, G.M.

    1988-01-01

    This report contains papers from an AIP conference on the intersections between particle and nuclear physics. Some of the general topics covered are: Accelerator physics; Antiproton physics; Electron and muon physics; Hadron scattering; Hadron spectroscopy; Meson and lepton decays; Neutrino physics; Nonaccelerator and astrophysics; Relativistic heavy-ion physics; and Spin physics. There are 166 papers that will be processed separately

  16. Strange Particles and Heavy Ion Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bassalleck, Bernd [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy; Fields, Douglas [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy

    2016-04-28

    This very long-running grant has supported many experiments in nuclear and particle physics by a group from the University of New Mexico. The gamut of these experiments runs from many aspects of Strangeness Nuclear Physics, to rare Kaon decays, to searches for exotic Hadrons such as Pentaquark or H-Dibaryon, and finally to Spin Physics within the PHENIX collaboration at RHIC. These experiments were performed at a number of laboratories worldwide: first and foremost at Brookhaven National Lab (BNL), but also at CERN, KEK, and most recently at J-PARC. In this Final Technical Report we summarize progress and achievements for this award since our last Progress Report, i.e. for the period of fall 2013 until the award’s termination on November 30, 2015. The report consists of two parts, representing our two most recent experimental efforts, participation in the Nucleon Spin Physics program of the PHENIX experiment at RHIC, the Relativistic Heavy Ion Collider at BNL – Task 1, led by Douglas Fields; and participation in several Strangeness Nuclear Physics experiments at J-PARC, the Japan Proton Accelerator Research Center in Tokai-mura, Japan – Task 2, led by Bernd Bassalleck.

  17. Physical Origin of Elementary Particle Masses

    OpenAIRE

    Hansson, Johan

    2014-01-01

    In contemporary particle physics, the masses of fundamental particles are incalculable constants, being supplied by experimental values. Inspired by observation of the empirical particle mass spectrum, and their corresponding physical interaction couplings, we propose that the masses of elementary particles arise solely due to the self-interaction of the fields associated with the charges of a particle. A first application of this idea is seen to yield correct order of magnitude predictions f...

  18. Charting the Course for Elementary Particle Physics

    Science.gov (United States)

    Richter, B.

    2007-02-16

    "It was the best of times; it was the worst of times" is the way Dickens begins the Tale of Two Cities. The line is appropriate to our time in particle physics. It is the best of times because we are in the midst of a revolution in understanding, the third to occur during my career. It is the worst of times because accelerator facilities are shutting down before new ones are opening, restricting the opportunity for experiments, and because of great uncertainty about future funding. My task today is to give you a view of the most important opportunities for our field under a scenario that is constrained by a tight budget. It is a time when we cannot afford the merely good, but must give first priority to the really important. The defining theme of particle physics is to learn what the universe is made of and how it all works. This definition spans the full range of size from the largest things to the smallest things. This particle physics revolution has its origins in experiments that look at both.

  19. Charting the Course for Elementary Particle Physics

    International Nuclear Information System (INIS)

    Richter, Burton

    2007-01-01

    ''It was the best of times; it was the worst of times'' is the way Dickens begins the Tale of Two Cities. The line is appropriate to our time in particle physics. It is the best of times because we are in the midst of a revolution in understanding, the third to occur during my career. It is the worst of times because accelerator facilities are shutting down before new ones are opening, restricting the opportunity for experiments, and because of great uncertainty about future funding. My task today is to give you a view of the most important opportunities for our field under a scenario that is constrained by a tight budget. It is a time when we cannot afford the merely good, but must give first priority to the really important. The defining theme of particle physics is to learn what the universe is made of and how it all works. This definition spans the full range of size from the largest things to the smallest things. This particle physics revolution has its origins in experiments that look at both

  20. Modern particle physics event generation with WHIZARD

    International Nuclear Information System (INIS)

    Reuter, J.; Bach, F.; Chokoufe, B.; Kilian, W.; Sekulla, M.; Ohl, T.; Weiss, C.; Siegen Univ.

    2014-01-01

    We describe the multi-purpose Monte-Carlo event generator WHIZARD for the simulation of high-energy particle physics experiments. Besides the presentation of the general features of the program like SM physics, BSM physics, and QCD effects, special emphasis is given to the support of the most accurate simulation of the collider environments at hadron colliders and especially at future linear lepton colliders. On the more technical side, the very recent code refactoring towards a completely object-oriented software package to improve maintainability, flexibility and code development are discussed. Finally, we present ongoing work and future plans regarding higher-order corrections, more general model support including the setup to search for new physics in vector boson scattering at the LHC, as well as several lines of performance improvements.

  1. Particle physics today, tomorrow and beyond

    Science.gov (United States)

    Ellis, John

    2018-01-01

    The most important discovery in particle physics in recent years was that of the Higgs boson, and much effort is continuing to measure its properties, which agree obstinately with the Standard Model, so far. However, there are many reasons to expect physics beyond the Standard Model, motivated by the stability of the electroweak vacuum, the existence of dark matter and the origin of the visible matter in the Universe, neutrino physics, the hierarchy of mass scales in physics, cosmological inflation and the need for a quantum theory for gravity. Most of these issues are being addressed by the experiments during Run 2 of the LHC, and supersymmetry could help resolve many of them. In addition to the prospects for the LHC, I also review briefly those for direct searches for dark matter and possible future colliders.

  2. Modern Particle Physics Event Generation with WHIZARD

    Science.gov (United States)

    Reuter, J.; Bach, F.; Chokoufé, B.; Kilian, W.; Ohl, T.; Sekulla, M.; Weiss, C.

    2015-05-01

    We describe the multi-purpose Monte-Carlo event generator WHIZARD for the simulation of high-energy particle physics experiments. Besides the presentation of the general features of the program like SM physics, BSM physics, and QCD effects, special emphasis will be given to the support of the most accurate simulation of the collider environments at hadron colliders and especially at future linear lepton colliders. On the more technical side, the very recent code refactoring towards a completely object-oriented software package to improve maintainability, flexibility and code development will be discussed. Finally, we present ongoing work and future plans regarding higher-order corrections, more general model support including the setup to search for new physics in vector boson scattering at the LHC, as well as several lines of performance improvements.

  3. Modern Particle Physics Event Generation with WHIZARD

    International Nuclear Information System (INIS)

    Reuter, J; Bach, F; Chokoufé, B; Weiss, C; Kilian, W; Sekulla, M; Ohl, T

    2015-01-01

    We describe the multi-purpose Monte-Carlo event generator WHIZARD for the simulation of high-energy particle physics experiments. Besides the presentation of the general features of the program like SM physics, BSM physics, and QCD effects, special emphasis will be given to the support of the most accurate simulation of the collider environments at hadron colliders and especially at future linear lepton colliders. On the more technical side, the very recent code refactoring towards a completely object-oriented software package to improve maintainability, flexibility and code development will be discussed. Finally, we present ongoing work and future plans regarding higher-order corrections, more general model support including the setup to search for new physics in vector boson scattering at the LHC, as well as several lines of performance improvements. (paper)

  4. Advanced analysis methods in particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Pushpalatha C.; /Fermilab

    2010-10-01

    Each generation of high energy physics experiments is grander in scale than the previous - more powerful, more complex and more demanding in terms of data handling and analysis. The spectacular performance of the Tevatron and the beginning of operations of the Large Hadron Collider, have placed us at the threshold of a new era in particle physics. The discovery of the Higgs boson or another agent of electroweak symmetry breaking and evidence of new physics may be just around the corner. The greatest challenge in these pursuits is to extract the extremely rare signals, if any, from huge backgrounds arising from known physics processes. The use of advanced analysis techniques is crucial in achieving this goal. In this review, I discuss the concepts of optimal analysis, some important advanced analysis methods and a few examples. The judicious use of these advanced methods should enable new discoveries and produce results with better precision, robustness and clarity.

  5. Elementary particle physics with atoms

    International Nuclear Information System (INIS)

    Wieman, C.E.

    1993-01-01

    One of the unique aspects of atomic physics is the capacity to make measurements with extraordinarily high precision. In suitably chosen systems, precision measurements can reveal information about fundamental interactions in nature that is not available from other sources. Although elementary particle physics is often perceived as synonymous with open-quotes high energyclose quotes and open-quotes high cost,close quotes atomic physics has played, and can continue to play, a significant role in this area. A few illustrative examples of this include (1) the measurement of the Lamb shift in hydrogen and its, influence on the modern development of quantum field theory, (2) the severe limits placed on possible time reversal violating interactions by atomic (and neutron) searches for electric dipole moments, and (3) the measurement (and closely related atomic theory) of parity, nonconservation in atoms. This latter work has provides a precise confirmation of the Standard Model of the weak, electromagnetic, and strong interactions, and is a uniquely sensitive test for the validity of a variety of alternative models that have been put forth. I will also discuss some of the joys and frustrations of doggedly pursuing the open-quotes ultimateclose quotes measurement of ridiculously tiny effects

  6. Semiconductor detectors in nuclear and particle physics

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.

    1992-01-01

    Semiconductor detectors for elementary particle physics and nuclear physics in the energy range above 1 GeV are briefly reviewed. In these two fields semiconductor detectors are used mainly for the precise position sensing. In a typical experiment, the position of a fast charged particle crossing a relatively thin semiconductor detector is measured. The position resolution achievable by semiconductor detectors is compared with the resolution achievable by gas filled position sensing detectors. Semiconductor detectors are divided into two groups: Classical semiconductor diode detectors and semiconductor memory detectors. Principles of the signal formation and the signal read-out for both groups of detectors are described. New developments of silicon detectors of both groups are reported

  7. Particle physics and cosmology, Task C

    International Nuclear Information System (INIS)

    Turner, M.S.

    1993-05-01

    The research has spanned many topics at the boundary of particle physics and cosmology. The major focus has been in the general areas of inflationary cosmology, cosmological phase transitions, astrophysical constraints to particle physics theories, and dark matter/structure formation as it relates to particle physics. Some attention is given to axion physics. Narrative summaries of the research of the individual group members are given, followed by a list of publications

  8. Information retrieval in particle physics

    International Nuclear Information System (INIS)

    Oyanagi, Yoshio

    1983-01-01

    Various information retrieval systems for elementary particle physics are introduced. Scientific information has been distributed in the form of books, periodicals or preprints. Some periodicals include the abstracts of information only. Recently, computer systems, by which the information retrieval can be easily done, have been developed. The construction of networks connecting various computer systems is in progress. It is possible to call the data base of Rutherford Laboratory from a telephone terminal of Laurence Berkeley Laboratory. The access to the Network by British Science Research Council can be made from DESY or CERN. The examples of on-line information retrieval in Japan are presented. Some of the periodicals of secondary information and data books are also introduced. (Kato, T.)

  9. The dialogue between particle physics and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Sadoulet, B.

    1988-04-01

    In the last decade, a very close relationship has developed between particle physics and cosmology. The purpose of these lectures is to introduce particle physicists to the many scientific connections between the two fields. Before entering into the discussion of specific topics, it will first be shown that particle physics and cosmology are completely interdependent. 173 refs., 35 figs., 5 tabs.

  10. The dialogue between particle physics and cosmology

    International Nuclear Information System (INIS)

    Sadoulet, B.

    1988-04-01

    In the last decade, a very close relationship has developed between particle physics and cosmology. The purpose of these lectures is to introduce particle physicists to the many scientific connections between the two fields. Before entering into the discussion of specific topics, it will first be shown that particle physics and cosmology are completely interdependent. 173 refs., 35 figs., 5 tabs

  11. The Particle Physics Data Grid. Final Report

    International Nuclear Information System (INIS)

    Livny, Miron

    2002-01-01

    The main objective of the Particle Physics Data Grid (PPDG) project has been to implement and evaluate distributed (Grid-enabled) data access and management technology for current and future particle and nuclear physics experiments. The specific goals of PPDG have been to design, implement, and deploy a Grid-based software infrastructure capable of supporting the data generation, processing and analysis needs common to the physics experiments represented by the participants, and to adapt experiment-specific software to operate in the Grid environment and to exploit this infrastructure. To accomplish these goals, the PPDG focused on the implementation and deployment of several critical services: reliable and efficient file replication service, high-speed data transfer services, multisite file caching and staging service, and reliable and recoverable job management services. The focus of the activity was the job management services and the interplay between these services and distributed data access in a Grid environment. Software was developed to study the interaction between HENP applications and distributed data storage fabric. One key conclusion was the need for a reliable and recoverable tool for managing large collections of interdependent jobs. An attached document provides an overview of the current status of the Directed Acyclic Graph Manager (DAGMan) with its main features and capabilities

  12. Physics through the 1990s: Elementary-particle physics

    Science.gov (United States)

    1986-01-01

    The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the field is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.

  13. Physics through the 1990s: Elementary-particle physics

    Science.gov (United States)

    The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the field is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.

  14. Experimental techniques in nuclear and particle physics

    International Nuclear Information System (INIS)

    Tavernier, Stefaan

    2010-01-01

    The book is based on a course in nuclear and particle physics that the author has taught over many years to physics students, students in nuclear engineering and students in biomedical engineering. It provides the basic understanding that any student or researcher using such instruments and techniques should have about the subject. After an introduction to the structure of matter at the subatomic scale, it covers the experimental aspects of nuclear and particle physics. Ideally complementing a theoretically-oriented textbook on nuclear physics and/or particle physics, it introduces the reader to the different techniques used in nuclear and particle physics to accelerate particles and to measurement techniques (detectors) in nuclear and particle physics. The main subjects treated are: interactions of subatomic particles in matter; particle accelerators; basics of different types of detectors; and nuclear electronics. The book will be of interest to undergraduates, graduates and researchers in both particle and nuclear physics. For the physicists it is a good introduction to all experimental aspects of nuclear and particle physics. Nuclear engineers will appreciate the nuclear measurement techniques, while biomedical engineers can learn about measuring ionising radiation, the use of accelerators for radiotherapy. What's more, worked examples, end-of-chapter exercises, and appendices with key constants, properties and relationships supplement the textual material. (orig.)

  15. Annual report of the Particle Physics Committee

    International Nuclear Information System (INIS)

    1977-01-01

    The Annual Report for the period 1 August 1975 to 31 July 1976 of the Particle Physics Committee of the Nuclear Physics Board, under the (United Kingdom) Science Research Council, is presented. Details are given of particle physics grants and laboratory agreements. (U.K.)

  16. Research in particle physics. [Dept. of Physics, Boston Univ

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, Scott J.

    1992-09-01

    Research accomplishments and current activities of Boston University researchers in high energy physics are presented. Principal areas of activity include the following: detectors for studies of electron[endash]positron annihilation in colliding beams; advanced accelerator component design, including the superconducting beam inflector, electrostatic quadrupoles, and the electrostatic muon kicker''; the detector for the MACRO (Monopole, Astrophysics, and Cosmic Ray Observatory) experiment; neutrino astrophysics and the search for proton decay; theoretical particle physics (electroweak and flavor symmetry breaking, hadron collider phenomenology, cosmology and astrophysics, new field-theoretic models, nonperturbative investigations of quantum field theories, electroweak interactions); measurement of the anomalous magnetic moment of the muon; calorimetry for the GEM experiment; and muon detectors for the GEM experiment at the Superconducting Super Collider.

  17. [Emulsion spectrometer experiment for B and C particles

    International Nuclear Information System (INIS)

    1981-01-01

    An experiment is proposed which employs a hybrid emulsion spectrometer to measure lifetimes and decay properties of beauty particles and charmed particles produced by interactions of high energy hadrons. The key to the experiment is a position-sensitive silicon detector. The physics motivation of the experiment and the design of the experimental apparatus and treatment of data are discussed

  18. (Medium energy particle physics): Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Nefkens, B.M.K.

    1985-10-01

    Investigations currently carried out by the UCLA Particle Physics Research Group can be arranged into four programs: Pion-Nucleon Scattering; Tests of Charge Symmetry and Isospin Invariance; Light Nuclei (Strong Form Factors of /sup 3/H, /sup 3/He, /sup 4/He; Detailed Balance in pd /r reversible/ /gamma//sup 3/H; Interaction Dynamics); and Search for the Rare Decay /Mu//sup +/ /yields/ e/sup +/ + /gamma/ (MEGA). The general considerations which led to the choice of physics problems investigated by our group are given in the next section. We also outline the scope of the research being done which includes over a dozen experiments. The main body of this report details the research carried out in the past year, the status of various experiments, and new projects.

  19. Introduction to particle and astroparticle physics questions to the Universe

    CERN Document Server

    De Angelis, Alessandro

    2015-01-01

    This book, written by researchers who had been professionals in accelerator physics before becoming leaders of groups in astroparticle physics, introduces both fields in a balanced and elementary way, requiring only a basic knowledge of quantum mechanics on the part of the reader. The early history of particle physics cannot be distinguished from the history of cosmic rays. With the advent of accelerators, however, the importance of cosmic rays in particle physics was lost. This situation persisted until the 1990s, when novel techniques allowed breakthrough discoveries, and exploration of new physics scales now requires returning to cosmic rays. The new profile of scientists in fundamental physics ideally involves the merging of knowledge in astroparticle and particle physics, but the duration of modern experiments is such that people cannot simultaneously be practitioners in both. Introduction to Particle and Astroparticle Physics is designed to bridge the gap between the fields. It can be used...

  20. PARTICLE PHYSICS: CERN Collider Glimpses Supersymmetry--Maybe.

    Science.gov (United States)

    Seife, C

    2000-07-14

    Last week, particle physicists at the CERN laboratory in Switzerland announced that by smashing together matter and antimatter in four experiments, they detected an unexpected effect in the sprays of particles that ensued. The anomaly is subtle, and physicists caution that it might still be a statistical fluke. If confirmed, however, it could mark the long-sought discovery of a whole zoo of new particles--and the end of a long-standing model of particle physics.

  1. 50 years of experience in making grey literature available: matching the expectations of the particle physics community

    CERN Document Server

    O'Dell, Carmen; Vigen, Jens; Vesely, Martin; 5th Conference on Grey Literature

    2004-01-01

    The CERN Scientific Information Service has been active in the field of digital library research and in providing scientific information services to the high-energy physics community for almost five decades now. Most recently the research focus has been on interoperability issues in document storage and retrieval systems, metadata added-value services, digital library automation and networked information services. The achievements of this research and the implications for treating grey literature are presented, including practical implementation examples.

  2. Matter and Interactions: a particle physics perspective

    OpenAIRE

    Organtini, Giovanni

    2011-01-01

    In classical mechanics matter and fields are completely separated. Matter interacts with fields. For particle physicists this is not the case. Both matter and fields are represented by particles. Fundamental interactions are mediated by particles exchanged between matter particles. In this paper we explain why particle physicists believe in such a picture, introducing the technique of Feynman diagrams starting from very basic and popular analogies with classical mechanics, making the physics ...

  3. Track calorimeter (TCAL) of alpha magnetic spectrometer (AMS) (a particle physics experiment on the international space station alpha)

    International Nuclear Information System (INIS)

    Anosov, V.; Baranov, S.; Bednyakov, V.

    1999-01-01

    Based on the simulation and R and D results the JINR project - to supplement AMS with a finely granulated scintillator calorimeter (TCAL) - is discussed. The project cost is about 1 million USD. TCAL would essentially increase the AMS potential in the studies of antimatter, matter and missing matter in the experiments in outer space

  4. The experimental foundations of particle physics

    International Nuclear Information System (INIS)

    Cahn, R.N.; Goldhaber, G.

    1987-01-01

    This book describes the development of modern particle physics, emphasizing the role and significance of crucial experiments. This description is supported by a selection of reprints of notable experimental papers. Beginning at the turn of the century with the discovery of radioactivity, x-rays, and the Thomson model of the atom, the authors take the reader through the great developments of the twentieth century, culminating in a description of the electroweak theory and the discovery of the W and Z vector bosons. The bulk of this book is written in non-technical language, although more technical passages are included and extensive references to review articles and books are given

  5. Studies in theoretical particle physics

    International Nuclear Information System (INIS)

    Kaplan, D.B.

    1991-01-01

    This proposal focuses on research on three distinct areas of particle physics: (1) Nonperturbative QCD. I tend to continue work on analytic modelling of nonperturbative effects in the strong interactions. I have been investigating the theoretical connection between the nonrelativistic quark model and QCD. The primary motivation has been to understand the experimental observation of nonzero matrix elements involving current strange quarks in ordinary matter -- which in the quark model has no strange quark component. This has led to my present work on understanding constituent (quark model) quarks as collective excitations of QCD degrees of freedom. (2) Weak Scale Baryogenesis. A continuation of work on baryogenesis in the early universe from weak interactions. In particular, an investigation of baryogenesis occurring during the weak phase transition through anomalous baryon violating processes in the standard model of weak interactions. (3) Flavor and Compositeness. Further investigation of a new mechanism that I recently discovered for dynamical mass generation for fermions, which naturally leads to a family hierarchy structure. A discussion of recent past work is found in the next section, followed by an outline of the proposed research. A recent publication from each of these three areas is attached to this proposal

  6. Particle physics and inflationary cosmology

    CERN Document Server

    Linde, Andrei D

    1990-01-01

    This is the LaTeX version of my book "Particle Physics and Inflationary Cosmology'' (Harwood, Chur, Switzerland, 1990). I decided to put it to hep-th, to make it easily available. Many things happened during the 15 years since the time when it was written. In particular, we have learned a lot about the high temperature behavior in the electroweak theory and about baryogenesis. A discovery of the acceleration of the universe has changed the way we are thinking about the problem of the vacuum energy: Instead of trying to explain why it is zero, we are trying to understand why it is anomalously small. Recent cosmological observations have shown that the universe is flat, or almost exactly flat, and confirmed many other predictions of inflationary theory. Many new versions of this theory have been developed, including hybrid inflation and inflationary models based on string theory. There was a substantial progress in the theory of reheating of the universe after inflation, and in the theory of eternal inflation. ...

  7. Early period of particle accelerator development and nuclear physics experiments at Taihoku Imperial University and Kyoto University (1/2)

    International Nuclear Information System (INIS)

    Takekoshi, Hidekuni

    2007-01-01

    In 1926 Dr. Arakatsu was appointed Professor to Taipei Imperial University in Taiwan which was under the government by Japan in that time, and stared the construction of an electrostatic accelerator in 1930 for nuclear transmutations. He measured the detailed branching ratio of deuteron-lithium reaction following the investigation by Lawrence and Rutherford. In 1936 he was transferred to the physics laboratory of Kyoto University, and constructed a 600kV accelerator of Cockcroft-Walton type. His team studied photo-nuclear reactions using gamma rays produced by the proton-lithium reaction. In 1942 he started on the construction of a cyclotron, which was taken away by US army after the war. He participated in the investigation of the atomic bomb to Hiroshima. (K.Y.)

  8. Cosmology, physics of particles and nuclei

    International Nuclear Information System (INIS)

    2003-01-01

    A recent trend, already noted in the previous activity report, is the cross-fertilization between cosmology and high-energy physics, with some twenty research articles at this interface in the last 2 years. Results are presented along 3 main directions. 1) Cosmology and astro-particle physics. One may quote among others: the idea that dark matter may not be as weakly interacting as previously thought; a general study of the growth of small perturbations in the context of higher-dimensional theories; a possible explanation of the smallness of the cosmological constant through violation of Lorentz invariance in the gravity sector. In the field of observational cosmology, a 3-point correlation has been detected for the first time using gravitational lensing experiments. 2) Particle physics beyond the standard model. New developments in this field are triggered by progress on both experimental and theoretical sides. The first unambiguous observation of neutrino oscillations implies that neutrinos have non-zero masses. The constraints imposed by existing data on models based on the seesaw mechanism have been studied. The 'de-construction' of supersymmetric theories, inspired by recent advances in higher-dimensional theories, leads to a parameter-free prediction for the mass of the Higgs boson. 3) Strong interactions. Experiments at Hera have triggered new studies of hadronic interactions in the regime of high parton densities, which is also the high-energy limit for QCD: the phenomenon of 'parton saturation' is expected to occur. QCD calculations have been applied to various observables: jet physics, diffractive processes at Hera and in collider experiments, and multiplicity correlations in phase space. (A.C.)

  9. Cosmology, physics of particles and nuclei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    A recent trend, already noted in the previous activity report, is the cross-fertilization between cosmology and high-energy physics, with some twenty research articles at this interface in the last 2 years. Results are presented along 3 main directions. 1) Cosmology and astro-particle physics. One may quote among others: the idea that dark matter may not be as weakly interacting as previously thought; a general study of the growth of small perturbations in the context of higher-dimensional theories; a possible explanation of the smallness of the cosmological constant through violation of Lorentz invariance in the gravity sector. In the field of observational cosmology, a 3-point correlation has been detected for the first time using gravitational lensing experiments. 2) Particle physics beyond the standard model. New developments in this field are triggered by progress on both experimental and theoretical sides. The first unambiguous observation of neutrino oscillations implies that neutrinos have non-zero masses. The constraints imposed by existing data on models based on the seesaw mechanism have been studied. The 'de-construction' of supersymmetric theories, inspired by recent advances in higher-dimensional theories, leads to a parameter-free prediction for the mass of the Higgs boson. 3) Strong interactions. Experiments at Hera have triggered new studies of hadronic interactions in the regime of high parton densities, which is also the high-energy limit for QCD: the phenomenon of 'parton saturation' is expected to occur. QCD calculations have been applied to various observables: jet physics, diffractive processes at Hera and in collider experiments, and multiplicity correlations in phase space. (A.C.)

  10. Tests of the particle physics-physical cosmology interface

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1993-01-01

    Three interrelated interfaces of particle physics and physical cosmology are discussed: (1) inflation and other phase transitions; (2) Big Bang Nucleosynthesis (and also the quark-hadron transition); and (3) structure formation (including dark matter). Recent observations that affect each of these topics are discussed. Topic number 1 is shown to be consistent with the COBE observations but not proven and it may be having problems with some age-expansion data. Topic number 2 has now been well-tested and is an established ''pillar'' of the Big Bang. Topic number 3 is the prime arena of current physical cosmological activity. Experiments to resolve the current exciting, but still ambiguous, situation following the COBE results are discussed

  11. arXiv Particle Physics Instrumentation

    CERN Document Server

    Wingerter-Seez, I.

    This reports summarizes the three lectures on particle physics instrumentation given during the AEPSHEP school in November 2014 at Puri-India. The lectures were intended to give an overview of the interaction of particles with matter and basic particle detection principles in the context of large detector systems like the Large Hadron Collider.

  12. Topics in elementary particle physics

    Science.gov (United States)

    Jin, Xiang

    The author of this thesis discusses two topics in elementary particle physics: n-ary algebras and their applications to M-theory (Part I), and functional evolution and Renormalization Group flows (Part II). In part I, Lie algebra is extended to four different n-ary algebraic structure: generalized Lie algebra, Filippov algebra, Nambu algebra and Nambu-Poisson tensor; though there are still many other n-ary algebras. A natural property of Generalized Lie algebras — the Bremner identity, is studied, and proved with a totally different method from its original version. We extend Bremner identity to n-bracket cases, where n is an arbitrary odd integer. Filippov algebras do not focus on associativity, and are defined by the Fundamental identity. We add associativity to Filippov algebras, and give examples of how to construct Filippov algebras from su(2), bosonic oscillator, Virasoro algebra. We try to include fermionic charges into the ternary Virasoro-Witt algebra, but the attempt fails because fermionic charges keep generating new charges that make the algebra not closed. We also study the Bremner identity restriction on Nambu algebras and Nambu-Poisson tensors. So far, the only example 3-algebra being used in physics is the BLG model with 3-algebra A4, describing two M2-branes interactions. Its extension with Nambu algebra, BLG-NB model, is believed to describe infinite M2-branes condensation. Also, there is another propose for M2-brane interactions, the ABJM model, which is constructed by ordinary Lie algebra. We compare the symmetry properties between them, and discuss the possible approaches to include these three models into a grand unification theory. In Part II, we give an approximate solution for Schroeder's equations, based on series and conjugation methods. We use the logistic map as an example, and demonstrate that this approximate solution converges to known analytical solutions around the fixed point, around which the approximate solution is constructed

  13. Quarked!--Adventures in Particle Physics Education

    Science.gov (United States)

    MacDonald, Teresa; Bean, Alice

    2009-01-01

    Particle physics is a subject that can send shivers down the spines of students and educators alike--with visions of long mathematical equations and inscrutable ideas. This perception, along with a full curriculum, often leaves this topic the road less traveled until the latter years of school. Particle physics, including quarks, is typically not…

  14. From particle physics to medical applications

    CERN Document Server

    Dosanjh, Manjit

    2017-01-01

    CERN is the world's largest particle physics research laboratory. Since it was established in 1954, it has made an outstanding contribution to our understanding of the fundamental particles and their interactions, and also to the technologies needed to analyse their properties and behaviour. The experimental challenges have pushed the performance of particle accelerators and detectors to the limits of our technical capabilities, and these groundbreaking technologies can also have a significant impact in applications beyond particle physics. In particular, the detectors developed for particle physics have led to improved techniques for medical imaging, while accelerator technologies lie at the heart of the irradiation methods that are widely used for treating cancer. Indeed, many important diagnostic and therapeutic techniques used by healthcare professionals are based either on basic physics principles or the technologies developed to carry out physics research. Ever since the discovery of x-rays by Roentgen...

  15. Two decades of Mexican particle physics at Fermilab

    International Nuclear Information System (INIS)

    Roy Rubinstein

    2002-01-01

    This report is a view from Fermilab of Mexican particle physics at the Laboratory since about 1980; it is not intended to be a history of Mexican particle physics: that topic is outside the expertise of the writer. The period 1980 to the present coincides with the growth of Mexican experimental particle physics from essentially no activity to its current state where Mexican groups take part in experiments at several of the world's major laboratories. Soon after becoming Fermilab director in 1979, Leon Lederman initiated a program to encourage experimental physics, especially experimental particle physics, in Latin America. At the time, Mexico had significant theoretical particle physics activity, but none in experiment. Following a visit by Lederman to UNAM in 1981, a conference ''Panamerican Symposium on Particle Physics and Technology'' was held in January 1982 at Cocoyoc, Mexico, with about 50 attendees from Europe, North America, and Latin America; these included Lederman, M. Moshinsky, J. Flores, S. Glashow, J. Bjorken, and G. Charpak. Among the conference outcomes were four subsequent similar symposia over the next decade, and a formal Fermilab program to aid Latin American physics (particularly particle physics); it also influenced a decision by Mexican physicist Clicerio Avilez to switch from theoretical to experimental particle physics. The first physics collaboration between Fermilab and Mexico was in particle theory. Post-docs Rodrigo Huerta and Jose Luis Lucio spent 1-2 years at Fermilab starting in 1981, and other theorists (including Augusto Garcia, Arnulfo Zepeda, Matias Moreno and Miguel Angel Perez) also spent time at the Laboratory in the 1980s

  16. Wanted: Moderators for International Masterclasses in Particle Physics

    CERN Multimedia

    2015-01-01

    The International Masterclasses in Particle Physics give high school students from around the world the opportunity to become particle physicists for a day. CERN physicists are invited to participate in next year’s Masterclass programme, to be held from 11 February to 23 March 2016.   The International Masterclasses in Particle Physics conclude with a video conference, where students from different countries connect with moderators at CERN to discuss their results.   During a Masterclass, high-school students work with recent data from the LHC experiments under the supervision of physicists. For example, students can rediscover the Z boson or the structure of the proton, reconstruct strange particles or measure the lifetime of the D0 particle. “Students get a taste of how modern physics research works by working directly with particle physicists and using real LHC data,” says Uta Bilow from TU Dresden, coordinator of the International Mas...

  17. Astro particle physics view on supersymmetry

    International Nuclear Information System (INIS)

    Fornengo, N.

    2010-01-01

    The particle physics interpretation of the missing-mass, or dark-matter, problem of cosmological and astrophysical nature is going to be posed under deep scrutiny in the next years. From the particle physics side, accelerator physics will deeply test theoretical ideas of new physics beyond the Standard Model, where a particle physics candidate to dark matter is often naturally obtained. From the astrophysical side, many probes are already providing a great deal of independent information on the signals which can be produced by the galactic or extra-galactic dark matter. The ultimate hope is in fact to be able to disentangle a dark matter signal from the various sources of backgrounds and to extract a coherent picture of new physics from the accelerator physics, astrophysics and cosmology side. A very ambitious and far-reaching project, indeed.

  18. Research in elementary particle physics

    International Nuclear Information System (INIS)

    Chan, Lai-Him; Haymaker, R.; Imlay, R.; McNeil, R.; Metcalf, W.; Svoboda, R.

    1993-01-01

    Theoretical work on effective action expansion, low-energy models of hadrons and lattice gauge theories is reported. The progress on the electron-proton experiment ZEUS in Germany, LSND neutrino experiment at LAMPF, the Dumand experiment in Hawaii, and the Super Kamiokande experiment in Japan is described. Results from IMB are described

  19. Electroweak properties of particle physics. Volume 2

    International Nuclear Information System (INIS)

    Aleksan, R.; Ellis, N.; Falvard, A.; Fayard, L.; Frere, J.M.; Kuehn, J.H.; Le Yaouanc, A.; Roudeau, P.; Wormser, G.

    1991-01-01

    The 23th GIf school was held at Ecole Polytechnique, Palaiseau, France from 16 to 20 September 1991. The subject was large: Electroweak properties of heavy quarks. The second part has been devoted to B physics at hadron machines, search for Top, Charm particle physics and Quarkonium physics

  20. Hot spots in nuclear and particle physics

    International Nuclear Information System (INIS)

    Stelte, N.

    1981-01-01

    The aim of the present thesis was the study of the phenomenon of the pre-equilibrium process in nuclear and particle physics in the framework of the HS picture. From the comparison of the HS model with inclusive experiments of nuclear physics it could be concluded, that HS's can have an important portion of the pre-equilibrium spectrum. In reactions of hadrons and lighter nuclei with heavy target nuclei the dependence of the HS-induced spectrum from the target mass, the detector angle, the kinetic energy, and as far as data were available, from the kind of the emitted particle as function of the drift parameter, the maximal temperature, and the velocity could be indicated. For forward angles a qualitative to quantitative agreement with the studied data could by shown. For backward angles a quantitative agreement resulted which suggests the conclusion that this angular range is determined by the HS effect even about three orders of magnitude of the incident energy. (orig./HSI) [de

  1. Interfaces between particle physics and cosmology

    International Nuclear Information System (INIS)

    Riazuddin

    1984-01-01

    Among the physicists' attempts to understand the fundamental structure of matter have been the attempts to: (i) find the ultimate constituents of matter; and (ii) to attain a unification of the forces responsible for the interactions among them. Recent progress in these attempts has led to energy scales which can not conceivably be attained in laboratory experiments, but which would not only be present, but would play an important role in the earliest stages of the big bang model of the Universe. We are talking here of an energy scale E about 10 15 GeV, the corresponding temperature, T, being about 10 28 K relevant to times t about 10 -35 sec. after the big bang. Also, many of the ideas of contemporary particle physics lead to dramatic consequences when applied to the very early universe. It is such interfaces between particle physics and cosmology which are reviewed in this lecture. I shall discuss three such interfaces: (i) the generation of the baryon number of the Universe; (ii) a limit on the number of kinds of neutrinos and therefore on the number of quarklepton generations (if we believe in quark-lepton symmetry); and (iii) the neutrino mass

  2. Converting the Literature of a Scientific Field to Open Access through Global Collaboration: The Experience of SCOAP3 in Particle Physics

    Directory of Open Access Journals (Sweden)

    Alexander Kohls

    2018-04-01

    Full Text Available Gigantic particle accelerators, incredibly complex detectors, an antimatter factory and the discovery of the Higgs boson—this is part of what makes CERN famous. Only a few know that CERN also hosts the world largest Open Access initiative: SCOAP3. The Sponsoring Consortium for Open Access Publishing in Particle Physics started operation in 2014 and has since supported the publication of 20,000 Open Access articles in the field of particle physics, at no direct cost, nor burden, for individual authors worldwide. SCOAP3 is made possible by a 3000-institute strong partnership, where libraries re-direct funds previously used for subscriptions to ‘flip’ articles to ‘Gold Open Access’. With its recent expansion, the initiative now covers about 90% of the journal literature of the field. This article describes the economic principles of SCOAP3, the collaborative approach of the partnership, and finally summarizes financial results after four years of successful operation.

  3. From Particle Physics to Medical Applications

    Science.gov (United States)

    Dosanjh, Manjit

    2017-06-01

    CERN is the world's largest particle physics research laboratory. Since it was established in 1954, it has made an outstanding contribution to our understanding of the fundamental particles and their interactions, and also to the technologies needed to analyse their properties and behaviour. The experimental challenges have pushed the performance of particle accelerators and detectors to the limits of our technical capabilities, and these groundbreaking technologies can also have a significant impact in applications beyond particle physics. In particular, the detectors developed for particle physics have led to improved techniques for medical imaging, while accelerator technologies lie at the heart of the irradiation methods that are widely used for treating cancer. Indeed, many important diagnostic and therapeutic techniques used by healthcare professionals are based either on basic physics principles or the technologies developed to carry out physics research. Ever since the discovery of x-rays by Roentgen in 1895, physics has been instrumental in the development of technologies in the biomedical domain, including the use of ionizing radiation for medical imaging and therapy. Some key examples that are explored in detail in this book include scanners based on positron emission tomography, as well as radiation therapy for cancer treatment. Even the collaborative model of particle physics is proving to be effective in catalysing multidisciplinary research for medical applications, ensuring that pioneering physics research is exploited for the benefit of all.

  4. Meetings on Particle Physics - Abstracts and Slides

    International Nuclear Information System (INIS)

    Hirsch, M.; Machado, P.; Bertuzzo, E.; Villanova del Moral, A.; Wingerter, A.; Lellouch, L.; Garron, N.; Portelli, A.; Vulvert, G.; Zerwas, D.; Djouadi, A.; Drieu la Rochelle, G.; Fairbairn, M.; Le Boulc'h, Q.; Dumont, B.; Da Silva, J.; Brax, P.; Weiland, C.; Gelis, F.; Mehtar-Tani, Y.; Epelbaum, T.; Meunier, E.; Dudas, E.; Jezo, T.; Urbano, A.; Smith, C.; Machet, B.; Nezri, E.; Salam, G.; Kosnik, N.; Greynat, D.; Petrov, K.

    2014-01-01

    RPP (Meetings on Particle Physics) annual meetings are aimed at gathering the theoretical particle physicists' community, providing the participants with the opportunity not only to present their research topics, but also to make contact with the latest developments in adjacent fields. RPP-2012 will have a few review talks on topics such as flavors, Higgs bosons, astro-particle physics and cosmology, heavy ions, physics beyond the standard model, and quantum chromodynamics. This document gathers the slides of the presentations, a few presentations are accompanied by an abstract.

  5. Physics-Based Simulation and Experiment on Blast Protection of Infill Walls and Sandwich Composites Using New Generation of Nano Particle Reinforced Materials

    Science.gov (United States)

    Irshidat, Mohammad

    A critical issue for the development of nanotechnology is our ability to understand, model, and simulate the behavior of small structures and to make the connection between nano structure properties and their macroscopic functions. Material modeling and simulation helps to understand the process, to set the objectives that could guide laboratory efforts, and to control material structures, properties, and processes at physical implementation. These capabilities are vital to engineering design at the component and systems level. In this research, experimental-computational-analytical program was employed to investigate the performance of the new generation of polymeric nano-composite materials, like nano-particle reinforced elastomeric materials (NPREM), for the protection of masonry structures against blast loads. New design tools for using these kinds of materials to protect Infill Walls (e.g. masonry walls) against blast loading were established. These tools were also extended to cover other type of panels like sandwich composites. This investigation revealed that polymeric nano composite materials are strain rate sensitive and have large amount of voids distributed randomly inside the materials. Results from blast experiments showed increase in ultimate flexural resistance achieved by both unreinforced and nano reinforced polyurea retrofit systems applied to infill masonry walls. It was also observed that a thin elastomeric coating on the interior face of the walls could be effective at minimizing the fragmentation resulting from blast. More conclusions are provided with recommended future research.

  6. [Elementary particle physics. Annual report

    International Nuclear Information System (INIS)

    Izen, J.M.; Lou, X.

    1998-01-01

    The BABAR construction phase is ending and first data is expected during May, 1999. During construction, UTD has developed analysis framework software, contributed to the BABAR Physics Book, assembled a first rate computing facility, and pioneered Internet-based video techniques for the collaboration. The authors are now defining the physics goals, and are participating in the formation physics analysis groups. They are starting to use their computing facility for BABAR production jobs

  7. Exotic smoothness and particle physics

    International Nuclear Information System (INIS)

    Sladkowski, J.

    1996-01-01

    Short introduction to exotic differential structures on manifolds is given. The possible physical context of this mathematical curiosity is discussed. The topic is very interesting although speculative. (author)

  8. Space experiments with particle accelerators: SEPAC

    International Nuclear Information System (INIS)

    Obayashi, T.

    1978-01-01

    In this paper, the program of the space experiments with particle accelerators (SEPAC) is described. The SEPAC is to be prepared for the Space Shuttle/First Spacelab Mission. It is planned in the SEPAC to carry out the active and interactive experiments on and in the Earth's ionosphere and magnetosphere. It is also intended to make an initial performance test for the overall program of Spacelab/SEPAC experiments. The instruments to be used are electron beam accelerators, MPD arcjects, and associated diagnostic equipments. The main scientific objectives of the experiments are Vehicle Charge Neutralization, Beam Plasma Physics, and Beam Atmosphere Interactions. The SEPAC system consists of the following subsystems. Those are accelerators, monitoring and diagnostic equipments, and control and data management equipments. The SEPAC functional objectives for experiment operations are SEPAC system checkout, EBA firing test, MPD firing test, electron beam experiments, plasma beam propagation, artificial aurora excitation, equatorial aerochemistry, electron echo experiment, E parallel B experiment, passive experiments, SEPAC system deactivation, and battery charging. Most experiment procedures are carried out by the pre-set computer program. (Kato, T.)

  9. Frontiers of particle beam physics

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1989-11-01

    First, a review is given of various highly-developed techniques for particle handling which are, nevertheless, being vigorously advanced at the present time. These include soft superconductor radio frequency cavities, hard superconductor magnets, cooling rings for ions and anti-protons, and damping rings for electrons. Second, attention is focused upon novel devices for particle generation, acceleration, and focusing. These include relativistic klystrons and free electron laser power sources, binary power multipliers, photocathodes, switched-power linacs, plasma beat-wave accelerators, plasma wake-field accelerators, plasma lenses, plasma adiabatic focusers and plasma compensators. 12 refs

  10. Industrial impact of particle physics

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Papers represented at the conference in Bristol devoted to the interrelation of high-energy physics and industry are reviewed in short. Most of speakers confirmed that technologies developd for high-energy physics and mastered with companies are quickly widely adopted industry and other areas of science and technology

  11. Particle physics prospects: August '81

    International Nuclear Information System (INIS)

    Okun, L.B.

    1981-01-01

    The author gives a review about symmetry breaking induced by scalar bosons. In this connection he discusses the electroweak symmetry breaking due to the Higgs mechanism, the CP-violation, and technicolor. Finally, he considers the connection between these particles and supersymmetry. (HSI)

  12. Review of Particle Physics, 2014-2015

    CERN Document Server

    Olive, K A; Amsler, C; Antonelli, M; Arguin, J-F; Asner, D M; Baer, H; Band, H R; Barnett, R M; Basaglia, T; Bauer, C W; Beatty, J J; Belousov, V I; Beringer, J; Bernardi, G; Bethke, S; Bichsel, H; Biebel, O; Blucher, E; Blusk, S; Brooijmans, G; Buchmueller, O; Burkert, V; Bychkov, M A; Cahn, R N; Carena, M; Ceccucci, A; Cerri, A; Chakraborty, D; Chen, M-C; Chivukula, R S; Copic, K; Cowan, G; Dahl, O; D'Ambrosio, G; Damour, T; de Florian, D; de Gouvea, A; DeGrand, T; de Jong, P; Dissertori, G; Dobrescu, B A; Doser, M; Drees, M; Dreiner, H K; Edwards, D A; Eidelman, S; Erler, J; Ezhela, V V; Fetscher, W; Fields, B D; Foster, B; Freitas, A; Gaisser, T K; Gallagher, H; Garren, L; Gerber, H-J; Gerbier, G; Gershon, T; Gherghetta, T; Golwala, S; Goodman, M; Grab, C; Gritsan, A V; Grojen, C; Groom, D E; Grunewald, M; Gurtu, A; Gutsche, T; Haber, H E; Hagiwara, K; Hanhart, C; Hashimoto, S; Hayato, Y; Hayes, K G; Heffner, M; Heltsley, B; Hernandez-Rey, J J; Hikasa, K; Hocker, A; Holder, J; Holtkamp, A; Huston, J; Jackson, J D; Johnson, K F; Junk, T; Kado, M; Karlen, D; Katz, U F; Klein, S R; Klempt, E; Kowalewski, R V; Krauss, F; Kreps, M; Krusche, B; Kuyanov, Yu V; Kwon, Y; Lahav, O; Laiho, J; Langacker, P; Liddle, A; Ligeti, Z; Lin, C-J; Liss, T M; Littenberg, L; Lugovsky, K S; Lugovsky, S B; Maltoni, F; Mannel, T; Manohar, A V; Marciano, W J; Martin, A D; Masoni, A; Matthews, J; Milstead, D; Molaro, P; Munig, K; Moortgat, F; Mortonson, M J; Murayama, H; Nakamura, K; Narain, M; Nason, P; Navas, S; Neubert, M; Nevski, P; Nir, Y; Pape, L; Parsons, J; Patrignani, C; Peacock, J A; Pennington, M; Petcov, S T; Piepke, A; Pomarol, A; Quadt, A; Raby, S; Rademacker, J; Raffelt, G; Ratcliff, B N; Richardson, P; Ringwald, A; Roesler, S; Rolli, S; Romaniouk, A; Rosenberg, L J; Rosner, J L; Rybka, G; Sachrajda, C T; Sakai, Y; Salam, G P; Sarkar, S; Sauli, F; Schneider, O; Scholberg, K; Scott, D; Sharma, V; Sharpe, S R; Silari, M; Sjostrand, T; Skands, P; Smith, J G; Smoot, G F; Spanier, S; Spieler, H; Spiering, C; Stahl, A; Stanev, T; Stone, S L; Sumiyoshi, T; Syphers, M J; Takahashi, F; Tanabashi, M; Terning, J; Tiator, L; Titov, M; Tkachenko, N P; Tornqvist, N A; Tovey, D; Valencia, G; Venanzoni, G; Vincter, M G; Vogel, P; Vogt, A; Wakely, S P; Walkowiak, W; Walter, C W; Ward, D R; Weiglein, G; Weinberg, D H; Weinberg, E J; White, M; Wiencke, L R; Wohl, C G; Wolfenstein, L; Womersley, J; Woody, C L; Workman, R L; Yamamoto, A; Yao, W-M; Zeller, G P; Zenin, O V; Zhang, J; Zhu, R-Y; Zimmermann, F; Zyla, P A; Harper, G; Lugovsky, V.S; Schaffner, P

    2014-01-01

    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,283 new measurements from 899 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as heavy neutrinos, supersymmetric and technicolor particles, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Supersymmetry, Extra Dimensions, Particle Detectors, Probability, and Statistics. Among the 112 reviews are many that are new or heavily revised including those on: Dark Energy, Higgs Boson Physics, Electroweak Model, Neutrino Cross Section Measurements, Monte Carlo Neutrino Generators, Top Quark, Dark Matter, Dynamical Electroweak Symmetry Breaking, Accelerator Physics of Colliders, High-Energy Collider Parameters, Big Bang Nucleosyn...

  13. Particle Physics Aspects of Antihydrogen Studies with ALPHA at CERN

    CERN Document Server

    Fujiwara, M.C.; Bertsche, W.; Bowe, P.D.; Bray, C.C.; Butler, E.; Cesar, C.L.; Chapman, S.; Charlton, M.; Fajans, J.; Funakoshi, R.; Gill, D.R.; Hangst, J.S.; Hardy, W.N.; Hayano, R.S.; Hayden, M.E.; Humphries, A.J.; Hydomako, R.; Jenkins, M.J.; Jorgensen, L.V.; Kurchaninov, L.; Lai, W.; Lambo, R.; Madsen, N.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Seif El Nasr, S.; Silveira, D.M.; Storey, J.W.; Thompson, R.I.; van der Werf, D.P.; Wasilenko, L.; Wurtele, J.S.; Yamazaki, Y.

    2008-01-01

    We discuss aspects of antihydrogen studies, that relate to particle physics ideas and techniques, within the context of the ALPHA experiment at CERN's Antiproton Decelerator facility. We review the fundamental physics motivations for antihydrogen studies, and their potential physics reach. We argue that initial spectroscopy measurements, once antihydrogen is trapped, could provide competitive tests of CPT, possibly probing physics at the Planck Scale. We discuss some of the particle detection techniques used in ALPHA. Preliminary results from commissioning studies of a partial system of the ALPHA Si vertex detector are presented, the results of which highlight the power of annihilation vertex detection capability in antihydrogen studies.

  14. Hopf algebra structures in particle physics

    International Nuclear Information System (INIS)

    Weinzierl, Stefan

    2004-01-01

    In the recent years, Hopf algebras have been introduced to describe certain combinatorial properties of quantum field theories. I give a basic introduction to these algebras and review some occurrences in particle physics. (orig.)

  15. REDUCE in elementary particle physics. Quantum electrodynamics

    International Nuclear Information System (INIS)

    Grozin, A.G.

    1990-01-01

    This preprint is the second part of the problem book on using REDUCE for calculations of cross sections and decay probabilities in elementary particle physics. It contains examples of calculations in quantum electrodynamics. 5 refs

  16. Future directions in nuclear and particle physics

    International Nuclear Information System (INIS)

    Vogt, E.

    1988-09-01

    With the advent of the standard model of quarks, leptons and unified forces one has achieved an understanding of the wealth of data in particle physics and provided a new basis for the understanding of nuclei and hadrons. In particle physics one now seeks to improve the standard model and to go beyond it. In nuclear physics one enquires about the role of quarks and gluons in the dynamics of strongly interacting systems. To answer these new questions an impressive network of large accelerator facilities, including CEBAF, is under construction or in the proposal stage. A global view of this network and its physics is given. (Author) (3 figs.)

  17. Space charge physics for particle accelerators

    CERN Document Server

    Hofmann, Ingo

    2017-01-01

    Understanding and controlling the physics of space charge effects in linear and circular proton and ion accelerators are essential to their operation, and to future high-intensity facilities. This book presents the status quo of this field from a theoretical perspective, compares analytical approaches with multi-particle computer simulations and – where available – with experiments. It discusses fundamental concepts of phase space motion, matched beams and modes of perturbation, along with mathematical models of analysis – from envelope to Vlasov-Poisson equations. The main emphasis is on providing a systematic description of incoherent and coherent resonance phenomena; parametric instabilities and sum modes; mismatch and halo; error driven resonances; and emittance exchange due to anisotropy, as well as the role of Landau damping. Their distinctive features are elaborated in the context of numerous sample simulations, and their potential impacts on beam quality degradation and beam loss are discussed....

  18. Research in elementary particle physics

    International Nuclear Information System (INIS)

    Kirsch, L.E.; Schnitzer, H.J.; Bensinger, J.R.; Blocker, C.A.

    1992-01-01

    This report discusses research in the following areas of high energy physics: B meson mixing; CDF response to low energy jets; jet scaling behavior; search for pair produced leptoquarks at CDF; SSC program; quantum field theory; and neural networks. (LSP)

  19. Medium energy elementary particle physics

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses the following topics: muon beam development at LAMPF; muon physics; a new precision measurement of the muon g-2 value; measurement of the spin-dependent structure functions of the neutron and proton; and meson factories

  20. Research program in particle physics

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Dicus, D.A.; Ritchie, J.L.; Lang, K.

    1992-07-01

    This report discusses the following topics: Quantum Gravity and Mathematical Physics; Phenomenology; Quantum Mechanics and Quantum Field Theory; Status of BNL Expt. 791; BNL Expt. 791; BNL Expt. 888; and SSC Activities

  1. An introductory course of particle physics

    CERN Document Server

    Pal, Palash B

    2014-01-01

    For graduate students unfamiliar with particle physics, this text teaches the basic techniques and fundamental theories related to the subject. It gives them the competence to work out various properties of fundamental particles, such as scattering cross-section and lifetime. The book also gives a lucid summary of the main ideas involved. Figure slides are available upon qualifying course adoption.

  2. Introduction to the elementary particle physics

    International Nuclear Information System (INIS)

    Shellard, R.C.

    1982-03-01

    An introduction is given to the subject of elementary particle physics. Several particle properties are discussed and some models are shown. This introduction covers the theoretical as well as the experimental aspects including a topic on detectors. (L.C.) [pt

  3. Nuclear physics with strange particles

    International Nuclear Information System (INIS)

    Dover, C.B.

    1988-01-01

    Recent progress in the understanding of strange particle interactions with nuclear systems is reviewed. We discuss the relative merits of various reactions such as (K - , π/sup +-/), (π + , K + ), or (γ, K + ) for hypernuclear production. The structure of /sub Λ/ 13 C is analyzed in some detail, in order to illustrate the role of the ΛN residual interaction and approximate dynamical symmetries in hypernuclear structure. Recent results on the single particle states of a Λ in heavy systems, as revealed by (π + , K + ) reaction studies, are used to extract information on the density dependence and effective mass which characterize the Λ-nucleus mean field. Finally, we develop the idea the K + -nucleus scattering at low energies is sensitive to the subtle ''swelling'' effects for nucleons bound in nuclei. 64 refs., 13 figs

  4. The 2nd International Conference on Particle Physics and Astrophysics

    CERN Document Server

    Soldatov, Evgeny; ICPPA 2016

    2016-01-01

    The 2nd International Conference on Particle Physics and Astrophysics (ICPPA-2016) will be held in Moscow, Russia, (from the 10th to 14th of October). The conference is organized by the National Research Nuclear University “MEPhI”. The aim of the Conference is to promote contacts between scientists and to develop new ideas in fundamental research. Therefore we will bring together experts and young scientists working in experimental and theoretical aspects of nuclear physics, particle physics (including astroparticle physics), and cosmology. ICPPA-2016 aims to present the most recent results in astrophysics and collider physics from the main experiments actively taking data as well as any upgrades for the methods of experimental particle physics. Furthermore, one special workshop will be held within the framework of this conference: «SiPM development and application». The working language of the conference is English

  5. "Strong interaction" for particle physics laboratories

    CERN Multimedia

    2003-01-01

    A new Web site pooling the communications resources of particle physics centres all over the world has just been launched. The official launching of the new particle physics website Interactions.org during the Lepton-Proton 2003 Conference at the American laboratory Fermilab was accompanied by music and a flurry of balloons. On the initiative of Fermilab, the site was created by a collaboration of communication teams from over fifteen of the world's particle physics laboratories, including KEK, SLAC, INFN, JINR and, of course, CERN, who pooled their efforts to develop the new tool. The spectacular launching of the new particle physics website Interactions.org at Fermilab on 12 August 2003. A real gateway to particle physics, the site not only contains all the latest news from the laboratories but also offers images, graphics and a video/animation link. In addition, it provides information about scientific policies, links to the universities, a very useful detailed glossary of particle physics and astrophysic...

  6. 1975 annual report of the Elementary Particle Physics Department

    International Nuclear Information System (INIS)

    1976-03-01

    The annual report gives a short summary of experiments in progress and of approved proposals of experiments to be performed at CERN by the Elementary Particle Physics Department of Saclay, and also publication lists and informations about the Department activities during 1975 [fr

  7. Summer Workshop on Particle Physics

    CERN Document Server

    Chamseddine, A H; Nath, Pran

    1984-01-01

    These lectures give an elementary introduction to the important recent developments of the applications of N=1 supergravity to the construction of unified models of elementary particle interactions. Topics covered include couplings of supergravity with matter, spontaneous symmetry breaking and the super-higgs effect, construction of supergravity unified models, and the phenomenon of SU(2) x U(1) electroweak-symmetry breaking by supergravity. Experimental consequences of N-1 supergravity unified theory, in particular, the possible supersymmetric decays of the W ± and Z 0 bosons, are also discus

  8. Sustained spheromak physics experiment

    International Nuclear Information System (INIS)

    Hooper, E.B.; Bulmer, R.H.; Cohen, B.I.

    2001-01-01

    The Sustained Spheromak Physics Experiment, SSPX, will study spheromak physics with particular attention to energy confinement and magnetic fluctuations in a spheromak sustained by electrostatic helicity injection. In order to operate in a low collisionality mode, requiring T e >100 eV, vacuum techniques developed for tokamaks will be applied, and a divertor will be used for the first time in a spheromak. The discharge will operate for pulse lengths of several milliseconds, long compared to the time to establish a steady-state equilibrium but short compared to the L/R time of the flux conserver. The spheromak and helicity injector ('gun') are closely coupled, as shown by an ideal MHD model with force-free injector and edge plasmas. The current from the gun passes along the symmetry axis of the spheromak, and the resulting toroidal magnetic field causes the safety factor, q, to diverge on the separatrix. The q-profile depends on the ratio of the injector current to spheromak current and on the magnetic flux coupling the injector to the spheromak. New diagnostics include magnetic field measurements by a reflectometer operating in combined O- and X-modes and by a transient internal probe (TIP). (author)

  9. Sustained spheromak physics experiment

    International Nuclear Information System (INIS)

    Hooper, E.B.; Bulmer, R.H.; Cohen, B.I.

    1999-01-01

    The Sustained Spheromak Physics Experiment, SSPX, will study spheromak physics with particular attention to energy confinement and magnetic fluctuations in a spheromak sustained by electrostatic helicity injection. In order to operate in a low collisionality mode, requiring T e > 100 eV, vacuum techniques developed for tokamaks will be applied, and a divertor will be used for the first time in a spheromak. The discharge will operate for pulse lengths of several milliseconds, long compared to the time to establish a steady-state equilibrium but short compared to the L/R time of the flux conserver. The spheromak and helicity injector ('gun') are closely coupled, as shown by an ideal MHD model with force-free injector and edge plasmas. The current from the gun passes along the symmetry axis of the spheromak, and the resulting toroidal magnetic field causes the safety factor, q, to diverge on the separatrix. The q-profile depends on the ratio of the injector current to spheromak current and on the magnetic flux coupling the injector to the spheromak. New diagnostics include magnetic field measurements by a reflectometer operating in combined O- and X-modes and by a transient internal probe (TIP). (author)

  10. Research in elementary particle physics

    International Nuclear Information System (INIS)

    Chan, L.H.; Haymaker, R.; Imlay, R.; McNeil, R.; Metcalf, W.; Svoboda, R.

    1992-01-01

    Theoretical work on effective action expansion on an effective low; energy theory of hadron, dynamical symmetry breaking, and lattice gauge theories is described. The high-energy experimental group at Louisiana State University has analyzed data on a neutrino oscillation experiment at LAMPF. Preparations for the LSND neutrino experiment have stated. IMB data have also been analyzed. On the ZEUS electron n-proton colliding bean experiment, the production of the barrel calorimeter has been completed. Several modules of the calorimeter have been tested at Fermilab, and preparations for data taking are underway

  11. Research in elementary particle physics

    International Nuclear Information System (INIS)

    Chan, Lai-Him; Haymaker, R.; Imlay, R.; McNeil, R.; Metcalf, W.; Svoboda, R.

    1992-01-01

    We describe theoretical work on effective action expansion on an effective low energy theory of hadrons and lattice gauge theories. The high energy experimental group at Louisiana State University has analyzed data on a neutrino oscillation experiment at LAMPF. The LSND neutrino experiment is preparing to take data in 1993. IMB data has been analyzed. Preparations for a beam test at KEK for IMB are in progress. Dumand is preparing to test one string of the detector early next summer. The ZEUS electron proton colliding beam experiment has started to take data. Early results have been reported

  12. Research in elementary particle physics

    International Nuclear Information System (INIS)

    Chan, Lai-Him; Haymaker, R.; Imlay, R.; McNeil, R.; Metcalf, W.

    1990-01-01

    We describe theoretical work on effective action expansion of an effective low energy theory of hadrons, dynamical symmetry breaking, and lattice gauge theories. The high energy experimental group at Louisiana State University has finished taking data on a neutrino oscillation experiment at LAMPF. Results for the 1987 data have been published. Analysis of 1988 and 1989 data is in progress. LSU is also participating in an electron-positron experiment, AMY, that is running at TRISTAN in Japan. LSU is responsible for the muon detector for AMY. Many results have been published. We have recently joined an electron-proton experiment, ZEUS

  13. New particles and two-photon physics

    International Nuclear Information System (INIS)

    Schrempp, F.

    1985-01-01

    In a first part, I review the general theoretical arguments leading to new physics and new particles beyond the Standard Model, either in terms of supersymmetry or compositeness. Speculations about new particles expected within these schemes are then discussed in the light of recent anomalous events from the panti p collider and from PETRA. In a second part, I specifically try to evaluate the potential of γγ and epsilonγ collisions at PETRA/PEP and LEP energies with respect to new particle searches. Some interesting possibilities, including searches for spinless composite bosons, non-standard enhanced Higgs particles, scalar electrons (e) and γγ ->'nothing' emerge. (orig.)

  14. Data acquisition in nuclear and particle physics

    International Nuclear Information System (INIS)

    Renk, B.

    1993-01-01

    An introduction to the methodics of the measurement data acquisition in nuclear and particle physics for students of physics as well as experimental physicists and engineers in research and industry. The contents are: Obtaining of measurement data, digitizing and triggers, memories and microprocessors, bus systems, communication and networks, and examples for data acquisition systems

  15. Physics through the 1990s: Elementary-particle physics

    International Nuclear Information System (INIS)

    Kirk, W.T.

    1986-01-01

    This report on elementary-particle physics is part of an overall survey of physics carried out for the National Academy of Sciences by the National Research Council. The panel that wrote this report had three goals. The first goal was to explain the nature of elementary-particle physics and to describe how research is carried out in this field. The second goal was to summarize our present knowledge of the elementary particles and the fundamental forces. The third goal was to consider the future course of elementary-particle physics research and to propose a program for this research in the United States. All of these goals are covered in this report

  16. On some common problems in particle physics and nuclei physics

    International Nuclear Information System (INIS)

    Vinh Mau, R.

    1976-01-01

    Results of recent studies on the use of a nuclear potential derived from the present knowledge in particle physics, in nuclei and systems composed by nucleon-antinucleon pairs, are presented and discussed

  17. Gauge theories in particle physics

    International Nuclear Information System (INIS)

    Aitchison, I.J.R.; Hey, A.J.G.

    1982-01-01

    The first theory, quantum electrodynamics (QED) is known to give a successful account of electromagnetic interactions. Weak and strong interactions are described by gauge theories which are generalisations of QED. The electro-weak gauge theory of Glashow Salam and Weinberg unites electromagnetic and weak interactions. Quantum chromodynamics (QCD) is the gauge theory of strong interactions. This approach to these theories, designed for the non-specialist, is based on a straightforward generalisation of non-relativistic quantum-mechanical perturbation theory to the relativistic case, leading to an intuitive introduction to Feynman graphs. Spontaneously broken-or 'hidden'-symmetries are given particular attention, with the physics of hidden gauge invariance and the role of the vacuum (essential to the unified theories) being illustrated by an extended but elementary discussion of the non-relativistic example of superconductivity. Throughout, emphasis is placed both on realistic calculations and on physical understanding. (author)

  18. Where is particle physics going?

    Science.gov (United States)

    Ellis, John

    2017-12-01

    The answer to the question in the title is: in search of new physics beyond the Standard Model, for which there are many motivations, including the likely instability of the electroweak vacuum, dark matter, the origin of matter, the masses of neutrinos, the naturalness of the hierarchy of mass scales, cosmological inflation and the search for quantum gravity. So far, however, there are no clear indications about the theoretical solutions to these problems, nor the experimental strategies to resolve them. It makes sense now to prepare various projects for possible future accelerators, so as to be ready for decisions when the physics outlook becomes clearer. Paraphrasing George Harrison, “If you don’t yet know where you’re going, any road may take you there.”

  19. Particle Physics at the LHC Start

    CERN Document Server

    Altarelli, Guido

    2011-01-01

    I present a concise review of the major issues and challenges in particle physics at the start of the LHC era. After a brief overview of the Standard Model and of QCD, I will focus on the electroweak symmetry breaking problem which plays a central role in particle physics today. The Higgs sector of the minimal Standard Model is so far just a mere conjecture that needs to be verified or discarded by the LHC. Probably the reality is more complicated. I will summarize the motivation for new physics that should accompany or even replace the Higgs discovery and a number of its possible forms that could be revealed by the LHC.

  20. A survey of research in elementary particle physics

    International Nuclear Information System (INIS)

    Baton, J.P.; Cohen-Tannoudji, G.

    1986-05-01

    These notes are devoted to the current trends in elementary particle physics. They are not intended for the training of experts in the field. After a brief historical survey, one discusses the difficulties which have made necessary to move from classical physics to relativistic quantum physics. The main concepts of this new theory are rapidly presented. The experimental methods are discussed within a few typical experiments, already performed or scheduled. The main questions which are still unsolved are rapidly mentioned [fr

  1. A survey of research in elementary particle physics

    International Nuclear Information System (INIS)

    Baton, J.P.; Cohen-Tannoudji, G.

    1986-10-01

    These notes are devoted to the current trends in elementary particle physics. They are not intended for the training of experts in the field. After a brief historical survey, one discusses the difficulties which have made necessary to move from classical physics to relativistic quantum physics. The main concepts of this new theory are rapidly presented. The experimental methods are discussed within a few typical experiments, already performed or scheduled. The main questions which are still unsolved are rapidly mentioned [fr

  2. Midcentury adventures in particle physics

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.

    1989-01-01

    While working at the University of California at Los Angeles, the author was asked to draft a paper on universal weak interactions. He identified four experiments which were the best candidates for proving the V-Α interaction. New results on these experiments confirmed the findings and his theory was published at the Padua-Venice conference, although neither he nor his collaborator, Marshak, are often credited with its discovery. He also devised the use of effective-mass plots to prove the existence of hadron resonances, such as two and three pion resonances. (UK)

  3. Research in elementary particle physics

    International Nuclear Information System (INIS)

    Chan, Lai-Him; Haymaker, R.; Imlay, R.; McNeil, R.; Metcalf, W.

    1991-01-01

    We describe theoretical work on effective action expansion of an effective low energy theory of hadrons, dynamical symmetry breaking, and lattice gauge theories. The high energy experimental group at Louisiana State University finished taking data on a neutrino oscillation experiment at LAMPF in 1989 and expects to complete the data analysis soon. LSU is also participating on an electron-positron experiment, AMY, that is running at TRISTAN in Japan. We plan to leave as of March 1, 1990 to concentrate on ZEUS and SSC activities. For ZEUS we are presently building the EMC waveshifters for the barrel calorimeter and participating on the calorimeter beam tests at Fermilab

  4. Search for Hidden Particles: a new experiment proposal

    Science.gov (United States)

    De Lellis, G.

    2015-08-01

    Searches for new physics with accelerators are being performed at the LHC, looking for high massive particles coupled to matter with ordinary strength. We propose a new experiment meant to search for very weakly coupled particles in the few GeV mass domain. The existence of such particles, foreseen in different models beyond the Standard Model, is largely unexplored from the experimental point of view. A beam dump facility, built at CERN in the north area, using 400 GeV protons is a copious factory of charmed hadrons and it could be used to probe the existence of such particles. The beam dump is also an ideal source of tau neutrinos, the less known particle in the Standard Model. In particular, tau anti-neutrinos have not been observed so far. We therefore propose an experiment to search for hidden particles and study tau neutrino physics at the same time.

  5. 2001 Summer school on particle physics

    International Nuclear Information System (INIS)

    Masiero, A.; Senjanovic, G.; Smirnov, A.Yu.; Thompson, G.

    2002-01-01

    The aim of this school was to give a panoramic view on the field of particle physics with its achievements and problems, successes and failures. The standard model of the electroweak and strong interactions is in perfect shape. Physics of the standard model and its precision tests have been extensively discussed during the school. What is next? Do we have a 'standard model' of physics beyond the standard model? In this connection the status of low scale supersymmetry, supersymmetric Grand Unification and various flavor symmetries has been presented. Discovery of neutrino masses and mixing is probably the first experimental manifestation of new physics. Do we have a viable alternative of the (TeV scale) SUSY and GUT? Models with large, or infinite, or wrapped extra dimensions, the bulk-brane scenarios (widely discussed in series of lectures) may give some answers to this question. Is non-commutative field theory relevant for particle physics? Are the tools we have at hand enough to solve problems of particle physics? Is something fundamentally important missed in our approaches? These, and many other questions, were among the hot topics of the school. In this volume we publish four courses of lectures given by leading experts in the fields which represent two main areas of the research mentioned above: Physics of the standard model and Physics beyond the standard model. Both basic and advanced topics are presented in the lectures on nonperturbative QCD and quark-gluon plasma. First results from heavy ion collider RHIC are discussed. Important recent progress in particle physics is related to operation of the B-factories. This subject is covered in lectures on B-physics and CP-violation. Physics beyond the standard model is represented by lectures on Grand Unification with emphasis on explanation of fermion masses, in particular neutrino masses and mixing, and on predictions for proton decay. Another course is devoted to the fascinating subject: physics of non

  6. Current status of elementary particle physics

    International Nuclear Information System (INIS)

    Okun', L.B.

    1998-01-01

    A brief review is given of the state-of-the art in elementary particle physics based on the talk of the same title given on January 22, 1998, at the seminar marking the 90th birth anniversary of L.D. Landau. (The seminar was hosted by the P.L. Kapitza Institute for Physical Problems in cooperation with the L.D. Landau Institute for Theoretical Physics)

  7. 2001 Summer school on particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Masiero, A [SISSA, International School for Advanced Studies, Trieste (Italy); Senjanovic, G; Smirnov, A Yu; Thompson, G [Abdus Salam ICTP, Trieste (Italy)

    2002-09-15

    The aim of this school was to give a panoramic view on the field of particle physics with its achievements and problems, successes and failures. The standard model of the electroweak and strong interactions is in perfect shape. Physics of the standard model and its precision tests have been extensively discussed during the school. What is next? Do we have a 'standard model' of physics beyond the standard model? In this connection the status of low scale supersymmetry, supersymmetric Grand Unification and various flavor symmetries has been presented. Discovery of neutrino masses and mixing is probably the first experimental manifestation of new physics. Do we have a viable alternative of the (TeV scale) SUSY and GUT? Models with large, or infinite, or wrapped extra dimensions, the bulk-brane scenarios (widely discussed in series of lectures) may give some answers to this question. Is non-commutative field theory relevant for particle physics? Are the tools we have at hand enough to solve problems of particle physics? Is something fundamentally important missed in our approaches? These, and many other questions, were among the hot topics of the school. In this volume we publish four courses of lectures given by leading experts in the fields which represent two main areas of the research mentioned above: Physics of the standard model and Physics beyond the standard model. Both basic and advanced topics are presented in the lectures on nonperturbative QCD and quark-gluon plasma. First results from heavy ion collider RHIC are discussed. Important recent progress in particle physics is related to operation of the B-factories. This subject is covered in lectures on B-physics and CP-violation. Physics beyond the standard model is represented by lectures on Grand Unification with emphasis on explanation of fermion masses, in particular neutrino masses and mixing, and on predictions for proton decay. Another course is devoted to the fascinating subject: physics of non

  8. Elementary particle physics at the University of Florida

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses research in the following areas: theoretical elementary particle physics; experimental elementary particle physics; axion project; SSC detector development; and computer acquisition. (LSP)

  9. Elementary particle physics at the University of Florida

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    This report discusses research in the following areas: theoretical elementary particle physics; experimental elementary particle physics; axion project; SSC detector development; and computer acquisition. (LSP).

  10. Particle Physics at the Cosmic, Intensity, and Energy Frontiers

    Energy Technology Data Exchange (ETDEWEB)

    Essig, Rouven

    2018-04-06

    Major efforts at the Intensity, Cosmic, and Energy frontiers of particle physics are rapidly furthering our understanding of the fundamental constituents of Nature and their interactions. The overall objectives of this research project are (1) to interpret and develop the theoretical implications of the data collected at these frontiers and (2) to provide the theoretical motivation, basis, and ideas for new experiments and for new analyses of experimental data. Within the Intensity Frontier, an experimental search for a new force mediated by a GeV-scale gauge boson will be carried out with the $A'$ Experiment (APEX) and the Heavy Photon Search (HPS), both at Jefferson Laboratory. Within the Cosmic Frontier, contributions are planned to the search for dark matter particles with the Fermi Gamma-ray Space Telescope and other instruments. A detailed exploration will also be performed of new direct detection strategies for dark matter particles with sub-GeV masses to facilitate the development of new experiments. In addition, the theoretical implications of existing and future dark matter-related anomalies will be examined. Within the Energy Frontier, the implications of the data from the Large Hadron Collider will be investigated. Novel search strategies will be developed to aid the search for new phenomena not described by the Standard Model of particle physics. By combining insights from all three particle physics frontiers, this research aims to increase our understanding of fundamental particle physics.

  11. Particle Physics in a Season of Change

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris

    2012-02-01

    A digest of the authors opening remarks at the 2011 Hadron Collider Physics Symposium. I have chosen my title to reflect the transitions we are living through, in particle physics overall and in hadron collider physics in particular. Data-taking has ended at the Tevatron, with {approx} 12 fb{sup -1} of {bar p}p interactions delivered to CDF and D0 at {radical}s = 1.96 TeV. The Large Hadron Collider has registered a spectacular first full-year run, with ATLAS and CMS seeing > 5 fb{sup -1}, LHCb recording {approx} 1 fb{sup -1}, and ALICE logging nearly 5 pb{sup -1} of pp data at {radical}s = 7 TeV, plus a healthy dose of Pb-Pb collisions. The transition to a new energy regime and new realms of instantaneous luminosity exceeding 3.5 x 10{sup 33} cm{sup -2} s{sup -1} has brought the advantage of enhanced physics reach and the challenge of pile-up reaching {approx} 15 interactions per beam crossing. I am happy to record that what the experiments have (not) found so far has roused some of my theoretical colleagues from years of complacency and stimulated them to think anew about what the TeV scale might hold. We theorists have had plenty of time to explore many proposals for electroweak symmetry breaking and for new physics that might lie beyond established knowledge. With so many different theoretical inventions in circulation, it is in the nature of things that most will be wrong. Keep in mind that we learn from what experiment tells us is not there, even if it is uncommon to throw a party for ruling something out. Some non-observations may be especially telling: the persistent absence of flavor-changing neutral currents, for example, seems to me more and more an important clue that we have not yet deciphered. It is natural that the search for the avatar of electroweak symmetry breaking preoccupies participants and spectators alike. But it is essential to conceive the physics opportunities before us in their full richness. I would advocate a three-fold approach

  12. Particle Physics in a Season of Change

    International Nuclear Information System (INIS)

    Quigg, Chris

    2012-01-01

    A digest of the authors opening remarks at the 2011 Hadron Collider Physics Symposium. I have chosen my title to reflect the transitions we are living through, in particle physics overall and in hadron collider physics in particular. Data-taking has ended at the Tevatron, with ∼ 12 fb -1 of (bar p)p interactions delivered to CDF and D0 at √s = 1.96 TeV. The Large Hadron Collider has registered a spectacular first full-year run, with ATLAS and CMS seeing > 5 fb -1 , LHCb recording ∼ 1 fb -1 , and ALICE logging nearly 5 pb -1 of pp data at √s = 7 TeV, plus a healthy dose of Pb-Pb collisions. The transition to a new energy regime and new realms of instantaneous luminosity exceeding 3.5 x 10 33 cm -2 s -1 has brought the advantage of enhanced physics reach and the challenge of pile-up reaching ∼ 15 interactions per beam crossing. I am happy to record that what the experiments have (not) found so far has roused some of my theoretical colleagues from years of complacency and stimulated them to think anew about what the TeV scale might hold. We theorists have had plenty of time to explore many proposals for electroweak symmetry breaking and for new physics that might lie beyond established knowledge. With so many different theoretical inventions in circulation, it is in the nature of things that most will be wrong. Keep in mind that we learn from what experiment tells us is not there, even if it is uncommon to throw a party for ruling something out. Some non-observations may be especially telling: the persistent absence of flavor-changing neutral currents, for example, seems to me more and more an important clue that we have not yet deciphered. It is natural that the search for the avatar of electroweak symmetry breaking preoccupies participants and spectators alike. But it is essential to conceive the physics opportunities before us in their full richness. I would advocate a three-fold approach: Explore, Search, Measure. The first phase of running at the LHC

  13. Research accomplishments and future goals in particle physics

    International Nuclear Information System (INIS)

    1991-12-01

    This report presents the research accomplishments and ongoing activities of Boston University researchers in high energy physics. We are active in eight principal areas which are discussed in this report: Colliding Beams - physics of electron-positron annihilation; Accelerator Design Physics - advanced accelerator design; Monopole/ Neutrino - searchers for magnetic monopoles and for neutrino oscillations; Proton Decay - search for nucleon instability and study of nonaccelarator physics; Particle Theory - theoretical high energy particles physics; Muon G-2 - an experiment to measure the anomalous magnetic moment of the muon with a factor of 20 better precision than currently achieved; SSSintcal - scintillating fiber calorimetry for the SSC; and SSC Muon Detectors - development of muon detectors for the GEM Experiment at the SSC

  14. The low-energy frontier of particle physics

    International Nuclear Information System (INIS)

    Jaeckel, Joerg

    2010-02-01

    Most embeddings of the Standard Model into a more unified theory, in particular the ones based on supergravity or superstrings, predict the existence of a hidden sector of particles which have only very weak interactions with the visible sector Standard Model particles. Some of these exotic particle candidates (such as e.g. ''axions'', ''axion-like particles'' and ''hidden U(1) gauge bosons'') may be very light, with masses in the sub-eV range, and have very weak interactions with photons. Correspondingly, these very weakly interacting sub-eV particles (WISPs) may lead to observable effects in experiments (as well as in astrophysical and cosmological observations) searching for light shining through a wall, for changes in laser polarisation, for non-linear processes in large electromagnetic fields and for deviations from Coulomb's law. We present the physics case and a status report of this emerging low-energy frontier of fundamental physics. (orig.)

  15. External Meeting: Geneva University - Particle physics seminar

    CERN Multimedia

    Université de Genève

    2011-01-01

    UNIVERSITE DE GENEVE Ecole de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 GENEVE 4 Tél: (022) 379 62 73 Fax: (022) 379 69 92 Wednesday 22 June 2011 PARTICLE PHYSICS SEMINAR at 17.00 hrs – Stückelberg Auditorium Indication of νμ→νe appearance in the T2K experiment Indication de la transition νμ→νe dans l’expérience T2K Par Prof. Alain Blondel - DPNC, Université de Genève The T2K neutrino experiment in Japan has searched for νμ → νe appearance in data taken since the start-up in 2010 till11 March 2011. Six events pass all selection criteria at the far detector situated at 295 km while 1.5±0.3(syst.) would be expected if θ13=0 . This is equivalent to an indication of a non zero value of θ13 at a significance of 2.5σ. This process is particu...

  16. Beacons of discovery the worldwide science of particle physics

    CERN Document Server

    International Committee for Future Accelerators (ICFA)

    2011-01-01

    To discover what our world is made of and how it works at the most fundamental level is the challenge of particle physics. The tools of particle physics—experiments at particle accelerators and underground laboratories, together with observations of space—bring opportunities for discovery never before within reach. Thousands of scientists from universities and laboratories around the world collaborate to design, build and use unique detectors and accelerators to explore the fundamental physics of matter, energy, space and time. Together, in a common world-wide program of discovery, they provide a deep understanding of the world around us and countless benefits to society. Beacons of Discovery presents a vision of the global science of particle physics at the dawn of a new light on the mystery and beauty of the universe.

  17. Physical experience enhances science learning.

    Science.gov (United States)

    Kontra, Carly; Lyons, Daniel J; Fischer, Susan M; Beilock, Sian L

    2015-06-01

    Three laboratory experiments involving students' behavior and brain imaging and one randomized field experiment in a college physics class explored the importance of physical experience in science learning. We reasoned that students' understanding of science concepts such as torque and angular momentum is aided by activation of sensorimotor brain systems that add kinetic detail and meaning to students' thinking. We tested whether physical experience with angular momentum increases involvement of sensorimotor brain systems during students' subsequent reasoning and whether this involvement aids their understanding. The physical experience, a brief exposure to forces associated with angular momentum, significantly improved quiz scores. Moreover, improved performance was explained by activation of sensorimotor brain regions when students later reasoned about angular momentum. This finding specifies a mechanism underlying the value of physical experience in science education and leads the way for classroom practices in which experience with the physical world is an integral part of learning. © The Author(s) 2015.

  18. Applications of Particle Accelerators in Medical Physics

    OpenAIRE

    Cuttone, G

    2008-01-01

    Particle accelerators are often associated to high energy or nuclear physics. As well pointed out in literature [1] if we kindly analyse the number of installation worldwide we can easily note that about 50% is mainly devoted to medical applications (radiotherapy, medical radioisotopes production, biomedical research). Particle accelerators are also playing an important indirect role considering the improvement of the technical features of medical diagnostic. In fact the use of radionuclide f...

  19. Topics in particle physics phenomenology

    International Nuclear Information System (INIS)

    Pantaleone, J.T.

    1985-01-01

    This thesis consists of topics in field theory. In part A: (Chapter 1) A short review of heavy-quark physics, (Chapter 2) Spin-dependent forces in heavy-quark systems, (Chapter 3) Bound state effects in the Upsilon → γ + resonance, and in part B, The compatibility of free fractional charge and Dirac magnetic monopoles. In Chapter 2, using the results of the fourth-order quark-antiquark interactions in perturbative QCD, we show that the spin-dependent potentials in the formalism of Eichten and Feinberg and Gromes have to be generalized to include the quark mass dependence. The recently observed hyperfine and fine structure splittings in the J/psi and Upsilon systems are found to agree with the purely perturbative QCD results for the scale parameter Λ/sub MS/ = 0.30 +/- 0.06 GeV. With this value for Λ/sub MS/ we give some predictions on the T and toponium spectroscopies. In Chapter 3 we study the effect of b anti b bound state dynamics on the reaction Upsilon → γ + resonance. We argue from the results that the recently discovered sigma (8320) must have a scalar, rather than a pseudoscalar, coupling to the b quark

  20. Flavor Democracy in Particle Physics

    International Nuclear Information System (INIS)

    Sultansoy, Saleh

    2007-01-01

    The flavor democracy hypothesis (or, in other words, democratic mass matrix approach) was introduced in seventies taking in mind three Standard Model (SM) families. Later, this idea was disfavored by the large value of the t-quark mass. In nineties the hypothesis was revisited assuming that extra SM families exist. According to flavor democracy the fourth SM family should exist and there are serious arguments disfavoring the fifth SM family. The fourth SM family quarks lead to essential enhancement of the Higgs boson production cross-section at hadron colliders and the Tevatron can discover the Higgs boson before the LHC, if it mass is between 140 and 200 GeV. Then, one can handle 'massless' Dirac neutrinos without see-saw mechanism. Concerning BSM physics, flavor democracy leads to several consequences: tanβ ≅ mt/mb ≅ 40 if there are three MSSM families; super-partner of the right-handed neutrino can be the LSP; relatively light E(6)-inspired isosinglet quark etc. Finally, flavor democracy may give opportunity to handle ''massless'' composite objects within preonic models

  1. Foundations of nuclear and particle physics

    CERN Document Server

    Donnelly, T William; Holstein, Barry R; Milner, Richard G; Surrow, Bernd

    2017-01-01

    This textbook brings together nuclear and particle physics, presenting a balanced overview of both fields as well as the interplay between the two. The theoretical as well as the experimental foundations are covered, providing students with a deep understanding of the subject. In-chapter exercises ranging from basic experimental to sophisticated theoretical questions provide an important tool for students to solidify their knowledge. Suitable for upper undergraduate courses in nuclear and particle physics as well as more advanced courses, the book includes road maps guiding instructors on tailoring the content to their course. Online resources including color figures, tables, and a solutions manual complete the teaching package. This textbook will be essential for students preparing for further study or a career in the field who require a solid grasp of both nuclear and particle physics.

  2. Review of Particle Physics, 2012-2013

    CERN Document Server

    Beringer, J; Barnett, R M; Copic, K; Dahl, O; Groom, D E; Lin, C J; Lys, J; Murayama, H; Wohl, C G; Yao, W M; Zyla, P A; Amsler, C; Antonelli, M; Asner, D M; Baer, H; Band, H R; Basaglia, T; Bauer, C W; Beatty, J J; Belousov, V I; Bergren, E; Bernardi, G; Bertl, W; Bethke, S; Bichsel, H; Biebel, O; Blucher, E; Blusk, S; Brooijmans, G; Buchmueller, O; Cahn, R N; Carena, M; Ceccucci, A; Chakraborty, D; Chen, M C; Chivukula, R S; Cowan, G; D'Ambrosio, G; Damour, T; de Florian, D; de Gouvea, A; DeGrand, T; de Jong, P; Dissertori, G; Dobrescu, B; Doser, M; Drees, M; Edwards, D A; Eidelman, S; Erler, J; Ezhela, V V; Fetscher, W; Fields, B D; Foster, B; Gaisser, T K; Garren, L; Gerber, H J; Gerbier, G; Gherghetta, T; Golwala, S; Goodman, M; Grab, C; Gritsan, A V; Grivaz, J F; Grunewald, M; Gurtu, A; Gutsche, T; Haber, H E; Hagiwara, K; Hagmann, C; Hanhart, C; Hashimoto, S; Hayes, K G; Heffner, M; Heltsley, B; Hernandez-Rey, J J; Hikasa, K; Hocker, A; Holder, J; Holtkamp, A; Huston, J; Jackson, J D; Johnson, K F; Junk, T; Karlen, D; Kirkby, D; Klein, S R; Klempt, E; Kowalewski, R V; Krauss, F; Kreps, M; Krusche, B; Kuyanov, Yu.V; Kwon, Y; Lahav, O; Laiho, J; Langacker, P; Liddle, A; Ligeti, Z; Liss, T M; Littenberg, L; Lugovsky, K S; Lugovsky, S B; Mannel, T; Manohar, A V; Marciano, W J; Martin, A D; Masoni, A; Matthews, J; Milstead, D; Miquel, R; Monig, K; Moortgat, F; Nakamura, K; Narain, M; Nason, P; Navas, S; Neubert, M; Nevski, P; Nir, Y; Olive, K A; Pape, L; Parsons, J; Patrignani, C; Peacock, J A; Petcov, S T; Piepke, A; Pomarol, A; Punzi, G; Quadt, A; Raby, S; Raffelt, G; Ratcliff, B N; Richardson, P; Roesler, S; Rolli, S; Romaniouk, A; Rosenberg, L J; Rosner, J L; Sachrajda, C T; Sakai, Y; Salam, G P; Sarkar, S; Sauli, F; Schneider, O; Scholberg, K; Scott, D; Seligman, W G; Shaevitz, M H; Sharpe, S R; Silari, M; Sjostrand, T; Skands, P; Smith, J G; Smoot, G F; Spanier, S; Spieler, H; Stahl, A; Stanev, T; Stone, S L; Sumiyoshi, T; Syphers, M J; Takahashi, F; Tanabashi, M; Terning, J; Titov, M; Tkachenko, N P; Tornqvist, N A; Tovey, D; Valencia, G; van Bibber, K; Venanzoni, G; Vincter, M G; Vogel, P; Vogt, A; Walkowiak, W; Walter, C W; Ward, D R; Watari, T; Weiglein, G; Weinberg, E J; Wiencke, L R; Wolfenstein, L; Womersley, J; Woody, C L; Workman, R L; Yamamoto, A; Zeller, G P; Zenin, O V; Zhang, J; Zhu, R Y; Harper, G; Lugovsky, V S; Schaffner, P

    2012-01-01

    This biennial Review summarizes much of particle physics. Using data from previous editions, plus 2658 new measurements from 644 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. Among the 112 reviews are many that are new or heavily revised including those on Heavy-Quark and Soft-Collinear Effective Theory, Neutrino Cross Section Measurements, Monte Carlo Event Generators, Lattice QCD, Heavy Quarkonium Spectroscopy, Top Quark, Dark Matter, Vcb & Vub, Quantum Chromodynamics, High-Energy Collider Parameters, Astrophysical Constants, Cosmological Parameters, and Dark Matter.

  3. Brahms Experiment at RHIC Day-1 Physics

    International Nuclear Information System (INIS)

    Videbaek, Flemming

    1999-01-01

    The BRAHMS experiment is designed to measure semi-inclusive spectra of charged hadron over a wide range of rapidity. It will yield information on particle production, both at central rapidity and in the baryon rich fragmentation region. The physics plans for measurements in the first year of running at RHIC are discussed

  4. The CMS Masterclass and Particle Physics Outreach

    Energy Technology Data Exchange (ETDEWEB)

    Cecire, Kenneth [Notre Dame U.; Bardeen, Marjorie [Fermilab; McCauley, Thomas [Notre Dame U.

    2014-01-01

    The CMS Masterclass enables high school students to analyse authentic CMS data. Students can draw conclusions on key ratios and particle masses by combining their analyses. In particular, they can use the ratio of W^+ to W^- candidates to probe the structure of the proton, they can find the mass of the Z boson, and they can identify additional particles including, tentatively, the Higgs boson. In the United States, masterclasses are part of QuarkNet, a long-term program that enables students and teachers to use cosmic ray and particle physics data for learning with an emphasis on data from CMS.

  5. Particle physics in the LHC era

    CERN Document Server

    Barr, Giles; Walczak, Roman; Weidberg, Tony

    2016-01-01

    This text gives an introduction to particle physics at a level accessible to advanced undergraduate students. It is based on lectures given to 4th year physics students over a number of years, and reflects the feedback from the students. The aim is to explain the theoretical and experimental basis of the Standard Model (SM) of Particle Physics with the simplest mathematical treatment possible. All the experimental discoveries that led to the understanding of the SM relied on particle detectors and most of them required advanced particle accelerators. A unique feature of this book is that it gives a serious introduction to the fundamental accelerator and detector physics, which is currently only available in advanced graduate textbooks. The mathematical tools that are required such as group theory are covered in one chapter. A modern treatment of the Dirac equation is given in which the free particle Dirac equation is seen as being equivalent to the Lorentz transformation. The idea of generating the SM interac...

  6. Theoretical topics in particle physics

    International Nuclear Information System (INIS)

    Roberts, L.A.

    1986-01-01

    This dissertation contains three parts, each with a distinct topic. The three topics are (1) Higgs-boson decays at the superconducting supercollider, (2) radiative corrections to the decay π 0 → γe + e - and (3) generalized random paths in three and four dimensions. In part I, distributions in cos(theta)/sub lab/, rapidity, energy, and p/sub T/ for the intermediate vector bosons resulting from p + p → (H 0 → W + W - , Z 0 Z 0 ) + X and p + p → (W + W - , W + Z 0 + W - Z 0 ,Z 0 Z 0 ) + X at √s = 40 TeV are compared for Higgs-boson masses of 5m/sub w/ and 7m/sub w/. The Higgs-boson-decay signal should be visible in the energy and p/sub T/ distributions of the vector bosons. In Part II, the radiative corrections to both the decay rate for π 0 → γe + e - and the differential spectrum in the invariant mass of the Dalitz pain for experiments with limited geometrical acceptance are calculated. In Part III, the author introduces a generalized model for random paths (in arbitrary dimension) which smoothly interpolates between the standard paths (fermionic or bosonic) and the self-avoiding paths. An efficient Monte Carlo algorithm to simulate the model is presented along with some preliminary results for the average length, intersection, overlap and mean square size of paths in three and four dimensions

  7. The interface of mathematics and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Quillen, D.G.; Segal, G.B.; Tsousheung Tsun (Oxford Univ. (UK). Mathematical Inst.) (eds.)

    1990-01-01

    This collection of papers is based on the proceedings of a conference organized by the Institute of Mathematics and its Applications on the Interface of Mathematics and Particle Physics held at Oxford University in September 1988. There are twenty-five papers, all of which are indexed separately. Many contribute to the search for an understanding of how gravity can be unified with other interactions in one field theory. String and twistor theories are important in this search and many of the papers refer to strings, superstrings or twistor. All the papers seek a physical interpretation of theories and elementary particles. (author).

  8. Physics, mathematics and numerics of particle adsorption on fluid interfaces

    Science.gov (United States)

    Schmuck, Markus; Pavliotis, Grigorios A.; Kalliadasis, Serafim

    2012-11-01

    We study two arbitrary immiscible fuids where one phase contains small particles of the size of the interface and smaller. We primarily focus on charge-free particles with wetting characteristics described by the contact angle formed at the interface between the two phases and the particles. Based on the experimental observation that particles are adsorbed on the interface to reduce the interfacial energy and hence the surface tension as well, we formulate a free-energy functional that accounts for these physical effects. Using elements from calculus of variations and formal gradient flow theory, we derive partial differential equations describing the location of the interface and the density of the particles in the fluid phases. Via numerical experiments we analyse the time evolution of the surface tension, the particle concentration, and the free energy over time and reflect basic experimentally observed phenomena.

  9. High energy particle physics in the United Kingdom

    International Nuclear Information System (INIS)

    1985-06-01

    The paper reviews the U.K. participation in High Energy Particle Physics (HEPP) research. The funding of science in Higher Education and the Research Councils; high energy particle physics; relevance of particle physics to science and technology; particle physics in the U.K.; CERN; and the opportunity cost of HEPP within the science budget; are all discussed. (U.K.)

  10. Particle Physics in the LHC Era

    CERN Document Server

    Bunk, Don

    During the past 100 years experimental particle physicists have collected an impressive amount of data. Theorists have also come to understand this data extremely well. It was in the first half of the 20th century the efforts of the early pioneers of quantum mechanics laid the ground work for this understanding: quantum field theory. Through the tireless efforts of researchers during the later half of the 20th century many ideas came together to form what we now call the Standard Model (SM) of particle physics. Finally, it was through the ideas of the renormalization group and effective field theory that the understanding of how the SM fits into a larger framework of particle physics was crystallized. In the past four years the Large Hadron Collider (LHC) has made more precise measurements than ever before. Currently the SM of particle physics is known to have excellent agreement with these measurements. As a result of this agreement with data, the SM continues to play such a central role in modern particle p...

  11. Facts and mysteries in elementary particle physics

    CERN Document Server

    Veltman, Martinus J G

    2018-01-01

    This book provides a comprehensive overview of modern particle physics accessible to anyone with a true passion for wanting to know how the universe works. We are introduced to the known particles of the world we live in. An elegant explanation of quantum mechanics and relativity paves the way for an understanding of the laws that govern particle physics. These laws are put into action in the world of accelerators, colliders and detectors found at institutions such as CERN and Fermilab that are in the forefront of technical innovation. Real world and theory meet using Feynman diagrams to solve the problems of infinities and deduce the need for the Higgs boson. Facts and Mysteries in Elementary Particle Physics offers an incredible insight from an eyewitness and participant in some of the greatest discoveries in 20th century science. From Einstein's theory of relativity to the spectacular discovery of the Higgs particle, this book will fascinate and educate anyone interested in the world of quarks, leptons an...

  12. System of data bases on particle physics at IHEP

    International Nuclear Information System (INIS)

    Alekhin, S.I.; Bazeeva, V.V.; Ezhela, V.V.

    1987-01-01

    Up-to-date status of the IHEP DOCUMENTS and EXPERIMENTS Data Bases are described. Now these data bases are the most complete computerized catalogues of experimental particle physics publications. BDMS and PPDL provide extended possibilities for any user in searching and retrieving desired information

  13. Unfolding in particle physics: A window on solving inverse problems

    International Nuclear Information System (INIS)

    Spano, F.

    2013-01-01

    Unfolding is the ensemble of techniques aimed at resolving inverse, ill-posed problems. A pedagogical introduction to the origin and main problems related to unfolding is presented and used as the the stepping stone towards the illustration of some of the most common techniques that are currently used in particle physics experiments. (authors)

  14. Particle dark matter from physics beyond the standard model

    International Nuclear Information System (INIS)

    Matchev, Konstantin

    2004-01-01

    In this talk I contrast three different particle dark matter candidates, all motivated by new physics beyond the Standard Model: supersymmetric dark matter, Kaluza-Klein dark matter, and scalar dark matter. I then discuss the prospects for their discovery and identification in both direct detection as well as collider experiments

  15. Particle physics data system at IHEP

    International Nuclear Information System (INIS)

    Alekhin, S.I.; Grudtsin, S.N.; Demidov, N.G.; Ezhela, V.V.

    1981-01-01

    This note presents the description of information search and retrieval facilities supplied by the Berkeley Database Management System - BDMS V2.2 implemented for ICL-1906A computers at IHEP. The system is used for creation and maintenance of archieve Particle Physics Data Bases [ru

  16. Visions: The coming revolutions in particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Chris Quigg

    2002-04-11

    Wonderful opportunities await particle physics over the next decade, with the coming of the Large Hadron Collider to explore the 1-TeV scale (extending efforts at LEP and the Tevatron to unravel the nature of electroweak symmetry breaking) and many initiatives to develop the understanding of the problem of identity and the dimensionality of spacetime.

  17. Concepts and models in particle physics

    International Nuclear Information System (INIS)

    Paty, M.

    1977-01-01

    The knowledge of Elementary Particle Physics is characterized by an object and a purpose which are both highly theoretical. This assessment is shown and analysed by some examples taken in recent achievements in the field. It is also tried to attempt an enonciation of some criteria of the reality for concepts and objects in this matter [fr

  18. PSI nuclear and particle physics newsletter 1990

    International Nuclear Information System (INIS)

    Frosch, R.; Furrer, F.

    1991-01-01

    This newsletter contains reports on nuclear and particle physics supported by the F1 division of PSI. Groups were invited to present new preliminary or final results obtained in 1990. As ususal, the contributions were not referred. They should be quoted after consultation with the authors only. (author) figs., tabs., refs

  19. Theoretical Studies in Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Collins, John C.; Roiban, Radu S

    2013-04-01

    This final report summarizes work at Penn State University from June 1, 1990 to April 30, 2012. The work was in theoretical elementary particle physics. Many new results in perturbative QCD, in string theory, and in related areas were obtained, with a substantial impact on the experimental program.

  20. Particle physics-astrophysics working group

    International Nuclear Information System (INIS)

    Cronin, J.W.; Kolb, E.W.

    1989-01-01

    The working group met each afternoon and listened to mini-symposia on a broad range of subjects covering all aspects of particle physics---astrophysics both theoretical and experimental. This paper reports that as a result, a number of papers which follow were commissioned to reflect the present status and future prospects of the field

  1. Particle physics and the LEP project

    International Nuclear Information System (INIS)

    Roussarie, A.

    1985-01-01

    A very didactic chronological account of the last 20 years of elementary particle physics is presented. After some recall on matter constituents and interactions between these constituents, some details are given on researches which will be made in LEP, the e + -e - collider [fr

  2. Inflation, large scale structure and particle physics

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences ... Hybrid inflation; Higgs scalar field; structure formation; curvation. ... We then discuss a particle physics model of supersymmetric hybrid inflation at the intermediate scale in which ... May 2018. Home · Volumes & Issues · Special Issues · Forthcoming Articles · Search · Editorial Board ...

  3. A Vision of Nuclear and Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, Hugh E. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-08-01

    This paper will consist of a selected, personal view of some of the issues associated with the intersections of nuclear and particle physics. As well as touching on the recent developments we will attempt to look at how those aspects of the subject might evolve over the next few years.

  4. Phenomenal result for Durham in particle physics

    CERN Multimedia

    2000-01-01

    The University of Durham has beaten ten rivals to house a new 12 million pound institute for particle physics phenomenology. The institute will be supported for a minimum of ten years by PPARC and the university. Its first director will be Professor James Stirling (2 paragraphs).

  5. REDUCE system in elementary particle physics

    International Nuclear Information System (INIS)

    Grozin, A.G.

    1990-01-01

    This preprint is the first part of the problem book on using REDUCE for calculations of cross sections and decay probabilities in elementary particle physics. It contains the review of the necessary formulae and examples of using REDUCE for calculations with vectors and Dirac matrices. 5 refs.; 11 figs

  6. Selected exercises in particle and nuclear physics

    CERN Document Server

    Bianchini, Lorenzo

    2018-01-01

    This book presents more than 300 exercises, with guided solutions, on topics that span both the experimental and the theoretical aspects of particle physics. The exercises are organized by subject, covering kinematics, interactions of particles with matter, particle detectors, hadrons and resonances, electroweak interactions and flavor physics, statistics and data analysis, and accelerators and beam dynamics. Some 200 of the exercises, including 50 in multiple-choice format, derive from exams set by the Italian National Institute for Nuclear Research (INFN) over the past decade to select its scientific staff of experimental researchers. The remainder comprise problems taken from the undergraduate classes at ETH Zurich or inspired by classic textbooks. Whenever appropriate, in-depth information is provided on the source of the problem, and readers will also benefit from the inclusion of bibliographic details and short dissertations on particular topics. This book is an ideal complement to textbooks on experime...

  7. AGS experiments in nuclear/QCD physics at medium energies

    Energy Technology Data Exchange (ETDEWEB)

    Lo Presti, P.

    1998-07-01

    This report contains a diagram of the experimental setup for each experiment as well as giving a brief discussion of its purpose and list of collaborators for the experiment. Thirty-one experiments in the areas of nuclear physics and particle physics are covered. It concludes with a list of publications of the AGS experiments.

  8. AGS experiments in nuclear/QCD physics at medium energies

    International Nuclear Information System (INIS)

    Lo Presti, P.

    1998-07-01

    This report contains a diagram of the experimental setup for each experiment as well as giving a brief discussion of its purpose and list of collaborators for the experiment. Thirty-one experiments in the areas of nuclear physics and particle physics are covered. It concludes with a list of publications of the AGS experiments

  9. Particle physics 2009: licence to smile

    CERN Multimedia

    2009-01-01

    Julie Peasley is the keeper of a very unusual zoo, a colourful set of hand-made plushies that represent the particles of the Standard Model and beyond. Her passion for physics and her art degree combine to give particles their personalities. She visited CERN on 25 May and met the CERNois in the library. Scientists consider that they have ‘seen’ a particle when their detectors send an electronic signal and a spot appears on their computer screen. The American artist Julie Peasley has gone much further than that and has started sewing toys so that we can not just ‘see’ what particles look like but even play with them! "When I started," says Julie, "my plushies weren’t smiling, they were just a face. Later on, I realised that I wanted them to all be happy and to appear like they are having fun. Except for the neutron, which insists on remaining ne...

  10. Silicon Detectors-Tools for Discovery in Particle Physics

    International Nuclear Information System (INIS)

    Krammer, Manfred

    2009-01-01

    Since the first application of Silicon strip detectors in high energy physics in the early 1980ies these detectors have enabled the experiments to perform new challenging measurements. With these devices it became possible to determine the decay lengths of heavy quarks, for example in the fixed target experiment NA11 at CERN. In this experiment Silicon tracking detectors were used for the identification of particles containing a c-quark. Later on, the experiments at the Large Electron Positron collider at CERN used already larger and sophisticated assemblies of Silicon detectors to identify and study particles containing the b-quark. A very important contribution to the discovery of the last of the six quarks, the top quark, has been made by even larger Silicon vertex detectors inside the experiments CDF and D0 at Fermilab. Nowadays a mature detector technology, the use of Silicon detectors is no longer restricted to the vertex regions of collider experiments. The two multipurpose experiments ATLAS and CMS at the Large Hadron Collider at CERN contain large tracking detectors made of Silicon. The largest is the CMS Inner Tracker consisting of 200 m 2 of Silicon sensor area. These detectors will be very important for a possible discovery of the Higgs boson or of Super Symmetric particles. This paper explains the first applications of Silicon sensors in particle physics and describes the continuous development of this technology up to the construction of the state of the art Silicon detector of CMS.

  11. Particle Physics Committee annual report 1976-77, particle physics grants and laboratory agreements

    International Nuclear Information System (INIS)

    1977-01-01

    The Annual Report for the period 1 August 1976 to 31 July 1977 of the Particel Physics Committee of the Nuclear Physics Board, under the (United Kingdom) Science Research Council, is presented. Details are given of particle physics grants and laboratory agreements. (U.K.)

  12. Nuclear and Particle Physics, Astrophysics and Cosmology : T-2 : LANL

    Science.gov (United States)

    linked in Search T-2, Nuclear and Particle Physics, Astrophysics and Cosmology T-2 Home T Division Focus Areas Nuclear Information Service Nuclear Physics Particle Physics Astrophysics Cosmology CONTACTS Group fundamental and applied theoretical research in applied and fundamental nuclear physics, particle physics

  13. Particle physics after the Higgs discovery: Philosophical perspectives

    Science.gov (United States)

    Friederich, Simon; Lehmkuhl, Dennis

    2015-08-01

    The recent discovery at the LHC of a particle with properties matching those expected of the Higgs boson is a decisive event in the history of particle physics. The present special section combines three contributions that approach conceptual and methodological challenges related to this event and the current situation in particle physics from different angles. One contribution studies the experimental practices of contemporary particle physics by investigating the role of computer simulations in these practices; in particular, it focuses on the status of simulations as compared to experiments that in some circumstances have analogous functions. One contribution investigates the status of the controversial naturalness problem that many physicists see as the most severe shortcoming of the Standard Model of elementary particle physics. Finally, a third contribution critically assesses the impact of suggested no-go theorems concerning the interpretability of rigorous algebraic quantum field theory in terms of particles at the phenomenological level. In what follows we present a short overview of these contributions, highlighting some of their central ideas and arguments and putting them into context.

  14. Social aspects of Japanese particle physics in the 1950s

    International Nuclear Information System (INIS)

    Konuma, Michiji

    1989-01-01

    Military and social restrictions imposed on Japanese scientific research following the second world war made nuclear or particle physics experiments almost impossible. However, the (Japanese) theoretical achievements of the 1940s considerably buoyed this group, namely two-meson theory, super-many-time theory and covariant renormalization theory. Economic conditions were also difficult with high inflation throughout the 1950s. Printing and distribution problems and paper shortages reduced the circulation of scientific journals, but theoretical work progressed well even in isolation. Within Japan, a circular called Soyrushiron Kenkyu (elementary particle theory research) became a valuable medium for exchange of new ideas and information. A Research Institute for Fundamental Physics, the first of several Japanese research institutes, was opened at Kyoto University in 1953, when a major international conference was held there. The second half of the 1950s was a time of expansion and consolidation for particle physics in Japan. (UK)

  15. An historian's interest in particle physics

    International Nuclear Information System (INIS)

    Heilbron, J.L.

    1989-01-01

    This paper considers the sociological and historical implications of early particle physics. The author explains the nature of historical research and its application to scientific developments and the limitations of personal recollections as research tools. Taking the Bevatron as an example, the paper asks a number of questions about the reasons it was built and why and who benefitted from its use. The article finishes by questioning the relevance of prizes to scientific research and considers the language that particle physicists have adopted in their work from the Greek derivations to the quark types, asking whether physicists' view of themselves has changed and been reflected in their use of language. (UK)

  16. Particle identification methods in High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Va' Vra, J.

    2000-01-27

    This paper deals with two major particle identification methods: dE/dx and Cherenkov detection. In the first method, the authors systematically compare existing dE/dx data with various predictions available in the literature, such as the Particle Data group recommendation, and judge the overall consistency. To my knowledge, such comparison was not done yet in a published form for the gaseous detectors used in High-Energy physics. As far as the second method, there are two major Cherenkov light detection techniques: the threshold and the Ring imaging methods. The authors discuss the recent trend in these techniques.

  17. Elementary particles and physics interaction unification

    International Nuclear Information System (INIS)

    Leite-Lopes, J.

    1985-01-01

    Quantum theory and relativity theory are fundamental of relativistic quantum mechanics, quantum field theory, which is the base of elementary particle physics, gauge field theory and basic force unification models. After a short introduction of relativistic equations of the main fields, the free scalar field, the free vector field, the free electromagnetic field and the free spinor field, and of elementary particles and basic interactions, gauge invariance and electromagnetic gauge field are detailed. Then the presentation of internal degrees of freedom, especially isospin, introduces gauge field theory of Yang-Mills. At last weak interactions and strong interactions are presented and lead to grand unification theory in conclusion [fr

  18. Recent advances in elementary particle physics

    International Nuclear Information System (INIS)

    Zepeda, D.A.

    1985-01-01

    A brief review of recent successful results in elementary particle physics, as well as of those problems which may be dealt with in the present of near future is presented. A description of elementary particles and their interactions as they are presently conceived is given. The standard model of electroweak interactions is discussed in detail and the relevance of the recent discovery of the intermediate bosons W + and Z is analized. Finally, the weak features of the standard model and the theories which solve these problems are pointed out. (author)

  19. Simulated experiments in modern physics

    International Nuclear Information System (INIS)

    Tirnini, Mahmud Hasan

    1981-01-01

    Author.In this thesis a number of the basic experiments of atomic and nuclear physics are simulated on a microcomputer interfaced to a chart recorder and CRT. These will induce the student to imagine that he is actually performing the experiments. He will collect data to be worked out. The thesis covers the relevant material to set up such experiments in the modern physics laboratory

  20. Introduction to particle and astroparticle physics multimessenger astronomy and its particle physics foundations

    CERN Document Server

    De Angelis, Alessandro

    2018-01-01

    This book introduces particle physics, astrophysics and cosmology. Starting from an experimental perspective, it provides a unified view of these fields that reflects the very rapid advances being made. This new edition has a number of improvements and has been updated to describe the recent discovery of gravitational waves and astrophysical neutrinos, which started the new era of multimessenger astrophysics; it also includes new results on the Higgs particle. Astroparticle and particle physics share a common problem: we still don’t have a description of the main ingredients of the Universe from the point of view of its energy budget. Addressing these fascinating issues, and offering a balanced introduction to particle and astroparticle physics that requires only a basic understanding of quantum and classical physics, this book is a valuable resource, particularly for advanced undergraduate students and for those embarking on graduate courses. It includes exercises that offer readers practical insights. It ...

  1. Some problems of high-energy elementary particle physics

    International Nuclear Information System (INIS)

    Isaev, P.S.

    1995-01-01

    The problems of high-energy elementary particle physics are discussed. It is pointed out that the modern theory of elementary-particle physics has no solutions of some large physical problems: origin of the mass, electric charge, identity of particle masses, change of the mass of elementary particles in time and others. 7 refs

  2. Applications of Particle Accelerators in Medical Physics

    CERN Document Server

    Cuttone, G

    2008-01-01

    Particle accelerators are often associated to high energy or nuclear physics. As well pointed out in literature [1] if we kindly analyse the number of installation worldwide we can easily note that about 50% is mainly devoted to medical applications (radiotherapy, medical radioisotopes production, biomedical research). Particle accelerators are also playing an important indirect role considering the improvement of the technical features of medical diagnostic. In fact the use of radionuclide for advanced medical imaging is strongly increasing either in conventional radiography (CT and MRI) and also in nuclear medicine for Spect an PET imaging. In this paper role of particle accelerators for medical applications will be presented together with the main solutions applied.

  3. The ideas of particle physics. 2. ed.

    International Nuclear Information System (INIS)

    Coughlan, G.D.; Dodd, J.E.

    1991-01-01

    Our main concern in writing this book has been to communicate the central ideas and concepts of elementary particle physics. We have attempted to present a comprehensive overview of the subject at a level which carries the reader beyond the simplifications and generalisations necessary in popular science books. Matter consists of just two types of elementary particles: quarks and leptons. These are the fundamental building blocks of the material world. The theory describing the microscopic behaviour of these particles has, over the past decade or so, become known as the 'standard model', providing as it does an accurate account of the force of electromagnetism, the weak nuclear force (responsible for radioactive decay), and the strong nuclear force (which holds atomic nuclei together). The standard model has been remarkably successful; all experimental tests have verified the detailed predictions of the theory. (author)

  4. Physical and chemical characteristics of interplanetary dust particles

    International Nuclear Information System (INIS)

    Gruen, E.

    1981-01-01

    For the first time, the micrometeoroid experiment on board of Helios allowed the measurement of physical and chemical characteristics of interplanetary dust particles between 0.3AU and 1AU solar distance. During the first 10 orbits of Helios 1,235 impacts of micrometeoroids have been detected. 83 particles have been registered by the ecliptic sensor and 152 by the south sensor. Most of the particles detected by the ecliptic sensor had masses 10 -13 g -10 g and impacted the sensor from the apex direction. The particles observed by the south sensor had masses 10 -15 g -9 g and impacted the sensor from all directions with a slightly enhanced flux from solar direction. The average impact speed of particles with masses 10 -13 g -10 g was 15km/s. From 1AU to.3AU, the observed paritcle flux increased by a factor 5-10. The orbits of the registered particles are highly eccentric, e approx. >= 0.6, and some are hyperbolic. The mass spectra measured upon impact allow the classification of chondritic and iron-rich particles. Approx. 20% of the particles had low densities rho 3 . On 4 particles, a positive electric charge has been observed. (orig.) [de

  5. Particle physics software aids space and medicine

    CERN Document Server

    Pia, M G

    2002-01-01

    Geant4 is a showcase example of technology transfer from particle physics to other fields such as space and medical science. Geant4 was first used for space applications by ESA in 1999, when ESA and NASA each launched an X-ray telescope. Geant4's extended set of physics models, which handle both electromagnetic and hadronic interactions, can be used to address a range of medical applications from conventional photon-beam radiotherapy to brachytherapy (using radioactive sources), hadron therapy and boron neutron capture therapy. The tools for describing geometries, materials and electromagnetic fields can precisely model diverse real-life configurations.

  6. PSI nuclear and particle physics newsletter 1989

    International Nuclear Information System (INIS)

    Frosch, R.; Furrer, F.

    1990-01-01

    The present newsletter contains reports on nuclear and particle physics supported by the F1 division of PSI. Groups were invited to present new preliminary or final results obtained in 1989. As usual there has been no refereeing. The contributions must not be quoted without previous consultation with the authors. Spokespersons are indicated by superscripts 'S' following their names in the headings of the contributions. (author) 85 figs., 10 tabs., 307 refs

  7. Refined holonomic summation algorithms in particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Round, Mark; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC)

    2017-06-15

    An improved multi-summation approach is introduced and discussed that enables one to simultaneously handle indefinite nested sums and products in the setting of difference rings and holonomic sequences. Relevant mathematics is reviewed and the underlying advanced difference ring machinery is elaborated upon. The flexibility of this new toolbox contributed substantially to evaluating complicated multi-sums coming from particle physics. Illustrative examples of the functionality of the new software package RhoSum are given.

  8. The cosmology/particle physics interface

    International Nuclear Information System (INIS)

    Olive, K.A.; Schramm, D.N.

    1985-01-01

    The paper reviews the interface between elementary particle physics and cosmology; and concentrates on inflation and the dark matter problem. Inflationary models of the Universe are examined, including phase transitions and supergravity. The three classes of dark matter problems discussed are: dynamical halos, galaxy formation and clustering, and the Ω=1 of inflation. Possible solutions to the cosmological dark matter problems are considered. (U.K.)

  9. PSI nuclear and particle physics newsletter 1988

    International Nuclear Information System (INIS)

    Frosch, R.; Furrer, F.

    1989-01-01

    The present Newsletter contains reports on nuclear and particle physics supported by the F1 division of PSI. Groups were invited to present new preliminary or final results obtained in 1989. As usual there has been no refereeing. The contributions must not be quoted without previous consultation with the authors. Spokespersons are indicated by superscripts 'S' following their names in the headings of the contributions. (author) 65 figs., 9 tabs., 189 refs

  10. Probability and statistics in particle physics

    International Nuclear Information System (INIS)

    Frodesen, A.G.; Skjeggestad, O.

    1979-01-01

    Probability theory is entered into at an elementary level and given a simple and detailed exposition. The material on statistics has been organised with an eye to the experimental physicist's practical need, which is likely to be statistical methods for estimation or decision-making. The book is intended for graduate students and research workers in experimental high energy and elementary particle physics, and numerous examples from these fields are presented. (JIW)

  11. Refined holonomic summation algorithms in particle physics

    International Nuclear Information System (INIS)

    Bluemlein, Johannes; Round, Mark; Schneider, Carsten

    2017-06-01

    An improved multi-summation approach is introduced and discussed that enables one to simultaneously handle indefinite nested sums and products in the setting of difference rings and holonomic sequences. Relevant mathematics is reviewed and the underlying advanced difference ring machinery is elaborated upon. The flexibility of this new toolbox contributed substantially to evaluating complicated multi-sums coming from particle physics. Illustrative examples of the functionality of the new software package RhoSum are given.

  12. DETECTORS USED IN PARTICLE PHYSICS RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Melissines, A. C.

    1963-10-15

    Detectors used in particle physics are discussed, and their specific properties are compared. With the pictorial'' devices are included nuclear emulsions, cloud and bubble chambers, and spark chambers. Included in the digital'' devices are counters, e.g., the Geiger counter, scintillation counters, solid-state detectors, Cherenkov counters, and spark counters. Sensitivity, resolving power, time resolutions, saturation level, and energy detection are discussed. (R.E.U.)

  13. Alpha particle studies during JET DT experiments

    International Nuclear Information System (INIS)

    1999-01-01

    The 1997 DT experiment (DTE1) at the Joint European Torus included studies of the behaviour of alpha particles in high temperature plasmas. Clear alpha particle heating was observed in a series of otherwise similar 10MW hot-ion H-modes by scanning the DT mixture from 0%T to 93%T. Maxima in central temperature and energy content were obtained which corresponded with the maximum in fusion yield. Alfven Eigenmodes (AEs) have been detected in JET, driven by NBI or ICRH fast ions. However, in agreement with theory, no AE activity was observed in DT plasmas which could be attributed to alpha particle drive, except in the afterglow of some Optimised Shear pulses. Ion Cyclotron Emission (ICE) was detected at harmonics of the alpha particle cyclotron frequency at the outer edge of the plasma. The ICE is interpreted as being close to magnetoacoustic cyclotron instability, driven by inverted alpha distributions at the plasma edge. The high-energy neutral particle spectra showed features, which are ascribed to a mixture of alphas, neutralised by helium-like impurities, and deuterons, born from elastic collisions with alpha particles and neutralised by hydrogen-like impurities. The results of all these studies are consistent with classical alpha particle trapping and slowing-down. Future DT experiments will aim to increase alpha particle pressure, so interactions with plasma instabilities can be studied. The measurement of knock-on neutral triton spectra offers a clean way to determine confined alpha densities in these future experiments. (author)

  14. Alpha particle studies during JET DT experiments

    International Nuclear Information System (INIS)

    2001-01-01

    The 1997 DT experiment (DTE1) at the Joint European Torus included studies of the behaviour of alpha particles in high temperature plasmas. Clear alpha particle heating was observed in a series of otherwise similar 10MW hot-ion H-modes by scanning the DT mixture from 0%T to 93%T. Maxima in central temperature and energy content were obtained which corresponded with the maximum in fusion yield. Alfven Eigenmodes (AEs) have been detected in JET, driven by NBI or ICRH fast ions. However, in agreement with theory, no AE activity was observed in DT plasmas which could be attributed to alpha particle drive, except in the afterglow of some Optimised Shear pulses. Ion Cyclotron Emission (ICE) was detected at harmonics of the alpha particle cyclotron frequency at the outer edge of the plasma. The ICE is interpreted as being close to magnetoacoustic cyclotron instability, driven by inverted alpha distributions at the plasma edge. The high-energy neutral particle spectra showed features, which are ascribed to a mixture of alphas, neutralised by helium-like impurities, and deuterons, born from elastic collisions with alpha particles and neutralised by hydrogen-like impurities. The results of all these studies are consistent with classical alpha particle trapping and slowing-down. Future DT experiments will aim to increase alpha particle pressure, so interactions with plasma instabilities can be studied. The measurement of knock-on neutral triton spectra offers a clean way to determine confined alpha densities in these future experiments. (author)

  15. Research on elementary particle physics: Part 2

    International Nuclear Information System (INIS)

    Holloway, L.E.

    1993-05-01

    This report describes the activities of the University of Illinois Experimental High Energy Physics Group. The physicists in the University of Illinois High Energy Physics Group are engaged in a wide variety of experiments at current and future accelerator laboratories. These include: (1) The CDF experiment at the Fermilab Tevetron p bar p collider. (2) Design and developmental work for the SDC group at SSCL. (3) Experiments at the wide band photon beam at Fermilab. (4) e + e - experiments, the Mark III and SLD at SLAC and CLEO at Cornell. (5) CP violation experiments at Fermilab. (6) The HiRes cosmic ray experiment at Dugway Proving Grounds, Utah. (7) Computational facilities. (8) Electronics systems development

  16. submitter Searches for New Physics, involving Top Quarks, Dark Matter and the Higgs Bosons, at the ATLAS, CDF and Fermi-LAT Particle Experiments, and a description of a new limit re-interpretation tool, Basis-Limits

    CERN Document Server

    Rao, Kanury Kanishka

    Searches for new physics are presented in the lepton + jets channel at the CDF and ATLAS experiments. At CDF, we search for exotic quarks that couple to dark matter, new particle resonances in top-quark pairs, a Z' boson decaying quarks, and a two-Higgs doublet model. At ATLAS, we search for fourth generation down-type quarks, new particle resonances in top-quark pairs, and a multi-Higgs boson cascade. A novel methodology, Basis-limits, which allows for re-interpretation of experimental limits is presented. Basis-limits is used to extend ATLAS limits on fourth generation quarks to set limits on a new vector-like quark for all its decay modes. Finally, a spatial analysis of the gamma-ray excess, seen by the Fermi-LAT experiment, is performed. We find the location of the excess to be consistent with a dark matter halo at the Galactic center as the source.

  17. Research in elementary particle physics. Progress report, March 1, 1994--February 28, 1995

    International Nuclear Information System (INIS)

    Chan, Lai-Him; Haymaker, R.; Imlay, R.; McNeil, R.; Metcalf, W.; Svoboda, R.

    1994-01-01

    This report discusses the following topics: Low-energy particle dynamics; QCD dynamics on the lattice; lattice QCD Vacuum; phenomenology ampersand cosmology; the ZEUS Experiment at HERA; neutrino physics at LAMPF; non-accelerator physics; and SSC activity

  18. Recasting particle physics by entangling physics, history and philosophy

    International Nuclear Information System (INIS)

    Bertozzi, Eugenio; Levrini, Olivia

    2015-01-01

    The paper presents the design process we followed to recast particle physics so as to make it conceptually relevant for secondary school students. In this design process, the concept of symmetry was assumed as core-idea because of its structural and foundational role in particle physics, its crosscutting character and its epistemological and philosophical value. The first draft of the materials was tested in a pilot-study which involved 19 students of a regular class (grade 13) of an Italian school. The data analysis showed that the students were in their 'regime of competence' for grasping subtle nuances of the materials and for providing important hints for revising them. In particular, students’ reactions brought into light the need of clarifying the 'foundational' character that symmetry attained in twentieth-century physics. The delicate step of re-thinking the materials required the researchers to articulate the complex relationship between researches on physics teaching, history and philosophy of physics. This analytic phase resulted in a version of the materials which implies the students to be guided to grasp the meaning of symmetry as normative principle in twentieth-century physics, throughout the exploration of the different meanings assumed by symmetry over time. The whole process led also to the production of an essential, on-line version, of the materials targeted to a wider audience.

  19. Research accomplishments and future goals in particle physics

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-30

    This document presents our proposal to continue the activities of Boston University researchers in high energy physics research. We have a broad program of participation in both non-accelerator and accelerator-based efforts. High energy research at Boston University has a special focus on the physics program of the Superconducting Supercollider. We are active in research and development for detector subsystems, in the design of experiments, and in study of the phenomenology of the very high energy interactions to be observed at the SSC. The particular areas discussed in this paper are: colliding beams physics; accelerator design physics; MACRO project; proton decay project; theoretical particle physics; muon G-2 project; fast liquid scintillators; SSCINTCAL project; TRD project; massively parallel processing for the SSC; and physics analysis and vertex detector upgrade at L3.

  20. Particles and Nuclei an introduction to the physical concepts

    CERN Document Server

    Povh, B; Scholz, C; Zetsche, F

    2008-01-01

    This well-established textbook gives a uniform and unique presentation of both nuclear and particle physics. Analysis, Part 1, is devoted to disentangling the substructure of matter. This part shows that experiments designed to uncover the substructures of nuclei and nucleons have a similar conceptual basis, and lead to the present picture of all matter being built out of a small number of elementary building blocks and a small number of fundamental interactions. Synthesis, Part 2, shows how the elementary particles may be combined to build hadrons and nuclei. The fundamental interactions responsible for the forces in all systems become less and less evident in increasingly complex systems. A section on neutrino oscillations and one on nuclear matter at high temperatures bridge the field of "nuclear and particle physics" and "modern astrophysics and cosmology". The new edition incorporates a large amount of new experimental results on deep inelastic scattering (obtained at the Electron-Proton Collider HERA at...

  1. Particles and Nuclei An Introduction to the Physical Concepts

    CERN Document Server

    Povh, Bogdan; Scholz, Christoph; Zetsche, Frank

    2006-01-01

    This well-known introductory textbook gives a uniform presentation of nuclear and particle physics from an experimental point of view. The new edition has been extensively revised and updated. The first part, Analysis, is devoted to disentangling the substructure of matter. This part shows that experiments designed to uncover the substructures of nuclei and nucleons have a similar conceptual basis, and lead to the present picture of all matter being constructed from a small number of elementary building blocks and a small number of fundamental interactions. The second part, Synthesis, shows how the elementary particles may be combined to build hadrons and nuclei. The fundamental interactions, which are responsible for the forces in all systems, become less and less evident in increasingly complex systems. Such systems are in fact dominated by many-body phenomena. A section on neutrino oscillations and one on nuclear matter at high temperatures bridge the field of "nuclear and particle physics" and "modern ast...

  2. Prospect of Particle Physics in China

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    The Beijing Electron Positron Collider (BEPC) finished its running July 2005, with great success in both the Tau-Charm physics experiment and the synchrotron radiation light source. The latest Charm physics results from BEPC are reviewed, including the observation of the new resonance of X1835 with a possible explanation of the PPbar bound state. The major upgrade of BEPC into a double ring collider, so called BEPCII, will increase its luminosity by two orders of magnitude. The physics window of BEPCII is mainly the precision measurements in the Charm physics and the search for new phenomena. The construction of BEPCII is finished. The tuning of the storage ring goes smoothly. The synchrotron radiation facility of BEPCII opened to users with high performance since the end of 2006. The new detector BESIII has been moved into the interaction region June, and the joint commissioning started. The non-accelerator experiments in China are ...

  3. Experiments for obtaining field influence mass particles.

    CERN Document Server

    Yahalomi, E

    2010-01-01

    Analyzing time dilation experiments the existence of a universal field interacting with moving mass particles is obtained. It is found that mass particle changes its properties depend on its velocity relative to this universal scalar field and not on its velocity relative to the laboratory. High energy proton momentum, energy and mass were calculated obtaining new results. Experiments in high energy accelerators are suggested as additional proofs for the existence of this universal field. This universal field may explain some results of other high energy experiments.

  4. A particular view of particle physics in the fifties

    International Nuclear Information System (INIS)

    Steinberger, J.

    1989-01-01

    The author describes his contribution to the field of particle physics in the 1950s. In his doctoral thesis work, be managed to observe a four-fermion interaction of a muon decaying into an electron and two other light, neutral particles, possibly neutrinos. He later worked on the 330 MeV electron-synchrotron looking at mesons, and made the first precise measurement of pion lifetimes. He later observed the decay of a neutral meson for the first time, which had surprisingly high velocity. In 1950, at Columbia, be determined the spins and parities of charged and neutral pions and studied the nuclear interaction of the charged particles on its 380 MeV cyclotron. The author then reviews early experiments and results for work on strange particles, and hyperons, showing parity violation. Collaborative work between Columbia and Brookhaven on neutrino beams is also described. (UK)

  5. Elementary particle physics and high energy phenomena

    International Nuclear Information System (INIS)

    Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP)

  6. Elementary particle physics and high energy phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP).

  7. Particle physics in the early 1950s

    International Nuclear Information System (INIS)

    Chen Nin Yang

    1989-01-01

    The author describes the work of particle physicists in the 1950's and focuses on three broad characteristics of the era. Firstly rapid developments occurred. Experiments had timescales of a few months, rarely more than a year. Secondly, many new ideas were formulated, a good proportion of which were useful, and lastly, experimental discoveries were the driving force behind progress. Experimental advances, including accelerator and detector design, relied heavily on the substantial funding which was made available then. (UK)

  8. Nuclear physics experiment at INS

    International Nuclear Information System (INIS)

    Sugimoto, Kenzo.

    1981-02-01

    Present activities at the Institute for Nuclear Study (INS) are presented. Selected topics are from recent experiments by use of the INS cyclotron, experiments at the Bevalac facility under the INS-LBL collaboration program, and preparatory works for the Numatron project, a new project for the high-energy heavy-ion physics. (author)

  9. World's particle physics laboratories join to create new communication resource

    CERN Multimedia

    2003-01-01

    "The worldwide particle physics community today (August 12) launched Interactions.org, a new global, Web-based resource developed to provide news, high-quality imagery, video and other tools for communicating the science of particle physics" (1 page).

  10. Particle physics: a new course for schools and colleges

    International Nuclear Information System (INIS)

    Swinbank, Elizabeth

    1992-01-01

    Some questions relating to the introduction of particle physics into post-GCSE courses are considered. A new project that is producing teacher and student materials to support teaching particle physics at this level is described. (author)

  11. Summary of the particle physics and technology working group

    International Nuclear Information System (INIS)

    Stephan Lammel et al. email = crathbun@fnal.gov

    2002-01-01

    Progress in particle physics has been tightly related to technological advances during the past half century. Progress in technologies has been driven in many cases by the needs of particle physics. Often, these advances have benefited fields beyond particle physics: other scientific fields, medicine, industrial development, and even found commercial applications. The particle physics and technology working group of Snowmass 2001 reviewed leading-edge technologies recently developed or in the need of development for particle physics. The group has identified key areas where technological advances are vital for progress in the field, areas of opportunities where particle physics may play a principle role in fostering progress, and areas where advances in other fields may directly benefit particle physics. The group has also surveyed the technologies specifically developed or enhanced by research in particle physics that benefit other fields and/or society at large

  12. Pions to quarks: particle physics in the 1950s

    International Nuclear Information System (INIS)

    Brown, L.M.

    1989-01-01

    This chapter charts particle physics discoveries between 1947 and 1963, starting with the theory of the Yukawa meson, the pion and the first strange particles and ending with the discovery of two neutrinos, new pseudoscalar and vector mesons and charge-parity violations. Technically, this change from cosmic rays to accelerators as sources for high-energy experiments was significant, and detectors developed rapidly into large bubble chambers, scintillation counters and spark chambers, while computers were becoming more common for data analysis. In the post-war boom, large amounts of government funds were provided. (UK)

  13. A guide to experimental particle physics literature, 1991-1996

    International Nuclear Information System (INIS)

    Ezhela, V.V.; Filimonov, B.B.; Lugovsky, S.B.

    1996-10-01

    We present an indexed guide to experimental particle physics literature for the years 1991 - 1996. Approximately 4200 papers are indexed by (1) Beam/Target/Momentum (2) Reaction/Momentum/Data-Descriptor (including the final state) (3) Particle/Decay (4) Accelerator/Experiment/Detector. All indices are cross-referenced to the paper''s title and references in the ID/Reference/Title index. The information presented in this guide is also publicly available on a regularly-updated DATAGUIDE database from the World Wide Web

  14. A guide to experimental particle physics literature, 1991-1996

    Energy Technology Data Exchange (ETDEWEB)

    Ezhela, V.V.; Filimonov, B.B.; Lugovsky, S.B. [Inst. for High Energy Physics, Moscow (Russian Federation)] [and others

    1996-10-01

    We present an indexed guide to experimental particle physics literature for the years 1991 - 1996. Approximately 4200 papers are indexed by (1) Beam/Target/Momentum (2) Reaction/Momentum/Data-Descriptor (including the final state) (3) Particle/Decay (4) Accelerator/Experiment/Detector. All indices are cross-referenced to the paper`s title and references in the ID/Reference/Title index. The information presented in this guide is also publicly available on a regularly-updated DATAGUIDE database from the World Wide Web.

  15. Small Particles Intact Capture Experiment (SPICE)

    Science.gov (United States)

    Nishioka, Ken-Ji; Carle, G. C.; Bunch, T. E.; Mendez, David J.; Ryder, J. T.

    1994-01-01

    The Small Particles Intact Capture Experiment (SPICE) will develop technologies and engineering techniques necessary to capture nearly intact, uncontaminated cosmic and interplanetary dust particles (IDP's). Successful capture of such particles will benefit the exobiology and planetary science communities by providing particulate samples that may have survived unaltered since the formation of the solar system. Characterization of these particles may contribute fundamental data to our knowledge of how these particles could have formed into our planet Earth and, perhaps, contributed to the beginnings of life. The term 'uncontaminated' means that captured cosmic and IDP particles are free of organic contamination from the capture process and the term 'nearly intact capture' means that their chemical and elemental components are not materially altered during capture. The key to capturing cosmic and IDP particles that are organic-contamination free and nearly intact is the capture medium. Initial screening of capture media included organic foams, multiple thin foil layers, and aerogel (a silica gel); but, with the exception of aerogel, the requirements of no contamination or nearly intact capture were not met. To ensure no contamination of particles in the capture process, high-purity aerogel was chosen. High-purity aerogel results in high clarity (visual clearness), a useful quality in detection and recovery of embedded captured particles from the aerogel. P. Tsou at the Jet Propulsion Laboratory (JPL) originally described the use of aerogel for this purpose and reported laboratory test results. He has flown aerogel as a 'GAS-can Lid' payload on STS-47 and is evaluating the results. The Timeband Capture Cell Experiment (TICCE), a Eureca 1 experiment, is also flying aerogel and is scheduled for recovery in late April.

  16. When cosmology and particle physics met

    International Nuclear Information System (INIS)

    Kaiser, D.

    2007-01-01

    Primordial cosmology describes the first moments of the universe when the interactions of elementary particles with one another determined its evolution. The mutual ignorance between the community of cosmologists with that of elementary physicists is well illustrated by the fact that both communities conceived distinct concepts of mass that 10 years later were found similar: Brans-Dicke gravitation and Higgs field. Now the collaboration between cosmology and particle physics appears necessary since the great unification theory that imposes the 3 basic forces: weak interaction, electromagnetic interaction and strong interaction to merge in a unique force at an energy scale of 10 24 eV, is supposed to have occurred just after the big-bang when the universe was dense and hot. (A.C.)

  17. Open Access Publishing in Particle Physics

    CERN Document Server

    2007-01-01

    Particle Physics, often referred to as High Energy Physics (HEP), spearheaded the Open Access dissemination of scientific results with the mass mailing of preprints in the pre-Web era and with the launch of the arXiv preprint system at the dawn of the '90s. The HEP community is now ready for a further push to Open Access while retaining all the advantages of the peerreview system and, at the same time, bring the spiralling cost of journal subscriptions under control. I will present a plan for the conversion to Open Access of HEP peer-reviewed journals, through a consortium of HEP funding agencies, laboratories and libraries: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics). SCOAP3 will engage with scientific publishers towards building a sustainable model for Open Access publishing, which is as transparent as possible for HEP authors. The current system in which journals income comes from subscription fees is replaced with a scheme where SCOAP3 compensates publishers for the costs...

  18. Particle physics - Recent successes and future prospects

    International Nuclear Information System (INIS)

    Wojcicki, S.

    1985-01-01

    The situation in particle physics today is highly analogous to that which existed in chemistry towards the end of the 19th century. During the preceding two centuries, remarkable progress has been achieved in that discipline, progress that culminated in the periodic table of Mendeleyev. This paper summarized not only the realization that the everyday matter is composed of basic building blocks, called elements, but also that these different elements had certain similarities which could be used to properly arrange them in the periodic table. Thus the inert gases (helium, neon, argon, etc.) had very similar chemical properties, namely chemical inertness; the halogens (chlorine, iodine, florine) on the other hand were highly reactive. Other similarities were seen among the rare earth group of elements, alkaline earths, and alkali metals. In this paper the author attempts to summarize briefly the historical background that led us to the present level of understanding, or more specifically to the ''standard model'' of particle physics. He also describes several difficulties with this picture, continues with some possible indications of new physics, and finally end with the discussion of the prospects for the future

  19. The preparation of particle beams for experiments of hadron physics: Slow extraction at ELFE rate at DESY and ELSA, as well as beam cooling at HERA

    International Nuclear Information System (INIS)

    Gentner, M.

    1999-02-01

    Various complementary experimental approaches are possible to study hadron physics, all of which require dedicated accelerator facilities. One approach, known as the ELFE rate at DESY project, makes use of a continuous electron beam with an energy of 15 to 25 GeV, a current of at least 30 μA and very small emittance, for fixed target experiments. The formation of such a beam by stretching a pulsed LINAC beam with the help of the HERA electron ring has been studied. At lower beam energies and currents this concept is already being used at the ELSA facility of Bonn University. Here the extraction process has been studied intensively and has been compared with measurements. Another approach to study hadron physics is the use of an electron - ion collider. To achieve high integrated luminosities cooling of the ion beam is necessary, especially in the case of heavy ions. For HERA high energy beam cooling with the help of an electron storage ring has been studied. (orig.)

  20. Electrodynamic metaphors: communicating particle physics with Feynman diagrams

    Directory of Open Access Journals (Sweden)

    Pietroni Massimo

    2002-03-01

    Full Text Available The aim of this project is to communicate the basic laws of particle physics with Feynman diagrams - visual tools which represent elementary particle processes. They were originally developed as a code to be used by physicists and are still used today for calculations and elaborations of theoretical nature. The technical and mathematical rules of Feynman diagrams are obviously the exclusive concern of physicists, but on a pictorial level they can help to popularize many concepts, ranging from matter and the antimatter; the creation, destruction and transformation of particles; the role of ‘virtual’ particles in interactions; the conservation laws, symmetries, etc. Unlike the metaphors often used to describe the microcosm, these graphic representations provide an unequivocal translation of the physical content of the underlying quantum theory. As such they are perfect metaphors, not misleading constructions. A brief introduction on Feynman diagrams will be followed by the practical realization of this project, which will be carried out with the help of an experiment based on three-dimensional manipulable objects. The Feynman rules are expressed in terms of mechanical constraints on the possible conjuctions among the various elements of the experiment. The final part of the project will present the results of this experiment, which has been conducted among high-school students.

  1. Nuclear, particle and many body physics

    CERN Document Server

    Morse, Philip M; Feshbach, Herman

    2013-01-01

    Nuclear, Particle and Many Body Physics, Volume II, is the second of two volumes dedicated to the memory of physicist Amos de-Shalit. The contributions in this volume are a testament to the respect he earned as a physicist and of the warm and rich affection he commanded as a personal friend. The book contains 41 chapters and begins with a study on the renormalization of rational Lagrangians. Separate chapters cover the scattering of high energy protons by light nuclei; approximation of the dynamics of proton-neutron systems; the scattering amplitude for the Gaussian potential; Coulomb excitati

  2. A bird's eye view of particle physics

    CERN Document Server

    De Groot, E H

    1977-01-01

    Reviews recent discoveries in the field of particle physics and places them in a theoretical framework. Then shows what is to be expected from the CERN SPS, and from the Fermi laboratory in America where a machine analogous to the SPS is already in service. Better secondary beams should improve our knowledge of lepton-hadron scattering processes, thus providing information about hadron structure and also, with v-scattering, on weak interactions. More should also be learned about proton-proton scattering. (0 refs).

  3. Studies in theoretical high energy particle physics

    International Nuclear Information System (INIS)

    Aratyn, H.; Brekke, L.; Keung, Wai-Yee; Sukhatme, U.

    1993-01-01

    Theoretical work on the following topics is briefly summarized: symmetry structure of conformal affine Toda model and KP hierarchy; solitons in the affine Toda and conformal affine Toda models; classical r-matrices and Poisson bracket structures on infinite-dimensional groups; R-matrix formulation of KP hierarchies and their gauge equivalence; statistics of particles and solitons; charge quantization in the presence of an Alice string; knotting and linking of nonabelian flux; electric dipole moments; neutrino physics in gauge theories; CP violation in the high energy colliders; supersymmetric quantum mechanics; parton structure functions in nuclei; dual parton model. 38 refs

  4. Particle physics in intense electromagnetic fields

    International Nuclear Information System (INIS)

    Kurilin, A.V.

    1999-01-01

    The quantum field theory in the presence of classical background electromagnetic field is reviewed giving a pedagogical introduction to the Feynman-Furry method of describing non-perturbative interactions with very strong electromagnetic fields. A particular emphasis is given to the case of the plane-wave electromagnetic field for which the charged particles' wave functions and propagators are presented. Some general features of quantum processes proceeding in the intense electromagnetic background are argued. The possibilities of searching new physics through the investigations of quantum phenomena induced by a strong electromagnetic environment are also discussed

  5. U.C. Davis high energy particle physics research: Technical progress report -- 1990

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-12-31

    Summaries of progress made for this period is given for each of the following areas: (1) Task A--Experiment, H1 detector at DESY; (2) Task C--Experiment, AMY detector at KEK; (3) Task D--Experiment, fixed target detectors at Fermilab; (4) Task F--Experiment, PEP detector at SLAC and pixel detector; (5) Task B--Theory, particle physics; and (6) Task E--Theory, particle physics.

  6. Elementary particle physics at the University of Florida. Annual report

    International Nuclear Information System (INIS)

    Field, R.D.; Ramond, P.M.; Sikivie, P.

    1995-01-01

    This is the annual progress report of the University of Florida's elementary particle physics group. The theoretical high energy physics group's research covers a broad range of topics, including both theory and phenomenology. Present work of the experimental high energy physics group is directed toward the CLEO detector, with some effort going to B physics at Fermilab. The Axion Search project is participating in the operation of a large-scale axion detector at Lawrence Livermore National Laboratory, with the University of Florida taking responsibility for this experiment's high-resolution spectrometer's assembly, programming, and installation, and planning to take shifts during operation of the detector in FY96. The report also includes a continuation of the University's three-year proposal to the United States Department of Energy to upgrade the University's high-energy physics computing equipment and to continue student support, system manager/programmer support, and maintenance. Report includes lists of presentations and publications by members of the group

  7. Elementary Particle Physics at Baylor (Final Report)

    Energy Technology Data Exchange (ETDEWEB)

    Dittmann, J.R.

    2012-08-25

    This report summarizes the activities of the Baylor University Experimental High Energy Physics (HEP) group on the Collider Detector at Fermilab (CDF) experiment from August 15, 2005 to May 31, 2012. Led by the Principal Investigator (Dr. Jay R. Dittmann), the Baylor HEP group has actively pursued a variety of cutting-edge measurements from proton-antiproton collisions at the energy frontier.

  8. The rising sun of particle physics

    International Nuclear Information System (INIS)

    Fraser, G.

    1985-01-01

    A new entrant is set to join the select league of big-time high energy Laboratories. Thanks to imaginative planning and hard work, the Japanese KEK (Ko Enerugi butsurigaku Kenkyusho) National Laboratory will soon become a new world focus for particle physics research. KEK's original research programme was (and still is) based on a modest 12 GeV Proton Synchrotron which began regular operation in 1977. But even before this got underway, plans were being prepared for a big new machine which would push the Laboratory to the forefront of physics. The TRISTAN project as initially proposed forsaw a variety of colliding beam options, hence the name 'TRi-ring Intersecting STorage Accelerators in Nippon'. Subsequent thinking focused on the electron-positron option, leaving other possibilities for the future. Hence the Tri-ring in the original name has been modified to 'TRansposable Ring'. (orig./HSI).

  9. Geneva University - Next Particle Physics Seminars

    CERN Multimedia

    Université de Genève

    2010-01-01

    GENEVA UNIVERSITY École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 GENEVA 4 Tel. (022) 379 62 73 Fax (022) 379 69 92 Wednesday 17 November 2010 PARTICLE PHYSICS SEMINAR at 17-00 hrs – Stückelberg Auditorium Results on CP-Violation in The B_s and B_d systems at the Tevatron Dr. Iain Bertram, Lancaster Results will be presented from the investigation of CP-violation in B mesons at the Tevatron. The evidence for an anomalous likes-sign dimuon charge asymmetry will be presented, along with the latest results on CP violation in the Bs -> J/Psi Phi system. The implications of these results and the possibility of confirming them in the future will also be discussed. Information : http://dpnc.unige.ch/seminaire/annonce.html Organizer : G. Pasztor Wednesday 1st December 2010 PARTICLE PHYSICS SEMINAR at 17-00 hrs – Stückelberg Auditorium PAMELA - A COSMIC RAY OBSERVATO...

  10. Particle diagnostics for magnetic fusion experiments

    International Nuclear Information System (INIS)

    Post, D.E.

    1983-01-01

    This chapter summarizes the subset of diagnostics that relies primarily on the use of particles, and attempts to show how atomic and molecular data play a role in these diagnostics. Discusses passive charge-exchange ion temperature measurements; hydrogen beams for density, ion temperature, q and ZEFF measurements; impurity diagnostics using charge-exchange recombination; plasma electric and magnetic measurements using beams heavier than hydrogen; and alpha particle diagnostics. Points out that as fusion experiments become larger and hotter, most traditional particle diagnostics become difficult because large plasmas are difficult for neutral atoms to penetrate and the gyro-orbits of charged particles need to be larger than typically obtained with present beams to be comparable with the plasma size. Concludes that not only does the current profile affect the plasma stability, but there is a growing opinion that any serious fusion reactor will have to be steady state

  11. Elementary particle physics and high energy phenomena

    International Nuclear Information System (INIS)

    Barker, A.R.; Cumalat, J.P.; De Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    Experimental and theoretical high-energy physics programs at the University of Colorado are reported. Areas of concentration include the following: study of the properties of the Z 0 with the SLD detector; fixed-target K-decay experiments; the R ampersand D program for the muon system: the SDC detector; high-energy photoproduction of states containing heavy quarks; electron--positron physics with the CLEO II detector at CESR; lattice QCD; and spin models and dynamically triangulated random surfaces. 24 figs., 2 tabs., 117 refs

  12. The low-energy frontier of particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Jaeckel, Joerg [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-02-15

    Most embeddings of the Standard Model into a more unified theory, in particular the ones based on supergravity or superstrings, predict the existence of a hidden sector of particles which have only very weak interactions with the visible sector Standard Model particles. Some of these exotic particle candidates (such as e.g. ''axions'', ''axion-like particles'' and ''hidden U(1) gauge bosons'') may be very light, with masses in the sub-eV range, and have very weak interactions with photons. Correspondingly, these very weakly interacting sub-eV particles (WISPs) may lead to observable effects in experiments (as well as in astrophysical and cosmological observations) searching for light shining through a wall, for changes in laser polarisation, for non-linear processes in large electromagnetic fields and for deviations from Coulomb's law. We present the physics case and a status report of this emerging low-energy frontier of fundamental physics. (orig.)

  13. Topics in particle physics and cosmology

    International Nuclear Information System (INIS)

    Hsu, S.D.H.

    1991-01-01

    The Standard Model of particle physics, together with the Big Bang model of the early universe, constitute a framework which encompasses our current understanding of fundamental laws and beginning of our universe. Despite recent speculative trends, quantum field theory remains the theoretical tool of choice for investigating new physics either at high energy colliders, or in the early universe. In this dissertation, several field theoretic phenomena relevant to cosmology or particle physics are explored. A common theme in these explorations is the structure of the vacuum state in quantum field theory. First, we discuss first-order phase transitions in the early universe, in which the effective vacuum state of the universe shifts discontinuously as the temperature drops below some critical point. We find that the dynamics of a certain type of first-order phase transition can lead to production of primordial black holes, which could constitute the dark matter of our universe. Alternatively, supercooled first-order phase transitions may be the cause of an extended inflationary epoch in the early universe, which is generally regarded as necessary to solve several cosmological puzzles. We derive limits on such scenarios based on nearly model-independent percolation properties of the transition. We also study some nonperturbative aspects of the field theory vacuum. We show that non-topological solitons of a single fermion and Higgs fields can only exist in strongly coupled theories. In particular, we find that at the lowest fermionic excitations in the Standard Model are single fermions, and not bound states of fermion plugs Higgs. Finally, we investigate the intriguing behavior of instanton-induced cross sections. We discover Higgs-Higgs cross sections which increase exponentially with center of mass energy due to the presence of instanton solutions related to vacuum instability

  14. Baryon number violation and particle collider experiments

    International Nuclear Information System (INIS)

    Klinkhamer, F.R.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica

    1992-09-01

    Baryon number non-conservation, due to non-perturbative effects (sphalerons) in the standard model, may have been important in the early Universe. In this paper the possibility is discussed that similar effects could show up at future particle collider experiments. (author). 16 refs.; 3 figs

  15. Fifty years of particle physics at the CEA

    International Nuclear Information System (INIS)

    Turlay, R.

    1997-01-01

    A historical review of researches at the CEA (and more particularly at Saclay) in particle physics, is presented. Contributions in themes such as polarized targets, bubble chambers, classic and superconductive magnets, etc. resulted in cooperation to the design of various machines such as Van de Graaff accelerator, cyclotron, Saturne, etc. Collaborations between CEA and CERN had led to numerous experiments in high energy physics, such as electronic experiments with the SPS accelerator. CEA was also involved in the intermediate boson discovery on the SppS collision apparatus, and is participating in two CERN's programs, neutrino physics (NOMAD) and CP violation (NA48). CEA is also collaborating with Russian, German and American laboratories in these domains

  16. Particle modeling of plasmas computational plasma physics

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1991-01-01

    Recently, through the development of supercomputers, a powerful new method for exploring plasmas has emerged; it is computer modeling of plasmas. Such modeling can duplicate many of the complex processes that go on in a plasma and allow scientists to understand what the important processes are. It helps scientists gain an intuition about this complex state of matter. It allows scientists and engineers to explore new ideas on how to use plasma before building costly experiments; it allows them to determine if they are on the right track. It can duplicate the operation of devices and thus reduce the need to build complex and expensive devices for research and development. This is an exciting new endeavor that is in its infancy, but which can play an important role in the scientific and technological competitiveness of the US. There are a wide range of plasma models that are in use. There are particle models, fluid models, hybrid particle fluid models. These can come in many forms, such as explicit models, implicit models, reduced dimensional models, electrostatic models, magnetostatic models, electromagnetic models, and almost an endless variety of other models. Here the author will only discuss particle models. He will give a few examples of the use of such models; these will be taken from work done by the Plasma Modeling Group at UCLA because he is most familiar with work. However, it only gives a small view of the wide range of work being done around the US, or for that matter around the world

  17. What can we learn about elementary particles from atomic physics

    International Nuclear Information System (INIS)

    Sanders, P.G.H.

    1976-01-01

    Information about elementary particles can be obtained from atomic physics in two ways. One can compare the results of high precision experiments with accurate theoretical predictions in those simple systems, such as hydrogen, where these are possible. Alternatively, one can carry out experiments designed to look with great sensitivity for small effects, such as non-conservation of parity or violation of time reversal invariance which are forbidden in the normal atomic theory. Current work which will be described can yield significant information concerning quantum electrodynamics, the values of the fundamental constants, the structure of nucleons and the nature of the weak interactions. (orig.) [de

  18. Academic Training Lectures | Black Holes from a Particle Physics Perspective | 18-19 November

    CERN Multimedia

    2014-01-01

    Black Holes from a Particle Physics Perspective by Georgi Dvali   Tuesday 18 and Wednesday 19 November 2014 from 11 am to 12 noon at CERN ( 40-S2-A01 - Salle Anderson ) Description: We will review the physics of black holes, both large and small, from a particle physicist's perspective, using particle physics tools for describing concepts such as entropy, temperature and quantum information processing. We will also discuss microscopic pictures of black hole formation in high energy particle scattering, potentially relevant for high-energy accelerator experiments, and some differences and similarities with the signatures of other BSM physics. See the Indico page here.

  19. Research accomplishments and future goals in particle physics

    International Nuclear Information System (INIS)

    1987-01-01

    This document presents a report of the research accomplishments of Boston University researchers in six projects in high energy physics research: Study of high energy electron-positron annihilation, using the ASP and SLD detectors at SLAC; Search for proton decay and neutrinos from point astrophysical sources, as well as the study of cosmic ray muons and neutrinos in the IMB detector; Development of a new underground detector facility in the Gran Sasso Laboratory in Italy for magnetic monopoles and to study astrophysical muons and neutrinos; Preparation of an experiment to measure the anomalous magnetic moment of the muon in a new superconducting storage ring and detector system at BNL; Development of new concepts for particle accelerator components, including design and prototyping of high-precision electrostatic and magnetic elements; and Study of theoretical particle physics, including lattice gauge theories, string theories, phenomenology of the Standard Model and its extensions, and application of particle physics concepts to the early universe, cosmology and astrophysics, as well as the extension of these techniques into computational physics

  20. Research accomplishments and future goals in particle physics

    International Nuclear Information System (INIS)

    1989-01-01

    This document reports the past year's achievements and the present directions of the activities of Boston University researchers in seven projects in high energy physics research: study of high energy electron-positron annihilation, using the SLD detector at SLAC; search for proton decay and neutrinos from point astrophysical sources, as well as the study of cosmic ray muons and neutrinos in the IMB detector; development of a new underground detector facility in the Gran Sasso Laboratory in Italy for magnetic monopoles and to study astrophysical muons and neutrinos; preparation of an experiment to measure the anomalous magnetic moment of the muon in a new superconducting storage ring detector system at BNL; development of new concepts for particle accelerator components, including design and prototyping of high-precision electrostatic and magnetic elements; study of proton-antiproton collisions using the UA1 detector at CERN; and study of theoretical particle physics, including lattice gauge theories, string theories, phenomenology of the Standard Model and its extensions, and application of particle physics concepts to the early universe, cosmology and astrophysics, as well as the extension of these techniques into computational physics

  1. Research accomplishments and future goals in particle physics

    International Nuclear Information System (INIS)

    1990-01-01

    This document presents our proposal to continue the activities of Boston University researchers in eight projects in high energy physics research: study of high energy electron-positron annihilation, using SLD detector at SLAC. Development of integrated transition radiation detection and tracking for an SSC detector; Development of new concepts for particle accelerator components, including design and prototyping of high-precision electrostatic and magnetic elements; Development of a new underground detector facility in the Gran Saso Laboratory in Italy to search for magnetic monopoles and to study astrophysical muons and neutrinos; Search for proton decay and neutrinos from point astrophysical sources, and the study of cosmic ray muons and neutrinos in the IMB detector; Study of theoretical particle physics, including lattice gauge theories, string theories, phenomenology of the Standard Model and its extensions, and application of particle physics concepts to the early universe, cosmology and astrophysics, as well as the extension of these techniques into computational physics; Preparation of an experiment to measure the anomalous magnetic moment of the muon in a new superconducting storage ring and detector system at BNL; Fabrication (with M.I.T. and Princeton) of the BGO endcaps and associated tracking chambers for the L3 detector at LEP. Development of a central tracker for the SSC; and This new tasks requests support for research, development, and beam testing of a prototype SSC calorimeter featuring a tower geometry and composed of lead alloy and scintillating fibers

  2. EDITORIAL: Focus on Dark Matter and Particle Physics

    Science.gov (United States)

    Aprile, Elena; Profumo, Stefano

    2009-10-01

    The quest for the nature of dark matter has reached a historical point in time, with several different and complementary experiments on the verge of conclusively exploring large portions of the parameter space of the most theoretically compelling particle dark matter models. This focus issue on dark matter and particle physics brings together a broad selection of invited articles from the leading experimental and theoretical groups in the field. The leitmotif of the collection is the need for a multi-faceted search strategy that includes complementary experimental and theoretical techniques with the common goal of a sound understanding of the fundamental particle physical nature of dark matter. These include theoretical modelling, high-energy colliders and direct and indirect searches. We are confident that the works collected here present the state of the art of this rapidly changing field and will be of interest to both experts in the topic of dark matter as well as to those new to this exciting field. Focus on Dark Matter and Particle Physics Contents DARK MATTER AND ASTROPHYSICS Scintillator-based detectors for dark matter searches I S K Kim, H J Kim and Y D Kim Cosmology: small-scale issues Joel R Primack Big Bang nucleosynthesis and particle dark matter Karsten Jedamzik and Maxim Pospelov Particle models and the small-scale structure of dark matter Torsten Bringmann DARK MATTER AND COLLIDERS Dark matter in the MSSM R C Cotta, J S Gainer, J L Hewett and T G Rizzo The role of an e+e- linear collider in the study of cosmic dark matter M Battaglia Collider, direct and indirect detection of supersymmetric dark matter Howard Baer, Eun-Kyung Park and Xerxes Tata INDIRECT PARTICLE DARK MATTER SEARCHES:EXPERIMENTS PAMELA and indirect dark matter searches M Boezio et al An indirect search for dark matter using antideuterons: the GAPS experiment C J Hailey Perspectives for indirect dark matter search with AMS-2 using cosmic-ray electrons and positrons B Beischer, P von

  3. Magnetic monopoles in particle physics and cosmology

    International Nuclear Information System (INIS)

    Preskill, J.

    1986-01-01

    Hardly any topic better illustrates the connection between particle physics and cosmology than the topic of magnetic monopoles. While there is no persuasive evidence that a monopole has ever been detected, the existence of monopoles is implied by deeply cherished beliefs about the structure of matter at extremely short distances. And the fact that monopoles are so rare as to have escaped detection has profound implications concerning the very early history of the universe. This article gives a brief overview of the theory of magnetic monopoles and its relevance to cosmology. In Section II, the author explains the connection between monopoles and the unification of the fundamental interactions. In Section III, he describes how monopoles might have been produced in the very early universe. Theoretical limits on the abundance of monopoles derived from astrophysical considerations are the subject of Section IV. Section V contains conclusions

  4. Energy related applications of elementary particle physics

    International Nuclear Information System (INIS)

    Rafelski, J.

    1991-01-01

    The current research position is summarized, and what could be done in the future to clarify issues which were opened up by the research is indicated. Following on the discussion of the viability of catalyzed fusion, there is presented along with the key experimental results, a short account of the physics surrounding the subject. This is followed by a discussion of key research topics addressed. In consequence of the progress made, it appears that the feasibility of a small-scale fusion based on catalyzed reactions rests on either the remote chance that a yet undiscovered ultraheavy negatively charged elementary particle exists in Nature, or on the possible technical realization of a system based on muon-catalyzed fusion (MuCF) in high-density degenerate hydrogen plasma (density 1000 LHD, temperature O(100 eV)). The lattter is considered to have practical promise

  5. Energy related applications of elementary particle physics

    International Nuclear Information System (INIS)

    Rafelski, J.

    1989-01-01

    Study of muon catalysis of nuclear fusion and phenomena commonly referred to as cold fusion has been central to our effort. Muon catalyzed fusion research concentrated primarily on the identification of energy efficient production of muons, and the understanding and control of the density dependence of auto-poisoning (sticking) of the catalyst. We have also developed the in-flight fusion description of the tμ-d reaction, and work in progress shows promise in explaining the fusion cycle anomalies and smallness of sticking as a consequence of the dominant role of such reactions. Our cold fusion work involved the exploration of numerous environments for cold fusion reactions in materials used in the heavy water electrolysis, with emphasis on reactions consistent with the conventional knowledge of nuclear physics reactions. We then considered the possibility that a previously unobserved ultra-heavy particle X - is a catalyst of dd fusion, explaining the low intensity neutrons observed by Jones et. al. 29 refs

  6. Probability and statistics for particle physics

    CERN Document Server

    Mana, Carlos

    2017-01-01

    This book comprehensively presents the basic concepts of probability and Bayesian inference with sufficient generality to make them applicable to current problems in scientific research. The first chapter provides the fundamentals of probability theory that are essential for the analysis of random phenomena. The second chapter includes a full and pragmatic review of the Bayesian methods that constitute a natural and coherent framework with enough freedom to analyze all the information available from experimental data in a conceptually simple manner. The third chapter presents the basic Monte Carlo techniques used in scientific research, allowing a large variety of problems to be handled difficult to tackle by other procedures. The author also introduces a basic algorithm, which enables readers to simulate samples from simple distribution, and describes useful cases for researchers in particle physics.The final chapter is devoted to the basic ideas of Information Theory, which are important in the Bayesian me...

  7. Exceptional quantum geometry and particle physics

    Directory of Open Access Journals (Sweden)

    Michel Dubois-Violette

    2016-11-01

    Full Text Available Based on an interpretation of the quark–lepton symmetry in terms of the unimodularity of the color group SU(3 and on the existence of 3 generations, we develop an argumentation suggesting that the “finite quantum space” corresponding to the exceptional real Jordan algebra of dimension 27 (the Euclidean Albert algebra is relevant for the description of internal spaces in the theory of particles. In particular, the triality which corresponds to the 3 off-diagonal octonionic elements of the exceptional algebra is associated to the 3 generations of the Standard Model while the representation of the octonions as a complex 4-dimensional space C⊕C3 is associated to the quark–lepton symmetry (one complex for the lepton and 3 for the corresponding quark. More generally it is suggested that the replacement of the algebra of real functions on spacetime by the algebra of functions on spacetime with values in a finite-dimensional Euclidean Jordan algebra which plays the role of “the algebra of real functions” on the corresponding almost classical quantum spacetime is relevant in particle physics. This leads us to study the theory of Jordan modules and to develop the differential calculus over Jordan algebras (i.e. to introduce the appropriate notion of differential forms. We formulate the corresponding definition of connections on Jordan modules.

  8. Compilation of current high energy physics experiments

    International Nuclear Information System (INIS)

    1978-09-01

    This compilation of current high-energy physics experiments is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and the nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. Nominally, the compilation includes summaries of all high-energy physics experiments at the above laboratories that were approved (and not subsequently withdrawn) before about June 1978, and had not completed taking of data by 1 January 1975. The experimental summaries are supplemented with three indexes to the compilation, several vocabulary lists giving names or abbreviations used, and a short summary of the beams at each of the laboratories (except Rutherford). The summaries themselves are included on microfiche

  9. Sustained Spheromak Physics Experiment, SSPX

    International Nuclear Information System (INIS)

    Hooper, E.B.

    1997-01-01

    The Sustained Spheromak Physics Experiment is proposed for experimental studies of spheromak confinement issues in a controlled way: in steady state relative to the confinement timescale and at low collisionality. Experiments in a flux - conserver will provide data on transport in the presence of resistive modes in shear-stabilized systems and establish operating regimes which pave the way for true steady-state experiments with the equilibrium field supplied by external coils. The proposal is based on analysis of past experiments, including the achievement of T e = 400 eV in a decaying spheromak in CTX. Electrostatic helicity injection from a coaxial ''''gun'''' into a shaped flux conserver will form and sustain the plasma for several milliseconds. The flux conserver minimizes fluxline intersection with the walls and provides MHD stability. Improvements from previous experiments include modem wall conditioning (especially boronization), a divertor for density and impurity control, and a bias magnetic flux for configurational flexibility. The bias flux will provide innovative experimental opportunities, including testing helicity drive on the large-radius plasma boundary. Diagnostics include Thomson scattering for T e measurements and ultra-short pulse reflectrometry to measure density and magnetic field profiles and turbulence. We expect to operate at T e of several hundred eV, allowing improved understanding of energy and current transport due to resistive MHD turbulence during sustained operation. This will provide an exciting advance in spheromak physics and a firm basis for future experiments in the fusion regime

  10. Annual report 1977, Particle physics, Institute of Physics, University of Stockholm

    International Nuclear Information System (INIS)

    1978-01-01

    The research in the field of elementary particle physics concerns hadronic processes at high energies, using the facilities offered by CERN and Fermilab, USA. The teams carrying out experiments with bubble chambers are mainly working at the institute, whereas the tems utilizing counter techniques spend long periods at CERN. Experiments at CERN SPS and Fermilab are in progress. The equipment for bubble chamber physics at the institute consists of five scanning tables, one manual measuring machine and the Spiral Reader measuring machine. A computer CD 6400 is available at the institute. The research program comprises study of 100 GeV/c antiproton-deuterium reactions, 12 GeV/c antiproton-deuterium reactions, 9 and 12 GeV/c antiproton-proton reactions studying all annihilation and non-annihilation processes, a detailed study of amplitudes in 4 GeV/c π - p reactions with strange particles, strange particle production in 19 GeV/c pp and study of 19 GeV/c pd. The main emphasis in the future will be on experiments with the European Hybrid Spectrometer system and the Big European Bubble Chamber at SPS. The group participates in the design work and planning for the physics experiments. Research physicists from the group participate in counter experiments at SPS studying elastic scattering at high transverse momenta, elastic scattering of π, K and p sup(+-) at PS energies and study of line reversal invariance in πp and Kp reactions. (author)

  11. Intersections between particle and nuclear physics

    International Nuclear Information System (INIS)

    Van Oers, W.T.H.

    1992-01-01

    This report contains papers on High Energy Physics and Nuclear Physics research. Some of areas covered are: antiproton physics; detectors and instrumentation; accelerator facilities; hadron physics; mesons and lepton decays; physics with electrons and muons; physics with relativistic heavy ions; physics with spin; neutrinos and nonaccelerator physics. The individual paper have been indexed separately elsewhere

  12. Computer codes in particle transport physics

    International Nuclear Information System (INIS)

    Pesic, M.

    2004-01-01

    Simulation of transport and interaction of various particles in complex media and wide energy range (from 1 MeV up to 1 TeV) is very complicated problem that requires valid model of a real process in nature and appropriate solving tool - computer code and data library. A brief overview of computer codes based on Monte Carlo techniques for simulation of transport and interaction of hadrons and ions in wide energy range in three dimensional (3D) geometry is shown. Firstly, a short attention is paid to underline the approach to the solution of the problem - process in nature - by selection of the appropriate 3D model and corresponding tools - computer codes and cross sections data libraries. Process of data collection and evaluation from experimental measurements and theoretical approach to establishing reliable libraries of evaluated cross sections data is Ion g, difficult and not straightforward activity. For this reason, world reference data centers and specialized ones are acknowledged, together with the currently available, state of art evaluated nuclear data libraries, as the ENDF/B-VI, JEF, JENDL, CENDL, BROND, etc. Codes for experimental and theoretical data evaluations (e.g., SAMMY and GNASH) together with the codes for data processing (e.g., NJOY, PREPRO and GRUCON) are briefly described. Examples of data evaluation and data processing to generate computer usable data libraries are shown. Among numerous and various computer codes developed in transport physics of particles, the most general ones are described only: MCNPX, FLUKA and SHIELD. A short overview of basic application of these codes, physical models implemented with their limitations, energy ranges of particles and types of interactions, is given. General information about the codes covers also programming language, operation system, calculation speed and the code availability. An example of increasing computation speed of running MCNPX code using a MPI cluster compared to the code sequential option

  13. Accelerators for elementary particle physics in Europe

    International Nuclear Information System (INIS)

    Schopper, H.

    1983-01-01

    The European accelerator programme provides for physicists from Europe and other continents facilities to carry out an exciting physics programme both in the medium- and long-term future. During the last decade a concentration of activities took place. The major high energy physics laboratory in Europe is CERN which, with its 13 Member States, is the only international laboratory in the field of high energy physics. About 2.500 physicists carry out their research there and they come not only from the Member States but also from the United States, USSR, Japan, China, Israel etc. Its attraction stems from the fact that most of its facilities are unique. The second laboratory for high energy physics is DESY in Hamburg. Although being a national laboratory it has always been open to physicists from other countries.In particular, since the operation of PETRA started, it has attracted many physicists from Europe and other regions. All high energy experiments at DESY are carried out in international collaborations: there are about 400 physicists involved, some 180 come from foreign universities and research institutes and about 150 from German universities and research laboratories. (author)

  14. Advances in magnetospheric physics, 1971--1974: energetic particles

    International Nuclear Information System (INIS)

    West, H.I. Jr.

    1974-12-01

    An account is given of energetic particle research in magnetospheric physics for the time period 1971--1974. Emphasis is on relating the various aspects of energetic particles to magnetospheric processes. 458 refs. (U.S.)

  15. An experiment in diffractive physics

    International Nuclear Information System (INIS)

    Santoro, Alberto

    2001-01-01

    The purpose of this talk is to show one of the next future experiment in diffractive Physics which will be installed at the DO experiment at Tevatron/Fermilab for run II, and the importance for Quantum Chromodynamics (QCD) as the theory of the strong interactions. The apparatus that we have developed is the Forward Proton Detector (FPD) to be introduced on the beam line of the Tevatron at both sides of the DO detector. The FPD is composed by a set of Roman Pots as we will see in the text below

  16. New HEPAP report outlines revolution in particle physics

    CERN Multimedia

    2004-01-01

    "The most compelling questions facing contemporary particle physics research and a program to address them have been distilled into a new report “Quantum Universe: The Revolution in 21st-Century Particle Physics,” adopted today by the Department of Energy/National Science Foundation High Energy Physics Advisory Panel (HEPAP)" (1 page)

  17. Nuclear physics experiments with low cost instrumentation

    Science.gov (United States)

    Oliveira Bastos, Rodrigo; Adelar Boff, Cleber; Melquiades, Fábio Luiz

    2016-11-01

    One of the difficulties in modern physics teaching is the limited availability of experimental activities. This is particularly true for teaching nuclear physics in high school or college. The activities suggested in the literature generally symbolise real phenomenon, using simulations. It happens because the experimental practices mostly include some kind of expensive radiation detector and an ionising radiation source that requires special care for handling and storage, being subject to a highly bureaucratic regulation in some countries. This study overcomes these difficulties and proposes three nuclear physics experiments using a low-cost ion chamber which construction is explained: the measurement of 222Rn progeny collected from the indoor air; the measurement of the range of alpha particles emitted by the 232Th progeny, present in lantern mantles and in thoriated welding rods, and by the air filter containing 222Rn progeny; and the measurement of 220Rn half-life collected from the emanation of the lantern mantles. This paper presents the experimental procedures and the expected results, indicating that the experiments may provide support for nuclear physics classes. These practices may outreach wide access to either college or high-school didactic laboratories, and the apparatus has the potential for the development of new teaching activities for nuclear physics.

  18. Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 8: Instrumentation Frontier

    Energy Technology Data Exchange (ETDEWEB)

    Demarteau, M; Lipton, R; Nicholson, H; Shipsey, I; Akerib, D; Albayrak-Yetkin, A; Alexander, J; Anderson, J; Artuso, M; Asner, D; Ball, R; Battaglia, M; Bebek, C; Beene, J; Benhammou, Y; Bentefour, E; Bergevin, M; Bernstein, A; Bilki, B; Blucher, E; Bolla, G; Bortoletto, D; Bowden, N; Brooijmans, G; Byrum, K; Cabrera, B; Cancelo, G; Carlstrom, J; Casey, B; Chang, C; Chapman, J; Chen, CH; Childres, I; Christian, D; Convery, M; Corso, WCJ; Cumalat, J; Cushman, P; Via, CD; Dazeley, S; Debbins, P; Deptuch, G; Dhawan, S; Benedetto, VD; DiGiovene, B; Djurcic, Z; Dye, S; Elagin, A; Estrada, J; Evans, H; Etzion, E; Fast, J; Ferretti, C; Fisher, P; Fleming, B; Francis, K; Friedman, P; Frisch, H; Garcia-Sciveres, M; Gatto, C; Geronim, G; Gilchriese, G; Golwala, S; Grant, C; Grillo, A; Grünendahl, E; Gorham, P; Guan, L; Gutierrez, G; Haber, C; Hall, J; Haller, G; Hast, C; Heintz, U; Hemmick, T; Hitlin, DG; Hogan, C; Hohlmann, M; Hoppe, E; Hsu, L; Huffer, M; Irwin, K; Izraelevitch, F; Jennings, G; Johnson, M; Jung, A; Kagan, H; Kenney, C; Kettell, S; Khanna, R; Khristenko, V; Krennrich, F; Kuehn, K; Kutschke, R; Learned, J; Lee, AT; Levin, D; Liu, T; Liu, ATK; Lissauer, D; Love, J; Lynn, D; MacFarlane, D; Magill, S; Majewski, S; Mans, J; Maricic, J; Marleau, P; Mazzacane, A; McKinsey, D; Mehl, J; Mestvirisvilli, A; Meyer, S; Mokhov, N; Moshe, M; Mukherjee, A; Murat, P; Nahn, S; Narain, M; Nadel-Turonski, P; Newcomer, M; Nishimura, K; Nygren, D; Oberla, E; Onel, Y; Oreglia, M; Orrell, J; Paley, J; Para, A; Parker, S; Polychronakos, V; Pordes, S; Privitera, P; Prosser, A; Pyle, M; Raaf, J; Ramberg, E; Rameika, R; Rebel, B; Repond, J; Reyna, D; Ristori, L; Rivera, R; Ronzhin, A; Rusack, R; Russ, J; Ryd, A; Sadrozinski, H; Sahoo, H; Sanchez, MC; Sanzeni, C; Schnetzer, S; Seidel, S; Seiden, A; Schmidt, I; Shenai, A; Shutt, T; Silver, Y; Smith, W; Snowden-Ifft, D; Sonnenschein, A; Southwick, D; Spiegel, L; Stanitzki, M; Striganov, S; Su, D; Sumner, R; Svoboda, R; Sweany, M; Talaga, R; Tayloe, R; Tentindo, S; Terentiev, N; Thom-Levy, J; Thorn, C; Tiffenberg, J; Trischuk, W; Tschirhart, R; Turner, M; Underwood, D; Uplegger, L; Urheim, J; Vagins, M; Bibber, KV; Varner, G; Varner, R; Va' vra, J; Lippe, HVD; Wagner, R; Wagner, S; Weaverdyck, C; Wenzel, H; Weinstein, A; Wetstein, M; White, A; Wigman, R; Wilson, P; Winn, D; Winter, P; Woody, C; Xia, L; Xie, JQ; Ye, Z; Yeh, MF; Yetkin, T; Yoo, JH; Yu, J; Yu, JM; Zeller, S; Zhang, JL; Zhu, JJ; Zhou, B; Zhu, RY; Zitzer, B

    2014-01-23

    These reports present the results of the 2013 Community Summer Study of the APS Division of Particles and Fields ("Snowmass 2013") on the future program of particle physics in the U.S. Chapter 8, on the Instrumentation Frontier, discusses the instrumentation needs of future experiments in the Energy, Intensity, and Cosmic Frontiers, promising new technologies for particle physics research, and issues of gathering resources for long-term research in this area.

  19. Theoretical and Experimental Studies of Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Harold G [Indiana University; Kostelecky, V Alan [Indiana University; Musser, James A [Indiana University

    2013-07-29

    The elementary particle physics research program at Indiana University spans a broad range of the most interesting topics in this fundamental field, including important contributions to each of the frontiers identified in the recent report of HEPAP's Particle Physics Prioritization Panel: the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. Experimentally, we contribute to knowledge at the Energy Frontier through our work on the D0 and ATLAS collaborations. We work at the Intensity Frontier on the MINOS and NOvA experiments and participate in R&D for LBNE. We are also very active on the theoretical side of each of these areas with internationally recognized efforts in phenomenology both in and beyond the Standard Model and in lattice QCD. Finally, although not part of this grant, members of the Indiana University particle physics group have strong involvement in several astrophysics projects at the Cosmic Frontier. Our research efforts are divided into three task areas. The Task A group works on D0 and ATLAS; Task B is our theory group; and Task C contains our MINOS, NOvA, and LBNE (LArTPC) research. Each task includes contributions from faculty, senior scientists, postdocs, graduate and undergraduate students, engineers, technicians, and administrative personnel. This work was supported by DOE Grant DE-FG02-91ER40661. In the following, we describe progress made in the research of each task during the final period of the grant, from November 1, 2009 to April 30, 2013.

  20. A finite particle number approach to physics

    International Nuclear Information System (INIS)

    Noyes, H.P.

    1984-01-01

    Starting from a discrete, self-generating and self-organizing, recursive model and self-consistent interpretive rules the author constructs: the scale constants of physics (3, 10, 137, 1.7x10 38 ); 3+1 Minkowski space with a discrete metric and the algebraic bound ΔepsilonΔtau >= 1; the Einstein-deBroglie relation; algebraic 'double slit' interference; a single time momentum space scattering theory connected to laboratory experience; an approximation to 'wave functions'; 'local' phase severence and hence both distant correlations and separability; baryon number, lepton number, charge and helicity; msub(p)/msub(e); a cosmology not in disagreement with current observations. (Auth.)

  1. A data acquisition system for elementary particle physics

    International Nuclear Information System (INIS)

    Grittenden, J.A.; Benenson, G.; Cunitz, H.; Hsuing, Y.B.; Kaplan, D.M.; Sippach, W.; Stern, B.

    1984-01-01

    The data acquisition system experiment 605 at the Fermi National Accelerator Laboratory employs a set of data transfer protocols developed at Columbia University and implemented in the Nevis Laboratories Data Transport System. The authors describe the logical design of the Transport System, its physical realization, and its particular application during the Spring, 1982 data run of experiment 605. During that run it served as the interface between the data latches and a megabyte of fast memory, operating at a data transfer rate of 200 nsec/16-bit word. Up to two thousand events were read out during the one second beam spill, each event consisting of about 250 words. Included are details of proposed improvements to the data acquisition system and append a brief comment of the need for inexpensive, versatile readout systems in experimental elementary particle physics

  2. Testing the standard model of particle physics using lattice QCD

    International Nuclear Information System (INIS)

    Water, Ruth S van de

    2007-01-01

    Recent advances in both computers and algorithms now allow realistic calculations of Quantum Chromodynamics (QCD) interactions using the numerical technique of lattice QCD. The methods used in so-called '2+1 flavor' lattice calculations have been verified both by post-dictions of quantities that were already experimentally well-known and by predictions that occurred before the relevant experimental determinations were sufficiently precise. This suggests that the sources of systematic error in lattice calculations are under control, and that lattice QCD can now be reliably used to calculate those weak matrix elements that cannot be measured experimentally but are necessary to interpret the results of many high-energy physics experiments. These same calculations also allow stringent tests of the Standard Model of particle physics, and may therefore lead to the discovery of new physics in the future

  3. Recipients of 2013 EPS High Energy & Particle Physics Prize

    CERN Multimedia

    ATLAS, Experiment

    2014-01-01

    (From left) Joe Incandela, Peter Higgs, Francois Englert, Tejinder Virdee, Dave Charlton, and Peter Jenni. Higgs and Englert gave the prizes to the recipients of the 2013 European Physical Society's High Energy and Particle Physics Prize, for an outstanding contribution to high energy physics. "For the discovery of a Higgs boson, as predicted by the Brout-Englert-Higgs mechanism," the prize was awarded to the ATLAS and CMS collaborations. Spokesperson for CMS, Incandela, and Spokesperson for ATLAS, Charlton, accepted the awards on their collaborations' behalf. "For their pioneering and outstanding leadership roles in the making of the ATLAS and CMS experiments," the prize was awarded to Jenni, Virdee, and Michel Della Negra (not present). Image: ATLAS

  4. High energy particle experiment for the GEOTAIL mission

    International Nuclear Information System (INIS)

    1989-09-01

    The high energy particle experiment for GEOTAIL mission was designed to understand the particle acceleration mechanism, energy flow, boundary dynamics and magnetic reconnection mechanism in the geotail region, solar flare particle acceleration mechanism, the propagation mechanism through interplanetary space, and the origin, lifetime and propagation mechanism of cosmic ray heavy ions. In order to achieve these objectives, particle detectors, burst detectors, medium energy isotope telescopes and a high energy isotope telescope will be placed in the spacecraft which will be launched in 1992 as one of the spacecraft missions in the International Solar Terrestrial Physics program. With these detectors, electrons, protons and helium, carbon, silicon and iron particles will be detected. The characteristics and the main technique used for each instrument to observe high energy particles are summarized. The details of the scientific objectives, the basic principle of particle identification, the electronic system and data processing system, key parameter information, telemetry data formats, preflight and in-flight calibration method and data an analysis plan are described in this report. (K.I.)

  5. Research accomplishments and future goals in particle physics

    International Nuclear Information System (INIS)

    Whitaker, J.S.

    1990-01-01

    This document presents our proposal to continue the activities of Boston University researchers in eight projects in high energy physics research: Colliding Beams Physics; Accelerator Design Physics; MACRO Project; Proton Decay Project; Theoretical Particle Physics; Muon G-2 Project; and Hadron Collider Physics. The scope of each of these projects is presented in detail in this paper

  6. Search for long lived particles at the LHC (SUSY+exotics physics scenarios)

    CERN Document Server

    Romanowska-Rybinska, Katarzyna

    2012-01-01

    Many models of physics Beyond the Standard Model (BSM) predict the existence of new heavy particles with long lifetimes. These particles come in many different types, but have one thing in common, they have very unique signatures at LHC experiments, which makes them easily distinguishable from Standard Model (SM) particles. Finding the signal of any of them would be a clear sign of BSM physics. In this paper we present search strategies and results of seven searches for long-lived exotic particles of different types, both charged and neutral, performed by the ATLAS and CMS experiments with 2011 pp collision data taken at LHC energy $\\sqrt{s}$ = 7 TeV.

  7. IViPP: A Tool for Visualization in Particle Physics

    Science.gov (United States)

    Tran, Hieu; Skiba, Elizabeth; Baldwin, Doug

    2011-10-01

    Experiments and simulations in physics generate a lot of data; visualization is helpful to prepare that data for analysis. IViPP (Interactive Visualizations in Particle Physics) is an interactive computer program that visualizes results of particle physics simulations or experiments. IViPP can handle data from different simulators, such as SRIM or MCNP. It can display relevant geometry and measured scalar data; it can do simple selection from the visualized data. In order to be an effective visualization tool, IViPP must have a software architecture that can flexibly adapt to new data sources and display styles. It must be able to display complicated geometry and measured data with a high dynamic range. We therefore organize it in a highly modular structure, we develop libraries to describe geometry algorithmically, use rendering algorithms running on the powerful GPU to display 3-D geometry at interactive rates, and we represent scalar values in a visual form of scientific notation that shows both mantissa and exponent. This work was supported in part by the US Department of Energy through the Laboratory for Laser Energetics (LLE), with special thanks to Craig Sangster at LLE.

  8. Mark Thomson presents the book "Modern Particle Physics"

    CERN Multimedia

    2013-01-01

    Tuesday 5 November 2013 at 4 p.m. in the Library, Bldg. 52 1-052 This new textbook covers all the main aspects of modern particle physics, providing a clear connection between the theory and recent experimental results, including the recent discovery of a Higgs boson and the most recent developments in neutrino physics. It provides a comprehensive and self-contained description of the Standard Model of particle physics suitable for upper-level undergraduate students and graduate students studying experimental particle physics. Physical theory is introduced in a relatively straightforward manner with step-by-step mathematical derivations. In each chapter, fully worked examples link the theory to central experimental results in contemporary particle physics. Modern Particle Physics, by Mark Thomson, Cambridge University Press, 2013, ISBN 9781107034266. *Coffee will be served from 3.30 p.m.*

  9. The notions of mass in gravitational and particle physics

    Science.gov (United States)

    Castellani, Gianluca

    It is presently thought that the mass of all of the elementary particles is determined by the Higgs field. This scalar field couples directly into the trace of the energy momentum tensor of the elementary particles. The attraction between two or more masses arises from the exchange of gravitational quantum particles of spin 2, called gravitons. The gravitational field couples directly into the energy momentum tensor. Then there is a close connection between the Higgs field, that originates the mass, and the gravitational field that dictates how the masses interact. Our purpose in this thesis is to discuss this close connection in terms of fundamental definitions of inertial and gravitational masses. On a practical level we explore two properties of mass from the viewpoint of coupling into the Higgs field: (i) The coupling of the both the Higgs and gravity to the energy-pressure tensor allows for the decay of the Higgs particle into two gravitons. We use the self energy part of the Higgs propagator to calculate the electromagnetic, weak, fermionic and gravitational decay rate of the Higgs particle. We show that the former process appears to dominate the other decay modes. Since the gravitons are detectable with virtually zero probability, the number of Higgs particles with observable decay products will be much less than previously expected. (ii) Some new experimental results seem to indicate that the mass of the heavy elementary particles like the Z,W+,W- and especially the top quark, depends on the particle environment in which these particles are produced. The presence of a Higgs field due to neighboring particles could be responsible for induced mass shifts. Further measurements of mass shift effects might give an indirect proof of the Higgs particle. Such can be in principle done by re-analyzing some of the production data e +e- → ZZ (or W+W-) already collected at the LEP experiment. About the physical property of the top quark, it is too early to arrive at

  10. Position sensitive photon detectors for nuclear physics, particle physics and healthcare applications

    International Nuclear Information System (INIS)

    Seitz, B

    2012-01-01

    Modern experiments in hadronic physics require detector systems capable of identifying and reconstructing all final-state particles and their momentum vectors. Imaging Cherenkov counters (RICH and DIRC) are frequently employed in nuclear and particle physics experiments. These detectors require high-rate, single-photon capable light detection system with sufficient granularity and position resolution. Several candidate systems are available, ranging from multi-anode photomultiplier tubes to micro-channel plate systems to silicon photomultipliers. Each of these detection solutions has particular advantages and disadvantages. Detailed studies of rate dependence, cross-talk, time-resolution and position resolution for a range of available photon detection solutions are presented. These properties make these photon detection systems ideal for radionuclide imaging applications. Cherenkov radiation can also be used for medical imaging applications. Two different applications using the Cherenkov effect for radionuclide imaging will be reviewed.

  11. LHCf: physics results on forward particle production at LHC

    CERN Document Server

    Adriani, O

    2013-01-01

    The LHCf experiment is dedicated to the measurement of very forward particle production in the high energy hadron-hadron collisions at LHC, with the aim of improving the cosmic-ray air shower developments models. The detector has taken data in p-p collisions at $\\sqrt s$ = 900 GeV, 2.76 TeV and 7 TeV, and in p/Pb collisions at $\\sqrt s$ = 5 TeV. The results of forward production spectra of photons, neutral pions and neutrons, compared with the models most widely used in the High Energy Cosmic Ray physics, are presented in this paper.

  12. The uses of isospin in early nuclear and particle physics

    Science.gov (United States)

    Borrelli, Arianna

    2017-11-01

    This paper reconstructs the early history of isospin up to and including its employment in 1951sbnd 52 to conceptualize high-energy pion-proton scattering. Studying the history of isospin serves as an entry point for investigating the interplay of theoretical and experimental practices in early nuclear and particle physics, showing the complexity of processes of knowledge construction which have often been presented as straightforward both in physicists' recollections and in the historiography of science. The story of isospin has often been told in terms of the discovery of the first ;intrinsic property; of elementary particles, but I will argue that the isospin formalism emerged and was further developed because it proved to be a useful tool to match theory and experiment within the steadily broadening field of high-energy (nuclear) physics. Isospin was variously appropriated and adapted in the course of two decades, before eventually the physical-mathematical implications of its uses started being spelled out. The case study also highlights some interesting features of high-energy physics around 1950: the contribution to post-war research of theoretical methods developed before and during the war, the role of young theoretical post-docs in mediating between theorists and experimenters, and the importance of traditional formalisms such as those of spin and angular momentum as a template both for formalizing and conceptualizing experimental results.

  13. Geneva University: seminar of particle physics

    CERN Multimedia

    Geneva University

    2012-01-01

    GENEVA UNIVERSITY École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92 Wednesday 9 May 2012 SEMINAR OF PARTICLE PHYSICS 11h15 - Science III, Auditoire 1S081 30 The Search for the Magnetic Monopole Dr Philippe Mermod - University of Geneva, DPNC It has long been realised that the existence of a magnetic monopole would be sufficient to explain the quantisation of electric charge, and to symmetrise Maxwell's equations. Furthermore, the monopole is an essential ingredient in Grand Unification theories. Primordial monopoles would have been produced in the Early Universe and still be present today, either in cosmic rays or trapped in matter. Monopoles of accessible masses would also be pair-produced at high-energy accelerators. Their remarkable properties can be exploited to devise various means of direct detection. After reviewin...

  14. Some calculator programs for particle physics

    International Nuclear Information System (INIS)

    Wohl, C.G.

    1982-01-01

    Seven calculator programs that do simple chores that arise in elementary particle physics are given. LEGENDRE evaluates the Legendre polynomial series Σa/sub n/P/sub n/(x) at a series of values of x. ASSOCIATED LEGENDRE evaluates the first-associated Legendre polynomial series Σb/sub n/P/sub n/ 1 (x) at a series of values of x. CONFIDENCE calculates confidence levels for chi 2 , Gaussian, or Poisson probability distributions. TWO BODY calculates the c.m. energy, the initial- and final-state c.m. momenta, and the extreme values of t and u for a 2-body reaction. ELLIPSE calculates coordinates of points for drawing an ellipse plot showing the kinematics of a 2-body reaction or decay. DALITZ RECTANGULAR calculates coordinates of points on the boundary of a rectangular Dalitz plot. DALITZ TRIANGULAR calculates coordinates of points on the boundary of a triangular Dalitz plot. There are short versions of CONFIDENCE (EVEN N and POISSON) that calculate confidence levels for the even-degree-of-freedom-chi 2 and the Poisson cases, and there is a short version of TWO BODY (CM) that calculates just the c.m. energy and initial-state momentum. The programs are written for the HP-97 calculator

  15. Effective Lagrangians in elementary particle physics

    International Nuclear Information System (INIS)

    Trahern, C.G.

    1982-01-01

    Non-linear effective Lagrangians are constructed to represent the low energy phenomenology of elementary particles. As approximate descriptions of the dynamics of hadrons, these models simulate the expected (but unproven) behavior of more complex theories such as quantum Chromo-dynamics [QCD]. A general formalism for non-linear models was developed in the late 1960's by Coleman, Wess and Zumino. This dissertation utilizes and extends their work by incorporating some of the advances that have been made in the understanding of quantum field theories in the last decade. In particular the significance of spatial boundary conditions for interpreting the ground state behavior of the non-linear models is investigated. In addition the existence of a dual theory for the non-linear model is discussed. For experimental purposes duality refers to the possibility that in different enrgy regimes there may be wholly distinct kinds of excitations in the physical spectrum. Corresponding to these phenomenological distinctions are mutually exclusive mathematical descriptions. A familiar example is the duality of electric and magnetic charge in electro-dynamics. If magnetic charges do exist, they are expected to be extremely massive states that are unobservable up to very high energies. The analysis of such states within electrodynamics shows that one cannot describe both electric and magnetic charges without admitting the presence of singularities in the electric potential. A completely analogous form of duality is found and discussed for the non-linear models

  16. Experiments in intermediate energy physics

    International Nuclear Information System (INIS)

    Dehnhard, D.

    2003-01-01

    Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana University Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers

  17. Experiments in intermediate energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Dehnhard, D.

    2003-02-28

    Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana University Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers.

  18. Final report. [Research in theoretical and experimental elementary particle physics

    International Nuclear Information System (INIS)

    1998-01-01

    This report gives summaries of particle physics research conducted by different group members for Task A. A summary of work on the CLEO experiment and detector is included for Task B along with a list of CLEO publications. During the present grant period for Task C, the authors had responsibility for the design, assembly, and programming of the high-resolution spectrometer which looks for narrow peaks in the output of the cavity in the LLNL experiment. They successfully carried out this task. Velocity peaks are expected in the spectrum of dark matter axions on Earth. The computing proposal (Task S) is submitted in support of the High Energy Experiment (CLEO, Fermilab, CMS) and the Theory tasks

  19. Finite-particle-number approach to physics

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, H.P.

    1982-10-01

    Starting from a discrete, self-generating and self-organizing, recursive model and self-consistent interpretive rules we construct: the scale constants of physics (3,10,137,1.7x10/sup 38/); 3+1 Minkowski space with a discrete metric and the algebraic bound ..delta.. is an element of ..delta.. tau is greater than or equal to 1; the Einstein-deBroglie relation; algebraic double slit interference; a single-time momentum-space scattering theory connected to laboratory experience; an approximation to wave functions; local phase severance and hence both distant correlations and separability; baryon number, lepton number, charge and helicity; m/sub p//m/sub e/; a cosmology not in disagreement with current observations.

  20. Finite-particle-number approach to physics

    International Nuclear Information System (INIS)

    Noyes, H.P.

    1982-10-01

    Starting from a discrete, self-generating and self-organizing, recursive model and self-consistent interpretive rules we construct: the scale constants of physics (3,10,137,1.7x10 38 ); 3+1 Minkowski space with a discrete metric and the algebraic bound δ is an element of δ tau is greater than or equal to 1; the Einstein-deBroglie relation; algebraic double slit interference; a single-time momentum-space scattering theory connected to laboratory experience; an approximation to wave functions; local phase severance and hence both distant correlations and separability; baryon number, lepton number, charge and helicity; m/sub p//m/sub e/; a cosmology not in disagreement with current observations

  1. Geneva University: seminar of particle physics

    CERN Multimedia

    Geneva University

    2012-01-01

    Université de Genève École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92 Mercredi 20 juin 2012 SÉMINAIRE DE PHYSIQUE CORPUSCULAIRE 11h15 - Auditoire Stückelberg, École de physique Searches for SUSY at the LHC : status and prospects Dr Monica D’Onofrio - University of Liverpool Supersymmetry is a theory that provides an extension of the Standard Model and naturally solves the hierarchy problem by introducing supersymmetric partners of the known bosons and fermions. The ATLAS and CMS collaborations are searching for SUSY particles in several final states, exploiting at best the excellent quality of the data delivered by the LHC and recorded by the experiments. I shall review the most recent results, with prospects for near and far future. INFORMATION : http://dpnc.unige.ch/seminaire/annon...

  2. A physics-motivated Centroidal Voronoi Particle domain decomposition method

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Lin, E-mail: lin.fu@tum.de; Hu, Xiangyu Y., E-mail: xiangyu.hu@tum.de; Adams, Nikolaus A., E-mail: nikolaus.adams@tum.de

    2017-04-15

    In this paper, we propose a novel domain decomposition method for large-scale simulations in continuum mechanics by merging the concepts of Centroidal Voronoi Tessellation (CVT) and Voronoi Particle dynamics (VP). The CVT is introduced to achieve a high-level compactness of the partitioning subdomains by the Lloyd algorithm which monotonically decreases the CVT energy. The number of computational elements between neighboring partitioning subdomains, which scales the communication effort for parallel simulations, is optimized implicitly as the generated partitioning subdomains are convex and simply connected with small aspect-ratios. Moreover, Voronoi Particle dynamics employing physical analogy with a tailored equation of state is developed, which relaxes the particle system towards the target partition with good load balance. Since the equilibrium is computed by an iterative approach, the partitioning subdomains exhibit locality and the incremental property. Numerical experiments reveal that the proposed Centroidal Voronoi Particle (CVP) based algorithm produces high-quality partitioning with high efficiency, independently of computational-element types. Thus it can be used for a wide range of applications in computational science and engineering.

  3. Brownian quasi-particles in statistical physics

    International Nuclear Information System (INIS)

    Tellez-Arenas, A.; Fronteau, J.; Combis, P.

    1979-01-01

    The idea of a Brownian quasi-particle and the associated differentiable flow (with nonselfadjoint forces) are used here in the context of a stochastic description of the approach towards statistical equilibrium. We show that this quasi-particle flow acquires, at equilibrium, the principal properties of a conservative Hamiltonian flow. Thus the model of Brownian quasi-particles permits us to establish a link between the stochastic description and the Gibbs description of statistical equilibrium

  4. Symmetries and groups in particle physics

    International Nuclear Information System (INIS)

    Scherer, Stefan

    2016-01-01

    The aim of this book consists of a didactic introduction to the group-theoretical considerations and methods, which have led to an ever deeper understanding of the interactions of the elementary particles. The first three chapters deal primarily with the foundations of the representation theory of primarily finite groups, whereby many results are also transferable to compact Lie groups. In the third chapter we discuss the concept of Lie groups and their connection with Lie algebras. In the remaining chapter it is mainly about the application of group theory in physics. Chapter 4 deals with the groups SO(3) and SU(2), which occur in connection with the description of the angular momentum in quantum mechanics. We discuss the Wigner-Eckar theorem together with some applications. In chapter 5 we are employed to the composition properties of strongly interacting systems, so called hadrons, and discuss extensively the transformation properties of quarks with relation to the special unitary groups. The Noether theorem is generally treated in connection to the conservation laws belonging to the Galilei group and the Poincare group. We confine us in chapter 6 to internal symmetries, but explain for that extensively the application to quantum field theory. Especially an outlook on the effect of symmetries in form of so called Ward identities is granted. In chapter 7 we turn towards the gauge principle and discuss first the construction of quantum electrodynamics. In the following we generalize the gauge principle to non-Abelian groups (Yang-Mills theories) and formulate the quantum chromodynamics (QCD). Especially we take a view of ''random'' global symmetries of QCD, especially the chiral symmetry. In chapter 8 we illuminate the phenomenon of spontaneous symmetry breaking both for global and for local symmetries. In the final chapter we work out the group-theoretical structure of the Standard Model. Finally by means of the group SU(5) we take a view to

  5. Research in Neutrino Physics and Particle Astrophysics: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Kearns, Edward [Boston Univ., MA (United States)

    2016-06-30

    The Boston University Neutrino Physics and Particle Astrophysics Group investigates the fundamental laws of particle physics using natural and man-made neutrinos and rare processes such as proton decay. The primary instrument for this research is the massive Super-Kamiokande (SK) water Cherenkov detector, operating since 1996 at the Kamioka Neutrino Observatory, one kilometer underground in a mine in Japan. We study atmospheric neutrinos from cosmic rays, which were first used to discover that neutrinos have mass, as recognized by the 2015 Nobel Prize in Physics. Our latest measurements with atmospheric neutrinos are giving valuable information, complementary to longbaseline experiments, on the ordering of massive neutrino states and as to whether neutrinos violate CP symmetry. We have studied a variety of proton decay modes, including the most frequently predicted modes such as p → e+π0 and p → ν K+, as well as more exotic baryon number violating processes such as dinucleon decay and neutronantineutron oscillation. We search for neutrinos from dark matter annihilation or decay in the universe. Our group has made significant contributions to detector operation, particularly in the area of electronics. Most recently, we have contributed to planning for an upgrade to the SK detector by the addition of gadolinium to the water, which will enable efficient neutron capture detection.

  6. China pursues major role in particle physics

    CERN Multimedia

    Overbye, Dennis

    2006-01-01

    Chinese physicists invented a sort of onion-layer theory of particles called the straton model, in which both protons and electrons have a common constituent. Sheldon Glashow, the physicist and Nobelist now at Boston University, once suggested that such a particle, if found. should be named the Maon. (4,5 pages)

  7. A submersible physics laboratory experiment. Technical report

    International Nuclear Information System (INIS)

    Stehling, K.R.

    1979-01-01

    Since 1972, NOAA (OOE and MUSandT) and the University of Washington Physics Department, have been associated in the underwater detection and analysis of cosmic radiation flux. The purpose of experiments described in this paper has been to take advantage of the nuclear cosmic-ray related qualities of the ocean water mass by allowing the experimenter(s) to work in situ on the sea floor, rather than attempting to try an impractical alternative: lowering a prepared photoemulsion detector to the bottom from a surface vessel, a method that would yield an unacceptably surface-radiation-cluttered emulsion. This report describes briefly the four elements that motivated or comprised the subject experiment: basic physics which motivated the mission; applied physics, including particle detection, emulsion chemistry, calibration, and scanning; engineering, including design and fabrication of supporting apparatus, use of a submersible (JSL was modified slightly to permit lock-on to the bottom chamber), and a bottom lockout chamber; and operations, including submersible dives, ship support, emulsion preparation, deployment, recovery, and development

  8. High-PT Physics with Identified Particles

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.; Liu, W.

    2009-11-09

    The suppression of high-P{sub T} particles in heavy ion collisions was one of the key discoveries at the Relativistic Heavy Ion Collider. This is usually parameterized by the average rate of momentum-transfer squared to this particle, {cflx q}. Here we argue that measurements of identified particles at high P{sub T} can lead to complementary information about the medium. The leading particle of a jet can change its identity through interactions with the medium. Tracing such flavor conversions could allow us to constrain the mean free path. Here we review the basic concepts of flavor conversions and discuss applications to particle ratios and elliptic flow. We make a prediction that strangeness is enhanced at high P{sub T} at RHIC energies while its elliptic flow is suppressed.

  9. Physical properties of charged particle beams for use in radiotherapy

    International Nuclear Information System (INIS)

    Knapp, E.A.

    1975-01-01

    The physical properties of the possible charged particle beams used for cancer radiotherapy are reviewed. Each property is discussed for all interesting particles (π, p, α, Ne ion) and the differences are emphasized. This is followed by a short discussion of the several beam delivery systems used in particle therapy today, emphasizing the differences in the problems for the several different radiations, particularly the differences between the accelerated particle beams and those of a secondary nature. Dose calculation techniques are described

  10. 14th ICATPP Conference on Astroparticle, Particle, Space Physics and Detectors for Physics Applications

    CERN Document Server

    Leroy, Claude; Price, Lawrence; Rancoita, Pier-Giorgio; Ruchti, Randy; ICATPP 2013; International Conference on Advanced Technology and Particle Physics

    2014-01-01

    The exploration of the subnuclear world is done through increasingly complex experiments covering a wide range of energy and performed in a large variety of environments ranging from particle accelerators, underground detectors to satellites and the space laboratory. The achievement of these research programs calls for novel techniques, new materials and instrumentation to be used in detectors, often of large scale. Therefore, fundamental physics is at the forefront of technological advance and also leads to many applications. Among these, are the progresses from space experiments whose results allow the understanding of the cosmic environment, of the origin and evolution of the universe after the Big Bang.

  11. Particle physics brick by brick atomic and subatomic physics explained... in LEGO

    CERN Document Server

    Still, Ben

    2017-01-01

    Using LEGO (R) blocks to create a uniquely visual and clear depiction of the way our universe is put together. This is the perfect introduction to the enigmatic and fascinating world of Quantum Physics.Our story starts with the Big Bang, and along the way, the constructs and interactions within and among atoms and sub-atomic particles, and the forces that play upon them, are clearly explained, with each LEGO (R) block representing a different atomic or sub-atomic particle. The different colours and size denote what that particle is and its relationship with the other 'building blocks'.Each chapter is presented in digestible chunks, using toy building blocks to illustrate the ideas and experiments that have led to some of the biggest discoveries of the past 150 years.Soon you'll be able to construct every element in the Universe using a box of LEGO (R) and this book!

  12. 175th International School of Physics "Enrico Fermi" : Radiation and Particle Detectors

    CERN Document Server

    Bottigli, U; Oliva, P

    2010-01-01

    High energy physics (HEP) has a crucial role in the context of fundamental physics. HEP experiments make use of a massive array of sophisticated detectors to analyze the particles produced in high-energy scattering events. This book contains the papers from the workshop 'Radiation and Particle Detectors', organized by the International School of Physics, and held in Varenna in July 2009. Its subject is the use of detectors for research in fundamental physics, astro-particle physics and applied physics. Subjects covered include the measurement of: the position and length of ionization trails, time of flight velocity, radius of curvature after bending the paths of charged particles with magnetic fields, coherent transition radiation, synchrotron radiation, electro-magnetic showers produced by calorimetric methods and nuclear cascades produced by hadrons in massive steel detectors using calorimetry. Detecting muons and the detection of Cherenkov radiation are also covered, as is the detection of neutrinos by ste...

  13. Search For New Physics In The Compact Muon Solenoid (CMS) Experiment And The Response Of The CMS Calorimeters To Particles And Jets

    CERN Document Server

    Gumus, Kazim Ziya

    2008-01-01

    A Monte Carlo study of a generic search for new resonances beyond the Standard Model (SM) in the CMS experiment is presented. The resonances are axigluon, coloron, E6 diquark, excited quark, W', Z', and the Randall-Sundrum graviton which decay to dijets. The dijet resonance cross section that the CMS can expect to discover at a 5s significance or to exclude at 95% confidence level for integrated luminosities of 100 pb-1, 1 fb-1, and 10 fb-1 is evaluated. It is shown that a 5s discovery of a multi-TeV dijet resonance is possible for an axigluon, excited quark, and E6 diquark. However, a 5s discovery can not be projected with confidence for a W', Z' and the Randall-Sundrum graviton. On the other hand, 95% CL exclusion mass regions can be measured for all resonances at high luminosities. In the second part of this dissertation, the analyses of the 2006 test beam data from the combined electromagnetic and hadronic barrel calorimeters are presented. The CMS barrel calorimeters' response to a variety of beam partic...

  14. Experiment Design and Analysis Guide - Neutronics & Physics

    Energy Technology Data Exchange (ETDEWEB)

    Misti A Lillo

    2014-06-01

    The purpose of this guide is to provide a consistent, standardized approach to performing neutronics/physics analysis for experiments inserted into the Advanced Test Reactor (ATR). This document provides neutronics/physics analysis guidance to support experiment design and analysis needs for experiments irradiated in the ATR. This guide addresses neutronics/physics analysis in support of experiment design, experiment safety, and experiment program objectives and goals. The intent of this guide is to provide a standardized approach for performing typical neutronics/physics analyses. Deviation from this guide is allowed provided that neutronics/physics analysis details are properly documented in an analysis report.

  15. Task A, High energy physics program experiment and theory: Task B, High energy physics program numerical simulation

    International Nuclear Information System (INIS)

    1990-01-01

    This report discusses progress in experimental and theoretical High Energy Physics at Florida State University. Fixed target experiments, collider experiments, computing, networking, VAX upgrade, SSC preparation, detector development, and particle theory are some of the areas covered

  16. UCLA Particle and Nuclear Physics Research Group, 1993 progress report

    International Nuclear Information System (INIS)

    Nefkens, B.M.K.; Clajus, M.; Price, J.W.; Tippens, W.B.; White, D.B.

    1993-09-01

    The research programs of the UCLA Particle and Nuclear Physics Research Group, the research objectives, results of experiments, the continuing activities and new initiatives are presented. The primary goal of the research is to test the symmetries and invariances of particle/nuclear physics with special emphasis on investigating charge symmetry, isospin invariance, charge conjugation, and CP. Another important part of our work is baryon spectroscopy, which is the determination of the properties (mass, width, decay modes, etc.) of particles and resonances. We also measure some basic properties of light nuclei, for example the hadronic radii of 3 H and 3 He. Special attention is given to the eta meson, its production using photons, electrons, π ± , and protons, and its rare and not-so-rare decays. In Section 1, the physics motivation of our research is outlined. Section 2 provides a summary of the research projects. The status of each program is given in Section 3. We discuss the various experimental techniques used, the results obtained, and we outline the plans for the continuing and the new research. Details are presented of new research that is made possible by the use of the Crystal Ball Detector, a highly segmented NaI calorimeter and spectrometer with nearly 4π acceptance (it was built and used at SLAC and is to be moved to BNL). The appendix contains an update of the bibliography, conference participation, and group memos; it also indicates our share in the organization of conferences, and gives a listing of the colloquia and seminars presented by us

  17. Current technology of particle physics detectors

    International Nuclear Information System (INIS)

    Ludlam, T.W.

    1986-01-01

    A brief discussion is given of the characteristics required of new accelerator facilities, leading into a discussion of the required detectors, including position sensitive detectors, particle identification, and calorimeters

  18. Theoretical aspects of elementary particle physics

    International Nuclear Information System (INIS)

    Wess, J.

    1985-01-01

    The author presents a populary introduction to the theory of elementary particles on the base of quantum mechanics and special relativity theory. The families of quarks, leptons, and gauge bosons are presented, and the connection between symmetry and conservation laws is discussed with special regards to gauge theories. Thereby the description of particle interactions by Feynman diagrams is considered. Finally a brief introduction to supersymmetry and supergravity is given. (HSI) [de

  19. Laboratory Experiments and Instrument Intercomparison Studies of Carbonaceous Aerosol Particles

    Energy Technology Data Exchange (ETDEWEB)

    Davidovits, Paul [Boston College, Chestnut Hill, MA (United States)

    2015-10-20

    Aerosols containing black carbon (and some specific types of organic particulate matter) directly absorb incoming light, heating the atmosphere. In addition, all aerosol particles backscatter solar light, leading to a net-cooling effect. Indirect effects involve hydrophilic aerosols, which serve as cloud condensation nuclei (CCN) that affect cloud cover and cloud stability, impacting both atmospheric radiation balance and precipitation patterns. At night, all clouds produce local warming, but overall clouds exert a net-cooling effect on the Earth. The effect of aerosol radiative forcing on climate may be as large as that of the greenhouse gases, but predominantly opposite in sign and much more uncertain. The uncertainties in the representation of aerosol interactions in climate models makes it problematic to use model projections to guide energy policy. The objective of our program is to reduce the uncertainties in the aerosol radiative forcing in the two areas highlighted in the ASR Science and Program Plan. That is, (1) addressing the direct effect by correlating particle chemistry and morphology with particle optical properties (i.e. absorption, scattering, extinction), and (2) addressing the indirect effect by correlating particle hygroscopicity and CCN activity with particle size, chemistry, and morphology. In this connection we are systematically studying particle formation, oxidation, and the effects of particle coating. The work is specifically focused on carbonaceous particles where the uncertainties in the climate relevant properties are the highest. The ongoing work consists of laboratory experiments and related instrument inter-comparison studies both coordinated with field and modeling studies, with the aim of providing reliable data to represent aerosol processes in climate models. The work is performed in the aerosol laboratory at Boston College. At the center of our laboratory setup are two main sources for the production of aerosol particles: (a

  20. The 2nd International Conference on Particle Physics and Astrophysics

    International Nuclear Information System (INIS)

    Galper, A M; Petrukhin, A A; Rubin, S G; Selyuzhenkov, I V; Skorokhvatov, M D; Soldatov, E; Voronov, S A

    2017-01-01

    The 2nd International Conference on Particle Physics and Astrophysics (ICPPA-2016) was held in Moscow, Russia, from October 10 to 14, 2016. The conference is organized by the National Research Nuclear University “MEPhI”. The aim of the Conference is to promote contacts between scientists and to develop new ideas in fundamental research. We bring together experts and young scientists working on experimental and theoretical aspects of nuclear, particle and astroparticle physics and cosmology. The conference covers a wide range of topics such as accelerator physics, (astro) particle physics, cosmic rays, cosmology and methods of experimental physics: detectors and instruments. These directions are unified by development of the Standard Model which is evidently not complete. There are deviations from the Standard Model: neutrino oscillations, the dark matter existence. Together with strong interactions they are main subjects of the Conference. New results from leading high energy physics collaborations are discussed. Main LHC experiments (ATLAS, CMS, ALICE) presented their results and detector upgrade prospects on the conference. Various aspects of Standard Model testing and search for new phenomena are main subjects of the conference. Among them: flavor physics at B factories, precision multi-boson production measurements, dark matter searches. Electroweak interaction was discussed in the talks given by participants of neutrino physics experiments (Borexino, Neutrino-4, SOX, T2K and others). Enigmatic properties of neutrinos such as their tiny masses, oscillations between different neutrino types, cannot be explained in frame of the modern theory and require new approaches. Properties of neutrinos influenced the formation of the large-scale structure of the Universe and may be neutrinos are partially responsible for the excess of matter over anti-matter. Also our current challenge is the nature of the Dark matter. Many opportunities arise with the development of

  1. Particle Discrimination Experiment for Direct Energy Conversion

    International Nuclear Information System (INIS)

    Yasaka, Y.; Kiriyama, Y.; Yamamoto, S.; Takeno, H.; Ishikawa, M.

    2005-01-01

    A direct energy conversion system designed for D- 3 He fusion reactor based on a field reversed configuration employs a venetian-blind type converter for thermal ions to produce DC power and a traveling wave type converter for fusion protons to produce RF power. It is therefore necessary to separate, discriminate, and guide the particle species. For this purpose, a cusp magnetic field is proposed, in which the electrons are deflected and guided along the field line to the line cusp, while the ions pass through the point cusp. A small-scale experimental device was used to study the basic characteristics of discrimination of electrons and ions in the cusp magnetic field. Ions separated from electrons are guided to an ion collector, which is operated as a one-stage direct energy converter. The conversion efficiency was measured for cases with different values of mean and spread of ion energy. These experiments successfully demonstrate direct energy conversion from plasma beams using particle discrimination by a cusp magnetic field

  2. Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 3: Energy Frontier

    Energy Technology Data Exchange (ETDEWEB)

    Brock, R.; et al.

    2014-01-23

    These reports present the results of the 2013 Community Summer Study of the APS Division of Particles and Fields ("Snowmass 2013") on the future program of particle physics in the U.S. Chapter 3, on the Energy Frontier, discusses the program of research with high-energy colliders. This area includes experiments on the Higgs boson, the electroweak and strong interactions, and the top quark. It also encompasses direct searches for new particles and interactions at high energy.

  3. Martinus Veltman, the Electroweak Theory, and Elementary Particle Physics

    Science.gov (United States)

    Particle Physics Resources with Additional Information Martinus Veltman Courtesy University of Michigan Martinus J.G. Veltman, the John D. MacArthur Professor Emeritus of Physics at the University of Michigan , was awarded the 1999 Nobel Prize in physics "for elucidating the quantum structure of electroweak

  4. An experiment on particle and jet production at midrapidity

    International Nuclear Information System (INIS)

    Kadija, K.; Paic, G.; Vranic, D.; Brady, F.P.; Draper, J.E.; Romero, J.L.; Carroll, J.; Ghazikhanian, V.; Gulmez, E.; Igo, G.J.; Trentalange, S.; Whitten, C. Jr.; Cherney, M.; Heck, W.; Renfordt, R.E.; Roehrich, D.; Stock, R.; Stroebele, H.; Wenig, S.; Hallman, T.; Madansky, L.; Anderson, B.; Keane, D.; Madey, R.; Watson, J.; Bieser, F.; Bloomer, M.A.; Cebra, D.; Christie, W.; Friedlander, E.; Greiner, D.; Gruhn, C.; Harris, J.W.; Huang, H.; Jacobs, P.; Lindstrom, P.; Matis, H.; McParland, C.; Naudet, C.; Odyniec, G.; Olson, D.; Poskanzer, A.M.; Rai, G.; Rasmussen, J.; Ritter, H.G.; Schambach, J.; Schroeder, L.S.; Seidl, P.A.; Symons, T.J.M.; Tonse, S.; Wieman, H.; Carmony, D.D.; Choi, Y.; Hirsch, A.; Hjort, E.; Porile, N.; Scharenberg, R.P.; Srivastava, B.; Tincknell, M.L.; Chacon, A.D.; Wolf, K.L.; Dominik, W.; Gazdzicki, M.; Braithwaite, W.J.; Cramer, J.G.; Prindle, D.; Trainor, T.A.; Breskin, A.; Chechik, R.; Fraenkel, Z.; Shor, A.; Tserruya, I.

    1990-09-01

    The aim of this experiment is to search for signatures of Quark-Gluon Plasma (QGP) formation and investigate the behavior of strongly interacting matter at high energy density. Since there is no single accepted signature for the QGP, it is essential to use a flexible detection system at RHIC that can simultaneously measure many experimental observables. The experiment will utilize two aspects of hadron production that are fundamentally new at RHIC: correlations between global observables on an event-by-event basis and the use of hard scattering of partons as a probe of the properties of high density nuclear matter. The event-by-event measurement of global observables--such as temperature, flavor composition, collision geometry, reaction dynamics, and energy or entropy density fluctuations--is possible because of the very high charged particle densities. Event-by-event fluctuations are expected in the vicinity of a phase change, so experiments must be sensitive to threshold-like features in experimental observables as a function of energy density. Full azimuthal coverage with good particle identification and continuous tracking is required to perform these measurements at momenta where the particle yields are maximal. Measurable jet yields at RHIC will allow investigations of hard QCD processes via both highly segmented calorimetry and high p t single particle measurements in a tracking system. A systematic study of particle and jet production will be carried out over a range of colliding nuclei from p + p through Au + Au, over a range of impact parameters from peripheral to central, and over the range of energies available at RHIC. Correlations between observables will be made on an event-by-event basis to isolate potentially interesting event types. In particular, correlations of jet properties with full event reconstruction may lead to some surprising new physics

  5. Monte Carlo 2000 Conference : Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications

    CERN Document Server

    Baräo, Fernando; Nakagawa, Masayuki; Távora, Luis; Vaz, Pedro

    2001-01-01

    This book focusses on the state of the art of Monte Carlo methods in radiation physics and particle transport simulation and applications, the latter involving in particular, the use and development of electron--gamma, neutron--gamma and hadronic codes. Besides the basic theory and the methods employed, special attention is paid to algorithm development for modeling, and the analysis of experiments and measurements in a variety of fields ranging from particle to medical physics.

  6. Symmetry and conservation laws in particle physics in the fifties

    International Nuclear Information System (INIS)

    Michel, L.

    1989-01-01

    This paper puzzles over why symmetry, so central to particle physics today, was so little attended to in the 1950s when the need for it was becoming profound, with the notion of parity violation and other break-downs in conservation laws, such as angular momentum and charge conjugation. Group theory, including Lie groups, would also have helped understanding of the particle physics discoveries of the 1950s such as strange particles, resonances, and associated production. They were adopted ten years too late by the physics community. (UK)

  7. Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory and Astrophysical Applications

    International Nuclear Information System (INIS)

    Matthaeus, W.; Brown, M.

    2006-01-01

    This is the final technical report for a funded program to provide theoretical support to the Swarthmore Spheromak Experiment. We examined mhd relaxation, reconnecton between two spheromaks, particle acceleration by these processes, and collisonless effects, e.g., Hall effect near the reconnection zone,. Throughout the project, applications to space plasma physics and astrophysics were included. Towards the end of the project we were examining a more fully turbulent relaxation associated with unconstrained dynamics in SSX. We employed experimental, spacecraft observations, analytical and numerical methods.

  8. Perspectives of Penrose theory in particle physics

    International Nuclear Information System (INIS)

    Perjes, Z.

    1976-09-01

    Existing results and some conjectures in the flat-space twistor approach to fundamental particles are reviewed. A consice introduction into the twistor description of dynamical systems with rest-mass is given (both classical and quantum). The Hamiltonian structure inherent to the angular momentum twistor is analyzed. The following discussion outlines the properties of n-twistor systems, the Penrose classification of particles, the Isup(10)SU(3) group and the problem of its twistor representations. Finally, speculative arguments are propounded as to the possible bearings of hadronic quark model to twistor theory. (Sz.N.Z.)

  9. Clinical physics for charged particle treatment planning

    International Nuclear Information System (INIS)

    Chen, G.T.Y.; Pitluck, S.; Lyman, J.T.

    1981-01-01

    The installation of a computerized tomography (CT) scanner which can be used with the patient in an upright position is described. This technique will enhance precise location of tumor position relative to critical structures for accurate charged particle dose delivery during fixed horizontal beam radiotherapy. Pixel-by-pixel treatment planning programs have been developed to calculate the dose distribution from multi-port charged particle beams. The plan includes CT scans, data interpretation, and dose calculations. The treatment planning computer is discussed. Treatment planning for irradiation of ocular melanomas is described

  10. Challenging particle physics as path to truth

    CERN Multimedia

    Johnson, G

    2001-01-01

    Particle physicist's ultimate goal is 'grand unification' - describing the four forces observed today - electromagnetism, weak and strong nuclear forces and gravity with just a single law, expressable as a few concise equations. But some solid state physicists are now contesting the validity of this approach, arguing that many forms of matter cannot be described solely in terms of fundamental particle interactions - when systems are very complex, new and independent laws emerge. They propose that there is no one theory of everything, just a lot of theories of things.

  11. Learning Particle Physics with DIY Play Dough Model

    Science.gov (United States)

    Thunyaniti, T.; Toedtanya, K.; Wuttiprom, S.

    2017-09-01

    The scientists once believed an atom was the smallest particle, nothing was smaller than this tiny particle. Later, they discovered an atom which consists of protons, neutrons and electrons, and they believed that these particles cannot be broken into the smaller particles. According to advanced technology, the scientists have discovered these particles are consisted of a smaller particles. The new particles are called quarks leptons and bosons which we called fundamental particle. Atomic structure cannot be observed directly, so it is complicated for studying these particles. To help the students get more understanding of its properties, so the researcher develops the learning pattern of fundamental particles from Play Dough Model for high school to graduate students. Four step of learning are 1) to introduces the concept of the fundamental particles discovery 2) to play the Happy Families game by using fundamental particles cards 3) to design and make their particle in a way that reflects its properties 4) to represents their particles from Play Dough Model. After doing activities, the students had more conceptual understanding and better memorability on fundamental particles. In addition, the students gained collaborative working experience among their friends also.

  12. PHYSICS, SCIENCE POLICY CERN's seven-point strategy for future particle physics

    CERN Multimedia

    2004-01-01

    Better coordinated particle accelerator research, with more powerful technology, are major priorities on the seven-point "to do list" revealed last week by CERN, the world's largest particle physics laboratory

  13. INSPIRE - Premission. [Interactive NASA Space Physics Ionosphere Radio Experiment

    Science.gov (United States)

    Taylor, William W. L.; Mideke, Michael; Pine, William E.; Ericson, James D.

    1992-01-01

    The Interactive NASA Space Physics Ionosphere Radio Experiment (INSPIRE) designed to assist in a Space Experiments with Particle Accelerators (SEPAC) project is discussed. INSPIRE is aimed at recording data from a large number of receivers on the ground to determine the exact propagation paths and absorption of radio waves at frequencies between 50 Hz and 7 kHz. It is indicated how to participate in the experiment that will involve high school classes, colleges, and amateur radio operators.

  14. Interference of two-particle states in elementary particle physics and in astronomy

    International Nuclear Information System (INIS)

    Kopylov, G.I.; Podgoretskij, M.I.

    1975-01-01

    Comparison is given of two versions of an experiment for observing of the interference of two-particle states of identical particles: time - space and momentum - energy versions. Both versions are considered in detail and make it possible to measure dimensions of particle souces. An interesting symmetry has been found. Expressions for the phase of interfering states in both versions of the experiment are obtained by mutual replacement of particle sources on their detector. An imaginary experiment is suggested which makes it possible to follow how these mutually exclusive versions of the experiment turn one into another

  15. News from the Library: Online particle physics information: a unique compilation of information resources in particle physics

    CERN Multimedia

    CERN Library

    2012-01-01

    Are you looking for some specific information in particle physics? For example, the main literature databases, data repositories or laboratories...   Just go to the Libary's Online Particle Physics Information page. There you'll find a wide selection of relevant information, as well as resources in particle physics and related areas. The collection covers all aspects of the discipline - in addition to traditional scientific information resources you can find, for example, a selection of relevant blogs and art websites. This webpage is an extended and regularly updated version of the chapter on Online Particle Physics Information in the Review of Particle Properties. It is maintained by the CERN Library team which welcomes suggestions for additions and updates: library.desk@cern.ch.  

  16. Elementary particle physics. Progress report, 1993 - 1995

    International Nuclear Information System (INIS)

    Izen, J.M.

    1997-10-01

    A brief summary is given for each of the following topics: (1) Beijing Spectrometer (BES) run history and plans; (2) BES physics topics; (3) UTD BES personnel; (4) UTD physics analysis of 4.03 GeV data; (5) BES software and data processing; (5) UTD computing upgrade; (6) PEPII b Factory; and (7) budget justification

  17. Studies in theorectical high energy particles physics

    International Nuclear Information System (INIS)

    Aratyn, H.; Keung, Wai-Yee; Panigrahi, P.; Sukhatme, U.

    1990-02-01

    This paper discusses the research being done at the University of Illinois in theoretical high energy physics. Some areas discussed are string models, collider physics, symmetries in gauge theories, sigma model, radiative decay of mesons, supersymmetry, superconducting, and hydroproduction of charm

  18. Uses of particle identification for supercollider physics

    International Nuclear Information System (INIS)

    Quigg, C.

    1989-05-01

    I summarize the basic characteristics of the Superconducting Super Collider and describe the experimental environment of its high- luminosity interaction regions. I then review some of the discovery possibilities opened by the SSC, with special attention to the advantages conferred by particle identification. 16 refs., 8 figs

  19. Particle Release Experiment (PRex) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Keillor, Martin E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Arrigo, Leah M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Detwiler, Rebecca S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kernan, Warnick J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kirkham, Randy R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); MacDougall, Matthew R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chipman, Veraun D. [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Milbrath, Brian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rishel, Jeremy P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Seifert, Allen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Seifert, Carolyn E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smart, John E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Emer, Dudley [National Security Technologies, LLC. (NSTec), Mercury, NV (United States)

    2014-09-30

    An experiment to release radioactive particles representative of small-scale venting from an underground nuclear test was conducted to gather data in support of treaty verification and monitoring activities. For this experiment, a CO2-driven “air cannon” was used to release La-140 at ambient temperatures. Lanthanum-140 was chosen to represent the fission fragments because of its short half-life and prominent gamma-ray emissions; the choice was also influenced by the successful production and use of La-140 with low levels of radioactive contaminants in a Defence Research and Development Canada Field Trial. The source was created through activation of high-purity natural lanthanum oxide at the reactor of Washington State University, Pullman, Washington. Multiple varieties of witness plates and air samplers were laid in an irregular grid covering the area over which the plume was modeled to deposit. Aerial survey, a NaI(Tl) mobile spectrometer, and handheld and backpack instruments ranging from polyvinyl toluene to high-purity germanium were used to survey the plume. Additionally, three varieties of soil sampling were investigated. The relative sensitivity and utility of sampling and survey methods are discussed in the context of On-Site Inspection. The measurements and samples show a high degree of correlation and form a valuable set of test data.

  20. Energetic particle physics with applications in fusion and space plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1997-01-01

    Energetic particle physics is the study of the effects of energetic particles on collective electromagnetic (EM) instabilities and energetic particle transport in plasmas. Anomalously large energetic particle transport is often caused by low frequency MHD instabilities, which are driven by these energetic particles in the presence of a much denser background of thermal particles. The theory of collective energetic particle phenomena studies complex wave-particle interactions in which particle kinetic physics involving small spatial and fast temporal scales can strongly affect the MHD structure and long-time behavior of plasmas. The difficulty of modeling kinetic-MHD multiscale coupling processes stems from the disparate scales which are traditionally analyzed separately: the macroscale MHD phenomena are studied using the fluid MHD framework, while microscale kinetic phenomena are best described by complicated kinetic theories. The authors have developed a kinetic-MHD model that properly incorporates major particle kinetic effects into the MHD fluid description. For tokamak plasmas a nonvariational kinetic-MHD stability code, the NOVA-K code, has been successfully developed and applied to study problems such as the excitation of fishbone and Toroidal Alfven Eigenmodes (TAE) and the sawtooth stabilization by energetic ions in tokamaks. In space plasmas the authors have employed the kinetic-MHD model to study the energetic particle effects on the ballooning-mirror instability which explains the multisatellite observation of the stability and field-aligned structure of compressional Pc 5 waves in the magnetospheric ring current plasma

  1. Atomic, molecular, and optical physics charged particles

    CERN Document Server

    Dunning, F B

    1995-01-01

    With this volume, Methods of Experimental Physics becomes Experimental Methods in the Physical Sciences, a name change which reflects the evolution of todays science. This volume is the first of three which will provide a comprehensive treatment of the key experimental methods of atomic, molecular, and optical physics; the three volumes as a set will form an excellent experimental handbook for the field. The wide availability of tunable lasers in the pastseveral years has revolutionized the field and lead to the introduction of many new experimental methods that are covered in these volumes. Traditional methods are also included to ensure that the volumes will be a complete reference source for the field.

  2. Femtophysics a short course on particle physics

    CERN Document Server

    Bowler, Michael George

    1990-01-01

    Provides an account of what is now known about physics at scales of 1013 to 1016 cm. The existence of spin half quarks interacting through colour fields is established fact, as is the structure unifying electromagnetic and weak interaction. In Femtophysics, the author explains the evidence and communicates the essential physics underlying these recent and remarkable developments. The approach throughout is to obtain results by applying trivial algebra to the content of simple and clear physical pictures. Thus, abstract and difficult concepts can be mastered pai

  3. Symmetry and the Standard Model mathematics and particle physics

    CERN Document Server

    Robinson, Matthew

    2011-01-01

    While elementary particle physics is an extraordinarily fascinating field, the huge amount of knowledge necessary to perform cutting-edge research poses a formidable challenge for students. The leap from the material contained in the standard graduate course sequence to the frontiers of M-theory, for example, is tremendous. To make substantial contributions to the field, students must first confront a long reading list of texts on quantum field theory, general relativity, gauge theory, particle interactions, conformal field theory, and string theory. Moreover, waves of new mathematics are required at each stage, spanning a broad set of topics including algebra, geometry, topology, and analysis. Symmetry and the Standard Model: Mathematics and Particle Physics, by Matthew Robinson, is the first volume of a series intended to teach math in a way that is catered to physicists. Following a brief review of classical physics at the undergraduate level and a preview of particle physics from an experimentalist's per...

  4. The role of supersymmetry phenomenology in particle physics

    OpenAIRE

    Wells, James D.

    2000-01-01

    Supersymmetry phenomenology is an important component of particle physics today. I provide a definition of supersymmetry phenomenology, outline the scope of its activity, and argue its legitimacy. This essay derives from a presentation given at the 2000 SLAC Summer Institute.

  5. Nuclei and particles. An introduction to nuclear and subnuclear physics

    International Nuclear Information System (INIS)

    Serge, E.

    1977-01-01

    A broad introduction is given to nuclear and subnuclear physics. Major divisions of the book include radiation and tools for studying the nucleus, elements of the structure, properties, and reactions of nuclei, and a semiphenomenological approach to elementary particles

  6. The role of supersymmetry phenomenology in particle physics

    International Nuclear Information System (INIS)

    Wells, James D.

    2000-01-01

    Supersymmetry phenomenology is an important component of particle physics today. I provide a definition of supersymmetry phenomenology, outline the scope of its activity, and argue its legitimacy. This essay derives from a presentation given at the 2000 SLAC Summer Institute

  7. Obituaries: Oreste Piccioni, 86, a leader in particle physics field

    CERN Multimedia

    2002-01-01

    Oreste Piccioni, a leading scientist in the field of elementary particle physics and emeritus professor at the University of California, San Diego, USA, has died of complications from diabetes and lung cancer. He was 86 (1 page).

  8. Image processing applications: From particle physics to society

    International Nuclear Information System (INIS)

    Sotiropoulou, C.-L.; Citraro, S.; Dell'Orso, M.; Luciano, P.; Gkaitatzis, S.; Giannetti, P.

    2017-01-01

    We present an embedded system for extremely efficient real-time pattern recognition execution, enabling technological advancements with both scientific and social impact. It is a compact, fast, low consumption processing unit (PU) based on a combination of Field Programmable Gate Arrays (FPGAs) and the full custom associative memory chip. The PU has been developed for real time tracking in particle physics experiments, but delivers flexible features for potential application in a wide range of fields. It has been proposed to be used in accelerated pattern matching execution for Magnetic Resonance Fingerprinting (biomedical applications), in real time detection of space debris trails in astronomical images (space applications) and in brain emulation for image processing (cognitive image processing). We illustrate the potentiality of the PU for the new applications.

  9. Superconducting Kinetic Inductance Detectors for astronomy and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, M., E-mail: martino.calvo@neel.cnrs.fr [Institute Néel, CNRS, Grenoble (France); Goupy, J.; D' Addabbo, A.; Benoit, A. [Institute Néel, CNRS, Grenoble (France); Bourrion, O. [Laboratoire de Physique Subatomique et Cosmologie, CNRS, Grenoble (France); Catalano, A. [Institute Néel, CNRS, Grenoble (France); Laboratoire de Physique Subatomique et Cosmologie, CNRS, Grenoble (France); Monfardini, A. [Institute Néel, CNRS, Grenoble (France)

    2016-07-11

    Kinetic Inductance Detectors (KID) represent a novel detector technology based on superconducting resonators. Since their first demonstration in 2003, they have been rapidly developed and are today a strong candidate for present and future experiments in the different bands of the electromagnetic spectrum. This has been possible thanks to the unique features of such devices: in particular, they couple a very high sensitivity to their intrinsic suitability for frequency domain multiplexed readout, making the fabrication of large arrays of ultrasensitive detectors possible. There are many fields of application that can profit of such detectors. Here, we will briefly review the principle of operation of a KID, and give two sample applications, to mm-wave astronomy and to particle physics.

  10. Superconducting Kinetic Inductance Detectors for astronomy and particle physics

    International Nuclear Information System (INIS)

    Calvo, M.; Goupy, J.; D'Addabbo, A.; Benoit, A.; Bourrion, O.; Catalano, A.; Monfardini, A.

    2016-01-01

    Kinetic Inductance Detectors (KID) represent a novel detector technology based on superconducting resonators. Since their first demonstration in 2003, they have been rapidly developed and are today a strong candidate for present and future experiments in the different bands of the electromagnetic spectrum. This has been possible thanks to the unique features of such devices: in particular, they couple a very high sensitivity to their intrinsic suitability for frequency domain multiplexed readout, making the fabrication of large arrays of ultrasensitive detectors possible. There are many fields of application that can profit of such detectors. Here, we will briefly review the principle of operation of a KID, and give two sample applications, to mm-wave astronomy and to particle physics.

  11. [High energy particle physics at Purdue, 1989--1990

    International Nuclear Information System (INIS)

    Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Shipsey, I.P.

    1990-05-01

    The theoretical and experimental high energy physics program is reviewed, including developments on particle detectors. Among the topics addressed are the following: the CLEO experiment; gamma ray astrophysics; highest-weight representations of affine Kac-Moody algebras; supersymmetric field theories; parity- violating effects and superconductivity in 2 + 1 dimensional supersymmetric QED; neutrino oscillations with applications to solar and supernova neutrinos; a search for the quark-gluon plasma using the Fermilab collider; the Solenoid Detector Collaboration at SSC; the high-resolution vertex chamber at TRISTAN; CP violation in e + e - →φ→K L K S ; deviations from Coulomb's Law; and the electric charge and equations of state of neutron stars

  12. Evolution of silicon sensor technology in particle physics

    CERN Document Server

    Hartmann, Frank

    2017-01-01

    This informative monograph describes the technological evolution of silicon detectors and their impact on high energy particle physics. The author here marshals his own first-hand experience in the development and also the realization of the DELPHI, CDF II and the CMS tracking detector. The basic principles of small strip- and pixel-detectors are presented and also the final large-scale applications. The Evolution of Silicon Detector Technology acquaints readers with the manifold challenges involving the design of sensors and pushing this technology to the limits. The expert will find critical information that is so far only available in various slide presentation scattered over the world wide web. This practical introduction of silicon sensor technology and its day to day life in the lab also offers many examples to illustrate problems and their solutions over several detector generations. The new edition gives a detailed overview of the silicon sensor technology used at the LHC, from basic principles to act...

  13. Studies In Theoretical High Energy Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Keung, Wai Yee [Univ. of Illinois, Chicago, IL (United States)

    2017-07-01

    This is a final technical report for grant no. DE-SC0007948 describing research activities in theoretical high energy physics at University of Illinois at Chicago for the whole grant period from July 1, 2012 to March 31, 2017.

  14. Particle physics: Matter and antimatter scrutinized

    NARCIS (Netherlands)

    Jungmann, Klaus Peter

    2015-01-01

    A search for differences in the charge-to-mass ratio of protons and antiprotons, conducted at unprecedented levels of precision, results in stringent limits to the validity of fundamental physical symmetries.

  15. Resource Letter HEPP-1: History of elementary-particle physics

    International Nuclear Information System (INIS)

    Hovis, R.C.; Kragh, H.

    1991-01-01

    This Resource Letter provides a guide to literature on the history of modern elementary-particle physics. Histories that treat developments from the 1930s through the 1980s are focused on and a sampling is included of the historiography covering the period c. 1890--1930, the prehistory of elementary-particle physics as a discipline. Also included are collections of scientific papers, which might be especially valuable to individuals who wish to undertake historical research on particular scientists or subfields of elementary-particle physics. The introduction presents some statistical data and associated references for elementary-particle physics and surveys historiographical approaches and issues that are represented in historical accounts in the bibliography. All references are assigned a rating of E (Elementary), I (Intermediate), or A (Advanced) based on their technical or conceptual difficulty or their appropriateness for a person attempting a graduated study of the history of modern particle physics. That is, items labeled E are suitable for the layman or would be fundamental to a beginning exploration of the history of particle physics, whereas items labeled A are technically demanding (mathematically, historiographically, or philosophically) or would be most appropriate for specialized or advanced examinations of various topics

  16. Physical characterization of diesel exhaust nucleation mode particles

    Energy Technology Data Exchange (ETDEWEB)

    Lahde, T.

    2013-11-01

    An increasing concern of the adverse health effects of aerosol particles is forcing the combustion engine industry to develop engines with lower particle emissions. The industry has put most of their efforts into soot control and has achieved a significant reduction in diesel exhaust particle mass. Nevertheless, it is not clear that the large particles, dominating the mass, cause the harmfulness of the exhaust particles in the biological interaction. Nowadays, the harmful potential of diesel exhaust particles often connects with the particle surface area, and the view has turned to particle number below 100 nm size range. Unfortunately, the achieved low exhaust particle mass does not necessarily imply a low particle number. This text focuses on the physical characteristics of diesel exhaust nucleation model particles. The volatility characteristics and the electrical charge state of the particles are studied first. Second, the relation between the nonvolatile nucleation mode emissions and the soot, the nitrogen oxide (NO{sub x}) emissions and the engine parameters are covered. The nucleation mode particles had distinctively different physical characteristics with different after-treatment systems. The nucleation mode was volatile and electrically neutral with a diesel particle filter after-treatment system. Without an after-treatment system or with an after-treatment system with low particle removal efficiency, the nucleation mode was partly nonvolatile and included an electrical charge. The difference suggests different formation routes for the nucleation particles with different after-treatment systems. The existence of the nonvolatile nucleation mode particles also affected the soot mode charge state. The soot charge state was positively biased when the nonvolatile nucleation mode was detected but slightly negatively biased when the nonvolatile nucleation mode was absent. The nonvolatile nucleation mode was always negatively biased. This electrical charge

  17. Pixel Detectors for Particle Physics and Imaging Applications

    CERN Document Server

    Wermes, N

    2003-01-01

    Semiconductor pixel detectors offer features for the detection of radiation which are interesting for particle physics detectors as well as for imaging e.g. in biomedical applications (radiography, autoradiography, protein crystallography) or in Xray astronomy. At the present time hybrid pixel detectors are technologically mastered to a large extent and large scale particle detectors are being built. Although the physical requirements are often quite different, imaging applications are emerging and interesting prototype results are available. Monolithic detectors, however, offer interesting features for both fields in future applications. The state of development of hybrid and monolithic pixel detectors, excluding CCDs, and their different suitability for particle detection and imaging, is reviewed.

  18. Fundamental concepts in Particle Physics course

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    The course will provide an introduction to some of the basic theoretical techniques used to describe the fundamental particles and their interactions. Of central importance to our understanding of these forces are the underlying symmetries of nature and I will review the nature of these symmetries and how they are used to build a predictive theory. I discuss how the combination of quantum mechanics and relativity leads to the quantum field theory (QFT) description of the states of matter and their interactions. The Feynman rules used to determine the QFT predictions for experimentally measurable processes are derived and applied to the calculation of decay widths and cross sections.

  19. New developments in elementary-particle physics

    CERN Document Server

    Zichichi, A

    1979-01-01

    The modern attempt at unification of all the forces in nature is based on supersymmetry. To achieve the unification of strong and electroweak forces the distinction between leptons and hadrons (quarks) must go. The fundamental symmetry of nature is the SU(3)/sub c/ gauge symmetry, where c stands for colour. There are three colours which are the basic changes of nature and act between quarks and gluons. Elementary particles are now thought to be made of quarks and gluons. The fundamental forces of nature now appear to be the superstrong (which generates strong and semi-strong forces), electroweak (generating electromagnetic, weak and superweak) and gravitational forces. (89 refs).

  20. Particle physics and the standard cosmology

    International Nuclear Information System (INIS)

    Sarkar, S.

    1985-12-01

    The author reviews the constraints imposed by the standard cosmological model on physics beyond the standard SU(3)sub(C) x SU(2)sub(L) x U(1)sub(Y) model, with particular attention to supersymmetry and supergravity. (author)